WorldWideScience

Sample records for displacement measurement system

  1. Displacement measurement system for linear array detector

    International Nuclear Information System (INIS)

    Zhang Pengchong; Chen Ziyu; Shen Ji

    2011-01-01

    It presents a set of linear displacement measurement system based on encoder. The system includes displacement encoders, optical lens and read out circuit. Displacement read out unit includes linear CCD and its drive circuit, two amplifier circuits, second order Butterworth low-pass filter and the binarization circuit. The coding way is introduced, and various parts of the experimental signal waveforms are given, and finally a linear experimental test results are given. The experimental results are satisfactory. (authors)

  2. Standard practices for verification of displacement measuring systems and devices used in material testing machines

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 These practices cover procedures and requirements for the calibration and verification of displacement measuring systems by means of standard calibration devices for static and quasi-static testing machines. This practice is not intended to be complete purchase specifications for testing machines or displacement measuring systems. Displacement measuring systems are not intended to be used for the determination of strain. See Practice E83. 1.2 These procedures apply to the verification of the displacement measuring systems associated with the testing machine, such as a scale, dial, marked or unmarked recorder chart, digital display, etc. In all cases the buyer/owner/user must designate the displacement-measuring system(s) to be verified. 1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems m...

  3. Nomarski imaging interferometry to measure the displacement field of micro-electro-mechanical systems

    International Nuclear Information System (INIS)

    Amiot, Fabien; Roger, Jean Paul

    2006-01-01

    We propose to use a Nomarski imaging interferometer to measure the out-of-plane displacement field of micro-electro-mechanical systems. It is shown that the measured optical phase arises from both height and slope gradients. By using four integrating buckets, a more efficient approach to unwrap the measured phase is presented,thus making the method well suited for highly curved objects. Slope and height effects are then decoupled by expanding the displacement field on a functions basis, and the inverse transformation is applied to get a displacement field from a measured optical phase map change with a mechanical loading. A measurement reproducibility of approximately 10 pm is achieved, and typical results are shown on a microcantilever under thermal actuation, thereby proving the ability of such a setup to provide a reliable full-field kinematic measurement without surface modification

  4. On the improvement of heterodyne displacement interferometry : Enhancing measurement linearity and system modularity

    NARCIS (Netherlands)

    Meskers, A.J.H.

    2014-01-01

    Lithographic exposure equipment for integrated circuit manufacturing requires ever more accurate position measurement systems, which is currently led by the advent of Extreme UltraViolet (EUV)-lithography machines. This PhD-research describes an interferometric displacement measurement system that

  5. Measurements of the gap/displacement and development of the ultrasonic temperature measuring system applied to severe accidents research

    International Nuclear Information System (INIS)

    Koo, Kil Mo; Kang, Kyung Ho; Cho, Young Ro; Park, Rae Jun; Kim, Sang Baik; Sim, Chul Moo

    2001-02-01

    This report, in order to measure quantitative LAVA experimental results, focuses on measuring the gap formed on the lower head vessel using a ultrasonic pulse echo method and neutron radiography, measuring displacement of the lower head vessel using capacitance method, building a measuring system and developing high temperature measurement system using ultrasonic method. The scope of gap measurement and system development using the ultrasonic method is 2-dimensional image processing using tomographical B scan method and 2- and 3-dimensional image processing using C scan methods based on the one dimensional time domain A scan signal. For some test specimen, the gap size is quantitative represented apply C scan methods. The important ultrasonic image processing technique is on the development of accurate position control system. The requirements of the position control system are a contact technique on the test specimen and a fine moving technique. Since the specimen is hemispherical, the contact technique is very difficult. Therefore, the gap measurement using the ultrasonic pulse echo method was applied developing the position controlling scanner system. Along with the ultrasonic method, neutron radiography method using KAERI's neutron source was attempted 4 times and the results are compared. The fine displacement of the hemispherical specimen was measured using a capacitive displacement sensor. The requirements for this measuring technique are fixing of the capacitance sensor to the experimental facilities and a remote control position varying system. This remote control position varying system was manufactured with a electrical motor. The development of a high temperature measuring system using a ultrasonic method the second year plan, is performed with developing a sensor which can measure up to 2300 deg C

  6. Problems of systems dataware using optoelectronic measuring means of linear displacement

    Science.gov (United States)

    Bazykin, S. N.; Bazykina, N. A.; Samohina, K. S.

    2017-10-01

    Problems of the dataware of the systems with the use of optoelectronic means of the linear displacement are considered in the article. The classification of the known physical effects, realized by the means of information-measuring systems, is given. The organized analysis of information flows in technical systems from the standpoint of determination of inaccuracies of measurement and management was conducted. In spite of achieved successes in automation of machine-building and instruments-building equipment in the field of dataware of the technical systems, there are unresolved problems, concerning the qualitative aspect of the production process. It was shown that the given problem can be solved using optoelectronic lazer information-measuring systems. Such information-measuring systems are capable of not only executing the measuring functions, but also solving the problems of management and control during processing, thereby guaranteeing the quality of final products.

  7. Measurement system for special surface mapping using miniature displacement sensors

    Directory of Open Access Journals (Sweden)

    Zowade Martyna

    2018-01-01

    Full Text Available The aim of the work was to design a special system for measurements of elements with repetitive geometry or assemblies with repeating components, set in a linear patterns. The main focus was based on developing a computer program for signal analysis from variable number of miniature displacement sensors. It was set that the response for displacement of measuring tip from each sensor was a 0-5 V voltage signal with possibility of using different type of sensors. Requirements were determined based on projected measurement method. A special design of sensor was made for testing the computer program. If the characteristics of the sensor is known, it is possible to compute the type A evaluation of uncertainty. The results are presented in XY chart on computer screen. The program allows the user to choose any number of the sensors and determine the distance between them. Also, the possibility of calibration of sensors’ set was provided. The test were conducted on a prototype handle for sensors, made on a 3D printer.

  8. Measuring vulnerability to disaster displacement

    Science.gov (United States)

    Brink, Susan A.; Khazai, Bijan; Power, Christopher; Wenzel, Friedemann

    2015-04-01

    Large scale disasters can cause devastating impacts in terms of population displacement. Between 2008 and 2013, on average 27 million people were displaced annually by disasters (Yonetani 2014). After large events such as hurricane Katrina or the Port-au-Prince earthquake, images of inadequate public shelter and concerns about large scale and often inequitable migration have been broadcast around the world. Population displacement can often be one of the most devastating and visible impacts of a natural disaster. Despite the importance of population displacement in disaster events, measures to understand the socio-economic vulnerability of a community often use broad metrics to estimate the total socio-economic risk of an event rather than focusing on the specific impacts that a community faces in a disaster. Population displacement is complex and multi-causal with the physical impact of a disaster interacting with vulnerability arising from the response, environmental issues (e.g., weather), cultural concerns (e.g., expectations of adequate shelter), and many individual factors (e.g., mobility, risk perception). In addition to the complexity of the causes, population displacement is difficult to measure because of the wide variety of different terms and definitions and its multi-dimensional nature. When we speak of severe population displacement, we may refer to a large number of displaced people, an extended length of displacement or associated difficulties such as poor shelter quality, risk of violence and crime in shelter communities, discrimination in aid, a lack of access to employment or other difficulties that can be associated with large scale population displacement. We have completed a thorough review of the literature on disaster population displacement. Research has been conducted on historic events to understand the types of negative impacts associated with population displacement and also the vulnerability of different groups to these impacts. We

  9. A dual 3D DIC-system application for DSL strain and displacement measurements

    DEFF Research Database (Denmark)

    Raurova, I.; Berggreen, Christian; Eriksen, Rasmus Normann Wilken

    2010-01-01

    This paper describes a dual 3D Digital Image Correlation (DIC) system application for DLS strain and displacement measurements, where two 3D DIC-systems are used in parallel. The bonded specimens were tested to failure under monotonic loading in a uni-axial tensile testing machine at ambient...

  10. A Vision-Based Sensor for Noncontact Structural Displacement Measurement

    Science.gov (United States)

    Feng, Dongming; Feng, Maria Q.; Ozer, Ekin; Fukuda, Yoshio

    2015-01-01

    Conventional displacement sensors have limitations in practical applications. This paper develops a vision sensor system for remote measurement of structural displacements. An advanced template matching algorithm, referred to as the upsampled cross correlation, is adopted and further developed into a software package for real-time displacement extraction from video images. By simply adjusting the upsampling factor, better subpixel resolution can be easily achieved to improve the measurement accuracy. The performance of the vision sensor is first evaluated through a laboratory shaking table test of a frame structure, in which the displacements at all the floors are measured by using one camera to track either high-contrast artificial targets or low-contrast natural targets on the structural surface such as bolts and nuts. Satisfactory agreements are observed between the displacements measured by the single camera and those measured by high-performance laser displacement sensors. Then field tests are carried out on a railway bridge and a pedestrian bridge, through which the accuracy of the vision sensor in both time and frequency domains is further confirmed in realistic field environments. Significant advantages of the noncontact vision sensor include its low cost, ease of operation, and flexibility to extract structural displacement at any point from a single measurement. PMID:26184197

  11. Contactless sub-millimeter displacement measurements

    Science.gov (United States)

    Sliepen, Guus; Jägers, Aswin P. L.; Bettonvil, Felix C. M.; Hammerschlag, Robert H.

    2008-07-01

    Weather effects on foldable domes, as used at the DOT and GREGOR, are investigated, in particular the correlation between the wind field and the stresses caused to both metal framework and tent clothing. Camera systems measure contactless the displacement of several dome points. The stresses follow from the measured deformation pattern. The cameras placed near the dome floor do not disturb telescope operations. In the set-ups of DOT and GREGOR, these cameras are up to 8 meters away from the measured points and must be able to detect displacements of less than 0.1 mm. The cameras have a FireWire (IEEE1394) interface to eliminate the need for frame grabbers. Each camera captures 15 images of 640 × 480 pixels per second. All data is processed on-site in real-time. In order to get the best estimate for the displacement within the constraints of available processing power, all image processing is done in Fourier-space, with all convolution operations being pre-computed once. A sub-pixel estimate of the peak of the correlation function is made. This enables to process the images of four cameras using only one commodity PC with a dual-core processor, and achieve an effective sensitivity of up to 0.01 mm. The deformation measurements are well correlated to the simultaneous wind measurements. The results are of high interest to upscaling the dome design (ELTs and solar telescopes).

  12. Measurement of interfacial displacement of a liquid film in microchannels using laser focus displacement meter

    International Nuclear Information System (INIS)

    Hazuku, Tatsuya; Fukamachi, Norihiro; Takamasa, Tomoji; Hibiki, Takashi

    2004-01-01

    This paper presents a new method for measuring the interfacial displacement of a liquid film in microchannels using a laser focus displacement meter (LFD). The purpose of the study is to clarify the effectiveness of the new method for obtaining detailed information concerning interfacial displacement, especially in the case of a thin liquid film, in micro- and mini-channels. To prevent the tube wall signal from disturbing that of the gas-liquid interface, a fluorocarbon tube with water box was used; the refraction index of this device is same as that for water. With this method, accurate instantaneous measurements of interfacial displacement of the liquid film were achieved. The error caused by refraction of the laser beam passing through the acrylic water box and fluorocarbon tube was estimated analytically and experimentally. The formulated analytical equation can estimate the real interface displacement using measured displacement in a fluorocarbon tube of 25 μm to 2.0 mm I.D. A preliminary test using fluorocarbon tubes of 1 and 2 mm I.D. showed that the corrected interface displacement calculated by the equation agreed with real displacement within a 1% margin of error. It was also confirmed that the LFD in the system could measure a liquid film of 0.25 μm at the thinnest. We made simultaneous measurements of the interface in fluorocarbon tubes of 0.5 and 1 mm I.D. using the LFD and a high-speed video camera with a microscope. These showed that the LFD could measure the interface of a liquid film with high spatial and temporal resolution during annular, slug, and piston flow regimes. The data also clarified the existence of a thin liquid film less than 1 μm in thickness in slug and annular flow regions. (author)

  13. FPGA-Based Smart Sensor for Online Displacement Measurements Using a Heterodyne Interferometer

    Science.gov (United States)

    Vera-Salas, Luis Alberto; Moreno-Tapia, Sandra Veronica; Garcia-Perez, Arturo; de Jesus Romero-Troncoso, Rene; Osornio-Rios, Roque Alfredo; Serroukh, Ibrahim; Cabal-Yepez, Eduardo

    2011-01-01

    The measurement of small displacements on the nanometric scale demands metrological systems of high accuracy and precision. In this context, interferometer-based displacement measurements have become the main tools used for traceable dimensional metrology. The different industrial applications in which small displacement measurements are employed requires the use of online measurements, high speed processes, open architecture control systems, as well as good adaptability to specific process conditions. The main contribution of this work is the development of a smart sensor for large displacement measurement based on phase measurement which achieves high accuracy and resolution, designed to be used with a commercial heterodyne interferometer. The system is based on a low-cost Field Programmable Gate Array (FPGA) allowing the integration of several functions in a single portable device. This system is optimal for high speed applications where online measurement is needed and the reconfigurability feature allows the addition of different modules for error compensation, as might be required by a specific application. PMID:22164040

  14. Displacement and deformation measurement for large structures by camera network

    Science.gov (United States)

    Shang, Yang; Yu, Qifeng; Yang, Zhen; Xu, Zhiqiang; Zhang, Xiaohu

    2014-03-01

    A displacement and deformation measurement method for large structures by a series-parallel connection camera network is presented. By taking the dynamic monitoring of a large-scale crane in lifting operation as an example, a series-parallel connection camera network is designed, and the displacement and deformation measurement method by using this series-parallel connection camera network is studied. The movement range of the crane body is small, and that of the crane arm is large. The displacement of the crane body, the displacement of the crane arm relative to the body and the deformation of the arm are measured. Compared with a pure series or parallel connection camera network, the designed series-parallel connection camera network can be used to measure not only the movement and displacement of a large structure but also the relative movement and deformation of some interesting parts of the large structure by a relatively simple optical measurement system.

  15. Measurement of the Dynamic Displacements of Railway Bridges Using Video Technology

    Directory of Open Access Journals (Sweden)

    Ribeiro Diogo

    2015-01-01

    Full Text Available This article describes the development of a non-contact dynamic displacement measurement system for railway bridges based on video technology. The system, consisting of a high speed video camera, an optical lens, lighting lamps and a precision target, can perform measurements with high precision for distances from the camera to the target up to 25 m, with acquisition frame rates ranging from 64 fps to 500 fps, and be articulated with other measurement systems, which promotes its integration in structural health monitoring systems. The system’s performance was evaluated based on two tests, one in the laboratory and other on the field. The laboratory test evaluated the performance of the system in measuring the displacement of a steel beam, subjected to a point load applied dynamically, for distances from the camera to the target between 3 m and 15 m. The field test allowed evaluating the system’s performance in the dynamic measurement of the displacement of a point on the deck of a railway bridge, induced by passing trains at speeds between 160 km/h and 180 km/h, for distances from the camera to the target up to 25 m. The results of both tests show a very good agreement between the displacement measurement obtained with the video system and with a LVDT.

  16. Circuit Design and Implementation of Micro-Displacement Measurement System of Laser Self-Mixing Interference

    Directory of Open Access Journals (Sweden)

    Guang Ya LIU

    2014-02-01

    Full Text Available In this paper we put forward the basic structure of a micro-displacement measuring system based on the basic theory of laser feedback, and designed a hardware circuit of the system, including the LD driver and modulation circuit, photoelectric signal amplifier and filter circuit, which meet the requirements of the follow-up experimental study by theoretical analysis and Multisim simulation to the circuit.

  17. Development of a High Precision Displacement Measurement System by Fusing a Low Cost RTK-GPS Sensor and a Force Feedback Accelerometer for Infrastructure Monitoring.

    Science.gov (United States)

    Koo, Gunhee; Kim, Kiyoung; Chung, Jun Yeon; Choi, Jaemook; Kwon, Nam-Yeol; Kang, Doo-Young; Sohn, Hoon

    2017-11-28

    A displacement measurement system fusing a low cost real-time kinematic global positioning system (RTK-GPS) receiver and a force feedback accelerometer is proposed for infrastructure monitoring. The proposed system is composed of a sensor module, a base module and a computation module. The sensor module consists of a RTK-GPS rover and a force feedback accelerometer, and is installed on a target structure like conventional RTK-GPS sensors. The base module is placed on a rigid ground away from the target structure similar to conventional RTK-GPS bases, and transmits observation messages to the sensor module. Then, the initial acceleration, velocity and displacement responses measured by the sensor module are transmitted to the computation module located at a central monitoring facility. Finally, high precision and high sampling rate displacement, velocity, and acceleration are estimated by fusing the acceleration from the accelerometer, the velocity from the GPS rover, and the displacement from RTK-GPS. Note that the proposed displacement measurement system can measure 3-axis acceleration, velocity as well as displacement in real time. In terms of displacement, the proposed measurement system can estimate dynamic and pseudo-static displacement with a root-mean-square error of 2 mm and a sampling rate of up to 100 Hz. The performance of the proposed system is validated under sinusoidal, random and steady-state vibrations. Field tests were performed on the Yeongjong Grand Bridge and Yi Sun-sin Bridge in Korea, and the Xihoumen Bridge in China to compare the performance of the proposed system with a commercial RTK-GPS sensor and other data fusion techniques.

  18. Structural observation of long-span suspension bridges for safety assessment: implementation of an optical displacement measurement system

    International Nuclear Information System (INIS)

    Martins, L Lages; Ribeiro, A Silva; Rebordão, J M

    2015-01-01

    This paper addresses the implementation of an optical displacement measurement system in the observation scenario of a long-span suspension bridge and its contribution for structural safety assessment. The metrological background required for quality assurance of the measurements is described, namely, the system's intrinsic parameterization and integration in the SI dimensional traceability chain by calibration, including its measurement uncertainty assessment

  19. Development of a High Precision Displacement Measurement System by Fusing a Low Cost RTK-GPS Sensor and a Force Feedback Accelerometer for Infrastructure Monitoring

    Directory of Open Access Journals (Sweden)

    Gunhee Koo

    2017-11-01

    Full Text Available A displacement measurement system fusing a low cost real-time kinematic global positioning system (RTK-GPS receiver and a force feedback accelerometer is proposed for infrastructure monitoring. The proposed system is composed of a sensor module, a base module and a computation module. The sensor module consists of a RTK-GPS rover and a force feedback accelerometer, and is installed on a target structure like conventional RTK-GPS sensors. The base module is placed on a rigid ground away from the target structure similar to conventional RTK-GPS bases, and transmits observation messages to the sensor module. Then, the initial acceleration, velocity and displacement responses measured by the sensor module are transmitted to the computation module located at a central monitoring facility. Finally, high precision and high sampling rate displacement, velocity, and acceleration are estimated by fusing the acceleration from the accelerometer, the velocity from the GPS rover, and the displacement from RTK-GPS. Note that the proposed displacement measurement system can measure 3-axis acceleration, velocity as well as displacement in real time. In terms of displacement, the proposed measurement system can estimate dynamic and pseudo-static displacement with a root-mean-square error of 2 mm and a sampling rate of up to 100 Hz. The performance of the proposed system is validated under sinusoidal, random and steady-state vibrations. Field tests were performed on the Yeongjong Grand Bridge and Yi Sun-sin Bridge in Korea, and the Xihoumen Bridge in China to compare the performance of the proposed system with a commercial RTK-GPS sensor and other data fusion techniques.

  20. Metrological 2iOF fibre-optic system for position and displacement measurement with 31 pm resolution

    Science.gov (United States)

    Orłowska, Karolina; Świåtkowski, Michał; Kunicki, Piotr; Gotszalk, Teodor

    2018-04-01

    In the present paper, we describe a high sensitivity intensity fibre-optic displacement sensor with tens of picometre resolution combined with a sub-picometre resolution interferometric calibration system. Both integrated components form the so-called "2 in one ferrule" system 2iOF. The design and construction of the presented device depend on integrating two sensors' systems within one fibre-optic measuring head, which allows performing in situ calibration process with no additional time-consuming adjustment procedure. The resolution of the 2iOF system is 31 pm/Hz1/2 obtained with an interferometric Fabry-Perot based calibration system—providing accuracy better than tens of fm/Hz1/2 within 1 MHz bandwidth in the measurement range of up to 100 μm. The direct response from the intensity sensor is then the 2iOF output one. It is faster and more convenient to analyze in comparison, with much better resolution (3 orders of magnitude higher) but on the other hand also more time consuming and dependent on the absolute sample position interferometer. The proposed system is flexible and open to various applications. We will present the results of the piezoelectrical actuator displacement measurements, which were performed using the developed system.

  1. Management of metrology in measuring of the displacement of building construction

    Directory of Open Access Journals (Sweden)

    Jiří Kratochvíl

    2007-06-01

    Full Text Available The metrology management of the measurement of the displacement of building construction is not regulated in the standard ČSN ISO 73 0405 - Measurement of the displacement of building construction. But the metrology management has to be included in the project of measurement of the displacement (Stage of project. Then we have to pay an attention to the metrological management during this measurement (Stage of realization and during the evaluation of this measurement (Stage of evaluation. We have to insist on the subsequent improving of metrology management within the frame of the next project (so-called feedback. The metrology management in the measurement of the displacement during the stages should be based on an application of statutory instruments and technical standards. We should insist especially on the system of standards for the quality control ISO 9000. Considering specialities of geodetic measurements it is necessary to adapt the metrology management. That is why it will differ from the metrology management in other fields of knowledge. This paper includes some steps of metrological provision which must not be ignored.

  2. Kalman filtering techniques for reducing variance of digital speckle displacement measurement noise

    Institute of Scientific and Technical Information of China (English)

    Donghui Li; Li Guo

    2006-01-01

    @@ Target dynamics are assumed to be known in measuring digital speckle displacement. Use is made of a simple measurement equation, where measurement noise represents the effect of disturbances introduced in measurement process. From these assumptions, Kalman filter can be designed to reduce variance of measurement noise. An optical and analysis system was set up, by which object motion with constant displacement and constant velocity is experimented with to verify validity of Kalman filtering techniques for reduction of measurement noise variance.

  3. Measure of horizontal and vertical displacement of the acromioclavicular joint after cutting ligament using X-ray and opto-electronic system.

    Science.gov (United States)

    Rochcongar, Goulven; Emily, Sébastien; Lebel, Benoit; Pineau, Vincent; Burdin, Gilles; Hulet, Christophe

    2012-09-01

    Surgical versus orthopedic treatments of acromioclavicular disjunction are still debated. The aim of this study was to measure horizontal and vertical acromion's displacement after cutting the ligament using standard X-ray and an opto-electronic system on cadaver. Ten cadaveric shoulders were studied. A sequential ligament's section was operated by arthroscopy. The sequence of cutting was chosen to fit with Rockwood's grade. The displacement of the acromion was measured on standard X-ray and with an opto-electronic system allowing measuring of the horizontal displacement. Statistical comparisons were performed using a paired Student's t test with significance set at p acromioclavicular ligament. The contact surface between the acromion and the clavicle decreases statistically after sectioning the acromioclavicular ligament and the coracoclavicular ligament with no effect of sectioning the delto-trapezius muscles. Those results are superposing with those dealing with the anterior translation. The measure concerning the acromioclavicular distance and the coracoclavicular distance are superposing with those of Rockwood. However, there is a significant horizontal translation after cutting the acromioclavicular ligament. Taking into account this displacement, it may be interesting to choose either surgical or orthopedic treatment. There is a correlation between anatomical damage and importance of instability. Horizontal instability is misevaluated in clinical practice.

  4. Combination of optically measured coordinates and displacements for quantitative investigation of complex objects

    Science.gov (United States)

    Andrae, Peter; Beeck, Manfred-Andreas; Jueptner, Werner P. O.; Nadeborn, Werner; Osten, Wolfgang

    1996-09-01

    Holographic interferometry makes it possible to measure high precision displacement data in the range of the wavelength of the used laser light. However, the determination of 3D- displacement vectors of objects with complex surfaces requires the measurement of 3D-object coordinates not only to consider local sensitivities but to distinguish between in-plane deformation, i.e. strains, and out-of-plane components, i.e. shears, too. To this purpose both the surface displacement and coordinates have to be combined and it is advantageous to make the data available for CAE- systems. The object surface has to be approximated analytically from the measured point cloud to generate a surface mesh. The displacement vectors can be assigned to the nodes of this surface mesh for visualization of the deformation of the object under test. They also can be compared to the results of FEM-calculations or can be used as boundary conditions for further numerical investigations. Here the 3D-object coordinates are measured in a separate topometric set-up using a modified fringe projection technique to acquire absolute phase values and a sophisticated geometrical model to map these phase data onto coordinates precisely. The determination of 3D-displacement vectors requires the measurement of several interference phase distributions for at least three independent sensitivity directions depending on the observation and illumination directions as well as the 3D-position of each measuring point. These geometric quantities have to be transformed into a reference coordinate system of the interferometric set-up in order to calculate the geometric matrix. The necessary transformation can be realized by means of a detection of object features in both data sets and a subsequent determination of the external camera orientation. This paper presents a consistent solution for the measurement and combination of shape and displacement data including their transformation into simulation systems. The

  5. A Differential Monolithically Integrated Inductive Linear Displacement Measurement Microsystem

    Directory of Open Access Journals (Sweden)

    Matija Podhraški

    2016-03-01

    Full Text Available An inductive linear displacement measurement microsystem realized as a monolithic Application-Specific Integrated Circuit (ASIC is presented. The system comprises integrated microtransformers as sensing elements, and analog front-end electronics for signal processing and demodulation, both jointly fabricated in a conventional commercially available four-metal 350-nm CMOS process. The key novelty of the presented system is its full integration, straightforward fabrication, and ease of application, requiring no external light or magnetic field source. Such systems therefore have the possibility of substituting certain conventional position encoder types. The microtransformers are excited by an AC signal in MHz range. The displacement information is modulated into the AC signal by a metal grating scale placed over the microsystem, employing a differential measurement principle. Homodyne mixing is used for the demodulation of the scale displacement information, returned by the ASIC as a DC signal in two quadrature channels allowing the determination of linear position of the target scale. The microsystem design, simulations, and characterization are presented. Various system operating conditions such as frequency, phase, target scale material and distance have been experimentally evaluated. The best results have been achieved at 4 MHz, demonstrating a linear resolution of 20 µm with steel and copper scale, having respective sensitivities of 0.71 V/mm and 0.99 V/mm.

  6. A Computer Based Moire Technique To Measure Very Small Displacements

    Science.gov (United States)

    Sciammarella, Cesar A.; Amadshahi, Mansour A.; Subbaraman, B.

    1987-02-01

    The accuracy that can be achieved in the measurement of very small displacements in techniques such as moire, holography and speckle is limited by the noise inherent to the utilized optical devices. To reduce the noise to signal ratio, the moire method can be utilized. Two system of carrier fringes are introduced, an initial system before the load is applied and a final system when the load is applied. The moire pattern of these two systems contains the sought displacement information and the noise common to the two patterns is eliminated. The whole process is performed by a computer on digitized versions of the patterns. Examples of application are given.

  7. Design and Realization of a Three Degrees of Freedom Displacement Measurement System Composed of Hall Sensors Based on Magnetic Field Fitting by an Elliptic Function

    Directory of Open Access Journals (Sweden)

    Bo Zhao

    2015-09-01

    Full Text Available This paper presents the design and realization of a three degrees of freedom (DOFs displacement measurement system composed of Hall sensors, which is built for the XYθz displacement measurement of the short stroke stage of the reticle stage of lithography. The measurement system consists of three pairs of permanent magnets mounted on the same plane on the short stroke stage along the Y, Y, X directions, and three single axis Hall sensors correspondingly mounted on the frame of the reticle stage. The emphasis is placed on the decoupling and magnetic field fitting of the three DOFs measurement system. The model of the measurement system is illustrated, and the XY positions and θZ rotation of the short stroke stage can be obtained by decoupling the sensor outputs. A magnetic field fitting by an elliptic function-based compensation method is proposed. The practical field intensity of a permanent magnet at a certain plane height can be substituted for the output voltage of a Hall sensors, which can be expressed by the elliptic function through experimental data as the crucial issue to calculate the three DOFs displacement. Experimental results of the Hall sensor displacement measurement system are presented to validate the proposed three DOFs measurement system.

  8. Evaluation of Stiffness Changes in a High-Rise Building by Measurements of Lateral Displacements Using GPS Technology

    Science.gov (United States)

    Choi, Se Woon; Kim, Ill Soo; Park, Jae Hwan; Kim, Yousok; Sohn, Hong Gyoo; Park, Hyo Seon

    2013-01-01

    The outrigger truss system is one of the most frequently used lateral load resisting structural systems. However, little research has been reported on the effect of installation of outrigger trusses on improvement of lateral stiffness of a high-rise building through full-scale measurements. In this paper, stiffness changes of a high-rise building due to installation of outrigger trusses have been evaluated by measuring lateral displacements using a global positioning system (GPS). To confirm the error range of the GPS measurement system used in the full-scale measurement tests, the GPS displacement monitoring system is investigated through a free vibration test of the experimental model. Then, for the evaluation of lateral stiffness of a high-rise building under construction, the GPS displacement monitoring system is applied to measurements of lateral displacements of a 66-story high-rise building before and after installation of outrigger truss. The stiffness improvement of the building before and after the installation is confirmed through the changes of the natural frequencies and the ratios of the base shear forces to the roof displacements. PMID:24233025

  9. Evaluation of Stiffness Changes in a High-Rise Building by Measurements of Lateral Displacements Using GPS Technology

    Directory of Open Access Journals (Sweden)

    Se Woon Choi

    2013-11-01

    Full Text Available The outrigger truss system is one of the most frequently used lateral load resisting structural systems. However, little research has been reported on the effect of installation of outrigger trusses on improvement of lateral stiffness of a high-rise building through full-scale measurements. In this paper, stiffness changes of a high-rise building due to installation of outrigger trusses have been evaluated by measuring lateral displacements using a global positioning system (GPS. To confirm the error range of the GPS measurement system used in the full-scale measurement tests, the GPS displacement monitoring system is investigated through a free vibration test of the experimental model. Then, for the evaluation of lateral stiffness of a high-rise building under construction, the GPS displacement monitoring system is applied to measurements of lateral displacements of a 66-story high-rise building before and after installation of outrigger truss. The stiffness improvement of the building before and after the installation is confirmed through the changes of the natural frequencies and the ratios of the base shear forces to the roof displacements.

  10. Displacement, distance, and shape measurements of fast-rotating rough objects by two mutually tilted interference fringe systems.

    Science.gov (United States)

    Günther, Philipp; Kuschmierz, Robert; Pfister, Thorsten; Czarske, Jürgen W

    2013-05-01

    The precise distance measurement of fast-moving rough surfaces is important in several applications such as lathe monitoring. A nonincremental interferometer based on two mutually tilted interference fringe systems has been realized for this task. The distance is coded in the phase difference between the generated interference signals corresponding to the fringe systems. Large tilting angles between the interference fringe systems are necessary for a high sensitivity. However, due to the speckle effect at rough surfaces, different envelopes and phase jumps of the interference signals occur. At large tilting angles, these signals become dissimilar, resulting in a small correlation coefficient and a high measurement uncertainty. Based on a matching of illumination and receiving optics, the correlation coefficient and the phase difference estimation have been improved significantly. For axial displacement measurements of recurring rough surfaces, laterally moving with velocities of 5 m/s, an uncertainty of 110 nm has been attained. For nonrecurring surfaces, a distance measurement uncertainty of 830 nm has been achieved. Incorporating the additionally measured lateral velocity and the rotational speed, the two-dimensional shape of rotating objects results. Since the measurement uncertainty of the displacement, distance, and shape is nearly independent of the lateral surface velocity, this technique is predestined for fast-rotating objects, such as crankshafts, camshafts, vacuum pump shafts, or turning parts of lathes.

  11. Superresolution confocal technology for displacement measurements based on total internal reflection

    International Nuclear Information System (INIS)

    Kuang Cuifang; Hao Xiang; Wang Tingting; Liu Xu; Ali, M. Yakut

    2010-01-01

    In order to achieve a higher axial resolution for displacement measurement, a novel method is proposed based on total internal reflection filter and confocal microscope principle. A theoretical analysis of the basic measurement principles is presented. The analysis reveals that the proposed confocal detection scheme is effective in enhancing the resolution of nonlinearity of the reflectance curve greatly. In addition, a simple prototype system has been developed based on the theoretical analysis and a series of experiments have been performed under laboratory conditions to verify the system feasibility, accuracy, and stability. The experimental results demonstrate that the axial resolution in displacement measurements is better than 1 nm in a range of 200 nm which is threefold better than that can be achieved using the plane reflector.

  12. Superresolution confocal technology for displacement measurements based on total internal reflection.

    Science.gov (United States)

    Kuang, Cuifang; Ali, M Yakut; Hao, Xiang; Wang, Tingting; Liu, Xu

    2010-10-01

    In order to achieve a higher axial resolution for displacement measurement, a novel method is proposed based on total internal reflection filter and confocal microscope principle. A theoretical analysis of the basic measurement principles is presented. The analysis reveals that the proposed confocal detection scheme is effective in enhancing the resolution of nonlinearity of the reflectance curve greatly. In addition, a simple prototype system has been developed based on the theoretical analysis and a series of experiments have been performed under laboratory conditions to verify the system feasibility, accuracy, and stability. The experimental results demonstrate that the axial resolution in displacement measurements is better than 1 nm in a range of 200 nm which is threefold better than that can be achieved using the plane reflector.

  13. Axial linear patellar displacement: a new measurement of patellofemoral congruence.

    Science.gov (United States)

    Urch, Scott E; Tritle, Benjamin A; Shelbourne, K Donald; Gray, Tinker

    2009-05-01

    The tools for measuring the congruence angle with digital radiography software can be difficult to use; therefore, the authors sought to develop a new, easy, and reliable method for measuring patellofemoral congruence. The abstract goes here and covers two columns. The abstract goes The linear displacement measurement will correlate well with the congruence angle measurement. here and covers two columns. Cohort study (diagnosis); Level of evidence, 2. On Merchant view radiographs obtained digitally, the authors measured the congruence angle and a new linear displacement measurement on preoperative and postoperative radiographs of 31 patients who suffered unilateral patellar dislocations and 100 uninjured subjects. The linear displacement measurement was obtained by drawing a reference line across the medial and lateral trochlear facets. Perpendicular lines were drawn from the depth of the sulcus through the reference line and from the apex of the posterior tip of the patella through the reference line. The distance between the perpendicular lines was the linear displacement measurement. The measurements were obtained twice at different sittings. The observer was blinded as to the previous measurements to establish reliability. Measurements were compared to determine whether the linear displacement measurement correlated with congruence angle. Intraobserver reliability was above r(2) = .90 for all measurements. In patients with patellar dislocations, the mean congruence angle preoperatively was 33.5 degrees , compared with 12.1 mm for linear displacement (r(2) = .92). The mean congruence angle postoperatively was 11.2 degrees, compared with 4.0 mm for linear displacement (r(2) = .89). For normal subjects, the mean congruence angle was -3 degrees and the mean linear displacement was 0.2 mm. The linear displacement measurement was found to correlate with congruence angle measurements and may be an easy and useful tool for clinicians to evaluate patellofemoral

  14. Method of making self-calibrated displacement measurements

    International Nuclear Information System (INIS)

    Pedersen, H.N.

    1977-01-01

    A method for monitoring the displacement of an object having an acoustically reflective surface at least partially submerged in an acoustically conductive medium is described. The reflective surface is designed to have a stepped interface responsive to an incident acoustic pulse to provide separate discrete reflected pulses to a receiving transducer. The difference in the time of flight of the reflected acoustic signals corresponds to the known step height and the time of travel of the signals to the receiving transducer provides a measure of the displacement of the object. Accordingly, the reference step length enables simultaneous calibration of each displacement measurement. 3 claims, 3 figures

  15. Contact-type displacement measuring mechanism for fuel assembly in reactor

    International Nuclear Information System (INIS)

    Yokota, Yoshio; Ko, Kuniaki.

    1995-01-01

    The measuring mechanism of the present invention, which is used in a lmfbr type reactor, is suspended by a gripper of a fuel handing machine, and it comprises a combination of a displacement amount measuring jig allowed to be inserted into a handling head of a fuel assembly and a displacement amount measuring ring disposed at the lower portion in the handling head. The displacement amount measuring jig has a structure comprising a releasable handle and a columnar or cylindrical measuring portion allowable to be inserted into the handling head formed at the lower portion of the handle, which are connected with each other. When an interference (contact) occurred between the displacement amount measuring jig and the stepwise displacement amount measuring ring during the measurement, change of load and a phenomenon that the fuel handing machine can not be lowered are recognized, so that core displacement amount can be recognized based on the stroke of the gripper portion. Then, remote measurement is possible for displacement and deformation of the fuel assembly in the reactor container, and the measurement can be conducted by the same procedures and in the same period of time as in a case of ordinary fuel exchange operation. A flow channel for coolants passing through the fuel assembly can be ensured, thereby enabling to measure the amount of core displacement which is closer to an actual value in the reactor. (N.H.)

  16. Measurement of liquid film in microchannels using a laser focus displacement meter

    Science.gov (United States)

    Hazuku, Tatsuya; Fukamachi, Norihiro; Takamasa, Tomoji; Hibiki, Takashi; Ishii, Mamoru

    2005-06-01

    This paper presents a new method for measuring the interfacial displacement of a liquid film in microchannels using a laser focus displacement meter (LFD). The purpose of the study is to clarify the effectiveness of the new method for obtaining detailed information concerning interfacial displacement, especially in the case of a thin liquid film, in microchannels and minichannels. To prevent the tube wall signal from disturbing that of the gas liquid interface, a fluorocarbon tube with a water box was used; the refraction index of this device is the same as that for water. With this method, accurate instantaneous measurements of the interfacial displacement of the liquid film were achieved. The error caused by refraction of the laser beam passing through the acrylic water box and fluorocarbon tube was estimated analytically and experimentally. The formulated analytical equation can estimate the real interface displacement by using the measured displacement in a fluorocarbon tube of 25 μm to 2.0 mm I.D. A preliminary test using fluorocarbon tubes of 1 mm and 2 mm I.D. showed that the corrected interface displacement calculated by the equation agreed with the real displacement to within a 1% margin of error. It was also confirmed that the LFD in the system could measure a liquid film of 0.25 μm at the thinnest. We made simultaneous measurements of the interface in fluorocarbon tubes of 0.5 mm and 1 mm I.D. using the LFD and a high-speed video camera with a microscope. These showed that the LFD could measure the interface of a liquid film with high spatial and temporal resolution during annular, slug, and piston flow regimes. The data also clarified the existence of a thin liquid film of less than 1 μm in thickness in the slug and annular flow regimes.

  17. Measurement of liquid film in microchannels using a laser focus displacement meter

    Energy Technology Data Exchange (ETDEWEB)

    Hazuku, Tatsuya; Fukamachi, Norihiro; Takamasa, Tomoji [Tokyo University of Marine Science and Technology, Faculty of Marine Technology, Etchujima, Koto, Tokyo (Japan); Hibiki, Takashi [Kyoto University, Research Reactor Institute, Kumatori, Sennan, Osaka (Japan); Ishii, Mamoru [Purdue University, School of Nuclear Engineering, West Lafayette, IN (United States)

    2005-06-01

    This paper presents a new method for measuring the interfacial displacement of a liquid film in microchannels using a laser focus displacement meter (LFD). The purpose of the study is to clarify the effectiveness of the new method for obtaining detailed information concerning interfacial displacement, especially in the case of a thin liquid film, in microchannels and minichannels. To prevent the tube wall signal from disturbing that of the gas-liquid interface, a fluorocarbon tube with a water box was used; the refraction index of this device is the same as that for water. With this method, accurate instantaneous measurements of the interfacial displacement of the liquid film were achieved. The error caused by refraction of the laser beam passing through the acrylic water box and fluorocarbon tube was estimated analytically and experimentally. The formulated analytical equation can estimate the real interface displacement by using the measured displacement in a fluorocarbon tube of 25 {mu}m to 2.0 mm I.D. A preliminary test using fluorocarbon tubes of 1 mm and 2 mm I.D. showed that the corrected interface displacement calculated by the equation agreed with the real displacement to within a 1% margin of error. It was also confirmed that the LFD in the system could measure a liquid film of 0.25 {mu}m at the thinnest. We made simultaneous measurements of the interface in fluorocarbon tubes of 0.5 mm and 1 mm I.D. using the LFD and a high-speed video camera with a microscope. These showed that the LFD could measure the interface of a liquid film with high spatial and temporal resolution during annular, slug, and piston flow regimes. The data also clarified the existence of a thin liquid film of less than 1 {mu}m in thickness in the slug and annular flow regimes. (orig.)

  18. Nano-displacement measurement based on virtual pinhole confocal method

    International Nuclear Information System (INIS)

    Li, Long; Kuang, Cuifang; Xue, Yi; Liu, Xu

    2013-01-01

    A virtual pinhole confocal system based on charge-coupled device (CCD) detection and image processing techniques is built to measure axial displacement with 10 nm resolution, preeminent flexibility and excellent robustness when facing spot drifting. Axial displacement of the sample surface is determined by capturing the confocal laser spot using a CCD detector and quantifying the energy collected by programmable virtual pinholes. Experiments indicate an applicable measuring range of 1000 nm (Gaussian fitting r = 0.9902) with a highly linear range of 500 nm (linear fitting r = 0.9993). A concentric subtraction algorithm is introduced to further enhance resolution. Factors affecting measuring precision, sensitivity and signal-to-noise ratio are discussed using theoretical deductions and diffraction simulations. The virtual pinhole technique has promising applications in surface profiling and confocal imaging applications which require easily-customizable pinhole configurations. (paper)

  19. Self-Aligning and Self-Calibrating Capacitive Sensor System for Displacement Measurement in Inaccessible Industrial Environments

    NARCIS (Netherlands)

    van de Ven, Oscar; Vogel, J.G.; Xia, Sha; Spronck, J.W.; Nihtianov, S.

    2017-01-01

    High-precision positioning often requires high speed and high resolution displacement measurements in order to compensate for the small vibrations of critical components. The displacement sensor must be precise and stable over a long period of time to avoid expensive recalibration. This requires

  20. Displacement sensing system and method

    Science.gov (United States)

    VunKannon, Jr., Robert S

    2006-08-08

    A displacement sensing system and method addresses demanding requirements for high precision sensing of displacement of a shaft, for use typically in a linear electro-dynamic machine, having low failure rates over multi-year unattended operation in hostile environments. Applications include outer space travel by spacecraft having high-temperature, sealed environments without opportunity for servicing over many years of operation. The displacement sensing system uses a three coil sensor configuration, including a reference and sense coils, to provide a pair of ratio-metric signals, which are inputted into a synchronous comparison circuit, which is synchronously processed for a resultant displacement determination. The pair of ratio-metric signals are similarly affected by environmental conditions so that the comparison circuit is able to subtract or nullify environmental conditions that would otherwise cause changes in accuracy to occur.

  1. Spring constant measurement using a MEMS force and displacement sensor utilizing paralleled piezoresistive cantilevers

    Science.gov (United States)

    Kohyama, Sumihiro; Takahashi, Hidetoshi; Yoshida, Satoru; Onoe, Hiroaki; Hirayama-Shoji, Kayoko; Tsukagoshi, Takuya; Takahata, Tomoyuki; Shimoyama, Isao

    2018-04-01

    This paper reports on a method to measure a spring constant on site using a micro electro mechanical systems (MEMS) force and displacement sensor. The proposed sensor consists of a force-sensing cantilever and a displacement-sensing cantilever. Each cantilever is composed of two beams with a piezoresistor on the sidewall for measuring the in-plane lateral directional force and displacement. The force resolution and displacement resolution of the fabricated sensor were less than 0.8 µN and 0.1 µm, respectively. We measured the spring constants of two types of hydrogel microparticles to demonstrate the effectiveness of the proposed sensor, with values of approximately 4.3 N m-1 and 15.1 N m-1 obtained. The results indicated that the proposed sensor is effective for on-site spring constant measurement.

  2. Digital PIV Measurements of Acoustic Particle Displacements in a Normal Incidence Impedance Tube

    Science.gov (United States)

    Humphreys, William M., Jr.; Bartram, Scott M.; Parrott, Tony L.; Jones, Michael G.

    1998-01-01

    Acoustic particle displacements and velocities inside a normal incidence impedance tube have been successfully measured for a variety of pure tone sound fields using Digital Particle Image Velocimetry (DPIV). The DPIV system utilized two 600-mj Nd:YAG lasers to generate a double-pulsed light sheet synchronized with the sound field and used to illuminate a portion of the oscillatory flow inside the tube. A high resolution (1320 x 1035 pixel), 8-bit camera was used to capture double-exposed images of 2.7-micron hollow silicon dioxide tracer particles inside the tube. Classical spatial autocorrelation analysis techniques were used to ascertain the acoustic particle displacements and associated velocities for various sound field intensities and frequencies. The results show that particle displacements spanning a range of 1-60 microns can be measured for incident sound pressure levels of 100-130 dB and for frequencies spanning 500-1000 Hz. The ability to resolve 1 micron particle displacements at sound pressure levels in the 100 dB range allows the use of DPIV systems for measurement of sound fields at much lower sound pressure levels than had been previously possible. Representative impedance tube data as well as an uncertainty analysis for the measurements are presented.

  3. A robust rotation-invariance displacement measurement method for a micro-/nano-positioning system

    Science.gov (United States)

    Zhang, Xiang; Zhang, Xianmin; Wu, Heng; Li, Hai; Gan, Jinqiang

    2018-05-01

    A robust and high-precision displacement measurement method for a compliant mechanism-based micro-/nano-positioning system is proposed. The method is composed of an integer-pixel and a sub-pixel matching procedure. In the proposed algorithm (Pro-A), an improved ring projection transform (IRPT) and gradient information are used as features for approximating the coarse candidates and fine locations, respectively. Simulations are conducted and the results show that the Pro-A has the ability of rotation-invariance and strong robustness, with a theoretical accuracy of 0.01 pixel. To validate the practical performance, a series of experiments are carried out using a computer micro-vision and laser interferometer system (LIMS). The results demonstrate that both the LIMS and Pro-A can achieve high precision, while the Pro-A has better stability and adaptability.

  4. Measuring displacement signal with an accelerometer

    International Nuclear Information System (INIS)

    Han, Sang Bo

    2010-01-01

    An effective and simple way to reconstruct displacement signal from a measured acceleration signal is proposed in this paper. To reconstruct displacement signal by means of double-integrating the time domain acceleration signal, the Nyquist frequency of the digital sampling of the acceleration signal should be much higher than the highest frequency component of the signal. On the other hand, to reconstruct displacement signal by taking the inverse Fourier transform, the magnitude of the significant frequency components of the Fourier transform of the acceleration signal should be greater than the 6 dB increment line along the frequency axis. With a predetermined resolution in time and frequency domain, determined by the sampling rate to measure and record the original signal, reconstructing high-frequency signals in the time domain and reconstructing low-frequency signals in the frequency domain will produce biased errors. Furthermore, because of the DC components inevitably included in the sampling process, low-frequency components of the signals are overestimated when displacement signals are reconstructed from the Fourier transform of the acceleration signal. The proposed method utilizes curve-fitting around the significant frequency components of the Fourier transform of the acceleration signal before it is inverse-Fourier transformed. Curve-fitting around the dominant frequency components provides much better results than simply ignoring the insignificant frequency components of the signal

  5. Effect of variable measurement coil displacement on the determination of the harmonic content of a multipole

    International Nuclear Information System (INIS)

    Halbach, K.

    1976-01-01

    When one measures the harmonic content of a two dimensional field it is important that the measurement equipment does not simulate harmonics that are not present in the field. Of the several sources that can lead to this kind of false data, we discuss here the error caused by a displacement of the axis of rotation of the measuring coil system that varies with the rotation angle of the measuring system. The two most prominent reasons for such variable axis displacements are probably imperfect bearings, and bending of the coil support structure due to either gravity or imperfectly aligned bearings. In both cases, the displacement may vary along the length of the coil. However, since we are dealing with very small displacements, the treatment of the problem with two dimensional field analysis should be perfectly adequate to understand what the consequences are, and to calculate them quantitatively

  6. Optics for five-dimensional measurement for correction of vertical displacement error due to attitude of floating body in superconducting magnetic levitation system

    International Nuclear Information System (INIS)

    Shiota, Fuyuhiko; Morokuma, Tadashi

    2006-01-01

    An improved optical system for five-dimensional measurement has been developed for the correction of vertical displacement error due to the attitude change of a superconducting floating body that shows five degrees of freedom besides a vertical displacement of 10 mm. The available solid angle for the optical measurement is extremely limited because of the cryogenic laser interferometer sharing the optical window of a vacuum chamber in addition to the basic structure of the cryogenic vessel for liquid helium. The aim of the design was to develop a more practical as well as better optical system compared with the prototype system. Various artifices were built into this optical system and the result shows a satisfactory performance and easy operation overcoming the extremely severe spatial difficulty in the levitation system. Although the system described here is specifically designed for our magnetic levitation system, the concept and each artifice will be applicable to the optical measurement system for an object in a high-vacuum chamber and/or cryogenic vessel where the available solid angle for an optical path is extremely limited

  7. Direct and precise measurement of displacement and velocity of flexible web in roll-to-roll manufacturing systems

    International Nuclear Information System (INIS)

    Kang, Dongwoo; Lee, Eonseok; Choi, Young-Man; Lee, Taik-Min; Kim, Duk Young; Kim, Dongmin

    2013-01-01

    Interest in the production of printed electronics using a roll-to-roll system has gradually increased due to its low mass-production costs and compatibility with flexible substrate. To improve the accuracy of roll-to-roll manufacturing systems, the movement of the web needs to be measured precisely in advance. In this paper, a novel measurement method is developed to measure the displacement and velocity of the web precisely and directly. The proposed algorithm is based on the traditional single field encoder principle, and the scale grating has been replaced with a printed grating on the web. Because a printed grating cannot be as accurate as a scale grating in a traditional encoder, there will inevitably be variations in pitch and line-width, and the motion of the web should be measured even though there are variations in pitch and line-width in the printed grating patterns. For this reason, the developed algorithm includes a precise method of estimating the variations in pitch. In addtion, a method of correcting the Lissajous curve is presented for precision phase interpolation to improve measurement accuracy by correcting Lissajous circle to unit circle. The performance of the developed method is evaluated by simulation and experiment. In the experiment, the displacement error was less than 2.5 μm and the velocity error of 1σ was about 0.25%, while the grating scale moved 30 mm

  8. Direct and precise measurement of displacement and velocity of flexible web in roll-to-roll manufacturing systems

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dongwoo; Lee, Eonseok; Choi, Young-Man; Lee, Taik-Min [Advanced Manufacturing Systems Research Division, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Kim, Duk Young [Nano-Opto-Mechatronics Lab., Dept. of Mechanical Eng., KAIST, 335 Gwahangno, Yuseong-Gu, Daejeon 305-701 (Korea, Republic of); Kim, Dongmin [Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon 305-340 (Korea, Republic of)

    2013-12-15

    Interest in the production of printed electronics using a roll-to-roll system has gradually increased due to its low mass-production costs and compatibility with flexible substrate. To improve the accuracy of roll-to-roll manufacturing systems, the movement of the web needs to be measured precisely in advance. In this paper, a novel measurement method is developed to measure the displacement and velocity of the web precisely and directly. The proposed algorithm is based on the traditional single field encoder principle, and the scale grating has been replaced with a printed grating on the web. Because a printed grating cannot be as accurate as a scale grating in a traditional encoder, there will inevitably be variations in pitch and line-width, and the motion of the web should be measured even though there are variations in pitch and line-width in the printed grating patterns. For this reason, the developed algorithm includes a precise method of estimating the variations in pitch. In addtion, a method of correcting the Lissajous curve is presented for precision phase interpolation to improve measurement accuracy by correcting Lissajous circle to unit circle. The performance of the developed method is evaluated by simulation and experiment. In the experiment, the displacement error was less than 2.5 μm and the velocity error of 1σ was about 0.25%, while the grating scale moved 30 mm.

  9. Force-displacement measurements of earlywood bordered pits using a mesomechanical tester.

    Science.gov (United States)

    Zelinka, Samuel L; Bourne, Keith J; Hermanson, John C; Glass, Samuel V; Costa, Adriana; Wiedenhoeft, Alex C

    2015-10-01

    The elastic properties of pit membranes are reported to have important implications in understanding air-seeding phenomena in gymnosperms, and pit aspiration plays a large role in wood technological applications such as wood drying and preservative treatment. Here we present force-displacement measurements for pit membranes of circular bordered pits, collected on a mesomechanical testing system. The system consists of a quartz microprobe attached to a microforce sensor that is positioned and advanced with a micromanipulator mounted on an inverted microscope. Membrane displacement is measured from digital image analysis. Unaspirated pits from earlywood of never-dried wood of Larix and Pinus and aspirated pits from earlywood of dried wood of Larix were tested to generate force-displacement curves up to the point of membrane failure. Two failure modes were observed: rupture or tearing of the pit membrane by the microprobe tip, and the stretching of the pit membrane until the torus was forced out of the pit chamber through the pit aperture without rupture, a condition we refer to as torus prolapse. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  10. High precision optical measurement of displacement and simultaneous determinations of piezoelectric coefficients

    Science.gov (United States)

    Gamboa, Bryan M.; Malladi, Madhuri; Vadlamani, Ramya; Guo, Ruyan; Bhalla, Amar

    2016-09-01

    PZT are also well known for their applications in Micro Electrical Mechanical Systems (MEMS). It is necessary to study the piezoelectric coefficients of the materials accurately in order to design a sensor as an example, which defines their strain dependent applications. Systematic study of the electro mechanic displacement measurement was conducted and compared using a white light fiber optic sensor, a heterodyne laser Doppler vibrometer, and a homodyne laser interferometry setup. Frequency dependent measurement is conducted to evaluate displacement values well below and near the piezoelectric resonances. UHF-120 ultra-high frequency Vibrometer is used to measure the longitudinal piezoelectric displacement or x33 and the MTI 2000 FotonicTM Sensor is used to measure the transverse piezoelectric displacement or x11 over 100Hz to 2MHz. A Multiphysics Finite Element Analysis method, COMSOL, is also adopted in the study to generate a three dimensional electromechanical coupled model based on experimentally determined strains x33 and x11 as a function of frequency of the electric field applied. The full family of piezoelectric coefficients of the poled electronic ceramic PZT, d33, d31, and d15, can be then derived, upon satisfactory simulation of the COMSOL. This is achieved without the usual need of preparation of piezoelectric resonators of fundamental longitudinal, transversal, and shear modes respectively.

  11. Displacement characteristics of a piezoactuator-based prototype microactuator with a hydraulic displacement amplification system

    Energy Technology Data Exchange (ETDEWEB)

    Muralidhara [NMAMIT, Nitte (India); Rao, Rathnamala [NITK, Surathkal (India)

    2015-11-15

    In this study, a new piezoactuator-based prototype microactuator is proposed with a hydraulic displacement amplification system. A piezoactuator is used to deflect a diaphragm which displaces a certain volume of hydraulic fluid into a smaller-diameter piston chamber, thereby amplifying the displacement at the other end of the piston. An electro-mechanical model is implemented to estimate the displacement of a multilayer piezoelectric actuator for the applied input voltage considering the hysteresis behavior. The displacement characteristics of the proposed microactuator are studied for triangular actuation voltage signal. Results of the experiments and simulation of the displacement behavior of the stacked piezoactuator and the amplified displacement of the prototype actuator were compared. Experimental results suggest that the mathematical model developed for the new piezoactuator-based prototype actuator is capable of estimating its displacement behavior accurately, within an error of 1.2%.

  12. Displacement characteristics of a piezoactuator-based prototype microactuator with a hydraulic displacement amplification system

    International Nuclear Information System (INIS)

    Muralidhara; Rao, Rathnamala

    2015-01-01

    In this study, a new piezoactuator-based prototype microactuator is proposed with a hydraulic displacement amplification system. A piezoactuator is used to deflect a diaphragm which displaces a certain volume of hydraulic fluid into a smaller-diameter piston chamber, thereby amplifying the displacement at the other end of the piston. An electro-mechanical model is implemented to estimate the displacement of a multilayer piezoelectric actuator for the applied input voltage considering the hysteresis behavior. The displacement characteristics of the proposed microactuator are studied for triangular actuation voltage signal. Results of the experiments and simulation of the displacement behavior of the stacked piezoactuator and the amplified displacement of the prototype actuator were compared. Experimental results suggest that the mathematical model developed for the new piezoactuator-based prototype actuator is capable of estimating its displacement behavior accurately, within an error of 1.2%.

  13. Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes

    Science.gov (United States)

    Del Socorro Hernández-Montes, Maria; Furlong, Cosme; Rosowski, John J.; Hulli, Nesim; Harrington, Ellery; Cheng, Jeffrey Tao; Ravicz, Michael E.; Santoyo, Fernando Mendoza

    2009-05-01

    Current methodologies for characterizing tympanic membrane (TM) motion are usually limited to either average acoustic estimates (admittance or reflectance) or single-point mobility measurements, neither of which suffices to characterize the detailed mechanical response of the TM to sound. Furthermore, while acoustic and single-point measurements may aid in diagnosing some middle-ear disorders, they are not always useful. Measurements of the motion of the entire TM surface can provide more information than these other techniques and may be superior for diagnosing pathology. We present advances in our development of a new compact optoelectronic holographic otoscope (OEHO) system for full field-of-view characterization of nanometer-scale sound-induced displacements of the TM surface at video rates. The OEHO system consists of a fiber optic subsystem, a compact otoscope head, and a high-speed image processing computer with advanced software for recording and processing holographic images coupled to a computer-controlled sound-stimulation and recording system. A prototype OEHO system is in use in a medical research environment to address basic science questions regarding TM function. The prototype provides real-time observation of sound-induced TM displacement patterns over a broad frequency range. Representative time-averaged and stroboscopic holographic interferometry results in animals and human cadaver samples are shown, and their potential utility is discussed.

  14. Noncontact on-machine measurement system based on capacitive displacement sensors for single-point diamond turning

    Science.gov (United States)

    Li, Xingchang; Zhang, Zhiyu; Hu, Haifei; Li, Yingjie; Xiong, Ling; Zhang, Xuejun; Yan, Jiwang

    2018-04-01

    On-machine measurements can improve the form accuracy of optical surfaces in single-point diamond turning applications; however, commercially available linear variable differential transformer sensors are inaccurate and can potentially scratch the surface. We present an on-machine measurement system based on capacitive displacement sensors for high-precision optical surfaces. In the proposed system, a position-trigger method of measurement was developed to ensure strict correspondence between the measurement points and the measurement data with no intervening time-delay. In addition, a double-sensor measurement was proposed to reduce the electric signal noise during spindle rotation. Using the proposed system, the repeatability of 80-nm peak-to-valley (PV) and 8-nm root-mean-square (RMS) was achieved through analyzing four successive measurement results. The accuracy of 109-nm PV and 14-nm RMS was obtained by comparing with the interferometer measurement result. An aluminum spherical mirror with a diameter of 300 mm was fabricated, and the resulting measured form error after one compensation cut was decreased to 254 nm in PV and 52 nm in RMS. These results confirm that the measurements of the surface form errors were successfully used to modify the cutting tool path during the compensation cut, thereby ensuring that the diamond turning process was more deterministic. In addition, the results show that the noise level was significantly reduced with the reference sensor even under a high rotational speed.

  15. Design and analysis of fractional order seismic transducer for displacement and acceleration measurements

    Science.gov (United States)

    Veeraian, Parthasarathi; Gandhi, Uma; Mangalanathan, Umapathy

    2018-04-01

    Seismic transducers are widely used for measurement of displacement, velocity, and acceleration. This paper presents the design of seismic transducer in the fractional domain for the measurement of displacement and acceleration. The fractional order transfer function for seismic displacement and acceleration transducer are derived using Grünwald-Letnikov derivative. Frequency response analysis of fractional order seismic displacement transducer (FOSDT) and fractional order seismic acceleration transducer (FOSAT) are carried out for different damping ratio with the different fractional order, and the maximum dynamic measurement range is identified. The results demonstrate that fractional order seismic transducer has increased dynamic measurement range and less phase distortion as compared to the conventional seismic transducer even with a lower damping ratio. Time response of FOSDT and FOSAT are derived analytically in terms of Mittag-Leffler function, the effect of fractional behavior in the time domain is evaluated from the impulse and step response. The fractional order system is found to have significantly reduced overshoot as compared to the conventional transducer. The fractional order seismic transducer design proposed in this paper is illustrated with a design example for FOSDT and FOSAT. Finally, an electrical equivalent of FOSDT and FOSAT is considered, and its frequency response is found to be in close agreement with the proposed fractional order seismic transducer.

  16. Displacement energies for Zr measured in a HVEM

    International Nuclear Information System (INIS)

    Griffiths, M.

    1989-01-01

    This paper describes direct measurements of threshold displacement energies for Zr obtained by electron irradiation in a high voltage microscope (HVEM) and compares the measurements with the earlier data.

  17. A differential Michelson interferometer with orthogonal single frequency laser for nanometer displacement measurement

    International Nuclear Information System (INIS)

    Yan, Liping; Chen, Benyong; Wang, Bin

    2017-01-01

    A novel differential Michelson laser interferometer is proposed to eliminate the influence of environmental fluctuations for nanometer displacement measurement. This differential interferometer consists of two homodyne interferometers in which two orthogonal single frequency beams share common reference arm and partial measurement arm. By modulating the displacement of the common reference arm with a piezoelectric transducer, the common-mode displacement drift resulting from the environmental disturbances can be well suppressed and the measured displacement as differential-mode displacement signal is achieved. In addition, a phase difference compensation method is proposed for accurately determining the phase difference between interference signals by correcting the time interval according to the average speed in one cycle of interference signal. The nanometer displacement measurement experiments were performed to demonstrate the effectiveness and feasibility of the proposed interferometer and show that precision displacement measurement with standard deviation less than 1 nm has been achieved. (paper)

  18. Integration of fringe projection and two-dimensional digital image correlation for three-dimensional displacements measurements

    Science.gov (United States)

    Felipe-Sesé, Luis; López-Alba, Elías; Siegmann, Philip; Díaz, Francisco A.

    2016-12-01

    A low-cost approach for three-dimensional (3-D) full-field displacement measurement is applied for the analysis of large displacements involved in two different mechanical events. The method is based on a combination of fringe projection and two-dimensional digital image correlation (DIC) techniques. The two techniques have been employed simultaneously using an RGB camera and a color encoding method; therefore, it is possible to measure in-plane and out-of-plane displacements at the same time with only one camera even at high speed rates. The potential of the proposed methodology has been employed for the analysis of large displacements during contact experiments in a soft material block. Displacement results have been successfully compared with those obtained using a 3D-DIC commercial system. Moreover, the analysis of displacements during an impact test on a metal plate was performed to emphasize the application of the methodology for dynamics events. Results show a good level of agreement, highlighting the potential of FP + 2D DIC as low-cost alternative for the analysis of large deformations problems.

  19. Summary of Full-Scale Blade Displacement Measurements of the UH- 60A Airloads Rotor

    Science.gov (United States)

    Abrego, Anita I.; Meyn, Larry; Burner, Alpheus W.; Barrows, Danny A.

    2016-01-01

    Blade displacement measurements using multi-camera photogrammetry techniques were acquired for a full-scale UH-60A rotor, tested in the National Full-Scale Aerodynamic Complex 40-Foot by 80-Foot Wind Tunnel. The measurements, acquired over the full rotor azimuth, encompass a range of test conditions that include advance ratios from 0.15 to 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. The objective was to measure the blade displacements and deformations of the four rotor blades and provide a benchmark blade displacement database to be utilized in the development and validation of rotorcraft prediction techniques. An overview of the blade displacement measurement methodology, system development, and data analysis techniques are presented. Sample results based on the final set of camera calibrations, data reduction procedures and estimated corrections that account for registration errors due to blade elasticity are shown. Differences in blade root pitch, flap and lag between the previously reported results and the current results are small. However, even small changes in estimated root flap and pitch can lead to significant differences in the blade elasticity values.

  20. Optical displacement measurement with GaAs/AlGaAs-based monolithically integrated Michelson interferometers

    OpenAIRE

    Hofstetter, Daniel; Zappe, H. P.; Dändliker, René

    2008-01-01

    Two monolithically integrated optical displacement sensors fabricated in the GaAs/AlGaAs material system are reported. These single-chip microsystems are configured as Michelson interferometers and comprise a distributed Bragg reflector (DBR) laser, photodetectors, phase shifters, and waveguide couplers. While the use of a single Michelson interferometer allows measurement of displacement magnitude only, a double Michelson interferometer with two interferometer signals in phase quadrature als...

  1. Research on Joint Parameter Inversion for an Integrated Underground Displacement 3D Measuring Sensor

    Directory of Open Access Journals (Sweden)

    Nanying Shentu

    2015-04-01

    Full Text Available Underground displacement monitoring is a key means to monitor and evaluate geological disasters and geotechnical projects. There exist few practical instruments able to monitor subsurface horizontal and vertical displacements simultaneously due to monitoring invisibility and complexity. A novel underground displacement 3D measuring sensor had been proposed in our previous studies, and great efforts have been taken in the basic theoretical research of underground displacement sensing and measuring characteristics by virtue of modeling, simulation and experiments. This paper presents an innovative underground displacement joint inversion method by mixing a specific forward modeling approach with an approximate optimization inversion procedure. It can realize a joint inversion of underground horizontal displacement and vertical displacement for the proposed 3D sensor. Comparative studies have been conducted between the measured and inversed parameters of underground horizontal and vertical displacements under a variety of experimental and inverse conditions. The results showed that when experimentally measured horizontal displacements and vertical displacements are both varied within 0 ~ 30 mm, horizontal displacement and vertical displacement inversion discrepancies are generally less than 3 mm and 1 mm, respectively, under three kinds of simulated underground displacement monitoring circumstances. This implies that our proposed underground displacement joint inversion method is robust and efficient to predict the measuring values of underground horizontal and vertical displacements for the proposed sensor.

  2. Large scale intender test program to measure sub gouge displacements

    Energy Technology Data Exchange (ETDEWEB)

    Been, Ken; Lopez, Juan [Golder Associates Inc, Houston, TX (United States); Sancio, Rodolfo [MMI Engineering Inc., Houston, TX (United States)

    2011-07-01

    The production of submarine pipelines in an offshore environment covered with ice is very challenging. Several precautions must be taken such as burying the pipelines to protect them from ice movement caused by gouging. The estimation of the subgouge displacements is a key factor in pipeline design for ice gouged environments. This paper investigated a method to measure subgouge displacements. An experimental program was implemented in an open field to produce large scale idealized gouges on engineered soil beds (sand and clay). The horizontal force required to produce the gouge, the subgouge displacements in the soil and the strain imposed by these displacements were monitored on a buried model pipeline. The results showed that for a given keel, the gouge depth was inversely proportional to undrained shear strength in clay. The subgouge displacements measured did not show a relationship with the gouge depth, width or soil density in sand and clay tests.

  3. Overloaded CDMA Systems with Displaced Binary Signatures

    Directory of Open Access Journals (Sweden)

    Vanhaverbeke Frederik

    2004-01-01

    Full Text Available We extend three types of overloaded CDMA systems, by displacing in time the binary signature sequences of these systems: (1 random spreading (PN, (2 multiple-OCDMA (MO, and (3 PN/OCDMA (PN/O. For each of these systems, we determine the time shifts that minimize the overall multiuser interference power. The achievable channel load with coded and uncoded data is evaluated for the conventional (without displacement and improved (with displacement systems, as well as for systems based on quasi-Welch-bound-equality (QWBE sequences, by means of several types of turbo detectors. For each system, the best performing turbo detector is selected in order to compare the performance of these systems. It is found that the improved systems substantially outperform their original counterparts. With uncoded data, (improved PN/O yields the highest acceptable channel load. For coded data, MO allows for the highest acceptable channel load over all considered systems, both for the conventional and the improved systems. In the latter case, channel loads of about 280% are achievable with a low degradation as compared to a single user system.

  4. A review on bridge dynamic displacement monitoring using global positioning system and accelerometer

    Science.gov (United States)

    Yunus, Mohd Zulkifli Mohd; Ibrahim, Nuremira; Ahmad, Fatimah Shafinaz

    2018-02-01

    This paper reviews previous research on bridge dynamic displacement monitoring using Global Positioning System (GPS) and an accelerometer for Structural Health Monitoring (SHM) of bridge. These include the review of the advantages and disadvantages of the measurement as well as the methodology of the measurements used in the recent research study. This review could provide a preliminary decision overview for students or researchers before initiating a research related to the bridge dynamic displacement monitoring.

  5. Differential Extension, Displacement Transfer, and the South to North Decrease in Displacement on the Furnace Creek - Fish Lake Valley Fault System, Western Great Basin.

    Science.gov (United States)

    Katopody, D. T.; Oldow, J. S.

    2015-12-01

    The northwest-striking Furnace Creek - Fish Lake Valley (FC-FLV) fault system stretches for >250 km from southeastern California to western Nevada, forms the eastern boundary of the northern segment of the Eastern California Shear Zone, and has contemporary displacement. The FC-FLV fault system initiated in the mid-Miocene (10-12 Ma) and shows a south to north decrease in displacement from a maximum of 75-100 km to less than 10 km. Coeval elongation by extension on north-northeast striking faults within the adjoining blocks to the FC-FLV fault both supply and remove cumulative displacement measured at the northern end of the transcurrent fault system. Elongation and displacement transfer in the eastern block, constituting the southern Walker Lane of western Nevada, exceeds that of the western block and results in the net south to north decrease in displacement on the FC-FLV fault system. Elongation in the eastern block is accommodated by late Miocene to Pliocene detachment faulting followed by extension on superposed, east-northeast striking, high-angle structures. Displacement transfer from the FC-FLV fault system to the northwest-trending faults of the central Walker Lane to the north is accomplished by motion on a series of west-northwest striking transcurrent faults, named the Oriental Wash, Sylvania Mountain, and Palmetto Mountain fault systems. The west-northwest striking transcurrent faults cross-cut earlier detachment structures and are kinematically linked to east-northeast high-angle extensional faults. The transcurrent faults are mapped along strike for 60 km to the east, where they merge with north-northwest faults forming the eastern boundary of the southern Walker Lane. The west-northwest trending transcurrent faults have 30-35 km of cumulative left-lateral displacement and are a major contributor to the decrease in right-lateral displacement on the FC-FLV fault system.

  6. Real-time and on-demand buoy observation system for tsunami and crustal displacement

    Science.gov (United States)

    Takahashi, N.; Imai, K.; Ishihara, Y.; Fukuda, T.; Ochi, H.; Suzuki, K.; Kido, M.; Ohta, Y.; Imano, M.; Hino, R.

    2017-12-01

    We develop real-time and on-demand buoy observation system for tsunami and crustal displacement. It is indispensable for observation of crustal displacement to understand changes of stress field related to future large earthquakes. The current status of the observation is carried out by using a vessel with an interval of a few times per a year. When a large earthquake occurs, however, we need dense or on-demand observation of the crustal displacement to grasp nature of the slow slip after the rupture. Therefore, we constructed buoy system with a buoy station, wire-end station, seafloor unit and acoustic transponders for crustal displacement, and we installed a pressure sensor on the seafloor unit and GNSS system on the buoy in addition to measurement of e distance between the buoy and the seafloor acoustic transponders. Tsunami is evaluated using GNSS data and pressure data sent from seafloor. Observation error of the GNSS is about 10 cm. The crustal displacement is estimated using pressure sensor for vertical and acoustic measurement for horizontal. Using current slack ratio of 1.58, the observation error for the measurement of the crustal displacement is about 10 cm. We repeated three times sea trials and confirmed the data acquisition with high data quality, mooring without dredging anchor in the strong sea current with a speed of 5.5 knots. Current issues to be resolved we face are removing noises on the acoustic data transmission, data transmission between the buoy and wire-end stations, electrical consumption on the buoy station and large observation error on the crustal displacement due to large slack ratio. We consider the change of the acoustic transmission for pressure data, replace of a GNSS data logger with large electrical consumption, and reduce of the slack ratio, and search method to reduce resistance of the buoy on the sea water. In this presentation, we introduce the current status of the technical development and tsunami waveforms recorded on our

  7. Characterization of damaged composite laminates by an optical measurement of the displacement field

    International Nuclear Information System (INIS)

    Loukil, M S; Ayadi, Z; Varna, J

    2012-01-01

    The degradation of the elastic properties of composite laminates with intralaminar cracks is caused by reduced stress in the damaged layer which is mainly due to two parameters: the crack opening displacement (COD) and the crack sliding displacement (CSD). In this paper these parameters are measured experimentally providing laminate stiffness reduction models with valuable information for validation of used assumptions and for defining limits of their application. In particular, the displacement field on the edges of a [0/ +70 4 / −70 4 ] s glass fiber/epoxy laminate specimens with multiple intralaminar cracks is studied and the COD and CSD dependence on the applied mechanical load is measured. The specimen full-field displacement measurement is carried out using ESPI (Electronic Speckle Pattern Interferometry). By studying the displacement discontinuities, the crack face displacements were measured. A comparison between the COD and the CSD (for the same crack) is performed.

  8. Visible imaging measurement of position and displacement of the last closed flux surface in EAST tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.F. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Xu, G.S., E-mail: gsxu@ipp.ac.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Y.L.; Yang, J.H.; Yan, N.; Liu, L.; Yuan, S.; Luo, Z.P. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Sang, C.F. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Gu, S.; Xu, J.C.; Hu, G.H.; Wang, Y.S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Peng, Y.K.M.; Wan, B.N. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-06-15

    Highlights: • A new method for measuring the position and displacement of the LCFS has been developed in EAST tokamak. • This method is based on the visible imaging diagnostic and shown to be an effective and convenient approach. • This method can be applied to measure displacements of the LCFS during application of resonant magnetic perturbation fields. - Abstract: A new method for measuring the position and displacement of the last closed flux surface (LCFS) with visible imaging diagnostics has been developed in EAST. By measuring the relative intensity profiles of the green visible Li-II emission in the tangential planes of the optical systems, it is possible to infer the positions of certain points on the LCFS. This emission line is readily available in discharges with Li-coating wall routinely employed to improve the plasma performance. We describe the measuring method, giving results which are compared with those obtained by EFIT, and showing this as an effective and convenient approach to determine the position of the LCFS. This method is further applied to measure the displacements of the LCFS during application of resonant magnetic perturbation fields in the EAST tokamak.

  9. Insect Wing Displacement Measurement Using Digital Holography

    International Nuclear Information System (INIS)

    Aguayo, Daniel D.; Mendoza Santoyo, Fernando; Torre I, Manuel H. de la; Caloca Mendez, Cristian I.

    2008-01-01

    Insects in flight have been studied with optical non destructive techniques with the purpose of using meaningful results in aerodynamics. With the availability of high resolution and large dynamic range CCD sensors the so called interferometric digital holographic technique was used to measure the surface displacement of in flight insect wings, such as butterflies. The wings were illuminated with a continuous wave Verdi laser at 532 nm, and observed with a CCD Pixelfly camera that acquire images at a rate of 11.5 frames per second at a resolution of 1392x1024 pixels and 12 Bit dynamic range. At this frame rate digital holograms of the wings were captured and processed in the usual manner, namely, each individual hologram is Fourier processed in order to find the amplitude and phase corresponding to the digital hologram. The wings displacement is obtained when subtraction between two digital holograms is performed for two different wings position, a feature applied to all consecutive frames recorded. The result of subtracting is seen as a wrapped phase fringe pattern directly related to the wing displacement. The experimental data for different butterfly flying conditions and exposure times are shown as wire mesh plots in a movie of the wings displacement

  10. Compact optical system for measuring linear and angular displacement of solid structures

    DEFF Research Database (Denmark)

    Jakobsen, M.L.; Larsen, H.E.; Hanson, Steen Grüner

    2004-01-01

    and rotation of the target. The presented free space propagation design can provide a sensor with no direct sensitivity on the working distance. The electrical signals from the sensor are processed with a digital algorithm, based on zero-crossings detection to provide real-time displacement measurements....... The spatial filter of the sensor is characterized here, and the precision of the sensor, integrated with a processor, which applies zero-crossing detection to the signal, is considered. © 2004 COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted...

  11. Non-uniform-tilt-modulated fiber Bragg grating for temperature-immune micro-displacement measurement

    International Nuclear Information System (INIS)

    Guo, Tuan; Chen, Chengkun; Albert, Jacques

    2009-01-01

    Temperature-immune micro-displacement measurement is demonstrated by using a Gaussian-chirped tilted fiber Bragg grating (TFBG). The internal tilt angles of the sensing TFBG are effectively modulated via a displacement-induced Gaussian-strain-gradient along the specially designed bending cantilever beam. The phase mismatch between different effective pitches and tilt angles weakens the core-to-cladding mode coupling as the beam is displaced. While the power of the ghost mode resonance in transmission shows a strong sensitivity to the displacement, it is immune from spatially uniform temperature changes. Ghost-power-referenced displacement measurement and temperature-insensitive property are experimentally achieved for this cost-effective sensing device

  12. Microbial adhesion in flow displacement systems

    NARCIS (Netherlands)

    Busscher, HJ; van der Mei, HC

    Flow displacement systems are superior to many other (static) systems for studying microbial adhesion to surfaces because mass transport and prevailing shear conditions can be adequately controlled and notoriously ill-defined slight rinsing steps to remove so-called "loosely adhering organisms" can

  13. Measurement of Seaward Ground Displacements on Coastal Landfill Area Using Radar Interferometry

    Science.gov (United States)

    Baek, W.-K.; Jung, H.-S.

    2018-04-01

    In order to understand the mechanism of subsidence and help reducing damage, researchers has been observed the line-of-sight subsidence on the Noksan industrial complex using SAR Interferometry(InSAR) and suggested subsidence prediction models. Although these researches explained a spatially uneven ground subsidence near the seaside, they could not have been explained the occurrence of the newly proposed seaward horizontal, especially nearly north-ward, displacement because of the geometric limitation of InSAR measurements. In this study, we measured the seaward ground displacements trend on the coastal landfill area, Noksan Industrial Complex. We set the interferometric pairs from an ascending and a descending orbits strip map data of ALOS PALSAR2. We employed InSAR and MAI stacking approaches for the both orbits respectively in order to improve the measurement. Finally, seaward deformation was estimated by retrieving three-dimensional displacements from multi-geometric displacements. As a results, maximally 3.3 and 0.7 cm/year of ground displacements for the vertical and seaward directions. In further study, we plan to generate InSAR and MAI stacking measurements with additional SAR data to mitigate tropospheric effect and noise well. Such a seaward observation approach using spaceborne radar is expected to be effective in observing the long-term movements on coastal landfill area.

  14. Small-displacement sensing system based on multiple total internal reflections in heterodyne interferometry.

    Science.gov (United States)

    Wang, Shinn-Fwu; Chiu, Ming-Hung; Chen, Wei-Wu; Kao, Fu-Hsi; Chang, Rong-Seng

    2009-05-01

    A small-displacement sensing system based on multiple total internal reflections in heterodyne interferometry is proposed. In this paper, a small displacement can be obtained only by measuring the variation in phase difference between s- and p-polarization states for the total internal reflection effect. In order to improve the sensitivity, we increase the number of total internal reflections by using a parallelogram prism. The theoretical resolution of the method is better than 0.417 nm. The method has some merits, e.g., high resolution, high sensitivity, and real-time measurement. Also, its feasibility is demonstrated.

  15. Measurement on liquid film in microchannels using laser focus displacements meter

    International Nuclear Information System (INIS)

    Fukamachi, Norihiro; Tamura, Naohisa; Hazuku, Tatsuya; Takamasa, Tomoji

    2003-01-01

    To elucidate details of the fascinating nonlinear phenomena of gas-liquid interface in micro- and mini-channels, high spatial temporal knowledge of the interface in gas-liquid two-phase flows is essential. This paper presents a new method for measuring interface of liquid film in microchannels using a laser focus displacement meter(LFD). The purpose of the study was to clarify the effectiveness the new method for obtaining detailed information of interface displacement, especially in the case of thin liquid film, in micro- and mini-channels. In the test, water and nitrogen gas were used as working fluids. To eliminate the signal of tube wall disturbing that of gas-liquid interface, a fluorocarbon tube with water box was used; whose refraction index was the same as one of water. With this method, accurate measurements of the interface of liquid film, in real time, with sensitivity of 0.1 μm and 1 kHz, were achieved. The error caused by the refraction of the laser beam passing through the acrylic water box and fluorocarbon tube was estimated theoretically and experimentally. The formulated theoretical equation can derive the real interface displacement using measured displacement in a fluorocarbon tube of 25 μm -2.0 mm I.D. A preliminary test using fluorocarbon tubes of 1 and 2 mm in I.D. showed that the corrected interface displacement calculated by the equation agreed with real displacement within a 1% margin of error. Simultaneous measurement on the interface in a fluorocarbon tube of 0.5 and 1 mm in I.D. using the LFD and a high-speed camera movie with a microscope was carried out. It showed that the LFD could measure the interface of liquid film in high spatially and temporally in annular, slug and piston flow regions and clarified the existence of thin liquid film thinner than 1 μm in thickness in slug and annular regions. (author)

  16. Atomic force microscope cantilever as an encoding sensor for real-time displacement measurement

    International Nuclear Information System (INIS)

    Chen, Xiaomei; Koenders, Ludger; Wolff, Helmut; Haertig, Frank; Schilling, Meinhard

    2010-01-01

    A tuning fork-based atomic force microscope cantilever has been investigated for application as an encoding sensor for real-time displacement measurement. The algorithm used to encode the displacement is based on the direct count of the integer pitches of a known grating, and the calculation of the fractional parts of a pitch at the beginning and during displacement. A cross-correlation technique has been adopted and applied to the real-time signal filtering process for the determination of the pitch during scanning by using a half sinusoidal waveform template. For the first investigation, a 1D sinusoidal grating with the pitch of 300 nm is used. The repeatability of displacement measurements over a distance of 70 µm is better than 2.2 nm. As the first application, the real-time displacement of a scanning stage is measured by the new encoding principle as it is moved in an open-loop mode and closed-loop mode based on its built-in capacitance sensor

  17. MEASUREMENT OF SEAWARD GROUND DISPLACEMENTS ON COASTAL LANDFILL AREA USING RADAR INTERFEROMETRY

    Directory of Open Access Journals (Sweden)

    W.-K. Baek

    2018-04-01

    Full Text Available In order to understand the mechanism of subsidence and help reducing damage, researchers has been observed the line-of-sight subsidence on the Noksan industrial complex using SAR Interferometry(InSAR and suggested subsidence prediction models. Although these researches explained a spatially uneven ground subsidence near the seaside, they could not have been explained the occurrence of the newly proposed seaward horizontal, especially nearly north-ward, displacement because of the geometric limitation of InSAR measurements. In this study, we measured the seaward ground displacements trend on the coastal landfill area, Noksan Industrial Complex. We set the interferometric pairs from an ascending and a descending orbits strip map data of ALOS PALSAR2. We employed InSAR and MAI stacking approaches for the both orbits respectively in order to improve the measurement. Finally, seaward deformation was estimated by retrieving three-dimensional displacements from multi-geometric displacements. As a results, maximally 3.3 and 0.7 cm/year of ground displacements for the vertical and seaward directions. In further study, we plan to generate InSAR and MAI stacking measurements with additional SAR data to mitigate tropospheric effect and noise well. Such a seaward observation approach using spaceborne radar is expected to be effective in observing the long-term movements on coastal landfill area.

  18. A Novel System for Correction of Relative Angular Displacement between Airborne Platform and UAV in Target Localization

    Directory of Open Access Journals (Sweden)

    Chenglong Liu

    2017-03-01

    Full Text Available This paper provides a system and method for correction of relative angular displacements between an Unmanned Aerial Vehicle (UAV and its onboard strap-down photoelectric platform to improve localization accuracy. Because the angular displacements have an influence on the final accuracy, by attaching a measuring system to the platform, the texture image of platform base bulkhead can be collected in a real-time manner. Through the image registration, the displacement vector of the platform relative to its bulkhead can be calculated to further determine angular displacements. After being decomposed and superposed on the three attitude angles of the UAV, the angular displacements can reduce the coordinate transformation errors and thus improve the localization accuracy. Even a simple kind of method can improve the localization accuracy by 14.3%.

  19. Airflow and Contaminant Distribution in Hospital Wards with a Displacement Ventililation System

    DEFF Research Database (Denmark)

    Qian, H.; Nielsen, Peter Vilhelm; Li, Y.

    2004-01-01

    Airflow and Contaminant Distribution in Hospital Wards with a Displacement Ventilalation System. The 2nd International Conference on Build Environment and Public Health, BEPH 2004, Shenzhen , China . ABSTRACT Displacement ventilation has not been considered to be an applicable system for hospital...... to accurately predict three-dimensional distribution of air velocity, temperature, and contaminant concentration in the ward. Indoor airflow in a displacement ventilation system involves a combination of different flow streams such as the gravity currents and thermal plumes. It is important to choose...... ventilation system in hospital wards. It is for this purpose that we study the performance of displacement ventilation in hospital wards as one of the steps to optimize the ventilation design. When the prospect of applying displacement ventilation system in a hospital ward is examined, it should be necessary...

  20. Three-dimensional displacement measurement by fringe projection and speckle photography

    International Nuclear Information System (INIS)

    Barrientos, B.; Garcia-Marquez, J.; Cerca, M.; Hernandez-Bernal, C.

    2008-01-01

    3D displacement fields are measured by the combination of two optical methods, fringe projection and speckle photography. The use of only one camera recording the necessary information implies that no calibration procedures are necessary as is the case in techniques based on stereoscopy. The out-of-plane displacement is measured by fringe projection whereas speckle photography yields the 2-D in-plane component. To show the feasibility of the technique, we analyze a detailed morphological spatio-temporal evolution of a model of the Earth's crust while subjected to compression forces. The results show that the combination of fringe projection and speckle photography is well suited for this type of studies

  1. Force transmissibility versus displacement transmissibility

    Science.gov (United States)

    Lage, Y. E.; Neves, M. M.; Maia, N. M. M.; Tcherniak, D.

    2014-10-01

    It is well-known that when a single-degree-of-freedom (sdof) system is excited by a continuous motion of the foundation, the force transmissibility, relating the force transmitted to the foundation to the applied force, equals the displacement transmissibility. Recent developments in the generalization of the transmissibility to multiple-degree-of-freedom (mdof) systems have shown that similar simple and direct relations between both types of transmissibility do not appear naturally from the definitions, as happens in the sdof case. In this paper, the authors present their studies on the conditions under which it is possible to establish a relation between force transmissibility and displacement transmissibility for mdof systems. As far as the authors are aware, such a relation is not currently found in the literature, which is justified by being based on recent developments in the transmissibility concept for mdof systems. Indeed, it does not appear naturally, but the authors observed that the needed link is present when the displacement transmissibility is obtained between the same coordinates where the applied and reaction forces are considered in the force transmissibility case; this implies that the boundary conditions are not exactly the same and instead follow some rules. This work presents a formal derivation of the explicit relation between the force and displacement transmissibilities for mdof systems, and discusses its potential and limitations. The authors show that it is possible to obtain the displacement transmissibility from measured forces, and the force transmissibility from measured displacements, opening new perspectives, for example, in the identification of applied or transmitted forces. With this novel relation, it becomes possible, for example, to estimate the force transmissibility matrix with the structure off its supports, in free boundary conditions, and without measuring the forces. As far as force identification is concerned, this

  2. A wireless laser displacement sensor node for structural health monitoring.

    Science.gov (United States)

    Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok

    2013-09-30

    This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.

  3. A Wireless Laser Displacement Sensor Node for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Se Woon Choi

    2013-09-01

    Full Text Available This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM. The proposed measurement system consists of a laser displacement sensor (LDS and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.

  4. Application of Classical Land Surveying Measurement Methods for Determining the Vertical Displacement of Railway Bridges

    Science.gov (United States)

    Gawronek, Pelagia; Makuch, Maria

    2017-12-01

    The classical measurements of stability of railway bridge, in the context of determining the vertical displacements of the object, consisted on precise leveling of girders and trigonometric leveling of controlled points (fixed into girders' surface). The construction elements, which were measured in two ways, in real terms belonged to the same vertical planes. Altitude measurements of construction were carried out during periodic structural stability tests and during static load tests of bridge by train. The specificity of displacement measurements, the type of measured object and the rail land surveying measurement conditions were determinants to define methodology of altitude measurement. The article presents compatibility of vertical displacements of steel railway bridge, which were developed in two measurement methods. In conclusion, the authors proposed the optimum concept of determining the vertical displacements of girders by using precise and trigonometric leveling (in terms of accuracy, safety and economy of measurement).

  5. Application of Classical Land Surveying Measurement Methods for Determining the Vertical Displacement of Railway Bridges

    Directory of Open Access Journals (Sweden)

    Gawronek Pelagia

    2017-12-01

    Full Text Available The classical measurements of stability of railway bridge, in the context of determining the vertical displacements of the object, consisted on precise leveling of girders and trigonometric leveling of controlled points (fixed into girders' surface. The construction elements, which were measured in two ways, in real terms belonged to the same vertical planes. Altitude measurements of construction were carried out during periodic structural stability tests and during static load tests of bridge by train. The specificity of displacement measurements, the type of measured object and the rail land surveying measurement conditions were determinants to define methodology of altitude measurement. The article presents compatibility of vertical displacements of steel railway bridge, which were developed in two measurement methods. In conclusion, the authors proposed the optimum concept of determining the vertical displacements of girders by using precise and trigonometric leveling (in terms of accuracy, safety and economy of measurement.

  6. Displacement Parameter Inversion for a Novel Electromagnetic Underground Displacement Sensor

    Directory of Open Access Journals (Sweden)

    Nanying Shentu

    2014-05-01

    Full Text Available Underground displacement monitoring is an effective method to explore deep into rock and soil masses for execution of subsurface displacement measurements. It is not only an important means of geological hazards prediction and forecasting, but also a forefront, hot and sophisticated subject in current geological disaster monitoring. In previous research, the authors had designed a novel electromagnetic underground horizontal displacement sensor (called the H-type sensor by combining basic electromagnetic induction principles with modern sensing techniques and established a mutual voltage measurement theoretical model called the Equation-based Equivalent Loop Approach (EELA. Based on that work, this paper presents an underground displacement inversion approach named “EELA forward modeling-approximate inversion method”. Combining the EELA forward simulation approach with the approximate optimization inversion theory, it can deduce the underground horizontal displacement through parameter inversion of the H-type sensor. Comprehensive and comparative studies have been conducted between the experimentally measured and theoretically inversed values of horizontal displacement under counterpart conditions. The results show when the measured horizontal displacements are in the 0–100 mm range, the horizontal displacement inversion discrepancy is generally tested to be less than 3 mm under varied tilt angles and initial axial distances conditions, which indicates that our proposed parameter inversion method can predict underground horizontal displacement measurements effectively and robustly for the H-type sensor and the technique is applicable for practical geo-engineering applications.

  7. A Static Displacement Monitoring System for VLBI Antenna Using Close-Range Photogrammetry

    Directory of Open Access Journals (Sweden)

    Hyukgil Kim

    2017-11-01

    Full Text Available In this study, a static displacement monitoring program was developed to maintain the accurate performance of a Very Long Baseline Interferometry (VLBI antenna by monitoring its structural stability. The monitoring program was designed to measure static displacement, among the many displacements of the antenna’s main reflector, which can directly affect its performance. The program measures the position of a monitored object with mm-level accuracy through close-range photogrammetry that uses high-resolution Charge Coupled Device (CCD cameras. The developed program will be used to evaluate the structural soundness of an antenna based on continuous displacement measurements, which can also be used as basic data for repair and reinforcement work in the future.

  8. 3D dynamic displacement-field measurement for structural health monitoring using inexpensive RGB-D based sensor

    Science.gov (United States)

    Abdelbarr, Mohamed; Chen, Yulu Luke; Jahanshahi, Mohammad R.; Masri, Sami F.; Shen, Wei-Men; Qidwai, Uvais A.

    2017-12-01

    The advent of inexpensive digital cameras with depth sensing capabilities (RGB-D cameras) has opened the door to numerous useful applications that need quantitative measures of dynamic fields whose simultaneous time history quantification (at many points as dictated by the resolution of the camera) provides capabilities that were previously accessible only through expensive sensors (e.g., laser scanners). This paper presents a comprehensive experimental and computational study to evaluate the performance envelope of a representative RGB-D sensor (the first generation of Kinect sensor) with the aim of assessing its suitability for the class of problems encountered in the structural dynamics field, where reasonably accurate information of evolving displacement fields (as opposed to few discrete locations) that have simultaneous dynamic planar translational motion with significant rotational (torsional) components. This study investigated the influence of key system parameters of concern in selecting an appropriate sensor for such structural dynamic applications, such as amplitude range, spectral content of the dynamic displacements, location and orientation of sensors relative to target structure, fusing of measurements from multiple sensors, sensor noise effects, rolling-shutter effects, etc. The calibration results show that if the observed displacement field generates discrete (pixel) sensor measurements with sufficient resolution (observed displacements more than 10 mm) beyond the sensor noise floor, then the subject sensors can typically provide reasonable accuracy for transnational motion (about 5%) when the frequency range of the evolving field is within about 10 Hz. However, the expected error for torsional measurements is around 6% for static motion and 10% for dynamic rotation for measurements greater than 5°.

  9. Strain measurements at the HDR-pipe-system under LOCA-load: Effects on elbows and displaced weldings

    International Nuclear Information System (INIS)

    Hunger, H.

    1985-01-01

    This paper characterizes some effects which have been detected during strain gauge measurements on a test piping with feed water check valve oscillating under blowdown-load. The ovalization of a pipe elbow subjected to in-plane-bending affects the connected straight pipe; this is shown by means of circumferential stresses. Very high LOCA-load produces plastic strain and changes the pipe dynamics. Artificial displaced welds increase the local strain but no defects have occurred. One example compares stresses from measurement and post-calculation. Moreover there are given some remarks on the optimization of the comparison of measurement and calculation. (orig.)

  10. Improved SAR Amplitude Image Offset Measurements for Deriving Three-Dimensional Coseismic Displacements

    KAUST Repository

    Wang, Teng; Jonsson, Sigurjon

    2015-01-01

    Offsets of synthetic aperture radar (SAR) images have played an important role in deriving complete three-dimensional (3-D) surface displacement fields in geoscientific applications. However, offset maps often suffer from multiple outliers and patch-like artifacts, because the standard offset-measurement method is a regular moving-window operation that does not consider the scattering characteristics of the ground. Here, we show that by focusing the offset measurements on predetected strong reflectors, the reliability and accuracy of SAR offsets can be significantly improved. Application to the 2011 Van (Turkey) earthquake reveals a clear deformation signal from an otherwise decorrelated interferogram, making derivation of the 3-D coseismic displacement field possible. Our proposed method can improve mapping of coseismic deformation and other ground displacements, such as glacier flow and landslide movement when strong reflectors exist.

  11. Improved SAR Amplitude Image Offset Measurements for Deriving Three-Dimensional Coseismic Displacements

    KAUST Repository

    Wang, Teng

    2015-02-03

    Offsets of synthetic aperture radar (SAR) images have played an important role in deriving complete three-dimensional (3-D) surface displacement fields in geoscientific applications. However, offset maps often suffer from multiple outliers and patch-like artifacts, because the standard offset-measurement method is a regular moving-window operation that does not consider the scattering characteristics of the ground. Here, we show that by focusing the offset measurements on predetected strong reflectors, the reliability and accuracy of SAR offsets can be significantly improved. Application to the 2011 Van (Turkey) earthquake reveals a clear deformation signal from an otherwise decorrelated interferogram, making derivation of the 3-D coseismic displacement field possible. Our proposed method can improve mapping of coseismic deformation and other ground displacements, such as glacier flow and landslide movement when strong reflectors exist.

  12. Measurement of absolute displacement-amplitude of ultrasonic wave using piezo-electric detection method

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Hyun; Kim, Jong Beom; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)

    2017-02-15

    A nonlinear ultrasonic parameter is defined by the ratio of displacement amplitude of the fundamental frequency component to that of the second-order harmonic frequency component. In this study, the ultrasonic displacement amplitude of an SUS316 specimen was measured via a piezo-electric-based method to identify the validity of piezo-electric detection method. For comparison, the ultrasonic displacement was also determined via a laser-based Fabry-Pérot interferometer. The experimental results for both measurements were in good agreement. Additionally, the stability of the repeated test results from the piezo-electric method exceeded that of the laser-interferometric method. This result indicated that the piezo-electric detection method can be utilized to measure a nonlinear ultrasonic parameter due to its excellent stability although it involves a complicated process.

  13. Measurement of absolute displacement-amplitude of ultrasonic wave using piezo-electric detection method

    International Nuclear Information System (INIS)

    Park, Seong Hyun; Kim, Jong Beom; Jhang, Kyung Young

    2017-01-01

    A nonlinear ultrasonic parameter is defined by the ratio of displacement amplitude of the fundamental frequency component to that of the second-order harmonic frequency component. In this study, the ultrasonic displacement amplitude of an SUS316 specimen was measured via a piezo-electric-based method to identify the validity of piezo-electric detection method. For comparison, the ultrasonic displacement was also determined via a laser-based Fabry-Pérot interferometer. The experimental results for both measurements were in good agreement. Additionally, the stability of the repeated test results from the piezo-electric method exceeded that of the laser-interferometric method. This result indicated that the piezo-electric detection method can be utilized to measure a nonlinear ultrasonic parameter due to its excellent stability although it involves a complicated process

  14. TEM10 homodyne detection as an optimal small-displacement and tilt-measurement scheme

    DEFF Research Database (Denmark)

    Delaubert, Vincent; Treps, Nikolas; Lassen, Mikael Østergaard

    2006-01-01

    We report an experimental demonstration of optimal measurements of small displacement and tilt of a Gaussian beam - two conjugate variables - involving a homodyne detection with a TEM10 local oscillator. We verify that the standard split detection is only 64% efficient. We also show a displacement...

  15. Novel design and sensitivity analysis of displacement measurement system utilizing knife edge diffraction for nanopositioning stages.

    Science.gov (United States)

    Lee, ChaBum; Lee, Sun-Kyu; Tarbutton, Joshua A

    2014-09-01

    This paper presents a novel design and sensitivity analysis of a knife edge-based optical displacement sensor that can be embedded with nanopositioning stages. The measurement system consists of a laser, two knife edge locations, two photodetectors, and axillary optics components in a simple configuration. The knife edge is installed on the stage parallel to its moving direction and two separated laser beams are incident on knife edges. While the stage is in motion, the direct transverse and diffracted light at each knife edge is superposed producing interference at the detector. The interference is measured with two photodetectors in a differential amplification configuration. The performance of the proposed sensor was mathematically modeled, and the effect of the optical and mechanical parameters, wavelength, beam diameter, distances from laser to knife edge to photodetector, and knife edge topography, on sensor outputs was investigated to obtain a novel analytical method to predict linearity and sensitivity. From the model, all parameters except for the beam diameter have a significant influence on measurement range and sensitivity of the proposed sensing system. To validate the model, two types of knife edges with different edge topography were used for the experiment. By utilizing a shorter wavelength, smaller sensor distance and higher edge quality increased measurement sensitivity can be obtained. The model was experimentally validated and the results showed a good agreement with the theoretically estimated results. This sensor is expected to be easily implemented into nanopositioning stage applications at a low cost and mathematical model introduced here can be used for design and performance estimation of the knife edge-based sensor as a tool.

  16. Displacement measurement with nanoscale resolution using a coded micro-mark and digital image correlation

    Science.gov (United States)

    Huang, Wei; Ma, Chengfu; Chen, Yuhang

    2014-12-01

    A method for simple and reliable displacement measurement with nanoscale resolution is proposed. The measurement is realized by combining a common optical microscopy imaging of a specially coded nonperiodic microstructure, namely two-dimensional zero-reference mark (2-D ZRM), and subsequent correlation analysis of the obtained image sequence. The autocorrelation peak contrast of the ZRM code is maximized with well-developed artificial intelligence algorithms, which enables robust and accurate displacement determination. To improve the resolution, subpixel image correlation analysis is employed. Finally, we experimentally demonstrate the quasi-static and dynamic displacement characterization ability of a micro 2-D ZRM.

  17. Picometre displacement measurements using a differential Fabry-Perot optical interferometer and an x-ray interferometer

    Science.gov (United States)

    Çelik, Mehmet; Hamid, Ramiz; Kuetgens, Ulrich; Yacoot, Andrew

    2012-08-01

    X-ray interferometry is emerging as an important tool for dimensional nanometrology both for sub-nanometre measurement and displacement. It has been used to verify the performance of the next generation of displacement measuring optical interferometers within the European Metrology Research Programme project NANOTRACE. Within this project a more detailed set of comparison measurements between the x-ray interferometer and a dual channel Fabry-Perot optical interferometer (DFPI) have been made to demonstrate the capabilities of both instruments for picometre displacement metrology. The results show good agreement between the two instruments, although some minor differences of less than 5 pm have been observed.

  18. Out-of-plane displacement measurement by means of endoscopic moire interferometry

    International Nuclear Information System (INIS)

    Martinez-Celorio, R.A.; Dirckx, Joris J.J.; Marti-Lopez, Luis; Pena-Lecona, Francisco G.

    2004-01-01

    An endoscopic moire technique is proposed for measuring out-of-plane displacements in difficult to reach places. The Ronchi grid is projected onto the tilted object with one endoscope with a 0 deg. viewing angle. The object with the projected grid is imaged by a second endoscope with a 30 deg. viewing angle onto a charge-coupled device. The captured images are stored in a PC, and are used to calculate the out-of-plane displacement of the object with a phase stepping technique. A computer generated grating method is used instead of a physical phase-shift device in the optical setup. This allows designing a set of three reference grids with profiles closely similar to the projected grating. The technique is robust against problems associated with the temporal shifting method, such as nonlinear phase shift and noise. To test the feasibility of the technique the measurement of out-of-plane displacements of about 35 μm of a latex membrane under deformation is demonstrated. The advantages and disadvantages are discussed

  19. Conception and development of an optical methodology applied to long-distance measurement of suspension bridges dynamic displacement

    International Nuclear Information System (INIS)

    Martins, L Lages; Ribeiro, A Silva; Rebordão, J M

    2013-01-01

    This paper describes the conception and development of an optical system applied to suspension bridge structural monitoring, aiming real-time and long-distance measurement of dynamical three-dimensional displacement, namely, in the central section of the main span. The main innovative issues related to this optical approach are described and a comparison with other optical and non-optical measurement systems is performed. Moreover, a computational simulator tool developed for the optical system design and validation of the implemented image processing and calculation algorithms is also presented

  20. Tracking speckle displacement by double Kalman filtering

    Institute of Scientific and Technical Information of China (English)

    Donghui Li; Li Guo

    2006-01-01

    @@ A tracking technique using two sequentially-connected Kalman filter for tracking laser speckle displacement is presented. One Kalman filter tracks temporal speckle displacement, while another Kalman filter tracks spatial speckle displacement. The temporal Kalman filter provides a prior for the spatial Kalman filter, and the spatial Kalman filter provides measurements for the temporal Kalman filter. The contribution of a prior to estimations of the spatial Kalman filter is analyzed. An optical analysis system was set up to verify the double-Kalman-filter tracker's ability of tracking laser speckle's constant displacement.

  1. Displacement measurement using an optoelectronic oscillator with an intra-loop Michelson interferometer.

    Science.gov (United States)

    Lee, Jehyun; Park, Sooyoung; Seo, Dae Han; Yim, Sin Hyuk; Yoon, Seokchan; Cho, D

    2016-09-19

    We report on measurement of small displacements with sub-nanometer precision using an optoelectronic oscillator (OEO) with an intra-loop Michelson interferometer. In comparison with conventional homodyne and heterodyne detection methods, where displacement appears as a power change or a phase shift, respectively, in the OEO detection, the displacement produces a shift in the oscillation frequency. In comparison with typical OEO sensors, where the frequency shift is proportional to the OEO oscillation frequency in radio-frequency domain, the frequency shift in our method with an intra-loop interferometer is proportional to an optical frequency. We constructed a hybrid apparatus and compared characteristics of the OEO and heterodyne detection methods.

  2. Internal displacement and strain measurement using digital volume correlation: a least-squares framework

    International Nuclear Information System (INIS)

    Pan, Bing; Wu, Dafang; Wang, Zhaoyang

    2012-01-01

    As a novel tool for quantitative 3D internal deformation measurement throughout the interior of a material or tissue, digital volume correlation (DVC) has increasingly gained attention and application in the fields of experimental mechanics, material research and biomedical engineering. However, the practical implementation of DVC involves important challenges such as implementation complexity, calculation accuracy and computational efficiency. In this paper, a least-squares framework is presented for 3D internal displacement and strain field measurement using DVC. The proposed DVC combines a practical linear-intensity-change model with an easy-to-implement iterative least-squares (ILS) algorithm to retrieve 3D internal displacement vector field with sub-voxel accuracy. Because the linear-intensity-change model is capable of accounting for both the possible intensity changes and the relative geometric transform of the target subvolume, the presented DVC thus provides the highest sub-voxel registration accuracy and widest applicability. Furthermore, as the ILS algorithm uses only first-order spatial derivatives of the deformed volumetric image, the developed DVC thus significantly reduces computational complexity. To further extract 3D strain distributions from the 3D discrete displacement vectors obtained by the ILS algorithm, the presented DVC employs a pointwise least-squares algorithm to estimate the strain components for each measurement point. Computer-simulated volume images with controlled displacements are employed to investigate the performance of the proposed DVC method in terms of mean bias error and standard deviation error. Results reveal that the present technique is capable of providing accurate measurements in an easy-to-implement manner, and can be applied to practical 3D internal displacement and strain calculation. (paper)

  3. Picometre displacement measurements using a differential Fabry–Perot optical interferometer and an x-ray interferometer

    International Nuclear Information System (INIS)

    Çelik, Mehmet; Hamid, Ramiz; Kuetgens, Ulrich; Yacoot, Andrew

    2012-01-01

    X-ray interferometry is emerging as an important tool for dimensional nanometrology both for sub-nanometre measurement and displacement. It has been used to verify the performance of the next generation of displacement measuring optical interferometers within the European Metrology Research Programme project NANOTRACE. Within this project a more detailed set of comparison measurements between the x-ray interferometer and a dual channel Fabry–Perot optical interferometer (DFPI) have been made to demonstrate the capabilities of both instruments for picometre displacement metrology. The results show good agreement between the two instruments, although some minor differences of less than 5 pm have been observed. (paper)

  4. Weak measurement from the electron displacement current: new path for applications

    International Nuclear Information System (INIS)

    Marian, D; Colomés, E; Oriols, X; Zanghì, N

    2015-01-01

    The interest on weak measurements is rapidly growing during the last years as a unique tool to better understand and predict new quantum phenomena. Up to now many theoretical and experimental weak-measurement techniques deal with (relativistic) photons or cold atoms, but there is much less investigation on (non-relativistic) electrons in up-to-date electronics technologies. We propose a way to perform weak measurements in nanoelectronic devices through the measurement of the total current (particle plus displacement component) in such devices. We study the interaction between an electron in the active region of a electron device with a metal surface working as a sensing electrode by means of the (Bohmian) conditional wave function. We perform numerical (Monte Carlo) simulations to reconstruct the Bohmian trajectories in the iconic double slit experiment. This work opens new paths for understanding the quantum properties of an electronic system as well as for exploring new quantum engineering applications in solid state physics. (paper)

  5. CENTIMETER COSMO-SKYMED RANGE MEASUREMENTS FOR MONITORING GROUND DISPLACEMENTS

    Directory of Open Access Journals (Sweden)

    F. Fratarcangeli

    2016-06-01

    Full Text Available The SAR (Synthetic Aperture Radar imagery are widely used in order to monitor displacements impacting the Earth surface and infrastructures. The main remote sensing technique to extract sub-centimeter information from SAR imagery is the Differential SAR Interferometry (DInSAR, based on the phase information only. However, it is well known that DInSAR technique may suffer for lack of coherence among the considered stack of images. New Earth observation SAR satellite sensors, as COSMO-SkyMed, TerraSAR-X, and the coming PAZ, can acquire imagery with high amplitude resolutions too, up to few decimeters. Thanks to this feature, and to the on board dual frequency GPS receivers, allowing orbits determination with an accuracy at few centimetres level, the it was proven by different groups that TerraSAR-X imagery offer the capability to achieve, in a global reference frame, 3D positioning accuracies in the decimeter range and even better just exploiting the slant-range measurements coming from the amplitude information, provided proper corrections of all the involved geophysical phenomena are carefully applied. The core of this work is to test this methodology on COSMO-SkyMed data acquired over the Corvara area (Bolzano – Northern Italy, where, currently, a landslide with relevant yearly displacements, up to decimeters, is monitored, using GPS survey and DInSAR technique. The leading idea is to measure the distance between the satellite and a well identifiable natural or artificial Persistent Scatterer (PS, taking in account the signal propagation delays through the troposphere and ionosphere and filtering out the known geophysical effects that induce periodic and secular ground displacements. The preliminary results here presented and discussed indicate that COSMO-SkyMed Himage imagery appear able to guarantee a displacements monitoring with an accuracy of few centimetres using only the amplitude data, provided few (at least one stable PS’s are

  6. Limitations on the extent of off-center displacements in TbMnO3 from EXAFS measurements

    International Nuclear Information System (INIS)

    Bridges, F.; Downs, C.; O'Brien, T.; Jeong, Il-K; Kimura, T.

    2007-01-01

    We present extended x-ray-absorption fine structure (EXAFS) data at the Mn K and Tb L 3 edges that provide upper limits on the possible displacements of any atoms in TbMnO 3 . The displacements must be less than 0.005-0.01 A for all atoms, which eliminates the possibility of moderate distortions (0.02 A) with a small c-axis component, but for which the displacements in the ab plane average to zero. Assuming the polarization arises from a displacement of the O2 atoms along the c axis, the measured polarization then leads to an O2 displacement that is at least 6x10 -4 A, well below our experimental limit. Thus, a combination of the EXAFS and the measured electrical polarization indicate that the atomic displacements likely lie in the range 6x10 -4 -5x10 -3 A

  7. Accuracy enhancement of point triangulation probes for linear displacement measurement

    Science.gov (United States)

    Kim, Kyung-Chan; Kim, Jong-Ahn; Oh, SeBaek; Kim, Soo Hyun; Kwak, Yoon Keun

    2000-03-01

    Point triangulation probes (PTBs) fall into a general category of noncontact height or displacement measurement devices. PTBs are widely used for their simple structure, high resolution, and long operating range. However, there are several factors that must be taken into account in order to obtain high accuracy and reliability; measurement errors from inclinations of an object surface, probe signal fluctuations generated by speckle effects, power variation of a light source, electronic noises, and so on. In this paper, we propose a novel signal processing algorithm, named as EASDF (expanded average square difference function), for a newly designed PTB which is composed of an incoherent source (LED), a line scan array detector, a specially selected diffuse reflecting surface, and several optical components. The EASDF, which is a modified correlation function, is able to calculate displacement between the probe and the object surface effectively even if there are inclinations, power fluctuations, and noises.

  8. Displacement sensor for measurement of fuel rod elongation in the LOFT reactors

    International Nuclear Information System (INIS)

    Billeter, T.R.

    1979-09-01

    Qualification tests conducted for a period of 700 hours of each of three displacement measuring (LVDT) sensors confirmed applicability of the design for use in the Loss-of-Fluid-Test (LOFT) reactor. Operationally, the sensor satisfies all specified requirements for LOFT. Even for imposed temperature transients at rates up to 100 0 F/s, the indicated displacement remained within the allowed maximum error band of +- 10% of reading. The 0.6-inch O.D. by 5.5-inch long sensor exhibited a linearly related signal output variation for displacement variations of up to 1-inch range. Long term operation at temperatures of 100 0 F to 800 0 F caused no perceptible permanent change of operating characteristics

  9. Optoelectronic device for the measurement of the absolute linear position in the micrometric displacement range

    Science.gov (United States)

    Morlanes, Tomas; de la Pena, Jose L.; Sanchez-Brea, Luis M.; Alonso, Jose; Crespo, Daniel; Saez-Landete, Jose B.; Bernabeu, Eusebio

    2005-07-01

    In this work, an optoelectronic device that provides the absolute position of a measurement element with respect to a pattern scale upon switch-on is presented. That means that there is not a need to perform any kind of transversal displacement after the startup of the system. The optoelectronic device is based on the process of light propagation passing through a slit. A light source with a definite size guarantees the relation of distances between the different elements that constitute our system and allows getting a particular optical intensity profile that can be measured by an electronic post-processing device providing the absolute location of the system with a resolution of 1 micron. The accuracy of this measuring device is restricted to the same limitations of any incremental position optical encoder.

  10. A versatile stereo photogrammetry based technique for measuring fracture mode displacements in structures

    DEFF Research Database (Denmark)

    Alvarado, Jonathan Shmueli; Eder, Martin Alexander; Tesauro, Angelo

    2015-01-01

    The measurement of fracture mode displacements in structures which are susceptible to cracking such as adhesive joints in composite components – is becoming increasingly important. Such measurements are essential for the understanding of the root causes for specific fracture damage types. Further......The measurement of fracture mode displacements in structures which are susceptible to cracking such as adhesive joints in composite components – is becoming increasingly important. Such measurements are essential for the understanding of the root causes for specific fracture damage types......-made automated image processing software (AIPS) allows a rapid and reliable evaluation of a multitude of subsequently taken measurements at a high-precision level. The SDMS is used to measure the LRDs at three different locations close to the trailing edge of a wind turbine rotor blade. In addition...

  11. Point Coupled Displacement Sensor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Real-time displacement measurement techniques are needed to acquire aerodynamic and structural system characteristics in flight. This proposal describes the...

  12. Uncertainty of angular displacement measurement with a MEMS gyroscope integrated in a smartphone

    International Nuclear Information System (INIS)

    De Campos Porath, Maurício; Dolci, Ricardo

    2015-01-01

    Low-cost inertial sensors have recently gained popularity and are now widely used in electronic devices such as smartphones and tablets. In this paper we present the results of a set of experiments aiming to assess the angular displacement measurement errors of a gyroscope integrated in a smartphone of a recent model. The goal is to verify whether these sensors could substitute dedicated electronic inclinometers for the measurement of angular displacement. We estimated a maximum error of 0.3° (sum of expanded uncertainty and maximum absolute bias) for the roll and pitch axes, for a measurement time without referencing up to 1 h. (paper)

  13. Laser measurement of the LumiCal detector displacement

    International Nuclear Information System (INIS)

    Blocki, J.; Daniluk, W.; Gil, M.; Karbowiak, M.; Moszczynski, A.; Oliwa, K.; Pawlik, B.; Wierba, W.; Zawiejski, L.; Slominski, W.; Suszycki, L.

    2006-12-01

    The silicon-tungsten calorimeter LumiCal, located in very forward region of the future detector at the International Linear Collider, is proposed for precisely luminosity measurement. One of the requirements to fulfil this task is available information on the actual position of the calorimeter relative to the beam interaction area which should be known with accuracy of a few micrometers. In this paper we discuss the possible solutions for the positioning of the LumiCal electron detector by optical method. The results of the displacement measurement using a laser beam and a CCD camera are described. The measurements were performed on a proof-of-principle basis and achieved the accuracy of about ± 1 μm in x, y and ± μm in z direction. (author)

  14. A high accuracy algorithm of displacement measurement for a micro-positioning stage

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    2017-05-01

    Full Text Available A high accuracy displacement measurement algorithm for a two degrees of freedom compliant precision micro-positioning stage is proposed based on the computer micro-vision technique. The algorithm consists of an integer-pixel and a subpixel matching procedure. Series of simulations are conducted to verify the proposed method. The results show that the proposed algorithm possesses the advantages of high precision and stability, the resolution can attain to 0.01 pixel theoretically. In addition, the consuming time is reduced about 6.7 times compared with the classical normalized cross correlation algorithm. To validate the practical performance of the proposed algorithm, a laser interferometer measurement system (LIMS is built up. The experimental results demonstrate that the algorithm has better adaptability than that of the LIMS.

  15. New look at displacement factor and point of measurement corrections in ionization chamber dosimetry

    International Nuclear Information System (INIS)

    Awschalom, M.; Rosenberg, I.; Ten Haken, R.K.

    1983-01-01

    A new technique is presented for determination of the effective point of measurement when cavity ionization chambers are used to measure the absorbed dose due to ionizing radiation in a dense medium. An algorithm is derived relating the effective point of measurement to the displacement correction factor. This algorithm relates variations of the displacement factor to the radiation field gradient. The technique is applied to derive the magnitudes of the corrections for several chambers in a p(66)Be(49) neutron therapy beam. 30 references, 4 figures, 1 table

  16. Flow measurements using noise signals of axially displaced thermocouples

    Energy Technology Data Exchange (ETDEWEB)

    Kozma, R.; Hoogenboom, J.E. (Interuniversitair Reactor Inst., Delft (Netherlands))

    1990-01-01

    Determination of the flow rate of the coolant in the cooling channels of nuclear reactors is an important aspect of core monitoring. It is usually impossible to measure the flow by flowmeters in the individual channels due to the lack of space and safety reasons. An alternative method is based on the analysis of noise signals of the available in-core detectors. In such a noise method, a transit time which characterises the propagation of thermohydraulic fluctuations (density or temperature fluctuations) in the coolant is determined from the correlation between the noise signals of axially displaced detectors. In this paper, the results of flow measurements using axially displaced thermocouples in the channel wall will be presented. The experiments have been performed in a simulated MRT-type fuel assembly located in the research reactor HOR of the Interfaculty Reactor Institute, Delft. It was found that the velocities obtained via temperature noise correlation methods are significantly larger than the area-averaged velocity in the single-phase coolant flow. Model calculations show that the observed phenomenon can be explained by effects due to the radial velocity distribution in the channel. (author).

  17. Nanometer-scale displacement measurement with high resolution using dual cavity Fabry-Pérot interferometer for biomimetic robots.

    Science.gov (United States)

    Lee, Jin-Hyuk; Kim, Dae-Hyun

    2014-10-01

    A sensor of a biomimetic robot has to measure very small environmental changes such as, nanometer scale strains or displacements. Fiber optic sensor can be also one of candidates for the biomimetic sensor because the sensor is like thread and the shape of the sensor is similar to muscle fiber. A fiber optic interferometer, which is an optical-based sensor, can measure displacement precisely, so such device has been widely studied for the measurement of displacement on a nanometer-scale. Especially, a Quadrature Phase-Shifted Fiber Fabry-Pérot interferometer (QPS-FFPI) uses phase-information for this measurement, allowing it to provide a precision result with high resolution. In theory, the QPS-FFPI generates two sinusoidal signals of which the phase difference should be 90 degrees for the exact measurement of the displacement. In order to guarantee the condition of the phase difference, the relative adjustment of the cavities of the optical fibers is required. However, with such precise adjustment it is very hard to fix the proper difference of the two cavities for quadrature-phase-shifting. In this paper, a dual-cavity FFPI is newly proposed to measure the displacement on a nanometer-scale with a specific type of signal processing. In the signal processing, a novel phase-compensation algorithm is applied to force the phase difference to be exactly 90 degrees without any physical adjustment. As a result, the paper shows that the phase-compensated dual-cavity FFPI can effectively measure nanometer-scale displacement with high resolution under dynamic conditions.

  18. A new microscope optics for laser dark-field illumination applied to high precision two dimensional measurement of specimen displacement.

    Science.gov (United States)

    Noda, Naoki; Kamimura, Shinji

    2008-02-01

    With conventional light microscopy, precision in the measurement of the displacement of a specimen depends on the signal-to-noise ratio when we measure the light intensity of magnified images. This implies that, for the improvement of precision, getting brighter images and reducing background light noise are both inevitably required. For this purpose, we developed a new optics for laser dark-field illumination. For the microscopy, we used a laser beam and a pair of axicons (conical lenses) to get an optimal condition for dark-field observations. The optics was applied to measuring two dimensional microbead displacements with subnanometer precision. The bandwidth of our detection system overall was 10 kHz. Over most of this bandwidth, the observed noise level was as small as 0.1 nm/radicalHz.

  19. Design and Testing of a Flexible Inclinometer Probe for Model Tests of Landslide Deep Displacement Measurement.

    Science.gov (United States)

    Zhang, Yongquan; Tang, Huiming; Li, Changdong; Lu, Guiying; Cai, Yi; Zhang, Junrong; Tan, Fulin

    2018-01-14

    The physical model test of landslides is important for studying landslide structural damage, and parameter measurement is key in this process. To meet the measurement requirements for deep displacement in landslide physical models, an automatic flexible inclinometer probe with good coupling and large deformation capacity was designed. The flexible inclinometer probe consists of several gravity acceleration sensing units that are protected and positioned by silicon encapsulation, all the units are connected to a 485-comunication bus. By sensing the two-axis tilt angle, the direction and magnitude of the displacement for a measurement unit can be calculated, then the overall displacement is accumulated according to all units, integrated from bottom to top in turn. In the conversion from angle to displacement, two spline interpolation methods are introduced to correct and resample the data; one is to interpolate the displacement after conversion, and the other is to interpolate the angle before conversion; compared with the result read from checkered paper, the latter is proved to have a better effect, with an additional condition that the displacement curve move up half the length of the unit. The flexible inclinometer is verified with respect to its principle and arrangement by a laboratory physical model test, and the test results are highly consistent with the actual deformation of the landslide model.

  20. Target micro-displacement measurement by a "comb" structure of intensity distribution in laser plasma propulsion

    Science.gov (United States)

    Zheng, Z. Y.; Zhang, S. Q.; Gao, L.; Gao, H.

    2015-05-01

    A "comb" structure of beam intensity distribution is designed and achieved to measure a target displacement of micrometer level in laser plasma propulsion. Base on the "comb" structure, the target displacement generated by nanosecond laser ablation solid target is measured and discussed. It is found that the "comb" structure is more suitable for a thin film target with a velocity lower than tens of millimeters per second. Combing with a light-electric monitor, the `comb' structure can be used to measure a large range velocity.

  1. Filtering algorithm for radial displacement measurements of a dented pipe

    International Nuclear Information System (INIS)

    Hojjati, M.H.; Lukasiewicz, S.A.

    2008-01-01

    Experimental measurements are always affected by some noise and errors caused by inherent inaccuracies and deficiencies of the experimental techniques and measuring devices used. In some fields, such as strain calculations in a dented pipe, the results are very sensitive to the errors. This paper presents a filtering algorithm to remove noise and errors from experimental measurements of radial displacements of a dented pipe. The proposed filter eliminates the errors without harming the measured data. The filtered data can then be used to estimate membrane and bending strains. The method is very effective and easy to use and provides a helpful practical measure for inspection purposes

  2. Force sensing using 3D displacement measurements in linear elastic bodies

    Science.gov (United States)

    Feng, Xinzeng; Hui, Chung-Yuen

    2016-07-01

    In cell traction microscopy, the mechanical forces exerted by a cell on its environment is usually determined from experimentally measured displacement by solving an inverse problem in elasticity. In this paper, an innovative numerical method is proposed which finds the "optimal" traction to the inverse problem. When sufficient regularization is applied, we demonstrate that the proposed method significantly improves the widely used approach using Green's functions. Motivated by real cell experiments, the equilibrium condition of a slowly migrating cell is imposed as a set of equality constraints on the unknown traction. Our validation benchmarks demonstrate that the numeric solution to the constrained inverse problem well recovers the actual traction when the optimal regularization parameter is used. The proposed method can thus be applied to study general force sensing problems, which utilize displacement measurements to sense inaccessible forces in linear elastic bodies with a priori constraints.

  3. A Method Using Optical Contactless Displacement Sensors to Measure Vibration Stress of Small-Bore Piping.

    Science.gov (United States)

    Maekawa, Akira; Tsuji, Takashi; Takahashi, Tsuneo; Noda, Michiyasu

    2014-02-01

    In nuclear power plants, vibration stress of piping is frequently evaluated to prevent fatigue failure. A simple and fast measurement method is attractive to evaluate many piping systems efficiently. In this study, a method to measure the vibration stress using optical contactless displacement sensors was proposed, the prototype instrument was developed, and the instrument practicality for the method was verified. In the proposed method, light emitting diodes (LEDs) were used as measurement sensors and the vibration stress was estimated by measuring the deformation geometry of the piping caused by oscillation, which was measured as the piping curvature radius. The method provided fast and simple vibration estimates for small-bore piping. Its verification and practicality were confirmed by vibration tests using a test pipe and mock-up piping. The stress measured by both the proposed method and an accurate conventional method using strain gauges were in agreement, and it was concluded that the proposed method could be used for actual plant piping systems.

  4. Displacement measurements in the cryogenically cooled dipoles of the new CERN-LHC particle accelerator

    CERN Document Server

    Inaudi, D; Scandale, Walter; Pérez, J G; Billan, J; Redaelli, S

    2001-01-01

    The LHC will use the most advanced superconducting magnet and accelerator technologies ever employed. One of the main challenges in this new machine resides in the design and production of the superconducting dipoles used to steer the particles around the 27 km underground tunnel. These so-called cryodipoles are composed of an external vacuum tube and an insert, appropriately named the cold mass, that contains the particle tubes, the superconducting coil and will be cooled using superfluid helium to 1.9 K. The particle beam must be placed inside the magnetic field with a submillimeter accuracy; this requires in turn that the relative displacements between the vacuum tube and the cold-mass must be monitored with accuracy. Due to the extreme condition environmental conditions (the displacement measurement must be made in vacuum and between two points with a temperature difference of more than 200 degrees C) no adequate existing monitoring system was found for this application. It was therefore decided to develo...

  5. A fiber-coupled displacement measuring interferometer for determination of the posture of a reflective surface

    International Nuclear Information System (INIS)

    Mao, Shuai; Hu, Peng-Cheng; Ding, Xue-Mei; Tan, Jiu-Bin

    2016-01-01

    A fiber-coupled displacement measuring interferometer capable of determining of the posture of a reflective surface of a measuring mirror is proposed. The newly constructed instrument combines fiber-coupled displacement and angular measurement technologies. The proposed interferometer has advantages of both the fiber-coupled and the spatially beam-separated interferometer. A portable dual-position sensitive detector (PSD)-based unit within this proposed interferometer measures the parallelism of the two source beams to guide the fiber-coupling adjustment. The portable dual PSD-based unit measures not only the pitch and yaw of the retro-reflector but also measures the posture of the reflective surface. The experimental results of displacement calibration show that the deviations between the proposed interferometer and a reference one, Agilent 5530, at two different common beam directions are both less than ±35 nm, thus verifying the effectiveness of the beam parallelism measurement. The experimental results of angular calibration show that deviations of pitch and yaw with the auto-collimator (as a reference) are less than ±2 arc sec, thus proving the proposed interferometer’s effectiveness for determination of the posture of a reflective surface.

  6. Vision system for measuring wagon buffers’ lateral movements

    Directory of Open Access Journals (Sweden)

    Barjaktarović Marko

    2013-01-01

    Full Text Available This paper presents a vision system designed for measuring horizontal and vertical displacements of a railway wagon body. The model comprises a commercial webcam and a cooperative target of an appropriate shape. The lateral buffer movement is determined by calculating target displacement in real time by processing the camera image in a LabVIEW platform using free OpenCV library. Laboratory experiments demonstrate an accuracy which is better than ±0.5 mm within a 50 mm measuring range.

  7. Evaluation of thermal displacement behavior of high temperature piping system in power-up test of HTTR. No. 1 results up to 20 MW operation

    International Nuclear Information System (INIS)

    Hanawa, Satoshi; Kojima, Takao; Sumita, Junya; Tachibana, Yukio

    2002-03-01

    Temperature of the primary cooling system of the High Temperature Engineering Test Reactor, HTTR, becomes very high because the coolant temperature at the reactor outlet reaches 950degC, and 400degC at inlet of the reactor. Therefore, it is important to confirm the thermal displacement behavior of the high temperature piping system in the primary cooling system from the viewpoint of the structural integrity. Moreover, newly designed 3-dimensional floating support system is adopted to the cooling system, it is meaningful to verify the thermal displacement behavior of the piping system applied the 3-dimensional floating support system. In the power-up test (up to 20 MW operation), thermal displacement behavior of the high temperature piping system was measured. This paper describes the experimental and analytical results of thermal displacement characteristics of the high temperature piping system. The results showed that the resistance force induced from the supporting system effects to the thermal displacement behavior of cooling system, and the analytical results have a good agreement with the experimental results by optimizing the resistant force of the floating support system. Additionally, structural integrity at the 30 MW operation was confirmed by the analysis. (author)

  8. Nanoscale displacement measurement by a digital nano-moire method with wavelet transformation

    International Nuclear Information System (INIS)

    Liu, C-M; Chen, L-W; Wang, C-C

    2006-01-01

    A digital nano-moire method with wavelet transformation is explored to measure nanoscale in-plane displacement fields. By applying e-beam lithography, a periodic PMMA nanostructure array is fabricated directly on the specimen and used as the specimen grating. Moire patterns are generated by overlapping the images of the PMMA specimen grating obtained from AFM scanning and the virtual reference grating produced by a digital image generating process. Then, the overlapped images are filtered by the 2D wavelet transformation (WT) to capture the target moire patterns. Existing methods, by overlapping the monitor-generated scanning lines with the image of the specimen grating, cause a mismatch problem. Previously, the carrier moire method was explored with the aim of curing the mismatch problem. Unfortunately, the carrier moire method, in addition to suffering from increased complexity of mathematical calculations, is incapable of directly obtaining the displacement field. Thus, the mismatch problem will result in inconveniences and restrictions in the practical application. Instead of using monitor-generated scanning lines, the proposed method applies the virtual reference grating, and thus puts the mismatch problem to rest. Nevertheless, the resultant moire image suffers from low contrast which, if left untreated, might distort the measurement result. Therefore, the WT, known for its sharpened abilities of characteristic and edge detection, is used to capture the target moire patterns and improve the measurement accuracy. The proposed method has been carried out in the laboratory. Experimental results have shown that the proposed method is convenient and efficient for nanoscale displacement measurement

  9. A review of recent work in sub-nanometre displacement measurement using optical and X-ray interferometry.

    Science.gov (United States)

    Peggs, G N; Yacoot, A

    2002-05-15

    This paper reviews recent work in the field of displacement measurement using optical and X-ray interferometry at the sub-nanometre level of accuracy. The major sources of uncertainty in optical interferometry are discussed and a selection of recent designs of ultra-precise, optical-interferometer-based, displacement measuring transducers presented. The use of X-ray interferometry and its combination with optical interferometry is discussed.

  10. Reliability of internal oblique elbow radiographs for measuring displacement of medial epicondyle humerus fractures: a cadaveric study.

    Science.gov (United States)

    Gottschalk, Hilton P; Bastrom, Tracey P; Edmonds, Eric W

    2013-01-01

    Standard elbow radiographs (AP and lateral views) are not accurate enough to measure true displacement of medial epicondyle fractures of the humerus. The amount of perceived displacement has been used to determine treatment options. This study assesses the utility of internal oblique radiographs for measurement of true displacement in these fractures. A medial epicondyle fracture was created in a cadaveric specimen. Displacement of the fragment (mm) was set at 5, 10, and 15 in line with the vector of the flexor pronator mass. The fragment was sutured temporarily in place. Radiographs were obtained at 0 (AP), 15, 30, 45, 60, 75, and 90 degrees (lateral) of internal rotation, with the elbow in set positions of flexion. This was done with and without radio-opaque markers placed on the fragment and fracture bed. The 45 and 60 degrees internal oblique radiographs were then presented to 5 separate reviewers (of different levels of training) to evaluate intraobserver and interobserver agreement. Change in elbow position did not affect the perceived displacement (P=0.82) with excellent intraobserver reliability (intraclass correlation coefficient range, 0.979 to 0.988) and interobserver agreement of 0.953. The intraclass correlation coefficient for intraobserver reliability on 45 degrees internal oblique films for all groups ranged from 0.985 to 0.998, with interobserver agreement of 0.953. For predicting displacement, the observers were 60% accurate in predicting the true displacement on the 45 degrees internal oblique films and only 35% accurate using the 60 degrees internal oblique view. Standardizing to a 45 degrees internal oblique radiograph of the elbow (regardless of elbow flexion) can augment the treating surgeon's ability to determine true displacement. At this degree of rotation, the measured number can be multiplied by 1.4 to better estimate displacement. The addition of a 45 degrees internal oblique radiograph in medial humeral epicondyle fractures has good

  11. Axial displacements in external and internal implant-abutment connection.

    Science.gov (United States)

    Lee, Ji-Hye; Kim, Dae-Gon; Park, Chan-Jin; Cho, Lee-Ra

    2014-02-01

    The purpose of this study was to evaluate the axial displacement of the abutments during clinical procedures by the tightening torque and cyclic loading. Two different implant-abutment connection systems were used (external butt joint connection [EXT]; internal tapered conical connection [INT]). The master casts with two implant replicas, angulated 10° from each other, were fabricated for each implant connection system. Four types of impression copings were assembled and tightened with the corresponding implants (hex transfer impression coping, non-hex transfer impression coping, hex pick-up impression coping, non-hex pick-up impression coping). Resin splinted abutments and final prosthesis were assembled. The axial displacement was measured from the length of each assembly, which was evaluated repeatedly, after 30 Ncm torque tightening. After 250 N cyclic loading of final prosthesis for 1,000,000 cycles, additional axial displacement was recorded. The mean axial displacement was statistically analyzed (repeated measured ANOVA). There was more axial displacement in the INT group than that of the EXT group in impression copings, resin splinted abutments, and final prosthesis. Less axial displacement was found at 1-piece non-hex transfer type impression coping than other type of impression copings in the INT group. There was more axial displacement at the final prosthesis than resin splinted abutments in the INT and the EXT groups. After 250 N cyclic loading of final prosthesis, the INT group showed more axial displacement than that of the EXT group. Internal tapered conical connection demonstrated a varying amount of axial displacement with tightening torque and cyclic loading. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  12. Wholefield displacement measurements using speckle image processing techniques for crash tests

    Science.gov (United States)

    Sriram, P.; Hanagud, S.; Ranson, W. F.

    The digital correlation scheme of Peters et al. (1983) was extended to measure out-of-plane deformations, using a white light projection speckle technique. A simple ray optic theory and the digital correlation scheme are outlined. The technique was applied successfully to measure out-of-plane displacements of initially flat rotorcraft structures (an acrylic circular plate and a steel cantilever beam), using a low cost video camera and a desktop computer. The technique can be extended to measurements of three-dimensional deformations and dynamic deformations.

  13. A web-based GPS system for displacement monitoring and failure mechanism analysis of reservoir landslide.

    Science.gov (United States)

    Li, Yuanyao; Huang, Jinsong; Jiang, Shui-Hua; Huang, Faming; Chang, Zhilu

    2017-12-07

    It is important to monitor the displacement time series and to explore the failure mechanism of reservoir landslide for early warning. Traditionally, it is a challenge to monitor the landslide displacements real-timely and automatically. Globe Position System (GPS) is considered as the best real-time monitoring technology, however, the accuracies of the landslide displacements monitored by GPS are not assessed effectively. A web-based GPS system is developed to monitor the landslide displacements real-timely and automatically in this study. And the discrete wavelet transform (DWT) is proposed to assess the accuracy of the GPS monitoring displacements. Wangmiao landslide in Three Gorges Reservoir area in China is used as case study. The results show that the web-based GPS system has advantages of high precision, real-time, remote control and automation for landslide monitoring; the Root Mean Square Errors of the monitoring landslide displacements are less than 5 mm. Meanwhile, the results also show that a rapidly falling reservoir water level can trigger the reactivation of Wangmiao landslide. Heavy rainfall is also an important factor, but not a crucial component.

  14. Asymmetric SOL Current in Vertically Displaced Plasma

    Science.gov (United States)

    Cabrera, J. D.; Navratil, G. A.; Hanson, J. M.

    2017-10-01

    Experiments at the DIII-D tokamak demonstrate a non-monotonic relationship between measured scrape-off layer (SOL) currents and vertical displacement event (VDE) rates with SOL currents becoming largely n=1 dominant as plasma is displaced by the plasma control system (PCS) at faster rates. The DIII-D PCS is used to displace the magnetic axis 10x slower than the intrinsic growth time of similar instabilities in lower single-null plasmas. Low order (n VDE instabilities observed when vertical control is disabled. Previous inquiry shows VDE asymmetry characterized by SOL current fraction and geometric parameters of tokamak plasmas. We note that, of plasmas displaced by the PCS, short displacement time scales near the limit of the PCS temporal control appear to result in larger n=1/n=2 asymmetries. Work supported under USDOE Cooperative Agreement DE-FC02-04ER54698 and DE-FG02-04ER54761.

  15. Monitoring of pipe displacements in French LMFBR SUPERPHENIX

    International Nuclear Information System (INIS)

    Foucher, N.; Debaene, J.P.; Renault, Y.; Blin, B.

    1993-01-01

    In order to check that pipe supports work properly and that the locking of snubbers or the loss of supports do not put a pipe in unacceptable loading conditions, a monitoring of the behaviour of the main pipes of SUPERPHENIX is planned. This monitoring system consists in measuring the displacements at selected points of the pipe by means of measuring rods and checking that these displacements remain inside allowable domains. These allowable domains are defined so that, if the displacements of the pipe are inside all these domains, the plant operator is sure that the stresses verify the allowable limits and then no additional inspection is carried out. In the opposite case, the operator will inspect the pipe in detail in order to determine the consequences and repair if necessary before restarting. Selection of points for monitoring was done with the to minimize the number of measures to be carried out and to use as far as possible the measuring rods that were installed to check that pipe displacements were consistent with what has been obtained in design calculations. However, it appears necessary to ensure that any incident occurring at any point of the pipe can be detected and, if necessary, additional measuring rods may be installed. An incident is said detectable if it induces on at least one measuring rod a deviation with respect to expected displacement not lower than 5 mm. It has been chosen so that small normal changes in measured displacements are not mistaken as incidents. The incidents that are supposed likely to occur are: 1) loss of a support which induces mainly primary stresses, 2) locking of a snubber which induces mainly secondary stresses. Monitoring of pipe displacements is a simple and effective way of checking that no damaging perturbation has occurred on the pipe. Calculations carried out on the DHR loops of SUPERPHENIX show that allowable domains of acceptable size may be obtained using a relatively small number of measuring rods. The method

  16. Application of proving-ring technology to measure thermally induced displacements in large boreholes in rock

    International Nuclear Information System (INIS)

    Patrick, W.C.; Reactor, N.L.; Butkovich, T.R.

    1984-03-01

    A strain-gauged proving-ring transducer was designed and deployed to measure small diametral displacements in 0.61-m diameter boreholes in rock. The rock surrounding the boreholes was previously heated by storage of spent nuclear fuel assemblies and measurements during post-retrieval cooling of the rock were made. To accomplish this, a transducer was designed to measure displacements in the range of 10 to 100 μm, to function in a time-varying temperature regime of 30 0 to 60 0 C at a relative humidity of 100%, to be of low stiffness, and to be easily and quickly installed. 7 references, 6 figures, 1 table

  17. A New Position Measurement System Using a Motion-Capture Camera for Wind Tunnel Tests

    Directory of Open Access Journals (Sweden)

    Yousok Kim

    2013-09-01

    Full Text Available Considering the characteristics of wind tunnel tests, a position measurement system that can minimize the effects on the flow of simulated wind must be established. In this study, a motion-capture camera was used to measure the displacement responses of structures in a wind tunnel test, and the applicability of the system was tested. A motion-capture system (MCS could output 3D coordinates using two-dimensional image coordinates obtained from the camera. Furthermore, this remote sensing system had some flexibility regarding lab installation because of its ability to measure at relatively long distances from the target structures. In this study, we performed wind tunnel tests on a pylon specimen and compared the measured responses of the MCS with the displacements measured with a laser displacement sensor (LDS. The results of the comparison revealed that the time-history displacement measurements from the MCS slightly exceeded those of the LDS. In addition, we confirmed the measuring reliability of the MCS by identifying the dynamic properties (natural frequency, damping ratio, and mode shape of the test specimen using system identification methods (frequency domain decomposition, FDD. By comparing the mode shape obtained using the aforementioned methods with that obtained using the LDS, we also confirmed that the MCS could construct a more accurate mode shape (bending-deflection mode shape with the 3D measurements.

  18. Critical electrode size in measurement of d33 coefficient of films via spatial distribution of piezoelectric displacement

    International Nuclear Information System (INIS)

    Wang Zhihong; Miao Jianmin

    2008-01-01

    Spatial distributions of piezoelectric displacement response across the top electrode have been used in this paper to measure the piezoelectric coefficient d 33 of films based on the converse piezoelectric effect. The technical details and features of a scanning laser Doppler vibrometer have been summarized and discussed for accurately obtaining the spatial displacement distributions. Three definitions, including the apparent, the effective and the constrained piezoelectric coefficient d 33 of films, have been clarified and used to better understand the fundamental phenomenon behind the measured displacement distributions. Finite element analysis reveals that both the apparent and the effective piezoelectric coefficients depend on the electrode radius of test capacitor as well as film thickness. However, there exists a critical electrode size for apparent piezoelectric coefficients and a critical test capacitor aspect ratio for effective piezoelectric coefficient. Beyond their respective critical values, both coefficients converge to the constrained piezoelectric coefficient irrespective of film thickness. The finding of the critical electric size makes it possible to consistently measure the constrained piezoelectric coefficient of films by using the spatial distributions of the piezoelectric displacement response and becomes the fundamental criterion of this measurement method

  19. Force-displacement measurements of earlywood bordered pits using a mesomechanical tester

    Science.gov (United States)

    Samuel L. Zelinka; Keith J. Bourne; John C. Hermanson; Samuel V. Glass; Adriana Costa; Alex C. Wiedenhoeft

    2015-01-01

    The elastic properties of pit membranes are reported to have important implications in understanding air-seeding phenomena in gymnosperms, and pit aspiration plays a large role in wood technological applications such as wood drying and preservative treatment. Here we present force–displacement measurements for pit membranes of circular bordered pits, collected on a...

  20. Differential interferometer for measurement of displacement of laser resonator mirrors

    Science.gov (United States)

    Macúchová, Karolina; Němcová, Šárka; Hošek, Jan

    2015-01-01

    This paper covers a description and a technique of a possible optical method of mode locking within a laser resonator. The measurement system is a part of instrumentation of laser-based experiment OSQAR at CERN. The OSQAR experiment aims at search of axions, axion-like particles and measuring of ultra-fine vacuum magnetic birefringence. It uses a laser resonator to enhance the coupling constant of hypothetical photon-to-axion conversion. The developed locking-in technique is based on differential interferometry. Signal obtained from the measurement provide crucial information for adaptive control of the locking-in of the resonator in real time. In this paper we propose several optical setups used for measurement and analysis of mutual position of the resonator mirrors. We have set up a differential interferometer under our laboratory conditions. We have done measurements with hemi-spherical cavity resonator detuned with piezo crystals. The measurement was set up in a single plane. Laser light was directed through half-wave retarder to a polarizing beam splitter and then converted to circular polarization by lambda/4 plates. After reflection at the mirrors, the beam is recombined in a beam splitter, sent to analyser and non-polarizing beam splitter and then inspected by two detectors with mutually perpendicular polarizers. The 90 degrees phase shift between the two arms allows precise analysis of a mutual distance change of the mirrors. Because our setup was sufficiently stable, we were able to measure the piezo constant and piezo hysteresis. The final goal is to adapt the first prototype to 23 m resonator and measure the displacement in two planes.

  1. Seasonal and multi-year surface displacements measured by DInSAR in a High Arctic permafrost environment

    Science.gov (United States)

    Rudy, Ashley C. A.; Lamoureux, Scott F.; Treitz, Paul; Short, Naomi; Brisco, Brian

    2018-02-01

    Arctic landscapes undergo seasonal and long-term changes as the active layer thaws and freezes, which can result in localized or irregular subsidence leading to the formation of thermokarst terrain. Differential Interferometric Synthetic Aperture Radar (DInSAR) is a technique capable of measuring ground surface displacements resulting from thawing permafrost at centimetre precision and is quickly gaining acceptance as a means of measuring ground displacement in permafrost regions. Using RADARSAT-2 stacked DInSAR data from 2013 and 2015 we determined the magnitude and patterns of land surface change in a continuous permafrost environment. At our study site situated in the Canadian High Arctic, DInSAR seasonal ground displacement patterns were consistent with field observations of permafrost degradation. As expected, many DInSAR values are close to the detection threshold (i.e., 1 cm) and therefore do not indicate significant change; however, DInSAR seasonal ground displacement patterns aligned well with climatological and soil conditions and offer geomorphological insight into subsurface processes in permafrost environments. While our dataset is limited to two years of data representing a three-year time period, the displacements derived from DInSAR provide insight into permafrost change in a High Arctic environment and demonstrate that DInSAR is an applicable tool for understanding environmental change in remote permafrost regions.

  2. Optical-feedback semiconductor laser Michelson interferometer for displacement measurements with directional discrimination

    International Nuclear Information System (INIS)

    Rodrigo, Peter John; Lim, May; Saloma, Caesar

    2001-01-01

    An optical-feedback semiconductor laser Michelson interferometer (OSMI) is presented for measuring microscopic linear displacements without ambiguity in the direction of motion. The two waves from the interferometer arms, one from the reference mirror and the other from the reflecting moving target, are fed back into the lasing medium (λ=830 nm), causing variations in the laser output power. We model the OSMI into an equivalent Fabry-Perot resonator and derive the dependence of the output power (and the junction voltage) on the path difference between the two interferometer arms. Numerical and experimental results consistently show that the laser output power varies periodically (period, λ/2) with path difference. The output power variation exhibits an asymmetric behavior with the direction of motion, which is used to measure, at subwavelength resolution, the displacement vector (both amplitude and direction) of the moving sample. Two samples are considered in the experiments: (i) a piezoelectric transducer and (ii) an audio speaker

  3. Crack displacement sensing and measurement in concrete using circular grating moire fringes and pattern matching

    Science.gov (United States)

    Chan, H. M.; Yen, K. S.; Ratnam, M. M.

    2008-09-01

    The moire method has been extensively studied in the past and applied in various engineering applications. Several techniques are available for generating the moire fringes in these applications, which include moire interferometry, projection moire, shadow moire, moire deflectometry etc. Most of these methods use the superposition of linear gratings to generate the moire patterns. The use of non-linear gratings, such as circular, radial and elongated gratings has received less attention from the research community. The potential of non-linear gratings in engineering measurement has been realized in a limited number of applications, such as rotation measurement, measurement of linear displacement, measurement of expansion coefficients of materials and measurement of strain distribution. In this work, circular gratings of different pitch were applied to the sensing and measurement of crack displacement in concrete structures. Gratings of pitch 0.50 mm and 0.55 mm were generated using computer software and attached to two overlapping acrylic plates that were bonded to either side of the crack. The resulting moire patterns were captured using a standard digital camera and compared with a set of reference patterns generated using a precision positioning stage. Using several image pre-processing stages, such as filtering and morphological operations, and pattern matching the magnitude displacements along two orthogonal axes can be detected with a resolution of 0.05 mm.

  4. Fiber Optic Displacement Sensor for Measuring Cholesterol Concentration

    Directory of Open Access Journals (Sweden)

    Moh. Budiyanto

    2017-11-01

    Full Text Available A simple design of a cholesterol concentration detection is proposed and demonstrated using a fiber optic displacement sensor based on an intensity modulation technique. The proposed sensor uses a bundled plastic optical fiber (POF as a probe in conjunction with a flat mirror as a target. It is obtained that the peak voltage reduces with increasing cholesterol concentration. The sensor is capable of measuring the cholesterol concentration ranging from 0 to 300 ppm in a distilled water with a measured sensitivity of 0.01 mV/ppm, a linearity of more than 99.62 % and a resolution of 3.9188 ppm. The proposed sensor also shows a high degree of stability and good repeatability. The simplicity of design, accuracy, flexible dynamic range, and the low cost of fabrication are favorable attributes of the sensor and beneficial for real- field applications. Fiber optic sensors

  5. Characterizing absolute piezoelectric microelectromechanical system displacement using an atomic force microscope

    International Nuclear Information System (INIS)

    Evans, J.; Chapman, S.

    2014-01-01

    Piezoresponse Force Microscopy (PFM) is a popular tool for the study of ferroelectric and piezoelectric materials at the nanometer level. Progress in the development of piezoelectric MEMS fabrication is highlighting the need to characterize absolute displacement at the nanometer and Ångstrom scales, something Atomic Force Microscopy (AFM) might do but PFM cannot. Absolute displacement is measured by executing a polarization measurement of the ferroelectric or piezoelectric capacitor in question while monitoring the absolute vertical position of the sample surface with a stationary AFM cantilever. Two issues dominate the execution and precision of such a measurement: (1) the small amplitude of the electrical signal from the AFM at the Ångstrom level and (2) calibration of the AFM. The authors have developed a calibration routine and test technique for mitigating the two issues, making it possible to use an atomic force microscope to measure both the movement of a capacitor surface as well as the motion of a micro-machine structure actuated by that capacitor. The theory, procedures, pitfalls, and results of using an AFM for absolute piezoelectric measurement are provided

  6. Characterizing absolute piezoelectric microelectromechanical system displacement using an atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J., E-mail: radiant@ferrodevices.com; Chapman, S., E-mail: radiant@ferrodevices.com [Radiant Technologies, Inc., 2835C Pan American Fwy NE, Albuquerque, New Mexico 87107 (United States)

    2014-08-14

    Piezoresponse Force Microscopy (PFM) is a popular tool for the study of ferroelectric and piezoelectric materials at the nanometer level. Progress in the development of piezoelectric MEMS fabrication is highlighting the need to characterize absolute displacement at the nanometer and Ångstrom scales, something Atomic Force Microscopy (AFM) might do but PFM cannot. Absolute displacement is measured by executing a polarization measurement of the ferroelectric or piezoelectric capacitor in question while monitoring the absolute vertical position of the sample surface with a stationary AFM cantilever. Two issues dominate the execution and precision of such a measurement: (1) the small amplitude of the electrical signal from the AFM at the Ångstrom level and (2) calibration of the AFM. The authors have developed a calibration routine and test technique for mitigating the two issues, making it possible to use an atomic force microscope to measure both the movement of a capacitor surface as well as the motion of a micro-machine structure actuated by that capacitor. The theory, procedures, pitfalls, and results of using an AFM for absolute piezoelectric measurement are provided.

  7. The method of measurement and synchronization control for large-scale complex loading system

    International Nuclear Information System (INIS)

    Liao Min; Li Pengyuan; Hou Binglin; Chi Chengfang; Zhang Bo

    2012-01-01

    With the development of modern industrial technology, measurement and control system was widely used in high precision, complex industrial control equipment and large-tonnage loading device. The measurement and control system is often used to analyze the distribution of stress and displacement in the complex bearing load or the complex nature of the mechanical structure itself. In ITER GS mock-up with 5 flexible plates, for each load combination, detect and measure potential slippage between the central flexible plate and the neighboring spacers is necessary as well as the potential slippage between each pre-stressing bar and its neighboring plate. The measurement and control system consists of seven sets of EDC controller and board, computer system, 16-channel quasi-dynamic strain gauge, 25 sets of displacement sensors, 7 sets of load and displacement sensors in the cylinders. This paper demonstrates the principles and methods of EDC220 digital controller to achieve synchronization control, and R and D process of multi-channel loading control software and measurement software. (authors)

  8. Possibilities of crack mouth opening displacement (CMOD) measurement under boiling and pressurized water reactor conditions

    International Nuclear Information System (INIS)

    Ehling, W.

    1984-01-01

    Fracture mechanics investigations carried out so far in laboratory conditions cover only part of the material stresses, as effects which occur in nuclear powerstations, in particular, such as corrosion and radioactive radiation are largely left out of account. Therefore experiments including these effects were recently carried out in autoclaves, test rigs simulating reactors (HRD experimental plant) and in experimental reactors. An important parameter of experimental fracture mechanics is the measurement of crack opening displacement (COD). The crack opening is measured with socalled clip gauges (transmitters based on strain gauges, which convert mechanical deformation of springs into electrical signals) on standard samples in the laboratory. It was therefore sensible to use these high temperature strain gauges (HTD) for the development of a measuring system for travel for pressurized water and boiling water reactor conditions. (orig.) [de

  9. Simulation and experimental studies of a double-fiber angular displacement sensor

    Science.gov (United States)

    Zhu, Ruixue; Jing, Ruiping; Cheng, Yongjin

    2017-03-01

    A novel optical fiber angular displacement sensor is reported in this study. It gets the rotating angle of an object by means of the intensity modulation of a reflected light. The sensor probe, which is composed of an emitting fiber and a receiving fiber that are aligned along the vertical direction closely, is fixed directly on the rotating object. The measurements for axial displacement and angular displacement were operated separately. In particular, measurements for angular displacement were performed when the reflector is placed at different distances from the sensor probe separately. There is an excellent linearity between the angular displacement and the sensor output power. The results indicate that the larger the distance between the sensor probe and the reflector, the higher sensitivity the angular displacement sensor has. A theoretical model of the sensor is also developed and the simulate computation demonstrates that the theoretical results are in accordance with the experimental ones. The linear sensing range is ±7.2°, and the maximum sensitivity is 13.71%/deg. Furthermore, the hysteresis and the reproducibility of the measurement of the sensor are investigated. The designed sensor provides a kind of simple and effective method for measuring the angular displacement of a shaft system in practice due to its small size, light weight, good linearity and reproducibility.

  10. Distal radius fracture arthroscopic intraarticular displacement measurement after open reduction and internal fixation from a volar approach.

    Science.gov (United States)

    Ono, Hiroshi; Furuta, Kazuhiko; Fujitani, Ryotaro; Katayama, Takeshi; Akahane, Manabu

    2010-07-01

    The purpose of this study was to assess articular surface reduction arthroscopically after volar locked-plate fixation of distal radius fractures (DRFs) via fluoroscopyguided open reduction/internal fixation. We also aimed to develop preoperative radiographic criteria to help assist in determining which DRFs may need arthroscopic evaluation. A total of 31 consecutive patients with DRF were prospectively enrolled. Posteroanterior (PA) and lateral radiographs as well as axial, coronal, and sagittal CT scans were obtained just after attempted reduction of the DRF. The widest articular displacement at the radiocarpal joint surface of the distal radius (preopD) was then measured using a digital radiography imaging system. The DRF was reduced under fluoroscopy, and a volar locked plate was applied. The degree of residual articular displacement was then measured arthroscopically, and the maximum displacement (postopD) was measured with a calibrated probe. Of the 31 patients, 7 had an arthroscopically assessed maximum postopD of > or = 2 mm after internal fixation. The correlation coefficients between each preopD and postopD of all radiographs and CTs were statistically significant. The cutoff values were 0.5 mm for PA radiographs, 2.10 mm for lateral radiographs, 2.15 mm for axial CT scans, 3.15 mm for coronal CT scans, and 1.20 mm for sagittal CT scans. All cutoff values for PA and lateral radiographs and for axial, coronal, and sagittal CT scans were unsuitable as screening criteria for arthroscopic reduction of DRF because of their low sensitivities and specificities. The cutoff value of the new preopD (the sum of the preopDs determined by lateral radiography and coronal CT scan) was 5.80 mm, and its sensitivity and specificity were 100% and 83.3%, respectively. Because a new preopD cutoff value of 5.80 mm is a good indicator for residual articular displacement after internal fixation of >2 mm, it is also a good indicator for the need for arthroscopic evaluation after

  11. Distal radius fracture arthroscopic intraarticular displacement measurement after open reduction and internal fixation from a volar approach

    International Nuclear Information System (INIS)

    Ono, Hiroshi; Furuta, Kazuhiko; Fujitani, Ryotaro; Katayama, Takeshi; Akahane, Manabu

    2010-01-01

    The purpose of this study was to assess articular surface reduction arthroscopically after volar locked-plate fixation of distal radius fractures (DRFs) via fluoroscopy-guided open reduction/internal fixation. We also aimed to develop preoperative radiographic criteria to help assist in determining which DRFs may need arthroscopic evaluation. A total of 31 consecutive patients with DRF were prospectively enrolled. Posteroanterior (PA) and lateral radiographs as well as axial, coronal, and sagittal CT scans were obtained just after attempted reduction of the DRF. The widest articular displacement at the radiocarpal joint surface of the distal radius (preopD) was then measured using a digital radiography imaging system. The DRF was reduced under fluoroscopy, and a volar locked plate was applied. The degree of residual articular displacement was then measured arthroscopically, and the maximum displacement (postopD) was measured with a calibrated probe. Of the 31 patients, 7 had an arthroscopically assessed maximum postopD of ≥2 mm after internal fixation. The correlation coefficients between each preopD and postopD of all radiographs and CTs were statistically significant. The cutoff values were 0.5 mm for PA radiographs, 2.10 mm for lateral radiographs, 2.15 mm for axial CT scans, 3.15 mm for coronal CT scans, and 1.20 mm for sagittal CT scans. All cutoff values for PA and lateral radiographs and for axial, coronal, and sagittal CT scans were unsuitable as screening criteria for arthroscopic reduction of DRF because of their low sensitivities and specificities. The cutoff value of the new preopD (the sum of the preopDs determined by lateral radiography and coronal CT scan) was 5.80 mm, and its sensitivity and specificity were 100% and 83.3%, respectively. Because a new preopD cutoff value of 5.80 mm is a good indicator for residual articular displacement after internal fixation of >2 mm, it is also a good indicator for the need for arthroscopic evaluation after

  12. Inductive displacement sensors with a notch filter for an active magnetic bearing system.

    Science.gov (United States)

    Chen, Seng-Chi; Le, Dinh-Kha; Nguyen, Van-Sum

    2014-07-15

    Active magnetic bearing (AMB) systems support rotating shafts without any physical contact, using electromagnetic forces. Each radial AMB uses two pairs of electromagnets at opposite sides of the rotor. This allows the rotor to float in the air gap, and the machine to operate without frictional losses. In active magnetic suspension, displacement sensors are necessary to detect the radial and axial movement of the suspended object. In a high-speed rotating machine equipped with an AMB, the rotor bending modes may be limited to the operating range. The natural frequencies of the rotor can cause instability. Thus, notch filters are a useful circuit for stabilizing the system. In addition, commercial displacement sensors are sometimes not suitable for AMB design, and cannot filter the noise caused by the natural frequencies of rotor. Hence, implementing displacement sensors based on the AMB structure is necessary to eliminate noises caused by natural frequency disturbances. The displacement sensor must be highly sensitive in the desired working range, and also exhibit a low interference noise, high stability, and low cost. In this study, we used the differential inductive sensor head and lock-in amplifier for synchronous demodulation. In addition, an active low-pass filter and a notch filter were used to eliminate disturbances, which caused by natural frequencies. As a consequence, the inductive displacement sensor achieved satisfactory linearity, high sensitivity, and disturbance elimination. This sensor can be easily produced for AMB applications. A prototype of these displacement sensors was built and tested.

  13. A portable non-contact displacement sensor and its application of lens centration error measurement

    Science.gov (United States)

    Yu, Zong-Ru; Peng, Wei-Jei; Wang, Jung-Hsing; Chen, Po-Jui; Chen, Hua-Lin; Lin, Yi-Hao; Chen, Chun-Cheng; Hsu, Wei-Yao; Chen, Fong-Zhi

    2018-02-01

    We present a portable non-contact displacement sensor (NCDS) based on astigmatic method for micron displacement measurement. The NCDS are composed of a collimated laser, a polarized beam splitter, a 1/4 wave plate, an aspheric objective lens, an astigmatic lens and a four-quadrant photodiode. A visible laser source is adopted for easier alignment and usage. The dimension of the sensor is limited to 115 mm x 36 mm x 56 mm, and a control box is used for dealing with signal and power control between the sensor and computer. The NCDS performs micron-accuracy with +/-30 μm working range and the working distance is constrained in few millimeters. We also demonstrate the application of the NCDS for lens centration error measurement, which is similar to the total indicator runout (TIR) or edge thickness difference (ETD) of a lens measurement using contact dial indicator. This application has advantage for measuring lens made in soft materials that would be starched by using contact dial indicator.

  14. HTR-10GT AMBs displacement sensor design

    International Nuclear Information System (INIS)

    Shi Zhengang; Zha Meisheng; Zhao Lei; Sun Zhuo

    2005-01-01

    The 10 MW high temperature gas-cooled test module reactor (HTR-10GT) with the core made of spherical fuel elements was designed and constructed by the Institute of Nuclear and New Energy Technology of Tsinghua University in China. In the HTR-10GT, turbo-compressor and generator rotors are connected by a flexible coupling. The rotors, restricted by actual instruments and working environment, must be supported without any contact and lubrication. Active magnetic bearing (AMB), known as its advantages over the conventional bearings., such as contact-free, no-lubricating and active damping vibration, is the best way to suspend and stabilize the position of rotors of HTR-10GT. Each rotor is suspended by two radial and one axial AMBs. The radial AMB's radial gap is 0.15 mm considering the gap of 0.4 mm between the compressor stator and blades in order to protect the compressor. The control system controls the rotor position to meet the required gaps between rotor and stator through windings current. All the position information concerning radial and axial AMB is generated by sensors for measuring the displacement of the levitated body. Some typical sensors, i.e. eddy current displacement sensor, capacitive displacement sensor, can provide position information, but, quite often, unsatisfactory anti-jamming, which is a key issue for AMB systems near generator and other electric devices in HTR-10GT. Therefore, a kind of new type sensor is designed to measure the radial and axial displacements and the vibration of the rotors. This paper focuses on the design characteristics of the HTR-10GT AMBs displacement sensors and introduction of the related experiments to demonstrate its performance. (authors)

  15. A Fast and On-Machine Measuring System Using the Laser Displacement Sensor for the Contour Parameters of the Drill Pipe Thread

    Directory of Open Access Journals (Sweden)

    Zhixu Dong

    2018-04-01

    Full Text Available The inconvenient loading and unloading of a long and heavy drill pipe gives rise to the difficulty in measuring the contour parameters of its threads at both ends. To solve this problem, in this paper we take the SCK230 drill pipe thread-repairing machine tool as a carrier to design and achieve a fast and on-machine measuring system based on a laser probe. This system drives a laser displacement sensor to acquire the contour data of a certain axial section of the thread by using the servo function of a CNC machine tool. To correct the sensor’s measurement errors caused by the measuring point inclination angle, an inclination error model is built to compensate data in real time. To better suppress random error interference and ensure real contour information, a new wavelet threshold function is proposed to process data through the wavelet threshold denoising. Discrete data after denoising is segmented according to the geometrical characteristics of the drill pipe thread, and the regression model of the contour data in each section is fitted by using the method of weighted total least squares (WTLS. Then, the thread parameters are calculated in real time to judge the processing quality. Inclination error experiments show that the proposed compensation model is accurate and effective, and it can improve the data acquisition accuracy of a sensor. Simulation results indicate that the improved threshold function is of better continuity and self-adaptability, which makes sure that denoising effects are guaranteed, and, meanwhile, the complete elimination of real data distorted in random errors is avoided. Additionally, NC50 thread-testing experiments show that the proposed on-machine measuring system can complete the measurement of a 25 mm thread in 7.8 s, with a measurement accuracy of ±8 μm and repeatability limit ≤ 4 μm (high repeatability, and hence the accuracy and efficiency of measurement are both improved.

  16. Active chatter suppression with displacement-only measurement in turning process

    Science.gov (United States)

    Ma, Haifeng; Wu, Jianhua; Yang, Liuqing; Xiong, Zhenhua

    2017-08-01

    Regenerative chatter is a major hindrance for achieving high quality and high production rate in machining processes. Various active controllers have been proposed to mitigate chatter. However, most of existing controllers were developed on the basis of multi-states feedback of the system and state observers were usually needed. Moreover, model parameters of the machining process (mass, damping and stiffness) were required in existing active controllers. In this study, an active sliding mode controller, which employs a dynamic output feedback sliding surface for the unmatched condition and an adaptive law for disturbance estimation, is designed, analyzed, and validated for chatter suppression in turning process. Only displacement measurement is required by this approach. Other sensors and state observers are not needed. Moreover, it facilitates a rapid implementation since the designed controller is established without using model parameters of the turning process. Theoretical analysis, numerical simulations and experiments on a computer numerical control (CNC) lathe are presented. It shows that the chatter can be substantially attenuated and the chatter-free region can be significantly expanded with the presented method.

  17. The comparison of environmental effects on michelson and fabry-perot interferometers utilized for the displacement measurement.

    Science.gov (United States)

    Wang, Yung-Cheng; Shyu, Lih-Horng; Chang, Chung-Ping

    2010-01-01

    The optical structure of general commercial interferometers, e.g., the Michelson interferometers, is based on a non-common optical path. Such interferometers suffer from environmental effects because of the different phase changes induced in different optical paths and consequently the measurement precision will be significantly influenced by tiny variations of the environmental conditions. Fabry-Perot interferometers, which feature common optical paths, are insensitive to environmental disturbances. That would be advantageous for precision displacement measurements under ordinary environmental conditions. To verify and analyze this influence, displacement measurements with the two types of interferometers, i.e., a self-fabricated Fabry-Perot interferometer and a commercial Michelson interferometer, have been performed and compared under various environmental disturbance scenarios. Under several test conditions, the self-fabricated Fabry-Perot interferometer was obviously less sensitive to environmental disturbances than a commercial Michelson interferometer. Experimental results have shown that induced errors from environmental disturbances in a Fabry-Perot interferometer are one fifth of those in a Michelson interferometer. This has proved that an interferometer with the common optical path structure will be much more independent of environmental disturbances than those with a non-common optical path structure. It would be beneficial for the solution of interferometers utilized for precision displacement measurements in ordinary measurement environments.

  18. Inductive Displacement Sensors with a Notch Filter for an Active Magnetic Bearing System

    Directory of Open Access Journals (Sweden)

    Seng-Chi Chen

    2014-07-01

    Full Text Available Active magnetic bearing (AMB systems support rotating shafts without any physical contact, using electromagnetic forces. Each radial AMB uses two pairs of electromagnets at opposite sides of the rotor. This allows the rotor to float in the air gap, and the machine to operate without frictional losses. In active magnetic suspension, displacement sensors are necessary to detect the radial and axial movement of the suspended object. In a high-speed rotating machine equipped with an AMB, the rotor bending modes may be limited to the operating range. The natural frequencies of the rotor can cause instability. Thus, notch filters are a useful circuit for stabilizing the system. In addition, commercial displacement sensors are sometimes not suitable for AMB design, and cannot filter the noise caused by the natural frequencies of rotor. Hence, implementing displacement sensors based on the AMB structure is necessary to eliminate noises caused by natural frequency disturbances. The displacement sensor must be highly sensitive in the desired working range, and also exhibit a low interference noise, high stability, and low cost. In this study, we used the differential inductive sensor head and lock-in amplifier for synchronous demodulation. In addition, an active low-pass filter and a notch filter were used to eliminate disturbances, which caused by natural frequencies. As a consequence, the inductive displacement sensor achieved satisfactory linearity, high sensitivity, and disturbance elimination. This sensor can be easily produced for AMB applications. A prototype of these displacement sensors was built and tested.

  19. Differential optical shadow sensor for sub-nanometer displacement measurement and its application to drag-free satellites.

    Science.gov (United States)

    Zoellner, Andreas; Tan, Si; Saraf, Shailendhar; Alfauwaz, Abdul; DeBra, Dan; Buchman, Sasha; Lipa, John A

    2017-10-16

    We present a method for 3D sub-nanometer displacement measurement using a set of differential optical shadow sensors. It is based on using pairs of collimated beams on opposite sides of an object that are partially blocked by it. Applied to a sphere, our 3-axis sensor module consists of 8 parallel beam-detector sets for redundancy. The sphere blocks half of each beam's power in the nominal centered position, and any displacement can be measured by the differential optical power changes amongst the pairs of detectors. We have experimentally demonstrated a displacement sensitivity of 0.87nm/Hz at 1 Hz and 0.39nm/Hz at 10 Hz. We describe the application of the module to the inertial sensor of a drag-free satellite, which can potentially be used for navigation, geodesy and fundamental science experiments as well as ground based applications.

  20. Holographic interferometry applied to the measurement of displacements of the interior points of transparent bodies.

    Science.gov (United States)

    Sciammarella, C A; Gilbert, J A

    1976-09-01

    Utilizing the light scattering property of transparent media, holographic interferometry is applied to the measurement of displacement at the interior planes of three dimensional bodies. The use of a double beam illumination and the introduction of a fictitious displacement make it feasible to obtain information corresponding to components of displacement projected on the scattering plane. When the proposed techniques are invoked, it is possible to eliminate the use of a matching index of refraction fluid in many problems involving symmetrically loaded prismatic bodies. Scattered light holographic interferometry is limited in its use to small changes in the index of refraction and to low values of relative retardation. In spite of these restrictions, a large number of technical problems in both statics and dynamics can be solved.

  1. Optimized Method for Knee Displacement Measurement in Vehicle Sled Crash Test

    Directory of Open Access Journals (Sweden)

    Sun Hang

    2017-01-01

    Full Text Available This paper provides an optimized method for measuring dummy’s knee displacement in vehicle sled crash test. The proposed method utilizes completely new elements for measurement, which are acceleration and angular velocity of dummy’s pelvis, as well as the rotational angle of its femur. Compared with the traditional measurement only using camera-based high-speed motion image analysis, the optimized one can not only maintain the measuring accuracy, but also avoid the disturbance caused by dummy movement, dashboard blocking and knee deformation during the crash. An experiment is made to verify the accuracy of the proposed method, which eliminates the strong dependence on single target tracing in traditional method. Moreover, it is very appropriate for calculating the penetration depth to the dashboard.

  2. Monitoring roof beam lateral displacement at the waste isolation pilot plant

    International Nuclear Information System (INIS)

    Terrill, L.J.; Lewis, R.E.

    1996-01-01

    Lateral displacement in the immediate roof beam at the Waste Isolation Pilot Plant (WIPP) is a significant factor in assessment of excavation performance for the design of ground control systems. Information on roof beam lateral displacement, expansion, fracture formation, as well as excavation convergence, is gathered using a variety of manually and remotely read instruments. Visual observations are also used when possible. This paper describes the methods used to measure lateral displacement, or offset, at the WIPP. Offset magnitudes are determined by the degree of occlusion in drillholes that intersect the offset plane. The Borehole Lateral Displacement Sensor (BLDS) was developed for installation at WIPP to monitor offset at a high degree of accuracy at a short reading frequency. Offset measurements have historically been obtained by visual estimation of borehole occlusion. Use of the BLDS will enable relationships between time dependent roof beam lateral displacement and expansion to be established in much shorter periods than is possible using visual observations. The instrument will also allow remote monitoring of roof beam displacement in areas where visual estimations are not possible. Continued monitoring of roof beam displacement, convergence, and expansion, is integral to timely and pertinent assessments of WIPP excavation performance

  3. Monitoring roof beam lateral displacement at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Terrill, L.J.; Lewis, R.E.

    1996-01-01

    Lateral displacement in the immediate roof beam at the Waste Isolation Pilot Plant (WIPP) is a significant factor in assessment of excavation performance for the design of ground control systems. Information on roof beam lateral displacement, expansion, fracture formation, as well as excavation convergence, is gathered using a variety of manually and remotely read instruments. Visual observations are also used when possible. This paper describes the methods used to measure lateral displacement, or offset, at the WIPP. Offset magnitudes are determined by the degree of occlusion in drillholes that intersect the offset plane. The Borehole Lateral Displacement Sensor (BLDS) was developed for installation at WIPP to monitor offset at a high degree of accuracy at a short reading frequency. Offset measurements have historically been obtained by visual estimation of borehole conclusion. Use of the BLDS will enable relationships between time dependent roof beam lateral displacement and expansion to be established in much shorter periods than is possible using visual observations. The instrument will also allow remote monitoring of roof beam displacement in areas where visual estimations are not possible. Continued monitoring of roof beam displacement, convergence, and expansion, is integral to timely and pertinent assessments of WIPP excavation performance

  4. Light Ray Displacements due to Air Temperature Gradient

    CERN Document Server

    Teymurazyan, A; CERN. Geneva

    2000-01-01

    Abstract In the optical monitoring systems suggested to control the geometry of tracking spectrometers, light beams serve as reference frames for the measurement of the tracking chamber displacements and deformations. It is shown that air temperature gradients can induce systematic errors which considerably exceed the intrinsic resolution of the monitoring system.

  5. Attention effects at auditory periphery derived from human scalp potentials: displacement measure of potentials.

    Science.gov (United States)

    Ikeda, Kazunari; Hayashi, Akiko; Sekiguchi, Takahiro; Era, Shukichi

    2006-10-01

    It is known in humans that electrophysiological measures such as the auditory brainstem response (ABR) are difficult to identify the attention effect at the auditory periphery, whereas the centrifugal effect has been detected by measuring otoacoustic emissions. This research developed a measure responsive to the shift of human scalp potentials within a brief post-stimulus period (13 ms), that is, displacement percentage, and applied it to an experiment to retrieve the peripheral attention effect. In the present experimental paradigm, tone pips were exposed to the left ear whereas the other ear was masked by white noise. Twelve participants each conducted two conditions of either ignoring or attending to the tone pips. Relative to averaged scalp potentials in the ignoring condition, the shift of the potentials was found within early component range during the attentive condition, and displacement percentage then revealed a significant magnitude difference between the two conditions. These results suggest that, using a measure representing the potential shift itself, the peripheral effect of attention can be detected from human scalp potentials.

  6. Iodine-frequency-stabilized laser diode and displacement-measuring interferometer based on sinusoidal phase modulation

    Science.gov (United States)

    Duong, Quang Anh; Vu, Thanh Tung; Higuchi, Masato; Wei, Dong; Aketagawa, Masato

    2018-06-01

    We propose a sinusoidal phase modulation method to achieve both the frequency stabilization of an external-cavity laser diode (ECLD) to an 127I2 saturated absorption transition near 633 nm and displacement measurement using a Mach–Zehnder interferometer. First, the frequency of the ECLD is stabilized to the b 21 hyperfine component of the P(33) 6-3 transition of 127I2 by combining sinusoidal phase modulation by an electro-optic modulator and frequency modulation spectroscopy by chopping the pump beam using an acousto-optic modulator. Even though a small modulation index of m  =  3.768 rad is utilized, a relative frequency stability of 10‑11 order is obtained over a sampling time of 400 s. Secondly, the frequency-stabilized ECLD is applied as a light source to a Mach–Zehnder interferometer. From the two consecutive modulation harmonics (second and third orders) involved in the interferometer signal, the displacement of the moving mirror is determined for four optical path differences (L 0  =  100, 200, 500, and 1000 mm). The measured modulation indexes for the four optical path differences coincide with the designated value (3.768 rad) within 0.5%. Compared with the sinusoidal frequency modulation Michelson interferometer (Vu et al 2016 Meas. Sci. Technol. 27 105201) which was demonstrated by some of the same authors of this paper, the phase modulation Mach–Zhender interferometer could fix the modulation index to a constant value for the four optical path differences. In this report, we discuss the measurement principle, experimental system, and results.

  7. A three-frame digital image correlation (DIC) method for the measurement of small displacements and strains

    International Nuclear Information System (INIS)

    Cofaru, C; Philips, W; Van Paepegem, W

    2012-01-01

    Digital image correlation (DIC) has become a well-established approach for the calculation of full-field displacement and strains within the field of experimental mechanics. Since their introduction, DIC methods have been relying on only two images to measure the displacements and strains that materials undergo under load. It can be foreseen that the use of additional image information for the calculus of displacements and strains, although computationally more expensive, can positively impact DIC method accuracy under both ideal and challenging experimental conditions. Such accuracy improvements are especially important when measuring very small deformations, which still constitutes a great challenge: small displacements and strains translate into equally small digital image intensity changes on the material’s surface, which are affected by the digitization processes of the imaging hardware and by other image acquisition effects such as image noise. This paper proposes a new three-frame Newton–Raphson DIC method and evaluates it from the standpoints of accuracy and speed. The method models the deformations that are to be measured under the assumption that the deformation occurs at approximately the same rate between each two consecutive images in the three image sequences that are employed. The aim is to investigate how the use of image data from more than two images impacts accuracy and what is the effect on the computational speed. The proposed method is compared with the classic two-frame Newton–Raphson method in three experiments. Two experiments rely on numerically deformed images that simulate heterogeneous deformations. The third experiment uses images from a real deformation experiment. Results indicate that although it is computationally more demanding, the three-frame method significantly improves displacement and strain accuracy and is less sensitive to image noise. (paper)

  8. Displacement correction factor versus effective point of measurement in depth dose curve measurements at {sup 60}Co gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Bruna, A [Universidad Nacional, Cordoba (Argentina). Facultad de Matematica, Astronomia y Fisica; Velez, G R [Hospital San Roque, Cordoba (Argentina). Dept. de Radioterapia; Brunetto, M [Centro Medico Rivado Dean Funes, Cordoba (Argentina)

    1996-08-01

    The discrepancies in data sets of values of the Displacement Factor p{sub d} recommended by different codes of practices for calibration purpose still demand further investigation to clarify this point. In this paper, we propose an experimental method to determine the displacement factor for cylindrical ionization chambers (thimble chambers) in photon beams. Measurements of p{sub d} for several depths were performed for {sup 60}Co gamma rays. From these results we calculated the shift of the effective point of measurement (z-z{sub eff}) for different depths. The results obtained in this work shown: (a) there is no significant change in p{sub d} from 2 cm to 17 cm of depth in water; (b) the value of p{sub d} for a ion-chamber Farmer type (inner radius r = 3.15 cm) is p{sub d} 0.988; (c) the shift of the effective point of measurement has a smooth variation with depth; (d) the value of (z-z{sub eff}) at the recommended calibration depth for {sup 60}Co beams (5 cm) is 0.6r (with r: inner radius of the chamber). The result (b) confirms the value of p{sub d} suggested by the SEFM and NACP protocols and differs with that of the AAPM. The value obtained for (z - z{sub eff}) (d) is very closed to that recommended by the IAEA TRS-277. Finally, the results (a) and (c) suggest that it should be preferable to use the displacement factor instead of effective point of measurement to perform measurements of depth dose curves, since the use of z{sub eff} should take into account its dependence on depth. (author). 7 refs, 4 figs.

  9. Transport infrastructure monitoring: A ground based optical displacement monitoring system, field tests on a bridge, the Musmeci's bridge in Potenza, Italy.

    Science.gov (United States)

    Hagene, J. K.

    2012-04-01

    A gound based optical displacement monitoring system, "NIODIM", is being developed by Norsk Elektro Optikk in the framework of the activities of the European project "Integrated System for Transport Infrastructure surveillance and Monitoring by Electromagnetic Sensing" (ISTIMES), funded in the 7th Framework Programme (FP7/2007-2013). The optical displacement monitoring system has now participated in two real life field campaigns one in Switzerland and one in Italy. The latter, the tests in Potenza, Italy, will be presented in the following. The NIODIM system has undergone some development during the last year to adopt it for use in a somewhat higher frequency domain by changing the camera sensor part. This to make it more useful for monitoring of structures with oscillation frequencies tens of Hz. The original system was intended to a large extent to monitor land slides, quick clay and rock slides and similar phenomena typically having a relatively slow time response. The system has been significantly speeded up from the original 12 Hz. Current tests have been performed at a frame rate of 64 Hz i.e., the camera part and data processing unit have been running on 64Hz. In connection with the tests in Italy the data processing has been upgraded to include sub-pixel resolution i.e., the measurement results are no longer limited by pixel borders or single pixels. The main part of the NIODIM system is a camera capable of operating at a sufficiently high frame rate. This camera will typically be mounted on firm ground and will depict and monitor a reference point, typically a light emitting diode, LED, which will be mounted on the object susceptible to move. A processing unit will acquire the images from the camera part and find the position of the LED in the image and compare that to threshold values and if required raise a warning or an alarm. The NIODIM system can either be a standalone system or be an integrated part of the overall ISTIMES system, the ISTIMES system

  10. Displacer Diameter Effect in Displacer Pulse Tube Refrigerator

    Science.gov (United States)

    Zhu, Shaowei

    2017-12-01

    Gas driving displacer pulse tube refrigerators are one of the work recovery type of pulse tube refrigerators whose theoretical efficiency is the same as Stirling refrigerators'. Its cooling power is from the displacement of the displacer. Displace diameter, rod diameter and pressure drop of the regenerator influence the displacement, which are investigated by numerical simulation. It is shown that the displacement ratio of the displacer over the piston is almost not affected by the displacer diameter at the same rod diameter ratio, or displacer with different diameters almost has the same performance.

  11. Displacement comparison of CAD-CAM titanium and zirconia abutments to implants with different conical connections.

    Science.gov (United States)

    Yilmaz, Burak; Hashemzadeh, Shervin; Seidt, Jeremy D; Clelland, Nancy L

    2018-04-01

    To compare the displacements of CAD-CAM zirconia and titanium abutments into different internal connection systems after torquing. OsseoSpeed EV and OsseoSpeed TX implants (n=10) were placed in resin blocks. Zirconia and titanium abutments (n=5) were first hand tightened and then tightened to the recommended torque (20Ncm for TX and 25Ncm for EV). Displacements of abutments between screw tightening by hand and torque driver was measured using three-dimensional digital image correlation (3D DIC) technique. Displacements were measured in U (front/back), V (into/outward), W (right/left) directions and 3-dimensionally (3D). ANOVA with restricted maximum likelihood estimation method was used to analyze the data. Bonferroni-corrected t tests was used to determine the statistical differences (α=0.05). 3D displacement of zirconia and titanium abutments was significantly greater in OsseoSpeed EV implant (PDisplacement of zirconia and titanium abutments was not significantly different within implant systems, 3D (P≥0.386) and in each direction (P≥0.382). In U and V directions, zirconia and titanium abutments displaced significantly more towards negative in OsseoSpeed EV implant (Pdisplaced significantly more in V direction compared to the U and W (P≤0.005), and within the Osseospeed EV system, abutment displacements were significantly different amongst directions and displacements in V were the greatest (Pdisplaced more in the implant that required higher torque values to tighten the abutment. The amount of displacement in both systems was clinically small. Abutment material did not affect the magnitude of displacement. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  12. Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines.

    Science.gov (United States)

    Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Liu, Hong-wei; Gu, Ya-jing

    2015-09-01

    A variable-displacement pump controlled pitch system is proposed to mitigate generator power and flap-wise load fluctuations for wind turbines. The pitch system mainly consists of a variable-displacement hydraulic pump, a fixed-displacement hydraulic motor and a gear set. The hydraulic motor can be accurately regulated by controlling the pump displacement and fluid flows to change the pitch angle through the gear set. The detailed mathematical representation and dynamic characteristics of the proposed pitch system are thoroughly analyzed. An adaptive sliding mode pump displacement controller and a back-stepping stroke piston controller are designed for the proposed pitch system such that the resulting pitch angle tracks its desired value regardless of external disturbances and uncertainties. The effectiveness and control efficiency of the proposed pitch system and controllers have been verified by using realistic dataset of a 750 kW research wind turbine. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Investigating Efficiency of Time Domain Curve fitters Versus Filtering for Rectification of Displacement Histories Reconstructed from Acceleration Measurements

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Brincker, Rune

    2008-01-01

    Computing displacements of a structure from its measured accelerations has been major concern of some fields of engineering such as earthquake engineering. In vibration engineering also displacements are preferred to acceleration histories occasionally i.e. in the determination of forces applied...... on a structure. In brief the major problem that accompanies reconstruction of true displacement from acceleration record is the unreal drift observed in the double integrated acceleration. Purpose of the present work is to address source of the problem, introduce its treatments, show how they work and compare...

  14. Airflow and Temperature Distribution in Rooms with Displacement Ventilation

    DEFF Research Database (Denmark)

    Jacobsen, T. V.

    This thesis deals with air flow and temperature distribution in a room ventilated by the displacement principle. The characteristic features of the ventilation system are treated in the whole room but main emphasis is laid on the analysis of the stratified flow region in front of the inlet device....... After a prefatory description of the background and the fundamentals of displacement ventilation the objectives of the current study are specified. The subsequent sections describe the measurements of velocity and temperature profiles carried out in a full scale test room. Based on experimental data...... of measured data is of crucial importance. Qualitatively satisfactory results do not ensure quantitative agreement....

  15. The Development of a Proper Laser Displacement Monitoring System for Medium and Short Span Bridges

    Directory of Open Access Journals (Sweden)

    Hao Tian

    2014-09-01

    Full Text Available The Health Monitoring System (HMS for a Medium and Short Span (MSS bridge is different to one for a long span bridge, because of factors such assize, scale and importance. Therefore a proper HMS needs to be developed to meet the economic and applicability requirements of the large number of MSS bridges. Approximately 90 % of existing bridges in China are categorized as MSS bridges and most are beginning to deteriorate. Furthermore, there is not a suitable HMS that can assess the condition of the bridge in accordance with a growth market where traffic volumes are likely to increase. Indeed, the artificial patrolling system currently in use is unable to monitor bridges in the long-term and highlight problems within a sufficient time scale. Having discussed the necessity of a HMS for MSS bridges, this paper proposes a suitable system that uses displacement monitoring in addition to the necessary precision. Displacement was chosen as the main monitoring indicator for intuitive, convenient and direct viewing, as its critical characteristic is that it is both economical and straightforward to use. Specific details regarding the laser displacement sensor and the development of a wireless data acquisition and transmission system are also provided. The reliability of the displacement monitoring sensor and data processing system is confirmed through different stages of an installation test.

  16. Emittance growth rates for displaced beams

    International Nuclear Information System (INIS)

    Anderson, O.A.

    1993-05-01

    Emittance growth rates have been previously analyzed for nonuniform beams in linear channels and for initially uniform mismatched beams in nonlinear channels. These studies were for centered beams. Additional emittance growth can arise in cases where the beam is initially displaced. The purpose of this study is to obtain growth rates for displaced beams. This work differs from studies involving random displacement of electrodes. Our analysis assumes instead that the focusing system is perfectly aligned but that the beam is initially displaced with respect to the equilibrium axis. If the focusing force is slightly nonlinear, we find a gradual transfer of the potential energy of beam displacement into kinetic energy associated with emittance growth. We present explicit results for the emittance growth distance as a function of the nonlinearity of the channel. These results will have practical importance for designers of accelerators and transport systems when setting realistic tolerances for initial beam alignment. These tolerances will depend on the nonlinearity and the length of the system

  17. Annual variations in GPS-measured vertical displacements near Upernavik Isstrøm (Greenland) and contributions from surface mass loading

    DEFF Research Database (Denmark)

    Liu, Lin; Khan, Shfaqat Abbas; van Dam, Tonie

    2017-01-01

    variability. Here we examine the annual changes of the vertical displacements measured at two GPS stations (SRMP and UPVK) near Upernavik Isstrøm in western Greenland. We model elastic loading displacements due to various surface mass loading including three non-ice components: atmospheric pressure, ocean...

  18. Thermal cycling fatigue of organic thermal interface materials using a thermal-displacement measurement technique

    Science.gov (United States)

    Steill, Jason Scott

    The long term reliability of polymer-based thermal interface materials (TIM) is essential for modern electronic packages which require robust thermal management. The challenge for today's materials scientists and engineers is to maximize the heat flow from integrated circuits through a TIM and out the heat sink. Thermal cycling of the electronic package and non-uniformity in the heat flux with respect to the plan area can lead to void formation and delamination which re-introduces inefficient heat transfer. Measurement and understanding at the nano-scale is essential for TIM development. Finding and documenting the evolution of the defects is dependent upon a full understanding of the thermal probes response to changing environmental conditions and the effects of probe usage. The response of the thermal-displacement measurement technique was dominated by changes to the environment. Accurate measurement of the thermal performance was hindered by the inability to create a model system and control the operating conditions. This research highlights the need for continued study into the probe's thermal and mechanical response using tightly controlled test conditions.

  19. Standardization of a Volumetric Displacement Measurement for Two-Body Abrasion Scratch Test Data Analysis

    Science.gov (United States)

    Street, K. W. Jr.; Kobrick, R. L.; Klaus, D. M.

    2011-01-01

    A limitation has been identified in the existing test standards used for making controlled, two-body abrasion scratch measurements based solely on the width of the resultant score on the surface of the material. A new, more robust method is proposed for analyzing a surface scratch that takes into account the full three-dimensional profile of the displaced material. To accomplish this, a set of four volume- displacement metrics was systematically defined by normalizing the overall surface profile to denote statistically the area of relevance, termed the Zone of Interaction. From this baseline, depth of the trough and height of the plowed material are factored into the overall deformation assessment. Proof-of-concept data were collected and analyzed to demonstrate the performance of this proposed methodology. This technique takes advantage of advanced imaging capabilities that allow resolution of the scratched surface to be quantified in greater detail than was previously achievable. When reviewing existing data analysis techniques for conducting two-body abrasive scratch tests, it was found that the ASTM International Standard G 171 specified a generic metric based only on visually determined scratch width as a way to compare abraded materials. A limitation to this method was identified in that the scratch width is based on optical surface measurements, manually defined by approximating the boundaries, but does not consider the three-dimensional volume of material that was displaced. With large, potentially irregular deformations occurring on softer materials, it becomes unclear where to systematically determine the scratch width. Specifically, surface scratches on different samples may look the same from a top view, resulting in an identical scratch width measurement, but may vary in actual penetration depth and/or plowing deformation. Therefore, two different scratch profiles would be measured as having identical abrasion properties, although they differ

  20. Development of digital photogrammetry for measurements of displacements in underground excavation

    International Nuclear Information System (INIS)

    Ohnishi, Yuzo; Ohtsu, Hiroyasu; Nishiyama, Satoshi; Ono, Tetsu; Matsui, Hiroya

    2002-03-01

    Because deformations are important indicators of the degree of stability during construction of rock structures, monitoring of deformation is a key element of construction of tunnels and structures for the underground research laboratory. Especially in the construction and maintenance of underground excavation, monitoring of deformations is needed for obtaining useful information to control its stability. We have been developing the application of digital photogrammetry to monitoring techniques in rock structures. Photogrammetric process has undergone a remarkable evolution with its transformation into digital photogrammetry. Photogrammetry has the advantage of measuring deformation of an object by some photos with easy measurements and excellent cost performance. In this paper, we present that the digital photogrammetry can monitor the displacements of the underground excavation accurately along with a capability of real-time measurement. (author)

  1. A Novel Laser and Video-Based Displacement Transducer to Monitor Bridge Deflections.

    Science.gov (United States)

    Vicente, Miguel A; Gonzalez, Dorys C; Minguez, Jesus; Schumacher, Thomas

    2018-03-25

    The measurement of static vertical deflections on bridges continues to be a first-level technological challenge. These data are of great interest, especially for the case of long-term bridge monitoring; in fact, they are perhaps more valuable than any other measurable parameter. This is because material degradation processes and changes of the mechanical properties of the structure due to aging (for example creep and shrinkage in concrete bridges) have a direct impact on the exhibited static vertical deflections. This paper introduces and evaluates an approach to monitor displacements and rotations of structures using a novel laser and video-based displacement transducer (LVBDT). The proposed system combines the use of laser beams, LED lights, and a digital video camera, and was especially designed to capture static and slow-varying displacements. Contrary to other video-based approaches, the camera is located on the bridge, hence allowing to capture displacements at one location. Subsequently, the sensing approach and the procedure to estimate displacements and the rotations are described. Additionally, laboratory and in-service field testing carried out to validate the system are presented and discussed. The results demonstrate that the proposed sensing approach is robust, accurate, and reliable, and also inexpensive, which are essential for field implementation.

  2. Standard test method for crack-tip opening displacement (CTOD) fracture toughness measurement

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the determination of critical crack-tip opening displacement (CTOD) values at one or more of several crack extension events, and may be used to measure cleavage crack initiation toughness for materials that exhibit a change from ductile to brittle behavior with decreasing temperature, such as ferritic steels. This test method applies specifically to notched specimens sharpened by fatigue cracking. The recommended specimens are three-point bend [SE(B)], compact [C(T)], or arc-shaped bend [A(B)] specimens. The loading rate is slow and influences of environment (other than temperature) are not covered. The specimens are tested under crosshead or clip gage displacement controlled loading. 1.1.1 The recommended specimen thickness, B, for the SE(B) and C(T) specimens is that of the material in thicknesses intended for an application. For the A(B) specimen, the recommended depth, W, is the wall thickness of the tube or pipe from which the specimen is obtained. Superficial surface machini...

  3. Measurement of the force–displacement response of in vivo human skin under a rich set of deformations

    KAUST Repository

    Flynn, Cormac; Taberner, Andrew; Nielsen, Poul

    2011-01-01

    The non-linear, anisotropic, and viscoelastic properties of human skin vary according to location on the body, age, and individual. The measurement of skin's mechanical properties is important in several fields including medicine, cosmetics, and forensics. In this study, a novel force-sensitive micro-robot applied a rich set of three-dimensional deformations to the skin surface of different areas of the arms of 20 volunteers. The force-displacement response of each area in different directions was measured. All tested areas exhibited a non-linear, viscoelastic, and anisotropic force-displacement response. There was a wide quantitative variation in the stiffness of the response. For the right anterior forearm, the ratio of the maximum probe reaction force to maximum probe displacement ranged from 0.44Nmm-1 to 1.45Nmm-1. All volunteers exhibited similar qualitative anisotropic characteristics. For the anterior right forearm, the stiffest force-displacement response was when the probe displaced along the longitudinal axis of the forearm. The response of the anterior left forearm was stiffest in a direction 20° to the longitudinal axis of the forearm. The posterior upper arm was stiffest in a direction 90° to the longitudinal axis of the arm. The averaged posterior upper arm response was less stiff than the averaged anterior forearm response. The maximum probe force at 1.3mm probe displacement was 0.69N for the posterior upper arm and 1.1N for the right anterior forearm. The average energy loss during the loading-unloading cycle ranged from 11.9% to 34.2%. This data will be very useful for studying the non-linear, anisotropic, and viscoelastic behaviour of skin and also for generating material parameters for appropriate constitutive models. © 2011 IPEM.

  4. Measurement of the force–displacement response of in vivo human skin under a rich set of deformations

    KAUST Repository

    Flynn, Cormac

    2011-06-01

    The non-linear, anisotropic, and viscoelastic properties of human skin vary according to location on the body, age, and individual. The measurement of skin\\'s mechanical properties is important in several fields including medicine, cosmetics, and forensics. In this study, a novel force-sensitive micro-robot applied a rich set of three-dimensional deformations to the skin surface of different areas of the arms of 20 volunteers. The force-displacement response of each area in different directions was measured. All tested areas exhibited a non-linear, viscoelastic, and anisotropic force-displacement response. There was a wide quantitative variation in the stiffness of the response. For the right anterior forearm, the ratio of the maximum probe reaction force to maximum probe displacement ranged from 0.44Nmm-1 to 1.45Nmm-1. All volunteers exhibited similar qualitative anisotropic characteristics. For the anterior right forearm, the stiffest force-displacement response was when the probe displaced along the longitudinal axis of the forearm. The response of the anterior left forearm was stiffest in a direction 20° to the longitudinal axis of the forearm. The posterior upper arm was stiffest in a direction 90° to the longitudinal axis of the arm. The averaged posterior upper arm response was less stiff than the averaged anterior forearm response. The maximum probe force at 1.3mm probe displacement was 0.69N for the posterior upper arm and 1.1N for the right anterior forearm. The average energy loss during the loading-unloading cycle ranged from 11.9% to 34.2%. This data will be very useful for studying the non-linear, anisotropic, and viscoelastic behaviour of skin and also for generating material parameters for appropriate constitutive models. © 2011 IPEM.

  5. Plasma column displacement measurements by modified Rogowski sine-coil and Biot-Savart/magnetic flux equation solution on IR-T1 tokamak

    International Nuclear Information System (INIS)

    Razavi, M.; Mollai, M.; Khorshid, P.; Nedzelskiy, I.; Ghoranneviss, M.

    2010-01-01

    The modified Rogowski sine-coil (MRSC) has been designed and implemented for the plasma column horizontal displacement measurements on small IR-T1 tokamak. MRSC operation has been examined on test assembly and tokamak. Obtained results show high sensitivity to the plasma column horizontal displacement and negligible sensitivity to the vertical displacement; linearity in wide, ±0.1 m, range of the displacements; and excellent, 1.5%, agreement with the results of numerical solution of Biot-Savart and magnetic flux equations.

  6. Engineering measures and risk assessment against fault displacement

    International Nuclear Information System (INIS)

    Narabayashi, Tadashi; Okamoto, Koji; Dodo, Takashi; Kamiya, Masanobu

    2017-01-01

    A special committee on 'assessment on fault activities and engineering risk' was established at the Japan Atomic Energy Society. With a participation of the Japan Society of Maintenology, a study group on nuclear safety regulations was established at the Japan Society of Maintenology, and this theme has been examined. Among the technics for evaluating the effects of fault displacement on nuclear facilities, the concept of application of the safety margin evaluation method is shown. By applying this method, it is possible to evaluate nuclear safety against fault displacement, and it is also possible to obtain risk information such as the conditions of facilities and safety functions (retention or loss) as well as the safety margin against core damage, including the event exceeding prediction. Thus, it is possible to verify the effectiveness of accident management and to make decisions for further countermeasures to reduce risk through using the obtained risk information. The countermeasures prepared for large scale damage can also be effectively utilized. It is necessary not only the fault displacement targeted in this paper, but also the results of risk assessment obtained by safety margin assessment etc. are reflected on the improvement of accident management at the site, education and training, and assumption of various events and desk training, and are linked to safety improvement. Efforts for encouraging these actions are also required. (A.O.)

  7. Nasal cavity dimensions in guinea pig and rat measured by acoustic rhinometry and fluid-displacement method

    DEFF Research Database (Denmark)

    Straszek, Sune; Pedersen, O.F.

    2004-01-01

    The purpose of the study was to measure nasal passageway dimensions in guinea pigs and rats by use of acoustic rhinometry (AR) and by a previously described fluid-displacement method (FDM) (Straszek SP, Taagehoej F, Graff S, and Pedersen OF. J Appl Physiol 95: 635-642, 2003) to investigate...... the potential of AR in pharmacological research with these animals. We measured the area-distance relationships by AR of nasal cavities postmortem in five guinea pigs (Duncan Hartley, 400 g) and five rats (Wistar, 250 g) by using custom-made equipment scaled for the purpose. Nosepieces were made from plastic...... pipette tips and either inserted into or glued onto the nostrils. We used liquid perfluorocarbon in the fluid-displacement study, and it was carried out subsequent to the acoustic measurements. We found for guinea pigs that AR measured a mean volume of 98 mm(3) (95-100 mm(3)) (mean and 95% confidence...

  8. Experimental demonstration of a simple displacement sensor based on a bent single-mode–multimode–single-mode fiber structure

    International Nuclear Information System (INIS)

    Wu, Qiang; Semenova, Yuliya; Wang, Pengfei; Hatta, Agus Muhamad; Farrell, Gerald

    2011-01-01

    A simple displacement sensor based on a bent single-mode–multimode–single-mode (SMS) fiber structure is proposed and experimentally investigated. The sensor offers a wider displacement range, not limited by the risk of fiber breakage, as well as a three-fold increase in displacement sensitivity by comparison with a straight SMS structure sensor. This sensor can be interrogated by either an optical spectral analyzer (OSA) or a ratiometric interrogation system: (1) if interrogated by an OSA assuming a resolution of 1 pm, it has a sensitivity of 28.2 nm for a displacement measurement range from 0 to 280 µm; (2) if interrogated by a ratiometric interrogation system, it has worst and best case resolutions of 556 and 38 nm, respectively, for a displacement measurement range from 0 to 520 µm

  9. Quasi-static displacement calibration system for a "Violin-Mode" shadow-sensor intended for Gravitational Wave detector suspensions

    Science.gov (United States)

    Lockerbie, N. A.; Tokmakov, K. V.

    2014-10-01

    This paper describes the design of, and results from, a calibration system for optical linear displacement (shadow) sensors. The shadow sensors were designed to detect "Violin-Mode" (VM) resonances in the 0.4 mm diameter silica fibre suspensions of the test masses/mirrors of Advanced Laser Interferometer Gravitational Wave Observatory gravitational wave interferometers. Each sensor illuminated the fibre under test, so as to cast its narrow shadow onto a "synthesized split photodiode" detector, the shadow falling over adjacent edges of the paired photodiodes. The apparatus described here translated a vertically orientated silica test fibre horizontally through a collimated Near InfraRed illuminating beam, whilst simultaneously capturing the separate DC "shadow notch" outputs from each of the paired split photodiode detectors. As the ratio of AC to DC photocurrent sensitivities to displacement was known, a calibration of the DC response to quasi-static shadow displacement allowed the required AC sensitivity to vibrational displacement to be found. Special techniques are described for generating the required constant scan rate for the test fibre using a DC motor-driven stage, for removing "jitter" at such low translation rates from a linear magnetic encoder, and so for capturing the two shadow-notch signals at each micrometre of the test fibre's travel. Calibration, across the four detectors of this work, gave a vibrational responsivity in voltage terms of (9.45 ± 1.20) MV (rms)/m, yielding a VM displacement sensitivity of (69 ± 13) pm (rms)/√Hz, at 500 Hz, over the required measuring span of ±0.1 mm.

  10. Displacement Ventilation

    DEFF Research Database (Denmark)

    Bjørn, Erik; Mattsson, Magnus; Sandberg, Mats

    Full-scale experiments were made in a displacement ventilated room with two breathing thermal manikins to study the effect of movements and breathing on the vertical contaminant distribution, and on the personal exposure of occupants. Concentrations were measured with tracer gas equipment...

  11. Noise Suppression on the Tunable Laser for Precise Cavity Length Displacement Measurement

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Radek; Čížek, Martin; Mikel, Břetislav; Hrabina, Jan; Lazar, Josef; Číp, Ondřej

    2016-01-01

    Roč. 16, č. 9 (2016), 1428:1-11 ISSN 1424-8220 R&D Projects: GA ČR(CZ) GPP102/12/P962; GA ČR GB14-36681G; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Fabry-Perot cavity * unbalance Michelson interferometer * noise suppression * heterodyne interferometry * displacement measurement Subject RIV: BH - Optics, Masers, Laser s Impact factor: 2.677, year: 2016

  12. Monitoring of Bridges by a Laser Pointer: Dynamic Measurement of Support Rotations and Elastic Line Displacements: Methodology and First Test.

    Science.gov (United States)

    Artese, Serena; Achilli, Vladimiro; Zinno, Raffaele

    2018-01-25

    Deck inclination and vertical displacements are among the most important technical parameters to evaluate the health status of a bridge and to verify its bearing capacity. Several methods, both conventional and innovative, are used for structural rotations and displacement monitoring; however, none of these allow, at the same time, precision, automation, static and dynamic monitoring without using high cost instrumentation. The proposed system uses a common laser pointer and image processing. The elastic line inclination is measured by analyzing the single frames of an HD video of the laser beam imprint projected on a flat target. For the image processing, a code was developed in Matlab ® that provides instantaneous rotation and displacement of a bridge, charged by a mobile load. An important feature is the synchronization of the load positioning, obtained by a GNSS receiver or by a video. After the calibration procedures, a test was carried out during the movements of a heavy truck maneuvering on a bridge. Data acquisition synchronization allowed us to relate the position of the truck on the deck to inclination and displacements. The inclination of the elastic line at the support was obtained with a precision of 0.01 mrad. The results demonstrate the suitability of the method for dynamic load tests, and the control and monitoring of bridges.

  13. Monitoring of Bridges by a Laser Pointer: Dynamic Measurement of Support Rotations and Elastic Line Displacements: Methodology and First Test

    Directory of Open Access Journals (Sweden)

    Serena Artese

    2018-01-01

    Full Text Available Deck inclination and vertical displacements are among the most important technical parameters to evaluate the health status of a bridge and to verify its bearing capacity. Several methods, both conventional and innovative, are used for structural rotations and displacement monitoring; however, none of these allow, at the same time, precision, automation, static and dynamic monitoring without using high cost instrumentation. The proposed system uses a common laser pointer and image processing. The elastic line inclination is measured by analyzing the single frames of an HD video of the laser beam imprint projected on a flat target. For the image processing, a code was developed in Matlab® that provides instantaneous rotation and displacement of a bridge, charged by a mobile load. An important feature is the synchronization of the load positioning, obtained by a GNSS receiver or by a video. After the calibration procedures, a test was carried out during the movements of a heavy truck maneuvering on a bridge. Data acquisition synchronization allowed us to relate the position of the truck on the deck to inclination and displacements. The inclination of the elastic line at the support was obtained with a precision of 0.01 mrad. The results demonstrate the suitability of the method for dynamic load tests, and the control and monitoring of bridges.

  14. Elimination of drift in a fiber-Bragg-grating-based multiplexed Michelson interferometer measurement system.

    Science.gov (United States)

    Ren, Junyu; Xie, Fang; Chen, Zhimin

    2010-02-01

    Random phase drift in single-mode optical fiber interferometers used with measurement systems, which is resulted from various types of environmental disturbances, should be eliminated in order to obtain high measurement precision. We propose an optical fiber interferometric measurement system which has the function of self-eliminating the random phase drift and is stable and robust enough for real-time precision measurement. By employing the characteristics of fiber Bragg gratings, the system interleaves two fiber Michelson interferometers together that share the common-interferometric-optical path. The signal of one of the interferometers is used to stabilize the system while the signal of the other interferometer is used for measurement. An electronic feedback loop for the stabilizing action is designed. The bandwidth of the feedback loop is 5 kHz, sufficiently wide to eliminate random phase drift resulted from various environmental disturbances. The system is endowed with high stability and therefore suitable for real-time precision measurement. By means of an active phase tracking technique to measure displacement, the linear regression coefficient of the displacement measurement results is 0.9998.

  15. Displacement Ventilation in a Room with Low-Level Diffusers

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    Ventilation systems with vertical displacement flow have been used in industrial areas with high thermal loads for many years. Quite resently the vertical displacement flow systems have grown popular as comfort ventilation in rooms with thermal loads e.g. offices.......Ventilation systems with vertical displacement flow have been used in industrial areas with high thermal loads for many years. Quite resently the vertical displacement flow systems have grown popular as comfort ventilation in rooms with thermal loads e.g. offices....

  16. Displacement of structures in the thorax from expiration to inspiration as estimated by computed tomography and a 3-D treatment planning system

    International Nuclear Information System (INIS)

    Garmon, Pamela; Huang, David; Lutz, Steve; Zwicker, Robert

    1996-01-01

    Purpose/Objective: The spread of image based three dimensional treatment planning and conformal radiotherapy have brought new attention to the problems of patient motion during treatment. Recent studies of the effects of breathing on the motion of internal structures have led to the suggestion that gated irradiation might improve the therapeutic benefits of conformal therapy. In the present work we investigate the displacement of tumor and other structures in the thorax with breathing in order to assess further the potential benefit of gating in the treatment of lung tumors. Materials and Methods: Thoracic CT scans were obtained for patients immediately after inspiration and after expiration. Tumor positions were assessed by computing the centers of the outlined volumes for both inspiration and expiration. Effects of breathing motion along the longitudinal direction were evaluated by using a three dimensional treatment planning system to measure the distances between scans where the top of the diaphragm was present. Displacement within the transverse direction was assessed by measuring the positions of the field skin markers, the aorta and the esophagus. Results: Movement of the centers of the tumor volumes as computed by reconstructed volumes was measured to be 0.7-1.2cm. The magnitude of this movement was greatest for tumors in the mid to lower region of the lung and was primarily in the direction of superior to inferior combined with anterior to posterior. Displacement of the diaphragm ranged 1-3 cm with breathing. Displacement of the aorta and esophagus was measured to be 0.2-1.5 cm. Movement of these structures was only analyzed transversely and showed displacement to the patients' left and posterior upon expiration. The magnitude did not appear to correlate with position relative to the diaphragm. Patients with less diaphragm movement also had smaller tidal volumes and conversely, patients with larger diaphragm displacement had greater tidal volumes

  17. Development of an optical fiber sensor for angular displacement measurements.

    Science.gov (United States)

    Jung, Gu-In; Kim, Ji-Sun; Lee, Tae-Hee; Choi, Ju-Hyeon; Oh, Han-Byeol; Kim, A-Hee; Eom, Gwang-Moon; Lee, Jeong-Hwan; Chung, Soon-Cheol; Park, Jong-Rak; Lee, Young-Jae; Park, Hee-Jung; Jun, Jae-Hoon

    2014-01-01

    For diagnostic and therapeutic purposes, the joint angle measurement of a patient after an accident or a surgical operation is significant for monitoring and evaluating the recovering process. This paper proposed an optical fiber sensor for the measurement of angular displacement. The effect of beveled fiber angle on the detected light signal was investigated to find an appropriate mathematical model. Beveled fiber tips redirected the light over a range of angles away from the fiber axis. Inverse polynomial models were applied to directly obtain and display the joint angle change in real time with the Lab-VIEW program. The actual joint angle correlated well with the calculated LabVIEW output angle over the test range. The proposed optical sensor is simple, cost effective, small in size, and can evaluate the joint angle in real time. This method is expected to be useful in the field of rehabilitation and sport science.

  18. How much vertical displacement of the symphysis indicates instability after pelvic injury?

    Science.gov (United States)

    Golden, Robert D; Kim, Hyunchul; Watson, Jeffrey D; Oliphant, Bryant W; Doro, Christopher; Hsieh, Adam H; Osgood, Greg M; O'Toole, Robert V

    2013-02-01

    Measures of pubic symphyseal widening are used by at least two classification systems as determinants of injury grade. Recent work has challenged the commonly used parameter of 2.5 cm of pubic symphysis as an accurate marker of pelvic injury grade and has suggested a role of rotation in the flexion-extension plane as a determinant of pelvic stability. We investigated pelvic stability in the flexion-extension plane to determine a threshold of rotational displacement of the hemipelvis above which the potential for instability exists. Cadaveric specimens were mounted onto a servohydraulic biaxial testing machine and subjected to a vertically directed flexion moment. Position of hemipelvis was recorded using a three-dimensional motion capture system and video recording. Displacement of the pubic symphysis and changes in length and position of the sacrospinous and sacrotuberous ligaments were recorded. Amount of force applied was measured and recorded. A yield point was determined as the first point at which the force plot exhibited a decrease in force and was correlated to the corresponding displacement. The mean vertical displacement of the pubic symphysis at the yield point was 16 mm (95% confidence interval, 11-22 mm). Mean sacrospinous ligament strain at yield point was 4% (range, 1.0-9.5%). Pelves with vertical rotational symphyseal displacement of less than 11 mm can reasonably be expected to have rotational stability in the flexion-extension plane. Those with displacement of greater than 22 mm can be expected to have lost some integrity regarding resistance to pelvic flexion. These values may allow clinicians to infer pelvic stability from amount of vertical symphyseal displacement.

  19. Reliability of Structural Systems with regard to Permanent Displacements

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1991-01-01

    approach - a differential equation approach - a superposition approach - the simple method These three approaches are described in Sørensen & Thoft-Christensen [5], Sørensen et al. [6] and Sørensen & Thoft-Christensen [7]. It is assumed that the structural system can be modelled by a multi-linear elastic......In this paper the problem of estimating the accumulated permanent displacements of an offshore platform during one storm is considered. For dynamically sensitive structural systems subjected to wave loads this problem is generally very difficult. However, for dynamic insensitive systems some...... methods/experience related to permanent deformations are described in Grinda et al. [1] and Papadrakakis & Loukakis [2]. For general dynamic systems modelled by one-degree-of-freedom (and two-degrees-of freedom) systems a number of methods exist, see e.g. Nielsen et al. [3] and Toro & Cornell [4]. However...

  20. Void fraction measurement system for high temperature flows

    Energy Technology Data Exchange (ETDEWEB)

    Teyssedou, A; Aube, F; Champagne, P [Montreal Univ., PQ (Canada). Institut de Genie Energetique

    1992-05-01

    A {gamma}-ray absorption technique has been developed for measuring the axial distribution of the void fraction for high-temperature and high-pressure two-phase flows. The system is mounted on a moving platform driven by a high-power stepping motor. A personal computer (IBM AT) connected to a data acquisition system is used to control the displacement of the {gamma} source and detector, and to read the response of the detector. All the measurement procedures are carried out automatically by dedicated software developed for this purpose. (Author).

  1. Displacement and force coupling control design for automotive active front steering system

    Science.gov (United States)

    Zhao, Wanzhong; Zhang, Han; Li, Yijun

    2018-06-01

    A displacement and force coupling control design for active front steering (AFS) system of vehicle is proposed in this paper. In order to investigate the displacement and force characteristics of the AFS system of the vehicle, the models of AFS system, vehicle, tire as well as the driver model are introduced. Then, considering the nonlinear characteristics of the tire force and external disturbance, a robust yaw rate control method is designed by applying a steering motor to generate an active steering angle to adjust the yaw stability of the vehicle. Based on mixed H2/H∞ control, the system robustness and yaw rate tracking performance are enforced by H∞ norm constraint and the control effort is captured through H2 norm. In addition, based on the AFS system, a planetary gear set and an assist motor are both added to realize the road feeling control in this paper to dismiss the influence of extra steering angle through a compensating method. Evaluation of the overall system is accomplished by simulations and experiments under various driving condition. The simulation and experiment results show the proposed control system has excellent tracking performance and road feeling performance, which can improve the cornering stability and maneuverability of vehicle.

  2. Demonstration of Vibrational Braille Code Display Using Large Displacement Micro-Electro-Mechanical Systems Actuators

    Science.gov (United States)

    Watanabe, Junpei; Ishikawa, Hiroaki; Arouette, Xavier; Matsumoto, Yasuaki; Miki, Norihisa

    2012-06-01

    In this paper, we present a vibrational Braille code display with large-displacement micro-electro-mechanical systems (MEMS) actuator arrays. Tactile receptors are more sensitive to vibrational stimuli than to static ones. Therefore, when each cell of the Braille code vibrates at optimal frequencies, subjects can recognize the codes more efficiently. We fabricated a vibrational Braille code display that used actuators consisting of piezoelectric actuators and a hydraulic displacement amplification mechanism (HDAM) as cells. The HDAM that encapsulated incompressible liquids in microchambers with two flexible polymer membranes could amplify the displacement of the MEMS actuator. We investigated the voltage required for subjects to recognize Braille codes when each cell, i.e., the large-displacement MEMS actuator, vibrated at various frequencies. Lower voltages were required at vibration frequencies higher than 50 Hz than at vibration frequencies lower than 50 Hz, which verified that the proposed vibrational Braille code display is efficient by successfully exploiting the characteristics of human tactile receptors.

  3. Quasi-static displacement calibration system for a “Violin-Mode” shadow-sensor intended for Gravitational Wave detector suspensions

    International Nuclear Information System (INIS)

    Lockerbie, N. A.; Tokmakov, K. V.

    2014-01-01

    This paper describes the design of, and results from, a calibration system for optical linear displacement (shadow) sensors. The shadow sensors were designed to detect “Violin-Mode” (VM) resonances in the 0.4 mm diameter silica fibre suspensions of the test masses/mirrors of Advanced Laser Interferometer Gravitational Wave Observatory gravitational wave interferometers. Each sensor illuminated the fibre under test, so as to cast its narrow shadow onto a “synthesized split photodiode” detector, the shadow falling over adjacent edges of the paired photodiodes. The apparatus described here translated a vertically orientated silica test fibre horizontally through a collimated Near InfraRed illuminating beam, whilst simultaneously capturing the separate DC “shadow notch” outputs from each of the paired split photodiode detectors. As the ratio of AC to DC photocurrent sensitivities to displacement was known, a calibration of the DC response to quasi-static shadow displacement allowed the required AC sensitivity to vibrational displacement to be found. Special techniques are described for generating the required constant scan rate for the test fibre using a DC motor-driven stage, for removing “jitter” at such low translation rates from a linear magnetic encoder, and so for capturing the two shadow-notch signals at each micrometre of the test fibre's travel. Calibration, across the four detectors of this work, gave a vibrational responsivity in voltage terms of (9.45 ± 1.20) MV (rms)/m, yielding a VM displacement sensitivity of (69 ± 13) pm (rms)/√Hz, at 500 Hz, over the required measuring span of ±0.1 mm

  4. Quasi-static displacement calibration system for a “Violin-Mode” shadow-sensor intended for Gravitational Wave detector suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Lockerbie, N. A.; Tokmakov, K. V. [SUPA (Scottish Universities Physics Alliance), Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG (United Kingdom)

    2014-10-15

    This paper describes the design of, and results from, a calibration system for optical linear displacement (shadow) sensors. The shadow sensors were designed to detect “Violin-Mode” (VM) resonances in the 0.4 mm diameter silica fibre suspensions of the test masses/mirrors of Advanced Laser Interferometer Gravitational Wave Observatory gravitational wave interferometers. Each sensor illuminated the fibre under test, so as to cast its narrow shadow onto a “synthesized split photodiode” detector, the shadow falling over adjacent edges of the paired photodiodes. The apparatus described here translated a vertically orientated silica test fibre horizontally through a collimated Near InfraRed illuminating beam, whilst simultaneously capturing the separate DC “shadow notch” outputs from each of the paired split photodiode detectors. As the ratio of AC to DC photocurrent sensitivities to displacement was known, a calibration of the DC response to quasi-static shadow displacement allowed the required AC sensitivity to vibrational displacement to be found. Special techniques are described for generating the required constant scan rate for the test fibre using a DC motor-driven stage, for removing “jitter” at such low translation rates from a linear magnetic encoder, and so for capturing the two shadow-notch signals at each micrometre of the test fibre's travel. Calibration, across the four detectors of this work, gave a vibrational responsivity in voltage terms of (9.45 ± 1.20) MV (rms)/m, yielding a VM displacement sensitivity of (69 ± 13) pm (rms)/√Hz, at 500 Hz, over the required measuring span of ±0.1 mm.

  5. Simple force balance accelerometer/seismometer based on a tuning fork displacement sensor

    International Nuclear Information System (INIS)

    Stuart-Watson, D.; Tapson, J.

    2004-01-01

    Seismometers and microelectromechanical system accelerometers use the force-balance principle to obtain measurements. In these instruments the displacement of a mass object by an unknown force is sensed using a very high-resolution displacement sensor. The position of the object is then stabilized by applying an equal and opposite force to it. The magnitude of the stabilizing force is easily measured, and is assumed to be equivalent to the unknown force. These systems are critically dependent on the displacement sensor. In this article we use a resonant quartz tuning fork as the sensor. The tuning fork is operated so that its oscillation is lightly damped by the proximity of the movable mass object. Changes in the position of the mass object cause changes in the phase of the fork's resonance; this is used as the feedback variable in controlling the mass position. We have developed an acceleration sensor using this principle. The mass object is a piezoelectric bimorph diaphragm which is anchored around its perimeter, allowing direct electronic control of the displacement of its center. The tuning fork is brought very close to the diaphragm center, and is connected into a self-oscillating feedback circuit which has phase and amplitude as outputs. The diaphragm position is adjusted by a feedback loop, using phase as the feedback variable, to keep it in a constant position with respect to the tuning fork. The measured noise for this sensor is approximately 10.0 mg in a bandwidth of 100 Hz, which is substantially better than commercial systems of equivalent cost and size

  6. The effect of multi-component adsorption on selectivity in ion exchange displacement systems.

    Science.gov (United States)

    Tugcu, N; Cramer, S M

    2005-01-21

    This paper examines chemically selective displacement chromatography using affinity ranking plots, batch displacer screening experiments, column displacements, multi-component adsorption isotherms and spectroscopy. The affinity ranking plot indicated that the displacers, sucrose octasulfate (SOS) and tatrazine, should possess sufficient affinity to displace the proteins amyloglucosidase and apoferritin over a wide range of operating conditions. In addition, the plots indicated that the separation of these proteins by displacement chromatography would be extremely difficult. Further, the two proteins were shown to have very similar retention times under shallow linear gradient conditions. When batch displacement experiments were carried out, both tartrazine and SOS exhibited significant selectivity differences with respect to their ability to displace these two proteins, in contrast to the affinity ranking plot results. Column displacement experiments carried out with sucrose octasulfate agreed with the predictions of the affinity ranking plots, with both proteins being displaced but poorly resolved under several column displacement conditions. On the other hand, column displacement with tartrazine as the displacer resulted in the selective displacement and partial purification of apoferritin. Single- and multi-component isotherms of the proteins with or without the presence of displacers were determined and were used to help explain the selectivity reversals observed in the column and batch displacement experiments. In addition, fluorescence and CD spectra suggested that the displacers did not induce any structural changes to either of the proteins. The results in this paper indicate that multi-component adsorption behavior can be exploited for creating chemically selective displacement separations.

  7. Forces produced by different nonconventional bracket or ligature systems during alignment of apically displaced teeth.

    Science.gov (United States)

    Baccetti, Tiziano; Franchi, Lorenzo; Camporesi, Matteo; Defraia, Efisio; Barbato, Ersilia

    2009-05-01

    To analyze the forces released by four types of passive stainless steel self-ligating brackets (SLBs), and by two nonconventional elastomeric ligature-bracket systems when compared with conventional elastomeric ligatures on conventional stainless steel brackets during the alignment of apically displaced teeth at the maxillary arch. An experimental model consisting of five brackets was used to assess the forces released by the seven different ligature-bracket systems with 0.012'' or 0.014'' superelastic nickel titanium wire in the presence of different amounts of apical displacement of the canine (ranging from 1.5 mm to 6 mm). Comparisons between the different types of bracket/wire/ ligature systems were carried out by means of ANOVA on ranks with Dunnett's post hoc test (P < .05). When correction of a misalignment greater than 3 mm is attempted, a noticeable amount of force for alignment is generated by passive SLBs and nonconventional elastomeric ligature-bracket systems, and a null amount of force is released in the presence of conventional elastomeric ligatures on conventional brackets. When minimal apical displacement is needed (1.5 mm), the differences in performance between low-friction and conventional systems are minimal. These differences become significant when correction of a misalignment of greater than 3.0 mm is attempted.

  8. A CMOS-MEMS clamped–clamped beam displacement amplifier for resonant switch applications

    Science.gov (United States)

    Liu, Jia-Ren; Lu, Shih-Chuan; Tsai, Chun-Pu; Li, Wei-Chang

    2018-06-01

    This paper presents a micromechanical clamped–clamped beam (CC-beam) displacement amplifier based on a CMOS-MEMS fabrication process platform. In particular, a 2.0 MHz resonant displacement amplifier composed of two identical CC-beams coupled by a mechanical beam at locations where the two beams have mismatched velocities exhibits a larger displacement, up to 9.96×, on one beam than that of the other. The displacement amplification prevents unwanted input impacting—the structure switches only to the output but not the input—required by resonant switch-based mechanical circuits (Kim et al 2009 22nd IEEE Int. Conf. on Micro Electro Mechanical Systems; Lin et al 2009 15th Int. Conf. on Solid-State Sensors, Actuators, & Microsystems (TRANSDUCERS’09) Li et al 2013 17th Int. Conf. on Solid-State Sensors, Actuators, & Microsystems (TRANSDUCERS’13)). Compared to a single CC-beam displacement amplifier, theory predicts that the displacement amplifying CC-beam array yields a larger overall output displacement for displacement gain beyond 1.13 thanks to the preserved input driving force. A complete analytical model predicts the resultant stiffness and displacement gain of the coupled CC-beam displacement amplifier that match well with finite element analysis (FEA) prediction and measured results.

  9. Measurement and Finite Element Model Validation of Immature Porcine Brain-Skull Displacement during Rapid Sagittal Head Rotations.

    Science.gov (United States)

    Pasquesi, Stephanie A; Margulies, Susan S

    2018-01-01

    Computational models are valuable tools for studying tissue-level mechanisms of traumatic brain injury, but to produce more accurate estimates of tissue deformation, these models must be validated against experimental data. In this study, we present in situ measurements of brain-skull displacement in the neonatal piglet head ( n  = 3) at the sagittal midline during six rapid non-impact rotations (two rotations per specimen) with peak angular velocities averaging 51.7 ± 1.4 rad/s. Marks on the sagittally cut brain and skull/rigid potting surfaces were tracked, and peak values of relative brain-skull displacement were extracted and found to be significantly less than values extracted from a previous axial plane model. In a finite element model of the sagittally transected neonatal porcine head, the brain-skull boundary condition was matched to the measured physical experiment data. Despite smaller sagittal plane displacements at the brain-skull boundary, the corresponding finite element boundary condition optimized for sagittal plane rotations is far less stiff than its axial counterpart, likely due to the prominent role of the boundary geometry in restricting interface movement. Finally, bridging veins were included in the finite element model. Varying the bridging vein mechanical behavior over a previously reported range had no influence on the brain-skull boundary displacements. This direction-specific sagittal plane boundary condition can be employed in finite element models of rapid sagittal head rotations.

  10. Measurement and Finite Element Model Validation of Immature Porcine Brain–Skull Displacement during Rapid Sagittal Head Rotations

    Science.gov (United States)

    Pasquesi, Stephanie A.; Margulies, Susan S.

    2018-01-01

    Computational models are valuable tools for studying tissue-level mechanisms of traumatic brain injury, but to produce more accurate estimates of tissue deformation, these models must be validated against experimental data. In this study, we present in situ measurements of brain–skull displacement in the neonatal piglet head (n = 3) at the sagittal midline during six rapid non-impact rotations (two rotations per specimen) with peak angular velocities averaging 51.7 ± 1.4 rad/s. Marks on the sagittally cut brain and skull/rigid potting surfaces were tracked, and peak values of relative brain–skull displacement were extracted and found to be significantly less than values extracted from a previous axial plane model. In a finite element model of the sagittally transected neonatal porcine head, the brain–skull boundary condition was matched to the measured physical experiment data. Despite smaller sagittal plane displacements at the brain–skull boundary, the corresponding finite element boundary condition optimized for sagittal plane rotations is far less stiff than its axial counterpart, likely due to the prominent role of the boundary geometry in restricting interface movement. Finally, bridging veins were included in the finite element model. Varying the bridging vein mechanical behavior over a previously reported range had no influence on the brain–skull boundary displacements. This direction-specific sagittal plane boundary condition can be employed in finite element models of rapid sagittal head rotations. PMID:29515995

  11. Effect of excavation method on rock mass displacement

    International Nuclear Information System (INIS)

    Sato, Toshinori; Kikuchi, Tadashi; Sugihara, Kozo

    1998-01-01

    Rock mass displacement measurements have been performed to understand rock mass behavior and its dependence on excavation method during drift excavation at the Tono mine. Rock mass displacements of 1.46 mm and 0.67 mm have been measured at one meter (0.33D: blasting, 0.42D: machine, D: width of drift) from the walls of drifts excavated by the drill and blasting method and machine, respectively. Numerical analysis of rock mass displacements with Finite Element Method has been performed assuming an excavation disturbed zone. Measured and analysed rock mass displacements are consistent with each other for the drift excavation by the drill and blasting method. The excavation disturbed zone was narrower for the drift excavated by machine than for the drift excavated by the drill and blasting method. (author)

  12. Personal Exposure in Displacement Ventilated Rooms

    DEFF Research Database (Denmark)

    Brohus, Henrik; Nielsen, Peter Vilhelm

    1996-01-01

    in the lower part of the room close to the occupant. A personal exposure model for displacement ventilated rooms is proposed. The model takes the influence of gradients and the human thermal boundary layer into account. Two new quantities describing the interaction between a person and the ventilation......Personal exposure in a displacement ventilated room is examined. The stratified flow and the considerable concentration gradients necessitate an improvement of the widely used fully mixing compartmental approach. The exposure of a seated and a standing person in proportion to the stratification...... contaminant sources, this entrainment improves the indoor air quality. Measurements of exposure due to a passive contaminant source show a significant dependence on the flow field as well as on the contaminant source location. Poor system performance is found in the case of a passive contaminant released...

  13. Nano-Electromechanical Systems: Displacement Detection and the Mechanical Single Electron Shuttle

    Science.gov (United States)

    Blick, R. H.; Beil, F. W.; Höhberger, E.; Erbe, A.; Weiss, C.

    For an introduction to nano-electromechanical systems we present measurements on nanomechanical resonators operating in the radio frequency range. We discuss in detail two different schemes of displacement detection for mechanical resonators, namely conventional reflection measurements of a probing signal and direct detection by capacitive coupling via a gate electrode. For capacitive detection we employ an on-chip preamplifier, which enables direct measurements of the resonator's disp lacement. We observe that the mechanical quality factor of the resonator depends on the detection technique applied, which is verified in model calculations and report on the detection of sub-harmonics. In the second part we extend our investigations to include transport of single electrons through an electron island on the tip of a nanomachined mechanical pendulum. The pendulum is operated by applying a modulating electromagnetic field in the range of 1 - 200 MHz, leading to mechanical oscillations between two laterally integrated source and drain contacts. Forming tunneling barriers the metallic tip shuttles single electrons from source to drain. The resulting tunneling current shows distinct features corresponding to the discrete mechanical eigenfrequencies of the pendulum. We report on measurements covering the temperature range from 300 K down to 4.2 K. The transport properties of the device are compared in detail to model calculations based on a Master-equation approach.

  14. Transport infrastructure monitoring: Testing of the NIODIM optical displacement monitoring system at the Sihlhochstrasse bridge in Zürich, Switzerland.

    Science.gov (United States)

    Hagene, J. K.

    2012-04-01

    level in the river was about one metre higher than expected not to mention the strong current. To be on the safe side I had brought my waders with me, but it was hardly possibly to walk in the river. Problems are to be solved and a trip to the nearest shopping centre buying climbing ropes in the sports department and a children's paddling pool in the toys department expanded our toolbox significantly. The paddling pool was used as a barge for transporting the equipment out in the river to the pillar. We were able to install the equipment as planned, but somewhat delayed due to all the water in the river. A climbing rope was attached to the pillar with one end and the other end attached to the riverbank. Power and network cables were attached to this rope. Tests started the second day saving raw data from the camera to allow for later re-processing. Raw data storage was in the form of small images, one image for each frame i.e., one raw image file for each frame and at a rate of 64 Hz. The tests went on as expected for a while until the system performance dropped unexpectedly from 64 Hz to around 1 Hz. After some help from our main office we found out that our problem was due to the file creation performance of the file system NTFS when many files were present in one catalogue. By automatically sending commands to the processing unit to save files to new catalogues approximately every 10000 frames the system performance was back at the expected 64 Hz. After these initial problems with performance related to the NTFS file system the optical displacement monitoring system behaved as wanted for the remainder of tests. Based on the look of the bridge i.e., it looks robust and stable, we would not expect large oscillations due to the traffic on top of it. The mount point for the reference LED was also not ideal for observing potential oscillations. Due to the use of standalone generators for power generation measurements were only performed during the day and not during the

  15. Criteria for design of the Yucca Mountain structures, systems and components for fault displacement

    International Nuclear Information System (INIS)

    Stepp, C.; Hossain, Q.; Nesbit, S.; Pezzopane, S.; Hardy, M.

    1995-01-01

    The DOE intends to design the Yucca Mountain high-level waste facility structures, systems and components (SSCs) for fault displacements to provide reasonable assurance that they will meet the preclosure safety performance objectives established by 10 CFR Part 60. To the extent achievable, fault displacement design of the facility will follow guidance provided in the NRC Staff Technical Position. Fault avoidance will be the primary design criterion, especially for spatially compact or clustered SSCs. When fault avoidance is not reasonably achievable, expected to be the case for most spatially extended SSCs, engineering design procedures and criteria or repair and rehabilitation actions, depending on the SSC's importance to safety, are provided. SSCs that have radiological safety importance will be designed for fault displacements that correspond to the hazard exceedance frequency equal to their established seismic safety performance goals. Fault displacement loads are generally localized and may cause local inelastic response of SSCs. For this reason, the DOE intends to use strain-based design acceptance criteria similar to the strain-based criteria used to design nuclear plant SSCs for impact and impulsive loads

  16. Design and Preliminary Results of a Feedback Circuit for Plasma Displacement Control in IR-T1 Tokamak

    International Nuclear Information System (INIS)

    TalebiTaher, A.; Ghoranneviss, M.; Tarkeshian, R.; Salem, M. K.; Khorshid, P.

    2008-01-01

    Since displacement is very important for plasma position control, in IR-T1 tokamak a combination of two cosine coils and two saddle sine coils is used for horizontal displacement measurement. According to the multiple moment theory, the output of these coils linearly depends to radial displacement of plasma column. A new circuit for adding these signals to feedback system designed and unwanted effects of other fields in final output compensated. After compensation and calibration of the system, the output of horizontal displacement circuits applied to feedback control system. By considers the required auxiliary vertical field, a proportional amplifier and driver circuit are constructed to drive power transistors these power transistors switch the feedback bank capacitors. In the experiment, a good linear proportionality between displacement and output observed by applying an appropriate feedback field, the linger confinement time in IR-T1 tokamak obtained, applying this system to discharge increased the plasma duration and realizes repetitive discharges

  17. Evaluation of some software measuring displacements using GPS in real-time

    Science.gov (United States)

    Langbein, John

    2006-01-01

    GPS receiver into a form compatible with an IP (Internet protocol) network connection. In contrast with the Long Valley system, the telemetry link for GPS at Parkfield consists of a single radio at each remote sites and a single radio at the central site. Although position estimates are produced within 1-second of the observations, these results are not immediately available because there is no high speed Internet connection to Parkfield. Instead, the data are stored on a removable disk and sent to UCSD once per month.Below, I describe the results of a simple experiment to examine the response of some of these systems to simulated deformation that could be an analogue of a tectonic or volcanic event. In many engineering applications, the system response is tested by inputting a step to the system and measuring the output of the system. Essentially, this is what I've done. The experiment described below moves the GPS antenna from its original position to a new position within 1 second; the software tracks the translation. These measurements were conducted in August 2004 with the RTD software at Parkfield, and twice in Long Valley. The first Long Valley test was conducted in September 2004 using 3DTracker on a single baseline. The test was repeated in September 2005 using 3DTracker on two baselines and, importantly, saving the RINEX files of the data so that the data could be replayed through 3DTracker using other options in the program and, using other software packages including TRACK. In addition, we observed a short-term event at the Three Sisters volcano in Oregon. This event was snow melt at a remote GPS site which gave an apparent 15 cm displacement in vertical in less than one-day. 3DTracker is used to monitor this site, and the event was captured with this software. In addition, with the assistance of others, I got additional estimates of position using other software packages; those results are presented. Finally, the precision of both 3DTracker and RTD are

  18. Piezoelectric displacement in ceramics

    International Nuclear Information System (INIS)

    Stewart, M.; Cain, M.; Gee, M.

    1999-01-01

    This Good Practice Guide is intended to aid a user to perform displacement measurements on piezoelectric ceramic materials such as PZT (lead zirconium titanate) in either monolithic or multilayer form. The various measurement issues that the user must consider are addressed, and good measurement practise is described for the four most suitable methods. (author)

  19. Displacement laser interferometry with sub-nanometer uncertainty

    NARCIS (Netherlands)

    Cosijns, S.J.A.G.

    2004-01-01

    Development in industry is asking for improved resolution and higher accuracy in mechanical measurement. Together with miniaturization the demand for sub nanometer uncertainty on dimensional metrology is increasing rapidly. Displacement laser interferometers are used widely as precision displacement

  20. Optical vibration measurement of mechatronics devices

    Science.gov (United States)

    Yanabe, Shigeo

    1993-09-01

    An optical vibration measuring system which enables to detect both linear and angular displacement of 25 nm and 5 prad was developed. The system is mainly composed of a He-Ne laser, a displacement detecting photo-diode and lenses, and has linear and angular displacement magnification mechanism using two different principles of optical lever. The system was applied to measure vibrational characteristics of magnetic head slider of hard disk drives and to measure stator teeth driving velocities of ultrasonic motor.

  1. Analog Electronic Implementation of Unstable Dissipative Systems of Type I with Multi-Scrolls Displaced Along Space

    Science.gov (United States)

    Ontañón-García, L. J.; Lozoya-Ponce, R. E.

    2017-06-01

    Multi-scroll Unstable Dissipative Systems (UDS) in R3 which consist of piecewise linear systems are implemented electronically by means of analog computing. The scrolling behavior of the systems can be designed to oscillate along a specific axis or into space depending on the unstable and stable manifolds. In order for a multi-scroll attractor, this switching system must present at least two unstable hyperbolic focus-saddle equilibria with the same stability index, a negative real eigenvalue and a pair of complex conjugated eigenvalues with positive real part. Then, to displace the scrolls among the axes and space different switching control laws must be designed. By taking into consideration the mathematical expressions of the switching systems, the electronic implementations are carried out by means of operational amplifiers representing the real analog physical solution of the systems, from which the voltage is measured representing the states solution.

  2. Comparing the impact of time displaced and biased precipitation estimates for online updated urban runoff models.

    Science.gov (United States)

    Borup, Morten; Grum, Morten; Mikkelsen, Peter Steen

    2013-01-01

    When an online runoff model is updated from system measurements, the requirements of the precipitation input change. Using rain gauge data as precipitation input there will be a displacement between the time when the rain hits the gauge and the time where the rain hits the actual catchment, due to the time it takes for the rain cell to travel from the rain gauge to the catchment. Since this time displacement is not present for system measurements the data assimilation scheme might already have updated the model to include the impact from the particular rain cell when the rain data is forced upon the model, which therefore will end up including the same rain twice in the model run. This paper compares forecast accuracy of updated models when using time displaced rain input to that of rain input with constant biases. This is done using a simple time-area model and historic rain series that are either displaced in time or affected with a bias. The results show that for a 10 minute forecast, time displacements of 5 and 10 minutes compare to biases of 60 and 100%, respectively, independent of the catchments time of concentration.

  3. Measuring coseismic displacements with point-like targets offset tracking

    KAUST Repository

    Hu, Xie; Wang, Teng; Liao, Mingsheng

    2014-01-01

    Offset tracking is an important complement to measure large ground displacements in both azimuth and range dimensions where synthetic aperture radar (SAR) interferometry is unfeasible. Subpixel offsets can be obtained by searching for the cross-correlation peak calculated from the match patches uniformly distributed on two SAR images. However, it has its limitations, including redundant computation and incorrect estimations on decorrelated patches. In this letter, we propose a simple strategy that performs offset tracking on detected point-like targets (PT). We first detect image patches within bright PT by using a sinc-like template from a single SAR image and then perform offset tracking on them to obtain the pixel shifts. Compared with the standard method, the application on the 2010 M 7.2 El Mayor-Cucapah earthquake shows that the proposed PT offset tracking can significantly increase the cross-correlation and thus result in both efficiency and reliability improvements. © 2013 IEEE.

  4. Particle displacement tracking for PIV

    Science.gov (United States)

    Wernet, Mark P.

    1990-01-01

    A new Particle Imaging Velocimetry (PIV) data acquisition and analysis system, which is an order of magnitude faster than any previously proposed system has been constructed and tested. The new Particle Displacement Tracing (PDT) system is an all electronic technique employing a video camera and a large memory buffer frame-grabber board. Using a simple encoding scheme, a time sequence of single exposure images are time coded into a single image and then processed to track particle displacements and determine velocity vectors. Application of the PDT technique to a counter-rotating vortex flow produced over 1100 velocity vectors in 110 seconds when processed on an 80386 PC.

  5. Displaced Sense: Displacement, Religion and Sense-making

    OpenAIRE

    Naidu, Maheshvari

    2016-01-01

    Whether formally categorized as refugees or not, displaced migrants experience varying degrees of vulnerability in relation to where they find themselves displaced. The internally displaced furthermore squat invisibly and outside the boundaries of the legal framework and incentive structures accorded to those classified as 'refugee'. They are thus arguably, by and large, left to source sustaining solutions for themselves. This article works through the theoretical prism of sense-making theory...

  6. Lateral vibration analysis of continuous bridges utilizing equal displacement rule

    Directory of Open Access Journals (Sweden)

    Biao Wei

    Full Text Available The application of equal displacement rule simplifies the evaluation of lateral displacement demand forSDOF system. For complex multi-degree-of-freedom (MDOF structures such as continuous bridge systems, however, it requires more investigations. In this paper, a comprehensive parametric study of the ratio of maximum inelastic displacement to maximum elastic displacement for typical continuous bridges is performedto advance the application of equal displacement rule to MDOF systems. Particurlarly for the bridges with long periods, this adapted methodlogy is further simplified. It is concluded that equal displacement rule of MDOF is applicable to continuous bridges when the periods of the main modes are no less than the limiting period, which usually serves as an indication to the level of inelastic deformation for a bridge subjected to an earthquake.

  7. Performance of displacement ventilation in practice

    DEFF Research Database (Denmark)

    Naidenov, K.; Pitchurov, G.; Langkilde, Gunnar

    2002-01-01

    This paper presents results of a field study in offices with displacement ventilation. It comprises detailed physical measurements of the thermal environment and collection of occupants´ response at 227 workplaces. The results, both physical measurements and human response, identified draught...... as the major local discomfort in the rooms with displacement ventilation. Twenty-three percent of the occupants were daily bothered by draught. In some buildings the maintenance personnel tried to improve occupants´ thermal comfort by raising the supply air temperature or office workers themselves blocked...

  8. Rod displacement measurements by x-ray CT and its impact on thermal-hydraulics in tight-lattice rod bundle (Joint research)

    International Nuclear Information System (INIS)

    Mitsutake, Toru; Misawa, Takeharu; Kureta, Masatoshi; Akimoto, Hajime

    2005-06-01

    In tight-lattice simulated rod bundles with about 1 mm gap between rods, a rod displacement might affect thermal-hydraulic characteristics since the displacement has a strong impact on the flow area change along the heated section. It should be important to estimate how large the rod position displacement could quantitatively affect critical power for the tight-lattice rod bundle from the point of improvement of prediction capability of subchannel analysis. In the present study, the inside-structure observation of the simulated seven-rod bundle of Reduced Moderation Water Reactor (RMWR) was made through the whole length of the test assembly. Based on the measured rod position data, the relation between the rod position displacement and the heat transfer characteristics was investigated experimentally and through the two kinds of subchannel analysis, the nominal rod position case and the measured rod position case, the effect on the predicted critical power was estimated. The high-energy X-ray computer tomograph (CT) of Fuels Monitoring Facilities (FMF) at the O-arai Engineering Center in Japan Nuclear Cycle Institute (JNC) was applied for the inside-structure observation of the test assembly. The CT view of the cross sections within the test assembly assured the hexagonal rod position arrangement was almost the same as expected by design. The measured data with the X-ray CT facility showed that all rod displacements were small, 0.5 millimeters at maximum and 0.2 millimeters in average. In the heat transfer experiments for the seven-rod bundle, the boiling transition (BT) position and the rod surface temperature behavior was measured. All thermocouples on the center rod downstream from the BT-onset axial height showed almost simultaneous temperature increase due to BT. And the thermocouples located on the same axial heights showed quite similar time-variation behaviors in the vapor cooling heat transfer regime. These results demonstrated the effect of the

  9. Fiber-optic displacement sensors on the Hunters Trophy UGT impulse gauge experiments

    Energy Technology Data Exchange (ETDEWEB)

    Green, R.E.L.; Poutiatine, A.I.

    1995-03-01

    As part of a program to develop gauges for measurement of various mechanical properties in hostile environments, the authors fielded purely optical displacement sensors at the ends of long fiber-optic cables as supplements to the regular displacement sensors of four impulse gauges fielded as part of a materials study on the Hunters Trophy underground effects test at the Nevada Test Site. These fiber-optic sensor systems and their performance on the Hunters Trophy test are described in this report.

  10. Correlations between Energy and Displacement Demands for Performance-Based Seismic Engineering

    Science.gov (United States)

    Mollaioli, Fabrizio; Bruno, Silvia; Decanini, Luis; Saragoni, Rodolfo

    2011-01-01

    The development of a scientific framework for performance-based seismic engineering requires, among other steps, the evaluation of ground motion intensity measures at a site and the characterization of their relationship with suitable engineering demand parameters (EDPs) which describe the performance of a structure. In order to be able to predict the damage resulting from earthquake ground motions in a structural system, it is first necessary to properly identify ground motion parameters that are well correlated with structural response and, in turn, with damage. Since structural damage during an earthquake ground motion may be due to excessive deformation or to cumulative cyclic damage, reliable methods for estimating displacement demands on structures are needed. Even though the seismic performance is directly related to the global and local deformations of the structure, energy-based methodologies appear more helpful in concept, as they permit a rational assessment of the energy absorption and dissipation mechanisms that can be effectively accomplished to balance the energy imparted to the structure. Moreover, energy-based parameters are directly related to cycles of response of the structure and, therefore, they can implicitly capture the effect of ground motion duration, which is ignored by conventional spectral parameters. Therefore, the identification of reliable relationships between energy and displacement demands represents a fundamental issue in both the development of more reliable seismic code provisions and the evaluation of seismic vulnerability aimed at the upgrading of existing hazardous facilities. As these two aspects could become consistently integrated within a performance-based seismic design methodology, understanding how input and dissipated energy are correlated with displacement demands emerges as a decisive prerequisite. The aim of the present study is the establishment of functional relationships between input and dissipated energy

  11. Surface displacement imaging by interferometry with a light emitting diode

    International Nuclear Information System (INIS)

    Dilhaire, Stefan; Grauby, Stephane; Jorez, Sebastien; Lopez, Luis David Patino; Rampnoux, Jean-Michel; Claeys, Wilfrid

    2002-01-01

    We present an imaging technique to measure static surface displacements of electronic components. A device is supplied by a transient current that creates a variation of temperature, thus a surface displacement. To measure the latter, a setup that is based on a Michelson interferometer is used. To avoid the phenomenon of speckle and the drawbacks inherent to it, we use a light emitting diode as the light source for the interferometer. The detector is a visible CCD camera that analyzes the optical signal containing the information of surface displacement of the device. Combining images, we extract the amplitude of the surface displacement. Out-of-plane surface-displacement images of a thermoelectric device are presented

  12. The Effect of Basepair Mismatch on DNA Strand Displacement

    OpenAIRE

    Broadwater, D.?W.?Bo; Kim, Harold?D.

    2016-01-01

    DNA strand displacement is a key reaction in DNA homologous recombination and DNA mismatch repair and is also heavily utilized in DNA-based computation and locomotion. Despite its ubiquity in science and engineering, sequence-dependent effects of displacement kinetics have not been extensively characterized. Here, we measured toehold-mediated strand displacement kinetics using single-molecule fluorescence in the presence of a single base pair mismatch. The apparent displacement rate varied si...

  13. Project-induced displacement, secondary stressors, and health.

    Science.gov (United States)

    Cao, Yue; Hwang, Sean-Shong; Xi, Juan

    2012-04-01

    It has been estimated that about 15 million people are displaced by development projects around the world each year. Despite the magnitude of people affected, research on the health and other impacts of project-induced displacement is rare. This study extends existing knowledge by exploring the short-term health impact of a large scale population displacement resulting from China's Three Gorges Dam Project. The study is theoretically guided by the stress process model, but we supplement it with Cernea's impoverishment risks and reconstruction (IRR) model widely used in displacement literature. Our panel analysis indicates that the displacement is associated positively with relocatees' depression level, and negatively with their self-rated health measured against a control group. In addition, a path analysis suggests that displacement also affects depression and self-rated health indirectly by changing social integration, socioeconomic status, and community resources. The importance of social integration as a protective mechanism, a factor that has been overlooked in past studies of population displacement, is highlighted in this study. Published by Elsevier Ltd.

  14. On the biophysics and kinetics of toehold-mediated DNA strand displacement.

    Science.gov (United States)

    Srinivas, Niranjan; Ouldridge, Thomas E; Sulc, Petr; Schaeffer, Joseph M; Yurke, Bernard; Louis, Ard A; Doye, Jonathan P K; Winfree, Erik

    2013-12-01

    Dynamic DNA nanotechnology often uses toehold-mediated strand displacement for controlling reaction kinetics. Although the dependence of strand displacement kinetics on toehold length has been experimentally characterized and phenomenologically modeled, detailed biophysical understanding has remained elusive. Here, we study strand displacement at multiple levels of detail, using an intuitive model of a random walk on a 1D energy landscape, a secondary structure kinetics model with single base-pair steps and a coarse-grained molecular model that incorporates 3D geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Two factors explain the dependence of strand displacement kinetics on toehold length: (i) the physical process by which a single step of branch migration occurs is significantly slower than the fraying of a single base pair and (ii) initiating branch migration incurs a thermodynamic penalty, not captured by state-of-the-art nearest neighbor models of DNA, due to the additional overhang it engenders at the junction. Our findings are consistent with previously measured or inferred rates for hybridization, fraying and branch migration, and they provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems.

  15. Variable Displacement Control of the Concrete Pumping System Based on Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Ye Min

    2017-01-01

    Full Text Available To solve the problems of cylinder piston striking cylinder and the hydraulic shocking of the main pump, and causing energy waste problem, the method of variable displacement control of piston stroke was proposed. In order to achieve effective control of the piston stroke, variable displacement control model was established under the physical constraint condition of non-collision between piston and cylinder. And the control process was realized by Dynamic Programming(DP, the simulation and test results show that piston of concrete pumping system don’t strike cylinder and reduce the hydraulic shock of the main pump outlet, meanwhile improve the response speed of the cylinder and achieve energy-saving purposes under varying loads. This control model built in the integration design space of structure variable and control variable is of guiding significance for solving open-loop system’s engineering problems.

  16. Sensorless displacement estimation of a shape memory alloy coil spring actuator using inductance

    International Nuclear Information System (INIS)

    Kim, Hongjip; Lee, Dae-young; Cho, Kyu-Jin; Han, Yongsu; Ha, Jung-Ik

    2013-01-01

    To measure the displacement of a shape memory alloy (SMA) coil spring actuator for feedback control, displacement sensors larger than the actuator are normally required. In this study, a novel method for estimating the displacement of an SMA coil spring actuator without a sensor is proposed. Instead of a sensor, coil inductance is used for estimating the displacement. Coil inductance is estimated by measuring the voltage and the transient response of the current. It has a one-to-one relationship with the displacement of the coil and is not affected by load. Previous methods for estimating displacement using resistance measurements are heavily affected by load variations. The experimental results herein show that displacement is estimated with reasonable accuracy under varying loads using coil inductance. This sensorless method of estimating the displacement of an SMA coil spring actuator can be used to build a compact feedback controller because there is no need for a bulky displacement sensor. (paper)

  17. A STUDY OF DISPLACEMENT-LEVEL DEPENDENCY OF VERTICAL STIFFNESS OF PILE - COMPARISONS BETWEEN STATIC LOADING TEST AND MEASUREMENTS DURING TRAIN PASSING -

    Science.gov (United States)

    Nihei, Tatsuya; Nishioka, Hidetoshi; Kawamura, Chikara; Nishimura, Masahiro; Edamatsu, Masayuki; Koda, Masayuki

    In order to introduce the performance based design of pile foundation, vertical stiffness of pile is one of the important design factors. Although it had been es timated the vertical stiffness of pile had the displacement-level dependency, it had been not clarified. We compared the vertical stiffness of pile measured by two loading conditions at pile foundation of the railway viaduct. Firstly, we measured the vertical stiffness at static loading test under construction of the viaduct. Secondly, we measured the vertical stiffness at the time of train passing. So, we recognized that the extrapolation of the displacement level dependency in static loading test could evaluate the vertical stiffness of pile during train passing.

  18. Force-displacement response of unreinforced masonry walls for seismic design

    International Nuclear Information System (INIS)

    Petry, S.

    2015-01-01

    This thesis submitted to the Swiss Federal Institute of Technology EPFL contributes to the improvement of the design and assessment methods for unreinforced masonry (URM) wall structures built with modern hollow core clay bricks. First, an experimental campaign on the lateral nonlinear in-plane response of URM walls is presented; secondly, an existing dataset on URM walls is extended and reanalysed. A newly developed mechanical model which describes the full force-displacement response of URM walls is described. Two series of URM walls tested under lateral in-plane loading are presented. Throughout the quasi-cyclic tests of all URM walls, the deformations were recorded using a digital photogrammetric measurement system which tracked the displacement field of the walls. Based on these findings, a new mechanical model is proposed which describes the nonlinear force-displacement response of flexural dominated URM walls up to near collapse

  19. Combined Simulation of a Micro Permanent Magnetic Linear Contactless Displacement Sensor

    Directory of Open Access Journals (Sweden)

    Jing Gao

    2010-09-01

    Full Text Available The permanent magnetic linear contactless displacement (PLCD sensor is a new type of displacement sensor operating on the magnetic inductive principle. It has many excellent properties and has already been used for many applications. In this article a Micro-PLCD sensor which can be used for microelectromechanical system (MEMS measurements is designed and simulated with the CST EM STUDIO® software, including building a virtual model, magnetostatic calculations, low frequency calculations, steady current calculations and thermal calculations. The influence of some important parameters such as air gap dimension, working frequency, coil current and eddy currents etc. is studied in depth.

  20. Generating Sub-nanometer Displacement Using Reduction Mechanism Consisting of Torsional Leaf Spring Hinges

    Directory of Open Access Journals (Sweden)

    Fukuda Makoto

    2014-02-01

    Full Text Available Recent demand on the measurement resolution of precise positioning comes up to tens of picometers. Some distinguished researches have been performed to measure the displacement in picometer order, however, few of them can verify the measurement performance as available tools in industry. This is not only because the picometer displacement is not yet required for industrial use, but also due to the lack of standard tools to verify such precise displacement. We proposed a displacement reduction mechanism for generating precise displacement using torsional leaf spring hinges (TLSHs that consist of four leaf springs arranged radially. It has been demonstrated that a prototype of the reduction mechanism was able to provide one-nanometer displacement with 1/1000 reduction rate by a piezoelectric actuator. In order to clarify the potential of the reduction mechanism, a displacement reduction table that can be mounted on AFM stage was newly developed using TLSHs. This paper describes the design of the reduction mechanism and the sub-nanometer displacement performance of the table obtained from its dynamic and static characteristics measured by displacement sensors and from the AFM images

  1. Subpixelic measurement of large 1D displacements: principle, processing algorithms, performances and software.

    Science.gov (United States)

    Guelpa, Valérian; Laurent, Guillaume J; Sandoz, Patrick; Zea, July Galeano; Clévy, Cédric

    2014-03-12

    This paper presents a visual measurement method able to sense 1D rigid body displacements with very high resolutions, large ranges and high processing rates. Sub-pixelic resolution is obtained thanks to a structured pattern placed on the target. The pattern is made of twin periodic grids with slightly different periods. The periodic frames are suited for Fourier-like phase calculations-leading to high resolution-while the period difference allows the removal of phase ambiguity and thus a high range-to-resolution ratio. The paper presents the measurement principle as well as the processing algorithms (source files are provided as supplementary materials). The theoretical and experimental performances are also discussed. The processing time is around 3 µs for a line of 780 pixels, which means that the measurement rate is mostly limited by the image acquisition frame rate. A 3-σ repeatability of 5 nm is experimentally demonstrated which has to be compared with the 168 µm measurement range.

  2. Coupon Test of an Elbow Component by Using Vision-based Measurement System

    International Nuclear Information System (INIS)

    Kim, Sung Wan; Jeon, Bub Gyu; Choi, Hyoung Suk; Kim, Nam Sik

    2016-01-01

    Among the various methods to overcome this shortcoming, vision-based methods to measure the strain of a structure are being proposed and many studies are being conducted on them. The vision-based measurement method is a noncontact method for measuring displacement and strain of objects by comparing between images before and after deformation. This method offers such advantages as no limitations in the surface condition, temperature, and shape of objects, the possibility of full filed measurement, and the possibility of measuring the distribution of stress or defects of structures based on the measurement results of displacement and strain in a map. The strains were measured with various methods using images in coupon test and the measurements were compared. In the future, the validity of the algorithm will be compared using stain gauge and clip gage, and based on the results, the physical properties of materials will be measured using a vision-based measurement system. This will contribute to the evaluation of reliability and effectiveness which are required for investigating local damages

  3. Coupon Test of an Elbow Component by Using Vision-based Measurement System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Wan; Jeon, Bub Gyu; Choi, Hyoung Suk; Kim, Nam Sik [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    Among the various methods to overcome this shortcoming, vision-based methods to measure the strain of a structure are being proposed and many studies are being conducted on them. The vision-based measurement method is a noncontact method for measuring displacement and strain of objects by comparing between images before and after deformation. This method offers such advantages as no limitations in the surface condition, temperature, and shape of objects, the possibility of full filed measurement, and the possibility of measuring the distribution of stress or defects of structures based on the measurement results of displacement and strain in a map. The strains were measured with various methods using images in coupon test and the measurements were compared. In the future, the validity of the algorithm will be compared using stain gauge and clip gage, and based on the results, the physical properties of materials will be measured using a vision-based measurement system. This will contribute to the evaluation of reliability and effectiveness which are required for investigating local damages.

  4. Impact of time displaced precipitation estimates for on-line updated models

    DEFF Research Database (Denmark)

    Borup, Morten; Grum, Morten; Mikkelsen, Peter Steen

    2012-01-01

    When an online runoff model is updated from system measurements the requirements to the precipitation estimates change. Using rain gauge data as precipitation input there will be a displacement between the time where the rain intensity hits the gauge and the time where the rain hits the actual...

  5. THERMAL DISPLACEMENT OF CRANKSHAFT AXIS OF SLOW-SPEED MARINE ENGINE

    Directory of Open Access Journals (Sweden)

    Lech Murawski

    2016-08-01

    Full Text Available The paper presents analysis of displacement of a crankshaft axis caused by temperature of marine, slow-speed main engine. Information of thermal displacement of a power transmission system axis is significant during a shaft line alignment and a crankshaft springing analysis. Warmed-up main engine is a source of deformations of an engine body as well as a ship hull in the area of an engine room and hence axis of a crankshaft and a shaftline. Engines' producers recommend the model of parallel displacement of the crankshaft axis under the influence of an engine heat. The model gives us the value (one number! of the crankshaft axis displacement in the hot propulsion system's condition. This model may be too simple in some cases. Presented numerical analyses are based on temperature measurements of the main engine body and the ship hull during a sea voyage. The paper presents computations of MAN B&W K98MC type engine (power: 40000 kW, revolutions: 94 rpm mounted on 4500 TEU container ship (length: 290 m. Propulsion system is working in nominal, steady-state conditions; it is the basic assumption during the analyses. Numerical analyses were preformed with usage of Nastran software based on Finite Element Method. The FEM model of the engine body comprised over 800 thousand degree of freedom. Stiffness of the ship hull (mainly double bottom with the foundation was modelled by a simple cuboid. Material properties of that cuboid were determined on the base of separately performed calculations.

  6. Determination of the mechanical parameters of rock mass based on a GSI system and displacement back analysis

    Science.gov (United States)

    Kang, Kwang-Song; Hu, Nai-Lian; Sin, Chung-Sik; Rim, Song-Ho; Han, Eun-Cheol; Kim, Chol-Nam

    2017-08-01

    It is very important to obtain the mechanical paramerters of rock mass for excavation design, support design, slope design and stability analysis of the underground structure. In order to estimate the mechanical parameters of rock mass exactly, a new method of combining a geological strength index (GSI) system with intelligent displacment back analysis is proposed in this paper. Firstly, average spacing of joints (d) and rock mass block rating (RBR, a new quantitative factor), surface condition rating (SCR) and joint condition factor (J c) are obtained on in situ rock masses using the scanline method, and the GSI values of rock masses are obtained from a new quantitative GSI chart. A correction method of GSI value is newly introduced by considering the influence of joint orientation and groundwater on rock mass mechanical properties, and then value ranges of rock mass mechanical parameters are chosen by the Hoek-Brown failure criterion. Secondly, on the basis of the measurement result of vault settlements and horizontal convergence displacements of an in situ tunnel, optimal parameters are estimated by combination of genetic algorithm (GA) and numerical simulation analysis using FLAC3D. This method has been applied in a lead-zinc mine. By utilizing the improved GSI quantization, correction method and displacement back analysis, the mechanical parameters of the ore body, hanging wall and footwall rock mass were determined, so that reliable foundations were provided for mining design and stability analysis.

  7. The effect of actuator bending on Lamb wave displacement fields generated by a piezoelectric patch

    International Nuclear Information System (INIS)

    Huang, H; Pamphile, T; Derriso, M

    2008-01-01

    A Lamb wave is a special type of elastic wave that is widely employed in structural health monitoring systems for damage detection. Recently, piezoelectric (piezo) patches have become popular for Lamb wave excitation and sensing because one piezo patch can serve as both the actuator and the sensor. All published work has assumed that the Lamb wave displacement field generated by a piezo patch actuator is axi-symmetric. However, we observed that piezo sensors placed at equal distances from the piezo patch actuator displayed different responses. In order to understand this phenomenon, we used a laser vibrometer to measure the full-field displacements around a circular piezo actuator noncontactly. The displacement fields excited by the piezo patch actuator are found to be directional, and this directionality is also frequency dependent, indicating that the out-of-plane bending dynamics of the piezo actuator may play an important role in the Lamb wave displacement fields. A simulation model that incorporates the bending deformation of the piezo patch into the calculations of the Lamb wave generation is then developed. The agreement between the simulated and measured displacement fields confirmed that the directionality of the Lamb wave displacement fields is governed by the bending deformation of the piezo patch actuator

  8. Multi-link laser interferometry architecture for interspacecraft displacement metrology

    Science.gov (United States)

    Francis, Samuel P.; Lam, Timothy T.-Y.; McClelland, David E.; Shaddock, Daniel A.

    2018-03-01

    Targeting a future Gravity Recovery and Climate Experiment (GRACE) mission, we present a new laser interferometry architecture that can be used to recover the displacement between two spacecraft from multiple interspacecraft measurements. We show it is possible to recover the displacement between the spacecraft centers of mass in post-processing by forming linear combinations of multiple, spatially offset, interspacecraft measurements. By canceling measurement error due to angular misalignment of the spacecraft, we remove the need for precise placement or alignment of the interferometer, potentially simplifying spacecraft integration. To realize this multi-link architecture, we propose an all-fiber interferometer, removing the need for any ultrastable optical components such as the GRACE Follow-On mission's triple mirror assembly. Using digitally enhanced heterodyne interferometry, the number of links is readily scalable, adding redundancy to our measurement. We present the concept, an example multi-link implementation and the signal processing required to recover the center of mass displacement from multiple link measurements. Finally, in a simulation, we analyze the limiting noise sources in a 9 link interferometer and ultimately show we can recover the 80 {nm}/√{ {Hz}} displacement sensitivity required by the GRACE Follow-On laser ranging interferometer.

  9. Conflict, displacement and health in the Middle East.

    Science.gov (United States)

    Mowafi, Hani

    2011-01-01

    Displacement is a hallmark of modern humanitarian emergencies. Displacement itself is a traumatic event that can result in illness or death. Survivors face challenges including lack of adequate shelter, decreased access to health services, food insecurity, loss of livelihoods, social marginalisation as well as economic and sexual exploitation. Displacement takes many forms in the Middle East and the Arab World. Historical conflicts have resulted in long-term displacement of Palestinians. Internal conflicts have driven millions of Somalis and Sudanese from their homes. Iraqis have been displaced throughout the region by invasion and civil strife. In addition, large numbers of migrants transit Middle Eastern countries or live there illegally and suffer similar conditions as forcibly displaced people. Displacement in the Middle East is an urban phenomenon. Many displaced people live hidden among host country populations in poor urban neighbourhoods - often without legal status. This represents a challenge for groups attempting to access displaced populations. Furthermore, health information systems in host countries often do not collect data on displaced people, making it difficult to gather data needed to target interventions towards these vulnerable populations. The following is a discussion of the health impacts of conflict and displacement in the Middle East. A review was conducted of published literature on migration and displacement in the region. Different cases are discussed with an emphasis on the recent, large-scale and urban displacement of Iraqis to illustrate aspects of displacement in this region.

  10. Minimization of small bowel volume within treatment fields using customized small bowel displacement system (SBDS)

    International Nuclear Information System (INIS)

    Lim, D. H.; Huh, S. J.; Ahn, Y. C.; Kim, D. Y.; Wu, H. G.; Kim, M. K.; Choi, D. R.; Shin, K. H.

    1997-01-01

    Authors designed a customized Small Bowel Displacement System(SBDS) to displace the small bowel from the pelvic radiation fields and minimize treatment-related bowel morbidities. From August 1995 to May 1996, 55 consecutive patients who received pelvic radiation therapy with the SBDS were included in this study. The SBDS consists of a customized styrofoam compression device which can displace the small bowel from the radiation fields and an individualized immobilization abdominal board for easy daily setup in prone position. After opacifying the small bowel with Barium, the patients were laid prone and posterior-anterior (PA) and lateral (LAT) simulation films were taken with and without the SBDS. The areas of the small bowel included in the radiation fields with and without the SBDS were compared. Using the SBDS, the mean small bowel area was reduced by 59% on PA and 51% on LAT films (P=0.0001). In six patients (6/55, 11%), it was possible that no small bowel was included within the treatment fields. The mean upward displacement of the most caudal small bowel was 4.8 cm using the SBDS. Only 15% (8/55) of patients treated with the SBDS manifested diarrhea requiring medication. The SBDS is a novel method that can be used to displace the small bowel away from the treatment portal effectively and reduce the radiation therapy morbidities. Compliance with setup is excellent when the SBDS is used. (author)

  11. Three dimensional boundary displacement due to stable ideal kink modes excited by external n = 2 magnetic perturbations

    Science.gov (United States)

    Willensdorfer, M.; Strumberger, E.; Suttrop, W.; Dunne, M.; Fischer, R.; Birkenmeier, G.; Brida, D.; Cavedon, M.; Denk, S. S.; Igochine, V.; Giannone, L.; Kirk, A.; Kirschner, J.; Medvedeva, A.; Odstrčil, T.; Ryan, D. A.; The ASDEX Upgrade Team; The EUROfusion MST1 Team

    2017-11-01

    In low-collisionality (ν\\star) scenarios exhibiting mitigation of edge localized mode (ELMs), stable ideal kink modes at the edge are excited by externally applied magnetic perturbation (MP)-fields. In ASDEX Upgrade these modes can cause three-dimensional (3D) boundary displacements up to the centimeter range. These displacements have been measured using toroidally localized high resolution diagnostics and rigidly rotating n=2 MP-fields with various applied poloidal mode spectra. These measurements are compared to non-linear 3D ideal magnetohydrodynamics (MHD) equilibria calculated by VMEC. Comprehensive comparisons have been conducted, which consider for instance plasma movements due to the position control system, attenuation due to internal conductors and changes in the edge pressure profiles. VMEC accurately reproduces the amplitude of the displacement and its dependencies on the applied poloidal mode spectra. Quantitative agreement is found around the low field side (LFS) midplane. The response at the plasma top is qualitatively compared. The measured and predicted displacements at the plasma top maximize when the applied spectra is optimized for ELM-mitigation. The predictions from the vacuum modeling generally fails to describe the displacement at the LFS midplane as well as at the plasma top. When the applied mode spectra is set to maximize the displacement, VMEC and the measurements clearly surpass the predictions from the vacuum modeling by a factor of four. Minor disagreements between VMEC and the measurements are discussed. This study underlines the importance of the stable ideal kink modes at the edge for the 3D boundary displacement in scenarios relevant for ELM-mitigation.

  12. Displacements of Metallic Thermal Protection System Panels During Reentry

    Science.gov (United States)

    Daryabeigi, Kamran; Blosser, Max L.; Wurster, Kathryn E.

    2006-01-01

    Bowing of metallic thermal protection systems for reentry of a previously proposed single-stage-to-orbit reusable launch vehicle was studied. The outer layer of current metallic thermal protection system concepts typically consists of a honeycomb panel made of a high temperature nickel alloy. During portions of reentry when the thermal protection system is exposed to rapidly varying heating rates, a significant temperature gradient develops across the honeycomb panel thickness, resulting in bowing of the honeycomb panel. The deformations of the honeycomb panel increase the roughness of the outer mold line of the vehicle, which could possibly result in premature boundary layer transition, resulting in significantly higher downstream heating rates. The aerothermal loads and parameters for three locations on the centerline of the windward side of this vehicle were calculated using an engineering code. The transient temperature distributions through a metallic thermal protection system were obtained using 1-D finite volume thermal analysis, and the resulting displacements of the thermal protection system were calculated. The maximum deflection of the thermal protection system throughout the reentry trajectory was 6.4 mm. The maximum ratio of deflection to boundary layer thickness was 0.032. Based on previously developed distributed roughness correlations, it was concluded that these defections will not result in tripping the hypersonic boundary layer.

  13. On virtual displacement and virtual work in Lagrangian dynamics

    International Nuclear Information System (INIS)

    Ray, Subhankar; Shamanna, J

    2006-01-01

    The confusion and ambiguity encountered by students in understanding virtual displacement and virtual work is discussed in this paper. A definition of virtual displacement is presented that allows one to express them explicitly for holonomic (velocity independent), non-holonomic (velocity dependent), scleronomous (time independent) and rheonomous (time dependent) constraints. It is observed that for holonomic, scleronomous constraints, the virtual displacements are the displacements allowed by the constraints. However, this is not so for a general class of constraints. For simple physical systems, it is shown that the work done by the constraint forces on virtual displacements is zero. This motivates Lagrange's extension of d'Alembert's principle to a system of particles in constrained motion. However, a similar zero work principle does not hold for the allowed displacements. It is also demonstrated that d'Alembert's principle of zero virtual work is necessary for the solvability of a constrained mechanical problem. We identify this special class of constraints, physically realized and solvable, as the ideal constraints. The concept of virtual displacement and the principle of zero virtual work by constraint forces are central to both Lagrange's method of undetermined multipliers and Lagrange's equations in generalized coordinates

  14. Review of current capabilities for the measurement of stress, displacement, and in situ deformation modulus

    International Nuclear Information System (INIS)

    Schrauf, T.W.; Pratt, H.R.

    1979-12-01

    Current capabilities for the measurement of stress, displacement, and in situ deformation modulus in rock masses are reviewed as to their accuracy, sensitivity, advantages, and limitations. Consideration is given to both the instruments themselves and the measurement technique. Recommendations concerning adaptation of existing measurement techniques to repository monitoring are also discussed. These recommendations include: (1) development of a modified borehole deformation gage with improved long-term stability and reliability and reduced thermal sensitivity; (2) development of a downhole transducer type of extensometer; (3) development of a rigid inclusion type gage; (4) development of an improved vibrating wire stressmeter with greater accuracy and simplified calibration and installation requirements; and (5) modification of standard rod extensometers to improve their sensitivity

  15. Measuring a film flowing down a tube inner wall using a laser focus displacement meter and an image-processing method

    International Nuclear Information System (INIS)

    Takamasa, Tomoji; Kobayashi, Kenji

    1999-01-01

    To elucidate details of the fascinating nonlinear phenomena of waves on a film, spatial temporal knowledge of the interfacial waves is essential. This paper presents an experimental study on waves on a film flowing down a vertical tube inner wall measured with a laser focus displacement meter (LFD) and an image-processing method. As a result, the film thickness was measured within a 1% margin of error by LFD, and the wave velocity was measured within a 10% margin of error by the image-processing. The experimental results are summarized as follows: At entry length L = 900 mm, the wave becomes a two-wave system. In the entry region, L = 216 mm, and 400 mm, the wave amplitude decreases as the flow rate increases, in the same manner as that in a film flowing down a plate wall. The velocity measured by the image processing agreed well with that calculated using Nusselt's theoretical equation and the Ito-Sasaki empirical equation for Reynolds numbers < 250. (author)

  16. A clinical comparison of cordless and conventional displacement systems regarding clinical performance and impression quality.

    Science.gov (United States)

    Acar, Özlem; Erkut, Selim; Özçelik, Tuncer Burak; Ozdemır, Erdem; Akçil, Mehtap

    2014-05-01

    It is not clear whether newly introduced cordless displacement systems are better able to manage gingiva than conventional systems. The purpose of this in vivo study was to evaluate the gingival management ability of 4 different displacement methods with a standardized subgingival preparation finish line. The effects of 4 displacement techniques on gingival management and impression quality were evaluated by means of 6 evaluation criteria. A subgingival preparation finish line of between 1 and 2 mm was ensured, and the buccal aspects of 252 (n=63) teeth were clinically assessed for ease of application, time spent, bleeding, remnants, and dilatation. The complete reproduction of the preparation finish line and the bubble and void formations on polyether impressions were also evaluated. The data were statistically analyzed with the χ(2) test (α=.05). The Bonferroni correction was used to control Type I error for the pairwise comparison groups (α=.008). Statistically significant differences were found for all criteria among the groups (Pimpression quality (Pimpression quality (P>.008). The retraction cap with paste group showed better results for ease of application, time spent, and bleeding than the aluminum chloride impregnated cord group (Pimpression qualities. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. Effects of Fault Displacement on Emplacement Drifts

    International Nuclear Information System (INIS)

    Duan, F.

    2000-01-01

    The purpose of this analysis is to evaluate potential effects of fault displacement on emplacement drifts, including drip shields and waste packages emplaced in emplacement drifts. The output from this analysis not only provides data for the evaluation of long-term drift stability but also supports the Engineered Barrier System (EBS) process model report (PMR) and Disruptive Events Report currently under development. The primary scope of this analysis includes (1) examining fault displacement effects in terms of induced stresses and displacements in the rock mass surrounding an emplacement drift and (2 ) predicting fault displacement effects on the drip shield and waste package. The magnitude of the fault displacement analyzed in this analysis bounds the mean fault displacement corresponding to an annual frequency of exceedance of 10 -5 adopted for the preclosure period of the repository and also supports the postclosure performance assessment. This analysis is performed following the development plan prepared for analyzing effects of fault displacement on emplacement drifts (CRWMS M and O 2000). The analysis will begin with the identification and preparation of requirements, criteria, and inputs. A literature survey on accommodating fault displacements encountered in underground structures such as buried oil and gas pipelines will be conducted. For a given fault displacement, the least favorable scenario in term of the spatial relation of a fault to an emplacement drift is chosen, and the analysis is then performed analytically. Based on the analysis results, conclusions are made regarding the effects and consequences of fault displacement on emplacement drifts. Specifically, the analysis will discuss loads which can be induced by fault displacement on emplacement drifts, drip shield and/or waste packages during the time period of postclosure

  18. Displacement ventilation

    DEFF Research Database (Denmark)

    Kosonen, Risto; Melikov, Arsen Krikor; Mundt, Elisabeth

    The aim of this Guidebook is to give the state-of-the art knowledge of the displacement ventilation technology, and to simplify and improve the practical design procedure. The Guidebook discusses methods of total volume ventilation by mixing ventilation and displacement ventilation and it gives...... insights of the performance of the displacement ventilation. It also shows practical case studies in some typical applications and the latest research findings to create good local micro-climatic conditions....

  19. Direct measurement of the image displacement instability in a linear induction accelerator

    Science.gov (United States)

    Burris-Mog, T. J.; Ekdahl, C. A.; Moir, D. C.

    2017-06-01

    The image displacement instability (IDI) has been measured on the 20 MeV Axis I of the dual axis radiographic hydrodynamic test facility and compared to theory. A 0.23 kA electron beam was accelerated across 64 gaps in a low solenoid focusing field, and the position of the beam centroid was measured to 34.3 meters downstream from the cathode. One beam dynamics code was used to model the IDI from first principles, while another code characterized the effects of the resistive wall instability and the beam break-up (BBU) instability. Although the BBU instability was not found to influence the IDI, it appears that the IDI influences the BBU. Because the BBU theory does not fully account for the dependence on beam position for coupling to cavity transverse magnetic modes, the effect of the IDI is missing from the BBU theory. This becomes of particular concern to users of linear induction accelerators operating in or near low magnetic guide fields tunes.

  20. Marginal greenhouse gas emissions displacement of wind power in Great Britain

    International Nuclear Information System (INIS)

    Thomson, R. Camilla; Harrison, Gareth P.; Chick, John P.

    2017-01-01

    There is considerable uncertainty over the effect of wind power on the operation of power systems, and the consequent greenhouse gas (GHG) emissions displacement; this is used to project emissions reductions that inform energy policy. Currently, it is approximated as the average emissions of the whole system, despite an acknowledgement that wind will actually displace only the generators operating on the margin. This article presents a methodology to isolate the marginal emissions displacement of wind power from historical empirical data, taking into account the impact on the operating efficiency of coal and CCGT plants. For Great Britain over 2009–2014, it was found that marginal emissions displacement has generally been underestimated with, for example, the emissions displacement factor for wind being 21% higher than that the average emissions factor in 2010. The actual displacement depends upon the relative merit of coal and CCGT, with a greater discrepancy between marginal displacement and average emissions during more normal system operation, suggesting that policies to penalise high-carbon generation can increase the effectiveness of wind at reducing GHG emissions. Furthermore, it was also identified that wind power is almost as technically effective as demand-side reductions at decreasing GHG emissions from power generation. - Highlights: • Marginal emissions displacement was calculated from operational data for 2009–2014. • Existing estimates of emissions displacement are generally low. • Emissions displacement is a function of the relative merit of coal and CCGT plants. • Policies to penalise high-carbon generation should increase emissions displacement. • Wind almost as effective as demand-reduction at reducing emissions.

  1. Development of an automatic test equipment for nano gauging displacement transducers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y-C [National Yunlin University of Science and Technology, Taiwan (China); Jywe, W-Y [National Formosa University, Taiwan (China); Liu, C-H [National Formosa University, Taiwan (China)

    2005-01-01

    In order to satisfy the increasing demands on the precision in manufacturing technology, nanaometrology gradually becomes more important in manufacturing process. To ensure the precision of manufacture, precise measuring instruments and sensors play a decisive role for the accurate characterization and inspection of products. For linear length inspection, high precision gauging displacement transducers, i.e. nano gauging displacement transducers (NGDT), have been often utilized, which have been often utilized, which have the resolution in the nanometer range and can achieve an accuracy of less than 100 nm. Such measurement instruments include transducers based on electronic as well as optical measurement principles, e.g. inductive, incremental-optical or interference optical. To guarantee the accuracy and the traceability to the definition of the meter, calibration and test of NGDT are essential. Currently, there are some methods and machines for test of NGDT, but they suffer from various disadvantages. Some of them permit only manual test procedures which are time-consuming, e.g. with high accurate gauge blocks as material measures. Other tests can reach higher accuracy only in the micrometer range or result in uncertainties of more than 100 nm in the large measuring ranges. To realize the test of NGDT with a high resolution as well as a large measuring range, an automatic test equipment was constructed, that has a resolution of 1.24 nm, a measuring range of up to 20 nm (60 mm) and a measuring uncertainty of approximate {+-}10 nm can fulfil the requirements of high resolution within the nanometer range while simultaneously covering a large measuring range in the order of millimeters. The test system includes a stable frame, a polarization interferometer, an angle sensor, an angular control, a drive system and piezo translators. During the test procedure, the angular control and piezo translators minimize the Abbe error. For the automation of the test procedure a

  2. Development of an automatic test equipment for nano gauging displacement transducers

    International Nuclear Information System (INIS)

    Wang, Y-C; Jywe, W-Y; Liu, C-H

    2005-01-01

    In order to satisfy the increasing demands on the precision in manufacturing technology, nanaometrology gradually becomes more important in manufacturing process. To ensure the precision of manufacture, precise measuring instruments and sensors play a decisive role for the accurate characterization and inspection of products. For linear length inspection, high precision gauging displacement transducers, i.e. nano gauging displacement transducers (NGDT), have been often utilized, which have been often utilized, which have the resolution in the nanometer range and can achieve an accuracy of less than 100 nm. Such measurement instruments include transducers based on electronic as well as optical measurement principles, e.g. inductive, incremental-optical or interference optical. To guarantee the accuracy and the traceability to the definition of the meter, calibration and test of NGDT are essential. Currently, there are some methods and machines for test of NGDT, but they suffer from various disadvantages. Some of them permit only manual test procedures which are time-consuming, e.g. with high accurate gauge blocks as material measures. Other tests can reach higher accuracy only in the micrometer range or result in uncertainties of more than 100 nm in the large measuring ranges. To realize the test of NGDT with a high resolution as well as a large measuring range, an automatic test equipment was constructed, that has a resolution of 1.24 nm, a measuring range of up to 20 nm (60 mm) and a measuring uncertainty of approximate ±10 nm can fulfil the requirements of high resolution within the nanometer range while simultaneously covering a large measuring range in the order of millimeters. The test system includes a stable frame, a polarization interferometer, an angle sensor, an angular control, a drive system and piezo translators. During the test procedure, the angular control and piezo translators minimize the Abbe error. For the automation of the test procedure a

  3. Development of an automatic test equipment for nano gauging displacement transducers

    Science.gov (United States)

    Wang, Yung-Chen; Jywe, Wen-Yuh; Liu, Chien-Hung

    2005-01-01

    In order to satisfy the increasing demands on the precision in manufacturing technology, nanaometrology gradually becomes more important in manufacturing process. To ensure the precision of manufacture, precise measuring instruments and sensors play a decesive role for the accurate characterization and inspection of products. For linear length inspection, high precision gauging displacement transducers, i.e. nano gauging displacement transducers (NGDT), have been often utilized, which have been often utilized, which have the resolution in the nanometer range and can achieve an accuracy of less than 100 nm. Such measurement instruments include transducers based on electronic as well as optical measurement principles, e.g. inductive, incremental-optical or interference optical. To guarantee the accuracy and the traceability to the definition of the meter, calibration and test of NGDT are essential. Currently, there are some methods and machines for test of NGDT, but they suffer from various disadvantages. Some of them permit only manual test procedures which are time-consuming, e.g. with high accurate gauge blocks as material measures. Other tests can reach higher accuracy only in the micrometer range or result in uncertainties of more than 100 nm in the large measuring ranges. To realize the test of NGDT with a high resolution as well as a large measuring range, an automatic test equipment was constructed, that has a resolution of 1.24 nm, a measuring range of up to 20 nm (60 mm) and a measuring uncertainty of approximate ±10 nm can fulfil the requirements of high resolution within the nanometer range while simultaneously covering a large measuring range in the order of millimeters. The test system includes a stable frame, a polarization interferometer, an angle sensor, an angular control, a drive system and piezo translators. During the test procedure, the angular control and piezo translators minimize the Abbe error. For the automation of the test procedure a

  4. Flat Optical Fiber Daylighting System with Lateral Displacement Sun-Tracking Mechanism for Indoor Lighting

    Directory of Open Access Journals (Sweden)

    Ngoc Hai Vu

    2017-10-01

    Full Text Available An essential impact which can improve the indoor environment and save on power consumption for artificial lighting is utilization of daylight. Optical fiber daylighting technology offers a way to use direct daylight for remote spaces in a building. However, the existing paradigm based on the precise orientation of sunlight concentrator toward the Sun is very costly and difficult to install on the roof of buildings. Here, we explore an alternative approach using mirror-coated lens array and planar waveguide to develop a flat optical fiber daylighting system (optical fiber daylighting panel with lateral displacement Sun-tracking mechanism. Sunlight collected and reflected by each mirror-coated lens in a rectangular lens array is coupled into a planar waveguide using cone prisms placed at each lens focus. This geometry yields a thin, flat profile for Sunlight concentrator. Our proposed concentrating panel can be achieved with 35 mm thickness while the concentrator’s width and length are 500 mm × 500 mm. The commercial optical simulation tool (LightToolsTM was used to develop the simulation models and analyze the system performance. Simulation results based on the designed system demonstrated an optical efficiency of 51.4% at a concentration ratio of 125. The system can support utilizing a lateral displacement Sun-tracking system, which allows for replacing bulky and robust conventional rotational Sun-tracking systems. This study shows a feasibility of a compact and inexpensive optical fiber daylighting system to be installed on the roof of buildings.

  5. Prostate HDR brachytherapy catheter displacement between planning and treatment delivery

    International Nuclear Information System (INIS)

    Whitaker, May; Hruby, George; Lovett, Aimee; Patanjali, Nitya

    2011-01-01

    Background and purpose: HDR brachytherapy is used as a conformal boost for treating prostate cancer. Given the large doses delivered, it is critical that the volume treated matches that planned. Our outpatient protocol comprises two 9 Gy fractions, two weeks apart. We prospectively assessed catheter displacement between CT planning and treatment delivery. Materials and methods: Three fiducial markers and the catheters were implanted under transrectal ultrasound guidance. Metal marker wires were inserted into 4 reference catheters before CT; marker positions relative to each other and to the marker wires were measured from the CT scout. Measurements were repeated immediately prior to treatment delivery using pelvic X-ray with marker wires in the same reference catheters. Measurements from CT scout and film were compared. For displacements of 5 mm or more, indexer positions were adjusted prior to treatment delivery. Results: Results are based on 48 implants, in 25 patients. Median time from planning CT to treatment delivery was 254 min (range 81–367 min). Median catheter displacement was 7.5 mm (range −2.9–23.9 mm), 67% of implants had displacement of 5 mm or greater. Displacements were predominantly caudal. Conclusions: Catheter displacement can occur in the 1–3 h between the planning CT scan and treatment. It is recommended that departments performing HDR prostate brachytherapy verify catheter positions immediately prior to treatment delivery.

  6. Job Displacement and Crime

    DEFF Research Database (Denmark)

    Bennett, Patrick; Ouazad, Amine

    We use a detailed employer-employee data set matched with detailed crime information (timing of crime, fines, convictions, crime type) to estimate the impact of job loss on an individual's probability to commit crime. We focus on job losses due to displacement, i.e. job losses in firms losing...... a substantial share of their workers, for workers with at least three years of tenure. Displaced workers are more likely to commit offenses leading to conviction (probation, prison terms) for property crimes and for alcohol-related traffic violations in the two years following displacement. We find no evidence...... that displaced workers' propensity to commit crime is higher than non-displaced workers before the displacement event; but it is significantly higher afterwards. Displacement impacts crime over and above what is explained by earnings losses and weeks of unemployment following displacement....

  7. The Distal Humerus Axial View: Assessment of Displacement in Medial Epicondyle Fractures.

    Science.gov (United States)

    Souder, Christopher D; Farnsworth, Christine L; McNeil, Natalie P; Bomar, James D; Edmonds, Eric W

    2015-01-01

    The assessment and treatment of childhood medial epicondyle humerus fractures continues to be associated with significant debate. Several studies demonstrate that standard radiographic views are unable to accurately portray the true displacement. Without reliable ways to assess the amount of displacement, how can we debate treatment and outcomes? This study introduces a novel imaging technique for the evaluation of medial epicondyle fractures. An osteotomy of a cadaveric humerus was performed to simulate a medial epicondyle fracture. Plain radiographs were obtained with the fracture fragment displaced anteriorly in 2-mm increments between 0 and 18 mm. Anteroposterior (AP), internal oblique (IR), lateral (LAT), and distal humerus axial (AXIAL) views were performed. Axial images were obtained by positioning the central ray above the shoulder at 15 to 20 degrees from the long axis of the humerus, centered on the distal humerus. Displacement (mm) was measured by 7 orthopaedic surgeons on digital radiographs. At 10 mm displacement, AP views underestimated displacement by 5.5±0.6 mm and IR views underestimated by 3.8±2.1 mm. On LAT views, readers were not able to visualize fragments with displacement. Displacement ≥10 mm from LAT views was overestimated by 1 reader by up to 4.6 mm and underestimated by others by up to 18.0 mm. AXIAL images more closely estimated the true amount of displacement, with a mean 1.5±1.1 mm error in measurement for displacement and a mean 0.8±0.7 mm error for displacements of ≥10 mm. AXIAL measurements correlated strongly with the actual displacement (r=0.998, Pdisplacement of medial epicondyle humerus fractures. The newly described AXIAL projection more accurately and reliably demonstrated the true displacement while reducing the need for advanced imaging such as computed tomography. This simple view can be easily obtained at a clinic visit, enhancing the surgeon's ability to determine the true displacement.

  8. Dual-reflector configuration in varied line-space grating displacement sensor

    International Nuclear Information System (INIS)

    Liu Zhengkun; Xu Xiangdong; Fu Shaojun; Zhou Qin; Liu Bin

    2008-01-01

    A method to improve the accuracy of the wavelength encoding varied line-space grating displacement sensor is presented. Based on the detailed analysis of the measured displacement errors from the single-mirror configuration sensor, a dual-reflector configuration is used to replace the previous configuration, and greatly decreases its errors. Experiments are conducted in order to make comparison of the two configurations. The results show that the measured displacement error of the sensor with dual-reflector configuration is lower than 0.03 mm in full scale (0 to 50 mm), only about 10% of the sensor with single-mirror configuration

  9. Instability of automotive air conditioning system with a variable displacement compressor. Part 1. Experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Changqing; Dou, Chunpeng; Yang, Xinjiang; Li, Xianting [Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084 (People' s Republic of China)

    2005-11-01

    A test system is built first in order to investigate the instability of the automotive air conditioning (AAC) system with a variable displacement compressor (VDC), and hunting phenomena caused by the large external disturbance in the AAC system with a VDC and a thermal expansion valve, and in the AAC system with a VDC and a fixed-area throttling device are investigated experimentally in part 1 of this paper. The experimental results indicate that there also exist the hunting phenomena in the AAC system with a fixed-area throttling device. The system stability is found to be dependent on the direction of the external disturbance, and the system is apt to cause hunting when the condensing pressure decreases excessively since it may cause two-phase state at the throttling device inlet and make a large disturbance to the system. The piston stroke length will oscillate only when the oscillation amplitudes of forces acting on the wobble plate are great enough, otherwise the piston stroke length will be kept invariable, and then the system instability rule is also suitable for the AAC system with a fixed displacement compressor. From the experimental results, it is concluded that the two-phase flow at the throttling device inlet or at the evaporator outlet is the necessary condition but not sufficient condition for system hunting. Finally, a new concept, conservative stable region, is proposed based on the experimental results and theoretical analysis. (author)

  10. Six movements measurement system employed for GAIA secondary mirror positioning system vacuum tests at cryogenic temperatures

    Science.gov (United States)

    Ramos Zapata, Gonzalo; Sánchez Rodríguez, Antonio; Garranzo García-Ibarrola, Daniel; Belenguer Dávila, Tomás

    2008-07-01

    In this work, the optical measurement system employed to evaluate the performance of a 6 degrees of freedom (dof) positioning mechanism under cryogenic conditions is explored. The mechanism, the flight model of three translations and three rotations positioning mechanism, was developed by the Spanish company SENER (for ASTRIUM) to fulfil the high performance requirements from ESA technology preparatory program for the positioning of a secondary mirror within the GAIA Astrometric Mission. Its performance has been evaluated under vacuum and temperature controlled conditions (up to a 10-6mbar and 100K) at the facilities of the Space Instrumentation Laboratory (LINES) of the Aerospace Technical Nacional Institute of Spain (INTA). After the description of the 'alignment tool' developed to compare a fixed reference with the optical signal corresponding to the movement under evaluation, the optical system that allows measuring the displacements and the rotations in the three space directions is reported on. Two similar bread-boards were defined and mounted for the measurements purpose, one containing two distancemeters, in order to measure the displacements through the corresponding axis, and an autocollimator in order to obtain the rotations on the plane whose normal vector is the axis mentioned before, and other one containing one distancemeter and one autocollimator. Both distancemeter and autocollimator measurements have been combined in order to extract the information about the accuracy of the mechanism movements as well as their repeatability under adverse environmental conditions.

  11. Displacement Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    Displacement ventilation is an interesting new type of air distribution principle which should be considered in connection with design of comfort ventilation in both smal1 and large spaces. Research activities on displacement ventilation are large all over the world and new knowledge of design...... methods appears continuously. This book gives an easy introduction to the basis of displacement ventilation and the chapters are written in the order which is used in a design procedure. The main text is extended by five appendices which show some of the new research activities taking place at Aalborg...

  12. Experimental measurements and finite element models of High Displacement Piezoelectric Actuators.

    Science.gov (United States)

    Camargo, Gilberto; Ashford, Gevale; Naco, Eris; Usher, Tim

    2004-03-01

    Piezoelectric actuators have many applications including morphable wing technology and piezoelectric transformers. A Piezoelectric ceramic is a material that will move when a voltage is applied and conversely produces a charge when a pressure is applied. In our study, we examine THUNDER (Thin Layer Unimorph Ferroelectric Driver and Sensor) actuators (Thunder TM is a trademark of FACE International Corporation.) Thunder actuators are constructed by bonding thin PZT piezoelectric ceramics to metal sheets. We will present physical measurements of piezoelectric actuators, as well as measurements of the displacements due to applied voltages. In our studies we used a laser micrometer to measure the dimensional characteristics of four sizes of THUNDER actuators including TH-8R, TH-9R, TH-10R, and finally the TH-11R. We also developed computer models using a commercial fine element modeling package (FEM) known as ANSYS6.0®. This software enables us to construct our models controlling such attributes as exact dimensions of the three layers of the piezoelectric actuator, the material properties of each element, the type of load that is to be applied as well as the manner in which the layers are bonded together. The computer model compares favorably with the experimental results. Acknowledgements: NASA Grant No. 0051-0078 Department of Defense (DoD) Control No.ISP02-EUG15

  13. Toward an MRI-based method to measure non-uniform cartilage deformation: an MRI-cyclic loading apparatus system and steady-state cyclic displacement of articular cartilage under compressive loading.

    Science.gov (United States)

    Neu, C P; Hull, M L

    2003-04-01

    Recent magnetic resonance imaging (MRI) techniques have shown potential for measuring non-uniform deformations throughout the volume (i.e. three-dimensional (3D) deformations) in small orthopedic tissues such as articular cartilage. However, to analyze cartilage deformation using MRI techniques, a system is required which can construct images from multiple acquisitions of MRI signals from the cartilage in both the underformed and deformed states. The objectives of the work reported in this article were to 1) design an apparatus that could apply highly repeatable cyclic compressive loads of 400 N and operate in the bore of an MRI scanner, 2) demonstrate that the apparatus and MRI scanner can be successfully integrated to observe 3D deformations in a phantom material, 3) use the apparatus to determine the load cycle necessary to achieve a steady-state deformation response in normal bovine articular cartilage samples using a flat-surfaced and nonporous indentor in unconfined compression. Composed of electronic and pneumatic components, the apparatus regulated pressure to a double-acting pneumatic cylinder so that (1) load-controlled compression cycles were applied to cartilage samples immersed in a saline bath, (2) loading and recovery periods within a cycle varied in time duration, and (3) load magnitude varied so that the stress applied to cartilage samples was within typical physiological ranges. In addition the apparatus allowed gating for MR image acquisition, and operation within the bore of an MRI scanner without creating image artifacts. The apparatus demonstrated high repeatability in load application with a standard deviation of 1.8% of the mean 400 N load applied. When the apparatus was integrated with an MRI scanner programmed with appropriate pulse sequences, images of a phantom material in both the underformed and deformed states were constructed by assembling data acquired through multiple signal acquisitions. Additionally, the number of cycles to reach

  14. Optical tweezers for the measurement of binding forces: system description and application for the study of E. coli adhesion

    Science.gov (United States)

    Fallman, Erik G.; Schedin, Staffan; Andersson, Magnus J.; Jass, Jana; Axner, Ove

    2003-06-01

    Optical tweezers together with a position sensitive detection system allows measurements of forces in the pN range between micro-sized biological objects. A prototype force measurement system has been constructed around in inverted microscope with an argon-ion pumped Ti:sapphire laser as light source for optical trapping. A trapped particle in the focus of the high numerical aperture microscope-objective behaves like an omni-directional mechanical spring if an external force displaces it. The displacement from the equilibrium position is a measure of the exerted force. For position detection of the trapped particle (polystyrene beads), a He-Ne laser beam is focused a small distance below the trapping focus. An image of the bead appears as a distinct spot in the far field, monitored by a photosensitive detector. The position data is converted to a force measurement by a calibration procedure. The system has been used for measuring the binding forces between E-coli bacterial adhesin and their receptor sugars.

  15. Outcomes of nonoperatively treated displaced scapular body fractures.

    Science.gov (United States)

    Dimitroulias, Apostolos; Molinero, Kenneth G; Krenk, Daniel E; Muffly, Matthew T; Altman, Daniel T; Altman, Gregory T

    2011-05-01

    Displaced scapular body fractures most commonly are treated conservatively. However there is conflicting evidence in the literature regarding the outcomes owing to retrospective design of studies, different classification systems, and diverse outcome tools. The functional outcome after nonoperative management of displaced scapular body fractures was assessed by change in the DASH (Disability of Arm, Shoulder and Hand) score; (2) the radiographic outcome was assessed by the change of the glenopolar angle (GPA); and (3) associated scapular and extrascapular injuries that may affect outcome were identified. Forty-nine consecutive patients were treated with early passive and active ROM exercises for a displaced scapular body fracture. We followed 32 of these patients (65.3%) for a minimum of 6 months (mean, 15 months; range, 6-33 months). Mean age of the patients was 46.9 years (range, 21-84 years) and the mean Injury Severity Score (ISS) was 21.5 (range, 5-50). Subjective functional results (DASH score) and radiographic assessment (fracture union, glenopolar angle) were measured. All fractures healed uneventfully. The mean change of glenopolar angle was 9° (range, 0°-20°). The mean change of the DASH score was 10.2, which is a change with minimal clinical importance. There was a correlation between the change in this score with the ISS and presence of rib fractures. Satisfactory outcomes are reported with nonoperative treatment of displaced scapular body fractures. We have shown that the severity of ISS and the presence of rib fractures adversely affect the clinical outcome.

  16. Direct measurement of the image displacement instability in a linear induction accelerator

    Directory of Open Access Journals (Sweden)

    T. J. Burris-Mog

    2017-06-01

    Full Text Available The image displacement instability (IDI has been measured on the 20 MeV Axis I of the dual axis radiographic hydrodynamic test facility and compared to theory. A 0.23 kA electron beam was accelerated across 64 gaps in a low solenoid focusing field, and the position of the beam centroid was measured to 34.3 meters downstream from the cathode. One beam dynamics code was used to model the IDI from first principles, while another code characterized the effects of the resistive wall instability and the beam break-up (BBU instability. Although the BBU instability was not found to influence the IDI, it appears that the IDI influences the BBU. Because the BBU theory does not fully account for the dependence on beam position for coupling to cavity transverse magnetic modes, the effect of the IDI is missing from the BBU theory. This becomes of particular concern to users of linear induction accelerators operating in or near low magnetic guide fields tunes.

  17. Heterodyne interferometric technique for displacement control at the nanometric scale

    Science.gov (United States)

    Topcu, Suat; Chassagne, Luc; Haddad, Darine; Alayli, Yasser; Juncar, Patrick

    2003-11-01

    We propose a method of displacement control that addresses the measurement requirements of the nanotechnology community and provide a traceability to the definition of the mèter at the nanometric scale. The method is based on the use of both a heterodyne Michelson's interferometer and a homemade high frequency electronic circuit. The system so established allows us to control the displacement of a translation stage with a known step of 4.945 nm. Intrinsic relative uncertainty on the step value is 1.6×10-9. Controls of the period of repetition of these steps with a high-stability quartz oscillator permits to impose an uniform speed to the translation stage with the same accuracy. This property will be used for the watt balance project of the Bureau National de Métrologie of France.

  18. Displacive processes in systems with bcc patent lattice

    Czech Academy of Sciences Publication Activity Database

    Paidar, Václav

    2011-01-01

    Roč. 56, č. 6 (2011), s. 841-851 ISSN 0079-6425 R&D Projects: GA AV ČR IAA100100920 Institutional research plan: CEZ:AV0Z10100520 Keywords : diffusionless phase transformations * displacive processes * gamma surfaces Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 18.216, year: 2011

  19. [Displacement of the posterior part of the eyeball in myopia].

    Science.gov (United States)

    Akizawa, Yasuko; Masahiro, Ida

    2006-12-01

    The principal aim of this study was to investigate displacement of the posterior part of the eyeball within the muscle cone in myopic eyes, particularly in moderately myopic subjects as well as in high myopes. Secondly, the correlation of the amount of displacement and the outer axial length of the globe was studied. The direction of displacement was also examined to clarify whether the eyeball tends to shift toward a certain direction. Seven patients with moderate myopia (moderate myopia group), fifteen patients with high myopia without esotropia (high myopia group), five patients with high myopia and esotropia (myopic esotropia group), and twenty-two controls (control group) were examined. Using magnetic resonance imaging, the outer axial length and the displacement of the posterior portion of the eyeball in the muscle cone were measured. In order to eliminate interindividual differences in the facial configuration, the coronal scanning was done perpendicularly to the orbital axis. The displacement was measured in a plane 4 mm anterior to the globe-optic nerve junction. The displacement was represented by the distance and direction of the globe center from the center of the muscle cone. In the moderate myopia group, there was no displacement of the posterior part of the eyeball in the muscle cone. It was the same as in the control group. But among the three groups, the displacement (mean standard deviation) was significantly greater in the myopic esotropia group (1.53 +/- 0.49 mm) and the high myopia group (0.94 +/- 0.52 mm) than in the control group (0.11 +/- 0.18 mm) (one way ANOVA and multiple comparison). The outer axial length and the distance of the displacement in all cases was significantly correlated (r = 0.87, p = 0.01). Moreover, the posterior part of the eyeball of the myopic esotropia group and the high myopia group was displaced superiorly and temporally. The posterior part of the eyeball of myopic eyes was displaced superotemporally in the muscle

  20. Mizunami Underground Research Laboratory project. Rock mechanical investigations measurement of the rock strain and displacement during shaft excavation at GL.-200m level of research galley

    International Nuclear Information System (INIS)

    Hirano, Toru; Seno, Yasuhiro; Hikima, Ryoichi; Matsui, Hiroya

    2011-09-01

    In order to establish the scientific and technical basis for geological disposal of high-level radioactive waste, Japan Atomic Energy Agency (JAEA) is proceeding with the geoscientific research in the research galleries excavated at the Mizunami Underground Research Laboratory (MIU). One of the scientific and technical objectives of this project is to understand the change of geological environment due to excavation of research galleries. The investigation described herein is the measurement of the rock strain / displacement while pre-excavation grouting or excavating of the shaft around the GL.-200m level of research gallery. A brief summary is presented as follows. 1) Apparent strain with pre-excavation grouting: Injection pressure during pre-excavation grouting could explain the observed strain. Maximum principal strain 'E1' (extension) was oriented to NS direction. The measured fracture system at the site includes a fracture set perpendicular to E1. We infer that these fracture expanded due to grout injection pressure. 2) Apparent strain during excavation of the shaft: Rock behavior of stress release was observed when the bottom of shaft passed by and lining of shaft was constructed. The observed strain was very small and almost same scale as the expected strain for elastic material. But the observed strain of radial direction was compression whereas the expected strain was extension. Therefore it was estimated that rock behavior was affected by cracks. 3) Applicability of the FBG sensors for in situ displacement measurement near the shaft: FBG sensors were stable and reliable in comparison to strain meters or inclinometers. There was no electrical equipment trouble nor large drift in measurements. FBG results can lead to understand bending mode of borehole. But we cannot specify the displacement direction from these data in some cases. (author)

  1. Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Enrique Vidal

    2013-08-01

    Full Text Available The Wavestar Wave Energy Converter (WEC is a multiple absorber concept, consisting of 20 hemisphere shaped floats attached to a single platform. The heart of the Wavestar WEC is the Power Take-Off (PTO system, converting the wave induced motion of the floats into a steady power output to the grid. In the present work, a PTO based on a novel discrete displacement fluid power technology is explored for the Wavestar WEC. Absorption of power from the floats is performed by hydraulic cylinders, supplying power to a common fixed pressure system with accumulators for energy smoothing. The stored pressure energy is converted into electricity at a steady pace by hydraulic motors and generators. The storage, thereby, decouples the complicated process of wave power absorption from power generation. The core for enabling this PTO technology is implementing a near loss-free force control of the energy absorbing cylinders. This is achieved by using special multi-chambered cylinders, where the different chambers may be connected to the available system pressures using fast on/off valves. Resultantly, a Discrete Displacement Cylinder (DDC is created, allowing near loss free discrete force control. This paper presents a complete PTO system for a 20 float Wavestar based on the DDC. The WEC and PTO is rigorously modeled from incident waves to the electric output to the grid. The resulting model of +600 states is simulated in different irregular seas, showing that power conversion efficiencies above 70% from input power to electrical power is achievable for all relevant sea conditions.

  2. Dynamic Characteristics of a Hydraulic Amplification Mechanism for Large Displacement Actuators Systems

    Directory of Open Access Journals (Sweden)

    Xavier Arouette

    2010-03-01

    Full Text Available We have developed a hydraulic displacement amplification mechanism (HDAM and studied its dynamic response when combined with a piezoelectric actuator. The HDAM consists of an incompressible fluid sealed in a microcavity by two largely deformable polydimethylsiloxane (PDMS membranes. The geometry with input and output surfaces having different cross-sectional areas creates amplification. By combining the HDAM with micro-actuators, we can amplify the input displacement generated by the actuators, which is useful for applications requiring large deformation, such as tactile displays. We achieved a mechanism offering up to 18-fold displacement amplification for static actuation and 12-fold for 55 Hz dynamic actuation.

  3. Fiber-optic couplers as displacement sensors

    Science.gov (United States)

    Baruch, Martin C.; Gerdt, David W.; Adkins, Charles M.

    2003-04-01

    We introduce the novel concept of using a fiber-optic coupler as a versatile displacement sensor. Comparatively long fiber-optic couplers, with a coupling region of approximately 10 mm, are manufactured using standard communication SM fiber and placed in a looped-back configuration. The result is a displacement sensor, which is robust and highly sensitive over a wide dynamic range. This displacement sensor resolves 1-2 μm over distances of 1-1.5 mm and is characterized by the essential absence of a 'spring constant' plaguing other strain gauge-type sensors. Consequently, it is possible to couple to extremely weak vibrations, such as the skin displacement affected by arterial heart beat pulsations. Used as a wrist-worn heartbeat monitor, the fidelity of the arterial pulse signal has been shown to be so high that it is possible to not only determine heartbeat and breathing rates, but to implement a new single-point blood pressure measurement scheme which does not squeeze the arm. In an application as a floor vibration sensor for the non-intrusive monitoring of independently living elderly, the sensor has been shown to resolve the distinct vibration spectra of different persons and different events.

  4. Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm; Kramer, Morten; Vidal, Enrique

    2013-01-01

    . This is achieved by using special multi-chambered cylinders, where the different chambers may be connected to the available system pressures using fast on/off valves. Resultantly, a Discrete Displacement Cylinder (DDC) is created, allowing near loss free discrete force control. This paper presents a complete PTO...... system for a 20 float Wavestar based on the DDC. The WEC and PTO is rigorously modeled from incident waves to the electric output to the grid. The resulting model of +600 states is simulated in different irregular seas, showing that power conversion efficiencies above 70% from input power to electrical...

  5. Interferometric system with tracking refractometry capability in the measuring axis

    International Nuclear Information System (INIS)

    Lazar, J; Holá, M; Číp, O; Hrabina, J; Oulehla, J

    2013-01-01

    We present a combined interferometric arrangement designed for measurement of one-axis displacement over a specified measuring range with mechanical referencing. This concept allows simultaneous measurement of the carriage position from both sides together with monitoring of the overall range. This can be used in configuration with in-line monitoring of the fluctuations of the refractive index-–tracking refractometry. Similarly, the wavelength of the laser source can be stabilized over the measuring range, effectively compensating for the refractive index changes. Otherwise, monitoring of length of the measuring range can give information about the thermal dilatation effects of frame of the whole measuring setup. This technique can find its way into high-precision positioning systems in nanometrology. (technical design note)

  6. Speed and Displacement Control System of Bearingless Brushless DC Motor Based on Improved Bacterial Foraging Algorithm

    Directory of Open Access Journals (Sweden)

    Diao Xiaoyan

    2016-01-01

    Full Text Available To solve the deficiencies of long optimization time and poor precision existing in conventional bacterial foraging algorithm (BFA in the process of parameter optimization, an improved bacterial foraging algorithm (IBFA is proposed and applied to speed and displacement control system of bearingless brushless DC (Bearingless BLDC motors. To begin with the fundamental principle of BFA, the proposed method is introduced and the individual intelligence is efficiently used in the process of parameter optimization, and then the working principle of bearingless BLDC motors is expounded. Finally, modeling and simulation of the speed and displacement control system of bearingless BLDC motors based on the IBFA are carried out by taking the software of MATLAB/Simulink as a platform. Simulation results show that, speed overshoot, torque ripple and rotor position oscillation are dramatically reduced, thus the proposed method has good application prospects in the field of bearingless motors.

  7. Internal Displacement, the Guiding Principles on Internal Displacement, the Principles Normative Status, and the Need for their Effective Domestic Implementation in Colombia.

    Directory of Open Access Journals (Sweden)

    Robert K. Goldman

    2010-05-01

    Full Text Available The paper briefly examines the phenomenon of internal displacement world-wide and the genesis of the United Nation’s mandate to deal with this problem. It examines key conclusions of a UN sponsored study which found that existing international law contained signifi cant gaps and grey areas in terms of meeting the needs of internally displaced persons. It also examines the origins and the content of the Guiding Principles on Internal Displacement and the normative status of these Principles. It suggests that, while not binding as such on states, the Guiding Principles have nonetheless become the most authoritative expression of minimum international standards applicable to the internally displaced and that based on state practice many, if not all, of these principles may eventually become part of customary international law. The paper also discusses the need for effective domestic implementation of the Guiding Principles, and examines how governmental authorities, the Constitutional Court and civil society organizations in Colombia, as well as inter-governmental bodies, have responded to the crisis of internal displacement in the country. While noting the adequacy of Colombia’s legislative framework on internal displacement, the paper concludes that the State has not taken the measures required to prevent future displacement or to effectively meet the protection and assistance needs of its displaced citizens.

  8. On-machine measurement of the grinding wheels' 3D surface topography using a laser displacement sensor

    Science.gov (United States)

    Pan, Yongcheng; Zhao, Qingliang; Guo, Bing

    2014-08-01

    A method of non-contact, on-machine measurement of three dimensional surface topography of grinding wheels' whole surface was developed in this paper, focusing on an electroplated coarse-grained diamond grinding wheel. The measuring system consists of a Keyence laser displacement sensor, a Keyence controller and a NI PCI-6132 data acquisition card. A resolution of 0.1μm in vertical direction and 8μm in horizontal direction could be achieved. After processing the data by LabVIEW and MATLAB, the 3D topography of the grinding wheel's whole surface could be reconstructed. When comparing the reconstructed 3D topography of the grinding wheel's marked area to its real topography captured by a high-depth-field optical digital microscope (HDF-ODM) and scanning electron microscope (SEM), they were very similar to each other, proving that this method is accurate and effective. By a subsequent data processing, the topography of every grain could be extracted and then the active grain number, the active grain volume and the active grain's bearing ration could be calculated. These three parameters could serve as the criterion to evaluate the grinding performance of coarse-grained diamond grinding wheels. Then the performance of the grinding wheel could be evaluated on-machine accurately and quantitatively.

  9. The role of environmental degradation in population displacement.

    Science.gov (United States)

    Lonergan, S

    1998-01-01

    This article answers a series of questions about the role of environmental degradation in population displacement, refugee movement, and migration. The environment tends not to be included in the reasons for migration. Roger's indicators of migration potential include population growth, economic restructuring, increased economic disparities, and increased refugee flows. Myers (1993) estimated that international displacement and internal displacement may amount to about 25 million and may rise to 150 million by 2050. The role of the environment in displacement must be examined in the broader political and cultural context. Definitions of environmental refugees are ambiguous and inconsistent, and research has not answered why people continue to move to Mexico City and Chongqing, China, which both have very high levels of pollution. El-Hinnawi (1985) defined 3 groups of environmental refugees: those displaced due to natural disasters; those displaced due to permanent habitat changes; and those displaced who migrated from areas that cannot support their basic needs and who desire an improved quality of life. Lonergan (1994) identified environmental stresses as natural disasters, cumulative or slow-onset changes, accidental disruptions or industrial accidents, development projects, and conflict and warfare. These 5 causes must be treated separately and not lumped together as environmental degradation. Shoreline erosion, coastal flooding, and agricultural disruption associated with climate change may increase migration. Global measures must address world poverty and promote sustainable development.

  10. Diagnosing displaced four-part fractures of the proximal humerus

    DEFF Research Database (Denmark)

    Brorson, Stig; Bagger, Jens; Sylvest, Annette

    2009-01-01

    Displaced four-part fractures comprise 2-10 % of all proximal humeral fractures. The optimal treatment is unclear and randomised trials are needed. The conduct and interpretation of such trials is facilitated by a reproducible fracture classification. We aimed at quantifying observer agreement...... on the classification of displaced four-part fractures according to the Neer system. Published and unpublished data from five observer studies were reviewed. Observers agreed less on displaced four-part fractures than on the overall Neer classification. Mean kappa values for interobserver agreement ranged from 0.......16 to 0.48. Specialists agreed slightly more than fellows and residents. Advanced imaging modalities (CT and 3D CT) seemed to contribute more to classification of displaced four-part patterns than in less complex fracture patterns. Low observer agreement may challenge the clinical approach to displaced...

  11. DIGITAL IMAGE CORRELATION FROM COMMERCIAL TO FOS SOFTWARE: A MATURE TECHNIQUE FOR FULL-FIELD DISPLACEMENT MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    V. Belloni

    2018-05-01

    Full Text Available In the last few decades, there has been a growing interest in studying non-contact methods for full-field displacement and strain measurement. Among such techniques, Digital Image Correlation (DIC has received particular attention, thanks to its ability to provide these information by comparing digital images of a sample surface before and after deformation. The method is now commonly adopted in the field of civil, mechanical and aerospace engineering and different companies and some research groups implemented 2D and 3D DIC software. In this work a review on DIC software status is given at first. Moreover, a free and open source 2D DIC software is presented, named py2DIC and developed in Python at the Geodesy and Geomatics Division of DICEA of the University of Rome “La Sapienza”; its potentialities were evaluated by processing the images captured during tensile tests performed in the Structural Engineering Lab of the University of Rome “La Sapienza” and comparing them to those obtained using the commercial software Vic-2D developed by Correlated Solutions Inc, USA. The agreement of these results at one hundredth of millimetre level demonstrate the possibility to use this open source software as a valuable 2D DIC tool to measure full-field displacements on the investigated sample surface.

  12. Lateral Displacement And Shear Lag Effect Of High-Rise Buildings With Diagrid SystemThat Is Constructed Above A Frame

    Directory of Open Access Journals (Sweden)

    Abd. Samat Roslida

    2017-01-01

    Full Text Available Diagrid system has gained a wide acceptance in the design of tall buildings due to its many advantages including its high structural efficiency in resisting both gravity and lateral loads. Most diagrid structures that had been studied have full triangulated members from the ground level to the top of the buildings where comparison in the effectiveness in minimizing the lateral displacement was often made between structures with full diagrid, frame and outrigger system. Nevertheless, no study has been performed on the effectiveness of the diagrid that is constructed above a frame system. The objective of this research is to understand the behavior of the lateral displacement and shear lag effect due to wind load when the diagrid structure is constructed above a frame. Models of sixty storey buildings were analyzed by using Staad.Pro software. The level where the diagrid members started and the spacing of vertical base columns of the frame were altered. The lateral displacement and shear lag effect resembled closely of those of the model of full diagrid when the diagrid was started at level 3, and the vertical base columns were uniformly spaced at 6 metres.

  13. RTX Correction Accuracy and Real-Time Data Processing of the New Integrated SeismoGeodetic System with Real-Time Acceleration and Displacement Measurements for Earthquake Characterization Based on High-Rate Seismic and GPS Data

    Science.gov (United States)

    Zimakov, L. G.; Raczka, J.; Barrientos, S. E.

    2016-12-01

    We will discuss and show the results obtained from an integrated SeismoGeodetic System, model SG160-09, installed in the Chile (Chilean National Network), Italy (University of Naples Network), and California. The SG160-09 provides the user high rate GNSS and accelerometer data, full epoch-by-epoch measurement integrity and the ability to create combined GNSS and accelerometer high-rate (200Hz) displacement time series in real-time. The SG160-09 combines seismic recording with GNSS geodetic measurement in a single compact, ruggedized case. The system includes a low-power, 220-channel GNSS receiver powered by the latest Trimble-precise Maxwell™6 technology and supports tracking GPS, GLONASS and Galileo signals. The receiver incorporates on-board GNSS point positioning using Real-Time Precise Point Positioning (PPP) technology with satellite clock and orbit corrections delivered over IP networks. The seismic recording includes an ANSS Class A, force balance accelerometer with the latest, low power, 24-bit A/D converter, producing high-resolution seismic data. The SG160-09 processor acquires and packetizes both seismic and geodetic data and transmits it to the central station using an advanced, error-correction protocol providing data integrity between the field and the processing center. The SG160-09 has been installed in three seismic stations in different geographic locations with different Trimble global reference stations coverage The hardware includes the SG160-09 system, external Zephyr Geodetic-2 GNSS antenna, both radio and high-speed Internet communication media. Both acceleration and displacement data was transmitted in real-time to the centralized Data Acquisition Centers for real-time data processing. Command/Control of the field station and real-time GNSS position correction are provided via the Pivot platform. Data from the SG160-09 system was used for seismic event characterization along with data from traditional seismic and geodetic stations

  14. The seating mechanics of head-neck modular tapers in vitro: Load-displacement measurements, moisture, and rate effects.

    Science.gov (United States)

    Ouellette, Eric S; Shenoy, Aarti A; Gilbert, Jeremy L

    2018-04-01

    The mechanically assisted crevice corrosion performance of head-neck modular tapers is a significant concern in orthopedic biomaterials. Fretting crevice corrosion processes in modular tapers are thought to be influenced by a wide array of factors including seating mechanics of the junction, hence there is a need for in vitro test methods that can assess their performance. This study presented a test method to directly measure the load-displacement seating mechanics of modular tapers and used this method to compare the seating mechanics for different tapers, moisture, seating loads and seating rates. Seating mechanics were explored whereby the instantaneous load-displacement behavior of the head seating onto the neck is captured and used to define the mechanics of seating. Two distinct taper design/material combinations were assembled wet or dry using axially applied loads (500, 1,000, 2,000, and 4,000 N) at two loading rates of 100 and 10 4  N/s (n = 5 for each condition) using a servohydraulic test frame. The results showed that pull-off strength scaled with seating load and ranged between 43% and 68% of seating load depending on sample and wetness. Tapers seated wet had higher pull-off strengths (2,200 ± 300 N) than those seated dry (1,800 ± 200 N, p mechanics (load-displacement plots) varied due to sample type and due to wetness with differences in seating energy, seating stiffness, and seating displacement. These results show the detailed mechanics of seating during assembly and provide significant insight into the complex interplay of factors associated with even "ideal" seating (axial, quasistatic) loading. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1164-1172, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  15. Modeling and Validation of Performance Limitations for the Optimal Design of Interferometric and Intensity-Modulated Fiber Optic Displacement Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Moro, Erik A. [Los Alamos National Laboratory

    2012-06-07

    Optical fiber sensors offer advantages over traditional electromechanical sensors, making them particularly well-suited for certain measurement applications. Generally speaking, optical fiber sensors respond to a desired measurand through modulation of an optical signal's intensity, phase, or wavelength. Practically, non-contacting fiber optic displacement sensors are limited to intensity-modulated and interferometric (or phase-modulated) methodologies. Intensity-modulated fiber optic displacement sensors relate target displacement to a power measurement. The simplest intensity-modulated sensor architectures are not robust to environmental and hardware fluctuations, since such variability may cause changes in the measured power level that falsely indicate target displacement. Differential intensity-modulated sensors have been implemented, offering robustness to such intensity fluctuations, and the speed of these sensors is limited only by the combined speed of the photodetection hardware and the data acquisition system (kHz-MHz). The primary disadvantages of intensity-modulated sensing are the relatively low accuracy (?m-mm for low-power sensors) and the lack of robustness, which consequently must be designed, often with great difficulty, into the sensor's architecture. White light interferometric displacement sensors, on the other hand, offer increased accuracy and robustness. Unlike their monochromatic-interferometer counterparts, white light interferometric sensors offer absolute, unambiguous displacement measurements over large displacement ranges (cm for low-power, 5 mW, sources), necessitating no initial calibration, and requiring no environmental or feedback control. The primary disadvantage of white light interferometric displacement sensors is that their utility in dynamic testing scenarios is limited, both by hardware bandwidth and by their inherent high-sensitivity to Doppler-effects. The decision of whether to use either an intensity

  16. Resonant neutron-induced atomic displacements

    Energy Technology Data Exchange (ETDEWEB)

    Elmaghraby, Elsayed K., E-mail: e.m.k.elmaghraby@gmail.com

    2017-05-01

    Highlights: • Neutron induced atomic displacements was investigated based on scattering of energy of neutron. • Model for cascade function (multiplication of displacements with increasing energy transfer) was proposed and justified. • Parameterizations for the dpa induced in all elements were performed. • Table containing all necessary parameters to calculate the displacement density induced by neutron is given. • Contribution of non resonance displacement and resonant-neutron induced displacements are distinguished. - Abstract: A model for displacement cascade function was modified to account for the continuous variation of displacement density in the material in response to neutron exposure. The model is based on the Gaussian distribution of displacement energies of atoms in a material. Analytical treatment for moderated epithermal neutron field was given in which the displacement density was divided into two terms, discrete-resonance term and continuum term. Calculation are done for all isotopes using ENDF/B VII.1 data files and temperature dependent cross section library. Weighted elemental values were reported a fitting was performed to obtain energy-dependent formula of displacement density and reduce the number of parameters. Results relevant the present specification of the cascade function are tabulated for each element to enable calculation of displacement density at any value of displacement energy in the between 5 eV and 55 eV.

  17. Field Installation and Real-Time Data Processing of the New Integrated SeismoGeodetic System with Real-Time Acceleration and Displacement Measurements for Earthquake Characterization Based on High-Rate Seismic and GPS Data

    Science.gov (United States)

    Zimakov, Leonid; Jackson, Michael; Passmore, Paul; Raczka, Jared; Alvarez, Marcos; Barrientos, Sergio

    2015-04-01

    We will discuss and show the results obtained from an integrated SeismoGeodetic System, model SG160-09, installed in the Chilean National Network. The SG160-09 provides the user high rate GNSS and accelerometer data, full epoch-by-epoch measurement integrity and, using the Trimble Pivot™ SeismoGeodetic App, the ability to create combined GNSS and accelerometer high-rate (200Hz) displacement time series in real-time. The SG160-09 combines seismic recording with GNSS geodetic measurement in a single compact, ruggedized package. The system includes a low-power, 220-channel GNSS receiver powered by the latest Trimble-precise Maxwell™6 technology and supports tracking GPS, GLONASS and Galileo signals. The receiver incorporates on-board GNSS point positioning using Real-Time Precise Point Positioning (PPP) technology with satellite clock and orbit corrections delivered over IP networks. The seismic recording element includes an ANSS Class A, force balance triaxial accelerometer with the latest, low power, 24-bit A/D converter, which produces high-resolution seismic data. The SG160-09 processor acquires and packetizes both seismic and geodetic data and transmits it to the central station using an advanced, error-correction protocol with back fill capability providing data integrity between the field and the processing center. The SG160-09 has been installed in the seismic station close to the area of the Iquique earthquake of April 1, 2014, in northern Chile, a seismically prone area at the current time. The hardware includes the SG160-09 system, external Zephyr Geodetic-2 GNSS antenna, and high-speed Internet communication media. Both acceleration and displacement data was transmitted in real-time to the National Seismological Center in Santiago for real-time data processing using Earthworm / Early Bird software. Command/Control of the field station and real-time GNSS position correction are provided via the Pivot software suite. Data from the SG160-09 system was

  18. Nanomechanical displacement sensing using a quantum point contact

    International Nuclear Information System (INIS)

    Cleland, A.N.; Aldridge, J.S.; Driscoll, D.C.; Gossard, A. C.

    2002-01-01

    We describe a radio frequency mechanical resonator that includes a quantum point contact, defined using electrostatic top gates. We can mechanically actuate the resonator using either electrostatic or magnetomotive forces. We demonstrate the use of the quantum point contact as a displacement sensor, operating as a radio frequency mixer at the mechanical resonance frequency of 1.5 MHz. We calculate a displacement sensitivity of about 3x10 -12 m/Hz 1/2 . This device will potentially permit quantum-limited displacement sensing of nanometer-scale resonators, allowing the quantum entanglement of the electronic and mechanical degrees of freedom of a nanoscale system

  19. Displacement of oil by carbon dioxide. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Orr, Jr., F. M.; Taber, J. J.

    1981-05-01

    Results of a comprehensive research program on factors influencing CO/sub 2/ flooding are reported. Equipment constructed for static equilibrium measurements of phase volumes, compositions, densities and viscosities is described. Design of an apparatus used for a variety of displacement tests is also reported. Apparatus and experimental procedures are described for a new experiment in which equilibrium phase compositions can be measured rapidly and continuously. Results of displacements of crude oil from slim tubes, cores and mixing cells are presented and interpreted in terms of detailed measurements of the phase behavior and fluid properties of the CO/sub 2/-crude oil mixtures. The complex phase behavior of low temperature CO/sub 2/-crude oil mixtures is described and compared with similar behavior for CO/sub 2/-alkane mixtures. A simple correlation is offered for the ranges of reservoir temperature and pressure at which liquid-liquid and liquid-liquid-vapor phase behavior should be expected to occur. Direct evidence is presented of the efficiency with which a CO/sub 2/-rich liquid phase can extract hydrocarbons from a crude oil. A simple one-dimensional process simulator for CO/sub 2/ flooding applications is described. Simulation results are compared with experimental data from slim tube displacements. Good agreement is reported between calculated and experimental results as long as the volume change of CO/sub 2/ on mixing with the oil is not too great.Sensitivity of calculated results to phase behavior and fluid properties is discussed. Comparison of displacement results, phase behavior measurements, and model calculations provides strong evidence that the high displacement efficiency which can be obtained when pressure is high enough and viscous fingering is controlled is the result of efficient extraction of a broad range of hydrocarbons by a dense CO/sub 2/-rich phase which is a liquid if the temperature is below about 50/sup 0/C (130/sup 0/F).

  20. Displacement monitoring and modelling of a high-speed railway bridge using C-band Sentinel-1 data

    Science.gov (United States)

    Huang, Qihuan; Crosetto, Michele; Monserrat, Oriol; Crippa, Bruno

    2017-06-01

    Bridge displacement monitoring is one of the key components of bridge structural health monitoring. Traditional methods, usually based on limited sets of sensors mounted on a given bridge, collect point-like deformation information and have the disadvantage of providing incomplete displacement information. In this paper, a Persistent Scatterer Interferometry (PSI) approach is used to monitor the displacements of the Nanjing Dashengguan Yangtze River high-speed railway bridge. Twenty-nine (29) European Space Agency Sentinel-1A images, acquired from April 25, 2015 to August 5, 2016, were used in the PSI analysis. A total of 1828 measurement points were selected on the bridge. The results show a maximum longitudinal displacement of about 150 mm on each side of the bridge. The measured displacements showed a strong correlation with the environmental temperature at the time the images used were acquired, indicating that they were due to thermal expansion of the bridge. At each pier, a regression model based on the PSI-measured displacements was compared with a model based on in-situ measurements. The good agreement of these models demonstrates the capability of the PSI technique to monitor long-span railway bridge displacements. By comparing the modelled displacements and dozens of PSI measurements, we show how the performance of movable bearings can be evaluated. The high density of the PSI measurement points is advantageous for the health monitoring of the entire bridge.

  1. Pneumatic tool torque reaction: reaction forces, displacement, muscle activity and discomfort in the hand-arm system.

    Science.gov (United States)

    Kihlberg, S; Kjellberg, A; Lindbeck, L

    1993-06-01

    Reaction forces, hand-arm displacement, muscle activity and discomfort ratings were studied during the securing of threaded fasteners with three angle nutrunners with different shut-off mechanisms, but with the same spindle torque (72-74 Nm). The three tools were tested according to the method specified in ISO 6544. One of the tools had an almost instantaneous shut-off. Another had a more slowly declining torque curve. For the third tool the maximum torque was maintained for a while before shut-off. Twelve male subjects participated in the study. A force platform measured the reaction force between the subject and the floor. The option of the hand-arm system and the shoulder was measured with an optoelectronic measuring system. The muscle activity (EMG) in six muscles in the arm and shoulder was measured with surface electrodes. Significant differences in the arm movements and ground reaction forces were found between the three tools. The smallest values were found with the fast shut-off tool while the delayed shut-off tool caused the largest values. The EMG measures gave inconsistent response patterns. Discomfort ratings were highly correlated with the time for which the tool torque exceeded 90% of peak preset torque, but the time for which the tool torque exceeded 90% of peak calculated by the method specified in ISO 6544. Nutrunners with a shut-off mechanism that causes a slowly decreasing torque or a torque that is maintained for a while before shut-off should be avoided. If no substitutes are available, then a torque reaction bar should be mounted on the tool.

  2. Displacement of the posterior part of the eyeball in myopia

    International Nuclear Information System (INIS)

    Akizawa, Yasuko; Ida, Masahiro

    2006-01-01

    The principal aim of this study was to investigate displacement of the posterior part of the eyeball within the muscle cone in myopic eyes, particularly in moderately myopic subjects as well as in high myopes. Secondly, the correlation of the amount of displacement and the outer axial length of the globe was studied. The direction of displacement was also examined to clarify whether the eyeball tends to shift toward a certain direction. Seven patients with moderate myopia (moderate myopia group), fifteen patients with high myopia without esotropia (high myopia group), five patients with high myopia and esotropia (myopic esotropia group), and twenty-two controls (control group) were examined. Using magnetic resonance imaging, the outer axial length and the displacement of the posterior portion of the eyeball in the muscle cone were measured. In order to eliminate interindividual differences in the facial configuration, the coronal scanning was done perpendicularly to the orbital axis. The displacement was measured in a plane 4 mm anterior to the globe-optic nerve junction. The displacement was represented by the distance and direction of the globe center from the center of the muscle cone. In the moderate myopia group, there was no displacement of the posterior part of the eyeball in the muscle cone. It was the same as in the control group. But among the three groups, the displacement (mean±standard deviation) was significantly greater in the myopic esotropia group (1.53±0.49 mm) and the high myopia group (0.94±0.52 mm) than in the control group (0.11±0.18 mm) (one way ANOVA and multiple comparison). The outer axial length and the distance of the displacement in all cases was significantly correlated (r=0.87, p=0.01). Moreover, the posterior part of the eyeball of the myopic esotropia group and the high myopia group was displaced superiorly and temporally. The posterior part of the eyeball of myopic eyes was displaced superotemporally in the muscle cone

  3. Job Displacement and Crime

    DEFF Research Database (Denmark)

    Bennett, Patrick; Ouazad, Amine

    theory of crime. Marital dissolution is more likely post-displacement, and we find small intra-family externalities of adult displacement on younger family members’ crime. The impact of displacement on crime is stronger in municipalities with higher capital and labor income inequalities....

  4. The experimental plan of displacement- and frequency-noise free laser interferometer

    International Nuclear Information System (INIS)

    Kokeyama, K; Sato, S; Kawamura, S; Nishizawa, A; Chen, Y; Pai, A; Somiya, K; Ward, R; Sugamoto, A

    2008-01-01

    We present the partial demonstration of displacement- and laser-noise free interferometer (DFI) and the next experimental plan to examine the complete configuration. A part of the full implementation of DFI has been demonstrated to confirm the cancellation of beamsplitter displacements. The displacements were suppressed by about two orders of magnitude. The aim of the next experiment is to operate the system and to confirm the cancellation of all displacement noises, while the gravitational wave (GW) signals survive. The optical displacements will be simulated by electro-optic modulators (EOM). To simulate the GW contribution to laser lights, we will use multiple EOMs

  5. International Monetary Fund and aid displacement.

    Science.gov (United States)

    Stuckler, David; Basu, Sanjay; McKee, Martin

    2011-01-01

    Several recent papers find evidence that global health aid is being diverted to reserves, education, military, or other sectors, and is displacing government spending. This is suggested to occur because ministers of finance have competing, possibly corrupt, priorities and deprive the health sector of resources. Studies have found that development assistance for health routed to governments has a negative impact on health spending and that similar assistance routed to private nongovernmental organizations has a positive impact. An alternative hypothesis is that World Bank and IMF macro-economic policies, which specifically advise governments to divert aid to reserves to cope with aid volatility and keep government spending low, could be causing the displacement of health aid. This article evaluates whether aid displacement was greater when countries undertook a new borrowing program from the IMF between 1996 and 2006. As found in existing studies, for each $1 of development assistance for health, about $0.37 is added to the health system. However, evaluating IMF-borrowing versus non-IMF-borrowing countries reveals that non-borrowers add about $0.45 whereas borrowers add less than $0.01 to the health system. On average, health system spending grew at about half the speed when countries were exposed to the IMF than when they were not. It is important to take account of the political economy of global health finance when interpreting data on financial flows.

  6. Polydyne displacement interferometer using frequency-modulated light

    Science.gov (United States)

    Arablu, Masoud; Smith, Stuart T.

    2018-05-01

    A radio-frequency Frequency-Modulated (FM) signal is used to diffract a He-Ne laser beam through an Acousto-Optic Modulator (AOM). Due to the modulation of the FM signal, the measured spectra of the diffracted beams comprise a series of phase-synchronized harmonics that have exact integer frequency separation. The first diffraction side-beam emerging from the AOM is selected by a slit to be used in a polydyne displacement interferometer in a Michelson interferometer topology. The displacement measurement is derived from the phase measurement of selected modulation harmonic pairs. Individual harmonic frequency amplitudes are measured using discrete Fourier transform applied to the signal from a single photodetector. Phase signals are derived from the changes in the amplitudes of different harmonic pairs (typically odd-even pairs) with the phase being extracted using a standard quadrature method. In this study, two different modulation frequencies of 5 and 10 kHz are used at different modulation depths. The measured displacements by different harmonic pairs are compared with a commercial heterodyne interferometer being used as a reference for these studies. Measurements obtained from five different harmonic pairs when the moving mirror of the interferometer is scanned over ranges up to 10 μm all show differences of less than 50 nm from the reference interferometer measurements. A drift test was also used to evaluate the differences between the polydyne interferometer and reference measurements that had different optical path lengths of approximately 25 mm and 50 mm, respectively. The drift test results indicate that about half of the differences can be attributed to temperature, pressure, and humidity variations. Other influences include Abbe and thermal expansion effects. Rough magnitude estimates using simple models for these two effects can account for remaining observed deviations.

  7. SPS data on tunnel displacements and the ATL law

    International Nuclear Information System (INIS)

    Shiltsev, V.

    1993-09-01

    In this article we analyze data from long-term measurements of quadrupole displacements in the Super Proton Synchrotron ring at CERN. The variance of displacement can be approximated by ATL law with coefficient A = (0.1--0.4) * 10 -4 μm 2 /s/m, with T the time interval between measurements and L the distance between two points of the tunnel. The shape of the distribution function is found to be close to Gaussian. The results of the analysis are compared with other data on slow ground motion

  8. Considering Angle Selection When Using Ultrasound Electrode Displacement Elastography to Evaluate Radiofrequency Ablation of Tissues

    Science.gov (United States)

    Li, Qiang; Chen, Pin-Yu; Wang, Chiao-Yin; Liu, Hao-Li; Teng, Jianfu

    2014-01-01

    Percutaneous radiofrequency ablation (RFA) is a minimally invasive treatment to thermally destroy tumors. Ultrasound-based electrode-displacement elastography is an emerging technique for evaluating the region of RFA-induced lesions. The angle between the imaging probe and the RFA electrode can influence electrode-displacement elastography when visualizing the ablation zone. We explored the angle effect on electrode-displacement elastography to measure the ablation zone. Phantoms embedded with meatballs were fabricated and then ablated using an RFA system to simulate RFA-induced lesions. For each phantom, a commercial ultrasound scanner with a 7.5 MHz linear probe was used to acquire raw image data at different angles, ranging from 30° to 90° at increments of 10°, to construct electrode-displacement images and facilitate comparisons with tissue section images. The results revealed that the ablation regions detected using electrode-displacement elastography were highly correlated with those from tissue section images when the angle was between 30° and 60°. However, the boundaries of lesions were difficult to distinguish, when the angle was larger than 60°. The experimental findings suggest that angle selection should be considered to achieve reliable electrode-displacement elastography to describe ablation zones. PMID:24971347

  9. Management of displaced inferior patellar pole fractures with modified tension band technique combined with cable cerclage using Cable Grip System.

    Science.gov (United States)

    Yang, Xu; Wu, Qinfen; Lai, Chin-Hui; Wang, Xin

    2017-10-01

    We present a modified tension band technique combined with cable cerclage using Cable Grip System for the treatment of displaced inferior patellar pole fractures and report the knee functional outcome. The patients who had had operative treatment of a displaced inferior patellar pole fracture (AO/OTA 34-A1) between December 2013 and December 2015 were studied retrospectively. Eleven consecutive patients had had open reduction and internal fixation with the modified technique using Cable Grip System, of whom, five males and six females with an average age of 60.9 years (range, 29-81 years). All fractures occurred from direct fall onto the knee. The average time from injury to surgery was 6.1days (range, 2-12days). The range of motion (ROM) was measured in degrees by goniometry at postoperative intervals of 1, 2, 4, 12, and 48 weeks; Knee function was evaluated using the Rasmussen scores at final follow-up. No patients had nonunion, loss of reduction, migration of wire, irritation from the implant and fixation breakage during the follow-up period. Recovery of ROM was achieved at 12 weeks, with the average ROM at 1 week was 72° (range, 65°-78°), 86.4° (range, 78°-92°) at 2 weeks, 115.5° (range, 103°-122°) at 4 weeks, 129.6° (range, 122°-133°) at 12 weeks, 134.5° (range, 129°-139°) at 48 weeks after the operation. Concerning the knee function outcome assessment, all patients showed excellent results at final follow-up. The average Rasmussen scores was 27.9 out of 30 (range, 27-29). The modified tension band technique combined with cable cerclage using Cable Grip System for displaced inferior patellar pole fractures can provide stable fixation with excellent results in knee function, allows for immediate mobilization and early weight-bearing, which is a simple and valuable technique in routine clinical practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Evaluating the attractiveness of a new light rail extension: Testing simple change and displacement change hypotheses.

    Science.gov (United States)

    Werner, Carol M; Brown, Barbara B; Tribby, Calvin P; Tharp, Doug; Flick, Kristi; Miller, Harvey J; Smith, Ken R; Jensen, Wyatt

    2016-01-01

    Many communities in the United States have been adding new light rail to bus-predominant public transit systems. However, there is disagreement as to whether opening light rail lines attracts new ridership or merely draws ridership from existing transit users. We study a new light rail line in Salt Lake City, Utah, USA, which is part of a complete street redevelopment. We utilize a pre-test post-test control group quasi-experimental design to test two different measures of ridership change. The first measure is calculated from stops along the light rail route; the second assumes that nearby bus stops might be displaced by the rail and calculates ridership change with those stops included as baseline. Both the simple measure (transit use changes on the complete street light rail corridor) and the "displacement" measure (transit use changes in the one-quarter mile catchment areas around new light rail stops) showed significant ( p rail bus users. In particular, the displacement analysis discredits a common challenge that when a new light rail line opens, most passengers are simply former bus riders whose routes were canceled in favor of light rail. The study suggests that light rail services can attract additional ridership to public transit systems. In addition, although pre-post control-group designs require time and effort, this project underscores the benefits of such quasi-experimental designs in terms of the strength of the inferences that can be drawn about the impacts of new transit infrastructure and services.

  11. Filtering for distributed mechanical systems using position measurements: perspectives in medical imaging

    International Nuclear Information System (INIS)

    Moireau, Philippe; Chapelle, Dominique; Tallec, Patrick Le

    2009-01-01

    We propose an effective filtering methodology designed to perform estimation in a distributed mechanical system using position measurements. As in a previously introduced method, the filter is inspired by robust control feedback, but here we take full advantage of the estimation specificity to choose a feedback law that can act on displacements instead of velocities and still retain the same kind of dissipativity property which guarantees robustness. This is very valuable in many applications for which positions are more readily available than velocities, as in medical imaging. We provide an in-depth analysis of the proposed procedure, as well as detailed numerical assessments using a test problem inspired by cardiac biomechanics, as medical diagnosis assistance is an important perspective for this approach. The method is formulated first for measurements based on Lagrangian displacements, but we then derive a nonlinear extension allowing us to instead consider segmented images, which of course is even more relevant in medical applications

  12. Passive Smoking in a Displacement Ventilated Room

    DEFF Research Database (Denmark)

    Bjørn, Erik; Nielsen, Peter V.

    The aim of this research is to see if the displacement ventilation principle can protect a person from exposure to passive tobacco smoking. This is done by full-scale experiments with two breathing thermal manikins, smoke visualisations, and tracer gas measurements. In some situations, exhaled...... smoke will stratify in a certain height due to the vertical temperature gradient. This horizontal layer of exhaled tobacco smoke may lead to exposure. In other situations, the smoke is mixed into the upper zone, and the passive smoker is protected to some extent by the displacement principle...

  13. Spectral interferometry including the effect of transparent thin films to measure distances and displacements

    International Nuclear Information System (INIS)

    Hlubina, P.

    2004-01-01

    A spectral-domain interferometric technique is applied for measuring mirror distances and displacements in a dispersive Michelson interferometer when the effect of transparent thin films coated onto the interferometer beam splitter and compensator is known. We employ a low-resolution spectrometer in two experiments with different amounts of dispersion in a Michelson interferometer that includes fused-silica optical sample. Knowing the thickness of the optical sample and the nonlinear phase function of the thin films, the positions of the interferometer mirror are determined precisely by a least-squares fitting of the theoretical spectral interferograms to the recorded ones. We compare the results of the processing that include and do not include the effect of transparent thin films (Author)

  14. Understanding interferometry for micro-cantilever displacement detection

    Directory of Open Access Journals (Sweden)

    Alexander von Schmidsfeld

    2016-06-01

    Full Text Available Interferometric displacement detection in a cantilever-based non-contact atomic force microscope (NC-AFM operated in ultra-high vacuum is demonstrated for the Michelson and Fabry–Pérot modes of operation. Each mode is addressed by appropriately adjusting the distance between the fiber end delivering and collecting light and a highly reflective micro-cantilever, both together forming the interferometric cavity. For a precise measurement of the cantilever displacement, the relative positioning of fiber and cantilever is of critical importance. We describe a systematic approach for accurate alignment as well as the implications of deficient fiber–cantilever configurations. In the Fabry–Pérot regime, the displacement noise spectral density strongly decreases with decreasing distance between the fiber-end and the cantilever, yielding a noise floor of 24 fm/Hz0.5 under optimum conditions.

  15. An experimental study for the phase shift between piston and displacer in the Stirling cryocooler

    International Nuclear Information System (INIS)

    Park, S. J.; Hong, Y. J.; Kim, H. B.; Son, H. K.; Yu, B. K.

    2002-01-01

    The small cryocooler is being widely applied to the areas of infrared detector, superconductor filter, satellite communication, and cryopump. The cryocooler working on the Stirling cycle are characterized by small size, lightweight, low power consumption and high reliability. For these reasons, FPFD (Free Piston Free Displacer) Stirling cryocooler is widely used not only tactical infrared imaging camera but also medical diagnostic apparatus. In this study, Stirling cryocooler actuated by the dual linear motor is designed and manufactured. And, displacement of the piston is measured by LVDTs (Linear Variable Differential Transformers), displacement of the displacer is measured by laser optic method, and phase shift between piston and displacer is discussed. Finally, when the phase shift between displacements of the piston and displacer is 45 .deg., operating frequency is optimum and is decided by resonant frequency of the expander, mass and cross section area of the displacer and constant by friction and flow resistance

  16. An experimental study for the phase shift between piston and displacer in the Stirling cryocooler

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. J.; Hong, Y. J.; Kim, H. B. [Korea Institute of Machinery and Materials, Taejon (Korea, Republic of); Son, H. K.; Yu, B. K. [Wooyoung Co., Ltd., Seoul (Korea, Republic of)

    2002-07-01

    The small cryocooler is being widely applied to the areas of infrared detector, superconductor filter, satellite communication, and cryopump. The cryocooler working on the Stirling cycle are characterized by small size, lightweight, low power consumption and high reliability. For these reasons, FPFD (Free Piston Free Displacer) Stirling cryocooler is widely used not only tactical infrared imaging camera but also medical diagnostic apparatus. In this study, Stirling cryocooler actuated by the dual linear motor is designed and manufactured. And, displacement of the piston is measured by LVDTs (Linear Variable Differential Transformers), displacement of the displacer is measured by laser optic method, and phase shift between piston and displacer is discussed. Finally, when the phase shift between displacements of the piston and displacer is 45 .deg., operating frequency is optimum and is decided by resonant frequency of the expander, mass and cross section area of the displacer and constant by friction and flow resistance.

  17. Quantification of the vocal folds’ dynamic displacements

    Science.gov (United States)

    del Socorro Hernández-Montes, María; Muñoz, Silvino; De La Torre, Manuel; Flores, Mauricio; Pérez, Carlos; Mendoza-Santoyo, Fernando

    2016-05-01

    Fast dynamic data acquisition techniques are required to investigate the motional behavior of the vocal folds (VFs) when they are subjected to a steady air-flow through the trachea. High-speed digital holographic interferometry (DHI) is a non-invasive full-field-of-view technique that has proved its usefulness to study rapid and non-repetitive object movements. Hence it is an ideal technique used here to measure VF displacements and vibration patterns at 2000 fps. Analyses from a set of 200 displacement images showed that VFs’ vibration cycles are established along their width (y) and length (x). Furthermore, the maximum deformation for the right and left VFs’ area may be quantified from these images, which in itself represents an important result in the characterization of this structure. At a controlled air pressure, VF displacements fall within the range ~100-1740 nm, with a calculated precision and accuracy that yields a variation coefficient of 1.91%. High-speed acquisition of full-field images of VFs and their displacement quantification are on their own significant data in the study of their functional and physiological behavior since voice quality and production depend on how they vibrate, i.e. their displacement amplitude and frequency. Additionally, the use of high speed DHI avoids prolonged examinations and represents a significant scientific and technological alternative contribution in advancing the knowledge and working mechanisms of these tissues.

  18. Neutron-induced displacement damage analysis (with particular reference to zirconium)

    International Nuclear Information System (INIS)

    Woo, C.H.

    1978-10-01

    Neutron irradiation produces damage in a solid, initially in the form of atomic displacements. As a first step to understanding the effects of irradiation damage in reactor structural materials, information on the initial atomic displacements is necessary. The computer program DISPKAN, based on an extension and generalization of the program RICE, written at ORNL for such calculations, has been developed and installed on the CDC system at CRNL. Using neutron scattering data from ENDF/B files, DISPKAN performs a displacement and PKO analysis on the initial damage caused by neutrons from a given spectrum. The following quantities are calculated: the displacement rate per unit neutron flux, the PKO spectrum, the displacement spectrum, the fraction of PKO's with energy above T, the fraction of displacements produced by PKO's with energy above T, the average PKO energy, the average number of displacements produced per PKO, and the total number of PKO's produced per atom of the solid per unit fluence. The input and output formats of the program are explained. Sample runs are demonstrated. Results for zirconium, exposed to five neutron spectra typically available to experimentalist, are given to illustrate the spectral dependence of the initial displacement events. (author)

  19. QV modal distance displacement - a criterion for contingency ranking

    Energy Technology Data Exchange (ETDEWEB)

    Rios, M.A.; Sanchez, J.L.; Zapata, C.J. [Universidad de Los Andes (Colombia). Dept. of Electrical Engineering], Emails: mrios@uniandes.edu.co, josesan@uniandes.edu.co, cjzapata@utp.edu.co

    2009-07-01

    This paper proposes a new methodology using concepts of fast decoupled load flow, modal analysis and ranking of contingencies, where the impact of each contingency is measured hourly taking into account the influence of each contingency over the mathematical model of the system, i.e. the Jacobian Matrix. This method computes the displacement of the reduced Jacobian Matrix eigenvalues used in voltage stability analysis, as a criterion of contingency ranking, considering the fact that the lowest eigenvalue in the normal operation condition is not the same lowest eigenvalue in N-1 contingency condition. It is made using all branches in the system and specific branches according to the IBPF index. The test system used is the IEEE 118 nodes. (author)

  20. Radiofrequency heating and magnetically induced displacement of dental magnetic attachments during 3.0 T MRI

    Science.gov (United States)

    Miyata, K; Hasegawa, M; Abe, Y; Tabuchi, T; Namiki, T; Ishigami, T

    2012-01-01

    Objective The aim of this study was to estimate the risk of injury from dental magnetic attachments due to their radiofrequency (RF) heating and magnetically induced displacement during 3.0 T MRI. Methods To examine the magnetic attachments, we adopted the American Society for Testing and Materials F2182-02a and F2052-06 standards in two MRI systems (Achieva 3.0 T Nova Dual; Philips, Tokyo, Japan, and Signa HDxt 3.0 T; GE Healthcare, Milwaukee, WI). The temperature change was measured in a cylindrical keeper (GIGAUSS D600; GC, Tokyo, Japan) with coping of the casting alloy and a keeper with a dental implant at the maximum specific absorption rate (SAR) for 20 min. To measure the magnetically induced displacement force, three sizes of keepers (GIGAUSS D400, D600 and D1000) were used in deflection angle tests conducted at the point of the maximum magnetic field strength. Results Temperature elevations of both coping and implant were higher in the Signa system than in the Achieva system. The highest temperature changes in the keeper with implant and keeper with coping were 0.6 °C and 0.8 °C in the Signa system, respectively. The temperature increase did not exceed 1.0 °C at any location. The deflection angle (α) was not measurable because it exceeded 90°. GIGAUSS D400 required an extra 3.0 g load to constrain the deflection angle to less than 45°; GIGAUSS D600 and D1000 required 5.0 and 9.0 g loads, respectively. Conclusions Dental magnetic attachments pose no risk due to RF heating and magnetically induced displacement at 3.0 T MRI. However, it is necessary to confirm that these keepers are securely attached to the prosthesis before imaging. PMID:22499128

  1. Internal Displacement: Livelihood saving responses

    OpenAIRE

    Deborah Hines

    2001-01-01

    Deborah Hines explores how to assist the internally displaced and those prone to displacement. She considers the major causes of internal displacement, making the case for a more comprehensive set of policy and operational actions in response to situations of internal displacement. Development (2001) 44, 34–39. doi:10.1057/palgrave.development.1110289

  2. The Effect of Basepair Mismatch on DNA Strand Displacement.

    Science.gov (United States)

    Broadwater, D W Bo; Kim, Harold D

    2016-04-12

    DNA strand displacement is a key reaction in DNA homologous recombination and DNA mismatch repair and is also heavily utilized in DNA-based computation and locomotion. Despite its ubiquity in science and engineering, sequence-dependent effects of displacement kinetics have not been extensively characterized. Here, we measured toehold-mediated strand displacement kinetics using single-molecule fluorescence in the presence of a single basepair mismatch. The apparent displacement rate varied significantly when the mismatch was introduced in the invading DNA strand. The rate generally decreased as the mismatch in the invader was encountered earlier in displacement. Our data indicate that a single base pair mismatch in the invader stalls branch migration and displacement occurs via direct dissociation of the destabilized incumbent strand from the substrate strand. We combined both branch migration and direct dissociation into a model, which we term the concurrent displacement model, and used the first passage time approach to quantitatively explain the salient features of the observed relationship. We also introduce the concept of splitting probabilities to justify that the concurrent model can be simplified into a three-step sequential model in the presence of an invader mismatch. We expect our model to become a powerful tool to design DNA-based reaction schemes with broad functionality. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. A small-displacement sensor using total internal reflection theory and surface plasmon resonance technology for heterodyne interferometry.

    Science.gov (United States)

    Wang, Shinn-Fwu

    2009-01-01

    A small-displacement sensor based on total-internal reflection theory and surface plasmon resonance technology is proposed for use in heterodyne interferometry. A small displacement can be obtained simply by measuring the variation in phase difference between s- and p-polarization states with the small-displacement sensor. The theoretical displacement resolution of the small-displacement sensor can reach 0.45 nm. The sensor has some additional advantages, e.g., a simple optical setup, high resolution, high sensitivity and rapid measurement. Its feasibility is also demonstrated.

  4. Comprehensive comparison of macro-strain mode and displacement mode based on different sensing technologies

    Science.gov (United States)

    Hong, Wan; Zhang, Jian; Wu, Gang; Wu, Zhishen

    2015-01-01

    A comprehensive comparison of macro-strain mode and displacement mode obtained from distributed macro-strain sensing and high-density point sensing (such as accelerometers) technologies is presented in this paper. Theoretical derivation reveals that displacement mode shape from accelerometers and modal macro-strain from distributed macro-strain sensors can be converted into each other. However, it is realized that displacement mode shape as global behavior of a structure can still be calculated with high-precision from modal macro-strain considering measurement errors in practical monitoring, whereas modal macro-strain can hardly be accurately achieved from displacement mode shape when signals are corrupted with noise in practical monitoring. Simulation and experiment results show that the calculated displacement mode shapes are very close to the actual ones even if the noise level reaches 5%. Meanwhile, damage index using measured modal macro-strain is still effective when the measurements are corrupted with 5% noise which is reliable for damage detection in practical monitoring. Calculating modal macro-strain from noise-polluted displacement mode shape will cause an unacceptable error if the noise level reaches only 0.5%, which has been verified in the simulation.

  5. DNA fork displacement rates in human cells

    International Nuclear Information System (INIS)

    Kapp, L.N.; Painter, R.B.

    1981-01-01

    DNA fork displacement rates were measured in 20 human cell lines by a bromodeoxyuridine-313 nm photolysis technique. Cell lines included representatives of normal diploid, Fanconi's anemia, ataxia telangiectasia, xeroderma pigmentosum, trisomy-21 and several transformed lines. The average value for all the cell lines was 0.53 +- 0.08 μm/min. The average value for individual cell lines, however, displayed a 30% variation. Less than 10% of variation in the fork displacement rate appears to be due to the experimental technique; the remainder is probably due to true variation among the cell types and to culture conditions. (Auth.)

  6. DNA fork displacement rates in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Kapp, L.N.; Painter, R.B. (California Univ., San Francisco (USA). Lab. of Radiobiology)

    1981-11-27

    DNA fork displacement rates were measured in 20 human cell lines by a bromodeoxyuridine-313 nm photolysis technique. Cell lines included representatives of normal diploid, Fanconi's anemia, ataxia telangiectasia, xeroderma pigmentosum, trisomy-21 and several transformed lines. The average value for all the cell lines was 0.53 +- 0.08 ..mu..m/min. The average value for individual cell lines, however, displayed a 30% variation. Less than 10% of variation in the fork displacement rate appears to be due to the experimental technique; the remainder is probably due to true variation among the cell types and to culture conditions.

  7. Characteristics of children with hip displacement in cerebral palsy

    Directory of Open Access Journals (Sweden)

    Wagner Philippe

    2007-10-01

    Full Text Available Abstract Background Hip dislocation in children with cerebral palsy (CP is a common and severe problem. The dislocation can be avoided, by screening and preventive treatment of children with hips at risk. The aim of this study was to analyse the characteristics of children with CP who develop hip displacement, in order to optimise a hip surveillance programme. Methods In a total population of children with CP a standardised clinical and radiological follow-up of the hips was carried out as a part of a hip prevention programme. The present study is based on 212 children followed until 9–16 years of age. Results Of the 212 children, 38 (18% developed displacement with Migration Percentage (MP >40% and further 19 (9% MP between 33 and 39%. Mean age at first registration of hip displacement was 4 years, but some hips showed MP > 40% already at two years of age. The passive range of hip motion at the time of first registration of hip displacement did not differ significantly from the findings in hips without displacement. The risk of hip displacement varied according to CP-subtype, from 0% in children with pure ataxia to 79% in children with spastic tetraplegia. The risk of displacement (MP > 40% was directly related to the level of gross motor function, classified according to the gross motor function classification system, GMFCS, from 0% in children in GMFCS level I to 64% in GMFCS level V. Conclusion Hip displacement in CP often occurs already at 2–3 years of age. Range of motion is a poor indicator of hips at risk. Thus early identification and early radiographic examination of children at risk is of great importance. The risk of hip displacement varies according to both CP-subtype and GMFCS. It is sometimes not possible to determine subtype before 4 years of age, and at present several definitions and classification systems are used. GMFCS is valid and reliable from 2 years of age, and it is internationally accepted. We recommend a hip

  8. Studies on displacement behavior between hydrogen and deuterium in hydride column

    International Nuclear Information System (INIS)

    Lu Guangda; Li Gan; Jiang Guoqiang

    2001-01-01

    A series displacement experiments between hydrogen and deuterium in ZrCo, LaNi 5 , LaNi 4.7 Al 0.3 and Pd hydride column had been conducted at room temperature about. Results indicate that displacement characteristics related to factors such as temperature, gas flow rate, ratio surface area of solid phase and hydrogen isotope separation factor of the metal-hydrogen system. The palladium hydride have the best displacement characteristics, and LaNi 5 , LaNi 4.7 Al 0.3 and ZrCo are in the next places. Theoretical study reveals that the rule of the exchange reaction of hydrogen isotopes in gas-solid interface determines the displacement behavior and the displacing efficiency depends on exchange rate. The ideal stage mode could be used to describe the displacement breakthrough curve. The height equivalent to theoretical place (HETP) indicates the displacing effects. Also, the separation factor has a serious influence to HETP under the same condition

  9. Quantification of the vocal folds’ dynamic displacements

    International Nuclear Information System (INIS)

    Hernández-Montes, María del Socorro; Muñoz, Silvino; De La Torre, Manuel; Flores, Mauricio; Pérez, Carlos; Mendoza-Santoyo, Fernando

    2016-01-01

    Fast dynamic data acquisition techniques are required to investigate the motional behavior of the vocal folds (VFs) when they are subjected to a steady air-flow through the trachea. High-speed digital holographic interferometry (DHI) is a non-invasive full-field-of-view technique that has proved its usefulness to study rapid and non-repetitive object movements. Hence it is an ideal technique used here to measure VF displacements and vibration patterns at 2000 fps. Analyses from a set of 200 displacement images showed that VFs’ vibration cycles are established along their width (y) and length (x). Furthermore, the maximum deformation for the right and left VFs’ area may be quantified from these images, which in itself represents an important result in the characterization of this structure. At a controlled air pressure, VF displacements fall within the range ∼100–1740 nm, with a calculated precision and accuracy that yields a variation coefficient of 1.91%. High-speed acquisition of full-field images of VFs and their displacement quantification are on their own significant data in the study of their functional and physiological behavior since voice quality and production depend on how they vibrate, i.e. their displacement amplitude and frequency. Additionally, the use of high speed DHI avoids prolonged examinations and represents a significant scientific and technological alternative contribution in advancing the knowledge and working mechanisms of these tissues. (paper)

  10. Online radiation dose measurement system for ATLAS experiment

    International Nuclear Information System (INIS)

    Mandic, I.; Cindro, V.; Dolenc, I.; Gorisek, A.; Kramberger, G.; Mikuz, M.; Bronner, J.; Hartet, J.; Franz, S.

    2009-01-01

    In experiments at Large Hadron Collider, detectors and electronics will be exposed to high fluxes of photons, charged particles and neutrons. Damage caused by the radiation will influence performance of detectors. It will therefore be important to continuously monitor the radiation dose in order to follow the level of degradation of detectors and electronics and to correctly predict future radiation damage. A system for online radiation monitoring using semiconductor radiation sensors at large number of locations has been installed in the ATLAS experiment. Ionizing dose in SiO 2 will be measured with RadFETs, displacement damage in silicon in units of 1-MeV(Si) equivalent neutron fluence with p-i-n diodes. At 14 monitoring locations where highest radiation levels are expected the fluence of thermal neutrons will be measured from current gain degradation in dedicated bipolar transistors. The design of the system and tests of its performance in mixed radiation field is described in this paper. First results from this test campaign confirm that doses can be measured with sufficient sensitivity (mGy for total ionizing dose measurements, 10 9 n/cm 2 for NIEL (non-ionizing energy loss) measurements, 10 12 n/cm 2 for thermal neutrons) and accuracy (about 20%) for usage in the ATLAS detector

  11. High precision measurement of the micro-imaging system to check repeatability of precision

    International Nuclear Information System (INIS)

    Cheng Lin; Song Li; Ma Chuntao; Luo Hongxin; Wang Jie

    2010-01-01

    The beamlines slits of Shanghai Synchrotron Radiation Facility (SSRF) are required to have a repeatability of better than 1 μm. Before the slits installation, the off-line and/or on-line repeatability measurements must be conducted. A machine vision measuring system based on high resolution CCD and adjustable high magnification lens was used in this regard. A multi-level filtering method was used to treat the imaging data. After image binarization, the imaging noises were depressed effectively by using of algebraic mean filtering, statistics median filtering,and the least square filtering. Using the subtracted image between the images before and after slit movement, an average displacement of slit blades could be obtained, and the repeatability of slit could be measured, with a resolution of 0.3 μm of the measurement system. The experimental results show that this measurement system meets the requirements for non-contact measurements to the repeatability of slits. (authors)

  12. Dealing with the Effects of Sensor Displacement in Wearable Activity Recognition

    Directory of Open Access Journals (Sweden)

    Oresti Banos

    2014-06-01

    Full Text Available Most wearable activity recognition systems assume a predefined sensor deployment that remains unchanged during runtime. However, this assumption does not reflect real-life conditions. During the normal use of such systems, users may place the sensors in a position different from the predefined sensor placement. Also, sensors may move from their original location to a different one, due to a loose attachment. Activity recognition systems trained on activity patterns characteristic of a given sensor deployment may likely fail due to sensor displacements. In this work, we innovatively explore the effects of sensor displacement induced by both the intentional misplacement of sensors and self-placement by the user. The effects of sensor displacement are analyzed for standard activity recognition techniques, as well as for an alternate robust sensor fusion method proposed in a previous work. While classical recognition models show little tolerance to sensor displacement, the proposed method is proven to have notable capabilities to assimilate the changes introduced in the sensor position due to self-placement and provides considerable improvements for large misplacements.

  13. Forced displacement and women's security in Colombia.

    Science.gov (United States)

    Meertens, Donny

    2010-04-01

    In the protracted Colombian conflict, assistance to internally displaced persons has developed in the context of contradictory political processes. The Colombian government's launching of a transitional justice process in the midst of armed conflict has generated a complex situation displaying both conflict and post-conflict characteristics. The progressive Constitutional Court rulings on internal displacement, in particular the gender-sensitive Auto 092, constitute an attempt to bring together humanitarian interventions and transitional justice measures in a rights-based framework. However, the national government is reluctant to adopt them fully and local realities still hamper their integrated implementation. Displaced women, therefore, remain in an especially vulnerable position. This paper argues that gender-sensitive humanitarian interventions must take into account all of these complexities of scale and political process in order to make legal frameworks more effective at the local level. In these contexts, interventions should pay particular attention to strategies that contribute to transforming pre-existing gender regimes.

  14. Oil/water displacement in microfluidic packed beds under weakly water-wetting conditions: competition between precursor film flow and piston-like displacement

    Science.gov (United States)

    Tanino, Yukie; Zacarias-Hernandez, Xanat; Christensen, Magali

    2018-02-01

    Optical microscopy was used to measure depth-averaged oil distribution in a quasi-monolayer of crushed marble packed in a microfluidic channel as it was displaced by water. By calibrating the transmitted light intensity to oil thickness, we account for depth variation in the fluid distribution. Experiments reveal that oil saturation at water breakthrough decreases with increasing Darcy velocity, U_{ {w}}, between capillary numbers {Ca} = μ _{ {w}} U_{ {w}}/σ = 9× 10^{-7} and 9× 10^{-6}, where μ _{ {w}} is the dynamic viscosity of water and σ is the oil/water interfacial tension, under the conditions considered presently. In contrast, end-point (long-time) remaining oil saturation depends only weakly on U_{ {w}}. This transient dependence on velocity is attributed to the competition between precursor film flow, which controls early time invasion dynamics but is inefficient at displacing oil, and piston-like displacement, which controls ultimate oil recovery. These results demonstrate that microfluidic experiments using translucent grains and fluids are a convenient tool for quantitative investigation of sub-resolution liquid/liquid displacement in porous media.

  15. Linearization of Positional Response Curve of a Fiber-optic Displacement Sensor

    Science.gov (United States)

    Babaev, O. G.; Matyunin, S. A.; Paranin, V. D.

    2018-01-01

    Currently, the creation of optical measuring instruments and sensors for measuring linear displacement is one of the most relevant problems in the area of instrumentation. Fiber-optic contactless sensors based on the magneto-optical effect are of special interest. They are essentially contactless, non-electrical and have a closed optical channel not subject to contamination. The main problem of this type of sensors is the non-linearity of their positional response curve due to the hyperbolic nature of the magnetic field intensity variation induced by moving the magnetic source mounted on the controlled object relative to the sensing element. This paper discusses an algorithmic method of linearizing the positional response curve of fiber-optic displacement sensors in any selected range of the displacements to be measured. The method is divided into two stages: 1 - definition of the calibration function, 2 - measurement and linearization of the positional response curve (including its temperature stabilization). The algorithm under consideration significantly reduces the number of points of the calibration function, which is essential for the calibration of temperature dependence, due to the use of the points that randomly deviate from the grid points with uniform spacing. Subsequent interpolation of the deviating points and piecewise linear-plane approximation of the calibration function reduces the microcontroller storage capacity for storing the calibration function and the time required to process the measurement results. The paper also presents experimental results of testing real samples of fiber-optic displacement sensors.

  16. Heterodyne displacement interferometer, insensitive for input polarization

    NARCIS (Netherlands)

    Meskers, A.J.H.; Spronck, J.W.; Munnig Schmidt, R.H.

    2014-01-01

    Periodic nonlinearity (PNL) in displacement interferometers is a systematic error source that limits measurement accuracy. The PNL of coaxial heterodyne interferometers is highly influenced by the polarization state and orientation of the source frequencies. In this Letter, we investigate this error

  17. Off-Axis Gaussian Beams with Random Displacement in Atmospheric Turbulence

    Directory of Open Access Journals (Sweden)

    Yahya Baykal

    2006-10-01

    Full Text Available Our recent work in which we study the propagation of the general Hermite-sinusoidal-Gaussian laser beams in wireless broadband access telecommunication systems is elaborated in this paper to cover the special case of an off-axis Gaussian beam. We mainly investigate the propagation characteristics in atmospheric turbulence of an off-axis Gaussian beam possessing Gaussian distributed random displacement parameters. Our interest is to search for different types of laser beams that will improve the performance of a wireless broadband access system when atmospheric turbulence is considered. Our formulation is based on the basic solution of the second order mutual coherence function evaluated at the receiver plane. For fixed turbulence strength, the coherence length calculated at the receiver plane is found to decrease as the variance of the random displacement is increased. It is shown that as the turbulence becomes stronger, coherence lengths due to off-axis Gaussian beams tend to approach the same value, irrespective of the variance of the random displacement. As expected, the beam spreading is found to be pronounced for larger variance of displacement parameter. Average intensity profiles when atmospheric turbulence is present are plotted for different values of the variance of the random displacement parameter of the off-axis Gaussian beam.

  18. Displaced Electric Sail Orbits Design and Transition Trajectory Optimization

    Directory of Open Access Journals (Sweden)

    Naiming Qi

    2014-01-01

    Full Text Available Displaced orbits for spacecraft propelled by electric sails are investigated as an alternative to the use of solar sails. The orbital dynamics of electric sails based spacecraft are studied within a spherical coordinate system, which permits finding the solutions of displaced electric sail orbits and optimize transfer trajectory. Transfer trajectories from Earth's orbit to displaced orbit are also studied in an optimal framework, by using genetic algorithm and Gauss pseudospectral method. The initial guesses for the state and control histories used in the Gauss pseudospectral method are interpolated from the best solution of a genetic algorithm. Numerical simulations show that the electric sail is able to perform the transfer from Earth’s orbit to displaced orbit in acceptable time, and the hybrid optimization method has the capability to search the feasible and optimal solution without any initial value guess.

  19. Comparing the impact of time displaced and biased precipitation estimates for online updated urban runoff models

    DEFF Research Database (Denmark)

    Borup, Morten; Mikkelsen, Peter Steen; Borup, Morten

    2013-01-01

    When an online runoff model is updated from system measurements, the requirements of the precipitation input change. Using rain gauge data as precipitation input there will be a displacement between the time when the rain hits the gauge and the time where the rain hits the actual catchment, due...

  20. Case report: traumatic displacement of a cochlear implant magnet.

    Science.gov (United States)

    Keereweer, Stijn; Van der Schroeff, Marc P; Pullens, Bas

    2014-04-01

    To date, over 200 000 cochlear implants (CIs) have been implanted worldwide and the incidence is still increasing. We present a case of traumatic displacement of CI magnet to raise awareness about this complication and to highlight the need for vigilance during surgery as well as for proper counseling. The clinical presentation of a 1.5-year-old boy with a traumatic displacement of a CI magnet was presented and the literature was reviewed for this rare complication. After minor head injury, the sound processor could no longer connect to the CI. X-ray imaging demonstrated displacement of the CI magnet. During revision surgery, the magnet was replaced by a new magnet in the silicon holding cap. Intraoperative impedance measurements were normal and the CI was successfully activated 4 weeks postoperatively. Clinicians and patients should be aware of the risk of displacement of the CI magnet after (minor) head injury. Young boys tend to have a higher risk for this complication.

  1. Bucket Foundation Response Under Various Displacement Rates

    DEFF Research Database (Denmark)

    Vaitkunaite, Evelina; Nielsen, Benjaminn Nordahl; Ibsen, Lars Bo

    2016-01-01

    in a multi-bucket foundation system. The foundation model is at a scale of approximately 1:20 prototype foundation size. The tests are performed in a pressure tank with the foundation model installed in dense sand. Based on the data, the conclusion is that the bucket foundation design in a storm case should......The present testing program aims at showing the pore pressure response around a bucket foundation skirt as well as the load and displacement change due to ten different displacement rates. Research findings are useful for a numerical model calibration focusing on the design of the upwind foundation...

  2. Probabilistic modelling of the high-pressure arc cathode spot displacement dynamic

    CERN Document Server

    Coulombe, S

    2003-01-01

    A probabilistic modelling approach for the study of the cathode spot displacement dynamic in high-pressure arc systems is developed in an attempt to interpret the observed voltage fluctuations. The general framework of the model allows to define simple, probabilistic displacement rules, the so-called cathode spot dynamic rules, for various possible surface states (un-arced metal, arced, contaminated) and to study the resulting dynamic of the cathode spot displacements over one or several arc passages. The displacements of the type-A cathode spot (macro-spot) in a magnetically rotating arc using concentric electrodes made up of either clean or contaminated metal surfaces is considered. Experimental observations for this system revealed a 1/f sup - sup t sup i sup l sup d sup e sup 1 signature in the frequency power spectrum (FPS) of the arc voltage for anchoring arc conditions on the cathode (e.g. clean metal surface), while it shows a 'white noise' signature for conditions favouring a smooth movement (e.g. ox...

  3. A comprehensive study of charge trapping in organic field-effect devices with promising semiconductors and different contact metals by displacement current measurements

    International Nuclear Information System (INIS)

    Bisoyi, Sibani; Tiwari, Shree Prakash; Rödel, Reinhold; Zschieschang, Ute; Klauk, Hagen; Kang, Myeong Jin; Takimiya, Kazuo

    2016-01-01

    A systematic and comprehensive study on the charge-carrier injection and trapping behavior was performed using displacement current measurements in long-channel capacitors based on four promising small-molecule organic semiconductors (pentacene, DNTT, C 10 -DNTT and DPh-DNTT). In thin-film transistors, these semiconductors showed charge-carrier mobilities ranging from 1.0 to 7.8 cm 2 V −1 s −1 . The number of charges injected into and extracted from the semiconductor and the density of charges trapped in the device during each measurement were calculated from the displacement current characteristics and it was found that the density of trapped charges is very similar in all devices and of the order 10 12 cm −2 , despite the fact that the four semiconductors show significantly different charge-carrier mobilities. The choice of the contact metal (Au, Ag, Cu, Pd) was also found to have no significant effect on the trapping behavior. (paper)

  4. The use of a displacement device negatively affects the performance of dogs (Canis familiaris) in visible object displacement tasks.

    Science.gov (United States)

    Müller, Corsin A; Riemer, Stefanie; Range, Friederike; Huber, Ludwig

    2014-08-01

    Visible and invisible displacement tasks have been used widely for comparative studies of animals' understanding of object permanence, with evidence accumulating that some species can solve invisible displacement tasks and, thus, reach Piagetian stage 6 of object permanence. In contrast, dogs appear to rely on associative cues, such as the location of the displacement device, during invisible displacement tasks. It remains unclear, however, whether dogs, and other species that failed in invisible displacement tasks, do so because of their inability to form a mental representation of the target object, or simply because of the involvement of a more salient but potentially misleading associative cue, the displacement device. Here we show that the use of a displacement device impairs the performance of dogs also in visible displacement tasks: their search accuracy was significantly lower when a visible displacement was performed with a displacement device, and only two of initially 42 dogs passed the sham-baiting control conditions. The negative influence of the displacement device in visible displacement tasks may be explained by strong associative cues overriding explicit information about the target object's location, reminiscent of an overshadowing effect, and/or object individuation errors as the target object is placed within the displacement device and moves along a spatiotemporally identical trajectory. Our data suggest that a comprehensive appraisal of a species' performance in object permanence tasks should include visible displacement tasks with the same displacement device used in invisible displacements, which typically has not been done in the past.

  5. A new capacitive long-range displacement nanometer sensor with differential sensing structure based on time-grating

    Science.gov (United States)

    Yu, Zhicheng; Peng, Kai; Liu, Xiaokang; Pu, Hongji; Chen, Ziran

    2018-05-01

    High-precision displacement sensors, which can measure large displacements with nanometer resolution, are key components in many ultra-precision fabrication machines. In this paper, a new capacitive nanometer displacement sensor with differential sensing structure is proposed for long-range linear displacement measurements based on an approach denoted time grating. Analytical models established using electric field coupling theory and an area integral method indicate that common-mode interference will result in a first-harmonic error in the measurement results. To reduce the common-mode interference, the proposed sensor design employs a differential sensing structure, which adopts a second group of induction electrodes spatially separated from the first group of induction electrodes by a half-pitch length. Experimental results based on a prototype sensor demonstrate that the measurement accuracy and the stability of the sensor are substantially improved after adopting the differential sensing structure. Finally, a prototype sensor achieves a measurement accuracy of  ±200 nm over the full 200 mm measurement range of the sensor.

  6. Displacement data assimilation

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, W. Steven [Pacific Northwest Laboratory, Richland, WA 99354 (United States); Venkataramani, Shankar [Department of Mathematics and Program in Applied Mathematics, University of Arizona, Tucson, AZ 85721 (United States); Mariano, Arthur J. [Rosenstiel School of Marine & Atmospheric Science, University of Miami, Miami, FL 33149 (United States); Restrepo, Juan M., E-mail: restrepo@math.oregonstate.edu [Department of Mathematics, Oregon State University, Corvallis, OR 97331 (United States)

    2017-02-01

    We show that modifying a Bayesian data assimilation scheme by incorporating kinematically-consistent displacement corrections produces a scheme that is demonstrably better at estimating partially observed state vectors in a setting where feature information is important. While the displacement transformation is generic, here we implement it within an ensemble Kalman Filter framework and demonstrate its effectiveness in tracking stochastically perturbed vortices.

  7. Respiratory symptoms, perceived air quality and physiological signs in elementary school pupils in relation to displacement and mixing ventilation system: an intervention study.

    Science.gov (United States)

    Norbäck, D; Wieslander, G; Zhang, X; Zhao, Z

    2011-10-01

    Schools may be poorly ventilated and may contain furry pet allergens, particles and microorganisms. We studied health effects when changing from mixing ceiling ventilation to two types of displacement ventilation, front ventilation system (FVS) and floor master system (FMS). The study included pupils in three elementary school classes (N = 61), all with floor heating. One class received blinded interventions; the two others were unchanged (controls). Ventilation flow and supply air temperature was kept constant. The medical investigation included tear film stability (BUT), nasal patency and a questionnaire containing rating scales. When changing from mixing ventilation to FVS, the pupils (N = 26) perceived better air quality (P = 0.006) and less dyspnoea (P = 0.007) as compared to controls (N = 35), and BUT was improved (P = 0.03). At desk level, mean CO(2) was reduced from 867 to 655 ppm. Formaldehyde and viable bacteria were numerically lower, while total bacteria and molds were higher with displacement ventilation. There was no difference in symptoms or signs when changing from FVS to FMS. Cat (Der p1), dog (Can f1) and horse allergen (Equ cx) were common in air at all conditions. In conclusion, displacement ventilation may have certain positive health effects among pupils, as compared to conventional mixing ceiling systems. Displacement ventilation may be a suitable ventilation principle for achieving good indoor environment in classrooms. The type of supply air diffuser does not seem to be of major importance. The combination of floor heating and displacement ventilation can be a useful way of avoiding the previously described problem of thermal discomfort. © 2011 John Wiley & Sons A/S.

  8. Expanded beam deflection method for simultaneous measurement of displacement and vibrations of multiple microcantilevers

    International Nuclear Information System (INIS)

    Nieradka, K.; MaloziePc, G.; Kopiec, D.; Gotszalk, T.; Grabiec, P.; Janus, P.; Sierakowski, A.

    2011-01-01

    Here we present an extension of optical beam deflection (OBD) method for measuring displacement and vibrations of an array of microcantilevers. Instead of focusing on the cantilever, the optical beam is either focused above or below the cantilever array, or focused only in the axis parallel to the cantilevers length, allowing a wide optical line to span multiple cantilevers in the array. Each cantilever reflects a part of the incident beam, which is then directed onto a photodiode array detector in a manner allowing distinguishing between individual beams. Each part of reflected beam behaves like a single beam of roughly the same divergence angle in the bending sensing axis as the incident beam. Since sensitivity of the OBD method depends on the divergence angle of deflected beam, high sensitivity is preserved in proposed expanded beam deflection (EBD) method. At the detector, each spot's position is measured at the same time, without time multiplexing of light sources. This provides real simultaneous readout of entire array, unavailable in most of competitive methods, and thus increases time resolution of the measurement. Expanded beam can also span another line of cantilevers allowing monitoring of specially designed two-dimensional arrays. In this paper, we present first results of application of EBD method to cantilever sensors. We show how thermal noise resolution can be easily achieved and combined with thermal noise based resonance frequency measurement.

  9. Displacement behaviour is associated with reduced stress levels among men but not women.

    Directory of Open Access Journals (Sweden)

    Changiz Mohiyeddini

    Full Text Available Sex differences in the ability to cope with stress may contribute to the higher prevalence of stress-related disorders among women compared to men. We recently provided evidence that displacement behaviour--activities such as scratching and face touching--represents an important strategy for coping with stressful situations: in a healthy population of men, displacement behaviour during a social stress test attenuated the relationship between anxiety experienced prior to this test, and the subsequent self-reported experience of stress. Here, we extend this work to look at physiological and cognitive (in addition to self-reported measures of stress, and study both men and women in order to investigate whether sex moderates the link between displacement behaviour and the response to stress. In a healthy study population, we quantified displacement behaviour, heart rate and cognitive performance during the Trier Social Stress Test, and used self-report questionnaires to assess the experience of stress afterwards. Men engaged in displacement behaviour about twice as often as women, and subsequently reported lower levels of stress. Bivariate correlations revealed that for men, higher rates of displacement behaviour were associated with decreased self-reported stress, fewer mistakes in the cognitive task and a trend towards lower heart rate; no relationships between displacement behaviour and stress measures were found for women. Moreover, moderation analyses revealed that high rates of displacement behaviour were associated with lower stress levels in men but not in women, and that high displacement behaviour rates were associated with poorer cognitive performance in women, but not men. These results point to an important sex difference in coping strategies, and highlight new avenues for research into sex biases in stress-related disorders.

  10. Study of degenerate parabolic system modeling the hydrogen displacement in a nuclear waste repository

    KAUST Repository

    Caro, Florian; Saad, Bilal Mohammed; Saad, Mazen Naufal B M

    2013-01-01

    Our goal is the mathematical analysis of a two phase (liquid and gas) two components (water and hydrogen) system modeling the hydrogen displacement in a storage site for radioactive waste. We suppose that the water is only in the liquid phase and is incompressible. The hydrogen in the gas phase is supposed compressible and could be dissolved into the water with the Henry law. The flow is described by the conservation of the mass of each components. The model is treated without simplified assumptions on the gas density. This model is degenerated due to vanishing terms. We establish an existence result for the nonlinear degenerate parabolic system based on new energy estimate on pressures.

  11. Study of degenerate parabolic system modeling the hydrogen displacement in a nuclear waste repository

    KAUST Repository

    Caro, Florian

    2013-09-01

    Our goal is the mathematical analysis of a two phase (liquid and gas) two components (water and hydrogen) system modeling the hydrogen displacement in a storage site for radioactive waste. We suppose that the water is only in the liquid phase and is incompressible. The hydrogen in the gas phase is supposed compressible and could be dissolved into the water with the Henry law. The flow is described by the conservation of the mass of each components. The model is treated without simplified assumptions on the gas density. This model is degenerated due to vanishing terms. We establish an existence result for the nonlinear degenerate parabolic system based on new energy estimate on pressures.

  12. A two-layer model for buoyant inertial displacement flows in inclined pipes

    Science.gov (United States)

    Etrati, Ali; Frigaard, Ian A.

    2018-02-01

    We investigate the inertial flows found in buoyant miscible displacements using a two-layer model. From displacement flow experiments in inclined pipes, it has been observed that for significant ranges of Fr and Re cos β/Fr, a two-layer, stratified flow develops with the heavier fluid moving at the bottom of the pipe. Due to significant inertial effects, thin-film/lubrication models developed for laminar, viscous flows are not effective for predicting these flows. Here we develop a displacement model that addresses this shortcoming. The complete model for the displacement flow consists of mass and momentum equations for each fluid, resulting in a set of four non-linear equations. By integrating over each layer and eliminating the pressure gradient, we reduce the system to two equations for the area and mean velocity of the heavy fluid layer. The wall and interfacial stresses appear as source terms in the reduced system. The final system of equations is solved numerically using a robust, shock-capturing scheme. The equations are stabilized to remove non-physical instabilities. A linear stability analysis is able to predict the onset of instabilities at the interface and together with numerical solution, is used to study displacement effectiveness over different parametric regimes. Backflow and instability onset predictions are made for different viscosity ratios.

  13. MRI anatomy of anteriorly displaced anus: what obstructs defecation?

    International Nuclear Information System (INIS)

    AbouZeid, Amr Abdelhamid; Mohammad, Shaimaa Abdelsattar; Khairy, Khaled Talaat

    2014-01-01

    Anteriorly displaced anus is an anomaly that is debated with regard to its nomenclature, diagnosis and management. To describe MRI anatomy of the anal canal in children with anteriorly displaced anus and its impact on the process of defecation. We prospectively examined ten children (7 girls, 3 boys; age range 7 months to 8 years, mean 3 years) with anteriorly displaced anus between August 2009 and April 2012. Noncontrast MRI examinations were performed on a 1.5-T magnet. T1- and T2-weighted turbo spin-echo images were acquired in axial, sagittal and coronal planes of the pelvis. The anorectal angle and the relative hiatal distance were measured in mid-sagittal images, and compared with those of a control group using the Mann-Whitney test. In children with anteriorly displaced anus, no anatomical abnormality was depicted at the level of the proximal anal canal. However, the distal anal canal was displaced anteriorly, running out its external muscle cuff, which remained un-displaced at the usual site of the anus. This changes the orientation of the central axis of the anal canal by passing across instead of along the fibers of the longitudinal muscle coat. Children with anteriorly displaced anus had a more obtuse anorectal angle (mean 112.1 ), which was significantly greater than that of the control group (mean 86.2 ). MRI is a valuable tool in studying the anatomy of the anal canal in children with anteriorly displaced anus. The abnormal orientation of the longitudinal muscle across the anal canal can explain the obstructed defecation in these children. Based on this study, it might be of interest to use MRI in studying equivocal cases and children with unexplained constipation. (orig.)

  14. MRI anatomy of anteriorly displaced anus: what obstructs defecation?

    Energy Technology Data Exchange (ETDEWEB)

    AbouZeid, Amr Abdelhamid [Ain-Shams University, Department of Pediatric Surgery, Cairo (Egypt); Mohammad, Shaimaa Abdelsattar; Khairy, Khaled Talaat [Ain-Shams University, Department of Radiodiagnosis, Cairo (Egypt)

    2014-07-15

    Anteriorly displaced anus is an anomaly that is debated with regard to its nomenclature, diagnosis and management. To describe MRI anatomy of the anal canal in children with anteriorly displaced anus and its impact on the process of defecation. We prospectively examined ten children (7 girls, 3 boys; age range 7 months to 8 years, mean 3 years) with anteriorly displaced anus between August 2009 and April 2012. Noncontrast MRI examinations were performed on a 1.5-T magnet. T1- and T2-weighted turbo spin-echo images were acquired in axial, sagittal and coronal planes of the pelvis. The anorectal angle and the relative hiatal distance were measured in mid-sagittal images, and compared with those of a control group using the Mann-Whitney test. In children with anteriorly displaced anus, no anatomical abnormality was depicted at the level of the proximal anal canal. However, the distal anal canal was displaced anteriorly, running out its external muscle cuff, which remained un-displaced at the usual site of the anus. This changes the orientation of the central axis of the anal canal by passing across instead of along the fibers of the longitudinal muscle coat. Children with anteriorly displaced anus had a more obtuse anorectal angle (mean 112.1 ), which was significantly greater than that of the control group (mean 86.2 ). MRI is a valuable tool in studying the anatomy of the anal canal in children with anteriorly displaced anus. The abnormal orientation of the longitudinal muscle across the anal canal can explain the obstructed defecation in these children. Based on this study, it might be of interest to use MRI in studying equivocal cases and children with unexplained constipation. (orig.)

  15. Displacement cascades in diatomic materials

    International Nuclear Information System (INIS)

    Parkin, D.M.; Coulter, C.A.

    1981-01-01

    A new function, the specified-projectile displacement function p/sub ijk/ (E), is introduced to describe displacement cascades in polyatomic materials. This function describes the specific collision events that produce displacements and hence adds new information not previously available. Calculations of p/sub ijk/ (E) for MgO, Al 2 O 3 and TaO are presented and discussed. Results show that the parameters that have the largest effect on displacement collision events are the PKA energy and the mass ratio of the atom types in the material. It is further shown that the microscopic nature of the displacement events changes over the entire recoil energy range relevant to fusion neutron spectra and that these changes are different in materials whose mass ratio is near one than in those where it is far from one

  16. Fission-neutron displacement cross sections in metals

    International Nuclear Information System (INIS)

    Takamura, Saburo; Aruga, Takeo; Nakata, Kiyotomo

    1985-01-01

    The sensitivity damage rates for 22 metals were measured after fission-spectrum neutron irradiation at low temperature and the experimental damage rates were compared with the theoretical calculation. The relation between the theoretical displacement cross section and the atomic weight of metals can be written by two curves; one is for fcc and hcp metals, and another is for bcc metals. On the other hand, the experimental displacement cross section versus atomic weight is shown approximately by a curve for both fcc and bcc metals, and the cross section for hcp metals deviates from the curve. The defect production efficiency is 0.3-0.4 for fcc metals and 0.6-0.8 for bcc metals. (orig.)

  17. Fourier-based integration of quasi-periodic gait accelerations for drift-free displacement estimation using inertial sensors.

    Science.gov (United States)

    Sabatini, Angelo Maria; Ligorio, Gabriele; Mannini, Andrea

    2015-11-23

    In biomechanical studies Optical Motion Capture Systems (OMCS) are considered the gold standard for determining the orientation and the position (pose) of an object in a global reference frame. However, the use of OMCS can be difficult, which has prompted research on alternative sensing technologies, such as body-worn inertial sensors. We developed a drift-free method to estimate the three-dimensional (3D) displacement of a body part during cyclical motions using body-worn inertial sensors. We performed the Fourier analysis of the stride-by-stride estimates of the linear acceleration, which were obtained by transposing the specific forces measured by the tri-axial accelerometer into the global frame using a quaternion-based orientation estimation algorithm and detecting when each stride began using a gait-segmentation algorithm. The time integration was performed analytically using the Fourier series coefficients; the inverse Fourier series was then taken for reconstructing the displacement over each single stride. The displacement traces were concatenated and spline-interpolated to obtain the entire trace. The method was applied to estimate the motion of the lower trunk of healthy subjects that walked on a treadmill and it was validated using OMCS reference 3D displacement data; different approaches were tested for transposing the measured specific force into the global frame, segmenting the gait and performing time integration (numerically and analytically). The width of the limits of agreements were computed between each tested method and the OMCS reference method for each anatomical direction: Medio-Lateral (ML), VerTical (VT) and Antero-Posterior (AP); using the proposed method, it was observed that the vertical component of displacement (VT) was within ±4 mm (±1.96 standard deviation) of OMCS data and each component of horizontal displacement (ML and AP) was within ±9 mm of OMCS data. Fourier harmonic analysis was applied to model stride-by-stride linear

  18. Online radiation dose measurement system for ATLAS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mandic, I.; Cindro, V.; Dolenc, I.; Gorisek, A.; Kramberger, G. [Jozef Stefan Institute, Jamova 39, Ljubljana (Slovenia); Mikuz, M. [Jozef Stefan Institute, Jamova 39, Ljubljana (Slovenia); Faculty of Mathematics and Physics, University of Ljubljana (Slovenia); Bronner, J.; Hartet, J. [Physikalisches Institut, Universitat Freiburg, Hermann-Herder-Str. 3, Freiburg (Germany); Franz, S. [CERN, Geneva (Switzerland)

    2009-07-01

    In experiments at Large Hadron Collider, detectors and electronics will be exposed to high fluxes of photons, charged particles and neutrons. Damage caused by the radiation will influence performance of detectors. It will therefore be important to continuously monitor the radiation dose in order to follow the level of degradation of detectors and electronics and to correctly predict future radiation damage. A system for online radiation monitoring using semiconductor radiation sensors at large number of locations has been installed in the ATLAS experiment. Ionizing dose in SiO{sub 2} will be measured with RadFETs, displacement damage in silicon in units of 1-MeV(Si) equivalent neutron fluence with p-i-n diodes. At 14 monitoring locations where highest radiation levels are expected the fluence of thermal neutrons will be measured from current gain degradation in dedicated bipolar transistors. The design of the system and tests of its performance in mixed radiation field is described in this paper. First results from this test campaign confirm that doses can be measured with sufficient sensitivity (mGy for total ionizing dose measurements, 10{sup 9} n/cm{sup 2} for NIEL (non-ionizing energy loss) measurements, 10{sup 12} n/cm{sup 2} for thermal neutrons) and accuracy (about 20%) for usage in the ATLAS detector

  19. Stable determination of a Lam\\'e coefficient by one internal measurement of displacement

    OpenAIRE

    Di Fazio, Giuseppe; Francini, Elisa; Raciti, Fabio; Vessella, Sergio

    2017-01-01

    In this paper we show that the shear modulus $\\mu$ of an isotropic elastic body can be stably recovered by the knowledge of one single displacement field whose boundary data can be assigned independently of the unknown elasticity tensor.

  20. Laser Displacement Measurements of Fan Blades in Resonance and Flutter During the Boundary Layer Ingesting Inlet and Distortion-Tolerant Fan Test

    Science.gov (United States)

    Duffy, Kirsten P.; Provenza, Andrew J.; Bakhle, Milind A.; Min, James B.; Abdul-Aziz, Ali

    2018-01-01

    NASA's Advanced Air Transport Technology Project is investigating boundary layer ingesting propulsors for future subsonic commercial aircraft to improve aircraft efficiency, thereby reducing fuel burn. To that end, a boundary layer ingesting inlet and distortion-tolerant fan stage was designed, fabricated, and tested within the 8' x 6' Supersonic Wind Tunnel at NASA Glenn Research Center. Because of the distortion in the air flow over the fan, the blades were designed to withstand a much higher aerodynamic forcing than for a typical clean flow. The blade response for several resonance modes were measured during start-up and shutdown, as well as at near 85% design speed. Flutter in the first bending mode was also observed in the fan at the design speed, at an off-design condition, although instabilities were difficult to instigate with this fan in general. Blade vibrations were monitored through twelve laser displacement probes that were placed around the inner circumference of the casing, at the blade leading and trailing edges. These probes captured the movement of all the blades during the entire test. Results are presented for various resonance mode amplitudes, frequencies and damping, as well as flutter amplitudes and frequency. Benefits and disadvantages of laser displacement probe measurements versus strain gage measurements are discussed.

  1. Analysis of relative displacement between the HX wearable robotic exoskeleton and the user's hand.

    Science.gov (United States)

    Cempini, Marco; Marzegan, Alberto; Rabuffetti, Marco; Cortese, Mario; Vitiello, Nicola; Ferrarin, Maurizio

    2014-10-18

    Advances in technology are allowing for the production of several viable wearable robotic devices to assist with activities of daily living and with rehabilitation. One of the most pressing limitations to user satisfaction is the lack of consistency in motion between the user and the robotic device. The displacement between the robot and the body segment may not correspond because of differences in skin and tissue compliance, mechanical backlash, and/or incorrect fit. This report presents the results of an analysis of relative displacement between the user's hand and a wearable exoskeleton, the HX. HX has been designed to maximize comfort, wearability and user safety, exploiting chains with multiple degrees-of-freedom with a modular architecture. These appealing features may introduce several uncertainties in the kinematic performances, especially when considering the anthropometry, morphology and degree of mobility of the human hand. The small relative displacements between the hand and the exoskeleton were measured with a video-based motion capture system, while the user executed several different grips in different exoskeleton modes. The analysis furnished quantitative results about the device performance, differentiated among device modules and test conditions. In general, the global relative displacement for the distal part of the device was in the range 0.5-1.5 mm, while within 3 mm (worse but still acceptable) for displacements nearest to the hand dorsum. Conclusions over the HX design principles have been drawn, as well as guidelines for future developments.

  2. Time varying behavior of the loudspeaker suspension: Displacement level dependency

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.; Pedersen, Bo Rohde

    2009-01-01

    The compliance of the loudspeaker suspension is known to depend on the recent excitation level history. Previous investigations have shown that the electrical power as well as displacement and velocity plays a role. In this paper the hypothesis that the changes in compliance are caused mainly...... by how much the suspension has been stretched, i.e. the maximum displacement, is investigated. For this purpose the changes in compliance are measured when exposing the speaker to different levels and types of electrical excitation signals, as well as mechanical excitation only. For sinusoidal excitation...... the change in compliance is shown to depend primarily on maximum displacement. But for square pulse excitation the duration of the excitation also plays an important role...

  3. Modelling toehold-mediated RNA strand displacement.

    Science.gov (United States)

    Šulc, Petr; Ouldridge, Thomas E; Romano, Flavio; Doye, Jonathan P K; Louis, Ard A

    2015-03-10

    We study the thermodynamics and kinetics of an RNA toehold-mediated strand displacement reaction with a recently developed coarse-grained model of RNA. Strand displacement, during which a single strand displaces a different strand previously bound to a complementary substrate strand, is an essential mechanism in active nucleic acid nanotechnology and has also been hypothesized to occur in vivo. We study the rate of displacement reactions as a function of the length of the toehold and temperature and make two experimentally testable predictions: that the displacement is faster if the toehold is placed at the 5' end of the substrate; and that the displacement slows down with increasing temperature for longer toeholds. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. SAR Interferometry and Precise Leveling for the Determination of Vertical Displacements in the Upper Rhine Graben Area, Southwest Germany

    Science.gov (United States)

    Fuhrmann, T.; Schenk, A.; Westerhaus, M.; Zippelt, K.; Heck, B.

    2013-12-01

    The PS-InSAR (Persistent Scatterer SAR Interferometry) method and precise levelings provide a unique database to detect recent displacements of the Earth's surface. Data of both measurement techniques are analyzed at Geodetic Institute, Karlsruhe Institute of Technology, in order to gain detailed insight into the velocity field of the Upper Rhine Graben (URG). As central and most prominent segment of the European Cenozoic rift system, the seismically and tectonically active Rhine Graben is of steady geo-scientific interest. In the last decades, the URG is characterized by small tectonic movements (Switzerland over the last 100 years building a network of leveling lines. A kinematic network adjustment is applied on the leveling data, providing an accurate solution for vertical displacement rates with accuracies of 0.2 to 0.4 mm/a. The biggest disadvantage of the leveling database is the sparse spatial distribution of the measurement points. Therefore, PS-InSAR is used to significantly increase the number of points within the leveling loops. To obtain a high accuracy for line of sight displacement rates, ERS-1/2 and Envisat data from ascending and descending orbits covering a period from 1992 to 2000 and 2002 to 2010, resp., are processed using StaMPS (Stanford Method for Persistent Scatterers). As the tectonic displacements cover a large area, the separation of atmospheric effects and orbit errors plays an important role in the PS-InSAR processing chain. Besides the tectonic signal, man-induced surface displacements caused by oil extraction are investigated. A comparison between the estimates from leveling and InSAR provides detailed insight into the temporal and spatial characteristics of the surface displacement as well as into the possibilities and limits of the measurement techniques.

  5. Internal displacement and the Syrian crisis: an analysis of trends from 2011-2014.

    Science.gov (United States)

    Doocy, Shannon; Lyles, Emily; Delbiso, Tefera D; Robinson, Courtland W

    2015-01-01

    Since the start of the Syrian crisis in 2011, civil unrest and armed conflict in the country have resulted in a rapidly increasing number of people displaced both within and outside of Syria. Those displaced face immense challenges in meeting their basic needs. This study sought to characterize internal displacement in Syria, including trends in both time and place, and to provide insights on the association between displacement and selected measures of household well-being and humanitarian needs. This study presents findings from two complementary methods: a desk review of displaced population estimates and movements and a needs assessment of 3930 Syrian households affected by the crisis. The first method, a desk review of displaced population estimates and movements, provides a retrospective analysis of national trends in displacement from March 2011 through June 2014. The second method, analysis of findings from a 2014 needs assessment by displacement status, provides insight into the displaced population and the association between displacement and humanitarian needs. Findings indicate that while displacement often corresponds to conflict levels, such trends were not uniformly observed in governorate-level analysis. Governorate level IDP estimates do not provide information on a scale detailed enough to adequately plan humanitarian assistance. Furthermore, such estimates are often influenced by obstructed access to certain areas, unsubstantiated reports, and substantial discrepancies in reporting. Secondary displacement is not consistently reported across sources nor are additional details about displacement, including whether displaced individuals originated within the current governorate or outside of the governorate. More than half (56.4 %) of households reported being displaced more than once, with a majority displaced for more than one year (73.3 %). Some differences between displaced and non-displaced population were observed in residence crowding, food

  6. Stress and displacement analysis of a core plate, i.e. grid-perforated plate compound, modelled as an equivalent beam system

    International Nuclear Information System (INIS)

    Frank, R.; Engel, R.

    1979-01-01

    The core support plate is a very important component of the reactor pressure vessel internals. Therefore, an exact stress analysis is desired. This analysis will cause high computer costs with a detailed FEM-model because of the complexity of this compound system. In this paper, a method is suggested to solve the problem with a much cheaper beam element model. The main problem is to establish an equivalent beam system with nearly the same stiffness property as the perforated circular plate stiffened by a grid. Furthermore, the system must allow to determine the maximum stresses with sufficient accuracy. The calculation of the equivalent beam stiffness is based on the analysis of perforated plates by T. SLOT and W.J. O'DONNELL. This analysis method utilizes the concept of the equivalent solid plate. In this method, the perforated plate is replaced by a solid one which is geometrically similar to the perforated plate but has modified values of the elastic constants. The simple equivalent beam system of one half of the core support plate (symmetry) was loaded with a pressure difference and stresses and displacements were analysed. After that, these results were compared with the stress and displacement analysis of a part of the real structure. This substructure was discretized by three-dimensional 20-node brick-elements. The comparison of the results of the two models shows that the stresses and displacements, calculated with the simple beam model, are in good agreement with those of the real structure. (orig.)

  7. In Vivo MRI Measurement of Spinal Cord Displacement in the Thoracolumbar Region of Asymptomatic Subjects with Unilateral and Sham Straight Leg Raise Tests.

    Directory of Open Access Journals (Sweden)

    M Rade

    Full Text Available Normal displacement of the conus medullaris with unilateral and bilateral SLR has been quantified and the "principle of linear dependence" has been described.Explore whether previously recorded movements of conus medullaris with SLRs are i primarily due to transmission of tensile forces transmitted through the neural tissues during SLR or ii the result of reciprocal movements between vertebrae and nerves.Controlled radiologic study.Ten asymptomatic volunteers were scanned with a 1.5T magnetic resonance (MR scanner using T2 weighted spc 3D scanning sequences and a device that permits greater ranges of SLR. Displacement of the conus medullaris during the unilateral and sham SLR was quantified reliably with a randomized procedure. Conus displacement in response to unilateral and sham SLRs was quantified and the results compared.The conus displaced caudally in the spinal canal by 3.54±0.87 mm (mean±SD with unilateral (p≤.001 and proximally by 0.32±1.6 mm with sham SLR (p≤.542. Pearson correlations were higher than 0.99 for both intra- and inter-observer reliability and the observed power was 1 for unilateral SLRs and 0.054 and 0.149 for left and right sham SLR respectively.Four relevant points emerge from the presented data: i reciprocal movements between the spinal cord and the surrounding vertebrae are likely to occur during SLR in asymptomatic subjects, ii conus medullaris displacement in the vertebral canal with SLR is primarily due to transmission of tensile forces through the neural tissues, iii when tensile forces are transmitted through the neural system as in the clinical SLR, the magnitude of conus medullaris displacement prevails over the amount of bone adjustment.

  8. Biomechanical model-based displacement estimation in micro-sensor motion capture

    International Nuclear Information System (INIS)

    Meng, X L; Sun, S Y; Wu, J K; Zhang, Z Q; 3 Building, 21 Heng Mui Keng Terrace (Singapore))" data-affiliation=" (Department of Electrical and Computer Engineering, National University of Singapore (NUS), 02-02-10 I3 Building, 21 Heng Mui Keng Terrace (Singapore))" >Wong, W C

    2012-01-01

    In micro-sensor motion capture systems, the estimation of the body displacement in the global coordinate system remains a challenge due to lack of external references. This paper proposes a self-contained displacement estimation method based on a human biomechanical model to track the position of walking subjects in the global coordinate system without any additional supporting infrastructures. The proposed approach makes use of the biomechanics of the lower body segments and the assumption that during walking there is always at least one foot in contact with the ground. The ground contact joint is detected based on walking gait characteristics and used as the external references of the human body. The relative positions of the other joints are obtained from hierarchical transformations based on the biomechanical model. Anatomical constraints are proposed to apply to some specific joints of the lower body to further improve the accuracy of the algorithm. Performance of the proposed algorithm is compared with an optical motion capture system. The method is also demonstrated in outdoor and indoor long distance walking scenarios. The experimental results demonstrate clearly that the biomechanical model improves the displacement accuracy within the proposed framework. (paper)

  9. A compact fiber optics-based heterodyne combined normal and transverse displacement interferometer.

    Science.gov (United States)

    Zuanetti, Bryan; Wang, Tianxue; Prakash, Vikas

    2017-03-01

    While Photonic Doppler Velocimetry (PDV) has become a common diagnostic tool for the measurement of normal component of particle motion in shock wave experiments, this technique has not yet been modified for the measurement of combined normal and transverse motion, as needed in oblique plate impact experiments. In this paper, we discuss the design and implementation of a compact fiber-optics-based heterodyne combined normal and transverse displacement interferometer. Like the standard PDV, this diagnostic tool is assembled using commercially available telecommunications hardware and uses a 1550 nm wavelength 2 W fiber-coupled laser, an optical focuser, and single mode fibers to transport light to and from the target. Two additional optical probes capture first-order beams diffracted from a reflective grating at the target free-surface and deliver the beams past circulators and a coupler where the signal is combined to form a beat frequency. The combined signal is then digitized and analyzed to determine the transverse component of the particle motion. The maximum normal velocity that can be measured by this system is limited by the equivalent transmission bandwidth (3.795 GHz) of the combined detector, amplifier, and digitizer and is estimated to be ∼2.9 km/s. Sample symmetric oblique plate-impact experiments are performed to demonstrate the capability of this diagnostic tool in the measurement of the combined normal and transverse displacement particle motion.

  10. MRI of displaced meniscal fragments

    International Nuclear Information System (INIS)

    Dunoski, Brian; Zbojniewicz, Andrew M.; Laor, Tal

    2012-01-01

    A torn meniscus frequently requires surgical fixation or debridement as definitive treatment. Meniscal tears with associated fragment displacement, such as bucket handle and flap tears, can be difficult to recognize and accurately describe on MRI, and displaced fragments can be challenging to identify at surgery. A displaced meniscal fragment can be obscured by synovium or be in a location not usually evaluated at arthroscopy. We present a pictorial essay of meniscal tears with displaced fragments in patients referred to a pediatric hospital in order to increase recognition and accurate interpretation by the radiologist, who in turn can help assist the surgeon in planning appropriate therapy. (orig.)

  11. MRI of displaced meniscal fragments

    Energy Technology Data Exchange (ETDEWEB)

    Dunoski, Brian [University of Cincinnati College of Medicine, Department of Radiology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States); Children' s Hospital of Michigan, Department of Radiology, Detroit, MI (United States); Zbojniewicz, Andrew M.; Laor, Tal [University of Cincinnati College of Medicine, Department of Radiology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States)

    2012-01-15

    A torn meniscus frequently requires surgical fixation or debridement as definitive treatment. Meniscal tears with associated fragment displacement, such as bucket handle and flap tears, can be difficult to recognize and accurately describe on MRI, and displaced fragments can be challenging to identify at surgery. A displaced meniscal fragment can be obscured by synovium or be in a location not usually evaluated at arthroscopy. We present a pictorial essay of meniscal tears with displaced fragments in patients referred to a pediatric hospital in order to increase recognition and accurate interpretation by the radiologist, who in turn can help assist the surgeon in planning appropriate therapy. (orig.)

  12. A fiber-optic interferometer with subpicometer resolution for dc and low-frequency displacement measurement

    International Nuclear Information System (INIS)

    Smith, D. T.; Pratt, J. R.; Howard, L. P.

    2009-01-01

    We have developed a fiber-optic interferometer optimized for best performance in the frequency range from dc to 1 kHz, with displacement linearity of 1% over a range of ± 25 nm, and noise-limited resolution of 2 pm. The interferometer uses a tunable infrared laser source (nominal 1550 nm wavelength) with high amplitude and wavelength stability, low spontaneous self-emission noise, high sideband suppression, and a coherence control feature that broadens the laser linewidth and dramatically lowers the low-frequency noise in the system. The amplitude stability of the source, combined with the use of specially manufactured ''bend-insensitive'' fiber and all-spliced fiber construction, results in a robust homodyne interferometer system, which achieves resolution of 40 fm Hz -1/2 above 20 Hz and approaches the shot-noise-limit of 20 fm Hz -1/2 at 1 kHz for an optical power of 10 μW, without the need for differential detection. Here we describe the design and construction of the interferometer, as well as modes of operation, and demonstrate its performance.

  13. Multiplanar CT assessment of femoral head displacement in slipped capital femoral epiphysis

    Energy Technology Data Exchange (ETDEWEB)

    Monazzam, Shafagh [Rady Children' s Hospital and Health Center, Department of Orthopedics, San Diego, CA (United States); Dwek, Jerry R. [Rady Children' s Hospital and Health Center, Department of Radiology, San Diego, CA (United States); Hosalkar, Harish S. [Center for Hip Preservation, Department of Orthopedic Surgery, TriCity Medical Center, Oceanside, CA (United States)

    2013-12-15

    With recent changing approaches to the management of slipped capital femoral epiphysis (SCFE), the accurate radiographic assessment of maximum extent of displacement is crucial for planning surgical treatment. To determine what plane best represents the maximum SCFE displacement as quantified by the head-neck angle difference (HNAD), whether HNAD can quantitatively differentiate the SCFE cohort from the normal cohort, based on CT, and how Southwick slip angle (SSA) compares to HNAD. We reviewed 19 children with SCFE (23 affected hips) with preoperative CT scans and 27 age- and sex-matched children undergoing abdominal CT for non-orthopedic problems. Head-neck angle (HNA), the angle between the femoral epiphysis and the neck axis, was measured in three planes on each hip and the HNAD (affected - unaffected hip) was determined. SSA was measured on radiographs. The coronal HNAD (mean 8.7 ) was less than both the axial-oblique (mean 30.7 ) and sagittal (mean 37.4 ) HNADs, which were also greater than the HNADs of the normal cohort. Grouping HNAD measurements by SSA severity classification did not consistently distinguish between SCFE severity levels. Axial-oblique and sagittal planes best represent the maximum SCFE displacement while biplanar radiograph may underestimate the extent of the displacement, thereby potentially altering the management between in situ pinning and capital realignment. (orig.)

  14. An IPMC microgripper with integrated actuator and sensing for constant finger-tip displacement

    International Nuclear Information System (INIS)

    Gonzalez, Carlos; Lumia, Ron

    2015-01-01

    Ionic polymer metal composite (IPMC) is a type of smart material that has gained the interest of many researchers due to its ability to achieve large displacements under small input voltages, usually less than 2.5 V. This has motivated the use of these materials in microsystems and systems in the millimeter scale, such as microgrippers. However, few of the control techniques developed thus far have considered the feasibility of using IPMCs in closed loop systems without the need of oversized external sensors. This paper presents a control scheme for a two-finger IPMC microgripper that accomplishes constant finger-tip displacements without external sensors. This scheme generates a displacement-dependent, time varying reference signal to obtain constant finger-tip displacements applied by a separate actuated IPMC. This actuator uses a PID controller tuned with a model-free approach, and is gain scheduled to span up to 1 mm finger-tip displacements. The microgripper achieves zero steady state error for finger-tip displacements on the tuned values of the PID controller. The gain scheduled PID controller is tested and results show zero steady state error to 0.25 mm displacements, and 15 and 20% steady state error when referenced to deflection of 0.45 and 0.75 mm, respectively. This shows that there is great confidence and validity of the control scheme, especially when tracking small reference deflections. (paper)

  15. Effects of threshold displacement energy on defect production by displacement cascades in α, β and γ-LiAlO2

    International Nuclear Information System (INIS)

    Tsuchihira, H.; Oda, T.; Tanaka, S.

    2013-01-01

    Threshold displacement energy evaluation and a series of displacement cascade simulations in α, β, and γ-LiAlO 2 were performed using molecular dynamics. Threshold displacement energy evaluations indicated that higher absolute ionic charge values and larger densities both increase threshold displacement energy. The displacement cascade simulations suggest that the influence of different crystal structures on the number of interstitial atoms generated in a displacement cascade is explainable almost entirely by the difference of the threshold displacement energy

  16. Effect of displaced versus non-displaced pelvic fractures on long-term racing performance in 31 Thoroughbred racehorses.

    Science.gov (United States)

    Hennessy, S E; Muurlink, M A; Anderson, G A; Puksmann, T N; Whitton, R C

    2013-06-01

    To evaluate the long-term racing prognosis for Thoroughbred racehorses with displaced versus non-displaced fractures of the pelvis identified by scintigraphy. Retrospective case analysis. Medical records of 31 Thoroughbred racehorses presenting to the University of Melbourne Equine Centre with fractures of the pelvis that were identified by scintigraphy were reviewed. Pelvic fracture site was determined and defined as displaced or non-displaced based on ultrasound and/or radiographic findings. Race records were analysed for each horse, with a minimum of 24 months' follow-up, and correlated with fracture type to determine long-term prognosis for racing. Results are expressed as median and range. Fractures at a single site were more common (n = 22) than fractures involving two sites (n = 9) and the ilial wing was the most commonly affected (n = 12). Thoroughbred racehorses with displaced pelvic fractures at any site (n = 12) raced fewer times within 24 months of diagnosis than horses with non-displaced fractures (n = 19) (median 0.5, range 0-13 vs 7, 0-24; P = 0.037), but there was no clear statistical difference in race earnings between the two groups (median A$0, range A$0-$123,250 vs A$14,440, A$0-$325,500, respectively; P = 0.080). Four horses with displaced fractures (33%) were euthanased on humane grounds because of persistent severe pain. When these horses were excluded from the analysis, there were no differences in performance variables between horses with a displaced or non-displaced pelvic fracture. Thoroughbred racehorses with a displaced or non-displaced pelvic fracture that survive the initial post-injury period have a good prognosis for racing. © 2013 The Authors. Australian Veterinary Journal © 2013 Australian Veterinary Association.

  17. Multiplexed displacement fiber sensor using thin core fiber exciter.

    Science.gov (United States)

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2015-06-01

    This letter reports a multiplexed optical displacement sensor using a thin core fiber (TCF) exciter. The TCF exciter is followed by a stripped single mode optical fiber. A small section of buffer is used as the movable component along the single mode fiber. Ultra-weak cladding mode reflection (< - 75 dB) was employed to probe the refractive index discontinuity between the air and buffer coating boundary. The position change of the movable buffer segment results in a delay change of the cladding mode reflection. Thus, it is a measure of the displacement of the buffer segment with respect to the glass fiber. The insertion loss of one sensor was measured to be less than 3 dB. A linear relationship was evaluated between the measurement position and absolute position of the moving actuator. Multiplexed capability was demonstrated and no cross talk was found between the sensors.

  18. Applying a Bayesian Approach to Identification of Orthotropic Elastic Constants from Full Field Displacement Measurements

    Directory of Open Access Journals (Sweden)

    Le Riche R.

    2010-06-01

    Full Text Available A major challenge in the identification of material properties is handling different sources of uncertainty in the experiment and the modelling of the experiment for estimating the resulting uncertainty in the identified properties. Numerous improvements in identification methods have provided increasingly accurate estimates of various material properties. However, characterizing the uncertainty in the identified properties is still relatively crude. Different material properties obtained from a single test are not obtained with the same confidence. Typically the highest uncertainty is associated with respect to properties to which the experiment is the most insensitive. In addition, the uncertainty in different properties can be strongly correlated, so that obtaining only variance estimates may be misleading. A possible approach for handling the different sources of uncertainty and estimating the uncertainty in the identified properties is the Bayesian method. This method was introduced in the late 1970s in the context of identification [1] and has been applied since to different problems, notably identification of elastic constants from plate vibration experiments [2]-[4]. The applications of the method to these classical pointwise tests involved only a small number of measurements (typically ten natural frequencies in the previously cited vibration test which facilitated the application of the Bayesian approach. For identifying elastic constants, full field strain or displacement measurements provide a high number of measured quantities (one measurement per image pixel and hence a promise of smaller uncertainties in the properties. However, the high number of measurements represents also a major computational challenge in applying the Bayesian approach to full field measurements. To address this challenge we propose an approach based on the proper orthogonal decomposition (POD of the full fields in order to drastically reduce their

  19. Applying a Bayesian Approach to Identification of Orthotropic Elastic Constants from Full Field Displacement Measurements

    Science.gov (United States)

    Gogu, C.; Yin, W.; Haftka, R.; Ifju, P.; Molimard, J.; Le Riche, R.; Vautrin, A.

    2010-06-01

    A major challenge in the identification of material properties is handling different sources of uncertainty in the experiment and the modelling of the experiment for estimating the resulting uncertainty in the identified properties. Numerous improvements in identification methods have provided increasingly accurate estimates of various material properties. However, characterizing the uncertainty in the identified properties is still relatively crude. Different material properties obtained from a single test are not obtained with the same confidence. Typically the highest uncertainty is associated with respect to properties to which the experiment is the most insensitive. In addition, the uncertainty in different properties can be strongly correlated, so that obtaining only variance estimates may be misleading. A possible approach for handling the different sources of uncertainty and estimating the uncertainty in the identified properties is the Bayesian method. This method was introduced in the late 1970s in the context of identification [1] and has been applied since to different problems, notably identification of elastic constants from plate vibration experiments [2]-[4]. The applications of the method to these classical pointwise tests involved only a small number of measurements (typically ten natural frequencies in the previously cited vibration test) which facilitated the application of the Bayesian approach. For identifying elastic constants, full field strain or displacement measurements provide a high number of measured quantities (one measurement per image pixel) and hence a promise of smaller uncertainties in the properties. However, the high number of measurements represents also a major computational challenge in applying the Bayesian approach to full field measurements. To address this challenge we propose an approach based on the proper orthogonal decomposition (POD) of the full fields in order to drastically reduce their dimensionality. POD is

  20. Development of a Measuring System Based on LabVIEW for Angular Stiffness of Integrative Flexible Joint

    International Nuclear Information System (INIS)

    Liu, C J; Wan, D A

    2006-01-01

    In order to meet the need of development of integrative flexible joint, this paper presents a higher precision measuring system for angular stiffness test of integrative flexible joint. The main parts of the system include PC, precision motorized goniometric stage, precision motorized rotary stage and high accuracy torque sensor. The measuring and control program is developed on the platform of LabVIEW. The measuring system developed has angular resolution at 0.00032 deg. (about 1'') theoretically in determining the angular displacement of the joint round its equatorial axis and torque accuracy at 0.005 mN · m. The developed program, which presents a friendly GUI, can implement the data acquisition and processing, measuring procedure automatically. In comparison with other measuring devices with similar purposes, the measuring device can improve the measuring efficiency and accuracy distinctly while has advantages of simple configuration, low cost and high stability

  1. Comparison of 3D displacements of screw-retained zirconia implant crowns into implants with different internal connections with respect to screw tightening.

    Science.gov (United States)

    Rebeeah, Hanadi A; Yilmaz, Burak; Seidt, Jeremy D; McGlumphy, Edwin; Clelland, Nancy; Brantley, William

    2018-01-01

    Internal conical implant-abutment connections without horizontal platforms may lead to crown displacement during screw tightening and torque application. This displacement may affect the proximal contacts and occlusion of the definitive prosthesis. The purpose of this in vitro study was to evaluate the displacement of custom screw-retained zirconia single crowns into a recently introduced internal conical seal implant-abutment connection in 3D during hand and torque driver screw tightening. Stereolithic acrylic resin models were printed using computed tomography data from a patient missing the maxillary right central incisor. Two different internal connection implant systems (both ∼11.5 mm) were placed in the edentulous site in each model using a surgical guide. Five screw-retained single zirconia computer-aided design and computer-aided manufacturing (CAD-CAM) crowns were fabricated for each system. A pair of high-resolution digital cameras was used to record the relationship of the crown to the model. The crowns were tightened according to the manufacturers' specifications using a torque driver, and the cameras recorded their relative position again. Three-dimensional image correlation was used to measure and compare crown positions, first hand tightened and then torque driven. The displacement test was repeated 3 times for each crown. Commercial image correlation software was used to extract the data and compare the amount of displacement vertically, mesiodistally, and buccolingually. Repeated-measures ANOVA calculated the relative displacements for all 5 specimens for each implant for both crown screw hand tightening and after applied torque. A Student t test with Bonferroni correction was used for pairwise comparison of interest to determine statistical differences between the 2 implants (α=.05). The mean vertical displacements were statistically higher than the mean displacements in the mesiodistal and buccolingual directions for both implants

  2. Rock properties and their effect on thermally-induced displacements and stresses

    International Nuclear Information System (INIS)

    Chan, T.; Hood, M.; Board, M.

    1980-02-01

    A discussion is given of the importance of material properties in the finite-element calculations for thermally induced displacements and stresses resulting from a heating experiment in an in-situ granitic rock, at Stripa, Sweden. Comparisons are made between field measurements and finite element method calculations using (1) temperature independent, (2) temperature dependent thermal and thermomechanical properties and (3) in-situ and laboratory measurements for Young's modulus. The calculations of rock displacements are influenced predominantly by the temperature dependence of the thermal expansion coefficient, whereas the dominant factor affecting predictions for rock stresses is the in-situ modulus

  3. The Displaced Female Voice: Poetry of Natalya Gorbanevskaya

    Directory of Open Access Journals (Sweden)

    Muneerah Badr Almahasheer

    2017-05-01

    Full Text Available Natalya Gorbanevskaya’s poetry uses unanchored imagery, direct address, and other specific means of creating a mood of rootlessness that is ambiguous and echoes her own experience as a Russian exile. Her work focuses on themes of displacement and trauma that are common to those who are forcibly made to leave their homes. This article is one of the first close readings of selected poems by Gorbanevskaya that is to merit attention to her displacement, marginalized feminine identity and resistance to the hegemony of political repression. The loss of her home in a literal and a geographical sense, and her status as an expatriate in Paris, can be understood as a complete displacement for Gorbanevskaya, forging her identity as a political refugee poet. Her work further reveals the power of poetry in reclaiming identity, asserting memory, and resisting the patriarchal system.

  4. Relative brain displacement and deformation during constrained mild frontal head impact.

    Science.gov (United States)

    Feng, Y; Abney, T M; Okamoto, R J; Pless, R B; Genin, G M; Bayly, P V

    2010-12-06

    This study describes the measurement of fields of relative displacement between the brain and the skull in vivo by tagged magnetic resonance imaging and digital image analysis. Motion of the brain relative to the skull occurs during normal activity, but if the head undergoes high accelerations, the resulting large and rapid deformation of neuronal and axonal tissue can lead to long-term disability or death. Mathematical modelling and computer simulation of acceleration-induced traumatic brain injury promise to illuminate the mechanisms of axonal and neuronal pathology, but numerical studies require knowledge of boundary conditions at the brain-skull interface, material properties and experimental data for validation. The current study provides a dense set of displacement measurements in the human brain during mild frontal skull impact constrained to the sagittal plane. Although head motion is dominated by translation, these data show that the brain rotates relative to the skull. For these mild events, characterized by linear decelerations near 1.5g (g = 9.81 m s⁻²) and angular accelerations of 120-140 rad s⁻², relative brain-skull displacements of 2-3 mm are typical; regions of smaller displacements reflect the tethering effects of brain-skull connections. Strain fields exhibit significant areas with maximal principal strains of 5 per cent or greater. These displacement and strain fields illuminate the skull-brain boundary conditions, and can be used to validate simulations of brain biomechanics.

  5. Customizing Structure-Function Displacements in the Macula for Individual Differences.

    Science.gov (United States)

    Turpin, Andrew; Chen, Siyuan; Sepulveda, Juan A; McKendrick, Allison M

    2015-09-01

    In the macula, retinal ganglion cells (RGCs) are displaced from their receptive fields. We used optical coherence tomography (OCT) to customize displacements for individual eyes by taking into account macular shape parameters, and determined the likely effect of individual anatomical differences on structure-function mapping in the central visual field. Using the population average model of Drasdo et al. as a starting point, we altered the RGC count in that model based on the ratio of an individual's RGC layer plus inner plexiform layer thickness to the population average on a pointwise basis as a function of eccentricity from the fovea. For 20 adults (age, 24-33; median age, 28) with normal vision, we computed displacements with the original model and our customized approach. We report the variance in displacements among individuals and compare the effects of such displacements on structure-function mapping of the commonly used the 10-2 visual field pattern. As expected, customizing the displacement using individual OCT data made only a small difference on average from the population-based values predicted by the Drasdo et al. model. However, the range between individuals was over 1° at many locations, and closer to 2° at some locations in the superior visual field. Individualizing macular displacement measurements based on OCT data for an individual can result in large spatial shifts in the retinal area corresponding to 10-2 locations, which may be important for clinical structure-function analysis when performed on a local, spatial scale.

  6. All-fiber multimode interference micro-displacement sensor

    International Nuclear Information System (INIS)

    Antonio-Lopez, J E; LiKamWa, P; Sanchez-Mondragon, J J; May-Arrioja, D A

    2013-01-01

    We report an all-fiber micro-displacement sensor based on multimode interference (MMI) effects. The micro-displacement sensor consists of a segment of No-Core multimode fiber (MMF) with one end spliced to a segment of single mode fiber (SMF) which acts as the input. The other end of the MMF and another SMF are inserted into a capillary ferrule filled with index matching liquid. Since the refractive index of the liquid is higher than that of the ferrule, a liquid MMF with a diameter of 125 µm is formed between the fibers inside the ferrule. When the fibers are separated this effectively increases the length of the MMF. Since the peak wavelength response of MMI devices is very sensitive to changes in the MMF's length, this can be used to detect micro-displacements. By measuring spectral changes we have obtained a sensing range of 3 mm with a sensitivity of 25 nm mm −1 and a resolution of 20 µm. The sensor can also be used to monitor small displacements by using a single wavelength to interrogate the transmission of the MMI device close to the resonance peak. Under this latter regime we were able to obtain a sensitivity of 7000 mV mm −1 and a sensing range of 100 µm, with a resolution up to 1 µm. The simplicity and versatility of the sensor make it very suitable for many diverse applications. (paper)

  7. Electromagnetic Tracking of Intrafraction Prostate Displacement in Patients Externally Immobilized in the Prone Position

    International Nuclear Information System (INIS)

    Bittner, Nathan; Butler, Wayne M.; Reed, Joshua L.; Murray, Brian C.; Kurko, Brian S.; Wallner, Kent E.; Merrick, Gregory S.

    2010-01-01

    Purpose: To evaluate intrafraction prostate displacement among patients immobilized in the prone position using real-time monitoring of implanted radiofrequency transponders. Methods and Materials: The Calypso localization system was used to track prostate motion in patients receiving external beam radiation therapy (XRT) for prostate cancer. All patients were treated in the prone position and immobilized with a thermoplastic immobilization device. Real-time measurement of prostate displacement was recorded for each treatment fraction. These measurements were used to determine the duration and magnitude of displacement along the three directional axes. Results: The calculated centroid of the implanted transponders was offset from the treatment isocenter by ≥2 mm, ≥3 mm, and ≥4 mm for 38.0%, 13.9%, and 4.5% of the time. In the lateral dimension, the centroid was offset from the treatment isocenter by ≥2 mm, ≥3 mm, and ≥4 mm for 2.7%, 0.4%, and 0.06% of the time. In the superior-inferior dimension, the centroid was offset from the treatment isocenter by ≥2 mm, ≥3 mm, and ≥4 mm for 16.1%, 4.7%, and 1.5% of the time, respectively. In the anterior-posterior dimension, the centroid was offset from the treatment isocenter by ≥2 mm, ≥3 mm, and ≥4 mm for 13.4%, 3.0%, and 0.5% of the time. Conclusions: Intrafraction prostate displacement in the prone position is comparable to that in the supine position. For patients with large girth, in whom the supine position may preclude accurate detection of implanted radiofrequency transponders, treatment in the prone position is a suitable alternative.

  8. Neogene displacements in the Solomon Islands Arc

    Science.gov (United States)

    Ridgway, J.

    1987-02-01

    The geology and present configuration of the Solomon Island arc can be explained in terms of the Neogene displacement of a single linear chain of islands. The central part of an original arc consisting of Bougainville, Choiseul, Santa Ysabel, Guadalcanal and San Cristobal was displaced to the northeast as a consequence of the attempted subduction of the Woodlark spreading system. Malaita arose on the northeastern side of the arc as a result of interaction between the arc and the Pacific Ocean floor and the volcanic islands of the New Georgia group formed to the southwest in response to the subduction of a spreading ridge, thus giving rise to the present double chain structure of the arc.

  9. Probabilistic modelling of the high-pressure arc cathode spot displacement dynamic

    International Nuclear Information System (INIS)

    Coulombe, Sylvain

    2003-01-01

    A probabilistic modelling approach for the study of the cathode spot displacement dynamic in high-pressure arc systems is developed in an attempt to interpret the observed voltage fluctuations. The general framework of the model allows to define simple, probabilistic displacement rules, the so-called cathode spot dynamic rules, for various possible surface states (un-arced metal, arced, contaminated) and to study the resulting dynamic of the cathode spot displacements over one or several arc passages. The displacements of the type-A cathode spot (macro-spot) in a magnetically rotating arc using concentric electrodes made up of either clean or contaminated metal surfaces is considered. Experimental observations for this system revealed a 1/f -tilde1 signature in the frequency power spectrum (FPS) of the arc voltage for anchoring arc conditions on the cathode (e.g. clean metal surface), while it shows a 'white noise' signature for conditions favouring a smooth movement (e.g. oxide-contaminated cathode surface). Through an appropriate choice of the local probabilistic displacement rules, the model is able to correctly represent the dynamic behaviours of the type-A cathode spot, including the FPS for the arc elongation (i.e. voltage) and the arc erosion trace formation. The model illustrates that the cathode spot displacements between re-strikes can be seen as a diffusion process with a diffusion constant which depends on the surface structure. A physical interpretation for the jumping probability associated with the re-strike event is given in terms of the electron emission processes across dielectric contaminants present on the cathode surface

  10. Fundamentals of displacement production in irradiated metals

    International Nuclear Information System (INIS)

    Doran, D.G.

    1975-09-01

    Radioinduced displacement damage in metals is described. Discussions are included on the displacement event itself, calculation of displacement rates in general, the manner in which different types of radiation interact with metals to produce displacements, the similarities and differences in the types of damage produced, the current status of computer simulations of displacement cascades, experimental evidence regarding cascades, and aspects of correlating damage produced by different types of radiation

  11. Modelling Toehold-Mediated RNA Strand Displacement

    OpenAIRE

    Šulc, Petr; Ouldridge, Thomas E.; Romano, Flavio; Doye, Jonathan P.K.; Louis, Ard A.

    2015-01-01

    We study the thermodynamics and kinetics of an RNA toehold-mediated strand displacement reaction with a recently developed coarse-grained model of RNA. Strand displacement, during which a single strand displaces a different strand previously bound to a complementary substrate strand, is an essential mechanism in active nucleic acid nanotechnology and has also been hypothesized to occur in vivo. We study the rate of displacement reactions as a function of the length of the toehold and temperat...

  12. Can pulpal floor debonding be detected from occlusal surface displacement in composite restorations?

    Science.gov (United States)

    Novaes, João Batista; Talma, Elissa; Las Casas, Estevam Barbosa; Aregawi, Wondwosen; Kolstad, Lauren Wickham; Mantell, Sue; Wang, Yan; Fok, Alex

    2018-01-01

    Polymerization shrinkage of resin composite restorations can cause debonding at the tooth-restoration interface. Theory based on the mechanics of materials predicts that debonding at the pulpal floor would half the shrinkage displacement at the occlusal surface. The aim of this study is to test this theory and to examine the possibility of detecting subsurface resin composite restoration debonding by measuring the superficial shrinkage displacements. A commercial dental resin composite with linear shrinkage strain of 0.8% was used to restore 2 groups of 5 model Class-II cavities (8-mm long, 4-mm wide and 4-mm deep) in aluminum blocks (8-mm thick, 10-mm wide and 14-mm tall). Group I had the restorations bonded to all cavity surfaces, while Group II had the restorations not bonded to the cavity floor to simulate debonding. One of the proximal surfaces of each specimen was sprayed with fine carbon powder to allow surface displacement measurement by Digital Image Correlation. Images of the speckled surface were taken before and after cure for displacement calculation. The experiment was simulated using finite element analysis (FEA) for comparison. Group I showed a maximum occlusal displacement of 34.7±6.7μm and a center of contraction (COC) near the pulpal floor. Group II had a COC coinciding with the geometric center and showed a maximum occlusal displacement of 17.4±3.8μm. The difference between the two groups was statistically significant (p-value=0.0007). Similar results were obtained by FEA. The theoretical shrinkage displacement was 44.6 and 22.3μm for Group I and II, respectively. The lower experimental displacements were probably caused by slumping of the resin composite before cure and deformation of the adhesive layer. The results confirmed that the occlusal shrinkage displacement of a resin composite restoration was reduced significantly by pulpal floor debonding. Recent in vitro studies seem to indicate that this reduction in shrinkage displacement

  13. EDSPA, 1-D Mechanical Displacement for Elastic, Thermoelastic, Viscoelastic Behaviour

    International Nuclear Information System (INIS)

    Schlich, M.; Elsen, R.

    1995-01-01

    1 - Description of program or function: EDSPA solves the one dimensional mechanical displacement equation in radial (sphere) axisymmetric cylindrical (infinite cylinder, slab) coordinates. The constitutive laws for the material to be considered can comprise the - elastic and/or - thermoelastic and/or - viscoplastic behaviour. The boundary conditions allow to prescribe displacement and/or stress values. The delivered version of EDSPA is especially suitable for the calculation of borehole problems in rock salt (heater boreholes or free converging boreholes or caverns) where convergence rates and/or contact pressures are of interest. 2 - Method of solution: The coarse-mesh method is used to transform the displacement differential equation (quasi-stationary case: second order ordinary differential equation as a two point boundary value problem) into a system of algebraic equations. This three-diagonal system is solved with the Thomas algorithm (direct solver). 3 - Restrictions on the complexity of the problem: Because of EDSPA's simple one-dimensional formulation there are no restrictions for storage allocation and argument ranges

  14. Design and modelling of fast switching efficient seat valves for digital displacement pumps

    DEFF Research Database (Denmark)

    Rømer, Daniel; Johansen, Per; Pedersen, Henrik C.

    2013-01-01

    Digital Displacement Fluid Power Pumps/Motors are promising candidates for revolutionizing the efficiency of fluid power systems, which traditionally has suffered from poor efficiencies, especially at part load. The key to obtain efficient part load operation with digital displacement technology...

  15. Research on horizontal displacement monitoring of deep soil based on a distributed optical fibre sensor

    Science.gov (United States)

    Huang, Xiaodi; Wang, Yuan; Sun, Yangyang; Zhang, Qinghua; Zhang, Zhenglin; You, Zewei; Ma, Yuan

    2018-01-01

    The traditional measurement method for the horizontal displacement of deep soil usually uses an inclinometer for piecewise measurement and then generates an artificial reading, which takes a long time and often contains errors; in addition, the anti-jamming and long-term stability of the inclinometer is poor. In this paper, a technique for monitoring horizontal displacement based on distributed optical fibres is introduced. The relationship between the strain and the deflection was described by a theoretical model, and the strain distribution of the inclinometer tube was measured by the cables laid on its surface so that the deflection of the inclinometer tube could be calculated by the difference algorithm and regarded as the horizontal displacement of deep soil. The horizontal displacement monitoring technology of deep soil based on distributed optical fibre sensors developed in this paper not only overcame the shortcomings of traditional inclinometer technology to realize automatic real-time monitoring but also allowed for distributed measurement. The experiment was similar to the expected engineering situations, and the deflection calculated from the strain was compared with an inclinometer. The results demonstrated that the relative error between the distributed optical fibre sensors and the inclinometer was less than 8.0%, and the results also verified both the feasibility of using distributed optical fibre to monitor the horizontal displacement of soil as well as the rationality of the theoretical model and difference algorithm. The application of distributed optical fibre in monitoring the horizontal displacement of deep soil in the engineering of foundation pits and slopes can more accurately evaluate the safety of engineering during construction.

  16. Quantum sensing of the phase-space-displacement parameters using a single trapped ion

    Science.gov (United States)

    Ivanov, Peter A.; Vitanov, Nikolay V.

    2018-03-01

    We introduce a quantum sensing protocol for detecting the parameters characterizing the phase-space displacement by using a single trapped ion as a quantum probe. We show that, thanks to the laser-induced coupling between the ion's internal states and the motion mode, the estimation of the two conjugated parameters describing the displacement can be efficiently performed by a set of measurements of the atomic state populations. Furthermore, we introduce a three-parameter protocol capable of detecting the magnitude, the transverse direction, and the phase of the displacement. We characterize the uncertainty of the two- and three-parameter problems in terms of the Fisher information and show that state projective measurement saturates the fundamental quantum Cramér-Rao bound.

  17. An Improved Measurement Method for the Strength of Radiation of Reflective Beam in an Industrial Optical Sensor Based on Laser Displacement Meter

    OpenAIRE

    Youngchul Bae

    2016-01-01

    An optical sensor such as a laser range finder (LRF) or laser displacement meter (LDM) uses reflected and returned laser beam from a target. The optical sensor has been mainly used to measure the distance between a launch position and the target. However, optical sensor based LRF and LDM have numerous and various errors such as statistical errors, drift errors, cyclic errors, alignment errors and slope errors. Among these errors, an alignment error that contains measurement error for the stre...

  18. Initial studies on the variations of load-displacement curves of in vivo human healthy heel pads

    DEFF Research Database (Denmark)

    Matteoli, Sara; Wilhjelm, Jens E.; Virga, Antonio

    2011-01-01

    The aim of this study was to quantify on the measurement variation of in vivo load-displacement curves by using a group of human healthy heel pads. The recordings were done with a compression device measuring force and displacement. Twenty three heel pads, one from each of 23 subjects aged 20...

  19. A variance analysis of the capacity displaced by wind energy in Europe

    DEFF Research Database (Denmark)

    Giebel, Gregor

    2007-01-01

    into a longer-term context. The results are that wind energy can contribute more than 20% of the European demand without significant changes in the system and can replace conventional capacity worth about 10% of the installed wind power capacity. The long-term reference shows that the analysed year is the worst...... simulating the scheduling of the European power plants to cover the demand at every hour of the year. The wind power generation was modelled using wind speed measurements from 60 meteorological stations, for 1 year. The distributed wind power also displaces fossil-fuelled capacity. However, every assessment...... of the displaced capacity (or a capacity credit) by means of a chronological model is highly sensitive to single events. Therefore the wind time series was shifted by integer days against the load time series, and the different results were aggregated. The some set of results is shown for two other options, one...

  20. New method to determine initial surface water displacement at tsunami source

    Science.gov (United States)

    Lavrentyev, Mikhail; Romanenko, Alexey; Tatarintsev, Pavel

    2013-04-01

    Friday, March 11, 2011 at 05:46:23 UTC, Japan was struck by an 8.9-magnitude earthquake near its Northeastern coast. This is one of the largest earthquakes that Japan has ever experienced. Tsunami waves swept away houses and cars and caused massive human losses. To predict tsunami wave parameters better and faster, we propose to improve data inversion scheme and achieve the performance gain of data processing. One of the reasons of inaccurate predictions of tsunami parameters is that very little information is available about the initial disturbance of the sea bed at tsunami source. In this paper, we suggest a new way of improving the quality of tsunami source parameters prediction. Modern computational technologies can accurately calculate tsunami wave propagation over the deep ocean provided that the initial displacement (perturbation of the sea bed at tsunami source) is known [4]. Direct geophysical measurements provide the location of an earthquake hypocenter and its magnitude (the released energy evaluation). Among the methods of determination of initial displacement the following ones should be considered. Calculation through the known fault structure and available seismic information. This method is widely used and provides useful information. However, even if the exact knowledge about rock blocks shifts is given, recalculation in terms of sea bed displacement is needed. This results in a certain number of errors. GPS data analysis. This method was developed after the December 2004 event in the Indian Ocean. A good correlation between dry land based GPS sensors and tsunami wave parameters was observed in the particular case of the West coast of Sumatra, Indonesia. This approach is very unique and can hardly been used in other geo locations. Satellite image analysis. The resolution of modern satellite images has dramatically improved. In the future, correct data of sea surface displacement will probably be available in real time, right after a tsunamigenic

  1. Distally displaced premolars: A dental anomaly associated with palatally displaced canines.

    Science.gov (United States)

    Baccetti, Tiziano; Leonardi, Maria; Giuntini, Veronica

    2010-09-01

    The aim of this study was to evaluate the significance of association between distally displaced premolars (DDP) and palatally displaced canines (PDC) in the pattern of associated phenotypes of dental developmental disturbance. A sample of 2811 subjects (mean age, 9 years 7 months +/- 1 year 3 months) was divided randomly into 2 groups. The first group of 500 subjects was the control group. The reference prevalence rates for the examined parameters were calculated for this group: DDP (measured with the distal angle theta and the premolar-molar angle gamma); PDC; and other dental anomalies, specifically, aplasia of the third molars, aplasia of the contralateral mandibular second premolar, aplasia of the maxillary lateral incisors, and small maxillary lateral incisors. Of the remaining 2311 subjects, the first 100 with a diagnosis of DDP of at least 1 mandibular second premolar comprised experimental group 1 (DDP group). In addition to sex distribution, the same variables that were examined in the control group were analyzed. In the subgroup with the concurrent DDP and PDC (experimental group 2, or DDP-PDC group), the presence of other dental anomalies was investigated. The prevalence rate for PDC in experimental group 1 was compared with that in the control group. The same was done for the prevalence rates for the 4 other dental anomalies in the PDC-DDP group (experimental group 2) vs the prevalence rates for these anomalies in the control group. All comparisons were performed with chi-square tests with the Yates correction (P <0.05), as were the comparisons between the sexes in experimental groups 1 and 2. The values for theta and gamma angles in experimental group 1 were compared with the values for these angles in experimental group 2, as well as with those in the control group. These statistical comparisons were made with analysis of variance (ANOVA) with the Bonferroni post-hoc test (P <0.05). The prevalence rate for PDC in experimental group 1 (28%) was

  2. [Correlation analysis between residual displacement and hip function after reconstruction of acetabular fractures].

    Science.gov (United States)

    Ma, Kunlong; Fang, Yue; Luan, Fujun; Tu, Chongqi; Yang, Tianfu

    2012-03-01

    To investigate the relationships between residual displacement of weight-bearing and non weight-bearing zones (gap displacement and step displacement) and hip function by analyzing the CT images after reconstruction of acetabular fractures. The CT measures and clinical outcome were retrospectively analyzed from 48 patients with displaced acetabular fracture between June 2004 and June 2009. All patients were treated by open reduction and internal fixation, and were followed up 24 to 72 months (mean, 36 months); all fractures healed after operation. The residual displacement involved the weight-bearing zone in 30 cases (weight-bearing group), and involved the non weight-bearing zone in 18 cases (non weight-bearing group). The clinical outcomes were evaluated by Merle d'Aubigné-Postel criteria, and the reduction of articular surface by CT images, including the maximums of two indexes (gap displacement and step displacement). All the data were analyzed in accordance with the Spearman rank correlation coefficient analysis. There was strong negative correlation between the hip function and the residual displacement values in weight-bearing group (r(s) = -0.722, P = 0.001). But there was no correlation between the hip function and the residual displacement values in non weight-bearing group (r(s) = 0.481, P = 0.059). The results of clinical follow-up were similar to the correlation analysis results. In weight-bearing group, the hip function had strong negative correlation with step displacement (r(s) = 0.825, P = 0.002), but it had no correlation with gap displacement (r(s) = 0.577, P = 0.134). In patients with acetabular fracture, the hip function has correlation not only with the extent of the residual displacement but also with the location of the residual displacement, so the residual displacement of weight-bearing zone is a key factor to affect the hip function. In patients with residual displacement in weight-bearing zone, the bigger the step displacement is, the

  3. Evaluation of performance, acceptance, and compliance of an auto-injector in healthy and rheumatoid arthritic subjects measured by a motion capture system.

    Science.gov (United States)

    Xiao, Xiao; Li, Wei; Clawson, Corbin; Karvani, David; Sondag, Perceval; Hahn, James K

    2018-01-01

    The study aimed to develop a motion capture system that can track, visualize, and analyze the entire performance of self-injection with the auto-injector. Each of nine healthy subjects and 29 rheumatoid arthritic (RA) patients with different degrees of hand disability performed two simulated injections into an injection pad while six degrees of freedom (DOF) motions of the auto-injector and the injection pad were captured. We quantitatively measured the performance of the injection by calculating needle displacement from the motion trajectories. The max, mean, and SD of needle displacement were analyzed. Assessments of device acceptance and usability were evaluated by a survey questionnaire and independent observations of compliance with the device instruction for use (IFU). A total of 80 simulated injections were performed. Our results showed a similar level of performance among all the subjects with slightly larger, but not statistically significant, needle displacement in the RA group. In particular, no significant effects regarding previous experience in self-injection, grip method, pain in hand, and Cochin score in the RA group were found to have an impact on the mean needle displacement. Moreover, the analysis of needle displacement for different durations of injections indicated that most of the subjects reached their personal maximum displacement in 15 seconds and remained steady or exhibited a small amount of increase from 15 to 60 seconds. Device acceptance was high for most of the questions (ie, >4; >80%) based on a 0-5-point scale or percentage of acceptance. The overall compliance with the device IFU was high for the first injection (96.05%) and reached 98.02% for the second injection. We demonstrated the feasibility of tracking the motions of injection to measure the performance of simulated self-injection. The comparisons of needle displacement showed that even RA patients with severe hand disability could properly perform self-injection with this

  4. Three-dimensional distortions of the tokamak plasma boundary: boundary displacements in the presence of saturated MHD instabilities

    International Nuclear Information System (INIS)

    Chapman, I.T.; Harrison, J.R.; Holgate, J.; Brunetti, D.; Cooper, W.A.; Graves, J.P.; Buratti, P.; Jardin, S.; Sabbagh, S.A.; Tritz, K.

    2014-01-01

    The three-dimensional plasma boundary displacement induced by long-lasting core magnetohydrodynamic (MHD) instabilities has been measured in JET, MAST and NSTX. Only saturated instabilities are considered here since transient rapidly growing modes which degrade confinement and act as potential triggers for disruptions bring more fundamental concerns than boundary displacements. The measured displacements are usually small, although in extreme cases in MAST when the rotation braking is strong, a significant global displacement can be observed. The instability most likely to saturate and exist for many energy confinement times whilst distorting the boundary of ITER is the saturated internal kink, or helical core, which can be found in plasmas with a wide region of low magnetic shear such as the hybrid scenario. This mode can lead to non-negligible boundary displacements. Nonetheless, the boundary displacement resultant from core MHD instabilities in ITER is predicted to be less than ±1.5% of the minor radius, well within tolerable limits for heat loads to plasma-facing components. (paper)

  5. A point-wise fiber Bragg grating displacement sensing system and its application for active vibration suppression of a smart cantilever beam subjected to multiple impact loadings

    International Nuclear Information System (INIS)

    Chuang, Kuo-Chih; Ma, Chien-Ching; Liao, Heng-Tseng

    2012-01-01

    In this work, active vibration suppression of a smart cantilever beam subjected to disturbances from multiple impact loadings is investigated with a point-wise fiber Bragg grating (FBG) displacement sensing system. An FBG demodulator is employed in the proposed fiber sensing system to dynamically demodulate the responses obtained by the FBG displacement sensor with high sensitivity. To investigate the ability of the proposed FBG displacement sensor as a feedback sensor, velocity feedback control and delay control are employed to suppress the vibrations of the first three bending modes of the smart cantilever beam. To improve the control performance for the first bending mode when the cantilever beam is subjected to an impact loading, we improve the conventional velocity feedback controller by tuning the control gain online with the aid of information from a higher vibration mode. Finally, active control of vibrations induced by multiple impact loadings due to a plastic ball is performed with the improved velocity feedback control. The experimental results show that active vibration control of smart structures subjected to disturbances such as impact loadings can be achieved by employing the proposed FBG sensing system to feed back out-of-plane point-wise displacement responses with high sensitivity. (paper)

  6. Displacement functions for diatomic materials

    International Nuclear Information System (INIS)

    Panrkin, D.M.; Coulter, C.A.

    1979-01-01

    An extension of the methods of Lindhard et at. was used to calculate the total displacement function n/sub ij/(E) for a number of diatomic materials, where n/sub ij/(E) is defined to be the average number of atoms of type j which are displaced from their sites in a displacement cascade initiated by a PKA of type i and energy E. From the n/sub ij/(E) one can calculate the fraction n/sub ij/(E) of the displacements produced by a type i PKA with energy E which are of type j. Values of the n/sub ij/ for MgO, CaO, Al 2 O 3 , and TaO are presented. It is shown that for diatomic materials with mass ratios reasonably near one (e.g., MgO, Al 2 O 3 ) and equal displacement thresholds for the two species the n/sub ij/ become independent of the PKA type i at energies only a few times threshold. However, for larger mass ratios the n/sub ij/ do not become independent of i until much larger, energies are reached - e.g. > 10 5 eV for TaO. In addition, it is found that the n/sub ij/ depend sensitively on the displacement thresholds, with very dramatic charges occuring when the two thresholds become significantly different from one another

  7. Lamé Parameter Estimation from Static Displacement Field Measurements in the Framework of Nonlinear Inverse Problems

    DEFF Research Database (Denmark)

    Hubmer, Simon; Sherina, Ekaterina; Neubauer, Andreas

    2018-01-01

    . The main result of this paper is the verification of a nonlinearity condition in an infinite dimensional Hilbert space context. This condition guarantees convergence of iterative regularization methods. Furthermore, numerical examples for recovery of the Lam´e parameters from displacement data simulating......We consider a problem of quantitative static elastography, the estimation of the Lam´e parameters from internal displacement field data. This problem is formulated as a nonlinear operator equation. To solve this equation, we investigate the Landweber iteration both analytically and numerically...... a static elastography experiment are presented....

  8. Etiopathogenesis of abomasal displacement in cattle

    Directory of Open Access Journals (Sweden)

    Šamanc Horea

    2003-01-01

    Full Text Available Abomasal displacement presents topographic gastropathy, where this organ has changed its position, and there is simultaneous dilatation which can vary in intensity. The incidence of this disorder in herds of high-yield dairy cows varies to a great degree (1 to 18 %. Abomasal displacement was established in herds of East-Frisian cows in 1 to 3% animals, and in Holstein cow herds in 5 to 18 % animals. The most frequent abomasal displacement is to the left (88%. There is significant seasonal variation in the incidence of abomasal displacement. About two-thirds of cases of abomasal displacement are diagnosed from October until April. The disorder appears more frequently in cows with repeated lactations. It has been established that it appears after the first calving in 27.8% cases, after the second to fifth calving in 66.7% cases, and after the sixth and seventh calving in 5.5% of the cows. The response of endocrine pancreas B-cells for insulin secretion to hyperglycaemia caused by applying an excess-glucose test is reduced in cows with left abomasal displacement, and there is constant hyperglycaemia in cows with right abomasal displacement. The excess-glucose test indicates a disrupted function of the endocrine pancreas in diseased animals. It has been determined through examinations of Aml genotypes in Holstein cow herds in connection with the appearance of abomasal displacement, that the occurrence of this disorder cannot be attributed to a genetic predisposition.

  9. Gender-based violence in conflict and displacement: qualitative findings from displaced women in Colombia.

    Science.gov (United States)

    Wirtz, Andrea L; Pham, Kiemanh; Glass, Nancy; Loochkartt, Saskia; Kidane, Teemar; Cuspoca, Decssy; Rubenstein, Leonard S; Singh, Sonal; Vu, Alexander

    2014-01-01

    Gender-based violence (GBV) is prevalent among, though not specific to, conflict affected populations and related to multifarious levels of vulnerability of conflict and displacement. Colombia has been marked with decades of conflict, with an estimated 5.2 million internally displaced persons (IDPs) and ongoing violence. We conducted qualitative research to understand the contexts of conflict, displacement and dynamics with GBV. This as part of a multi-phase, mixed method study, in collaboration with UNHCR, to develop a screening tool to confidentially identify cases of GBV for referral among IDP women who were survivors of GBV. Qualitative research was used to identify the range of GBV, perpetrators, contexts in conflict and displacement, barriers to reporting and service uptake, as well as to understand experiences of service providers. Thirty-five female IDPs, aged 18 years and older, who self-identified as survivors of GBV were enrolled for in-depth interviews in San Jose de Guaviare and Quibdo, Colombia in June 2012. Thirty-one service providers participated in six focus group discussions and four interviews across these sites. Survivors described a range of GBV across conflict and displacement settings. Armed actors in conflict settings perpetrated threats of violence and harm to family members, child recruitment, and, to a lesser degree, rape and forced abortion. Opportunistic violence, including abduction, rape, and few accounts of trafficking were more commonly reported to occur in the displacement setting, often perpetrated by unknown individuals. Intrafamilial violence, intimate partner violence, including physical and sexual violence and reproductive control were salient across settings and may be exacerbated by conflict and displacement. Barriers to reporting and services seeking were reported by survivors and providers alike. Findings highlight the need for early identification of GBV cases, with emphasis on confidential approaches and active

  10. Structure of the displacement field of substitutionally dissolved Bi in Pb

    International Nuclear Information System (INIS)

    Seitz, E.

    1975-03-01

    In order to describe measurements of the coherent diffuse scattering of neutrons from Pb-Bi within the single defect approximation, Schumacher (1969) introduced a model in which the displacement field of the host lattice caused by a given Bismuth atom has trigonal symmetry. In an attempt to decide which model for the displacement field is correct, new measurements over an extended range were carried out with an improved resolution, using the D7 diffractometer at the High Flux Reactor in Grenoble. Taking the different resolutions into account, agreement between the present and previous data is good, both as to absolute intensity and scattering pattern. (orig./HPoe) [de

  11. Fiber interferometer combining sub-nm displacement resolution with miniaturized sensor head

    NARCIS (Netherlands)

    Cheng, L.K.; Hagen, R.A.J.; Schriek, L.N.; Toet, P.M.; Togt, O.E. van der

    2017-01-01

    The presented interferometer concept enables high-accuracy target displacement measurement in difficult accessible locations and the development of small fiber optic sensor to measure other physical parameters e.g. pressure, vibration, gravity force, etc.. Furthermore, this configuration is

  12. STRAIGHTENING THE DENSITY-DISPLACEMENT RELATION WITH A LOGARITHMIC TRANSFORM

    International Nuclear Information System (INIS)

    Falck, Bridget L.; Neyrinck, Mark C.; Aragon-Calvo, Miguel A.; Lavaux, Guilhem; Szalay, Alexander S.

    2012-01-01

    We investigate the use of a logarithmic density variable in estimating the Lagrangian displacement field motivated by the success of a logarithmic transformation in restoring information to the matter power spectrum. The logarithmic relation is an extension of the linear relation, motivated by the continuity equation, in which the density field is assumed to be proportional to the divergence of the displacement field; we compare the linear and logarithmic relations by measuring both of these fields directly in a cosmological N-body simulation. The relative success of the logarithmic and linear relations depends on the scale at which the density field is smoothed. Thus we explore several ways of measuring the density field, including Cloud-In-Cell smoothing, adaptive smoothing, and the (scale-independent) Delaunay tessellation, and we use both a Fourier-space and a geometrical tessellation approach to measuring the divergence. We find that the relation between the divergence of the displacement field and the density is significantly tighter and straighter with a logarithmic density variable, especially at low redshifts and for very small (∼2 h –1 Mpc) smoothing scales. We find that the grid-based methods are more reliable than the tessellation-based method of calculating both the density and the divergence fields, though in both cases the logarithmic relation works better in the appropriate regime, which corresponds to nonlinear scales for the grid-based methods and low densities for the tessellation-based method.

  13. THE STUDY ON THE DURABILITY OF SUBMERGED STRUCTURE DISPLACEMENT DUE TO CONCRETE FAILURE

    Directory of Open Access Journals (Sweden)

    M. Mohd

    2016-09-01

    Full Text Available Concrete structures that exposed to marine environments are subjected to multiple deterioration mechanisms. An overview of the existing technology for submerged concrete, pressure resistant, concrete structures which related such as cracks, debonds, and delamination are discussed. Basic knowledge related to drowning durability such as submerged concrete structures in the maritime environment are the durability of a concrete and the ability to resist to weathering, chemical attack, abrasion or other deterioration processes. The measuring techniques and instrumentation for geometrical monitoring of submerged structural displacements have traditionally been categorized into two groups according to the two main groups, namely as geodetic surveying and geotechnical structural measurements of local displacements. This paper aims to study the durability of submerged concrete displacement and harmful effects of submerged concrete structures.

  14. Improving health services to displaced persons in Aceh, Indonesia: a balanced scorecard.

    Science.gov (United States)

    Chan, Grace J; Parco, Kristin B; Sihombing, Melva E; Tredwell, Susan P; O'Rourke, Edward J

    2010-09-01

    After the Indian Ocean tsunami in December 2004, the International Organization for Migration constructed temporary health clinics to provide medical services to survivors living in temporary accommodation centres throughout Aceh, Indonesia. Limited resources, inadequate supervision, staff turnover and lack of a health information system made it challenging to provide quality primary health services. A balanced scorecard was developed and implemented in collaboration with local health clinic staff and district health officials. Performance targets were identified. Staff collected data from clinics and accommodation centres to develop 30 simple performance measures. These measures were monitored periodically and discussed at meetings with stakeholders to guide the development of health interventions. Two years after the tsunami, 34 000 displaced persons continued to receive services from temporary health clinics in two districts of Aceh province. From March to December 2007, the scorecard was implemented in seven temporary health clinics. Interventions stimulated and tracked by the scorecard showed measurable improvements in preventive medicine, child health, capacity building of clinic staff and availability of essential drugs. By enhancing communication, the scorecard also led to qualitative benefits. The balanced scorecard is a practical tool to focus attention and resources to facilitate improvement in disaster rehabilitation settings where health information infrastructure is poor. Introducing a mechanism for rapid improvement fostered communication between nongovernmental organizations, district health officials, clinic health workers and displaced persons.

  15. Bridge Diagnosis by Using Nonlinear Independent Component Analysis and Displacement Analysis

    Science.gov (United States)

    Zheng, Juanqing; Yeh, Yichun; Ogai, Harutoshi

    A daily diagnosis system for bridge monitoring and maintenance is developed based on wireless sensors, signal processing, structure analysis, and displacement analysis. The vibration acceleration data of a bridge are firstly collected through the wireless sensor network by exerting. Nonlinear independent component analysis (ICA) and spectral analysis are used to extract the vibration frequencies of the bridge. After that, through a band pass filter and Simpson's rule the vibration displacement is calculated and the vibration model is obtained to diagnose the bridge. Since linear ICA algorithms work efficiently only in linear mixing environments, a nonlinear ICA model, which is more complicated, is more practical for bridge diagnosis systems. In this paper, we firstly use the post nonlinear method to change the signal data, after that perform linear separation by FastICA, and calculate the vibration displacement of the bridge. The processed data can be used to understand phenomena like corrosion and crack, and evaluate the health condition of the bridge. We apply this system to Nakajima Bridge in Yahata, Kitakyushu, Japan.

  16. Association of Ipsilateral Rib Fractures With Displacement of Midshaft Clavicle Fractures.

    Science.gov (United States)

    Stahl, Daniel; Ellington, Matthew; Brennan, Kindyle; Brennan, Michael

    2017-04-01

    To determine whether the presence of ipsilateral rib fractures affects the rate of a clavicle fracture being unstable (>100% displacement). A retrospective review from 2002-2013 performed at a single level 1 trauma center evaluated 243 midshaft clavicle fractures. Single Level 1 trauma center. These fractures were subdivided into those with ipsilateral rib fractures (CIR; n = 149) and those without ipsilateral rib fractures (CnIR; n = 94). The amount of displacement was measured on the initial injury radiograph and subsequent follow-up radiographs. Fractures were classified into either 100% displacement, based on anteroposterior radiographs. Ipsilateral rib fractures were recorded based on which number rib was fractured and the total number of fractured ribs. One hundred sixteen (78%) of the CIR group and 51 (54%) of the CnIR group were found to have >100% displacement at follow-up (P = 0.0047). Seventy-two percent of the CIR group demonstrated progression from 100% displacement of the fracture compared with only 54% of the CnIR group (P fracture to >100% was 4.08 (P = 0.000194) when ribs 1-4 were fractured and not significant for rib fractures 5-8 or 9-12. The presence of concomitant ipsilateral rib fractures significantly increases the rate of midshaft clavicle fractures being >100% displaced. In addition, a fracture involving the upper one-third of the ribs significantly increases the rate of the clavicle fracture being >100% displaced on early follow-up. Clavicle fractures with associated ipsilateral rib fractures tend to demonstrate an increased amount of displacement on follow-up radiographs compared with those without ipsilateral rib fractures. Prognostic Level II. See Instructions for Authors for a complete description of levels of evidence.

  17. Digital Speckle Photography of Subpixel Displacements of Speckle Structures Based on Analysis of Their Spatial Spectra

    Science.gov (United States)

    Maksimova, L. A.; Ryabukho, P. V.; Mysina, N. Yu.; Lyakin, D. V.; Ryabukho, V. P.

    2018-04-01

    We have investigated the capabilities of the method of digital speckle interferometry for determining subpixel displacements of a speckle structure formed by a displaceable or deformable object with a scattering surface. An analysis of spatial spectra of speckle structures makes it possible to perform measurements with a subpixel accuracy and to extend the lower boundary of the range of measurements of displacements of speckle structures to the range of subpixel values. The method is realized on the basis of digital recording of the images of undisplaced and displaced speckle structures, their spatial frequency analysis using numerically specified constant phase shifts, and correlation analysis of spatial spectra of speckle structures. Transformation into the frequency range makes it possible to obtain quantities to be measured with a subpixel accuracy from the shift of the interference-pattern minimum in the diffraction halo by introducing an additional phase shift into the complex spatial spectrum of the speckle structure or from the slope of the linear plot of the function of accumulated phase difference in the field of the complex spatial spectrum of the displaced speckle structure. The capabilities of the method have been investigated in natural experiment.

  18. Interfraction patient motion and implant displacement in prostate high dose rate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Fox, C. D.; Kron, T.; Leahy, M.; Duchesne, G.; Williams, S.; Tai, K. H.; Haworth, A.; Herschtal, A.; Foroudi, F. [Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002 (Australia); Nursing Service, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002 (Australia); Department of Radiation Oncology, Peter MacCallum Cancer Centre and University of Melbourne, Melbourne, Victoria 3002 (Australia); Department of Physical Sciences, Peter MacCallum Cancer Centre and Royal Melbourne Insititute of Technology, Melbourne, Victoria 3000 (Australia); Department of Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002 (Australia); Department of Radiation Oncology, Peter MacCallum Cancer Centre and University of Melbourne, Melbourne, Victoria 3010 (Australia)

    2011-11-15

    Purpose: To quantify movement of prostate cancer patients undergoing treatment, using an in-house developed motion sensor in order to determine a relationship between patient movement and high dose rate (HDR) brachytherapy implant displacement. Methods: An electronic motion sensor was developed based on a three axis accelerometer. HDR brachytherapy treatment for prostate is delivered at this institution in two fractions 24 h apart and 22 patients were monitored for movement over the interval between fractions. The motion sensors functioned as inclinometers, monitoring inclination of both thighs, and the inclination and roll of the abdomen. The implanted HDR brachytherapy catheter set was assessed for displacement relative to fiducial markers in the prostate. Angle measurements and angle differences over a 2 s time base were binned, and the standard deviations of the resulting frequency distributions used as a metric for patient motion in each monitored axis. These parameters were correlated to measured catheter displacement using regression modeling. Results: The mean implant displacement was 12.6 mm in the caudal direction. A mean of 19.95 h data was recorded for the patient cohort. Patients generally moved through a limited range of angles with a mean of the exception of two patients who spent in excess of 2 h lying on their side. When tested for a relationship between movement in any of the four monitored axes and the implant displacement, none was significant. Conclusions: It is not likely that patient movement influences HDR prostate implant displacement. There may be benefits to patient comfort if nursing protocols were relaxed to allow patients greater freedom to move while the implant is in situ.

  19. Interfraction patient motion and implant displacement in prostate high dose rate brachytherapy

    International Nuclear Information System (INIS)

    Fox, C. D.; Kron, T.; Leahy, M.; Duchesne, G.; Williams, S.; Tai, K. H.; Haworth, A.; Herschtal, A.; Foroudi, F.

    2011-01-01

    Purpose: To quantify movement of prostate cancer patients undergoing treatment, using an in-house developed motion sensor in order to determine a relationship between patient movement and high dose rate (HDR) brachytherapy implant displacement. Methods: An electronic motion sensor was developed based on a three axis accelerometer. HDR brachytherapy treatment for prostate is delivered at this institution in two fractions 24 h apart and 22 patients were monitored for movement over the interval between fractions. The motion sensors functioned as inclinometers, monitoring inclination of both thighs, and the inclination and roll of the abdomen. The implanted HDR brachytherapy catheter set was assessed for displacement relative to fiducial markers in the prostate. Angle measurements and angle differences over a 2 s time base were binned, and the standard deviations of the resulting frequency distributions used as a metric for patient motion in each monitored axis. These parameters were correlated to measured catheter displacement using regression modeling. Results: The mean implant displacement was 12.6 mm in the caudal direction. A mean of 19.95 h data was recorded for the patient cohort. Patients generally moved through a limited range of angles with a mean of the exception of two patients who spent in excess of 2 h lying on their side. When tested for a relationship between movement in any of the four monitored axes and the implant displacement, none was significant. Conclusions: It is not likely that patient movement influences HDR prostate implant displacement. There may be benefits to patient comfort if nursing protocols were relaxed to allow patients greater freedom to move while the implant is in situ.

  20. Study of electroosmosis-driven two-liquid displacement flow in a microcapillary

    International Nuclear Information System (INIS)

    Gan, H Y; Yang, C; Wan, S Y M; Lim, G C; Lam, Y C

    2006-01-01

    Multi-liquid flow, such as one liquid displacing another liquid, is frequently encountered in practice. This can be achieved by electroosmotic (EO) pumping, which has its own unique characteristics and advantages. This investigation is on EO-driven, two-liquid displacement flow in a microcapillary. A theoretical model was developed to take into consideration the axial step change of velocity flow fields at the time-dependent liquid/liquid interface, continuity requirement, and induced local pressure gradients. The electrical current monitoring method was employed to measure the flowrate and subsequently determine the capillary zeta potentials which are required for the model prediction. The nonlinear change of the electrical current with time under a constant applied voltage was observed during the displacement process. The theoretical and experimental results validated the hypothesis that the non-uniform zeta potential and electric field induce local pressure gradients in the two different liquids. Our experimental results indicated that the time of displacement, and thus the flow velocity, is found to be dependent on the displacing flow direction, which has hitherto not been reported in the literature. The underlying mechanisms were postulated, but demand further investigation

  1. Characterizing pesticide sorption and degradation in microscale biopurification systems using column displacement experiments

    International Nuclear Information System (INIS)

    Wilde, Tineke de; Mertens, Jan; Simunek, Jirka; Sniegowksi, Kristel; Ryckeboer, Jaak; Jaeken, Peter; Springael, Dirk; Spanoghe, Pieter

    2009-01-01

    Biopurification systems treating pesticide contaminated water are very efficient, however they operate as a black box. Processes inside the system are not yet characterized. To optimize the performance, knowledge of degradation and retention processes needs to be generated. Therefore, displacement experiments were carried out for four pesticides (isoproturon, bentazone, metalaxyl, linuron) in columns containing different organic mixtures. Bromide, isoproturon and bentazone breakthrough curves (BTCs) were well described using the convection-dispersion equation (CDE) and a first-order degradation kinetic approach. Metalaxyl and linuron BTCs were well described using the CDE model expanded with Monod-type kinetics. Freundlich sorption, first-order degradation and Monod kinetics coefficients were fitted to the BTCs. Fitted values of the distribution coefficient K f,column were much lower than those determined from batch experiments. Based on mobility, pesticides were ranked as: bentazone > metalaxyl - isoproturon > linuron. Based on degradability, pesticides were ranked as: linuron > metalaxyl - isoproturon > bentazone. - Transport of pesticides in column experiments containing organic substrates

  2. Characterizing pesticide sorption and degradation in microscale biopurification systems using column displacement experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, Tineke de [Laboratory of Crop Protection Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium)], E-mail: tineke.dewilde@UGent.be; Mertens, Jan [Division Soil and Water Management, Faculty of Bioscience Engineering, K.U. Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee (Belgium); Simunek, Jirka [Department of Environmental Sciences, University of California, Riverside, CA (United States); Sniegowksi, Kristel; Ryckeboer, Jaak [Division Soil and Water Management, Faculty of Bioscience Engineering, K.U. Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee (Belgium); Jaeken, Peter [PCF-Royal Research Station of Gorsem, De Brede Akker 13, 3800 Sint-Truiden (Belgium); Springael, Dirk [Division Soil and Water Management, Faculty of Bioscience Engineering, K.U. Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee (Belgium); Spanoghe, Pieter [Laboratory of Crop Protection Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium)

    2009-02-15

    Biopurification systems treating pesticide contaminated water are very efficient, however they operate as a black box. Processes inside the system are not yet characterized. To optimize the performance, knowledge of degradation and retention processes needs to be generated. Therefore, displacement experiments were carried out for four pesticides (isoproturon, bentazone, metalaxyl, linuron) in columns containing different organic mixtures. Bromide, isoproturon and bentazone breakthrough curves (BTCs) were well described using the convection-dispersion equation (CDE) and a first-order degradation kinetic approach. Metalaxyl and linuron BTCs were well described using the CDE model expanded with Monod-type kinetics. Freundlich sorption, first-order degradation and Monod kinetics coefficients were fitted to the BTCs. Fitted values of the distribution coefficient K{sub f,column} were much lower than those determined from batch experiments. Based on mobility, pesticides were ranked as: bentazone > metalaxyl - isoproturon > linuron. Based on degradability, pesticides were ranked as: linuron > metalaxyl - isoproturon > bentazone. - Transport of pesticides in column experiments containing organic substrates.

  3. Soft Pneumatic Bending Actuator with Integrated Carbon Nanotube Displacement Sensor

    Directory of Open Access Journals (Sweden)

    Tim Giffney

    2016-02-01

    Full Text Available The excellent compliance and large range of motion of soft actuators controlled by fluid pressure has lead to strong interest in applying devices of this type for biomimetic and human-robot interaction applications. However, in contrast to soft actuators fabricated from stretchable silicone materials, conventional technologies for position sensing are typically rigid or bulky and are not ideal for integration into soft robotic devices. Therefore, in order to facilitate the use of soft pneumatic actuators in applications where position sensing or closed loop control is required, a soft pneumatic bending actuator with an integrated carbon nanotube position sensor has been developed. The integrated carbon nanotube position sensor presented in this work is flexible and well suited to measuring the large displacements frequently encountered in soft robotics. The sensor is produced by a simple soft lithography process during the fabrication of the soft pneumatic actuator, with a greater than 30% resistance change between the relaxed state and the maximum displacement position. It is anticipated that integrated resistive position sensors using a similar design will be useful in a wide range of soft robotic systems.

  4. High-displacement spiral piezoelectric actuators

    Science.gov (United States)

    Mohammadi, F.; Kholkin, A. L.; Jadidian, B.; Safari, A.

    1999-10-01

    A high-displacement piezoelectric actuator, employing spiral geometry of a curved piezoelectric strip is described. The monolithic actuators are fabricated using a layered manufacturing technique, fused deposition of ceramics, which is capable of prototyping electroceramic components with complex shapes. The spiral actuators (2-3 cm in diameter) consisted of 4-5 turns of a lead zirconate titanate ceramic strip with an effective length up to 28 cm. The width was varied from 0.9 to 1.75 mm with a height of 3 mm. When driven by the electric field applied across the width of the spiral wall, the tip of the actuator was found to displace in both radial and tangential directions. The tangential displacement of the tip was about 210 μm under the field of 5 kV/cm. Both the displacement and resonant frequency of the spirals could be tailored by changing the effective length and wall width. The blocking force of the actuator in tangential direction was about 1 N under the field of 5 kV/cm. These properties are advantageous for high-displacement low-force applications where bimorph or monomorph actuators are currently employed.

  5. Imaging Correlations in Heterodyne Spectra for Quantum Displacement Sensing

    Science.gov (United States)

    Pontin, A.; Lang, J. E.; Chowdhury, A.; Vezio, P.; Marino, F.; Morana, B.; Serra, E.; Marin, F.; Monteiro, T. S.

    2018-01-01

    The extraordinary sensitivity of the output field of an optical cavity to small quantum-scale displacements has led to breakthroughs such as the first detection of gravitational waves and of the motions of quantum ground-state cooled mechanical oscillators. While heterodyne detection of the output optical field of an optomechanical system exhibits asymmetries which provide a key signature that the mechanical oscillator has attained the quantum regime, important quantum correlations are lost. In turn, homodyning can detect quantum squeezing in an optical quadrature but loses the important sideband asymmetries. Here we introduce and experimentally demonstrate a new technique, subjecting the autocorrelators of the output current to filter functions, which restores the lost heterodyne correlations (whether classical or quantum), drastically augmenting the useful information accessible. The filtering even adjusts for moderate errors in the locking phase of the local oscillator. Hence we demonstrate the single-shot measurement of hundreds of different field quadratures allowing the rapid imaging of detailed features from a simple heterodyne trace. We also obtain a spectrum of hybrid homodyne-heterodyne character, with motional sidebands of combined amplitudes comparable to homodyne. Although investigated here in a thermal regime, the method's robustness and generality represents a promising new approach to sensing of quantum-scale displacements.

  6. Kicking the digital dog: a longitudinal investigation of young adults' victimization and cyber-displaced aggression.

    Science.gov (United States)

    Wright, Michelle F; Li, Yan

    2012-09-01

    Using the general strain theory as a theoretical framework, the present longitudinal study investigated both face-to-face and cyber victimization in relation to cyber-displaced aggression. Longitudinal data were collected from 130 (70 women) young adults who completed measures assessing their victimization (face-to-face and cyber), cyber aggression, and both face-to-face and cyber-displaced aggression. Findings indicated that victimization in both social contexts (face-to-face and cyber) contributed to cyber-displaced aggression 6 months later (Time 2), after controlling for gender, cyber aggression, face-to-face displaced aggression, and cyber-displaced aggression at Time 1. A significant two-way interaction revealed that Time 1 cyber victimization was more strongly related to Time 2 cyber-displaced aggression when young adults had higher levels of face-to-face victimization at Time 1. Implications of these findings are discussed as well as a call for more research investigating displaced aggression in the cyber context.

  7. High-precision coseismic displacement estimation with a single-frequency GPS receiver

    Science.gov (United States)

    Guo, Bofeng; Zhang, Xiaohong; Ren, Xiaodong; Li, Xingxing

    2015-07-01

    To improve the performance of Global Positioning System (GPS) in the earthquake/tsunami early warning and rapid response applications, minimizing the blind zone and increasing the stability and accuracy of both the rapid source and rupture inversion, the density of existing GPS networks must be increased in the areas at risk. For economic reasons, low-cost single-frequency receivers would be preferable to make the sparse dual-frequency GPS networks denser. When using single-frequency GPS receivers, the main problem that must be solved is the ionospheric delay, which is a critical factor when determining accurate coseismic displacements. In this study, we introduce a modified Satellite-specific Epoch-differenced Ionospheric Delay (MSEID) model to compensate for the effect of ionospheric error on single-frequency GPS receivers. In the MSEID model, the time-differenced ionospheric delays observed from a regional dual-frequency GPS network to a common satellite are fitted to a plane rather than part of a sphere, and the parameters of this plane are determined by using the coordinates of the stations. When the parameters are known, time-differenced ionospheric delays for a single-frequency GPS receiver could be derived from the observations of those dual-frequency receivers. Using these ionospheric delay corrections, coseismic displacements of a single-frequency GPS receiver can be accurately calculated based on time-differenced carrier-phase measurements in real time. The performance of the proposed approach is validated using 5 Hz GPS data collected during the 2012 Nicoya Peninsula Earthquake (Mw 7.6, 2012 September 5) in Costa Rica. This shows that the proposed approach improves the accuracy of the displacement of a single-frequency GPS station, and coseismic displacements with an accuracy of a few centimetres are achieved over a 10-min interval.

  8. Nondestructive web thickness measurement of micro-drills with an integrated laser inspection system

    Science.gov (United States)

    Chuang, Shui-Fa; Chen, Yen-Chung; Chang, Wen-Tung; Lin, Ching-Chih; Tarng, Yeong-Shin

    2010-09-01

    Nowadays, the electric and semiconductor industries use numerous micro-drills to machine micro-holes in printed circuit boards. The measurement of web thickness of micro-drills, a key parameter of micro-drill geometry influencing drill rigidity and chip-removal ability, is quite important to ensure quality control. Traditionally, inefficiently destructive measuring method is adopted by inspectors. To improve quality and efficiency of the web thickness measuring tasks, a nondestructive measuring method is required. In this paper, based on the laser micro-gauge (LMG) and laser confocal displacement meter (LCDM) techniques, a nondestructive measuring principle of web thickness of micro-drills is introduced. An integrated laser inspection system, mainly consisting of a LMG, a LCDM and a two-axis-driven micro-drill fixture device, was developed. Experiments meant to inspect web thickness of micro-drill samples with a nominal diameter of 0.25 mm were conducted to test the feasibility of the developed laser inspection system. The experimental results showed that the web thickness measurement could achieve an estimated repeatability of ± 1.6 μm and a worst repeatability of ± 7.5 μm. The developed laser inspection system, combined with the nondestructive measuring principle, was able to undertake the web thickness measuring tasks for certain micro-drills.

  9. Summary of ionizing and displacive irradiation fields in various facilities

    International Nuclear Information System (INIS)

    Zinkle, S.J.; Greenwood, L.R.

    1993-01-01

    Calculations have been performed to estimate the ionizing and displacive irradiation fields that will occur in ceramics during irradiation in accelerators and fission and fusion reactors. A useful measure of the relative strength of ionizing vs. displasive radiation is the ratio of the absorbed ionizing dose to the displacement damage dose, which in the case of ion irradiation is equal to the ratio of the electronic stopping power to the nuclear stopping power. In ceramics such as Al 2 O 3 , this ratio is about 20 at a fusion reactor first wall, and has a typical value of about 100 in a fusion reactor blanket region and in mixed spectrum reactors such as HFIR. Particle accelerator sources typically have much higher ionizing to displacive radiation ratios, ranging from about 2000 for 1 MeV protons to >10,000 for 1 MeV electrons

  10. First-order character of the displacive structural transition in BaWO4

    International Nuclear Information System (INIS)

    Tan Da-Yong; Xiao Wan-Sheng; Zhou Wei; Chen Ming; Xiong Xiao-Lin; Song Mao-Shuang

    2012-01-01

    Nearly all displacive transitions have been considered to be continuous or second order, and the rigid unit mode (RUM) provides a natural candidate for the soft mode. However, in-situ X-ray diffraction and Raman measurements show clearly the first-order evidences for the scheelite-to-fergusonite displacive transition in BaWO 4 : a 1.6% volume collapse, coexistence of phases, and hysteresis on release of pressure. Such first-order signatures are found to be the same as the soft modes in BaWO 4 , which indicates the scheelite-to-fergusonite displacive phase transition hides a deeper physical mechanism. By the refinement of atomic displacement parameters, we further show that the first-order character of this phase transition stems from a coupling of large compression of soft BaO 8 polyhedrons to the small displacive distortion of rigid WO 4 tetrahedrons. Such a coupling will lead to a deeper physical insight in the phase transition of the common scheelite-structured compounds. (condensed matter: structural, mechanical, and thermal properties)

  11. Quantification of intervertebral displacement with a novel MRI-based modeling technique: Assessing measurement bias and reliability with a porcine spine model.

    Science.gov (United States)

    Mahato, Niladri K; Montuelle, Stephane; Goubeaux, Craig; Cotton, John; Williams, Susan; Thomas, James; Clark, Brian C

    2017-05-01

    The purpose of this study was to develop a novel magnetic resonance imaging (MRI)-based modeling technique for measuring intervertebral displacements. Here, we present the measurement bias and reliability of the developmental work using a porcine spine model. Porcine lumbar vertebral segments were fitted in a custom-built apparatus placed within an externally calibrated imaging volume of an open-MRI scanner. The apparatus allowed movement of the vertebrae through pre-assigned magnitudes of sagittal and coronal translation and rotation. The induced displacements were imaged with static (T 1 ) and fast dynamic (2D HYCE S) pulse sequences. These images were imported into animation software, in which these images formed a background 'scene'. Three-dimensional models of vertebrae were created using static axial scans from the specimen and then transferred into the animation environment. In the animation environment, the user manually moved the models (rotoscoping) to perform model-to-'scene' matching to fit the models to their image silhouettes and assigned anatomical joint axes to the motion-segments. The animation protocol quantified the experimental translation and rotation displacements between the vertebral models. Accuracy of the technique was calculated as 'bias' using a linear mixed effects model, average percentage error and root mean square errors. Between-session reliability was examined by computing intra-class correlation coefficients (ICC) and the coefficient of variations (CV). For translation trials, a constant bias (β 0 ) of 0.35 (±0.11) mm was detected for the 2D HYCE S sequence (p=0.01). The model did not demonstrate significant additional bias with each mm increase in experimental translation (β 1 Displacement=0.01mm; p=0.69). Using the T 1 sequence for the same assessments did not significantly change the bias (p>0.05). ICC values for the T 1 and 2D HYCE S pulse sequences were 0.98 and 0.97, respectively. For rotation trials, a constant bias (

  12. Real-time monitoring of enzyme-free strand displacement cascades by colorimetric assays

    Science.gov (United States)

    Duan, Ruixue; Wang, Boya; Hong, Fan; Zhang, Tianchi; Jia, Yongmei; Huang, Jiayu; Hakeem, Abdul; Liu, Nannan; Lou, Xiaoding; Xia, Fan

    2015-03-01

    The enzyme-free toehold-mediated strand displacement reaction has shown potential for building programmable DNA circuits, biosensors, molecular machines and chemical reaction networks. Here we report a simple colorimetric method using gold nanoparticles as signal generators for the real-time detection of the product of the strand displacement cascade. During the process the assembled gold nanoparticles can be separated, resulting in a color change of the solution. This assay can also be applied in complex mixtures, fetal bovine serum, and to detect single-base mismatches. These results suggest that this method could be of general utility to monitor more complex enzyme-free strand displacement reaction-based programmable systems or for further low-cost diagnostic applications.The enzyme-free toehold-mediated strand displacement reaction has shown potential for building programmable DNA circuits, biosensors, molecular machines and chemical reaction networks. Here we report a simple colorimetric method using gold nanoparticles as signal generators for the real-time detection of the product of the strand displacement cascade. During the process the assembled gold nanoparticles can be separated, resulting in a color change of the solution. This assay can also be applied in complex mixtures, fetal bovine serum, and to detect single-base mismatches. These results suggest that this method could be of general utility to monitor more complex enzyme-free strand displacement reaction-based programmable systems or for further low-cost diagnostic applications. Electronic supplementary information (ESI) available: Experimental procedures and analytical data are provided. See DOI: 10.1039/c5nr00697j

  13. FUNCTIONAL OUTCOME OF INTERNAL FIXATION FOR DISPLACED INTRA-ARTICULAR CALCANEAL FRACTURE

    Directory of Open Access Journals (Sweden)

    Saket Jati

    2016-12-01

    Full Text Available BACKGROUND There are always difference of opinion in the importance of Bohler’s angle in evaluating the severity of displaced intra-articular calcaneal fractures and predicting the functional outcome following surgical fixation. The purpose of this research, the relationship exists between Bohler’s angle and the injury severity of displaced calcaneal fractures and between surgical improvement of Bohler’s angle and its practical outcome. MATERIALS AND METHODS Patients were treated surgically for unilateral closed displaced intra-articular calcaneal fractures from May 2014 to October 2016 were identified. The Bohler’s angles of bilateral calcaneus were measured and was compared to the dimension of the uninjured foot was used as its normal control. The difference in the value of Bohler’s angle measured preoperatively or after surgery between the angle of the damaged foot and that of the contralateral calcaneus was calculated, respectively. The change in Bohler’s angle by ratio was calculated by dividing the variation in the value of Bohler’s angle between bilateral calcaneus by its typical control. The injury severity was assessed according to Sanders classification. The functional outcomes were assessed using American Orthopaedic Foot and Ankle Society hindfoot scores. RESULTS 30 patients were included into the study with a mean follow-up duration of 30 months. According to Sanders classification, the fracture pattern included 12 type II, 10 type III and 8 type IV fractures. According to American Orthopaedic Foot and Ankle Society hindfoot scoring system, the excellent, good, fair and poor results were achieved in 10, 8, 4 and 2 patients, respectively. The preoperative Bohler’s angle, difference value of Bohler’s angle between bilateral calcaneus and change in Bohler’s angle by ratio each has a significant relationship with Sanders classification (P=0.003; P=0.004; P=0.005, respectively, however, is not correlated with

  14. Mental health problems among internally displaced persons in Darfur.

    Science.gov (United States)

    Hamid, Abdalla A R M; Musa, Saif A

    2010-08-01

    War victims are regarded as one of the highest risk groups for mental disturbances. This study investigated the effects of the Darfur conflict on mental health of 430 internally displaced persons (IDPs) from three camps located around Fasher and Nyala towns. A stratified random sampling technique was used to select participants. Male participants represented 50.6% of the sample while female participants represented 49.4%. The Posttraumatic Stress Disorder Checklist and the General Health Questionnaire (GHQ-28) were used in addition to a questionnaire measuring demographic variables and living conditions. It was hypothesized that high prevalence of posttraumatic stress disorder (PTSD) symptoms and of nonpsychotic psychiatric symptoms will be evident. Results showed a high dissatisfaction rate (72%) with living conditions among IDPs. There was also high prevalence of PTSD (54%) and general distress (70%) among IDPs. Female participants showed more somatic symptoms than their male counterparts. Married participants were more distressed, anxious, and showed more social dysfunction, while single ones reported more avoidance symptoms. Significant differences related to date of displacement were found in PTSD and hyperarousal. The group of IDPs displaced in 2003 scored higher on these scales than those displaced in 2004 and 2005. There was also significant difference related to date of displacement in distress, somatic symptoms, depression, anxiety, and social dysfunction. IDPs displaced in 2003 scored higher on these scales. Results are discussed in light of the study hypotheses and previous findings. It is concluded that three factors might affect the dissatisfaction of IDPs with living conditions inside camps. These are: lack of employment, unsuitability of food items, and lack of security around camps. It was recommended that psychological support services should be among the prime relief services provided by aid agencies.

  15. Validation of color Doppler sonography for evaluating relative displacement between the flexor tendon and subsynovial connective tissue.

    Science.gov (United States)

    Tat, Jimmy; Kociolek, Aaron M; Keir, Peter J

    2015-04-01

    A common pathologic finding in carpal tunnel syndrome is fibrosis and thickening of the subsynovial connective tissue. This finding suggests an etiology of excessive shear forces, with relative longitudinal displacement between the flexor tendon and adjacent subsynovial connective tissue. The purpose of this study was to validate color Doppler sonography for measurement of tendon displacement over time. Eight unmatched fresh frozen cadaver arms were used to evaluate color Doppler sonography for measurement of tendon displacement. The middle flexor digitorum superficialis tendon was moved through a physiologic excursion of 20 mm at 3 different tendon velocities (50, 100, and 150 mm/s). We found that color Doppler sonography provided accurate measurement of tendon displacement, with absolute errors of -0.05 mm (50 mm/s), -1.24 mm (100 mm/s), and -2.36 mm (150 mm/s) on average throughout the tendon excursion range. Evaluating relative displacement between the tendon and subsynovial connective tissue during finger flexion-extension movements also offered insight into the gliding mechanism of the subsynovial connective tissue. During flexion, we observed a curvilinear increase in relative displacement, with greater differential motion at the end range of displacement, likely due to the sequential stretch of the fibrils between successive layers of the subsynovial connective tissue. In extension, there was a linear return in relative displacement, suggesting a different unloading mechanism characterized by uniform relaxation of fibrils. We demonstrated the validity of color Doppler displacement for use in the evaluation of relative motion. Color Doppler sonography is useful in our understanding of the behavior of the subsynovial connective tissue during tendon excursion, which may elucidate the role of finger motion in the etiology of shear injury. © 2015 by the American Institute of Ultrasound in Medicine.

  16. Nanoscale displacement sensing using microfabricated variable-inductance planar coils

    Science.gov (United States)

    Coskun, M. Bulut; Thotahewa, Kasun; Ying, York-Sing; Yuce, Mehmet; Neild, Adrian; Alan, Tuncay

    2013-09-01

    Microfabricated spiral inductors were employed for nanoscale displacement detection, suitable for use in implantable pressure sensor applications. We developed a variable inductor sensor consisting of two coaxially positioned planar coils connected in series to a measurement circuit. The devices were characterized by varying the air gap between the coils hence changing the inductance, while a Colpitts oscillator readout was used to obtain corresponding frequencies. Our approach shows significant advantages over existing methodologies combining a displacement resolution of 17 nm and low hysteresis (0.15%) in a 1 × 1 mm2 device. We show that resolution could be further improved by shrinking the device's lateral dimensions.

  17. Viral fitness does not correlate with three genotype displacement events involving infectious hematopoietic necrosis virus

    Science.gov (United States)

    Kell, Alison M.; Wargo, Andrew R.; Kurath, Gael

    2014-01-01

    Viral genotype displacement events are characterized by the replacement of a previously dominant virus genotype by a novel genotype of the same virus species in a given geographic region. We examine here the fitness of three pairs of infectious hematopoietic necrosis virus (IHNV) genotypes involved in three major genotype displacement events in Washington state over the last 30 years to determine whether increased virus fitness correlates with displacement. Fitness was assessed using in vivo assays to measure viral replication in single infection, simultaneous co-infection, and sequential superinfection in the natural host, steelhead trout. In addition, virion stability of each genotype was measured in freshwater and seawater environments at various temperatures. By these methods, we found no correlation between increased viral fitness and displacement in the field. These results suggest that other pressures likely exist in the field with important consequences for IHNV evolution.

  18. Rupture of posterior cruciate ligament leads to radial displacement of the medial meniscus.

    Science.gov (United States)

    Zhang, Can; Deng, Zhenhan; Luo, Wei; Xiao, Wenfeng; Hu, Yihe; Liao, Zhan; Li, Kanghua; He, Hongbo

    2017-07-11

    To explore the association between the rupture of posterior cruciate ligament (PCL) and the radial displacement of medial meniscus under the conditions of different flexion and various axial loads. The radial displacement value of medial meniscus was measured for the specimens of normal adult knee joints, including 12 intact PCLs, 6 ruptures of the anterolateral bundle (ALB), 6 ruptures of the postmedial bundle (PMB), and 12 complete ruptures. The measurement was conducted at 0°, 30°, 60°, and 90° of knee flexion angles under 200 N, 400 N, 600 N, 800 N and 1000 N of axial loads respectively. The displacement values of medial meniscus of the ALB rupture group increased at 0° flexion under 800 N and 1000 N, and at 30°, 60° and 90° flexion under all loads in comparison with the PCL intact group. The displacement values of the PMB rupture group was higher at 0° and 90° flexion under all loads, and at 30° and 60° flexion under 800 N and 1000 N loads. The displacement of the PCL complete rupture group increased at all flexion angles under all loads. Either partial or complete rupture of the PCL can increase in the radial displacement of the medial meniscus, which may explain the degenerative changes that occuring in the medial meniscus due to PCL injury. Therefore, early reestablishment of the PCL is necessarily required in order to maintain stability of the knee joint after PCL injury.

  19. Lateral Displacement And Shear Lag Effect Of High-Rise Buildings With Diagrid SystemThat Is Constructed Above A Frame

    OpenAIRE

    Abd. Samat Roslida; Chua Fong Teng; Mohd Mustakim Nur Akmal Hayati; Anuar Fatin Izzaidah; Saad Sariffuddin; Abu Bakar Suhaimi

    2017-01-01

    Diagrid system has gained a wide acceptance in the design of tall buildings due to its many advantages including its high structural efficiency in resisting both gravity and lateral loads. Most diagrid structures that had been studied have full triangulated members from the ground level to the top of the buildings where comparison in the effectiveness in minimizing the lateral displacement was often made between structures with full diagrid, frame and outrigger system. Nevertheless, no study ...

  20. A thermal modelling of displacement cascades in uranium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Martin, G., E-mail: guillaume.martin@cea.fr [CEA – DEN/DEC/SESC/LLCC, Bât. 352, 13108 Saint-Paul-Lez-Durance Cedex (France); Garcia, P.; Sabathier, C. [CEA – DEN/DEC/SESC/LLCC, Bât. 352, 13108 Saint-Paul-Lez-Durance Cedex (France); Devynck, F.; Krack, M. [Laboratory for Reactor Physics and Systems Behaviour, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Maillard, S. [CEA – DEN/DEC/SESC/LLCC, Bât. 352, 13108 Saint-Paul-Lez-Durance Cedex (France)

    2014-05-01

    The space and time dependent temperature distribution was studied in uranium dioxide during displacement cascades simulated by classical molecular dynamics (MD). The energy for each simulated radiation event ranged between 0.2 keV and 20 keV in cells at initial temperatures of 700 K or 1400 K. Spheres into which atomic velocities were rescaled (thermal spikes) have also been simulated by MD to simulate the thermal excitation induced by displacement cascades. Equipartition of energy was shown to occur in displacement cascades, half of the kinetic energy of the primary knock-on atom being converted after a few tenths of picoseconds into potential energy. The kinetic and potential parts of the system energy are however subjected to little variations during dedicated thermal spike simulations. This is probably due to the velocity rescaling process, which impacts a large number of atoms in this case and would drive the system away from a dynamical equilibrium. This result makes questionable MD simulations of thermal spikes carried out up to now (early 2014). The thermal history of cascades was compared to the heat equation solution of a punctual thermal excitation in UO{sub 2}. The maximum volume brought to a temperature above the melting temperature during the simulated cascade events is well reproduced by this simple model. This volume eventually constitutes a relevant estimate of the volume affected by a displacement cascade in UO{sub 2}. This definition of the cascade volume could also make sense in other materials, like iron.

  1. The Research of Screw Thread Parameter Measurement Based on Position Sensitive Detector and Laser

    International Nuclear Information System (INIS)

    Tong, Q B; Ding, Z L; Chen, J C; Ai, L L; Yuan, F

    2006-01-01

    A technique and system of measuring screw thread parameter based on the theory of laser measurement is presented in this paper, which can be carried out the automated measurement of screw thread parameter. An inspection instrument was designed and produced, which included exterior imaging system of optical path, transverse displacement measurement system, axial displacement measurement system, and a module to deal with, control and assess the data in the upper system. The inspection and estimate of the screw thread contour curve were completed by using position sensitive device (PSD) as photoelectric detector to measure the coordinate data of the screw thread contour curve in the transverse section, and using precise raster to measure the axial displacement of the precision worktable under the screw thread test criterion., computer can gives a measured result according to coordinate data of the screw thread obtained by PSD. The relation between measured spot and image is established, and optimum design of the system organization are introduced, including the image length of receiving lens focal length optical system and the choice of PSD , and some main factor affected measuring precision are analyzed. The experimental results show that the measurement uncertainty of screw thread minor diameter can reach 0. 5μm, which can meet most requests for the measurement of screw thread parameter

  2. Peroneal tendon displacement accompanying intra-articular calcaneal fractures.

    Science.gov (United States)

    Toussaint, Rull James; Lin, Darius; Ehrlichman, Lauren K; Ellington, J Kent; Strasser, Nicholas; Kwon, John Y

    2014-02-19

    Peroneal tendon displacement (subluxation or dislocation) accompanying an intra-articular calcaneal fracture is often undetected and under-treated. The goals of this study were to determine (1) the prevalence of peroneal tendon displacement accompanying intra-articular calcaneal fractures, (2) the association of tendon displacement with fracture classifications, (3) the association of tendon displacement with heel width, and (4) the rate of missed diagnosis of the tendon displacement on radiographs and computed tomography (CT) scans and the resulting treatment rate. A retrospective radiographic review of all calcaneal fractures presenting at three institutions from June 30, 2006, to June 30, 2011, was performed. CT imaging of 421 intra-articular calcaneal fractures involving the posterior facet was available for review. The prevalence of peroneal tendon displacement was noted and its associations with fracture classification and heel width were evaluated. Peroneal tendon displacement was identified in 118 (28.0%) of the 421 calcaneal fracture cases. The presence of tendon displacement was significantly associated with joint-depression fractures compared with tongue-type fractures (p displacement had been identified in the radiology reports. Although sixty-five (55.1%) of the fractures with tendon displacement had been treated with internal fixation, the tendon displacement was treated surgically in only seven (10.8%) of these cases. Analysis of CT images showed a 28% prevalence of peroneal tendon displacement accompanying intra-articular calcaneal fractures. Surgeons and radiologists are encouraged to consider this association.

  3. Using finite element modelling and experimental methods to investigate planar coil sensor topologies for inductive measurement of displacement

    Directory of Open Access Journals (Sweden)

    Gregory Moreton

    2018-04-01

    Full Text Available The usage of planar sensors is widespread due to their non-contact nature and small size profiles, however only a few basic design types are generally considered. In order to develop planar coil designs we have performed extensive finite element modelling (FEM and experimentation to understand the performance of different planar sensor topologies when used in inductive sensing. We have applied this approach to develop a novel displacement sensor. Models of different topologies with varying pitch values have been analysed using the ANSYS Maxwell FEM package, furthermore the models incorporated a movable soft magnetic amorphous ribbon element. The different models used in the FEM were then constructed and experimentally tested with topologies that included mesh, meander, square coil, and circular coil configurations. The sensors were used to detect the displacement of the amorphous ribbon. A LabView program controlled both the displacement stage and the impedance analyser, the latter capturing the varying inductance values with ribbon displacement. There was good correlation between the FEM models and the experimental data confirming that the methodology described here offers an effective way for developing planar coil based sensors with improved performance.

  4. Using finite element modelling and experimental methods to investigate planar coil sensor topologies for inductive measurement of displacement

    Science.gov (United States)

    Moreton, Gregory; Meydan, Turgut; Williams, Paul

    2018-04-01

    The usage of planar sensors is widespread due to their non-contact nature and small size profiles, however only a few basic design types are generally considered. In order to develop planar coil designs we have performed extensive finite element modelling (FEM) and experimentation to understand the performance of different planar sensor topologies when used in inductive sensing. We have applied this approach to develop a novel displacement sensor. Models of different topologies with varying pitch values have been analysed using the ANSYS Maxwell FEM package, furthermore the models incorporated a movable soft magnetic amorphous ribbon element. The different models used in the FEM were then constructed and experimentally tested with topologies that included mesh, meander, square coil, and circular coil configurations. The sensors were used to detect the displacement of the amorphous ribbon. A LabView program controlled both the displacement stage and the impedance analyser, the latter capturing the varying inductance values with ribbon displacement. There was good correlation between the FEM models and the experimental data confirming that the methodology described here offers an effective way for developing planar coil based sensors with improved performance.

  5. The Different Methods of Displacement Monitoring at Loading Tests of Bridges or Different Structures

    Directory of Open Access Journals (Sweden)

    Kovačič Boštjan

    2016-01-01

    Full Text Available By measuring the displacements and deformations at different structures we deal in the Faculty of Civil Engineering, transportation Engineering and Architecture in University of Maribor for about 20 years. At that time we measured over 600 structures. Most loading tests of bridges and Viaducts were made. The measurements of movements needed to be as precise and accurate as possible. To do that laboratory test of instruments were made to see which instrument gives us reliable results. Displacements can be determined by geodetic and physical methods, depends of the construction. The use of geodetic methods are still preferable. In the paper the measurements with the total station, the level and rotation level, photogrammetry and solutions on the field by physical methods with inductive transducers are presented. We need to measure displacements as quick as possible but efficiently because we can not repeat the measurements under the same conditions. Also the surveying on the bridge and in the lab with the comparison of methods is presented under the different hard terrain conditions - water beneath the construction, big height of the structure, unapproachability, large span structures.

  6. Andreas Acrivos Dissertation Award: Onset of Dynamic Wetting Failure - The Mechanics of High-Speed Fluid Displacement

    Science.gov (United States)

    Vandre, Eric

    2014-11-01

    Dynamic wetting is crucial to processes where a liquid displaces another fluid along a solid surface, such as the deposition of a coating liquid onto a moving substrate. Dynamic wetting fails when process speed exceeds some critical value, leading to incomplete fluid displacement and transient phenomena that impact a variety of applications, such as microfluidic devices, oil-recovery systems, and splashing droplets. Liquid coating processes are particularly sensitive to wetting failure, which can induce air entrainment and other catastrophic coating defects. Despite the industrial incentives for careful control of wetting behavior, the hydrodynamic factors that influence the transition to wetting failure remain poorly understood from empirical and theoretical perspectives. This work investigates the fundamentals of wetting failure in a variety of systems that are relevant to industrial coating flows. A hydrodynamic model is developed where an advancing fluid displaces a receding fluid along a smooth, moving substrate. Numerical solutions predict the onset of wetting failure at a critical substrate speed, which coincides with a turning point in the steady-state solution path for a given set of system parameters. Flow-field analysis reveals a physical mechanism where wetting failure results when capillary forces can no longer support the pressure gradients necessary to steadily displace the receding fluid. Novel experimental systems are used to measure the substrate speeds and meniscus shapes associated with the onset of air entrainment during wetting failure. Using high-speed visualization techniques, air entrainment is identified by the elongation of triangular air films with system-dependent size. Air films become unstable to thickness perturbations and ultimately rupture, leading to the entrainment of air bubbles. Meniscus confinement in a narrow gap between the substrate and a stationary plate is shown to delay air entrainment to higher speeds for a variety of

  7. Nuclear reactor control device by vertical displacement of neutron absorber scram rods

    International Nuclear Information System (INIS)

    Defaucheux, Jacques; Pasqualini, Gilbert; Wiart, Albert; Martin, Jean.

    1981-01-01

    Nuclear reactor control system by vertical displacement of an assembly absorbing the neutrons inside a reactor core and drop of the absorbing assembly in maximum insertion position under the effect of its own weight for emergency shutdown. The absorbing assembly is secured to the bottom end of a vertical control rod, the displacement of which is actuated by an electro-magnetic device [fr

  8. Reduction of Airborne Bacterial Burden in the OR by Installation of Unidirectional Displacement Airflow (UDF) Systems.

    Science.gov (United States)

    Fischer, Sebastian; Thieves, Martin; Hirsch, Tobias; Fischer, Klaus-Dieter; Hubert, Helmine; Beppler, Steffen; Seipp, Hans-Martin

    2015-08-13

    Intraoperative bacterial contamination is a major risk factor for postoperative wound infections. This study investigated the influence of type of ventilation system on intraoperative airborne bacterial burden before and after installation of unidirectional displacement air flow systems. We microbiologically monitored 1286 surgeries performed by a single surgical team that moved from operating rooms (ORs) equipped with turbulent mixing ventilation (TMV, according to standard DIN-1946-4 [1999], ORs 1, 2, and 3) to ORs with unidirectional displacement airflow (UDF, according to standard DIN-1946-4, annex D [2008], ORs 7 and 8). The airborne bacteria were collected intraoperatively with sedimentation plates. After incubation for 48 h, we analyzed the average number of bacteria per h, peak values, and correlation to surgery duration. In addition, we compared the last 138 surgeries in ORs 1-3 with the first 138 surgeries in ORs 7 and 8. Intraoperative airborne bacterial burden was 5.4 CFU/h, 5.5 CFU/h, and 6.1 CFU/h in ORs 1, 2, and 3, respectively. Peak values of burden were 10.7 CFU/h, 11.1 CFU/h, and 11.0 CFU/h in ORs 1, 2, and 3, respectively). With the UDF system, the intraoperative airborne bacterial burden was reduced to 0.21 CFU/h (OR 7) and 0.35 CFU/h (OR 8) on average (pAirborne bacterial burden increased linearly with surgery duration in ORs 1-3, but the UDF system in ORs 7 and 8 kept bacterial levels constantly low (airborne bacterial burden (5 CFU/h vs. 0.29 CFU/h, pairborne bacterial burden under real clinical conditions by more than 90%. Although decreased postoperative wound infection incidence was not specifically assessed, it is clear that airborne microbiological burden contributes to surgical infections.

  9. Effect of Audio Coaching on Correlation of Abdominal Displacement With Lung Tumor Motion

    International Nuclear Information System (INIS)

    Nakamura, Mitsuhiro; Narita, Yuichiro; Matsuo, Yukinori; Narabayashi, Masaru; Nakata, Manabu; Sawada, Akira; Mizowaki, Takashi; Nagata, Yasushi; Hiraoka, Masahiro

    2009-01-01

    Purpose: To assess the effect of audio coaching on the time-dependent behavior of the correlation between abdominal motion and lung tumor motion and the corresponding lung tumor position mismatches. Methods and Materials: Six patients who had a lung tumor with a motion range >8 mm were enrolled in the present study. Breathing-synchronized fluoroscopy was performed initially without audio coaching, followed by fluoroscopy with recorded audio coaching for multiple days. Two different measurements, anteroposterior abdominal displacement using the real-time positioning management system and superoinferior (SI) lung tumor motion by X-ray fluoroscopy, were performed simultaneously. Their sequential images were recorded using one display system. The lung tumor position was automatically detected with a template matching technique. The relationship between the abdominal and lung tumor motion was analyzed with and without audio coaching. Results: The mean SI tumor displacement was 10.4 mm without audio coaching and increased to 23.0 mm with audio coaching (p < .01). The correlation coefficients ranged from 0.89 to 0.97 with free breathing. Applying audio coaching, the correlation coefficients improved significantly (range, 0.93-0.99; p < .01), and the SI lung tumor position mismatches became larger in 75% of all sessions. Conclusion: Audio coaching served to increase the degree of correlation and make it more reproducible. In addition, the phase shifts between tumor motion and abdominal displacement were improved; however, all patients breathed more deeply, and the SI lung tumor position mismatches became slightly larger with audio coaching than without audio coaching.

  10. Simulation Analysis and Experiment of Variable-Displacement Asymmetric Axial Piston Pump

    Directory of Open Access Journals (Sweden)

    Youshan Gao

    2017-03-01

    Full Text Available The variable displacement pump control system has greater energy-saving advantages and application prospects than the valve control system. However, the variable displacement pump control of differential cylinder is not concurrent with the existing technologies. The asymmetric pump-controlled cylinder is, therefore, used to balance the unequal volume flow through a single rod cylinder in closed-circuit system. This is considered to be an effective method. Nevertheless, the asymmetric axial piston pump (AAPP is a constant displacement pump. In this study, variable-displacement asymmetric axial piston pump (VAPP is investigated according to the same principle used in investigating AAPP. This study, therefore, aims at investigating the characteristics of VAPP. The variable-displacement output of VAPP is implemented by controlling the swash plate angle with angle feedback control circuit, which is composed of a servo proportional valve and an angular displacement sensor. The angular displacement sensor is connected to the swash plate. The simulation model of VAPP, which is set up through the ITI-SimulationX simulation platform, is used to predict VAPP’s characteristics. The purpose of implementing the experiment is to verify the theoretical results. Both the simulation and the experiment results demonstrated that the swash plate angle is controlled by a variable mechanism; when the swash plate angle increases, the flow of Port B and Port T increases while the response speed of Port B and Port T also accelerates. When the swash plate angle is constant, the flow of Port B and Port T increases along with the increase of pump speed, although the pressure-response speed of Port B is faster than that of Port T. Consequently, the flow pulsation of Port B and Port T tends to decrease gradually along with the increase of pump speed. When the pressure loaded on Port B equals to that of Port T, the flow ripple cycle of Port B is longer than that of Port T

  11. Online Image-based Monitoring of Soft-tissue Displacements for Radiation Therapy of the Prostate

    International Nuclear Information System (INIS)

    Schlosser, Jeffrey; Salisbury, Kenneth; Hristov, Dimitre

    2012-01-01

    Purpose: Emerging prolonged, hypofractionated radiotherapy regimens rely on high-dose conformality to minimize toxicity and thus can benefit from image guidance systems that continuously monitor target position during beam delivery. To address this need we previously developed, as a potential add-on device for existing linear accelerators, a novel telerobotic ultrasound system capable of real-time, soft-tissue imaging. Expanding on this capability, the aim of this work was to develop and characterize an image-based technique for real-time detection of prostate displacements. Methods and Materials: Image processing techniques were implemented on spatially localized ultrasound images to generate two parameters representing prostate displacements in real time. In a phantom and five volunteers, soft-tissue targets were continuously imaged with a customized robotic manipulator while recording the two tissue displacement parameters (TDPs). Variations of the TDPs in the absence of tissue displacements were evaluated, as was the sensitivity of the TDPs to prostate translations and rotations. Robustness of the approach to probe force was also investigated. Results: With 95% confidence, the proposed method detected in vivo prostate displacements before they exceeded 2.3, 2.5, and 2.8 mm in anteroposterior, superoinferior, and mediolateral directions. Prostate pitch was detected before exceeding 4.7° at 95% confidence. Total system time lag averaged 173 ms, mostly limited by ultrasound acquisition rate. False positives (FPs) (FP) in the absence of displacements did not exceed 1.5 FP events per 10 min of continuous in vivo imaging time. Conclusions: The feasibility of using telerobotic ultrasound for real-time, soft-tissue–based monitoring of target displacements was confirmed in vivo. Such monitoring has the potential to detect small clinically relevant intrafractional variations of the prostate position during beam delivery.

  12. Displacement of screw-retained single crowns into implants with conical internal connections.

    Science.gov (United States)

    Yilmaz, Burak; Seidt, Jeremy D; McGlumphy, Edwin A; Clelland, Nancy L

    2013-01-01

    Internal conical implant-abutment connections without platforms may lead to axial displacement of crowns during screw tightening. This displacement may affect proximal contacts, incisal edge position, or occlusion. This study aimed to measure the displacement of screw-retained single crowns into an implant in three dimensions during screw tightening by hand or via torque driver. A stereolithic acrylic resin cast was created using computed tomography data from a patient missing the maxillary right central incisor. A 4.0- × 11-mm implant was placed in the edentulous site. Five porcelain-fused-to-metal single crowns were made using "cast-to" abutments. Crowns were tried on the stereolithic model, representing the patient, and hand tightened. The spatial relationship of crowns to the model after hand tightening was determined using three-dimensional digital image correlation (3D DIC), an optical measurement technique. The crowns were then tightened using a torque driver to 20 Ncm and the relative crown positions were again recorded. Testing was repeated three times for each crown, and displacement of the crowns was compared between the hand-tightened and torqued states. Commercial image correlation software was used to analyze the data. Mean vertical and horizontal crown displacement values were calculated after torqueing. The interproximal contacts were evaluated before and after torquing using an 8-μm aluminum foil shim. There were vertical and horizontal differences in crown positions between hand tightening and torqueing. Although these were small in magnitude, detectable displacements occurred in both apical and facial directions. After hand tightening, the 8-μm shim could be dragged without tearing. However, after torque tightening, the interproximal contacts were too tight and the 8-μm shim could not be dragged without tearing. Differences between hand tightening and torque tightening should be taken into consideration during laboratory and clinical

  13. Influence of non-ideal performance of lasers on displacement precision in single-grating heterodyne interferometry

    Science.gov (United States)

    Wang, Guochao; Xie, Xuedong; Yan, Shuhua

    2010-10-01

    Principle of the dual-wavelength single grating nanometer displacement measuring system, with a long range, high precision, and good stability, is presented. As a result of the nano-level high-precision displacement measurement, the error caused by a variety of adverse factors must be taken into account. In this paper, errors, due to the non-ideal performance of the dual-frequency laser, including linear error caused by wavelength instability and non-linear error caused by elliptic polarization of the laser, are mainly discussed and analyzed. On the basis of theoretical modeling, the corresponding error formulas are derived as well. Through simulation, the limit value of linear error caused by wavelength instability is 2nm, and on the assumption that 0.85 x T = , 1 Ty = of the polarizing beam splitter(PBS), the limit values of nonlinear-error caused by elliptic polarization are 1.49nm, 2.99nm, 4.49nm while the non-orthogonal angle is selected correspondingly at 1°, 2°, 3° respectively. The law of the error change is analyzed based on different values of Tx and Ty .

  14. Pseudo-stokes vector from complex signal representation of a speckle pattern and its applications to micro-displacement measurement

    DEFF Research Database (Denmark)

    Wang, W.; Ishijima, R.; Matsuda, A.

    2010-01-01

    As an improvement of the intensity correlation used widely in conventional electronic speckle photography, we propose a new technique for displacement measurement based on correlating Stokes-like parameters derivatives for transformed speckle patterns. The method is based on a Riesz transform of ...... are presented that demonstrate the validity and advantage of the proposed pseudo-Stokes vector correlation technique over conventional intensity correlation technique....... of the intensity speckle pattern, which converts the original real-valued signal into a complex signal. In closest analogy to the polarisation of a vector wave, the Stokes-like vector constructed from the spatial derivative of the generated complex signal has been applied for correlation. Experimental results...

  15. Is Fibular Fracture Displacement Consistent with Tibiotalar Displacement?

    NARCIS (Netherlands)

    van den Bekerom, Michel P. J.; van Dijk, C. Niek

    2010-01-01

    We believed open reduction with internal fixation is required for supination-external rotation ankle fractures located at the level of the distal tibiofibular syndesmosis (Lauge-Hanssen SER II and Weber B) with 2 mm or more fibular fracture displacement. The rationale for surgery for these ankle

  16. Phenomenon of displacement in Arabic language

    Directory of Open Access Journals (Sweden)

    2015-09-01

    Full Text Available Displacement is one of the characteristics of language and common phenomena in the Arabic language. Not only is this phenomenon limited to Arabic poetry and prose, but it is also broadened, so we can see examples of this in the Qur'an. Because of this phenomenon extensively in Arabic literature and also because of its essence that leads to the transmission of the elements for the first visibility to the other visibility in the sentence and sometimes had to change the grammatical role of the words, its identify helps us in a better understanding of text and the correct translation of it and protects the reader from mistakes. This paper in the descriptive analytical approach tries studying of the phenomenon of the displacement in the Arabic language and bringing its instances in Arabic poetry and prose as well as verses contained in the Holy Quran, to show that through the types and characteristics in the Arabic language and to response to several questions, including: how important is the displacement and what is its types in rhetoric, and the reasons of the displacement, and etc... Of the most important results of this study may refer to the undeniable role of the displacement as a rhetorical method to better understanding of the texts including: one of the most important reasons of the displacement in the use of language is to improve speech verbally and morally, and violation of the standard language and create a poetic atmosphere, and the recognition of the occurrence of the phenomenon of displacement in the Arabic language that uphold different interpretations remote and estimates when faced with the displacement in the text and help us to understand it and etc...

  17. Earthquake source model using strong motion displacement

    Indian Academy of Sciences (India)

    The strong motion displacement records available during an earthquake can be treated as the response of the earth as the a structural system to unknown forces acting at unknown locations. Thus, if the part of the earth participating in ground motion is modelled as a known finite elastic medium, one can attempt to model the ...

  18. Earthquake related displacement fields near underground facilities

    International Nuclear Information System (INIS)

    Pratt, H.R.; Zandt, G.; Bouchon, M.

    1979-04-01

    Relative displacements of rock masses are evaluated in terms of geological evidence, seismological evidence, data from simulation experiments, and analytical predictive models. Numerical models have been developed to determine displacement fields as a function of depth, distance, and azimuth from an earthquake source. Computer calculations for several types of faults indicate that displacements decrease rapidly with distance from the fault, but that displacements can either increase or decrease as a function of depth depending on the type and geometry of the fault. For long shallow vertical strike-slip faults the displacement decreases markedly with depth. For square strike slip faults and for dip slip faults displacement does not decrease as markedly with depth. Geologic structure, material properties, and depth affect the seismic source spectrum. Amplification of the high frequencies of shear waves is larger by a factor of about 2 for layered geologic models than for an elastic half space

  19. Subthreshold displacement damage in copper--aluminum alloys during electron irradiation

    International Nuclear Information System (INIS)

    Drosd, R.; Kosel, T.; Washburn, J.

    1976-12-01

    During electron irradiation at low energies which results in a negligible damage rate in a pure material, lighter solute atoms are displaced, which may in turn indirectly displace solvent atoms by a focussed replacement collision or an interstitial diffusion jump. The extent to which lighter solute atoms contribute to the subthreshold damage rate has been examined by irradiating copper--aluminum alloys at high temperatures in a high voltage electron microscope. The damage rate, as measured by monitoring the growth rate of dislocation loops, at 300 kV was found to increase linearly with the aluminum concentration

  20. A comparison of cord gingival displacement with the gingitage technique.

    Science.gov (United States)

    Tupac, R G; Neacy, K

    1981-11-01

    Fifteen young adult dogs were divided into three groups representing 0, 7- and 21-day healing periods. Randomly selected cuspid teeth were used to compare cord gingival displacement and gingitage techniques for subgingival tooth preparation and impression making. Clinical and histologic measurements were used as a basis for comparison. Results indicate that (1) the experimental teeth were clinically healthy at the beginning of the experiment, (2) clinical health of the gingival tissues was controlled throughout the course of the experiment, and (3) within this experimental setting, there was no significant difference between the cord gingival displacement technique and the gingitage technique.

  1. Diagnosing displaced four-part fractures of the proximal humerus: a review of observer studies

    DEFF Research Database (Denmark)

    Brorson, Stig; Bagger, Jens; Sylvest, Annette

    2009-01-01

    Displaced four-part fractures comprise 2-10 % of all proximal humeral fractures. The optimal treatment is unclear and randomised trials are needed. The conduct and interpretation of such trials is facilitated by a reproducible fracture classification. We aimed at quantifying observer agreement...... on the classification of displaced four-part fractures according to the Neer system. Published and unpublished data from five observer studies were reviewed. Observers agreed less on displaced four-part fractures than on the overall Neer classification. Mean kappa values for interobserver agreement ranged from 0.......16 to 0.48. Specialists agreed slightly more than fellows and residents. Advanced imaging modalities (CT and 3D CT) seemed to contribute more to classification of displaced four-part patterns than in less complex fracture patterns. Low observer agreement may challenge the clinical approach to displaced...

  2. A coupled inversion of pressure and surface displacement

    International Nuclear Information System (INIS)

    Vasco, D.W.; Karasaki, Kenzi; Kishida, Kiyoshi

    2001-01-01

    A coupled inversion of transient pressure observations and surface displacement measurements provides an efficient technique for estimating subsurface permeability variations. The methodology has the advantage of utilizing surface observations, which are typically much less expensive than measurements requiring boreholes. Furthermore, unlike many other geophysical observables, the relationship between surface deformation and reservoir pore fluid volume changes is relatively well understood. Our treatment enables us to partition the estimation problem into a sequence of three linear sub-problems. An application of the approach to a set of tilt and borehole pressure data from the Raymond field site in California illustrates it's efficiency and utility. The observations are associated with a well test in which fluid is withdrawn from a shallow fracture zone. During the test thirteen tiltmeters recorded the movement of the ground surface. Simultaneously, nine transducers measured pressure changes in boreholes intersecting the fracture system. We are able to image a high permeability, north trending channel located within the fracture zone. The existence and orientation of this high permeability feature is substantiated by a semi-quantitative analysis of some 4,000 transient pressure curves. (author)

  3. Compact all-fiber interferometer system for shock acceleration measurement

    Science.gov (United States)

    Zhao, Jiang; Pi, Shaohua; Hong, Guangwei; Zhao, Dong; Jia, Bo

    2013-08-01

    Acceleration measurement plays an important role in a variety of fields in science and engineering. In particular, the accurate, continuous and non-contact recording of the shock acceleration profiles of the free target surfaces is considered as a critical technique in shock physics. Various kinds of optical interferometers have been developed to monitor the motion of the surfaces of shocked targets since the 1960s, for instance, the velocity interferometer system for any reflector, the fiber optic accelerometer, the photonic Doppler velocimetry system and the displacement interferometer. However, most of such systems rely on the coherent quasi-monochromatic illumination and discrete optic elements, which are costly in setting-up and maintenance. In 1996, L. Levin et al reported an interferometric fiber-optic Doppler velocimeter with high-dynamic range, in which fiber-coupled components were used to replace the discrete optic elements. However, the fringe visibility of the Levin's system is low because of the coupled components, which greatly limits the reliability and accuracy in the shock measurement. In this paper, a compact all-fiber interferometer system for measuring the shock acceleration is developed and tested. The advantage of the system is that not only removes the non-interfering light and enhances the fringe visibility, but also reduces polarization induced signal fading and the polarization induced phase shift. Moreover, it also does not require a source of long coherence length. The system bases entirely on single-mode fiber optics and mainly consists of a polarization beam splitter, a faraday rotator, a depolarizer and a 3×3 single-mode fiber coupler which work at 1310 nm wavelength. The optical systems of the interferometer are described and the experimental results compared with a shock acceleration calibration system with a pneumatic exciter (PneuShockTM Model 9525C by The Modal Shop) are reported. In the shock acceleration test, the

  4. Three-dimensional linear fracture mechanics analysis by a displacement-hybrid finite-element model

    International Nuclear Information System (INIS)

    Atluri, S.N.; Kathiresan, K.; Kobayashi, A.S.

    1975-01-01

    This paper deals with a finite-element procedures for the calculation of modes I, II and III stress intensity factors, which vary, along an arbitrarily curved three-dimensional crack front in a structural component. The finite-element model is based on a modified variational principle of potential energy with relaxed continuity requirements for displacements at the inter-element boundary. The variational principle is a three-field principle, with the arbitrary interior displacements for the element, interelement boundary displacements, and element boundary tractions as variables. The unknowns in the final algebraic system of equations, in the present displacement hybrid finite element model, are the nodal displacements and the three elastic stress intensity factors. Special elements, which contain proper square root and inverse square root crack front variations in displacements and stresses, respectively, are used in a fixed region near the crack front. Interelement displacement compatibility is satisfied by assuming an independent interelement boundary displacement field, and using a Lagrange multiplier technique to enforce such interelement compatibility. These Lagrangean multipliers, which are physically the boundary tractions, are assumed from an equilibrated stress field derived from three-dimensional Beltrami (or Maxwell-Morera) stress functions that are complete. However, considerable care should be exercised in the use of these stress functions such that the stresses produced by any of these stress function components are not linearly dependent

  5. Displacement-length scaling of brittle faults in ductile shear.

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-11-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement-distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow.

  6. SOCIAL CAPITAL IN INVOLUNTARY DISPLACEMENT AND RESETTLEMENT

    Directory of Open Access Journals (Sweden)

    Melissa Quetulio-Navarra

    2013-07-01

    Full Text Available Social capital is often seen as a substitute for lack of other types of capital amongpoor people. Because of the recognized applicability of the social capital conceptand its correlation with the different dimensions of poverty, it has been used inevaluating the adaptation and integration of involuntarily displaced individualsinto their new environment. This paper presents insights based on a review of thefindings of studies that looked into the role of social capital in conflict- anddevelopment-induced displacement contexts. Althoughboth types of displace-ments are involuntary or forced in nature, they differ in terms of the role of socialcapital regarding its main sources, the formation pattern and its determinants.Social capital studies in forced resettlement appear to be relatively small innumber and are heavily concentrated on first worldcountries and conflict- anddevelopment-induced displacements. The conduct of similar studies in developingcountries and in a disaster-induced resettlement context, the third type ofinvoluntary displacement, should generate new and relevant findings regardingthe role of social capital in resettlement communities.

  7. War, forced displacement and growth in Laotian adults.

    Science.gov (United States)

    Clarkin, Patrick F

    2012-01-01

    Evidence from several populations suggests that war negatively impacts civilian nutrition, physical growth and overall health. This effect is often enduring or permanent, particularly if experienced early in life. To assess whether the number of lifetime displacement experiences and being displaced in infancy were associated with adult height, sitting height, leg length and the sitting height ratio. Retrospective questionnaires on displacement and resettlement experiences and anthropometric data were collected from a sample of Laotian adult refugees (ethnic Hmong and Lao; n = 365). All were born in Laos or Thailand and had resettled in French Guiana or the US. Many had been displaced several times by military conflict in Laos. In bivariate analyses, being displaced in infancy and the number of lifetime displacement experiences one had were negatively associated with final adult height and leg length in both sexes. The association was stronger in females, particularly Hmong females. There was no significant association between total displacement experiences and the sitting height ratio. In multiple regression analyses, linear growth in males was negatively associated with being displaced in infancy; in females, the number of lifetime displacement experiences was a significant predictor. Forced displacement from war appears to have a lasting effect on final adult height, sitting height and leg length, although not necessarily on the sitting height ratio in this sample.

  8. Development of shearography for surface strain measurement of non planar objects

    International Nuclear Information System (INIS)

    Groves, Roger Michael

    2001-01-01

    The subject of this thesis is the development of optical instrumentation for surface strain measurement of non-planar objects. The speckle interferometry technique of shearography is used to perform quantitative measurements of surface strain on non-planar objects and to compensate these measurements for the errors that are due to the shape and slope of the object. Shearography is an optical technique that is usually used for defect location and for qualitative strain characterisation. In this thesis a multi-component shearography system is described that can measure the six components of displacement gradient. From these measurements the surface strain can be fully characterised. For non-planar objects an error is introduced into the displacement gradient measurement due to the variation of the sensitivity vector across the field of view and the variation in the magnitude of applied shear due to the curvature of the object surface. To correct for these errors requires a knowledge of the slope and shape of the object. Shearography may also be used to measure object slope and shape by a source displacement technique. Therefore slope, shape and surface strain may be measured using the same optical system. The thesis describes a method of multiplexing the shear direction using polarisation switching, a method of measuring the source position using shadow Moire and the shearography source displacement technique for measuring the surface slope and shape of objects. The multi-component shearography system is used to perform measurements of the six components of surface strain, on an industrial component, with a correction applied for errors due to the shape and slope of the object. (author)

  9. Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology

    International Nuclear Information System (INIS)

    Yu, Xiangzhi; Gillmer, Steven R.; Woody, Shane C.; Ellis, Jonathan D.

    2016-01-01

    A compact, fiber-coupled, six degree-of-freedom measurement system which enables fast, accurate calibration, and error mapping of precision linear stages is presented. The novel design has the advantages of simplicity, compactness, and relatively low cost. This proposed sensor can simultaneously measure displacement, two straightness errors, and changes in pitch, yaw, and roll using a single optical beam traveling between the measurement system and a small target. The optical configuration of the system and the working principle for all degrees-of-freedom are presented along with the influence and compensation of crosstalk motions in roll and straightness measurements. Several comparison experiments are conducted to investigate the feasibility and performance of the proposed system in each degree-of-freedom independently. Comparison experiments to a commercial interferometer demonstrate error standard deviations of 0.33 μm in straightness, 0.14 μrad in pitch, 0.44 μradin yaw, and 45.8 μrad in roll.

  10. Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiangzhi, E-mail: xiangzhi.yu@rochester.edu; Gillmer, Steven R. [Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States); Woody, Shane C. [InSituTec Incorporated, 7140 Weddington Road, Concord, North Carolina 28027 (United States); Ellis, Jonathan D. [Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States); The Institute of Optics, University of Rochester, Rochester, New York 14627 (United States)

    2016-06-15

    A compact, fiber-coupled, six degree-of-freedom measurement system which enables fast, accurate calibration, and error mapping of precision linear stages is presented. The novel design has the advantages of simplicity, compactness, and relatively low cost. This proposed sensor can simultaneously measure displacement, two straightness errors, and changes in pitch, yaw, and roll using a single optical beam traveling between the measurement system and a small target. The optical configuration of the system and the working principle for all degrees-of-freedom are presented along with the influence and compensation of crosstalk motions in roll and straightness measurements. Several comparison experiments are conducted to investigate the feasibility and performance of the proposed system in each degree-of-freedom independently. Comparison experiments to a commercial interferometer demonstrate error standard deviations of 0.33 μm in straightness, 0.14 μrad in pitch, 0.44 μradin yaw, and 45.8 μrad in roll.

  11. Quantitative shearography: error reduction by using more than three measurement channels

    International Nuclear Information System (INIS)

    Charrett, Tom O. H.; Francis, Daniel; Tatam, Ralph P.

    2011-01-01

    Shearography is a noncontact optical technique used to measure surface displacement derivatives. Full surface strain characterization can be achieved using shearography configurations employing at least three measurement channels. Each measurement channel is sensitive to a single displacement gradient component defined by its sensitivity vector. A matrix transformation is then required to convert the measured components to the orthogonal displacement gradients required for quantitative strain measurement. This transformation, conventionally performed using three measurement channels, amplifies any errors present in the measurement. This paper investigates the use of additional measurement channels using the results of a computer model and an experimental shearography system. Results are presented showing that the addition of a fourth channel can reduce the errors in the computed orthogonal components by up to 33% and that, by using 10 channels, reductions of around 45% should be possible.

  12. Medial joint space widening of the ankle in displaced Tillaux and Triplane fractures in children.

    Science.gov (United States)

    Gourineni, Prasad; Gupta, Asheesh

    2011-10-01

    Tillaux and Triplane fractures occur in children predominantly from external rotation mechanism. We hypothesized that in displaced fractures, the talus would shift laterally along with the distal fibula and the distal tibial epiphyseal fragment increasing the medial joint space. Consecutive cases evaluated retrospectively. Level I and Level II centers. Twenty-two skeletally immature patients with 14 displaced Triplane fractures and eight displaced Tillaux fractures were evaluated for medial joint space widening. Measurement of fracture displacement and medial joint space widening before and after intervention. Thirteen Triplane and six Tillaux fractures (86%) showed medial space widening of 1 to 9 mm and equal to the amount of fracture displacement. Reduction of the fracture reduced the medial space to normal. There were no known complications. Medial space widening of the ankle may be a sign of ankle fracture displacement. Anatomic reduction of the fracture reduces the medial space and may improve the results in Tillaux and Triplane fractures.

  13. Prerequisites for the Establishment of the Automated Monitoring System and Accounting of the Displacement of the Roof of Underground Mines for the Improvement of Safety of Mining Work

    Science.gov (United States)

    Abramovich, Alexandr; Pudov, Evgeniy; Kuzin, Evgeny

    2017-11-01

    In the article the necessity of continuous control over the condition of the roof of mine workings is considered, to increase the safety in the conduct of mining operations. Provided the rationale for monitoring in complex mining and geological conditions, as well as in areas prone to rock blows and sudden coal emissions. The existing methods for controlling the displacement of the roof rocks are described, and their shortcomings are given. An idea is given of an automated system for monitoring the displacement of the workings. The stages of the system as a whole are considered, including the choice of a linear displacement sensor, a platform for software development, and a programming language. In order to ensure integration into other systems and subsequent analysis of the results, it is envisaged to output data to spreadsheets. Are shown the interfaces of the program and the output of the readings from the sensors to the monitors of the mining manager.

  14. The Displacement Effect of Labour-Market Programs: Estimates from the MONASH Model

    OpenAIRE

    Peter B. Dixon; Maureen T. Rimmer

    2005-01-01

    A key question concerning labour-market programs is the extent to which they generate jobs for their target group at the expense of others. This effect is measured by displacement percentages. We describe a version of the MONASH model designed to quantify the effects of labour-market programs. Our simulation results suggests that: (1) labour-market programs can generate significant long-run increases in employment; (2) displacement percentages depend on how a labour-market program affects the...

  15. Influence of maglev force relaxation on the forces of bulk HTSC subjected to different lateral displacements above the NdFeB guideway

    International Nuclear Information System (INIS)

    Qin Yujie; Hou Xiaojing

    2011-01-01

    Research highlights: → The relaxation properties of maglev forces have been investigated simultaneously. → Influence of relaxation on forces of HTSC subjected to different LDs above PMG is different. → The influence is explained based on motion of flux lines, re/demagnetization of HTSC during LD. → The work provide a scientific analysis for the practical application of the bulk HTSC. - Abstract: This paper studied the influence of maglev force relaxation on the force (both levitation and guidance forces) of bulk high-temperature superconductor (HTSC) subjected to different lateral displacements above a NdFeB guideway. Firstly, the maglev forces relaxation property of bulk HTSC above the permanent-magnet guideway (PMG) was studied experimentally, then the levitation and guidance forces were measured by SCML-2 measurement system synchronously at different lateral displacements, some times later(after relaxation), the forces were measured again as the same way. Compared to the two measured results, it was found that the change of the levitation force was larger compared to the case without relaxation, while the change of the guidance force was smaller. In addition, the rate of change of levitation force and guidance force was different for different maximum lateral displacements. This work provided a scientific analysis for the practical application of the bulk HTS.

  16. Influence of maglev force relaxation on the forces of bulk HTSC subjected to different lateral displacements above the NdFeB guideway

    Energy Technology Data Exchange (ETDEWEB)

    Qin Yujie, E-mail: qyjswjtu@vip.sohu.co [Department of Computer and Information Engineering, Luoyang Institute of Science and Technology, Luoyang, Henan 471023 (China); Hou Xiaojing [Department of Computer and Information Engineering, Luoyang Institute of Science and Technology, Luoyang, Henan 471023 (China)

    2011-02-15

    Research highlights: {yields} The relaxation properties of maglev forces have been investigated simultaneously. {yields} Influence of relaxation on forces of HTSC subjected to different LDs above PMG is different. {yields} The influence is explained based on motion of flux lines, re/demagnetization of HTSC during LD. {yields} The work provide a scientific analysis for the practical application of the bulk HTSC. - Abstract: This paper studied the influence of maglev force relaxation on the force (both levitation and guidance forces) of bulk high-temperature superconductor (HTSC) subjected to different lateral displacements above a NdFeB guideway. Firstly, the maglev forces relaxation property of bulk HTSC above the permanent-magnet guideway (PMG) was studied experimentally, then the levitation and guidance forces were measured by SCML-2 measurement system synchronously at different lateral displacements, some times later(after relaxation), the forces were measured again as the same way. Compared to the two measured results, it was found that the change of the levitation force was larger compared to the case without relaxation, while the change of the guidance force was smaller. In addition, the rate of change of levitation force and guidance force was different for different maximum lateral displacements. This work provided a scientific analysis for the practical application of the bulk HTS.

  17. Flight experience and the perception of pitch angular displacements in a gondola centrifuge.

    Science.gov (United States)

    Tribukait, Arne; Eiken, Ola

    2012-05-01

    It has been shown that flight experience may induce an adaptation of the vestibular system. The aim of the present work was to elucidate whether pilots, in comparison with non-pilots, have an increased responsiveness to angular displacement canal stimuli in the pitch plane during a conflict between the otolith organs and the semicircular canals. In a large swing-out gondola centrifuge, eight non-pilots, eight fighter pilots, and eight helicopter pilots underwent three runs (2 G, 5 min) heading forward, centripetally, and centrifugally. The direction of the gravitoinertial force was constant with respect to the subject. The visually perceived eye level (VPEL) was measured in darkness by means of an adjustable luminous dot. In the forward position the three groups produced similar results. After acceleration there was a sensation of backward tilt and an increasing depression of VPEL. This effect was smaller in the centripetal position and larger in the centrifugal position. The difference in VPEL between the opposite positions constitutes a measure of the ability to sense the pitch angular displacement canal stimulus related to the swing out of the gondola (60 degrees). This difference was most pronounced initially at the 2-G plateau (mean +/- SD): 13.5 +/- 12.9 degrees (non-pilots), 41.6 +/- 21.1 degrees (fighter pilots), and 19.5 +/- 14.0 degrees (helicopter pilots). There was no significant difference between non-pilots and helicopter pilots. Fighter pilots differed significantly from both non-pilots and helicopter pilots. Vestibular learning effects of flying may be revealed in a centrifuge. Fighter pilots had an increased ability, as compared to non-pilots and helicopter pilots, to perceive pitch angular displacements.

  18. Maternal and Child Health of Internally Displaced Persons in Ukraine: A Qualitative Study

    Directory of Open Access Journals (Sweden)

    Svitlana Nidzvetska

    2017-01-01

    Full Text Available Due to the conflict that started in spring 2014 in Eastern Ukraine, a total of 1.75 million internally displaced persons (IDPs fled the area and have been registered in government-controlled areas of the country. This paper explores perceived health, barriers to access to healthcare, caring practices, food security, and overall financial situation of mothers and young children displaced by the conflict in Ukraine. This is a qualitative study, which collected data through semi-structured in-depth interviews with nine IDP mothers via Skype and Viber with a convenience sample of participants selected through snowball technique. Contrary to the expectations, the perceived physical health of mothers and their children was found not to be affected by conflict and displacement, while psychological distress was often reported. A weak healthcare system, Ukraine’s proneness to informal payments, and heavy bureaucracy to register as an IDP were reported in our study. A precarious social safety net to IDP mothers in Ukraine, poor dietary diversity, and a generalized rupture of vaccine stocks, with halted or delayed vaccinations in children were identified. Increasing social allowances and their timely delivery to IDP mothers might be the most efficient policy measure to improve health and nutrition security. Reestablishment and sustainability of vaccine stocks in Ukraine is urgent to avoid the risks of a public health crisis. Offering psychological support for IDP mothers is recommended.

  19. Maternal and Child Health of Internally Displaced Persons in Ukraine: A Qualitative Study.

    Science.gov (United States)

    Nidzvetska, Svitlana; Rodriguez-Llanes, Jose M; Aujoulat, Isabelle; Gil Cuesta, Julita; Tappis, Hannah; van Loenhout, Joris A F; Guha-Sapir, Debarati

    2017-01-09

    Due to the conflict that started in spring 2014 in Eastern Ukraine, a total of 1.75 million internally displaced persons (IDPs) fled the area and have been registered in government-controlled areas of the country. This paper explores perceived health, barriers to access to healthcare, caring practices, food security, and overall financial situation of mothers and young children displaced by the conflict in Ukraine. This is a qualitative study, which collected data through semi-structured in-depth interviews with nine IDP mothers via Skype and Viber with a convenience sample of participants selected through snowball technique. Contrary to the expectations, the perceived physical health of mothers and their children was found not to be affected by conflict and displacement, while psychological distress was often reported. A weak healthcare system, Ukraine's proneness to informal payments, and heavy bureaucracy to register as an IDP were reported in our study. A precarious social safety net to IDP mothers in Ukraine, poor dietary diversity, and a generalized rupture of vaccine stocks, with halted or delayed vaccinations in children were identified. Increasing social allowances and their timely delivery to IDP mothers might be the most efficient policy measure to improve health and nutrition security. Reestablishment and sustainability of vaccine stocks in Ukraine is urgent to avoid the risks of a public health crisis. Offering psychological support for IDP mothers is recommended.

  20. Modelling magnetic forces during asymmetric vertical displacement events at JET

    International Nuclear Information System (INIS)

    Riccardo, V.; Walker, S.; Noll, P.

    2000-01-01

    Asymmetric vertical disruption events (AVDEs) are fortunately rare, but can induce large lateral forces which can cause significant mechanical damage to tokamaks. In this paper we present a simple model which allows the lateral forces generated during such a disruption to be estimated as a function of relatively easily obtained electromagnetic parameters: the asymmetries in the vertical current moment. This model is validated by using it to predict the displacement history of the JET tokamak caused by a number of major AVDEs. It is shown that the predicted forces and displacements agree well with quantities measured during these disruptions. One conclusion from the model is that the maximum sideways displacement scales with the product of the plasma current and the toroidal field, and this recipe is now used at JET to assess a priori the hazards of performing high current and high field pulses when they are known to be likely to disrupt. (author)

  1. Low velocity floor level displacement ventilation systems: Technology assessment. Sistemi di distribuzione dell'aria a pavimento a bassa velocita': Vecchie e nuove conoscenze

    Energy Technology Data Exchange (ETDEWEB)

    Borjesson, J.A.; Bertomeu, L.; Marchetti, F.

    1992-12-01

    Although the concept of floor level air displacement ventilation is not in fact truly innovative given that it has already been tried during the 1980's, this paper shows that the combination of the advantageous natural cooling air circulation dynamics inherent in this method, combined with modern air diffusion equipment, offers interesting opportunities for energy conservation. The thermodynamics/air flow analysis indicates that from 20 to 40% energy savings can be obtained, in addition to reduced ventilation system operating times, with the effective application of low velocity floor level displacement air distribution systems as compared with conventional ventilation systems using the air mixing concept. It is shown how this innovative air cooling/recirculation technique is particularly suitable for conditions characterized by high air infiltration, high heating load and low indoor air pollution.

  2. Displaced epithelium after liposuction for gynecomastia.

    Science.gov (United States)

    McLaughlin, Cristina S; Petrey, Chris; Grant, Shawn; Ransdell, Jill S; Reynolds, Carol

    2011-08-01

    The authors describe the case of a 36-year-old man with gynecomastia who was previously treated with liposuction of the breast for cosmetic purposes. Histologic examination of a subsequent excisional biopsy revealed nests of displaced epithelial cells in adipose tissue. Epithelial cell displacement is a well-known risk of core needle biopsies and fine-needle aspirations of breast lesions. However, to the authors' knowledge, epithelial displacement in gynecomastia after liposuction, mimicking invasive ductal carcinoma, has not previously been reported.

  3. Iron-free moving coil high temperature displacement transducer

    Energy Technology Data Exchange (ETDEWEB)

    Grindrod, A

    1976-07-01

    A unique, iron free, moving coil linear displacement transducer system is described, which is suitable for continuously monitoring linear movements, at varying temperatures up to 750/sup 0/C, in operational nuclear reactors. Although this device has been primarily developed for Advanced Gas Cooled Reactor Systems, it also has uses where long term measurements on conventional high temperature plant are required. Furthermore it could be particularly useful in material creep laboratories where precise linear changes in specimen length need to be monitored at elevated temperatures, over several years. Since individual transducer installations demand specific mounting arrangements to suit particular component geometries, evaluations have been made only on standard operational modules or capsules which are designed for containment in a range of housing or fixtures to suit particular applications. The behaviour of these devices has been studied at temperatures up to 750/sup 0/C for periods of over 10,000 h. An evaluation is also included of a commercially designed sensor assembly employing the same principle, for monitoring the boiler-shield wall movement at Hinkley Point 'B' AGR Station.

  4. Water displacement mercury pump

    Science.gov (United States)

    Nielsen, M.G.

    1984-04-20

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  5. How to avoid simulation sickness in virtual environments during user displacement

    Science.gov (United States)

    Kemeny, A.; Colombet, F.; Denoual, T.

    2015-03-01

    Driving simulation (DS) and Virtual Reality (VR) share the same technologies for visualization and 3D vision and may use the same technics for head movement tracking. They experience also similar difficulties when rendering the displacements of the observer in virtual environments, especially when these displacements are carried out using driver commands, including steering wheels, joysticks and nomad devices. High values for transport delay, the time lag between the action and the corresponding rendering cues and/or visual-vestibular conflict, due to the discrepancies perceived by the human visual and vestibular systems when driving or displacing using a control device, induces the so-called simulation sickness. While the visual transport delay can be efficiently reduced using high frequency frame rate, the visual-vestibular conflict is inherent to VR, when not using motion platforms. In order to study the impact of displacements on simulation sickness, we have tested various driving scenarios in Renault's 5-sided ultra-high resolution CAVE. First results indicate that low speed displacements with longitudinal and lateral accelerations under a given perception thresholds are well accepted by a large number of users and relatively high values are only accepted by experienced users and induce VR induced symptoms and effects (VRISE) for novice users, with a worst case scenario corresponding to rotational displacements. These results will be used for optimization technics at Arts et Métiers ParisTech for motion sickness reduction in virtual environments for industrial, research, educational or gaming applications.

  6. Prolonged internal displacement and common mental disorders in Sri Lanka: the COMRAID study.

    Science.gov (United States)

    Siriwardhana, Chesmal; Adikari, Anushka; Pannala, Gayani; Siribaddana, Sisira; Abas, Melanie; Sumathipala, Athula; Stewart, Robert

    2013-01-01

    Evidence is lacking on the mental health issues of internally displaced persons, particularly where displacement is prolonged. The COMRAID study was carried out in year 2011 as a comprehensive evaluation of Muslims in North-Western Sri Lanka who had been displaced since 1990 due to conflict, to investigate the prevalence and correlates of common mental disorders. A cross-sectional survey was carried out among a randomly selected sample of internally displaced people who had migrated within last 20 years or were born in displacement. The total sample consisted of 450 adults aged 18-65 years selected from 141 settlements. Common mental disorders (CMDs) and post-traumatic stress disorder (PTSD) prevalences were measured using the Patient Health Questionnaire and CIDI sub-scale respectively. The prevalence of any CMD was 18.8%, and prevalence for subtypes was as follows: somatoform disorder 14.0%, anxiety disorder 1.3%, major depression 5.1%, other depressive syndromes 7.3%. PTSD prevalence was 2.4%. The following factors were significantly associated with CMDs: unemployment (odds ratio 2.8, 95% confidence interval 1.6-4.9), widowed or divorced status (4.9, 2.3-10.1) and food insecurity (1.7, 1.0-2.9). This is the first study investigating the mental health impact of prolonged forced displacement in post-conflict Sri Lanka. Findings add new insight in to mental health issues faced by internally displaced persons in Sri Lanka and globally, highlighting the need to explore broader mental health issues of vulnerable populations affected by forced displacement.

  7. Thermodynamic signatures of fragment binding: Validation of direct versus displacement ITC titrations.

    Science.gov (United States)

    Rühmann, Eggert; Betz, Michael; Fricke, Marie; Heine, Andreas; Schäfer, Martina; Klebe, Gerhard

    2015-04-01

    Detailed characterization of the thermodynamic signature of weak binding fragments to proteins is essential to support the decision making process which fragments to take further for the hit-to-lead optimization. Isothermal titration calorimetry (ITC) is the method of choice to record thermodynamic data, however, weak binding ligands such as fragments require the development of meaningful and reliable measuring protocols as usually sigmoidal titration curves are hardly possible to record due to limited solubility. Fragments can be titrated either directly under low c-value conditions (no sigmoidal curve) or indirectly by use of a strong binding ligand displacing the pre-incubated weak fragment from the protein. The determination of Gibbs free energy is reliable and rather independent of the applied titration protocol. Even though the displacement method achieves higher accuracy, the obtained enthalpy-entropy profile depends on the properties of the used displacement ligand. The relative enthalpy differences across different displacement experiments reveal a constant signature and can serve as a thermodynamic fingerprint for fragments. Low c-value titrations are only reliable if the final concentration of the fragment in the sample cell exceeds 2-10 fold its K(D) value. Limited solubility often prevents this strategy. The present study suggests an applicable protocol to characterize the thermodynamic signature of protein-fragment binding. It shows however, that such measurements are limited by protein and fragment solubility. Deviating profiles obtained by use of different displacement ligands indicate that changes in the solvation pattern and protein dynamics most likely take influence on the resulting overall binding signature. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Modified Displacement Transfer Functions for Deformed Shape Predictions of Slender Curved Structures with Varying Curvatives

    Science.gov (United States)

    Ko, William L.; Fleischer, Van Tran

    2014-01-01

    To eliminate the need to use finite-element modeling for structure shape predictions, a new method was invented. This method is to use the Displacement Transfer Functions to transform the measured surface strains into deflections for mapping out overall structural deformed shapes. The Displacement Transfer Functions are expressed in terms of rectilinearly distributed surface strains, and contain no material properties. This report is to apply the patented method to the shape predictions of non-symmetrically loaded slender curved structures with different curvatures up to a full circle. Because the measured surface strains are not available, finite-element analysis had to be used to analytically generate the surface strains. Previously formulated straight-beam Displacement Transfer Functions were modified by introducing the curvature-effect correction terms. Through single-point or dual-point collocations with finite-elementgenerated deflection curves, functional forms of the curvature-effect correction terms were empirically established. The resulting modified Displacement Transfer Functions can then provide quite accurate shape predictions. Also, the uniform straight-beam Displacement Transfer Function was applied to the shape predictions of a section-cut of a generic capsule (GC) outer curved sandwich wall. The resulting GC shape predictions are quite accurate in partial regions where the radius of curvature does not change sharply.

  9. Investigation of the Stability of a Two-Span Bridge with the use of a High-Precision Laser Displacement Sensors

    Science.gov (United States)

    Poddaeva, O.; Churin, P.; Fedosova, A.; Truhanov, S.

    2018-03-01

    Studies of aerodynamics of bridge structures are an actual problem. Such attention is paid to the study of wind influence on bridge structures not at all by chance; a large number of cases of loss of stability of such structures are known under the influence of wind up to their complete destruction. The development of non-contact systems of measuring equipment allows solving this problem with a high level of accuracy and reliability. This article presents the results of experimental studies of wind impact on a two-span bridge using specialized measuring system based on high-precision laser displacement sensors.

  10. Prolonged displacement may compromise resilience in Eritrean mothers.

    Science.gov (United States)

    Almedom, Astier; Tesfamichael, Berhe; Mohammed, Zein; Mascie-Taylor, Nick; Muller, Jocelyn; Alemu, Zemui

    2005-12-01

    to assess the impact of prolonged displacement on the resilience of Eritrean mothers. an adapted SOC scale (short form) was administered. Complementary qualitative data were gathered from study participants' spontaneous reactions to and commentaries on the SOC scale. Displaced women's SOC scores were significantly less than those of the non-displaced: Mean = 54.84; SD = 6.48 in internally displaced person (IDP) camps, compared to non-displaced urban and rural/pastoralist: Mean = 48. 94, SD = 11.99; t = 3.831, p urban (non-displaced). Rural but traditionally mobile (pastoralist or transhumant) communities scored more or less the same as the urban non-displaced--i.e., significantly higher than those in IDP camps (p urban and pastoralist/transhumant groups were similar, while women in IDP camps were lower scoring--RR = .268, p < .001. The implications of these findings for health policy are critical. It is incumbent on the international health institutions including the World Health Organization and regional as well as local players to address the plight of internally displaced women, their families and communities in Eritrea and other places of dire conditions such as, for example Darfur in the Sudan.

  11. Effect of camera temperature variations on stereo-digital image correlation measurements

    KAUST Repository

    Pan, Bing

    2015-11-25

    In laboratory and especially non-laboratory stereo-digital image correlation (stereo-DIC) applications, the extrinsic and intrinsic parameters of the cameras used in the system may change slightly due to the camera warm-up effect and possible variations in ambient temperature. Because these camera parameters are generally calibrated once prior to measurements and considered to be unaltered during the whole measurement period, the changes in these parameters unavoidably induce displacement/strain errors. In this study, the effect of temperature variations on stereo-DIC measurements is investigated experimentally. To quantify the errors associated with camera or ambient temperature changes, surface displacements and strains of a stationary optical quartz glass plate with near-zero thermal expansion were continuously measured using a regular stereo-DIC system. The results confirm that (1) temperature variations in the cameras and ambient environment have a considerable influence on the displacements and strains measured by stereo-DIC due to the slightly altered extrinsic and intrinsic camera parameters; and (2) the corresponding displacement and strain errors correlate with temperature changes. For the specific stereo-DIC configuration used in this work, the temperature-induced strain errors were estimated to be approximately 30–50 με/°C. To minimize the adverse effect of camera temperature variations on stereo-DIC measurements, two simple but effective solutions are suggested.

  12. Effect of camera temperature variations on stereo-digital image correlation measurements

    KAUST Repository

    Pan, Bing; Shi, Wentao; Lubineau, Gilles

    2015-01-01

    In laboratory and especially non-laboratory stereo-digital image correlation (stereo-DIC) applications, the extrinsic and intrinsic parameters of the cameras used in the system may change slightly due to the camera warm-up effect and possible variations in ambient temperature. Because these camera parameters are generally calibrated once prior to measurements and considered to be unaltered during the whole measurement period, the changes in these parameters unavoidably induce displacement/strain errors. In this study, the effect of temperature variations on stereo-DIC measurements is investigated experimentally. To quantify the errors associated with camera or ambient temperature changes, surface displacements and strains of a stationary optical quartz glass plate with near-zero thermal expansion were continuously measured using a regular stereo-DIC system. The results confirm that (1) temperature variations in the cameras and ambient environment have a considerable influence on the displacements and strains measured by stereo-DIC due to the slightly altered extrinsic and intrinsic camera parameters; and (2) the corresponding displacement and strain errors correlate with temperature changes. For the specific stereo-DIC configuration used in this work, the temperature-induced strain errors were estimated to be approximately 30–50 με/°C. To minimize the adverse effect of camera temperature variations on stereo-DIC measurements, two simple but effective solutions are suggested.

  13. Enzyme-free colorimetric detection systems based on the DNA strand displacement competition reaction

    Science.gov (United States)

    Zhang, Z.; Birkedal, V.; Gothelf, K. V.

    2016-05-01

    The strand displacement competition assay is based on the dynamic equilibrium of the competitive hybridization of two oligonucleotides (A and B) to a third oligonucleotide (S). In the presence of an analyte that binds to a specific affinity-moiety conjugated to strand B, the equilibrium shifts, which can be detected by a shift in the fluorescence resonance energy transfer signal between dyes attached to the DNA strands. In the present study we have integrated an ATP aptamer in the strand B and demonstrated the optical detection of ATP. Furthermore we explore a new readout method using a split G-quadruplex DNAzyme for colorimetric readout of the detection of streptavidin by the naked eye. Finally, we integrate the whole G-quadruplex DNAzyme system in a single DNA strand and show that it is applicable to colorimetric detection.

  14. Enzyme-free colorimetric detection systems based on the DNA strand displacement competition reaction

    DEFF Research Database (Denmark)

    Zhang, Zhao; Birkedal, Victoria; Gothelf, Kurt Vesterager

    2016-01-01

    The strand displacement competition assay is based on the dynamic equilibrium of the competitive hybridization of two oligonucleotides (A and B) to a third oligonucleotide (S). In the presence of an analyte that binds to a specific affinity-moiety conjugated to strand B, the equilibrium shifts, w...... G-quadruplex DNAzyme for colorimetric readout of the detection of streptavidin by the naked eye. Finally, we integrate the whole G-quadruplex DNAzyme system in a single DNA strand and show that it is applicable to colorimetric detection......., which can be detected by a shift in the fluorescence resonance energy transfer signal between dyes attached to the DNA strands. In the present study we have integrated an ATP aptamer in the strand B and demonstrated the optical detection of ATP. Furthermore we explore a new readout method using a split...

  15. Large displacement vertical translational actuator based on piezoelectric thin films.

    Science.gov (United States)

    Qiu, Zhen; Pulskamp, Jeffrey S; Lin, Xianke; Rhee, Choong-Ho; Wang, Thomas; Polcawich, Ronald G; Oldham, Kenn

    2010-07-01

    A novel vertical translational microactuator based on thin-film piezoelectric actuation is presented, using a set of four compound bend-up/bend-down unimorphs to produce translational motion of a moving platform or stage. The actuation material is a chemical-solution deposited lead-zirconate-titanate (PZT) thin film. Prototype designs have shown as much as 120 μ m of static displacement, with 80-90 μ m displacements being typical, using four 920 μ m long by 70 μ m legs. Analytical models are presented that accurately describe nonlinear behavior in both static and dynamic operation of prototype stages when the dependence of piezoelectric coefficients on voltage is known. Resonance of the system is observed at a frequency of 200 Hz. The large displacement and high bandwidth of the actuators at low-voltage and low-power levels should make them useful to a variety of optical applications, including endoscopic microscopy.

  16. Arthroscopic treatment of displaced tibial eminence fractures using a suspensory fixation

    Directory of Open Access Journals (Sweden)

    Philippe Loriaut

    2017-01-01

    Conclusion: The arthroscopic treatment of displaced tibial intercondylar eminence fractures using a suspensory system provided a satisfactory clinical and radiological outcome at a followup of 2 years.

  17. Axial displacement of external and internal implant-abutment connection evaluated by linear mixed model analysis.

    Science.gov (United States)

    Seol, Hyon-Woo; Heo, Seong-Joo; Koak, Jai-Young; Kim, Seong-Kyun; Kim, Shin-Koo

    2015-01-01

    To analyze the axial displacement of external and internal implant-abutment connection after cyclic loading. Three groups of external abutments (Ext group), an internal tapered one-piece-type abutment (Int-1 group), and an internal tapered two-piece-type abutment (Int-2 group) were prepared. Cyclic loading was applied to implant-abutment assemblies at 150 N with a frequency of 3 Hz. The amount of axial displacement, the Periotest values (PTVs), and the removal torque values(RTVs) were measured. Both a repeated measures analysis of variance and pattern analysis based on the linear mixed model were used for statistical analysis. Scanning electron microscopy (SEM) was used to evaluate the surface of the implant-abutment connection. The mean axial displacements after 1,000,000 cycles were 0.6 μm in the Ext group, 3.7 μm in the Int-1 group, and 9.0 μm in the Int-2 group. Pattern analysis revealed a breakpoint at 171 cycles. The Ext group showed no declining pattern, and the Int-1 group showed no declining pattern after the breakpoint (171 cycles). However, the Int-2 group experienced continuous axial displacement. After cyclic loading, the PTV decreased in the Int-2 group, and the RTV decreased in all groups. SEM imaging revealed surface wear in all groups. Axial displacement and surface wear occurred in all groups. The PTVs remained stable, but the RTVs decreased after cyclic loading. Based on linear mixed model analysis, the Ext and Int-1 groups' axial displacements plateaued after little cyclic loading. The Int-2 group's rate of axial displacement slowed after 100,000 cycles.

  18. The Displaced ‘Dispositif’

    Directory of Open Access Journals (Sweden)

    Guy Edmonds

    2017-11-01

    Full Text Available “Dispositif” is a term used in film studies since the 1970s to describe the entire system of mechanical and human factors which together bring about the cinema experience. It therefore refers to (amongst other things the space of the auditorium, the screen, the projection technology and the physiology of the spectator. Many of its qualifying components are masked from the view of participants in the system. The dispositif’s purpose is to set up the conditions for a specific type of cognitive experience, one which mirrors and extends (and in some readings, controls the experience of its participants. The Displaced Dispositif is a performance designed for the space of a cinema theatre, but featuring the projection of fragments of early silent cinema on a coeval (1910s film projector from the auditorium. The film fragments are live-scored by the sound artist, Shaun Lewin, using a combination of closely mic’d sources on the projector itself, luminance data from the projected image and EEG brainwave data recorded from participants during previous projections of the film. Displacing elements in the dispositif in this way, by shifting modalities, situating in parallel, feeding back and layering, draws attention to its hidden existence and creates the potential for a more knowing and informed participation in the cinema experience. It also serves to demonstrate the degree to which dispositifs of modern cinema spectatorship, which have morphed and proliferated since the widespread digitization of film heritage, have radically altered both the technological and experiential qualities of the medium. By integrating EEG data, the performance adds the dimension of electrophysiological experience to the long tradition within experimental cinema of artists calling attention to Cinema’s hidden structures. As well as challenging the dominance of the worldview propagated by the film industry, the performance also signals a means of re-engaging with the

  19. Displaced and non-displaced Colombian children's evaluations of moral transgressions, retaliation, and reconciliation

    Science.gov (United States)

    Ardila-Rey, Alicia; Killen, Melanie; Brenick, Alaina

    2015-01-01

    In order to assess the effects of displacement and exposure to violence on children's moral reasoning, Colombian children exposed to minimal violence (non-displaced or low-risk) (N = 99) and to extreme violence (displaced or high-risk) (N = 94), evenly divided by gender, at 6-, 9-, and 12 - years of age, were interviewed regarding their evaluation of peer-oriented moral transgressions (hitting and not sharing toys). The vast majority of children evaluated moral transgressions as wrong. Group and age differences were revealed, however, regarding provocation and retaliation. Children who were exposed to violence, in contrast to those with minimum exposure, judged it more legitimate to inflict harm or deny resources when provoked and judged it more okay to retaliate for reasons of retribution. Surprisingly, and somewhat hopefully, all children viewed reconciliation as feasible. The results are informative regarding theories of morality, culture, and the effects of violence on children's social development. PMID:25722543

  20. Fabrication and characterization of wide band AE sensors for quantitative detection of displacement and velocity

    International Nuclear Information System (INIS)

    Kim, Byung G.; Kim, Young Hwan

    1992-01-01

    Acoustic emission sensors to show a flat response for displacement and velocity of a specimen surface in a wide frequency were fabricated. The sensors were conical sensors employing conical type piezoelectric elements and a PVDF sensor employing PVDF piezoelctric polymer. The transient outputs of the sensors due to step-like forces and their sensitivity spectrum were measured. The results were compared with the theoretical displacement and velocity signals calculated using Green's function and a simulated ramp force. The sensor outputs and the theoretical signals were consistent with each other. The sensors showed flat sensitivity spectra in the wide frequency range. The present work showed that conical PZT sensors are suited for the direct measurement of vertical displacement, and PVDF sensors for that of the vertical velocity of a plate surface.