Periodic folded waves for a (2+1)-dimensional modified dispersive water wave equation
International Nuclear Information System (INIS)
Wen-Hua, Huang
2009-01-01
A general solution, including three arbitrary functions, is obtained for a (2+1)-dimensional modified dispersive water-wave (MDWW) equation by means of the WTC truncation method. Introducing proper multiple valued functions and Jacobi elliptic functions in the seed solution, special types of periodic folded waves are derived. In the long wave limit these periodic folded wave patterns may degenerate into single localized folded solitary wave excitations. The interactions of the periodic folded waves and the degenerated single folded solitary waves are investigated graphically and found to be completely elastic. (general)
Non-dispersive traveling waves in inclined shallow water channels
International Nuclear Information System (INIS)
Didenkulova, Ira; Pelinovsky, Efim
2009-01-01
Existence of traveling waves propagating without internal reflection in inclined water channels of arbitrary slope is demonstrated. It is shown that traveling non-monochromatic waves exist in both linear and nonlinear shallow water theories in the case of a uniformly inclined channel with a parabolic cross-section. The properties of these waves are studied. It is shown that linear traveling waves should have a sign-variable shape. The amplitude of linear traveling waves in a channel satisfies the same Green's law, which is usually derived from the energy flux conservation for smoothly inhomogeneous media. Amplitudes of nonlinear traveling waves deviate from the linear Green's law, and the behavior of positive and negative amplitudes are different. Negative amplitude grows faster than positive amplitude in shallow water. The phase of nonlinear waves (travel time) is described well by the linear WKB approach. It is shown that nonlinear traveling waves of any amplitude always break near the shoreline if the boundary condition of the full absorption is applied.
Spatial Statistics of Deep-Water Ambient Noise; Dispersion Relations for Sound Waves and Shear Waves
2015-09-30
Dispersion Relations for Sound Waves and Shear Waves Michael J. Buckingham Marine Physical Laboratory , Scripps Institution of Oceanography University...dry, were all from laboratory experiments, since no in situ broadband shear-wave data were available at the time. (Since then, Megan Ballard and...Texas, 11 March 2014. 5. My graduate student, Simon Freeman, won Outstanding Student Paper Award for “Array-based hydroacoustic characterization of P, S
Demonstration and study of the dispersion of water waves with a computer-controlled ripple tank
Ströbel, Bernhard
2011-06-01
The design of a ripple tank built in an undergraduate student project is described. Water waves are excited acoustically using computer programmable wave shapes. The projected wave patterns are recorded with a video camera and analyzed quantitatively. From the propagation of wave packets in distilled water at three different depths, the phase and group velocities are measured in the frequency range from 2 to 50 Hz. Good agreement with theory is found. The propagation of wave trains of different shapes is recorded and explained on the basis of the stationary phase approximation. Various types of precursors are detected. For a depth slightly above the critical depth and thus nearly dispersion-free, the solitary-like propagation of a single pulse is observed. In shallow water, the compression of a chirped pulse is demonstrated. Circular waves produced by falling water drops are recorded and analyzed.
Effects of waves on water dispersion in a semi-enclosed estuarine bay
Delpey, M. T.; Ardhuin, F.; Otheguy, P.
2012-04-01
The bay of Saint Jean de Luz - Ciboure is a touristic destination located in the south west of France on the Basque coast. This small bay is 1.5km wide for 1km long. It is semi-enclosed by breakwaters, so that the area is mostly protected from waves except in its eastern part, where wave breaking is regularly observed over a shallow rock shelf. In the rest of the area the currents are generally weak. The bay receives fresh water inflows from two rivers. During intense raining events, the rivers can introduce pollutants in the bay. The input of pollutants combined with the low level dynamic of the area can affect the water quality for several days. To study such a phenomenon, mechanisms of water dispersion in the bay are investigated. The present paper focuses on the effects of waves on bay dynamics. Several field experiments were conducted in the area, combining wave and current measurements from a set of ADCP and ADV, lagrangian difter experiments in the surfzone, salinity and temperature profile measurements. An analysis of this set of various data is provided. It reveals that the bay combines remarkable density stratification due to fresh water inflows and occasionally intense wave-induced currents in the surfzone. These currents have a strong influence on river plume dynamics when the sea state is energetic. Moreover, modifications of hydrodynamics in the bay passes are found to be remarkably correlated with sea state evolutions. This result suggests a significant impact of waves on the bay flushing. To further analyse these phenomena, a three dimensional numerical model of bay hydrodynamics is developed. The model aims at reproducing fresh water inflows combined with wind-, tide- and wave-induced currents and mixing. The model of the bay is implemented using the code MOHID , which has been modified to allow the three dimensional representation of wave-current interactions proposed by Ardhuin et al. [2008b] . The circulation is forced by the wave field modelled
DEFF Research Database (Denmark)
Bigoni, Daniele; Engsig-Karup, Allan Peter; Eskilsson, Claes
2016-01-01
A major challenge in next-generation industrial applications is to improve numerical analysis by quantifying uncertainties in predictions. In this work we present a formulation of a fully nonlinear and dispersive potential flow water wave model with random inputs for the probabilistic description...... of the evolution of waves. The model is analyzed using random sampling techniques and nonintrusive methods based on generalized polynomial chaos (PC). These methods allow us to accurately and efficiently estimate the probability distribution of the solution and require only the computation of the solution...... at different points in the parameter space, allowing for the reuse of existing simulation software. The choice of the applied methods is driven by the number of uncertain input parameters and by the fact that finding the solution of the considered model is computationally intensive. We revisit experimental...
Symmetry Reduction of the (2+1)-Dimensional Modified Dispersive Water-Wave System
Ma, Zheng-Yi; Fei, Jin-Xi; Du, Xiao-Yang
2015-08-01
Using the standard truncated Painlevé expansion, the residual symmetry of the (2+1)-dimensional modified dispersive water-wave system is localized in the properly prolonged system with the Lie point symmetry vector. Some different transformation invariances are derived by utilizing the obtained symmetries. The symmetries of the system are also derived through the Clarkson-Kruskal direct method, and several types of explicit reduction solutions relate to the trigonometric or the hyperbolic functions are obtained. Finally, some special solitons are depicted from one of the solutions. Supported by the National Natural Science Foundation of China under Grant No. 11447017 and the Natural Science Foundation of Zhejiang Province under Grant Nos. LY14A010005 and LQ13A010013
Wave-equation dispersion inversion
Li, Jing
2016-12-08
We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained from Rayleigh waves recorded by vertical-component geophones. Similar to wave-equation traveltime tomography, the complicated surface wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the phase-velocity and frequency domains. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2-D or 3-D S-wave velocity models. This procedure, denoted as wave-equation dispersion inversion (WD), does not require the assumption of a layered model and is significantly less prone to the cycle-skipping problems of full waveform inversion. The synthetic and field data examples demonstrate that WD can approximately reconstruct the S-wave velocity distributions in laterally heterogeneous media if the dispersion curves can be identified and picked. The WD method is easily extended to anisotropic data and the inversion of dispersion curves associated with Love waves.
Confinement of surface waves at the air-water interface to control aerosol size and dispersity
Nazarzadeh, Elijah; Wilson, Rab; King, Xi; Reboud, Julien; Tassieri, Manlio; Cooper, Jonathan M.
2017-11-01
The precise control over the size and dispersity of droplets, produced within aerosols, is of great interest across many manufacturing, food, cosmetic, and medical industries. Amongst these applications, the delivery of new classes of high value drugs to the lungs has recently attracted significant attention from pharmaceutical companies. This is commonly achieved through the mechanical excitation of surface waves at the air liquid interface of a parent liquid volume. Previous studies have established a correlation between the wavelength on the surface of liquid and the final aerosol size. In this work, we show that the droplet size distribution of aerosols can be controlled by constraining the liquid inside micron-sized cavities and coupling surface acoustic waves into different volumes of liquid inside micro-grids. In particular, we show that by reducing the characteristic physical confinement size (i.e., either the initial liquid volume or the cavities' diameters), higher harmonics of capillary waves are revealed with a consequent reduction of both aerosol mean size and dispersity. In doing so, we provide a new method for the generation and fine control of aerosols' sizes distribution.
Databases of surface wave dispersion
Directory of Open Access Journals (Sweden)
L. Boschi
2005-06-01
Full Text Available Observations of seismic surface waves provide the most important constraint on the elastic properties of the Earths lithosphere and upper mantle. Two databases of fundamental mode surface wave dispersion were recently compiled and published by groups at Harvard (Ekström et al., 1997 and Utrecht/Oxford (Trampert and Woodhouse, 1995, 2001, and later employed in 3-d global tomographic studies. Although based on similar sets of seismic records, the two databases show some significant discrepancies. We derive phase velocity maps from both, and compare them to quantify the discrepancies and assess the relative quality of the data; in this endeavour, we take careful account of the effects of regularization and parametrization. At short periods, where Love waves are mostly sensitive to crustal structure and thickness, we refer our comparison to a map of the Earths crust derived from independent data. On the assumption that second-order effects like seismic anisotropy and scattering can be neglected, we find the measurements of Ekström et al. (1997 of better quality; those of Trampert and Woodhouse (2001 result in phase velocity maps of much higher spatial frequency and, accordingly, more difficult to explain and justify geophysically. The discrepancy is partly explained by the more conservative a priori selection of data implemented by Ekström et al. (1997. Nevertheless, it becomes more significant with decreasing period, which indicates that it could also be traced to the different measurement techniques employed by the authors.
Skeletonized wave equation of surface wave dispersion inversion
Li, Jing
2016-09-06
We present the theory for wave equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. Similar to wave-equation travel-time inversion, the complicated surface-wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the (kx,ω) domain. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2D or 3D velocity models. This procedure, denoted as wave equation dispersion inversion (WD), does not require the assumption of a layered model and is less prone to the cycle skipping problems of full waveform inversion (FWI). The synthetic and field data examples demonstrate that WD can accurately reconstruct the S-wave velocity distribution in laterally heterogeneous media.
Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Eskilsson, Claes; Bigoni, Daniele
2016-01-01
We introduce a new stabilized high-order and unstructured numerical model for modeling fully nonlinear and dispersive water waves. The model is based on a nodal spectral element method of arbitrary order in space and a -transformed formulation due to Cai, Langtangen, Nielsen and Tveito (1998). In...
Eliminating time dispersion from seismic wave modeling
Koene, Erik F. M.; Robertsson, Johan O. A.; Broggini, Filippo; Andersson, Fredrik
2018-04-01
We derive an expression for the error introduced by the second-order accurate temporal finite-difference (FD) operator, as present in the FD, pseudospectral and spectral element methods for seismic wave modeling applied to time-invariant media. The `time-dispersion' error speeds up the signal as a function of frequency and time step only. Time dispersion is thus independent of the propagation path, medium or spatial modeling error. We derive two transforms to either add or remove time dispersion from synthetic seismograms after a simulation. The transforms are compared to previous related work and demonstrated on wave modeling in acoustic as well as elastic media. In addition, an application to imaging is shown. The transforms enable accurate computation of synthetic seismograms at reduced cost, benefitting modeling applications in both exploration and global seismology.
Absorption and dispersion of ultrasonic waves
Herzfeld, Karl F; Massey, H S W; Brueckner, Keith A
1959-01-01
Absorption and Dispersion of Ultrasonic Waves focuses on the influence of ultrasonics on molecular processes in liquids and gases, including hydrodynamics, energy exchange, and chemical reactions. The book first offers information on the Stokes-Navier equations of hydrodynamics, as well as equations of motion, viscosity, formal introduction of volume viscosity, and linearized wave equation for a nonviscous fluid. The manuscript then ponders on energy exchange between internal and external degrees of freedom as relaxation phenomenon; effect of slow energy exchange on sound propagation; differe
Longitudinal ultrasonic waves dispersion in bars
International Nuclear Information System (INIS)
Suarez Antola, R.
2001-01-01
The exhibition intends to review some aspects of the propagation of the longitudinal ultrasonic pulses shortly in bars of traverse section uniform.Aspects they are part of the denominated geometric dispersion of the pulses.This phenomenon It can present like an additional complication in the ultrasonic essay of low frequency of thin pieces in structures and machines but takes place former ex professed in some applications of the wave guides been accustomed to in the prosecution of signs
A guided wave dispersion compensation method based on compressed sensing
Xu, Cai-bin; Yang, Zhi-bo; Chen, Xue-feng; Tian, Shao-hua; Xie, Yong
2018-03-01
The ultrasonic guided wave has emerged as a promising tool for structural health monitoring (SHM) and nondestructive testing (NDT) due to their capability to propagate over long distances with minimal loss and sensitivity to both surface and subsurface defects. The dispersion effect degrades the temporal and spatial resolution of guided waves. A novel ultrasonic guided wave processing method for both single mode and multi-mode guided waves dispersion compensation is proposed in this work based on compressed sensing, in which a dispersion signal dictionary is built by utilizing the dispersion curves of the guided wave modes in order to sparsely decompose the recorded dispersive guided waves. Dispersion-compensated guided waves are obtained by utilizing a non-dispersion signal dictionary and the results of sparse decomposition. Numerical simulations and experiments are implemented to verify the effectiveness of the developed method for both single mode and multi-mode guided waves.
Fundamental modes of new dispersive SH-waves in ...
Indian Academy of Sciences (India)
Keywords. Piezoelectromagnetics; magnetoelectric effect; acoustic SH-waves in plates; wave dispersion; fundamental modes. ... Author Affiliations. A A Zakharenko1. International Institute of Zakharenko Waves (IIZWs), 660037, Krasnoyarsk-37, 17701, Krasnoyarsk, Russia ...
Generalized dispersive wave emission in nonlinear fiber optics.
Webb, K E; Xu, Y Q; Erkintalo, M; Murdoch, S G
2013-01-15
We show that the emission of dispersive waves in nonlinear fiber optics is not limited to soliton-like pulses propagating in the anomalous dispersion regime. We demonstrate, both numerically and experimentally, that pulses propagating in the normal dispersion regime can excite resonant dispersive radiation across the zero-dispersion wavelength into the anomalous regime.
Generation of dispersion in nondispersive nonlinear waves in thermal equilibrium.
Lee, Wonjung; Kovačič, Gregor; Cai, David
2013-02-26
In this work, we examine the important theoretical question of whether dispersion relations can arise from purely nonlinear interactions among waves that possess no linear dispersive characteristics. Using two prototypical examples of nondispersive waves, we demonstrate how nonlinear interactions can indeed give rise to effective dispersive-wave-like characteristics in thermal equilibrium. Physically, these example systems correspond to the strong nonlinear coupling limit in the theory of wave turbulence. We derive the form of the corresponding dispersion relation, which describes the effective dispersive structures, using the generalized Langevin equations obtained in the Zwanzig-Mori projection framework. We confirm the validity of this effective dispersion relation in our numerical study using the wavenumber-frequency spectral analysis. Our work may provide insight into an important connection between highly nonlinear turbulent wave systems, possibly with no discernible dispersive properties, and the dispersive nature of the corresponding renormalized waves.
Study on evaluation methods for Rayleigh wave dispersion characteristic
Shi, L.; Tao, X.; Kayen, R.; Shi, H.; Yan, S.
2005-01-01
The evaluation of Rayleigh wave dispersion characteristic is the key step for detecting S-wave velocity structure. By comparing the dispersion curves directly with the spectra analysis of surface waves (SASW) method, rather than comparing the S-wave velocity structure, the validity and precision of microtremor-array method (MAM) can be evaluated more objectively. The results from the China - US joint surface wave investigation in 26 sites in Tangshan, China, show that the MAM has the same precision with SASW method in 83% of the 26 sites. The MAM is valid for Rayleigh wave dispersion characteristic testing and has great application potentiality for site S-wave velocity structure detection.
Mandal, Birendra Nath
2015-01-01
The theory of water waves is most varied and is a fascinating topic. It includes a wide range of natural phenomena in oceans, rivers, and lakes. It is mostly concerned with elucidation of some general aspects of wave motion including the prediction of behaviour of waves in the presence of obstacles of some special configurations that are of interest to ocean engineers. Unfortunately, even the apparently simple problems appear to be difficult to tackle mathematically unless some simplified assumptions are made. Fortunately, one can assume water to be an incompressible, in viscid and homogeneous
2016-01-01
This volume brings together four lecture courses on modern aspects of water waves. The intention, through the lectures, is to present quite a range of mathematical ideas, primarily to show what is possible and what, currently, is of particular interest. Water waves of large amplitude can only be fully understood in terms of nonlinear effects, linear theory being not adequate for their description. Taking advantage of insights from physical observation, experimental evidence and numerical simulations, classical and modern mathematical approaches can be used to gain insight into their dynamics. The book presents several avenues and offers a wide range of material of current interest. Due to the interdisciplinary nature of the subject, the book should be of interest to mathematicians (pure and applied), physicists and engineers. The lectures provide a useful source for those who want to begin to investigate how mathematics can be used to improve our understanding of water wave phenomena. In addition, some of the...
Dispersive waves in fs cascaded second-harmonic generation
DEFF Research Database (Denmark)
Bache, Morten; Bang, Ole; Krolikowski, Wieslaw
2009-01-01
Dispersive waves are observed in simulations of cascaded (phase-mismatched) second-harmonic generation. When generating ultra-short fs compressed near-IR solitons the dispersive waves are strongly red-shifted, depending on the soliton wavelength. Semi-analytical calculations predict the wavelengths....
Dispersion-based short-time Fourier transform applied to dispersive wave analysis
Hong, Jin-Chul; Sun, Kyung Ho; Kim, Yoon Young
2005-05-01
Although time-frequency analysis is effective for characterizing dispersive wave signals, the time-frequency tilings of most conventional analysis methods do not take into account dispersion phenomena. An adaptive time-frequency analysis method is introduced whose time-frequency tiling is determined with respect to the wave dispersion characteristics. In the dispersion-based time-frequency tiling, each time-frequency atom is adaptively rotated in the time-frequency plane, depending on the local wave dispersion. Although this idea can be useful in various problems, its application to the analysis of dispersive wave signals has not been made. In this work, the adaptive time-frequency method was applied to the analysis of dispersive elastic waves measured in waveguide experiments and a theoretical investigation on its time-frequency resolution was presented. The time-frequency resolution of the proposed transform was then compared with that of the standard short-time Fourier transform to show its effectiveness in dealing with dispersive wave signals. In addition, to facilitate the adaptive time-frequency analysis of experimentally measured signals whose dispersion relations are not known, an iterative scheme for determining the relationships was developed. The validity of the present approach in dealing with dispersive waves was verified experimentally. .
Zhang, Zhendong
2016-07-26
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh wave dispersion curve using a difference approximation to the gradient of the misfit function. We call this wave equation inversion of skeletonized surface waves because the skeletonized dispersion curve for the fundamental-mode Rayleigh wave is inverted using finite-difference solutions to the multi-dimensional elastic wave equation. The best match between the predicted and observed dispersion curves provides the optimal S-wave velocity model. Our method can invert for lateral velocity variations and also can mitigate the local minimum problem in full waveform inversion with a reasonable computation cost for simple models. Results with synthetic and field data illustrate the benefits and limitations of this method. © 2016 Elsevier B.V.
Dispersion free control of hydroelastic waves down to sub-wavelength scale
Domino, Lucie; Fermigier, Marc; Fort, Emmanuel; Eddi, Antonin
2017-11-01
Hydroelastic surface waves propagate at the surface of water covered by a thin elastic sheet and can be directly measured with accurate space and time resolution. We present an experimental approach using hydroelastic waves that allows us to control waves down to the sub-wavelength scale. We tune the wave dispersion relation by varying locally the properties of the elastic cover and we introduce a local index contrast. This index contrast is independent of the frequency leading to a dispersion-free Snell-Descartes law for hydroelastic waves. We then show experimental evidence of broadband focusing, reflection and refraction of the waves. We also investigate the limits of diffraction through the example of a macroscopic analog to optical nanojets, revealing that any sub-wavelength configuration gives access to new features for surface waves.
Dispersion-free control of hydroelastic waves down to sub-wavelength scale
Domino, L.; Fermigier, M.; Fort, E.; Eddi, A.
2018-01-01
Hydroelastic surface waves propagate at the surface of water covered by a thin elastic sheet and can be directly measured with accurate space and time resolution. We present an experimental approach using hydroelastic waves that allows us to control waves down to the sub-wavelength scale. We tune the wave dispersion relation by varying locally the properties of the elastic cover and we introduce a local index contrast. This index contrast is independent of the frequency leading to a dispersion-free Snell-Descartes law for hydroelastic waves. We then show experimental evidence of broadband focusing, reflection and refraction of the waves. We also investigate the limits of diffraction through the example of a macroscopic analog to optical nanojets, revealing that any sub-wavelength configuration gives access to new features for surface waves.
WAVE DISPERSION STUDY IN THE INDIAN OCEAN TSUNAMI OF DECEMBER 26, 2004
Directory of Open Access Journals (Sweden)
Juan Horrillo
2006-01-01
Full Text Available A numerical study which takes into account wave dispersion effects has been carried out in the Indian Ocean to reproduce the initial stage of wave propagation of the tsunami event occurred on December 26, 2004. Three different numerical models have been used: the nonlinear shallow water (nondispersive, the nonlinear Boussinesq and the full Navier-Stokes aided by the volume of fluid method to track the free surface. Numerical model results are compared against each other. General features of the wave propagation agreed very well in all numerical studies. However some important differences are observed in the wave patterns, i.e., the development in time of the wave front is shown to be strongly connected to the dispersion effects. Discussions and conclusions are made about the spatial and temporal distribution of the free surface reaffirming that the dispersion mechanism is important for tsunami hazard mitigation.
Mathematical modelling of generation and forward propagation of dispersive waves
Lie She Liam, L.S.L.
2013-01-01
This dissertation concerns the mathematical theory of forward propagation and generation of dispersive waves. We derive the AB2-equation which describes forward traveling waves in two horizontal dimension. It is the generalization of the Kadomtsev-Petviashvilli (KP) equation. The derivation is based
Variational Boussinesq model for strongly nonlinear dispersive waves
Lawrence, C.; Adytia, D.; van Groesen, E.
2018-01-01
For wave tank, coastal and oceanic applications, a fully nonlinear Variational Boussinesq model with optimized dispersion is derived and a simple Finite Element implementation is described. Improving a previous weakly nonlinear version, high waves over flat and varying bottom are shown to be
Pc1 pearl waves with magnetosonic dispersion
Czech Academy of Sciences Publication Activity Database
Feygin, F. Z.; Nekrasov, A. K.; Pikkarainen, T.; Raita, T.; Prikner, Karel
2007-01-01
Roč. 69, č. 14 (2007), s. 1644-1650 ISSN 1364-6826 Institutional research plan: CEZ:AV0Z30120515 Keywords : magnetosphere * geomagnetic pulsations * Alfvén waves * magnetosonic waves Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.566, year: 2007
Rogue and shock waves in nonlinear dispersive media
Resitori, Stefania; Baronio, Fabio
2016-01-01
This self-contained set of lectures addresses a gap in the literature by providing a systematic link between the theoretical foundations of the subject matter and cutting-edge applications in both geophysical fluid dynamics and nonlinear optics. Rogue and shock waves are phenomena that may occur in the propagation of waves in any nonlinear dispersive medium. Accordingly, they have been observed in disparate settings – as ocean waves, in nonlinear optics, in Bose-Einstein condensates, and in plasmas. Rogue and dispersive shock waves are both characterized by the development of extremes: for the former, the wave amplitude becomes unusually large, while for the latter, gradients reach extreme values. Both aspects strongly influence the statistical properties of the wave propagation and are thus considered together here in terms of their underlying theoretical treatment. This book offers a self-contained graduate-level text intended as both an introduction and reference guide for a new generation of scientists ...
Directory of Open Access Journals (Sweden)
M. Arshad
Full Text Available In this manuscript, we constructed different form of new exact solutions of generalized coupled Zakharov–Kuznetsov and dispersive long wave equations by utilizing the modified extended direct algebraic method. New exact traveling wave solutions for both equations are obtained in the form of soliton, periodic, bright, and dark solitary wave solutions. There are many applications of the present traveling wave solutions in physics and furthermore, a wide class of coupled nonlinear evolution equations can be solved by this method. Keywords: Traveling wave solutions, Elliptic solutions, Generalized coupled Zakharov–Kuznetsov equation, Dispersive long wave equation, Modified extended direct algebraic method
Boundary control of long waves in nonlinear dispersive systems
DEFF Research Database (Denmark)
Hasan, Agus; Foss, Bjarne; Aamo, Ole Morten
2011-01-01
orders of the nonlinearity, the equation may have unstable solitary wave solutions. Although it is a one dimensional problem, achieving a global result for this equation is not trivial due to the nonlinearity and the mixed partial derivative. In this paper, two sets of nonlinear boundary control laws......Unidirectional propagation of long waves in nonlinear dispersive systems may be modeled by the Benjamin-Bona-Mahony-Burgers equation, a third order partial differential equation incorporating linear dissipative and dispersive terms, as well as a term covering nonlinear wave phenomena. For higher...... that achieve global exponential stability and semi-global exponential stability are derived for both linear and nonlinear cases....
Dispersive shock waves in nonlinear and atomic optics
Kamchatnov, Anatoly
2017-10-01
A brief review is given of dispersive shock waves observed in nonlinear optics and dynamics of Bose-Einstein condensates. The theory of dispersive shock waves is developed on the basis of Whitham modulation theory for various situations taking place in these two fields. In particular, the full classification is established for types of wave structures evolving from initial discontinuities for propagation of long light pulses in fibers with account of steepening effect and for dynamics of the polarization mode in two-component Bose-Einstein condensates.
Dispersive shock waves in nonlinear and atomic optics
Directory of Open Access Journals (Sweden)
Kamchatnov Anatoly
2017-01-01
Full Text Available A brief review is given of dispersive shock waves observed in nonlinear optics and dynamics of Bose-Einstein condensates. The theory of dispersive shock waves is developed on the basis of Whitham modulation theory for various situations taking place in these two fields. In particular, the full classification is established for types of wave structures evolving from initial discontinuities for propagation of long light pulses in fibers with account of steepening effect and for dynamics of the polarization mode in two-component Bose-Einstein condensates.
Optimized nonlinear inversion of surface-wave dispersion data
International Nuclear Information System (INIS)
Raykova, Reneta B.
2014-01-01
A new code for inversion of surface wave dispersion data is developed to obtain Earth’s crustal and upper mantle velocity structure. The author developed Optimized Non–Linear Inversion ( ONLI ) software, based on Monte-Carlo search. The values of S–wave velocity VS and thickness h for a number of horizontal homogeneous layers are parameterized. Velocity of P–wave VP and density ρ of relevant layers are calculated by empirical or theoretical relations. ONLI explores parameters space in two modes, selective and full search, and the main innovation of software is evaluation of tested models. Theoretical dispersion curves are calculated if tested model satisfied specific conditions only, reducing considerably the computation time. A number of tests explored impact of parameterization and proved the ability of ONLI approach to deal successfully with non–uniqueness of inversion problem. Key words: Earth’s structure, surface–wave dispersion, non–linear inversion, software
Review of water wave kinematics
Energy Technology Data Exchange (ETDEWEB)
Sterndorff, M.J.
1995-03-01
The present report covers a comprehensive review of water wave kinematics carried out by Danish Hydraulic Institute (DHI) in connection with the EFP`93 project: Dynamics of Mono Tower Platforms (ref. EFP`93, 1313/93-0009). This project is carried out in cooperation with Ramboell, Hannemann and Hoejlund A/S. The main objectives of the project are to develop and verify a method for the determination of the non-linear wave load and the dynamic response of mono tower platforms. One of the characteristics of mono tower platforms is that due to the small water plane area the hydrodynamic loading will be very concentrated. Such platforms may therefore respond strongly and in a highly dynamic manner to short waves and high order components of extreme waves having periods corresponding to the first natural period of the platform. A key element in the hydrodynamic load process is the wave kinematics. The present report is a comprehensive review of recent literature concerning wave theories, wave-current interaction, laboratory experiments, and field measurements of water wave kinematics. The review has been concentrated on non-breaking waves on deep to intermediate water depths. Papers concerning shallow water waves have only been reviewed if they present methods which may be applied for deep to intermediate water waves. (au) EFP-93; 30 refs.
Approximate Dispersion Relations for Waves on Arbitrary Shear Flows
Ellingsen, S. À.; Li, Y.
2017-12-01
An approximate dispersion relation is derived and presented for linear surface waves atop a shear current whose magnitude and direction can vary arbitrarily with depth. The approximation, derived to first order of deviation from potential flow, is shown to produce good approximations at all wavelengths for a wide range of naturally occuring shear flows as well as widely used model flows. The relation reduces in many cases to a 3-D generalization of the much used approximation by Skop (1987), developed further by Kirby and Chen (1989), but is shown to be more robust, succeeding in situations where the Kirby and Chen model fails. The two approximations incur the same numerical cost and difficulty. While the Kirby and Chen approximation is excellent for a wide range of currents, the exact criteria for its applicability have not been known. We explain the apparently serendipitous success of the latter and derive proper conditions of applicability for both approximate dispersion relations. Our new model has a greater range of applicability. A second order approximation is also derived. It greatly improves accuracy, which is shown to be important in difficult cases. It has an advantage over the corresponding second-order expression proposed by Kirby and Chen that its criterion of accuracy is explicitly known, which is not currently the case for the latter to our knowledge. Our second-order term is also arguably significantly simpler to implement, and more physically transparent, than its sibling due to Kirby and Chen.Plain Language SummaryIn order to answer key questions such as how the ocean surface affects the climate, erodes the coastline and transports nutrients, we must understand how waves move. This is not so easy when depth varying currents are present, as they often are in coastal waters. We have developed a modeling tool for accurately predicting wave properties in such situations, ready for use, for example, in the complex oceanographic computer models. Our
PARTICLE SCATTERING OFF OF RIGHT-HANDED DISPERSIVE WAVES
International Nuclear Information System (INIS)
Schreiner, C.; Kilian, P.; Spanier, F.
2017-01-01
Resonant scattering of fast particles off low frequency plasma waves is a major process determining transport characteristics of energetic particles in the heliosphere and contributing to their acceleration. Usually, only Alfvén waves are considered for this process, although dispersive waves are also present throughout the heliosphere. We investigate resonant interaction of energetic electrons with dispersive, right-handed waves. For the interaction of particles and a single wave a variable transformation into the rest frame of the wave can be performed. Here, well-established analytic models derived in the framework of magnetostatic quasi-linear theory can be used as a reference to validate simulation results. However, this approach fails as soon as several dispersive waves are involved. Based on analytic solutions modeling the scattering amplitude in the magnetostatic limit, we present an approach to modify these equations for use in the plasma frame. Thereby we aim at a description of particle scattering in the presence of several waves. A particle-in-cell code is employed to study wave–particle scattering on a micro-physically correct level and to test the modified model equations. We investigate the interactions of electrons at different energies (from 1 keV to 1 MeV) and right-handed waves with various amplitudes. Differences between model and simulation arise in the case of high amplitudes or several waves. Analyzing the trajectories of single particles we find no microscopic diffusion in the case of a single plasma wave, although a broadening of the particle distribution can be observed.
Dispersion properties of transverse waves in electrically polarized BECs
International Nuclear Information System (INIS)
Andreev, Pavel A; Kuz'menkov, L S
2014-01-01
Further development of the method of quantum hydrodynamics in applications for Bose–Einstein condensates (BECs) is presented. To consider the evolution of polarization direction along with particle movement, we have developed a corresponding set of quantum hydrodynamic equations. It includes equations of the polarization evolution and the polarization-current evolution along with the continuity equation and the Euler equation (the momentum-balance equation). Dispersion properties of the transverse waves, including the electromagnetic waves propagating through the BECs, are considered. To this end, we consider a full set of the Maxwell equations for the description of electromagnetic field dynamics. This approximation gives us the possibility of considering the electromagnetic waves along with the matter waves. We find a splitting of the electromagnetic-wave dispersion on two branches. As a result, we have four solutions, two for the electromagnetic waves and two for the matter waves; the last two are the concentration-polarization waves appearing as a generalization of the Bogoliubov mode. We also find that if the matter wave propagates perpendicular to the external electric field then the dipolar contribution does not disappear (as it follows from our generalization of the Bogoliubov spectrum). A small dipolar frequency shift exists in this case due to the transverse electric field of perturbation. (paper)
Nonlinear effects in water waves
International Nuclear Information System (INIS)
Janssen, P.A.E.M.
1989-05-01
This set of lecture notes on nonlinear effects in water waves was written on the occasion of the first ICTP course on Ocean Waves and Tides held from 26 September until 28 October 1988 in Trieste, Italy. It presents a summary and unification of my knowledge on nonlinear effects of gravity waves on an incompressible fluid without vorticity. The starting point of the theory is the Hamiltonian for water waves. The evolution equations of both weakly nonlinear, shallow water and deep water gravity waves are derived by suitable approximation of the energy of the waves, resulting in the Korteweg-de Vries equation and the Zakharov equation, respectively. Next, interesting properties of the KdV equation (solitons) and the Zakharov equation (instability of a finite amplitude wave train) are discussed in some detail. Finally, the evolution of a homogeneous, random wave field due to resonant four wave processes is considered and the importance of this process for ocean wave prediction is pointed out. 38 refs, 21 figs
Defocusing regimes of nonlinear waves in media with negative dispersion
DEFF Research Database (Denmark)
Bergé, L.; Kuznetsov, E.A.; Juul Rasmussen, J.
1996-01-01
Defocusing regimes of quasimonochromatic waves governed by a nonlinear Schrodinger equation with mixed-sign dispersion are investigated. For a power-law nonlinearity, we show that localized solutions to this equation defined at the so-called critical dimension cannot collapse in finite time...
Creation evidence of the second non-dispersive Zakharenko wave ...
Indian Academy of Sciences (India)
In this work, the experimental results of the creation of the second non-dispersive Zakharenko wave (ph = g ≠ 0) in the negative roton branch (the so-called second sound) of the bulk elementary excitations (BEEs) energy spectra are introduced. Several BEE signals detected by a bolometer situated in the isotopically ...
Dispersive Evolution of Nonlinear Fast Magnetoacoustic Wave Trains
Energy Technology Data Exchange (ETDEWEB)
Pascoe, D. J.; Goddard, C. R.; Nakariakov, V. M., E-mail: D.J.Pascoe@warwick.ac.uk [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)
2017-10-01
Quasi-periodic rapidly propagating wave trains are frequently observed in extreme ultraviolet observations of the solar corona, or are inferred by the quasi-periodic modulation of radio emission. The dispersive nature of fast magnetohydrodynamic waves in coronal structures provides a robust mechanism to explain the detected quasi-periodic patterns. We perform 2D numerical simulations of impulsively generated wave trains in coronal plasma slabs and investigate how the behavior of the trapped and leaky components depend on the properties of the initial perturbation. For large amplitude compressive perturbations, the geometrical dispersion associated with the waveguide suppresses the nonlinear steepening for the trapped wave train. The wave train formed by the leaky components does not experience dispersion once it leaves the waveguide and so can steepen and form shocks. The mechanism we consider can lead to the formation of multiple shock fronts by a single, large amplitude, impulsive event and so can account for quasi-periodic features observed in radio spectra.
Long wave dispersion relations for surface waves in a magnetically structured atmosphere
International Nuclear Information System (INIS)
Rae, I.C.; Roberts, B.
1983-01-01
A means of obtaining approximate dispersion relations for long wavelength magnetoacoustic surface waves propagating in a magnetically structured atmosphere is presented. A general dispersion relation applying to a wide range of magnetic profiles is obtained, and illustrated for the special cases of a single interface and a magnetic slab. In the slab geometry, for example, the dispersion relation contains both the even (sausage) and odd (kink) modes in one formalism
International Nuclear Information System (INIS)
Iyer, Ramakrishnan; Johnson, Clifford V; Pennington, Jeffrey S
2011-01-01
We uncover a remarkable role that an infinite hierarchy of nonlinear differential equations plays in organizing and connecting certain c-hat <1 string theories non-perturbatively. We are able to embed the type 0A and 0B (A, A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We observe that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A, D) minimal string backgrounds. We explain how these and several string-like special points arise and are connected. In some cases, the framework endows the theories with a non-perturbative definition for the first time. Notably, we discover that the Painleve IV equation plays a key role in organizing the string theory physics, joining its siblings, Painleve I and II, whose roles have previously been identified in this minimal string context.
Lamb wave interactions through dispersion 2D filters
Martinez, L.; Wilkie-Chancellier, N.; Caplain, E.; Sarens, B.; Glorieux, C.
2012-03-01
Acoustic surface waves are widely used to sense and map the properties of the propagation media. In order to characterise local space-time waves, methods such as Gabor analysis are powerful. Nevertheless, knowing which wave is observed, extracting its full bandwidth contribution from the others and to map it in the signal domain is also of great interest. In the Fourier domain, the acoustic energy of a wave is concentrated along the wave-number frequency (k-ω) dispersion curve, a way to extract one wave from others is to filter the signals by mean of k-ω band-pass area that keeps only the selected surface wave. The objective of the present paper is to propose 2D Finite Impulse Response (FIR) filters based on an arbitrary area shape designed to extract selected waves. FIR filtering is based on convolving the impulse response of the filter with the signals. Impulse responses derived from using k-ω elliptical areas (E-FIR) are presented. The E-FIR filters are successfully tested on three experimental space-time signals corresponding to the propagation of Lamb waves measured by standard transducers on a cylindrical shell, by laser Doppler on a plate and generated by a circular pulse and observed by shearography on a rectangular plate.
Comina, Cesare; Krawczyk, Charlotte M.; Polom, Ulrich; Socco, Laura Valentina
2017-09-01
Quick clay is a water-saturated formation originally formed through flocculation and deposition in a marine to brackish environment. It is subsequently leached to low salinity by freshwater flow. If its strength decreases, then the flocculated structure collapses leading to landslides of varying destructiveness. Leaching can result in a reduction of the undisturbed shear strength of these clays and suggestions exist that a reduction in shear wave velocities is also possible. Integration of SH seismic reflection and Love-wave dispersion data was undertaken, in an area near the Göta River in southwest Sweden, to evaluate the potential of shear wave velocity imaging for detecting quick clays. Seismic reflection processing evidenced several geologically interesting interfaces related to the probable presence of quick clays (locally confirmed by boreholes) and sand-gravelly layers strongly contributing to water circulation within them. Dispersion data were extracted with a Gaussian windowing approach and inverted with a laterally constrained inversion using a priori information from the seismic reflection imaging. The inversion of dispersion curves has evidenced the presence of a low velocity layer (lvl, with a velocity reduction of ca. 30 per cent) probably associable to quick clays. This velocity reduction is enough to produce detectable phase-velocity differences in the field data and to achieve a better velocity resolution if compared to reflection seismic velocity analyses. The proposed approach has the potential of a comprehensive determination of the shear wave velocity distribution in the shallow subsurface. A sensitivity analysis of Love-wave dispersion data is also presented underlining that, despite limited dispersion of the data set and the velocity-reducing effect of quick-clay leaching, the proposed interpretation procedure arises as a valuable approach in quick clay and other lvl identification.
Wave-equation dispersion inversion of surface waves recorded on irregular topography
Li, Jing
2017-08-17
Significant topographic variations will strongly influence the amplitudes and phases of propagating surface waves. Such effects should be taken into account, otherwise the S-velocity model inverted from the Rayleigh dispersion curves will contain significant inaccuracies. We now show that the recently developed wave-equation dispersion inversion (WD) method naturally takes into account the effects of topography to give accurate S-velocity tomograms. Application of topographic WD to demonstrates that WD can accurately invert dispersion curves from seismic data recorded over variable topography. We also apply this method to field data recorded on the crest of mountainous terrain and find with higher resolution than the standard WD tomogram.
Lecture Notes for the Course in Water Wave Mechanics
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Frigaard, Peter
knowledge. The course is at the same time an introduction to the course in coastal hydraulics on the 8th semester. The notes cover the following five lectures: 1. Definitions. Governing equations and boundary conditions. Derivation of velocity potential for linear waves. Dispersion relationship. 2. Particle......The present notes are written for the course in water wave mechanics given on the 7th semester of the education in civil engineering at Aalborg University. The prerequisites for the course are the course in fluid dynamics also given on the 7th semester and some basic mathematical and physical...... paths, velocities, accelerations, pressure variation, deep and shallow water waves, wave energy and group velocity. 3. Shoaling, refraction, diffraction and wave breaking. 4. Irregular waves. Time domain analysis of waves. 5. Wave spectra. Frequency domain analysis of waves. The present notes are based...
Increased P wave dispersion in patients with liver steatosis
Directory of Open Access Journals (Sweden)
Mustafa Aparci
2010-08-01
Full Text Available Aim Hepatic steatosis is associated with metabolic and hemodynamicabnormalities induced by insulin resistance and inflammatory state. Since abnormalities of P wave dispersion may be accompanied with latter issues we evaluated this subject in patients with hepatic steatosis. Methods Total of 106 patients and 56 healthy subjects were enrolled and performed hepatic ultrasonography, echocardiography, electrocardiogram, and biochemistry tests. Clinical features, laboratory and echocardiographic parameters, P wave dispersion were compared between groups and analyzed for any correlation among parameters. Results Body mass index (BMI, waist circumference, systolic and diastolic blood pressure, levels of total and LDL cholesterol, and fasting blood glucose (FBG, and left atrial diameter were significantly higher in patients with hepatic steatosis. Peak velocities of mitral E and A waves and their ratio were abnormally changed in patients compared to normals. In multiple linear regression analysis, approximately all of the variables previously correlated within Pearsons’ correlation test were found to be significantly correlated with P wave dispersion [ waist circumference (ß=0.151, p=0.048, LDL cholesterol (ß=0.234, p=0.000, FBG (ß=0.402, p= 0.000, alanine aminotransferase (ALT (ß=0.205, p= 0.006, alkaline phosphatase (ALP (ß=0.277, p=0.000, γ-glutamyl transferase (γ-GT (ß=0.240, p=0.000, left atrial diameter (ß=0.204, p=0.003, heart rate (ß=0.123, p=0.037]. Conclusion Increased P wave dispersion may indicate a risk of atrial arrhythmia which may be complicated with disabling symptoms and thromboembolism in patients with hepatic steatosis. Consequently, hepatic steatosis is associated with increased risk for cardiovascular disease due to metabolic and hemodynamic abnormalitiesprobably induced by insulin resistance and inflammatory state.
Energy Technology Data Exchange (ETDEWEB)
Nenadic, Ivan Z; Urban, Matthew W; Mitchell, Scott A; Greenleaf, James F [Basic Ultrasound Research Laboratory, Department of Physiology and Biophysics, Mayo Clinic, Rochester, MN 55905 (United States)
2011-04-07
Diastolic dysfunction is the inability of the left ventricle to supply sufficient stroke volumes under normal physiological conditions and is often accompanied by stiffening of the left-ventricular myocardium. A noninvasive technique capable of quantifying viscoelasticity of the myocardium would be beneficial in clinical settings. Our group has been investigating the use of shear wave dispersion ultrasound vibrometry (SDUV), a noninvasive ultrasound-based method for quantifying viscoelasticity of soft tissues. The primary motive of this study is the design and testing of viscoelastic materials suitable for validation of the Lamb wave dispersion ultrasound vibrometry (LDUV), an SDUV-based technique for measuring viscoelasticity of tissues with plate-like geometry. We report the results of quantifying viscoelasticity of urethane rubber and gelatin samples using LDUV and an embedded sphere method. The LDUV method was used to excite antisymmetric Lamb waves and measure the dispersion in urethane rubber and gelatin plates. An antisymmetric Lamb wave model was fitted to the wave speed dispersion data to estimate elasticity and viscosity of the materials. A finite element model of a viscoelastic plate submerged in water was used to study the appropriateness of the Lamb wave dispersion equations. An embedded sphere method was used as an independent measurement of the viscoelasticity of the urethane rubber and gelatin. The FEM dispersion data were in excellent agreement with the theoretical predictions. Viscoelasticity of the urethane rubber and gelatin obtained using the LDUV and embedded sphere methods agreed within one standard deviation. LDUV studies on excised porcine myocardium sample were performed to investigate the feasibility of the approach in preparation for open-chest in vivo studies. The results suggest that the LDUV technique can be used to quantify the mechanical properties of soft tissues with a plate-like geometry.
International Nuclear Information System (INIS)
Nenadic, Ivan Z; Urban, Matthew W; Mitchell, Scott A; Greenleaf, James F
2011-01-01
Diastolic dysfunction is the inability of the left ventricle to supply sufficient stroke volumes under normal physiological conditions and is often accompanied by stiffening of the left-ventricular myocardium. A noninvasive technique capable of quantifying viscoelasticity of the myocardium would be beneficial in clinical settings. Our group has been investigating the use of shear wave dispersion ultrasound vibrometry (SDUV), a noninvasive ultrasound-based method for quantifying viscoelasticity of soft tissues. The primary motive of this study is the design and testing of viscoelastic materials suitable for validation of the Lamb wave dispersion ultrasound vibrometry (LDUV), an SDUV-based technique for measuring viscoelasticity of tissues with plate-like geometry. We report the results of quantifying viscoelasticity of urethane rubber and gelatin samples using LDUV and an embedded sphere method. The LDUV method was used to excite antisymmetric Lamb waves and measure the dispersion in urethane rubber and gelatin plates. An antisymmetric Lamb wave model was fitted to the wave speed dispersion data to estimate elasticity and viscosity of the materials. A finite element model of a viscoelastic plate submerged in water was used to study the appropriateness of the Lamb wave dispersion equations. An embedded sphere method was used as an independent measurement of the viscoelasticity of the urethane rubber and gelatin. The FEM dispersion data were in excellent agreement with the theoretical predictions. Viscoelasticity of the urethane rubber and gelatin obtained using the LDUV and embedded sphere methods agreed within one standard deviation. LDUV studies on excised porcine myocardium sample were performed to investigate the feasibility of the approach in preparation for open-chest in vivo studies. The results suggest that the LDUV technique can be used to quantify the mechanical properties of soft tissues with a plate-like geometry.
A fluid description for Landau damping of dispersive MHD waves
Directory of Open Access Journals (Sweden)
T. Passot
2004-01-01
Full Text Available The dynamics of long oblique MHD waves in a collisionless plasma permeated by a uniform magnetic field is addressed using a Landau-fluid model that includes Hall effect and electron-pressure gradient in a generalized Ohm's law and retains ion finite Larmor radius (FLR corrections to the gyrotropic pressure (Phys. Plasmas 10, 3906, 2003. This one-fluid model, built to reproduce the weakly nonlinear dynamics of long dispersive Alfvén waves propagating along an ambient field, is shown to correctly capture the Landau damping of oblique magnetosonic waves predicted by a kinetic theory based on the Vlasov-Maxwell system. For oblique and kinetic Alfvén waves (for which second order FLR corrections are to be retained, the linear character of waves with small but finite amplitudes is established, and the dispersion relation reproduced in the regime of adiabatic protons and isothermal electrons, associated with the condition me/mp e/Tp, where β is the squared ratio of the ion-acoustic to the Alfvén speeds. It is shown that in more general regimes, the heat fluxes are, to leading order, not gyrotropic and dependent on the Hall effect to leading order.
Dispersion-Engineered Traveling Wave Kinetic Inductance Parametric Amplifier
Zmuidzinas, Jonas (Inventor); Day, Peter K. (Inventor)
2014-01-01
A traveling wave kinetic inductance parametric amplifier comprises a superconducting transmission line and a dispersion control element. The transmission line can include periodic variations of its dimension along its length. The superconducting material can include a high normal state resistivity material. In some instances the high normal state resistivity material includes nitrogen and a metal selected from the group consisting of titanium, niobium and vanadium. The traveling wave kinetic inductance parametric amplifier is expected to exhibit a noise temperature below 100 mK/GHz.
On the propagation of truncated localized waves in dispersive silica
Salem, Mohamed
2010-01-01
Propagation characteristics of truncated Localized Waves propagating in dispersive silica and free space are numerically analyzed. It is shown that those characteristics are affected by the changes in the relation between the transverse spatial spectral components and the wave vector. Numerical experiments demonstrate that as the non-linearity of this relation gets stronger, the pulses propagating in silica become more immune to decay and distortion whereas the pulses propagating in free-space suffer from early decay and distortion. © 2010 Optical Society of America.
Uniform dispersion reduction schemes for the one dimensional wave equation in isotropic media
An, Yajun
2017-07-01
Finite difference (FD) methods for the wave equation in general suffer from numerical dispersion. Although FD methods based on accuracy give good dispersion at low frequencies, waves tend to disperse for higher wavenumber. In this work, we will give a unified methodology to derive dispersion reduction FD schemes for the one dimensional wave equation, and this new method can reduce dispersion error uniformly for all wavenumbers up to the Nyquist. Stability criteria are given, and stability analysis is done for each generated scheme.
Creation of non-dispersive Bohr-like wave packets
Mestayer, Jeff; Wyker, B.; Dunning, F. B.; Reinhold, C. O.; Yoshida, S.; Burgdörfer, J.
2009-05-01
We demonstrate the use of a periodic train of half-cycle pulses to create strongly-localized non-dispersive wave packets in very-high-n (n ˜ 300) Rydberg atoms that travel in near-circular orbits about the nucleus. This motion can be maintained for hundreds of orbital periods mimicking the original Bohr model of the hydrogen atom which envisioned an electron in circular classical orbit about the nucleus. The conditions for formation of non-dispersive Bohr-like wave packets are discussed with the aid of Classical Trajectory Monte Carlo (CTMC) simulations and demonstrated through experiment. Research supported by the NSF, the Robert A. Welch Foundation, the OBES, U.S. DoE to ORNL, and by the FWF (Austria).
Modeling Gravitational Waves to Test GR Dispersion and Polarization
Tso, Rhondale; Chen, Yanbei; Isi, Maximilliano
2017-01-01
Given continued observation runs from the Laser Interferometer Gravitational-Wave Observatory Scientific Collaboration, further gravitational wave (GW) events will provide added constraints on beyond-general relativity (b-GR) theories. One approach, independent of the GW generation mechanism at the source, is to look at modification to the GW dispersion and propagation, which can accumulate over vast distances. Generic modification of GW propagation can also, in certain b-GR theories, impact the polarization content of GWs. To this end, a comprehensive approach to testing the dispersion and polarization content is developed by modeling anisotropic deformations to the waveforms' phase, along with birefringence effects and corollary consequences for b-GR polarizations, i.e., breathing, vector, and longitudinal modes. Such an approach can be mapped to specific theories like Lorentz violation, amplitude birefringence in Chern-Simons, and provide hints at additional theories to be included. An overview of data analysis routines to be implemented will also be discussed.
Dispersive shock waves in systems with nonlocal dispersion of Benjamin-Ono type
El, G. A.; Nguyen, L. T. K.; Smyth, N. F.
2018-04-01
We develop a general approach to the description of dispersive shock waves (DSWs) for a class of nonlinear wave equations with a nonlocal Benjamin-Ono type dispersion term involving the Hilbert transform. Integrability of the governing equation is not a pre-requisite for the application of this method which represents a modification of the DSW fitting method previously developed for dispersive-hydrodynamic systems of Korteweg-de Vries (KdV) type (i.e. reducible to the KdV equation in the weakly nonlinear, long wave, unidirectional approximation). The developed method is applied to the Calogero-Sutherland dispersive hydrodynamics for which the classification of all solution types arising from the Riemann step problem is constructed and the key physical parameters (DSW edge speeds, lead soliton amplitude, intermediate shelf level) of all but one solution type are obtained in terms of the initial step data. The analytical results are shown to be in excellent agreement with results of direct numerical simulations.
Dynamics of Solitary Wave Pulses Near the Zero-Dispersion Wavelength in Optical Fibers
National Research Council Canada - National Science Library
Akylas, Triantaphyllos
1998-01-01
.... Near the zero-dispersion wavelength (ZDW), the borderline between normal and anomalous dispersion, however, dispersive effects are relatively weak and it would seem most efficient to operate there, assuming that one can launch solitary wave...
P Wave Dispersion in Children with Breath-holding Spells
Tahsin Gider; Bülent Koca; Mustafa Çalık; Ali Yıldırım; Savaş Demirpençe
2016-01-01
Objective: A breath-holding spell (BHS) is a clinical feature frequently seen in infancy and early childhood and generally bringing children to pediatric cardiology outpatient clinics with the suspicion of cardiac disease. In this study, P wave dispersion (PWD), which is a marker of regional differences in atrial depolarization in electrocardiography and has been demonstrated to be beneficial in defining the risk of supraventricular tachycardia in various patient groups, was studied in childr...
Parametric study of guided waves dispersion curves for composite plates
Predoi, Mihai Valentin; Petre, Cristian Cǎtǎlin; Kettani, Mounsif Ech Cherif El; Leduc, Damien
2018-02-01
Nondestructive testing of composite panels benefit from the relatively long range propagation of guided waves in sandwich structures. The guided waves are sensitive to delamination, air bubbles inclusions and cracks and can thus bring information about hidden defects in the composite panel. The preliminary data in all such inspections is represented by the dispersion curves, representing the dependency of the phase/group velocity on the frequency for the propagating modes. In fact, all modes are more or less attenuated, so it is even more important to compute the dispersion curves, which provide also the modal attenuation as function of frequency. Another important aspect is the sensitivity of the dispersion curves on each of the elastic constant of the composite, which are orthotropic in most cases. All these aspects are investigated in the present work, based on our specially developed finite element numerical model implemented in Comsol, which has several advantages over existing methods. The dispersion curves and modal displacements are computed for an example of composite plate. Comparison with literature data validates the accuracy of our results.
Czyż, Ewa A.; Dexter, Anthony R.
2015-01-01
A method for the experimental determination of the amount of clay dispersed from soil into water is described. The method was evaluated using soil samples from agricultural fields in 18 locations in Poland. Soil particle size distributions, contents of organic matter and exchangeable cations were measured by standard methods. Sub-samples were placed in distilled water and were subjected to four different energy inputs obtained by different numbers of inversions (end-over-end movements). The amounts of clay that dispersed into suspension were measured by light scattering (turbidimetry). An empirical equation was developed that provided an approximate fit to the experimental data for turbidity as a function of number of inversions. It is suggested that extrapolation of the fitted equation to zero inversions enables the amount of spontaneously-dispersed clay to be estimated. This method introduces the possibility of replacing the existing subjective, qualitative method of determining spontaneously-dispersed clay with a quantitative, objective method. Even though the dispersed clay is measured under saturated conditions, soil samples retain a `memory' of the water contents at which they have been stored.
Nenadic, Ivan Z.; Urban, Matthew W.; Mitchell, Scott A.; Greenleaf, James F.
2011-01-01
Diastolic dysfunction is the inability of the left ventricle to supply sufficient stroke volumes under normal physiological conditions and is often accompanied by stiffening of the left-ventricular myocardium. A noninvasive technique capable of quantifying viscoelasticity of the myocardium would be beneficial in clinical settings. Our group has been investigating the use of Shearwave Dispersion Ultrasound Vibrometry (SDUV), a noninvasive ultrasound based method for quantifying viscoelasticity of soft tissues. The primary motive of this study is the design and testing of viscoelastic materials suitable for validation of the Lamb wave Dispersion Ultrasound Vibrometry (LDUV), an SDUV-based technique for measuring viscoelasticity of tissues with plate-like geometry. We report the results of quantifying viscoelasticity of urethane rubber and gelatin samples using LDUV and an embedded sphere method. The LDUV method was used to excite antisymmetric Lamb waves and measure the dispersion in urethane rubber and gelatin plates. An antisymmetric Lamb wave model was fitted to the wave speed dispersion data to estimate elasticity and viscosity of the materials. A finite element model of a viscoelastic plate submerged in water was used to study the appropriateness of the Lamb wave dispersion equations. An embedded sphere method was used as an independent measurement of the viscoelasticity of the urethane rubber and gelatin. The FEM dispersion data were in excellent agreement with the theoretical predictions. Viscoelasticity of the urethane rubber and gelatin obtained using the LDUV and embedded sphere methods agreed within one standard deviation. LDUV studies on excised porcine myocardium sample were performed to investigate the feasibility of the approach in preparation for open-chest in vivo studies. The results suggest that the LDUV technique can be used to quantify mechanical properties of soft tissues with a plate-like geometry. PMID:21403186
Particle dispersion and mixing induced by breaking internal gravity waves
Bouruet-Aubertot, Pascale; Koudella, C.; Staquet, C.; Winters, K. B.
2001-01-01
The purpose of this paper is to analyze diapycnal mixing induced by the breaking of an internal gravity wave — the primary wave — either standing or propagating. To achieve this aim we apply two different methods. The first method consists of a direct estimate of vertical eddy diffusion from particle dispersion while the second method relies upon potential energy budgets [Winters, K.B., Lombard, P.N., Riley, J.J., D'Asaro, E.A., 1995. J. Fluid Mech. 289, 115-128; Winters, K.B., D'Asaro, E.A., 1996. J. Fluid Mech. 317, 179-193]. The primary wave we consider is of small amplitude and is statically stable, a case for which the breaking process involves two-dimensional instabilities. The dynamics of the waves have been previously analyzed by means of two-dimensional direct numerical simulations [Bouruet-Aubertot, P., Sommeria, J., Staquet, C., 1995. J. Fluid Mech. 285, 265-301; Bouruet-Aubertot, P., Sommeria, J., Staquet, C., 1996. Dyn. Atmos. Oceans 29, 41-63; Koudella, C., Staquet, C., 1998. In: Davis, P. (Ed.), Proceedings of the IMA Conference on Mixing and Dispersion on Stably-stratified Flows, Dundee, September 1996. IMA Publication]. High resolution three-dimensional calculations of the same wave are also reported here [Koudella, C., 1999]. A local estimate of mixing is first inferred from the time evolution of sets of particles released in the flow during the breaking regime. We show that, after an early evolution dominated by shear effects, a diffusion law is reached and the dispersion coefficient is fairly independent of the initial seeding location of the particles in the flow. The eddy diffusion coefficient, K, is then estimated from the diapycnal diffusive flux. A good agreement with the value inferred from particle dispersion is obtained. This finding is of particular interest regarding the interpretation of in situ estimates of K inferred either from tracer dispersion or from microstructure measurements. Computation of the Cox number, equal to the
Dispersion of extensional waves in fluid-saturated porous cylinders at ultrasonic frequencies
International Nuclear Information System (INIS)
Berryman, J.G.
1983-01-01
Ultrasonic dispersion of extensional waves in fluid-saturated porous cylinders is studied by analyzing generalized Pochhammer equations derived using Biot's theory. Cases with open-pore surface and closed-pore surface boundary conditions are considered. For both cases, the dispersion of the fast extensional wave does not differ much qualitatively from the dispersion expected for extensional waves in isotropic elastic cylinders. A slow extensional wave propagates in the case with a closed-pore surface but not in the case with an open-pore surface. The propagating slow wave has very weak dispersion and its speed is always lower than, but close to, the bulk slow wave speed
1-D profiling using highly dispersive guided waves
International Nuclear Information System (INIS)
Volker, Arno; Zon, Tim van
2014-01-01
Corrosion is one of the industries major issues regarding the integrity of assets. Currently, inspections are conducted at regular intervals to ensure a sufficient integrity level of these assets. Cost reduction while maintaining a high level of reliability and safety of installations is a major challenge. There are many situations where the actual defect location is not accessible, e.g., a pipe support or a partially buried pipe. Guided wave tomography has been developed to reconstruct the wall thickness of steel pipes. In case of bottom of the line corrosion, i.e., a single corrosion pit, a simpler approach may be followed. Data is collected in a pitch-catch configuration at the 12 o'clock position using highly dispersive guided waves. After dispersion correction the data collapses to a short pulse, any residual dispersion indicates wall loss. The phase spectrum is used to invert for the wall thickness profile in the circumferential direction, assuming a Gaussian defect profile. The approach is evaluated on numerically simulated and on measured data. The method is intended for rapid, semi-quantitative screening of pipes
1-D profiling using highly dispersive guided waves
Volker, Arno; van Zon, Tim
2014-02-01
Corrosion is one of the industries major issues regarding the integrity of assets. Currently, inspections are conducted at regular intervals to ensure a sufficient integrity level of these assets. Cost reduction while maintaining a high level of reliability and safety of installations is a major challenge. There are many situations where the actual defect location is not accessible, e.g., a pipe support or a partially buried pipe. Guided wave tomography has been developed to reconstruct the wall thickness of steel pipes. In case of bottom of the line corrosion, i.e., a single corrosion pit, a simpler approach may be followed. Data is collected in a pitch-catch configuration at the 12 o'clock position using highly dispersive guided waves. After dispersion correction the data collapses to a short pulse, any residual dispersion indicates wall loss. The phase spectrum is used to invert for the wall thickness profile in the circumferential direction, assuming a Gaussian defect profile. The approach is evaluated on numerically simulated and on measured data. The method is intended for rapid, semi-quantitative screening of pipes.
Dispersive photonic crystals from the plane wave method
Energy Technology Data Exchange (ETDEWEB)
Guevara-Cabrera, E.; Palomino-Ovando, M.A. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Flores-Desirena, B., E-mail: bflores@fcfm.buap.mx [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Gaspar-Armenta, J.A. [Departamento de Investigación en Física de la Universidad de Sonora Apdo, Post 5-088, Hermosillo Sonora 83190, México (Mexico)
2016-03-01
Nowadays photonic crystals are widely used in many different applications. One of the most used methods to compute their band structure is the plane wave method (PWM). However, it can only be applied directly to non-dispersive media and be extended to systems with a few model dielectric functions. We explore an extension of the PWM to photonic crystals containing dispersive materials, that solves an eigenvalue equation for the Bloch wave vectors. First we compare our calculation with analytical results for one dimensional photonic crystals containing Si using experimental values of its optical parameters, and obtainig very well agreement, even for the spectrum region with strong absorption. Then, using the same method, we computed the band structure for a two dimensional photonic crystal without absorption, formed by an square array of MgO cylinders in air. The optical parameters for MgO were modeled with the Lorentz dielectric function. Finally, we studied an array of MgO cylinders in a metal, using Drude model without absorption, for the metal dielectric function. For this last case, we study the gap–midgap ratio as a function of the filling fraction for both the square and triangular lattice. The gap–midgap ratio is larger for the triangular lattice, with a maximum value of 10% for a filling fraction of 0.6. Our results show that the method can be applied to dispersive materials, and then to a wide range of applications where photonic crystals can be used.
Dense particle cloud dispersion by a shock wave
Kellenberger, M.; Johansen, C.; Ciccarelli, G.; Zhang, F.
2013-09-01
A dense particle flow is generated by the interaction of a shock wave with an initially stationary packed granular bed. High-speed particle dispersion research is motivated by the energy release enhancement of explosives containing solid particles. The initial packed granular bed is produced by compressing loose powder into a wafer with a particle volume fraction of . The wafer is positioned inside the shock tube, uniformly filling the entire cross-section. This results in a clean experiment where no flow obstructing support structures are present. Through high-speed shadowgraph imaging and pressure measurements along the length of the channel, detailed information about the particle shock interaction was obtained. Due to the limited strength of the incident shock wave, no transmitted shock wave is produced. The initial solid-like response of the particle wafer acceleration forms a series of compression waves that eventually coalesce to form a shock wave. Breakup is initiated along the periphery of the wafer as the result of shear that forms due to the fixed boundary condition. Particle breakup is initiated by local failure sites that result in the formation of particle jets that extend ahead of the accelerating, largely intact, wafer core. In a circular tube, the failure sites are uniformly distributed along the wafer circumference. In a square channel, the failure sites, and the subsequent particle jets, initially form at the corners due to the enhanced shear. The wafer breakup subsequently spreads to the edges forming a highly non-uniform particle cloud.
Li, Jing
2017-12-22
A robust imaging technology is reviewed that provide subsurface information in challenging environments: wave-equation dispersion inversion (WD) of surface waves for the shear velocity model. We demonstrate the benefits and liabilities of the method with synthetic seismograms and field data. The benefits of WD are that 1) there is no layered medium assumption, as there is in conventional inversion of dispersion curves, so that the 2D or 3D S-velocity model can be reliably obtained with seismic surveys over rugged topography, and 2) WD mostly avoids getting stuck in local minima. The synthetic and field data examples demonstrate that WD can accurately reconstruct the S-wave velocity distributions in laterally heterogeneous media if the dispersion curves can be identified and picked. The WD method is easily extended to anisotropic media and the inversion of dispersion curves associated with Love wave. The liability is that is almost as expensive as FWI and only recovers the Vs distribution to a depth no deeper than about 1/2~1/3 wavelength.
Real time wave measurements and wave hindcasting in deep waters
Digital Repository Service at National Institute of Oceanography (India)
Anand, N.M.; Mandal, S.; SanilKumar, V.; Nayak, B.U.
Deep water waves off Karwar (lat. 14~'45.1'N, long. 73~'34.8'E) at 75 m water depth pertaining to peak monsoon period have been measured using a Datawell waverider buoy. Measured wave data show that the significant wave height (Hs) predominantly...
P Wave Dispersion is Increased in Pulmonary Stenosis
Directory of Open Access Journals (Sweden)
Namik Ozmen
2006-01-01
Full Text Available Aim: The right atrium pressure load is increased in pulmonary stenosis (PS that is a congenital anomaly and this changes the electrophysiological characteristics of the atria. However, there is not enough data on the issue of P wave dispersion (PWD in PS. Methods: Forty- two patients diagnosed as having valvular PS with echocardiography and 33 completely healthy individuals as the control group were included in the study. P wave duration, p wave maximum (p max and p minimum (p min were calculated from resting electrocariography (ECG obtained at the rate of 50 mm/sec. P wave dispersion was derived by subtracting p min from p max. The mean pressure gradient (MPG at the pulmonary valve, structure of the valve and diameters of the right and left atria were measured with echocardiography. The data from two groups were compared with the Mann-Whitney U test and correlation analysis was performed with the Pearson correlation technique. Results: There wasn’t any statistically significance in the comparison of age, left atrial diameter and p min between two groups. While the MPG at the pulmonary valve was 43.11 ± 18.8 mmHg in PS patients, it was 8.4 ± 4.5 mmHg in the control group. While p max was 107.1 ± 11.5 in PS group, it was 98.2 ± 5.1 in control group (p=0.01, PWD was 40.4 ± 1.2 in PS group, and 27.2 ± 9.3 in the control group (p=0.01Moreover, while the diameter of the right atrium in PS group was greater than that of the control group, (38.7 ± 3.9 vs 30.2 ± 2.5, p=0.02. We detected a correlation between PWD and pressure gradient in regression analysis. Conclusion: P wave dispersion and p max are increased in PS. While PWD was correlated with the pressure gradient that is the degree of narrowing, it was not correlated with the diameters of the right and left atria.
Dispersive waves induced by self-defocusing temporal solitons in a beta-barium-borate crystal
DEFF Research Database (Denmark)
Zhou, Binbin; Bache, Morten
2015-01-01
We experimentally observe dispersive waves in the anomalous dispersion regime of a beta-barium-borate (BBO) crystal, induced by a self-defocusing few-cycle temporal soliton. Together the soliton and dispersive waves form an energetic octave-spanning supercontinuum. The soliton was excited...
Radiating dispersive shock waves in non-local optical media.
El, Gennady A; Smyth, Noel F
2016-03-01
We consider the step Riemann problem for the system of equations describing the propagation of a coherent light beam in nematic liquid crystals, which is a general system describing nonlinear wave propagation in a number of different physical applications. While the equation governing the light beam is of defocusing nonlinear Schrödinger (NLS) equation type, the dispersive shock wave (DSW) generated from this initial condition has major differences from the standard DSW solution of the defocusing NLS equation. In particular, it is found that the DSW has positive polarity and generates resonant radiation which propagates ahead of it. Remarkably, the velocity of the lead soliton of the DSW is determined by the classical shock velocity. The solution for the radiative wavetrain is obtained using the Wentzel-Kramers-Brillouin approximation. It is shown that for sufficiently small initial jumps the nematic DSW is asymptotically governed by a Korteweg-de Vries equation with the fifth-order dispersion, which explicitly shows the resonance generating the radiation ahead of the DSW. The constructed asymptotic theory is shown to be in good agreement with the results of direct numerical simulations.
Turbulent wind waves on a water current
Directory of Open Access Journals (Sweden)
M. V. Zavolgensky
2008-05-01
Full Text Available An analytical model of water waves generated by the wind over the water surface is presented. A simple modeling method of wind waves is described based on waves lengths diagram, azimuthal hodograph of waves velocities and others. Properties of the generated waves are described. The wave length and wave velocity are obtained as functions on azimuth of wave propagation and growth rate. Motionless waves dynamically trapped into the general picture of three dimensional waves are described. The gravitation force does not enter the three dimensional of turbulent wind waves. That is why these waves have turbulent and not gravitational nature. The Langmuir stripes are naturally modeled and existence of the rogue waves is theoretically proved.
P Wave Dispersion in Children with Breath-holding Spells
Directory of Open Access Journals (Sweden)
Tahsin Gider
2016-09-01
Full Text Available Objective: A breath-holding spell (BHS is a clinical feature frequently seen in infancy and early childhood and generally bringing children to pediatric cardiology outpatient clinics with the suspicion of cardiac disease. In this study, P wave dispersion (PWD, which is a marker of regional differences in atrial depolarization in electrocardiography and has been demonstrated to be beneficial in defining the risk of supraventricular tachycardia in various patient groups, was studied in children who presented with breath-holding spells. Materials and Methods: Forty-seven patients with breath-holding spells and 36 healthy children as a control group were included in this study. We performed electrocardiography and transthoracic echocardiography on patients and controls. PWD, which is defined as the difference between maximum and minimum p wave duration, was also calculated. Statistical analysis in the study was performed using SPSS version 22.0 and p<0.05 was accepted as significant. Results: Our study indicated that there were no statistically significant differences between the patients and controls in minimum, maximum p wave duration and PWD. Conclusion: Our findings suggest that atrial conduction is probably unaffected in children with breath-holding spells.
Increased P-wave dispersion a risk for atrial fibrillation in adolescents with anorexia nervosa.
Ertuğrul, İlker; Akgül, Sinem; Derman, Orhan; Karagöz, Tevfik; Kanbur, Nuray
2016-01-01
Studies have shown that a prolonged P-wave dispersion is a risk factor for the development of atrial fibrillation. The aim of this study was to evaluate P-wave dispersion in adolescents with anorexia nervosa at diagnosis. We evaluated electrocardiographic findings, particularly the P-wave dispersion, at initial assessment in 47 adolescents with anorexia nervosa. Comparison of P-wave dispersion between adolescents with anorexia nervosa and controls showed a statistically significant higher P-wave dispersion in patients with anorexia nervosa (72 ± 16.3 msec) when compared to the control group (43.8 ± 9.5 msec). Percent of body weight lost, lower body mass index, and higher weight loss rate in the patients with anorexia nervosa had no effect on P-wave dispersion. Due to the fact that anorexia nervosa has a high mortality rate we believe that cardiac pathologies such as atrial fibrillation must also be considered in the medical evaluation.
Theoretical analysis of wave dispersion in the slow-wave structure such as a coaxial ribbed line
Yelizarov, A. A.; Pchelnikov, Yu. N.; Shaymardanov, R. V.
2017-08-01
The wave dispersion in the slow-wave structure such as a coaxial ribbed line has been analyzed. For the case of the excitation of an axially symmetric wave in this structure, the generalized dispersion equation has been obtained using the method of sewing the conductivities. The particular cases of a solution of the dispersion equation have been analyzed, as well as its solutions for relatively high and low frequencies, since these cases are of practical interest. The parameters of a coaxial ribbed line have been simulated and the dependences of the slowing coefficient and the wave impedance of the structure on its geometrical dimensions have been obtained.
The Western Bohemia Uppermost Crust Shear Wave Velocities from Love Wave Dispersion
Czech Academy of Sciences Publication Activity Database
Kolínský, Petr; Brokešová, Johana
-, č. 11 (2007), s. 101-120 ISSN 1383-4649 R&D Projects: GA AV ČR IAA300460602; GA ČR(CZ) GA205/06/1780 Institutional research plan: CEZ:AV0Z30460519 Keywords : frequency–time analysis * group velocity * Love wave dispersion Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.769, year: 2007
Hartley, D P; Chen, Y; Kletzing, C A; Denton, M H; Kurth, W S
2015-02-01
Most theoretical wave models require the power in the wave magnetic field in order to determine the effect of chorus waves on radiation belt electrons. However, researchers typically use the cold plasma dispersion relation to approximate the magnetic wave power when only electric field data are available. In this study, the validity of using the cold plasma dispersion relation in this context is tested using Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) observations of both the electric and magnetic spectral intensities in the chorus wave band (0.1-0.9 f ce ). Results from this study indicate that the calculated wave intensity is least accurate during periods of enhanced wave activity. For observed wave intensities >10 -3 nT 2 , using the cold plasma dispersion relation results in an underestimate of the wave intensity by a factor of 2 or greater 56% of the time over the full chorus wave band, 60% of the time for lower band chorus, and 59% of the time for upper band chorus. Hence, during active periods, empirical chorus wave models that are reliant on the cold plasma dispersion relation will underestimate chorus wave intensities to a significant degree, thus causing questionable calculation of wave-particle resonance effects on MeV electrons.
Existence of traveling waves for diffusive-dispersive conservation laws
Directory of Open Access Journals (Sweden)
Cezar I. Kondo
2013-02-01
Full Text Available In this work we show the existence existence and uniqueness of traveling waves for diffusive-dispersive conservation laws with flux function in $C^{1}(mathbb{R}$, by using phase plane analysis. Also we estimate the domain of attraction of the equilibrium point attractor corresponding to the right-hand state. The equilibrium point corresponding to the left-hand state is a saddle point. According to the phase portrait close to the saddle point, there are exactly two semi-orbits of the system. We establish that only one semi-orbit come in the domain of attraction and converges to $(u_{-},0$ as $yo -infty$. This provides the desired saddle-attractor connection.
Directory of Open Access Journals (Sweden)
Huibin Jia
2017-01-01
Full Text Available The fault generated transient traveling waves are wide band signals which cover the whole frequency range. When the frequency characteristic of line parameters is considered, different frequency components of traveling wave will have different attenuation values and wave velocities, which is defined as the dispersion effect of traveling wave. Because of the dispersion effect, the rise or fall time of the wavefront becomes longer, which decreases the singularity of traveling wave and makes it difficult to determine the arrival time and velocity of traveling wave. Furthermore, the dispersion effect seriously affects the accuracy and reliability of fault location. In this paper, a novel double-ended fault location method has been proposed with compensating the dispersion effect of traveling wave in wavelet domain. From the propagation theory of traveling wave, a correction function is established within a certain limit band to compensate the dispersion effect of traveling wave. Based on the determined arrival time and velocity of traveling wave, the fault distance can be calculated precisely by utilizing the proposed method. The simulation experiments have been carried out in ATP/EMTP software, and simulation results demonstrate that, compared with the traditional traveling-wave fault location methods, the proposed method can significantly improve the accuracy of fault location. Moreover, the proposed method is insensitive to different fault conditions, and it is adaptive to both transposed and untransposed transmission lines well.
1D profiling using highly dispersive guided waves
International Nuclear Information System (INIS)
Volker, Arno; Zon, Tim van; Enthoven, Daniel; Verburg, Wesley
2015-01-01
Corrosion is one of the industries major issues regarding the integrity of assets. Currently inspections are conducted at regular intervals to ensure a sufficient integrity level of these assets. Cost reduction while maintaining a high level of reliability and safety of installations is a major challenge. There are many situations where the actual defect location is not accessible, e.g., a pipe support or a partially buried pipe. Guided wave tomography has been developed to reconstruct the wall thickness. In case of bottom of the line corrosion, i.e., a single corrosion pit, a simpler approach may be followed. Data is collected in a pit-catch configuration at the 12 o'clock position using highly dispersive guided waves. The phase spectrum is used to invert for a wall thickness profile in the circumferential direction, assuming a Gaussian defect profile. An EMAT sensor design has been made to measure at the 12 o'clock position of a pipe. The concept is evaluated on measured data, showing good sizing capabilities on a variety simple defect profiles
The Relationship Between Aging and P Wave Dispersion
Directory of Open Access Journals (Sweden)
İrfan Barutçu
2009-12-01
Full Text Available Objective: Atrial fibrillation (AF, commonly observed in advanced ages, displays striking age dependent increase and increased P wave dispersion (PWD has been shown to be a predictor of AF. In this studywe sought to determine whether P wave duration and PWD increase with aging. Method and Results: Eighty-three elderly subjects (group-I mean age 75±8 years and 40 healthy young subjects (group-II, mean age 37±6 years participated in this study. 12-lead ECG recorded at a paper speed of 50mm/s was obtained from each participant. Maximum (Pmax and minimum P wave duration (Pmin was measured manually with a caliper and the difference between two values was defined asPWD. Pmax and PWD were significantly higher in group-I compared to group-II. (98±8 vs. 93±8 p=0.01, 41±12 vs. 34±13 p=0.002, respectively. Among the elderly population when those with cardiovascular disorders such as hypertension, coronary artery disease and heart failure were excluded, Pmax and PWD were still significantly higher than the young population. (Pmax: 98±7 vs. 93±7, p=0.02 and PWD: 42±11 vs. 34±13, p=0.002. Moreover, on correlation analysis a positive correlation was detected between Pmaxand PWD and aging. (r=0.29, p=0.004; r=0.30, p=0.003 respectively.Conclusion: PWD shows age dependent increase and may be a useful marker for estimation the risk of developing AF seen in advanced ages.
Metamaterials, from electromagnetic waves to water waves, bending waves and beyond
Dupont, G.
2015-08-04
We will review our recent work on metamaterials for different types of waves. Transposition of transform optics to water waves and bending waves on plates will be considered with potential applications of cloaking to water waves protection and anti-vibrating systems.
DEFF Research Database (Denmark)
Andersen, T.V.; Hilligsøe, Karen Marie; Nielsen, C.K.
2004-01-01
We demonstrate continuous-wave wavelength conversion through four-wave mixing in an endlessly single mode photonic crystal fiber. Phasematching is possible at vanishing pump power in the anomalous dispersion regime between the two zero-dispersion wavelengths. By mixing appropriate pump and idler...... line width lasers....
Simulated Obstructive Sleep Apnea Increases P-Wave Duration and P-Wave Dispersion.
Directory of Open Access Journals (Sweden)
Thomas Gaisl
Full Text Available A high P-wave duration and dispersion (Pd have been reported to be a prognostic factor for the occurrence of paroxysmal atrial fibrillation (PAF, a condition linked to obstructive sleep apnea (OSA. We tested the hypothesis of whether a short-term increase of P-wave duration and Pd can be induced by respiratory manoeuvres simulating OSA in healthy subjects and in patients with PAF.12-lead-electrocardiography (ECG was recorded continuously in 24 healthy subjects and 33 patients with PAF, while simulating obstructive apnea (Mueller manoeuvre, MM, obstructive hypopnea (inspiration through a threshold load, ITH, central apnea (AP, and during normal breathing (BL in randomized order. The P-wave duration and Pd was calculated by using dedicated software for ECG-analysis.P-wave duration and Pd significantly increased during MM and ITH compared to BL in all subjects (+13.1 ms and +13.8 ms during MM; +11.7 ms and +12.9 ms during ITH; p<0.001 for all comparisons. In MM, the increase was larger in healthy subjects when compared to patients with PAF (p<0.05.Intrathoracic pressure swings through simulated obstructive sleep apnea increase P-wave duration and Pd in healthy subjects and in patients with PAF. Our findings imply that intrathoracic pressure swings prolong the intra-atrial and inter-atrial conduction time and therefore may represent an independent trigger factor for the development for PAF.
Dispersion analysis of passive surface-wave noise generated during hydraulic-fracturing operations
Forghani-Arani, Farnoush; Willis, Mark; Snieder, Roel; Haines, Seth S.; Behura, Jyoti; Batzle, Mike; Davidson, Michael
2014-01-01
Surface-wave dispersion analysis is useful for estimating near-surface shear-wave velocity models, designing receiver arrays, and suppressing surface waves. Here, we analyze whether passive seismic noise generated during hydraulic-fracturing operations can be used to extract surface-wave dispersion characteristics. Applying seismic interferometry to noise measurements, we extract surface waves by cross-correlating several minutes of passive records; this approach is distinct from previous studies that used hours or days of passive records for cross-correlation. For comparison, we also perform dispersion analysis for an active-source array that has some receivers in common with the passive array. The active and passive data show good agreement in the dispersive character of the fundamental-mode surface-waves. For the higher mode surface waves, however, active and passive data resolve the dispersive properties at different frequency ranges. To demonstrate an application of dispersion analysis, we invert the observed surface-wave dispersion characteristics to determine the near-surface, one-dimensional shear-wave velocity.
Wave model for longitudinal dispersion: application to the laminar-flow tubular reactor
Kronberg, Alexandre E.; Benneker, A.H.; Benneker, A.H.; Westerterp, K.R.
1996-01-01
The wave model for longitudinal dispersion, published elsewhere as an alternative to the commonly used dispersed plug-flow model, is applied to the classic case of the laminar-flow tubular reactor. The results are compared in a wide range of situations to predictions by the dispersed plug-flow model
Directory of Open Access Journals (Sweden)
Liu Yongjun
2015-01-01
Full Text Available In this thesis, the influence of complete Coriolis force (the model includes both the vertical and horizontal components of Coriolis force on the dispersion relation of ocean internal-wave under background currents field are studied, it is important to the study of ocean internal waves in density-stratified ocean. We start from the control equation of sea water movement in the background of the non-traditional approximation, and the vertical velocity solution is derived where buoyancy frequency N(z gradually varies with the ocean depth z. The results show that the influence of complete Coriolis force on the dispersion relation of ocean internal-wave under background currents field is obvious, and these results provide strong evidence for the understanding of dynamic process of density stratified ocean internal waves.
Water waves generated by underwater explosion
Mehaute, Bernard Le
1996-01-01
This is the first book on explosion-generated water waves. It presents the theoretical foundations and experimental results of the generation and propagation of impulsively generated waves resulting from underwater explosions. Many of the theories and concepts presented herein are applicable to other types of water waves, in particular, tsunamis and waves generated by the fall of a meteorite. Linear and nonlinear theories, as well as experimental calibrations, are presented for cases of deep and shallow water explosions. Propagation of transient waves on dissipative, nonuniform bathymetries to
Czech Academy of Sciences Publication Activity Database
Kolínský, Petr; Málek, Jiří; Brokešová, J.
2011-01-01
Roč. 15, č. 1 (2011), s. 81-104 ISSN 1383-4649 R&D Projects: GA AV ČR IAA300460602; GA AV ČR IAA300460705; GA ČR(CZ) GA205/06/1780 Institutional research plan: CEZ:AV0Z30460519 Keywords : love waves * phase velocity dispersion * frequency-time analysis Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.326, year: 2011 www.springerlink.com/content/w3149233l60111t1/
Wang, Zhaojun; Zhou, Xiaoming
2016-12-01
The authors study the wave propagation in continuum acoustic metamaterials whose all or not all of the principal elements of the mass tensor or the scalar compressibility can be negative due to wave dispersion. Their time-domain wave characteristics are particularly investigated by the finite-difference time-domain (FDTD) method, in which algorithms for the Drude and Lorentz dispersion pertinent to acoustic metamaterials are provided necessarily. Wave propagation nature of anisotropic acoustic metamaterials with all admissible material parameters are analyzed in a general manner. It is found that anomalous negative refraction phenomena can appear in several dispersion regimes, and their unique time-domain signatures have been discovered by the FDTD modeling. It is further proposed that two different metamaterial layers with specially assigned dispersions could comprise a conjugate pair that permits wave propagation only at specific points in the wave vector space. The time-domain pulse simulation verifies that acoustic directive radiation capable of modulating radiation angle with the wave frequency can be realized with this conjugate pair. The study provides the detailed analysis of wave propagation in anisotropic and dispersive acoustic mediums, which makes a further step toward dispersion engineering and transient wave control through acoustic metamaterials.
Directory of Open Access Journals (Sweden)
Javad Rostami
2017-06-01
Full Text Available Ultrasonic guided wave is an effective tool for structural health monitoring of structures for detecting defects. In practice, guided wave signals are dispersive and contain multiple modes and noise. In the presence of overlapped wave-packets/modes and noise together with dispersion, extracting meaningful information from these signals is a challenging task. Handling such challenge requires an advanced signal processing tool. The aim of this study is to develop an effective and robust signal processing tool to deal with the complexity of guided wave signals for non-destructive testing (NDT purpose. To achieve this goal, Sparse Representation with Dispersion Based Matching Pursuit (SDMP is proposed. Addressing the three abovementioned facts that complicate signal interpretation, SDMP separates overlapped modes and demonstrates good performance against noise with maximum sparsity. With the dispersion taken into account, an overc-omplete and redundant dictionary of basic atoms based on a narrowband excitation signal is designed. As Finite Element Method (FEM was used to predict the form of wave packets propagating along structures, these atoms have the maximum resemblance with real guided wave signals. SDMP operates in two stages. In the first stage, similar to Matching Pursuit (MP, the approximation improves by adding, a single atom to the solution set at each iteration. However, atom selection criterion of SDMP utilizes the time localization of guided wave reflections that makes a portion of overlapped wave-packets to be composed mainly of a single echo. In the second stage of the algorithm, the selected atoms that have frequency inconsistency with the excitation signal are discarded. This increases the sparsity of the final representation. Meanwhile, leading to accurate approximation, as discarded atoms are not representing guided wave reflections, it simplifies extracting physical meanings for defect detection purpose. To verify the
Rostami, Javad; Tse, Peter W T; Fang, Zhou
2017-06-06
Ultrasonic guided wave is an effective tool for structural health monitoring of structures for detecting defects. In practice, guided wave signals are dispersive and contain multiple modes and noise. In the presence of overlapped wave-packets/modes and noise together with dispersion, extracting meaningful information from these signals is a challenging task. Handling such challenge requires an advanced signal processing tool. The aim of this study is to develop an effective and robust signal processing tool to deal with the complexity of guided wave signals for non-destructive testing (NDT) purpose. To achieve this goal, Sparse Representation with Dispersion Based Matching Pursuit (SDMP) is proposed. Addressing the three abovementioned facts that complicate signal interpretation, SDMP separates overlapped modes and demonstrates good performance against noise with maximum sparsity. With the dispersion taken into account, an overc-omplete and redundant dictionary of basic atoms based on a narrowband excitation signal is designed. As Finite Element Method (FEM) was used to predict the form of wave packets propagating along structures, these atoms have the maximum resemblance with real guided wave signals. SDMP operates in two stages. In the first stage, similar to Matching Pursuit (MP), the approximation improves by adding, a single atom to the solution set at each iteration. However, atom selection criterion of SDMP utilizes the time localization of guided wave reflections that makes a portion of overlapped wave-packets to be composed mainly of a single echo. In the second stage of the algorithm, the selected atoms that have frequency inconsistency with the excitation signal are discarded. This increases the sparsity of the final representation. Meanwhile, leading to accurate approximation, as discarded atoms are not representing guided wave reflections, it simplifies extracting physical meanings for defect detection purpose. To verify the effectiveness of SDMP for
Observation of spin-wave dispersion in Nd-Fe-B magnets using neutron Brillouin scattering
International Nuclear Information System (INIS)
Ono, K.; Inami, N.; Saito, K.; Takeichi, Y.; Kawana, D.; Yokoo, T.; Itoh, S.; Yano, M.; Shoji, T.; Manabe, A.; Kato, A.; Kaneko, Y.
2014-01-01
The low-energy spin-wave dispersion in polycrystalline Nd-Fe-B magnets was observed using neutron Brillouin scattering (NBS). Low-energy spin-wave excitations for the lowest acoustic spin-wave mode were clearly observed. From the spin-wave dispersion, we were able to determine the spin-wave stiffness constant D sw (100.0 ± 4.9 meV.Å 2 ) and the exchange stiffness constant A (6.6 ± 0.3 pJ/m)
Strongly nonlinear evolution of low-frequency wave packets in a dispersive plasma
Vasquez, Bernard J.
1993-01-01
The evolution of strongly nonlinear, strongly modulated wave packets is investigated in a dispersive plasma using a hybrid numerical code. These wave packets have amplitudes exceeding the strength of the external magnetic field, along which they propagate. Alfven (left helicity) wave packets show strong steepening for p Schrodinger (DNLS) equation.
Probing Interfacial Water on Nanodiamonds in Colloidal Dispersion.
Petit, Tristan; Yuzawa, Hayato; Nagasaka, Masanari; Yamanoi, Ryoko; Osawa, Eiji; Kosugi, Nobuhiro; Aziz, Emad F
2015-08-06
The structure of interfacial water layers around nanoparticles dispersed in an aqueous environment may have a significant impact on their reactivity and on their interaction with biological species. Using transmission soft X-ray absorption spectroscopy in liquid, we demonstrate that the unoccupied electronic states of oxygen atoms from water molecules in aqueous colloidal dispersions of nanodiamonds have a different signature than bulk water. X-ray absorption spectroscopy can thus probe interfacial water molecules in colloidal dispersions. The impacts of nanodiamond surface chemistry and concentration on interfacial water electronic signature are discussed.
Plasma treatment of diamond nanoparticles for dispersion improvement in water
International Nuclear Information System (INIS)
Yu Qingsong; Kim, Young Jo; Ma, Hongbin
2006-01-01
Low-temperature plasmas of methane and oxygen mixtures were used to treat diamond nanoparticles to modify their surface characteristics and thus improve their dispersion capability in water. It was found that the plasma treatment significantly reduced water contact angle of diamond nanoparticles and thus rendered the nanoparticles with strong water affinity for dispersion enhancement in polar media such as water. Surface analysis using Fourier transform infrared spectroscopy confirmed that polar groups were imparted on nanoparticle surfaces. As a result, improved suspension stability was observed with plasma treated nanoparticles when dispersed in water
Water Waves The Mathematical Theory with Applications
Stoker, J J
2011-01-01
Offers an integrated account of the mathematical hypothesis of wave motion in liquids with a free surface, subjected to gravitational and other forces. Uses both potential and linear wave equation theories, together with applications such as the Laplace and Fourier transform methods, conformal mapping and complex variable techniques in general or integral equations, methods employing a Green's function. Coverage includes fundamental hydrodynamics, waves on sloping beaches, problems involving waves in shallow water, the motion of ships and much more.
Equatorial Magnetohydrodynamic Shallow Water Waves in the Solar Tachocline
Zaqarashvili, Teimuraz
2018-03-01
The influence of a toroidal magnetic field on the dynamics of shallow water waves in the solar tachocline is studied. A sub-adiabatic temperature gradient in the upper overshoot layer of the tachocline causes significant reduction of surface gravity speed, which leads to trapping of the waves near the equator and to an increase of the Rossby wave period up to the timescale of solar cycles. Dispersion relations of all equatorial magnetohydrodynamic (MHD) shallow water waves are obtained in the upper tachocline conditions and solved analytically and numerically. It is found that the toroidal magnetic field splits equatorial Rossby and Rossby-gravity waves into fast and slow modes. For a reasonable value of reduced gravity, global equatorial fast magneto-Rossby waves (with the spatial scale of equatorial extent) have a periodicity of 11 years, matching the timescale of activity cycles. The solutions are confined around the equator between latitudes ±20°–40°, coinciding with sunspot activity belts. Equatorial slow magneto-Rossby waves have a periodicity of 90–100 yr, resembling the observed long-term modulation of cycle strength, i.e., the Gleissberg cycle. Equatorial magneto-Kelvin and slow magneto-Rossby-gravity waves have the periodicity of 1–2 years and may correspond to observed annual and quasi-biennial oscillations. Equatorial fast magneto-Rossby-gravity and magneto-inertia-gravity waves have periods of hundreds of days and might be responsible for observed Rieger-type periodicity. Consequently, the equatorial MHD shallow water waves in the upper overshoot tachocline may capture all timescales of observed variations in solar activity, but detailed analytical and numerical studies are necessary to make a firm conclusion toward the connection of the waves to the solar dynamo.
Li, C.; Miller, J.; Wang, J.; Koley, S. S.; Katz, J.
2017-10-01
This laboratory experimental study investigates the temporal evolution of the size distribution of subsurface oil droplets generated as breaking waves entrain oil slicks. The measurements are performed for varying wave energy, as well as large variations in oil viscosity and oil-water interfacial tension, the latter achieved by premixing the oil with dispersant. In situ measurements using digital inline holography at two magnifications are applied for measuring the droplet sizes and Particle Image Velocimetry (PIV) for determining the temporal evolution of turbulence after wave breaking. All early (2-10 s) size distributions have two distinct size ranges with different slopes. For low dispersant to oil ratios (DOR), the transition between them could be predicted based on a turbulent Weber (We) number in the 2-4 range, suggesting that turbulence plays an important role. For smaller droplets, all the number size distributions have power of about -2.1, and for larger droplets, the power decreases well below -3. The measured steepening of the size distribution over time is predicted by a simple model involving buoyant rise and turbulence dispersion. Conversely, for DOR 1:100 and 1:25 oils, the diameter of slope transition decreases from ˜1 mm to 46 and 14 µm, respectively, much faster than the We-based prediction, and the size distribution steepens with increasing DOR. Furthermore, the concentration of micron-sized droplets of DOR 1:25 oil increases for the first 10 min after entrainment. These phenomena are presumably caused by the observed formation and breakup oil microthreads associated with tip streaming.
Directory of Open Access Journals (Sweden)
S.-D. Zhang
2000-10-01
Full Text Available By analyzing the results of the numerical simulations of nonlinear propagation of three Gaussian gravity-wave packets in isothermal atmosphere individually, the nonlinear effects on the characteristics of gravity waves are studied quantitatively. The analyses show that during the nonlinear propagation of gravity wave packets the mean flows are accelerated and the vertical wavelengths show clear reduction due to nonlinearity. On the other hand, though nonlinear effects exist, the time variations of the frequencies of gravity wave packets are close to those derived from the dispersion relation and the amplitude and phase relations of wave-associated disturbance components are consistent with the predictions of the polarization relation of gravity waves. This indicates that the dispersion and polarization relations based on the linear gravity wave theory can be applied extensively in the nonlinear region.Key words: Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides
Lecture Notes for the Course in Water Wave Mechanics
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Frigaard, Peter; Burcharth, Hans F.
knowledge. The course is at the same time an introduction to the course in coastal hydraulics on the 8th semester. The notes cover the first four lectures of the course: • Definitions. Governing equations and boundary conditions. • Derivation of velocity potential for linear waves. Dispersion relationship......The present notes are written for the course in water wave mechanics given on the 7th semester of the education in civil engineering at Aalborg University. The prerequisites for the course are the course in fluid dynamics also given on the 7th semester and some basic mathematical and physical...
Utilization of multimode Love wave dispersion curve inversion for geotechnical site investigation
International Nuclear Information System (INIS)
Hamimu, La; Nawawi, Mohd; Safani, Jamhir
2011-01-01
Inversion codes based on a modified genetic algorithm (GA) have been developed to invert multimode Love wave dispersion curves. The multimode Love wave dispersion curves were synthesized from the profile representing shear-wave velocity reversal using a full SH (shear horizontal) waveform. In this study, we used a frequency–slowness transform to extract the dispersion curve from the full SH waveform. Dispersion curves overlain in dispersion images were picked manually. These curves were then inverted using the modified GA. To assess the accuracy of the inversion results, differences between the true and inverted shear-wave velocity profile were quantified in terms of shear-wave velocity and thickness errors, E S and E H . Our numerical modeling showed that the inversion of multimode dispersion curves can significantly provide the better assessment of a shear-wave velocity structure, especially with a velocity reversal profile at typical geotechnical site investigations. This approach has been applied on field data acquired at a site in Niigata prefecture, Japan. In these field data, our inversion results show good agreement between the calculated and experimental dispersion curves and accurately detect low velocity layer targets
Modelling and simulation of surface water waves
van Groesen, Embrecht W.C.; Westhuis, J.H.
2002-01-01
The evolution of waves on the surface of a layer of fluid is governed by non-linear effects from surface deformations and dispersive effects from the interaction with the interior fluid motion. Several simulation tools are described in this paper and compared with real life experiments in large
Opthof, Tobias; Coronel, Ruben; Wilms-Schopman, Francien J. G.; Plotnikov, Alexei N.; Shlapakova, Iryna N.; Danilo, Peter; Rosen, Michael R.; Janse, Michiel J.
2007-01-01
BACKGROUND: The concept that the interval between the peak (T(peak)) and the end (T(end)) of the T wave (T(p-e)) is a measure of transmural dispersion of repolarization time is widely accepted but has not been tested rigorously by transmural mapping of the intact heart. OBJECTIVES: The purpose of
A rapid, fully non-contact, hybrid system for generating Lamb wave dispersion curves.
Harb, M S; Yuan, F G
2015-08-01
A rapid, fully non-contact, hybrid system which encompasses an air-coupled transducer (ACT) and a laser Doppler vibrometer (LDV) is presented for profiling A0 Lamb wave dispersion of an isotropic aluminum plate. The ACT generates ultrasonic pressure incident upon the surface of the plate. The pressure waves are partially refracted into the plate. The LDV is employed to measure the out-of-plane velocity of the excited Lamb wave mode at some distances where the Lamb waves are formed in the plate. The influence of the ACT angle of incidence on Lamb wave excitation is investigated and Snell's law is used to directly compute Lamb wave dispersion curves including phase and group velocity dispersion curves in aluminum plates from incident angles found to generate optimal A0 Lamb wave mode. The measured curves are compared to results obtained from a two-dimensional (2-D) Fast Fourier transform (FFT), Morlet wavelet transform (MWT) and theoretical predictions. It was concluded that the experimental results obtained using Snell's law concept are well in accordance with the theoretical solutions. The high degree of accuracy in the measured data with the theoretical results proved a high sensitivity of the air-coupled and laser ultrasound in characterizing Lamb wave dispersion in plate-like structures. The proposed non-contact hybrid system can effectively characterize the dispersive relation without knowledge of neither the materials characteristics nor the mathematical model. Copyright © 2015 Elsevier B.V. All rights reserved.
National Research Council Canada - National Science Library
Julia, Jordi; Ammon, Charles J; Herrimann, Robert B
2006-01-01
.... Receiver functions are primarily sensitive to shear-wave velocity contrasts and vertical travel times and surface-wave dispersion measurements are sensitive to vertical shear-wave velocity averages...
National Research Council Canada - National Science Library
Herrmann, Robert B; Julia, Jordi; Ammon, Charles J
2007-01-01
.... Receiver functions are primarily sensitive to shear-wave velocity contrast and vertical travel times and surface-wave dispersion measurements are sensitive to vertical shear-wave velocity averages...
Lyapunov exponents and particle dispersion in drift wave turbulence
DEFF Research Database (Denmark)
Pedersen, T.S.; Michelsen, Poul; Juul Rasmussen, J.
1996-01-01
characteristic inverse time scales of the turbulence such as the linear growth rate and Lagrangian inverse time scales obtained by tracking virtual fluid particles. The results show a correlation between lambda(1) and the relative dispersion exponent, lambda(p), as well as to the inverse Lagrangian integral time...... contribute most to the relative dispersion of particles. (C) 1996 American Institute of Physics....
Traveling waves in a delayed SIR model with nonlocal dispersal and nonlinear incidence
Zhang, Shou-Peng; Yang, Yun-Rui; Zhou, Yong-Hui
2018-01-01
This paper is concerned with traveling waves of a delayed SIR model with nonlocal dispersal and a general nonlinear incidence. The existence and nonexistence of traveling waves of the system are established respectively by Schauder's fixed point theorem and two-sided Laplace transform. It is also shown that the spread speed c is influenced by the dispersal rate of the infected individuals and the delay τ.
Turbulence beneath finite amplitude water waves
Energy Technology Data Exchange (ETDEWEB)
Beya, J.F. [Universidad de Valparaiso, Escuela de Ingenieria Civil Oceanica, Facultad de Ingenieria, Valparaiso (Chile); The University of New South Wales, Water Research Laboratory, School of Civil and Environmental Engineering, Sydney, NSW (Australia); Peirson, W.L. [The University of New South Wales, Water Research Laboratory, School of Civil and Environmental Engineering, Sydney, NSW (Australia); Banner, M.L. [The University of New South Wales, School of Mathematics and Statistics, Sydney, NSW (Australia)
2012-05-15
Babanin and Haus (J Phys Oceanogr 39:2675-2679, 2009) recently presented evidence of near-surface turbulence generated below steep non-breaking deep-water waves. They proposed a threshold wave parameter a {sup 2}{omega}/{nu} = 3,000 for the spontaneous occurrence of turbulence beneath surface waves. This is in contrast to conventional understanding that irrotational wave theories provide a good approximation of non-wind-forced wave behaviour as validated by classical experiments. Many laboratory wave experiments were carried out in the early 1960s (e.g. Wiegel 1964). In those experiments, no evidence of turbulence was reported, and steep waves behaved as predicted by the high-order irrotational wave theories within the accuracy of the theories and experimental techniques at the time. This contribution describes flow visualisation experiments for steep non-breaking waves using conventional dye techniques in the wave boundary layer extending above the wave trough level. The measurements showed no evidence of turbulent mixing up to a value of a {sup 2}{omega}/{nu} = 7,000 at which breaking commenced in these experiments. These present findings are in accord with the conventional understandings of wave behaviour. (orig.)
Determining the near-surface current profile from measurements of the wave dispersion relation
Smeltzer, Benjamin; Maxwell, Peter; Aesøy, Eirik; Ellingsen, Simen
2017-11-01
The current-induced Doppler shifts of waves can yield information about the background mean flow, providing an attractive method of inferring the current profile in the upper layer of the ocean. We present measurements of waves propagating on shear currents in a laboratory water channel, as well as theoretical investigations of inversion techniques for determining the vertical current structure. Spatial and temporal measurements of the free surface profile obtained using a synthetic Schlieren method are analyzed to determine the wave dispersion relation and Doppler shifts as a function of wavelength. The vertical current profile can then be inferred from the Doppler shifts using an inversion algorithm. Most existing algorithms rely on a priori assumptions of the shape of the current profile, and developing a method that uses less stringent assumptions is a focus of this study, allowing for measurement of more general current profiles. The accuracy of current inversion algorithms are evaluated by comparison to measurements of the mean flow profile from particle image velocimetry (PIV), and a discussion of the sensitivity to errors in the Doppler shifts is presented.
Coherent structural trapping through wave packet dispersion during photoinduced spin state switching
DEFF Research Database (Denmark)
Lemke, Henrik T.; Kjær, Kasper Skov; Hartsock, Robert
2017-01-01
is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic...
Dispersion relation for Bernstein waves using a new transformation for the modified Bessel function
International Nuclear Information System (INIS)
Sato, Masumi
1985-01-01
Aitken's or Shanks' transformation of the exponent-modified Bessel function produces better approximations. Dispersion relations for the hybrid and Bernstein waves using these provide better thermal and parallel wavenumber corrections. They also predict more closely the evolution and mode-conversion of these waves. (author)
Preconcentration of uranium in water samples using dispersive ...
African Journals Online (AJOL)
Preconcentration of uranium in water samples using dispersive liquid-liquid micro- extraction coupled with solid-phase extraction and determination with inductively coupled plasma-optical emission spectrometry.
Topological helical edge states in water waves over a topographical bottom
Wu, Shi qiao
2017-11-27
We present the discovery of topologically protected helical edge states in water wave systems, which are realized in water wave propagating over a topographical bottom whose height is modulated periodically in a two-dimensional triangular pattern. We develop an effective Hamiltonian to characterize the dispersion relation and use spin Chern numbers to classify the topology. Through full wave simulations we unambiguously demonstrate the robustness of the helical edge states which are immune to defects and disorders so that the backscattering loss is significantly reduced. A spin splitter is designed for water wave systems, where helical edge states with different spin orientations are spatially separated with each other, and potential applications are discussed.
High-order Boussinesq-type modelling of nonlinear wave phenomena in deep and shallow water
DEFF Research Database (Denmark)
Madsen, Per A.; Fuhrman, David R.
2010-01-01
In this work, we start with a review of the development of Boussinesq theory for water waves covering the period from 1872 to date. Previous reviews have been given by Dingemans,1 Kirby,2,3 and Madsen & Schäffer.4 Next, we present our most recent high-order Boussinesq-type formulation valid...... for fully nonlinear and highly dispersive waves traveling over a rapidly varying bathymetry. Finally, we cover applications of this Boussinesq model, and we study a number of nonlinear wave phenomena in deep and shallow water. These include (1) Kinematics in highly nonlinear progressive deep-water waves; (2...
Liu, Shuyong; Jiang, J.; Parr, Nicola
2016-09-01
Water loss in distribution systems is a global problem for the water industry and governments. According to the international water supply association (IWSA), as a result of leaks from distribution pipes, 20% to 30% of water is lost while in transit from treatment plants to consumers. Although governments have tried to push the water industry to reduce the water leaks, a lot of experts have pointed out that a wide use of plastic pipes instead of metal pipes in recent years has caused difficulties in the detection of leaks using current acoustic technology. Leaks from plastic pipes are much quieter than traditional metal pipes and comparing to metal pipes the plastic pipes have very different coupling characteristics with soil, water and surrounding structures, such as other pipes, road surface and building foundations. The dispersion characteristics of wave propagating along buried plastic pipes are investigated in this paper using finite element and boundary element based models. Both empty and water- filled pipes were considered. Influences from nearby pipes and building foundations were carefully studied. The results showed that soil condition and nearby structures have significant influences on the dispersion characteristics of wave propagating along buried plastic pipes.
Love wave dispersion in anisotropic visco-elastic medium
Directory of Open Access Journals (Sweden)
G. GIR SUBHASH
1978-06-01
Full Text Available The paper presents a study on Love wave propagation in a anisotropic
visco-elastic layer overlying a rigid half space. The characteristic frequency
equation is obtained and the variation of the wave number with frequency
under the combined effect of visco-elasticity and anisotropy is analysed
in detail. The results show that the effect of visco-elasticity on the
wave is similar to that of anisotropy as long as the coefficient of anisotropy
is less than unity.
Propagation Dynamics of Nonspreading Cosine-Gauss Water-Wave Pulses.
Fu, Shenhe; Tsur, Yuval; Zhou, Jianying; Shemer, Lev; Arie, Ady
2015-12-18
Linear gravity water waves are highly dispersive; therefore, the spreading of initially short wave trains characterizes water surface waves, and is a universal property of a dispersive medium. Only if there is sufficient nonlinearity does this envelope admit solitary solutions which do not spread and remain in fixed forms. Here, in contrast to the nonlinear localized wave packets, we present both theoretically and experimentally a new type of linearly nondispersive water wave, having a cosine-Gauss envelope, as well as its higher-order Hermite cosine-Gauss variations. We show that these waves preserve their width despite the inherent dispersion while propagating in an 18-m wave tank, accompanied by a slowly varying carrier-envelope phase. These wave packets exhibit self-healing; i.e., they are restored after bypassing an obstacle. We further demonstrate that these nondispersive waves are robust to weakly nonlinear perturbations. In the strong nonlinear regime, symmetry breaking of these waves is observed, but their cosine-Gauss shapes are still approximately preserved during propagation.
Directory of Open Access Journals (Sweden)
Paul C. Rivera
2006-01-01
Full Text Available A common approach in modeling the generation and propagation of tsunami is based on the assumption of a kinematic vertical displacement of ocean water that is analogous to the ocean bottom displacement during a submarine earthquake and the use of a non-dispersive long-wave model to simulate its physical transformation as it radiates outward from the source region. In this study, a new generation mechanism and the use of a highly-dispersive wave model to simulate tsunami inception, propagation and transformation are proposed. The new generation model assumes that transient ground motion during the earthquake can accelerate horizontal currents with opposing directions near the fault line whose successive convergence and divergence generate a series of potentially destructive oceanic waves. The new dynamic model incorporates the effects of earthquake moment magnitude, ocean compressibility through the buoyancy frequency, the effects of focal and water depths, and the orientation of ruptured fault line in the tsunami magnitude and directivity.For tsunami wave simulation, the nonlinear momentum-based wave model includes important wave propagation and transformation mechanisms such as refraction, diffraction, shoaling, partial reflection and transmission, back-scattering, frequency dispersion, and resonant wave-wave interaction. Using this model and a coarse-resolution bathymetry, the new mechanism is tested for the Indian Ocean tsunami of December 26, 2004. A new flooding and drying algorithm that consider waves coming from every direction is also proposed for simulation of inundation of low-lying coastal regions.It is shown in the present study that with the proposed generation model, the observed features of the Asian tsunami such as the initial drying of areas east of the source region and the initial flooding of western coasts are correctly simulated. The formation of a series of tsunami waves with periods and lengths comparable to observations
Dispersion of axially symmetric waves in fluid-filled cylindrical shells
DEFF Research Database (Denmark)
Bao, X.L.; Überall, H.; Raju, P. K.
2000-01-01
Acoustic waves normally incident on an elastic cylindrical shell can cause the excitation of circumferential elastic waves on the shell. These shells may be empty and fluid immersed, or fluid filled in an ambient medium of air, or doubly fluid loaded inside and out. Circumferential waves on such ......Acoustic waves normally incident on an elastic cylindrical shell can cause the excitation of circumferential elastic waves on the shell. These shells may be empty and fluid immersed, or fluid filled in an ambient medium of air, or doubly fluid loaded inside and out. Circumferential waves......, 317 (1972)]. We have extended the work of Kumar to the case of fluid-filled aluminum shells and steel shells imbedded in air. These cases demonstrate the existence of circumferential waves traveling in the filler fluid, exhibiting a certain simplicity of the dispersion curves of these waves...
International Nuclear Information System (INIS)
Cohen, B.I.
1987-01-01
The existence of compact dispersion relations for parametric instabilities of coherent electromagnetic waves in magnetized plasmas is addressed here. In general, comprehensive dispersion relations for parametric instabilities in unmagnetized plasmas become more complicated in the presence of an applied time-independent magnetic field. This is demonstrated with a fluid perturbation theory. A compact dispersion relation for parametric instabilities in unmagnetized plasma is heuristically extended here to the case of a magnetized plasma. This dispersion relation gives the correct results in a variety of circumstances of interest in considering electron cyclotron heating applications
Shallow water sound propagation with surface waves.
Tindle, Chris T; Deane, Grant B
2005-05-01
The theory of wavefront modeling in underwater acoustics is extended to allow rapid range dependence of the boundaries such as occurs in shallow water with surface waves. The theory allows for multiple reflections at surface and bottom as well as focusing and defocusing due to reflection from surface waves. The phase and amplitude of the field are calculated directly and used to model pulse propagation in the time domain. Pulse waveforms are obtained directly for all wavefront arrivals including both insonified and shadow regions near caustics. Calculated waveforms agree well with a reference solution and data obtained in a near-shore shallow water experiment with surface waves over a sloping bottom.
Observation of Self-Cavitating Envelope Dispersive Shock Waves in Yttrium Iron Garnet Thin Films
Janantha, P. A. Praveen; Sprenger, Patrick; Hoefer, Mark A.; Wu, Mingzhong
2017-07-01
The formation and properties of envelope dispersive shock wave (DSW) excitations from repulsive nonlinear waves in a magnetic film are studied. Experiments involve the excitation of a spin wave step pulse in a low-loss magnetic Y3Fe5O12 thin film strip, in which the spin wave amplitude increases rapidly, realizing the canonical Riemann problem of shock theory. Under certain conditions, the envelope of the spin wave pulse evolves into a DSW that consists of an expanding train of nonlinear oscillations with amplitudes increasing from front to back, terminated by a black soliton. The onset of DSW self-cavitation, indicated by a point of zero power and a concomitant 180° phase jump, is observed for sufficiently large steps, indicative of the bidirectional dispersive hydrodynamic nature of the DSW. The experimental observations are interpreted with theory and simulations of the nonlinear Schrödinger equation.
Modulation theory, dispersive shock waves and Gerald Beresford Whitham
Minzoni, A. A.; Smyth, Noel F.
2016-10-01
Gerald Beresford (GB) Whitham, FRS, (13th December, 1927-26th January, 2014) was one of the leading applied mathematicians of the twentieth century whose work over forty years had a profound, formative impact on research on wave motion across a broad range of areas. Many of the ideas and techniques he developed have now become the standard tools used to analyse and understand wave motion, as the papers of this special issue of Physica D testify. Many of the techniques pioneered by GB Whitham have spread beyond wave propagation into other applied mathematics areas, such as reaction-diffusion, and even into theoretical physics and pure mathematics, in which Whitham modulation theory is an active area of research. GB Whitham's classic textbook Linear and Nonlinear Waves, published in 1974, is still the standard reference for the applied mathematics of wave motion. In honour of his scientific achievements, GB Whitham was elected a Fellow of the American Academy of Arts and Sciences in 1959 and a Fellow of the Royal Society in 1965. He was awarded the Norbert Wiener Prize for Applied Mathematics in 1980.
Measurement of the dispersion and attenuation of cylindrical ultrasonic guided waves in long bone.
Ta, Dean; Wang, Weiqi; Wang, YuanYuan; Le, Lawrence H; Zhou, Yuqing
2009-04-01
Osteoporotic bones are likely to have less cortical bone than healthy bones. The velocities of guided waves propagating in a long cylindrical bone are very sensitive to bone properties and cortical thickness (CTh). This work studies the dispersion and attenuation of ultrasonic guided waves propagating in long cylindrical bone. A hollow cylinder filled with a viscous liquid was used to model the long bone and then to calculate the theoretical phase and group velocities, as well as the attenuation of the waves. The generation and selection of guided wave modes were based on theoretical dispersive curves. The phase velocity and attenuation of cylindrical guided wave modes, such as L(0,1), L(0,2) and L(0,3), were measured in bovine tibia using angled beam transducers at various propagation distances ranging from 75 to 160 mm. The results showed that the phase velocity of the L(0,2) guided wave mode decreased with an increase in CTh. The attenuation of the low cylindrical guided wave modes was a nonlinear function that increased with propagation distance and mode order. The L(0,2) mode had a different attenuation for each CTh. The experimental results were in good agreement with the predicted values. Cylindrical guided waves of low-frequency and low-order have been shown to demonstrate more dispersion and less attenuation and should, therefore, be used to evaluate long bone.
Samajdar, Anuradha; Arun, K. G.
2017-11-01
Certain alternative theories of gravity predict that gravitational waves will disperse as they travel from the source to the observer. The recent binary black hole observations by Advanced-LIGO have set limits on a modified dispersion relation from the constraints on their effects on gravitational-wave propagation. Using an identical modified dispersion, of the form E2=p2c2+A pαcα , where A denotes the magnitude of dispersion and E and p are the energy and momentum of the gravitational wave, we estimate the projected constraints on the modified dispersion from observations of compact binary mergers by third-generation ground-based detectors such as the Einstein Telescope and Cosmic Explorer as well as the space-based detector Laser Interferometer Space Antenna. We find that third-generation detectors would bound dispersion of gravitational waves much better than their second-generation counterparts. The Laser Interferometer Space Antenna, with its extremely good low-frequency sensitivity, would place stronger constraints than the ground-based detectors for α ≤1 , whereas for α >1 , the bounds are weaker. We also study the effect of the spins of the compact binary constituents on the bounds.
Dispersion durations of P-wave and QT interval in children treated with a ketogenic diet.
Doksöz, Önder; Güzel, Orkide; Yılmaz, Ünsal; Işgüder, Rana; Çeleğen, Kübra; Meşe, Timur
2014-04-01
Limited data are available on the effects of a ketogenic diet on dispersion duration of P-wave and QT-interval measures in children. We searched for the changes in these measures with serial electrocardiograms in patients treated with a ketogenic diet. Twenty-five drug-resistant patients with epilepsy treated with a ketogenic diet were enrolled in this study. Electrocardiography was performed in all patients before the beginning and at the sixth month after implementation of the ketogenic diet. Heart rate, maximum and minimum P-wave duration, P-wave dispersion, and maximum and minimum corrected QT interval and QT dispersion were manually measured from the 12-lead surface electrocardiogram. Minimum and maximum corrected QT and QT dispersion measurements showed nonsignificant increase at month 6 compared with baseline values. Other previously mentioned electrocardiogram parameters also showed no significant changes. A ketogenic diet of 6 months' duration has no significant effect on electrocardiogram parameters in children. Further studies with larger samples and longer duration of follow-up are needed to clarify the effects of ketogenic diet on P-wave dispersion and corrected QT and QT dispersion. Copyright © 2014 Elsevier Inc. All rights reserved.
Relation of wave energy and momentum with the plasma dispersion relation in an inhomogeneous plasma
International Nuclear Information System (INIS)
Berk, H.L.; Pfirsch, D.
1988-01-01
The expressions for wave energy and angular momentum commonly used in homogeneous and near-homogeneous media is generalized to inhomogeneous media governed by a nonlocal conductivity tensor. The expression for wave energy applies to linear excitations in an arbitrary three-dimensional equilibrium, while the expression for angular momentum applies to linear excitations of azimuthally symmetric equilibria. The wave energy E-script/sub wave/ is interpreted as the energy transferred from linear external sources to the plasma if there is no dissipation. With dissipation, such a simple interpretation is lacking as energy is also thermally absorbed. However, for azimuthally symmetric equilibria, the expression for the wave energy in a frame rotating with a frequency ω can be unambiguously separated from thermal energy. This expression is given by E-script/sub wave/ -ωL/sub wave/ l, where L/sub wave/ is the wave angular momentum defined in the text and l the azimuthal wavenumber and it is closely related to the real part of a dispersion relation for marginal stability. The imaginary part of the dispersion is closely related to the energy input into a system. Another useful quantity discussed is the impedance form, which can be used for three-dimensional equilibrium without an ignorable coordinate and the expression is closely related to the wave impedance used in antenna theory. Applications to stability theory are also discussed
Nonlinear gravity-capillary water waves
Jiang, Lei
1997-11-01
Two-dimensional gravity-capillary water waves are analyzed using a fully-nonlinear Cauchy-integral method with spectral accuracy. Standing waves are generated in experiments by vertical oscillation and measured by a non-intrusive optical system along with a wave probe. Nonlinear resonance of standing waves with non-wetting contact line effects are discussed in detail. Amplitude- dependent wave frequency and damping in a glass rectangular tank suggest a new contact-line model. A new type of sideband resonance due to modulated forcing is discovered and explained by weakly-nonlinear analysis. This analytical solution is verified by our numerical simulations and physical experiments. New standing waveforms with dimpled or sharp crests are observed in experiments and computations. These new waveforms have strong symmetry breaking in time as a result of nonlinear harmonic interaction. With increasing wave steepness, steep standing waves experience period- tripling with three distinct forms: sharp crest, dimpled or flat crest, and round crest. Significant breaking occurs in the sharp-crest mode and the dimpled-crest mode. Using a complex-demodulation technique, I find that these breaking waves are related to the same 1:2 internal resonance (harmonic interaction) that causes the new steep waveforms. Novel approaches are used to estimate the (breaking and non-breaking) wave dissipation in steep and breaking standing waves. The breaking events (spray, air entrainment, and plunging) approximately double the wave dissipation. Weak capillarity significantly affects the limiting wave height and the form of standing waves, as demonstrated by both computations and small-scale Faraday-wave experiments. Capillary ripple generation on traveling waves is shown to be significant even at moderate wave steepness. The ubiquitous horizontal asymmetry of traveling waves is shown to be critical to capillary ripple generation. Two new asymmetric modes are identified and are shown to have an
Wave power potential in Malaysian territorial waters
Asmida Mohd Nasir, Nor; Maulud, Khairul Nizam Abdul
2016-06-01
Up until today, Malaysia has used renewable energy technology such as biomass, solar and hydro energy for power generation and co-generation in palm oil industries and also for the generation of electricity, yet, we are still far behind other countries which have started to optimize waves for similar production. Wave power is a renewable energy (RE) transported by ocean waves. It is very eco-friendly and is easily reachable. This paper presents an assessment of wave power potential in Malaysian territorial waters including waters of Sabah and Sarawak. In this research, data from Malaysia Meteorology Department (MetMalaysia) is used and is supported by a satellite imaginary obtained from National Aeronautics and Space Administration (NASA) and Malaysia Remote Sensing Agency (ARSM) within the time range of the year 1992 until 2007. There were two types of analyses conducted which were mask analysis and comparative analysis. Mask analysis of a research area is the analysis conducted to filter restricted and sensitive areas. Meanwhile, comparative analysis is an analysis conducted to determine the most potential area for wave power generation. Four comparative analyses which have been carried out were wave power analysis, comparative analysis of wave energy power with the sea topography, hot-spot area analysis and comparative analysis of wave energy with the wind speed. These four analyses underwent clipping processes using Geographic Information System (GIS) to obtain the final result. At the end of this research, the most suitable area to develop a wave energy converter was found, which is in the waters of Terengganu and Sarawak. Besides that, it was concluded that the average potential energy that can be generated in Malaysian territorial waters is between 2.8kW/m to 8.6kW/m.
Dispersion of Love Waves in a Composite Layer Resting on Monoclinic Half-Space
Directory of Open Access Journals (Sweden)
Sukumar Saha
2011-01-01
Full Text Available Dispersion of Love waves is studied in a fibre-reinforced layer resting on monoclinic half-space. The wave velocity equation has been obtained for a fiber-reinforced layer resting on monoclinic half space. Shear wave velocity ratio curve for Love waves has been shown graphically for fibre reinforced material layer resting on various monoclinic half-spaces. In a similar way, shear wave velocity ratio curve for Love waves has been plotted for an isotropic layer resting on various monoclinic half-spaces. From these curves, it has been observed that the curves are of similar type for a fibre reinforced layer resting on monoclinic half-spaces, and the shear wave velocity ratio ranges from 1.14 to 7.19, whereas for the case isotropic layer, this range varies from 1.0 to 2.19.
Creation evidence of the second non-dispersive Zakharenko wave ...
Indian Academy of Sciences (India)
sion relations of dependence of the energy E on the quasi-impulse p = kh, where k is the wave .... and the heater H represents an Au thin film pulsed heater. ..... electric field. It is well-known that there are two kinds of three-phonon–phonon processes (3pp) in the superfluid helium-II that are responsible for second sound.
Fundamental modes of new dispersive SH-waves in ...
Indian Academy of Sciences (India)
sity functional theory, Ju and Guo [50] have investigated magnetic ordering dependence ... Theory and results. It is very important to know the suitable propagation directions of the shear horizontal. (SH) elastic waves when they can be coupled with both the electrical ..... [3] M Fiebig, V V Pavlov and R V Pisarev, J. Opt. Soc.
Evolution of Modulated Dispersive Electron Waves in a Plasma
DEFF Research Database (Denmark)
Sugai, H.; Lynov, Jens-Peter; Michelsen, Poul
1979-01-01
the wavepacket, (ii) the number of oscillations in the temporally observed packet is not identical with that in the spatially observed packet and (iii) continuously modulated waves exhibit recurrence of modulation. The experimental results agree with both a simple analysis based on the Schrodinger equation...
Dispersive surface waves along partially saturated porous media
Chao, G.; Smeulders, D.M.J.; Van Dongen, M.E.H.
2006-01-01
Numerical results for the velocity and attenuation of surface wave modes in fully permeable liquid/partially saturated porous solid plane interfaces are reported in a broadband of frequencies (100?Hz–1?MHz). A modified Biot theory of poromechanics is implemented which takes into account the
Creation evidence of the second non-dispersive Zakharenko wave ...
Indian Academy of Sciences (India)
superfluid helium-II at low temperatures. A A ZAKHARENKO. International Institute of Zakharenko Waves, 660037, Krasnoyarsk-37, 17701, IIZWs,. Krasnoyarsk, Russia. E-mail: aazaaz@inbox.ru ..... group velocities of the suitable helium atoms with the relationship between the phase and group velocities Vg = 2Vph are ...
Nonlinear wave propagation studies, dispersion modeling, and signal parameters correction
Czech Academy of Sciences Publication Activity Database
Převorovský, Zdeněk
..: ..., 2004, 00. [European Workshop on FP6-AERONEWS /1./. Naples (IT), 13.09.2004-16.09.2004] EU Projects: European Commission(XE) 502927 - AERO-NEWS Institutional research plan: CEZ:AV0Z2076919 Keywords : nodestructive testing * nonlinear elastic wave spectroscopy Subject RIV: BI - Acoustics
Water-dispersible nanoparticles via interdigitation of sodium ...
Indian Academy of Sciences (India)
Unknown
Abstract. This paper describes the formation of water-dispersible gold nano- particles capped with a bilayer of sodium dodecylsulphate (SDS) and octadecylamine. (ODA) molecules. Vigorous shaking of a biphasic mixture consisting of ODA-capped gold nanoparticles in chloroform and SDS in water results in the rapid ...
Oil spill dispersants. Risk assessment for Swedish waters
International Nuclear Information System (INIS)
Lindgren, C.; Lager, H.; Fejes, J.
2001-12-01
IVL has compiled a list of the international usage of oil spill dispersants and presents the technical limitations with the use of such agents as well as the biological effects of these chemical products. IVL, has also conducted an analysis of the pros and cons to using dispersants against oil spills in waters and has applied this with a risk assessment of chemical methods to combat oil spills in the Kattegat and Skagerrak and the Baltic Sea
Kuwabara, Goro; Hasegawa, Toshihiro; Kono, Kimitoshi
1986-11-01
The profiles of water waves in a ripple tank were studied for various water depths. Wave forms with moderately large amplitudes varied with propagation at the depths of 0.5 and 1.0 cm due mainly to the nonlinear effects. The front faces of crests became steep, deviating appreciably from a sinusoidal form, and at 0.5-cm depth new ripples were excited in front of the steep forward face. At depths above 2 cm the waves continued to move with almost permanent sinusoidal forms. Ripple tank experiments are appropriate as laboratory work for an undergraduate course as well as for a demonstration of the nature of waves in an elementary physics course.
Pseudospectral modeling and dispersion analysis of Rayleigh waves in viscoelastic media
Zhang, K.; Luo, Y.; Xia, J.; Chen, C.
2011-01-01
Multichannel Analysis of Surface Waves (MASW) is one of the most widely used techniques in environmental and engineering geophysics to determine shear-wave velocities and dynamic properties, which is based on the elastic layered system theory. Wave propagation in the Earth, however, has been recognized as viscoelastic and the propagation of Rayleigh waves presents substantial differences in viscoelastic media as compared with elastic media. Therefore, it is necessary to carry out numerical simulation and dispersion analysis of Rayleigh waves in viscoelastic media to better understand Rayleigh-wave behaviors in the real world. We apply a pseudospectral method to the calculation of the spatial derivatives using a Chebyshev difference operator in the vertical direction and a Fourier difference operator in the horizontal direction based on the velocity-stress elastodynamic equations and relations of linear viscoelastic solids. This approach stretches the spatial discrete grid to have a minimum grid size near the free surface so that high accuracy and resolution are achieved at the free surface, which allows an effective incorporation of the free surface boundary conditions since the Chebyshev method is nonperiodic. We first use an elastic homogeneous half-space model to demonstrate the accuracy of the pseudospectral method comparing with the analytical solution, and verify the correctness of the numerical modeling results for a viscoelastic half-space comparing the phase velocities of Rayleigh wave between the theoretical values and the dispersive image generated by high-resolution linear Radon transform. We then simulate three types of two-layer models to analyze dispersive-energy characteristics for near-surface applications. Results demonstrate that the phase velocity of Rayleigh waves in viscoelastic media is relatively higher than in elastic media and the fundamental mode increases by 10-16% when the frequency is above 10. Hz due to the velocity dispersion of P
Measurements of Lagrangian atmospheric dispersion statistics over open water
International Nuclear Information System (INIS)
Sheih, C.M.; Frenzen, P.; Hart, R.L.
1980-01-01
Atmospheric dispersion statistics in the Lagrangian frame have been evaluated over open water by using a double-theodolite system to track neutrally buoyant balloons released a few kilometers offshore during onshore winds. Analysis of the trajectories recorded in various atmospheric stabilities finds Lagrangian integral time scales corresponding to Pasquill stability categories C, D and E equal, respectively, to 9.0, 7.3 and 8.1 s for lateral dispersion and 2.3, 5.3 and 6.6 s for vertical dispersion. Normalized standard deviations of component velocity fluctuations (i.e., sigma/sub upsilon//u/sub asterisk/ and sigma/sub ω//u/sub asterisk/) for stability categories C, D and E are found to be 3.7, 1.8 and 2.4 for lateral motion and 2.2, 1.3 and 1.2 for vertical motion. Equivalent dispersion coefficients (sigma/sub y/ and sigma/sub z/) appropriate to flow over water are observed to undergo relatively less variation with stability than do those measured in flow over land. When compared to estimates derived from the Pasquill-Gifford curves for estimating dispersion over flat grassland, the dispersion coefficients over water are, in effect, shifted about two categories toward the stable side for the vertical component and between one and two categories toward the stable side for the lateral component
Dispersion of Lamb waves in a honeycomb composite sandwich panel.
Baid, Harsh; Schaal, Christoph; Samajder, Himadri; Mal, Ajit
2015-02-01
Composite materials are increasingly being used in advanced aircraft and aerospace structures. Despite their many advantages, composites are often susceptible to hidden damages that may occur during manufacturing and/or service of the structure. Therefore, safe operation of composite structures requires careful monitoring of the initiation and growth of such defects. Ultrasonic methods using guided waves offer a reliable and cost effective method for defects monitoring in advanced structures due to their long propagation range and their sensitivity to defects in their propagation path. In this paper, some of the useful properties of guided Lamb type waves are investigated, using analytical, numerical and experimental methods, in an effort to provide the knowledge base required for the development of viable structural health monitoring systems for composite structures. The laboratory experiments involve a pitch-catch method in which a pair of movable transducers is placed on the outside surface of the structure for generating and recording the wave signals. The specific cases considered include an aluminum plate, a woven composite laminate and an aluminum honeycomb sandwich panel. The agreement between experimental, numerical and theoretical results are shown to be excellent in certain frequency ranges, providing a guidance for the design of effective inspection systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Botts, Jonathan; Savioja, Lauri
2015-04-01
For time-domain modeling based on the acoustic wave equation, spectral methods have recently demonstrated promise. This letter presents an extension of a spectral domain decomposition approach, previously used to solve the lossless linear wave equation, which accommodates frequency-dependent atmospheric attenuation and assignment of arbitrary dispersion relations. Frequency-dependence is straightforward to assign when time-stepping is done in the spectral domain, so combined losses from molecular relaxation, thermal conductivity, and viscosity can be approximated with little extra computation or storage. A mode update free from numerical dispersion is derived, and the model is confirmed with a numerical experiment.
Grevemeyer, Ingo; Lange, Dietrich; Schippkus, Sven
2016-04-01
The lithosphere is the outermost solid layer of the Earth and includes the brittle curst and brittle uppermost mantle. It is underlain by the asthenosphere, the weaker and hotter portion of the mantle. The boundary between the brittle lithosphere and the asthenosphere is call the lithosphere-asthenosphere boundary, or LAB. The oceanic lithosphere is created at spreading ridges and cools and thickens with age. Seismologists define the LAB by the presence of a low shear wave velocity zone beneath a high velocity lid. Surface waves from earthquakes occurring in young oceanic lithosphere should sample lithospheric structure when being recorded in the vicinity of a mid-ocean ridge. Here, we study group velocity and dispersion of Rayleigh waves caused by earthquakes occurring at transform faults in the Central Atlantic Ocean. Earthquakes were recorded either by a network of wide-band (up to 60 s) ocean-bottom seismometers (OBS) deployed at the Mid-Atlantic Ridge near 15°N or at the Global Seismic Network (GSN) Station ASCN on Ascension Island. Surface waves sampling young Atlantic lithosphere indicate systematic age-dependent changes of group velocities and dispersion of Rayleigh waves. With increasing plate age maximum group velocity increases (as a function of period), indicating cooling and thickening of the lithosphere. Shear wave velocity is derived inverting the observed dispersion of Rayleigh waves. Further, models derived from the OBS records were refined using waveform modelling of vertical component broadband data at periods of 15 to 40 seconds, constraining the velocity structure of the uppermost 100 km and hence in the depth interval of the mantle where lithospheric cooling is most evident. Waveform modelling supports that the thickness of lithosphere increases with age and that velocities in the lithosphere increase, too.
On shallow water waves in a medium with time-dependent
Directory of Open Access Journals (Sweden)
Hamdy I. Abdel-Gawad
2015-07-01
Full Text Available In this paper, we studied the progression of shallow water waves relevant to the variable coefficient Korteweg–de Vries (vcKdV equation. We investigated two kinds of cases: when the dispersion and nonlinearity coefficients are proportional, and when they are not linearly dependent. In the first case, it was shown that the progressive waves have some geometric structures as in the case of KdV equation with constant coefficients but the waves travel with time dependent speed. In the second case, the wave structure is maintained when the nonlinearity balances the dispersion. Otherwise, water waves collapse. The objectives of the study are to find a wide class of exact solutions by using the extended unified method and to present a new algorithm for treating the coupled nonlinear PDE’s.
Probabilistic inversion of Rayleigh-wave dispersion data: an application to Mt. Etna, Italy
Cauchie, Léna; Saccorotti, Gilberto
2013-04-01
We present a methodology for determining the elastic properties of the shallow crust from inversion of surface wave dispersion characteristics through a fully nonlinear procedure. Using volcanic tremor data recorded by a small-aperture seismic array on Mount Etna, we measured the surface waves dispersion curves with the multiple signal classification technique. The large number of measurements allows the determination of an a priori probability density function without the need of making any assumption about the uncertainties on the observations. Using this information, we successively conducted the inversion of phase velocities using a probabilistic approach. Using a wave-number integration method, we calculated the predicted dispersion function for thousands of 1-D models through a systematic grid search investigation of shear-wave velocities in individual layers. We joined this set of theoretical dispersion curves to the experimental probability density function (PDF), thus obtaining the desired structural model in terms of an a posteriori PDF of model parameters. This process allowed the representation of the objective function, showing the non-uniqueness of the solutions and providing a quantitative view of the uncertainties associated with the estimation of each parameter. We then compared the solution with the surface wave group velocities derived from diffuse noise Green's functions calculated at pairs of widely spaced (~5-10 km) stations. In their gross features, results from the two different approaches are comparable, and are in turn consistent with the models presented in several earlier studies.
Solitary waves for a coupled nonlinear Schrodinger system with dispersion management
Directory of Open Access Journals (Sweden)
Panayotis Panayotaros
2010-08-01
Full Text Available We consider a system of coupled nonlinear Schrodinger equations with periodically varying dispersion coefficient that arises in the context of fiber-optics communication. We use Lions's Concentration Compactness principle to show the existence of standing waves with prescribed L^2 norm in an averaged equation that approximates the coupled system. We also use the Mountain Pass Lemma to prove the existence of standing waves with prescribed frequencies.
Chakrabarti, Nikhil; Maity, Chandan; Schamel, Hans
2011-04-01
Compressional waves in a magnetized plasma of arbitrary resistivity are treated with the Lagrangian fluid approach. An exact nonlinear solution with a nontrivial space and time dependence is obtained with boundary conditions as in Harris’ current sheet. The solution shows competition among hydrodynamic convection, magnetic field diffusion, and dispersion. This results in a collapse of density and the magnetic field in the absence of dispersion. The dispersion effects arrest the collapse of density but not of the magnetic field. A possible application is in the early stage of magnetic star formation.
Effects of Single Dose Energy Drink on QT and P-Wave Dispersion
Directory of Open Access Journals (Sweden)
Huseyin Arinc
2013-12-01
Full Text Available INTRODUCTION: Aim of this study is to evaluate the cardiac electrophysiological effects of energy drink (Red Bull on QT and P duration and dispersion on surface electrocardiogram. METHODS: Twenty healthy volunteers older than 17 years of age were included the study. Subjects with a cardiac rhythm except sinus rhythm, history of atrial or ventricular arrhythmia, family history of premature sudden cardiac death, palpitations, T-wave abnormalities, QTc interval greater than 440 milliseconds, or those P-waves and QT intervals unavailable in at least eight ECG leads were excluded. Subjects having insomnia, lactose intolerance, caffeine allergy, recurrent headaches, depression, any psychiatric condition, and history of alcohol or drug abuse, pregnant or lactating women were also excluded from participation. 12 lead ECG was obtained before and after consumption of 250 cc enegry drink. QT and P-wave dispersion was calculated. RESULTS: No significant difference have occurred in heart rate (79 ± 14 vs.81 ±13, p=0.68, systolic pressure (114 ± 14 vs.118 ± 16,p=0.38, diastolic blood pressure (74 ± 12 vs.76 ± 14, p=0.64, QT dispersion (58 ± 12 vs. 57 ± 22, p= 0.785 and P-wave dispersion (37 ± 7 vs. 36 ± 13, p= 0.755 between before and 2 hours after consumption of energy drink. DISCUSSION AND CONCLUSION: Consumption of single dose energy drink doesn't affect QT dispersion and P-wave dispersion, heart rate and blood pressure in healthy adults.
1D profiling using highly dispersive guided waves
Volker, Arno; Brandenburg, Martijn
2017-02-01
Corrosion is one of the industries major issues regarding the integrity of assets. Currently inspections are conducted at regular intervals to ensure a sufficient integrity level of these assets. There are many situations where the actual defect location is not accessible, e.g., a pipe support or a partially buried pipe. Last year an approach was presented using a phase inversion of guided waves that propagated around the circumference of a pipe. This approach works well for larger corrosion spots, but shows significant under-sizing of small spots due to lack of sufficient phase rotation. In this paper the use of arrival time and amplitude loss of higher order circumferential passes is evaluated. Using higher order passes increases sensitivity for sizing smaller defects. Different defect profiles are assumed and the change in arrival time and amplitude loss are calculated using a wave equation based approach for different defect widths and depths. This produces a differential travel time and amplitude change map as function of defect depth and defect width. The actually measured travel time change and amplitude change produces two contours in these maps. Calculating the intersection point gives the defect dimensions. The contours for amplitude loss and travel time change are quite orthogonal, this yields a good discrimination between deep and shallow defects. The approach is evaluated using experimental data from different pipes contain artificial and real defects.
High-order Boussinesq-type modelling of nonlinear wave phenomena in deep and shallow water
DEFF Research Database (Denmark)
Madsen, Per A.; Fuhrman, David R.
2010-01-01
In this work, we start with a review of the development of Boussinesq theory for water waves covering the period from 1872 to date. Previous reviews have been given by Dingemans,1 Kirby,2,3 and Madsen & Schäffer.4 Next, we present our most recent high-order Boussinesq-type formulation valid...... for fully nonlinear and highly dispersive waves traveling over a rapidly varying bathymetry. Finally, we cover applications of this Boussinesq model, and we study a number of nonlinear wave phenomena in deep and shallow water. These include (1) Kinematics in highly nonlinear progressive deep-water waves; (2......) Kinematics in progressive solitary waves; (3) Reflection of solitary waves from a vertical wall; (4) Reflection and diffraction around a vertical plate; (5) Quartet and quintet interactions and class I and II instabilities; (6) Extreme events from focused directionally spread waveelds; (7) Bragg scattering...
On spherical harmonic representation of transient waves in dispersive media
International Nuclear Information System (INIS)
Borisov, Victor V
2003-01-01
Axisymmetric transient solutions to the inhomogeneous telegraph equation are constructed in terms of spherical harmonics. Explicit solutions of the initial-value problem are derived in the spacetime domain by means of the Smirnov method of incomplete separation of variables and the Riemann formula. The corresponding Riemann function is constructed with the help of the Olevsky theorem. Solutions for some source distributions on a sphere expanding with a velocity greater than the wavefront velocity are obtained. This allows an analogous solution in the case of a circle belonging to a sphere expanding with the wavefront velocity to be written at once. Application of the scalar solution to a description of electromagnetic waves is also discussed
Application of particle swarm optimization to interpret Rayleigh wave dispersion curves
Song, Xianhai; Tang, Li; Lv, Xiaochun; Fang, Hongping; Gu, Hanming
2012-09-01
Rayleigh waves have been used increasingly as an appealing tool to obtain near-surface shear (S)-wave velocity profiles. However, inversion of Rayleigh wave dispersion curves is challenging for most local-search methods due to its high nonlinearity and to its multimodality. In this study, we proposed and tested a new Rayleigh wave dispersion curve inversion scheme based on particle swarm optimization (PSO). PSO is a global optimization strategy that simulates the social behavior observed in a flock (swarm) of birds searching for food. A simple search strategy in PSO guides the algorithm toward the best solution through constant updating of the cognitive knowledge and social behavior of the particles in the swarm. To evaluate calculation efficiency and stability of PSO to inversion of surface wave data, we first inverted three noise-free and three noise-corrupted synthetic data sets. Then, we made a comparative analysis with genetic algorithms (GA) and a Monte Carlo (MC) sampler and reconstructed a histogram of model parameters sampled on a low-misfit region less than 15% relative error to further investigate the performance of the proposed inverse procedure. Finally, we inverted a real-world example from a waste disposal site in NE Italy to examine the applicability of PSO on Rayleigh wave dispersion curves. Results from both synthetic and field data demonstrate that particle swarm optimization can be used for quantitative interpretation of Rayleigh wave dispersion curves. PSO seems superior to GA and MC in terms of both reliability and computational efforts. The great advantages of PSO are fast in locating the low misfit region and easy to implement. Also there are only three parameters to tune (inertia weight or constriction factor, local and global acceleration constants). Theoretical results exist to explain how to tune these parameters.
Dispersion and Polarization of Surface Waves Trapped in High Aspect Ratio Electrode Arrays
DEFF Research Database (Denmark)
Laude, Vincent; Dühring, Maria Bayard; Moubchir, Hanane
2007-01-01
.Phys., 90(5):2492, 2001; Appl. Phys. Lett., 89:083515, 2006.) an experimental and theoretical analysis of the transduction of SAW under a metallic array of electrodes with a large aspect ratio on a piezoelectric substrate, whereby allowing the electrode height to become larger than one wavelength...... additional results on the polarization and the dispersion of the surface waves trapped by high aspect ratio electrode arrays. A finite element model, including periodic boundary conditions along the propagation direction and a perfectly matched layer (PML) to absorb waves away from the surface...... wave vector values....
Determination of Lamb wave dispersion curves by means of Fourier transform
Czech Academy of Sciences Publication Activity Database
Hora, Petr; Červená, Olga
2012-01-01
Roč. 6, č. 1 (2012), s. 5-16 ISSN 1802-680X R&D Projects: GA ČR GA101/09/1630 Institutional research plan: CEZ:AV0Z20760514 Keywords : Lamb wave * dispersion curves * Fourier transform * FEM Subject RIV: BI - Acoustics
Zhang, X.
2009-01-01
This thesis is a study on upper mantle shear velocity structure beneath the Gulf of California. Surface wave interstation dispersion data were measured in the Gulf of California area and vicinity to obtain a 3-D shear velocity structure of the upper mantle. This work has particular significance for
International Nuclear Information System (INIS)
Odinaev, S.; Dodarbekov, A.
2001-01-01
Present article is devoted to frequency dispersion of velocity and sound waves absorption coefficient in the electrolyte solutions. The analytical expressions for acoustic parameters in a wide range of thermodynamic parameters and frequencies change were obtained. The system of equations of generalized hydrodynamics for electrolyte solutions was constructed.
Forest tree pollen dispersal via the water cycle.
Williams, Claire G
2013-06-01
Pine pollen (Pinus spp.), along with other atmospheric particles, is dispersed by the water cycle, but this mode of dispersal requires cloud-pollen interactions that depend on taxon-specific biological properties. In the simplest form of this dispersal, pine pollen ascends vertically to altitudes of 2 to 6 km, where a fraction is captured by mixed-phase cloud formation. Captured pollen accretes into frozen droplets, which ultimately descend as rain, snow, or hail. Whether Pinus pollen can still germinate after its exposure to high-altitude freezing is pertinent to (1) how forests adapt to climate change and (2) potential gene flow between genetically modified plantation species and their conspecific relatives. • To address this question, pollen from four Old World and two New World Pinus species were subjected to immersion freezing, a common cloud formation mode, under laboratory conditions. • Some pollen grains immersed at -20°C for 15, 60, or 120 min in either a dehydrated or a water-saturated state were still capable of germination. After exposure, dehydrated pine pollen had higher germination (43.3%) than water-saturated pollen (7.6%). • Pine pollen exposed to freezing during cloud formation can still germinate, raising the question of whether rain-delivered live pollen might be linked to rain-facilitated pollination. Dispersal of live pine pollen via cloud formation and the water cycle itself deserves closer study.
preconcentration of uranium in water samples using dispersive ...
African Journals Online (AJOL)
B. S. Chandravanshi
extraction, co-precipitation and ion-exchange, electrodeposition [9-14] have been used in the ... This method uses an extracting solvent dissolved in a dispersive solvent, which is miscible with both extraction solvent and water. Methanol, acetonitrile and acetone have been used as ..... NASS-4-CRM are given in Table 5.
Wind and water dispersal of wetland plants across fragmented landscapes
Soomers, H.; Karssenberg, D.J.; Soons, M.B.; Verweij, P.A.; Verhoeven, J.T.A.; Wassen, M.J.
2013-01-01
Biodiversity in wetlands is threatened by habitat loss and fragmentation, of which agricultural activities often are a cause. Dispersal of plant seeds via wind and ditches (water) may contribute to connecting remnant wetland plant populations in modern agricultural landscapes, and help to
Promoting cell proliferation using water dispersible germanium nanowires.
Directory of Open Access Journals (Sweden)
Michael Bezuidenhout
Full Text Available Group IV Nanowires have strong potential for several biomedical applications. However, to date their use remains limited because many are synthesised using heavy metal seeds and functionalised using organic ligands to make the materials water dispersible. This can result in unpredicted toxic side effects for mammalian cells cultured on the wires. Here, we describe an approach to make seedless and ligand free Germanium nanowires water dispersible using glutamic acid, a natural occurring amino acid that alleviates the environmental and health hazards associated with traditional functionalisation materials. We analysed the treated material extensively using Transmission electron microscopy (TEM, High resolution-TEM, and scanning electron microscope (SEM. Using a series of state of the art biochemical and morphological assays, together with a series of complimentary and synergistic cellular and molecular approaches, we show that the water dispersible germanium nanowires are non-toxic and are biocompatible. We monitored the behaviour of the cells growing on the treated germanium nanowires using a real time impedance based platform (xCELLigence which revealed that the treated germanium nanowires promote cell adhesion and cell proliferation which we believe is as a result of the presence of an etched surface giving rise to a collagen like structure and an oxide layer. Furthermore this study is the first to evaluate the associated effect of Germanium nanowires on mammalian cells. Our studies highlight the potential use of water dispersible Germanium Nanowires in biological platforms that encourage anchorage-dependent cell growth.
A simple and accurate model for Love wave based sensors: Dispersion equation and mass sensitivity
Directory of Open Access Journals (Sweden)
Jiansheng Liu
2014-07-01
Full Text Available Dispersion equation is an important tool for analyzing propagation properties of acoustic waves in layered structures. For Love wave (LW sensors, the dispersion equation with an isotropic-considered substrate is too rough to get accurate solutions; the full dispersion equation with a piezoelectric-considered substrate is too complicated to get simple and practical expressions for optimizing LW-based sensors. In this work, a dispersion equation is introduced for Love waves in a layered structure with an anisotropic-considered substrate and an isotropic guiding layer; an intuitive expression for mass sensitivity is also derived based on the dispersion equation. The new equations are in simple forms similar to the previously reported simplified model with an isotropic substrate. By introducing the Maxwell-Weichert model, these equations are also applicable to the LW device incorporating a viscoelastic guiding layer; the mass velocity sensitivity and the mass propagation loss sensitivity are obtained from the real part and the imaginary part of the complex mass sensitivity, respectively. With Love waves in an elastic SiO2 layer on an ST-90°X quartz structure, for example, comparisons are carried out between the velocities and normalized sensitivities calculated by using different dispersion equations and corresponding mass sensitivities. Numerical results of the method presented in this work are very close to those of the method with a piezoelectric-considered substrate. Another numerical calculation is carried out for the case of a LW sensor with a viscoelastic guiding layer. If the viscosity of the layer is not too big, the effect on the real part of the velocity and the mass velocity sensitivity is relatively small; the propagation loss and the mass loss sensitivity are proportional to the viscosity of the guiding layer.
Nebivolol And Quinapril Reduce P-Wave Duration And Dispersion In Hypertensive Patients
Directory of Open Access Journals (Sweden)
Hasan Korkmaz
2009-05-01
Full Text Available We aimed to investigate the effects of nebivolol and quinapril treatments on P-wave duration and dispersion in hypertensive patients. Hypertensive patients who were in sinus rhythm were assigned to the two treatment groups and received either 20 mg quinapril/day or 5 mg nebivolol/day. P-Wave dispersion (PWD was measured at baseline and after four weeks of treatment and defined as the difference between the maximum (Pmax and the minimum (Pmin P-wave duration. The study group consisted of 54 patients (Mean age: 53 ± 9 years, 46% women with 27 patients in each group. At 4-week follow up both treatment groups showed a significant reduction (p0.05. In conclusion, short-term treatment with nebivolol and quinapril produces a similar but significant reduction in Pmax and PWD in hypertensive patients. This effect is independent of blood pressure and heart rate changes.
EXPERIMENTAL DETERMINATION OF WHISTLER WAVE DISPERSION RELATION IN THE SOLAR WIND
Energy Technology Data Exchange (ETDEWEB)
Stansby, D.; Horbury, T. S.; Chen, C. H. K.; Matteini, L., E-mail: david.stansby14@imperial.ac.uk [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom)
2016-09-20
The origins and properties of large-amplitude whistler wavepackets in the solar wind are still unclear. In this Letter, we utilize single spacecraft electric and magnetic field waveform measurements from the ARTEMIS mission to calculate the plasma frame frequency and wavevector of individual wavepackets over multiple intervals. This allows direct comparison of experimental measurements with theoretical dispersion relations to identify the observed waves as whistler waves. The whistlers are right-hand circularly polarized, travel anti-sunward, and are aligned with the background magnetic field. Their dispersion is strongly affected by the local electron parallel beta in agreement with linear theory. The properties measured are consistent with the electron heat flux instability acting in the solar wind to generate these waves.
Dispersive MHD waves and alfvenons in charge non-neutral plasmas
Directory of Open Access Journals (Sweden)
K. Stasiewicz
2008-08-01
Full Text Available Dispersive properties of linear and nonlinear MHD waves, including shear, kinetic, electron inertial Alfvén, and slow and fast magnetosonic waves are analyzed using both analytical expansions and a novel technique of dispersion diagrams. The analysis is extended to explicitly include space charge effects in non-neutral plasmas. Nonlinear soliton solutions, here called alfvenons, are found to represent either convergent or divergent electric field structures with electric potentials and spatial dimensions similar to those observed by satellites in auroral regions. Similar solitary structures are postulated to be created in the solar corona, where fast alfvenons can provide acceleration of electrons to hundreds of keV during flares. Slow alfvenons driven by chromospheric convection produce positive potentials that can account for the acceleration of solar wind ions to 300–800 km/s. New results are discussed in the context of observations and other theoretical models for nonlinear Alfvén waves in space plasmas.
Propagation and dispersion of electrostatic waves in the ionospheric E region
Directory of Open Access Journals (Sweden)
K. Iranpour
1997-07-01
Full Text Available Low-frequency electrostatic fluctuations in the ionospheric E region were detected by instruments on the ROSE rockets. The phase velocity and dispersion of plasma waves in the ionospheric E region are determined by band-pass filtering and cross-correlating data of the electric-field fluctuations detected by the probes on the ROSE F4 rocket. The results were confirmed by a different method of analysis of the same data. The results show that the waves propagate in the Hall-current direction with a velocity somewhat below the ion sound speed obtained for ionospheric conditions during the flight. It is also found that the waves are dispersive, with the longest wavelengths propagating with the lowest velocity.
Water waves generated by impulsively moving obstacle
Makarenko, Nikolay; Kostikov, Vasily
2017-04-01
There are several mechanisms of tsunami-type wave formation such as piston displacement of the ocean floor due to a submarine earthquake, landslides, etc. We consider simplified mathematical formulation which involves non-stationary Euler equations of infinitely deep ideal fluid with submerged compact wave-maker. We apply semi-analytical method [1] based on the reduction of fully nonlinear water wave problem to the integral-differential system for the wave elevation together with normal and tangential fluid velocities at the free surface. Recently, small-time asymptotic solutions were constructed by this method for submerged piston modeled by thin elliptic cylinder which starts with constant acceleration from rest [2,3]. By that, the leading-order solution terms describe several regimes of non-stationary free surface flow such as formation of inertial fluid layer, splash jets and diverging waves over the obstacle. Now we construct asymptotic solution taking into account higher-order nonlinear terms in the case of submerged circular cylinder. The role of non-linearity in the formation mechanism of surface waves is clarified in comparison with linear approximations. This work was supported by RFBR (grant No 15-01-03942). References [1] Makarenko N.I. Nonlinear interaction of submerged cylinder with free surface, JOMAE Trans. ASME, 2003, 125(1), 75-78. [2] Makarenko N.I., Kostikov V.K. Unsteady motion of an elliptic cylinder under a free surface, J. Appl. Mech. Techn. Phys., 2013, 54(3), 367-376. [3] Makarenko N.I., Kostikov V.K. Non-linear water waves generated by impulsive motion of submerged obstacle, NHESS, 2014, 14(4), 751-756.
Dispersion of low frequency plasma waves upstream of the quasi-perpendicular terrestrial bow shock
Directory of Open Access Journals (Sweden)
A. P. Dimmock
2013-08-01
Full Text Available Low frequency waves in the foot of a supercritical quasi-perpendicular shock front have been observed since the very early in situ observations of the terrestrial bow shock (Guha et al., 1972. The great attention that has been devoted to these type of waves since the first observations is explained by the key role attributed to them in the processes of energy redistribution in the shock front by various theoretical models. In some models, these waves play the role of the intermediator between the ions and electrons. It is assumed that they are generated by plasma instability that exist due to the counter-streaming flows of incident and reflected ions. In the second type of models, these waves result from the evolution of the shock front itself in the quasi-periodic process of steepening and overturning of the magnetic ramp. However, the range of the observed frequencies in the spacecraft frame are not enough to distinguish the origin of the observed waves. It also requires the determination of the wave vectors and the plasma frame frequencies. Multipoint measurements within the wave coherence length are needed for an ambiguous determination of the wave vectors. In the main multi-point missions such as ISEE, AMPTE, Cluster and THEMIS, the spacecraft separation is too large for such a wave vector determination and therefore only very few case studies are published (mainly for AMPTE UKS AMPTE IRM pair. Here we present the observations of upstream low frequency waves by the Cluster spacecraft which took place on 19 February 2002. The spacecraft separation during the crossing of the bow shock was small enough to determine the wave vectors and allowed the identification of the plasma wave dispersion relation for the observed waves. Presented results are compared with whistler wave dispersion and it is shown that contrary to previous studies based on the AMPTE data, the phase velocity in the shock frame is directed downstream. The consequences of this
Nonlinear water waves: introduction and overview
Constantin, A.
2017-12-01
For more than two centuries progress in the study of water waves proved to be interdependent with innovative and deep developments in theoretical and experimental directions of investigation. In recent years, considerable progress has been achieved towards the understanding of waves of large amplitude. Within this setting one cannot rely on linear theory as nonlinearity becomes an essential feature. Various analytic methods have been developed and adapted to come to terms with the challenges encountered in settings where approximations (such as those provided by linear or weakly nonlinear theory) are ineffective. Without relying on simpler models, progress becomes contingent upon the discovery of structural properties, the exploitation of which requires a combination of creative ideas and state-of-the-art technical tools. The successful quest for structure often reveals unexpected patterns and confers aesthetic value on some of these studies. The topics covered in this issue are both multi-disciplinary and interdisciplinary: there is a strong interplay between mathematical analysis, numerical computation and experimental/field data, interacting with each other via mutual stimulation and feedback. This theme issue reflects some of the new important developments that were discussed during the programme `Nonlinear water waves' that took place at the Isaac Newton Institute for Mathematical Sciences (Cambridge, UK) from 31st July to 25th August 2017. A cross-section of the experts in the study of water waves who participated in the programme authored the collected papers. These papers illustrate the diversity, intensity and interconnectivity of the current research activity in this area. They offer new insight, present emerging theoretical methodologies and computational approaches, and describe sophisticated experimental results. This article is part of the theme issue 'Nonlinear water waves'.
Nonlinear Dispersive Elastic Waves in Solids: Exact, Approximate, and Numerical Solutions
Khajehtourian, Romik
Wave motion lies at the heart of many disciplines in the physical sciences and engineering. For example, problems and applications involving light, sound, heat, or fluid flow are all likely to involve wave dynamics at some level. A particular class of problems is concerned with the propagation of elastic waves in a solid medium, such as a fiber-reinforced composite material responding to vibratory excitations, or soil and rock admitting seismic waves moments after the onset of an earthquake, or phonon transport in a semiconducting crystal like silicon. Regardless of the type of wave, the dispersion relation provides a fundamental characterization of the elastodynamic properties of the medium. The first part of the dissertation examines the propagation of a large-amplitude elastic wave in a one-dimensional homogeneous medium with a focus on the effects of inherent nonlinearities on the dispersion relation. Considering a thin rod, where the thickness is small compared to the wavelength, an exact, closed-form formulation is presented for the treatment of two types of nonlinearity in the strain-displacement gradient relation: Green-Lagrange and Hencky. The derived relation is then verified by direct time-domain simulations, examining both instantaneous dispersion (by direct observation) and short-term, pre-breaking dispersion (by Fourier transformation). A high-order perturbation analysis is also conducted yielding an explicit analytical space-time solution, which is shown to be spectrally accurate. The results establish a perfect match between theory and simulation and reveal that regardless of the strength of the nonlinearity, the dispersion relation fully embodies all information pertaining to the nonlinear harmonic generation mechanism that unfolds as an arbitrary-profiled wave evolves in the medium. In the second part of the dissertation, the analysis is extended to a continuous periodic thin rod exhibiting multiple phases or embedded local resonators. The
Directory of Open Access Journals (Sweden)
Ehsan Aghajari
2014-08-01
Full Text Available Electromagnetic compatibility (EMC and electromagnetic interference (EMI have emerged as key issues with respect to commercial and military purposes in association with electromagnetic waves. The importance of protection against electromagnetic interference in wireless communication and electronic toll collection (ETC systems has undoubtedly increased over the years. Generally, the electromagnetic absorption properties of material depend on their intrinsic electromagnetic properties such as conductivity, magnetic permeability and dielectric constant and also factors such as thickness and frequency. The effect of each parameter on the absorption performance is yet difficult to comprehend due to the complexity of electromagnetic waves propagation in different media. Addition of pure dielectric or magnetic material to a polymer matrix is a possible way to change electromagnetic properties of the materials. In this study nanocomposites of polystyrene/multi-walled carbon nanotubes were prepared using a solution method with three different homogenizer speeds for the purpose of nanotube dispersion and evaluation of the effect of nanotube dispersion on the electromagnetic wave absorption properties. The morphology of the nanocomposits was investigated by scanning electron microscopy (SEM. The capability and properties of electromagnetic wave absorption of nanocomposites were studied in the frequency range of 5 to 8 GHz using a vector network analyzer and finally the results of their absorption were compared with each other. It was found that by improving the dispersion of nanoparticles, both the amount and bandwidth of absorption increase. Moreover, by increasing the homogenizer speed up to 10000 rpm the maximum reflection loss was reported to occur at 8 GHz.
Extreme waves in New Zealand waters
Godoi, Victor A.; Bryan, Karin R.; Stephens, Scott A.; Gorman, Richard M.
2017-09-01
A detailed climatology of extreme wave events for New Zealand waters is presented, in addition to estimates of significant wave height (Hs) for up to a 100-year return period. Extreme events were explored using 44 years (1958-2001) of wave hindcast data. Comparisons to buoy data at three locations around New Zealand showed negative biases in the model, which nevertheless provided a suitable basis for trends, spatial distribution, and frequency analyses. Results indicate some similarities to patterns previously shown in the mean wave climate, with the largest waves found in southern New Zealand, and the smallest ones observed in areas sheltered from southwesterly swells. The number of extreme events varies substantially throughout the year, while the differences in intensity are more consistent. Events occur more/less frequently in winter/summer months. The greatest mean annual variability of extreme Hs is found on the north coasts of both the North and South Islands, where more locally-generated storms drive the extremes. The interannual variability is largest along the north coast of the country and on the east coast of the South Island, suggesting relationships with La Niña-like effects and the Southern Annular Mode, respectively, which past work showed to be important drivers in these regions. Moreover, the known trend for a more positive Southern Annular Mode may explain the increasing number of extreme events shown in our study.
Mathematical aspects of surface water waves
International Nuclear Information System (INIS)
Craig, Walter; Wayne, Clarence E
2007-01-01
The theory of the motion of a free surface over a body of water is a fascinating subject, with a long history in both applied and pure mathematical research, and with a continuing relevance to the enterprises of mankind having to do with the sea. Despite the recent advances in the field (some of which we will hear about during this Workshop on Mathematical Hydrodynamics at the Steklov Institute), and the current focus of the mathematical community on the topic, many fundamental mathematical questions remain. These have to do with the evolution of surface water waves, their approximation by model equations and by computer simulations, the detailed dynamics of wave interactions, such as would produce rogue waves in an open ocean, and the theory (partially probabilistic) of approximating wave fields over large regions by averaged 'macroscopic' quantities which satisfy essentially kinetic equations of motion. In this note we would like to point out open problems and some of the directions of current research in the field. We believe that the introduction of new analytical techniques and novel points of view will play an important role in the future development of the area.
End Functionalized Nonionic Water-Dispersible Conjugated Polymers.
Zhan, Ruoyu; Liu, Bin
2017-09-01
2,7-Dibromofluorene monomers carrying two or four oligo(ethylene glycol) (OEG) side chains are synthesized. Heck coupling between the monomers and 1,4-divinylbenzene followed by end capping with [4-(4-bromophenoxy)butyl]carbamic acid tert-butyl ester leads to two nonionic water-dispersible poly(fluorene-alt-1,4-divinylenephenylene)s end-functionalized with amine groups after hydrolysis. In water, the polymer with a lower OEG density (P1) has poor water dispersibility with a quantum yield of 0.24, while the polymer with a higher OEG density (P2) possesses excellent water-dispersibility with a high quantum yield of 0.45. Both polymers show fluorescence enhancement and blue-shifted absorption and emission maxima in the presence of surfactant sodium dodecyl sulfate and dodecyltrimethylammonium bromide. The polymers are also resistant to ionic strength with minimal nonspecific interactions to bovine serum albumin. When biotin is incorporated into the end of the polymer backbones through N-hydroxysuccinimide/amine coupling reaction, the biotinylated polymers interact specifically with streptavidin on solid surface. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Nuclear Information System (INIS)
Frank, A.I.; Nosov, V.G.
1995-01-01
Modern theoretical concepts concerning the dispersion relation for slow neutrons in matter are considered. The generally accepted optical-potential model is apparently not quite accurate and should be supplemented with some small corrections in the energy range attainable in experiments. For ultracold neutrons, these corrections are related to the proximity of the applicability boundary of the theory; for cold neutrons, these corrections are due to correlations in the positions of scatters. The accuracy of existing experiments is insufficient for confirmation or refutation these conclusions. A precision experiment is proposed to verify the dispersion relation for long-wave neutrons. 30 refs., 3 figs
Broadband light generation at ~1300 nm through spectrally recoiled solitons and dispersive waves
DEFF Research Database (Denmark)
Falk, Peter Andreas; Frosz, Michael Henoch; Bang, Ole
2008-01-01
We experimentally study the generation of broadband light at ~1300 nm from an 810 nm Ti:sapphire femtosecond pump laser. We use two photonic crystal fibers with a second infrared zero-dispersion wavelength (λZ2) and compare the efficiency of two schemes: in one fiber λZ2=1400 nm and the light...... at 1300 nm is composed of spectrally recoiled solitons; in the other fiber λZ2=1200 nm and the light at 1300 nm is composed of dispersive waves....
Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams
Ebrahimi, Farzad; Barati, Mohammad Reza; Dabbagh, Ali
2016-11-01
The analysis of wave propagation behavior of a magneto-electro-elastic functionally graded (MEE-FG) nanobeam is performed in the framework of classical beam theory. To capture small-scale effects, the nonlocal elasticity theory of Eringen is applied. Furthermore, the material properties of nanobeam are assumed to vary gradually through the thickness based on power-law form. Nonlocal governing equations of MEE-FG nanobeam have been derived employing Hamilton's principle. The results of present research have been validated by comparing with those of previous investigations. An analytical solution of governing equations is utilized to obtain wave frequencies, phase velocities and escape frequencies. Effects of various parameters such as wave number, nonlocal parameter, gradient index, axial load, magnetic potential and electric voltage on wave dispersion characteristics of MEE-FG nanoscale beams are studied in detail.
Dispersion characteristics of spin-electromagnetic waves in planar multiferroic structures
Energy Technology Data Exchange (ETDEWEB)
Nikitin, Andrey A.; Ustinov, Alexey B. [Department of Physical Electronics and Technology, St. Petersburg Electrotechnical University, St. Petersburg 197376 (Russian Federation); Department of Mathematics and Physics, Lappeenranta University of Technology, Lappeenranta 53850 (Finland); Vitko, Vitaliy V.; Semenov, Alexander A.; Mironenko, Igor G. [Department of Physical Electronics and Technology, St. Petersburg Electrotechnical University, St. Petersburg 197376 (Russian Federation); Belyavskiy, Pavel Yu.; Kalinikos, Boris A. [Department of Physical Electronics and Technology, St. Petersburg Electrotechnical University, St. Petersburg 197376 (Russian Federation); International Laboratory “MultiferrLab,” ITMO University, St. Petersburg 197101 (Russian Federation); Stashkevich, Andrey A. [International Laboratory “MultiferrLab,” ITMO University, St. Petersburg 197101 (Russian Federation); LSPM (CNRS-UPR 3407), Université Paris 13, Sorbonne Paris Cité, 93430 Villetaneuse (France); Lähderanta, E. [Department of Mathematics and Physics, Lappeenranta University of Technology, Lappeenranta 53850 (Finland)
2015-11-14
A method of approximate boundary conditions is used to derive dispersion relations for spin-electromagnetic waves (SEWs) propagating in thin ferrite films and in multiferroic layered structures. A high accuracy of this method is proven. It was shown that the spin-electromagnetic wave propagating in the structure composed of a thin ferrite film, a thin ferroelectric film, and a slot transmission line is formed as a result of hybridization of the surface spin wave in the ferrite film and the electromagnetic wave in the slot-line. The structure demonstrates dual electric and magnetic field tunability of the SEW spectrum. The electric field tunability is provided by the thin ferroelectric film. Its efficiency increases with an increase in the thicknesses of the ferrite and ferroelectric films and with a decrease in the slot-line gap width. The theory is confirmed by experimental data.
DEFF Research Database (Denmark)
Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim
2009-01-01
confined to the electrode as compared to the total mechanical energy is calculated and is found to be increasing for increasing aspect ratio and to tend to a definite limit for the two families of surface waves. This observation is in support of the interpretation that high aspect ratio electrodes act......It has been shown previously that surface acoustic waves can be efficiently trapped and slowed by steep ridges on a piezoelectric substrate, giving rise to two families of shear-horizontal and vertically polarized surface waves. The mechanisms of energy storage and dispersion are explored by using...... the finite element method to model surface acoustic waves generated by high aspect ratio electrodes. A periodic model is proposed including a perfectly matched layer to simulate radiation conditions away from the sources, from which the modal distributions are found. The ratio of the mechanical energy...
Propagation and Dispersion of Sausage Wave Trains in Magnetic Flux Tubes
Oliver, R.; Ruderman, M. S.; Terradas, J.
2015-06-01
A localized perturbation of a magnetic flux tube produces wave trains that disperse as they propagate along the tube, where the extent of dispersion depends on the physical properties of the magnetic structure, on the length of the initial excitation, and on its nature (e.g., transverse or axisymmetric). In Oliver et al. we considered a transverse initial perturbation, whereas the temporal evolution of an axisymmetric one is examined here. In both papers we use a method based on Fourier integrals to solve the initial value problem. We find that the propagating wave train undergoes stronger attenuation for longer axisymmetric (or shorter transverse) perturbations, while the internal to external density ratio has a smaller effect on the attenuation. Moreover, for parameter values typical of coronal loops axisymmetric (transverse) wave trains travel at a speed 0.75-1 (1.2) times the Alfvén speed of the magnetic tube. In both cases, the wave train passage at a fixed position of the magnetic tube gives rise to oscillations with periods of the order of seconds, with axisymmetric disturbances causing more oscillations than transverse ones. To test the detectability of propagating transverse or axisymmetric wave packets in magnetic tubes of the solar atmosphere (e.g., coronal loops, spicules, or prominence threads) a forward modeling of the perturbations must be carried out.
PROPAGATION AND DISPERSION OF SAUSAGE WAVE TRAINS IN MAGNETIC FLUX TUBES
International Nuclear Information System (INIS)
Oliver, R.; Terradas, J.; Ruderman, M. S.
2015-01-01
A localized perturbation of a magnetic flux tube produces wave trains that disperse as they propagate along the tube, where the extent of dispersion depends on the physical properties of the magnetic structure, on the length of the initial excitation, and on its nature (e.g., transverse or axisymmetric). In Oliver et al. we considered a transverse initial perturbation, whereas the temporal evolution of an axisymmetric one is examined here. In both papers we use a method based on Fourier integrals to solve the initial value problem. We find that the propagating wave train undergoes stronger attenuation for longer axisymmetric (or shorter transverse) perturbations, while the internal to external density ratio has a smaller effect on the attenuation. Moreover, for parameter values typical of coronal loops axisymmetric (transverse) wave trains travel at a speed 0.75–1 (1.2) times the Alfvén speed of the magnetic tube. In both cases, the wave train passage at a fixed position of the magnetic tube gives rise to oscillations with periods of the order of seconds, with axisymmetric disturbances causing more oscillations than transverse ones. To test the detectability of propagating transverse or axisymmetric wave packets in magnetic tubes of the solar atmosphere (e.g., coronal loops, spicules, or prominence threads) a forward modeling of the perturbations must be carried out
PROPAGATION AND DISPERSION OF SAUSAGE WAVE TRAINS IN MAGNETIC FLUX TUBES
Energy Technology Data Exchange (ETDEWEB)
Oliver, R.; Terradas, J. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Ruderman, M. S., E-mail: ramon.oliver@uib.es [School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)
2015-06-10
A localized perturbation of a magnetic flux tube produces wave trains that disperse as they propagate along the tube, where the extent of dispersion depends on the physical properties of the magnetic structure, on the length of the initial excitation, and on its nature (e.g., transverse or axisymmetric). In Oliver et al. we considered a transverse initial perturbation, whereas the temporal evolution of an axisymmetric one is examined here. In both papers we use a method based on Fourier integrals to solve the initial value problem. We find that the propagating wave train undergoes stronger attenuation for longer axisymmetric (or shorter transverse) perturbations, while the internal to external density ratio has a smaller effect on the attenuation. Moreover, for parameter values typical of coronal loops axisymmetric (transverse) wave trains travel at a speed 0.75–1 (1.2) times the Alfvén speed of the magnetic tube. In both cases, the wave train passage at a fixed position of the magnetic tube gives rise to oscillations with periods of the order of seconds, with axisymmetric disturbances causing more oscillations than transverse ones. To test the detectability of propagating transverse or axisymmetric wave packets in magnetic tubes of the solar atmosphere (e.g., coronal loops, spicules, or prominence threads) a forward modeling of the perturbations must be carried out.
Joint Inversion of Surface Waves Dispersion and Receiver Function at Cuba Seismic Stations
International Nuclear Information System (INIS)
Gonzalez, O'Leary; Moreno, Bladimir; Romanelli, Fabio; Panza, Giuliano F.
2010-06-01
Joint inversion of Rayleigh wave group velocity dispersion and receiver functions have been used to estimate the crust and upper mantle structure at eight seismic stations in Cuba. Receiver functions have been computed from teleseismic recordings of earthquakes at epicentral (angular) distances between 30 o and 90 o and Rayleigh wave group velocity dispersion have been taken from a surface-wave tomography study of the Caribbean area. The thickest crust (around 27 km) is found at Cascorro (CCC), Soroa (SOR), Moa (MOA) and Maisi (MAS) stations while the thinnest crust (around 18 km) is found at stations Rio Carpintero (RCC) and Guantanamo Bay (GTBY), in the southeastern of Cuba; this result is in agreement with the southward gradual thinning of the crust revealed by previous studies. The inversion shows a crystalline crust with S-wave velocity between 2.9 km/s and 3.9 km/s and at the crust-mantle transition zone the shear wave velocity varies from 3.9 km/s and 4.3 km/s. The lithospheric thickness varies from 74 km, in the youngest lithosphere, to 200 km in the middle of the Cuban island. Evidences of a subducted slab possibly belonging to the Caribbean plate are present below the stations Las Mercedes (LMG), RCC and GTBY and a thicker slab is present below the SOR station. (author)
Large volume water sprays for dispersing warm fogs
Keller, V. W.; Anderson, B. J.; Burns, R. A.; Lala, G. G.; Meyer, M. B.
1986-01-01
A new method for dispersing of warm fogs which impede visibility and alter schedules is described. The method uses large volume recycled water sprays to create curtains of falling drops through which the fog is processed by the ambient wind and spray-induced air flow; the fog droplets are removed by coalescence/rainout. The efficiency of this fog droplet removal process depends on the size spectra of the spray drops and optimum spray drop size is calculated as between 0.3-1.0 mm in diameter. Water spray tests were conducted in order to determine the drop size spectra and temperature response of sprays produced by commercially available fire-fighting nozzles, and nozzle array tests were utilized to study air flow patterns and the thermal properties of the overall system. The initial test data reveal that the fog-dispersal procedure is effective.
Local-in-space blow-up criteria for a class of nonlinear dispersive wave equations
Novruzov, Emil
2017-11-01
This paper is concerned with blow-up phenomena for the nonlinear dispersive wave equation on the real line, ut -uxxt +[ f (u) ] x -[ f (u) ] xxx +[ g (u) + f″/(u) 2 ux2 ] x = 0 that includes the Camassa-Holm equation as well as the hyperelastic-rod wave equation (f (u) = ku2 / 2 and g (u) = (3 - k) u2 / 2) as special cases. We establish some a local-in-space blow-up criterion (i.e., a criterion involving only the properties of the data u0 in a neighborhood of a single point) simplifying and precising earlier blow-up criteria for this equation.
Ultrasonic guided waves dispersion reversal for long bone thickness evaluation: a simulation study.
Xu, Kailiang; Liu, Chengcheng; Ta, Dean
2013-01-01
It has been shown that ultrasonic guided waves have great potentials for long cortical bone evaluation. However, due to the multimodal dispersion, the received signals usually contain several mixed guided modes, which highly complicates the mode separation and signal processing. In the study, we showed that the use of dispersion reversal excitation allows the self-compensation of the dispersive modes in the long cortical bone. Two-dimension finite-difference time-domain (2D-FDTD) method was employed to simulate the propagation of two fundamental guided modes, symmetrical S0 and anti-symmetrical A0, in the long cortical bones. It was demonstrated that the pulse-like modes of S0 and A0 can be detected under the dispersion reversal excitations. The simulations also illustrated that the proposed dispersion reversal method can be used to evaluate the cortical thickness. Results are promising for the application of dispersion reversal method in ultrasonic assessment of the long cortical bone.
Al-Jabr, Ahmad Ali
2013-03-01
In this paper, an finite-difference time-domain (FDTD) algorithm for simulating propagation of EM waves in anisotropic material is presented. The algorithm is based on the auxiliary differential equation and the general polarization formulation. In anisotropic materials, electric fields are coupled and elements in the permittivity tensor are, in general, multiterm dispersive. The presented algorithm resolves the field coupling using a formulation based on electric polarizations. It also offers a simple procedure for the treatment of multiterm dispersion in the FDTD scheme. The algorithm is tested by simulating wave propagation in 1-D magnetized plasma showing excellent agreement with analytical solutions. Extension of the algorithm to multidimensional structures is straightforward. The presented algorithm is efficient and simple compared to other algorithms found in the literature. © 2012 IEEE.
Plasma treatment of multiwall carbon nanotubes for dispersion improvement in water
International Nuclear Information System (INIS)
Chen Changlun; Ogino, Akihisa; Nagatsu, Masaaki; Wang Xiangke
2010-01-01
Microwave excited Ar/H 2 O surface-wave plasma was used to treat multiwall carbon nanotubes (MWCNTs) to modify their surface characteristics and thus improve their dispersion capability in water. Changes in the atom composition and structure properties of MWCNTs were analyzed using x-ray photoelectron spectroscopy and Raman spectroscopy, and the surface morphology of MWCNTs was observed by field emission scanning electron microscopy and scanning transmission electron microscopy. The results indicated that Ar/H 2 O plasma treatment greatly enhanced the content of oxygen, and modified surface microstructure properties. The integrity of nanotube patterns, however, was not damaged.
Spin-Wave Dispersion and Sublattice Magnetization in NiCl_2
DEFF Research Database (Denmark)
Lindgård, Per-Anker; Birgeneau, R. J.; Als-Nielsen, Jens Aage
1975-01-01
temperature dependence on the sublattice magnetization, gap energy and specific heat. The authors report an inelastic neutron scattering study of the spin waves both at low temperatures and, for selected q-vectors, for temperatures up to TN=52.3K. The sublattice magnetization has been measured from 1.5K to TN......-dependent dispersion relations (together with the sublattice magnetization) and the gap energy up to approximately 0.4 TN are properly predicted....
Suppression of transverse instabilities of dark solitons and their dispersive shock waves
Armaroli, Andrea
2009-11-03
We investigate the impact of nonlocality, owing to diffusive behavior, on transverse instabilities of a dark stripe propagating in a defocusing cubic medium. The nonlocal response turns out to have a strongly stabilizing effect both in the case of a single soliton input and in the regime where dispersive shock waves develop (multisoliton regime). Such conclusions are supported by the linear stability analysis and numerical simulation of the propagation. © 2009 The American Physical Society.
von Kameke, A; Huhn, F; Fernández-García, G; Muñuzuri, A P; Pérez-Muñuzuri, V
2011-08-12
We report the experimental observation of Richardson dispersion and a double cascade in a thin horizontal fluid flow induced by Faraday waves. The energy spectra and the mean spectral energy flux obtained from particle image velocimetry data suggest an inverse energy cascade with Kolmogorov type scaling E(k) ∝ k(γ), γ ≈ -5/3 and an E(k) ∝ k(γ), γ ≈ -3 enstrophy cascade. Particle transport is studied analyzing absolute and relative dispersion as well as the finite size Lyapunov exponent (FSLE) via the direct tracking of real particles and numerical advection of virtual particles. Richardson dispersion with ∝ t(3) is observed and is also reflected in the slopes of the FSLE (Λ ∝ ΔR(-2/3)) for virtual and real particles.
Effect of magnetic field on the wave dispersion relation in three-dimensional dusty plasma crystals
Energy Technology Data Exchange (ETDEWEB)
Yang Xuefeng [School of Mathematical Sciences, Dalian University of Technology, Dalian 116024 (China); Wang Zhengxiong [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)
2012-07-15
Three-dimensional plasma crystals under microgravity condition are investigated by taking into account an external magnetic field. The wave dispersion relations of dust lattice modes in the body centered cubic (bcc) and the face centered cubic (fcc) plasma crystals are obtained explicitly when the magnetic field is perpendicular to the wave motion. The wave dispersion relations of dust lattice modes in the bcc and fcc plasma crystals are calculated numerically when the magnetic field is in an arbitrary direction. The numerical results show that one longitudinal mode and two transverse modes are coupled due to the Lorentz force in the magnetic field. Moreover, three wave modes, i.e., the high frequency phonon mode, the low frequency phonon mode, and the optical mode, are obtained. The optical mode and at least one phonon mode are hybrid modes. When the magnetic field is neither parallel nor perpendicular to the primitive wave motion, all the three wave modes are hybrid modes and do not have any intersection points. It is also found that with increasing the magnetic field strength, the frequency of the optical mode increases and has a cutoff at the cyclotron frequency of the dust particles in the limit of long wavelength, and the mode mixings for both the optical mode and the high frequency phonon mode increase. The acoustic velocity of the low frequency phonon mode is zero. In addition, the acoustic velocity of the high frequency phonon mode depends on the angle of the magnetic field and the wave motion but does not depend on the magnetic field strength.
Dong, Zhong Zhou; Chen, Yong
2009-10-01
By means of the generalized direct method, we investigate the (2+1)-dimensional dispersive long wave equations. A relationship is constructed between the new solutions and the old ones and we obtain the full symmetry group of the (2+1)-dimensional dispersive long wave equations, which includes the Lie point symmetry group S and the discrete groups D. Some new forms of solutions are obtained by selecting the form of the arbitrary functions, based on their relationship. We also find an infinite number of conservation laws of the (2+1)-dimensional dispersive long wave equations.
The use of multiwavelets for uncertainty estimation in seismic surface wave dispersion.
Energy Technology Data Exchange (ETDEWEB)
Poppeliers, Christian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-12-01
This report describes a new single-station analysis method to estimate the dispersion and uncer- tainty of seismic surface waves using the multiwavelet transform. Typically, when estimating the dispersion of a surface wave using only a single seismic station, the seismogram is decomposed into a series of narrow-band realizations using a bank of narrow-band filters. By then enveloping and normalizing the filtered seismograms and identifying the maximum power as a function of frequency, the group velocity can be estimated if the source-receiver distance is known. However, using the filter bank method, there is no robust way to estimate uncertainty. In this report, I in- troduce a new method of estimating the group velocity that includes an estimate of uncertainty. The method is similar to the conventional filter bank method, but uses a class of functions, called Slepian wavelets, to compute a series of wavelet transforms of the data. Each wavelet transform is mathematically similar to a filter bank, however, the time-frequency tradeoff is optimized. By taking multiple wavelet transforms, I form a population of dispersion estimates from which stan- dard statistical methods can be used to estimate uncertainty. I demonstrate the utility of this new method by applying it to synthetic data as well as ambient-noise surface-wave cross-correlelograms recorded by the University of Nevada Seismic Network.
On Dispersive Effects In Inviscid Fluids And Non-Uniqueness Of Weak Wave Maps
Widmayer, Klaus
This work is devoted to the study of some aspects of the well-posedness theory of evolution differential equations in mathematical physics. In Part I we explore the effects of dispersion in incompressible, inviscid fluids in a variety of settings. In the absence of the strongly regularizing mechanism of viscosity, even in only two spatial dimensions effects such as the rotation of the earth or unidirectional gravitational forces are not understood well. For these we bring to light a mechanism that disperses waves, i.e. we show that in such systems waves or disturbances at different frequencies travel at distinct speeds, often also in different directions. On the one hand, this allows us to improve the well-posedness theory of a wide range of problems. In some scenarios this yields a theory that holds on a very large timespan. On the other hand, it may also resolve questions regarding the qualitative behavior of more complicated systems, where effects other than the dispersion play a dominant role. In Part II we study the well-posedness theory of the so-called wave maps equation, which arises in quantum physics. The corresponding energy conservation law suggests a natural mathematical framework. For this problem, however, we show that in the physically relevant setting this consideration does not provide a satisfactory theory: For a given initial setup, the time evolution is not unique.
Feng, Lei; Zhang, Yugui
2017-08-01
Dispersion analysis is an important part of in-seam seismic data processing, and the calculation accuracy of the dispersion curve directly influences pickup errors of channel wave travel time. To extract an accurate channel wave dispersion curve from in-seam seismic two-component signals, we proposed a time-frequency analysis method based on single-trace signal processing; in addition, we formulated a dispersion calculation equation, based on S-transform, with a freely adjusted filter window width. To unify the azimuth of seismic wave propagation received by a two-component geophone, the original in-seam seismic data undergoes coordinate rotation. The rotation angle can be calculated based on P-wave characteristics, with high energy in the wave propagation direction and weak energy in the vertical direction. With this angle acquisition, a two-component signal can be converted to horizontal and vertical directions. Because Love channel waves have a particle vibration track perpendicular to the wave propagation direction, the signal in the horizontal and vertical directions is mainly Love channel waves. More accurate dispersion characters of Love channel waves can be extracted after the coordinate rotation of two-component signals.
Exact travelling wave solutions for the generalized shallow water wave equation
International Nuclear Information System (INIS)
Elwakil, S.A.; El-labany, S.K.; Zahran, M.A.; Sabry, R.
2003-01-01
Using homogeneous balance method an auto-Baecklund transformation for the generalized shallow water wave equation is obtained. Then solitary wave solutions are found. Also, modified extended tanh-function method is applied and new exact travelling wave solutions are obtained. The obtained solutions include rational, periodical, singular and solitary wave solutions
Exact travelling wave solutions for the generalized shallow water wave equation
Energy Technology Data Exchange (ETDEWEB)
Elwakil, S.A.; El-labany, S.K.; Zahran, M.A.; Sabry, R
2003-07-01
Using homogeneous balance method an auto-Baecklund transformation for the generalized shallow water wave equation is obtained. Then solitary wave solutions are found. Also, modified extended tanh-function method is applied and new exact travelling wave solutions are obtained. The obtained solutions include rational, periodical, singular and solitary wave solutions.
Higher P-Wave Dispersion in Migraine Patients with Higher Number of Attacks
Directory of Open Access Journals (Sweden)
A. Koçer
2012-01-01
Full Text Available Objective and Aim. An imbalance of the sympathetic system may explain many of the clinical manifestations of the migraine. We aimed to evaluate P-waves as a reveal of sympathetic system function in migraine patients and healthy controls. Materials and Methods. Thirty-five episodic type of migraine patients (complained of migraine during 5 years or more, BMI < 30 kg/m2 and 30 controls were included in our study. We measured P-wave durations (minimum, maximum, and dispersion from 12-lead ECG recording during pain-free periods. ECGs were transferred to a personal computer via a scanner and then used for magnification of x400 by Adobe Photoshop software. Results. P-wave durations were found to be similar between migraine patients and controls. Although P WD (P-wave dispersion was similar, the mean value was higher in migraine subjects. P WD was positively correlated with P max (P<0.01. Attacks number per month and male gender were the factors related to the P WD (P<0.01. Conclusions. Many previous studies suggested that increased sympathetic activity may cause an increase in P WD. We found that P WD of migraine patients was higher than controls, and P WD was related to attacks number per month and male gender. Further studies are needed to explain the chronic effects of migraine.
Rayleigh wave dispersion curve inversion by using particle swarm optimization and genetic algorithm
Buyuk, Ersin; Zor, Ekrem; Karaman, Abdullah
2017-04-01
Inversion of surface wave dispersion curves with its highly nonlinear nature has some difficulties using traditional linear inverse methods due to the need and strong dependence to the initial model, possibility of trapping in local minima and evaluation of partial derivatives. There are some modern global optimization methods to overcome of these difficulties in surface wave analysis such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). GA is based on biologic evolution consisting reproduction, crossover and mutation operations, while PSO algorithm developed after GA is inspired from the social behaviour of birds or fish of swarms. Utility of these methods require plausible convergence rate, acceptable relative error and optimum computation cost that are important for modelling studies. Even though PSO and GA processes are similar in appearence, the cross-over operation in GA is not used in PSO and the mutation operation is a stochastic process for changing the genes within chromosomes in GA. Unlike GA, the particles in PSO algorithm changes their position with logical velocities according to particle's own experience and swarm's experience. In this study, we applied PSO algorithm to estimate S wave velocities and thicknesses of the layered earth model by using Rayleigh wave dispersion curve and also compared these results with GA and we emphasize on the advantage of using PSO algorithm for geophysical modelling studies considering its rapid convergence, low misfit error and computation cost.
Propagation and dispersion of transverse wave trains in magnetic flux tubes
Energy Technology Data Exchange (ETDEWEB)
Oliver, R.; Terradas, J. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Ruderman, M. S., E-mail: ramon.oliver@uib.es [School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)
2014-07-01
The dispersion of small-amplitude, impulsively excited wave trains propagating along a magnetic flux tube is investigated. The initial disturbance is a localized transverse displacement of the tube that excites a fast kink wave packet. The spatial and temporal evolution of the perturbed variables (density, plasma displacement, velocity, ...) is given by an analytical expression containing an integral that is computed numerically. We find that the dispersion of fast kink wave trains is more important for shorter initial disturbances (i.e., more concentrated in the longitudinal direction) and for larger density ratios (i.e., for larger contrasts of the tube density with respect to the environment density). This type of excitation generates a wave train whose signature at a fixed position along a coronal loop is a short event (duration ≅ 20 s) in which the velocity and density oscillate very rapidly with typical periods of the order of a few seconds. The oscillatory period is not constant but gradually declines during the course of this event. Peak values of the velocity are of the order of 10 km s{sup –1} and are accompanied by maximum density variations of the order of 10%-15% the unperturbed loop density.
López-Pineda, Leobardo; Rebollar, Cecilio J.; Quintanar, Luis
2007-04-01
Dispersed surface waves of regional events recorded at Network of Autonomously Recording Seismographs (NARS)-Baja and Red Sísmica de Banda Ancha (RESBAN) networks located over the Baja California Peninsula, Sonora, and Sinaloa, Mexico, were used to estimate shear wave elastic models and crustal thickness. We analyzed fundamental modes of surface waves with period between 10 and 40 s. Multiple filter analysis and the inversion method described by Herrmann and Ammon (2003) was used. Crustal thickness estimates for the Peninsular Ranges of Northern Baja California agree with those obtained by previous studies in the Peninsular Ranges of Northern Baja California. We analyzed dispersion of surface waves with northwest-southeast travel paths along the east and west sides of the Baja California Peninsula as well as a northwest-southeast travel path along the western sides of the Mexican states of Sonora and Sinaloa. It was found that the crustal structure east of the Baja California Peninsula is similar to the structure of Sonora and Sinaloa. The correlation between those two structures suggests dextral offset of the order of 275 ± 25 km if we consider Baja California Peninsula as a rigid body moving toward the northwest relative to the North America plate. This displacement between the structures is in agreement with the displacement determined by the dating of Miocene deposits located in San Felipe on the Baja California Peninsula (Pacific plate), and Isle Tiburon located west of Sonora (North America plate).
Benoit, Michel; Yates, Marissa L.; Raoult, Cécile
2017-04-01
Efficient and accurate numerical models simulating wave propagation are required for a variety of engineering projects including the evaluation of coastal risks, the design of protective coastal structures, and the estimation of the potential for marine renewable energy devices. Nonlinear and dispersive effects are particularly significant in the coastal zone where waves interact with the bottom, the shoreline, and coastal structures. The main challenge in developing a numerical models is finding a compromise between computational efficiency and the required accuracy of the simulated wave field. Here, a potential approach is selected and the (fully nonlinear) water wave problem is formulated using the Euler-Zakharov equations (Zakharov, 1968) describing the temporal evolution of the free surface elevation and velocity potential. The proposed model (Yates and Benoit, 2015) uses a spectral approach in the vertical (i.e. the vertical variation of the potential is approximated by a linear combination of the first NT+1 Chebyshev polynomials, following the work of Tian and Sato (2008)). The Zakharov equations are integrated in time using a fourth-order Runge-Kutta scheme with a constant time step. At each sub-timestep, the Laplace Boundary Value Problem (BVP) is solved to estimate the free surface vertical velocity using the spectral approach, with typical values of NT between 5 to 8 for practical applications. The 1DH version of the code is validated with comparisons to the experimental data set of Becq-Girard et al. (1999), which studied the propagation of irregular waves over a beach profile with a submerged bar. The nonlinear and dispersive capacities of the model are verified with the correct representation of wave-wave interactions, in particular the transfer of energy between different harmonic components during wave propagation (analysis of the transformation of the variance spectrum along the channel). Evolution of wave skewness, asymmetry and kurtosis along the
Deep water periodic waves as Hamiltonian relative equilibria
van Groesen, Embrecht W.C.; Lie She Liam, L.S.L.; Lakhturov, I.; Andonowati, A.; Biggs, N.
2007-01-01
We use a recently derived KdV-type of equation for waves on deep water to study Stokes waves as relative equilibria. Special attention is given to investigate the cornered Stokes-120 degree wave as a singular solution in the class of smooth steady wave profiles.
Constraining Lower Mantle Heterogeneity With Differential Dispersion of Core-Diffracted Waves
Euler, G. G.; Wysession, M. E.; Aleqabi, G. I.
2006-12-01
We investigate global differential travel-time dispersion of core-diffracted phases from large, deep earthquakes. This technique aids in constraining radial velocity structure at the core-mantle interface in a manner analogous to surface waves constraining upper mantle structure. We show that there is noticeable differential dispersion, that the cause is likely associated with the diffraction process and that the dispersion varies with geographic location. Variations in differential dispersion between Pdiff and Sdiff along the same azimuth are also observed. We attempt to utilize dispersion characteristics to put bounds on the magnitude and distribution of large-scale velocity perturbations in the lowermost mantle region and draw comparisons to variations found in several 3D whole-mantle models. We have included in our study all broadband recordings available from the IRIS DMC. Preprocessing of the records includes deconvolution of the instrument response, conversion to displacement, rotation of horizontals to the backazimuth, filtering using a set of bandpass filters, and sample-rate decimation (20 sps). Relative arrival times are found by computing cross correlegrams in the frequency domain, automatically detecting and removing poor recordings with cluster analysis, weighted least-squares inversion, and robust regression techniques to remedy misidentification in noisy signals. Raypath-approximated corrections for ellipticity, mantle, and crustal differences are applied to the relative times for the derivation of apparent slowness as a function of azimuth and frequency. Following previous studies of diffracted signals, we limit our analysis to stations located in narrow azimuthal windows spread over a considerable distance. This method has the advantage of removing source-side effects, averaging out minor timing errors, and, for our analysis, averaging out receiver-side upper mantle and crustal differential dispersion. Comparison with differential dispersion
Topological helical edge states in water waves over a topographical bottom
Wu, Shiqiao; Wu, Ying; Mei, Jun
2018-02-01
We present the discovery of topologically protected helical edge states in water wave systems, which are realized in water wave propagating over a topographical bottom whose height is modulated periodically in a two-dimensional triangular pattern. We develop an effective Hamiltonian to characterize the dispersion relation and use spin Chern numbers to classify the topology. Through full-wave simulations we unambiguously demonstrate the robustness of the helical edge states which are immune to defects and disorders so that the backscattering loss is significantly reduced. A spin splitter is designed for water wave systems, where helical edge states with different spin orientations are spatially separated with each other, and potential applications are discussed.
On the dispersion law of low-frequency electron whistler waves in a multi-ion plasma
Directory of Open Access Journals (Sweden)
B. V. Lundin
2008-06-01
Full Text Available A new and simple dispersion law for extra-low-frequency electron whistler waves in a multi-ion plasma is derived. It is valid in a plasma with finite ratio ωc/ωpe of electron gyro-to-plasma frequency and is suitable for wave frequencies much less than ωpe but well above the gyrofrequencies of most heavy ions. The resultant contribution of the ions to the dispersion law is expressed by means of the lower hybrid resonance frequency, the highest ion cutoff frequency and the relative content of the lightest ion. In a frequency domain well above the ions' gyrofrequencies, this new dispersion law merges with the "modified electron whistler dispersion law" determined in previous works by the authors. It is shown that it fits well to the total cold plasma electron whistler dispersion law, for different orientations of the wave vectors and different ion constituents, including negative ions or negatively charged dust grains.
Directory of Open Access Journals (Sweden)
Rajneesh Kakar
Full Text Available Abstract An in-depth study has been carried out for the dispersion of Love waves in an isotropic elastic layer sandwiched between orthotropic and prestressed inhomogeneous elastic half-spaces. The inhomogeneities in density and rigidity of the lower half-space are space dependent and an arbitrary function of depth. Simple mathematical techniques are used to obtain dispersion relation for Love wave propagation in an isotropic layer. An extensive analysis is carried out through numerical computation to explore the effect of inhomogeneity and initial stress the lower half on the phase velocity of the Love waves. The numerical analysis of dispersion equation manifests that the phase velocity of the Love wave increases with the increase of stress parameter. The results further indicate that the inhomogeneity of the half space affect the wave velocity significantly. These results can be useful to study geophysical prospecting and understanding the cause and estimation of damage due to earthquakes.
Vavva, Maria G; Protopappas, Vasilios C; Gergidis, Leonidas N; Charalambopoulos, Antonios; Fotiadis, Dimitrios I; Polyzos, Demosthenes
2009-05-01
The classical linear theory of elasticity has been largely used for the ultrasonic characterization of bone. However, linear elasticity cannot adequately describe the mechanical behavior of materials with microstructure in which the stress state has to be defined in a non-local manner. In this study, the simplest form of gradient theory (Mindlin Form-II) is used to theoretically determine the velocity dispersion curves of guided modes propagating in isotropic bone-mimicking plates. Two additional terms are included in the constitutive equations representing the characteristic length in bone: (a) the gradient coefficient g, introduced in the strain energy, and (b) the micro-inertia term h, in the kinetic energy. The plate was assumed free of stresses and of double stresses. Two cases were studied for the characteristic length: h=10(-4) m and h=10(-5) m. For each case, three subcases for g were assumed, namely, g>h, gguided waves were numerically obtained and compared with the Lamb modes. The results indicate that when g was not equal to h (i.e., g not equal h), microstructure affects mode dispersion by inducing both material and geometrical dispersion. In conclusion, gradient elasticity can provide supplementary information to better understand guided waves in bones.
Energy Technology Data Exchange (ETDEWEB)
Li, Bin Peng [Research Center of Carbon Fiber, Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Tianjin Binhai New Area Finance Bureau, Tianjin 300450 (China); Wang, Cheng Guo, E-mail: sduwangchg@gmail.com [Research Center of Carbon Fiber, Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Wang, Wen [Norinco Group China North Material Science and Engineering Technology Group Corporation, Jinan 250031 (China); Yu, Mei Jie; Gao, Rui; Chen, Yang; Xiang Wang, Yan [Research Center of Carbon Fiber, Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China)
2014-09-01
Composites with micro-sized magnetic particles dispersed in amorphous carbon were fabricated conveniently and economically by carbonizing polyacrylonitrile (PAN) fibers mixed with micro-sized iron particles under different temperatures. The composites were characterized by X-ray diffraction (XRD) and scanning electric microscope (SEM). The electromagnetic (EM) properties were measured by a vector network analyzer in the frequency range of 2–18 GHz based on which analog computations of EM wave absorption properties were carried out. The influences of temperature on phase composition and EM wave absorption properties were also investigated, indicating that the composites had good electromagnetic absorption properties with both electrical loss and magnetic loss. Effective reflection loss (RL<−10 dB) was observed in a large frequency range of 7.5–18 GHz with the absorber thickness of 2.0–3.0 mm for the paraffin samples with composite powders heated up to 750 °C and the minimum absorption peak around −40 dB appeared at approximately 10 GHz with matching thickness of 2.0 mm for the paraffin sample with composite powders heated up to 800 °C. - Highlights: • High-performance electromagnetic wave absorption materials were fabricated conveniently and economically. • The materials are composites with micro-sized magnetic particles dispersed in porous amorphous carbon. • The influences of temperature on phase composition and electromagnetic wave absorption properties were investigated. • The composites heated up to 750 °C and 800 °C had good electromagnetic wave absorption property.
Soliton shock wave fronts and self-similar discontinuities in dispersion hydrodynamics
International Nuclear Information System (INIS)
Gurevich, A.V.; Meshcherkin, A.P.
1987-01-01
Nonlinear flows in nondissipative dispersion hydrodynamics are examined. It is demonstrated that in order to describe such flows it is necessary to incorporate a new concept: a special discontinuity called a ''self-similar'' discontinuity consisting of a nondissipative shock wave and a powerful slow wave discontinuity in regular hydrodynamics. The ''self similar discontinuity'' expands linearly over time. It is demonstrated that this concept may be introduced in a solution to Euler equations. The boundary conditions of the ''self similar discontinuity'' that allow closure of Euler equations for dispersion hydrodynamics are formulated, i.e., those that replace the shock adiabatic curve of standard dissipative hydrodynamics. The structure of the soliton front and of the trailing edge of the shock wave is investigated. A classification and complete solution are given to the problem of the decay of random initial discontinuities in the hydrodynamics of highly nonisothermic plasma. A solution is derived to the problem of the decay of initial discontinuities in the hydrodynamics of magnetized plasma. It is demonstrated that in this plasma, a feature of current density arises at the point of soliton inversion
Dispersion equations for field-aligned cyclotron waves in axisymmetric magnetospheric plasmas
Directory of Open Access Journals (Sweden)
N. I. Grishanov
2006-03-01
Full Text Available In this paper, we derive the dispersion equations for field-aligned cyclotron waves in two-dimensional (2-D magnetospheric plasmas with anisotropic temperature. Two magnetic field configurations are considered with dipole and circular magnetic field lines. The main contribution of the trapped particles to the transverse dielectric permittivity is estimated by solving the linearized Vlasov equation for their perturbed distribution functions, accounting for the cyclotron and bounce resonances, neglecting the drift effects, and assuming the weak connection of the left-hand and right-hand polarized waves. Both the bi-Maxwellian and bi-Lorentzian distribution functions are considered to model the ring current ions and electrons in the dipole magnetosphere. A numerical code has been developed to analyze the dispersion characteristics of electromagnetic ion-cyclotron waves in an electron-proton magnetospheric plasma with circular magnetic field lines, assuming that the steady-state distribution function of the energetic protons is bi-Maxwellian. As in the uniform magnetic field case, the growth rate of the proton-cyclotron instability (PCI in the 2-D magnetospheric plasmas is defined by the contribution of the energetic ions/protons to the imaginary part of the transverse permittivity elements. We demonstrate that the PCI growth rate in the 2-D axisymmetric plasmasphere can be significantly smaller than that for the straight magnetic field case with the same macroscopic bulk parameters.
Blow-up of solutions to the rotation b-family system modeling equatorial water waves
Directory of Open Access Journals (Sweden)
Min Zhu
2018-03-01
Full Text Available We consider the blow-up mechanism to the periodic generalized rotation b-family system (R-b-family system. This model can be derived from the f-plane governing equations for the geographical water waves with a constant underlying current in the equatorial water waves with effect of the Coriolis force. When b=2, it is a rotation two-component Camassa-Holm (R2CH system. We consider the periodic R2CH system when linear dispersion is absent (which model is called r2CH system and derive two finite-time blow-up results.
Badawy, Ahmed; Hegazi, Mona; Gaber, Hanan; Korrat, Ibrahim
2018-01-01
In this study, we used a combined inversion of body wave receiver functions and surface wave dispersion measurements to provide constraints on the crustal structure of northern Egypt. The two techniques are complementary to each other: receiver functions (RFs) are sensitive to shear-wave velocity contrasts, while surface wave dispersion (SWD) measurements are sensitive to finite variations of shear-wave velocity with depth. A database of 122 teleseismic events digitally recorded by the Egyptian National Seismological Network (ENSN) stations has been used as well. To enhance the resulting RFs at each ENSN station, the H-k stacking method was applied. A joint inversion process between the resulting receiver functions and the surface wave dispersion curves was applied as well. We have produced three averaged velocity structure models for distinct geographic and tectonic provinces namely Sinai, eastern desert, and western desert from east to the west respectively. These models will deeply help in estimation the epicenter distance of earthquake, focal mechanism solutions, and earthquake hazard analysis in northern Egypt. An obvious image of the subsurface structure has been determined which shows that generally the crustal structure of northern Egypt consists of three layers covered with a sequence of sediments that differs in thickness from across the region except in the Sharm area where the sedimentary cover is absent. The obtained results indicate that crustal thickness differs from east to west and reaches its maximum value of about 36 km at Siwa station (SWA) in the western desert and its minimum value of about 28 km at Sharm station (SHR) of the southern tip of the Sinai Peninsula. The Vp/Vs ratio varies between 1.71 and 2.07 in northern Egypt. Generally, the high values (1.93) of (Vp/Vs) at SWA station may reflect the well-known rich aquifer with fully saturated sediments of the Swia Oasis in the Western Desert. Moreover, the highest value (2.07) of (Vp/Vs) at
Spin-wave dispersion relations in disordered Fe-V alloys
International Nuclear Information System (INIS)
Nakai, Y.; Schibuya, N.; Kunitomi, N.; Wakabayashi, N.; Cooke, J.F.
1982-01-01
The spin-wave dispersion relations of the ferromagnetic disordered alloys Fe/sub 1-x/V/sub x/(x = 0.076, 0.135, 0.160, and 0.187) were studied by means of the inelastic scattering of neutrons. The observed dispersion relations are adequately represented by the power law, E = Dq 2 (1-βq 2 ), in a wide energy range up to 80 meV. The concentration dependence of the exchange stiffness constant D shows good agreement with previous results obtained by means of the small-angle scattering of neutrons and by the analysis of the temperature dependence of the bulk magnetization. The observed results can be explained by the Heisenberg model and, to some extent, by the itinerant-electron model
Meijborg, Veronique M F; Chauveau, Samuel; Janse, Michiel J; Anyukhovsky, Evgeny P; Danilo, Peter R; Rosen, Michael R; Opthof, Tobias; Coronel, Ruben
BACKGROUND: Long QT2 (LQT2) syndrome is characterized by bifid (or notched) T waves, whose mechanism is not understood. OBJECTIVE: The purpose of this study was to test whether increased interventricular dispersion of repolarization induces bifid T waves. METHODS: We simultaneously recorded surface
Meijborg, Veronique M. F.; Chauveau, Samuel; Janse, Michiel J.; Anyukhovsky, Evgeny P.; Danilo, Peter R.; Rosen, Michael R.; Opthof, Tobias; Coronel, Ruben
2015-01-01
Long QT2 (LQT2) syndrome is characterized by bifid (or notched) T waves, whose mechanism is not understood. The purpose of this study was to test whether increased interventricular dispersion of repolarization induces bifid T waves. We simultaneously recorded surface ECG and unipolar electrograms at
Solubilization of poorly water-soluble drugs using solid dispersions.
Tran, Thao T-D; Tran, Phuong H-L; Khanh, Tran N; Van, Toi V; Lee, Beom-Jin
2013-08-01
Many new drugs have been discovered in pharmaceutical industry and exposed their surprised potential therapeutic effects. Unfortunately, these drugs possess low absorption and bioavailability since their solubility limitation in water. Solid dispersion (SD) is the current technique gaining so many attractions from scientists due to its effect on improving solubility and dissolution rate of poorly water-soluble drugs. A number of patents including the most recent inventions have been undertaken in this review to address various respects of this strategy in solubilization of poorly watersoluble drugs including type of carriers, preparation methods and view of technologies used to detect SD properties and mechanisms with the aim to accomplish a SD not only effective on enhanced bioavailability but also overcome difficulties associated with stability and production. Future prospects are as well discussed with an only hope that many developments and researches in this field will be successfully reached and contributed to commercial use for treatment as much as possible.
Driben, Rodislav; Mitschke, Fedor; Zhavoronkov, Nickolai
2010-12-06
The complex mechanism of multiple interactions between solitary and dispersive waves at the advanced stage of supercontinuum generation in photonic crystal fiber is studied in experiment and numerical simulations. Injection of high power negatively chirped pulses near zero dispersion frequency results in an effective soliton fission process with multiple interactions between red shifted Raman solitons and dispersive waves. These interactions may result in relative acceleration of solitons with further collisions between them of quasi-elastic or quasi-plastic kinds. In the spectral domain these processes result in enhancement of certain wavelength regions within the spectrum or development of a new significant band at the long wavelength side of the spectrum.
Dispersion and damping of two-dimensional dust acoustic waves: theory and simulation
International Nuclear Information System (INIS)
Upadhyaya, Nitin; Miskovic, Z L; Hou, L-J
2010-01-01
A two-dimensional generalized hydrodynamics (GH) model is developed to study the full spectrum of both longitudinal and transverse dust acoustic waves (DAW) in strongly coupled complex (dusty) plasmas, with memory-function-formalism being implemented to enforce high-frequency sum rules. Results are compared with earlier theories (such as quasi-localized charge approximation and its extended version) and with a self-consistent Brownian dynamics simulation. It is found that the GH approach provides a good account, not only of dispersion relations, but also of damping rates of the DAW modes in a wide range of coupling strengths, an issue hitherto not fully addressed for dusty plasmas.
A numerical study of wave dispersion curves in cylindrical rods with circular cross-section
Directory of Open Access Journals (Sweden)
Valsamos G.
2013-06-01
Full Text Available This work presents a finite element approach for modeling longitudinal wave propagation in thick cylindrical rods with circular cross-section. The formulation is based on simple time domain response of the structure to a properly chosen excitation, and is calculated with an explicit finite element solver. The proposed post-treatment procedure identifies the wavenumber for each mode of wave propagation at the desired frequency. The procedure is implemented and integrated in an efficient way in the explicit finite element code Europlexus. The numerical results are compared to the analytical ones obtained from the solution of the Pochhammer — Chree equation, which provides the dispersion curves for wavetrains in solid cylinders of infinite length.
Role of spatial dispersion of electromagnetic wave at its transmission through quantum well
Korovin, L I; Contreras-Solorio, D A; Pavlov, S T
2001-01-01
The theory on the light transmission through the quantum well, placed in the strong magnetic field, perpendicular to the well plane, wherein the interzone transitions take place, is developed. The light wave length is assumed to be comparable with the well width. The formulae for reflection, absorption and transmission wherein the spatial dispersion of the monochromatic light wave and the difference in the reflection indices of the quantum well and the barrier are accounted for, are obtained. It is shown that accounting for these factors effects the reflection most of all, because along with the reflection, caused by the interzonal transitions in the quantum well there appears the additional reflection from the well boundaries. The most radical changes in the reflection take place in the case, when the reverse radiation lifetime of the excited state in the quantum well is shorter as compared to the reverse non-radiation lifetime
Seadawy, A. R.; El-Rashidy, K.
2018-03-01
The Kadomtsev-Petviashvili (KP) and modified KP equations are two of the most universal models in nonlinear wave theory, which arises as a reduction of system with quadratic nonlinearity which admit weakly dispersive waves. The generalized extended tanh method and the F-expansion method are used to derive exact solitary waves solutions of KP and modified KP equations. The region of solutions are displayed graphically.
Construction of the wave operator for non-linear dispersive equations
Tsuruta, Kai Erik
In this thesis, we will study non-linear dispersive equations. The primary focus will be on the construction of the positive-time wave operator for such equations. The positive-time wave operator problem arises in the study of the asymptotics of a partial differential equation. It is a map from a space of initial data X into itself, and is loosely defined as follows: Suppose that for a solution ψlin to the dispersive equation with no non-linearity and initial data ψ +, there exists a unique solution ψ to the non-linear equation with initial data ψ0 such that ψ behaves as ψ lin as t → infinity. Then the wave operator is the map W+ that takes ψ + to ψ0. By its definition, W+ is injective. An important additional question is whether or not the map is also surjective. If so, then every non-linear solution emanating from X behaves, in some sense, linearly as it evolves (this is known as asymptotic completeness). Thus, there is some justification for treating these solutions as their much simpler linear counterparts. The main results presented in this thesis revolve around the construction of the wave operator(s) at critical non-linearities. We will study the "semi-relativistic" Schrodinger equation as well as the Klein-Gordon-Schrodinger system on R2 . In both cases, we will impose fairly general quadratic non-linearities for which conservation laws cannot be relied upon. These non-linearities fall below the scaling required to employ such tools as the Strichartz estimates. We instead adapt the "first iteration method" of Jang, Li, and Zhang to our setting which depends crucially on the critical decay of the non-linear interaction of the linear evolution. To see the critical decay in our problem, careful analysis is needed to treat the regime where one has spatial and/or time resonance.
Witek, M.; van der Lee, S.; Kang, T. S.; Chang, S. J.; Ning, J.; Ning, S.
2017-12-01
We have measured Rayleigh wave group velocity dispersion curves from one year of station-pair cross-correlations of continuous vertical-component broadband data from 1082 seismic stations in regional networks across China, Korea, Taiwan, and Japan for the year 2011. We use the measurements to map local dispersion anomalies for periods in the range 6-40 s. We combined our ambient noise data set with the earthquake group velocity data set of Ma et al. (2014), and then applied agglomerative hierarchical clustering to the localized dispersion curves. We find that the dispersion curves naturally organize themselves into distinct tectonic regions. For our distribution of interstation distances, only 8 distinct regions need to be defined. Additional clusters reduce the overall data misfit by increasingly smaller amounts. The size and number of clusters needed to suitably predict the data may give an indication of the resolving power of the data set. The regions that emerge from the cluster analysis include Tibet, the Sea of Japan, the South China Block and the Korean peninsula, the Ordos and Yangtze cratons, and Mesozoic rift basins such as the Songliao, Bohai Bay and Ulleung basins. We also performed a traditional inversion for 3D S-velocity structure, and the resulting model fits the data as well as the 8-cluster model, while both models fit the earthquake data and ambient noise data better than the LITHO1.0 model of Pasyanos et al. (2014). Our 3D model of the crust and upper mantle confirms many of the features seen in previous studies of the region, most notably the lithospheric thinning going from west to east and low velocity zones in the crust on the Tibetan periphery. We conclude that cluster analysis is able to greatly reduce the dimensionality of surface wave dispersion data, in the sense that a data set of over half a million dispersion curves is sufficiently predicted by appropriately averaging over a relatively small set of distinct tectonic regions. The
Dispersion of Lamb waves under a periodic metal grating in aluminum nitride plates.
Naumenko, Natalya F
2014-09-01
Dispersion of Lamb waves propagating in AlN plates with a periodic Al grating on the top surface and an Al electrode on the bottom surface is investigated using the numerical technique SDA-FEM-SDA, which combines finite element modeling (FEM) analysis of the electrode region with spectral-domain analysis (SDA) of the adjacent multi-layered half-spaces. Characteristics of zero-order and higher-order Lamb waves are presented as functions of plate thickness and spectral frequency, which varies in the first Brillouin zone. The structures of typical Lamb waves are examined via visualization of the instantaneous displacement fields in the AlN plate confined between the grating and the bottom electrode. The mechanism of building hybrid modes, which arise from intermode coupling between the counter-propagating Lamb waves of different symmetry and order, is illustrated by two examples of modes propagating with wavelengths λ = 3p and λ = 4p, where p is the pitch of the grating.
Role of 3D-Dispersive Alfven Waves in Coronal Heating and Solar Wind
Sharma, R. P.; Yadav, N.
2013-03-01
Dispersive Alfven waves (DAWs) play a very important role in the acceleration and heating of plasma particles in space as well in laboratory plasmas. DAWs may be Kinetic Alfven waves (KAW) or Inertial Alfven waves (IAW) depending upon the plasma beta (here beta is ratio of the plasma thermal pressure and magnetic pressure). Using two-fluid model of plasma DAWs have been studied extensively in literature but to explain the dynamics of Alfvén vortices one has to study the three dimensional (3D) propagation of these waves rather than 2D- propagation. 3D- DAW itself propagates in magnetized plasma in the form of a vortex beam which is manifestation of orbital angular momentum. These magnetic flux ropes or Alfvén vortices trap charged plasma particles and energize and transport them from one place to another. Thus these Alfvén vortices can also be an alternative mechanism to explain the energy transport in space plasmas. Coronal heating is one of the unresolved problems in solar physics. A number of theories have been given to explain the mystery behind coronal heating but no satisfactory solution has been found yet. We propose to study the nonlinear interaction between 3D-DAW and Ion acoustic wave as a mechanism in solar environment to generate the 3D- DAW localized structures. In the absence of ponderomotive non-linearity we get Laguerre Gauss (LG) polynomials as solutions of paraxial wave equation governing propagation of 3D-KAW. These LG modes are characterized by spiral phase front and concentric rings as intensity pattern. The relevance of this nonlinear process to coronal heating and solar wind turbulence has been pointed out. For this we have developed a (numerical) code based on pseudo-spectral technique and simulate this nonlinear interaction.
Kayen, Robert E.; Carkin, Brad A.; Corbett, Skye C.
2017-10-19
Vertical one-dimensional shear wave velocity (VS) profiles are presented for strong-motion sites in Arizona for a suite of stations surrounding the Palo Verde Nuclear Generating Station. The purpose of the study is to determine the detailed site velocity profile, the average velocity in the upper 30 meters of the profile (VS30), the average velocity for the entire profile (VSZ), and the National Earthquake Hazards Reduction Program (NEHRP) site classification. The VS profiles are estimated using a non-invasive continuous-sine-wave method for gathering the dispersion characteristics of surface waves. Shear wave velocity profiles were inverted from the averaged dispersion curves using three independent methods for comparison, and the root-mean-square combined coefficient of variation (COV) of the dispersion and inversion calculations are estimated for each site.
Quasilinear ridge structures in water surface waves
Blümel, R.; Davidson, I. H.; Reinhardt, W. P.; Lin, H.; Sharnoff, M.
1992-02-01
Nodal patterns of stationary capillary waves formed on the surface of water enclosed in an agitated ripple tank with circular and stadium-shaped cylindrical walls are examined in the low-frequency (ν700 Hz) regimes. In the low-frequency regime, in agreement with predictions of quantum-chaos theory, the shape of the tank's boundaries (integrable or nonintegrable) dictates the type of nodal patterns obtained. In the high-frequency regime we obtain nodal patterns characterized by short-range order (called ``scarlets'' because they are believed to be the precursors of quantum scars), as recently predicted in the quantum-chaos context by P. O'Connor, J. Gehlen, and E. J. Heller [Phys. Rev. Lett. 58, 1296 (1987)].
International Nuclear Information System (INIS)
Chen, C.
1994-01-01
A Pierce-type dispersion relation is derived for the interaction of an intense relativistic electron beam with a cylindrical slow-wave structure of arbitrary corrugation depth. It is shown that near a resonance, the Pierce parameter can be expressed in terms of the vacuum dispersion function and the beam current. The dispersion relation is valid in both the low-current (Compton) regime and the high-current (Raman) regime. The dispersion characteristics of the interaction, such as the linear instability growth rate and bandwidth, are analyzed for both regimes
Characterizing storm water dispersion and dilution from small coastal streams
Romero, Leonel; Siegel, David A.; McWilliams, James C.; Uchiyama, Yusuke; Jones, Charles
2016-06-01
Characterizing the dispersion and dilution of storm water from small coastal creeks is important for understanding the importance of land-derived subsidies to nearby ecosystems and the management of anthropogenic pollutants. In Southern California, creek runoff is episodic, intense, and short-lived while the plumes are buoyant, all of which make the field sampling of freshwater plumes challenging. Numerical modeling offers a viable way to characterize these systems. The dilution and dispersion of freshwater from two creeks that discharge into the Santa Barbara Channel, California is investigated using Regional Ocean Modeling System (ROMS) simulations with a horizontal resolution of 100 m. Tight coupling is found among precipitation, hydrologic discharge, wind forcing, and submesoscale flow structures which all contribute to plume evolution. During flooding, plumes are narrow and attached to the coast, due to downwelling/onshore wind forcing and intense vorticity filaments lying parallel to the shelf. As the storm passes, the winds typically shift to offshore/upwelling favorable conditions and the plume is advected offshore which enhances its dilution. Plumes reach the bottom nearshore while they form thin layers a few meters thick offshore. Dilution field of passive tracers released with the runoff is strongly anisotropic with stronger cross-shelf gradients than along-shelf. Dispersion analysis of statistical moments of the passive tracer distribution results in scale-dependent diffusivities consistent with the particle-pair analysis of Romero et al. (). Model validation, the roles of submesoscale processes, and wind forcing on plume evolution and application to ecological issues and marine resource management are discussed.
Germán Rubino, J; Monachesi, Leonardo B; Müller, Tobias M; Guarracino, Luis; Holliger, Klaus
2013-12-01
Oscillatory fluid movements in heterogeneous porous rocks induced by seismic waves cause dissipation of wave field energy. The resulting seismic signature depends not only on the rock compressibility distribution, but also on a statistically averaged permeability. This so-called equivalent seismic permeability does not, however, coincide with the respective equivalent flow permeability. While this issue has been analyzed for one-dimensional (1D) media, the corresponding two-dimensional (2D) and three-dimensional (3D) cases remain unexplored. In this work, this topic is analyzed for 2D random medium realizations having strong permeability fluctuations. With this objective, oscillatory compressibility simulations based on the quasi-static poroelasticity equations are performed. Numerical analysis shows that strong permeability fluctuations diminish the magnitude of attenuation and velocity dispersion due to fluid flow, while the frequency range where these effects are significant gets broader. By comparing the acoustic responses obtained using different permeability averages, it is also shown that at very low frequencies the equivalent seismic permeability is similar to the equivalent flow permeability, while for very high frequencies this parameter approaches the arithmetic average of the permeability field. These seemingly generic findings have potentially important implications with regard to the estimation of equivalent flow permeability from seismic data.
A numerical dispersion compensation technique for time recompression of Lamb wave signals.
Sicard, René; Goyette, Jacques; Zellouf, Djamel
2002-05-01
A Fourier domain numerical reconstruction technique has been created in order to eliminate the time spread of Lamb wave signals caused by their dispersive nature. This method allows a good time compaction of the echoes obtained from a Lamb wave inspection. In a pulse-echo setup, reflection peaks coming from targets located close one from each other that could not be separated or seen within raw signals are identified using this procedure. The utility of this new technique goes from simple signal analysis to imaging purposes such as the improvement of B-scan images or SAFT processing. It has been tested in three different situations with the S0 mode generated in a frequency bandwidth where it is highly dispersive. The reconstruction of a pure reflection coming from the edge of a plate, the separation of the echoes resulting from reflections on two targets near one each other and the effects of the presence of an obstacle between the emitter and the receiver are treated. Good results are obtained for every case studied.
Early modern human dispersal from Africa: genomic evidence for multiple waves of migration.
Tassi, Francesca; Ghirotto, Silvia; Mezzavilla, Massimo; Vilaça, Sibelle Torres; De Santi, Lisa; Barbujani, Guido
2015-01-01
Anthropological and genetic data agree in indicating the African continent as the main place of origin for anatomically modern humans. However, it is unclear whether early modern humans left Africa through a single, major process, dispersing simultaneously over Asia and Europe, or in two main waves, first through the Arab Peninsula into southern Asia and Oceania, and later through a northern route crossing the Levant. Here, we show that accurate genomic estimates of the divergence times between European and African populations are more recent than those between Australo-Melanesia and Africa and incompatible with the effects of a single dispersal. This difference cannot possibly be accounted for by the effects of either hybridization with archaic human forms in Australo-Melanesia or back migration from Europe into Africa. Furthermore, in several populations of Asia we found evidence for relatively recent genetic admixture events, which could have obscured the signatures of the earliest processes. We conclude that the hypothesis of a single major human dispersal from Africa appears hardly compatible with the observed historical and geographical patterns of genome diversity and that Australo-Melanesian populations seem still to retain a genomic signature of a more ancient divergence from Africa.
Zvietcovich, Fernando; Rolland, Jannick P.; Grygotis, Emma; Wayson, Sarah; Helguera, Maria; Dalecki, Diane; Parker, Kevin J.
2018-02-01
Determining the mechanical properties of tissue such as elasticity and viscosity is fundamental for better understanding and assessment of pathological and physiological processes. Dynamic optical coherence elastography uses shear/surface wave propagation to estimate frequency-dependent wave speed and Young's modulus. However, for dispersive tissues, the displacement pulse is highly damped and distorted during propagation, diminishing the effectiveness of peak tracking approaches. The majority of methods used to determine mechanical properties assume a rheological model of tissue for the calculation of viscoelastic parameters. Further, plane wave propagation is sometimes assumed which contributes to estimation errors. To overcome these limitations, we invert a general wave propagation model which incorporates (1) the initial force shape of the excitation pulse in the space-time field, (2) wave speed dispersion, (3) wave attenuation caused by the material properties of the sample, (4) wave spreading caused by the outward cylindrical propagation of the wavefronts, and (5) the rheological-independent estimation of the dispersive medium. Experiments were conducted in elastic and viscous tissue-mimicking phantoms by producing a Gaussian push using acoustic radiation force excitation, and measuring the wave propagation using a swept-source frequency domain optical coherence tomography system. Results confirm the effectiveness of the inversion method in estimating viscoelasticity in both the viscous and elastic phantoms when compared to mechanical measurements. Finally, the viscoelastic characterization of collagen hydrogels was conducted. Preliminary results indicate a relationship between collagen concentration and viscoelastic parameters which is important for tissue engineering applications.
Spectral characteristics of high shallow water waves
Digital Repository Service at National Institute of Oceanography (India)
SanilKumar, V.; AshokKumar, K.
.0081 and 3.3, respectively. By carrying out a multi-regression analysis, an empirical equation is arrived relating the JONSWAP parameters with significant wave height, peak wave period and mean wave period. It was found that the Scott spectra underestimate...
Lecture Notes for the Course in Water Wave Mechanics
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Frigaard, Peter
The present notes are written for the course in water wave mechanics given on the 7th semester of the education in civil engineering at Aalborg University.......The present notes are written for the course in water wave mechanics given on the 7th semester of the education in civil engineering at Aalborg University....
Hydrodynamic coefficients for water-wave diffraction by spherical ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
The work presented here is the result of water-wave interaction with submerged spheres. Analytical expressions for various hydrodynamic coefficients and loads due to the diffraction of water waves by a submerged sphere are obtained. The exciting force components due to surge and heave motions are derived by solving ...
Hydrodynamic coefficients for water-wave diffraction by spherical ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
The work presented here is the result of water-wave interaction with submerged spheres. Analytical ... Since the days of Havelock, the study of water waves has been considered a major part of fluid dynamics. ..... multipole expansions has, on one hand taken care of the singularities in the flow, and on the other hand, help in ...
Afshar-Mohajer, Nima; Li, Cheng; Rule, Ana M.; Katz, Joseph; Koehler, Kirsten
2018-04-01
Crude oil spill incidents occur frequently causing a verity of occupational, ecological and environmental problems. Dispersants are applied to enhance the dispersion rate of crude oil slicks into the water column. In this study, the aerosol size distribution from 10 nm to 20 μm, total particle-bound aromatic hydrocarbons (pPAH) and volatile organic compounds (VOCs) are measured in a 6 x 0.3 x 0.6 m tank as plunging breaking waves entrain oil slicks. The experiments are performed for seawater with slicks of crude oil, crude oil-dispersant mixture and dispersant only. The measurements investigate the effects of wave energy and slick properties on the temporal evolution of the emissions. The total number concentrations of particles originating from the oil-dispersant mixture are 1-2 orders of magnitude higher than those of crude oil across the entire nano-scale range, reaching 100x for 20 nm particles. Conversely, the differences in concentration are small in the micron range. The average concentrations of pPAH are variable but similar (150-270 ng/m3). The VOC concentrations for crude oil-dispersant mixtures are 2-3 times lower than those of crude oil, presumably due to the surfactant effect on mass diffusion. The drastic increase in ultrafine particle concentrations may raise concerns about effects of inhalation by cleanup workers and downstream communities though VOC emissions reduce. Findings through this study provide insight into how the spray of dispersant may change the ratio of airborne particulate matter and VOC emissions from seawater due to natural processes.
CFD Analysis of Water Solitary Wave Reflection
Directory of Open Access Journals (Sweden)
K. Smida
2011-12-01
Full Text Available A new numerical wave generation method is used to investigate the head-on collision of two solitary waves. The reflection at vertical wall of a solitary wave is also presented. The originality of this model, based on the Navier-Stokes equations, is the specification of an internal inlet velocity, defined as a source line within the computational domain for the generation of these non linear waves. This model was successfully implemented in the PHOENICS (Parabolic Hyperbolic Or Elliptic Numerical Integration Code Series code. The collision of two counter-propagating solitary waves is similar to the interaction of a soliton with a vertical wall. This wave generation method allows the saving of considerable time for this collision process since the counter-propagating wave is generated directly without reflection at vertical wall. For the collision of two solitary waves, numerical results show that the run-up phenomenon can be well explained, the solution of the maximum wave run-up is almost equal to experimental measurement. The simulated wave profiles during the collision are in good agreement with experimental results. For the reflection at vertical wall, the spatial profiles of the wave at fixed instants show that this problem is equivalent to the collision process.
Impact of hemodialysis on P-wave amplitude, duration, and dispersion
Directory of Open Access Journals (Sweden)
Wafae Fadili
2007-04-01
Full Text Available Atrial fibrillation (AF is a frequent arrhythmia in patients undergoing hemodialysis (HD. P wave duration (PWdu and P wave dispersion (PWdi have been shown to be predictors of emerging AF in different clinical conditions. We sought to study the impact of HD on PWdu, PWdi, and P wave amplitude in a cohort of patients undergoing HD. Seventeen patients (8 men, 31±10 years were studied. Echocardiography parameters, the sum of the amplitude of P waves in all 12 ECG leads (SP, mean PWdu, and PWdi, along with a host of other parameters (body weight, heart rate, electrolytes and hemoglobin/hematochrit were measured 1/2h, before and after, HD. SP increased (11.8±3.9 vs 15.3±4.0 mm, p = 0.004, mean PWdu remained stable (82.7±11.1 vs 81.6±10.5 ms, p = 0.606, PWdi decreased (51.7±19.1 vs 41.7±19.1 ms, p = 0.03, and left atrial dimension decreased (37.96±3.90 vs 30.62±3.38 mm, p = 0.0001, after HD. The change in PWdi correlated with fluid removed by HD (r = -0.55, p = 0.022. Re-measurements of P-wave parameters in a random group of 11 of the 17 patients revealed augmented SP (p = 0.01, and stable mean PWdu (p = 0.36, and PWdi (p = 0.31, after HD. Fluid removed by HD leads to an increase in SP, a stable mean PWdu, and decrease (or stability on re-measurement in a subgroup of patients in PWdi. Stability of PWdu may be due to the effects of augmentation of the P-wave amplitude and the reduction of the left atrial volume, cancelling each other. Variability of PWdi may stem from the occasional impossibility to measure PWdu (or measure it correctly in minute P-waves in certain ECG leads, which in turn profoundly affects the PWdi.
DEFF Research Database (Denmark)
Li, Jiying; Jensen, Thomas Bagger Stibius; Andersen, Niels Hessel
2009-01-01
) indicates the instability of the Ising-type ground state that eventually evolves into the incommensurate phase as the temperature is raised. The pure LiNiPO4 system (x=0) undergoes a first-order magnetic phase transition from a long-range incommensurate phase to an antiferromagnetic (AFM) ground state at TN......Elastic and inelastic neutron-scattering studies of Li(Ni1−xFex)PO4 single crystals reveal anomalous spin-wave dispersions along the crystallographic direction parallel to the characteristic wave vector of the magnetic incommensurate phase. The anomalous spin-wave dispersion (magnetic soft mode......=20.8 K. At 20% Fe concentrations, although the AFM ground state is to a large extent preserved as that of the pure system, the phase transition is second order, and the incommensurate phase is completely suppressed. Analysis of the dispersion curves using a Heisenberg spin Hamiltonian that includes...
Mi, Binbin; Xia, Jianghai; Shen, Chao; Wang, Limin
2017-10-01
High-frequency surface-wave analysis methods have been effectively and widely used to determine near-surface shear (S) wave velocity. To image the dispersion energy and identify different dispersive modes of surface waves accurately is one of key steps of using surface-wave methods. We analyzed the dispersion energy characteristics of Rayleigh and Love waves in near-surface layered models based on numerical simulations. It has been found that if there is a low-velocity layer (LVL) in the half-space, the dispersion energy of Rayleigh or Love waves is discontinuous and ``jumping'' appears from the fundamental mode to higher modes on dispersive images. We introduce the guided waves generated in an LVL (LVL-guided waves, a trapped wave mode) to clarify the complexity of the dispersion energy. We confirm the LVL-guided waves by analyzing the snapshots of SH and P-SV wavefield and comparing the dispersive energy with theoretical values of phase velocities. Results demonstrate that LVL-guided waves possess energy on dispersive images, which can interfere with the normal dispersion energy of Rayleigh or Love waves. Each mode of LVL-guided waves having lack of energy at the free surface in some high frequency range causes the discontinuity of dispersive energy on dispersive images, which is because shorter wavelengths (generally with lower phase velocities and higher frequencies) of LVL-guided waves cannot penetrate to the free surface. If the S wave velocity of the LVL is higher than that of the surface layer, the energy of LVL-guided waves only contaminates higher mode energy of surface waves and there is no interlacement with the fundamental mode of surface waves, while if the S wave velocity of the LVL is lower than that of the surface layer, the energy of LVL-guided waves may interlace with the fundamental mode of surface waves. Both of the interlacements with the fundamental mode or higher mode energy may cause misidentification for the dispersion curves of surface
Mi, Binbin; Xia, Jianghai; Shen, Chao; Wang, Limin
2018-03-01
High-frequency surface-wave analysis methods have been effectively and widely used to determine near-surface shear (S) wave velocity. To image the dispersion energy and identify different dispersive modes of surface waves accurately is one of key steps of using surface-wave methods. We analyzed the dispersion energy characteristics of Rayleigh and Love waves in near-surface layered models based on numerical simulations. It has been found that if there is a low-velocity layer (LVL) in the half-space, the dispersion energy of Rayleigh or Love waves is discontinuous and ``jumping'' appears from the fundamental mode to higher modes on dispersive images. We introduce the guided waves generated in an LVL (LVL-guided waves, a trapped wave mode) to clarify the complexity of the dispersion energy. We confirm the LVL-guided waves by analyzing the snapshots of SH and P-SV wavefield and comparing the dispersive energy with theoretical values of phase velocities. Results demonstrate that LVL-guided waves possess energy on dispersive images, which can interfere with the normal dispersion energy of Rayleigh or Love waves. Each mode of LVL-guided waves having lack of energy at the free surface in some high frequency range causes the discontinuity of dispersive energy on dispersive images, which is because shorter wavelengths (generally with lower phase velocities and higher frequencies) of LVL-guided waves cannot penetrate to the free surface. If the S wave velocity of the LVL is higher than that of the surface layer, the energy of LVL-guided waves only contaminates higher mode energy of surface waves and there is no interlacement with the fundamental mode of surface waves, while if the S wave velocity of the LVL is lower than that of the surface layer, the energy of LVL-guided waves may interlace with the fundamental mode of surface waves. Both of the interlacements with the fundamental mode or higher mode energy may cause misidentification for the dispersion curves of surface
Dosso, S. E.; Molnar, S.; Cassidy, J.
2010-12-01
Bayesian inversion of microtremor array dispersion data is applied, with evaluation of data errors and model parameterization, to produce the most-probable shear-wave velocity (VS) profile together with quantitative uncertainty estimates. Generally, the most important property characterizing earthquake site response is the subsurface VS structure. The microtremor array method determines phase velocity dispersion of Rayleigh surface waves from multi-instrument recordings of urban noise. Inversion of dispersion curves for VS structure is a non-unique and nonlinear problem such that meaningful evaluation of confidence intervals is required. Quantitative uncertainty estimation requires not only a nonlinear inversion approach that samples models proportional to their probability, but also rigorous estimation of the data error statistics and an appropriate model parameterization. A Bayesian formulation represents the solution of the inverse problem in terms of the posterior probability density (PPD) of the geophysical model parameters. Markov-chain Monte Carlo methods are used with an efficient implementation of Metropolis-Hastings sampling to provide an unbiased sample from the PPD to compute parameter uncertainties and inter-relationships. Nonparametric estimation of a data error covariance matrix from residual analysis is applied with rigorous a posteriori statistical tests to validate the covariance estimate and the assumption of a Gaussian error distribution. The most appropriate model parameterization is determined using the Bayesian information criterion (BIC), which provides the simplest model consistent with the resolving power of the data. Parameter uncertainties are found to be under-estimated when data error correlations are neglected and when compressional-wave velocity and/or density (nuisance) parameters are fixed in the inversion. Bayesian inversion of microtremor array data is applied at two sites in British Columbia, the area of highest seismic risk in
Simulation of Irregular Waves and Wave Induced Loads on Wind Power Plants in Shallow Water
Energy Technology Data Exchange (ETDEWEB)
Trumars, Jenny [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Water Environment Transport
2004-05-01
The essay gives a short introduction to waves and discusses the problem with non-linear waves in shallow water and how they effect an offshore wind energy converter. The focus is on the realisation of non-linear waves in the time domain from short-term statistics in the form of a variance density spectrum of the wave elevation. For this purpose the wave transformation from deep water to the near to shore site of a wind energy farm at Bockstigen has been calculated with the use of SWAN (Simulating Waves Near Shore). The result is a wave spectrum, which can be used as input to the realisation. The realisation of waves is done by perturbation theory to the first and second-order. The properties calculated are the wave elevation, water particle velocity and acceleration. The wave heights from the second order perturbation equations are higher than those from the first order perturbation equations. This is also the case for the water particle kinematics. The increase of variance is significant between the first order and the second order realisation. The calculated wave elevation exhibits non-linear features as the peaks become sharper and the troughs flatter. The resulting forces are calculated using Morison's equation. For second order force and base moment there is an increase in the maximum values. The force and base moment are largest approximately at the zero up and down crossing of the wave elevation. This indicates an inertia dominated wave load. So far the flexibility and the response of the structure have not been taken into account. They are, however, of vital importance. For verification of the wave model the results will later on be compared with measurements at Bockstigen off the coast of Gotland in the Baltic Sea.
Directory of Open Access Journals (Sweden)
Rodrigo Acuna Herrera
2017-01-01
Full Text Available In this paper, we perform numerical analysis about the influence of the wavelength dependence of birefringence (WDB in the Supercontinuum (SC and dispersive wave (DW generation. We study different birefringence profiles such as constant, linear, and parabolic. We see that, for a linear and parabolic profile, the generation of SC practically does not change, while this does so when the constant value of the birefringence varies. Similar situation happens with the generation of dispersive waves. In addition, we observe that the broadband of the SC increases when the Stimulated Raman Scattering (SRS is neglected for all WDB profiles.
DEFF Research Database (Denmark)
Judge, Alexander C.; Bang, Ole; de Sterke, Martin
2010-01-01
We extend the analytical theory explaining the trapping of normally dispersive waves by a Raman soliton in an axially uniform optical fiber to include axially nonuniform fibers. It is shown how a changing group velocity in such a fiber leads to the same trapping mechanism as for a decelerating...... Raman soliton in a uniform fiber. In contrast to this latter case, where the trapping always leads to a blueshift of the confined radiation, the additional design flexibility inherent in the nonuniform geometry permits the redshift of dispersive waves trapped by an accelerating soliton, which itself may...
Directory of Open Access Journals (Sweden)
Azadeh Zolfaghari-Baghbaderani
2012-01-01
Full Text Available Objective. To determine the most effective and biodegradable dispersant of spilled oil in water surrounding two Persian Gulf provinces. Methods. This study compared the effects of three dispersants, Pars 1, Pars 2, and Gamlen OD4000 on removal of oil in two Persian Gulf provinces' water. Overall, 16 stations were selected. Using the Well method, the growth rate of isolated bacteria and fungi was identified. To specify the growth rate of microorganisms and their usage of oil in the presence of the above-mentioned dispersants, as exclusive sources of carbon, the bacteria were grown in culture medium for 28 days at 120 rpm, 30∘C, and their optical density was measured by spectrophotometry. Then, we tested biological oxygen demand (BOD and chemical oxygen demand (COD in microorganisms. Results. The highest growth rate was documented for the growth of microorganisms on either Pars 1 or Pars 2 dispersants or their mixtures with oil. However, the culture having microorganisms grown on Pars 1 had higher BOD and COD than the other two dispersants (9200 and 16800 versus 500 and 960, P<0.05. Mixture of oil and Pars 2 as well as oil and Pars 1 dispersants showed the highest BODs and CODs, respectively. In the Bahregan province, microorganisms grown on Pars 2 had maximum amount of BOD and COD in comparison with Pars 1 and Gamlen dispersants (7100 and 15200 versus 6000 and 10560, P<0.05. Conclusion. Pars 1 and Pars 2 were the most effective dispersants with highest degradability comparing Gamlen. In each region, the most suitable compound for removing oil spill from offshores with least secondary contamination should be investigated.
Guo, Xiao; Wei, Peijun
2016-03-01
The dispersion relations of elastic waves in a one-dimensional phononic crystal formed by periodically repeating of a pre-stressed piezoelectric slab and a pre-stressed piezomagnetic slab are studied in this paper. The influences of initial stress on the dispersive relation are considered based on the incremental stress theory. First, the incremental stress theory of elastic solid is extended to the magneto-electro-elasto solid. The governing equations, constitutive equations, and boundary conditions of the incremental stresses in a magneto-electro-elasto solid are derived with consideration of the existence of initial stresses. Then, the transfer matrices of a pre-stressed piezoelectric slab and a pre-stressed piezomagnetic slab are formulated, respectively. The total transfer matrix of a single cell in the phononic crystal is obtained by the multiplication of two transfer matrixes related with two adjacent slabs. Furthermore, the Bloch theorem is used to obtain the dispersive equations of in-plane and anti-plane Bloch waves. The dispersive equations are solved numerically and the numerical results are shown graphically. The oblique propagation and the normal propagation situations are both considered. In the case of normal propagation of elastic waves, the analytical expressions of the dispersion equation are derived and compared with other literatures. The influences of initial stresses, including the normal initial stresses and shear initial stresses, on the dispersive relations are both discussed based on the numerical results. Copyright © 2015 Elsevier B.V. All rights reserved.
Dispersion of elastic waves in the contact-impact problem of a long cylinder
Czech Academy of Sciences Publication Activity Database
Gabriel, Dušan; Plešek, Jiří; Kolman, Radek; Valeš, František
2010-01-01
Roč. 234, č. 6 (2010), s. 1930-1936 ISSN 0377-0427 R&D Projects: GA ČR(CZ) GA101/07/1471; GA ČR(CZ) GA101/09/1630; GA ČR(CZ) GA101/06/0213 Institutional research plan: CEZ:AV0Z20760514 Keywords : wave propagation * dispersion analysis * serendipity elements * two cylinder impact Subject RIV: BI - Acoustics Impact factor: 1.029, year: 2010 http://apps.isiknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=P16OmHBGja81pB7bL7C&page=1&doc=1
Inversion of residual stress profiles from ultrasonic Rayleigh wave dispersion data
Mora, P.; Spies, M.
2018-05-01
We investigate theoretically and with synthetic data the performance of several inversion methods to infer a residual stress state from ultrasonic surface wave dispersion data. We show that this particular problem may reveal in relevant materials undesired behaviors for some methods that could be reliably applied to infer other properties. We focus on two methods, one based on a Taylor-expansion, and another one based on a piecewise linear expansion regularized by a singular value decomposition. We explain the instabilities of the Taylor-based method by highlighting singularities in the series of coefficients. At the same time, we show that the other method can successfully provide performances which only weakly depend on the material.
Evolution of statistically inhomogeneous degenerate water wave quartets
Stuhlmeier, R.; Stiassnie, M.
2017-12-01
A discretized equation for the evolution of random surface wave fields on deep water is derived from Zakharov's equation, allowing for a general treatment of the stability and long-time behaviour of broad-banded sea states. It is investigated for the simple case of degenerate four-wave interaction, and the instability of statistically homogeneous states to small inhomogeneous disturbances is demonstrated. Furthermore, the long-time evolution is studied for several cases and shown to lead to a complex spatio-temporal energy distribution. The possible impact of this evolution on the statistics of freak wave occurrence is explored. This article is part of the theme issue 'Nonlinear water waves'.
Lee, C. T.; Lee, C. C.
2015-04-01
This paper introduces a systematic approach to investigate a higher order nonlinear dispersive wave equation for modeling different wave modes. We present both the conventional KdV-type soliton and anomaly type solitons for the equation. We also show the conservation laws and Hamiltonian structures for the equation. Our results suggest that the underlying equation has more interacting soliton phenomena than one would have known for the classical KdV and Boussinesq equation.
P-wave and QT dispersion in patients with conversion disorder.
Izci, Filiz; Hocagil, Hilal; Izci, Servet; Izci, Vedat; Koc, Merve Iris; Acar, Rezzan Deniz
2015-01-01
The aim of this study was to investigate QT dispersion (QTd), which is the noninvasive marker of ventricular arrhythmia and sudden cardiac death, and P-wave dispersion, which is the noninvasive marker of atrial arrhythmia, in patients with conversion disorder (CD). A total of 60 patients with no known organic disease who were admitted to outpatient emergency clinic and were diagnosed with CD after psychiatric consultation were included in this study along with 60 healthy control subjects. Beck Anxiety Inventory and Beck Depression Scale were administered to patients and 12-lead electrocardiogram measurements were obtained. Pd and QTd were calculated by a single blinded cardiologist. There was no statistically significant difference in terms of age, sex, education level, socioeconomic status, weight, height, and body mass index between CD patients and controls. Beck Anxiety Inventory scores (25.2±10.8 and 3.8±3.2, respectively, Pconversion patients and control group (46±5.7 vs 44±5.5, respectively, P=0.156). Regarding QTc and QTd, there was a statistically significant increase in all intervals in conversion patients (416±10 vs 398±12, Pdisorders was also observed in CD patients. QTc and QTd were significantly increased compared to the control group in patients with CD. These results suggest a possibility of increased risk of ventricular arrhythmia resulting from QTd in CD patients. Larger samples are needed to evaluate the clinical course and prognosis in terms of arrhythmia risk in CD patients.
Simon, Bruno; Seez, William; Abid, Malek; Kharif, Christian; Touboul, Julien
2017-04-01
During the last ten years, the topic of water waves interacting with sheared current has drawn a lot of attention, since the interaction of water waves with vorticity was recently found to be significant when modeling the propagation of water waves. In this framework, the configuration involving constantly sheared current (indeed a constant vorticity) is of special interst, since the equations remain tractable. In this framework, it is demonstrated that the flow related to water waves can be described by means of potential theory, since the source term in the vorticity equation is proportionnal to the curvature of the current profile (Nwogu, 2009). In the mean time, the community often wonders if this argument is valid, since the existence of a perfectly linearly sheared current is purely theoretical, and the presence of the vorticity within the wave field can be external (through wave generation mechanisms, for instance). Thus, this work is dedicated to investigate the magnitude of the vorticity related to the wave field, in conditions similar to this analytical case of constant vorticity. This approach is based on the comparison of experimental data, and three models. The first model is linear, supposing a constantly seared current and water waves described by potential theory. The second is fully nonlinear, but still supposing that water waves are potential, and finally, the third model is fully nonlinear, but solves the Euler equations, allowing the existence of vorticity related to the waves. The confrontation of these three approaches with the experimental data will allow to quantify the wave-related vorticity within the total flow, and analyze its importance as a function of nonlinearity and vorticity magnitude. ACKNOWLEDGEMENTS The DGA (Direction Générale de l'Armement, France) is acknowledged for its financial support through the ANR grant N°ANR-13-ASTR-0007.
Li, Bin Peng; Wang, Cheng Guo; Wang, Wen; Yu, Mei Jie; Gao, Rui; Chen, Yang; Xiang Wang, Yan
2014-09-01
Composites with micro-sized magnetic particles dispersed in amorphous carbon were fabricated conveniently and economically by carbonizing polyacrylonitrile (PAN) fibers mixed with micro-sized iron particles under different temperatures. The composites were characterized by X-ray diffraction (XRD) and scanning electric microscope (SEM). The electromagnetic (EM) properties were measured by a vector network analyzer in the frequency range of 2-18 GHz based on which analog computations of EM wave absorption properties were carried out. The influences of temperature on phase composition and EM wave absorption properties were also investigated, indicating that the composites had good electromagnetic absorption properties with both electrical loss and magnetic loss. Effective reflection loss (RL<-10 dB) was observed in a large frequency range of 7.5-18 GHz with the absorber thickness of 2.0-3.0 mm for the paraffin samples with composite powders heated up to 750 °C and the minimum absorption peak around -40 dB appeared at approximately 10 GHz with matching thickness of 2.0 mm for the paraffin sample with composite powders heated up to 800 °C.
International Nuclear Information System (INIS)
Katou, Kanemitsu
1981-01-01
It is shown that the transport equations for the electromagnetic wave energy density W sub(k) and momentum density P sub(k) in transparent, dispersive, space- and time-varying media are given by dW sub(k)/dt = ωsub(k)sup(-1)deltaωsub(k)/delta t W sub(k) + 2γsub(k)W sub(k) and by dP sub(k)/dt = -k -1 .deltaωsub(k)/delta r P sub(k) + 2γsub(k)P sub(k), respectively, where d/dt denotes the total time derivative along the ray trajectory and γsub(k) is the growth rate. The terms ωsub(k)sup(-1)deltaωsub(k)/delta t W sub(k) and -k -1 .deltaωsub(k)/delta r P sub(k) result from the fact that the wave energy and momentum density are not adiabatic invariants in space- and time-varying media. It is assumed that the geometric optics approximation and the nonlocal linear response theory are valid. (author)
Xu, Yanlong
2015-08-01
The coupled mode theory with coupling of diffraction modes and waveguide modes is usually used on the calculations of transmission and reflection coefficients for electromagnetic waves traveling through periodic sub-wavelength structures. In this paper, I extend this method to derive analytical solutions of high-order dispersion relations for shear horizontal (SH) wave propagation in elastic plates with periodic stubs. In the long wavelength regime, the explicit expression is obtained by this theory and derived specially by employing an effective medium. This indicates that the periodical stubs are equivalent to an effective homogenous layer in the long wavelength. Notably, in the short wavelength regime, high-order diffraction modes in the plate and high-order waveguide modes in the stubs are considered with modes coupling to compute the band structures. Numerical results of the coupled mode theory fit pretty well with the results of the finite element method (FEM). In addition, the band structures\\' evolution with the height of the stubs and the thickness of the plate shows clearly that the method can predict well the Bragg band gaps, locally resonant band gaps and high-order symmetric and anti-symmetric thickness-twist modes for the periodically structured plates. © 2015 Elsevier B.V.
Shock wave focusing in water inside convergent structures
Directory of Open Access Journals (Sweden)
C Wang
2016-09-01
Full Text Available Experiments on shock focusing in water-filled convergent structures have been performed. A shock wave in water is generated by means of a projectile, launched from a gas gun, which impacts a water-filled convergent structure. Two types of structures have been tested; a bulk material and a thin shell structure. The geometric shape of the convergent structures is given by a logarithmic spiral, and this particular shape is chosen because it maximizes the amount of energy reaching the focal region. High-speed schlieren photography is used to visualize the shock dynamics during the focusing event. Results show that the fluid-structure interaction between the thin shell structure and the shock wave in the water is different from that of a bulk structure; multiple reflections of the shock wave inside the thin shell are reflected back into the water, thus creating a wave train, which is not observed for shock focusing in a bulk material.
Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.; Liu, J.
2010-01-01
Love-wave propagation has been a topic of interest to crustal, earthquake, and engineering seismologists for many years because it is independent of Poisson's ratio and more sensitive to shear (S)-wave velocity changes and layer thickness changes than are Rayleigh waves. It is well known that Love-wave generation requires the existence of a low S-wave velocity layer in a multilayered earth model. In order to study numerically the propagation of Love waves in a layered earth model and dispersion characteristics for near-surface applications, we simulate high-frequency (>5 Hz) Love waves by the staggered-grid finite-difference (FD) method. The air-earth boundary (the shear stress above the free surface) is treated using the stress-imaging technique. We use a two-layer model to demonstrate the accuracy of the staggered-grid modeling scheme. We also simulate four-layer models including a low-velocity layer (LVL) or a high-velocity layer (HVL) to analyze dispersive energy characteristics for near-surface applications. Results demonstrate that: (1) the staggered-grid FD code and stress-imaging technique are suitable for treating the free-surface boundary conditions for Love-wave modeling, (2) Love-wave inversion should be treated with extra care when a LVL exists because of a lack of LVL information in dispersions aggravating uncertainties in the inversion procedure, and (3) energy of high modes in a low-frequency range is very weak, so that it is difficult to estimate the cutoff frequency accurately, and "mode-crossing" occurs between the second higher and third higher modes when a HVL exists. ?? 2010 Birkh??user / Springer Basel AG.
Nonlinear shallow water waves: A fractional order approach
Directory of Open Access Journals (Sweden)
Sarmad Arshad
2016-03-01
Full Text Available Nonlinear partial differential equations governing the obscure phenomena of shallow water waves are discussed in this article. Time fractional model is considered to understand the upcoming solutions on the basis of all historical states of the solution. A semi-analytic technique, Homotopy Perturbation Transform Method (HPTM is used in conjunction with a numerical technique to validate the approximate solutions. With the aid of graphical interpretation, the favorable wave parameters, to avoid wave breaking are estimated.
Euler, G. G.; Wysession, M. E.; Huhmann, B.
2007-12-01
We investigate global differential travel-time dispersion and attenuation of core-diffracted phases from large, deep earthquakes. This technique aids in constraining radial velocity structure at the core-mantle interface in a manner analogous to surface wave observables constraining upper mantle structure. We confirm that there is noticeable differential dispersion and attenuation caused by diffraction on a global basis for both Pdiff and Sdiff. Variations in differential dispersion and attenuation are observed with both geographic location and between Pdiff and Sdiff along the same azimuth suggesting lateral variations in Vp, Vs and Vp/Vs ratio in the lowermost mantle. We attempt to utilize dispersion and attenuation characteristics to put bounds on the magnitude and distribution of large-scale velocity perturbations in the lowermost mantle and draw comparisons to variations found in several 3D whole-mantle models. Our dataset consists of broadband records available from the IRIS DMC for deep (>180 km), large (>5.6 mb) teleseismic events. Preprocessing of the records includes deconvolution of the instrument response, rotation of horizontal components, filtering using a set of bandpass filters, and sample-rate decimation (5 sps). Relative arrival times and amplitudes are found by computing cross correlegrams in the frequency domain, detecting and removing poor recordings with cluster analysis, and iteratively converging on a stable low-variance solution with a weighted least-squares inversion while automatically remediating phase-skips utilizing a database of potential relative arrivals. Raypath-approximated corrections for reciever-side differences in ellipticity, mantle, and crust are applied for the derivation of phase velocites in the lowermost mantle as a function of azimuth and frequency. Following previous studies of diffracted signals, we limit our analysis to station pairs located in narrow azimuthal windows spread over a considerable distance while
On the dispersion law of low-frequency electron whistler waves in a multi-ion plasma
Directory of Open Access Journals (Sweden)
B. V. Lundin
2008-06-01
Full Text Available A new and simple dispersion law for extra-low-frequency electron whistler waves in a multi-ion plasma is derived. It is valid in a plasma with finite ratio ω_{c}/ω_{pe} of electron gyro-to-plasma frequency and is suitable for wave frequencies much less than ω_{pe} but well above the gyrofrequencies of most heavy ions. The resultant contribution of the ions to the dispersion law is expressed by means of the lower hybrid resonance frequency, the highest ion cutoff frequency and the relative content of the lightest ion. In a frequency domain well above the ions' gyrofrequencies, this new dispersion law merges with the "modified electron whistler dispersion law" determined in previous works by the authors. It is shown that it fits well to the total cold plasma electron whistler dispersion law, for different orientations of the wave vectors and different ion constituents, including negative ions or negatively charged dust grains.
DEFF Research Database (Denmark)
Gliese, Ulrik Bo; Nielsen, Søren Nørskov; Nielsen, Søren Nørskov
1996-01-01
Chromatic dispersion significantly limits the distance and/or frequency in fibre-optic microwave and millimeter-wave links based on direct detection due to a decrease of the carrier to noise ratio. The limitations in links based on coherent remote heterodyne detection, however, are far less signi...
Gliese, Ulrik Bo; Nielsen, Søren Nørskov; Nielsen, Søren Nørskov
1996-01-01
Chromatic dispersion significantly limits the distance and/or frequency in fibre-optic microwave and millimeter-wave links based on direct detection due to a decrease of the carrier to noise ratio. The limitations in links based on coherent remote heterodyne detection, however, are far less significant, and are primarily due to an increase of the phase noise
Velocity model of the Hronov-Poříčí Fault Zone from Rayleigh wave dispersion
Czech Academy of Sciences Publication Activity Database
Kolínský, Petr; Valenta, Jan; Málek, Jiří
2014-01-01
Roč. 18, č. 3 (2014), s. 617-635 ISSN 1383-4649 R&D Projects: GA ČR GA205/09/1244; GA MŠk LM2010008 Institutional support: RVO:67985891 Keywords : Bohemian Massif * surface waves * phase-velocity * dispersion curve Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.386, year: 2014
Short?term statistics of waves observed in deep water
Casas-Prat, M.; Holthuijsen, L.H.
2010-01-01
The short?term statistics of 10 million individual waves observed with buoys in deep water have been investigated, corrected for a sample?rate bias, and normalized with the standard deviation of the surface elevation (the range of normalized wave heights is 0 < H < 10). The observed normalized
Wave Loads on Ships Sailing in Restricted Water Depth
DEFF Research Database (Denmark)
Vidic-Perunovic, Jelena; Jensen, Jørgen Juncher
2003-01-01
moment a ship may be subjected to during its operational lifetime. Whereas the influence of forward speed and ship heading with respect to the waves usually is accounted for, the effect of water depth is seldom considered, except in non-linear time domain formulations where a confined water domain must...... be specified anyhow. Usually, two-dimensional strip theories, either linear or non-linear, are applied for actual design cases and these theories are normally based on incident deep-water waves and furthermore apply added mass and damping calculations based on infinite water depth. Only a few papers have...... in ship motion with decreasing keel clearance was observed. In the present paper a rigorous implementation of finite water depth in the consistent linear strip theory by Salvesen et al. (1970) is presented together with results for the variation of the motion and wave-induced bending moment with water...
Kutsenko, A. A.; Shuvalov, A. L.; Poncelet, O.
2018-01-01
A one-dimensional piezoelectric crystal coupled through periodically embedded electrodes with a two-dimensional semi-infinite periodic network of capacitors is considered. The unit cell of the network contains two capacitors with capacitances C1 and C2 which are in parallel and in series, respectively, with the electrodes. The dispersion spectrum of the longitudinal acoustoelectric wave in the piezoelectric crystal coupled with the electric wave of potentials and charges in the network of capacitors is investigated. It is shown that when C1 and C2 are of the same sign, the dispersion spectrum consists of a discrete set of curves, for which the electric wave exponentially decays into the depth of the network of capacitors. In contrast, if C1 and C2 are of the opposite sign and |C1/C2|capacitors.
International Nuclear Information System (INIS)
Saber, Md. Ghulam; Sagor, Rakibul Hasan; Amin, Md. Ruhul
2016-01-01
The linear dispersion relation of a trapezoidally corrugated slow wave structure (TCSWS) is analyzed and presented. The size parameters of the TCSWS are chosen in such a way that they operate in the x-band frequency range. The dispersion relation is solved by utilizing the Rayleigh–Fourier method by expressing the radial function in terms of the Fourier series. A highly accurate synthetic technique is also applied to determine the complete dispersion characteristics from experimentally measured resonances (cold test). Periodic structures resonate at specific frequencies when the terminals are shorted appropriately. The dispersion characteristics obtained from numerical calculation, synthetic technique and cold test are compared, and an excellent agreement is achieved. (paper)
Simanungkalit, R. H.; Anggono, T.; Syuhada; Amran, A.; Supriyanto
2018-03-01
Earthquake signal observations around the world allow seismologists to obtain the information of internal structure of the Earth especially the Earth’s crust. In this study, we used joint inversion of receiver functions and surface wave group velocities to investigate crustal structure beneath CBJI station in West Java, Indonesia. Receiver function were calculated from earthquakes with magnitude more than 5 and at distance 30°-90°. Surface wave group velocities were calculated using frequency time analysis from earthquakes at distance of 30°- 40°. We inverted shear wave velocity model beneath the station by conducting joint inversion from receiver functions and surface wave dispersions. We suggest that the crustal thickness beneath CBJI station, West Java, Indonesia is about 35 km.
Calming the Waters or Riding the Waves?
DEFF Research Database (Denmark)
Rydén, Pernille; Kottika, Efthymia; Hossain, Muhammad Ismail
Traditional consumer anger management tends to be compromising rather than empowering the brand. This paper conceptualizes and provides a case example on how consumer empowerment and negative emotions can in fact create opportunities for companies to ride the waves of consumer anger in a way that...
Predoi, Mihai Valentin
2014-09-01
The dispersion curves for hollow multilayered cylinders are prerequisites in any practical guided waves application on such structures. The equations for homogeneous isotropic materials have been established more than 120 years ago. The difficulties in finding numerical solutions to analytic expressions remain considerable, especially if the materials are orthotropic visco-elastic as in the composites used for pipes in the last decades. Among other numerical techniques, the semi-analytical finite elements method has proven its capability of solving this problem. Two possibilities exist to model a finite elements eigenvalue problem: a two-dimensional cross-section model of the pipe or a radial segment model, intersecting the layers between the inner and the outer radius of the pipe. The last possibility is here adopted and distinct differential problems are deduced for longitudinal L(0,n), torsional T(0,n) and flexural F(m,n) modes. Eigenvalue problems are deduced for the three modes classes, offering explicit forms of each coefficient for the matrices used in an available general purpose finite elements code. Comparisons with existing solutions for pipes filled with non-linear viscoelastic fluid or visco-elastic coatings as well as for a fully orthotropic hollow cylinder are all proving the reliability and ease of use of this method. Copyright © 2014 Elsevier B.V. All rights reserved.
Cong, Ming; Wu, Xinjun; Liu, Ran
2017-08-01
To increase heat exchange efficiency, finned tubes are widely used in petrochemical facilities. Recently, the application of guided wave testing to finned tube inspection has received attention. Since dispersion curves have not been obtained, the guided wave propagation process is still not clearly understood. Hence, the purpose of this paper is to calculate dispersion curves of the finned tube based on an accurate theoretical model, then features of guided waves propagating in finned tubes are further investigated. As fins are helicoidally welded around the outer surface of the tube with an equal interval, the semi-analytical finite element method is extended to this geometrically periodic waveguide. The shape of the discretized cross section is determined by geometric parameters of the finned tube. Numerical solutions show that group velocities of longitudinal modes in finned tubes are significantly slower than those in bare tubes and a special phenomenon of frequency pass bands and stop bands is presented. The changes of dispersion curves are also investigated with various geometric parameters of fins. Besides, torsional modes cannot propagate in finned tubes. By using an electromagnetic acoustic transducer, experimental results are in good agreement with numerical solutions, which indicates features of the guided wave propagation in finned tubes can be well predicted based on the proposed theoretical model.
Peddeti, Kranthi; Santhanam, Sridhar
2018-02-01
Acoustoelastic techniques have been recently used to characterize the state of prestress in structures such as plates. The velocity of guided wave modes propagating through plates is sensitive to the magnitude and orientation of the initial state of stress. Dispersion curves for phase velocities of plate guided waves can be computed using the superposition of partial bulk waves (SPBW) method. Here, a semi-analytical finite element (SAFE) method is formulated for the acoustoelastic problem of guided waves in weakly nonlinear elastic plates. The SAFE formulation is shown to provide phase velocity dispersion curve results identical with those provided by the SPBW method for the problem of a plate under a uniaxial and uniform tensile stress. Analytical phase and group velocity dispersion curves are also obtained for a plate with an initial prestress gradient through its thickness using the SAFE method. The magnitude of the prestress gradient is shown to have a significant effect on phase and group velocities of the fundamental and first order Lamb modes, only in certain frequency-thickness regimes.
Thomas, J.R.; Gibson, D.J.; Middleton, B.A.
2005-01-01
Riparian corridors promote dispersal of several species of exotic invasives worldwide. Dispersal plays a role in the colonization of exotic invasive species into new areas and this study was conducted to determine if the invasiveness of Dioscorea oppositifolia L. (Chinese yam) is facilitated by secondary dispersal of vegetative diaspores (bulbils) by water. Since seed production of this plant has not been observed in the United States, bulbils represent the only means of dispersal to new habitats. Dispersal was monitored by placing aquatic traps, tethered bulbils, and painted bulbil caches in a tributary of Drury Creek, Giant City State Park, Illinois. Results indicate that high-energy flow in the creek accelerated secondary dispersal of bulbils downstream and onto the floodplain. The longest recorded dispersal distance was 206.2 m downstream. Dispersal distance of tethered bulbils was not related to rainfall or flow velocity in the creek; however the total number of bulbils trapped was positively related to flow velocity. We conclude that secondary dispersal by water in streams can facilitate dispersal of vegetative bulbils of this exotic species.
New test for oil soluble/water dispersible gas pipeline inhibitors
Energy Technology Data Exchange (ETDEWEB)
Stegmann, D.W.; Asperger, R.G.
1987-01-01
The wheel test provides good mixing of the condensate and water phases, the coupons are exposed to both phases. Therefore, the wheel test cannot distinguish between inhibitors that need continuous mixing of the these phases to maintain a water dispersion of the inhibitor and inhibitors that will self disperse into the water. This concept becomes important for pipelines in stratified flow where the water can settle out. In these cases with low turbulence, the inhibitor must self disperse into the water to be effective. The paper describes a test method to measure the effectiveness of an inhibitor and its ability to self disperse. The effectiveness of several inhibitors as predicted by the new test method is discussed relative to data from the wheel test and breaker tests. Field performance of these inhibitors in a gas gathering line, with liquids in stratified flow, are cities and compared with the results of the various laboratory tests.
Mountain waves modulate the water vapor distribution in the UTLS
Heller, Romy; Voigt, Christiane; Beaton, Stuart; Dörnbrack, Andreas; Giez, Andreas; Kaufmann, Stefan; Mallaun, Christian; Schlager, Hans; Wagner, Johannes; Young, Kate; Rapp, Markus
2017-12-01
The water vapor distribution in the upper troposphere-lower stratosphere (UTLS) region has a strong impact on the atmospheric radiation budget. Transport and mixing processes on different scales mainly determine the water vapor concentration in the UTLS. Here, we investigate the effect of mountain waves on the vertical transport and mixing of water vapor. For this purpose we analyze measurements of water vapor and meteorological parameters recorded by the DLR Falcon and NSF/NCAR Gulfstream V research aircraft taken during the Deep Propagating Gravity Wave Experiment (DEEPWAVE) in New Zealand. By combining different methods, we develop a new approach to quantify location, direction and irreversibility of the water vapor transport during a strong mountain wave event on 4 July 2014. A large positive vertical water vapor flux is detected above the Southern Alps extending from the troposphere to the stratosphere in the altitude range between 7.7 and 13.0 km. Wavelet analysis for the 8.9 km altitude level shows that the enhanced upward water vapor transport above the mountains is caused by mountain waves with horizontal wavelengths between 22 and 60 km. A downward transport of water vapor with 22 km wavelength is observed in the lee-side of the mountain ridge. While it is a priori not clear whether the observed fluxes are irreversible, low Richardson numbers derived from dropsonde data indicate enhanced turbulence in the tropopause region related to the mountain wave event. Together with the analysis of the water vapor to ozone correlation, we find indications for vertical transport followed by irreversible mixing of water vapor. For our case study, we further estimate greater than 1 W m-2 radiative forcing by the increased water vapor concentrations in the UTLS above the Southern Alps of New Zealand, resulting from mountain waves relative to unperturbed conditions. Hence, mountain waves have a great potential to affect the water vapor distribution in the UTLS. Our
Mountain waves modulate the water vapor distribution in the UTLS
Directory of Open Access Journals (Sweden)
R. Heller
2017-12-01
Full Text Available The water vapor distribution in the upper troposphere–lower stratosphere (UTLS region has a strong impact on the atmospheric radiation budget. Transport and mixing processes on different scales mainly determine the water vapor concentration in the UTLS. Here, we investigate the effect of mountain waves on the vertical transport and mixing of water vapor. For this purpose we analyze measurements of water vapor and meteorological parameters recorded by the DLR Falcon and NSF/NCAR Gulfstream V research aircraft taken during the Deep Propagating Gravity Wave Experiment (DEEPWAVE in New Zealand. By combining different methods, we develop a new approach to quantify location, direction and irreversibility of the water vapor transport during a strong mountain wave event on 4 July 2014. A large positive vertical water vapor flux is detected above the Southern Alps extending from the troposphere to the stratosphere in the altitude range between 7.7 and 13.0 km. Wavelet analysis for the 8.9 km altitude level shows that the enhanced upward water vapor transport above the mountains is caused by mountain waves with horizontal wavelengths between 22 and 60 km. A downward transport of water vapor with 22 km wavelength is observed in the lee-side of the mountain ridge. While it is a priori not clear whether the observed fluxes are irreversible, low Richardson numbers derived from dropsonde data indicate enhanced turbulence in the tropopause region related to the mountain wave event. Together with the analysis of the water vapor to ozone correlation, we find indications for vertical transport followed by irreversible mixing of water vapor. For our case study, we further estimate greater than 1 W m−2 radiative forcing by the increased water vapor concentrations in the UTLS above the Southern Alps of New Zealand, resulting from mountain waves relative to unperturbed conditions. Hence, mountain waves have a great potential to affect the water vapor
DEFF Research Database (Denmark)
Koefoed, Jacob Gade; Friis, Søren Michael Mørk; Christensen, Jesper Bjerge
2017-01-01
We model the spectral quantum-mechanical purity of heralded single photons from a photon-pair source based on nondegenerate spontaneous four-wave mixing taking the impact of distributed dispersion fluctuations into account. The considered photon-pair-generation scheme utilizes pump-pulse walk......-off to produce pure heralded photons and phase matching is achieved through the dispersion properties of distinct spatial modes in a few-mode silica step-index fiber. We show that fiber-core-radius fluctuations in general severely impact the single-photon purity. Furthermore, by optimizing the fiber design we...... frequency. (C) 2017 Optical Society of America...
DEFF Research Database (Denmark)
Habib, Md Selim; Markos, Christos; Bang, Ole
2017-01-01
Hollow-core anti-resonant (HC-AR) fibers are perhaps the best platform for ultrafast nonlinear optics based on light-gas interactions because they offer broadband guidance and low-loss guidance. The main advantage of using gases inside HC fibers is that both the dispersion and nonlinearity can...... be tuned by simply changing the pressure of the gas [1]. The emission of efficient dispersive wave (DW) in the deep-UV has been already observed in a uniform Ar-filled hollow-core fiber with tunability from 200 to 320 nm by changing the gas pressure and pulse energy [2]. In the quest of optimizing...
Do wave heights and water levels increase ocean lifeguard rescues?
Koon, William; Rowhani-Rahbar, Ali; Quan, Linda
2017-12-05
To investigate the association of wave height and tidal water level changes with the frequency of ocean lifeguard rescues. All ocean lifeguard rescues recorded by Newport Beach Lifeguards in 2015 and 2016 were linked by time and location to weather and ocean variables contained in other historical databases. We performed separate multivariable analyses using mixed effects negative binomial regression to evaluate the total effects of wave height, mean water level (primarily set by tidal elevation), and rising vs. falling water level, on the frequency of ocean rescue in the study location, controlling for confounding variables. Newport Beach Lifeguards made 8046 rescues during the study period. In all areas of the beach, rescue frequency increased as waves got larger (IRR: 3.25; 95%CI: 2.91-3.79) but then decreased in large surf (IRR: 0.52; 95%CI: 0.37-0.73). In two sections of beach, lifeguards made more rescues during lower water levels, but in the third section of beach, made more rescues during higher water levels. Rescue frequency increased in two sections of beach with rising water levels, but did not in the other section. Wave height, water level, and water level direction were associated with rescue frequency, but the environmental factors included in the analysis did not fully account for most variation in rescue frequency. Other factors need to be evaluated to identify major determinants of rescue frequency. Copyright © 2017 Elsevier Inc. All rights reserved.
Magnetic orientation of nontronite clay in aqueous dispersions and its effect on water diffusion.
Abrahamsson, Christoffer; Nordstierna, Lars; Nordin, Matias; Dvinskikh, Sergey V; Nydén, Magnus
2015-01-01
The diffusion rate of water in dilute clay dispersions depends on particle concentration, size, shape, aggregation and water-particle interactions. As nontronite clay particles magnetically align parallel to the magnetic field, directional self-diffusion anisotropy can be created within such dispersion. Here we study water diffusion in exfoliated nontronite clay dispersions by diffusion NMR and time-dependant 1H-NMR-imaging profiles. The dispersion clay concentration was varied between 0.3 and 0.7 vol%. After magnetic alignment of the clay particles in these dispersions a maximum difference of 20% was measured between the parallel and perpendicular self-diffusion coefficients in the dispersion with 0.7 vol% clay. A method was developed to measure water diffusion within the dispersion in the absence of a magnetic field (random clay orientation) as this is not possible with standard diffusion NMR. However, no significant difference in self-diffusion coefficient between random and aligned dispersions could be observed. Copyright © 2014 Elsevier Inc. All rights reserved.
Enhanced thermal conductivity of nano-SiC dispersed water based ...
Indian Academy of Sciences (India)
Silicon carbide (SiC) nanoparticle dispersed water based nanofluids were prepared using up to 0.1 vol% of nanoparticles. Use of suitable stirring routine ensured uniformity and stability of dispersion. Thermal conductivity ratio of nanofluid measured using transient hot wire device shows a significant increase of up to 12% ...
Enhanced thermal conductivity of nano-SiC dispersed water based ...
Indian Academy of Sciences (India)
Abstract. Silicon carbide (SiC) nanoparticle dispersed water based nanofluids were prepared using up to 0·1 vol% of nanoparticles. Use of suitable stirring routine ensured uniformity and stability of dispersion. Thermal conduc- tivity ratio of nanofluid measured using transient hot wire device shows a significant increase of ...
Schramm, K. A.; Bilek, S. L.; Patton, H. J.; Abbott, R. E.; Stead, R.; Pancha, A.; White, R.
2009-12-01
Earth structure plays an important role in the generation of seismic waves for all sources. Nowhere is this more evident than at near-surface depths where man-made sources, such as explosions, are conducted. For example, short-period Rayleigh waves (Rg) are excited and propagate in the upper 2 km of Earth's crust. The importance of Rg in the generation of S waves from explosion sources through near-source scattering depends greatly on the shear-wave velocity structure at very shallow depths. Using three distinct datasets, we present a very broadband Rayleigh-wave phase velocity dispersion curve for the Yucca Flat (YF) region of the Nevada Test Site (NTS). The first dataset consists of waveforms of historic NTS explosions recorded on regional seismic networks and will provide information for the lowest frequencies (0.06-0.3 Hz). The second dataset is comprised of waveforms from a non-nuclear explosion on YF recorded at near-local distances and will be used for mid-range frequencies (0.2-1.5 Hz). The third dataset contains high-frequency waveforms recorded from refraction microtremor surveys on YF. This dataset provides information between 1.5 and 60 Hz. Initial results from the high frequency dataset indicate velocities range from 0.45-0.9 km/s at 1.5 Hz and 0.25-0.45 km/s at 60 Hz. The broadband nature of the dispersion curve will allow us to invert for the shear-wave velocity structure to 10 km depth, with focus on shallow depths where nuclear tests were conducted in the YF region. The velocity model will be used by researchers as a tool to aid the development of new explosion source models that incorporate shear wave generation. The new model can also be used to help improve regional distance yield estimation and source discrimination for small events.
Shi, Xiaofang; Zhou, Wei; Qiu, Qian; An, Zesheng
2012-07-28
Well-defined amphiphilic heteroarm core cross-linked star (CCS) polymer was efficiently synthesized by RAFT-mediated arm-first strategy in dispersion polymerization, and its direct self-assembly in water was demonstrated.
Digital Repository Service at National Institute of Oceanography (India)
Swamy, G.N.
This paper highlights on the issues of dispersion processes in coastal waters like space-time description of field parameters, limitation of physical models, limitations of numerical formulations, Eulerian-Lagrangian transformations, shear...
Continuous Preparation of Water-Dispersible Magnetite Nanoparticles by Electrochemical Synthesis.
Kim, Do-Hyeong; Park, Jin-Soo; Kang, Moon-Sung
2018-08-01
Highly water-dispersible magnetic nanoparticles were synthesized by convenient electrochemical techniques using a continuous flow reactor. The surface properties of the magnetic nanoparticles (MNPs) were modified with hydrophilic organic ligands during the electrochemical synthesis process to control the degree of dispersion in water. The kind of hydrophilic low-molecular weight polymers or surfactants influenced the sizes of the particles ranged between 25-40 nm (in diameter) and their size distribution. Chitosan-modified MNPs exhibited the most uniform particle size distribution among the MNPs synthesized in this study as well as excellent dispersion stability and magnetic properties in water after the crosslinking of the amino groups in chitosan. Especially, the dispersion stability of the MNPs in water was systematically investigated via a light scattering analysis.
Conservation laws for shallow water waves on a sloping beach
Akyildiz, Yilmaz
1986-01-01
Shallow water waves are governed by a pair of non-linear partial differential equations. We transfer the associated homogeneous and non-homogeneous systems, (corresponding to constant and sloping depth, respectively), to the hodograph plane where we find all the non-simple wave solutions and construct infinitely many polynomial conservation laws. We also establish correspondence between conservation laws and hodograph solutions as well as Bäcklund transformations by using the linear nature of...
Lake St. Clair: Storm Wave and Water Level Modeling
2013-06-01
moving synoptic , and meso-scale meteorological events as they crossed Lake Michigan. It was observed at the onset of this study that Lake St...significant wave height, and a negative bias in the wave period estimates. All of these results present a different picture than the previous tests. As in...simulation forcing parameters: Input the ADCIRC mesh (fort.14) and the water level adjustment to the synoptic lake level (fort.13) for a specific storm
Brajanovski, Miroslav; Müller, Tobias M.; Parra, Jorge O.
2010-08-01
In this work we interpret the data showing unusually strong velocity dispersion of P-waves (up to 30%) and attenuation in a relatively narrow frequency range. The cross-hole and VSP data were measured in a reservoir, which is in the porous zone of the Silurian Kankakee Limestone Formation formed by vertical fractures within a porous matrix saturated by oil, and gas patches. Such a medium exhibits significant attenuation due to wave-induced fluid flow across the interfaces between different types of inclusions (fractures, fluid patches) and background. Other models of intrinsic attenuation (in particular squirt flow models) cannot explain the amount of observed dispersion when using realistic rock properties. In order to interpret data in a satisfactory way we develop a superposition model for fractured porous rocks accounting also for the patchy saturation effect.
Shock waves in water at low energy pulsed electric discharges
International Nuclear Information System (INIS)
Pinchuk, M E; Kolikov, V A; Rutberg, Ph G; Leks, A G; Dolinovskaya, R V; Snetov, V N; Stogov, A Yu
2012-01-01
Experimental results of shock wave formation and propagation in water at low energy pulsed electric discharges are presented. To study the hydrodynamic structure of the shock waves, the direct shadow optical diagnostic device with time resolution of 5 ns and spatial resolution of 0.1 mm was designed and developed. Synchronization of the diagnostic and electrodischarge units by the fast optocouplers was carried out. The dependences of shock wave velocities after breakdown of interelectrode gap for various energy inputs (at range of ≤1 J) into discharge were obtained. Based on the experimental results the recommendations for the adjustment parameters of the power supply and load were suggested.
The potential for dispersant use as a maritime oil spill response measure in German waters.
Grote, Matthias; van Bernem, Carlo; Böhme, Birgit; Callies, Ulrich; Calvez, Ivan; Christie, Bernard; Colcomb, Kevin; Damian, Hans-Peter; Farke, Hubert; Gräbsch, Carolin; Hunt, Alex; Höfer, Thomas; Knaack, Jürgen; Kraus, Uta; Le Floch, Stephane; Le Lann, Gilbert; Leuchs, Heiko; Nagel, Almut; Nies, Hartmut; Nordhausen, Walter; Rauterberg, Jens; Reichenbach, Dirk; Scheiffarth, Gregor; Schwichtenberg, Fabian; Theobald, Norbert; Voß, Joachim; Wahrendorf, Dierk-Steffen
2017-10-26
In case of an oil spill, dispersant application represents a response option, which enhances the natural dispersion of oil and thus reduces coating of seabirds and coastal areas. However, as oil is transferred to the water phase, a trade-off of potential harmful effects shifted to other compartments must be performed. This paper summarizes the results of a workshop on the current knowledge on risks and benefits of the use of dispersants with respect to specific conditions encountered at the German sea areas. The German North Sea coast is a sensitive ecosystem characterised by tidal flats, barrier islands and salt marshes. Many prerequisites for a potential integration of dispersants as spill response option are available in Germany, including sensitivity maps and tools for drift modelling of dispersed and undispersed oil. However, open scientific questions remain concerning the persistence of dispersed oil trapped in the sediments and potential health effects. Copyright © 2017. Published by Elsevier Ltd.
Kim, K. Y.; Jeon, K. M.; Hong, M. H.; Park, Young-gyu
2011-02-01
To locate anomalous features including seepage pathways through the Daeryong earth-fill dam, P and Rayleigh waves were recorded along a 250-m profile on the crest of the dam. Seismic energy was generated using a 5-kg sledgehammer and detected by 24 4.5-Hz vertical-axis geophones installed at 3-m intervals. P-wave and apparent S-wave velocities of the reservoir dam and underlying bedrock were then inverted from first-arrival traveltimes and dispersion curves of Rayleigh waves, respectively. Apparent dynamic Poisson's ratios as high as 0.46 were obtained at the base of the dam near its north-east end, where an outlet conduit occurs, and in the clay core body near the south-west end of the profile where the dam was repeatedly grouted to abate seepage before our survey. These anomalies of higher Poisson's ratios in the upper part of clay core were also associated with effusion of grout on the downstream slope of the dam during post-survey grouting to abate leakage. Combining P-wave traveltime tomography and inversion of Rayleigh wave velocities was very effective in detecting potential pathways for seepage and previous grouted zones in this earthen dam.
System for harvesting water wave energy
Wang, Zhong Lin; Su, Yanjie; Zhu, Guang; Chen, Jun
2016-07-19
A generator for harvesting energy from water in motion includes a sheet of a hydrophobic material, having a first side and an opposite second side, that is triboelectrically more negative than water. A first electrode sheet is disposed on the second side of the sheet of a hydrophobic material. A second electrode sheet is disposed on the second side of the sheet of a hydrophobic material and is spaced apart from the first electrode sheet. Movement of the water across the first side induces an electrical potential imbalance between the first electrode sheet and the second electrode sheet.
Northern Korean Peninsula 1-D velocity model from surface wave dispersion and full-waveform data
Lee, S. J.; Rhie, J.; Kim, S.; Kang, T. S.; Cho, C.
2016-12-01
Monitoring seismic activities in the northern Korean Peninsula is important not only for understanding the characteristics of earthquakes but also for watching nuclear tests. To better monitor those natural and man-made seismic activities, reliable seismic velocity models are required. However, the seismic velocity structure of the region is not known well due to the lack of available seismic data directly measured in the region. This study presents 1-D velocity models of the region using two different datasets comprised of two-year-long continuous waveform and the 2013 North Korea nuclear test event waveform recorded at stations surrounding the region. Two reference 1-D models for the inland and offshore areas (Western East Sea) were estimated by 1-D inversion of surface wave dispersion measurements from ambient noise cross-correlations of the continuous waveform. To investigate the variations in the velocity models, many 1-D models for the paths between the 2013 nuclear test site and stations in China and South Korea were constructed by forward waveform modeling. The velocity variations are not significant for both models representing the inland and offshore paths, respectively. The 1-D models for the inland paths are similar to the models constructed for the southern Korean Peninsula. Interestingly, waveforms sampling through the offshore paths are not well explained by simple 1-D isotropic models. The preliminary result indicates that there exists radial anisotropy with SH being faster than SV by 3-5% in the upper mantle beneath the offshore northern Korean Peninsula, although further studies are necessary to explain the origin of anisotropy. A proper characterization of propagation effects along the offshore paths would be useful for monitoring future nuclear tests because many seismic stations in the eastern South Korea record waveforms sampling the offshore region from the nuclear test site to those stations.
Hummel, David; Ivan, Lucian
2017-06-01
A "dirty bomb" is a type of radiological dispersal device (RDD) that has been the subject of significant safety and security concerns given the disruption that would result from a postulated terrorist attack. Assessing the risks of radioactive dose in a hypothetical scenario requires models that can accurately predict dispersion in a realistic environment. Modelling a RDD is complicated by the fact that the most important phenomena occur over vastly disparate spatial and temporal length scales. Particulate dispersion in the air is generally considered on scales of hundreds to thousands of meters, and over periods of minutes and hours. Dispersion models are extremely sensitive, however, to the particle size and source characterization, which are determined in distances measured in micrometers to meters, over milliseconds or less. This study examines the extent to which the explosive blast determines the transport of contaminant particles relative to the atmospheric wind over distances relevant to "near-field" dispersion problems (i.e., hundreds of meters), which are relevant to urban environments. Our results indicate that whether or not the effect of the blast should be included in a near-field dispersion model is largely dependent on the size of the contaminant particle. Relatively large particles (i.e., >40 μm in diameter), which are most likely to be produced by a RDD, penetrate the leading shock front, thereby avoiding the reverse blast wind. Consequently, they travel much farther than suspended aerosols (<10 μm) before approaching the ambient wind velocity. This suggests that, for these "near-field" dispersion problems in urban environments, the transport of contaminants from the blast wave may be integral to accurately predicting their dispersion. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Berg, E.; Lin, F. C.; Qiu, H.; Wang, Y.; Allam, A. A.; Clayton, R. W.; Ben-Zion, Y.
2017-12-01
Rayleigh waves extracted from cross-correlations of ambient seismic noise have proven useful in imaging the shallow subsurface velocity structure. In contrast to phase velocities, which are sensitive to slightly deeper structure, Rayleigh wave ellipticity (H/V ratios) constrains the uppermost crust. We conduct Rayleigh wave ellipticity and phase dispersion measurements in Southern California between 6 and 18 second periods, computed from multi-component ambient noise cross-correlations using 315 stations across the region in 2015. Because of the complimentary sensitivity of phase velocity and H/V, this method enables simple and accurate resolution of near-surface geological features from the surface to 20km depth. We compare the observed H/V ratios and phase velocities to predictions generated from the current regional models (SCEC UCVM), finding strong correspondence where the near-surface structure is well-resolved by the models. This includes high H/V ratios in the LA Basin, Santa Barbara Basin and Salton Trough; and low ratios in the San Gabriel, San Jacinto and southern Sierra Nevada mountains. Disagreements in regions such as the Western Transverse Ranges, Salton Trough, San Jacinto and Elsinore fault zones motivate further work to improve the community models. A new updated 3D isotropic model of the area is derived via a joint inversion of Rayleigh phase dispersions and H/V ratios. Additionally, we examine azimuthal dependence of the H/V ratio to ascertain anisotropy patterns for each station. Clear 180º periodicity is observed for many stations suggesting strong shallow anisotropy across the region including up to 20% along the San Andreas fault, 15% along the San Jacinto Fault and 25% in the LA Basin. To better resolve basin structures, we apply similar techniques to three dense linear geophone arrays in the San Gabriel and San Bernardino basins. The three arrays are composed by 50-125 three-component 5Hz geophones deployed for one month each with 15-25km
Analytical approximation and numerical simulations for periodic travelling water waves.
Kalimeris, Konstantinos
2018-01-28
We present recent analytical and numerical results for two-dimensional periodic travelling water waves with constant vorticity. The analytical approach is based on novel asymptotic expansions. We obtain numerical results in two different ways: the first is based on the solution of a constrained optimization problem, and the second is realized as a numerical continuation algorithm. Both methods are applied on some examples of non-constant vorticity.This article is part of the theme issue 'Nonlinear water waves'. © 2017 The Author(s).
Conditionally invariant solutions of the rotating shallow water wave equations
Energy Technology Data Exchange (ETDEWEB)
Huard, Benoit, E-mail: huard@dms.umontreal.c [Departement de mathematiques et de statistique, CP 6128, Succc. Centre-ville, Montreal, (QC) H3C 3J7 (Canada)
2010-06-11
This paper is devoted to the extension of the recently proposed conditional symmetry method to first-order nonhomogeneous quasilinear systems which are equivalent to homogeneous systems through a locally invertible point transformation. We perform a systematic analysis of the rank-1 and rank-2 solutions admitted by the shallow water wave equations in (2 + 1) dimensions and construct the corresponding solutions of the rotating shallow water wave equations. These solutions involve in general arbitrary functions depending on Riemann invariants, which allow us to construct new interesting classes of solutions.
Parametric study on flow dispersion of water sprinkle
Tan, R. C.; Khafar, M. H. A.; Abdullah, N. I. S.; Chendang, R. N.; Taib, I.; Asmuin, N.; Ramli, Y.; Seri, S. M.; Mohammed, A. N.
2017-09-01
Although water sprinkler is used extensively in agriculture, little effort had been made to improve its performance, resulting in many sprinkler head available at market having less optimum design. Thus, this study aims to improve the basic design of water sprinkler head by conducting a parametric study on the effect of model geometry due to different flow characteristics. A common type of water sprinkler is modelled with computer aided design software and various changes such as enlarging nozzle diameter from 4mm to 8mm, changing vane angle from 70 degrees to 45 degrees are made to the original model. The models were simulated with computational fluid dynamics (CFD) software to investigate how the variation in geometry affects the flow of water and the performance of sprinkler head. The performance of water sprinkler is compared to original model in terms of watering distance, area of spray and velocity of water jet in air. The result of this study shows that enlarge the nozzle diameter have a positive effect on the velocity of water jet in air and the area covered by water jet but it drastically decreases the watering distance of sprinkler. Besides that, changing the angle of vane from 70 degrees to 45 degrees decrease the watering distance slightly and it concentrates the water into a fine jet that cover a small area. To reduce the effect, grooves can be added to the vane to increase the divergence of water spray. Reducing the angle of curvature from 10 degrees to 5 degrees improves the watering distance. The angle of curvature can be reduced more to increase the watering distance further.
Water vapor estimation using digital terrestrial broadcasting waves
Kawamura, S.; Ohta, H.; Hanado, H.; Yamamoto, M. K.; Shiga, N.; Kido, K.; Yasuda, S.; Goto, T.; Ichikawa, R.; Amagai, J.; Imamura, K.; Fujieda, M.; Iwai, H.; Sugitani, S.; Iguchi, T.
2017-03-01
A method of estimating water vapor (propagation delay due to water vapor) using digital terrestrial broadcasting waves is proposed. Our target is to improve the accuracy of numerical weather forecast for severe weather phenomena such as localized heavy rainstorms in urban areas through data assimilation. In this method, we estimate water vapor near a ground surface from the propagation delay of digital terrestrial broadcasting waves. A real-time delay measurement system with a software-defined radio technique is developed and tested. The data obtained using digital terrestrial broadcasting waves show good agreement with those obtained by ground-based meteorological observation. The main features of this observation are, no need for transmitters (receiving only), applicable wherever digital terrestrial broadcasting is available and its high time resolution. This study shows a possibility to estimate water vapor using digital terrestrial broadcasting waves. In the future, we will investigate the impact of these data toward numerical weather forecast through data assimilation. Developing a system that monitors water vapor near the ground surface with time and space resolutions of 30 s and several kilometers would improve the accuracy of the numerical weather forecast of localized severe weather phenomena.
Direct analysis of dispersive wave fields from near-field pressure measurements
Horchens, L.
2011-01-01
Flexural waves play a significant role for the radiation of sound from plates. The analysis of flexural wave fields enables the detection of sources and transmission paths in plate-like structures. The measurement of these wave fields can be carried out indirectly by means of near-field acoustic
Hoefer, Mark A.
This thesis examines nonlinear wave phenomena, in two physical systems: a Bose-Einstein condensate (BEC) and thin film ferromagnets where the magnetization dynamics are excited by the spin momentum transfer (SMT) effect. In the first system, shock waves generated by steep gradients in the BEC wavefunction are shown to be of the disperse type. Asymptotic and averaging methods are used to determine shock speeds and structure in one spatial dimension. These results are compared with multidimensional numerical simulations and experiment showing good, qualitative agreement. In the second system, a model of magnetization dynamics due to SMT is presented. Using this model, nonlinear oscillating modes---nano-oscillators---are found numerically and analytically using perturbative methods. These results compare well with experiment. A Bose-Einstein condensate (BEC) is a quantum fluid that gives rise to interesting shock wave nonlinear dynamics. Experiments depict a BEC that exhibits behavior similar to that of a shock wave in a compressible gas, e.g. traveling fronts with steep gradients. However, the governing Gross-Pitaevskii (GP) equation that describes the mean field of a BEC admits no dissipation hence classical dissipative shock solutions do not explain the phenomena. Instead, wave dynamics with small dispersion is considered and it is shown that this provides a mechanism for the generation of a dispersive shock wave (DSW). Computations with the GP equation are compared to experiment with excellent agreement. A comparison between a canonical 1D dissipative and dispersive shock problem shows significant differences in shock structure and shock front speed. Numerical results associated with laboratory experiments show that three and two-dimensional approximations are in excellent agreement and one dimensional approximations are in qualitative agreement. The interaction of two DSWs is investigated analytically and numerically. Using one dimensional DSW theory it is argued
Directory of Open Access Journals (Sweden)
Parvin Zakeri-Milani
2011-06-01
Full Text Available Introduction: Prednisolone is a class II substance according to the Biopharmaceutics Classification System. It is a poorly water soluble agent. The aim of the present study was to improve dissolution rate of a poorly water-soluble drug, prednisolone, by a solid dispersion technique. Methods: Solid dispersion of prednisolone was prepared with PEG 6000 or different carbohydrates such as lactose and dextrin with various ratios of the drug to carrier i.e., 1:10, 1:20 and 1:40. Solid dispersions were prepared by coevaporation method. The evaluation of the properties of the dispersions was performed using dissolution studies, Fourier-transform infrared spectroscopy and x-ray powder diffractometery. Results: The results indicated that lactose is suitable carriers to enhance the in vitro dissolution rate of prednisolone. The data from the x-ray diffraction showed that the drug was still detectable in its solid state in all solid dispersions except solid dispersions prepared by dextrin as carrier. The results from infrared spectroscopy showed no well-defined drug–carrier interactions for coevaporates. Conclusion: Solid dispersion of a poorly water-soluble drug, prednisolone may alleviate the problems of delayed and inconsistent rate of dissolution of the drug.
Surface-wave-sustained plasma torch for water treatment
Marinova, P.; Benova, E.; Todorova, Y.; Topalova, Y.; Yotinov, I.; Atanasova, M.; Krcma, F.
2018-02-01
In this study the effects of water treatment by surface-wave-sustained plasma torch at 2.45 GHz are studied. Changes in two directions are obtained: (i) changes of the plasma characteristics during the interaction with the water; (ii) water physical and chemical characteristics modification as a result of the plasma treatment. In addition, deactivation of Gram positive and Gram negative bacteria in suspension are registered. A number of charged and excited particles from the plasma interact with the water. As a result the water chemical and physical characteristics such as the water conductivity, pH, H2O2 concentration are modified. It is observed that the effect depends on the treatment time, wave power, and volume of the treated liquid. At specific discharge conditions determined by the wave power, gas flow, discharge tube radius, thickness and permittivity, the surface-wave-sustained discharge (SWD) operating at atmospheric pressure in argon is strongly non-equilibrium with electron temperature T e much higher than the temperature of the heavy particles (gas temperature T g). It has been observed that SWD argon plasma with T g close to the room temperature is able to produce H2O2 in the water with high efficiency at short exposure times (less than 60 sec). The H2O2 decomposition is strongly dependant on the temperature thus the low operating gas temperature is crucial for the H2O2 production efficiency. After scaling up the device, the observed effects can be applied for the waste water treatment in different facilities. The innovation will be useful especially for the treatment of waters and materials for medical application.
Response of deep-water corals to oil and chemical dispersant exposure
DeLeo, Danielle M.; Ruiz-Ramos, Dannise V.; Baums, Iliana B.; Cordes, Erik E.
2016-07-01
Cold-water corals serve as important foundation species by building complex habitat within deep-sea benthic communities. Little is known about the stress response of these foundation species yet they are increasingly exposed to anthropogenic disturbance as human industrial presence expands further into the deep sea. A recent prominent example is the Deepwater Horizon oil-spill disaster and ensuing clean-up efforts that employed chemical dispersants. This study examined the effects of bulk oil-water mixtures, water-accommodated oil fractions, the dispersant Corexit 9500A®, and the combination of hydrocarbons and dispersants on three species of corals living near the spill site in the Gulf of Mexico between 500 and 1100 m depths: Paramuricea type B3, Callogorgia delta and Leiopathes glaberrima. Following short-term toxicological assays (0-96 h), all three coral species examined showed more severe health declines in response to dispersant alone (2.3-3.4 fold) and the oil-dispersant mixtures (1.1-4.4 fold) than in the oil-only treatments. Higher concentrations of dispersant alone and the oil-dispersant mixtures resulted in more severe health declines. C. delta exhibited somewhat less severe health declines than the other two species in response to oil and oil/dispersant mixture treatments, likely related to its increased abundance near natural hydrocarbon seeps. These experiments provide direct evidence for the toxicity of both oil and dispersant on deep-water corals, which should be taken into consideration in the development of strategies for intervention in future oil spills.
Directory of Open Access Journals (Sweden)
Roozbeh Golshan
2018-01-01
Full Text Available Oil droplet transport under a non-breaking deep water wave field is investigated herein using Computational Fluid dynamics (CFD. The Reynolds-averaged Navier–Stokes (RANS equations were solved to simulate regular waves in the absence of wind stress, and the resulting water velocities agreed with Stokes theory for waves. The RANS velocity field was then used to predict the transport of buoyant particles representing oil droplets under the effect of non-locally generated turbulence. The RANS eddy viscosity exhibited an increase with depth until reaching a maximum at approximately a wave height below the mean water level. This was followed by a gradual decrease with depth. The impact of the turbulence was modeled using the local value of eddy diffusivity in a random walk framework with the added effects of the gradient of eddy diffusivity. The vertical gradient of eddy viscosity increased the residence time of droplets in the water column region of high diffusivity; neglecting the gradient of eddy diffusivity resulted in a deviation of the oil plume centroid by more than a half a wave height after 10 wave periods.
Modification of 2-D Time-Domain Shallow Water Wave Equation using Asymptotic Expansion Method
Khairuman, Teuku; Nasruddin, MN; Tulus; Ramli, Marwan
2018-01-01
Generally, research on the tsunami wave propagation model can be conducted by using a linear model of shallow water theory, where a non-linear side on high order is ignored. In line with research on the investigation of the tsunami waves, the Boussinesq equation model underwent a change aimed to obtain an improved quality of the dispersion relation and non-linearity by increasing the order to be higher. To solve non-linear sides at high order is used a asymptotic expansion method. This method can be used to solve non linear partial differential equations. In the present work, we found that this method needs much computational time and memory with the increase of the number of elements.
An implicit discontinuous Galerkin finite element model for water waves
van der Vegt, Jacobus J.W.; Tomar, S.K.; Yao, Z.H.; Yuan, M.W.; Zhong, W.X.
2004-01-01
An overview is given of a discontinuous Galerkin finite element method for linear free surface water waves. The method uses an implicit time integration method which is unconditionally stable and does not suffer from the frequently encountered mesh dependent saw-tooth type instability at the free
Hydrodynamic analysis of oscillating water column wave energy devices
DEFF Research Database (Denmark)
Bingham, Harry B.; Ducasse, Damien; Nielsen, Kim
2015-01-01
A 40-chamber I-Beam attenuator-type, oscillating water column, wave energy converter is analyzed numerically based on linearized potential flow theory, and experimentally via model test experiments. The high-order panel method WAMIT by Newman and Lee (WAMIT; a radiation–diffraction panel program...
Yamamoto, Takashi; Mori, Takayoshi; Sakamoto, Taiji; Kurokawa, Kenji; Tomita, Shigeru; Tsubokawa, Makoto
2010-09-20
We show that any optical pulse train recovers its original waveform after passing through a group velocity dispersion (GVD) device when the total GVD value of the device is equal to an integral multiple of 1/(2πf(rep)(2)), where f(rep) is the repetition rate of the optical pulse train. In addition, we detail our proposed GVD measurement method, or optical phase-modulation (PM) method, which utilizes a sinusoidally PM continuous wave (CW) light as a probe light. The total GVD B(2) of a device under test (DUT) is derived by using a very simple equation, |B(2)|=1/(2πf(null)(2)), where f(null) is the smallest modulation frequency at which the sinusoidally PM light becomes CW light again after passing through the DUT.
DEFF Research Database (Denmark)
Grathwohl, Peter; Haberer, Cristina; Ye, Yu
Diffusive–dispersive mass transfer in the capillary fringe is important for many groundwater quality issues such as transfer of volatile compounds into (and out of) the groundwater, the supply of oxygen for aerobic degradation of hydrocarbons as well as for precipitation of minerals (e.g. iron...... hydroxides). 2D-laboratory scale experiments were used to investigate the transfer of oxygen into groundwater under non-reactive and reactive conditions, at steady state and with water table fluctuations. Results show that transfer of oxygen is limited by transverse dispersion in the capillary fringe...... and the dispersion coefficients are the same as below the water table. Water table fluctuations cause temporarily increased fluxes of oxygen into groundwater during draining conditions and entrapped air after water table rise. High-permeability inclusions in the capillary fringe enhance mass transfer of oxygen...
Anomalous dispersion of magnetic spiky particles for enhanced oil emulsions/water separation.
Chen, Hui-Jiuan; Hang, Tian; Yang, Chengduan; Liu, Guishi; Lin, Di-An; Wu, Jiangming; Pan, Shuolin; Yang, Bo-Ru; Tao, Jun; Xie, Xi
2018-01-25
In situ effective separation of oil pollutants including oil spills and oil emulsions from water is an emerging technology yet remains challenging. Hydrophobic micro- or nano-materials with ferromagnetism have been explored for oil removal, yet the separation efficiency of an oil emulsion was compromised due to the limited dispersion of hydrophobic materials in water. A surfactant coating on microparticles prevented particle aggregation, but reduced oil absorption and emulsion cleaning ability. Recently, polystyrene microbeads covered with nanospikes have been reported to display anomalous dispersion in phobic media without surfactants. Inspired by this phenomenon, here magnetic microparticles attached with nanospikes were fabricated for enhanced separation of oil emulsions from water. In this design, the particle surfaces were functionalized to be superhydrophobic/superoleophilic for oil absorption, while the surface of the nanospikes prevented particle aggregation in water without compromising surface hydrophobicity. The magnetic spiky particles effectively absorbed oil spills on the water surface, and readily dispersed in water and offered facile cleaning of the oil emulsion. In contrast, hydrophobic microparticles without nanospikes aggregated in water limiting the particle-oil contact, while surfactant coating severely reduced particle hydrophobicity and oil absorption ability. Our work provides a unique application scope for the anomalous dispersity of microparticles and their potential opportunities in effective oil-water separation.
Numerical Models of Sewage Dispersion and Statistica Bathing Water Standards
DEFF Research Database (Denmark)
Petersen, Ole; Larsen, Torben
1991-01-01
As bathing water standards usually are founded in statistical methods, the numerical models used in outfall design should reflect this. A statistical approach, where stochastic variations in source strength and bacterial disappearance is incorporated into a numerical dilution model is presented. ....... It is demonstrated for a specific outfall how the method can be used to estimate the bathing water quality. The ambition with the paper has been to demonstrate how stochastic variations in a simple manner can be included in the analysis of water quality.......As bathing water standards usually are founded in statistical methods, the numerical models used in outfall design should reflect this. A statistical approach, where stochastic variations in source strength and bacterial disappearance is incorporated into a numerical dilution model is presented...
2013-10-01
verified when received (Dong et al., 2012). Simple solvent exchange by means of a rotary evaporator was used to disperse CNCs in DMF. A 150-mL aliquot of...mixture was vigorously agitated to properly homogenize the DMF into the CNCs and water dispersion. The flask was then put onto a rotary evaporator...from the residual mass after drying. An aluminum weighing pan with a measured quantity of CNC dispersion was placed in the oven at 100 °C. After the
International Nuclear Information System (INIS)
Thomas, G.F.
1994-01-01
This note shows how uncertainties in nearfield and farfield ground water velocities affect the inventory that migrates from a geologic nuclear waste repository within the classical advection-dispersion approach and manifest themselves through both the finite variances and covariances in the activities of transported nuclides and in the apparent scale dependence of the host rock's dispersivity. Included is a demonstration of these effects for an actinide chain released from used CANDU fuel buried in a hypothetical repository. (Author)
On Wave-Ice Interaction in the Arctic Marginal Ice Zone: Dispersion, Attenuation, and Ice Response
2016-06-01
36 FIGURE 9 THE SPECTRAL ATTENUATION RATES AS A FUNCTION OF WAVE PERIOD. THE LIGHT COLORED LINES ARE THE INDIVIDUAL...ice surfaces, which is currently being investigated as a new mechanism contributing to ice melting and reduced wave transmission [Skene et al., 2015...is a transmission coefficient and the critical strain is assumed, = 3 × 10−5. Given the length of time step and the zero-crossing wave
Continuous Dependence on the Density for Stratified Steady Water Waves
Chen, Robin Ming; Walsh, Samuel
2016-02-01
There are two distinct regimes commonly used to model traveling waves in stratified water: continuous stratification, where the density is smooth throughout the fluid, and layer-wise continuous stratification, where the fluid consists of multiple immiscible strata. The former is the more physically accurate description, but the latter is frequently more amenable to analysis and computation. By the conservation of mass, the density is constant along the streamlines of the flow; the stratification can therefore be specified by prescribing the value of the density on each streamline. We call this the streamline density function. Our main result states that, for every smoothly stratified periodic traveling wave in a certain small-amplitude regime, there is an L ∞ neighborhood of its streamline density function such that, for any piecewise smooth streamline density function in that neighborhood, there is a corresponding traveling wave solution. Moreover, the mapping from streamline density function to wave is Lipschitz continuous in a certain function space framework. As this neighborhood includes piecewise smooth densities with arbitrarily many jump discontinues, this theorem provides a rigorous justification for the ubiquitous practice of approximating a smoothly stratified wave by a layered one. We also discuss some applications of this result to the study of the qualitative features of such waves.
Molding acoustic, electromagnetic and water waves with a single cloak
Xu, Jun
2015-06-09
We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves. © 2015, Nature Publishing Group. All rights reserved.
Compound Method to Disperse CaCO3 Nanoparticles to Nano-Size in Water.
Gu, Sui; Cai, Jihua; Wang, Jijun; Yuan, Ye; Chang, Dewu; Chikhotkin, Viktor F
2015-12-01
The invalidation of CaCO3 nanoparticles (nCaCO3) is often caused by the fact of agglomeration and inhomogeneous dispersion which limits its application into water-based drilling muds for low permeability reservoirs such as coalbed methane reservoir and shale gas/oil reservoir. Effective methods to disperse nCaCO3 to nano-size (≤ 100 nm) in water have seldom been reported. Here we developed a compound method containing mechanical stirring, ultrasonic treatment, the use of surfactant and stabilizer to disperse nCaCO3 in water. It comprises the steps adding 2% nCaCO3, 1% sodium dodecyl sulfonate (SDS), 2% cetyltrimethyl ammonium bromide (CTAB), 2% OP-10, 3% to 4% biopolymer (XC) in water successively, stirring it at a shear rate of 6000 to 8000 r/min for 15 minutes and treating it with ultrasonic at a frequency of 28 KHz for 30 to 40 minutes. The dispersed nCaCO3 was characterized with scanning electron microscope (SEM), transmission electron microscope (TEM) and particle size distribution (PSD) tests. We found that nCaCO3 could be dispersed to below 100 nm in water and the medium value of nCaCO3 was below 50 nm. This method paved the way for the utilization of nCaCO3 in drilling fluid and completion fluid for low permeability reservoirs such as coal seams and shale gas/oil formations.
Wave Loads on Ships Sailing in Restricted Water Depth
DEFF Research Database (Denmark)
Vidic-Perunovic, Jelena; Jensen, Jørgen Juncher
2003-01-01
in the past addressed the influence of water depth on the ship response. In an early work Kim (1968) presented results for the variation of the added mass and hydrodynamic damping and for the heave and pitch motion for a Series 60 model using a relative motion strip theory formulation. A significant reduction......, ranging from semi-empirical formulas to three-dimensional non-linear procedures. A review of the state-of-the art can be found in ISSC.VI.1 (2000). These procedures must be combined with operational and sea state information to predict the probability distribution of the maximum wave-induced bending...... be specified anyhow. Usually, two-dimensional strip theories, either linear or non-linear, are applied for actual design cases and these theories are normally based on incident deep-water waves and furthermore apply added mass and damping calculations based on infinite water depth. Only a few papers have...
Badiey, M.; Lynch, J. F.
2012-11-01
In the past half-century numerous scientific research programs have been conducted which have advanced our understanding of shallow water acoustics far beyond the original and pioneering work by Ewing, Worzel, and Pekeris (1948). In particular, during the last three decades several major initiatives have focused on both observation and modeling of acoustic waves in shallow water region with extremely variable environmental properties. We now realize that the shallow water acoustic wave propagation problem is a complicated study of wave propagation in a 4D partially random media with anisotropic, time and space dependent physical properties. The nonlinear internal wave field, the shelf break front, and coastal eddies are good examples of oceanographic processes that cause this type of variability. A review of our progress, which focuses on the effects of the water column, is presented, as well as an assessment of what future questions will be of interest and importance.
Dispersed droplet dynamics during produced water treatment in oil industry
van Eijkeren, D.F.
2016-01-01
For Lagrangian particle tracking applied to swirling flow produced water treatment the influence of the history force is investigated. In the expression for the history force an existing Reynolds number dependent kernel is adapted and validated for a range of experimental data for settling spheres.
Variational space–time (dis)continuous Galerkin method for nonlinear free surface water waves
Gagarina, Elena; Ambati, V.R.; van der Vegt, Jacobus J.W.; Bokhove, Onno
2014-01-01
A new variational finite element method is developed for nonlinear free surface gravity water waves using the potential flow approximation. This method also handles waves generated by a wave maker. Its formulation stems from Miles’ variational principle for water waves together with a finite element
Energy dispersion X-ray fluorescence techniques in water pollution analysis
International Nuclear Information System (INIS)
Holynska, B.
1980-01-01
Advantages and limitations of energy dispersion X-ray fluorescence methods for analysis of pollutants in water are discussed. The necessary equipment for X-ray measurement of insoluble and dissolved trace metals in water is described. Different techniques of enrichment of trace metals are presented: ion exchange on selective Chelex-100 exchanger, precipitation with chelating agents DDTC and APDC, and adsorption on activated carbon. Some results obtained using different preconcentration methods for trace metals determination in different waters are presented. (author)
Wilken, Dennis; Wölz, Susanne; Müller, Christof; Rabbel, Wolfgang
2009-05-01
As part of the FINOSEIS project we present the development of new seismic acquisition and inversion concepts for offshore-building foundation soil analysis. FINOSEIS is a subproject of the FINO3 project, which is aimed at the construction of an offshore research platform based in 28 m water depth, hosting eight research projects dealing with offshore wind energy topics. Our investigations focus on the determination of seismic parameters and structural information of the building plot of FINO3. We infer the shear-wave velocity structure by exploiting the dispersive properties of Scholte-waves and use high resolution 2.5D reflection seismic acquisition to determine seismic stratigraphy in three dimensions. Our work is motivated regarding possible hazards to offshore foundations such as wind parks and the FINO3 platform itself, e.g. permanent mechanical load by wind- and wave-forces possibly leading to an impairment of the soil. We conducted a pre-investigation of the site of the future platform in order to help finding a suitable foundation soil by improving common site investigation methods. In May 2006 we did a survey covering an area of 2 km square employing high resolution 2.5D reflection seismic. Along three 2 km airgun profiles Scholte-waves were recorded with Ocean-Bottom-Seismometers. Spectral analysis of these led to pseudo-2D shear-wave velocity models along the profiles. The reflection seismic area is characterized by glacial stratigraphy and diffractions documented within the penetration range of 30 m. With respect to the topography of the identified horizons as well as to the distribution of diffracting objects, a suitable foundation area for the platform was suggested. The results of the Scholte-wave experiment provide valuable information for further inversion models as well as for the dimensioning of further measurements. We also implemented an inversion strategy using the particle swarm optimization method. The inverted layers of shear-wave velocity
Using SPE-LC-ESI-MS/MS Analysis to Assess Disperse Dyes in Environmental Water Samples.
Zocolo, Guilherme Julião; Pilon dos Santos, Glauco; Vendemiatti, Josiane; Vacchi, Francine Inforçato; Umbuzeiro, Gisela de Aragão; Zanoni, Maria Valnice Boldrin
2015-09-01
We have optimized an SPE-LC-ESI-MS/MS method and used it to monitor disperse azo dyes in environmental aquatic samples. Calibration curves constructed for nine disperse dyes-Red 1, Violet 93, Blue 373, Orange 1, Orange 3, Orange 25, Yellow 3, Yellow 7 and Red 13-in aqueous solution presented good linearity between 2.0 and 100.0 ng mL(-1). The method provided limits of detection and quantification around 2.0 and 8.0 ng L(-1), respectively. For dyes at concentrations of 25.0 ng mL(-1), the intra- and interday analyses afforded relative standard deviation lower than 6 and 13%, respectively. The recovery values obtained for each target analyte in Milli-Q water, receiving waters and treated water samples spiked with the nine studied dyes at concentrations of 8.0, 25.0 and 50.0 ng L(-1) (n = 3) gave average recoveries greater than 70%, with RSD dyes Disperse Red 1, Disperse Blue 373 and Disperse Violet 93 at concentrations ranging from 84 to 3452 ng L(-1) in the treated effluent (TE), affluent and points collected upstream and downstream of the drinking water treatment plant of a textile dye industry in Brazil. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Wang, Yawen; Duo, Fangfang; Peng, Shiqi; Jia, Falong; Fan, Caimei
2014-09-15
In this paper, we report a novel polyol process to synthesize highly water-dispersible anatase titanium dioxide (TiO2) nanoparticles (∼5 nm) by the introduction of inorganic oxidizing agent--KIO3. The obtained TiO2 nanoparticles are well dispersible in water at pH≥5.0 and the resulting aqueous dispersion remains stable over months. The superior water-dispersibility of as-formed TiO2 is ascribed to the electrostatic repulsion from carboxylic acid group modified on TiO2 nanoparticles, which is the oxidation product of solvent diethylene glycol (DEG) by KIO3. Based on the characterization results, the formation processes of water-dispersibility TiO2 nanoparticles are proposed. Meanwhile, the synthesized TiO2 nanoparticles are found to be doped by iodine and exhibit excellent photocatalytic activity on degradation of rhodamine-B (RhB) under visible-light irradiation. The further tests demonstrate that the O(2-) is the main active species during photodegradation of RhB. Copyright © 2014 Elsevier Inc. All rights reserved.
Czech Academy of Sciences Publication Activity Database
Brepta, R.; Valeš, F.; Červ, Jan; Tikal, B.
1996-01-01
Roč. 58, č. 6 (1996), s. 1233-1244 ISSN 0045-7949 R&D Projects: GA ČR(CZ) GA101/93/1195 Institutional research plan: CEZ:AV0Z2076919 Keywords : thin elastic body * Rayleigh waves * grid dispersion Subject RIV: BI - Acoustics Impact factor: 0.254, year: 1996 http://apps.isiknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=U2EJknka3H@mKemE37@&page=1&doc=1&colname=WOS
Directory of Open Access Journals (Sweden)
Nurlybek A. Ispulov
2017-01-01
Full Text Available The investigation of thermoelastic wave propagation in elastic media is bound to have much influence in the fields of material science, geophysics, seismology, and so on. The heat conduction equations and bound equations of motions differ by the difficulty level and presence of many physical and mechanical parameters in them. Therefore thermoelasticity is being extensively studied and developed. In this paper by using analytical matrizant method set of equation of motions in elastic media are reduced to equivalent set of first-order differential equations. Moreover, for given set of equations, the structure of fundamental solutions for the general case has been derived and also dispersion relations are obtained.
Drachta, Jürgen T.; Kreil, Dominik; Hobbiger, Raphael; Böhm, Helga M.
2018-03-01
Correlations, highly important in low-dimensional systems, are known to decrease the plasmon dispersion of two-dimensional electron liquids. Here we calculate the plasmon properties, applying the 'Dynamic Many-Body Theory', accounting for correlated two-particle-two-hole fluctuations. These dynamic correlations are found to significantly lower the plasmon's energy. For the data obtained numerically, we provide an analytic expression that is valid across a wide range both of densities and of wave vectors. Finally, we demonstrate how this can be invoked in determining the actual electron densities from measurements on an AlGaAs quantum well.
Influence of acidification of circulating water on differential distribution of dispersed phase
Directory of Open Access Journals (Sweden)
Oleksandr B. Gulyaenko
2015-06-01
Full Text Available The paper analyzes the connection between processing technologies of circulating water cooling tower and coagulation-aggregation properties of colloidal particles of the dispersed phase. In circulating water cooling tower when clarifying additional water the reduction of HCO3- and CO32- concentrations happens with corresponding pH increase. Absorption of atmospheric carbon dioxide by cooling tower circulating water offsets this increase. The estimation of the probability of adhesion to the surface of the dispersed phase, distributed in the volume of circulation water, and the heat exchange surface of the condenser for different degrees of evaporation of the coolant is made. The distribution of cooling water micro-disperse particles which are adsorbed on the heat exchange surfaces of the condenser (deposit formation and on the surface of larger particles (particle aggregation reflects the efficiency of applied water treatment technology. It is shown that acidification of additional water facilitates solution of most fine fractions and increases hardness of treated water.
Spatio-Temporal Measurements of Short Wind Water Waves
Rocholz, Roland; Jähne, Bernd
2010-05-01
model of the ocean surface wave vector spectrum and its effects on radar backscatter. J. Geophys. Res., 99:16269-16292, Aug. 1994. B. Jähne and K. Riemer. Two-dimensional wave number spectra of small-scale water surface waves. Geophys.Res., 95(C7):11531-11646, 1990 J. Klinke. 2D wave number spectra of short wind waves - results from wind wave facilities and extrapolation to the ocean. Optics of the Air-Sea Interface: Theory and Measurement, Proc. SPIE - Int. Soc. Opt. Eng., 1749:1-13, July 1992 V. N. Kudryavtsev, V. K. Makin, and B. Chapron. Coupled sea surface atmosphere model. 2. Spectrum of short wind waves. J. Geophys. Res., 104:7625-7640, 1999. R. Rocholz, Spatio-Temporal Measurement of Short Wind-Driven Water Wave, Dissertation, University of Heidelberg, 2008, http://hci.iwr.uni-heidelberg.de/publications/dip/2008/Rocholz_2008_Diss.pdf
Preconcentration of uranium in water samples using dispersive ...
African Journals Online (AJOL)
1-(2-Pyridylazo)-2-naphthol reagent (PAN) at pH 6.0 was used as a chelating agent prior to extraction. After concentration and purification of the samples in SPE C18 sorbent, 1.5 mL elution sample containing 40.0 µL chlorobenzene was injected into the 5.0 mL pure water. After extraction and centrifuging, the sedimented ...
Tansel, Berrin; Lee, Mengshan; Berbakov, Jillian; Tansel, Derya Z.; Koklonis, Urpiana
2014-04-01
Effectiveness of Corexit 9500A for dispersing Louisiana crude oil was evaluated in salt water solutions containing natural materials in relation to salinity and dispersant-to-oil ratio (DOR). Experimental results showed that both salinity and DOR had significant effects on dispersion of Louisiana crude oil in the presence of different natural materials. The natural materials added to the salt water solutions included sea sand (South Beach, Miami, Florida), red mangrove leaves (Rhizophora mangle), seaweed (Sargassum natans), and sea grass (Halodule wrightii). Dispersant effectiveness (amount of oil dispersed into the water) was reduced significantly with increasing salinity with the minimum effectiveness observed in the salinity range between 30 and 50 ppt in all aqueous samples containing natural materials. When significant amounts of floating oil were present, the partially submerged natural materials enhanced the transfer of oil into the water column, which improved the dispersion effectiveness. However, dispersant effectiveness was significantly reduced when the amount of floating oil was relatively small and could not be released back to the water column. Surface tension may not be an adequate parameter for monitoring the effectiveness of dispersants in salt water environment. When distilled water was used (i.e., zero salinity), surface tension was significantly reduced with increasing dispersant concentration. However, there was no clear trend in the surface tension of the salt water solutions (17-51 ppt) containing crude oil and natural materials with increasing dispersant concentration.
International Nuclear Information System (INIS)
1989-01-01
This reference method describes a simple procedure for comparing the toxicity of oil, oil dispersants, and mixtures thereof, to marine animals. It allows the toxicity of different dispersants to be rapidly compared to that of oil, or of a mixture of oil an oil dispersant. It is designed for routine monitoring and screening purposes and is not appropriate as a research method. The physical and chemical properties of oil dispersants create many difficulties in the measurements of their toxicity to marine organisms. Strictly speaking, their toxicity can only be accurately estimated using complex procedures and apparatus. (A relatively simple apparatus for preparing oil/water or oil/water/oil dispersant emulsions is described in Appendix B). Simpler methods can provide useful information, provided their limitations are clearly understood and taken into consideration in the assessment and application of their results. Some of the special considerations relating to the measurement of the toxicity of oil and oil dispersants are described in Appendix A. The Appendix also explains the rationale and limitations of the method described here. 3 refs, 4 figs, 2 tabs
Synthesis of Water-Based Dispersions of Polymer/TiO2 Hybrid Nanospheres
Directory of Open Access Journals (Sweden)
Lu Jin
2015-08-01
Full Text Available We develop a strategy for preparing water-based dispersions of polymer/TiO2 nanospheres that can be used to form composite materials applicable in various fields. The formed hybrid nanospheres are monodisperse and possess a hierarchical structure. It starts with the primary TiO2 nanoparticles of about 5 nm, which first assemble to nanoclusters of about 30 nm and then are integrated into monomer droplets. After emulsion polymerization, one obtains the water-based dispersions of polymer/TiO2 nanospheres. To achieve universal size, it is necessary to have treatments with intense turbulent shear generated in a microchannel device at different stages. In addition, a procedure combining synergistic actions of steric and anionic surfactants has been designed to warrant the colloidal stability of the process. Since the formed polymer/TiO2 nanospheres are stable aqueous dispersions, they can be easily mixed with TiO2-free polymeric nanoparticle dispersions to form new dispersions, where TiO2-containing nanospheres are homogeneously distributed in the dispersions at the nanoscale, thus leading to various applications. As an example, the proposed strategy has been applied to generate polystyrene/TiO2 nanospheres of about 100 nm in diameter.
Numerical study of surface water waves generated by mass movement
Energy Technology Data Exchange (ETDEWEB)
Ghozlani, Belgacem; Hafsia, Zouhaier; Maalel, Khlifa, E-mail: ghozlanib@yahoo.fr [Ecole Nationale d' Ingenieurs de Tunis, Laboratoire de Modelisation en ' Hydraulique et Environnement, BP 37, Le Belvedere, 1002 Tunis (Tunisia)
2013-10-01
In this paper waves generated by two-dimensional mass movement are simulated using a numerical model based on the full hydrodynamic coupling between rigid-body motion and ambient fluid flow. This approach has the capability to represent the dynamics of the moving rigid body, which avoids the need to prescribe the body velocity based on the data measurements. This model is implemented in the CFX code and uses the Reynolds average Navier-Stokes equations solver coupled to the recently developed immersed solid technique. The latter technique allows us to follow implicitly the motion of the solid block based on the rigid body solver. The volume-of-fluid method is used to track the free surface locations. The accuracy of the present model is firstly examined against the simple physical case of a freely falling rigid body into water reproducing Scott Russell's solitary waves. More complex and realistic simulations of aerial and submarine mass-movement, simulated by a rigid wedge sliding into water along a 45 Degree-Sign slope, are then performed. Simulated results of the aerial mass movement show the complex flow patterns in terms of the velocity fields and free surface profiles. Results are in good agreement with the available experimental data. In addition, the physical processes associated with the generation of water wave by two-dimensional submarine mass-movement are explored. The effects of the initial submergence and specific gravity on the slide mass kinematics and maximum wave amplitude are investigated. The terminal velocity and initial acceleration of the slide mass are well predicted when compared to experimental results. It is found that the initial submergence did not have a significant effect on the initial acceleration of the slide block centre of mass. However, it depends nonlinearly on the specific gravity. The maximum wave amplitude and the time at which it occurred are also presented as a function of the initial submergence and specific gravity
Soliton turbulence in shallow water ocean surface waves.
Costa, Andrea; Osborne, Alfred R; Resio, Donald T; Alessio, Silvia; Chrivì, Elisabetta; Saggese, Enrica; Bellomo, Katinka; Long, Chuck E
2014-09-05
We analyze shallow water wind waves in Currituck Sound, North Carolina and experimentally confirm, for the first time, the presence of soliton turbulence in ocean waves. Soliton turbulence is an exotic form of nonlinear wave motion where low frequency energy may also be viewed as a dense soliton gas, described theoretically by the soliton limit of the Korteweg-deVries equation, a completely integrable soliton system: Hence the phrase "soliton turbulence" is synonymous with "integrable soliton turbulence." For periodic-quasiperiodic boundary conditions the ergodic solutions of Korteweg-deVries are exactly solvable by finite gap theory (FGT), the basis of our data analysis. We find that large amplitude measured wave trains near the energetic peak of a storm have low frequency power spectra that behave as ∼ω-1. We use the linear Fourier transform to estimate this power law from the power spectrum and to filter densely packed soliton wave trains from the data. We apply FGT to determine the soliton spectrum and find that the low frequency ∼ω-1 region is soliton dominated. The solitons have random FGT phases, a soliton random phase approximation, which supports our interpretation of the data as soliton turbulence. From the probability density of the solitons we are able to demonstrate that the solitons are dense in time and highly non-Gaussian.
Wang, Chao; Joe Au, Y. H.; Li, Lin; Cheng, Kai
2016-03-01
In this paper is presented an improved method for locating a transient acoustic emission (AE) source on a pipeline with two broad-band AE sensors. Using Short Time Fourier Transform (STFT), the method identifies a flexural wave mode, F(1,1), in the two AE signals detected, notes its respective arrival times at different frequencies, and determines the location of the AE source based on the arrival times. Due to velocity dispersion, the arrival time of the wave mode varies with frequency. The method has three main advantages: that the wave speed is not required in the calculation, that it is insensitive to threshold setting for arrival time estimation, and that, at least in theory, the accuracy of the source location can be made as high as desired. The paper first demonstrates, by way of an experiment, the inadequacy of threshold-crossing as a method for identifying the first arrival time of the AE wave. The paper then presents the theory of the proposed method and of the estimated error inherent in the theory and an explanation on how the error can be reduced. The method is then verified experimentally using results obtained from a 3-m long copper pipe of 22 mm diameter.
Periodic waves with constant vorticity in water of infinite depth
vanden-Broeck, J.-M.
1996-06-01
Periodic waves propagating at a constant velocity at the surface of a fluid with constant vorticity in water of infinite depth are considered. The problem is solved numerically by a boundary-integral-equation method. Simmen & Saffman (Stud. Appl. Maths 75, 35, 1985) showed that there are families of solutions which have limiting configurations with a 120 degree angle at their crests or a trapped bubble at their troughs. It is shown that there are additional families of solutions. These families have limiting configurations with trapped bubbles at their crests. Each bubble is circular and contains fluid in rigid-body rotation. The results are consistent with previous calculations for solitary waves in water of finite depth.
Ebrahimi, Farzad; Dabbagh, Ali
2018-04-01
In the present article, the hygro-thermal wave propagation properties of single-layered graphene sheets (SLGSs) are investigated for the first time employing a nonlocal strain gradient theory. A refined higher-order two-variable plate theory is utilized to derive the kinematic relations of graphene sheets. Here, nonlocal strain gradient theory is used to achieve a more precise analysis of small-scale plates. In the framework of the Hamilton's principle, the final governing equations are developed. Moreover, these obtained equations are deemed to be solved analytically and the wave frequency values are achieved. Some parametric studies are organized to investigate the influence of different variants such as nonlocal parameter, length scale parameter, wave number, temperature gradient and moisture concentration on the wave frequency of graphene sheets.
Photoactive Donor-Acceptor Composite Nanoparticles Dispersed in Water.
Parrenin, Laurie; Laurans, Gildas; Pavlopoulou, Eleni; Fleury, Guillaume; Pecastaings, Gilles; Brochon, Cyril; Vignau, Laurence; Hadziioannou, Georges; Cloutet, Eric
2017-02-14
A major issue that inhibits the large-scale fabrication of organic solar modules is the use of chlorinated solvents considered to be toxic and hazardous. In this work, composite particles of poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4,7-di-2-thienyl-2',1',3'-benzothiadiazole] (PCDTBT) and [6,6]-phenyl C71 butyric acid methyl ester (PC 71 BM) were obtained in water from a versatile and a ready-to-market methodology based on postpolymerization miniemulsification. Depending on the experimental conditions, size-controlled particles comprising both the electron donor and the electron acceptor were obtained and characterized using transmission electron microscopy (TEM), atomic force microscopy (AFM), small-angle neutron scattering (SANS), UV-visible absorption, and fluorescence spectroscopy. Intimate mixing of the two components was definitely asserted through PCDTBT fluorescence quenching in the composite nanoparticles. The water-based inks were used for the preparation of photovoltaic active layers that were subsequently integrated into organic solar cells.
Czech Academy of Sciences Publication Activity Database
Sundkvist, D.; Krasnoselskikh, V.; Bale, S. D.; Schwartz, S. J.; Souček, Jan; Mozer, F.
2012-01-01
Roč. 108, č. 2 (2012), 025002/1-025002/4 ISSN 0031-9007 Institutional research plan: CEZ:AV0Z30420517 Keywords : shock waves and discontinuities * bow shock * plasma waves Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 7.943, year: 2012 http://link.aps.org/doi/10.1103/PhysRevLett.108.025002
Directory of Open Access Journals (Sweden)
V. T. Erofeenko
2017-01-01
Full Text Available The main idea of the article is the development of the method for solving the boundary-value problem of penetrating the plane monochromatic electromagnetic fields through the screen made from the material with space dispersion. The problem is based on the use of the differential mathematical model of the medium with space dispersion, classical boundary conditions of continuity of the tangential components of the fields and complementary boundary conditions on the face surfaces of the screen. The article gives an analytical solution of the boundary-value problem and examines the ratio of screen performance by the reduction of the field while passing through the screen.
Influence of water waves on hyperspectral remote sensing of subsurface water features
Bostater, Charles R., Jr.; Bassetti, Luce
2004-11-01
Modeled hyperspectral reflectance signatures with water wave influences are simulated using an analytical-based, iterative radiative transport model applicable to shallow or deep waters. Light transport within the water body is simulated using a fast, accurate radiative transfer model that calculates the light distribution in any layered media and incorporates realistic water surfaces which are synthesized using empirically-based spectral models of the water surface to generate water surface wave facets. The model simulated synthetic images are displayed as 24 bit RGB images of the water surface using selected channels from the simulated synthetic hyperspectral image cube. We show selected channels centered at 490, 530 and 676 nm. We also demonstrate the use of the model to show the capability of the sensor and image modeling approach to detect or "recover" known features or targets submerged within or on the shallow water bottom in a tidal inlet area in Indian River Lagoon, Florida. Line targets are simulated in shallow water and indicate the influence of water waves in different water quality conditions. The technique demonstrates a methodology to help to develop remote sensing protocols for shallow water remote sensing as well as to develop information useful for future hyperspectral sensor system developments.
Theoretical Model of Acoustic Wave Propagation in Shallow Water
Directory of Open Access Journals (Sweden)
Kozaczka Eugeniusz
2017-06-01
Full Text Available The work is devoted to the propagation of low frequency waves in a shallow sea. As a source of acoustic waves, underwater disturbances generated by ships were adopted. A specific feature of the propagation of acoustic waves in shallow water is the proximity of boundaries of the limiting media characterised by different impedance properties, which affects the acoustic field coming from a source situated in the water layer “deformed” by different phenomena. The acoustic field distribution in the real shallow sea is affected not only by multiple reflections, but also by stochastic changes in the free surface shape, and statistical changes in the seabed shape and impedance. The paper discusses fundamental problems of modal sound propagation in the water layer over different types of bottom sediments. The basic task in this case was to determine the acoustic pressure level as a function of distance and depth. The results of the conducted investigation can be useful in indirect determination of the type of bottom.
Directory of Open Access Journals (Sweden)
Sophie S. Shamailov, Joachim Brand
2018-03-01
Full Text Available Superconducting Josephson vortices have direct analogues in ultracold-atom physics as solitary-wave excitations of two-component superfluid Bose gases with linear coupling. Here we numerically extend the zero-velocity Josephson vortex solutions of the coupled Gross-Pitaevskii equations to non-zero velocities, thus obtaining the full dispersion relation. The inertial mass of the Josephson vortex obtained from the dispersion relation depends on the strength of linear coupling and has a simple pole divergence at a critical value where it changes sign while assuming large absolute values. Additional low-velocity quasiparticles with negative inertial mass emerge at finite momentum that are reminiscent of a dark soliton in one component with counter-flow in the other. In the limit of small linear coupling we compare the Josephson vortex solutions to sine-Gordon solitons and show that the correspondence between them is asymptotic, but significant differences appear at finite values of the coupling constant. Finally, for unequal and non-zero self- and cross-component nonlinearities, we find a new solitary-wave excitation branch. In its presence, both dark solitons and Josephson vortices are dynamically stable while the new excitations are unstable.
A boundary element model for diffraction of water waves on varying water depth
Energy Technology Data Exchange (ETDEWEB)
Poulin, Sanne
1997-12-31
In this thesis a boundary element model for calculating diffraction of water waves on varying water depth is presented. The varying water depth is approximated with a perturbed constant depth in the mild-slope wave equation. By doing this, the domain integral which is a result of the varying depth is no longer a function of the unknown wave potential but only a function of position and the constant depth wave potential. The number of unknowns is the resulting system of equations is thus reduced significantly. The integration procedures in the model are tested very thoroughly and it is found that a combination of analytical integration in the singular region and standard numerical integration outside works very well. The gradient of the wave potential is evaluated successfully using a hypersingular integral equation. Deviations from the analytical solution are only found on the boundary or very close to, but these deviations have no significant influence on the accuracy of the solution. The domain integral is evaluated using the dual reciprocity method. The results are compared with a direct integration of the integral, and the accuracy is quite satisfactory. The problem with irregular frequencies is taken care of by the CBIEM (or CHIEF-method) together with a singular value decomposition technique. This method is simple to implement and works very well. The model is verified using Homma`s island as a test case. The test cases are limited to shallow water since the analytical solution is only valid in this region. Several depth ratios are examined, and it is found that the accuracy of the model increases with increasing wave period and decreasing depth ratio. Short waves, e.g. wind generated waves, can allow depth variations up to approximately 2 before the error exceeds 10%, while long waves can allow larger depth ratios. It is concluded that the perturbation idea is highly usable. A study of (partially) absorbing boundary conditions is also conducted. (EG)
Directory of Open Access Journals (Sweden)
Gaddale Suresh
2014-08-01
Full Text Available Through inversion of fundamental mode group velocities of Love and Rayleigh waves, we study the crustal and subcrustal structure across the central Deccan Volcanic Province (DVP, which is one of the world’s largest terrestrial flood basalts. Our analysis is based on broadband seismograms recorded at seismological station Bhopal (BHPL in the central India from earthquakes located near west coast of India, with an average epicentral distance about 768 km. The recording station and epicentral zone are situated respectively on the northern and southern edges of DVP with wave paths across central DVP. The period of group velocity data ranges from 5 to 60 s for Rayleigh waves and 5 to 45 s for Love waves. Using the genetic algorithm, the observed data have been inverted to obtain the crust and subcrustal velocity structure along the wavepaths. Using this procedure, a similar velocity structure was also obtained earlier for the northwestern DVP, which is in the west of the present study region. Comparison of results show that the crustal thickness decreases westward from central DVP (39.6 km to northwestern DVP (37.8 km along with the decrease of thickness of upper crust; while the thickness of lower crust remains nearly same. From east to west S-wave velocity in the upper crust decreases by 2 to 3 per cent, while P-wave velocity in the whole crust and subcrust decreases by 3 to 6 per cent. The P- and S-wave velocities are positively correlated with crustal thickness and negatively correlated with earth’s heat flow. It appears that the elevated crustal and subcrustal temperature in the western side is the main factor for low velocities on this side.
Ellis-Soto, Diego; Blake, Stephen; Soultan, Alaaeldin; Guézou, Anne; Cabrera, Fredy; Lötters, Stefan
2017-01-01
Native biodiversity on the Galapagos Archipelago is severely threatened by invasive alien species. On Santa Cruz Island, the abundance of introduced plant species is low in the arid lowlands of the Galapagos National Park, but increases with elevation into unprotected humid highlands. Two common alien plant species, guava (Psidium guajava) and passion fruit (Passiflora edulis) occur at higher elevations yet their seeds are dispersed into the lowlands by migrating Galapagos tortoises (Chelonoidis spp.). Tortoises transport large quantities of seeds over long distances into environments in which they have little or no chance of germination and survival under current climate conditions. However, climate change is projected to modify environmental conditions on Galapagos with unknown consequences for the distribution of native and introduced biodiversity. We quantified seed dispersal of guava and passion fruit in tortoise dung piles and the distribution of adult plants along two elevation gradients on Santa Cruz to assess current levels of 'wasted' seed dispersal. We computed species distribution models for both taxa under current and predicted future climate conditions. Assuming that tortoise migratory behaviour continues, current levels of "wasted" seed dispersal in lowlands were projected to decline dramatically in the future for guava but not for passion fruit. Tortoises will facilitate rapid range expansion for guava into lowland areas within the Galapagos National Park where this species is currently absent. Coupled with putative reduction in arid habitat for native species caused by climate change, tortoise driven guava invasion will pose a serious threat to local plant communities.
Directory of Open Access Journals (Sweden)
Diego Ellis-Soto
Full Text Available Native biodiversity on the Galapagos Archipelago is severely threatened by invasive alien species. On Santa Cruz Island, the abundance of introduced plant species is low in the arid lowlands of the Galapagos National Park, but increases with elevation into unprotected humid highlands. Two common alien plant species, guava (Psidium guajava and passion fruit (Passiflora edulis occur at higher elevations yet their seeds are dispersed into the lowlands by migrating Galapagos tortoises (Chelonoidis spp.. Tortoises transport large quantities of seeds over long distances into environments in which they have little or no chance of germination and survival under current climate conditions. However, climate change is projected to modify environmental conditions on Galapagos with unknown consequences for the distribution of native and introduced biodiversity. We quantified seed dispersal of guava and passion fruit in tortoise dung piles and the distribution of adult plants along two elevation gradients on Santa Cruz to assess current levels of 'wasted' seed dispersal. We computed species distribution models for both taxa under current and predicted future climate conditions. Assuming that tortoise migratory behaviour continues, current levels of "wasted" seed dispersal in lowlands were projected to decline dramatically in the future for guava but not for passion fruit. Tortoises will facilitate rapid range expansion for guava into lowland areas within the Galapagos National Park where this species is currently absent. Coupled with putative reduction in arid habitat for native species caused by climate change, tortoise driven guava invasion will pose a serious threat to local plant communities.
Influence of internal waves on the dispersion and transport of inclined gravity currents
Hogg, C. A. R.; Pietrasz, V. B.; Ouellette, N. T.; Koseff, J. R.
2016-02-01
Brine discharge from desalination facilities presents environmental risks, particularly to benthic organisms. High concentrations of salt and chemical additives, which can be toxic to local ecosystems, are typically mitigated by dilution close to the source. Our laboratory experiments investigate how breaking internal tides can help to dilute gravity currents caused by desalination effluents and direct them away from the benthic layer. In laboratory experiments, internal waves at the pycnocline of an ambient stratification were directed towards a sloping shelf, down which ran a gravity current. The breaking internal waves were seen to increase the proportion of the fluid from the gravity current diverted away from the slope into an intrusion along the pycnocline. In a parametric study, increasing the amplitude of the internal wave was seen to increase the amount of dense fluid in the pycnocline intrusion. The amplitude required to divert the gravity current into the intrusion compares well with an analytical theory that equates the incident energy in the internal wave to the potential energy required to dilute the gravity current. These experimental results suggest that sites of breaking internal waves may be good sites for effluent disposal. Effluent diverted into the intrusion avoids the ecologically sensitive benthic layer.
Remarks on the parallel propagation of small-amplitude dispersive Alfvénic waves
Directory of Open Access Journals (Sweden)
S. Champeaux
1999-01-01
Full Text Available The envelope formalism for the description of a small-amplitude parallel-propagating Alfvén wave train is tested against direct numerical simulations of the Hall-MHD equations in one space dimension where kinetic effects are neglected. It turns out that the magnetosonic-wave dynamics departs from the adiabatic approximation not only near the resonance between the speed of sound and the Alfvén wave group velocity, but also when the speed of sound lies between the group and phase velocities of the Alfvén wave. The modulational instability then does not anymore affect asymptotically large scales and strong nonlinear effects can develop even in the absence of the decay instability. When the Hall-MHD equations are considered in the long-wavelength limit, the weakly nonlinear dynamics is accurately reproduced by the derivative nonlinear Schrödinger equation on the expected time scale, provided no decay instabilities are present. The stronger nonlinear regime which develops at later time is captured by including the coupling to the nonlinear dynamics of the magnetosonic waves.
Near field resonant inductive coupling to power electronic devices dispersed in water
Kuipers, J.; Bruning, H.; Bakker, S.; Rijnaarts, H.H.M.
2012-01-01
The purpose of this research was to investigate inductive coupling as a way to wirelessly power electronic devices dispersed in water. The most important parameters determining this efficiency are: (1) the coupling between transmitting and receiving coils, (2) the quality factors of the transmitting
Water-Dispersible Multi-Walled Carbon Nanotubes and Novel Hybrid Nanostructures
Pham, Tuan Anh; Son, Se Mo; Jeong, Yeon Tae
2010-01-01
Water-dispersible multi-walled carbon nanotubes (MWNTs) were successfully prepared by the chemical grafting of acylated MWNTs with adenosine. The MWNTs were first purified and oxidized in order to obtain carboxylic acid funcionalized MWNTs, which was further acylated with thionyl chloride to give
Effects of internal waves on sound propagation in the shallow waters of the continental shelves
Ong, Ming Yi
2016-01-01
Approved for public release; distribution is unlimited Sound waves propagating through the oceans are refracted by internal waves. In the shallow waters of the continental shelves, an additional downward refraction of sound waves due to internal waves can cause them to interact more often with the seabed, resulting in additional energy from the sound waves being dissipated into the seabed. This study investigates how internal waves affect sound propagation on the continental shelves. It fi...
Nonlinear dispersion of resonance extraordinary wave in a plasma with strong magnetic field
International Nuclear Information System (INIS)
Krasovitskiy, V. B.; Turikov, V. A.; Sotnikov, V. I.
2007-01-01
In this paper, the efficiency of electron acceleration by a short, powerful laser pulse propagating across an external magnetic field is investigated. Conditions for the decay of a laser pulse with frequency close to the upper hybrid resonance frequency are analyzed. It is also shown that a laser pulse propagating as an extraordinary wave in cold, magnetized, low-density plasma takes the form of a nonlinear wave with the modulated amplitude (envelope soliton). Finally, simulation results on the interaction of an electromagnetic pulse with a semi-infinite plasma, obtained with the help of an electromagnetic relativistic PIC code, are discussed and a comparison with the obtained theoretical results is presented
High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles.
Pawar, Amol A; Saada, Gabriel; Cooperstein, Ido; Larush, Liraz; Jackman, Joshua A; Tabaei, Seyed R; Cho, Nam-Joon; Magdassi, Shlomo
2016-04-01
In the absence of water-soluble photoinitiators with high absorbance in the ultraviolet (UV)-visible range, rapid three-dimensional (3D) printing of hydrogels for tissue engineering is challenging. A new approach enabling rapid 3D printing of hydrogels in aqueous solutions is presented on the basis of UV-curable inks containing nanoparticles of highly efficient but water-insoluble photoinitiators. The extinction coefficient of the new water-dispersible nanoparticles of 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (TPO) is more than 300 times larger than the best and most used commercially available water-soluble photoinitiator. The TPO nanoparticles absorb significantly in the range from 385 to 420 nm, making them suitable for use in commercially available, low-cost, light-emitting diode-based 3D printers using digital light processing. The polymerization rate at this range is very fast and enables 3D printing that otherwise is impossible to perform without adding solvents. The TPO nanoparticles were prepared by rapid conversion of volatile microemulsions into water-dispersible powder, a process that can be used for a variety of photoinitiators. Such water-dispersible photoinitiator nanoparticles open many opportunities to enable rapid 3D printing of structures prepared in aqueous solutions while bringing environmental advantages by using low-energy curing systems and avoiding the need for solvents.
Almeida, Thiago W J; Sampaio, Diego R Thomaz; Bruno, Alexandre Colello; Pavan, Theo Z; Carneiro, Antonio A O
2015-12-01
Several methods have been developed over the last several years to analyze the mechanical properties of soft tissue. Elastography, for example, was proposed to evaluate soft tissue stiffness in an attempt to reduce the need for invasive procedures, such as breast biopsies; however, its qualitative nature and the fact that it is operator-dependent have proven to be limitations of the technique. Quantitative shearwave- based techniques have been proposed to obtain information about tissue stiffness independent of the operator. This paper describes shear wave dispersion magnetomotive ultrasound (SDMMUS), a new shear-wave-based method in which a viscoelastic medium labeled with iron oxide nanoparticles is displaced by an external tone burst magnetic field. As in magnetomotive ultrasound (MMUS), SDMMUS uses ultrasound to detect internal mechanical vibrations induced by the interaction between a magnetic field and magnetic nanoparticles. These vibrations generated shear waves that were evaluated to estimate the viscoelastic properties of tissue-mimicking phantoms. These phantoms were manufactured with different concentrations of gelatin and labeled with iron oxide nanoparticles. The elasticity and viscosity obtained with SDMMUS agreed well with the results obtained by traditional ultrasound-based transient elastography.
Directory of Open Access Journals (Sweden)
Nicpoń Józef
2011-03-01
Full Text Available Abstract Background P-wave dispersion (Pd is a new ECG index used in human cardiology and veterinary medicine. It is defined as the difference between the maximum and the minimum P-wave duration recorded from multiple different ECG leads. So far no studies were performed assessing the importance of P-wave dispersion in dogs. Methods The current study was aimed at determining proper value of Pd in healthy dogs (group I, dogs with chronic valvular disease (group II and dogs with disturbances of supraventricular conduction (group III. The tests were carried out in 53 healthy dogs, 23 dogs with chronic valvular disease and 12 dogs with disturbances of supraventricular conduction of various breeds, sexes and body weight from 1,5 to 80 kg, aged between 0,5 and 17 years, submitted to the ECG examination. ECG was acquired in dogs in a standing position with BTL SD-8 electrocardiographic device and analyzed once the recording was enlarged. P-wave duration was calculated in 9 ECG leads (I, II, III, aVR, aVL, aVF, V1, V2, V4 from 5 cardiac cycles. Results The proper P-wave dispersion in healthy dogs was determined at up to 24 ms. P-wave dispersion was statistically significant increased (p Conclusions The P-wave dispersion is a constant index in healthy dogs, that is why it can be used for evaluating P wave change in dogs with chronic valvular disease and in dogs with disturbances of supraventricular conduction.
Re-dispersion of alumina particles in water: influence of the surface state
International Nuclear Information System (INIS)
Desset, Sabine
1999-01-01
The aim of this work was to determine the mechanisms by which suspensions of alpha alumina particles may be dried and then re-dispersed spontaneously in water. To get reproducible results, we designed appropriate protocols: (i) for preparing the surface state, and for generating controlled interparticle contacts (presence of water or complexing agents); (ii) for measuring the amount of re-dispersed material with a proper averaging over all interparticle bonds (turbidity). These results show that there are thresholds, determined by the conditions of drying and re-dispersion, where all the powder goes from the aggregated state to the dispersed state. With hydrated powders, it was found that mild changes in the chemical conditions (pH) and application of very weak mechanical forces (sedimentation) were enough to cause significant change in re-dispersion. According to these thresholds, a re-dispersion mechanism could be identified. Re-dispersion is ruled, indeed, by a balance of forces and the displacement of the re-dispersion thresholds indicates a shift in the balance of forces. These forces are the well-known forces that control colloidal stability: van der Waals attraction, electrostatic repulsion and hydration forces. We found that hydration acts as a repulsive wall corresponding to one or two monolayers of water on each surface and depends on the Relative Humidity of drying. We also found that electrostatic repulsions at short separations are much weaker than the predictions based on the Poisson Boltzmann equation, but should be modelled according to the triple layer model. Repulsions to be considered are those calculated with the screened charges of the particles. Another aim of this work was to facilitate re-dispersion by using complexing agents that bind to the surfaces and add a steric repulsion We have found that molecules with carboxylic and hydroxyl groups can be efficient in this respect, if they are bound to surfaces before aggregation, if they are not
Re-dispersion of alumina particles in water: influence of the surface state
International Nuclear Information System (INIS)
Desset, Sabine
1999-01-01
The aim of this work was to determine the mechanisms by which suspensions of alpha alumina particles may be dried and then re-dispersed spontaneously in water. To get reproducible results, we designed appropriate protocols: (i) for preparing the surface state, and for generating controlled interparticle contacts (presence of water or complexing agents); (ii) for measuring the amount of re-dispersed material with a proper averaging over all interparticle bonds (turbidity). These results show that there are thresholds, determined by the conditions of drying and re-dispersion, where all the powder goes from the aggregated state to the dispersed state. With hydrated powders, it was found that mild changes in the chemical conditions (pH) and application of very weak mechanical forces (sedimentation) were enough to cause significant change in re-dispersion. According to these thresholds, a re-dispersion mechanism could be identified. Re-dispersion is ruled, indeed, by a balance of forces and the displacement of the re-dispersion thresholds indicates a shift in the balance of forces. These forces are the well known forces that control colloidal stability: van der Waals attraction, electrostatic repulsion and hydration forces. We found that hydration acts as a repulsive wall corresponding to one or two monolayers of water on each surface and depends on the Relative Humidity of drying. We also found that electrostatic repulsions at short separations are much weaker than the predictions based on the Poisson Boltzmann equation, but should be modelled according to the triple layer model. Repulsions to be considered are those calculated with the screened charges of the particles. Another aim of this work was to facilitate re-dispersion by using complexing agents that bind to the surfaces and add a steric repulsion We have found that molecules with carboxylic and hydroxyl groups can be efficient in this respect, if they are bound to surfaces before aggregation, if they are not
Ellis-Soto, Diego; Blake, Stephen; Soultan, Alaaeldin; Gu?zou, Anne; Cabrera, Fredy; L?tters, Stefan
2017-01-01
Native biodiversity on the Galapagos Archipelago is severely threatened by invasive alien species. On Santa Cruz Island, the abundance of introduced plant species is low in the arid lowlands of the Galapagos National Park, but increases with elevation into unprotected humid highlands. Two common alien plant species, guava (Psidium guajava) and passion fruit (Passiflora edulis) occur at higher elevations yet their seeds are dispersed into the lowlands by migrating Galapagos tortoises (Chelonoi...
Togashi, Takanari; Saito, Kota; Matsuda, Yukiko; Sato, Ibuki; Kon, Hiroki; Uruma, Keirei; Ishizaki, Manabu; Kanaizuka, Katsuhiko; Sakamoto, Masatomi; Ohya, Norimasa; Kurihara, Masato
2014-08-01
Silver oxalate, one of the coordination polymer crystals, is a promising synthetic precursor for transformation into Ag nanoparticles without any reducing chemicals via thermal decomposition of the oxalate ions. However, its insoluble nature in solvents has been a great disadvantage, especially for systematic control of crystal growth of the Ag nanoparticles, while such control of inorganic nanoparticles has been generally performed using soluble precursors in homogeneous solutions. In this paper, we document our discovery of water-soluble species from the reaction between the insoluble silver oxalate and N,N-dimethyl-1,3-diaminopropane. The water-soluble species underwent low-temperature thermal decomposition of the oxalate ions at 30 °C with evolution of CO2 to reduce Ag+ to Ag0. Water-dispersible Ag nanoparticles have been successfully synthesized from the water-soluble species in the presence of gelatin via similar thermal decomposition at 100 °C. The gelatin-protected and water-dispersible Ag nanoparticles with a mean diameter of 25.1 nm appeared. In addition, antibacterial activity of the prepared water-dispersible Ag nanoparticles has been preliminarily investigated.
Water wave communication in the genus Bombina (amphibia)
Seidel, B.; Yamashita, M.; Choi, I.-H.; Dittami, J.
2001-01-01
Amphibians were phylogenetically the first vertebrates to leave the aquatic environment and cope with terrestrial conditions including effects of gravity and substrate on movement and communication. Studies of extant primitive amphibians, which have conserved ancestral morphology and behavior, may help us to understand how gravitational adaptation from aquatic to terrestrial environments occurred. The anuran genus Bombina is a candidate for this type of investigation. In particular, a member of this genus, B. orientalis, is known for its low reaction threshold to minor changes of angular acceleration. We hypothesize that a heightened sensitivity to angular and mechanical accelerations evolved with wave communication. Comparisons of such behavior among B. variegata, B. bombina and B. orientalis may shed light on the evolution of reproductive systems based on water wave communication and relevant vestibular sensitivity. This may represent a transition to derived vocalization modes, which is seen in B. bombina to a certain degree.
Conditional short-crested waves in shallow water and with superimposed current
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher
2002-01-01
wave, given the value of the wave crest at a specific point in time or space. In the present paper a derivation of the expected linear short-crested wave riding on a uniform current is given. The analysis is based on the conventional shallow water Airy wave theory and the direction of the main wind...... direction can make any direction with the current. A consistent derivation of the wave spectrum taking into account current and finite water depth is used. The numerical results show a significant effect of the water depth, the directional spreading and the current on the conditional mean wave profile...
Soliton interaction as a possible model for extreme waves in shallow water
Peterson, P.; Soomere, T.; Engelbrecht, J.; van Groesen, Embrecht W.C.
2003-01-01
Interaction of two long-crested shallow water waves is analysed in the framework of the two-soliton solution of the Kadomtsev-Petviashvili equation. The wave system is decomposed into the incoming waves and the interaction soliton that represents the particularly high wave hump in the crossing area
Computation of nonlinear water waves with a high-order Boussinesq model
DEFF Research Database (Denmark)
Fuhrman, David R.; Madsen, Per A.; Bingham, Harry
2005-01-01
-crested waves in shallow/deep water, resulting in hexagonal/rectangular surface patterns; crescent waves, resulting from unstable perturbations of plane progressive waves; and highly-nonlinear wave-structure interactions. The emphasis is on physically demanding problems, and in eachcase qualitative and (when...
A Nonlinear Coupled-Mode System for Water Waves over a General Bathymetry
Athanassoulis, G. A.; Belibassakis, K. A.
2003-04-01
Athanassoulis 2002) problems, over variable bathymetry regions. Using the local-mode expansion in conjunction with the variational principle the original problem is reformulated as an infinite, coupled-mode system of second-order differential equations in the propagation (horizontal) space, fully accounting for the effects of non-linearity and dispersion. Various simplified equations, like Boussinesq-type models, in shallow water depth, and non-linear mild-slope models, in intermediate depth, can be obtained as limiting forms. As a first step towards the solution of fully nonlinear coupled-mode system, the system is simplified keeping only up to second-order terms in the system coefficients, and the derived weakly non-linear model has been applied to water waves propagating over a flat bottom and over an arbitrary bathymetry. This model is solved numerically in the frequency and in the time domain, providing very good results in a wide range of water depths. In the case of monochromatic waves propagating over a flat bottom, it is shown that the present model correctly treats the dispersion effects in the whole range of relative water depths from practically deep to shallow water. In the same case, it is also shown that the present model reproduces correctly the second-order Stokes solutions. In the general case, the solution of the coupled-mode system is obtained numerically by truncating the local-mode series into a finite number of terms, and using finite differences for approximating the derivatives on the horizontal plane. Numerical results presented for a smooth underwater shoaling with a steep bottom slope, demonstrate that the rate of decay of the modal-amplitude functions is very fast, in conformity with similar behaviour in the linear case (Athanassoulis and Belibassakis 1999). This means that a small number of modes (up to 5 or 7) are sufficient for precise numerical solution, provided that the two new modes (the free-surface and the sloping-bottom ones) are included
The "shallow-waterness" of the wave climate in European coastal regions
Håkon Christensen, Kai; Carrasco, Ana; Bidlot, Jean-Raymond; Breivik, Øyvind
2017-07-01
In contrast to deep water waves, shallow water waves are influenced by bottom topography, which has consequences for the propagation of wave energy as well as for the energy and momentum exchange between the waves and the mean flow. The ERA-Interim reanalysis is used to assess the fraction of wave energy associated with shallow water waves in coastal regions in Europe. We show maps of the distribution of this fraction as well as time series statistics from eight selected stations. There is a strong seasonal dependence and high values are typically associated with winter storms, indicating that shallow water wave effects can occasionally be important even in the deeper parts of the shelf seas otherwise dominated by deep water waves.
Ebrahimi, Farzad; Dabbagh, Ali
2017-02-01
Main object of the present research is an exact investigation of wave propagation responses of smart rotating magneto-electro-elastic (MEE) graded nanoscale plates. In addition, effective material properties of functionally graded (FG) nanoplate are presumed to be calculated using the power-law formulations. Also, it has been tried to cover both softening and stiffness-hardening behaviors of nanostructures by the means of employing nonlocal strain gradient theory (NSGT). Due to increasing the accuracy of the presented model in predicting shear deformation effects, a refined higher-order plate theory is introduced. In order to cover the most enormous circumstances, maximum amount of load generated by plate’s rotation is considered. Furthermore, utilizing a developed form of Hamilton’s principle, containing magneto-electric effects, the nonlocal governing equations of MEE-FG rotating nanoplates are derived. An analytical solution is obtained to solve the governing equations and validity of the solution method is proven by comparing results from present method with those of former attempts. At last, outcomes are plotted in the framework of some figures to show the influences of various parameters such as wave number, nonlocality, length scale parameter, magnetic potential, electric voltage, gradient index and angular velocity on wave frequency, phase velocity and escape frequency of the examined nanoplate.
Comparison of estimation procedures for over-water plume dispersion, September 1974
International Nuclear Information System (INIS)
Hosker, R.P. Jr.
1975-01-01
Effluent transport and diffusion over water is receiving increased study, largely because of the current interest in off-shore nuclear power plants. Dispersion estimations identical to those used over land are open to question because, for given weather conditions (e.g., clear skies, moderate wind), the over-water turbulence will differ greatly from that over land. This paper attempts to assess the predictive capability of techniques similar to those in general use, but which utilize descriptions of turbulence perhaps more appropriate to over-water flows
Carneiro, Isa; Carvalho, Sónia; Henrique, Rui; Oliveira, Luís; Tuchin, Valery V.
2017-12-01
The optical dispersion and water content of human liver were experimentally studied to estimate the optical dispersions of tissue scatterers and dry matter. Using temporal measurements of collimated transmittance [Tc(t)] of liver samples under treatment at different glycerol concentrations, free water and diffusion coefficient (Dgl) of glycerol in liver were found as 60.0% and 8.2×10-7 cm2/s, respectively. Bound water was calculated as the difference between the reported total water of 74.5% and found free water. The optical dispersion of liver was calculated from the measurements of refractive index (RI) of tissue samples made for different wavelengths between 400 and 1000 nm. Using liver and water optical dispersions at 20°C and the free and total water, the dispersions for liver scatterers and dry matter were calculated. The estimated dispersions present a decreasing behavior with wavelength. The dry matter dispersion shows higher RI values than liver scatterers, as expected. Considering 600 nm, dry matter has an RI of 1.508, whereas scatterers have an RI of 1.444. These dispersions are useful to characterize the RI matching mechanism in optical clearing treatments, provided that [Tc(t)] and thickness measurements are performed during treatment. The knowledge of Dgl is also important for living tissue cryoprotection applications.
Diffusive Wave Approximation to the Shallow Water Equations: Computational Approach
Collier, Nathan
2011-05-14
We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity. This robust adaptive time discretization corrects the initial time step size to achieve a user specified bound on the discretization error and allows time step size variations of several orders of magnitude. In particular, in the one dimensional results presented in this work feature a change of four orders of magnitudes for the time step over the entire simulation.
Carrier-free, water dispersible and highly luminescent dye nanoparticles for targeted cell imaging
Diao, Xiaojun; Li, Wei; Yu, Jia; Wang, Xiaojing; Zhang, Xiujuan; Yang, Yinlong; An, Feifei; Liu, Zhuang; Zhang, Xiaohong
2012-08-01
We develop a new strategy of using surface functionalized small molecule organic dye nanoparticles (NPs) for targeted cell imaging. Organic dye (2-tert-butyl-9,10-di(naphthalen-2-yl)anthracene, TBADN) was fabricated into NPs and this was followed by surface modification with an amphipathic surfactant poly(maleic anhydride-alt-1-octadecene)-polyethylene glycol (C18PMH-PEG) through hydrophobic interactions to achieve good water dispersibility and bio-environmental stability. It should be noted that no additional inert materials were added as carriers, thus the dye-loading capacity of the resulting TBADN NPs is obviously higher than those of previously reported carrier-based structures. This would lead to much larger absorption and then much higher brightness. The resulting TBADN NPs possess comparable, if not higher, brightness than CdSe/ZnS quantum dots under the same conditions, with favorable biocompatibility. Significantly, TBADN NPs are readily conjugated with folic acid, and successfully applied in targeted cell imaging. These results show that water dispersible and highly stable organic NPs would be a promising new class of fluorescent probe for bioapplications in cellular imaging and labeling. This strategy may be straightforwardly extended to other organic dyes to achieve water dispersible NPs for cell imaging and drug delivery.We develop a new strategy of using surface functionalized small molecule organic dye nanoparticles (NPs) for targeted cell imaging. Organic dye (2-tert-butyl-9,10-di(naphthalen-2-yl)anthracene, TBADN) was fabricated into NPs and this was followed by surface modification with an amphipathic surfactant poly(maleic anhydride-alt-1-octadecene)-polyethylene glycol (C18PMH-PEG) through hydrophobic interactions to achieve good water dispersibility and bio-environmental stability. It should be noted that no additional inert materials were added as carriers, thus the dye-loading capacity of the resulting TBADN NPs is obviously higher than
Directory of Open Access Journals (Sweden)
Fukumori Yoshinobu
2011-08-01
Full Text Available Abstract Due to the vast importance of peptides in biological processes, there is an escalating need for synthetic peptides to be used in a wide variety of applications. However, the consumption of organic solvent is extremely large in chemical peptide syntheses because of the multiple condensation steps in organic solvents. That is, the current synthesis method is not environmentally friendly. From the viewpoint of green sustainable chemistry, we focused on developing an organic solvent-free synthetic method using water, an environmentally friendly solvent. Here we described in-water synthesis technology using water-dispersible protected amino acids.
International Nuclear Information System (INIS)
Farahani, A.A.
1997-01-01
Because of the possibility of rapid physical and chemical molten fuel-water interactions during a core melt accident in noncommercial or experimental reactors, it is important to understand the interactions that might occur if these materials were to contact water. An existing vertical 1-D shock tube facility was improved and a gas sampling device to measure the gaseous hydrogen in the upper chamber of the shock tube was designed and built to study the impact of a water column driven downward by a pressurized gas onto both molten aluminum (6061 alloy) and oxide and silicide depleted nuclear dispersion fuels in aluminum matrices. The experiments were carried out with melt temperatures initially at 750 to 1,000 C and water at room temperature and driving pressures of 0.5 and 1 MPa. Very high transient pressures, in many cases even larger than the thermodynamic critical pressure of the water (∼ 20 MPa), were generated due to the interactions between the water and the crucible and its contents. The molten aluminum always reacted chemically with the water but the reaction did not increase consistently with increasing melt temperature. An aluminum ignition occurred when water at room temperature impacted 28.48 grams of molten aluminum at 980.3 C causing transient pressures greater than 69 MPa. No signs of aluminum ignition were observed in any of the experiments with the depleted nuclear dispersion fuels, U 3 O 8 -Al and U 3 Si 2 -Al. The greater was the molten aluminum-water chemical reaction, the finer was the debris recovered for a given set of initial conditions. Larger coolant velocities (larger driving pressures) resulted in more melt fragmentation but did not result in more molten aluminum-water chemical reaction. Decreasing the water temperature also resulted in more melt fragmentation and did not suppress the molten aluminum-water chemical reaction
Control of microbial sulfide production by limiting sulfate dispersal in a water-injected oil field.
Shen, Y; Agrawal, A; Suri, N K; An, D; Voordouw, J K; Clark, R G; Jack, T R; Miner, K; Pederzolli, R; Benko, A; Voordouw, G
2018-01-20
Oil production by water injection often involves the use of makeup water to replace produced oil. Sulfate in makeup water is reduced by sulfate-reducing bacteria to sulfide, a process referred to as souring. In the MHGC field souring was caused by using makeup water with 4mM (384ppm) sulfate. Mixing with sulfate-free produced water gave injection water with 0.8mM sulfate. This was amended with nitrate to limit souring and was then distributed fieldwide. The start-up of an enhanced-oil-recovery pilot caused all sulfate-containing makeup water to be used for dissolution of polymer, which was then injected into a limited region of the field. Produced water from this pilot contained 10% of the injected sulfate concentration as sulfide, but was free of sulfate. Its use as makeup water in the main water plant of the field caused injection water sulfate to drop to zero. This in turn strongly decreased produced sulfide concentrations throughout the field and allowed a decreased injection of nitrate. The decreased injection of sulfate and nitrate caused major changes in the microbial community of produced waters. Limiting sulfate dispersal into a reservoir, which acts as a sulfate-removing biofilter, is thus a powerful method to decrease souring. Copyright © 2017 Elsevier B.V. All rights reserved.
Shallow water wave spectral characteristics along the eastern Arabian Sea
Digital Repository Service at National Institute of Oceanography (India)
SanilKumar, V.; Shanas, P.R.; Dubhashi, K.K.
-west monsoon period. Fifty per cent of the waves recorded had spectral peak wave periods between 6 and 12 s. The narrowest directional spectra were found for waves with 10–12-s peak wave periods. Inverse wave age values were biased towards lower values...
Directionality and spread of shallow water waves along the eastern Arabian Sea
Digital Repository Service at National Institute of Oceanography (India)
SanilKumar, V.; Anoop, T.R.
The directional characteristics of shallow water waves are described based on measured data during 2011 at two locations spaced at 350 km along the eastern Arabian Sea. Study shows that, for high swells (significant wave height > 1 m) approaching...
Theory of Nonlinear Dispersive Waves and Selection of the Ground State
International Nuclear Information System (INIS)
Soffer, A.; Weinstein, M.I.
2005-01-01
A theory of time-dependent nonlinear dispersive equations of the Schroedinger or Gross-Pitaevskii and Hartree type is developed. The short, intermediate and large time behavior is found, by deriving nonlinear master equations (NLME), governing the evolution of the mode powers, and by a novel multitime scale analysis of these equations. The scattering theory is developed and coherent resonance phenomena and associated lifetimes are derived. Applications include Bose-Einstein condensate large time dynamics and nonlinear optical systems. The theory reveals a nonlinear transition phenomenon, 'selection of the ground state', and NLME predicts the decay of excited state, with half its energy transferred to the ground state and half to radiation modes. Our results predict the recent experimental observations of Mandelik et al. in nonlinear optical waveguides
Di Pietro, Daniele A.; Marche, Fabien
2018-02-01
In this paper, we further investigate the use of a fully discontinuous Finite Element discrete formulation for the study of shallow water free surface flows in the fully nonlinear and weakly dispersive flow regime. We consider a decoupling strategy in which we approximate the solutions of the classical shallow water equations supplemented with a source term globally accounting for the non-hydrostatic effects. This source term can be computed through the resolution of elliptic second-order linear sub-problems, which only involve second order partial derivatives in space. We then introduce an associated Symmetric Weighted Internal Penalty discrete bilinear form, allowing to deal with the discontinuous nature of the elliptic problem's coefficients in a stable and consistent way. Similar discrete formulations are also introduced for several recent optimized fully nonlinear and weakly dispersive models. These formulations are validated again several benchmarks involving h-convergence, p-convergence and comparisons with experimental data, showing optimal convergence properties.
Hollow vortices, capillary water waves and double quadrature domains
International Nuclear Information System (INIS)
Crowdy, Darren G; Roenby, Johan
2014-01-01
Two new classes of analytical solutions for hollow vortex equilibria are presented. One class involves a central hollow vortex, comprising a constant pressure region having non-zero circulation, surrounded by an n-polygonal array of point vortices with n⩾2. The solutions generalize the non-rotating polygonal point vortex configurations of Morikawa and Swenson (1971 Phys. Fluids 14 1058–73) to the case where the point vortex at the centre of the polygon is replaced by a hollow vortex. The results of Morikawa and Swenson would suggest that all equilibria for n≠3 will be linearly unstable to point vortex mode instabilities. However even the n = 3 case turns out to be unstable to a recently discovered displacement instability deriving from a resonance between the natural modes of an isolated circular hollow vortex. A second class of analytical solutions for periodic water waves co-travelling with a submerged point vortex row is also described. The analysis gives rise to new theoretical connections with free surface Euler flows with surface tension and, in particular, with Crapper's classical solutions for capillary water waves. It is pointed out that the equilibrium fluid regions found here have a mathematical interpretation as an abstract class of planar domains known as double quadrature domains. (ss 1)
Grathwohl, Peter; Haberer, Cristina; Ye, Yu; Muniruzzaman, Muhammad; Rolle, Massimo
2016-01-01
Diffusive–dispersive mass transfer in the capillary fringe is important for many groundwater quality issues such as transfer of volatile compounds into (and out of) the groundwater, the supply of oxygen for aerobic degradation of hydrocarbons as well as for precipitation of minerals (e.g. iron hydroxides). 2D-laboratory scale experiments were used to investigate the transfer of oxygen into groundwater under non-reactive and reactive conditions, at steady state and with water table fluctuation...
Water soluble/dispersible and easy removable cationic adhesives and coating for paper recycling
Deng, Yulin; Yan, Zegui
2005-11-29
The present invention is an adhesive or coating composition that is dispersible or dissolvable in water, making it useful in as a coating or adhesive in paper intended for recycling. The composition of the present invention is cationically charged thereby binding with the fibers of the paper slurry and thus, resulting in reduced deposition of adhesives on equipment during the recycling process. The presence of the composition of the present invention results in stronger interfiber bonding in products produced from the recycled fibers.
Shallow water effects on wave energy converters with hydraulic power take-off system
Directory of Open Access Journals (Sweden)
Ashank Sinha
2016-12-01
Full Text Available The effect of water depth on the power absorption by a single heaving point absorber wave energy converter, attached to a hydraulic power take-off system, is simulated and analysed. The wave energy flux for changing water depths is presented and the study is carried out at a location in the north-west Portuguese coast, favourable for wave power generation. This analysis is based on a procedure to modify the wave spectrum as the water depth reduces, namely, the TMA spectrum (Transformation spectrum. The present study deals with the effect of water depth on the spectral shape and significant wave heights. The reactive control strategy, which includes an external damping coefficient and a negative spring term, is used to maximize power absorption by the wave energy converter. The presented work can be used for making decisions regarding the best water depth for the installation of point absorber wave energy converters in the Portuguese nearshore.
Zhu, Jing; Li, Yan; Zheng, Bo; Tang, Wei; Chen, Xiao; Zou, Xiao-li
2015-11-01
To develope a method of solvent demulsification dispersive liquid phase microextraction (SD-DLPME) based on ion association reaction coupled with graphite furnace atomic absorption spectroscopy (GFAAS) for detecting thallium in water samples. Methods Thallium ion in water samples was oxidized to Tl(III) with bromine water, which reacted with Cl- to form TlCl4-. The ionic associated compound with trioctylamine was obtained and extracted. DLPME was completed with ethanol as dispersive solvent. The separation of aqueous and organic phase was achieved by injecting into demulsification solvent without centrifugation. The extractant was collected and injected into GFAAS for analysis. With palladium colloid as matrix modifier, a two step drying and ashing temperature programming process was applied for high precision and sensitivity. The linear range was 0.05-2.0 microg/L, with a detection limit of 0.011 microg/L. The relative standard derivation (RSD) for detecting Tl in spiked water sample was 9.9%. The spiked recoveries of water samples ranged from 94.0% to 103.0%. The method is simple, sensitive and suitable for batch analysis of Tl in water samples.
Ceylan, Ozgür; Bayata, Serdar; Yeşil, Murat; Arıkan, Erdinç; Postacı, Nursen
2010-12-01
This prospective observational study investigated predictive power of interatrial conduction time (IACT) and P wave dispersion (PWD), in addition to other atrial fibrillation (AF) predictors, in patients undergoing coronary artery bypass surgery (CABG). Eighty-one patients undergoing CABG were enrolled. Before surgery, IACT and PWD were measured. Time interval from electrocardiographic P wave to echocardiographic transmitral a wave was defined as IACT. Rhythm monitorization was used for AF detection. Continuous and categorical data were compared with independent samples t test and Chi-square statistics. Multiple logistic regression analysis was used to identify independent AF predictors. During a follow-up period of 6.4 ± 2.1 days, AF developed in 14 patients (17%). There were no significant differences between patients with or without AF according to age, gender, number of bypass grafts, cross-clamp duration, systolic function, and left atrial diameter. Significantly increased PWD and IACT were found in AF group (PWD: 37 ± 9 ms vs 24 ± 8 ms, p=0.005 and IACT: 129 ± 11 ms vs 117 ± 11 ms, p=0.01) as compared to group without AF. Increased PWD (OR 1.17; 95% CI 1.04-1.31; p=0.02), absence of beta-blocker treatment (OR 8.88; 95% CI 1.62-48.45; p=0.01), diabetes (DM) and hypertension (HT) combination (OR 1.45; 95% CI 1.15-4.22; p=0.01) were independent AF predictors. However, IACT predictive power had borderline significance (OR 1.03; 95% CI 0.95-1.12; p=0.06). Increased PWD, absence of beta-blocker therapy, HT-DM combination were independent AF predictors following CABG. There was significant difference between groups according to IACT, however predictive value of IACT was nonsignificant. Other studies are needed to establish predictive power of IACT.
Energy Technology Data Exchange (ETDEWEB)
Li, Ping; Wu, Longlong [Key Laboratory for Special Functional Materials, Henan University, Kaifeng 475004 (China); Li, Binjie, E-mail: lbj821@163.com [Key Laboratory for Special Functional Materials, Henan University, Kaifeng 475004 (China); Medical School of Henan University, Kaifeng 475004 (China); Zhao, Yanbao [Key Laboratory for Special Functional Materials, Henan University, Kaifeng 475004 (China); Qu, Peng [Department of Chemistry, Shangqiu Normal University, Shangqiu 476000 (China)
2016-03-01
Highly water-dispersible silver sulfadiazine (SSD) was prepared by liquid phase method with polyvinyl pyrrolidone (PVP) as a surface modification agent. The structure and morphology of the PVP-modified silver sulfadiazine (P-SSD) were investigated by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Fourier-transform infrared (FT-IR) spectrometry. The produced particles are ginkgo leaf-like architecture with the sizes of micron-nanometer. Due to hydrophilic PVP decorated on the surface, the P-SSD has excellent dispersion in water over a period of 24 h, which is obviously stable by comparison to that of the commercial silver sulfadiazine (C-SSD). In addition, the P-SSD exhibits good antibacterial activities against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). - Highlights: • Polyvinyl pyrrolidone decorated silver sulfadiazine was synthesized via a one-pot protocol. • The produced particles present ginkgo leaf-like architectures with sizes of micro-nanometer. • The resulted silver sulfadiazine has highly dispersible in water over a period of 24 h. • The obtained sliver sulfadiazine exhibits excellent antibacterial activities against E. coli, P. aeruginosa and S. aureus.
Directory of Open Access Journals (Sweden)
Arbačiauskas K
2012-01-01
Full Text Available Biological invasions are of increasing global concern. They impact on biodiversity and may result in high economic loss. This demands improvement in knowledge of the dynamics of species dispersal with the goal of preventing future invasions, and predicting and reducing undesirable impacts. This study reports on non-indigenous macroinvertebrate species (NIMS which have invaded Lithuanian fresh waters. Fifteen NIMS have been recorded during a 12-year study. They include one cnidarian, two molluscan and twelve crustacean species. The deliberate introduction of peracaridans and crayfish for fishery and aquaculture enhancement has substantially contributed to the current NIMS composition. Invaders of Ponto-Caspian origin are dominant, and the collector-gatherers are the largest group with respect to feeding mode. Current NIMS distributions, the history of their primary invasion and patterns of local dispersal are analysed. The main invasion vectors have been inland shipping and deliberate introductions, while secondary spread proceeded both naturally and by various human mediated vectors. The current distribution of most NIMS may remain constant in the future, whilst further expansion of a few NIMS, which possess good dispersal abilities and are well-adapted to freshwater environments, seems very probable. Using multivariate analysis of data from water bodies with established peracaridan invaders, allowed predictions on which unsurveyed water bodies could contain such invaders. Invasions of new NIMS and diversification of donor areas, pathways and vectors are considered.
Zhang, Yongfang; Wu, Xiaowen; Mi, Yuwei; Li, Haiping; Hou, Wanguo
2017-09-01
A hierarchical nanocomposite of 10-hydroxycamptothecin (HCPT), a nonionic and lipophilic anticancer drug, intercalated layered double hydroxide (LDH) encapsulated in liposomes was constructed. HCPT molecules were first incorporated into sodium cholate (Ch) micelles, and the resultant negatively charged HCPT-loaded Ch micelles were then co-assembled with positively charged LDH single-layer nanosheets, forming a HCPT/Ch intercalated LDH (HCPT-Ch-LDH) host-gest nanohybrid. The nanohybrid particles were further coated with liposomes (LSs), gaining a core-shell nanocomposite, denoted as (HCPT-Ch-LDH)@LS. The so-obtained samples were characterized using TEM, SAXS, FT-IR, DLS, and elemental analyses. Special emphasis was placed on the effect of liposome-coating for the HCPT-Ch-LDH on its water dispersity and drug-release. The results showed that the nanocomposite has excellent water dispersity and enhanced drug sustained-release performance in comparison with the HCPT-Ch-LDH, demonstrating that the liposome-coating for drug-LDH nanohybrids is an effective strategy to enhance their water dispersity and sustained-release performances. This work provides an effective strategy for engineering of LDH-based delivery systems for nonionic and lipophilic drugs.
Sarfraz, M.; Farooq, H.; Abbas, G.; Noureen, S.; Iqbal, Z.; Rasheed, A.
2018-03-01
Thermal momentum space anisotropy is ubiquitous in many astrophysical and laboratory plasma environments. Using Vlasov-Maxwell's model equations, a generalized polarization tensor for a collisionless ultra-relativistic unmagnetized electron plasma is derived. In particular, the tensor is obtained by considering anisotropy in the momentum space. The integral of moments of Fermi-Dirac distribution function in terms of Polylog functions is used for describing the border line plasma systems (T/e TF e ≈1 ) comprising arbitrary electron degeneracy, where Te and TF e, are thermal and Fermi temperatures, respectively. Furthermore, the effects of variation in thermal momentum space anisotropy on the electron equilibrium number density and the spectrum of electromagnetic waves are analyzed.
Vijayamohan, Prithvi
As oil/gas subsea fields mature, the amount of water produced increases significantly due to the production methods employed to enhance the recovery of oil. This is true especially in the case of oil reservoirs. This increase in the water hold up increases the risk of hydrate plug formation in the pipelines, thereby resulting in higher inhibition cost strategies. A major industry concern is to reduce the severe safety risks associated with hydrate plug formation, and significantly extending subsea tieback distances by providing a cost effective flow assurance management/safety tool for mature fields. Developing fundamental understanding of the key mechanistic steps towards hydrate plug formation for different multiphase flow conditions is a key challenge to the flow assurance community. Such understanding can ultimately provide new insight and hydrate management guidelines to diminish the safety risks due to hydrate formation and accumulation in deepwater flowlines and facilities. The transportability of hydrates in pipelines is a function of the operating parameters, such as temperature, pressure, fluid mixture velocity, liquid loading, and fluid system characteristics. Specifically, the hydrate formation rate and plugging onset characteristics can be significantly different for water continuous, oil continuous, and partially dispersed systems. The latter is defined as a system containing oil/gas/water, where the water is present both as a free phase and partially dispersed in the oil phase (i.e., entrained water in the oil). Since hydrate formation from oil dispersed in water systems and partially dispersed water systems is an area which is poorly understood, this thesis aims to address some key questions in these systems. Selected experiments have been performed at the University of Tulsa flowloop to study the hydrate formation and plugging characteristics for the partially dispersed water/oil/gas systems as well as systems where the oil is completely dispersed
Elite Opposition-Based Water Wave Optimization Algorithm for Global Optimization
Wu, Xiuli; Zhou, Yongquan; Lu, Yuting
2017-01-01
Water wave optimization (WWO) is a novel metaheuristic method that is based on shallow water wave theory, which has simple structure, easy realization, and good performance even with a small population. To improve the convergence speed and calculation precision even further, this paper on elite opposition-based strategy water wave optimization (EOBWWO) is proposed, and it has been applied for function optimization and structure engineering design problems. There are three major optimization s...
Observations and estimates of wave-driven water level extremes at the Marshall Islands
Merrifield, M. A.; Becker, J. M.; Ford, M.; Yao, Y.
2014-10-01
Wave-driven extreme water levels are examined for coastlines protected by fringing reefs using field observations obtained in the Republic of the Marshall Islands. The 2% exceedence water level near the shoreline due to waves is estimated empirically for the study sites from breaking wave height at the outer reef and by combining separate contributions from setup, sea and swell, and infragravity waves, which are estimated based on breaking wave height and water level over the reef flat. Although each component exhibits a tidal dependence, they sum to yield a 2% exceedence level that does not. A hindcast based on the breaking wave height parameterization is used to assess factors leading to flooding at Roi-Namur caused by an energetic swell event during December 2008. Extreme water levels similar to December 2008 are projected to increase significantly with rising sea level as more wave and tide events combine to exceed inundation threshold levels.
Anomalous dispersion effects in the IR-ATR spectroscopy of water
Energy Technology Data Exchange (ETDEWEB)
Hancer, Mehmet [Department of Metallurgical Engineering, 412 William C. Browning Building, University of Utah, Salt Lake City, Utah 84112 (United States); Sperline, Roger P. [4600 N. Ave. del Cazador, Tucson, Arizona 85718 (United States); Miller, Jan D. [Department of Metallurgical Engineering, 412 William C. Browning Building, University of Utah, Salt Lake City, Utah 84112 (United States)
2000-01-01
The distortion of band shapes seen in infrared attenuated total reflection (IR-ATR) spectroscopy of strongly absorbing materials such as water, relative to transmission sampling, is shown here to be due to the anomalous dispersion (AD) of water. This distortion occurs in addition to the normal 1/{nu} dependence, and, contrary to previous reports, is shown to not be due to chemical changes of water at the interface between the optical element and bulk solution. IR-ATR spectra of water were modeled with approximation-free calculations. The modeled spectra are compared with experimental ATR spectra for different internal reflection elements, and the results are discussed in terms of the AD optical effect. (c) 2000 Society for Applied Spectroscopy.
Time-resolved shock compression of porous rutile: Wave dispersion in porous solids
Energy Technology Data Exchange (ETDEWEB)
Anderson, M.U.; Graham, R.A.; Holman, G.T.
1993-08-01
Rutile (TiO{sub 2}) samples at 60% of solid density have been shock-loaded from 0.21 to 6.1 GPa with sample thickness of 4 mm and studied with the PVDF piezoelectric polymer stress-rate gauge. The technique uses a copper capsule to contain the sample which has PVDF gauge packages in direct contact with front and rear surfaces. A precise measure is made of the compressive stress wave velocity through the sample, as well as the input and propagated shock stress. Initial density is known from sample preparation, and the amount of shock-compression is calculated from the measurement of shock velocity and input stress. Shock states and re-shock states are measured. Observed data are consistent with previously published high pressure data. It is observed that rutile has a ``crush strength`` near 6 GPa. Propagated stress-pulse rise times vary from 234 to 916 nsec. Propagated stress-pulse rise times of shock-compressed HMX, 2Al + Fe{sub 2}O{sub 3}, 3Ni + Al, and 5Ti + 3Si are presented.
de Almeida Couto, Camila Rattes; Jurelevicius, Diogo de Azevedo; Alvarez, Vanessa Marques; van Elsas, Jan Dirk; Seldin, Lucy
2016-01-01
The use of dispersants in different stages of the oil production chain and for the remediation of water and soil is a well established practice. However, the choice for a chemical or biological dispersant is still a controversial subject. Chemical surfactants that persist long in the environment may
Shapiro, S M; Raymond, S; Lee, S H; Motoya, K
2002-01-01
Fe sub 0 sub . sub 7 Al sub 0 sub . sub 3 is a reentrant spin glass, which undergoes a transition from a paramagnet to a disordered ferromagnet at T sub c propor to 500 K; at a lower temperature the spins progressively freeze and it exhibits a spin-glass-like behavior. In the ferromagnetic phase spin waves with a q sup 2 dispersion are observed at small q, which broaden rapidly and become diffusive beyond a critical wave vector q sub 0. On cooling the spin waves also disappear and a strong elastic central peak develops. For measurements around the (1,1,1) Bragg peak, a new sharp excitation is observed which has a linear dispersion behavior. It disappears above T sub c , but persists throughout the spin-glass phase. It is not present in the stoichiometric Fe sub 3 Al material. (orig.)
Generation and Active Absorption of 2- and 3-Dimensional Linear Water Waves in Physical Models
DEFF Research Database (Denmark)
Christensen, Morten
Methods for mechanical generation of 2-dimensional (2-D) and 3-dimensional (3-D) linear water waves in physical models are presented. The results of a series of laboratory 3-D wave generation tests are presented and discussed. The tests preformed involve reproduction of wave fields characterised...... is based on a new principle for active absorption of reflected waves: the wave generator displacement correction signal corresponding to absorption of the reflected wave train is determined by means of linear filtering and subsequent superposition of surface elevation signals measured in two positions...... in the wave channel in front of the wave generator. The results of physical model tests performed with an absorbing wave maker based on this principle show that the problem of rereflection is reduced significantly when active absorption is performed. Finally, an absorbing directional wave generator for 3-D...
Energy Technology Data Exchange (ETDEWEB)
Paul, Gayatri [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, West Bengal (India); Kumar Das, Prasanta, E-mail: pkd@mech.iitkgp.ernet.in [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, West Bengal (India); Manna, Indranil [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal (India); Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh (India)
2016-04-15
Magnetic nanofluids, commonly known as ferrofluids, containing surfactant coated magnetite nanoparticles (having mean size ∼11 nm) uniformly dispersed in water are synthesized by chemical co-precipitation method. The rheological properties of magnetic nanofluid at different concentrations of nanoparticle loading have been investigated by varying different parameters including the magnetic field strength. Shear thinning is observed in the non-Newtonian magnetic nanofluids under the application of magnetic field. The observed increase in yield stress (calculated by fitting the Herschel and Bulkley model) with the applied magnetic field and concentration of dispersed nanoparticles confirm the formation of large aggregates that restrict or prohibit the flow characteristics of the otherwise Newtonian magnetic nanofluid. The hysteresis observed during the application and withdrawal of magnetic field suggests that the chain or column like structures fail to relax within the allowed measurement time interval. - Highlights: • Magnetite dispersed water nanofluids are prepared by chemical precipitation method. • Effect of shear and magnetic field on the viscosity of nanofluids are investigated. • Applied field enhances the viscosity by several times and causes shear thinning. • Chain-like or columnar aggregates of nanoparticles formed increases the viscosity.
Matsumoto, Keisuke; Miura, Hikaru
2012-07-01
Air pollutants can cause health problems, such as bronchitis and cancer, and are now recognized as a social problem. Hence, a method is proposed for the collection and removal of gaseous air pollutants by aerial ultrasonic waves and water mist. Typically, gas removal effects are studied using lemon oil vapor (“lemon gas”), which is a hydrophobic gas. Previous experiments using lemon gas have shown that a removal rate of up to 40% can be achieved in an intense standing wave at 20 kHz, for an amount of water mist of 1.39 cm3/s and an electrical input power of 50 W. Increasing the surface area of the water mist leads to greater removal of hydrophobic gas. In this study, the effects of gas removal are examined by conducting experiments using intense aerial ultrasonic waves to disperse two kinds of water mists, each composed of particles of different sizes: small particles (diameter: ≈3 µm) and conventional large particles (diameter: ≈60 µm).
Directory of Open Access Journals (Sweden)
C. T. Duba
2012-05-01
Full Text Available Using the shallow water equations for a rotating layer of fluid, the wave and dispersion equations for Rossby waves are developed for the cases of both the standard β-plane approximation for the latitudinal variation of the Coriolis parameter f and a zonal variation of the shallow water speed. It is well known that the wave normal diagram for the standard (mid-latitude Rossby wave on a β-plane is a circle in wave number (ky,kx space, whose centre is displaced −β/2 ω units along the negative kx axis, and whose radius is less than this displacement, which means that phase propagation is entirely westward. This form of anisotropy (arising from the latitudinal y variation of f, combined with the highly dispersive nature of the wave, gives rise to a group velocity diagram which permits eastward as well as westward propagation. It is shown that the group velocity diagram is an ellipse, whose centre is displaced westward, and whose major and minor axes give the maximum westward, eastward and northward (southward group speeds as functions of the frequency and a parameter m which measures the ratio of the low frequency-long wavelength Rossby wave speed to the shallow water speed. We believe these properties of group velocity diagram have not been elucidated in this way before. We present a similar derivation of the wave normal diagram and its associated group velocity curve for the case of a zonal (x variation of the shallow water speed, which may arise when the depth of an ocean varies zonally from a continental shelf.
Attenuation of ultrasonic waves in coal-water slurries
Energy Technology Data Exchange (ETDEWEB)
Sheen, S.H.; Raptis, A.C.
1979-02-01
Attenuation of ultrasonic waves in coal-water slurries was investigated in the frequency range of 200 kHz to 1 MNZ (up to 30% by weight). The coal used in this study was West Kentucky number nine coal with particle size ranging from 90 to 30 ..mu..m. Attenuation data show a linear dependence on both frequency and coal concentration in the region of investigation. Results were compared with theoretical predictions from the equations derived by Urick, and by Allegra and Hawley. The experimental attenuation was found to be higher than that from the theories by an order of magnitude. The discrepancy is discussed and further investigations are suggested. Results of this work provide valuable information for the design of an ultrasonic mass flowmeter for coal-conversion processes.
Higher-Order Hamiltonian Model for Unidirectional Water Waves
Bona, J. L.; Carvajal, X.; Panthee, M.; Scialom, M.
2018-04-01
Formally second-order correct, mathematical descriptions of long-crested water waves propagating mainly in one direction are derived. These equations are analogous to the first-order approximations of KdV- or BBM-type. The advantage of these more complex equations is that their solutions corresponding to physically relevant initial perturbations of the rest state may be accurate on a much longer timescale. The initial value problem for the class of equations that emerges from our derivation is then considered. A local well-posedness theory is straightforwardly established by a contraction mapping argument. A subclass of these equations possess a special Hamiltonian structure that implies the local theory can be continued indefinitely.
Just add water: reproducible singly dispersed silver nanoparticle suspensions on-demand
MacCuspie, Robert I.; Allen, Andrew J.; Martin, Matthew N.; Hackley, Vincent A.
2013-07-01
Silver nanoparticles (AgNPs) are of interest due to their antimicrobial attributes, which are derived from their inherent redox instability and subsequent release of silver ions. At the same time, this instability is a substantial challenge for achieving stable long-term storage for on-demand use of AgNPs. In this study, we describe and validate a "just add water" approach for achieving suspensions of principally singly dispersed AgNPs. By lyophilizing (freeze drying) the formulated AgNPs into a solid powder, or cake, water is removed thereby eliminating solution-based chemical changes. Storing under inert gas further reduces surface reactions such as oxidation. An example of how to optimize a lyophilization formulation is presented, as well as example formulations for three AgNP core sizes. This "just add water" approach enables ease of use for the researcher desiring on-demand singly dispersed AgNP suspensions from a single master batch. Implementation of this methodology will enable studies to be performed over long periods of time and across different laboratories using particles that are identical chemically and physically and available on-demand. In addition, the approach of freeze drying and on-demand reconstitution by adding water has enabled the development of AgNP reference materials with the required shelf-life stability, one of the principal objectives of this research.
A set of rapid-response models for pollutant dispersion assessments in southern Spain coastal waters
International Nuclear Information System (INIS)
Perianez, R.; Caravaca, F.
2010-01-01
Three rapid-response Lagrangian particle-tracking dispersion models have been developed for southern Spain coastal waters. The three domains cover the Gulf of Cadiz (Atlantic Ocean), the Alboran Sea (Mediterranean), and the Strait of Gibraltar with higher spatial resolution. The models are based on different hydrodynamic submodels, which are run in advance. Tides are calculated using a 2D barotropic model in the three cases. Models used to obtain the residual circulation depend on the physical oceanography of each region. Thus, two-layer models are applied to Gibraltar Strait and Alboran Sea and a 3D baroclinic model is used in the Gulf of Cadiz. Results from these models have been compared with observations to validate them and are then used by the particle-tracking models to calculate dispersion. Chemical, radioactive and oil spills may be simulated, incorporating specific processes for each kind of pollutant. Several application examples are provided.
Field Scale Variation in Water Dispersible Colloids from Aggregates and Intact Soil Samples
DEFF Research Database (Denmark)
Nørgaard, Trine; Møldrup, Per; Ferré, Ty P A
. It is, however, difficult to quantify the amount of colloids ready available to participate in colloid-facilitated transport. In literature, the part of the colloidal fraction that readily disperses into suspension is referred to as water-dispersible clay (WDC). In this study we used two methods......Colloid-facilitated transport can play an important role in the transport of chemicals through the soil profile. The negative surface charge and large surface area makes colloids perfect carriers for strongly sorbing chemicals, like phosphorus and certain pesticides, in highly structured soils...... for measuring the amount of WDC (soil sampled from an agricultural 1.69 ha field in a 15 x 15 m grid (65 points). In method no. 1 laser diffraction was applied to continuously measure the particle size distribution of 1-2 mm intact soil aggregates at two initial moisture...
Directory of Open Access Journals (Sweden)
Tina Lam
2016-05-01
Full Text Available Stable superparamagnetic iron oxide nanoparticles (SPIONs, which can be easily dispersed in an aqueous medium and exhibit high magnetic relaxivities, are ideal candidates for biomedical applications including contrast agents for magnetic resonance imaging. We describe a versatile methodology to render water dispersibility to SPIONs using tetraethylene glycol (TEG-based phosphonate ligands, which are easily introduced onto SPIONs by either a ligand exchange process of surface-anchored oleic-acid (OA molecules or via direct conjugation. Both protocols confer good colloidal stability to SPIONs at different NaCl concentrations. A detailed characterization of functionalized SPIONs suggests that the ligand exchange method leads to nanoparticles with better magnetic properties but higher toxicity and cell death, than the direct conjugation methodology.
An Analysis of Total Phosphorus Dispersion in Lake Used As a Municipal Water Supply.
Lima, Rômulo C; Mesquita, André L A; Blanco, Claudio J C; Santos, Maria de Lourdes S; Secretan, Yves
2015-09-01
In Belém city is located the potable water supply system of its metropolitan area, which includes, in addition to this city, four more municipalities. In this water supply complex is the Água Preta lake, which serves as a reservoir for the water pumped from the Guamá river. Due to the great importance of this lake for this system, several works have been devoted to its study, from the monitoring of the quality of its waters to its hydrodynamic modeling. This paper presents the results obtained by computer simulation of the phosphorus dispersion within this reservoir by the numerical solution of two-dimensional equation of advection-diffusion-reaction by the method θ/SUPG. Comparing these results with data concentration of total phosphorus collected from November 2008 to October 2009 and from satellite photos show that the biggest polluters of the water of this lake are the domestic sewage dumps from the population living in its vicinity. The results obtained indicate the need for more information for more precise quantitative analysis. However, they show that the phosphorus brought by the Guamá river water is consumed in an area adjacent to the canal that carries this water into the lake. Phosphorus deposits in the lake bottom should be monitored to verify their behavior, thus preventing the quality of water maintained therein.
Incorporating Floating Surface Objects into a Fully Dispersive Surface Wave Model
2016-04-19
Decimation and Interpolation (PDI) Method was dded to NHWAVE by Shi et al. (2015) , who confirmed that the dy- amic pressure can be modeled accurately... cluster Farber located at he University of Delaware. Using 48 cores, it took about 8 h for a imulation of 10 0 0 s. The 10 m water depth was selected to re... decimation and interpolation (PDI) method for a baroclinic non-hydrostatic model. Ocean Mod. 96, 265–279 . 26 M.D. Orzech et al. / Ocean Modelling 102 (2016
Use of Clay Dispersed in Water for Decreasing Soil Water Repellency
Diamantis, Vasileios; Pagorogon, Lorvi; Gazani, Eleutheria; Gkiougkis, Ioannis; Pechtelidis, Alexandros; Pliakas, Fotios; Elsen, van den Erik; Doerr, Stefan H.; Ritsema, Coen
2017-01-01
In this study, we examined the efficiency of a kaolinite clayey soil to mitigate water repellency of a sandy soil with olive trees. The treatment was applied to the soil zone below the tree canopy, which displayed the highest degree of water repellency [average water drop penetration time (WDPT)
Design guidelines of triboelectric nanogenerator for water wave energy harvesters
Ahmed, Abdelsalam
2017-04-11
Ocean waves are one of the cleanest and most abundant energy sources on earth, and wave energy has the potential for future power generation. Triboelectric nanogenerator (TENG) technology has recently been proposed as a promising technology to harvest wave energy. In this paper, a theoretical study is performed on a duck-shaped TENG wave harvester recently introduced in our work. To enhance the design of the duck-shaped TENG wave harvester, the mechanical and electrical characteristics of the harvester\\'s overall structure, as well as its inner configuration, are analyzed, respectively, under different wave conditions, to optimize parameters such as duck radius and mass. Furthermore, a comprehensive hybrid 3D model is introduced to quantify the performance of the TENG wave harvester. Finally, the influence of different TENG parameters is validated by comparing the performance of several existing TENG wave harvesters. This study can be applied as a guideline for enhancing the performance of TENG wave energy harvesters.
Adjustment of sand ripples under changing water waves
Testik, F. Y.; Voropayev, S. I.; Fernando, H. J. S.
2005-07-01
The results of an experimental investigation on the adjustment of vortex sand ripples under shoaling waves to changing of wave conditions are presented in this paper. A large wave tank was used to generate shoaling waves. Waves with small (S), moderate (M), and large (L) intensities (as specified by the wave paddle excursion) were used to model three basic cases of cyclic variation of wave forcing, namely, M-L-M, L-M-L, and L-S-L. Depending on the forcing transitions (L-M, M-L, or L-S), three main ripple adjustment processes were identified: (i) ripple splitting, (ii) ripple regrowth, and (iii) ripple flattening. Quantitative data on the time evolution of ripple characteristics were collected using the structured light technique. The results of the observations were explained by extending a simplified physical model proposed earlier for ripples under constant wave forcing to the case of changing wave forcing.
Directory of Open Access Journals (Sweden)
Pedro Beirão
2015-09-01
Full Text Available The energy that can be captured from the sea waves and converted into electricity should be seen as a contribution to decrease the excessive dependency and growing demand of fossil fuels. Devices suitable to harness this kind of renewable energy source and convert it into electricity—wave energy converters (WECs—are not yet commercially competitive. There are several types of WECs, with different designs and working principles. One possible classification is their distance to the shoreline and thus their depth. Near-shore devices are one of them since they are typically deployed at intermediate water depth (IWD. The selection of the WEC deployment site should be a balance between several parameters; water depth is one of them. Another way of classifying WECs is grouping them by their geometry, size and orientation. Considering a near-shore WEC belonging to the floating point category, this paper is focused on the numerical study about the differences arising in the power captured from the sea waves when the typical deep water (DW assumption is compared with the more realistic IWD consideration. Actually, the production of electricity will depend, among other issues, on the depth of the deployment site. The development of a dynamic model including specific equations for the usual DW assumption as well as for IWD is also described. Derived equations were used to build a time domain simulator (TDS. Numerical results were obtained by means of simulations performed using the TDS. The objective is to simulate the dynamic behavior of the WEC due to the action of sea waves and to characterize the wave power variations according with the depth of the deployment site.
Directory of Open Access Journals (Sweden)
Osman Azlin Fazlina
2017-01-01
Full Text Available Organanically modified montmorillonite (organo-MMT was incorporated into ethylene vinyl acetate (EVA copolymer to improve its thermal stability. A processing procedure, the so called ‘predispersing’ process of the organo-MMT was introduced prior to melt compounding process of both constituents in order to facilitate the nanofiller dispersion in the EVA matrix. Water and toluene were used as pre-dispersing medium, while magnetic stirring and ultrasonication were utilized as pre-dispersing method. The effects of pre-dispersing medium and method on thermal behaviour of neat EVA and EVA nanocomposites were analysed. It was anticipated that improvement in organo-MMT dispersion would enhance the matrix-nanofiller interactions, thereby the thermal properties of the resultant EVA/MMT nanocomposite. Based on thermal studies by thermogravimetric analysis (TGA, the organo-MMT nanofiller pre-dispersed by ultrasonication in water medium for 2 minutes (MMT(W2m–u resulted in most significant thermal stabilizing effect to the EVA copolymer. This was due to the significant improvement in the organo-MMT dispersion when the above mentioned pre-dispersing parameters were employed. Apparently, the result indicates that the high temperature behaviour of the nanocomposite can be affected by the strength of interphase interactions between the matrix and nanofiller which is also influenced by the dispersion of the organo-MMT.
Directory of Open Access Journals (Sweden)
Kesayoshi Hadano
2017-05-01
Full Text Available As a new technical approach, wave energy converter by using vertical motion of water in the multiple water chambers were developed to realize actual wave power generation as eco-environmental renewable energy. And practical use of wave energy converter was actually to require the following conditions: (1 setting up of the relevant device and its application to wave power generation in case that severe wave loading is avoided; (2 workability in installation and maintenance operations; (3 high energy conversion potential; and (4 low cost. In this system, neither the wall(s of the chambers nor the energy conversion device(s are exposed to the impulsive load due to water wave. Also since this system is profitable when set along the jetty or along a long floating body, installation and maintenance are done without difficulty and the cost is reduced. In this paper, we describe the system which consists of a float, a shaft connected with another shaft, a rack and pinion arrangement, a ratchet mechanism, and rotary type generator(s. Then, we present the dynamics model for evaluating the output electric power, and the results of numerical calculation including the effect of the phase shift of up/down motion of the water in the array of water chambers aligned along the direction of wave propagation.
Directory of Open Access Journals (Sweden)
Volkan Hanci
2010-09-01
Full Text Available The present study compared the effects of anesthesia induction with sevoflurane and propofol on hemodynamics, P-wave dispersion (Pwd, QT interval and corrected QT (QTc interval. A total of 72 adult patients were included in this prospective study. All patients had control electrocardiograms (ECGs before anesthesia induction. Anesthesia was induced with sevoflurane inhalation or intravenous propofol. Electrocardiography for all patients was performed during the 1st and 3rd minutes of induction, 3 minutes after administration of muscle relaxant, and at 5 minutes and 10 minutes after intubation. Pwd and QT intervals were measured on all ECGs. QTc intervals were determined using the Bazett formula. There was no significant difference in Pwd and QT and QTc intervals on control ECGs. In the sevoflurane group, except for control ECGs, Pwd and QTc interval on all ECGs were significantly longer than those in the propofol group (p < 0.05. We conclude that propofol should be used for anesthesia induction in patients with a predisposition to preoperative arrhythmias, and in those whose Pwd and QTc durations are prolonged on preoperative ECGs.
Baldy, Serge
1993-10-01
Bubble models are necessary to ascertain bubble contribution to ocean-atmosphere fluxes of gas, aerosols, humidity, and latent heat. Previous theories flatten the wave breaking layer to a theoretical boundary from which bubbles are dispersed by turbulence working against buoyancy lift. As a consequence, bubble population characteristics next to the surface are not derived from these models but depend on empirical or semiempirical assumptions made at this boundary. By considering bubble injection with puffs of intense turbulence, specifying how bubbles are first created by a small-scale similarity reasoning, and using a wavy interface, the present bubble theory expands this layer to a more physical breaking layer. Bubble concentration density as a function of bubble diameter, depth, and sea state parameters is obtained through explicit integrals. The model is found to be consistent with the previous bubble theories: the back flattening of the model breaking layer indeed results in equations compatible with these theories. The model variations in bubble concentration density with different parameters is coherent with experimental laws: the dominant bubble concentration is found to vary as about d-4 with bubble diameter and u*3 with wind friction velocity, but because of breaking patches, a d-2 bubble distribution is obtained very close to the surface. The concordance of the model with experimental data in the recent and classic bubble literature is quite good.
Tian, Suyun; Sun, Jing; Yang, Siwei; He, Peng; Wang, Gang; di, Zengfeng; Ding, Guqiao; Xie, Xiaoming; Jiang, Mianheng
2016-09-01
Despite significant progresses made on mass production of chemically exfoliated graphene, the quality, cost and environmental friendliness remain major challenges for its market penetration. Here, we present a fast and green exfoliation strategy for large scale production of high quality water dispersible few layer graphene through a controllable edge oxidation and localized gas bubbling process. Mild edge oxidation guarantees that the pristine sp2 lattice is largely intact and the edges are functionalized with hydrophilic groups, giving rise to high conductivity and good water dispersibility at the same time. The aqueous concentration can be as high as 5.0 mg mL-1, which is an order of magnitude higher than previously reports. The water soluble graphene can be directly spray-coated on various substrates, and the back-gated field effect transistor give hole and electron mobility of ~496 and ~676 cm2 V-1 s-1, respectively. These results achieved are expected to expedite various applications of graphene.
Existence and amplitude bounds for irrotational water waves in finite depth
Kogelbauer, Florian
2017-12-01
We prove the existence of solutions to the irrotational water-wave problem in finite depth and derive an explicit upper bound on the amplitude of the nonlinear solutions in terms of the wavenumber, the total hydraulic head, the wave speed and the relative mass flux. Our approach relies upon a reformulation of the water-wave problem as a one-dimensional pseudo-differential equation and the Newton-Kantorovich iteration for Banach spaces. This article is part of the theme issue 'Nonlinear water waves'.
Energy-Saving Vibration Impulse Coal Degradation at Finely Dispersed Coal-Water Slurry Preparation
Directory of Open Access Journals (Sweden)
Moiseev V.A.
2015-01-01
Full Text Available Theoretical and experimental research results of processes of finely dispersed coal-water slurry preparation for further generation of energetic gas in direct flow and vortex gas generator plants have been presented. It has been stated that frequency parameters of parabolic vibration impulse mill influence degradation degree. Pressure influence on coal parameters in grinding cavity has been proven. Experimental researches have proven efficiency of vibration impulse mill with unbalanced mass vibrator generator development. Conditions of development on intergranular walls of coal cracks have been defined.
International Nuclear Information System (INIS)
Seino, Satoshi; Yamamoto, Takao A.; Fujimoto, Ryosuke; Hashimoto, Kensuke; Katsura, Masahiro; Okuda, Shuichi; Okitsu, Kenji
2001-01-01
Hydrogen gas evolution from water dispersing nanoparticles induced by 60 Co γ-ray irradiation was studied. Nanoparticles of TiO 2 and Al 2 O 3 with average sizes of 7-33nm supplied from several suppliers were examined. It was indicated that reactions enhancing the hydrogen evolution proceed on particle's surface. It was implied that the yield depends on size of agglomerated particle regardless of their primary particle size and chemical species. Reactions that enhance the hydrogen yields were discussed, and radiolysis process was concluded dominant in the total enhancement mechanism. (author)
Water-dispersible ascorbic-acid-coated magnetite nanoparticles for contrast enhancement in MRI
Sreeja, V.; Jayaprabha, K. N.; Joy, P. A.
2015-04-01
Superparamagnetic iron oxide nanoparticles of size ~5 nm surface functionalized with ascorbic acid (vitamin C) form a stable dispersion in water with a hydrodynamic size of ~30 nm. The anti-oxidant property of ascorbic acid is retained after capping, as evidenced from the capability of converting methylene blue to its reduced leuco form. NMR relaxivity studies show that the ascorbic-acid-coated superparamagnetic iron oxide aqueous nanofluid is suitable as a contrast enhancement agent for MRI applications, coupled with the excellent biocompatibility and medicinal values of ascorbic acid.
Clamond, Didier; Dutykh, Denys
2018-02-01
A new regularisation of the shallow water (and isentropic Euler) equations is proposed. The regularised equations are non-dissipative, non-dispersive and posses a variational structure; thus, the mass, the momentum and the energy are conserved. Hence, for instance, regularised hydraulic jumps are smooth and non-oscillatory. Another particularly interesting feature of this regularisation is that smoothed 'shocks' propagates at exactly the same speed as the original discontinuous ones. The performance of the new model is illustrated numerically on some dam-break test cases, which are classical in the hyperbolic realm.
International Nuclear Information System (INIS)
Suarez Antola, R.; Malek, A.; Odino, R.; Souto, B.; Artucio, G.; Baraibar, J.
1996-01-01
It describes some results about transport processes, tracer techniques in Carretas Point sub aquatic emissary, discharge plume and emissary adjacent water coast in summer season. An overtaking and stability plume was verified. A contaminant unexpected and effusion localized was simulated. Scale effect near one coefficient was obtain Longitudinal dispersion coefficients and 1m2/seg and 0,02m2/seg transversal was estimated. The possibility to obtain information from first stages of transport analyzing fluorescence trace stain videos through geometric tools is discussed
Energy Technology Data Exchange (ETDEWEB)
Cui, Mingjun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Ren, Siming [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Chen, Jia; Liu, Shuan [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhang, Guangan [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao, Haichao, E-mail: zhaohaichao@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang, Liping, E-mail: wangliping@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xue, Qunji, E-mail: qjxue@lzb.ac.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)
2017-03-01
Highlights: • Hexagonal boron nitride nanosheets were well dispersed by using water-soluble carboxylated aniline trimer as dispersant. • The best corrosion performance of waterborne epoxy coatings was achieved with the addition of 1 wt% h-BN. • The decrease of the pores and defects of coating matrix inhibits the diffusion and water absorption of corrosive medium in the coating. - Abstract: Homogenous dispersion of hexagonal boron nitride (h-BN) nanosheets in solvents or in the polymer matrix is crucial to initiate their many applications. Here, homogeneous dispersion of hexagonal boron nitride (h-BN) in epoxy matrix was achieved with a water-soluble carboxylated aniline trimer derivative (CAT{sup −}) as a dispersant, which was attributed to the strong π-π interaction between h-BN and CAT{sup −}, as proved by Raman and UV–vis spectra. Transmission electron microscopy (TEM) analysis confirmed a random dispersion of h-BN nanosheets in the waterborne epoxy coatings. The deterioration process of water-borne epoxy coating with and without h-BN nanosheets during the long-term immersion in 3.5 wt% NaCl solution was investigated by electrochemical measurements and water absorption test. Results implied that the introduction of well dispersed h-BN nanosheets into waterborne epoxy system remarkably improved the corrosion protection performance to substrate. Moreover, 1 wt% BN/EP composite coated substrate exhibited higher impedance modulus (1.3 × 10{sup 6} Ω cm{sup 2}) and lower water absorption (4%) than those of pure waterborne epoxy coating coated electrode after long-term immersion in 3.5 wt% NaCl solution, demonstrating its superior anticorrosive performance. This enhanced anticorrosive performance was mainly ascribed to the improved water barrier property of epoxy coating via incorporating homogeneously dispersed h-BN nanosheets.
Clusella Trullas, Susana; Spotila, James R; Paladino, Frank V
2006-01-01
Studies of metabolism are central to the understanding of the ecology, behavior, and evolution of reptiles. This study focuses on one phase of the sea turtle life cycle, hatchling dispersal, and gives insight into energetic constraints that dispersal imposes on hatchlings. Hatchling dispersal is an energetically expensive phase in the life cycle of the olive ridley turtle Lepidochelys olivacea. Field metabolic rates (FMRs), determined using the doubly labeled water (DLW) method, for L. olivacea hatchlings digging out of their nest chamber, crawling at the sand surface, and swimming were five, four, and seven times, respectively, the resting metabolic rate (RMR). The cost of swimming was 1.5 and 1.8 times the cost of the digging and crawling phases, respectively, and we estimated that if L. olivacea hatchlings swim at frenzy levels, they can rely on yolk reserves to supply energy for only 3-6 d once they reach the ocean. We compared our RMR and FMR values by establishing an interspecific RMR mass-scaling relationship for a wide range of species in the order Testudines and found a scaling exponent of 1.06. This study demonstrates the feasibility of using the DLW method to estimate energetic costs of free-living sea turtle hatchlings and emphasizes the need for metabolic studies in various life-history stages.
Traveling wave solutions of a highly nonlinear shallow water equation
Geyer, A.; Quirchmayr, Ronald
2018-01-01
Motivated by the question whether higher-order nonlinear model equations, which go beyond the Camassa-Holm regime of moderate amplitude waves, could point us to new types of waves profiles, we study the traveling wave solutions of a quasilinear evolution equation which models the propagation of
Abdoli-Arani, A.; Safari, S.
2015-04-01
A perfectly conducting elliptical cylinder filled with a warm plasma and immersed in an infinite axial magnetic field is considered. Using Maxwell's equations and dielectric tensor, a Mathieu differential equation for axial component of electric field is obtained. Considering the boundary conditions, dispersion relation for waves in a plasma of warm electrons and immobile ions, which fills an elliptical waveguide and it is under the action of infinite axial magnetic field are calculated. Furthermore, dispersion relation and scalar potential in the quasi-static approximation in a cold magnetized plasma elliptical waveguide is calculated. The obtained results are graphically presented.
On the interaction of deep water waves and exponential shear currents
Cheng, Jun; Cang, Jie; Liao, Shi-Jun
2009-05-01
A train of periodic deep-water waves propagating on a steady shear current with a vertical distribution of vorticity is investigated by an analytic method, namely the homotopy analysis method (HAM). The magnitude of the vorticity varies exponentially with the magnitude of the stream function, while remaining constant on a particular streamline. The so-called Dubreil-Jacotin transformation is used to transfer the original exponentially nonlinear boundary-value problem in an unknown domain into an algebraically nonlinear boundary-value problem in a known domain. Convergent series solutions are obtained not only for small amplitude water waves on a weak current but also for large amplitude waves on a strong current. The nonlinear wave-current interaction is studied in detail. It is found that an aiding shear current tends to enlarge the wave phase speed, sharpen the wave crest, but shorten the maximum wave height, while an opposing shear current has the opposite effect. Besides, the amplitude of waves and fluid velocity decay over the depth more quickly on an aiding shear current but more slowly on an opposing shear current than that of waves on still water. Furthermore, it is found that Stokes criteria of wave breaking is still valid for waves on a shear current: a train of propagating waves on a shear current breaks as the fiuid velocity at crest equals the wave phase speed. Especially, it is found that the highest waves on an opposing shear current are even higher and steeper than that of waves on still water. Mathematically, this analytic method is rather general in principle and can be employed to solve many types of nonlinear partial differential equations with variable coefficients in science, finance and engineering.
Directory of Open Access Journals (Sweden)
F. Schöpfer
2010-01-01
Full Text Available Dispersion curves of elastic guided waves in plates can be efficiently computed by the Strip-Element Method. This method is based on a finite-element discretization in the thickness direction of the plate and leads to an eigenvalue problem relating frequencies to wavenumbers of the wave modes. In this paper we present a rigorous mathematical background of the Strip-Element Method for anisotropic media including a thorough analysis of the corresponding infinite-dimensional eigenvalue problem as well as a proof of the existence of eigenvalues.
Numerical model of the circulation and dispersion in the east Adriatic coastal waters
Beg Paklar, Gordana; Dzoic, Tomislav; Koracin, Darko; Matijevic, Slavica; Grbec, Branka; Ivatek-Sahdan, Stjepan
2017-04-01
The Regional Ocean Modeling System (ROMS) was implemented to reproduce physical properties of the area around submarine outlet Stobrec in the middle Adriatic coastal area. ROMS model run was forced with realistic atmospheric fields obtained from meteorological model Aladin, climatological river discharges, tides and dynamics of the surrounding area imposed at the open boundaries. Atmospheric forcing included momentum, heat and water fluxes calculated interactively from the Aladin surface fields during ROMS model simulations. Simulated fields from the Adriatic and shelf scale models were used to prescribe the initial and open boundary conditions for fine resolution coastal domain. Model results were compared with available CTD measurements and discussed in the light of the climatological circulation and thermohaline properties of the middle Adriatic coastal area. Variability in the circulation is related to the prevailing atmospheric conditions, changes in the hydrological conditions and water mass exchange at the open boundaries. Basic features of the coastal circulation are well reproduced by the ROMS model, as well as temperatures and salinities which are within corresponding seasonal intervals, although with lower stratification than measured ones. In order to reproduce dispersion of the passive tracer the ROMS model was coupled with Lagrangian dispersion model. Multiyear monitoring of the physical, chemical and biological parameters around the sewage outlet was used to assess the quality of the dispersion model results. Among measured parameters, redox potential of the surface sediment layer was selected to be compared with model results as its negative values are direct consequence of increased organic matter input that can be attributed to the sewage system inflow.
Energy Technology Data Exchange (ETDEWEB)
Jennings, David; White, Jake; Pogoson, Oje [Baker Hughes Inc., Houston, TX (United States); Barros, Dalmo; Ramachandran, Kartik; Bonin, George; Waltrich, Paulo; Shecaira, Farid [PETROBRAS America, Houston, TX (United States); Ziglio, Claudio [Petroleo Brasileiro S.A. (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisa e Desenvolvimento
2012-07-01
This paper discusses a paraffin dispersant (in seawater) application to clean paraffin deposition from a severely restricted 17.4-mile dual subsea flow line system in the Gulf of Mexico Cottonwood development. In principle, dispersant treatments are simple processes requiring effective dispersant packages and agitation to break-up and disperse deposition. Dispersants have been used onshore for treating wax deposition for decades. Implementation of a treatment in a long deep water production system, however, poses numerous challenges. The Cottonwood application was one of the first ever deep water dispersant applications. The application was designed in four separate phases: pre-treatment displacement for hydrate protection, dispersant treatment for paraffin deposition removal, pigging sequence for final flow line cleaning, and post-treatment displacement for hydrate protection. In addition, considerable job planning was performed to ensure the application was executed in a safe and environmentally responsible manner. Two dynamically positioned marine vessels were used for pumping fluids and capturing returns. The application was extremely successful in restoring the deep water flow lines back to near pre-production state. Final pigging operations confirmed the flow lines were cleaned of all restrictions. Significant paraffin deposition was removed in the application. Approximately 900 bbls of paraffin sludge was recovered from the 4000 bbl internal volume flow line loop. Furthermore, the application was completed with zero discharge of fluids. The application provided significant value for the Cottonwood development. It allowed production from wells to be brought on-line at a higher capacity, thereby generating increased revenue. It also allowed resumption of routine pigging operations. As such, the Cottonwood dispersant application illustrates that with proper planning and execution, paraffin dispersant treatments can be highly effective solutions for cleaning
Nofuentes, M.; Polo, M. J.
2012-04-01
One-dimensional modelling of solute transport in shallow water flows relies on an accurate approximation of the longitudinal dispersion coefficient, E, especially under transient conditions of the water flow during the solute residence time. Previous approaches have used expressions (e.g., the Rutherford equation) that allow the inclusion of spatiotemporal variability of E during the transport process, but their accuracy is reduced in marked transient regimes since the data were obtained from experimental work in rivers. This work proposes a different approach from experimental work with slow, shallow flows over porous media in fertigation essays, and provides us with a simple, parametric sigmoid function to estimate a priori effective values of E from simple measurements of flow characteristics and variables. The results have been successfully validated and compared to the Rutherford equation approach. Furthermore, the methodology to develop this characteristic function can be easily adapted for application in other practical cases.
Development testing of large volume water sprays for warm fog dispersal
Keller, V. W.; Anderson, B. J.; Burns, R. A.; Lala, G. G.; Meyer, M. B.; Beard, K. V.
1986-01-01
A new brute-force method of warm fog dispersal is described. The method uses large volume recycled water sprays to create curtains of falling drops through which the fog is processed by the ambient wind and spray induced air flow. Fog droplets are removed by coalescence/rainout. The efficiency of the technique depends upon the drop size spectra in the spray, the height to which the spray can be projected, the efficiency with which fog laden air is processed through the curtain of spray, and the rate at which new fog may be formed due to temperature differences between the air and spray water. Results of a field test program, implemented to develop the data base necessary to assess the proposed method, are presented. Analytical calculations based upon the field test results indicate that this proposed method of warm fog dispersal is feasible. Even more convincingly, the technique was successfully demonstrated in the one natural fog event which occurred during the test program. Energy requirements for this technique are an order of magnitude less than those to operate a thermokinetic system. An important side benefit is the considerable emergency fire extinguishing capability it provides along the runway.
Energy Technology Data Exchange (ETDEWEB)
Zhou Ruchao, E-mail: zhouruchao520@yahoo.com.cn [School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065 (China); Si Shaoxiong, E-mail: sishaoxiong@126.com [School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065 (China); Zhang Qiyi, E-mail: qyzhang@scu.edu.cn [School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065 (China)
2012-02-01
A novel and effective method for the preparation of water-dispersible nano-hydroxyapatite (nHAp) particles was reported. nHAp was prepared in the presence of grape seed polyphenol (GSP) solution with different concentrations. Chemical precipitation method was adopted to produce pure nHAp and modified nHAp (nHAp-GSP) at 60 Degree-Sign C for 2 h. The chemical nature of the products was detected by Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analysis (TGA). Moreover, the crystal structure and morphology of particles was confirmed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicated that the spherical nHAp particles with a diameter of 20-50 nm could be synthesized at 60 Degree-Sign C. The zeta potential values of pure nHAp and nHAp-GSP are -0.36 mV and -26.1 mV respectively. According to the sedimentary time, the colloidal stability of nHAp-GSP in water could be improved dramatically with the increase of GSP content and the particles tended to exist as dispersive nanoparticles without aggregation. All the results indicated that GSP exhibited strong binding to nHAp and enhanced the colloidal stability of nHAp particles.
Philips, Laura A; Ruffner, David B; Cheong, Fook Chiong; Blusewicz, Jaroslaw M; Kasimbeg, Priya; Waisi, Basma; McCutcheon, Jeffrey R; Grier, David G
2017-10-01
Determining the size distribution and composition of particles suspended in water can be challenging in heterogeneous multicomponent samples. Light scattering techniques can measure the distribution of particle sizes, but provide no basis for distinguishing different types of particles. Direct imaging techniques can categorize particles by shape, but offer few insights into their composition. Holographic characterization meets this need by directly measuring the size, refractive index, and three-dimensional position of individual particles in a suspension. The ability to measure an individual colloidal particle's refractive index is a unique capability of holographic characterization. Holographic characterization is fast enough, moreover, to build up population distribution data in real time, and to track time variations in the concentrations of different dispersed populations of particles. We demonstrate these capabilities using a model system consisting of polystyrene microbeads co-dispersed with bacteria in an oil-in-water emulsion. We also demonstrate how the holographic fingerprint of different contaminants can contribute to identifying their source. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
International Nuclear Information System (INIS)
Zhou Ruchao; Si Shaoxiong; Zhang Qiyi
2012-01-01
A novel and effective method for the preparation of water-dispersible nano-hydroxyapatite (nHAp) particles was reported. nHAp was prepared in the presence of grape seed polyphenol (GSP) solution with different concentrations. Chemical precipitation method was adopted to produce pure nHAp and modified nHAp (nHAp-GSP) at 60 °C for 2 h. The chemical nature of the products was detected by Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analysis (TGA). Moreover, the crystal structure and morphology of particles was confirmed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicated that the spherical nHAp particles with a diameter of 20-50 nm could be synthesized at 60 °C. The zeta potential values of pure nHAp and nHAp-GSP are -0.36 mV and -26.1 mV respectively. According to the sedimentary time, the colloidal stability of nHAp-GSP in water could be improved dramatically with the increase of GSP content and the particles tended to exist as dispersive nanoparticles without aggregation. All the results indicated that GSP exhibited strong binding to nHAp and enhanced the colloidal stability of nHAp particles.
Effects of upper-limit water temperatures on the dispersal of the Asian clam Corbicula fluminea.
Directory of Open Access Journals (Sweden)
Inês Correia Rosa
Full Text Available Temperature is a determinant environmental variable in metabolic rates of organisms ultimately influencing important physiological and behavioural features. Stressful conditions such as increasing temperature, particularly within high ranges occurring in the summer, have been suggested to induce flotation behaviour in Corbicula fluminea which may be important in dispersal of this invasive species. However, there has been no experimental evidence supporting this hypothesis. It was already proven that C. fluminea drift is supported by a mucilaginous drogue line produced by mucocytes present in the ctenidia. Detailed microscopic examination of changes in these cells and quantification of clam flotation following one, two and three weeks of exposure to 22, 25 and 30°C was carried out so that the effects of increasing water temperatures in dispersal patterns could be discussed. Results show that changes in temperature triggered an acceleration of the mucocytes production and stimulated flotation behaviour, especially following one week of exposure. Dilution of these effects occurred following longer exposure periods. It is possible that these bivalves perceive changing temperature as a stress and respond accordingly in the short-term, and then acclimate to the new environmental conditions. The response patterns suggest that increasing water temperatures could stimulate C. fluminea population expansion.
Effects of upper-limit water temperatures on the dispersal of the Asian clam Corbicula fluminea.
Rosa, Inês Correia; Pereira, Joana Luísa; Costa, Raquel; Gonçalves, Fernando; Prezant, Robert
2012-01-01
Temperature is a determinant environmental variable in metabolic rates of organisms ultimately influencing important physiological and behavioural features. Stressful conditions such as increasing temperature, particularly within high ranges occurring in the summer, have been suggested to induce flotation behaviour in Corbicula fluminea which may be important in dispersal of this invasive species. However, there has been no experimental evidence supporting this hypothesis. It was already proven that C. fluminea drift is supported by a mucilaginous drogue line produced by mucocytes present in the ctenidia. Detailed microscopic examination of changes in these cells and quantification of clam flotation following one, two and three weeks of exposure to 22, 25 and 30°C was carried out so that the effects of increasing water temperatures in dispersal patterns could be discussed. Results show that changes in temperature triggered an acceleration of the mucocytes production and stimulated flotation behaviour, especially following one week of exposure. Dilution of these effects occurred following longer exposure periods. It is possible that these bivalves perceive changing temperature as a stress and respond accordingly in the short-term, and then acclimate to the new environmental conditions. The response patterns suggest that increasing water temperatures could stimulate C. fluminea population expansion.
Just add water: reproducible singly dispersed silver nanoparticle suspensions on-demand
International Nuclear Information System (INIS)
MacCuspie, Robert I.; Allen, Andrew J.; Martin, Matthew N.; Hackley, Vincent A.
2013-01-01
Silver nanoparticles (AgNPs) are of interest due to their antimicrobial attributes, which are derived from their inherent redox instability and subsequent release of silver ions. At the same time, this instability is a substantial challenge for achieving stable long-term storage for on-demand use of AgNPs. In this study, we describe and validate a “just add water” approach for achieving suspensions of principally singly dispersed AgNPs. By lyophilizing (freeze drying) the formulated AgNPs into a solid powder, or cake, water is removed thereby eliminating solution-based chemical changes. Storing under inert gas further reduces surface reactions such as oxidation. An example of how to optimize a lyophilization formulation is presented, as well as example formulations for three AgNP core sizes. This “just add water” approach enables ease of use for the researcher desiring on-demand singly dispersed AgNP suspensions from a single master batch. Implementation of this methodology will enable studies to be performed over long periods of time and across different laboratories using particles that are identical chemically and physically and available on-demand. In addition, the approach of freeze drying and on-demand reconstitution by adding water has enabled the development of AgNP reference materials with the required shelf-life stability, one of the principal objectives of this research
Intertidal water column meiofauna in relation to wave intensity on an exposed beach
Directory of Open Access Journals (Sweden)
J. Germán Rodríguez
2004-04-01
Full Text Available Since the 1970s, various studies have shown that some meiofaunal taxa frequently occur in the water column. Water currents or any process that disturbs the sediments are possible factors that can facilitate the passive entry of meiofauna in the water column. Wave action has been predicted as one of these factors (Armonies, 1994, suggesting a correlation between the number of eroded specimens and wave intensity should exist. As a test of this prediction, replicated samples were taken in the water column, swash sediment and back-swash water in an exposed beach (Island of Sylt, northern Wadden Sea. Wave height and period were measured to characterise the energy regime. Samplings were carried out over a nine day period in August 2000, at diurnal mid-tide time. Wave height and period varied significantly among collections. Densities of nematodes, harpacticoids, nauplii, platyhelminthes, ostracods and bivalve larvae in the water column, swash sediment and back-swash water varied significantly among collections. Nevertheless, no significant correlation was found between water column density and wave characteristics. Density of meiofauna in the water column was not correlated with density in the sediment or in back-swash water. Therefore wave intensity did not explain the variability of meiofaunal densities present in the water column.
Serra-Gómez, R.; Martinez-Tarifa, J. M.; González-Benito, J.; González-Gaitano, G.
2016-01-01
Ceramic nanoparticles with piezoelectric properties, such as BaTiO3 (BT), constitute a promising approach in the fields of nanocomposite materials and biomaterials. In the latter case, to be successful in their preparation, the drawback of their fast aggregation and practically null stability in water has to be overcome. The objective of this investigation has been the surface functionalization of BaTiO3 nanoparticles with cyclodextrins (CDs) as a way to break the aggregation and improve the stability of the nanoparticles in water solution, preventing and minimizing their fast precipitation. As a secondary goal, we have achieved extra-functionality of the nanoparticles, bestowed from the hydrophobic cavity of the macrocycle, which is able to lodge guest molecules that can form inclusion complexes with the oligosaccharide. The nanoparticle functionalization has been fully tracked and characterized, and the cytotoxicity of the modified nanoparticles with fibroblasts and pre-osteoblasts cell lines has been assessed with excellent results in a wide range of concentrations. The modified nanoparticles were found to be suitable for the easy preparation of nanocomposite hydrogels, via dispersion in hydrophilic polymers of typical use in biomedical applications (PEG, Pluronics, and PEO), and further processed in the form of films via water casting, showing very good results in terms of homogeneity in the dispersion of the filler. Likewise, as examples of application and with the aim of exploring a different range of nanocomposites, rhodamine B was included in the macrocycles as a model molecule, and films prepared from a thermoplastic matrix (EVA) via high-energy ball milling have been tested by impedance spectroscopy to discuss their dielectric properties, which indicated that even small modifications in the surface of the nanoparticles generate a different kind of interaction with the polymeric matrix. The CD-modified nanoparticles are thus suitable for easy preparation
Energy Technology Data Exchange (ETDEWEB)
Serra-Gómez, R. [Universidad de Navarra, Departamento de Química y Edafología (Spain); Martinez-Tarifa, J. M. [Universidad Carlos III de Madrid, Departamento de Ingeniería Eléctrica (Spain); González-Benito, J. [Universidad Carlos III de Madrid, Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química, IQMAAB (Spain); González-Gaitano, G., E-mail: gaitano@unav.es [Universidad de Navarra, Departamento de Química y Edafología (Spain)
2016-01-15
Ceramic nanoparticles with piezoelectric properties, such as BaTiO{sub 3} (BT), constitute a promising approach in the fields of nanocomposite materials and biomaterials. In the latter case, to be successful in their preparation, the drawback of their fast aggregation and practically null stability in water has to be overcome. The objective of this investigation has been the surface functionalization of BaTiO{sub 3} nanoparticles with cyclodextrins (CDs) as a way to break the aggregation and improve the stability of the nanoparticles in water solution, preventing and minimizing their fast precipitation. As a secondary goal, we have achieved extra-functionality of the nanoparticles, bestowed from the hydrophobic cavity of the macrocycle, which is able to lodge guest molecules that can form inclusion complexes with the oligosaccharide. The nanoparticle functionalization has been fully tracked and characterized, and the cytotoxicity of the modified nanoparticles with fibroblasts and pre-osteoblasts cell lines has been assessed with excellent results in a wide range of concentrations. The modified nanoparticles were found to be suitable for the easy preparation of nanocomposite hydrogels, via dispersion in hydrophilic polymers of typical use in biomedical applications (PEG, Pluronics, and PEO), and further processed in the form of films via water casting, showing very good results in terms of homogeneity in the dispersion of the filler. Likewise, as examples of application and with the aim of exploring a different range of nanocomposites, rhodamine B was included in the macrocycles as a model molecule, and films prepared from a thermoplastic matrix (EVA) via high-energy ball milling have been tested by impedance spectroscopy to discuss their dielectric properties, which indicated that even small modifications in the surface of the nanoparticles generate a different kind of interaction with the polymeric matrix. The CD-modified nanoparticles are thus suitable for easy
Directory of Open Access Journals (Sweden)
D. Borgogno
2009-04-01
Full Text Available The propagation of dispersive Alfvén waves in a low-beta collisionless plasma with a high-density channel aligned with the ambient magnetic field, is studied in three space dimensions. A fluid model retaining linear Landau damping and finite Larmor radius corrections is used, together with a hybrid particle-in-cell simulation aimed to validate the predictions of this Landau-fluid model. It is shown that when the density enhancement is moderate (depending on the pump wavelength and the plasma parameters, the wave energy concentrates into a filament whose transverse size is prescribed by the dimension of the channel. In contrast, in the case of a stronger density perturbation, the early formation of a magnetic filament is followed by the onset of thin helical ribbons and the development of strong gradients. This "dispersive phase mixing" provides a mechanism permitting dissipation processes (not included in the present model to act and heat the plasma.
Application of energy dispersive x-ray techniques for water analysis
International Nuclear Information System (INIS)
Funtua, I. I.
2000-07-01
Energy dispersive x-ray fluorescence (EDXRF) is a class of emission spectroscopic techniques that depends upon the emission of characteristic x-rays following excitation of the atomic electron energy levels by tube or isotopic source x-rays. The technique has found wide range of applications that include determination of chemical elements of water and water pollutants. Three EDXRF systems, the isotopic source, secondary target and total reflection (TXRF) are available at the Centre for Energy research and Training. These systems have been applied for the analysis of sediments, suspensions, ground water, river and rainwater. The isotopic source is based on 55 Fe, 109 Cd and 241 Am excitations while the secondary target and the total reflection are utilizing a Mo x-ray tube. Sample preparation requirements for water analysis range from physical and chemical pre-concentration steps to direct analysis and elements from Al to U can be determined with these systems. The EDXRF techniques, TXRF in particular with its multielement capability, low detection limit and possibility of direct analysis for water have competitive edge over the traditional methods of atomic absorption and flame photometry
Liu, Yang; Soer, Willem-Jan; Scheerder, Jürgen; Satgurunathan, Guru; Keddie, Joseph L
2015-06-10
The conventional method for synthesizing waterborne polymer colloids is emulsion polymerization using surfactants. An emerging method is the use of secondary dispersions (SD) of polymers in water, which avoids the addition of any surfactant. Although there are numerous studies of the water barrier properties (sorption, diffusion, and permeability) of waterborne emulsion (Em) polymer coatings, the properties of SD coatings, in comparison, have not been thoroughly investigated. Here, dynamic water vapor sorption analysis is used to compare the equilibrium sorption isotherms of the two forms of styrene-acrylate copolymers (Em and SD) with the same monomer composition. From an analysis of the kinetics of vapor sorption, the diffusion coefficient of water in the polymer coatings is determined. The combined effects of particle boundaries and surfactant addition were investigated through a comparison of the properties of SD and Em coatings to those of (1) solvent-cast polymer coatings (of the same monomer composition), (2) Em polymers that underwent dialysis to partially remove the water-soluble species, and (3) SD polymers with added surfactants. The results reveal that both the particle boundaries and the surfactants increase vapor sorption. The diffusion coefficients of water are comparable in magnitude in all of the polymer systems but are inversely related to water activity because of molecular clustering. Compared to all of the other waterborne polymer systems, the SD barrier coatings show the lowest equilibrium vapor sorption and permeability coefficients at high relative humidities as well as the lowest water diffusion coefficient at low humidities. These barrier properties make SD coatings an attractive alternative to conventional emulsion polymer coatings.
A method for generating highly nonlinear periodic waves in physical wave basins
DEFF Research Database (Denmark)
Zhang, Haiwen; Schäffer, Hemming A.; Bingham, Harry B.
2006-01-01
This abstract describes a new method for generating nonlinear waves of constant form in physical wave basins. The idea is to combine fully dispersive linear wavemaker theory with nonlinear shallow water wave generation theory; and use an exact nonlinear theory as the target. We refer to the method...... as an ad-hoc unified wave generation theory, since there is no rigorous analysis behind the idea which is simply justified by the improved results obtained for the practical generation of steady nonlinear waves....
Başar, Nurcan; Malçok Gürel, Ozgül; Ozcan, Fırat; Ozlü, Mehmet Fatih; Biçer Yeşilay, Asuman; Cağlı, Kumral; Sen, Nihat; Işleyen, Ahmet; Uygur, Belma; Akpınar, Ibrahim; Tunçez, Abdullah; Gölbaşı, Zehra
2011-02-01
P-wave dispersion (PWD) is an electrocardiographic measurement, which reflects a disparity in an atrial conduction. In this study, we aim to demonstrate the diagnostic accuracy of PWD in predicting recurrence of atrial fibrillation (AF) in patients with sinus rhythm restoration after external cardioversion. This prospective, observational study consists of 26 patients, who underwent external cardioversion for non-valvular persistent AF and successfully cardioverted to sinus rhythm (13 men, mean age 58.1 ± 11 years). Twelve-lead surface electrocardiogram of each patient was recorded immediately after the external cardioversion process to measure the P-wave duration. Recurrent AF was assessed for each patient during the 12-month follow-up after restoring the sinus rhythm. Patients were divided into the 2 groups with respect to the AF recurrence (recurrent AF group, (n=19), and sinus rhythm group, (n=7)) and variables that can affect AF development were compared between the two groups. Stepwise logistic regression analysis was used to identify the independent predictors of AF recurrence and ROC curve analysis was performed to determine the cut-off value of independent factors. The two groups have similar demographic, clinical and echocardiographic features. Patients with recurrent AF had significantly higher PWD than those who continued to have a sinus rhythm (80 ± 21 msec vs 53 ± 11 msec, p=0.001, respectively). There is a positive correlation observed between the increase in PWD and the risk of AF recurrence (r=0.643; p=0.001). In logistic regression analysis, PWD was found to be an independent predictor of AF recurrence (OR 1.192 (95% CI 1.032-1.375), p= 0.013). Receiver operating characteristic analysis revealed that the best cut-off value of PWD for maintenance of sinus rhythm was 58 msec (sensitivity: 86%, specificity: 95%, AUC=0.917, 95% CI=0.785-1.05, p=0.001). This study suggests that PWD analysis after successful external cardioversion has diagnostic
DEFF Research Database (Denmark)
Pedersen, Martin Erland Vestergaard; Cheng, Ji; Xu, Chris
2013-01-01
An improved version of the generalized nonlinear Schrödinger equation is derived, which takes into account the correct dispersion of the transverse field distribution. The new improved version of the generalized nonlinear Schrödinger equation is verified to give the same results as the standard...... implementation for a simple single mode soliton propagation example. As opposed to the standard implementation, the new implementation is able to reproduce pulsed four wave mixing observed experimentally in a higher order mode fiber....
Sebastian, Nita; Kim, Seongryong; Tkalčić, Hrvoje; Sippl, Christian
2017-04-01
The purpose of this study is to develop an integrated inference on the lithospheric structure of NE China using three passive seismic networks comprised of 92 stations. The NE China plain consists of complex lithospheric domains characterised by the co-existence of complex geodynamic processes such as crustal thinning, active intraplate cenozoic volcanism and low velocity anomalies. To estimate lithospheric structures with greater detail, we chose to perform the joint inversion of independent data sets such as receiver functions and surface wave dispersion curves (group and phase velocity). We perform a joint inversion based on principles of Bayesian transdimensional optimisation techniques (Kim etal., 2016). Unlike in the previous studies of NE China, the complexity of the model is determined from the data in the first stage of the inversion, and the data uncertainty is computed based on Bayesian statistics in the second stage of the inversion. The computed crustal properties are retrieved from an ensemble of probable models. We obtain major structural inferences with well constrained absolute velocity estimates, which are vital for inferring properties of the lithosphere and bulk crustal Vp/Vs ratio. The Vp/Vs estimate obtained from joint inversions confirms the high Vp/Vs ratio ( 1.98) obtained using the H-Kappa method beneath some stations. Moreover, we could confirm the existence of a lower crustal velocity beneath several stations (eg: station SHS) within the NE China plain. Based on these findings we attempt to identify a plausible origin for structural complexity. We compile a high-resolution 3D image of the lithospheric architecture of the NE China plain.
Chun, Sejong; Jin, Jonghan; Cho, Wan-Ho
2017-05-01
Wave dispersion is the key feature in understanding pulsating flows in a rigid circular pipe with small diameter. The wave dispersion makes flow signals distorted in the pulsating flows by boundary conditions due to pipe surface. Detailed description of this phenomenon can make the Greenfield-Fry model more practical. This model describes the relationship between the pressure gradient and the flow rate in the rigid circular pipe. Because pressure gradient measurement requires more than two pressure transducers, it would become more practical if only one pressure transducer is needed by applying the Taylor's frozen field hypothesis. This implies that only one pressure transducer is satisfactory for predicting flow signals with the Greenfield-Fry model. By applying the frequency variant convection velocity to consider the wave dispersion, the Taylor's frozen field hypothesis can relate the pressure signals with the flow signals according to the Greenfield-Fry model. In this study, the Taylor's frozen field hypothesis is reformulated into a simpler functional form with the frequency variant convection velocity in a zero-dimensional model with the Newtonian fluid, uniform, laminar, axially and one-dimensional pulsatile flow assumption. An experiment with a blood flow simulator is exemplified to demonstrate its usefulness to predict the flow signals from the pressure signals with the Greenfield-Fry model. Moreover, the three-element Windkessel model is compared to emphasize the importance of the physical model derived from the Navier-Stokes equation, such as the Greenfield-Fry model for the pulsating flows.
Directory of Open Access Journals (Sweden)
Javier Abreu-Afonso
2014-10-01
Full Text Available A study of the effect of temperature and axial strain on the parametric wavelengths produced by four-wave mixing in microstructured optical fibers is presented. Degenerate four-wave mixing was generated in the fibers by pumping at normal dispersion, near the zero-dispersion wavelength, causing the appearance of two widely-spaced four-wave mixing spectral bands. Temperature changes, and/or axial strain applied to the fiber, affects the dispersion characteristics of the fiber, which can result in the shift of the parametric wavelengths. We show that the increase of temperature causes the signal and idler wavelengths to shift linearly towards shorter and longer wavelengths, respectively. For the specific fiber of the experiment, the band shift at rates –0.04 nm/ºC and 0.3 nm/ºC, respectively. Strain causes the parametric bands to shift in the opposite way. The signal band shifted 2.8 nm/me and the idler -5.4 nm/me. Experimental observations are backed by numerical simulations.
Driskell, William B; Payne, James R
2018-03-11
During the Deepwater Horizon blowout, unprecedented volumes of dispersant were applied both on the surface and at depth. Application at depth was intended to disperse the oil into smaller microdroplets that would increase biodegradation and also reduce the volumes buoyantly rising to the surface, thereby reducing surface exposures, recovery efforts, and potential stranding. In forensically examining 5300 offshore water samples for the Natural Resource Damage Assessment (NRDA) effort, profiles of deep-plume oil droplets (from filtered water samples) were compared with those also containing dispersant indicators to reveal a previously hypothesized but undocumented, accelerated dissolution of the polycyclic aromatic hydrocarbons (PAH) in the plume samples. We interpret these data in a fate-and-transport context and conclude that dispersant applications were functionally effective at depth. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lemos, Valfredo Azevedo; dos Santos, Liz Oliveira; Silva, Eldevan dos Santos; Vieira, Emanuel Vitor dos Santos
2012-01-01
A simple method for the determination of mercury in water samples after preconcentration using dispersive liquid-liquid microextraction is described. The procedure is based on the extraction of mercury in the form of a complex and its subsequent determination by spectrophotometry. The complex is formed between Hg(II) and 2-(2-benzothiazolylazo)-p-cresol. The detection at 650 nm is performed directly in the metal-rich phase, which is spread on a triacetylcellulose membrane. The method eliminates the need to use a cuvet or large quantities of samples and reagents. The parameters that influence the preconcentration were studied, and the analytical characteristics were determined. The enrichment factor and the consumptive index for this method were 64 and 0.16 mL, respectively. The LOD (3.3 microg/L) and LOQ (11.1 microg/L) were also determined. The accuracy of the method was tested by the determination of mercury in certified reference materials BCR 397 (Human Hair) and SRM 2781 (Domestic Sludge). The method was applied to the determination of mercury in samples of drinking water, sea water, and river water.
Ocean Wave Characteristics in Indonesian Waters for Sea Transportation Safety and Planning
Directory of Open Access Journals (Sweden)
Roni Kurniawan
2016-02-01
Full Text Available This study was aimed to learn about ocean wave characteristics and to identify times and areas with vulnerability to high waves in Indonesian waters. Significant wave height of Windwaves-05 model output was used to obtain such information, with surface level wind data for 11 years period (2000 to 2010 from NCEP-NOAA as the input. The model output data was then validated using multimission satellite altimeter data obtained from Aviso. Further, the data were used to identify areas of high waves based on the high wave’s classification by WMO. From all of the processing results, the wave characteristics in Indonesian waters were identified, especially on ALKI (Indonesian Archipelagic Sea Lanes. Along with it, which lanes that have high potential for dangerous waves and when it occurred were identified as well. The study concluded that throughout the years, Windwaves-05 model had a magnificent performance in providing of ocean wave characteristics information in Indonesian waters. The information of height wave vulnerability needed to make a decision on the safest lanes and the best time before crossing on ALKI when the wave and its vulnerability is likely low. Throughout the years, ALKI II is the safest lanes among others since it has been identified of having lower vulnerability than others. The knowledge of the wave characteristics for a specific location is very important to design, plan and vessels operability including types of ships and shipping lanes before their activities in the sea.
Characterization of the Deep Water Surface Wave Variability in the California Current Region
Villas Bôas, Ana B.; Gille, Sarah T.; Mazloff, Matthew R.; Cornuelle, Bruce D.
2017-11-01
Surface waves are crucial for the dynamics of the upper ocean not only because they mediate exchanges of momentum, heat, energy, and gases between the ocean and the atmosphere, but also because they determine the sea state. The surface wave field in a given region is set by the combination of local and remote forcing. The present work characterizes the seasonal variability of the deep water surface wave field in the California Current region, as retrieved from over two decades of satellite altimetry data combined with wave buoys and wave model hindcast (WaveWatch III). In particular, the extent to which the local wind modulates the variability of the significant wave height, peak period, and peak direction is assessed. During spring/summer, regional-scale wind events of up to 10 m/s are the dominant forcing for waves off the California coast, leading to relatively short-period waves (8-10 s) that come predominantly from the north-northwest. The wave climatology throughout the California Current region shows average significant wave heights exceeding 2 m during most of the year, which may have implications for the planning and retrieval methods of the Surface Water and Ocean Topography (SWOT) satellite mission.
Toxic effects of chemical dispersant Corexit 9500 on water flea Daphnia magna.
Toyota, Kenji; McNabb, Nicole A; Spyropoulos, Demetri D; Iguchi, Taisen; Kohno, Satomi
2017-02-01
In 2010, approximately 2.1 million gallons of chemical dispersants, mainly Corexit 9500, were applied in the Gulf of Mexico to prevent the oil slick from reaching shorelines and to accelerate biodegradation of oil during the Deepwater Horizon oil spill. Recent studies have revealed toxic effects of Corexit 9500 on marine microzooplankton that play important roles in food chains in marine ecosystems. However, there is still little known about the toxic effects of Corexit 9500 on freshwater zooplankton, even though oil spills do occur in freshwater and chemical dispersants may be used in response to these spills. The cladoceran crustacean, water flea Daphnia magna, is a well-established model species for various toxicological tests, including detection of juvenile hormone-like activity in test compounds. In this study, we conducted laboratory experiments to investigate the acute and chronic toxicity of Corexit 9500 using D. magna. The acute toxicity test was conducted according to OECD TG202 and the 48 h EC 50 was 1.31 ppm (CIs 0.99-1.64 ppm). The reproductive chronic toxicity test was performed following OECD TG211 ANNEX 7 and 21 days LOEC and NOEC values were 4.0 and 2.0 ppm, respectively. These results indicate that Corexit 9500 has toxic effects on daphnids, particularly during the neonatal developmental stage, which is consistent with marine zooplankton results, whereas juvenile hormone-like activity was not identified. Therefore, our findings of the adverse effects of Corexit 9500 on daphnids suggest that application of this type of chemical dispersant may have catastrophic impacts on freshwater ecosystems by disrupting the key food chain network. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Ocean swell within the kinetic equation for water waves
Directory of Open Access Journals (Sweden)
S. I. Badulin
2017-06-01
Full Text Available Results of extensive simulations of swell evolution within the duration-limited setup for the kinetic Hasselmann equation for long durations of up to 2 × 106 s are presented. Basic solutions of the theory of weak turbulence, the so-called Kolmogorov–Zakharov solutions, are shown to be relevant to the results of the simulations. Features of self-similarity of wave spectra are detailed and their impact on methods of ocean swell monitoring is discussed. Essential drop in wave energy (wave height due to wave–wave interactions is found at the initial stages of swell evolution (on the order of 1000 km for typical parameters of the ocean swell. At longer times, wave–wave interactions are responsible for a universal angular distribution of wave spectra in a wide range of initial conditions. Weak power-law attenuation of swell within the Hasselmann equation is not consistent with results of ocean swell tracking from satellite altimetry and SAR (synthetic aperture radar data. At the same time, the relatively fast weakening of wave–wave interactions makes the swell evolution sensitive to other effects. In particular, as shown, coupling with locally generated wind waves can force the swell to grow in relatively light winds.
Stationary wave patterns in deep water | Doyle | Quaestiones ...
African Journals Online (AJOL)
ship" or an obstacle in a stream, is revisited. The wave patterns are calculated using the results of the method of stationary phase. This allows for an elegant geometrical construction in which the reciprocal polar of the wave normal diagram ...
Periáñez, R; Caravaca, F
2010-09-01
Three rapid-response Lagrangian particle-tracking dispersion models have been developed for southern Spain coastal waters. The three domains cover the Gulf of Cádiz (Atlantic Ocean), the Alborán Sea (Mediterranean), and the Strait of Gibraltar with higher spatial resolution. The models are based on different hydrodynamic submodels, which are run in advance. Tides are calculated using a 2D barotropic model in the three cases. Models used to obtain the residual circulation depend on the physical oceanography of each region. Thus, two-layer models are applied to Gibraltar Strait and Alborán Sea and a 3D baroclinic model is used in the Gulf of Cádiz. Results from these models have been compared with observations to validate them and are then used by the particle-tracking models to calculate dispersion. Chemical, radioactive and oil spills may be simulated, incorporating specific processes for each kind of pollutant. Several application examples are provided. Copyright 2010 Elsevier Ltd. All rights reserved.
Water dispersible superparamagnetic Cobalt iron oxide nanoparticles for magnetic fluid hyperthermia
Energy Technology Data Exchange (ETDEWEB)
Salunkhe, Ashwini B. [Centre for advanced materials research, Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Soft matter and molecular biophysics group, Department of Applied Physics, University of Santiago de Compostela, Santiago de Compostela (Spain); Khot, Vishwajeet M. [Department of Physics and Astronomy, University College London (United Kingdom); Ruso, Juan M. [Soft matter and molecular biophysics group, Department of Applied Physics, University of Santiago de Compostela, Santiago de Compostela (Spain); Patil, S.I., E-mail: patil@physics.unipune.ac.in [Centre for advanced materials research, Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)
2016-12-01
Superparamagnetic nanoparticles of Cobalt iron oxide (CoFe{sub 2}O{sub 4}) are synthesized chemically, and dispersed in an aqueous suspension for hyperthermia therapy application. Different parameters such as magnetic field intensity, particle concentration which regulates the competence of CoFe{sub 2}O{sub 4} nanoparticle as a heating agents in hyperthermia are investigated. Specific absorption rate (SAR) decreases with increase in the particle concentration and increases with increase in applied magnetic field intensity. Highest value of SAR is found to be 91.84 W g{sup −1} for 5 mg. mL{sup −1} concentration. Oleic acid conjugated polyethylene glycol (OA-PEG) coated CoFe{sub 2}O{sub 4} nanoparticles have shown superior cyto-compatibility over uncoated nanoparticles to L929 mice fibroblast cell lines for concentrations below 2 mg. mL{sup −1}. Present work provides the underpinning for the use of CoFe{sub 2}O{sub 4} nanoparticles as a potential heating mediator for magnetic fluid hyperthermia. - Highlights: • Superparamagnetic, water dispersible CoFe{sub 2}O{sub 4} NPs were synthesized by simple and cost effective Co precipitation route. • Effect of coating on various physical and chemical properties of CoFe{sub 2}O{sub 4} NPs were studied. • The effect of coating on induction heating as well as biocompatibility of NPs were studied.
Mahata, C. R.
2012-12-01
Response of living bodies to different vastly `diluted' homeopathic medicines are different (rejecting the sceptic's view of `placebo' effect), though they are chemically same. Till now there is no satisfactory answer to how one such medicine differs from another in terms of scientifically measurable parameters. This paper tries to address this basic issue by taking two medicines of the same potency and two different potencies of the same medicine, namely, Arnica Mont 30c, 200c and Anacardium Orient 30c, 200c. These potencies are well above the Avogadro limit. The investigation reported here proceeds with the concept of `induced molecular structure' advanced by a number of scientists. Dielectric dispersion is used as the tool for experimental verification. It is based on the fact that when the exciting frequency of applied electric field equals the characteristic frequency, then macromolecules resonate leading to anomalous dielectric dispersion associated with sharp increase in dielectric loss, the resonance frequencies being different for macromolecules of different structures or dimensions. The results suggest that medicine- and potency-specific attributes are acquired by the vehicle (i.e. water) in the form of macromolecules generated by the potentization process of homeopathy making one medicine structurally different from another.
International Nuclear Information System (INIS)
Umar, Datin Fatia; Muta'alim; Usui, Hiromoto; Komoda, Yoshiyuki
2009-01-01
Upgraded brown coal water mixture (UBCWM) preparation by using an Indonesian upgraded coal produced by upgraded brown coal (UBC) process, was carried out to study the effect of dispersing and stabilizing additives on rheological behavior of the UBCWM. Three kinds of anionic dispersing additives, naphthalene sulfonic formaldehyde condensate (NSF), poly (meth) acrylate (PMA) and poly styrene sulfonic acid (PSS) and three kinds of stabilizing additives, carboxyl methyl cellulose (CMC), rhansam gum (S-194) and gellan gum (S-60) were used in this study. Results indicate that the addition of NSF 0.3 wt.% together with S-194 0.01 wt.% is effective in preparing UBCWM with good slurryability and stability, based on its rheological characteristics with the apparent viscosity at shear rate of 100 s - 1 and yield stress at zero point of shear rate. The rheological behavior of all of the UBCWM that prepared, exhibits non-Newtonian Bingham plastic. From the economical point of view, the price of S-194 is expensive. On the other hand, CMC is cheap and abundant. Therefore, the addition of CMC 0.01 wt.% together with NSF 0.3 wt.% is also effective in preparing UBCWM with good fluidity and stability. (author)
Water wave generation with source function in the level set finite element framework
International Nuclear Information System (INIS)
Lee, Hae Gyun
2015-01-01
Recent development of computing power and theoretical advances in computational fluid dynamics have made possible numerical simulations of water waves with full three-dimensional Navier-Stokes equations. In this study, an internal wave maker using the mass source function approach was combined with the level set finite element method for generation and propagation of water waves. The model is first applied to the two-dimensional linear wave generation and propagation. Then, it is applied to the three-dimensional simulation of the wave generation and the problem of wave force evaluation on the vertical wall. To effectively utilize computational resources and enhance the speed of execution, parallel algorithms are developed and applied for the three-dimensional problems. The results of numerical simulations are compared with theoretical values and good agreements are observed.
On the Shape of the Crest of Short Wavelength Water Waves at Incipient Breaking
Diorio, J. D.; Liu, X.; Duncan, J. H.
2007-11-01
Breaking waves with wavelengths ranging from about 0.1 to 1.2 m are studied experimentally in a wind wave tank that is 11.8 m long, 1.15 m wide and 1.8 m high (1.0 m of water). The tank includes a wind tunnel with speeds up to 10 m/s and a programmable wave maker that resides at the upwind end of the tank. The shortest waves are generated by wind with speeds ranging from about 4 to 7 m/s. The longest waves are generated mechanically from focused wave packets with average frequencies ranging from 1.15 to 1.42 Hz. Waves with intermediate lengths are formed either by wind or by a nonlinear wave train with unstable sidebands generated by the wave maker. At incipient breaking, all the waves have a capillary-ripple pattern at the crest rather than a plunging jet. It is found that in spite of the wide range of wavelengths and major differences in the generation methods, the shapes of the capillary-ripple pattern are remarkably similar. Various geometrical parameters including the length of the first capillary wave and the length and thickness of the bulge that forms at the crest are extracted from the data. The variation of these parameters with gravity wavelength and slope of the front face of the wave is examined.
Directory of Open Access Journals (Sweden)
Ahmed Elhanafi
2016-12-01
Full Text Available In this paper, hydrodynamic wave loads on an offshore stationary–floating oscillating water column (OWC are investigated via a 2D and 3D computational fluid dynamics (CFD modeling based on the RANS equations and the VOF surface capturing scheme. The CFD model is validated against previous experiments for nonlinear regular wave interactions with a surface-piercing stationary barge. Following the validation stage, the numerical model is modified to consider the pneumatic damping effect, and an extensive campaign of numerical tests is carried out to study the wave–OWC interactions for different wave periods, wave heights and pneumatic damping factors. It is found that the horizontal wave force is usually larger than the vertical one. Also, there a direct relationship between the pneumatic and hydrodynamic vertical forces with a maximum vertical force almost at the device natural frequency, whereas the pneumatic damping has a little effect on the horizontal force. Additionally, simulating the turbine damping with an orifice plate induces higher vertical loads than utilizing a slot opening. Furthermore, 3D modeling significantly escalates and declines the predicted hydrodynamic vertical and horizontal wave loads, respectively.
Gold Nanoparticles Prepared byβ-CD and Dispersion Behavior in Oil/Water Mixed System.
Zhang, Jie-Jie; Ding, Xu; Liu, Dan-Dan; Guan, Jian-Ning; Han, Guo-Zhi
2018-07-01
In this paper, we report a green and controllable synthetic method of gold nanoparticles (AuNPs) by directly β-CD reduction under mild conditions. Analysis of UV-vis spectra, along with TEM was applied to study the effects of experimental parameters on morphologies of the gold nanoparticles. The corresponding formation mechanism of the nanoparticles was evaluated by redox potential. In particular, compared with the traditional method of sodium citrate or ascorbic reduction, this method can facilely realize multi-dimensional regulation. On this basis, we further studied the dispersion behavior of the as-prepared gold nanoparticles in oil/water mixed system that would provide a possible strategy for optical sensor.
Directory of Open Access Journals (Sweden)
Zhi-Bin Zhang
2012-02-01
Full Text Available Significant influence on the thermal stability of polyaniline (PANI in the presence of multi-walled carbon nanotubes (MWCNTs is reported. By means of in-situ rapid mixing approach, water-dispersible nanofibrillar PANI and composites, consisting of MWCNTs uniformly coated with PANI in the state of emeraldine salt, with a well-defined core-shell heterogeneous structure, were prepared. The de-protonation process in PANI occurs at a lower temperature under the presence of MWCNTs on the polyaniline composite upon thermal treatment. However, it is found that the presence of MWCNTs significantly enhances the thermal stability of PANI’s backbone upon exposure to laser irradiation, which can be ascribed to the core-shell heterogeneous structure of the composite of MWCNTs and PANI, and the high thermal conductivity of MWCNTs.
Qu, Haiou; Tong, Sheng; Song, Kejing; Ma, Hui; Bao, Gang; Pincus, Seth; Zhou, Weilie; O'Connor, Charles
2013-01-01
Magnetite nanoparticle coated silica (Fe3O4@SiO2) hybrid nanomaterials hold an important position in the fields of cell imaging and drug delivery. Here we report a large scale synthetic procedure that allows attachment of magnetite nanoparticles onto a silica surface in-situ. Many different silica nanomaterials such as Stöber silica nanospheres, mesoporous silica nanoparticles, and hollow silica nanotube have been coated with a high density layer of water-dispersible magnetite nanoparticles. The size and attachment efficiency of the magnetite nanoparticle can be well tuned by adjusting the precursor concentration and reflux time. The functionalization of Fe3O4@SiO2 nanoparticles with dye molecules and biocompatible polymers impart optical imaging modality and good colloidal stability in either buffer solution or serum. The functionalized materials also exhibited strong potential as negative contrast agents in T2 weighted magnetic resonance imaging. PMID:23889037
Qu, Haiou; Tong, Sheng; Song, Kejing; Ma, Hui; Bao, Gang; Pincus, Seth; Zhou, Weilie; O'Connor, Charles
2013-08-20
Magnetite nanoparticle coated silica (Fe3O4@SiO2) hybrid nanomaterials hold an important position in the fields of cell imaging and drug delivery. Here we report a large scale synthetic procedure that allows attachment of magnetite nanoparticles onto a silica surface in situ. Many different silica nanomaterials such as Stöber silica nanospheres, mesoporous silica nanoparticles, and hollow silica nanotubes have been coated with a high density layer of water-dispersible magnetite nanoparticles. The size and attachment efficiency of the magnetite nanoparticle can be well tuned by adjusting the precursor concentration and reflux time. The functionalization of Fe3O4@SiO2 nanoparticles with dye molecules and biocompatible polymers impart optical imaging modality and good colloidal stability in either buffer solution or serum. The functionalized materials also exhibited strong potential as negative contrast agents in T2 weighted magnetic resonance imaging.
Liu, Meiying; Zhang, Xiqi; Yang, Bin; Deng, Fengjie; Li, Zhen; Wei, Junchao; Zhang, Xiaoyong; Wei, Yen
2014-12-01
Fluorescent organic nanoparticles have attracted great current research interest due to their superior properties as compared with small organic dyes and fluorescent inorganic nanoparticles. However, fluorescent organic nanoparticles based on conventional organic dyes often result in significant fluorescence decrease due to the notorious aggregation-caused quenching effect. On the other hand, these fluorescent organic nanoparticles obtained from self-assembly are normally not stable in diluted solution. Therefore, the development of novel fluorescent organic nanoparticles which could overcome these limitations is highly desirable for their practical biomedical applications. In this work, water dispersible, non-cytotoxic and cross-linked luminescent polymeric nanoparticles based on aggregation induced emission dyes were prepared via one pot emulsion polymerization. These cross-linked luminescent polymeric nanoparticles emitted strong red fluorescence and were highly stable in diluted aqueous solution, making them highly potential for various biomedical applications.
An ill-posed parabolic evolution system for dispersive deoxygenation–reaeration in water
International Nuclear Information System (INIS)
Azaïez, M; Le Bot, C; Belgacem, F Ben; Hecht, F
2014-01-01
We consider an inverse problem that arises in the management of water resources and pertains to the analysis of surface water pollution by organic matter. Most physically relevant models used by engineers derive from various additions and corrections to enhance the earlier deoxygenation–reaeration model proposed by Streeter and Phelps in 1925, the unknowns being the biochemical oxygen demand (BOD) and the dissolved oxygen (DO) concentrations. The one we deal with includes Taylor’s dispersion to account for the heterogeneity of the contamination in all space directions. The system we obtain is then composed of two reaction-dispersion equations. The particularity is that both Neumann and Dirichlet boundary conditions are available on the DO tracer while the BOD density is free of any conditions. In fact, for real-life concerns, measurements on the DO are easy to obtain and to save. On the contrary, collecting data on the BOD is a sensitive task and turns out to be a lengthy process. The global model pursues the reconstruction of the BOD density, and especially of its flux along the boundary. Not only is this problem plainly worth studying for its own interest but it could also be a mandatory step in other applications such as the identification of the location of pollution sources. The non-standard boundary conditions generate two difficulties in mathematical and computational grounds. They set up a severe coupling between both equations and they are the cause of the ill-posed data reconstruction problem. Existence and stability fail. Identifiability is therefore the only positive result one can search for; it is the central purpose of the paper. Finally, we have performed some computational experiments to assess the capability of the mixed finite element in missing data recovery. (paper)
An ill-posed parabolic evolution system for dispersive deoxygenation-reaeration in water
Azaïez, M.; Ben Belgacem, F.; Hecht, F.; Le Bot, C.
2014-01-01
We consider an inverse problem that arises in the management of water resources and pertains to the analysis of surface water pollution by organic matter. Most physically relevant models used by engineers derive from various additions and corrections to enhance the earlier deoxygenation-reaeration model proposed by Streeter and Phelps in 1925, the unknowns being the biochemical oxygen demand (BOD) and the dissolved oxygen (DO) concentrations. The one we deal with includes Taylor’s dispersion to account for the heterogeneity of the contamination in all space directions. The system we obtain is then composed of two reaction-dispersion equations. The particularity is that both Neumann and Dirichlet boundary conditions are available on the DO tracer while the BOD density is free of any conditions. In fact, for real-life concerns, measurements on the DO are easy to obtain and to save. On the contrary, collecting data on the BOD is a sensitive task and turns out to be a lengthy process. The global model pursues the reconstruction of the BOD density, and especially of its flux along the boundary. Not only is this problem plainly worth studying for its own interest but it could also be a mandatory step in other applications such as the identification of the location of pollution sources. The non-standard boundary conditions generate two difficulties in mathematical and computational grounds. They set up a severe coupling between both equations and they are the cause of the ill-posed data reconstruction problem. Existence and stability fail. Identifiability is therefore the only positive result one can search for; it is the central purpose of the paper. Finally, we have performed some computational experiments to assess the capability of the mixed finite element in missing data recovery.
Plakhotnik, Taras; Reichardt, Jens
2018-03-01
A theoretical framework is presented that permits investigations of the relation between inelastic backscattering from microparticles and bulk samples of Raman-active materials. It is based on the Lorentz reciprocity theorem and no fundamental restrictions concerning the microparticle shape apply. The approach provides a simple and intuitive explanation for the enhancement of the differential backscattering cross-section in particles in comparison to bulk. The enhancement factor for scattering of water droplets in the diameter range from 0 to 60 μm (vitally important for the a priori measurement of liquid water content of warm clouds with spectroscopic Raman lidars) is about a factor of 1.2-1.6 larger (depending on the size of the sphere) than an earlier study has shown. The numerical calculations are extended to 1000 μm and demonstrate that dispersion of the refractive index of water becomes an important factor for spheres larger than 100 μm. The physics of the oscillatory phenomena predicted by the simulations is explained.
Spectral Wave Characteristics in the Nearshore Waters of Northwestern Bay of Bengal
Anjali Nair, M.; Sanil Kumar, V.; Amrutha, M. M.
2018-03-01
The spectral wave characteristics in the nearshore waters of northwestern Bay of Bengal are presented based on the buoy-measured data from February 2013 to December 2015 off Gopalpur at 15-m water depth. The mean seasonal significant wave height and mean wave period indicate that the occurrence of higher wave heights and wave periods is during the southwest monsoon period (June-September). 74% of the sea surface height variance in a year is a result of waves from 138 to 228° and 16% are from 48 to 138°. Strong inter-annual variability is observed in the monthly average wave parameters due to the occurrence of tropical cyclones. Due to the influence of the tropical cyclone Phailin, maximum significant wave height of 6.7 m is observed on 12 October 2013 and that due to tropical cyclone Hudhud whose track is 250 southwest of the study location is 5.84 m on 12 October 2014. Analysis revealed that a single tropical cyclone influenced the annual maximum significant wave height and not the annual average value which is almost same ( 1 m) in 2014 and 2015. The waves in the northwestern Bay of Bengal are influenced by the southwest and northeast monsoons, southern ocean swells and cyclones.
Spatial and temporal variation of surface waves in shallow waters along the eastern Arabian Sea.
Digital Repository Service at National Institute of Oceanography (India)
Anoop, T.R.; SanilKumar, V.; Shanas, P.R.
We studied the spatial and temporal variation of surface waves along the eastern Arabian Sea during 2011 and 2012. Measured directional wave data at two shallow water locations and re-analysis datasets (ERA-Interim) at 0.751 intervals at four...
Waves in the nearshore waters of northern Arabian Sea during the summer monsoon
Digital Repository Service at National Institute of Oceanography (India)
SanilKumar, V.; Singh, J.; Pednekar, P.S.; Gowthaman, R.
Waves at 15 m water depth in the northern Arabian Sea are measured during the summer monsoon for a period of 45 days and the characteristics are described. The significant wave height varied from 1.1 to 4.5 m with an average value of 2.5m. 75...
Directory of Open Access Journals (Sweden)
Daniel R Tekiela
Full Text Available Microstegium vimineum is a shade tolerant annual C4 invasive grass in the Eastern US, which has been shown to negatively impact species diversity and succession in hardwood forests. To date, empirical studies have shown that population expansion is limited to <1 m yr(-1, which is largely driven by gravity dispersal. However, this likely does not fully account for all mechanisms of population-scale dispersal as we observe greater rates of population expansion. Though water, both riparian and non-riparian water (i.e., ephemeral overland flow, have been speculated mechanisms for M. vimineum dispersal, few studies have empirically tested this hypothesis. We designed an experiment along the slopes of a Southwest Virginia hardwood forest to test the role of non-riparian water on local seed dispersal. We developed a seed marking technique by coating each seed with an ultraviolet (UV powder that did not affect buoyancy to aid in situ seed recapture. Additionally, a new image analysis protocol was developed to automate seed identification from UV photos. Total seed mobility (summation of individual seed movement within each transect was positively correlated with precipitation. Over a period of one month with 52.32 mm of precipitation, the maximum dispersal distance of any single recaptured seed was 2.4 m, and the average distance of dispersed seed was 0.21±0.04 m. This is the first quantitative evidence of non-riparian water dispersal in a forest understory, which accounts for an additional pathway of population expansion.
On the pressure field of nonlinear standing water waves
Schwartz, L. W.
1980-01-01
The pressure field produced by two dimensional nonlinear time and space periodic standing waves was calculated as a series expansion in the wave height. The high order series was summed by the use of Pade approximants. Calculations included the pressure variation at great depth, which was considered to be a likely cause of microseismic activity, and the pressure distribution on a vertical barrier or breakwater.
Spatial patterns of water-dispersed seed deposition along stream riparian gradients
Fraaije, Rob G.A.; Moinier, Sophie; Van Gogh, Iris; Timmers, Robert; Van Deelen, Joost J.; Verhoeven, Jos; Soons, Merel B.
2017-01-01
Riparian ecosystems along streams naturally harbour a high plant diversity with many increasingly endangered species. In our current heavily modified and fragmented catchments, many of these species are sensitive to dispersal limitation. Better understanding of riparian plant dispersal pathways is
The stability and removal of water-dispersed CdSe/CdS core-shell quantum dots from water.
Chen, Xu; Ok, Yong Sik; Mohan, Dinesh; Pittman, Charles U; Dou, Xiaomin
2017-10-01
The increasingly wide use of semiconductor nanocrystals inevitably leads to their release into aquatic environment. The aggregation behaviors of 3-mercaptopropionic acid-capped CdSe/CdS core-shell quantum dots (MPA-QDs) under various water chemistry conditions were examined and their removal using Fe 3+ and Al 3+ coagulants was evaluated. Cationic species rather than concentrations affected the stability of MPA-QDs. Adding 2 mM Ca 2+ led to a much larger ζ-potential decrease and particle size increase than adding 150 mM K + at each tested solution pH. This indicated that complexation and depletion of surface-bound carboxyl groups by divalent Ca 2+ has a more pronounced effect than compression of the electrical double layer by high concentrations of monovalent K + . The presence of humic acid increased the stability of MPA-QDs, which might increase negative surface charging via overcoating or bind to the surface of MPA-QDs. The nanoparticles exhibited similar aggregation kinetics patterns in tap water and seawater, but varying patterns in the lake water because of the co-existence of 2.3 mM total of Ca 2+ and Mg 2+ . MPA-QDs (5 mg L -1 ) were readily coagulated by 2.4 mM Al 3+ or 1.2 mM Fe 3+ in tap water. Al 3+ and Fe 3+ can bind with carboxyl groups of the surface capping ligands, neutralize the negative charges on the surface of MPA-QDs and decrease the electrostatic repulsion forces to induce MPA-QDs aggregation. In addition, MPA-QDs could be bound with and wrapped into the flocs of hydrolysis products of coagulants. The results reported here could help broaden our understanding of the impacts and remediation of water-dispersed core-shell QD nanoparticles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Henríquez-Rodríguez, Manuel; Gascó Montes, José María; Pérez Arias, Juana; Rodríguez Rodríguez, Orlando
2008-01-01
Pressure to use dispersive soils has increased worldwide, soil conservation against erosion is crucial and water contamination by eroded materials is a relevant problem. Organic and inorganic conditioners reduce soils’ particles dispersion, improve soils´ structure and permeability, and reduce water sources contamination. The effects of a Cardon Dato (Stenocereus griseus (Haw.) F. Buxb) mucilage (CD), FeCl3.6H2O and AlCl3.6H2O, on flocculating suspensions and arrangement of suspended particle...
Kang, Naewon; Lee, Jangmi; Choi, Ji Na; Mao, Chen; Lee, Eun Hee
2015-06-01
The effect of mechanical impact on the polymorphic transformation of mefenamic acid (MFA) and the formation of a solid dispersion of mefenamic acid, a poor glass forming/poorly-water soluble compound, with polyvinylpyrrolidone (PVP) K12 was investigated. The implication of solid dispersion formation on solubility enhancement of MFA, prepared by cryomilling, was investigated. Solid state characterization was conducted using powder X-ray diffraction (PXRD) and Fourier-transform infrared (FTIR) spectroscopy combined with crystal structure analysis. Apparent solubility of the mixtures in pH 7.4 buffer was measured. A calculation to compare the powder patterns and FTIR spectra of solid dispersions with the corresponding physical mixtures was conducted. Solid state characterization showed that (1) MFA I transformed to MFA II when pure MFA I was cryogenically milled (CM); and (2) MFA forms a solid dispersion when MFA was cryogenically milled with PVP K12. FTIR spectral analysis showed that hydrogen bonding facilitated by mechanical impact played a major role in forming solid dispersions. The apparent solubility of MFA was significantly improved by making a solid dispersion with PVP K12 via cryomilling. This study highlights the importance of cryomilling with a good hydrogen bond forming excipient as a technique to prepare solid dispersion, especially when a compound shows a poor glass forming ability and therefore, is not easy to form amorphous forms by conventional method.
Model Based Predictive Control of AUVs for Station Keeping in a Shallow Water Wave Environment
National Research Council Canada - National Science Library
Riedel, Jeffery s; Healey, Anthony J
2005-01-01
.... In shallow water AUV operations, where large hydrodynamic forces are developed due to waves, knowledge of the sea is critical to allow for the design of a control system that will enable the vehicle...
Wave-induced extreme water levels in the Puerto Morelos fringing reef lagoon
Directory of Open Access Journals (Sweden)
A. Torres-Freyermuth
2012-12-01
Full Text Available Wave-induced extreme water levels in the Puerto Morelos fringing reef lagoon are investigated by means of a phase-resolving non-hydrostatic wave model (SWASH. This model solves the nonlinear shallow water equations including non-hydrostatic pressure. The one-dimensional version of the model is implemented in order to investigate wave transformation in fringing reefs. Firstly, the numerical model is validated with (i laboratory experiments conducted on a physical model (Demirbilek et al., 2007and (ii field observations (Coronado et al., 2007. Numerical results show good agreement with both experimental and field data. The comparison against the physical model results, for energetic wave conditions, indicates that high- and low-frequency wave transformation is well reproduced. Moreover, extreme water-level conditions measured during the passage of Hurricane Ivan in Puerto Morelos are also estimated by the numerical tool. Subsequently, the model is implemented at different along-reef locations in Puerto Morelos. Extreme water levels, wave-induced setup, and infragravity wave energy are estimated inside the reef lagoon for different storm wave conditions (H_{s} >2 m. The numerical results revealed a strong correlation between the offshore sea-swell wave energy and the setup. In contrast, infragravity waves are shown to be the result of a more complex pattern which heavily relies on the reef geometry. Indeed, the southern end of the reef lagoon provides evidence of resonance excitation, suggesting that the reef barrier may act as either a natural flood protection morphological feature, or as an inundation hazard enhancer depending on the incident wave conditions.