Dispersive finite-difference time-domain (FDTD) analysis of the elliptic cylindrical cloak
Energy Technology Data Exchange (ETDEWEB)
Lee, Y. Y.; Ahn, D. [University of Seoul, Seoul (Korea, Republic of)
2012-05-15
A dispersive full-wave finite-difference time-domain (FDTD) model is used to calculate the performance of elliptic cylindrical cloaking devices. The permittivity and the permeability tensors for the cloaking structure are derived by using an effective medium approach in general relativity. The elliptic cylindrical invisibility devices are found to show imperfect cloaking, and the cloaking performance is found to depend on the polarization of the incident waves, the direction of the propagation of those waves, the semi-focal distances and the loss tangents of the meta-material. When the semifocal distance of the elliptic cylinder decreases, the performance of the cloaking becomes very good, with neither noticeable scatterings nor field penetrations. For a larger semi-focal distance, only the TM wave with a specific propagation direction shows good cloaking performance. Realistic cloaking materials with loss still show a cloak that is working, but attenuated back-scattering waves exist.
Zhao, Yan; Belov, Pavel A.; Hao, Yang
2006-06-01
In this paper, a spatially dispersive finite-difference time-domain (FDTD) method to model wire media is developed and validated. Sub-wavelength imaging properties of the finite wire medium slabs are examined. It is demonstrated that the slab with its thickness equal to an integer number of half-wavelengths is capable of transporting images with sub-wavelength resolution from one interface of the slab to another. It is also shown that the operation of such transmission devices is not sensitive to their transverse dimensions, which can be made even comparable to the wavelength. In this case, the edge diffractions are negligible and do not disturb the image formation.
Finite difference time domain analysis of a chiro plasma
International Nuclear Information System (INIS)
Torres-Silva, H.; Obligado, A.; Reggiani, N.; Sakanaka, P.H.
1995-01-01
The finite difference time-domain (FDTD) method is one of the most widely used computational methods in electromagnetics. Using FDTD, Maxwell's equations are solved directly in the time domain via finite differences and time stepping. The basic approach is relatively easy to understand and is an alternative to the more usual frequency-domain approaches. (author). 5 refs
Finite difference time domain modelling of particle accelerators
International Nuclear Information System (INIS)
Jurgens, T.G.; Harfoush, F.A.
1989-03-01
Finite Difference Time Domain (FDTD) modelling has been successfully applied to a wide variety of electromagnetic scattering and interaction problems for many years. Here the method is extended to incorporate the modelling of wake fields in particle accelerators. Algorithmic comparisons are made to existing wake field codes, such as MAFIA T3. 9 refs., 7 figs
Finite difference time domain modeling of spiral antennas
Penney, Christopher W.; Beggs, John H.; Luebbers, Raymond J.
1992-01-01
The objectives outlined in the original proposal for this project were to create a well-documented computer analysis model based on the finite-difference, time-domain (FDTD) method that would be capable of computing antenna impedance, far-zone radiation patterns, and radar cross-section (RCS). The ability to model a variety of penetrable materials in addition to conductors is also desired. The spiral antennas under study by this project meet these requirements since they are constructed of slots cut into conducting surfaces which are backed by dielectric materials.
Computational electrodynamics the finite-difference time-domain method
Taflove, Allen
2005-01-01
This extensively revised and expanded third edition of the Artech House bestseller, Computational Electrodynamics: The Finite-Difference Time-Domain Method, offers engineers the most up-to-date and definitive resource on this critical method for solving Maxwell's equations. The method helps practitioners design antennas, wireless communications devices, high-speed digital and microwave circuits, and integrated optical devices with unsurpassed efficiency. There has been considerable advancement in FDTD computational technology over the past few years, and the third edition brings professionals the very latest details with entirely new chapters on important techniques, major updates on key topics, and new discussions on emerging areas such as nanophotonics. What's more, to supplement the third edition, the authors have created a Web site with solutions to problems, downloadable graphics and videos, and updates, making this new edition the ideal textbook on the subject as well.
Acoustic, finite-difference, time-domain technique development
International Nuclear Information System (INIS)
Kunz, K.
1994-01-01
A close analog exists between the behavior of sound waves in an ideal gas and the radiated waves of electromagnetics. This analog has been exploited to obtain an acoustic, finite-difference, time-domain (AFDTD) technique capable of treating small signal vibrations in elastic media, such as air, water, and metal, with the important feature of bending motion included in the behavior of the metal. This bending motion is particularly important when the metal is formed into sheets or plates. Bending motion does not have an analog in electromagnetics, but can be readily appended to the acoustic treatment since it appears as a single additional term in the force equation for plate motion, which is otherwise analogous to the electromagnetic wave equation. The AFDTD technique has been implemented in a code architecture that duplicates the electromagnetic, finite-difference, time-domain technique code. The main difference in the implementation is the form of the first-order coupled differential equations obtained from the wave equation. The gradient of pressure and divergence of velocity appear in these equations in the place of curls of the electric and magnetic fields. Other small changes exist as well, but the codes are essentially interchangeable. The pre- and post-processing for model construction and response-data evaluation of the electromagnetic code, in the form of the TSAR code at Lawrence Livermore National Laboratory, can be used for the acoustic version. A variety of applications is possible, pending validation of the bending phenomenon. The applications include acoustic-radiation-pattern predictions for a submerged object; mine detection analysis; structural noise analysis for cars; acoustic barrier analysis; and symphonic hall/auditorium predictions and speaker enclosure modeling
Transient analysis of printed lines using finite-difference time-domain method
Energy Technology Data Exchange (ETDEWEB)
Ahmed, Shahid [Thomas Jefferson National Accelerator Facility, 12050 Jefferson Avenue, Suite 704, Newport News, VA, 23606, USA
2012-03-29
Comprehensive studies of ultra-wideband pulses and electromagnetic coupling on printed coupled lines have been performed using full-wave 3D finite-difference time-domain analysis. Effects of unequal phase velocities of coupled modes, coupling between line traces, and the frequency dispersion on the waveform fidelity and crosstalk have been investigated in detail. To discriminate the contributions of different mechanisms into pulse evolution, single and coupled microstrip lines without (ϵ_{r} = 1) and with (ϵ_{r} > 1) dielectric substrates have been examined. To consistently compare the performance of the coupled lines with substrates of different permittivities and transients of different characteristic times, a generic metric similar to the electrical wavelength has been introduced. The features of pulse propagation on coupled lines with layered and pedestal substrates and on the irregular traces have been explored. Finally, physical interpretations of the simulation results are discussed in the paper.
Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics
Gedney, Stephen
2011-01-01
Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics provides a comprehensive tutorial of the most widely used method for solving Maxwell's equations -- the Finite Difference Time-Domain Method. This book is an essential guide for students, researchers, and professional engineers who want to gain a fundamental knowledge of the FDTD method. It can accompany an undergraduate or entry-level graduate course or be used for self-study. The book provides all the background required to either research or apply the FDTD method for the solution of Maxwell's equations to p
The finite-difference time-domain method for electromagnetics with Matlab simulations
Elsherbeni, Atef Z
2016-01-01
This book introduces the powerful Finite-Difference Time-Domain method to students and interested researchers and readers. An effective introduction is accomplished using a step-by-step process that builds competence and confidence in developing complete working codes for the design and analysis of various antennas and microwave devices.
Finite-difference time-domain analysis of time-resolved terahertz spectroscopy experiments
DEFF Research Database (Denmark)
Larsen, Casper; Cooke, David G.; Jepsen, Peter Uhd
2011-01-01
In this paper we report on the numerical analysis of a time-resolved terahertz (THz) spectroscopy experiment using a modified finite-difference time-domain method. Using this method, we show that ultrafast carrier dynamics can be extracted with a time resolution smaller than the duration of the T...
Perfectly Matched Layer for the Wave Equation Finite Difference Time Domain Method
Miyazaki, Yutaka; Tsuchiya, Takao
2012-07-01
The perfectly matched layer (PML) is introduced into the wave equation finite difference time domain (WE-FDTD) method. The WE-FDTD method is a finite difference method in which the wave equation is directly discretized on the basis of the central differences. The required memory of the WE-FDTD method is less than that of the standard FDTD method because no particle velocity is stored in the memory. In this study, the WE-FDTD method is first combined with the standard FDTD method. Then, Berenger's PML is combined with the WE-FDTD method. Some numerical demonstrations are given for the two- and three-dimensional sound fields.
Solving the Schroedinger equation using the finite difference time domain method
International Nuclear Information System (INIS)
Sudiarta, I Wayan; Geldart, D J Wallace
2007-01-01
In this paper, we solve the Schroedinger equation using the finite difference time domain (FDTD) method to determine energies and eigenfunctions. In order to apply the FDTD method, the Schroedinger equation is first transformed into a diffusion equation by the imaginary time transformation. The resulting time-domain diffusion equation is then solved numerically by the FDTD method. The theory and an algorithm are provided for the procedure. Numerical results are given for illustrative examples in one, two and three dimensions. It is shown that the FDTD method accurately determines eigenfunctions and energies of these systems
Gabran, S R I; Saad, J H; Salama, M M A; Mansour, R R
2009-01-01
This paper demonstrates the electromagnetic modeling and simulation of an implanted Medtronic deep brain stimulation (DBS) electrode using finite difference time domain (FDTD). The model is developed using Empire XCcel and represents the electrode surrounded with brain tissue assuming homogenous and isotropic medium. The model is created to study the parameters influencing the electric field distribution within the tissue in order to provide reference and benchmarking data for DBS and intra-cortical electrode development.
Finite-difference time-domain simulation of electromagnetic bandgap and bi-anisotropic metamaterials
Bray, Matthew G.
The term "Metamaterial" has been introduced into the electromagnetic lexicon in recent years to describe new artificial materials with electromagnetic properties that are not found in naturally occurring materials. Metamaterials exhibit electromagnetic properties that are not observed in its constituent materials, and/or not observed in nature. This thesis will analyze two different classes of metamaterials through the use of the finite-difference time-domain (FDTD) technique. The first class of metamaterials are artificial magnetic conductors (AMC) which approximate the behavior of a perfect magnetic conductor (PMC) over a finite frequency range. The AMC metamaterials are created through the use of an electromagnetic bandgap (EBG) structure. A periodic FDTD code is used to simulate a full-wave model of the metallodielectric EBG structures. The AMCs developed with the aid of the FDTD tool are then used to create low-profile antenna systems consisting of a dipole antenna in close proximity to an AMC surface. Through the use of this FDTD tool, several original contributions were made to the electromagnetic community. These include the first dual-band independently tunable EBG AMC ground plane and the first linearly polarized single-band and dual-band tunable antenna/EBG systems. The second class of materials analyzed are bi-anisotropic metamaterials. Bi-anisotropic media are the largest class of linear media which is able to describe the macroscopic material properties of artificial dielectrics, artificial magnetics, artificial chiral materials, left-handed materials, and other composite materials. The dispersive properties of these materials can be approximated by the oscillator model. This model assumes a Lorentzian frequency profile for the permittivity and permeability and a Condon model for chirality. A new FDTD formulation is introduced which can simulate this type of bi-anisotropic media. This FDTD method incorporates the dispersive material properties through
Lansing, Faiza S.; Rascoe, Daniel L.
1993-01-01
This paper presents a modified Finite-Difference Time-Domain (FDTD) technique using a generalized conformed orthogonal grid. The use of the Conformed Orthogonal Grid, Finite Difference Time Domain (GFDTD) enables the designer to match all the circuit dimensions, hence eliminating a major source o error in the analysis.
DEFF Research Database (Denmark)
Santillan, Arturo Orozco
2011-01-01
The aim of the work described in this paper has been to investigate the use of the finite-difference time-domain method to describe the interactions between a moving object and a sound field. The main objective was to simulate oscillational instabilities that appear in single-axis acoustic...... levitation devices and to describe their evolution in time to further understand the physical mechanism involved. The study shows that the method gives accurate results for steady state conditions, and that it is a promising tool for simulations with a moving object....
Scattering analysis of periodic structures using finite-difference time-domain
ElMahgoub, Khaled; Elsherbeni, Atef Z
2012-01-01
Periodic structures are of great importance in electromagnetics due to their wide range of applications such as frequency selective surfaces (FSS), electromagnetic band gap (EBG) structures, periodic absorbers, meta-materials, and many others. The aim of this book is to develop efficient computational algorithms to analyze the scattering properties of various electromagnetic periodic structures using the finite-difference time-domain periodic boundary condition (FDTD/PBC) method. A new FDTD/PBC-based algorithm is introduced to analyze general skewed grid periodic structures while another algor
Finite-difference time-domain simulation of thermal noise in open cavities
International Nuclear Information System (INIS)
Andreasen, Jonathan; Cao Hui; Taflove, Allen; Kumar, Prem; Cao Changqi
2008-01-01
A numerical model based on the finite-difference time-domain (FDTD) method is developed to simulate thermal noise in open cavities owing to output coupling. The absorbing boundary of the FDTD grid is treated as a blackbody, whose thermal radiation penetrates the cavity in the grid. The calculated amount of thermal noise in a one-dimensional dielectric cavity recovers the standard result of the quantum Langevin equation in the Markovian regime. Our FDTD simulation also demonstrates that in the non-Markovian regime the buildup of the intracavity noise field depends on the ratio of the cavity photon lifetime to the coherence time of thermal radiation. The advantage of our numerical method is that the thermal noise is introduced in the time domain without prior knowledge of cavity modes
Application of the symplectic finite-difference time-domain scheme to electromagnetic simulation
International Nuclear Information System (INIS)
Sha, Wei; Huang, Zhixiang; Wu, Xianliang; Chen, Mingsheng
2007-01-01
An explicit fourth-order finite-difference time-domain (FDTD) scheme using the symplectic integrator is applied to electromagnetic simulation. A feasible numerical implementation of the symplectic FDTD (SFDTD) scheme is specified. In particular, new strategies for the air-dielectric interface treatment and the near-to-far-field (NFF) transformation are presented. By using the SFDTD scheme, both the radiation and the scattering of three-dimensional objects are computed. Furthermore, the energy-conserving characteristic hold for the SFDTD scheme is verified under long-term simulation. Numerical results suggest that the SFDTD scheme is more efficient than the traditional FDTD method and other high-order methods, and can save computational resources
Finite difference time domain solution of electromagnetic scattering on the hypercube
International Nuclear Information System (INIS)
Calalo, R.H.; Lyons, J.R.; Imbriale, W.A.
1988-01-01
Electromagnetic fields interacting with a dielectric or conducting structure produce scattered electromagnetic fields. To model the fields produced by complicated, volumetric structures, the finite difference time domain (FDTD) method employs an iterative solution to Maxwell's time dependent curl equations. Implementations of the FDTD method intensively use memory and perform numerous calculations per time step iteration. The authors have implemented an FDTD code on the California Institute of Technology/Jet Propulsion Laboratory Mark III Hypercube. This code allows to solve problems requiring as many as 2,048,000 unit cells on a 32 node Hypercube. For smaller problems, the code produces solutions in a fraction of the time to solve the same problems on sequential computers
Simulation of acoustic streaming by means of the finite-difference time-domain method
DEFF Research Database (Denmark)
Santillan, Arturo Orozco
2012-01-01
Numerical simulations of acoustic streaming generated by a standing wave in a narrow twodimensional cavity are presented. In this case, acoustic streaming arises from the viscous boundary layers set up at the surfaces of the walls. It is known that streaming vortices inside the boundary layer have...... directions of rotation that are opposite to those of the outer streaming vortices (Rayleigh streaming). The general objective of the work described in this paper has been to study the extent to which it is possible to simulate both the outer streaming vortices and the inner boundary layer vortices using...... the finite-difference time-domain method. To simplify the problem, thermal effects are not considered. The motivation of the described investigation has been the possibility of using the numerical method to study acoustic streaming, particularly under non-steady conditions. Results are discussed for channels...
Seismic wavefield modeling based on time-domain symplectic and Fourier finite-difference method
Fang, Gang; Ba, Jing; Liu, Xin-xin; Zhu, Kun; Liu, Guo-Chang
2017-06-01
Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps.
Wilts, Bodo D; Michielsen, Kristel; De Raedt, Hans; Stavenga, Doekele G
2014-03-25
Birds-of-paradise are nature's prime examples of the evolution of color by sexual selection. Their brilliant, structurally colored feathers play a principal role in mating displays. The structural coloration of both the occipital and breast feathers of the bird-of-paradise Lawes' parotia is produced by melanin rodlets arranged in layers, together acting as interference reflectors. Light reflection by the silvery colored occipital feathers is unidirectional as in a classical multilayer, but the reflection by the richly colored breast feathers is three-directional and extraordinarily complex. Here we show that the reflection properties of both feather types can be quantitatively explained by finite-difference time-domain modeling using realistic feather anatomies and experimentally determined refractive index dispersion values of keratin and melanin. The results elucidate the interplay between avian coloration and vision and indicate tuning of the mating displays to the spectral properties of the avian visual system.
Comparison of SAR calculation algorithms for the finite-difference time-domain method
International Nuclear Information System (INIS)
Laakso, Ilkka; Uusitupa, Tero; Ilvonen, Sami
2010-01-01
Finite-difference time-domain (FDTD) simulations of specific-absorption rate (SAR) have several uncertainty factors. For example, significantly varying SAR values may result from the use of different algorithms for determining the SAR from the FDTD electric field. The objective of this paper is to rigorously study the divergence of SAR values due to different SAR calculation algorithms and to examine if some SAR calculation algorithm should be preferred over others. For this purpose, numerical FDTD results are compared to analytical solutions in a one-dimensional layered model and a three-dimensional spherical object. Additionally, the implications of SAR calculation algorithms for dosimetry of anatomically realistic whole-body models are studied. The results show that the trapezium algorithm-based on the trapezium integration rule-is always conservative compared to the analytic solution, making it a good choice for worst-case exposure assessment. In contrast, the mid-ordinate algorithm-named after the mid-ordinate integration rule-usually underestimates the analytic SAR. The linear algorithm-which is approximately a weighted average of the two-seems to be the most accurate choice overall, typically giving the best fit with the shape of the analytic SAR distribution. For anatomically realistic models, the whole-body SAR difference between different algorithms is relatively independent of the used body model, incident direction and polarization of the plane wave. The main factors affecting the difference are cell size and frequency. The choice of the SAR calculation algorithm is an important simulation parameter in high-frequency FDTD SAR calculations, and it should be explained to allow intercomparison of the results between different studies. (note)
Use of the finite-difference time-domain method in electromagnetic dosimetry
International Nuclear Information System (INIS)
Sullivan, D.M.
1987-01-01
Although there are acceptable methods for calculating whole body electromagnetic absorption, no completely acceptable method for calculating the local specific absorption rate (SAR) at points within the body has been developed. Frequency domain methods, such as the method of moments (MoM) have achieved some success; however, the MoM requires computer storage on the order of (3N) 2 , and computation time on the order of (3N) 3 where N is the number of cells. The finite-difference time-domain (FDTD) method has been employed extensively in calculating the scattering from metallic objects, and recently is seeing some use in calculating the interaction of EM fields with complex, lossy dielectric bodies. Since the FDTD method has storage and time requirements proportional to N, it presents an attractive alternative to calculating SAR distribution in large bodies. This dissertation describes the FDTD method and evaluates it by comparing its results with analytic solutions in 2 and 3 dimensions. The results obtained demonstrate that the FDTD method is capable of calculating internal SAR distribution with acceptable accuracy. The construction of a data base to provide detailed, inhomogeneous man models for use with the FDTD method is described. Using this construction method, a model of 40,000 1.31 cm. cells is developed for use at 350 MHz, and another model consisting of 5000 2.62 cm. cells is developed for use at 100 MHz. To add more realism to the problem, a ground plane is added to the FDTD software. The needed changes to the software are described, along with a test which confirms its accuracy. Using the CRAY II supercomputer, SAR distributions in human models are calculated using incident frequencies of 100 MHz and 350 MHz for three different cases: (1) A homogeneous man model in free space, (2) an inhomogeneous man model in free space, and (3) an inhomogeneous man model standing on a ground plane
Plasmonic Resonances for Spectroscopy Applications using 3D Finite-Difference Time-Domain Models
Ravi, Aruna
Tuning plasmonic extinction resonances of sub-wavelength scale structures is essential to achieve maximum sensitivity and accuracy. These resonances can be controlled with careful design of nanoparticle geometries and incident wave attributes. In the first part of this dissertation, plasmonically enhanced effects on hexagonal-arrays of metal nanoparticles, metal-hole arrays (micro-mesh), and linear-arrays of metal nanorings are analyzed using three-dimensional Finite-Difference Time-Domain (3D-FDTD) simulations. The effect of particle size, lattice spacing, and lack of monodispersity of a self-assembled, hexagonal array layer of silver (Ag) nanoparticles on the extinction resonance is investigated to help determine optimal design specifications for efficient organic solar power harvesting. The enhancement of transmission resonances using plasmonic thin metal films with arrays of holes which enable recording of scatter-free infrared (IR) transmission spectra of individual particles is also explored. This method is quantitative, non-destructive and helps in better understanding the interaction of light with sub-wavelength particles. Next, plasmonically enhanced effects on linear arrays of gold (Au) rings are studied. Simulations employing 3D-FDTD can be used to determine the set of geometrical parameters to attain localized surface plasmon resonance (LSPR). The shifts in resonances due to changes in the effective dielectric of the structure are investigated, which is useful in sensing applications. Computational models enrich experimental studies. In the second part of this dissertation, the effect of particle size, shape and orientation on the IR spectra is investigated using 3D-FDTD and Mie-Bruggeman models. This computational analysis is extended to include clusters of particles of mixed composition. The prediction of extinction and absorption spectra of single particles of mixed composition helps in interpreting their physical properties and predict chemical
Study of two-dimensional transient cavity fields using the finite-difference time-domain technique
International Nuclear Information System (INIS)
Crisp, J.L.
1988-06-01
This work is intended to be a study into the application of the finite-difference time-domain, or FD-TD technique, to some of the problems faced by designers of equipment used in modern accelerators. In particular it discusses using the FD-TD algorithm to study the field distribution of a simple two-dimensional cavity in both space and time. 18 refs
Study of two-dimensional transient cavity fields using the finite-difference time-domain technique
Energy Technology Data Exchange (ETDEWEB)
Crisp, J.L.
1988-06-01
This work is intended to be a study into the application of the finite-difference time-domain, or FD-TD technique, to some of the problems faced by designers of equipment used in modern accelerators. In particular it discusses using the FD-TD algorithm to study the field distribution of a simple two-dimensional cavity in both space and time. 18 refs.
Jia, Shouqing; La, Dongsheng; Ma, Xuelian
2018-04-01
The finite difference time domain (FDTD) algorithm and Green function algorithm are implemented into the numerical simulation of electromagnetic waves in Schwarzschild space-time. FDTD method in curved space-time is developed by filling the flat space-time with an equivalent medium. Green function in curved space-time is obtained by solving transport equations. Simulation results validate both the FDTD code and Green function code. The methods developed in this paper offer a tool to solve electromagnetic scattering problems.
Double absorbing boundaries for finite-difference time-domain electromagnetics
Energy Technology Data Exchange (ETDEWEB)
LaGrone, John, E-mail: jlagrone@smu.edu; Hagstrom, Thomas, E-mail: thagstrom@smu.edu
2016-12-01
We describe the implementation of optimal local radiation boundary condition sequences for second order finite difference approximations to Maxwell's equations and the scalar wave equation using the double absorbing boundary formulation. Numerical experiments are presented which demonstrate that the design accuracy of the boundary conditions is achieved and, for comparable effort, exceeds that of a convolution perfectly matched layer with reasonably chosen parameters. An advantage of the proposed approach is that parameters can be chosen using an accurate a priori error bound.
Finite difference time domain modeling of light matter interaction in light-propelled microtools
DEFF Research Database (Denmark)
Bañas, Andrew Rafael; Palima, Darwin; Aabo, Thomas
2013-01-01
save time as it helps optimize the structures prior to fabrication and experiments. In addition to field distributions, optical forces can also be obtained using the Maxwell stress tensor formulation. By calculating the forces on bent waveguides subjected to tailored static light distributions, we...... may trigger highly localized non linear processes in the surface of a cell. Since these functionalities are strongly dependent on design, it is important to use models that can handle complexities and take in little simplifying assumptions about the system. Hence, we use the finite difference time...
Directory of Open Access Journals (Sweden)
Min-Jhong Gu
2014-08-01
Full Text Available This article describes the development of a suite of programs that is capable of simulating the radiation properties of a random rough surface (RRS. The fundamental approach involves the generation, by fast Fourier transform (FFT built with rigorous finite difference time domain (FDTD, as the theoretical basis for the simulation of a bidirectional reflectance distribution function (BRDF of the RRS. The results are compared with the measurements and modeling of existing work to verify the feasibility of customized programming. It was found that the results of this study were a better match to the measurement data than those achieved in other modeling work.
DEFF Research Database (Denmark)
Escolano-Carrasco, José; Jacobsen, Finn; López, J.J.
2008-01-01
The finite-difference time-domain (FDTD) method provides a simple and accurate way of solving initial boundary value problems. However, most acoustic problems involve frequency dependent boundary conditions, and it is not easy to include such boundary conditions in an FDTD model. Although solutions...... to this problem exist, most of them have high computational costs, and stability cannot always be ensured. In this work, a solution is proposed based on "mixing modelling strategies"; this involves separating the FDTD mesh and the boundary conditions (a digital filter representation of the impedance...
Sprague, Mark W; Luczkovich, Joseph J
2016-01-01
This finite-difference time domain (FDTD) model for sound propagation in very shallow water uses pressure and velocity grids with both 3-dimensional Cartesian and 2-dimensional cylindrical implementations. Parameters, including water and sediment properties, can vary in each dimension. Steady-state and transient signals from discrete and distributed sources, such as the surface of a vibrating pile, can be used. The cylindrical implementation uses less computation but requires axial symmetry. The Cartesian implementation allows asymmetry. FDTD calculations compare well with those of a split-step parabolic equation. Applications include modeling the propagation of individual fish sounds, fish aggregation sounds, and distributed sources.
International Nuclear Information System (INIS)
Wang Shumin; Duyn, Jeff H
2008-01-01
A hybrid method that combines the finite-difference time-domain (FDTD) method and the finite-element time-domain (FETD) method is presented for simulating radio-frequency (RF) coils in magnetic resonance imaging. This method applies a high-fidelity FETD method to RF coils, while the human body is modeled with a low-cost FDTD method. Since the FDTD and the FETD methods are applied simultaneously, the dynamic interaction between RF coils and the human body is fully accounted for. In order to simplify the treatment of the highly irregular FDTD/FETD interface, composite elements are proposed. Two examples are provided to demonstrate the validity and effectiveness of the hybrid method in high-field receive-and-transmit coil design. This approach is also applicable to general bio-electromagnetic simulations
Directory of Open Access Journals (Sweden)
Koichi Narahara
2012-01-01
Full Text Available Nonlinear transmission lines, which define transmission lines periodically loaded with nonlinear devices such as varactors, diodes, and transistors, are modeled in the framework of finite-difference time-domain (FDTD method. Originally, some root-finding routine is needed to evaluate the contributions of nonlinear device currents appropriately to the temporally advanced electrical fields. Arbitrary nonlinear transmission lines contain large amount of nonlinear devices; therefore, it costs too much time to complete calculations. To reduce the calculation time, we recently developed a simple model of diodes to eliminate root-finding routines in an FDTD solver. Approximating the diode current-voltage relation by a piecewise-linear function, an extended Ampere's law is solved in a closed form for the time-advanced electrical fields. In this paper, we newly develop an FDTD model of field-effect transistors (FETs, together with several numerical examples that demonstrate pulse-shortening phenomena in a traveling-wave FET.
Directory of Open Access Journals (Sweden)
B. U. Musa
2017-04-01
Full Text Available The C++ programming language was used to implement three-dimensional (3-D finite-difference time-domain (FDTD technique to simulate radiation of high frequency electromagnetic waves in free space. To achieve any meaningful results the computational domain of interest should have to be truncated in some way and this is achieved by applying absorbing boundary conditions. A uniaxial perfectly matched layer (UPML absorbing boundary condition is used in this work. The discretised equations of the UPML in FDTD time stepping scheme were derived and has been successfully implemented using the computer program. Simulation results showed that the UPML behaves as an absorber. This was confirmed by comparing the results with another boundary condition, the Mur ABC.
Directory of Open Access Journals (Sweden)
Alexandre Bambina
2018-01-01
Full Text Available Limitation of the cloak-size reduction is investigated numerically by a finite-difference time-domain (FDTD method. A metallic pole that imitates an antenna is cloaked with an anisotropic and parameter-gradient medium against electromagnetic-wave propagation in microwave range. The cloaking structure is a metamaterial submerged in a plasma confined in a vacuum chamber made of glass. The smooth-permittivity plasma can be compressed in the radial direction, which enables us to decrease the size of the cloak. Theoretical analysis is performed numerically by comparing scattering waves in various cases; there exists a high reduction of the scattering wave when the radius of the cloak is larger than a quarter of one wavelength. This result indicates that the required size of the cloaking layer is more than an object scale in the Rayleigh scattering regime.
Directory of Open Access Journals (Sweden)
N. Dadashzadeh
2013-09-01
Full Text Available Ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. Therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. We provide an overview of recent theoretical developments in a numerical modeling of Maxwell's equations to analyze the propagation of short laser pulses in photonic structures. The process of short light pulse propagation through 2D periodic and quasi-periodic photonic structures is simulated based on Finite-Difference Time-Domain calculations of Maxwell’s equations.
Directory of Open Access Journals (Sweden)
Nurista Wahyu Kirana
2016-06-01
Full Text Available Pada penelitian ini dirancang antena mikrostrip dengan slot double F, di mana antena ini dapat digunakan untuk perangkat wireless yang bekerja pada frekuensi multiband. Antena mikrostrip double F dirancang dengan simulasi, dipabrikasi dan diukur secara riil. Finite Difference Time Domain (FDTD digunakan untuk menganalisis karakteristik distribusi arus yang tersebar pada mikrostrip. Nilai parameter terbaik dari hasil simulasi untuk return loss adalah -31,09 dB pada frekuensi 2,4 GHz dan VSWR sebesar 1,057 sedangkan hasil pengukurannya sebesar -32,82 dB pada frekuensi 2,4 GHz dan VSWR sebesar 1,045. Penggunaan slot pada patch antena dan pencatuan proximity yang digunakan meningkatkan bandwidth antena sebesar 48,7% dan gain yang dihasilkan sebesar 5,97 dBi.
International Nuclear Information System (INIS)
Lu Jia; Zhou Huaichun
2016-01-01
To deal with the staircase approximation problem in the standard finite-difference time-domain (FDTD) simulation, the two-dimensional boundary condition equations (BCE) method is proposed in this paper. In the BCE method, the standard FDTD algorithm can be used as usual, and the curved surface is treated by adding the boundary condition equations. Thus, while maintaining the simplicity and computational efficiency of the standard FDTD algorithm, the BCE method can solve the staircase approximation problem. The BCE method is validated by analyzing near field and far field scattering properties of the PEC and dielectric cylinders. The results show that the BCE method can maintain a second-order accuracy by eliminating the staircase approximation errors. Moreover, the results of the BCE method show good accuracy for cylinder scattering cases with different permittivities. (paper)
Huang, Shi-Hao; Wang, Shiang-Jiu; Tseng, Snow H.
2015-03-01
Optical coherence tomography (OCT) provides high resolution, cross-sectional image of internal microstructure of biological tissue. We use the Finite-Difference Time-Domain method (FDTD) to analyze the data acquired by OCT, which can help us reconstruct the refractive index of the biological tissue. We calculate the refractive index tomography and try to match the simulation with the data acquired by OCT. Specifically, we try to reconstruct the structure of melanin, which has complex refractive indices and is the key component of human pigment system. The results indicate that better reconstruction can be achieved for homogenous sample, whereas the reconstruction is degraded for samples with fine structure or with complex interface. Simulation reconstruction shows structures of the Melanin that may be useful for biomedical optics applications.
Energy Technology Data Exchange (ETDEWEB)
Aldridge, David Franklin; Collier, Sandra L. (U.S. Army Research Laboratory); Marlin, David H. (U.S. Army Research Laboratory); Ostashev, Vladimir E. (NOAA/Environmental Technology Laboratory); Symons, Neill Phillip; Wilson, D. Keith (U.S. Army Cold Regions Research Engineering Lab.)
2005-05-01
This document is intended to serve as a users guide for the time-domain atmospheric acoustic propagation suite (TDAAPS) program developed as part of the Department of Defense High-Performance Modernization Office (HPCMP) Common High-Performance Computing Scalable Software Initiative (CHSSI). TDAAPS performs staggered-grid finite-difference modeling of the acoustic velocity-pressure system with the incorporation of spatially inhomogeneous winds. Wherever practical the control structure of the codes are written in C++ using an object oriented design. Sections of code where a large number of calculations are required are written in C or F77 in order to enable better compiler optimization of these sections. The TDAAPS program conforms to a UNIX style calling interface. Most of the actions of the codes are controlled by adding flags to the invoking command line. This document presents a large number of examples and provides new users with the necessary background to perform acoustic modeling with TDAAPS.
Banerjee, Saswatee; Hoshino, Tetsuya; Cole, James B
2008-08-01
We introduce a new implementation of the finite-difference time-domain (FDTD) algorithm with recursive convolution (RC) for first-order Drude metals. We implemented RC for both Maxwell's equations for light polarized in the plane of incidence (TM mode) and the wave equation for light polarized normal to the plane of incidence (TE mode). We computed the Drude parameters at each wavelength using the measured value of the dielectric constant as a function of the spatial and temporal discretization to ensure both the accuracy of the material model and algorithm stability. For the TE mode, where Maxwell's equations reduce to the wave equation (even in a region of nonuniform permittivity) we introduced a wave equation formulation of RC-FDTD. This greatly reduces the computational cost. We used our methods to compute the diffraction characteristics of metallic gratings in the visible wavelength band and compared our results with frequency-domain calculations.
International Nuclear Information System (INIS)
Wang Yue; Wang Jian-Guo; Chen Zai-Gao
2015-01-01
Based on conformal construction of physical model in a three-dimensional Cartesian grid, an integral-based conformal convolutional perfectly matched layer (CPML) is given for solving the truncation problem of the open port when the enlarged cell technique conformal finite-difference time-domain (ECT-CFDTD) method is used to simulate the wave propagation inside a perfect electric conductor (PEC) waveguide. The algorithm has the same numerical stability as the ECT-CFDTD method. For the long-time propagation problems of an evanescent wave in a waveguide, several numerical simulations are performed to analyze the reflection error by sweeping the constitutive parameters of the integral-based conformal CPML. Our numerical results show that the integral-based conformal CPML can be used to efficiently truncate the open port of the waveguide. (paper)
International Nuclear Information System (INIS)
Ford, Patrick J.; Beeson, Sterling R.; Krompholz, Hermann G.; Neuber, Andreas A.
2012-01-01
A finite-difference algorithm was developed to calculate several RF breakdown parameters, for example, the formative delay time that is observed between the initial application of a RF field to a dielectric surface and the formation of field-induced plasma interrupting the RF power flow. The analysis is focused on the surface being exposed to a background gas pressure above 50 Torr. The finite-difference algorithm provides numerical solutions to partial differential equations with high resolution in the time domain, making it suitable for simulating the time evolving interaction of microwaves with plasma; in lieu of direct particle tracking, a macroscopic electron density is used to model growth and transport. This approach is presented as an alternative to particle-in-cell methods due to its low complexity and runtime leading to more efficient analysis for a simulation of a microsecond scale pulse. The effect and development of the plasma is modeled in the simulation using scaling laws for ionization rates, momentum transfer collision rates, and diffusion coefficients, as a function of electric field, gas type and pressure. The incorporation of plasma material into the simulation involves using the Z-transform to derive a time-domain algorithm from the complex frequency-dependent permittivity of plasma. Therefore, the effect of the developing plasma on the instantaneous microwave field is calculated. Simulation results are compared with power measurements using an apparatus designed to facilitate surface flashover across a polycarbonate boundary in a controlled N 2 , air, or argon environment at pressures exceeding 50 Torr.
International Nuclear Information System (INIS)
Fujii, A; Hayashi, S; Fujii, S; Yanagi, K
2014-01-01
This paper deals with the functional performance of optical surface texture measuring instruments on the market. It is well known that their height response curves against certain referential geometry are not always identical to each other. So, a more precise study on the optical instrument's characteristics is greatly needed. Firstly, we developed a new simulation tool using a finite-difference time-domain technique, which enables the prediction of the height response curve against the fundamental surface geometry in the case of the confocal laser scanning microscope. Secondly, by utilizing this new simulation tool, measurement results, including outliers, were compared with the analytical simulation results. The comparison showed the consistency, which indicates that necessary conditions of surface measurement standards for verifying the instrument performance can be established. Consequently, we suggest that the maximum measurable slope angle must be added to evaluation subjects as significant metrological characteristics of measuring instruments, along with the lateral period limit. Finally, we propose a procedure to determine the lateral period limit in an ISO standard. (paper)
Ryan, Deirdre A.; Luebbers, Raymond J.; Nguyen, Truong X.; Kunz, Karl S.; Steich, David J.
1992-01-01
Prediction of anechoic chamber performance is a difficult problem. Electromagnetic anechoic chambers exist for a wide range of frequencies but are typically very large when measured in wavelengths. Three dimensional finite difference time domain (FDTD) modeling of anechoic chambers is possible with current computers but at frequencies lower than most chamber design frequencies. However, two dimensional FDTD (2D-FTD) modeling enables much greater detail at higher frequencies and offers significant insight into compact anechoic chamber design and performance. A major subsystem of an anechoic chamber for which computational electromagnetic analyses exist is the reflector. First, an analysis of the quiet zone fields of a low frequency anechoic chamber produced by a uniform source and a reflector in two dimensions using the FDTD method is presented. The 2D-FDTD results are compared with results from a three dimensional corrected physical optics calculation and show good agreement. Next, a directional source is substituted for the uniform radiator. Finally, a two dimensional anechoic chamber geometry, including absorbing materials, is considered, and the 2D-FDTD results for these geometries appear reasonable.
International Nuclear Information System (INIS)
Lee, Jungpyo; Cappelli, Mark A
2008-01-01
In this paper, we present finite difference time domain (FDTD) simulations of millimetre-wave propagation through the near-field plasma plume of low power Hall thrusters. The simulations are intended to address potential issues (collisions, magnetic fields) that may affect the validity of simple theory used for phase shift determination in the recent measurements of plasma density using microwave interferometry (Cappelli et al 2006 J. Phys. D: Appl. Phys. 39 4582). One-dimensional plane wave FDTD simulations indicate that plasma non-uniformities along the direction of wave propagation have only a minor effect on the phase shifts estimated from collisionless, non-magnetized wave propagation through a path-length averaged plasma slab. Three-dimensional FDTD simulations that also account for electron collisions and magnetic fields indicate that the departure from the use of usual simple models is no more than about 15%, well within the limits of uncertainty in the experimental measurements taken within the near field of these plasma sources
Chao, Guo-Shan; Sung, Kung-Bin
2010-02-01
Backscattered light spectra have been used to extract size distribution of cell nuclei in epithelial tissues for noninvasive detection of precancerous lesions. In existing experimental studies, size estimation is achieved by assuming nuclei as homogeneous spheres or spheroids and fitting the measured data with models based on Mie theory. However, the validity of simplifying nuclei as homogeneous spheres has not been thoroughly examined. In this study, we investigate the spectral characteristics of backscattering from models of spheroidal nuclei under plane wave illumination using three-dimensional finite-difference time-domain (FDTD) simulation. A modulated Gaussian pulse is used to obtain wavelength dependent scattering intensity with a single FDTD run. The simulated model of nuclei consists of a nucleolus and randomly distributed chromatin condensation in homogeneous cytoplasm and nucleoplasm. The results show that backscattering spectra from spheroidal nuclei have similar oscillating patterns to those from homogeneous spheres with the diameter equal to the projective length of the spheroidal nucleus along the propagation direction. The strength of backscattering is enhanced in heterogeneous spheroids as compared to homogeneous spheroids. The degree of which backscattering spectra of heterogeneous nuclei deviate from Mie theory is highly dependent on the distribution of chromatin/nucleolus but not sensitive to nucleolar size, refractive index fluctuation or chromatin density.
Development and application of dispersive soft ferrite models for time-domain simulation
International Nuclear Information System (INIS)
DeFord, J.F.; Kamin, G.; Craig, G.D.; Walling, L.
1992-01-01
Ferrite has a variety of applications in accelerator components, and the capability to model this magnetic material in the time domain is an important adjunct to currently available accelerator modeling tool. We describe in this report a material model we have developed for the magnetic characteristics of PE11BL, the ferrite found in the ETA-II (Experimental Test Accelerator-II) induction module. This model, which includes the important magnetic dispersion effects found in most soft ferrites, has been implemented in 1-D and 2-D finite-difference time-domain (FDTD) electromagnetic simulators, and comparisons with analytic and experimental results are presented
DEFF Research Database (Denmark)
Celestinos, Adrian; Nielsen, Sofus Birkedal
2008-01-01
Small- and medium-size rectangular rooms have a strong influence on the low-frequency performance of loudspeakers. A simulation program based on the finite-difference time-domain (FDTD) method is introduced to analyze the sound field produced by loudspeakers in rectangular rooms at low frequencies...
International Nuclear Information System (INIS)
Kinefuchi, K.; Funaki, I.; Shimada, T.; Abe, T.
2012-01-01
Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model. The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.
Energy Technology Data Exchange (ETDEWEB)
Kinefuchi, K. [Department of Aeronautics and Astronautics, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Funaki, I.; Shimada, T.; Abe, T. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)
2012-10-15
Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model. The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.
International Nuclear Information System (INIS)
Uusitupa, T M; Ilvonen, S A; Laakso, I M; Nikoskinen, K I
2008-01-01
In this paper, the anatomically realistic body model Zubal is exposed to a plane wave. A finite-difference time-domain (FDTD) method is used to obtain field data for specific-absorption-rate (SAR) computation. It is investigated how the FDTD resolution, power-loss computation method and positioning of the material voxels in the FDTD grid affect the SAR results. The results enable one to estimate the effects due to certain fundamental choices made in the SAR simulation
DEFF Research Database (Denmark)
Shyroki, Dzmitry; Lavrinenko, Andrei
2007-01-01
A complex-coordinate method known under the guise of the perfectly matched layer (PML) method for treating unbounded domains in computational electrodynamics is related to similar techniques in fluid dynamics and classical quantum theory. It may also find use in electronic-structure finite......-difference simulations. Straightforward transfer of the PML formulation to other fields does not seem feasible, however, since it is a unique feature of electrodynamics - the natural invariance - that allows analytic trick of complex coordinate scaling to be represented as pure modification of local material parameters...
International Nuclear Information System (INIS)
Morisaki, T.; Ono, H.
2005-01-01
A laser-induced liquid-crystal lens is formed by large optical non-linearity and anisotropic complex refractive indices in guest-host liquid crystals. We obtained light wave propagation characteristics of the laser-induced LC lens. Three analytical methods were used to obtain light wave propagation characteristics. Analysis by 3-dimensional heat conduction was applied to determine the refractive index in the liquid-crystal layer. Another method used was to determine light wave propagation characteristics in the laser-induced lens by means of the finite-difference tune domain (FDTD) method and diffraction theory. In this study, we draw a parallel between the experimental results and FDTD. Copyright (2003) AD-TECH - International Foundation for the Advancement of Technology Ltd
Energy Technology Data Exchange (ETDEWEB)
Sudiarta, I. Wayan; Angraini, Lily Maysari, E-mail: lilyangraini@unram.ac.id [Physics Study Program, University of Mataram, Jln. Majapahit 62 Mataram, NTB (Indonesia)
2016-04-19
We have applied the finite difference time domain (FDTD) method with the supersymmetric quantum mechanics (SUSY-QM) procedure to determine excited energies of one dimensional quantum systems. The theoretical basis of FDTD, SUSY-QM, a numerical algorithm and an illustrative example for a particle in a one dimensional square-well potential were given in this paper. It was shown that the numerical results were in excellent agreement with theoretical results. Numerical errors produced by the SUSY-QM procedure was due to errors in estimations of superpotentials and supersymmetric partner potentials.
Energy Technology Data Exchange (ETDEWEB)
Dias, Gleide A.N.; Silva, Jadir C.; Rocha, Paula F.; Costa, Jorge L. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Dept. de Geologia]. E-mail: gleidalencar@hotmail.com.br; jadir@geologia.ufrj.br; ferrucio@acd.ufrj.br; jotalc@yahoo.com.br
2003-07-01
Presently the oil industry has shown the importance of defining the structural framework of reservoirs. This study intends to contribute for the solution of this problem, using synthetic models in order to evaluate the electromagnetic signal due to a certain target. Use was made of an algorithm, which is based in the Finite Difference Time Domain Methods (FDTD). The simulated results of this survey found the best parameters for the chosen frequencies. In the present study there were simulated polarization, geometry and constitutive parameters (dielectric permittivity and electric conductivity). The results, using frequencies of 50 and 100 MHz, show clearly the effects of the electromagnetic waves attenuation and their problems related with signal resolution of targets in depth. (author)
Kitamura, Kyoko; Sakai, Kyosuke; Noda, Susumu
2011-07-18
Radially polarized focused beams have attracted a great deal of attention because of their unique properties characterized by the longitudinal field. Although this longitudinal field is strongly confined to the beam axis, the energy flow, i.e., the Poynting vector, has null intensity on the axis. Hence, the interaction of the focused beam and matter has thus far been unclear. We analyzed the interactions between the focused beam and a subwavelength metal block placed at the center of the focus using three-dimensional finite-difference time-domain (FDTD) calculation. We found that most of the Poynting energy propagates through to the far-field, and that a strong enhancement of the electric field appeared on the metal surface. This enhancement is attributed to the constructive interference of the symmetric electric field and the coupling to the surface plasmon mode.
International Nuclear Information System (INIS)
Su Xiaoxing; Zhang Chuanzeng; Ma Tianxue; Wang Yuesheng
2012-01-01
When three-dimensional (3D) phononic band structures are calculated by using the finite difference time domain (FDTD) method with a relatively small number of iterations, the results can be effectively improved by post-processing the FDTD time series (FDTD-TS) based on the filter diagonalization method (FDM), instead of the classical fast Fourier transform. In this paper, we propose a way to further improve the performance of the FDM-based post-processing method by introducing a relatively large number of observing points to record the FDTD-TS. To this end, the existing scheme of FDTD-TS preprocessing is modified. With the new preprocessing scheme, the processing efficiency of a single FDTD-TS can be improved significantly, and thus the entire post-processing method can have sufficiently high efficiency even when a relatively large number of observing points are used. The feasibility of the proposed method for improvement is verified by the numerical results.
Nikolskiy, V. P.; Stegailov, V. V.
2018-01-01
Metal nanoparticles (NPs) serve as important tools for many modern technologies. However, the proper microscopic models of the interaction between ultrashort laser pulses and metal NPs are currently not very well developed in many cases. One part of the problem is the description of the warm dense matter that is formed in NPs after intense irradiation. Another part of the problem is the description of the electromagnetic waves around NPs. Description of wave propagation requires the solution of Maxwell’s equations and the finite-difference time-domain (FDTD) method is the classic approach for solving them. There are many commercial and free implementations of FDTD, including the open source software that supports graphics processing unit (GPU) acceleration. In this report we present the results on the FDTD calculations for different cases of the interaction between ultrashort laser pulses and metal nanoparticles. Following our previous results, we analyze the efficiency of the GPU acceleration of the FDTD algorithm.
Directory of Open Access Journals (Sweden)
Benjamin M. Cowan
2013-04-01
Full Text Available We describe a modification to the finite-difference time-domain algorithm for electromagnetics on a Cartesian grid which eliminates numerical dispersion error in vacuum for waves propagating along a grid axis. We provide details of the algorithm, which generalizes previous work by allowing 3D operation with a wide choice of aspect ratio, and give conditions to eliminate dispersive errors along one or more of the coordinate axes. We discuss the algorithm in the context of laser-plasma acceleration simulation, showing significant reduction—up to a factor of 280, at a plasma density of 10^{23} m^{-3}—of the dispersion error of a linear laser pulse in a plasma channel. We then compare the new algorithm with the standard electromagnetic update for laser-plasma accelerator stage simulations, demonstrating that by controlling numerical dispersion, the new algorithm allows more accurate simulation than is otherwise obtained. We also show that the algorithm can be used to overcome the critical but difficult challenge of consistent initialization of a relativistic particle beam and its fields in an accelerator simulation.
Wu, Zedong
2018-04-05
Numerical simulation of the acoustic wave equation in either isotropic or anisotropic media is crucial to seismic modeling, imaging and inversion. Actually, it represents the core computation cost of these highly advanced seismic processing methods. However, the conventional finite-difference method suffers from severe numerical dispersion errors and S-wave artifacts when solving the acoustic wave equation for anisotropic media. We propose a method to obtain the finite-difference coefficients by comparing its numerical dispersion with the exact form. We find the optimal finite difference coefficients that share the dispersion characteristics of the exact equation with minimal dispersion error. The method is extended to solve the acoustic wave equation in transversely isotropic (TI) media without S-wave artifacts. Numerical examples show that the method is is highly accurate and efficient.
Tay, Wei Choon; Tan, Eng Leong
2014-07-01
In this paper, we have proposed a pentadiagonal alternating-direction-implicit (Penta-ADI) finite-difference time-domain (FDTD) method for the two-dimensional Schrödinger equation. Through the separation of complex wave function into real and imaginary parts, a pentadiagonal system of equations for the ADI method is obtained, which results in our Penta-ADI method. The Penta-ADI method is further simplified into pentadiagonal fundamental ADI (Penta-FADI) method, which has matrix-operator-free right-hand-sides (RHS), leading to the simplest and most concise update equations. As the Penta-FADI method involves five stencils in the left-hand-sides (LHS) of the pentadiagonal update equations, special treatments that are required for the implementation of the Dirichlet's boundary conditions will be discussed. Using the Penta-FADI method, a significantly higher efficiency gain can be achieved over the conventional Tri-ADI method, which involves a tridiagonal system of equations.
International Nuclear Information System (INIS)
Su Xiaoxing; Ma Tianxue; Wang Yuesheng
2011-01-01
If the band structure of a three-dimensional (3D) phononic crystal (PNC) is calculated by using the finite difference time domain (FDTD) method combined with the fast Fourier transform (FFT)-based postprocessing method, good results can only be ensured by a sufficiently large number of FDTD iterations. On a common computer platform, the total computation time will be very long. To overcome this difficulty, an excellent harmonic inversion algorithm called the filter diagonalization method (FDM) can be used in the postprocessing to reduce the number of FDTD iterations. However, the low efficiency of the FDM, which occurs when a relatively long time series is given, does not necessarily ensure an effective reduction of the total computation time. In this paper, a postprocessing method based on the FDM is proposed. The main procedure of the method is designed considering the aim to make the time spent on the method itself far less than the corresponding time spent on the FDTD iterations. To this end, the FDTD time series is preprocessed to be shortened significantly before the FDM frequency extraction. The preprocessing procedure is performed with the filter and decimation operations, which are widely used in narrow-band signal processing. Numerical results for a typical 3D solid PNC system show that the proposed postprocessing method can be used to effectively reduce the total computation time of the FDTD calculation of 3D phononic band structures.
Energy Technology Data Exchange (ETDEWEB)
Riley, D.J.; Turner, C.D.
1991-01-01
The Hybrid Thin-Slot Algorithm (HTSA) integrates a transient integral-equation solution for an aperture in an infinite plane into a finite-difference time-domain (FDTD) code. The technique was introduced for linear apertures and was extended to include wall loss and lossy internal gaskets. A general implementation for arbitrary thin slots is briefly described here. The 3-D FDTD-code TSAR was selected for the implementation. The HTSA does not provide universal solutions to the narrow slot problem, but has merits appropriate for particular applications. The HTSA is restricted to planar slots, but can solve the important case that both the width and depth of the slot are narrow compared to the FDTD spatial cell. IN addition, the HTSA is not bound to the FDTD discrete spatial and time increments, and therefore, high-resolution solutions for the slot physics are possible. The implementation of the HTSA into TSAR is based upon a slot data file'' that includes the cell indices where the desired slots are exist within the FDTD mesh. For an HTSA-defined slot, the wall region local to the slot is shorted, and therefore, to change the slot's topology simply requires altering the file to include the desired cells. 7 refs.
Márquez, Andrés; Francés, Jorge; Martínez, Francisco J.; Gallego, Sergi; Álvarez, Mariela L.; Calzado, Eva M.; Pascual, Inmaculada; Beléndez, Augusto
2018-03-01
Simplified analytical models with predictive capability enable simpler and faster optimization of the performance in applications of complex photonic devices. We recently demonstrated the most simplified analytical model still showing predictive capability for parallel-aligned liquid crystal on silicon (PA-LCoS) devices, which provides the voltage-dependent retardance for a very wide range of incidence angles and any wavelength in the visible. We further show that the proposed model is not only phenomenological but also physically meaningful, since two of its parameters provide the correct values for important internal properties of these devices related to the birefringence, cell gap, and director profile. Therefore, the proposed model can be used as a means to inspect internal physical properties of the cell. As an innovation, we also show the applicability of the split-field finite-difference time-domain (SF-FDTD) technique for phase-shift and retardance evaluation of PA-LCoS devices under oblique incidence. As a simplified model for PA-LCoS devices, we also consider the exact description of homogeneous birefringent slabs. However, we show that, despite its higher degree of simplification, the proposed model is more robust, providing unambiguous and physically meaningful solutions when fitting its parameters.
Energy Technology Data Exchange (ETDEWEB)
Su Xiaoxing [School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044 (China); Ma Tianxue; Wang Yuesheng, E-mail: xxsu@bjtu.edu.cn [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China)
2011-10-15
If the band structure of a three-dimensional (3D) phononic crystal (PNC) is calculated by using the finite difference time domain (FDTD) method combined with the fast Fourier transform (FFT)-based postprocessing method, good results can only be ensured by a sufficiently large number of FDTD iterations. On a common computer platform, the total computation time will be very long. To overcome this difficulty, an excellent harmonic inversion algorithm called the filter diagonalization method (FDM) can be used in the postprocessing to reduce the number of FDTD iterations. However, the low efficiency of the FDM, which occurs when a relatively long time series is given, does not necessarily ensure an effective reduction of the total computation time. In this paper, a postprocessing method based on the FDM is proposed. The main procedure of the method is designed considering the aim to make the time spent on the method itself far less than the corresponding time spent on the FDTD iterations. To this end, the FDTD time series is preprocessed to be shortened significantly before the FDM frequency extraction. The preprocessing procedure is performed with the filter and decimation operations, which are widely used in narrow-band signal processing. Numerical results for a typical 3D solid PNC system show that the proposed postprocessing method can be used to effectively reduce the total computation time of the FDTD calculation of 3D phononic band structures.
Li, Ping; Jiang, Li Jun; Bagci, Hakan
2018-01-01
It is well known that graphene demonstrates spatial dispersion properties, i.e., its conductivity is nonlocal and a function of spectral wave number (momentum operator) q. In this paper, to account for effects of spatial dispersion on transmission of high speed signals along graphene nano-ribbon (GNR) interconnects, a discontinuous Galerkin time-domain (DGTD) algorithm is proposed. The atomically-thick GNR is modeled using a nonlocal transparent surface impedance boundary condition (SIBC) incorporated into the DGTD scheme. Since the conductivity is a complicated function of q (and one cannot find an analytical Fourier transform pair between q and spatial differential operators), an exact time domain SIBC model cannot be derived. To overcome this problem, the conductivity is approximated by its Taylor series in spectral domain under low-q assumption. This approach permits expressing the time domain SIBC in the form of a second-order partial differential equation (PDE) in current density and electric field intensity. To permit easy incorporation of this PDE with the DGTD algorithm, three auxiliary variables, which degenerate the second-order (temporal and spatial) differential operators to first-order ones, are introduced. Regarding to the temporal dispersion effects, the auxiliary differential equation (ADE) method is utilized to eliminates the expensive temporal convolutions. To demonstrate the applicability of the proposed scheme, numerical results, which involve characterization of spatial dispersion effects on the transfer impedance matrix of GNR interconnects, are presented.
Li, Ping
2018-04-13
It is well known that graphene demonstrates spatial dispersion properties, i.e., its conductivity is nonlocal and a function of spectral wave number (momentum operator) q. In this paper, to account for effects of spatial dispersion on transmission of high speed signals along graphene nano-ribbon (GNR) interconnects, a discontinuous Galerkin time-domain (DGTD) algorithm is proposed. The atomically-thick GNR is modeled using a nonlocal transparent surface impedance boundary condition (SIBC) incorporated into the DGTD scheme. Since the conductivity is a complicated function of q (and one cannot find an analytical Fourier transform pair between q and spatial differential operators), an exact time domain SIBC model cannot be derived. To overcome this problem, the conductivity is approximated by its Taylor series in spectral domain under low-q assumption. This approach permits expressing the time domain SIBC in the form of a second-order partial differential equation (PDE) in current density and electric field intensity. To permit easy incorporation of this PDE with the DGTD algorithm, three auxiliary variables, which degenerate the second-order (temporal and spatial) differential operators to first-order ones, are introduced. Regarding to the temporal dispersion effects, the auxiliary differential equation (ADE) method is utilized to eliminates the expensive temporal convolutions. To demonstrate the applicability of the proposed scheme, numerical results, which involve characterization of spatial dispersion effects on the transfer impedance matrix of GNR interconnects, are presented.
Energy Technology Data Exchange (ETDEWEB)
Sanada, Y; Ashida, Y; Sassa, K [Kyoto University, Kyoto (Japan)
1996-10-01
3-D numerical modeling by FDTD method was studied for ground penetrating radar. Radar radiates electromagnetic wave, and determines the existence and distance of objects by reflection wave. Ground penetrating radar uses the above functions for underground surveys, however, its resolution and velocity analysis accuracy are problems. In particular, propagation characteristics of electromagnetic wave in media such as heterogeneous and anisotropic soil and rock are essential. The behavior of electromagnetic wave in the ground could be precisely reproduced by 3-D numerical modeling using FDTD method. FDTD method makes precise analysis in time domain and electric and magnetic fields possible by sequentially calculating the difference equation of Maxwell`s equation. Because of the high calculation efficiency of FDTD method, more precise complicated analysis can be expected by using the latest advanced computers. The numerical model and calculation example are illustrated for surface type electromagnetic pulse ground penetrating radar assuming the survey of steel pipes of 1m deep. 4 refs., 3 figs., 1 tab.
Efficient reconstruction of dispersive dielectric profiles using time domain reflectometry (TDR
Directory of Open Access Journals (Sweden)
P. Leidenberger
2006-01-01
Full Text Available We present a numerical model for time domain reflectometry (TDR signal propagation in dispersive dielectric materials. The numerical probe model is terminated with a parallel circuit, consisting of an ohmic resistor and an ideal capacitance. We derive analytical approximations for the capacitance, the inductance and the conductance of three-wire probes. We couple the time domain model with global optimization in order to reconstruct water content profiles from TDR traces. For efficiently solving the inverse problem we use genetic algorithms combined with a hierarchical parameterization. We investigate the performance of the method by reconstructing synthetically generated profiles. The algorithm is then applied to retrieve dielectric profiles from TDR traces measured in the field. We succeed in reconstructing dielectric and ohmic profiles where conventional methods, based on travel time extraction, fail.
International Nuclear Information System (INIS)
Liang, Wen-Quan; Wang, Yan-Fei; Yang, Chang-Chun
2015-01-01
Numerical simulation of the wave equation is widely used to synthesize seismograms theoretically and is also the basis of the reverse time migration and full waveform inversion. For the finite difference methods, grid dispersion often exists because of the discretization of the time and the spatial derivatives in the wave equation. How to suppress the grid dispersion is therefore a key problem for finite difference (FD) approaches. The FD operators for the space derivatives are usually obtained in the space domain. However, the wave equations are discretized in the time and space directions simultaneously. So it would be better to design the FD operators in the time–space domain. We improved the time–space domain method for obtaining the FD operators in an acoustic vertically transversely isotropic (VTI) media so as to cover a much wider range of frequencies. Dispersion analysis and seismic numerical simulation demonstrate the effectiveness of the proposed method. (paper)
Directory of Open Access Journals (Sweden)
Taohua Liu
2017-01-01
Full Text Available Fractional advection-dispersion equations, as generalizations of classical integer-order advection-dispersion equations, are used to model the transport of passive tracers carried by fluid flow in a porous medium. In this paper, we develop an implicit finite difference method for fractional advection-dispersion equations with fractional derivative boundary conditions. First-order consistency, solvability, unconditional stability, and first-order convergence of the method are proven. Then, we present a fast iterative method for the implicit finite difference scheme, which only requires storage of O(K and computational cost of O(KlogK. Traditionally, the Gaussian elimination method requires storage of O(K2 and computational cost of O(K3. Finally, the accuracy and efficiency of the method are checked with a numerical example.
Time-domain electromagnetic energy in a frequency-dispersive left-handed medium
International Nuclear Information System (INIS)
Cui Tiejun; Kong Jinau
2004-01-01
From Maxwell's equations and the Poynting theorem, the time-domain electric and magnetic energy densities are generally defined in the frequency-dispersive media based on the conservation of energy. As a consequence, a general definition of electric and magnetic energy is proposed. Comparing with existing formulations of electric and magnetic energy in frequency-dispersive media, the new definition is more reasonable and is valid in any case. Using the new definition and staring from the equation of motion, we have shown rigorously that the total energy density and the individual electric and magnetic energy densities are always positive in a realistic artificial left-handed medium (LHM) [R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001)], which obeys actually the Lorentz medium model, although such a LHM has negative permittivity and negative permeability simultaneously in a certain frequency range. We have also shown that the conservation of energy is not violated in LHM. The earlier conclusions can be easily extended to the Drude medium model and the cold plasma medium model. Through an exact analysis of a one-dimensional transient current source radiating in LHM, numerical results are given to demonstrate that the work done by source, the power flowing outwards a surface, and the electric and magnetic energy stored in a volume are all positive in the time domain
Transport and dispersion of pollutants in surface impoundments: a finite difference model
Energy Technology Data Exchange (ETDEWEB)
Yeh, G.T.
1980-07-01
A surface impoundment model by finite-difference (SIMFD) has been developed. SIMFD computes the flow rate, velocity field, and the concentration distribution of pollutants in surface impoundments with any number of islands located within the region of interest. Theoretical derivations and numerical algorithm are described in detail. Instructions for the application of SIMFD and listings of the FORTRAN IV source program are provided. Two sample problems are given to illustrate the application and validity of the model.
Analysis of noise in energy-dispersive spectrometers using time-domain methods
Goulding, F S
2002-01-01
This paper presents an integrated time domain approach to the optimization of the signal-to-noise ratio in all spectrometer systems that contain a detector that converts incoming quanta of radiation into electrical pulse signals that are amplified and shaped by an electronic pulse shaper. It allows analysis of normal passive pulse shapers as well as time-variant systems where switching of shaping elements occurs in synchronism with the signal. It also deals comfortably with microcalorimeters (sometimes referred to as bolometers), where noise-determining elements, such as the temperature-sensing element's resistance and temperature, change with time in the presence of a signal. As part of the purely time-domain approach, a new method of calculating the Johnson noise in resistors using only the statistics of electron motion is presented. The result is a time-domain analog of the Nyquist formula.
International Nuclear Information System (INIS)
Li Wenjun; China Academy of Engineering Physics, Mianyang; Xu Zhou; Li Ming; Yang Xingfan; Chen Yanan; Liu Jie; Jin Xiao; Lin Yuzheng
2008-01-01
In this paper, a time-domain equivalent circuit method is applied to solve dispersion of coupled-cavity travelling-wave tube (CCTWT). First, the time-domain circuit equations of CCTWT coupled-cavity chain are deduced from the equivalent circuit model. Then, the equations are solved numerically by fourth-order Runge-Kutta method and a program CTTDCP is developed using MATLAB. Last, a L-band CCTWT is calculated using CTTDCP and the cavity pass-band of this tube is computed to be 1.08-1.48 GHz, which is consistent with the experimental results and the simulation results of electromagnetic code and demonstrates the validity of the time-domain equivalent circuit method. In addition, a new design method which uses the equivalent circuit method and electromagnetic simulation together to optimize the cold cavity characteristics of CCTWT is proposed. (authors)
Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.; Liu, J.
2010-01-01
Love-wave propagation has been a topic of interest to crustal, earthquake, and engineering seismologists for many years because it is independent of Poisson's ratio and more sensitive to shear (S)-wave velocity changes and layer thickness changes than are Rayleigh waves. It is well known that Love-wave generation requires the existence of a low S-wave velocity layer in a multilayered earth model. In order to study numerically the propagation of Love waves in a layered earth model and dispersion characteristics for near-surface applications, we simulate high-frequency (>5 Hz) Love waves by the staggered-grid finite-difference (FD) method. The air-earth boundary (the shear stress above the free surface) is treated using the stress-imaging technique. We use a two-layer model to demonstrate the accuracy of the staggered-grid modeling scheme. We also simulate four-layer models including a low-velocity layer (LVL) or a high-velocity layer (HVL) to analyze dispersive energy characteristics for near-surface applications. Results demonstrate that: (1) the staggered-grid FD code and stress-imaging technique are suitable for treating the free-surface boundary conditions for Love-wave modeling, (2) Love-wave inversion should be treated with extra care when a LVL exists because of a lack of LVL information in dispersions aggravating uncertainties in the inversion procedure, and (3) energy of high modes in a low-frequency range is very weak, so that it is difficult to estimate the cutoff frequency accurately, and "mode-crossing" occurs between the second higher and third higher modes when a HVL exists. ?? 2010 Birkh??user / Springer Basel AG.
Non-invasive analysis of swelling in polymer dispersions by means of time-domain(TD)-NMR
Energy Technology Data Exchange (ETDEWEB)
Nestle, Nikolaus, E-mail: nikolaus.nestle@basf.com [BASF SE, GKP/R - G 201, D-67056 Ludwigshafen (Germany); Haeberle, Karl [BASF SE, GKP/R - G 201, D-67056 Ludwigshafen (Germany)
2009-11-03
In this contribution, we discuss the potential of low-field time-domain(TD)-NMR to study the swelling of (aqueous) polymer dispersions by a volatile solvent. Due to the sensitivity of transverse relaxation times (T{sub 2}) to swelling-induced changes in the molecular dynamics of the polymer component, the effects of swelling can be measured without spectral resolution. The measurement is performed on polymer dispersions in native state with solids contents around 50% in a non-invasive way without separating the polymeric phase and the water phase from each other. Using acetone in two polyurethane (PU) dispersions with different hard phase contents, we explore the sensitivity of the method and present a data evaluation strategy based on multicomponent fitting and proton balancing. Furthermore, we report exchange continualization as a further effect that needs to be taken into account for correct interpretation of the data.
Non-invasive analysis of swelling in polymer dispersions by means of time-domain(TD)-NMR.
Nestle, Nikolaus; Häberle, Karl
2009-11-03
In this contribution, we discuss the potential of low-field time-domain(TD)-NMR to study the swelling of (aqueous) polymer dispersions by a volatile solvent. Due to the sensitivity of transverse relaxation times (T2) to swelling-induced changes in the molecular dynamics of the polymer component, the effects of swelling can be measured without spectral resolution. The measurement is performed on polymer dispersions in native state with solids contents around 50% in a non-invasive way without separating the polymeric phase and the water phase from each other. Using acetone in two polyurethane (PU) dispersions with different hard phase contents, we explore the sensitivity of the method and present a data evaluation strategy based on multicomponent fitting and proton balancing. Furthermore, we report exchange continualization as a further effect that needs to be taken into account for correct interpretation of the data.
Cai, Hongzhu; Hu, Xiangyun; Xiong, Bin; Zhdanov, Michael S.
2017-12-01
The induced polarization (IP) method has been widely used in geophysical exploration to identify the chargeable targets such as mineral deposits. The inversion of the IP data requires modeling the IP response of 3D dispersive conductive structures. We have developed an edge-based finite-element time-domain (FETD) modeling method to simulate the electromagnetic (EM) fields in 3D dispersive medium. We solve the vector Helmholtz equation for total electric field using the edge-based finite-element method with an unstructured tetrahedral mesh. We adopt the backward propagation Euler method, which is unconditionally stable, with semi-adaptive time stepping for the time domain discretization. We use the direct solver based on a sparse LU decomposition to solve the system of equations. We consider the Cole-Cole model in order to take into account the frequency-dependent conductivity dispersion. The Cole-Cole conductivity model in frequency domain is expanded using a truncated Padé series with adaptive selection of the center frequency of the series for early and late time. This approach can significantly increase the accuracy of FETD modeling.
Optical phase conjugation for time-domain undoing of dispersive self-phase-modulation effects
International Nuclear Information System (INIS)
Fisher, R.A.; Suydam, B.R.; Yevick, D.
1983-01-01
We show that the temporal distortion and spectral broadening of a pulse generated by the combined effects of group-velocity dispersion and self-phase modulation is removed by reflection of a cw-pumped, broadband, unity-reflecting Kerr-like optical phase conjugator followed by retraversal of the nonlinear medium. We also examine numerically the effects of finite linear loss in the material, of nonunity conjugate reflectivity, and of finite conjugator thickness
Merritt, M.L.
1993-01-01
The simulation of the transport of injected freshwater in a thin brackish aquifer, overlain and underlain by confining layers containing more saline water, is shown to be influenced by the choice of the finite-difference approximation method, the algorithm for representing vertical advective and dispersive fluxes, and the values assigned to parametric coefficients that specify the degree of vertical dispersion and molecular diffusion that occurs. Computed potable water recovery efficiencies will differ depending upon the choice of algorithm and approximation method, as will dispersion coefficients estimated based on the calibration of simulations to match measured data. A comparison of centered and backward finite-difference approximation methods shows that substantially different transition zones between injected and native waters are depicted by the different methods, and computed recovery efficiencies vary greatly. Standard and experimental algorithms and a variety of values for molecular diffusivity, transverse dispersivity, and vertical scaling factor were compared in simulations of freshwater storage in a thin brackish aquifer. Computed recovery efficiencies vary considerably, and appreciable differences are observed in the distribution of injected freshwater in the various cases tested. The results demonstrate both a qualitatively different description of transport using the experimental algorithms and the interrelated influences of molecular diffusion and transverse dispersion on simulated recovery efficiency. When simulating natural aquifer flow in cross-section, flushing of the aquifer occurred for all tested coefficient choices using both standard and experimental algorithms. ?? 1993.
Siripatana, Chairat; Thongpan, Hathaikarn; Promraksa, Arwut
2017-03-01
This article explores a volumetric approach in formulating differential equations for a class of engineering flow problems involving component transfer within or between two phases. In contrast to conventional formulation which is based on linear velocities, this work proposed a slightly different approach based on volumetric flow-rate which is essentially constant in many industrial processes. In effect, many multi-dimensional flow problems found industrially can be simplified into multi-component or multi-phase but one-dimensional flow problems. The formulation is largely generic, covering counter-current, concurrent or batch, fixed and fluidized bed arrangement. It was also intended to use for start-up, shut-down, control and steady state simulation. Since many realistic and industrial operation are dynamic with variable velocity and porosity in relation to position, analytical solutions are rare and limited to only very simple cases. Thus we also provide a numerical solution using Crank-Nicolson finite difference scheme. This solution is inherently stable as tested against a few cases published in the literature. However, it is anticipated that, for unconfined flow or non-constant flow-rate, traditional formulation should be applied.
Finite Difference Time Domain Modeling at USA Instruments, Inc.
Curtis, Richard
2003-10-01
Due to the competitive nature of the commercial MRI industry, it is essential for the financial health of a participating company to innovate new coil designs and bring product to market rapidly in response to ever-changing market conditions. However, the technology of MRI coil design is still early in its stage of development and its principles are yet evolving. As a result, it is not always possible to know the relevant electromagnetic effects of a given design since the interaction of coil elements is complex and often counter-intuitive. Even if the effects are known qualitatively, the quantitative results are difficult to obtain. At USA Instruments, Inc., the acquisition of the XFDTDâ electromagnetic simulation tool from REMCOM, Inc., has been helpful in determining the electromagnetic performance characteristics of existing coil designs in the prototype stage before the coils are released for production. In the ideal case, a coil design would be modeled earlier at the conceptual stage, so that only good designs will make it to the prototyping stage and the electromagnetic characteristics better understood very early in the design process and before the testing stage has begun. This paper is a brief overview of using FDTD modeling for MRI coil design at USA Instruments, Inc., and shows some of the highlights of recent FDTD modeling efforts on Birdcage coils, a staple of the MRI coil design portfolio.
Finite Difference Time Domain (FDTD) Simulations Using Graphics Processors
National Research Council Canada - National Science Library
Adams, Samuel; Payne, Jason; Boppana, Rajendra
2007-01-01
.... This paper shows how GPUs can be used to greatly speedup FDTD simulations. The main objective is to leverage GPU processing power for FDTD update calculations and complete computationally expensive simulations in reasonable time...
Directory of Open Access Journals (Sweden)
M. Maria Sylvester
2017-08-01
Full Text Available Dielectric permittivity and relaxation dynamics of binary and ternary mixture of stearic acid on various concentration and their thermodynamic effects are studied. The static dielectric constant (ε0, dielectric permittivity (ε′ and dielectric loss (ε′′ are found by bilinear calibration. The relaxation time (τ, dielectric strength (Δε and the excess permittivity (εE are found. The thermodynamic parameters such as enthalpy (ΔH, entropy (ΔS and Gibb’s free energy (ΔG are evolved. The significant changes in dielectric parameters are due to the intramolecular and intermolecular interactions in response to the applied frequency. The permittivity spectra of stearic acid–alcohol in the frequency range of 10MHz to 30GHz have been measured using picoseconds Time Domain Reflectometry (TDR. The dielectric parameters (ε0, ε′, ε′′ are found by bilinear calibration method. Influence of temperature in intermolecular interaction and the relaxation process are also studied. The FT-IR spectral analysis reveals that the conformation of functional groups and formation for hydrogen bonding are present in both binary and ternary mixtures of stearic acid.
Vinoth, K.; Ganesh, T.; Senthilkumar, P.; Sylvester, M. Maria; Karunakaran, D. J. S. Anand; Hudge, Praveen; Kumbharkhane, A. C.
2017-09-01
The aqueous solution of beta-alanine characterised and studied by their dispersive dielectric properties and relaxation process in the frequency domain of 10×106 Hz to 30×109 Hz with varying concentration in mole fractions and temperatures. The molecular interaction and dielectric parameters are discussed in terms of counter-ion concentration theory. The static permittivity (ε0), high frequency dielectric permittivity (ε∞) and excess dielectric parameters are accomplished by frequency depended physical properties and relaxation time (τ). Molecular orientation, ordering and correlation factors are reported as confirmation of intermolecular interactions. Ionic conductivity and thermo dynamical properties are concluded with the behaviour of the mixture constituents. Solute-solvent, solute-solute interaction, structure making and breaking abilities of the solute in aqueous medium are interpreted. Fourier Transform Infrared (FTIR) spectra of beta- alanine single crystal and liquid state have been studied. The 13C Nuclear Magnetic Resonance (NMR) spectral studies give the signature for resonating frequencies and chemical shifts of beta-alanine.
Caratelli, Diego; Mescia, Luciano; Bia, Pietro; Stukach, Oleg V.
2016-01-01
A novel finite-difference time-domain algorithm for modeling ultrawideband electromagnetic pulse propagation in arbitrary multirelaxed dispersive media is presented. The proposed scheme is based on a general, yet computationally efficient, series representation of the fractional derivative operators
Mimetic finite difference method
Lipnikov, Konstantin; Manzini, Gianmarco; Shashkov, Mikhail
2014-01-01
The mimetic finite difference (MFD) method mimics fundamental properties of mathematical and physical systems including conservation laws, symmetry and positivity of solutions, duality and self-adjointness of differential operators, and exact mathematical identities of the vector and tensor calculus. This article is the first comprehensive review of the 50-year long history of the mimetic methodology and describes in a systematic way the major mimetic ideas and their relevance to academic and real-life problems. The supporting applications include diffusion, electromagnetics, fluid flow, and Lagrangian hydrodynamics problems. The article provides enough details to build various discrete operators on unstructured polygonal and polyhedral meshes and summarizes the major convergence results for the mimetic approximations. Most of these theoretical results, which are presented here as lemmas, propositions and theorems, are either original or an extension of existing results to a more general formulation using polyhedral meshes. Finally, flexibility and extensibility of the mimetic methodology are shown by deriving higher-order approximations, enforcing discrete maximum principles for diffusion problems, and ensuring the numerical stability for saddle-point systems.
Determination of finite-difference weights using scaled binomial windows
Chu, Chunlei; Stoffa, Paul L.
2012-01-01
The finite-difference method evaluates a derivative through a weighted summation of function values from neighboring grid nodes. Conventional finite-difference weights can be calculated either from Taylor series expansions or by Lagrange interpolation polynomials. The finite-difference method can be interpreted as a truncated convolutional counterpart of the pseudospectral method in the space domain. For this reason, we also can derive finite-difference operators by truncating the convolution series of the pseudospectral method. Various truncation windows can be employed for this purpose and they result in finite-difference operators with different dispersion properties. We found that there exists two families of scaled binomial windows that can be used to derive conventional finite-difference operators analytically. With a minor change, these scaled binomial windows can also be used to derive optimized finite-difference operators with enhanced dispersion properties. © 2012 Society of Exploration Geophysicists.
Determination of finite-difference weights using scaled binomial windows
Chu, Chunlei
2012-05-01
The finite-difference method evaluates a derivative through a weighted summation of function values from neighboring grid nodes. Conventional finite-difference weights can be calculated either from Taylor series expansions or by Lagrange interpolation polynomials. The finite-difference method can be interpreted as a truncated convolutional counterpart of the pseudospectral method in the space domain. For this reason, we also can derive finite-difference operators by truncating the convolution series of the pseudospectral method. Various truncation windows can be employed for this purpose and they result in finite-difference operators with different dispersion properties. We found that there exists two families of scaled binomial windows that can be used to derive conventional finite-difference operators analytically. With a minor change, these scaled binomial windows can also be used to derive optimized finite-difference operators with enhanced dispersion properties. © 2012 Society of Exploration Geophysicists.
Casimir forces in the time domain: Theory
International Nuclear Information System (INIS)
Rodriguez, Alejandro W.; McCauley, Alexander P.; Joannopoulos, John D.; Johnson, Steven G.
2009-01-01
We present a method to compute Casimir forces in arbitrary geometries and for arbitrary materials based on the finite-difference time-domain (FDTD) scheme. The method involves the time evolution of electric and magnetic fields in response to a set of current sources, in a modified medium with frequency-independent conductivity. The advantage of this approach is that it allows one to exploit existing FDTD software, without modification, to compute Casimir forces. In this paper, we focus on the derivation, implementation choices, and essential properties of the time-domain algorithm, both considered analytically and illustrated in the simplest parallel-plate geometry.
THE PSTD ALGORITHM: A TIME-DOMAIN METHOD REQUIRING ONLY TWO CELLS PER WAVELENGTH. (R825225)
A pseudospectral time-domain (PSTD) method is developed for solutions of Maxwell's equations. It uses the fast Fourier transform (FFT), instead of finite differences on conventional finite-difference-time-domain (FDTD) methods, to represent spatial derivatives. Because the Fourie...
Time Domain Induced Polarization
DEFF Research Database (Denmark)
Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders Vest
2012-01-01
Time-domain-induced polarization has significantly broadened its field of reference during the last decade, from mineral exploration to environmental geophysics, e.g., for clay and peat identification and landfill characterization. Though, insufficient modeling tools have hitherto limited the use...... of time-domaininduced polarization for wider purposes. For these reasons, a new forward code and inversion algorithm have been developed using the full-time decay of the induced polarization response, together with an accurate description of the transmitter waveform and of the receiver transfer function......, to reconstruct the distribution of the Cole-Cole parameters of the earth. The accurate modeling of the transmitter waveform had a strong influence on the forward response, and we showed that the difference between a solution using a step response and a solution using the accurate modeling often is above 100...
Time-Domain Simulation of RF Couplers
International Nuclear Information System (INIS)
Smithe, David; Carlsson, Johan; Austin, Travis
2009-01-01
We have developed a finite-difference time-domain (FDTD) fluid-like approach to integrated plasma-and-coupler simulation [1], and show how it can be used to model LH and ICRF couplers in the MST and larger tokamaks.[2] This approach permits very accurate 3-D representation of coupler geometry, and easily includes non-axi-symmetry in vessel wall, magnetic equilibrium, and plasma density. The plasma is integrated with the FDTD Maxwell solver in an implicit solve that steps over electron time-scales, and permits tenuous plasma in the coupler itself, without any need to distinguish or interface between different regions of vacuum and/or plasma. The FDTD algorithm is also generalized to incorporate a time-domain sheath potential [3] on metal structures within the simulation, to look for situations where the sheath potential might generate local sputtering opportunities. Benchmarking of the time-domain sheath algorithm has been reported in the references. Finally, the time-domain software [4] permits the use of particles, either as field diagnostic (test particles) or to self-consistently compute plasma current from the applied RF power.
FDTD scattered field formulation for scatterers in stratified dispersive media.
Olkkonen, Juuso
2010-03-01
We introduce a simple scattered field (SF) technique that enables finite difference time domain (FDTD) modeling of light scattering from dispersive objects residing in stratified dispersive media. The introduced SF technique is verified against the total field scattered field (TFSF) technique. As an application example, we study surface plasmon polariton enhanced light transmission through a 100 nm wide slit in a silver film.
DEFF Research Database (Denmark)
Tanev, Stoyan; Sun, Wenbo
2012-01-01
for particle and surface scattering calculations and the uniaxial perfectly matched layer (UPML) absorbing boundary conditions for truncation of the FDTD grid. We show that the FDTD approach has a significant potential for studying the light scattering by cloud, dust, and biological particles. The applications...
Birefringent dispersive FDTD subgridding scheme
De Deckere, B; Van Londersele, Arne; De Zutter, Daniël; Vande Ginste, Dries
2016-01-01
A novel 2D finite difference time domain (FDTD) subgridding method is proposed, only subject to the Courant limit of the coarse grid. By making mu or epsilon inside the subgrid dispersive, unconditional stability is induced at the cost of a sparse, implicit set of update equations. By only adding dispersion along preferential directions, it is possible to dramatically reduce the rank of the matrix equation that needs to be solved.
Ulku, Huseyin Arda; Sayed, Sadeed Bin; Bagci, Hakan
2014-01-01
solvers are the method of choice when it comes simulating these nonlinear effects. Oftentimes, finite difference time domain (FDTD) method is used for this purpose. This is simply due to the fact that explicitness of the FDTD renders the implementation
A Compact Unconditionally Stable Method for Time-Domain Maxwell's Equations
Directory of Open Access Journals (Sweden)
Zhuo Su
2013-01-01
Full Text Available Higher order unconditionally stable methods are effective ways for simulating field behaviors of electromagnetic problems since they are free of Courant-Friedrich-Levy conditions. The development of accurate schemes with less computational expenditure is desirable. A compact fourth-order split-step unconditionally-stable finite-difference time-domain method (C4OSS-FDTD is proposed in this paper. This method is based on a four-step splitting form in time which is constructed by symmetric operator and uniform splitting. The introduction of spatial compact operator can further improve its performance. Analyses of stability and numerical dispersion are carried out. Compared with noncompact counterpart, the proposed method has reduced computational expenditure while keeping the same level of accuracy. Comparisons with other compact unconditionally-stable methods are provided. Numerical dispersion and anisotropy errors are shown to be lower than those of previous compact unconditionally-stable methods.
Implicit finite-difference simulations of seismic wave propagation
Chu, Chunlei; Stoffa, Paul L.
2012-01-01
We propose a new finite-difference modeling method, implicit both in space and in time, for the scalar wave equation. We use a three-level implicit splitting time integration method for the temporal derivative and implicit finite-difference operators of arbitrary order for the spatial derivatives. Both the implicit splitting time integration method and the implicit spatial finite-difference operators require solving systems of linear equations. We show that it is possible to merge these two sets of linear systems, one from implicit temporal discretizations and the other from implicit spatial discretizations, to reduce the amount of computations to develop a highly efficient and accurate seismic modeling algorithm. We give the complete derivations of the implicit splitting time integration method and the implicit spatial finite-difference operators, and present the resulting discretized formulas for the scalar wave equation. We conduct a thorough numerical analysis on grid dispersions of this new implicit modeling method. We show that implicit spatial finite-difference operators greatly improve the accuracy of the implicit splitting time integration simulation results with only a slight increase in computational time, compared with explicit spatial finite-difference operators. We further verify this conclusion by both 2D and 3D numerical examples. © 2012 Society of Exploration Geophysicists.
Implicit finite-difference simulations of seismic wave propagation
Chu, Chunlei
2012-03-01
We propose a new finite-difference modeling method, implicit both in space and in time, for the scalar wave equation. We use a three-level implicit splitting time integration method for the temporal derivative and implicit finite-difference operators of arbitrary order for the spatial derivatives. Both the implicit splitting time integration method and the implicit spatial finite-difference operators require solving systems of linear equations. We show that it is possible to merge these two sets of linear systems, one from implicit temporal discretizations and the other from implicit spatial discretizations, to reduce the amount of computations to develop a highly efficient and accurate seismic modeling algorithm. We give the complete derivations of the implicit splitting time integration method and the implicit spatial finite-difference operators, and present the resulting discretized formulas for the scalar wave equation. We conduct a thorough numerical analysis on grid dispersions of this new implicit modeling method. We show that implicit spatial finite-difference operators greatly improve the accuracy of the implicit splitting time integration simulation results with only a slight increase in computational time, compared with explicit spatial finite-difference operators. We further verify this conclusion by both 2D and 3D numerical examples. © 2012 Society of Exploration Geophysicists.
Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.
2015-10-01
We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.
Fallahi, Arya; Oswald, Benedikt; Leidenberger, Patrick
2012-04-01
We study a 3-dimensional, dual-field, fully explicit method for the solution of Maxwell's equations in the time domain on unstructured, tetrahedral grids. The algorithm uses the element level time domain (ELTD) discretization of the electric and magnetic vector wave equations. In particular, the suitability of the method for the numerical analysis of nanometer structured systems in the optical region of the electromagnetic spectrum is investigated. The details of the theory and its implementation as a computer code are introduced and its convergence behavior as well as conditions for stable time domain integration is examined. Here, we restrict ourselves to non-dispersive dielectric material properties since dielectric dispersion will be treated in a subsequent paper. Analytically solvable problems are analyzed in order to benchmark the method. Eventually, a dielectric microlens is considered to demonstrate the potential of the method. A flexible method of 2nd order accuracy is obtained that is applicable to a wide range of nano-optical configurations and can be a serious competitor to more conventional finite difference time domain schemes which operate only on hexahedral grids. The ELTD scheme can resolve geometries with a wide span of characteristic length scales and with the appropriate level of detail, using small tetrahedra where delicate, physically relevant details must be modeled.
Modern EMC analysis I time-domain computational schemes
Kantartzis, Nikolaos V
2008-01-01
The objective of this two-volume book is the systematic and comprehensive description of the most competitive time-domain computational methods for the efficient modeling and accurate solution of contemporary real-world EMC problems. Intended to be self-contained, it performs a detailed presentation of all well-known algorithms, elucidating on their merits or weaknesses, and accompanies the theoretical content with a variety of applications. Outlining the present volume, the analysis covers the theory of the finite-difference time-domain, the transmission-line matrix/modeling, and the finite i
Heliborne time domain electromagnetic system
International Nuclear Information System (INIS)
Bhattacharya, S.
2009-01-01
Atomic Minerals Directorate (AMD), are using heliborne and ground time domain electromagnetic (TDEM) system for the exploration of deep seated unconformity type uranium deposits. Uranium has been explored in various parts of the world like Athabasca basin using time domain electromagnetic system. AMD has identified some areas in India where such deposits are available. Apart from uranium exploration, the TDEM systems are used for the exploration of deep seated minerals like diamonds. Bhabha Atomic Research Centre (BARC) is involved in the indigenous design of the heliborne time domain system since this system is useful for DAE and also it has a scope of wide application. In this paper we discuss about the principle of time domain electromagnetic systems, their capabilities and the development and problems of such system for various other mineral exploration. (author)
An implicit finite-difference operator for the Helmholtz equation
Chu, Chunlei; Stoffa, Paul L.
2012-01-01
We have developed an implicit finite-difference operator for the Laplacian and applied it to solving the Helmholtz equation for computing the seismic responses in the frequency domain. This implicit operator can greatly improve the accuracy of the simulation results without adding significant extra computational cost, compared with the corresponding conventional explicit finite-difference scheme. We achieved this by taking advantage of the inherently implicit nature of the Helmholtz equation and merging together the two linear systems: one from the implicit finite-difference discretization of the Laplacian and the other from the discretization of the Helmholtz equation itself. The end result of this simple yet important merging manipulation is a single linear system, similar to the one resulting from the conventional explicit finite-difference discretizations, without involving any differentiation matrix inversions. We analyzed grid dispersions of the discrete Helmholtz equation to show the accuracy of this implicit finite-difference operator and used two numerical examples to demonstrate its efficiency. Our method can be extended to solve other frequency domain wave simulation problems straightforwardly. © 2012 Society of Exploration Geophysicists.
An implicit finite-difference operator for the Helmholtz equation
Chu, Chunlei
2012-07-01
We have developed an implicit finite-difference operator for the Laplacian and applied it to solving the Helmholtz equation for computing the seismic responses in the frequency domain. This implicit operator can greatly improve the accuracy of the simulation results without adding significant extra computational cost, compared with the corresponding conventional explicit finite-difference scheme. We achieved this by taking advantage of the inherently implicit nature of the Helmholtz equation and merging together the two linear systems: one from the implicit finite-difference discretization of the Laplacian and the other from the discretization of the Helmholtz equation itself. The end result of this simple yet important merging manipulation is a single linear system, similar to the one resulting from the conventional explicit finite-difference discretizations, without involving any differentiation matrix inversions. We analyzed grid dispersions of the discrete Helmholtz equation to show the accuracy of this implicit finite-difference operator and used two numerical examples to demonstrate its efficiency. Our method can be extended to solve other frequency domain wave simulation problems straightforwardly. © 2012 Society of Exploration Geophysicists.
Impedance models in time domain
Rienstra, S.W.
2005-01-01
Necessary conditions for an impedance function are derived. Methods available in the literature are discussed. A format with recipe is proposed for an exact impedance condition in time domain on a time grid, based on the Helmholtz resonator model. An explicit solution is given of a pulse reflecting
Bodin, Jacques
2015-03-01
In this study, new multi-dimensional time-domain random walk (TDRW) algorithms are derived from approximate one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) analytical solutions of the advection-dispersion equation and from exact 1-D, 2-D, and 3-D analytical solutions of the pure-diffusion equation. These algorithms enable the calculation of both the time required for a particle to travel a specified distance in a homogeneous medium and the mass recovery at the observation point, which may be incomplete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to heterogeneous media, represented as a piecewise collection of homogeneous media. The particle motion is then decomposed along a series of intermediate checkpoints located on the medium interface boundaries. The accuracy of the multi-dimensional TDRW method is verified against (i) exact analytical solutions of solute transport in homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous medium of simple geometry. The results demonstrate that the method is ideally suited to purely diffusive transport and to advection-dispersion transport problems dominated by advection. Conversely, the method is not recommended for highly dispersive transport problems because the accuracy of the advection-dispersion TDRW algorithms degrades rapidly for a low Péclet number, consistent with the accuracy limit of the approximate analytical solutions. The proposed approach provides a unified methodology for deriving multi-dimensional time-domain particle equations and may be applicable to other mathematical transport models, provided that appropriate analytical solutions are available.
Chu, Chunlei
2009-01-01
We analyze the dispersion properties and stability conditions of the high‐order convolutional finite difference operators and compare them with the conventional finite difference schemes. We observe that the convolutional finite difference method has better dispersion properties and becomes more efficient than the conventional finite difference method with the increasing order of accuracy. This makes the high‐order convolutional operator a good choice for anisotropic elastic wave simulations on rotated staggered grids since its enhanced dispersion properties can help to suppress the numerical dispersion error that is inherent in the rotated staggered grid structure and its efficiency can help us tackle 3D problems cost‐effectively.
Finite difference computation of Casimir forces
International Nuclear Information System (INIS)
Pinto, Fabrizio
2016-01-01
In this Invited paper, we begin by a historical introduction to provide a motivation for the classical problems of interatomic force computation and associated challenges. This analysis will lead us from early theoretical and experimental accomplishments to the integration of these fascinating interactions into the operation of realistic, next-generation micro- and nanodevices both for the advanced metrology of fundamental physical processes and in breakthrough industrial applications. Among several powerful strategies enabling vastly enhanced performance and entirely novel technological capabilities, we shall specifically consider Casimir force time-modulation and the adoption of non-trivial geometries. As to the former, the ability to alter the magnitude and sign of the Casimir force will be recognized as a crucial principle to implement thermodynamical nano-engines. As to the latter, we shall first briefly review various reported computational approaches. We shall then discuss the game-changing discovery, in the last decade, that standard methods of numerical classical electromagnetism can be retooled to formulate the problem of Casimir force computation in arbitrary geometries. This remarkable development will be practically illustrated by showing that such an apparently elementary method as standard finite-differencing can be successfully employed to numerically recover results known from the Lifshitz theory of dispersion forces in the case of interacting parallel-plane slabs. Other geometries will be also be explored and consideration given to the potential of non-standard finite-difference methods. Finally, we shall introduce problems at the computational frontier, such as those including membranes deformed by Casimir forces and the effects of anisotropic materials. Conclusions will highlight the dramatic transition from the enduring perception of this field as an exotic application of quantum electrodynamics to the recent demonstration of a human climbing
Group foliation of finite difference equations
Thompson, Robert; Valiquette, Francis
2018-06-01
Using the theory of equivariant moving frames, a group foliation method for invariant finite difference equations is developed. This method is analogous to the group foliation of differential equations and uses the symmetry group of the equation to decompose the solution process into two steps, called resolving and reconstruction. Our constructions are performed algorithmically and symbolically by making use of discrete recurrence relations among joint invariants. Applications to invariant finite difference equations that approximate differential equations are given.
Flexible time domain averaging technique
Zhao, Ming; Lin, Jing; Lei, Yaguo; Wang, Xiufeng
2013-09-01
Time domain averaging(TDA) is essentially a comb filter, it cannot extract the specified harmonics which may be caused by some faults, such as gear eccentric. Meanwhile, TDA always suffers from period cutting error(PCE) to different extent. Several improved TDA methods have been proposed, however they cannot completely eliminate the waveform reconstruction error caused by PCE. In order to overcome the shortcomings of conventional methods, a flexible time domain averaging(FTDA) technique is established, which adapts to the analyzed signal through adjusting each harmonic of the comb filter. In this technique, the explicit form of FTDA is first constructed by frequency domain sampling. Subsequently, chirp Z-transform(CZT) is employed in the algorithm of FTDA, which can improve the calculating efficiency significantly. Since the signal is reconstructed in the continuous time domain, there is no PCE in the FTDA. To validate the effectiveness of FTDA in the signal de-noising, interpolation and harmonic reconstruction, a simulated multi-components periodic signal that corrupted by noise is processed by FTDA. The simulation results show that the FTDA is capable of recovering the periodic components from the background noise effectively. Moreover, it can improve the signal-to-noise ratio by 7.9 dB compared with conventional ones. Experiments are also carried out on gearbox test rigs with chipped tooth and eccentricity gear, respectively. It is shown that the FTDA can identify the direction and severity of the eccentricity gear, and further enhances the amplitudes of impulses by 35%. The proposed technique not only solves the problem of PCE, but also provides a useful tool for the fault symptom extraction of rotating machinery.
Finite-difference modeling of commercial aircraft using TSAR
Energy Technology Data Exchange (ETDEWEB)
Pennock, S.T.; Poggio, A.J.
1994-11-15
Future aircraft may have systems controlled by fiber optic cables, to reduce susceptibility to electromagnetic interference. However, the digital systems associated with the fiber optic network could still experience upset due to powerful radio stations, radars, and other electromagnetic sources, with potentially serious consequences. We are modeling the electromagnetic behavior of commercial transport aircraft in support of the NASA Fly-by-Light/Power-by-Wire program, using the TSAR finite-difference time-domain code initially developed for the military. By comparing results obtained from TSAR with data taken on a Boeing 757 at the Air Force Phillips Lab., we hope to show that FDTD codes can serve as an important tool in the design and certification of U.S. commercial aircraft, helping American companies to produce safe, reliable air transportation.
Electron-phonon coupling from finite differences
Monserrat, Bartomeu
2018-02-01
The interaction between electrons and phonons underlies multiple phenomena in physics, chemistry, and materials science. Examples include superconductivity, electronic transport, and the temperature dependence of optical spectra. A first-principles description of electron-phonon coupling enables the study of the above phenomena with accuracy and material specificity, which can be used to understand experiments and to predict novel effects and functionality. In this topical review, we describe the first-principles calculation of electron-phonon coupling from finite differences. The finite differences approach provides several advantages compared to alternative methods, in particular (i) any underlying electronic structure method can be used, and (ii) terms beyond the lowest order in the electron-phonon interaction can be readily incorporated. But these advantages are associated with a large computational cost that has until recently prevented the widespread adoption of this method. We describe some recent advances, including nondiagonal supercells and thermal lines, that resolve these difficulties, and make the calculation of electron-phonon coupling from finite differences a powerful tool. We review multiple applications of the calculation of electron-phonon coupling from finite differences, including the temperature dependence of optical spectra, superconductivity, charge transport, and the role of defects in semiconductors. These examples illustrate the advantages of finite differences, with cases where semilocal density functional theory is not appropriate for the calculation of electron-phonon coupling and many-body methods such as the GW approximation are required, as well as examples in which higher-order terms in the electron-phonon interaction are essential for an accurate description of the relevant phenomena. We expect that the finite difference approach will play a central role in future studies of the electron-phonon interaction.
Time domain electromagnetic metal detectors
International Nuclear Information System (INIS)
Hoekstra, P.
1996-01-01
This presentation focuses on illustrating by case histories the range of applications and limitations of time domain electromagnetic (TDEM) systems for buried metal detection. Advantages claimed for TDEM metal detectors are: independent of instrument response (Geonics EM61) to surrounding soil and rock type; simple anomaly shape; mitigation of interference by ambient electromagnetic noise; and responsive to both ferrous and non-ferrous metallic targets. The data in all case histories to be presented were acquired with the Geonics EM61 TDEM system. Case histories are a test bed site on Molokai, Hawaii; Fort Monroe, Virginia; and USDOE, Rocky Flats Plant. The present limitations of this technology are: discrimination capabilities in terms of type of ordnance, and depth of burial is limited, and ability of resolving targets with small metallic ambient needs to be improved
Finite difference order doubling in two dimensions
International Nuclear Information System (INIS)
Killingbeck, John P; Jolicard, Georges
2008-01-01
An order doubling process previously used to obtain eighth-order eigenvalues from the fourth-order Numerov method is applied to the perturbed oscillator in two dimensions. A simple method of obtaining high order finite difference operators is reported and an odd parity boundary condition is found to be effective in facilitating the smooth operation of the order doubling process
Implicit and fully implicit exponential finite difference methods
Indian Academy of Sciences (India)
Burgers' equation; exponential finite difference method; implicit exponential finite difference method; ... This paper describes two new techniques which give improved exponential finite difference solutions of Burgers' equation. ... Current Issue
Calculation of nonzero-temperature Casimir forces in the time domain
International Nuclear Information System (INIS)
Pan, Kai; Reid, M. T. Homer; McCauley, Alexander P.; Rodriguez, Alejandro W.; White, Jacob K.; Johnson, Steven G.
2011-01-01
We show how to compute Casimir forces at nonzero temperatures with time-domain electromagnetic simulations, for example, using a finite-difference time-domain (FDTD) method. Compared to our previous zero-temperature time-domain method, only a small modification is required, but we explain that some care is required to properly capture the zero-frequency contribution. We validate the method against analytical and numerical frequency-domain calculations, and show a surprising high-temperature disappearance of a nonmonotonic behavior previously demonstrated in a pistonlike geometry.
DEFF Research Database (Denmark)
Tong, M.S.; Lu, Y.; Chen, Y.
2005-01-01
-layer structures are analyzed. Results show that this method matches satisfactorily the Nyquist sampling theorem in terms of spatial discretization. By comparing the given results, it is found that the PSTD method outperforms the finite-difference time-domain (FDTD) method in general, especially in terms...
The Laguerre finite difference one-way equation solver
Terekhov, Andrew V.
2017-05-01
This paper presents a new finite difference algorithm for solving the 2D one-way wave equation with a preliminary approximation of a pseudo-differential operator by a system of partial differential equations. As opposed to the existing approaches, the integral Laguerre transform instead of Fourier transform is used. After carrying out the approximation of spatial variables it is possible to obtain systems of linear algebraic equations with better computing properties and to reduce computer costs for their solution. High accuracy of calculations is attained at the expense of employing finite difference approximations of higher accuracy order that are based on the dispersion-relationship-preserving method and the Richardson extrapolation in the downward continuation direction. The numerical experiments have verified that as compared to the spectral difference method based on Fourier transform, the new algorithm allows one to calculate wave fields with a higher degree of accuracy and a lower level of numerical noise and artifacts including those for non-smooth velocity models. In the context of solving the geophysical problem the post-stack migration for velocity models of the types Syncline and Sigsbee2A has been carried out. It is shown that the images obtained contain lesser noise and are considerably better focused as compared to those obtained by the known Fourier Finite Difference and Phase-Shift Plus Interpolation methods. There is an opinion that purely finite difference approaches do not allow carrying out the seismic migration procedure with sufficient accuracy, however the results obtained disprove this statement. For the supercomputer implementation it is proposed to use the parallel dichotomy algorithm when solving systems of linear algebraic equations with block-tridiagonal matrices.
Time domain optical spectrometry with fiber optic waveguides
International Nuclear Information System (INIS)
Whitten, W.B.
1983-01-01
Spectrometers which use optical fibers to obtain time domain spectral dispersion are reviewed. Pulse transmission through fiber optic waveguides is discussed and the basic requirements for sources and detectors are given. Multiplex spectrometry and time-of-flight spectrometry are then discussed. Resolution, fiber requirements, instrumentation and specific spectrometers are presented
A two-dimensional time domain near zone to far zone transformation
Luebbers, Raymond J.; Ryan, Deirdre; Beggs, John H.; Kunz, Karl S.
1991-01-01
In a previous paper, a time domain transformation useful for extrapolating 3-D near zone finite difference time domain (FDTD) results to the far zone was presented. In this paper, the corresponding 2-D transform is outlined. While the 3-D transformation produced a physically observable far zone time domain field, this is not convenient to do directly in 2-D, since a convolution would be required. However, a representative 2-D far zone time domain result can be obtained directly. This result can then be transformed to the frequency domain using a Fast Fourier Transform, corrected with a simple multiplicative factor, and used, for example, to calculate the complex wideband scattering width of a target. If an actual time domain far zone result is required it can be obtained by inverse Fourier transform of the final frequency domain result.
Elementary introduction to finite difference equations
International Nuclear Information System (INIS)
White, J.W.
1976-01-01
An elementary description is given of the basic vocabulary and concepts associated with finite difference modeling. The material discussed is biased toward the types of large computer programs used at the Lawrence Livermore Laboratory. Particular attention is focused on truncation error and how it can be affected by zoning patterns. The principle of convergence is discussed, and convergence as a tool for improving calculational accuracy and efficiency is emphasized
International Nuclear Information System (INIS)
Liu Shaobin; Zhang Guangfu; Yuan Naichang
2004-01-01
A PLJERC-FDTD algorithm is applied to the study of the scattering of perfectly conducting cube covered with homogeneous isotropic plasmas. The effects of plasma thickness, density and collision frequency on the radar cross section (RCS) of the conducting cube scatterer have been obtained. The results illustrate that the plasma cloaking can greatly reduce the RCS of radar targets, and the RCS of the perfectly conducting cube scatterer decreases with increasing plasma thickness when the plasma frequency is greatly less than the electromagnetic (EM) wave frequency; the RCS of the perfectly conducting cube scatterer decreases with increasing plasma thickness and plasma collision frequency when the plasma frequency is almost half as much as the EM wave frequency; the effects of plasma thickness and collision frequency on the RCS of the perfectly conducting cube scatterer is small when the plasma frequency is close to the EM wave frequency
Wilts, Bodo D; Michielsen, Kristel; De Raedt, Hans; Stavenga, Doekele G
2014-01-01
Birds-of-paradise are nature's prime examples of the evolution of color by sexual selection. Their brilliant, structurally colored feathers play a principal role in mating displays. The structural coloration of both the occipital and breast feathers of the bird-of-paradise Lawes' parotia is produced
Parallel time domain solvers for electrically large transient scattering problems
Liu, Yang
2014-09-26
Marching on in time (MOT)-based integral equation solvers represent an increasingly appealing avenue for analyzing transient electromagnetic interactions with large and complex structures. MOT integral equation solvers for analyzing electromagnetic scattering from perfect electrically conducting objects are obtained by enforcing electric field boundary conditions and implicitly time advance electric surface current densities by iteratively solving sparse systems of equations at all time steps. Contrary to finite difference and element competitors, these solvers apply to nonlinear and multi-scale structures comprising geometrically intricate and deep sub-wavelength features residing atop electrically large platforms. Moreover, they are high-order accurate, stable in the low- and high-frequency limits, and applicable to conducting and penetrable structures represented by highly irregular meshes. This presentation reviews some recent advances in the parallel implementations of time domain integral equation solvers, specifically those that leverage multilevel plane-wave time-domain algorithm (PWTD) on modern manycore computer architectures including graphics processing units (GPUs) and distributed memory supercomputers. The GPU-based implementation achieves at least one order of magnitude speedups compared to serial implementations while the distributed parallel implementation are highly scalable to thousands of compute-nodes. A distributed parallel PWTD kernel has been adopted to solve time domain surface/volume integral equations (TDSIE/TDVIE) for analyzing transient scattering from large and complex-shaped perfectly electrically conducting (PEC)/dielectric objects involving ten million/tens of millions of spatial unknowns.
Integral and finite difference inequalities and applications
Pachpatte, B G
2006-01-01
The monograph is written with a view to provide basic tools for researchers working in Mathematical Analysis and Applications, concentrating on differential, integral and finite difference equations. It contains many inequalities which have only recently appeared in the literature and which can be used as powerful tools and will be a valuable source for a long time to come. It is self-contained and thus should be useful for those who are interested in learning or applying the inequalities with explicit estimates in their studies.- Contains a variety of inequalities discovered which find numero
De Hon, B. P.; Arnold, J. M.
2016-01-01
Time-domain 3-D lattice Green's function (LGF) sequences can be evaluated using a single-lattice point recurrence scheme, and play an important role in finite-difference Green's function diakoptics. Asymptotically, at large distances, the LGFs in three dimensions can be described in terms of six
Energy Technology Data Exchange (ETDEWEB)
Saito, M.; Kurono, M. [Central Research Institute of Electric Power Industry, Tokyo (Japan)
1997-05-01
A large number of single mode fibers (SMF) for 1.3 {mu}m light are installed in electric power communication facilities. On the other hand, light of 1.5 {mu}m band is being used more in the capacity increasing technology to minimize transmission loss. If this is applied to the current SMF, waveform distortion is generated due to wavelength dispersion, thus the transmission speed and distance are limited. In order to evaluate quantitatively the effects of a wavelength dispersion compensating technology, a method was developed to derive time change in each wavelength component in light pulse. No sufficient wavelength separation is possible if permeation bandwidth of a wavelength filter is wider than the wavelength width of the light pulse. Therefore, a method was developed to derive time change in the wavelength components in the light pulse from small difference in the measured light waveforms after transmission when the central wavelength of a wavelength variable filter is varied. It was possible from comparing the method to derive the wavelength dispersion amount and the dispersion compensation amount. Since the method reveals simultaneously the distribution of strength against wavelength and time contained in light pulse, the method is advantageous in elucidating compensation limit and causes for compensation errors. The effectiveness of the method was verified by a 1.5-{mu}m light transmission test. 14 refs., 26 figs., 2 tabs.
Abstract Level Parallelization of Finite Difference Methods
Directory of Open Access Journals (Sweden)
Edwin Vollebregt
1997-01-01
Full Text Available A formalism is proposed for describing finite difference calculations in an abstract way. The formalism consists of index sets and stencils, for characterizing the structure of sets of data items and interactions between data items (“neighbouring relations”. The formalism provides a means for lifting programming to a more abstract level. This simplifies the tasks of performance analysis and verification of correctness, and opens the way for automaticcode generation. The notation is particularly useful in parallelization, for the systematic construction of parallel programs in a process/channel programming paradigm (e.g., message passing. This is important because message passing, unfortunately, still is the only approach that leads to acceptable performance for many more unstructured or irregular problems on parallel computers that have non-uniform memory access times. It will be shown that the use of index sets and stencils greatly simplifies the determination of which data must be exchanged between different computing processes.
Iterative solutions of finite difference diffusion equations
International Nuclear Information System (INIS)
Menon, S.V.G.; Khandekar, D.C.; Trasi, M.S.
1981-01-01
The heterogeneous arrangement of materials and the three-dimensional character of the reactor physics problems encountered in the design and operation of nuclear reactors makes it necessary to use numerical methods for solution of the neutron diffusion equations which are based on the linear Boltzmann equation. The commonly used numerical method for this purpose is the finite difference method. It converts the diffusion equations to a system of algebraic equations. In practice, the size of this resulting algebraic system is so large that the iterative methods have to be used. Most frequently used iterative methods are discussed. They include : (1) basic iterative methods for one-group problems, (2) iterative methods for eigenvalue problems, and (3) iterative methods which use variable acceleration parameters. Application of Chebyshev theorem to iterative methods is discussed. The extension of the above iterative methods to multigroup neutron diffusion equations is also considered. These methods are applicable to elliptic boundary value problems in reactor design studies in particular, and to elliptic partial differential equations in general. Solution of sample problems is included to illustrate their applications. The subject matter is presented in as simple a manner as possible. However, a working knowledge of matrix theory is presupposed. (M.G.B.)
Calibration of TAMA300 in time domain
International Nuclear Information System (INIS)
Telada, Souichi; Tatsumi, Daisuke; Akutsu, Tomomi; Ando, Masaki; Kanda, Nobuyuki
2005-01-01
We could reconstruct the strain of gravitational wave signals from acquired data in the time domain by using the infinite impulse response filter technique in TAMA300. We would like to analyse the waveform in the time domain for burst-like signal, merger phase waveform of binary neutron stars, and so on. We established the way to make a continuous time-series gravitational wave strain signal. We compared the time-domain reconstruction with the Fourier-space reconstruction. Both coincided within 3% in the observation range. We could also produce the voltage signal which would be recorded by the data-acquisition system from a simulated gravitational wave. This is useful for some analyses of simulations and signal injections. We could extract the waveform of the hardware injection signal in an observational run in the time domain. The extracted waveform was similar to the injection signal
Finite difference discretization of semiconductor drift-diffusion equations for nanowire solar cells
Deinega, Alexei; John, Sajeev
2012-10-01
We introduce a finite difference discretization of semiconductor drift-diffusion equations using cylindrical partial waves. It can be applied to describe the photo-generated current in radial pn-junction nanowire solar cells. We demonstrate that the cylindrically symmetric (l=0) partial wave accurately describes the electronic response of a square lattice of silicon nanowires at normal incidence. We investigate the accuracy of our discretization scheme by using different mesh resolution along the radial direction r and compare with 3D (x, y, z) discretization. We consider both straight nanowires and nanowires with radius modulation along the vertical axis. The charge carrier generation profile inside each nanowire is calculated using an independent finite-difference time-domain simulation.
High-order FDTD methods for transverse electromagnetic systems in dispersive inhomogeneous media.
Zhao, Shan
2011-08-15
This Letter introduces a novel finite-difference time-domain (FDTD) formulation for solving transverse electromagnetic systems in dispersive media. Based on the auxiliary differential equation approach, the Debye dispersion model is coupled with Maxwell's equations to derive a supplementary ordinary differential equation for describing the regularity changes in electromagnetic fields at the dispersive interface. The resulting time-dependent jump conditions are rigorously enforced in the FDTD discretization by means of the matched interface and boundary scheme. High-order convergences are numerically achieved for the first time in the literature in the FDTD simulations of dispersive inhomogeneous media. © 2011 Optical Society of America
DEFF Research Database (Denmark)
Amini Afshar, Mostafa; Bingham, Harry B.
2017-01-01
. Frequency-domain results are then obtained from a Fourier transform of the force and motion signals. In order to make a robust Fourier transform, and capture the response around the critical frequency, the tail of the force signal is asymptotically extrapolated assuming a linear decay rate. Fourth......The linearized potential flow approximation for the forward speed radiation problem is solved in the time domain using a high-order finite difference method. The finite-difference discretization is developed on overlapping, curvilinear body-fitted grids. To ensure numerical stability...
Optimal 25-Point Finite-Difference Subgridding Techniques for the 2D Helmholtz Equation
Directory of Open Access Journals (Sweden)
Tingting Wu
2016-01-01
Full Text Available We present an optimal 25-point finite-difference subgridding scheme for solving the 2D Helmholtz equation with perfectly matched layer (PML. This scheme is second order in accuracy and pointwise consistent with the equation. Subgrids are used to discretize the computational domain, including the interior domain and the PML. For the transitional node in the interior domain, the finite difference equation is formulated with ghost nodes, and its weight parameters are chosen by a refined choice strategy based on minimizing the numerical dispersion. Numerical experiments are given to illustrate that the newly proposed schemes can produce highly accurate seismic modeling results with enhanced efficiency.
Near-infrared laser, time domain, breast tumour detection system
International Nuclear Information System (INIS)
Joblin, A.J.
1996-01-01
Full text: The use of near-infrared laser, time domain techniques have been proposed for some time now as an alternative to X-ray mammography, as a means of mass screening for breast disease. The great driving force behind this research has been that near-infrared photons are a non-ionising radiation, which affords a greater degree of patient safety than when using X-rays. This would mean that women at risk of breast disease could be screened with a near-infrared laser imaging system, much more regularly than with an X-ray mammography system, which should allow for the earlier detection and treatment of breast disease. This paper presents a theoretical investigation of the performance of a near-infrared, time domain breast imaging system. The performance of the imaging system is characterised by the resolution and contrast parameters, which were studied using a numerical finite difference calculation method. The finite difference method is used to solve the diffusion equation for the photon transport through the inhomogeneous breast tissue medium. Optimal performance was found to be obtained with short photon times of flight. However the signal to noise ratio decreases rapidly as the photon time of flight is decreased. The system performance will therefore be limited by the noise equivalent power of the time resolved detection system, which is the signal incident on the time resolved detection system which gives a signal to noise ratio of 1:1. Photon times of flight shorter than 500 ps are not practical with current technology, which places limits on the resolution and contrast. The photon signal throughput can be increased by increasing the size of the laser beam width, by increasing the size of the aperture stop of the detector, by increasing the laser pulse duration or decreasing the detector time resolution. Best system performance is found by optimising these parameters for a given time gating and detector system characteristic (NEP). It was found that the
Generating Dynamic Persistence in the Time Domain
Guerrero, A.; Smith, L. A.; Smith, L. A.; Kaplan, D. T.
2001-12-01
Many dynamical systems present long-range correlations. Physically, these systems vary from biological to economical, including geological or urban systems. Important geophysical candidates for this type of behaviour include weather (or climate) and earthquake sequences. Persistence is characterised by slowly decaying correlation function; that, in theory, never dies out. The Persistence exponent reflects the degree of memory in the system and much effort has been expended creating and analysing methods that successfully estimate this parameter and model data that exhibits persistence. The most widely used methods for generating long correlated time series are not dynamical systems in the time domain, but instead are derived from a given spectral density. Little attention has been drawn to modelling persistence in the time domain. The time domain approach has the advantage that an observation at certain time can be calculated using previous observations which is particularly suitable when investigating the predictability of a long memory process. We will describe two of these methods in the time domain. One is a traditional approach using fractional ARIMA (autoregressive and moving average) models; the second uses a novel approach to extending a given series using random Fourier basis functions. The statistical quality of the two methods is compared, and they are contrasted with weather data which shows, reportedly, persistence. The suitability of this approach both for estimating predictability and for making predictions is discussed.
Structural Time Domain Identification Toolbox User's Guide
DEFF Research Database (Denmark)
Andersen, P.; Kirkegaard, Poul Henning; Brincker, Rune
This manual describes the Structural Time Domain Identification toolbox for use with MA TLAB. This version of the tool box has been developed using the PC-based MA TLAB version 4.2c, but is compatible with prior versions of MATLAB and UNIX-based versions. The routines of the toolbox are the so...
Exact Finite Differences. The Derivative on Non Uniformly Spaced Partitions
Directory of Open Access Journals (Sweden)
Armando Martínez-Pérez
2017-10-01
Full Text Available We define a finite-differences derivative operation, on a non uniformly spaced partition, which has the exponential function as an exact eigenvector. We discuss some properties of this operator and we propose a definition for the components of a finite-differences momentum operator. This allows us to perform exact discrete calculations.
Directory of Open Access Journals (Sweden)
A. Becker
2007-06-01
Full Text Available In this paper a hybrid method combining the Time-Domain Method of Moments (TD-MoM, the Time-Domain Uniform Theory of Diffraction (TD-UTD and the Finite-Difference Time-Domain Method (FDTD is presented. When applying this new hybrid method, thin-wire antennas are modeled with the TD-MoM, inhomogeneous bodies are modelled with the FDTD and large perfectly conducting plates are modelled with the TD-UTD. All inhomogeneous bodies are enclosed in a so-called FDTD-volume and the thin-wire antennas can be embedded into this volume or can lie outside. The latter avoids the simulation of white space between antennas and inhomogeneous bodies. If the antennas are positioned into the FDTD-volume, their discretization does not need to agree with the grid of the FDTD. By using the TD-UTD large perfectly conducting plates can be considered efficiently in the solution-procedure. Thus this hybrid method allows time-domain simulations of problems including very different classes of objects, applying the respective most appropriate numerical techniques to every object.
Finite-difference numerical simulations of underground explosion cavity decoupling
Aldridge, D. F.; Preston, L. A.; Jensen, R. P.
2012-12-01
Earth models containing a significant portion of ideal fluid (e.g., air and/or water) are of increasing interest in seismic wave propagation simulations. Examples include a marine model with a thick water layer, and a land model with air overlying a rugged topographic surface. The atmospheric infrasound community is currently interested in coupled seismic-acoustic propagation of low-frequency signals over long ranges (~tens to ~hundreds of kilometers). Also, accurate and efficient numerical treatment of models containing underground air-filled voids (caves, caverns, tunnels, subterranean man-made facilities) is essential. In support of the Source Physics Experiment (SPE) conducted at the Nevada National Security Site (NNSS), we are developing a numerical algorithm for simulating coupled seismic and acoustic wave propagation in mixed solid/fluid media. Solution methodology involves explicit, time-domain, finite-differencing of the elastodynamic velocity-stress partial differential system on a three-dimensional staggered spatial grid. Conditional logic is used to avoid shear stress updating within the fluid zones; this approach leads to computational efficiency gains for models containing a significant proportion of ideal fluid. Numerical stability and accuracy are maintained at air/rock interfaces (where the contrast in mass density is on the order of 1 to 2000) via a finite-difference operator "order switching" formalism. The fourth-order spatial FD operator used throughout the bulk of the earth model is reduced to second-order in the immediate vicinity of a high-contrast interface. Current modeling efforts are oriented toward quantifying the amount of atmospheric infrasound energy generated by various underground seismic sources (explosions and earthquakes). Source depth and orientation, and surface topography play obvious roles. The cavity decoupling problem, where an explosion is detonated within an air-filled void, is of special interest. A point explosion
Multiple Shooting and Time Domain Decomposition Methods
Geiger, Michael; Körkel, Stefan; Rannacher, Rolf
2015-01-01
This book offers a comprehensive collection of the most advanced numerical techniques for the efficient and effective solution of simulation and optimization problems governed by systems of time-dependent differential equations. The contributions present various approaches to time domain decomposition, focusing on multiple shooting and parareal algorithms. The range of topics covers theoretical analysis of the methods, as well as their algorithmic formulation and guidelines for practical implementation. Selected examples show that the discussed approaches are mandatory for the solution of challenging practical problems. The practicability and efficiency of the presented methods is illustrated by several case studies from fluid dynamics, data compression, image processing and computational biology, giving rise to possible new research topics. This volume, resulting from the workshop Multiple Shooting and Time Domain Decomposition Methods, held in Heidelberg in May 2013, will be of great interest to applied...
3D Staggered-Grid Finite-Difference Simulation of Acoustic Waves in Turbulent Moving Media
Symons, N. P.; Aldridge, D. F.; Marlin, D.; Wilson, D. K.; Sullivan, P.; Ostashev, V.
2003-12-01
Acoustic wave propagation in a three-dimensional heterogeneous moving atmosphere is accurately simulated with a numerical algorithm recently developed under the DOD Common High Performance Computing Software Support Initiative (CHSSI). Sound waves within such a dynamic environment are mathematically described by a set of four, coupled, first-order partial differential equations governing small-amplitude fluctuations in pressure and particle velocity. The system is rigorously derived from fundamental principles of continuum mechanics, ideal-fluid constitutive relations, and reasonable assumptions that the ambient atmospheric motion is adiabatic and divergence-free. An explicit, time-domain, finite-difference (FD) numerical scheme is used to solve the system for both pressure and particle velocity wavefields. The atmosphere is characterized by 3D gridded models of sound speed, mass density, and the three components of the wind velocity vector. Dependent variables are stored on staggered spatial and temporal grids, and centered FD operators possess 2nd-order and 4th-order space/time accuracy. Accurate sound wave simulation is achieved provided grid intervals are chosen appropriately. The gridding must be fine enough to reduce numerical dispersion artifacts to an acceptable level and maintain stability. The algorithm is designed to execute on parallel computational platforms by utilizing a spatial domain-decomposition strategy. Currently, the algorithm has been validated on four different computational platforms, and parallel scalability of approximately 85% has been demonstrated. Comparisons with analytic solutions for uniform and vertically stratified wind models indicate that the FD algorithm generates accurate results with either a vanishing pressure or vanishing vertical-particle velocity boundary condition. Simulations are performed using a kinematic turbulence wind profile developed with the quasi-wavelet method. In addition, preliminary results are presented
Optimal variable-grid finite-difference modeling for porous media
International Nuclear Information System (INIS)
Liu, Xinxin; Yin, Xingyao; Li, Haishan
2014-01-01
Numerical modeling of poroelastic waves by the finite-difference (FD) method is more expensive than that of acoustic or elastic waves. To improve the accuracy and computational efficiency of seismic modeling, variable-grid FD methods have been developed. In this paper, we derived optimal staggered-grid finite difference schemes with variable grid-spacing and time-step for seismic modeling in porous media. FD operators with small grid-spacing and time-step are adopted for low-velocity or small-scale geological bodies, while FD operators with big grid-spacing and time-step are adopted for high-velocity or large-scale regions. The dispersion relations of FD schemes were derived based on the plane wave theory, then the FD coefficients were obtained using the Taylor expansion. Dispersion analysis and modeling results demonstrated that the proposed method has higher accuracy with lower computational cost for poroelastic wave simulation in heterogeneous reservoirs. (paper)
Spectral phase encoding of ultra-short optical pulse in time domain for OCDMA application.
Wang, Xu; Wada, Naoya
2007-06-11
We propose a novel reconfigurable time domain spectral phase encoding (SPE) scheme for coherent optical code-division-multiple-access application. In the proposed scheme, the ultra-short optical pulse is stretched by dispersive device and the SPE is done in time domain using high speed phase modulator. The time domain SPE scheme is robust to wavelength drift of the light source and is very flexible and compatible with the fiber optical system. Proof-of-principle experiments of encoding with 16-chip, 20 GHz/chip binary-phase-shift-keying codes and 1.25 Gbps data transmission have been successfully demonstrated together with an arrayed-wave-guide decoder.
Metrology for terahertz time-domain spectrometers
Molloy, John F.; Naftaly, Mira
2015-12-01
In recent years the terahertz time-domain spectrometer (THz TDS) [1] has emerged as a key measurement device for spectroscopic investigations in the frequency range of 0.1-5 THz. To date, almost every type of material has been studied using THz TDS, including semiconductors, ceramics, polymers, metal films, liquid crystals, glasses, pharmaceuticals, DNA molecules, proteins, gases, composites, foams, oils, and many others. Measurements with a TDS are made in the time domain; conversion from the time domain data to a frequency spectrum is achieved by applying the Fourier Transform, calculated numerically using the Fast Fourier Transform (FFT) algorithm. As in many other types of spectrometer, THz TDS requires that the sample data be referenced to similarly acquired data with no sample present. Unlike frequency-domain spectrometers which detect light intensity and measure absorption spectra, a TDS records both amplitude and phase information, and therefore yields both the absorption coefficient and the refractive index of the sample material. The analysis of the data from THz TDS relies on the assumptions that: a) the frequency scale is accurate; b) the measurement of THz field amplitude is linear; and c) that the presence of the sample does not affect the performance characteristics of the instrument. The frequency scale of a THz TDS is derived from the displacement of the delay line; via FFT, positioning errors may give rise to frequency errors that are difficult to quantify. The measurement of the field amplitude in a THz TDS is required to be linear with a dynamic range of the order of 10 000. And attention must be given to the sample positioning and handling in order to avoid sample-related errors.
Time-domain multiple-quantum NMR
International Nuclear Information System (INIS)
Weitekamp, D.P.
1982-11-01
The development of time-domain multiple-quantum nuclear magnetic resonance is reviewed through mid 1982 and some prospects for future development are indicated. Particular attention is given to the problem of obtaining resolved, interpretable, many-quantum spectra for anisotropic magnetically isolated systems of coupled spins. New results are presented on a number of topics including the optimization of multiple-quantum-line intensities, analysis of noise in two-dimensional spectroscopy, and the use of order-selective excitation for cross polarization between nuclear-spin species
A new time–space domain high-order finite-difference method for the acoustic wave equation
Liu, Yang; Sen, Mrinal K.
2009-01-01
A new unified methodology was proposed in Finkelstein and Kastner (2007) [39] to derive spatial finite-difference (FD) coefficients in the joint time-space domain to reduce numerical dispersion. The key idea of this method is that the dispersion relation is completely satisfied at several designated frequencies. We develop this new time-space domain FD method further for 1D, 2D and 3D acoustic wave modeling using a plane wave theory and the Taylor series expansion. New spatial FD coefficients are frequency independent though they lead to a frequency dependent numerical solution. We prove that the modeling accuracy is 2nd-order when the conventional (2 M)th-order space domain FD and the 2nd-order time domain FD stencils are directly used to solve the acoustic wave equation. However, under the same discretization, the new 1D method can reach (2 M)th-order accuracy and is always stable. The 2D method can reach (2 M)th-order accuracy along eight directions and has better stability. Similarly, the 3D method can reach (2 M)th-order accuracy along 48 directions and also has better stability than the conventional FD method. The advantages of the new method are also demonstrated by the results of dispersion analysis and numerical modeling of acoustic wave equation for homogeneous and inhomogeneous acoustic models. In addition, we study the influence of the FD stencil length on numerical modeling for 1D inhomogeneous media, and derive an optimal FD stencil length required to balance the accuracy and efficiency of modeling. A new time-space domain high-order staggered-grid FD method for the 1D acoustic wave equation with variable densities is also developed, which has similar advantages demonstrated by dispersion analysis, stability analysis and modeling experiments. The methodology presented in this paper can be easily extended to solve similar partial difference equations arising in other fields of science and engineering. © 2009 Elsevier Inc.
A new time–space domain high-order finite-difference method for the acoustic wave equation
Liu, Yang
2009-12-01
A new unified methodology was proposed in Finkelstein and Kastner (2007) [39] to derive spatial finite-difference (FD) coefficients in the joint time-space domain to reduce numerical dispersion. The key idea of this method is that the dispersion relation is completely satisfied at several designated frequencies. We develop this new time-space domain FD method further for 1D, 2D and 3D acoustic wave modeling using a plane wave theory and the Taylor series expansion. New spatial FD coefficients are frequency independent though they lead to a frequency dependent numerical solution. We prove that the modeling accuracy is 2nd-order when the conventional (2 M)th-order space domain FD and the 2nd-order time domain FD stencils are directly used to solve the acoustic wave equation. However, under the same discretization, the new 1D method can reach (2 M)th-order accuracy and is always stable. The 2D method can reach (2 M)th-order accuracy along eight directions and has better stability. Similarly, the 3D method can reach (2 M)th-order accuracy along 48 directions and also has better stability than the conventional FD method. The advantages of the new method are also demonstrated by the results of dispersion analysis and numerical modeling of acoustic wave equation for homogeneous and inhomogeneous acoustic models. In addition, we study the influence of the FD stencil length on numerical modeling for 1D inhomogeneous media, and derive an optimal FD stencil length required to balance the accuracy and efficiency of modeling. A new time-space domain high-order staggered-grid FD method for the 1D acoustic wave equation with variable densities is also developed, which has similar advantages demonstrated by dispersion analysis, stability analysis and modeling experiments. The methodology presented in this paper can be easily extended to solve similar partial difference equations arising in other fields of science and engineering. © 2009 Elsevier Inc.
Evaluation of Callable Bonds: Finite Difference Methods, Stability and Accuracy.
Buttler, Hans-Jurg
1995-01-01
The purpose of this paper is to evaluate numerically the semi-American callable bond by means of finite difference methods. This study implies three results. First, the numerical error is greater for the callable bond price than for the straight bond price, and too large for real applications Secondly, the numerical accuracy of the callable bond price computed for the relevant range of interest rates depends entirely on the finite difference scheme which is chosen for the boundary points. Thi...
An Extended Newmark-FDTD Method for Complex Dispersive Media
Directory of Open Access Journals (Sweden)
Yu-Qiang Zhang
2018-01-01
Full Text Available Based on polarizability in the form of a complex quadratic rational function, a novel finite-difference time-domain (FDTD approach combined with the Newmark algorithm is presented for dealing with a complex dispersive medium. In this paper, the time-stepping equation of the polarization vector is derived by applying simultaneously the Newmark algorithm to the two sides of a second-order time-domain differential equation obtained from the relation between the polarization vector and electric field intensity in the frequency domain by the inverse Fourier transform. Then, its accuracy and stability are discussed from the two aspects of theoretical analysis and numerical computation. It is observed that this method possesses the advantages of high accuracy, high stability, and a wide application scope and can thus be applied to the treatment of many complex dispersion models, including the complex conjugate pole residue model, critical point model, modified Lorentz model, and complex quadratic rational function.
Time-domain calculation of sub-nanosecond pulse launched by a proton beam
International Nuclear Information System (INIS)
Chan, Kwok-Chi Dominic; Cooper, R.K.
1990-01-01
Using the finite-difference time-domain code TBCI, we have numerically calculated the radiation from a sub-nanosecond 800-MeV proton bunch as it is launched into space. The calculation is compared to measurements of the time history of the radiated fields and good agreement is found. A movie showing the development of the radiation pattern will be shown during the presentation at this conference, namely, the First Los Alamos Symposium on Ultra-Wideband Radar. 6 refs., 7 figs
Time-domain representation of frequency-dependent foundation impedance functions
Safak, E.
2006-01-01
Foundation impedance functions provide a simple means to account for soil-structure interaction (SSI) when studying seismic response of structures. Impedance functions represent the dynamic stiffness of the soil media surrounding the foundation. The fact that impedance functions are frequency dependent makes it difficult to incorporate SSI in standard time-history analysis software. This paper introduces a simple method to convert frequency-dependent impedance functions into time-domain filters. The method is based on the least-squares approximation of impedance functions by ratios of two complex polynomials. Such ratios are equivalent, in the time-domain, to discrete-time recursive filters, which are simple finite-difference equations giving the relationship between foundation forces and displacements. These filters can easily be incorporated into standard time-history analysis programs. Three examples are presented to show the applications of the method.
Numerical modeling of time domain 3-D problems in accelerator physics
International Nuclear Information System (INIS)
Harfoush, F.A.; Jurgens, T.G.
1990-06-01
Time domain analysis is relevant in particle accelerators to study the electromagnetic field interaction of a moving source particle on a lagging test particle as the particles pass an accelerating cavity or some other structure. These fields are called wake fields. The travelling beam inside a beam pipe may undergo more complicated interactions with its environment due to the presence of other irregularities like wires, thin slots, joints and other types of obstacles. Analytical solutions of such problems is impossible and one has to resort to a numerical method. In this paper we present results of our first attempt to model these problems in 3-D using our finite difference time domain (FDTD) code. 10 refs., 9 figs
Gravitational Waves and Time Domain Astronomy
Centrella, Joan; Nissanke, Samaya; Williams, Roy
2012-01-01
The gravitational wave window onto the universe will open in roughly five years, when Advanced LIGO and Virgo achieve the first detections of high frequency gravitational waves, most likely coming from compact binary mergers. Electromagnetic follow-up of these triggers, using radio, optical, and high energy telescopes, promises exciting opportunities in multi-messenger time domain astronomy. In the decade, space-based observations of low frequency gravitational waves from massive black hole mergers, and their electromagnetic counterparts, will open up further vistas for discovery. This two-part workshop featured brief presentations and stimulating discussions on the challenges and opportunities presented by gravitational wave astronomy. Highlights from the workshop, with the emphasis on strategies for electromagnetic follow-up, are presented in this report.
The time domain triple probe method
International Nuclear Information System (INIS)
Meier, M.A.; Hallock, G.A.; Tsui, H.Y.W.; Bengtson, R.D.
1994-01-01
A new Langmuir probe technique based on the triple probe method is being developed to provide simultaneous measurement of plasma temperature, potential, and density with the temporal and spatial resolution required to accurately characterize plasma turbulence. When the conventional triple probe method is used in an inhomogeneous plasma, local differences in the plasma measured at each probe introduce significant error in the estimation of turbulence parameters. The Time Domain Triple Probe method (TDTP) uses high speed switching of Langmuir probe potential, rather than spatially separated probes, to gather the triple probe information thus avoiding these errors. Analysis indicates that plasma response times and recent electronics technology meet the requirements to implement the TDTP method. Data reduction techniques of TDTP data are to include linear and higher order correlation analysis to estimate fluctuation induced particle and thermal transport, as well as energy relationships between temperature, density, and potential fluctuations
Coherent combining pulse bursts in time domain
Galvanauskas, Almantas
2018-01-09
A beam combining and pulse stacking technique is provided that enhances laser pulse energy by coherent stacking pulse bursts (i.e. non-periodic pulsed signals) in time domain. This energy enhancement is achieved by using various configurations of Fabry-Perot, Gires-Tournois and other types of resonant cavities, so that a multiple-pulse burst incident at either a single input or multiple inputs of the system produces an output with a solitary pulse, which contains the summed energy of the incident multiple pulses from all beams. This disclosure provides a substantial improvement over conventional coherent-combining methods in that it achieves very high pulse energies using a relatively small number of combined laser systems, thus providing with orders of magnitude reduction in system size, complexity, and cost compared to current combining approaches.
International Nuclear Information System (INIS)
Li, Fei; Yu, Peicheng; Xu, Xinlu; Fiuza, Frederico; Decyk, Viktor K.
2017-01-01
In this study we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1^ direction). We show that this eliminates the main NCI modes with moderate |k_1|, while keeps additional main NCI modes well outside the range of physical interest with higher |k_1|. These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along 1^ which typically has many more cells than other directions for the problems of interest. We show that FFTs can be performed locally to current on each partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures that Gauss’ Law is satisfied. Lastly, we present simulation examples of one relativistically drifting plasma, of two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized Maxwell solver together with its NCI elimination scheme.
Energy stable and high-order-accurate finite difference methods on staggered grids
O'Reilly, Ossian; Lundquist, Tomas; Dunham, Eric M.; Nordström, Jan
2017-10-01
For wave propagation over distances of many wavelengths, high-order finite difference methods on staggered grids are widely used due to their excellent dispersion properties. However, the enforcement of boundary conditions in a stable manner and treatment of interface problems with discontinuous coefficients usually pose many challenges. In this work, we construct a provably stable and high-order-accurate finite difference method on staggered grids that can be applied to a broad class of boundary and interface problems. The staggered grid difference operators are in summation-by-parts form and when combined with a weak enforcement of the boundary conditions, lead to an energy stable method on multiblock grids. The general applicability of the method is demonstrated by simulating an explosive acoustic source, generating waves reflecting against a free surface and material discontinuity.
International Nuclear Information System (INIS)
Tan, Sirui; Huang, Lianjie
2014-01-01
For modeling scalar-wave propagation in geophysical problems using finite-difference schemes, optimizing the coefficients of the finite-difference operators can reduce numerical dispersion. Most optimized finite-difference schemes for modeling seismic-wave propagation suppress only spatial but not temporal dispersion errors. We develop a novel optimized finite-difference scheme for numerical scalar-wave modeling to control dispersion errors not only in space but also in time. Our optimized scheme is based on a new stencil that contains a few more grid points than the standard stencil. We design an objective function for minimizing relative errors of phase velocities of waves propagating in all directions within a given range of wavenumbers. Dispersion analysis and numerical examples demonstrate that our optimized finite-difference scheme is computationally up to 2.5 times faster than the optimized schemes using the standard stencil to achieve the similar modeling accuracy for a given 2D or 3D problem. Compared with the high-order finite-difference scheme using the same new stencil, our optimized scheme reduces 50 percent of the computational cost to achieve the similar modeling accuracy. This new optimized finite-difference scheme is particularly useful for large-scale 3D scalar-wave modeling and inversion
On the spectral properties of random finite difference operators
International Nuclear Information System (INIS)
Kunz, H.; Souillard, B.
1980-01-01
We study a class of random finite difference operators, a typical example of which is the finite difference Schroedinger operator with a random potential which arises in solid state physics in the tight binding approximation. We obtain with probability one, in various situations, the exact location of the spectrum, and criterions for a given part in the spectrum to be pure point or purely continuous, or for the static electric conductivity to vanish. A general formalism is developped which transforms the study of these random operators into that of the asymptotics of a multiple integral constructed from a given recipe. Finally we apply our criterions and formalism to prove that, with probability one, the one-dimensional finite difference Schroedinger operator with a random potential has pure point spectrum and developps no static conductivity. (orig.)
Nonstandard Finite Difference Method Applied to a Linear Pharmacokinetics Model
Directory of Open Access Journals (Sweden)
Oluwaseun Egbelowo
2017-05-01
Full Text Available We extend the nonstandard finite difference method of solution to the study of pharmacokinetic–pharmacodynamic models. Pharmacokinetic (PK models are commonly used to predict drug concentrations that drive controlled intravenous (I.V. transfers (or infusion and oral transfers while pharmacokinetic and pharmacodynamic (PD interaction models are used to provide predictions of drug concentrations affecting the response of these clinical drugs. We structure a nonstandard finite difference (NSFD scheme for the relevant system of equations which models this pharamcokinetic process. We compare the results obtained to standard methods. The scheme is dynamically consistent and reliable in replicating complex dynamic properties of the relevant continuous models for varying step sizes. This study provides assistance in understanding the long-term behavior of the drug in the system, and validation of the efficiency of the nonstandard finite difference scheme as the method of choice.
Al-Jabr, Ahmad; Alsunaidi, Mohammad A.
2010-01-01
A time-domain analysis of the propagation properties of surface-plasmon-polaritons (SPP) in Silver nanostructures is presented. The analysis is based on a simulation algorithm that unifies the formulation of different dispersion models and multi
Finite difference computing with PDEs a modern software approach
Langtangen, Hans Petter
2017-01-01
This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.
Reengineering observatory operations for the time domain
Seaman, Robert L.; Vestrand, W. T.; Hessman, Frederic V.
2014-07-01
Observatories are complex scientific and technical institutions serving diverse users and purposes. Their telescopes, instruments, software, and human resources engage in interwoven workflows over a broad range of timescales. These workflows have been tuned to be responsive to concepts of observatory operations that were applicable when various assets were commissioned, years or decades in the past. The astronomical community is entering an era of rapid change increasingly characterized by large time domain surveys, robotic telescopes and automated infrastructures, and - most significantly - of operating modes and scientific consortia that span our individual facilities, joining them into complex network entities. Observatories must adapt and numerous initiatives are in progress that focus on redesigning individual components out of the astronomical toolkit. New instrumentation is both more capable and more complex than ever, and even simple instruments may have powerful observation scripting capabilities. Remote and queue observing modes are now widespread. Data archives are becoming ubiquitous. Virtual observatory standards and protocols and astroinformatics data-mining techniques layered on these are areas of active development. Indeed, new large-aperture ground-based telescopes may be as expensive as space missions and have similarly formal project management processes and large data management requirements. This piecewise approach is not enough. Whatever challenges of funding or politics facing the national and international astronomical communities it will be more efficient - scientifically as well as in the usual figures of merit of cost, schedule, performance, and risks - to explicitly address the systems engineering of the astronomical community as a whole.
Toward practical terahertz time-domain spectroscopy
Brigada, David J.
Terahertz time-domain spectroscopy is a promising technology for the identification of explosive and pharmaceutical substances in adverse conditions. It interacts strongly with intermolecular vibrational and rotational modes. Terahertz also passes through many common dielectric covering materials, allowing for the identification of substances in envelopes, wrapped in opaque plastic, or otherwise hidden. However, there are several challenges preventing the adoption of terahertz spectroscopy outside the laboratory. This dissertation examines the problems preventing widespread adoption of terahertz technology and attempts to resolve them. In order to use terahertz spectroscopy to identify substances, a spectrum measured of the target sample must be compared to the spectra of various known standard samples. This dissertation examines various methods that can be employed throughout the entire process of acquiring and transforming terahertz waveforms to improve the accuracy of these comparisons. The concepts developed in this dissertation directly apply to terahertz spectroscopy, but also carry implications for other spectroscopy methods, from Raman to mass spectrometry. For example, these techniques could help to lower the rate of false positives at airport security checkpoints. This dissertation also examines the implementation of several of these methods as a way to realize a fully self-contained, handheld, battery-operated terahertz spectrometer. This device also employs techniques to allow minimally-trained operators use terahertz to detect different substances of interest. It functions as a proof-of-concept of the true benefits of the improvements that have been developed in this dissertation.
Seismic response of three-dimensional topographies using a time-domain boundary element method
Janod, François; Coutant, Olivier
2000-08-01
We present a time-domain implementation for a boundary element method (BEM) to compute the diffraction of seismic waves by 3-D topographies overlying a homogeneous half-space. This implementation is chosen to overcome the memory limitations arising when solving the boundary conditions with a frequency-domain approach. This formulation is flexible because it allows one to make an adaptive use of the Green's function time translation properties: the boundary conditions solving scheme can be chosen as a trade-off between memory and cpu requirements. We explore here an explicit method of solution that requires little memory but a high cpu cost in order to run on a workstation computer. We obtain good results with four points per minimum wavelength discretization for various topographies and plane wave excitations. This implementation can be used for two different aims: the time-domain approach allows an easier implementation of the BEM in hybrid methods (e.g. coupling with finite differences), and it also allows one to run simple BEM models with reasonable computer requirements. In order to keep reasonable computation times, we do not introduce any interface and we only consider homogeneous models. Results are shown for different configurations: an explosion near a flat free surface, a plane wave vertically incident on a Gaussian hill and on a hemispherical cavity, and an explosion point below the surface of a Gaussian hill. Comparison is made with other numerical methods, such as finite difference methods (FDMs) and spectral elements.
He, Zi; Chen, Ru-Shan
2016-03-01
An efficient three-dimensional time domain parabolic equation (TDPE) method is proposed to fast analyze the narrow-angle wideband EM scattering properties of electrically large targets. The finite difference (FD) of Crank-Nicolson (CN) scheme is used as the traditional tool to solve the time-domain parabolic equation. However, a huge computational resource is required when the meshes become dense. Therefore, the alternating direction implicit (ADI) scheme is introduced to discretize the time-domain parabolic equation. In this way, the reduced transient scattered fields can be calculated line by line in each transverse plane for any time step with unconditional stability. As a result, less computational resources are required for the proposed ADI-based TDPE method when compared with both the traditional CN-based TDPE method and the finite-different time-domain (FDTD) method. By employing the rotating TDPE method, the complete bistatic RCS can be obtained with encouraging accuracy for any observed angle. Numerical examples are given to demonstrate the accuracy and efficiency of the proposed method.
High-order finite-difference methods for Poisson's equation
van Linde, Hendrik Jan
1971-01-01
In this thesis finite-difference approximations to the three boundary value problems for Poisson’s equation are given, with discretization errors of O(H^3) for the mixed boundary value problem, O(H^3 |ln(h)| for the Neumann problem and O(H^4)for the Dirichlet problem respectively . First an operator
Chebyshev Finite Difference Method for Fractional Boundary Value Problems
Directory of Open Access Journals (Sweden)
Boundary
2015-09-01
Full Text Available This paper presents a numerical method for fractional differential equations using Chebyshev finite difference method. The fractional derivatives are described in the Caputo sense. Numerical results show that this method is of high accuracy and is more convenient and efficient for solving boundary value problems involving fractional ordinary differential equations. AMS Subject Classification: 34A08 Keywords and Phrases: Chebyshev polynomials, Gauss-Lobatto points, fractional differential equation, finite difference 1. Introduction The idea of a derivative which interpolates between the familiar integer order derivatives was introduced many years ago and has gained increasing importance only in recent years due to the development of mathematical models of a certain situations in engineering, materials science, control theory, polymer modelling etc. For example see [20, 22, 25, 26]. Most fractional order differential equations describing real life situations, in general do not have exact analytical solutions. Several numerical and approximate analytical methods for ordinary differential equation Received: December 2014; Accepted: March 2015 57 Journal of Mathematical Extension Vol. 9, No. 3, (2015, 57-71 ISSN: 1735-8299 URL: http://www.ijmex.com Chebyshev Finite Difference Method for Fractional Boundary Value Problems H. Azizi Taft Branch, Islamic Azad University Abstract. This paper presents a numerical method for fractional differential equations using Chebyshev finite difference method. The fractional derivative
Finite Difference Schemes as Algebraic Correspondences between Layers
Malykh, Mikhail; Sevastianov, Leonid
2018-02-01
For some differential equations, especially for Riccati equation, new finite difference schemes are suggested. These schemes define protective correspondences between the layers. Calculation using these schemes can be extended to the area beyond movable singularities of exact solution without any error accumulation.
A finite difference method for free boundary problems
Fornberg, Bengt
2010-01-01
Fornberg and Meyer-Spasche proposed some time ago a simple strategy to correct finite difference schemes in the presence of a free boundary that cuts across a Cartesian grid. We show here how this procedure can be combined with a minimax
The mimetic finite difference method for elliptic problems
Veiga, Lourenço Beirão; Manzini, Gianmarco
2014-01-01
This book describes the theoretical and computational aspects of the mimetic finite difference method for a wide class of multidimensional elliptic problems, which includes diffusion, advection-diffusion, Stokes, elasticity, magnetostatics and plate bending problems. The modern mimetic discretization technology developed in part by the Authors allows one to solve these equations on unstructured polygonal, polyhedral and generalized polyhedral meshes. The book provides a practical guide for those scientists and engineers that are interested in the computational properties of the mimetic finite difference method such as the accuracy, stability, robustness, and efficiency. Many examples are provided to help the reader to understand and implement this method. This monograph also provides the essential background material and describes basic mathematical tools required to develop further the mimetic discretization technology and to extend it to various applications.
Finite-Difference Frequency-Domain Method in Nanophotonics
DEFF Research Database (Denmark)
Ivinskaya, Aliaksandra
Optics and photonics are exciting, rapidly developing fields building their success largely on use of more and more elaborate artificially made, nanostructured materials. To further advance our understanding of light-matter interactions in these complicated artificial media, numerical modeling...... is often indispensable. This thesis presents the development of rigorous finite-difference method, a very general tool to solve Maxwell’s equations in arbitrary geometries in three dimensions, with an emphasis on the frequency-domain formulation. Enhanced performance of the perfectly matched layers...... is obtained through free space squeezing technique, and nonuniform orthogonal grids are built to greatly improve the accuracy of simulations of highly heterogeneous nanostructures. Examples of the use of the finite-difference frequency-domain method in this thesis range from simulating localized modes...
Optimized Finite-Difference Coefficients for Hydroacoustic Modeling
Preston, L. A.
2014-12-01
Responsible utilization of marine renewable energy sources through the use of current energy converter (CEC) and wave energy converter (WEC) devices requires an understanding of the noise generation and propagation from these systems in the marine environment. Acoustic noise produced by rotating turbines, for example, could adversely affect marine animals and human-related marine activities if not properly understood and mitigated. We are utilizing a 3-D finite-difference acoustic simulation code developed at Sandia that can accurately propagate noise in the complex bathymetry in the near-shore to open ocean environment. As part of our efforts to improve computation efficiency in the large, high-resolution domains required in this project, we investigate the effects of using optimized finite-difference coefficients on the accuracy of the simulations. We compare accuracy and runtime of various finite-difference coefficients optimized via criteria such as maximum numerical phase speed error, maximum numerical group speed error, and L-1 and L-2 norms of weighted numerical group and phase speed errors over a given spectral bandwidth. We find that those coefficients optimized for L-1 and L-2 norms are superior in accuracy to those based on maximal error and can produce runtimes of 10% of the baseline case, which uses Taylor Series finite-difference coefficients at the Courant time step limit. We will present comparisons of the results for the various cases evaluated as well as recommendations for utilization of the cases studied. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
A finite difference method for free boundary problems
Fornberg, Bengt
2010-04-01
Fornberg and Meyer-Spasche proposed some time ago a simple strategy to correct finite difference schemes in the presence of a free boundary that cuts across a Cartesian grid. We show here how this procedure can be combined with a minimax-based optimization procedure to rapidly solve a wide range of elliptic-type free boundary value problems. © 2009 Elsevier B.V. All rights reserved.
Non Standard Finite Difference Scheme for Mutualistic Interaction Description
Gabbriellini, Gianluca
2012-01-01
One of the more interesting themes of the mathematical ecology is the description of the mutualistic interaction between two interacting species. Based on continuous-time model developed by Holland and DeAngelis 2009 for consumer-resource mutualism description, this work deals with the application of the Mickens Non Standard Finite Difference method to transform the continuous-time scheme into a discrete-time one. It has been proved that the Mickens scheme is dynamically consistent with the o...
Time-domain Brillouin scattering assisted by diffraction gratings
Matsuda, Osamu; Pezeril, Thomas; Chaban, Ievgeniia; Fujita, Kentaro; Gusev, Vitalyi
2018-02-01
Absorption of ultrashort laser pulses in a metallic grating deposited on a transparent sample launches coherent compression/dilatation acoustic pulses in directions of different orders of acoustic diffraction. Their propagation is detected by delayed laser pulses, which are also diffracted by the metallic grating, through the measurement of the transient intensity change of the first-order diffracted light. The obtained data contain multiple frequency components, which are interpreted by considering all possible angles for the Brillouin scattering of light achieved through multiplexing of the propagation directions of light and coherent sound by the metallic grating. The emitted acoustic field can be equivalently presented as a superposition of plane inhomogeneous acoustic waves, which constitute an acoustic diffraction grating for the probe light. Thus the obtained results can also be interpreted as a consequence of probe light diffraction by both metallic and acoustic gratings. The realized scheme of time-domain Brillouin scattering with metallic gratings operating in reflection mode provides access to wide range of acoustic frequencies from minimal to maximal possible values in a single experimental optical configuration for the directions of probe light incidence and scattered light detection. This is achieved by monitoring the backward and forward Brillouin scattering processes in parallel. Potential applications include measurements of the acoustic dispersion, simultaneous determination of sound velocity and optical refractive index, and evaluation of samples with a single direction of possible optical access.
Finite difference evolution equations and quantum dynamical semigroups
International Nuclear Information System (INIS)
Ghirardi, G.C.; Weber, T.
1983-12-01
We consider the recently proposed [Bonifacio, Lett. Nuovo Cimento, 37, 481 (1983)] coarse grained description of time evolution for the density operator rho(t) through a finite difference equation with steps tau, and we prove that there exists a generator of the quantum dynamical semigroup type yielding an equation giving a continuous evolution coinciding at all time steps with the one induced by the coarse grained description. The map rho(0)→rho(t) derived in this way takes the standard form originally proposed by Lindblad [Comm. Math. Phys., 48, 119 (1976)], even when the map itself (and, therefore, the corresponding generator) is not bounded. (author)
Finite element and finite difference methods in electromagnetic scattering
Morgan, MA
2013-01-01
This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled sca
Explicit Finite Difference Methods for the Delay Pseudoparabolic Equations
Directory of Open Access Journals (Sweden)
I. Amirali
2014-01-01
Full Text Available Finite difference technique is applied to numerical solution of the initial-boundary value problem for the semilinear delay Sobolev or pseudoparabolic equation. By the method of integral identities two-level difference scheme is constructed. For the time integration the implicit rule is being used. Based on the method of energy estimates the fully discrete scheme is shown to be absolutely stable and convergent of order two in space and of order one in time. The error estimates are obtained in the discrete norm. Some numerical results confirming the expected behavior of the method are shown.
Finite difference program for calculating hydride bed wall temperature profiles
International Nuclear Information System (INIS)
Klein, J.E.
1992-01-01
A QuickBASIC finite difference program was written for calculating one dimensional temperature profiles in up to two media with flat, cylindrical, or spherical geometries. The development of the program was motivated by the need to calculate maximum temperature differences across the walls of the Tritium metal hydrides beds for thermal fatigue analysis. The purpose of this report is to document the equations and the computer program used to calculate transient wall temperatures in stainless steel hydride vessels. The development of the computer code was motivated by the need to calculate maximum temperature differences across the walls of the hydrides beds in the Tritium Facility for thermal fatigue analysis
Mimetic Finite Differences for Flow in Fractures from Microseismic Data
Al-Hinai, Omar; Srinivasan, Sanjay; Wheeler, Mary F.
2015-01-01
We present a method for porous media flow in the presence of complex fracture networks. The approach uses the Mimetic Finite Difference method (MFD) and takes advantage of MFD's ability to solve over a general set of polyhedral cells. This flexibility is used to mesh fracture intersections in two and three-dimensional settings without creating small cells at the intersection point. We also demonstrate how to use general polyhedra for embedding fracture boundaries in the reservoir domain. The target application is representing fracture networks inferred from microseismic analysis.
Mimetic Finite Differences for Flow in Fractures from Microseismic Data
Al-Hinai, Omar
2015-01-01
We present a method for porous media flow in the presence of complex fracture networks. The approach uses the Mimetic Finite Difference method (MFD) and takes advantage of MFD\\'s ability to solve over a general set of polyhedral cells. This flexibility is used to mesh fracture intersections in two and three-dimensional settings without creating small cells at the intersection point. We also demonstrate how to use general polyhedra for embedding fracture boundaries in the reservoir domain. The target application is representing fracture networks inferred from microseismic analysis.
Helicopter time-domain electromagnetic numerical simulation based on Leapfrog ADI-FDTD
Guan, S.; Ji, Y.; Li, D.; Wu, Y.; Wang, A.
2017-12-01
We present a three-dimension (3D) Alternative Direction Implicit Finite-Difference Time-Domain (Leapfrog ADI-FDTD) method for the simulation of helicopter time-domain electromagnetic (HTEM) detection. This method is different from the traditional explicit FDTD, or ADI-FDTD. Comparing with the explicit FDTD, leapfrog ADI-FDTD algorithm is no longer limited by Courant-Friedrichs-Lewy(CFL) condition. Thus, the time step is longer. Comparing with the ADI-FDTD, we reduce the equations from 12 to 6 and .the Leapfrog ADI-FDTD method will be easier for the general simulation. First, we determine initial conditions which are adopted from the existing method presented by Wang and Tripp(1993). Second, we derive Maxwell equation using a new finite difference equation by Leapfrog ADI-FDTD method. The purpose is to eliminate sub-time step and retain unconditional stability characteristics. Third, we add the convolution perfectly matched layer (CPML) absorbing boundary condition into the leapfrog ADI-FDTD simulation and study the absorbing effect of different parameters. Different absorbing parameters will affect the absorbing ability. We find the suitable parameters after many numerical experiments. Fourth, We compare the response with the 1-Dnumerical result method for a homogeneous half-space to verify the correctness of our algorithm.When the model contains 107*107*53 grid points, the conductivity is 0.05S/m. The results show that Leapfrog ADI-FDTD need less simulation time and computer storage space, compared with ADI-FDTD. The calculation speed decreases nearly four times, memory occupation decreases about 32.53%. Thus, this algorithm is more efficient than the conventional ADI-FDTD method for HTEM detection, and is more precise than that of explicit FDTD in the late time.
Split-field FDTD method for oblique incidence study of periodic dispersive metallic structures.
Baida, F I; Belkhir, A
2009-08-15
The study of periodic structures illuminated by a normally incident plane wave is a simple task that can be numerically simulated by the finite-difference time-domain (FDTD) method. On the contrary, for off-normal incidence, a widely modified algorithm must be developed in order to bypass the frequency dependence appearing in the periodic boundary conditions. After recently implementing this FDTD algorithm for pure dielectric materials, we here extend it to the study of metallic structures where dispersion can be described by analytical models. The accuracy of our code is demonstrated through comparisons with already-published results in the case of 1D and 3D structures.
Energy Technology Data Exchange (ETDEWEB)
Tian, Yuan; Han, Yiping, E-mail: yphan@xidian.edu.cn [School of Physics and Optoelectronic Engineering, Xidian University, Xi' an 710071 (China); Ai, Xia [National Key Laboratory of Science and Technology on Test physics and Numerical Mathematical, Beijing 100076 (China); Liu, Xiuxiang [Science and Technology on Space Physics Laboratory, Beijing 100076 (China)
2014-12-15
In this paper, we investigate the propagation of terahertz (THz) electromagnetic wave in an anisotropic magnetized plasma by JE convolution-finite difference time domain method. The anisotropic characteristic of the plasma, which leads to right-hand circularly polarized (RCP) and right-hand circularly polarized (LCP) waves, has been taken into account. The interaction between electromagnetic waves and magnetized plasma is illustrated by reflection and transmission coefficients for both RCP and LCP THz waves. The effects of both the magnetized plasma thickness and the external magnetized field are analyzed and numerical results demonstrate that the two factors could influence the THz wave greatly. It is worthy to note that besides the reflection and transmission coefficients in the frequency domain, the waveform of the electric field in the time domain varying with thicknesses and external magnetic fields for different polarized direction has been studied.
Numerically stable finite difference simulation for ultrasonic NDE in anisotropic composites
Leckey, Cara A. C.; Quintanilla, Francisco Hernando; Cole, Christina M.
2018-04-01
Simulation tools can enable optimized inspection of advanced materials and complex geometry structures. Recent work at NASA Langley is focused on the development of custom simulation tools for modeling ultrasonic wave behavior in composite materials. Prior work focused on the use of a standard staggered grid finite difference type of mathematical approach, by implementing a three-dimensional (3D) anisotropic Elastodynamic Finite Integration Technique (EFIT) code. However, observations showed that the anisotropic EFIT method displays numerically unstable behavior at the locations of stress-free boundaries for some cases of anisotropic materials. This paper gives examples of the numerical instabilities observed for EFIT and discusses the source of instability. As an alternative to EFIT, the 3D Lebedev Finite Difference (LFD) method has been implemented. The paper briefly describes the LFD approach and shows examples of stable behavior in the presence of stress-free boundaries for a monoclinic anisotropy case. The LFD results are also compared to experimental results and dispersion curves.
Direct time-domain techniques for transient radiation and scattering
International Nuclear Information System (INIS)
Miller, E.K.; Landt, J.A.
1976-01-01
A tutorial introduction to transient electromagnetics, focusing on direct time-domain techniques, is presented. Physical, mathematical, numerical, and experimental aspects of time-domain methods, with emphasis on wire objects excited as antennas or scatters are examined. Numerous computed examples illustrate the characteristics of direct time-domain procedures, especially where they may offer advantages over procedures in the more familiar frequency domain. These advantages include greater solution efficiency for many types of problems, the ability to handle nonlinearities, improved physical insight and interpretability, availability of wide-band information from a single calculation, and the possibility of isolating interactions among various parts of an object using time-range gating
Evaluation of Damping Using Time Domain OMA Techniques
DEFF Research Database (Denmark)
Bajric, Anela; Brincker, Rune; Georgakis, Christos T.
2014-01-01
. In this paper a comparison is made of the effectiveness of three existing OMA techniques in providing accurate damping estimates for varying loadings, levels of noise, number of added measurement channels and structural damping. The evaluated techniques are derived in the time domain and are namely the Ibrahim...... Time Domain (ITD), Eigenvalue Realization Algorithm (ERA) and the Polyreference Time Domain (PTD). The response of a two degree-of-freedom (2DOF) system is numerically established from specified modal parameters with well separated and closely spaced modes. Two types of response are considered, free...
Spencer, E. A.; Clark, D. C.; Vadepu, S. K.; Patra, S.
2017-12-01
A Time Domain Impedance Probe (TDIP) measures electron density and electron neutral collision frequencies in the ionosphere. This instrument has been tested on a sounding rocket flight and is now being further developed to fly on a NASA Undergraduate Student Instrument Program (USIP) cubesat to be launched out of the ISS in 2019. Here we report on the development of a new combined TDIP and plasma wave instrument that can be used on cubesat platforms to measure local electron parameters, and also to receive or transmit electron scale waves. This combined instrument can be used to study short time and space scale phenomena in the upper ionosphere using only RF signals. The front end analog circuitry is dual-purposed to perform active or passive probing of the ambient plasma. Two dipole antennas are used, one is optimzed for impedance measurements, while the other is optimized for transmitter-receiver performance. We show our circuit realization, and initial results from laboratory measurements using the TDIP prototype modified for receiver function. We also show Finite Difference Time Domain (FDTD) simulations of an electrically long antenna immersed in a magnetized plasma used to optimize the transmitter receiver performance.
Liu, Yang
2016-03-25
A parallel plane-wave time-domain (PWTD)-accelerated explicit marching-on-in-time (MOT) scheme for solving the time domain electric field volume integral equation (TD-EFVIE) is presented. The proposed scheme leverages pulse functions and Lagrange polynomials to spatially and temporally discretize the electric flux density induced throughout the scatterers, and a finite difference scheme to compute the electric fields from the Hertz electric vector potentials radiated by the flux density. The flux density is explicitly updated during time marching by a predictor-corrector (PC) scheme and the vector potentials are efficiently computed by a scalar PWTD scheme. The memory requirement and computational complexity of the resulting explicit PWTD-PC-EFVIE solver scale as ( log ) s s O N N and ( ) s t O N N , respectively. Here, s N is the number of spatial basis functions and t N is the number of time steps. A scalable parallelization of the proposed MOT scheme on distributed- memory CPU clusters is described. The efficiency, accuracy, and applicability of the resulting (parallelized) PWTD-PC-EFVIE solver are demonstrated via its application to the analysis of transient electromagnetic wave interactions on canonical and real-life scatterers represented with up to 25 million spatial discretization elements.
Liu, Yang; Al-Jarro, Ahmed; Bagci, Hakan; Michielssen, Eric
2016-01-01
A parallel plane-wave time-domain (PWTD)-accelerated explicit marching-on-in-time (MOT) scheme for solving the time domain electric field volume integral equation (TD-EFVIE) is presented. The proposed scheme leverages pulse functions and Lagrange polynomials to spatially and temporally discretize the electric flux density induced throughout the scatterers, and a finite difference scheme to compute the electric fields from the Hertz electric vector potentials radiated by the flux density. The flux density is explicitly updated during time marching by a predictor-corrector (PC) scheme and the vector potentials are efficiently computed by a scalar PWTD scheme. The memory requirement and computational complexity of the resulting explicit PWTD-PC-EFVIE solver scale as ( log ) s s O N N and ( ) s t O N N , respectively. Here, s N is the number of spatial basis functions and t N is the number of time steps. A scalable parallelization of the proposed MOT scheme on distributed- memory CPU clusters is described. The efficiency, accuracy, and applicability of the resulting (parallelized) PWTD-PC-EFVIE solver are demonstrated via its application to the analysis of transient electromagnetic wave interactions on canonical and real-life scatterers represented with up to 25 million spatial discretization elements.
Time-Domain Modeling of RF Antennas and Plasma-Surface Interactions
Directory of Open Access Journals (Sweden)
Jenkins Thomas G.
2017-01-01
Full Text Available Recent advances in finite-difference time-domain (FDTD modeling techniques allow plasma-surface interactions such as sheath formation and sputtering to be modeled concurrently with the physics of antenna near- and far-field behavior and ICRF power flow. Although typical sheath length scales (micrometers are much smaller than the wavelengths of fast (tens of cm and slow (millimeter waves excited by the antenna, sheath behavior near plasma-facing antenna components can be represented by a sub-grid kinetic sheath boundary condition, from which RF-rectified sheath potential variation over the surface is computed as a function of current flow and local plasma parameters near the wall. These local time-varying sheath potentials can then be used, in tandem with particle-in-cell (PIC models of the edge plasma, to study sputtering effects. Particle strike energies at the wall can be computed more accurately, consistent with their passage through the known potential of the sheath, such that correspondingly increased accuracy of sputtering yields and heat/particle fluxes to antenna surfaces is obtained. The new simulation capabilities enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We will present results/animations from high-performance (10k-100k core FDTD/PIC simulations of Alcator C-Mod antenna operation.
Finite difference techniques for nonlinear hyperbolic conservation laws
International Nuclear Information System (INIS)
Sanders, R.
1985-01-01
The present study is concerned with numerical approximations to the initial value problem for nonlinear systems of conservative laws. Attention is given to the development of a class of conservation form finite difference schemes which are based on the finite volume method (i.e., the method of averages). These schemes do not fit into the classical framework of conservation form schemes discussed by Lax and Wendroff (1960). The finite volume schemes are specifically intended to approximate solutions of multidimensional problems in the absence of rectangular geometries. In addition, the development is reported of different schemes which utilize the finite volume approach for time discretization. Particular attention is given to local time discretization and moving spatial grids. 17 references
A parallel finite-difference method for computational aerodynamics
International Nuclear Information System (INIS)
Swisshelm, J.M.
1989-01-01
A finite-difference scheme for solving complex three-dimensional aerodynamic flow on parallel-processing supercomputers is presented. The method consists of a basic flow solver with multigrid convergence acceleration, embedded grid refinements, and a zonal equation scheme. Multitasking and vectorization have been incorporated into the algorithm. Results obtained include multiprocessed flow simulations from the Cray X-MP and Cray-2. Speedups as high as 3.3 for the two-dimensional case and 3.5 for segments of the three-dimensional case have been achieved on the Cray-2. The entire solver attained a factor of 2.7 improvement over its unitasked version on the Cray-2. The performance of the parallel algorithm on each machine is analyzed. 14 refs
Visualization of elastic wavefields computed with a finite difference code
Energy Technology Data Exchange (ETDEWEB)
Larsen, S. [Lawrence Livermore National Lab., CA (United States); Harris, D.
1994-11-15
The authors have developed a finite difference elastic propagation model to simulate seismic wave propagation through geophysically complex regions. To facilitate debugging and to assist seismologists in interpreting the seismograms generated by the code, they have developed an X Windows interface that permits viewing of successive temporal snapshots of the (2D) wavefield as they are calculated. The authors present a brief video displaying the generation of seismic waves by an explosive source on a continent, which propagate to the edge of the continent then convert to two types of acoustic waves. This sample calculation was part of an effort to study the potential of offshore hydroacoustic systems to monitor seismic events occurring onshore.
Moving magnets in a micromagnetic finite-difference framework
Rissanen, Ilari; Laurson, Lasse
2018-05-01
We present a method and an implementation for smooth linear motion in a finite-difference-based micromagnetic simulation code, to be used in simulating magnetic friction and other phenomena involving moving microscale magnets. Our aim is to accurately simulate the magnetization dynamics and relative motion of magnets while retaining high computational speed. To this end, we combine techniques for fast scalar potential calculation and cubic b-spline interpolation, parallelizing them on a graphics processing unit (GPU). The implementation also includes the possibility of explicitly simulating eddy currents in the case of conducting magnets. We test our implementation by providing numerical examples of stick-slip motion of thin films pulled by a spring and the effect of eddy currents on the switching time of magnetic nanocubes.
Temperature Calculation of Annular Fuel Pellet by Finite Difference Method
Energy Technology Data Exchange (ETDEWEB)
Yang, Yong Sik; Bang, Je Geon; Kim, Dae Ho; Kim, Sun Ki; Lim, Ik Sung; Song, Kun Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2009-10-15
KAERI has started an innovative fuel development project for applying dual-cooled annular fuel to existing PWR reactor. In fuel design, fuel temperature is the most important factor which can affect nuclear fuel integrity and safety. Many models and methodologies, which can calculate temperature distribution in a fuel pellet have been proposed. However, due to the geometrical characteristics and cooling condition differences between existing solid type fuel and dual-cooled annular fuel, current fuel temperature calculation models can not be applied directly. Therefore, the new heat conduction model of fuel pellet was established. In general, fuel pellet temperature is calculated by FDM(Finite Difference Method) or FEM(Finite Element Method), because, temperature dependency of fuel thermal conductivity and spatial dependency heat generation in the pellet due to the self-shielding should be considered. In our study, FDM is adopted due to high exactness and short calculation time.
Ulku, Huseyin Arda
2014-07-06
Effects of material nonlinearities on electromagnetic field interactions become dominant as field amplitudes increase. A typical example is observed in plasmonics, where highly localized fields “activate” Kerr nonlinearities. Naturally, time domain solvers are the method of choice when it comes simulating these nonlinear effects. Oftentimes, finite difference time domain (FDTD) method is used for this purpose. This is simply due to the fact that explicitness of the FDTD renders the implementation easier and the material nonlinearity can be easily accounted for using an auxiliary differential equation (J.H. Green and A. Taflove, Opt. Express, 14(18), 8305-8310, 2006). On the other hand, explicit marching on-in-time (MOT)-based time domain integral equation (TDIE) solvers have never been used for the same purpose even though they offer several advantages over FDTD (E. Michielssen, et al., ECCOMAS CFD, The Netherlands, Sep. 5-8, 2006). This is because explicit MOT solvers have never been stabilized until not so long ago. Recently an explicit but stable MOT scheme has been proposed for solving the time domain surface magnetic field integral equation (H.A. Ulku, et al., IEEE Trans. Antennas Propag., 61(8), 4120-4131, 2013) and later it has been extended for the time domain volume electric field integral equation (TDVEFIE) (S. B. Sayed, et al., Pr. Electromagn. Res. S., 378, Stockholm, 2013). This explicit MOT scheme uses predictor-corrector updates together with successive over relaxation during time marching to stabilize the solution even when time step is as large as in the implicit counterpart. In this work, an explicit MOT-TDVEFIE solver is proposed for analyzing electromagnetic wave interactions on scatterers exhibiting Kerr nonlinearity. Nonlinearity is accounted for using the constitutive relation between the electric field intensity and flux density. Then, this relation and the TDVEFIE are discretized together by expanding the intensity and flux - sing half
Space moving target detection using time domain feature
Wang, Min; Chen, Jin-yong; Gao, Feng; Zhao, Jin-yu
2018-01-01
The traditional space target detection methods mainly use the spatial characteristics of the star map to detect the targets, which can not make full use of the time domain information. This paper presents a new space moving target detection method based on time domain features. We firstly construct the time spectral data of star map, then analyze the time domain features of the main objects (target, stars and the background) in star maps, finally detect the moving targets using single pulse feature of the time domain signal. The real star map target detection experimental results show that the proposed method can effectively detect the trajectory of moving targets in the star map sequence, and the detection probability achieves 99% when the false alarm rate is about 8×10-5, which outperforms those of compared algorithms.
Microresonator-Based Optical Frequency Combs: A Time Domain Perspective
2016-04-19
AFRL-AFOSR-VA-TR-2016-0165 (BRI) Microresonator-Based Optical Frequency Combs: A Time Domain Perspective Andrew Weiner PURDUE UNIVERSITY 401 SOUTH...Optical Frequency Combs: A Time Domain Perspective 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0236 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data
Colera, Manuel; Pérez-Saborid, Miguel
2017-09-01
A finite differences scheme is proposed in this work to compute in the time domain the compressible, subsonic, unsteady flow past an aerodynamic airfoil using the linearized potential theory. It improves and extends the original method proposed in this journal by Hariharan, Ping and Scott [1] by considering: (i) a non-uniform mesh, (ii) an implicit time integration algorithm, (iii) a vectorized implementation and (iv) the coupled airfoil dynamics and fluid dynamic loads. First, we have formulated the method for cases in which the airfoil motion is given. The scheme has been tested on well known problems in unsteady aerodynamics -such as the response to a sudden change of the angle of attack and to a harmonic motion of the airfoil- and has been proved to be more accurate and efficient than other finite differences and vortex-lattice methods found in the literature. Secondly, we have coupled our method to the equations governing the airfoil dynamics in order to numerically solve problems where the airfoil motion is unknown a priori as happens, for example, in the cases of the flutter and the divergence of a typical section of a wing or of a flexible panel. Apparently, this is the first self-consistent and easy-to-implement numerical analysis in the time domain of the compressible, linearized coupled dynamics of the (generally flexible) airfoil-fluid system carried out in the literature. The results for the particular case of a rigid airfoil show excellent agreement with those reported by other authors, whereas those obtained for the case of a cantilevered flexible airfoil in compressible flow seem to be original or, at least, not well-known.
High-resolution finite-difference algorithms for conservation laws
International Nuclear Information System (INIS)
Towers, J.D.
1987-01-01
A new class of Total Variation Decreasing (TVD) schemes for 2-dimensional scalar conservation laws is constructed using either flux-limited or slope-limited numerical fluxes. The schemes are proven to have formal second-order accuracy in regions where neither u/sub x/ nor y/sub y/ vanishes. A new class of high-resolution large-time-step TVD schemes is constructed by adding flux-limited correction terms to the first-order accurate large-time-step version of the Engquist-Osher scheme. The use of the transport-collapse operator in place of the exact solution operator for the construction of difference schemes is studied. The production of spurious extrema by difference schemes is studied. A simple condition guaranteeing the nonproduction of spurious extrema is derived. A sufficient class of entropy inequalities for a conservation law with a flux having a single inflection point is presented. Finite-difference schemes satisfying a discrete version of each entropy inequality are only first-order accurate
Finite-difference analysis of shells impacting rigid barriers
International Nuclear Information System (INIS)
Pirotin, S.D.; Witmer, E.A.
1977-01-01
Nuclear power plants must be protected from the adverse effects of missile impacts. A significant category of missile impact involves deformable structures (pressure vessel components, whipping pipes) striking relatively rigid targets (concrete walls, bumpers) which act as protective devices. The response and interaction of these structures is needed to assess the adequacy of these barriers for protecting vital safety related equipment. The present investigation represents an initial attempt to develop an efficient numerical procedure for predicting the deformations and impact force time-histories of shells which impact upon a rigid target. The general large-deflection equations of motion of the shell are expressed in finite-difference form in space and integrated in time through application of the central-difference temporal operator. The effect of material nonlinearities is treated by a mechanical sublayer material model which handles the strain-hardening, Bauschinger, and strain-rate effects. The general adequacy of this shell treatment has been validated by comparing predictions with the results of various experiments in which structures have been subjected to well-defined transient forcing functions (typically high-explosive impulse loading). The 'new' ingredient addressed in the present study involves an accounting for impact interaction and response of both the target structure and the attacking body. (Auth.)
Modeling of NiTiHf using finite difference method
Farjam, Nazanin; Mehrabi, Reza; Karaca, Haluk; Mirzaeifar, Reza; Elahinia, Mohammad
2018-03-01
NiTiHf is a high temperature and high strength shape memory alloy with transformation temperatures above 100oC. A constitutive model based on Gibbs free energy is developed to predict the behavior of this material. Two different irrecoverable strains including transformation induced plastic strain (TRIP) and viscoplastic strain (VP) are considered when using high temperature shape memory alloys (HTSMAs). The first one happens during transformation at high levels of stress and the second one is related to the creep which is rate-dependent. The developed model is implemented for NiTiHf under uniaxial loading. Finite difference method is utilized to solve the proposed equations. The material parameters in the equations are calibrated from experimental data. Simulation results are captured to investigate the superelastic behavior of NiTiHf. The extracted results are compared with experimental tests of isobaric heating and cooling at different levels of stress and also superelastic tests at different levels of temperature. More results are generated to investigate the capability of the proposed model in the prediction of the irrecoverable strain after full transformation in HTSMAs.
On the initial condition problem of the time domain PMCHWT surface integral equation
Uysal, Ismail Enes
2017-05-13
Non-physical, linearly increasing and constant current components are induced in marching on-in-time solution of time domain surface integral equations when initial conditions on time derivatives of (unknown) equivalent currents are not enforced properly. This problem can be remedied by solving the time integral of the surface integral for auxiliary currents that are defined to be the time derivatives of the equivalent currents. Then the equivalent currents are obtained by numerically differentiating the auxiliary ones. In this work, this approach is applied to the marching on-in-time solution of the time domain Poggio-Miller-Chan-Harrington-Wu-Tsai surface integral equation enforced on dispersive/plasmonic scatterers. Accuracy of the proposed method is demonstrated by a numerical example.
Quantum-corrected plasmonic field analysis using a time domain PMCHWT integral equation
Uysal, Ismail E.
2016-03-13
When two structures are within sub-nanometer distance of each other, quantum tunneling, i.e., electrons "jumping" from one structure to another, becomes relevant. Classical electromagnetic solvers do not directly account for this additional path of current. In this work, an auxiliary tunnel made of Drude material is used to "connect" the structures as a support for this current path (R. Esteban et al., Nat. Commun., 2012). The plasmonic fields on the resulting connected structure are analyzed using a time domain surface integral equation solver. Time domain samples of the dispersive medium Green function and the dielectric permittivities are computed from the analytical inverse Fourier transform applied to the rational function representation of their frequency domain samples.
Three Dimensional Energy Transmitting Boundary in the Time Domain
Directory of Open Access Journals (Sweden)
Naohiro eNakamura
2015-11-01
Full Text Available Although the energy transmitting boundary is accurate and efficient for the FEM earthquake response analysis, it could be applied in the frequency domain only. In the previous papers, the author proposed an earthquake response analysis method using the time domain energy transmitting boundary for two dimensional problems. In this paper, this technique is expanded for three dimensional problems. The inner field is supposed to be a hexahedron shape and the approximate time domain boundary is explained, first. Next, two dimensional anti-plane time domain boundary is studied for a part of the approximate three dimensional boundary method. Then, accuracy and efficiency of the proposed method are confirmed by example problems.
A parallel adaptive finite difference algorithm for petroleum reservoir simulation
Energy Technology Data Exchange (ETDEWEB)
Hoang, Hai Minh
2005-07-01
Adaptive finite differential for problems arising in simulation of flow in porous medium applications are considered. Such methods have been proven useful for overcoming limitations of computational resources and improving the resolution of the numerical solutions to a wide range of problems. By local refinement of the computational mesh where it is needed to improve the accuracy of solutions, yields better solution resolution representing more efficient use of computational resources than is possible with traditional fixed-grid approaches. In this thesis, we propose a parallel adaptive cell-centered finite difference (PAFD) method for black-oil reservoir simulation models. This is an extension of the adaptive mesh refinement (AMR) methodology first developed by Berger and Oliger (1984) for the hyperbolic problem. Our algorithm is fully adaptive in time and space through the use of subcycling, in which finer grids are advanced at smaller time steps than the coarser ones. When coarse and fine grids reach the same advanced time level, they are synchronized to ensure that the global solution is conservative and satisfy the divergence constraint across all levels of refinement. The material in this thesis is subdivided in to three overall parts. First we explain the methodology and intricacies of AFD scheme. Then we extend a finite differential cell-centered approximation discretization to a multilevel hierarchy of refined grids, and finally we are employing the algorithm on parallel computer. The results in this work show that the approach presented is robust, and stable, thus demonstrating the increased solution accuracy due to local refinement and reduced computing resource consumption. (Author)
A finite-difference contrast source inversion method
International Nuclear Information System (INIS)
Abubakar, A; Hu, W; Habashy, T M; Van den Berg, P M
2008-01-01
We present a contrast source inversion (CSI) algorithm using a finite-difference (FD) approach as its backbone for reconstructing the unknown material properties of inhomogeneous objects embedded in a known inhomogeneous background medium. Unlike the CSI method using the integral equation (IE) approach, the FD-CSI method can readily employ an arbitrary inhomogeneous medium as its background. The ability to use an inhomogeneous background medium has made this algorithm very suitable to be used in through-wall imaging and time-lapse inversion applications. Similar to the IE-CSI algorithm the unknown contrast sources and contrast function are updated alternately to reconstruct the unknown objects without requiring the solution of the full forward problem at each iteration step in the optimization process. The FD solver is formulated in the frequency domain and it is equipped with a perfectly matched layer (PML) absorbing boundary condition. The FD operator used in the FD-CSI method is only dependent on the background medium and the frequency of operation, thus it does not change throughout the inversion process. Therefore, at least for the two-dimensional (2D) configurations, where the size of the stiffness matrix is manageable, the FD stiffness matrix can be inverted using a non-iterative inversion matrix approach such as a Gauss elimination method for the sparse matrix. In this case, an LU decomposition needs to be done only once and can then be reused for multiple source positions and in successive iterations of the inversion. Numerical experiments show that this FD-CSI algorithm has an excellent performance for inverting inhomogeneous objects embedded in an inhomogeneous background medium
Implicit time-dependent finite different algorithm for quench simulation
International Nuclear Information System (INIS)
Koizumi, Norikiyo; Takahashi, Yoshikazu; Tsuji, Hiroshi
1994-12-01
A magnet in a fusion machine has many difficulties in its application because of requirement of a large operating current, high operating field and high breakdown voltage. A cable-in-conduit (CIC) conductor is the best candidate to overcome these difficulties. However, there remained uncertainty in a quench event in the cable-in-conduit conductor because of a difficulty to analyze a fluid dynamics equation. Several scientists, then, developed the numerical code for the quench simulation. However, most of them were based on an explicit time-dependent finite difference scheme. In this scheme, a discrete time increment is strictly restricted by CFL (Courant-Friedrichs-Lewy) condition. Therefore, long CPU time was consumed for the quench simulation. Authors, then, developed a new quench simulation code, POCHI1, which is based on an implicit time dependent scheme. In POCHI1, the fluid dynamics equation is linearlized according to a procedure applied by Beam and Warming and then, a tridiagonal system can be offered. Therefore, no iteration is necessary to solve the fluid dynamics equation. This leads great reduction of the CPU time. Also, POCHI1 can cope with non-linear boundary condition. In this study, comparison with experimental results was carried out. The normal zone propagation behavior was investigated in two samples of CIC conductors which had different hydraulic diameters. The measured and simulated normal zone propagation length showed relatively good agreement. However, the behavior of the normal voltage shows a little disagreement. These results indicate necessity to improve the treatment of the heat transfer coefficient in the turbulent flow region and the electric resistivity of the copper stabilizer in high temperature and high field region. (author)
Hybrid finite difference/finite element immersed boundary method.
E Griffith, Boyce; Luo, Xiaoyu
2017-12-01
The immersed boundary method is an approach to fluid-structure interaction that uses a Lagrangian description of the structural deformations, stresses, and forces along with an Eulerian description of the momentum, viscosity, and incompressibility of the fluid-structure system. The original immersed boundary methods described immersed elastic structures using systems of flexible fibers, and even now, most immersed boundary methods still require Lagrangian meshes that are finer than the Eulerian grid. This work introduces a coupling scheme for the immersed boundary method to link the Lagrangian and Eulerian variables that facilitates independent spatial discretizations for the structure and background grid. This approach uses a finite element discretization of the structure while retaining a finite difference scheme for the Eulerian variables. We apply this method to benchmark problems involving elastic, rigid, and actively contracting structures, including an idealized model of the left ventricle of the heart. Our tests include cases in which, for a fixed Eulerian grid spacing, coarser Lagrangian structural meshes yield discretization errors that are as much as several orders of magnitude smaller than errors obtained using finer structural meshes. The Lagrangian-Eulerian coupling approach developed in this work enables the effective use of these coarse structural meshes with the immersed boundary method. This work also contrasts two different weak forms of the equations, one of which is demonstrated to be more effective for the coarse structural discretizations facilitated by our coupling approach. © 2017 The Authors International Journal for Numerical Methods in Biomedical Engineering Published by John Wiley & Sons Ltd.
Eulerian Time-Domain Filtering for Spatial LES
Pruett, C. David
1997-01-01
Eulerian time-domain filtering seems to be appropriate for LES (large eddy simulation) of flows whose large coherent structures convect approximately at a common characteristic velocity; e.g., mixing layers, jets, and wakes. For these flows, we develop an approach to LES based on an explicit second-order digital Butterworth filter, which is applied in,the time domain in an Eulerian context. The approach is validated through a priori and a posteriori analyses of the simulated flow of a heated, subsonic, axisymmetric jet.
A pseudospectral collocation time-domain method for diffractive optics
DEFF Research Database (Denmark)
Dinesen, P.G.; Hesthaven, J.S.; Lynov, Jens-Peter
2000-01-01
We present a pseudospectral method for the analysis of diffractive optical elements. The method computes a direct time-domain solution of Maxwell's equations and is applied to solving wave propagation in 2D diffractive optical elements. (C) 2000 IMACS. Published by Elsevier Science B.V. All rights...
DRK methods for time-domain oscillator simulation
Sevat, M.F.; Houben, S.H.M.J.; Maten, ter E.J.W.; Di Bucchianico, A.; Mattheij, R.M.M.; Peletier, M.A.
2006-01-01
This paper presents a new Runge-Kutta type integration method that is well-suited for time-domain simulation of oscillators. A unique property of the new method is that its damping characteristics can be controlled by a continuous parameter.
Structural Time Domain Identification (STDI) Toolbox for Use with MATLAB
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Andersen, P.; Brincker, Rune
1997-01-01
The Structural Time Domain Identification (STDI) toolbox for use with MATLABTM is developed at Aalborg University, Denmark, based on the system identification research performed during recent years. By now, a reliable set of functions offers a wide spectrum of services for all the important steps...
Structural Time Domain Identification (STDI) Toolbox for Use with MATLAB
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Andersen, P.; Brincker, Rune
The Structural Time Domain Identification (STDI) toolbox for use with MATLABTM is developed at Aalborg University, Denmark, based on the system identification research performed during recent years. By now, a reliable set of functions offers a wide spectrum of services for all the important steps...
Assessment of perceptual diffuseness in the time domain
DEFF Research Database (Denmark)
Garcia, Julian Martinez-Villalba; Jeong, Cheol-Ho; Brunskog, Jonas
2017-01-01
This study proposes a numerical and experimental framework for evaluating the perceptual aspect of the diffuse field condition with intended final use in music auditoria. Multiple Impulse Responses are simulated based on the time domain Poisson process with increasing reflection density. Different...
Wu, Zedong; Alkhalifah, Tariq Ali
2018-01-01
Numerical simulation of the acoustic wave equation in either isotropic or anisotropic media is crucial to seismic modeling, imaging and inversion. Actually, it represents the core computation cost of these highly advanced seismic processing methods
Evaluation of finite difference and FFT-based solutions of the transport of intensity equation.
Zhang, Hongbo; Zhou, Wen-Jing; Liu, Ying; Leber, Donald; Banerjee, Partha; Basunia, Mahmudunnabi; Poon, Ting-Chung
2018-01-01
A finite difference method is proposed for solving the transport of intensity equation. Simulation results show that although slower than fast Fourier transform (FFT)-based methods, finite difference methods are able to reconstruct the phase with better accuracy due to relaxed assumptions for solving the transport of intensity equation relative to FFT methods. Finite difference methods are also more flexible than FFT methods in dealing with different boundary conditions.
HEATING-7, Multidimensional Finite-Difference Heat Conduction Analysis
International Nuclear Information System (INIS)
2000-01-01
problems, surface fluxes may be plotted with H7TECPLOT which requires the proprietary software TECPLOT. HEATING 7.3 runs under Windows95 and WindowsNT on PC's. No future modifications are planned for HEATING7. See README.1ST for more information. 2 - Method of solution: Three steady-state solution techniques are available: point-successive over-relaxation iterative method with extrapolation, direct-solution (for one-dimensional or two-dimensional problems), and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method (which for some circumstances allows a time step greater than the CEP stability criterion.) The solution of the system of equations arising from the implicit techniques is accomplished by point-successive over-relaxation iteration and includes procedures to estimate the optimum acceleration parameter. 3 - Restrictions on the complexity of the problem: All surfaces in a model must be parallel to one of the coordinate axes which makes modeling complex geometries difficult. Transient change of phase problems can only be solved with one of the explicit techniques - an implicit change-of-phase capability has not been implemented
High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains
Fisher, Travis C.; Carpenter, Mark H.
2013-01-01
Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.
3D airborne EM modeling based on the spectral-element time-domain (SETD) method
Cao, X.; Yin, C.; Huang, X.; Liu, Y.; Zhang, B., Sr.; Cai, J.; Liu, L.
2017-12-01
In the field of 3D airborne electromagnetic (AEM) modeling, both finite-difference time-domain (FDTD) method and finite-element time-domain (FETD) method have limitations that FDTD method depends too much on the grids and time steps, while FETD requires large number of grids for complex structures. We propose a time-domain spectral-element (SETD) method based on GLL interpolation basis functions for spatial discretization and Backward Euler (BE) technique for time discretization. The spectral-element method is based on a weighted residual technique with polynomials as vector basis functions. It can contribute to an accurate result by increasing the order of polynomials and suppressing spurious solution. BE method is a stable tine discretization technique that has no limitation on time steps and can guarantee a higher accuracy during the iteration process. To minimize the non-zero number of sparse matrix and obtain a diagonal mass matrix, we apply the reduced order integral technique. A direct solver with its speed independent of the condition number is adopted for quickly solving the large-scale sparse linear equations system. To check the accuracy of our SETD algorithm, we compare our results with semi-analytical solutions for a three-layered earth model within the time lapse 10-6-10-2s for different physical meshes and SE orders. The results show that the relative errors for magnetic field B and magnetic induction are both around 3-5%. Further we calculate AEM responses for an AEM system over a 3D earth model in Figure 1. From numerical experiments for both 1D and 3D model, we draw the conclusions that: 1) SETD can deliver an accurate results for both dB/dt and B; 2) increasing SE order improves the modeling accuracy for early to middle time channels when the EM field diffuses fast so the high-order SE can model the detailed variation; 3) at very late time channels, increasing SE order has little improvement on modeling accuracy, but the time interval plays
Molecular Frame Reconstruction Using Time-Domain Photoionization Interferometry.
Marceau, Claude; Makhija, Varun; Platzer, Dominique; Naumov, A Yu; Corkum, P B; Stolow, Albert; Villeneuve, D M; Hockett, Paul
2017-08-25
Photoionization of molecular species is, essentially, a multipath interferometer with both experimentally controllable and intrinsic molecular characteristics. In this work, XUV photoionization of impulsively aligned molecular targets (N_{2}) is used to provide a time-domain route to "complete" photoionization experiments, in which the rotational wave packet controls the geometric part of the photoionization interferometer. The data obtained is sufficient to determine the magnitudes and phases of the ionization matrix elements for all observed channels, and to reconstruct molecular frame interferograms from lab frame measurements. In principle, this methodology provides a time-domain route to complete photoionization experiments and the molecular frame, which is generally applicable to any molecule (no prerequisites), for all energies and ionization channels.
Drug detection by terahertz time-domain spectroscopy
International Nuclear Information System (INIS)
Duan Ruixin; Zhu Yiming; Zhao Hongwei
2013-01-01
Due to unique spectral region, functional imaging ability, excellent penetration and safety characteristics of terahertz radiation, the terahertz technology rapidly becomes a vital method to detect and analyze drugs. In this paper, firstly, we identify the functional groups of anti-diabetic drugs by density functional theory (DFT), HIPHOP models and experimental results from terahertz time-domain spectroscopy measurements. Secondly, we identify four kinds of herbs of radix curcumae by using the support vector machine (SVM) analysis. Besides, we analyze the absorption of anhydrous and hydrous glucose, and determine the state of water in the crystalized D-glucose·H 2 O through the results of differential scanning calorimetry measurement. Finally, we summarize the advantages and disadvantages of terahertz time-domain spectroscopy method in drug detection and analyzing. (authors)
Time Domain Partitioning of Electricity Production Cost Simulations
Energy Technology Data Exchange (ETDEWEB)
Barrows, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hummon, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jones, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hale, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2014-01-01
Production cost models are often used for planning by simulating power system operations over long time horizons. The simulation of a day-ahead energy market can take several weeks to compute. Tractability improvements are often made through model simplifications, such as: reductions in transmission modeling detail, relaxation of commitment variable integrality, reductions in cost modeling detail, etc. One common simplification is to partition the simulation horizon so that weekly or monthly horizons can be simulated in parallel. However, horizon partitions are often executed with overlap periods of arbitrary and sometimes zero length. We calculate the time domain persistence of historical unit commitment decisions to inform time domain partitioning of production cost models. The results are implemented using PLEXOS production cost modeling software in an HPC environment to improve the computation time of simulations while maintaining solution integrity.
Advances in spectral inversion of time-domain induced polarization
DEFF Research Database (Denmark)
Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders Vest
The extraction of spectral information in the inversion process of time-domain (TD) induced polarization (IP) data is changing the use of the TDIP method. Data interpretation is evolving from a qualitative description of the subsurface, able only to discriminate the presence of contrasts in charg......The extraction of spectral information in the inversion process of time-domain (TD) induced polarization (IP) data is changing the use of the TDIP method. Data interpretation is evolving from a qualitative description of the subsurface, able only to discriminate the presence of contrasts...... in chargeability parameters, towards a quantitative analysis of the investigated media, which allows for detailed soil- and rock-type characterization. In this work a review of the recent advances in spectral inversion of TDIP data is presented, in terms of: supported IP parameterizations; modelling of transmitter...
The Simulation Realization of Pavement Roughness in the Time Domain
XU, H. L.; He, L.; An, D.
2017-10-01
As the needs for the dynamic study on the vehicle-pavement system and the simulated vibration table test, how to simulate the pavement roughness actually is important guarantee for whether calculation and test can reflect the actual situation or not. Using the power spectral density function, the simulation of pavement roughness can be realized by Fourier inverse transform. The main idea of this method was that the spectrum amplitude and random phase were obtained separately according to the power spectrum, and then the simulation of pavement roughness was obtained in the time domain through the Fourier inverse transform (IFFT). In the process, the sampling interval (Δl) was 0.1m, and the sampling points(N) was 4096, which satisfied the accuracy requirements. Using this method, the simulate results of pavement roughness (A~H grades) were obtain in the time domain.
THz time domain spectroscopy of biomolecular conformational modes
International Nuclear Information System (INIS)
Markelz, Andrea; Whitmire, Scott; Hillebrecht, Jay; Birge, Robert
2002-01-01
We discuss the use of terahertz time domain spectroscopy for studies of conformational flexibility and conformational change in biomolecules. Protein structural dynamics are vital to biological function with protein flexibility affecting enzymatic reaction rates and sensory transduction cycling times. Conformational mode dynamics occur on the picosecond timescale and with the collective vibrational modes associated with these large scale structural motions in the 1-100 cm -1 range. We have performed THz time domain spectroscopy (TTDS) of several biomolecular systems to explore the sensitivity of TTDS to distinguish different molecular species, different mutations within a single species and different conformations of a given biomolecule. We compare the measured absorbances to normal mode calculations and find that the TTDS absorbance reflects the density of normal modes determined by molecular mechanics calculations, and is sensitive to both conformation and mutation. These early studies demonstrate some of the advantages and limitations of using TTDS for the study of biomolecules
Time domain spectroscopy to monitor the condition of cable insulation
International Nuclear Information System (INIS)
Mopsik, F.I.; Martzloff, F.D.
1989-01-01
The use of Time Domain Spectroscopy, the measurement of dielectric constant and loss using time-domain response, the monitoring the aging of reactor cable insulation is examined. The method is presented, showing its sensitivity, accuracy and wide frequency range. The method's ability to acquire a great deal of information in a short time and its superiority to conventional single frequency data is shown. Different cable samples are examined before and after exposure to radiation and changes with exposure are clearly seen to occur. Also it is shown that a wide range of behavior can be found in different insulation systems. The requirements for performing valid measurements is presented. The need for controlled samples and correlation with other criteria for aging is discussed. 14 refs., 9 figs
Using random response input in Ibrahim Time Domain
DEFF Research Database (Denmark)
Olsen, Peter; Brincker, R.
2013-01-01
In this paper the time domain technique Ibrahim Time Domain (ITD) is used to analyze random time data. ITD is known to be a technique for identification of output only systems. The traditional formulation of ITD is claimed to be limited, when identifying closely spaced modes, because....... In this article it is showed that when using the modified ITD random time data can be analyzed. The application of the technique is displayed by a case study, with simulations and experimental data....... of the technique being Single Input Multiple Output (SIMO). It has earlier been showed that when modifying ITD with Toeplitz matrix averaging. Identification of time data with closely spaced modes is improved. In the traditional formulation of ITD the time data has to be free decays or impulse response functions...
Ultrabroadband THz time-domain spectroscopy of biomolecular crystals
DEFF Research Database (Denmark)
Kaltenecker, Korbinian J.; Engelbrecht, Sebastian; Iwaszczuk, Krzysztof
2016-01-01
Ultrabroadband THz time-domain spectroscopy based on two-color plasma generation and air biased coherent detection is used for the investigation of molecular dynamics of crystalline materials in the frequency range from 0.3 THz to 20 THz. We show that the spectral features in this extended...... frequency range are a result of inter- and intramolecular vibrations which are identified by means of simulations of the crystalline materials....
A simple finite-difference scheme for handling topography with the first-order wave equation
Mulder, W.A.; Huiskes, M.J.
2017-01-01
One approach to incorporate topography in seismic finite-difference codes is a local modification of the difference operators near the free surface. An earlier paper described an approach for modelling irregular boundaries in a constant-density acoustic finite-difference code, based on the
A simple finite-difference scheme for handling topography with the second-order wave equation
Mulder, W.A.
2017-01-01
The presence of topography poses a challenge for seismic modeling with finite-difference codes. The representation of topography by means of an air layer or vacuum often leads to a substantial loss of numerical accuracy. A suitable modification of the finite-difference weights near the free
Chabory, A.; Hon, de B.P.; Schilders, W.H.A.; Tijhuis, A.G.
2008-01-01
Finite-difference techniques are very popular and versatile numerical tools in computational electromagnetics. In this paper, we propose a preconditioned finite-difference frequency-domain method (FDFD) to model periodic structures in 2D and 3D. The preconditioner follows from a modal decoupling
Chabory, A.; Hon, de B.P.; Schilders, W.H.A.; Tijhuis, A.G.
2008-01-01
Finite-difference techniques are very popular and versatile numerical tools in computational electromagnetics. In this paper, we propose a preconditioned finite-difference frequency-domain method (FDFD) to model periodic structures in 2D and 3D. The preconditioner follows from a modal decoupling
International Nuclear Information System (INIS)
Shtromberger, N.L.
1989-01-01
To design a cyclotron magnetic system the legitimacy of two-dimensional approximations application is discussed. In all the calculations the finite difference method is used, and the linearization method with further use of the gradient conjugation method is used to solve the set of finite-difference equations. 3 refs.; 5 figs
The computation of pressure waves in shock tubes by a finite difference procedure
International Nuclear Information System (INIS)
Barbaro, M.
1988-09-01
A finite difference solution of one-dimensional unsteady isentropic compressible flow equations is presented. The computer program has been tested by solving some cases of the Riemann shock tube problem. Predictions are in good agreement with those presented by other authors. Some inaccuracies may be attributed to the wave smearing consequent of the finite-difference treatment. (author)
Wang, Hua; Tao, Guo; Shang, Xue-Feng; Fang, Xin-Ding; Burns, Daniel R.
2013-12-01
In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid columns (radius ˜27 mm). Fine grids and large computational models are required to model the thin fluid region between the tool and the formation. As a result, small time step and more iterations are needed, which increases the cumulative numerical error. Furthermore, due to high impedance contrast between the drill collar and fluid in the borehole (the difference is >30 times), the stability and efficiency of the perfectly matched layer (PML) scheme is critical to simulate complicated wave modes accurately. In this paper, we compared four different PML implementations in a staggered grid finite difference in time domain (FDTD) in the ALWD simulation, including field-splitting PML (SPML), multiaxial PML(MPML), non-splitting PML (NPML), and complex frequency-shifted PML (CFS-PML). The comparison indicated that NPML and CFS-PML can absorb the guided wave reflection from the computational boundaries more efficiently than SPML and M-PML. For large simulation time, SPML, M-PML, and NPML are numerically unstable. However, the stability of M-PML can be improved further to some extent. Based on the analysis, we proposed that the CFS-PML method is used in FDTD to eliminate the numerical instability and to improve the efficiency of absorption in the PML layers for LWD modeling. The optimal values of CFS-PML parameters in the LWD simulation were investigated based on thousands of 3D simulations. For typical LWD cases, the best maximum value of the quadratic damping profile was obtained using one d 0. The optimal parameter space for the maximum value of the linear frequency-shifted factor ( α 0) and the scaling factor ( β 0) depended on the thickness of the PML layer. For typical formations, if the PML thickness is 10 grid points, the global error can be reduced to <1
The development of efficient numerical time-domain modeling methods for geophysical wave propagation
Zhu, Lieyuan
This Ph.D. dissertation focuses on the numerical simulation of geophysical wave propagation in the time domain including elastic waves in solid media, the acoustic waves in fluid media, and the electromagnetic waves in dielectric media. This thesis shows that a linear system model can describe accurately the physical processes of those geophysical waves' propagation and can be used as a sound basis for modeling geophysical wave propagation phenomena. The generalized stability condition for numerical modeling of wave propagation is therefore discussed in the context of linear system theory. The efficiency of a series of different numerical algorithms in the time-domain for modeling geophysical wave propagation are discussed and compared. These algorithms include the finite-difference time-domain method, pseudospectral time domain method, alternating directional implicit (ADI) finite-difference time domain method. The advantages and disadvantages of these numerical methods are discussed and the specific stability condition for each modeling scheme is carefully derived in the context of the linear system theory. Based on the review and discussion of these existing approaches, the split step, ADI pseudospectral time domain (SS-ADI-PSTD) method is developed and tested for several cases. Moreover, the state-of-the-art stretched-coordinate perfect matched layer (SCPML) has also been implemented in SS-ADI-PSTD algorithm as the absorbing boundary condition for truncating the computational domain and absorbing the artificial reflection from the domain boundaries. After algorithmic development, a few case studies serve as the real-world examples to verify the capacities of the numerical algorithms and understand the capabilities and limitations of geophysical methods for detection of subsurface contamination. The first case is a study using ground penetrating radar (GPR) amplitude variation with offset (AVO) for subsurface non-aqueous-liquid (NAPL) contamination. The
Al-Jabr, Ahmad Ali; Alsunaidi, Mohammad A.; Ng, Tien Khee; Ooi, Boon S.
2013-01-01
In this paper, an finite-difference time-domain (FDTD) algorithm for simulating propagation of EM waves in anisotropic material is presented. The algorithm is based on the auxiliary differential equation and the general polarization formulation. In anisotropic materials, electric fields are coupled and elements in the permittivity tensor are, in general, multiterm dispersive. The presented algorithm resolves the field coupling using a formulation based on electric polarizations. It also offers a simple procedure for the treatment of multiterm dispersion in the FDTD scheme. The algorithm is tested by simulating wave propagation in 1-D magnetized plasma showing excellent agreement with analytical solutions. Extension of the algorithm to multidimensional structures is straightforward. The presented algorithm is efficient and simple compared to other algorithms found in the literature. © 2012 IEEE.
Al-Jabr, Ahmad Ali
2013-03-01
In this paper, an finite-difference time-domain (FDTD) algorithm for simulating propagation of EM waves in anisotropic material is presented. The algorithm is based on the auxiliary differential equation and the general polarization formulation. In anisotropic materials, electric fields are coupled and elements in the permittivity tensor are, in general, multiterm dispersive. The presented algorithm resolves the field coupling using a formulation based on electric polarizations. It also offers a simple procedure for the treatment of multiterm dispersion in the FDTD scheme. The algorithm is tested by simulating wave propagation in 1-D magnetized plasma showing excellent agreement with analytical solutions. Extension of the algorithm to multidimensional structures is straightforward. The presented algorithm is efficient and simple compared to other algorithms found in the literature. © 2012 IEEE.
New Flutter Analysis Technique for Time-Domain Computational Aeroelasticity
Pak, Chan-Gi; Lung, Shun-Fat
2017-01-01
A new time-domain approach for computing flutter speed is presented. Based on the time-history result of aeroelastic simulation, the unknown unsteady aerodynamics model is estimated using a system identification technique. The full aeroelastic model is generated via coupling the estimated unsteady aerodynamic model with the known linear structure model. The critical dynamic pressure is computed and used in the subsequent simulation until the convergence of the critical dynamic pressure is achieved. The proposed method is applied to a benchmark cantilevered rectangular wing.
Terahertz time-domain spectroscopy and imaging of artificial RNA
DEFF Research Database (Denmark)
Fischer, Bernd M.; Hoffmann, Matthias; Helm, Hanspeter
2005-01-01
We use terahertz time-domain spectroscopy (THz-TDS) to measure the far-infrared dielectric function of two artificial RNA single strands, composed of polyadenylic acid (poly-A) and polycytidylic acid (poly-C). We find a significant difference in the absorption between the two types of RNA strands......, and we show that we can use this difference to record images of spot arrays of the RNA strands. Under controlled conditions it is possible to use the THz image to distinguish between the two RNA strands. We discuss the requirements to sample preparation imposed by the lack of sharp spectral features...
CORRTEX: a compact and versatile system for time domain reflectometry
International Nuclear Information System (INIS)
Deupree, R.G.; Eilers, D.D.; McKown, T.O.; Storey, W.H.
1981-01-01
The CORRTEX (COntinuous Reflectometry for Radius versus Time EXperiments) system was designed to be an adaptable and versatile unit for performing time domain reflectometry (TDR). The system consists of a coaxial cable, a digital TDR, which uses a Motorola 6800 microprocessor, a power source or battery pack, and an output terminal or recording driver. Desirable criteria for the system are discussed as well as the operation of the CORRTEX system. The types of present applications of the CORRTEX system are summarized and data presented
Terahertz time-domain transmission and reflection spectroscopy of niobium
International Nuclear Information System (INIS)
Hong, Tae Yoon; Choi, Kyu Jin; Park, Byoung Cheol; Ha, Tae Woo; Sim, Kyung Ik; Kim, Jea Hoon; Ha, Dong Gwang; Chang, Yonuk
2013-01-01
We have developed a terahertz time-domain spectroscopy (THz-TDS) system for transmission and reflection measurements of metallic thin films. Using our THz-TDS system, we studied the conventional superconductor niobium (Nb) in the normal state in the spectral range from 5 to 50 cm -1 . Both the real and imaginary parts of the conductivity are acquired without Kramers-Kronig analysis. Nb exhibits a nearly frequency independent real conductivity spectrum in the terahertz range, with a very small imaginary part.
Solution of the Burgers Equation in the Time Domain
Directory of Open Access Journals (Sweden)
M. Bednařík
2002-01-01
Full Text Available This paper deals with a theoretical description of the propagation of a finite amplitude acoustic waves. The theory based on the homogeneous Burgers equation of the second order of accuracy is presented here. This equation takes into account both nonlinear effects and dissipation. The method for solving this equation, using the well-known Cole-Hopf transformation, is presented. Two methods for numerical solution of these equations in the time domain are presented. The first is based on the simple Simpson method, which is suitable for smaller Goldberg numbers. The second uses the more advanced saddle point method, and is appropriate for large Goldberg numbers.
Physical optics far field inverse scattering in the time domain
International Nuclear Information System (INIS)
Bleistein, N.
1976-01-01
The physical optics far field inverse scattering (POFFIS) identity relates the phase and range normalized far field back scattering amplitude to the spatial Fourier transform of the characteristic function of the scattering obstacle. The characteristic function is equal to unity in the region occupied by the obstacle and zero elsewhere. The original identity was derived by Bojarski for impulsive point sources. The result is extended to sources of arbitrary time dependence. One obtains an alternative form of Bojarski's POFFIS identity. One also derives a POFFIS identity in the time domain. Numerically synthesized checks on the method are provided
Evaluation of skin moisturizer effects using terahertz time domain imaging
Martinez-Meza, L. H.; Rojas-Landeros, S. C.; Castro-Camus, E.; Alfaro-Gomez, M.
2018-02-01
We use terahertz time domain imaging for the evaluation of the effects of skin-moisturizers in vivo. We evaluate three principal substances used in commercial moisturizers: glycerin, hyaluronic acid and lanolin. We image the interaction of the forearm with each of the substances taking terahertz spectra at sequential times. With this, we are able to measure the effect of the substances on the hydration level of the skin in time, determining the feasibility of using THz imaging for the evaluation of the products and their effects on the hydration levels of the skin.
Time-Domain Diversity in Ultra-Wideband MIMO Communications
Directory of Open Access Journals (Sweden)
Alain Sibille
2005-03-01
Full Text Available The development of ultra-wideband (UWB communications is impeded by the drastic transmitted power limitations imposed by regulation authorities due to the Ã¢Â€ÂœpollutingÃ¢Â€Â character of these radio emissions with respect to existing services. Technical solutions must be researched in order either to limit the level of spectral pollution by UWB devices or to increase their reception sensitivity. In the present work, we consider pulse-based modulations and investigate time-domain multiple-input multiple-output (MIMO diversity as one such possible solution. The basic principles of time-domain diversity in the extreme (low multipath density or intermediate (dense multipath UWB regimes are addressed, which predict the possibility of a MIMO gain equal to the product NtÃƒÂ—Nr of the numbers of transmit/receive antenna elements when the channel is not too severe. This analysis is confirmed by simulations using a parametric empirical stochastic double-directional channel model. They confirm the potential interest of MIMO approaches solutions in order to bring a valuable performance gain in UWB communications.
Energy Technology Data Exchange (ETDEWEB)
Pettersen, Bjoernar Hauknes
1997-12-31
Many problems in offshore oil production and multiphase transport are related to surface and colloid chemistry. This thesis applies dielectric spectroscopy as an experimental technique to study the behaviour of particle suspensions in polar media. The thesis opens with an introduction to suspensions and time domain dielectric spectroscopy. It then investigates the dielectric properties of silica and alumina dispersed in polar solvents. It is found that theoretical models can be used to calculate the volume fraction disperse phase in the suspension and that the particle sedimentation depends on the wetting of the particles, charge on the particle surface and viscosity of the solvent, and that this dependency can be measured by time domain dielectric spectroscopy. When the surface properties of silica and alumina particles were modified by coating them with a non-ionic polymer and a non-ionic surfactant, then different degrees of packing in the sedimented phase at the bottom of the sedimentation vessel occurred. Chemometrical methods on the synthesis of monodisperse silica particles were used to investigate what factors influence the particle size. It turned out that it is insufficient to consider only main variables when discussing the results of the synthesis. By introducing interaction terms, the author could explain the variation in the size of particles synthesized. The difference in the sedimentation rate of monodisperse silica particles upon variation of volume fraction particles, pH, salinity, amount of silanol groups at the particle surface and temperature was studied. The cross interactions play an important role and a model explaining the variation in sedimentation is introduced. Finally, magnetic particles dispersed in water and in an external magnetic field were used to study the impact on the sedimentation due to the induced flocculation. 209 refs., 90 figs., 9 tabs.
Pan, Yudi; Gao, Lingli; Bohlen, Thomas
2018-05-01
Correct estimation of near-surface seismic-wave velocity when encountering lateral heterogeneity and free surface topography is one of the challenges to current shallow seismic. We propose to use time-domain full-waveform inversion (FWI) of surface waves, including both Rayleigh and Love waves, to solve this problem. We adopt a 2D time-domain finite-difference method with an improved vacuum formulation (IVF) to simulate shallow-seismic Rayleigh wave in presence of free-surface topography. We modify the IVF for SH-wave equation for the simulation of Love wave in presence of topographic free surface and prove its accuracy by benchmark tests. Checkboard model tests are performed in both cases when free-surface topography is included or neglected in FWI. Synthetic model containing a dipping planar free surface and lateral heterogeneity was then tested, in both cases of considering and neglecting free-surface topography. Both checkerboard and synthetic models show that Rayleigh- and Love-wave FWI have similar ability of reconstructing near-surface structures when free-surface topography is considered, while Love-wave FWI could reconstruct near-surface structures better than Rayleigh-wave when free-surface topography is neglected.
Explicit solution of Calderon preconditioned time domain integral equations
Ulku, Huseyin Arda
2013-07-01
An explicit marching on-in-time (MOT) scheme for solving Calderon-preconditioned time domain integral equations is proposed. The scheme uses Rao-Wilton-Glisson and Buffa-Christiansen functions to discretize the domain and range of the integral operators and a PE(CE)m type linear multistep to march on in time. Unlike its implicit counterpart, the proposed explicit solver requires the solution of an MOT system with a Gram matrix that is sparse and well-conditioned independent of the time step size. Numerical results demonstrate that the explicit solver maintains its accuracy and stability even when the time step size is chosen as large as that typically used by an implicit solver. © 2013 IEEE.
Iterative Refinement Methods for Time-Domain Equalizer Design
Directory of Open Access Journals (Sweden)
Evans Brian L
2006-01-01
Full Text Available Commonly used time domain equalizer (TEQ design methods have been recently unified as an optimization problem involving an objective function in the form of a Rayleigh quotient. The direct generalized eigenvalue solution relies on matrix decompositions. To reduce implementation complexity, we propose an iterative refinement approach in which the TEQ length starts at two taps and increases by one tap at each iteration. Each iteration involves matrix-vector multiplications and vector additions with matrices and two-element vectors. At each iteration, the optimization of the objective function either improves or the approach terminates. The iterative refinement approach provides a range of communication performance versus implementation complexity tradeoffs for any TEQ method that fits the Rayleigh quotient framework. We apply the proposed approach to three such TEQ design methods: maximum shortening signal-to-noise ratio, minimum intersymbol interference, and minimum delay spread.
In vitro osteosarcoma biosensing using THz time domain spectroscopy
Ferguson, Bradley S.; Liu, Haibo; Hay, Shelley; Findlay, David; Zhang, Xi-Cheng; Abbott, Derek
2004-03-01
Terahertz time domain spectroscopy (THz-TDS) has a wide range of applications from semiconductor diagnostics to biosensing. Recent attention has focused on bio-applications and several groups have noted the ability of THz-TDS to differentiate basal cell carcinoma tissue from healthy dermal tissue ex vivo. The contrast mechanism is unclear but has been attributed to increased interstitial water in cancerous tissue. In this work we investigate the THz response of human osteosarcoma cells and normal human bone cells grown in culture to isolate the cells' responses from other effects. A classification algorithms based on a frequency selection by genetic algorithm is used to attempt to differentiate between the cell types based on the THz spectra. Encouraging preliminary results have been obtained.
Modern linear control design a time-domain approach
Caravani, Paolo
2013-01-01
This book offers a compact introduction to modern linear control design. The simplified overview presented of linear time-domain methodology paves the road for the study of more advanced non-linear techniques. Only rudimentary knowledge of linear systems theory is assumed - no use of Laplace transforms or frequency design tools is required. Emphasis is placed on assumptions and logical implications, rather than abstract completeness; on interpretation and physical meaning, rather than theoretical formalism; on results and solutions, rather than derivation or solvability. The topics covered include transient performance and stabilization via state or output feedback; disturbance attenuation and robust control; regional eigenvalue assignment and constraints on input or output variables; asymptotic regulation and disturbance rejection. Lyapunov theory and Linear Matrix Inequalities (LMI) are discussed as key design methods. All methods are demonstrated with MATLAB to promote practical use and comprehension. ...
Perfectly matched layer for the time domain finite element method
International Nuclear Information System (INIS)
Rylander, Thomas; Jin Jianming
2004-01-01
A new perfectly matched layer (PML) formulation for the time domain finite element method is described and tested for Maxwell's equations. In particular, we focus on the time integration scheme which is based on Galerkin's method with a temporally piecewise linear expansion of the electric field. The time stepping scheme is constructed by forming a linear combination of exact and trapezoidal integration applied to the temporal weak form, which reduces to the well-known Newmark scheme in the case without PML. Extensive numerical tests on scattering from infinitely long metal cylinders in two dimensions show good accuracy and no signs of instabilities. For a circular cylinder, the proposed scheme indicates the expected second order convergence toward the analytic solution and gives less than 2% root-mean-square error in the bistatic radar cross section (RCS) for resolutions with more than 10 points per wavelength. An ogival cylinder, which has sharp corners supporting field singularities, shows similar accuracy in the monostatic RCS
Differentiation of illicit drugs with THz time-domain spectroscopy
International Nuclear Information System (INIS)
Liu Guifeng; Ma Shihua; Ji Te; Zhao Hongwei; Wang Wenfeng
2010-01-01
The tera hertz time-domain spectroscopy (THz-TDS) was used for sensing and identifying illicit drugs. The absorption spectra of seven illicit drug samples(morphine and its hydrochloride, cocaine hydrochloride, codeine phosphate, papaverine hydrochloride, pethidine hydrochloride, and thebaine) were studied by THz-TDS at 0.3-2.0 THz at room temperature. The geometric structure and vibration frequencies of morphine were calculated by density functional theory. The four absorption features were dominated by intra-/inter-molecular collective or lattice vibration modes. Each illicit drug has a distinct signature in its THz spectra. The results indicate that the THz-TDS can be used to identify and discriminate illicit drugs by their characteristic fingerprints. (authors)
Synchronous machine parameter identification in frequency and time domain
Directory of Open Access Journals (Sweden)
Hasni M.
2007-01-01
Full Text Available This paper presents the results of a frequency and time-domain identification procedure to estimate the linear parameters of a salient-pole synchronous machine at standstill. The objective of this study is to use several input signals to identify the model structure and parameters of a salient-pole synchronous machine from standstill test data. The procedure consists to define, to conduct the standstill tests and also to identify the model structure. The signals used for identification are the different excitation voltages at standstill and the flowing current in different windings. We estimate the parameters of operational impedances, or in other words the reactance and the time constants. The tests were carried out on synchronous machine of 1.5 kVA 380V 1500 rpm.
Terahertz time-domain spectroscopy of edible oils
Dinovitser, Alex; Valchev, Dimitar G.; Abbott, Derek
2017-06-01
Chemical degradation of edible oils has been studied using conventional spectroscopic methods spanning the spectrum from ultraviolet to mid-IR. However, the possibility of morphological changes of oil molecules that can be detected at terahertz frequencies is beginning to receive some attention. Furthermore, the rapidly decreasing cost of this technology and its capability for convenient, in situ measurement of material properties, raises the possibility of monitoring oil during cooking and processing at production facilities, and more generally within the food industry. In this paper, we test the hypothesis that oil undergoes chemical and physical changes when heated above the smoke point, which can be detected in the 0.05-2 THz spectral range, measured using the conventional terahertz time-domain spectroscopy technique. The measurements demonstrate a null result in that there is no significant change in the spectra of terahertz optical parameters after heating above the smoke point for 5 min.
SVD compression for magnetic resonance fingerprinting in the time domain.
McGivney, Debra F; Pierre, Eric; Ma, Dan; Jiang, Yun; Saybasili, Haris; Gulani, Vikas; Griswold, Mark A
2014-12-01
Magnetic resonance (MR) fingerprinting is a technique for acquiring and processing MR data that simultaneously provides quantitative maps of different tissue parameters through a pattern recognition algorithm. A predefined dictionary models the possible signal evolutions simulated using the Bloch equations with different combinations of various MR parameters and pattern recognition is completed by computing the inner product between the observed signal and each of the predicted signals within the dictionary. Though this matching algorithm has been shown to accurately predict the MR parameters of interest, one desires a more efficient method to obtain the quantitative images. We propose to compress the dictionary using the singular value decomposition, which will provide a low-rank approximation. By compressing the size of the dictionary in the time domain, we are able to speed up the pattern recognition algorithm, by a factor of between 3.4-4.8, without sacrificing the high signal-to-noise ratio of the original scheme presented previously.
Time-domain Hydroelasticity Theory of Ships Responding to Waves
DEFF Research Database (Denmark)
Xia, Jinzhu; Wang, Zhaohui
1997-01-01
free surface flow. The general interface boundary condition is used in the mathematical formulation of the fluid motion around the flexible structure. The general time-domain theory is simplified to a slender-body theory for the analysis of wave-induced global responses of monohull ships. The structure...... is represented by a non-uniform beam, while the generalized hydrodynamic coefficients can be obtained from two-dimensional potential flow theory. The linear slender body theory is generalized to treat the non-linear loading effects of rigid motion and structural response of ships travelling in rough seas....... The non-linear hydrostatic restoring force and hydrodynamic momentum action are considered. A numerical solution is presented for the slender body theory. Numerical examples are given for two ship cases with different geometry features, a warship hull and the S175 containership with two different bow...
Terahertz Time Domain Spectroscopy for Structure-II Gas Hydrates
DEFF Research Database (Denmark)
Takeya, Kei; Zhang, Caihong; Kawayama, Iwao
2009-01-01
For the nondestructive inspection of gas hydrates, terahertz (THz) time-domain spectroscopy (TDS) was applied to tetrahydrofuran (THF) hydrate and propane hydrate. The absorption of propane hydrate monotonically increases with frequency, similar to the case of ice, while THF hydrate has...... a characteristic broad absorption peak at 0.5 THz corresponding to the dipole moment of THF molecules. The refractive indices of THF and propane hydrates are 1.725 and 1.775 at 1 THz, respectively, and show a slight but clear difference from the refractive index of ice (1.79). THz-TDS is a potentially useful...... technique for the ondestructive inspection of gas hydrates. # 2009 The Japan Society of Applied Physics...
Detection of Poisonous Herbs by Terahertz Time-Domain Spectroscopy
Zhang, H.; Li, Z.; Chen, T.; Liu, J.-J.
2018-03-01
The aim of this paper is the application of terahertz (THz) spectroscopy combined with chemometrics techniques to distinguish poisonous and non-poisonous herbs which both have a similar appearance. Spectra of one poisonous and two non-poisonous herbs (Gelsemium elegans, Lonicera japonica Thunb, and Ficus Hirta Vahl) were obtained in the range 0.2-1.4 THz by using a THz time-domain spectroscopy system. Principal component analysis (PCA) was used for feature extraction. The prediction accuracy of classification is between 97.78 to 100%. The results demonstrate an efficient and applicative method to distinguish poisonous herbs, and it may be implemented by using THz spectroscopy combined with chemometric algorithms.
Al-Jabr, Ahmad
2010-01-01
A time-domain analysis of the propagation properties of surface-plasmon-polaritons (SPP) in Silver nanostructures is presented. The analysis is based on a simulation algorithm that unifies the formulation of different dispersion models and multi-pole relations into one form. The main objective of this work is to perform a comparative analysis between different dispersion models used for Silver, including Debye, Drude and multi-pole Lorentz-Drude models. The quantities that are used in the comparison are the SPP propagation length and propagation speed. Experimental results reported in literature are used to support the conclusions.
Chu, Chunlei; Stoffa, Paul L.
2012-01-01
sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced
Mickens, Ronald E.
1989-01-01
A family of conditionally stable, forward Euler finite difference equations can be constructed for the simplest equation of Schroedinger type, namely u sub t - iu sub xx. Generalization of this result to physically realistic Schroedinger type equations is presented.
Stability and non-standard finite difference method of the generalized Chua's circuit
Radwan, Ahmed G.; Moaddy, K.; Momani, Shaher M.
2011-01-01
In this paper, we develop a framework to obtain approximate numerical solutions of the fractional-order Chua's circuit with Memristor using a non-standard finite difference method. Chaotic response is obtained with fractional-order elements as well
The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion
International Nuclear Information System (INIS)
Moszo, P.; Kristek, J.; Galis, M.; Pazak, P.; Balazovijech, M.
2006-01-01
Numerical modeling of seismic wave propagation and earthquake motion is an irreplaceable tool in investigation of the Earth's structure, processes in the Earth, and particularly earthquake phenomena. Among various numerical methods, the finite-difference method is the dominant method in the modeling of earthquake motion. Moreover, it is becoming more important in the seismic exploration and structural modeling. At the same time we are convinced that the best time of the finite-difference method in seismology is in the future. This monograph provides tutorial and detailed introduction to the application of the finite-difference, finite-element, and hybrid finite-difference-finite-element methods to the modeling of seismic wave propagation and earthquake motion. The text does not cover all topics and aspects of the methods. We focus on those to which we have contributed. (Author)
Energy Technology Data Exchange (ETDEWEB)
Swegle, J.W.; Hicks, D.L.
1979-05-01
An anisotropic constitutive relation was incorporated into the Lagrangian finite-difference wavecode TOODY. The details of the implementation of the constitutive relation in the wavecode and an example of its use are discussed. 4 figures, 1 table.
Directory of Open Access Journals (Sweden)
Peng Jiang
2013-01-01
Full Text Available The authors attempt to construct the exact finite-difference schemes for linear stochastic differential equations with constant coefficients. The explicit solutions to Itô and Stratonovich linear stochastic differential equations with constant coefficients are adopted with the view of providing exact finite-difference schemes to solve them. In particular, the authors utilize the exact finite-difference schemes of Stratonovich type linear stochastic differential equations to solve the Kubo oscillator that is widely used in physics. Further, the authors prove that the exact finite-difference schemes can preserve the symplectic structure and first integral of the Kubo oscillator. The authors also use numerical examples to prove the validity of the numerical methods proposed in this paper.
Time domain series system definition and gear set reliability modeling
International Nuclear Information System (INIS)
Xie, Liyang; Wu, Ningxiang; Qian, Wenxue
2016-01-01
Time-dependent multi-configuration is a typical feature for mechanical systems such as gear trains and chain drives. As a series system, a gear train is distinct from a traditional series system, such as a chain, in load transmission path, system-component relationship, system functioning manner, as well as time-dependent system configuration. Firstly, the present paper defines time-domain series system to which the traditional series system reliability model is not adequate. Then, system specific reliability modeling technique is proposed for gear sets, including component (tooth) and subsystem (tooth-pair) load history description, material priori/posterior strength expression, time-dependent and system specific load-strength interference analysis, as well as statistically dependent failure events treatment. Consequently, several system reliability models are developed for gear sets with different tooth numbers in the scenario of tooth root material ultimate tensile strength failure. The application of the models is discussed in the last part, and the differences between the system specific reliability model and the traditional series system reliability model are illustrated by virtue of several numerical examples. - Highlights: • A new type of series system, i.e. time-domain multi-configuration series system is defined, that is of great significance to reliability modeling. • Multi-level statistical analysis based reliability modeling method is presented for gear transmission system. • Several system specific reliability models are established for gear set reliability estimation. • The differences between the traditional series system reliability model and the new model are illustrated.
A Time Domain Update Method for Reservoir History Matching of Electromagnetic Data
Katterbauer, Klemens
2014-03-25
The oil & gas industry has been the backbone of the world\\'s economy in the last century and will continue to be in the decades to come. With increasing demand and conventional reservoirs depleting, new oil industry projects have become more complex and expensive, operating in areas that were previously considered impossible and uneconomical. Therefore, good reservoir management is key for the economical success of complex projects requiring the incorporation of reliable uncertainty estimates for reliable production forecasts and optimizing reservoir exploitation. Reservoir history matching has played here a key role incorporating production, seismic, electromagnetic and logging data for forecasting the development of reservoirs and its depletion. With the advances in the last decade, electromagnetic techniques, such as crosswell electromagnetic tomography, have enabled engineers to more precisely map the reservoirs and understand their evolution. Incorporating the large amount of data efficiently and reducing uncertainty in the forecasts has been one of the key challenges for reservoir management. Computing the conductivity distribution for the field for adjusting parameters in the forecasting process via solving the inverse problem has been a challenge, due to the strong ill-posedness of the inversion problem and the extensive manual calibration required, making it impossible to be included into an efficient reservoir history matching forecasting algorithm. In the presented research, we have developed a novel Finite Difference Time Domain (FDTD) based method for incorporating electromagnetic data directly into the reservoir simulator. Based on an extended Archie relationship, EM simulations are performed for both forecasted and Porosity-Saturation retrieved conductivity parameters being incorporated directly into an update step for the reservoir parameters. This novel direct update method has significant advantages such as that it overcomes the expensive and ill
Energy Technology Data Exchange (ETDEWEB)
Kim, S. [Purdue Univ., West Lafayette, IN (United States)
1994-12-31
Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.
Wang, Xu; Gao, Zhensen; Kataoka, Nobuyuki; Wada, Naoya
2010-05-10
A novel scheme using single phase modulator for simultaneous time domain spectral phase encoding (SPE) signal generation and DPSK data modulation is proposed and experimentally demonstrated. Array- Waveguide-Grating and Variable-Bandwidth-Spectrum-Shaper based devices can be used for decoding the signal directly in spectral domain. The effects of fiber dispersion, light pulse width and timing error on the coding performance have been investigated by simulation and verified in experiment. In the experiment, SPE signal with 8-chip, 20GHz/chip optical code patterns has been generated and modulated with 2.5 Gbps DPSK data using single modulator. Transmission of the 2.5 Gbps data over 34km fiber with BEROCDMA) and secure optical communication applications. (c) 2010 Optical Society of America.
Time domain numerical calculations of the short electron bunch wakefields in resistive structures
Energy Technology Data Exchange (ETDEWEB)
Tsakanian, Andranik
2010-10-15
The acceleration of electron bunches with very small longitudinal and transverse phase space volume is one of the most actual challenges for the future International Linear Collider and high brightness X-Ray Free Electron Lasers. The exact knowledge on the wake fields generated by the ultra-short electron bunches during its interaction with surrounding structures is a very important issue to prevent the beam quality degradation and to optimize the facility performance. The high accuracy time domain numerical calculations play the decisive role in correct evaluation of the wake fields in advanced accelerators. The thesis is devoted to the development of a new longitudinally dispersion-free 3D hybrid numerical scheme in time domain for wake field calculation of ultra short bunches in structures with walls of finite conductivity. The basic approaches used in the thesis to solve the problem are the following. For materials with high but finite conductivity the model of the plane wave reflection from a conducting half-space is used. It is shown that in the conductive half-space the field components perpendicular to the interface can be neglected. The electric tangential component on the surface contributes to the tangential magnetic field in the lossless area just before the boundary layer. For high conducting media, the task is reduced to 1D electromagnetic problem in metal and the so-called 1D conducting line model can be applied instead of a full 3D space description. Further, a TE/TM (''transverse electric - transverse magnetic'') splitting implicit numerical scheme along with 1D conducting line model is applied to develop a new longitudinally dispersion-free hybrid numerical scheme in the time domain. The stability of the new hybrid numerical scheme in vacuum, conductor and bound cell is studied. The convergence of the new scheme is analyzed by comparison with the well-known analytical solutions. The wakefield calculations for a number of
Time domain optical memories using rare earth ions
International Nuclear Information System (INIS)
Sellars, M.J.; Dyke, T.; Pryde, G.J.; Manson, N.B.
1998-01-01
Full text: Rare earth doped crystals are the chosen materials for the next generation of optical memories where the process of spectral holeburning can be employed to provide an extra dimension of frequency or time to spatial dimensions and with certain rare earth ions increases of the order of 10 7 in storage capacity can be achieved over conventional optical memories. Time domain techniques are preferred over frequency domain techniques and are now well developed. In these techniques arbitrary pulse sequences are stored in the material and read out at some later time with a single read pulse using a stimulated photon echo process. Long pulse sequences will enable more data to be stored but necessitates the use of materials with long dephasing times (corresponding to narrow spectral lines) and it is this characteristic of rare earth systems that makes them the preferred material for the new time domain optical memories. The storage time can range from hours to days but in a practical device will require refreshing or re-enforcing and this puts special requirements on the stability of the laser used for storing the information. The storage process itself can also be weak and more reliable storage can be achieved by recording the data several times with the same pulse sequence. For this to be successful the laser must be at held at a constant frequency and be stable in phase over the entire duration of the pulse sequence. The procedure of reinforcing the data sequence has been proposed before and attempted without attention to the laser frequency stability. However, if the laser is not stable although some data bits will be reinforced or increased in size others will be decreased or even erased. Indeed the reliability of the memory is degraded by the introducing the rewrite process. For our work we have developed a laser with the excellent stability and able to demonstrate reproducible reinforcement of the data sequence. Thus with the rewrite sequence we are able to
kebci, Zahia; Belkhir, Abderrahmane; Mezeghrane, Abdelaziz; Lamrous, Omar; Baida, Fadi Issam
2018-03-01
The objective of this work is to develop a code based on the finite difference time domain method in cylindrical coordinates (CC-FDTD) that integrates the Drude Critical Points model (DCP) and to apply it in the study of a metallic C-shaped waveguide (CSWG). The integrated dispersion model allows an accurate description of noble metals in the optical range and working in cylindrical coordinates is necessary to bypass the staircase effect induced by a Cartesian mesh especially in the case of curved geometrical forms. The CC-FDTD code developed as a part of this work is more general than the Body-Of-Revolution-FDTD algorithm that can only handle structures exhibiting a complete cylindrical symmetry. A N-order CC-FDTD code is then derived and used to perform a parametric study of an infinitly-long CSWG for nano-optic applications. Propagation losses and dispersion diagrams are given for different geometrical parameters.
Dumeige, Yannick; Féron, Patrice
2011-10-01
Coupled nonlinear resonators have potential applications for the integration of multistable photonic devices. The dynamic properties of two coupled-mode nonlinear microcavities made of Kerr material are studied by linear stability analysis. Using a suitable combination of the modal coupling rate and the frequency detuning, it is possible to obtain configurations where a hysteresis loop is included inside other bistable cycles. We show that a single resonator with two modes both linearly and nonlinearly coupled via the cross-Kerr effect can have a multistable behavior. This could be implemented in semiconductor nonlinear whispering-gallery-mode microresonators under modal coupling for all optical signal processing or ternary optical logic applications.
International Nuclear Information System (INIS)
Dumeige, Yannick; Feron, Patrice
2011-01-01
Coupled nonlinear resonators have potential applications for the integration of multistable photonic devices. The dynamic properties of two coupled-mode nonlinear microcavities made of Kerr material are studied by linear stability analysis. Using a suitable combination of the modal coupling rate and the frequency detuning, it is possible to obtain configurations where a hysteresis loop is included inside other bistable cycles. We show that a single resonator with two modes both linearly and nonlinearly coupled via the cross-Kerr effect can have a multistable behavior. This could be implemented in semiconductor nonlinear whispering-gallery-mode microresonators under modal coupling for all optical signal processing or ternary optical logic applications.
Time domain functional NIRS imaging for human brain mapping.
Torricelli, Alessandro; Contini, Davide; Pifferi, Antonio; Caffini, Matteo; Re, Rebecca; Zucchelli, Lucia; Spinelli, Lorenzo
2014-01-15
This review is aimed at presenting the state-of-the-art of time domain (TD) functional near-infrared spectroscopy (fNIRS). We first introduce the physical principles, the basics of modeling and data analysis. Basic instrumentation components (light sources, detection techniques, and delivery and collection systems) of a TD fNIRS system are described. A survey of past, existing and next generation TD fNIRS systems used for research and clinical studies is presented. Performance assessment of TD fNIRS systems and standardization issues are also discussed. Main strengths and weakness of TD fNIRS are highlighted, also in comparison with continuous wave (CW) fNIRS. Issues like quantification of the hemodynamic response, penetration depth, depth selectivity, spatial resolution and contrast-to-noise ratio are critically examined, with the help of experimental results performed on phantoms or in vivo. Finally we give an account on the technological developments that would pave the way for a broader use of TD fNIRS in the neuroimaging community. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Application of Time Domain Reflectometers in Urban Settings ...
Time domain reflectometers (TDRs) are sensors that measure the volumetric water content of soils and porous media. The sensors consist of stainless steel rods connected to a circuit board in an epoxy housing. An electromagnetic pulse is propagated along the rods. The time, or period, required for the signal to travel down the rods and back varies with the volumetric water content of the surrounding media and temperature. A calibration curve is needed for the specific media. TDRs were developed mostly for agricultural applications; however, the technology has also been applied to forestry and ecological research. This study demonstrates the use of TDRs for quantifying drainage properties in low impact development (LID) stormwater controls, specifically permeable pavement and rain garden systems. TDRs were successfully used to monitor the responses of urban fill, engineered bioretention media, and the aggregate storage layer under permeable pavement to multiple rain events of varying depth, intensity, and duration. The hydrologic performance of permeable pavement and rain garden systems has previously been quantified for underdrain systems, but there have been few studies of systems that drain to the underlying soils. We know of no published studies outlining the use of TDR technology to document drainage properties in media other than soil. In this study TDRs were installed at multiple locations and depths in underlying urban fill soils, engineered bior
Numerical integration of the Teukolsky equation in the time domain
International Nuclear Information System (INIS)
Pazos-Avalos, Enrique; Lousto, Carlos O.
2005-01-01
We present a fourth-order convergent (2+1)-dimensional, numerical formalism to solve the Teukolsky equation in the time domain. Our approach is first to rewrite the Teukolsky equation as a system of first-order differential equations. In this way we get a system that has the form of an advection equation. This is then used in combination with a series expansion of the solution in powers of time. To obtain a fourth-order scheme we kept terms up to fourth derivative in time and use the advectionlike system of differential equations to substitute the temporal derivatives by spatial derivatives. This scheme is applied to evolve gravitational perturbations in the Schwarzschild and Kerr backgrounds. Our numerical method proved to be stable and fourth-order convergent in r* and θ directions. The correct power-law tail, ∼1/t 2l+3 , for general initial data, and ∼1/t 2l+4 , for time-symmetric data, was found in our runs. We noted that it is crucial to resolve accurately the angular dependence of the mode at late times in order to obtain these values of the exponents in the power-law decay. In other cases, when the decay was too fast and round-off error was reached before a tail was developed, then the quasinormal modes frequencies provided a test to determine the validity of our code
The Future of the Time Domain with LSST
Walkowicz, Lucianne M.
2012-04-01
abstract-type="normal">SummaryIn the coming decade LSST's combination of all-sky coverage, consistent long-term monitoring and flexible criteria for event identification will revolutionize studies of a wide variety of astrophysical phenomena. Time-domain science with LSST encompasses objects both familiar and exotic, from classical variables within our Galaxy to explosive cosmological events. Increased sample sizes of known-but-rare observational phenomena will quantify their distributions for the first time, thus challenging existing theories. Perhaps most excitingly, LSST will provide the opportunity to sample previously untouched regions of parameter space. LSST will generate `alerts' within 60 seconds of detecting a new transient, permitting the community to follow up unusual events in greater detail. However, follow-up will remain a challenge as the volume of transients will easily saturate available spectroscopic resources. Characterization of events and access to appropriate ancillary data (e.g. from prior observations, either in the optical or in other passbands) will be of the utmost importance in prioritizing follow-up observations. The incredible scientific opportunities and unique challenges afforded by LSST demand organization, forethought and creativity from the astronomical community. To learn more about the telescope specifics and survey design, as well as obtaining a overview of the variety of the scientific investigations that LSST will enable, readers are encouraged to look at the LSST Science Book: http://www.lsst.org/lsst/scibook. Organizational details of the LSST science collaborations and management may be found at http://www.lsstcorp.org.
Time domain simulations of preliminary breakdown pulses in natural lightning.
Carlson, B E; Liang, C; Bitzer, P; Christian, H
2015-06-16
Lightning discharge is a complicated process with relevant physical scales spanning many orders of magnitude. In an effort to understand the electrodynamics of lightning and connect physical properties of the channel to observed behavior, we construct a simulation of charge and current flow on a narrow conducting channel embedded in three-dimensional space with the time domain electric field integral equation, the method of moments, and the thin-wire approximation. The method includes approximate treatment of resistance evolution due to lightning channel heating and the corona sheath of charge surrounding the lightning channel. Focusing our attention on preliminary breakdown in natural lightning by simulating stepwise channel extension with a simplified geometry, our simulation reproduces the broad features observed in data collected with the Huntsville Alabama Marx Meter Array. Some deviations in pulse shape details are evident, suggesting future work focusing on the detailed properties of the stepping mechanism. Preliminary breakdown pulses can be reproduced by simulated channel extension Channel heating and corona sheath formation are crucial to proper pulse shape Extension processes and channel orientation significantly affect observations.
Landfill cover performance monitoring using time domain reflectometry
International Nuclear Information System (INIS)
Neher, E.R.; Cotten, G.B.; McElroy, D.
1998-01-01
Time domain reflectometry (TDR) systems were installed to monitor soil moisture in two newly constructed landfill covers at the Idaho National Engineering and Environmental Laboratory. Each TDR system includes four vertical arrays with each array consisting of four TDR probes located at depths of 15, 30, 45, and 60 cm. The deepest probes at 60 cm were installed beneath a compacted soil layer to analyze infiltration through the compacted layer. Based on the TDR data, infiltration through the two covers between March and October, 1997 ranged from less than measurable to 1.5 cm. However, due to a prohibition on penetrating the buried waste and resulting limits on probe placement depths, deeper percolation was not evaluated. Some of the advantages found in the application of TDR for infiltration monitoring at this site are the relative low cost and rugged nature of the equipment. Also, of particular importance, the ability to collect frequent moisture measurements allows the capture and evaluation of soil moisture changes resulting from episodic precipitation events. Disadvantages include the inability to install the probes into the waste, difficulties in interpretation of infiltration during freeze/thaw periods, and some excessive noise in the data
A Time Domain Waveform for Testing General Relativity
International Nuclear Information System (INIS)
Huwyler, Cédric; Jetzer, Philippe; Porter, Edward K
2015-01-01
Gravitational-wave parameter estimation is only as good as the theory the waveform generation models are based upon. It is therefore crucial to test General Relativity (GR) once data becomes available. Many previous works, such as studies connected with the ppE framework by Yunes and Pretorius, rely on the stationary phase approximation (SPA) to model deviations from GR in the frequency domain. As Fast Fourier Transform algorithms have become considerably faster and in order to circumvent possible problems with the SPA, we test GR with corrected time domain waveforms instead of SPA waveforms. Since a considerable amount of work has been done already in the field using SPA waveforms, we establish a connection between leading-order-corrected waveforms in time and frequency domain, concentrating on phase-only corrected terms. In a Markov Chain Monte Carlo study, whose results are preliminary and will only be available later, we will assess the ability of the eLISA detector to measure deviations from GR for signals coming from supermassive black hole inspirals using these corrected waveforms. (paper)
Time domain structures in a colliding magnetic flux rope experiment
Tang, Shawn Wenjie; Gekelman, Walter; Dehaas, Timothy; Vincena, Steve; Pribyl, Patrick
2017-10-01
Electron phase-space holes, regions of positive potential on the scale of the Debye length, have been observed in auroras as well as in laboratory experiments. These potential structures, also known as Time Domain Structures (TDS), are packets of intense electric field spikes that have significant components parallel to the local magnetic field. In an ongoing investigation at UCLA, TDS were observed on the surface of two magnetized flux ropes produced within the Large Plasma Device (LAPD). A barium oxide (BaO) cathode was used to produce an 18 m long magnetized plasma column and a lanthanum hexaboride (LaB6) source was used to create 11 m long kink unstable flux ropes. Using two probes capable of measuring the local electric and magnetic fields, correlation analysis was performed on tens of thousands of these structures and their propagation velocities, probability distribution function and spatial distribution were determined. The TDS became abundant as the flux ropes collided and appear to emanate from the reconnection region in between them. In addition, a preliminary analysis of the permutation entropy and statistical complexity of the data suggests that the TDS signals may be chaotic in nature. Work done at the Basic Plasma Science Facility (BaPSF) at UCLA which is supported by DOE and NSF.
Demonstration of Time Domain Multiplexed Readout for Magnetically Coupled Calorimeters
Porst, J.-P.; Adams, J. S.; Balvin, M.; Bandler, S.; Beyer, J.; Busch, S. E.; Drung, D.; Seidel, G. M.; Smith, S. J.; Stevenson, T. R.
2012-01-01
Magnetically coupled calorimeters (MCC) have extremely high potential for x-ray applications due to the inherent high energy resolution capability and being non-dissipative. Although very high energy-resolution has been demonstrated, until now there has been no demonstration of multiplexed read-out. We report on the first realization of a time domain multiplexed (TDM) read-out. While this has many similarities with TDM of transition-edge-sensors (TES), for MGGs the energy resolution is limited by the SQUID read-out noise and requires the well established scheme to be altered in order to minimize degradation due to noise aliasing effects. In cur approach, each pixel is read out by a single first stage SQUID (SQ1) that is operated in open loop. The outputs of the SQ1 s are low-pass filtered with an array of low cross-talk inductors, then fed into a single-stage SQUID TD multiplexer. The multiplexer is addressed from room temperature and read out through a single amplifier channel. We present results achieved with a new detector platform. Noise performance is presented and compared to expectations. We have demonstrated multiplexed X-ray spectroscopy at 5.9keV with delta_FWHM=10eV. In an optimized setup, we show it is possible to multiplex 32 detectors without significantly degrading the Intrinsic detector resolution.
Time domain NMR evaluation of poly(vinyl alcohol) xerogels
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, Elton Jorge da Rocha; Cavalcante, Maxwell de Paula; Tavares, Maria Ines Bruno, E-mail: mibt@ima.ufrj.br [Universidade Federal do Rio de Janeiro (IMA/UFRJ), Rio de Janeiro, RJ (Brazil). Centro de Tecnologia. Instituto de Macromoleculas Professora Eloisa Mano
2016-05-15
Poly(vinyl alcohol) (PVA)-based chemically cross-linked xerogels, both neat and loaded with nanoparticulate hydrophilic silica (SiO{sub 2}), were obtained and characterized mainly through time domain NMR experiments (TD-NMR). Fourier-transform infrared (FT-IR) and wide angle X-ray diffraction (WAXD) analyses were employed as secondary methods. TD-NMR, through the interpretation of the spin-lattice relaxation constant values and related information, showed both cross-linking and nanoparticle influences on PVA matrix. SiO{sub 2} does not interact chemically with the PVA chains, but has effect on its molecular mobility, as investigated via TD-NMR. Apparent energy of activation, spin-lattice time constant and size of spin domains in the sample have almost linear dependence with the degree of cross-linking of the PVA and are affected by the addition of SiO{sub 2}. These three parameters were derived from a single set of TD-NMR experiments, which demonstrates the versatility of the technique for characterization of inorganic-organic hybrid xerogels, an important class of materials. (author)
International Nuclear Information System (INIS)
Civalek, Oemer
2005-01-01
The nonlinear dynamic response of doubly curved shallow shells resting on Winkler-Pasternak elastic foundation has been studied for step and sinusoidal loadings. Dynamic analogues of Von Karman-Donnel type shell equations are used. Clamped immovable and simply supported immovable boundary conditions are considered. The governing nonlinear partial differential equations of the shell are discretized in space and time domains using the harmonic differential quadrature (HDQ) and finite differences (FD) methods, respectively. The accuracy of the proposed HDQ-FD coupled methodology is demonstrated by numerical examples. The shear parameter G of the Pasternak foundation and the stiffness parameter K of the Winkler foundation have been found to have a significant influence on the dynamic response of the shell. It is concluded from the present study that the HDQ-FD methodolgy is a simple, efficient, and accurate method for the nonlinear analysis of doubly curved shallow shells resting on two-parameter elastic foundation
Integral ceramic superstructure evaluation using time domain optical coherence tomography
Sinescu, Cosmin; Bradu, Adrian; Topala, Florin I.; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.
2014-02-01
Optical Coherence Tomography (OCT) is a non-invasive low coherence interferometry technique that includes several technologies (and the corresponding devices and components), such as illumination and detection, interferometry, scanning, adaptive optics, microscopy and endoscopy. From its large area of applications, we consider in this paper a critical aspect in dentistry - to be investigated with a Time Domain (TD) OCT system. The clinical situation of an edentulous mandible is considered; it can be solved by inserting 2 to 6 implants. On these implants a mesostructure will be manufactured and on it a superstructure is needed. This superstructure can be integral ceramic; in this case materials defects could be trapped inside the ceramic layers and those defects could lead to fractures of the entire superstructure. In this paper we demonstrate that a TD-OCT imaging system has the potential to properly evaluate the presence of the defects inside the ceramic layers and those defects can be fixed before inserting the prosthesis inside the oral cavity. Three integral ceramic superstructures were developed by using a CAD/CAM technology. After the milling, the ceramic layers were applied on the core. All the three samples were evaluated by a TD-OCT system working at 1300 nm. For two of the superstructures evaluated, no defects were found in the most stressed areas. The third superstructure presented four ceramic defects in the mentioned areas. Because of those defects the superstructure may fracture. The integral ceramic prosthesis was send back to the dental laboratory to fix the problems related to the material defects found. Thus, TD-OCT proved to be a valuable method for diagnosing the ceramic defects inside the integral ceramic superstructures in order to prevent fractures at this level.
Heliborne time-domain electromagnetic (TEM) surveys for uranium exploration
International Nuclear Information System (INIS)
Chaturvedi, A.K.
2015-01-01
Airborne geophysical surveys have been used extensively in petroleum, mineral exploration, and environmental mapping. Of all the geophysical methods, Electromagnetic (EM) methods, both ground and airborne are used to map the conductive ore bodies buried in the resistive bed rock. Mapping resistivity variations can help unravel complex geological problems and identify areas of hidden potential. Besides the traditional applications to ground water investigations and other natural resource exploration and geological mapping, a number of new applications have been reported. These include hazardous-waste characterization studies, precision agriculture applications, archaeological surveys etc. Airborne Electromagnetic (AEM) methods have undergone rapid improvements over the past few decades. Several new airborne Time Do-main EM (TDEM) systems appeared; existing systems were updated and/or enhanced. The use of natural field (passive) EM surveys continued to increase, with new or improved systems becoming available for both airborne and ground surveys. The number of large airborne survey systems with combined EM, magnetic, gravimetric and gamma-ray spectrometric capabilities also increased. Exploration of a mineral deposit is a multi-stage and multi-disciplinary approach that commences from regional investigations and concludes with establishing of a deposit. As economics play a major role in exploration, a proper integrated study is always beneficial in narrowing down the potential mineral target zones. Heliborne geophysical surveys are being conducted world-wide for exploration of base metals, gold, phosphorite, oil, uranium etc. that are very effective tool in identifying zones of interest accurately, economically and with less span of time. These surveys give a very good insight of surface and sub-surface geophysical signatures that can be attributed to geology with proper modeling. Heliborne Time - domain Electromagnetic (TEM) methods are well known for search of
Boiling water reactor stability analysis in the time domain
International Nuclear Information System (INIS)
Borkowski, J.A.
1991-01-01
Boiling water nuclear reactors may experience density wave instabilities. These instabilities cause the density, and consequently the mass flow rate, to oscillate in the shrouded fuel bundles. This effect causes the nuclear power generation to oscillate due to the tight coupling of flow to power, especially under gravity-driven circulation. In order to predict the amplitude of the power oscillation, a time domain transient analysis tool may be employed. The modeling tool must have sufficient hydrodynamic detail to model natural circulation in two-phase flow as well as the coupled nuclear feedback. TRAC/BF1 is a modeling code with such capabilities. A dynamic system model has been developed for a typical boiling water reactor. Using this tool it has been demonstrated that density waxes may be modeled in this fashion and that their resultant hydrodynamic and nuclear behavior correspond well to simple theory. Several cases have been analyzed using this model, the goal being to determine the coupling between the channel hydrodynamics and the nuclear power. From that study it has been concluded that two-phase friction controls the extent of the oscillation and that the existing conventional methodologies of implementing two-phase friction into analysis codes of this type can lead to significant deviation in results from case to case. It has also been determined that higher dimensional nuclear feedback models reduce the extent of the oscillation. It has also been confirmed from a nonlinear dynamic standpoint that the birth of this oscillation may be described as a Hopf Bifurcation
Detection of Ionic liquid using terahertz time-domain spectroscopy
Wang, Cuicui; Zhao, Xiaojing; Liu, Shangjian; Zuo, Jian; Zhang, Cunlin
2018-01-01
Terahertz (THz, THz+1012Hz) spectroscopy is a far-infrared analytical technology with spectral bands locating between microware and infrared ranges. Being of excellent transmission, non-destruction and high discrimination, this technology has been applied in various fields such as physics, chemistry, nondestructive detection, communication, biomedicine public security. Terahertz spectrum is corresponding with vibration and rotation of liquid molecules, which is suitable to identify and study the liquid molecular dynamics. It is as a powerful spectral detection technology, terahertz time-domain spectroscopy is widely used in solution detection. can enable us to extract the material parameters or dielectric spectrum that show material micro-structure and dynamics by measuring amplitude and phase from coherent terahertz pulses. Ionic liquid exists in most biological tissues, and it is very important for life. It has recently been suggested that near-fired terahertz ionic contrast microscopy can be employed to image subtle changes in ionic concentrations arising from neuronal activity. In this paper, we detected Ionic liquid with different concentrations at room temperature by THz-TDS technique in the range of 0.2-1.5 THz. The liquid cell with a thickness of 0.2mm is made of quartz. The absorption coefficient, refractive index and dielectric function of solutions can be extracted based on THz-TDS. We use an expanded model for fitting the dielectric function based on a combination of a Debye relation for the anions and cations. We find A linear increase of the real and imaginary part of the dielectric function compared with pure water with increasing ion concentrations. A good agreement between the model and the experimental results is obtained. By means of dielectric relaxation process, it was found that the characteristic time of molecular movement and the information related to the liquid molecular structure and movement was obtained.
THE TIME DOMAIN SPECTROSCOPIC SURVEY: VARIABLE SELECTION AND ANTICIPATED RESULTS
Energy Technology Data Exchange (ETDEWEB)
Morganson, Eric; Green, Paul J. [Harvard Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States); Anderson, Scott F.; Ruan, John J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Eracleous, Michael; Brandt, William Nielsen [Department of Astronomy and Astrophysics, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16802 (United States); Kelly, Brandon [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106-9530 (United States); Badenes, Carlos [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, 3941 O’Hara St, Pittsburgh, PA 15260 (United States); Bañados, Eduardo [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Blanton, Michael R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Bershady, Matthew A. [Department of Astronomy, University of Wisconsin, 475 N. Charter St., Madison, WI 53706 (United States); Borissova, Jura [Instituto de Física y Astronomía, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Casilla 5030, and Millennium Institute of Astrophysics (MAS), Santiago (Chile); Burgett, William S. [GMTO Corp, Suite 300, 251 S. Lake Ave, Pasadena, CA 91101 (United States); Chambers, Kenneth, E-mail: emorganson@cfa.harvard.edu [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); and others
2015-06-20
We present the selection algorithm and anticipated results for the Time Domain Spectroscopic Survey (TDSS). TDSS is an Sloan Digital Sky Survey (SDSS)-IV Extended Baryon Oscillation Spectroscopic Survey (eBOSS) subproject that will provide initial identification spectra of approximately 220,000 luminosity-variable objects (variable stars and active galactic nuclei across 7500 deg{sup 2} selected from a combination of SDSS and multi-epoch Pan-STARRS1 photometry. TDSS will be the largest spectroscopic survey to explicitly target variable objects, avoiding pre-selection on the basis of colors or detailed modeling of specific variability characteristics. Kernel Density Estimate analysis of our target population performed on SDSS Stripe 82 data suggests our target sample will be 95% pure (meaning 95% of objects we select have genuine luminosity variability of a few magnitudes or more). Our final spectroscopic sample will contain roughly 135,000 quasars and 85,000 stellar variables, approximately 4000 of which will be RR Lyrae stars which may be used as outer Milky Way probes. The variability-selected quasar population has a smoother redshift distribution than a color-selected sample, and variability measurements similar to those we develop here may be used to make more uniform quasar samples in large surveys. The stellar variable targets are distributed fairly uniformly across color space, indicating that TDSS will obtain spectra for a wide variety of stellar variables including pulsating variables, stars with significant chromospheric activity, cataclysmic variables, and eclipsing binaries. TDSS will serve as a pathfinder mission to identify and characterize the multitude of variable objects that will be detected photometrically in even larger variability surveys such as Large Synoptic Survey Telescope.
Opportunities and challenges for time domain astronomy with LSST
Ivezic, Zeljko
2014-01-01
The Large Synoptic Survey Telescope (LSST) will enable faint optical time-domain astronomy by carrying out an imaging survey covering the sky that is visible from Cerro Pachon in Northern Chile. Of the order thousand 9.6 sq. deg. images (3.2 Gigapix) will be obtained per night using pairs of 15-second back-to-back exposures, with typical 5-sigma depth for point sources of 24.5 (AB). With close to 1000 observations of a 18,000 sq. deg. region in ugrizy bands over a 10-year period, these data will enable a deep stack across half the sky reaching five magnitudes deeper than the SDSS survey ( 27.5, 5 sigma, point source), and with twice as good seeing (0.7 arcsec median seeing in the r band). The measured and archived properties of newly discovered and known astrometric and photometric transients will be publicly reported within 60 sec after closing the shutter. Automated classification of the expected several million alerts per night, and selection of transient events requiring immediate follow-up, is an outstanding problem for the community. These data will represent a treasure trove for follow-up programs using other ground and space-based telescopes, such as fast-response fast-cadence photometric observations and spectroscopy, as well as for facilities operating at non-optical wavelengths and for gravitational wave programs. I will describe the relevant data products to be delivered by LSST and will summarize challenges that will need to be addressed by the community at large.
THz Time-Domain Spectroscopy of Interstellar Ice Analogs
Ioppolo, Sergio; McGuire, Brett A.; de Vries, Xander; Carroll, Brandon; Allodi, Marco; Blake, Geoffrey
2015-08-01
The unambiguous identification of nearly 200 molecular species in different astronomical environments proves that our cosmos is a ‘Molecular Universe’. The cumulative outcome of recent observations, laboratory studies, and astrochemical models indicates that there is a strong interplay between the gas and the solid phase throughout the process of forming molecules in space. Observations of interstellar ices are generally limited to lines-of-sight along which infrared absorption spectroscopy is possible. Therefore, the identification of more complex prebiotic molecules in the mid-IR is difficult because of their low expected interstellar abundances and the overlap of their absorption features with those from the more abundant species. In the THz region, telescopes can detect Interstellar ices in emission or absorption against dust continuum. Thus, THz searches do not require a background point source. Moreover, since THz spectra are the fingerprint of inter- and intramolecular forces, complex species can present unique modes that do not overlap with those from simpler, more abundant molecules. THz modes are also sensitive to temperature and phase changes in the ice. Therefore, spectroscopy at THz frequencies has the potential to better characterize the physics and chemistry of the ISM. Currently, the Herschel Space Telescope, SOFIA, and ALMA databases contain a vast amount of new THz spectral data that require THz laboratory spectra for interpretation. The latter, however, are largely lacking. We have recently constructed a new THz time-domain spectroscopy system operating in the range between 0.3 - 7.5 THz. This work focuses on the laboratory investigation of the composition and structure of the most abundant interstellar ice analogs compared to some more complex species. Different temperatures, mixing ratios, and matrix isolation experiments will be shown. The ultimate goal of this research is to provide the scientific community with an extensive THz ice
Time-Domain Studies as a Probe of Stellar Evolution
Miller, Adam Andrew
This dissertation focuses on the use of time-domain techniques to discover and characterize these rare astrophysical gems, while also addressing some gaps in our understanding of the earliest and latest stages of stellar evolution. The observational studies presented herein can be grouped into three parts: (i) the study of stellar death (supernovae); (ii) the study of stellar birth; and (iii) the use of modern machine-learning algorithms to discover and classify variable sources. I present observations of supernova (SN) 2006gy, the most luminous SN ever at the time of discovery, and the even-more luminous SN 2008es. Together, these two supernovae (SNe) demonstrate that core-collapse SNe can be significantly more luminous than thermonuclear type Ia SNe, and that there are multiple channels for producing these brilliant core-collapse explosions. For SN 2006gy I show that the progenitor star experienced violent, eruptive mass loss on multiple occasions during the centuries prior to explosion, a scenario that was completely unexpected within the cannon of massive-star evolution theory. I also present observations of SN 2008iy, one of the most unusual SNe ever discovered. Typical SNe take ≲3 weeks to reach peak luminosity; SN 2008iy exhibited a slow and steady rise for ˜400 days before reaching maximum brightness. The best explanation for such behavior is that the progenitor of SN 2008iy experienced an episodic phase of mass loss ˜100 yr prior to explosion. The three SNe detailed in this dissertation have altered our understanding of massive-star mass loss, namely, these SNe provide distinct evidence that post-main sequence mass loss, for at least some massive stars, occurs in sporatic fits, rather than being steady. They also demonstrate that core collapse is not restricted to the red supergiant and Wolf-Rayet stages of stellar evolution as theory predicted. Instead, some massive stars explode while in a luminous blue variable-like state. I also present
A finite difference, multipoint flux numerical approach to flow in porous media: Numerical examples
Osman, Hossam Omar; Salama, Amgad; Sun, Shuyu; Bao, Kai
2012-01-01
It is clear that none of the current available numerical schemes which may be adopted to solve transport phenomena in porous media fulfill all the required robustness conditions. That is while the finite difference methods are the simplest of all, they face several difficulties in complex geometries and anisotropic media. On the other hand, while finite element methods are well suited to complex geometries and can deal with anisotropic media, they are more involved in coding and usually require more execution time. Therefore, in this work we try to combine some features of the finite element technique, namely its ability to work with anisotropic media with the finite difference approach. We reduce the multipoint flux, mixed finite element technique through some quadrature rules to an equivalent cell-centered finite difference approximation. We show examples on using this technique to single-phase flow in anisotropic porous media.
Formulation of coarse mesh finite difference to calculate mathematical adjoint flux
International Nuclear Information System (INIS)
Pereira, Valmir; Martinez, Aquilino Senra; Silva, Fernando Carvalho da
2002-01-01
The objective of this work is the obtention of the mathematical adjoint flux, having as its support the nodal expansion method (NEM) for coarse mesh problems. Since there are difficulties to evaluate this flux by using NEM. directly, a coarse mesh finite difference program was developed to obtain this adjoint flux. The coarse mesh finite difference formulation (DFMG) adopted uses results of the direct calculation (node average flux and node face averaged currents) obtained by NEM. These quantities (flux and currents) are used to obtain the correction factors which modify the classical finite differences formulation . Since the DFMG formulation is also capable of calculating the direct flux it was also tested to obtain this flux and it was verified that it was able to reproduce with good accuracy both the flux and the currents obtained via NEM. In this way, only matrix transposition is needed to calculate the mathematical adjoint flux. (author)
Interactive finite difference preprocessor for three-dimensional fluid flow systems. [PREFLO
Energy Technology Data Exchange (ETDEWEB)
Kleinstreuer, C. (Rensselaer Polytechnic Inst., Troy, NY); Patterson, M.R.
1981-06-01
A preprocessor, called PREFLO, consisting of data processing modules combined with a flexible finite difference grid generator is described. This economical, interactive computer code is a useful research tool contributing significantly to the accurate analysis and modeling of large and/or geometrically complex flow systems. PREFLO (PREprocessor for fluid FLOw problems), written in FORTRAN IV, consists of four modules which in turn call various subroutines. The main programs accomplish the following tasks: (1) system identification and selection of appropriate finite difference algorithms; (2) input devices for storage of natural flow boundaries; (3) interactive generation of finite difference meshes and display of computer graphics; (4) preparation of all data files for the source program. The computation of the velocity field near a power plant site is outlined to illustrate the capabilities and application of PREFLO.
Modeling seismic wave propagation using staggered-grid mimetic finite differences
Directory of Open Access Journals (Sweden)
Freysimar Solano-Feo
2017-04-01
Full Text Available Mimetic finite difference (MFD approximations of continuous gradient and divergence operators satisfy a discrete version of the Gauss-Divergence theorem on staggered grids. On the mimetic approximation of this integral conservation principle, an unique boundary flux operator is introduced that also intervenes on the discretization of a given boundary value problem (BVP. In this work, we present a second-order MFD scheme for seismic wave propagation on staggered grids that discretized free surface and absorbing boundary conditions (ABC with same accuracy order. This scheme is time explicit after coupling a central three-level finite difference (FD stencil for numerical integration. Here, we briefly discuss the convergence properties of this scheme and show its higher accuracy on a challenging test when compared to a traditional FD method. Preliminary applications to 2-D seismic scenarios are also presented and show the potential of the mimetic finite difference method.
A finite difference, multipoint flux numerical approach to flow in porous media: Numerical examples
Osman, Hossam Omar
2012-06-17
It is clear that none of the current available numerical schemes which may be adopted to solve transport phenomena in porous media fulfill all the required robustness conditions. That is while the finite difference methods are the simplest of all, they face several difficulties in complex geometries and anisotropic media. On the other hand, while finite element methods are well suited to complex geometries and can deal with anisotropic media, they are more involved in coding and usually require more execution time. Therefore, in this work we try to combine some features of the finite element technique, namely its ability to work with anisotropic media with the finite difference approach. We reduce the multipoint flux, mixed finite element technique through some quadrature rules to an equivalent cell-centered finite difference approximation. We show examples on using this technique to single-phase flow in anisotropic porous media.
Accuracy of finite-difference modeling of seismic waves : Simulation versus laboratory measurements
Arntsen, B.
2017-12-01
The finite-difference technique for numerical modeling of seismic waves is still important and for some areas extensively used.For exploration purposes is finite-difference simulation at the core of both traditional imaging techniques such as reverse-time migration and more elaborate Full-Waveform Inversion techniques.The accuracy and fidelity of finite-difference simulation of seismic waves are hard to quantify and meaningfully error analysis is really onlyeasily available for simplistic media. A possible alternative to theoretical error analysis is provided by comparing finite-difference simulated data with laboratory data created using a scale model. The advantage of this approach is the accurate knowledge of the model, within measurement precision, and the location of sources and receivers.We use a model made of PVC immersed in water and containing horizontal and tilted interfaces together with several spherical objects to generateultrasonic pressure reflection measurements. The physical dimensions of the model is of the order of a meter, which after scaling represents a model with dimensions of the order of 10 kilometer and frequencies in the range of one to thirty hertz.We find that for plane horizontal interfaces the laboratory data can be reproduced by the finite-difference scheme with relatively small error, but for steeply tilted interfaces the error increases. For spherical interfaces the discrepancy between laboratory data and simulated data is sometimes much more severe, to the extent that it is not possible to simulate reflections from parts of highly curved bodies. The results are important in view of the fact that finite-difference modeling is often at the core of imaging and inversion algorithms tackling complicatedgeological areas with highly curved interfaces.
A perturbational h4 exponential finite difference scheme for the convective diffusion equation
International Nuclear Information System (INIS)
Chen, G.Q.; Gao, Z.; Yang, Z.F.
1993-01-01
A perturbational h 4 compact exponential finite difference scheme with diagonally dominant coefficient matrix and upwind effect is developed for the convective diffusion equation. Perturbations of second order are exerted on the convective coefficients and source term of an h 2 exponential finite difference scheme proposed in this paper based on a transformation to eliminate the upwind effect of the convective diffusion equation. Four numerical examples including one- to three-dimensional model equations of fluid flow and a problem of natural convective heat transfer are given to illustrate the excellent behavior of the present exponential schemes. Besides, the h 4 accuracy of the perturbational scheme is verified using double precision arithmetic
Analysis of equilibrium in a tokamak by the finite-difference method
International Nuclear Information System (INIS)
Kim, K.E.; Jeun, G.D.
1983-01-01
Ideal magnetohydrodynamic equilibrium in a Tokamak having a small radius with an elongated rectangular cross section is studied by applying the finite-difference method to the Grad-Shafranov equation to determine possible limitations for *b=8*pPsup(2)/Bsup(2). The coupled first-order differential equations resulting from the finite-difference Grad-Shafranov equation is solved by the numarical method:1)We concluded that equilibrium consideration alone gives no limitation even for *b approx.1. 2)We have obtained the equilibrium magnetic field configuration charcterized by a set of three parameters;the aspect ratio, *b,and the safety factor. (Author)
TeraHertz Time Domain Spectroscopy of Astrophysical Analog Materials
Blake, Geoffrey
The section of the electromagnetic spectrum extending roughly from wavelengths of 3 millimeters to 30 microns is commonly known as the far-infrared or TeraHertz (THz) region. It contains the great majority of the photons emitted by the universe, and THz observations of molecules and dust are able penetrate deeply into molecular clouds, thus revealing the full history of star and planet formation. Accordingly, the successful deployments of the Herschel and SOFIA observatories, and the emerging capabilities of ALMA, are both revolutionizing our understanding of THz astrophysics and placing stringent demands on the generation of accurate laboratory data on the relevant gas phase and solid state materials detected. With APRA support, we have constructed a combined high bandwidth and high spectral resolution femtosecond THz Time Domain Spectroscopy (THz TDS) system and an FT-IR spectrometer, and coupled these instruments to a high vacuum chamber and cryostat and to gas phase cells including a molecular beam system. We have investigated solid materials from room temperature to 10 K, and can examine both refractory matter such as silicates and molecular ices. For the latter, we have demonstrated that the THz bands observed are uniquely sensitive to both the molecular structure of the ice and its thermal history, and thus that THz observations can provide novel insight into the dominant condensable materials in dense, cold regions. In the gas phase we can record doppler-limited data over at least a decade in bandwidth. While quite capable, the high vacuum cryostat can only study thick samples, especially ices, due to the fairly rapid adsorption of gases onto surfaces at low temperature under such conditions. It is therefore not possible to examine highly layered/structured samples or reactive species. We therefore propose here to upgrade the chamber/cryostat to ultrahigh vacuum, and implement additional sample preparation and characterization tools. With such modifications
Improved methods for nightside time domain Lunar Electromagnetic Sounding
Fuqua-Haviland, H.; Poppe, A. R.; Fatemi, S.; Delory, G. T.; De Pater, I.
2017-12-01
Time Domain Electromagnetic (TDEM) Sounding isolates induced magnetic fields to remotely deduce material properties at depth. The first step of performing TDEM Sounding at the Moon is to fully characterize the dynamic plasma environment, and isolate geophysically induced currents from concurrently present plasma currents. The transfer function method requires a two-point measurement: an upstream reference measuring the pristine solar wind, and one downstream near the Moon. This method was last performed during Apollo assuming the induced fields on the nightside of the Moon expand as in an undisturbed vacuum within the wake cavity [1]. Here we present an approach to isolating induction and performing TDEM with any two point magnetometer measurement at or near the surface of the Moon. Our models include a plasma induction model capturing the kinetic plasma environment within the wake cavity around a conducting Moon, and a geophysical forward model capturing induction in a vacuum. The combination of these two models enable the analysis of magnetometer data within the wake cavity. Plasma hybrid models use the upstream plasma conditions and interplanetary magnetic field (IMF) to capture the wake current systems formed around the Moon. The plasma kinetic equations are solved for ion particles with electrons as a charge-neutralizing fluid. These models accurately capture the large scale lunar wake dynamics for a variety of solar wind conditions: ion density, temperature, solar wind velocity, and IMF orientation [2]. Given the 3D orientation variability coupled with the large range of conditions seen within the lunar plasma environment, we characterize the environment one case at a time. The global electromagnetic induction response of the Moon in a vacuum has been solved numerically for a variety of electrical conductivity models using the finite-element method implemented within the COMSOL software. This model solves for the geophysically induced response in vacuum to
ASIC-enabled High Resolution Optical Time Domain Reflectometer
Skendzic, Sandra
Fiber optics has become the preferred technology in communication systems because of what it has to offer: high data transmission rates, immunity to electromagnetic interference, and lightweight, flexible cables. An optical time domain reflectometer (OTDR) provides a convenient method of locating and diagnosing faults (e.g. break in a fiber) along a fiber that can obstruct crucial optical pathways. Both the ability to resolve the precise location of the fault and distinguish between two discrete, closely spaced faults are figures of merit. This thesis presents an implementation of a high resolution OTDR through the use of a compact and programmable ASIC (application specific integrated circuit). The integration of many essential OTDR functions on a single chip is advantageous over existing commercial instruments because it enables small, lightweight packaging, and offers low power and cost efficiency. Furthermore, its compactness presents the option of placing multiple ASICs in parallel, which can conceivably ease the characterization of densely populated fiber optic networks. The OTDR ASIC consists of a tunable clock, pattern generator, precise timer, electrical receiver, and signal sampling circuit. During OTDR operation, the chip generates narrow electrical pulse, which can then be converted to optical format when coupled with an external laser diode driver. The ASIC also works with an external photodetector to measure the timing and amplitude of optical reflections in a fiber. It has a 1 cm sampling resolution, which allows for a 2 cm spatial resolution. While this OTDR ASIC has been previously demonstrated for multimode fiber fault diagnostics, this thesis focuses on extending its functionality to single mode fiber. To validate this novel approach to OTDR, this thesis is divided into five chapters: (1) introduction, (2) implementation, (3), performance of ASIC-based OTDR, (4) exploration in optical pre-amplification with a semiconductor optical amplifier, and
Time-Domain Terahertz Computed Axial Tomography NDE System
Zimdars, David
2012-01-01
NASA has identified the need for advanced non-destructive evaluation (NDE) methods to characterize aging and durability in aircraft materials to improve the safety of the nation's airline fleet. 3D THz tomography can play a major role in detection and characterization of flaws and degradation in aircraft materials, including Kevlar-based composites and Kevlar and Zylon fabric covers for soft-shell fan containment where aging and durability issues are critical. A prototype computed tomography (CT) time-domain (TD) THz imaging system has been used to generate 3D images of several test objects including a TUFI tile (a thermal protection system tile used on the Space Shuttle and possibly the Orion or similar capsules). This TUFI tile had simulated impact damage that was located and the depth of damage determined. The CT motion control gan try was designed and constructed, and then integrated with a T-Ray 4000 control unit and motion controller to create a complete CT TD-THz imaging system prototype. A data collection software script was developed that takes multiple z-axis slices in sequence and saves the data for batch processing. The data collection software was integrated with the ability to batch process the slice data with the CT TD-THz image reconstruction software. The time required to take a single CT slice was decreased from six minutes to approximately one minute by replacing the 320 ps, 100-Hz waveform acquisition system with an 80 ps, 1,000-Hz waveform acquisition system. The TD-THZ computed tomography system was built from pre-existing commercial off-the-shelf subsystems. A CT motion control gantry was constructed from COTS components that can handle larger samples. The motion control gantry allows inspection of sample sizes of up to approximately one cubic foot (.0.03 cubic meters). The system reduced to practice a CT-TDTHz system incorporating a COTS 80- ps/l-kHz waveform scanner. The incorporation of this scanner in the system allows acquisition of 3D
Calibrating electromagnetic induction conductivities with time-domain reflectometry measurements
Dragonetti, Giovanna; Comegna, Alessandro; Ajeel, Ali; Piero Deidda, Gian; Lamaddalena, Nicola; Rodriguez, Giuseppe; Vignoli, Giulio; Coppola, Antonio
2018-02-01
This paper deals with the issue of monitoring the spatial distribution of bulk electrical conductivity, σb, in the soil root zone by using electromagnetic induction (EMI) sensors under different water and salinity conditions. To deduce the actual distribution of depth-specific σb from EMI apparent electrical conductivity (ECa) measurements, we inverted the data by using a regularized 1-D inversion procedure designed to manage nonlinear multiple EMI-depth responses. The inversion technique is based on the coupling of the damped Gauss-Newton method with truncated generalized singular value decomposition (TGSVD). The ill-posedness of the EMI data inversion is addressed by using a sharp stabilizer term in the objective function. This specific stabilizer promotes the reconstruction of blocky targets, thereby contributing to enhance the spatial resolution of the EMI results in the presence of sharp boundaries (otherwise smeared out after the application of more standard Occam-like regularization strategies searching for smooth solutions). Time-domain reflectometry (TDR) data are used as ground-truth data for calibration of the inversion results. An experimental field was divided into four transects 30 m long and 2.8 m wide, cultivated with green bean, and irrigated with water at two different salinity levels and using two different irrigation volumes. Clearly, this induces different salinity and water contents within the soil profiles. For each transect, 26 regularly spaced monitoring soundings (1 m apart) were selected for the collection of (i) Geonics EM-38 and (ii) Tektronix reflectometer data. Despite the original discrepancies in the EMI and TDR data, we found a significant correlation of the means and standard deviations of the two data series; in particular, after a low-pass spatial filtering of the TDR data. Based on these findings, this paper introduces a novel methodology to calibrate EMI-based electrical conductivities via TDR direct measurements. This
Jafar-Zanjani, Samad; Cheng, Jierong; Mosallaei, Hossein
2016-04-10
An efficient auxiliary differential equation method for incorporating 2D inhomogeneous dispersive impedance sheets in the finite-difference time-domain solver is presented. This unique proposed method can successfully solve optical problems of current interest involving 2D sheets. It eliminates the need for ultrafine meshing in the thickness direction, resulting in a significant reduction of computation time and memory requirements. We apply the method to characterize a novel broad-beam leaky-wave antenna created by cascading three sinusoidally modulated reactance surfaces and also to study the effect of curvature on the radiation characteristic of a conformal impedance sheet holographic antenna. Considerable improvement in the simulation time based on our technique in comparison with the traditional volumetric model is reported. Both applications are of great interest in the field of antennas and 2D sheets.
Cable Damage Detection System and Algorithms Using Time Domain Reflectometry
Energy Technology Data Exchange (ETDEWEB)
Clark, G A; Robbins, C L; Wade, K A; Souza, P R
2009-03-24
This report describes the hardware system and the set of algorithms we have developed for detecting damage in cables for the Advanced Development and Process Technologies (ADAPT) Program. This program is part of the W80 Life Extension Program (LEP). The system could be generalized for application to other systems in the future. Critical cables can undergo various types of damage (e.g. short circuits, open circuits, punctures, compression) that manifest as changes in the dielectric/impedance properties of the cables. For our specific problem, only one end of the cable is accessible, and no exemplars of actual damage are available. This work addresses the detection of dielectric/impedance anomalies in transient time domain reflectometry (TDR) measurements on the cables. The approach is to interrogate the cable using time domain reflectometry (TDR) techniques, in which a known pulse is inserted into the cable, and reflections from the cable are measured. The key operating principle is that any important cable damage will manifest itself as an electrical impedance discontinuity that can be measured in the TDR response signal. Machine learning classification algorithms are effectively eliminated from consideration, because only a small number of cables is available for testing; so a sufficient sample size is not attainable. Nonetheless, a key requirement is to achieve very high probability of detection and very low probability of false alarm. The approach is to compare TDR signals from possibly damaged cables to signals or an empirical model derived from reference cables that are known to be undamaged. This requires that the TDR signals are reasonably repeatable from test to test on the same cable, and from cable to cable. Empirical studies show that the repeatability issue is the 'long pole in the tent' for damage detection, because it is has been difficult to achieve reasonable repeatability. This one factor dominated the project. The two-step model
Olyaee, Saeed; Taghipour, Fahimeh
2011-02-01
Photonic crystal fibers (PCFs) are highly suitable transmission media for wavelength-division-multiplexing (WDM) systems, in which low and ultra-flattened dispersion of PCFs is extremely desirable. It is also required to concurrently achieve both a low confinement loss as well as a large effective area in a wide range of wavelengths. Relatively low dispersion with negligible variation has become feasible in the wavelength range of 1.1 to 1.8μm through the proposed design in this paper. According to a new structure of PCF presented in this study, the dispersion slope is 6.8×10-4ps/km.nm2 and the confinement loss reaches below 10-6 dB/km in this range, while at the same time an effective area of more than 50μm2 has been attained. For the analysis of this PCF, finite-difference time-domain (FDTD) method with the perfectly matched layers (PML) boundary conditions has been used.
Detailed balance principle and finite-difference stochastic equation in a field theory
International Nuclear Information System (INIS)
Kozhamkulov, T.A.
1986-01-01
A finite-difference equation, which is a generalization of the Langevin equation in field theory, has been obtained basing upon the principle of detailed balance for the Markov chain. Advantages of the present approach as compared with the conventional Parisi-Wu method are shown for examples of an exactly solvable problem of zero-dimensional quantum theory and a simple numerical simulation
Application of compact finite-difference schemes to simulations of stably stratified fluid flows
Czech Academy of Sciences Publication Activity Database
Bodnár, Tomáš; Beneš, L.; Fraunie, P.; Kozel, Karel
2012-01-01
Roč. 219, č. 7 (2012), s. 3336-3353 ISSN 0096-3003 Institutional support: RVO:61388998 Keywords : stratification * finite- difference * finite-volume * Runge-Kutta Subject RIV: BA - General Mathematics Impact factor: 1.349, year: 2012 http://www.sciencedirect.com/science/article/pii/S0096300311010988
High-order Finite Difference Solution of Euler Equations for Nonlinear Water Waves
DEFF Research Database (Denmark)
Christiansen, Torben Robert Bilgrav; Bingham, Harry B.; Engsig-Karup, Allan Peter
2012-01-01
is discretized using arbitrary-order finite difference schemes on a staggered grid with one optional stretching in each coordinate direction. The momentum equations and kinematic free surface condition are integrated in time using the classic fourth-order Runge-Kutta scheme. Mass conservation is satisfied...
Relative and Absolute Error Control in a Finite-Difference Method Solution of Poisson's Equation
Prentice, J. S. C.
2012-01-01
An algorithm for error control (absolute and relative) in the five-point finite-difference method applied to Poisson's equation is described. The algorithm is based on discretization of the domain of the problem by means of three rectilinear grids, each of different resolution. We discuss some hardware limitations associated with the algorithm,…
Principle of detailed balance and the finite-difference stochastic equation in field theory
International Nuclear Information System (INIS)
Kozhamkulov, T.A.
1986-01-01
The principle of detailed balance for the Markov chain is used to obtain a finite-difference equation which generalizes the Langevin equation in field theory. The advantages of using this approach compared to the conventional Parisi-Wu method are demonstrated for the examples of an exactly solvable problem in zero-dimensional quantum theory and a simple numerical simulation
A new fitted operator finite difference method to solve systems of ...
African Journals Online (AJOL)
In recent years, fitted operator finite difference methods (FOFDMs) have been developed for numerous types of singularly perturbed ordinary differential equations. The construction of most of these methods differed though the final outcome remained similar. The most crucial aspect was how the difference operator was ...
Chu, Chunlei
2012-01-01
Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations. © 2011 Elsevier B.V.
Optimal implicit 2-D finite differences to model wave propagation in poroelastic media
Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.
2016-08-01
Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite differences (FD) to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.
Stability of finite difference schemes for generalized von Foerster equations with renewal
Directory of Open Access Journals (Sweden)
Henryk Leszczyński
2014-01-01
Full Text Available We consider a von Foerster-type equation describing the dynamics of a population with the production of offsprings given by the renewal condition. We construct a finite difference scheme for this problem and give sufficient conditions for its stability with respect to \\(l^1\\ and \\(l^\\infty\\ norms.
A coupled boundary element-finite difference solution of the elliptic modified mild slope equation
DEFF Research Database (Denmark)
Naserizadeh, R.; Bingham, Harry B.; Noorzad, A.
2011-01-01
The modified mild slope equation of [5] is solved using a combination of the boundary element method (BEM) and the finite difference method (FDM). The exterior domain of constant depth and infinite horizontal extent is solved by a BEM using linear or quadratic elements. The interior domain...
High-order finite difference solution for 3D nonlinear wave-structure interaction
DEFF Research Database (Denmark)
Ducrozet, Guillaume; Bingham, Harry B.; Engsig-Karup, Allan Peter
2010-01-01
This contribution presents our recent progress on developing an efficient fully-nonlinear potential flow model for simulating 3D wave-wave and wave-structure interaction over arbitrary depths (i.e. in coastal and offshore environment). The model is based on a high-order finite difference scheme O...
Modeling of Nanophotonic Resonators with the Finite-Difference Frequency-Domain Method
DEFF Research Database (Denmark)
Ivinskaya, Aliaksandra; Lavrinenko, Andrei; Shyroki, Dzmitry
2011-01-01
Finite-difference frequency-domain method with perfectly matched layers and free-space squeezing is applied to model open photonic resonators of arbitrary morphology in three dimensions. Treating each spatial dimension independently, nonuniform mesh of continuously varying density can be built ea...
2015-08-01
ER D C TR -1 5- 5 Remote Assessment of Critical Infrastructure Persistent Monitoring of Urban Infrasound Phenomenology Report 1...ERDC TR-15-5 August 2015 Persistent Monitoring of Urban Infrasound Phenomenology Report 1: Modeling an Urban Environment for Acoustical Analyses...Figure 5.1. Main spreadsheet containing problem setup. ..................................................................... 74 Figure 5.2. Definition
Feki, Saber
2013-07-01
An explicit marching-on-in-time (MOT)-based time-domain volume integral equation (TDVIE) solver has recently been developed for characterizing transient electromagnetic wave interactions on arbitrarily shaped dielectric bodies (A. Al-Jarro et al., IEEE Trans. Antennas Propag., vol. 60, no. 11, 2012). The solver discretizes the spatio-temporal convolutions of the source fields with the background medium\\'s Green function using nodal discretization in space and linear interpolation in time. The Green tensor, which involves second order spatial and temporal derivatives, is computed using finite differences on the temporal and spatial grid. A predictor-corrector algorithm is used to maintain the stability of the MOT scheme. The simplicity of the discretization scheme permits the computation of the discretized spatio-temporal convolutions on the fly during time marching; no \\'interaction\\' matrices are pre-computed or stored resulting in a memory efficient scheme. As a result, most often the applicability of this solver to the characterization of wave interactions on electrically large structures is limited by the computation time but not the memory. © 2013 IEEE.
Time domain reshuffling for OFDM based indoor visible light communication systems.
You, Xiaodi; Chen, Jian; Yu, Changyuan; Zheng, Huanhuan
2017-05-15
For orthogonal frequency division multiplexing (OFDM) based indoor visible light communication (VLC) systems, partial non-ideal transmission conditions such as insufficient guard intervals and a dispersive channel can result in severe inter-symbol crosstalk (ISC). By deriving from the inverse Fourier transform, we present a novel time domain reshuffling (TDR) concept for both DC-biased optical (DCO-) and asymmetrically clipped optical (ACO-) OFDM VLC systems. By using only simple operations in the frequency domain, potential high peaks can be relocated within each OFDM symbol to alleviate ISC. To simplify the system, we also propose an effective unified design of the TDR schemes for both DCO- and ACO-OFDM. Based on Monte-Carlo simulations, we demonstrate the statistical distribution of the signal high peak values and the complementary cumulative distribution function of the peak-to-average power ratio under different cases for comparison. Simulation results indicate improved bit error rate (BER) performance by adopting TDR to counteract ISC deterioration. For example, for binary phase shift keying at a BER of 10 -3 , the signal to noise ratio gains are ~1.6 dB and ~6.6 dB for DCO- and ACO-OFDM, respectively, with ISC of 1/64. We also show a reliable transmission by adopting TDR for rectangle 8-quadrature amplitude modulation with ISC of < 1/64.
Stability and non-standard finite difference method of the generalized Chua's circuit
Radwan, Ahmed G.
2011-08-01
In this paper, we develop a framework to obtain approximate numerical solutions of the fractional-order Chua\\'s circuit with Memristor using a non-standard finite difference method. Chaotic response is obtained with fractional-order elements as well as integer-order elements. Stability analysis and the condition of oscillation for the integer-order system are discussed. In addition, the stability analyses for different fractional-order cases are investigated showing a great sensitivity to small order changes indicating the poles\\' locations inside the physical s-plane. The GrnwaldLetnikov method is used to approximate the fractional derivatives. Numerical results are presented graphically and reveal that the non-standard finite difference scheme is an effective and convenient method to solve fractional-order chaotic systems, and to validate their stability. © 2011 Elsevier Ltd. All rights reserved.
Hannah, S. R.; Palazotto, A. N.
1978-01-01
A new trigonometric approach to the finite difference calculus was applied to the problem of beam buckling as represented by virtual work and equilibrium equations. The trigonometric functions were varied by adjusting a wavelength parameter in the approximating Fourier series. Values of the critical force obtained from the modified approach for beams with a variety of boundary conditions were compared to results using the conventional finite difference method. The trigonometric approach produced significantly more accurate approximations for the critical force than the conventional approach for a relatively wide range in values of the wavelength parameter; and the optimizing value of the wavelength parameter corresponded to the half-wavelength of the buckled mode shape. It was found from a modal analysis that the most accurate solutions are obtained when the approximating function closely represents the actual displacement function and matches the actual boundary conditions.
Energy Technology Data Exchange (ETDEWEB)
Karlsen, Kenneth Hvistendal; Risebro, Nils Henrik
2000-09-01
We consider the initial value problem for degenerate viscous and inviscid scalar conservation laws where the flux function depends on the spatial location through a ''rough'' coefficient function k(x). we show that the Engquist-Osher (and hence all monotone) finite difference approximations converge to the unique entropy solution of the governing equation if, among other demands, k' is in BV, thereby providing alternative (new) existence proofs for entropy solutions of degenerate convection-diffusion equations as well as new convergence results for their finite difference approximations. In the inviscid case, we also provide a rate of convergence. Our convergence proofs are based on deriving a series of a priori estimates and using a general L{sup p} compactness criterion. (author)
Stability analysis of single-phase thermosyphon loops by finite difference numerical methods
International Nuclear Information System (INIS)
Ambrosini, W.
1998-01-01
In this paper, examples of the application of finite difference numerical methods in the analysis of stability of single-phase natural circulation loops are reported. The problem is here addressed for its relevance for thermal-hydraulic system code applications, in the aim to point out the effect of truncation error on stability prediction. The methodology adopted for analysing in a systematic way the effect of various finite difference discretization can be considered the numerical analogue of the usual techniques adopted for PDE stability analysis. Three different single-phase loop configurations are considered involving various kinds of boundary conditions. In one of these cases, an original dimensionless form of the governing equations is proposed, adopting the Reynolds number as a flow variable. This allows for an appropriate consideration of transition between laminar and turbulent regimes, which is not possible with other dimensionless forms, thus enlarging the field of validity of model assumptions. (author). 14 refs., 8 figs
Accuracy of finite-difference harmonic frequencies in density functional theory.
Liu, Kuan-Yu; Liu, Jie; Herbert, John M
2017-07-15
Analytic Hessians are often viewed as essential for the calculation of accurate harmonic frequencies, but the implementation of analytic second derivatives is nontrivial and solution of the requisite coupled-perturbed equations engenders a sizable memory footprint for large systems, given that these equations are not required for energy and gradient calculations in density functional theory. Here, we benchmark the alternative approach to harmonic frequencies based on finite differences of analytic first derivatives, a procedure that is amenable to large-scale parallelization. Not only for absolute frequencies but also for isotopic and conformer-dependent frequency shifts in flexible molecules, we find that the finite-difference approach exhibits mean errors numbers. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Numerical study of water diffusion in biological tissues using an improved finite difference method
International Nuclear Information System (INIS)
Xu Junzhong; Does, Mark D; Gore, John C
2007-01-01
An improved finite difference (FD) method has been developed in order to calculate the behaviour of the nuclear magnetic resonance signal variations caused by water diffusion in biological tissues more accurately and efficiently. The algorithm converts the conventional image-based finite difference method into a convenient matrix-based approach and includes a revised periodic boundary condition which eliminates the edge effects caused by artificial boundaries in conventional FD methods. Simulated results for some modelled tissues are consistent with analytical solutions for commonly used diffusion-weighted pulse sequences, whereas the improved FD method shows improved efficiency and accuracy. A tightly coupled parallel computing approach was also developed to implement the FD methods to enable large-scale simulations of realistic biological tissues. The potential applications of the improved FD method for understanding diffusion in tissues are also discussed. (note)
A novel strong tracking finite-difference extended Kalman filter for nonlinear eye tracking
Institute of Scientific and Technical Information of China (English)
ZHANG ZuTao; ZHANG JiaShu
2009-01-01
Non-Intrusive methods for eye tracking are Important for many applications of vision-based human computer interaction. However, due to the high nonlinearity of eye motion, how to ensure the robust-ness of external interference and accuracy of eye tracking poses the primary obstacle to the integration of eye movements into today's interfaces. In this paper, we present a strong tracking finite-difference extended Kalman filter algorithm, aiming to overcome the difficulty In modeling nonlinear eye tracking. In filtering calculation, strong tracking factor is introduced to modify a priori covariance matrix and im-prove the accuracy of the filter. The filter uses finite-difference method to calculate partial derivatives of nonlinear functions for eye tracking. The latest experimental results show the validity of our method for eye tracking under realistic conditions.
On the Stability of the Finite Difference based Lattice Boltzmann Method
El-Amin, Mohamed; Sun, Shuyu; Salama, Amgad
2013-01-01
This paper is devoted to determining the stability conditions for the finite difference based lattice Boltzmann method (FDLBM). In the current scheme, the 9-bit two-dimensional (D2Q9) model is used and the collision term of the Bhatnagar- Gross-Krook (BGK) is treated implicitly. The implicitness of the numerical scheme is removed by introducing a new distribution function different from that being used. Therefore, a new explicit finite-difference lattice Boltzmann method is obtained. Stability analysis of the resulted explicit scheme is done using Fourier expansion. Then, stability conditions in terms of time and spatial steps, relaxation time and explicitly-implicitly parameter are determined by calculating the eigenvalues of the given difference system. The determined conditions give the ranges of the parameters that have stable solutions.
Implementation of compact finite-difference method to parabolized Navier-Stokes equations
International Nuclear Information System (INIS)
Esfahanian, V.; Hejranfar, K.; Darian, H.M.
2005-01-01
The numerical simulation of the Parabolized Navier-Stokes (PNS) equations for supersonic/hypersonic flow field is obtained by using the fourth-order compact finite-difference method. The PNS equations in the general curvilinear coordinates are solved by using the implicit finite-difference algorithm of Beam and Warming. A shock fitting procedure is utilized to obtain the accurate solution in the vicinity of the shock. The computations are performed for hypersonic axisymmetric flow over a blunt cone. The present results for the flow field along with those of the second-order method are presented and accuracy analysis is performed to insure the fourth-order accuracy of the method. (author)
On the Stability of the Finite Difference based Lattice Boltzmann Method
El-Amin, Mohamed
2013-06-01
This paper is devoted to determining the stability conditions for the finite difference based lattice Boltzmann method (FDLBM). In the current scheme, the 9-bit two-dimensional (D2Q9) model is used and the collision term of the Bhatnagar- Gross-Krook (BGK) is treated implicitly. The implicitness of the numerical scheme is removed by introducing a new distribution function different from that being used. Therefore, a new explicit finite-difference lattice Boltzmann method is obtained. Stability analysis of the resulted explicit scheme is done using Fourier expansion. Then, stability conditions in terms of time and spatial steps, relaxation time and explicitly-implicitly parameter are determined by calculating the eigenvalues of the given difference system. The determined conditions give the ranges of the parameters that have stable solutions.
International Nuclear Information System (INIS)
Waligorski, M.P.R.; Urbanczyk, K.M.
1975-01-01
The basic principles of the finite-difference approximation applied to the solution of electrostatic field distributions in gaseous proportional counters are given. Using this method, complicated two-dimensional electrostatic problems may be solved, taking into account any number of anodes, each with its own radius, and any cathode shape. A general formula for introducing the anode radii into the calculations is derived and a method of obtaining extremely accurate (up to 0.1%) solutions is developed. Several examples of potential and absolute field distributions for single rectangular and multiwire proportional counters are calculated and compared with exact results according to Tomitani, in order to discuss in detail errors of the finite-difference approximation. (author)
Directory of Open Access Journals (Sweden)
Lei Wang
2015-09-01
Full Text Available Based on fractal geometry, fractal medium of coalbed methane mathematical model is established by Langmuir isotherm adsorption formula, Fick's diffusion law, Laplace transform formula, considering the well bore storage effect and skin effect. The Laplace transform finite difference method is used to solve the mathematical model. With Stehfest numerical inversion, the distribution of dimensionless well bore flowing pressure and its derivative was obtained in real space. According to compare with the results from the analytical method, the result from Laplace transform finite difference method turns out to be accurate. The influence factors are analyzed, including fractal dimension, fractal index, skin factor, well bore storage coefficient, energy storage ratio, interporosity flow coefficient and the adsorption factor. The calculating error of Laplace transform difference method is small. Laplace transform difference method has advantages in well-test application since any moment simulation does not rely on other moment results and space grid.
Directory of Open Access Journals (Sweden)
Xinfeng Ruan
2013-01-01
Full Text Available We study option pricing with risk-minimization criterion in an incomplete market where the dynamics of the risky underlying asset is governed by a jump diffusion equation with stochastic volatility. We obtain the Radon-Nikodym derivative for the minimal martingale measure and a partial integro-differential equation (PIDE of European option. The finite difference method is employed to compute the European option valuation of PIDE.
Research on GPU-accelerated algorithm in 3D finite difference neutron diffusion calculation method
International Nuclear Information System (INIS)
Xu Qi; Yu Ganglin; Wang Kan; Sun Jialong
2014-01-01
In this paper, the adaptability of the neutron diffusion numerical algorithm on GPUs was studied, and a GPU-accelerated multi-group 3D neutron diffusion code based on finite difference method was developed. The IAEA 3D PWR benchmark problem was calculated in the numerical test. The results demonstrate both high efficiency and adequate accuracy of the GPU implementation for neutron diffusion equation. (authors)
A practical implicit finite-difference method: examples from seismic modelling
International Nuclear Information System (INIS)
Liu, Yang; Sen, Mrinal K
2009-01-01
We derive explicit and new implicit finite-difference formulae for derivatives of arbitrary order with any order of accuracy by the plane wave theory where the finite-difference coefficients are obtained from the Taylor series expansion. The implicit finite-difference formulae are derived from fractional expansion of derivatives which form tridiagonal matrix equations. Our results demonstrate that the accuracy of a (2N + 2)th-order implicit formula is nearly equivalent to that of a (6N + 2)th-order explicit formula for the first-order derivative, and (2N + 2)th-order implicit formula is nearly equivalent to (4N + 2)th-order explicit formula for the second-order derivative. In general, an implicit method is computationally more expensive than an explicit method, due to the requirement of solving large matrix equations. However, the new implicit method only involves solving tridiagonal matrix equations, which is fairly inexpensive. Furthermore, taking advantage of the fact that many repeated calculations of derivatives are performed by the same difference formula, several parts can be precomputed resulting in a fast algorithm. We further demonstrate that a (2N + 2)th-order implicit formulation requires nearly the same memory and computation as a (2N + 4)th-order explicit formulation but attains the accuracy achieved by a (6N + 2)th-order explicit formulation for the first-order derivative and that of a (4N + 2)th-order explicit method for the second-order derivative when additional cost of visiting arrays is not considered. This means that a high-order explicit method may be replaced by an implicit method of the same order resulting in a much improved performance. Our analysis of efficiency and numerical modelling results for acoustic and elastic wave propagation validates the effectiveness and practicality of the implicit finite-difference method
Dey, C.; Dey, S. K.
1983-01-01
An explicit finite difference scheme consisting of a predictor and a corrector has been developed and applied to solve some hyperbolic partial differential equations (PDEs). The corrector is a convex-type function which is applied at each time level and at each mesh point. It consists of a parameter which may be estimated such that for larger time steps the algorithm should remain stable and generate a fast speed of convergence to the steady-state solution. Some examples have been given.
TRUMP3-JR: a finite difference computer program for nonlinear heat conduction problems
International Nuclear Information System (INIS)
Ikushima, Takeshi
1984-02-01
Computer program TRUMP3-JR is a revised version of TRUMP3 which is a finite difference computer program used for the solution of multi-dimensional nonlinear heat conduction problems. Pre- and post-processings for input data generation and graphical representations of calculation results of TRUMP3 are avaiable in TRUMP3-JR. The calculation equations, program descriptions and user's instruction are presented. A sample problem is described to demonstrate the use of the program. (author)
Lei Wang; Hongjun Yin; Xiaoshuang Yang; Chuncheng Yang; Jing Fu
2015-01-01
Based on fractal geometry, fractal medium of coalbed methane mathematical model is established by Langmuir isotherm adsorption formula, Fick's diffusion law, Laplace transform formula, considering the well bore storage effect and skin effect. The Laplace transform finite difference method is used to solve the mathematical model. With Stehfest numerical inversion, the distribution of dimensionless well bore flowing pressure and its derivative was obtained in real space. According to compare wi...
A simple finite-difference scheme for handling topography with the first-order wave equation
Mulder, W. A.; Huiskes, M. J.
2017-07-01
One approach to incorporate topography in seismic finite-difference codes is a local modification of the difference operators near the free surface. An earlier paper described an approach for modelling irregular boundaries in a constant-density acoustic finite-difference code, based on the second-order formulation of the wave equation that only involves the pressure. Here, a similar method is considered for the first-order formulation in terms of pressure and particle velocity, using a staggered finite-difference discretization both in space and in time. In one space dimension, the boundary conditions consist in imposing antisymmetry for the pressure and symmetry for particle velocity components. For the pressure, this means that the solution values as well as all even derivatives up to a certain order are zero on the boundary. For the particle velocity, all odd derivatives are zero. In 2D, the 1-D assumption is used along each coordinate direction, with antisymmetry for the pressure along the coordinate and symmetry for the particle velocity component parallel to that coordinate direction. Since the symmetry or antisymmetry should hold along the direction normal to the boundary rather than along the coordinate directions, this generates an additional numerical error on top of the time stepping errors and the errors due to the interior spatial discretization. Numerical experiments in 2D and 3D nevertheless produce acceptable results.
Rotational degree-of-freedom synthesis: An optimised finite difference method for non-exact data
Gibbons, T. J.; Öztürk, E.; Sims, N. D.
2018-01-01
Measuring the rotational dynamic behaviour of a structure is important for many areas of dynamics such as passive vibration control, acoustics, and model updating. Specialist and dedicated equipment is often needed, unless the rotational degree-of-freedom is synthesised based upon translational data. However, this involves numerically differentiating the translational mode shapes to approximate the rotational modes, for example using a finite difference algorithm. A key challenge with this approach is choosing the measurement spacing between the data points, an issue which has often been overlooked in the published literature. The present contribution will for the first time prove that the use of a finite difference approach can be unstable when using non-exact measured data and a small measurement spacing, for beam-like structures. Then, a generalised analytical error analysis is used to propose an optimised measurement spacing, which balances the numerical error of the finite difference equation with the propagation error from the perturbed data. The approach is demonstrated using both numerical and experimental investigations. It is shown that by obtaining a small number of test measurements it is possible to optimise the measurement accuracy, without any further assumptions on the boundary conditions of the structure.
Wang, Yi
2016-07-21
Velocity of fluid flow in underground porous media is 6~12 orders of magnitudes lower than that in pipelines. If numerical errors are not carefully controlled in this kind of simulations, high distortion of the final results may occur [1-4]. To fit the high accuracy demands of fluid flow simulations in porous media, traditional finite difference methods and numerical integration methods are discussed and corresponding high-accurate methods are developed. When applied to the direct calculation of full-tensor permeability for underground flow, the high-accurate finite difference method is confirmed to have numerical error as low as 10-5% while the high-accurate numerical integration method has numerical error around 0%. Thus, the approach combining the high-accurate finite difference and numerical integration methods is a reliable way to efficiently determine the characteristics of general full-tensor permeability such as maximum and minimum permeability components, principal direction and anisotropic ratio. Copyright © Global-Science Press 2016.
Enhanced finite difference scheme for the neutron diffusion equation using the importance function
International Nuclear Information System (INIS)
Vagheian, Mehran; Vosoughi, Naser; Gharib, Morteza
2016-01-01
Highlights: • An enhanced finite difference scheme for the neutron diffusion equation is proposed. • A seven-step algorithm is considered based on the importance function. • Mesh points are distributed through entire reactor core with respect to the importance function. • The results all proved that the proposed algorithm is highly efficient. - Abstract: Mesh point positions in Finite Difference Method (FDM) of discretization for the neutron diffusion equation can remarkably affect the averaged neutron fluxes as well as the effective multiplication factor. In this study, by aid of improving the mesh point positions, an enhanced finite difference scheme for the neutron diffusion equation is proposed based on the neutron importance function. In order to determine the neutron importance function, the adjoint (backward) neutron diffusion calculations are performed in the same procedure as for the forward calculations. Considering the neutron importance function, the mesh points can be improved through the entire reactor core. Accordingly, in regions with greater neutron importance, density of mesh elements is higher than that in regions with less importance. The forward calculations are then performed for both of the uniform and improved non-uniform mesh point distributions and the results (the neutron fluxes along with the corresponding eigenvalues) for the two cases are compared with each other. The results are benchmarked against the reference values (with fine meshes) for Kang and Rod Bundle BWR benchmark problems. These benchmark cases revealed that the improved non-uniform mesh point distribution is highly efficient.
Böhringer, Klaus; Hess, Ortwin
The spatio-temporal dynamics of novel semiconductor lasers is discussed on the basis of a space- and momentum-dependent full time-domain approach. To this means the space-, time-, and momentum-dependent Full-Time Domain Maxwell Semiconductor Bloch equations, derived and discussed in our preceding paper I [K. Böhringer, O. Hess, A full time-domain approach to spatio-temporal dynamics of semiconductor lasers. I. Theoretical formulation], are solved by direct numerical integration. Focussing on the device physics of novel semiconductor lasers that profit, in particular, from recent advances in nanoscience and nanotechnology, we discuss the examples of photonic band edge surface emitting lasers (PBE-SEL) and semiconductor disc lasers (SDLs). It is demonstrated that photonic crystal effects can be obtained for finite crystal structures, and leading to a significant improvement in laser performance such as reduced lasing thresholds. In SDLs, a modern device concept designed to increase the power output of surface-emitters in combination with near-diffraction-limited beam quality, we explore the complex interplay between the intracavity optical fields and the quantum well gain material in SDL structures. Our simulations reveal the dynamical balance between carrier generation due to pumping into high energy states, momentum relaxation of carriers, and stimulated recombination from states near the band edge. Our full time-domain approach is shown to also be an excellent framework for the modelling of the interaction of high-intensity femtosecond and picosecond pulses with semiconductor nanostructures. It is demonstrated that group velocity dispersion, dynamical gain saturation and fast self-phase modulation (SPM) are the main causes for the induced changes and asymmetries in the amplified pulse shape and spectrum of an ultrashort high-intensity pulse. We attest that the time constants of the intraband scattering processes are critical to gain recovery. Moreover, we present
Zhu, D.; Zhu, H.; Luo, Y.; Chen, X.
2008-12-01
We use a new finite difference method (FDM) and the slip-weakening law to model the rupture dynamics of a non-planar fault embedded in a 3-D elastic media with free surface. The new FDM, based on boundary- conforming grid, sets up the mapping equations between the curvilinear coordinate and the Cartesian coordinate and transforms irregular physical space to regular computational space; it also employs a higher- order non-staggered DRP/opt MacCormack scheme which is of low dispersion and low dissipation so that the high accuracy and stability of our rupture modeling are guaranteed. Compared with the previous methods, not only we can compute the spontaneous rupture of an arbitrarily shaped fault, but also can model the influence of the surface topography on the rupture process of earthquake. In order to verify the feasibility of this method, we compared our results and other previous results, and found out they matched perfectly. Thanks to the boundary-conforming FDM, problems such as dynamic rupture with arbitrary dip, strike and rake over an arbitrary curved plane can be handled; and supershear or subshear rupture can be simulated with different parameters such as the initial stresses and the critical slip displacement Dc. Besides, our rupture modeling is economical to be implemented owing to its high efficiency and does not suffer from displacement leakage. With the help of inversion data of rupture by field observations, this method is convenient to model rupture processes and seismograms of natural earthquakes.
Directory of Open Access Journals (Sweden)
Djordjevich Alexandar
2017-12-01
Full Text Available The two-dimensional advection-diffusion equation with variable coefficients is solved by the explicit finitedifference method for the transport of solutes through a homogenous two-dimensional domain that is finite and porous. Retardation by adsorption, periodic seepage velocity, and a dispersion coefficient proportional to this velocity are permitted. The transport is from a pulse-type point source (that ceases after a period of activity. Included are the firstorder decay and zero-order production parameters proportional to the seepage velocity, and periodic boundary conditions at the origin and at the end of the domain. Results agree well with analytical solutions that were reported in the literature for special cases. It is shown that the solute concentration profile is influenced strongly by periodic velocity fluctuations. Solutions for a variety of combinations of unsteadiness of the coefficients in the advection-diffusion equation are obtainable as particular cases of the one demonstrated here. This further attests to the effectiveness of the explicit finite difference method for solving two-dimensional advection-diffusion equation with variable coefficients in finite media, which is especially important when arbitrary initial and boundary conditions are required.
Finite difference applied to the reconstruction method of the nuclear power density distribution
International Nuclear Information System (INIS)
Pessoa, Paulo O.; Silva, Fernando C.; Martinez, Aquilino S.
2016-01-01
Highlights: • A method for reconstruction of the power density distribution is presented. • The method uses discretization by finite differences of 2D neutrons diffusion equation. • The discretization is performed homogeneous meshes with dimensions of a fuel cell. • The discretization is combined with flux distributions on the four node surfaces. • The maximum errors in reconstruction occur in the peripheral water region. - Abstract: In this reconstruction method the two-dimensional (2D) neutron diffusion equation is discretized by finite differences, employed to two energy groups (2G) and meshes with fuel-pin cell dimensions. The Nodal Expansion Method (NEM) makes use of surface discontinuity factors of the node and provides for reconstruction method the effective multiplication factor of the problem and the four surface average fluxes in homogeneous nodes with size of a fuel assembly (FA). The reconstruction process combines the discretized 2D diffusion equation by finite differences with fluxes distribution on four surfaces of the nodes. These distributions are obtained for each surfaces from a fourth order one-dimensional (1D) polynomial expansion with five coefficients to be determined. The conditions necessary for coefficients determination are three average fluxes on consecutive surfaces of the three nodes and two fluxes in corners between these three surface fluxes. Corner fluxes of the node are determined using a third order 1D polynomial expansion with four coefficients. This reconstruction method uses heterogeneous nuclear parameters directly providing the heterogeneous neutron flux distribution and the detailed nuclear power density distribution within the FAs. The results obtained with this method has good accuracy and efficiency when compared with reference values.
An outgoing energy flux boundary condition for finite difference ICRP antenna models
International Nuclear Information System (INIS)
Batchelor, D.B.; Carter, M.D.
1992-11-01
For antennas at the ion cyclotron range of frequencies (ICRF) modeling in vacuum can now be carried out to a high level of detail such that shaping of the current straps, isolating septa, and discrete Faraday shield structures can be included. An efficient approach would be to solve for the fields in the vacuum region near the antenna in three dimensions by finite methods and to match this solution at the plasma-vacuum interface to a solution obtained in the plasma region in one dimension by Fourier methods. This approach has been difficult to carry out because boundary conditions must be imposed at the edge of the finite difference grid on a point-by-point basis, whereas the condition for outgoing energy flux into the plasma is known only in terms of the Fourier transform of the plasma fields. A technique is presented by which a boundary condition can be imposed on the computational grid of a three-dimensional finite difference, or finite element, code by constraining the discrete Fourier transform of the fields at the boundary points to satisfy an outgoing energy flux condition appropriate for the plasma. The boundary condition at a specific grid point appears as a coupling to other grid points on the boundary, with weighting determined by a kemel calctdated from the plasma surface impedance matrix for the various plasma Fourier modes. This boundary condition has been implemented in a finite difference solution of a simple problem in two dimensions, which can also be solved directly by Fourier transformation. Results are presented, and it is shown that the proposed boundary condition does enforce outgoing energy flux and yields the same solution as is obtained by Fourier methods
A study of unstable rock failures using finite difference and discrete element methods
Garvey, Ryan J.
Case histories in mining have long described pillars or faces of rock failing violently with an accompanying rapid ejection of debris and broken material into the working areas of the mine. These unstable failures have resulted in large losses of life and collapses of entire mine panels. Modern mining operations take significant steps to reduce the likelihood of unstable failure, however eliminating their occurrence is difficult in practice. Researchers over several decades have supplemented studies of unstable failures through the application of various numerical methods. The direction of the current research is to extend these methods and to develop improved numerical tools with which to study unstable failures in underground mining layouts. An extensive study is first conducted on the expression of unstable failure in discrete element and finite difference methods. Simulated uniaxial compressive strength tests are run on brittle rock specimens. Stable or unstable loading conditions are applied onto the brittle specimens by a pair of elastic platens with ranging stiffnesses. Determinations of instability are established through stress and strain histories taken for the specimen and the system. Additional numerical tools are then developed for the finite difference method to analyze unstable failure in larger mine models. Instability identifiers are established for assessing the locations and relative magnitudes of unstable failure through measures of rapid dynamic motion. An energy balance is developed which calculates the excess energy released as a result of unstable equilibria in rock systems. These tools are validated through uniaxial and triaxial compressive strength tests and are extended to models of coal pillars and a simplified mining layout. The results of the finite difference simulations reveal that the instability identifiers and excess energy calculations provide a generalized methodology for assessing unstable failures within potentially complex
Finite-difference solution of the space-angle-lethargy-dependent slowing-down transport equation
Energy Technology Data Exchange (ETDEWEB)
Matausek, M V [Boris Kidric Vinca Institute of Nuclear Sciences, Vinca, Belgrade (Yugoslavia)
1972-07-01
A procedure has been developed for solving the slowing-down transport equation for a cylindrically symmetric reactor system. The anisotropy of the resonance neutron flux is treated by the spherical harmonics formalism, which reduces the space-angle-Iethargy-dependent transport equation to a matrix integro-differential equation in space and lethargy. Replacing further the lethargy transfer integral by a finite-difference form, a set of matrix ordinary differential equations is obtained, with lethargy-and space dependent coefficients. If the lethargy pivotal points are chosen dense enough so that the difference correction term can be ignored, this set assumes a lower block triangular form and can be solved directly by forward block substitution. As in each step of the finite-difference procedure a boundary value problem has to be solved for a non-homogeneous system of ordinary differential equations with space-dependent coefficients, application of any standard numerical procedure, for example, the finite-difference method or the method of adjoint equations, is too cumbersome and would make the whole procedure practically inapplicable. A simple and efficient approximation is proposed here, allowing analytical solution for the space dependence of the spherical-harmonics flux moments, and hence the derivation of the recurrence relations between the flux moments at successive lethargy pivotal points. According to the procedure indicated above a computer code has been developed for the CDC -3600 computer, which uses the KEDAK nuclear data file. The space and lethargy distribution of the resonance neutrons can be computed in such a detailed fashion as the neutron cross-sections are known for the reactor materials considered. The computing time is relatively short so that the code can be efficiently used, either autonomously, or as part of some complex modular scheme. Typical results will be presented and discussed in order to prove and illustrate the applicability of the
Slat Noise Predictions Using Higher-Order Finite-Difference Methods on Overset Grids
Housman, Jeffrey A.; Kiris, Cetin
2016-01-01
Computational aeroacoustic simulations using the structured overset grid approach and higher-order finite difference methods within the Launch Ascent and Vehicle Aerodynamics (LAVA) solver framework are presented for slat noise predictions. The simulations are part of a collaborative study comparing noise generation mechanisms between a conventional slat and a Krueger leading edge flap. Simulation results are compared with experimental data acquired during an aeroacoustic test in the NASA Langley Quiet Flow Facility. Details of the structured overset grid, numerical discretization, and turbulence model are provided.
COVE-1: a finite difference creep collapse code for oval fuel pin cladding material
International Nuclear Information System (INIS)
Mohr, C.L.
1975-03-01
COVE-1 is a time-dependent incremental creep collapse code that estimates the change in ovality of a fuel pin cladding tube. It uses a finite difference method of solving the differential equations which describe the deflection of the tube walls as a function of time. The physical problem is nonlinear, both with respect to geometry and material properties, which requires the use of an incremental, analytical, path-dependent solution. The application of this code is intended primarily for tubes manufactured from Zircaloy. Therefore, provision has been made to include some of the effects of anisotropy in the flow equations for inelastic incremental deformations. 10 references. (U.S.)
Directory of Open Access Journals (Sweden)
Yuan Zhang
2016-01-01
Full Text Available Based on finite difference method, a mathematical model and a numerical model written by Fortran language were established in the paper. Then a series of experiments were conducted to figure out the evolution law of temperature field in high geothermal roadway. Research results indicate that temperature disturbance range increases gradually as the unsteady heat conduction goes on and it presents power function relationship with dimensionless time. Based on the case analysis, there is no distinct expansion of temperature disturbance range after four years of ventilation, when the temperature disturbance range R=13.6.
A multigrid algorithm for the cell-centered finite difference scheme
Ewing, Richard E.; Shen, Jian
1993-01-01
In this article, we discuss a non-variational V-cycle multigrid algorithm based on the cell-centered finite difference scheme for solving a second-order elliptic problem with discontinuous coefficients. Due to the poor approximation property of piecewise constant spaces and the non-variational nature of our scheme, one step of symmetric linear smoothing in our V-cycle multigrid scheme may fail to be a contraction. Again, because of the simple structure of the piecewise constant spaces, prolongation and restriction are trivial; we save significant computation time with very promising computational results.
Analysis of multi lobe journal bearings with surface roughness using finite difference method
PhaniRaja Kumar, K.; Bhaskar, SUdaya; Manzoor Hussain, M.
2018-04-01
Multi lobe journal bearings are used for high operating speeds and high loads in machines. In this paper symmetrical multi lobe journal bearings are analyzed to find out the effect of surface roughnessduring non linear loading. Using the fourth order RungeKutta method, time transient analysis was performed to calculate and plot the journal centre trajectories. Flow factor method is used to evaluate the roughness and the finite difference method (FDM) is used to predict the pressure distribution over the bearing surface. The Transient analysis is done on the multi lobe journal bearings for threedifferent surface roughness orientations. Longitudinal surface roughness is more effective when compared with isotopic and traverse surface roughness.
Four-level conservative finite-difference schemes for Boussinesq paradigm equation
Kolkovska, N.
2013-10-01
In this paper a two-parametric family of four level conservative finite difference schemes is constructed for the multidimensional Boussinesq paradigm equation. The schemes are explicit in the sense that no inner iterations are needed for evaluation of the numerical solution. The preservation of the discrete energy with this method is proved. The schemes have been numerically tested on one soliton propagation model and two solitons interaction model. The numerical experiments demonstrate that the proposed family of schemes has second order of convergence in space and time steps in the discrete maximal norm.
Ghil, M.; Balgovind, R.
1979-01-01
The inhomogeneous Cauchy-Riemann equations in a rectangle are discretized by a finite difference approximation. Several different boundary conditions are treated explicitly, leading to algorithms which have overall second-order accuracy. All boundary conditions with either u or v prescribed along a side of the rectangle can be treated by similar methods. The algorithms presented here have nearly minimal time and storage requirements and seem suitable for development into a general-purpose direct Cauchy-Riemann solver for arbitrary boundary conditions.
A fast finite-difference algorithm for topology optimization of permanent magnets
Abert, Claas; Huber, Christian; Bruckner, Florian; Vogler, Christoph; Wautischer, Gregor; Suess, Dieter
2017-09-01
We present a finite-difference method for the topology optimization of permanent magnets that is based on the fast-Fourier-transform (FFT) accelerated computation of the stray-field. The presented method employs the density approach for topology optimization and uses an adjoint method for the gradient computation. Comparison to various state-of-the-art finite-element implementations shows a superior performance and accuracy. Moreover, the presented method is very flexible and easy to implement due to various preexisting FFT stray-field implementations that can be used.
Accuracy of spectral and finite difference schemes in 2D advection problems
DEFF Research Database (Denmark)
Naulin, V.; Nielsen, A.H.
2003-01-01
In this paper we investigate the accuracy of two numerical procedures commonly used to solve 2D advection problems: spectral and finite difference (FD) schemes. These schemes are widely used, simulating, e.g., neutral and plasma flows. FD schemes have long been considered fast, relatively easy...... that the accuracy of FD schemes can be significantly improved if one is careful in choosing an appropriate FD scheme that reflects conservation properties of the nonlinear terms and in setting up the grid in accordance with the problem....
The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion
International Nuclear Information System (INIS)
Moczo, P.; Kristek, J.; Pazak, P.; Balazovjech, M.; Moczo, P.; Kristek, J.; Galis, M.
2007-01-01
Numerical modeling of seismic wave propagation and earthquake motion is an irreplaceable tool in investigation of the Earth's structure, processes in the Earth, and particularly earthquake phenomena. Among various numerical methods, the finite-difference method is the dominant method in the modeling of earthquake motion. Moreover, it is becoming more important in the seismic exploration and structural modeling. At the same time we are convinced that the best time of the finite-difference method in seismology is in the future. This monograph provides tutorial and detailed introduction to the application of the finite difference (FD), finite-element (FE), and hybrid FD-FE methods to the modeling of seismic wave propagation and earthquake motion. The text does not cover all topics and aspects of the methods. We focus on those to which we have contributed. We present alternative formulations of equation of motion for a smooth elastic continuum. We then develop alternative formulations for a canonical problem with a welded material interface and free surface. We continue with a model of an earthquake source. We complete the general theoretical introduction by a chapter on the constitutive laws for elastic and viscoelastic media, and brief review of strong formulations of the equation of motion. What follows is a block of chapters on the finite-difference and finite-element methods. We develop FD targets for the free surface and welded material interface. We then present various FD schemes for a smooth continuum, free surface, and welded interface. We focus on the staggered-grid and mainly optimally-accurate FD schemes. We also present alternative formulations of the FE method. We include the FD and FE implementations of the traction-at-split-nodes method for simulation of dynamic rupture propagation. The FD modeling is applied to the model of the deep sedimentary Grenoble basin, France. The FD and FE methods are combined in the hybrid FD-FE method. The hybrid
Computational Aero-Acoustic Using High-order Finite-Difference Schemes
DEFF Research Database (Denmark)
Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær
2007-01-01
are solved using the in-house flow solver EllipSys2D/3D which is a second-order finite volume code. The acoustic solution is found by solving the acoustic equations using high-order finite difference schemes. The incompressible flow equations and the acoustic equations are solved at the same time levels......In this paper, a high-order technique to accurately predict flow-generated noise is introduced. The technique consists of solving the viscous incompressible flow equations and inviscid acoustic equations using a incompressible/compressible splitting technique. The incompressible flow equations...
Agarwal, P.; El-Sayed, A. A.
2018-06-01
In this paper, a new numerical technique for solving the fractional order diffusion equation is introduced. This technique basically depends on the Non-Standard finite difference method (NSFD) and Chebyshev collocation method, where the fractional derivatives are described in terms of the Caputo sense. The Chebyshev collocation method with the (NSFD) method is used to convert the problem into a system of algebraic equations. These equations solved numerically using Newton's iteration method. The applicability, reliability, and efficiency of the presented technique are demonstrated through some given numerical examples.
International Nuclear Information System (INIS)
Kriventsev, Vladimir
2000-09-01
Most of thermal hydraulic processes in nuclear engineering can be described by general convection-diffusion equations that are often can be simulated numerically with finite-difference method (FDM). An effective scheme for finite-difference discretization of such equations is presented in this report. The derivation of this scheme is based on analytical solutions of a simplified one-dimensional equation written for every control volume of the finite-difference mesh. These analytical solutions are constructed using linearized representations of both diffusion coefficient and source term. As a result, the Efficient Finite-Differencing (EFD) scheme makes it possible to significantly improve the accuracy of numerical method even using mesh systems with fewer grid nodes that, in turn, allows to speed-up numerical simulation. EFD has been carefully verified on the series of sample problems for which either analytical or very precise numerical solutions can be found. EFD has been compared with other popular FDM schemes including novel, accurate (as well as sophisticated) methods. Among the methods compared were well-known central difference scheme, upwind scheme, exponential differencing and hybrid schemes of Spalding. Also, newly developed finite-difference schemes, such as the the quadratic upstream (QUICK) scheme of Leonard, the locally analytic differencing (LOAD) scheme of Wong and Raithby, the flux-spline scheme proposed by Varejago and Patankar as well as the latest LENS discretization of Sakai have been compared. Detailed results of this comparison are given in this report. These tests have shown a high efficiency of the EFD scheme. For most of sample problems considered EFD has demonstrated the numerical error that appeared to be in orders of magnitude lower than that of other discretization methods. Or, in other words, EFD has predicted numerical solution with the same given numerical error but using much fewer grid nodes. In this report, the detailed
New way for determining electron energy levels in quantum dots arrays using finite difference method
Dujardin, F.; Assaid, E.; Feddi, E.
2018-06-01
Electronic states are investigated in quantum dots arrays, depending on the type of cubic Bravais lattice (primitive, body centered or face centered) according to which the dots are arranged, the size of the dots and the interdot distance. It is shown that the ground state energy level can undergo significant variations when these parameters are modified. The results were obtained by means of finite difference method which has proved to be easily adaptable, efficient and precise. The symmetry properties of the lattice have been used to reduce the size of the Hamiltonian matrix.
Calculating modes of quantum wire systems using a finite difference technique
Directory of Open Access Journals (Sweden)
T Mardani
2013-03-01
Full Text Available In this paper, the Schrodinger equation for a quantum wire is solved using a finite difference approach. A new aspect in this work is plotting wave function on cross section of rectangular cross-sectional wire in two dimensions, periodically. It is found that the correct eigen energies occur when wave functions have a complete symmetry. If the value of eigen energy has a small increase or decrease in neighborhood of the correct energy the symmetry will be destroyed and aperturbation value at the first of wave function will be observed. In addition, the demand on computer memory varies linearly with the size of the system under investigation.
Modelling migration in multilayer systems by a finite difference method: the spherical symmetry case
International Nuclear Information System (INIS)
Hojbota, C I; Toşa, V; Mercea, P V
2013-01-01
We present a numerical model based on finite differences to solve the problem of chemical impurity migration within a multilayer spherical system. Migration here means diffusion of chemical species in conditions of concentration partitioning at layer interfaces due to different solubilities of the migrant in different layers. We detail here the numerical model and discuss the results of its implementation. To validate the method we compare it with cases where an analytic solution exists. We also present an application of our model to a practical problem in which we compute the migration of caprolactam from the packaging multilayer foil into the food
Raeli, Alice; Bergmann, Michel; Iollo, Angelo
2018-02-01
We consider problems governed by a linear elliptic equation with varying coefficients across internal interfaces. The solution and its normal derivative can undergo significant variations through these internal boundaries. We present a compact finite-difference scheme on a tree-based adaptive grid that can be efficiently solved using a natively parallel data structure. The main idea is to optimize the truncation error of the discretization scheme as a function of the local grid configuration to achieve second-order accuracy. Numerical illustrations are presented in two and three-dimensional configurations.
A moving mesh finite difference method for equilibrium radiation diffusion equations
Energy Technology Data Exchange (ETDEWEB)
Yang, Xiaobo, E-mail: xwindyb@126.com [Department of Mathematics, College of Science, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); Huang, Weizhang, E-mail: whuang@ku.edu [Department of Mathematics, University of Kansas, Lawrence, KS 66045 (United States); Qiu, Jianxian, E-mail: jxqiu@xmu.edu.cn [School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computing, Xiamen University, Xiamen, Fujian 361005 (China)
2015-10-01
An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.
International Nuclear Information System (INIS)
Ackroyd, R.T.
1987-01-01
A least squares principle is described which uses a penalty function treatment of boundary and interface conditions. Appropriate choices of the trial functions and vectors employed in a dual representation of an approximate solution established complementary principles for the diffusion equation. A geometrical interpretation of the principles provides weighted residual methods for diffusion theory, thus establishing a unification of least squares, variational and weighted residual methods. The complementary principles are used with either a trial function for the flux or a trial vector for the current to establish for regular meshes a connection between finite element, finite difference and nodal methods, which can be exact if the mesh pitches are chosen appropriately. Whereas the coefficients in the usual nodal equations have to be determined iteratively, those derived via the complementary principles are given explicitly in terms of the data. For the further development of the connection between finite element, finite difference and nodal methods, some hybrid variational methods are described which employ both a trial function and a trial vector. (author)
Mustapha, K.
2017-06-03
Anomalous diffusion is a phenomenon that cannot be modeled accurately by second-order diffusion equations, but is better described by fractional diffusion models. The nonlocal nature of the fractional diffusion operators makes substantially more difficult the mathematical analysis of these models and the establishment of suitable numerical schemes. This paper proposes and analyzes the first finite difference method for solving {\\\\em variable-coefficient} fractional differential equations, with two-sided fractional derivatives, in one-dimensional space. The proposed scheme combines first-order forward and backward Euler methods for approximating the left-sided fractional derivative when the right-sided fractional derivative is approximated by two consecutive applications of the first-order backward Euler method. Our finite difference scheme reduces to the standard second-order central difference scheme in the absence of fractional derivatives. The existence and uniqueness of the solution for the proposed scheme are proved, and truncation errors of order $h$ are demonstrated, where $h$ denotes the maximum space step size. The numerical tests illustrate the global $O(h)$ accuracy of our scheme, except for nonsmooth cases which, as expected, have deteriorated convergence rates.
International Nuclear Information System (INIS)
Saha Ray, S.; Patra, A.
2012-01-01
Highlights: ► In this paper fractional neutron point kinetic equation has been analyzed. ► The numerical solution for fractional neutron point kinetic equation is obtained. ► Explicit Finite Difference Method has been applied. ► Supercritical reactivity, critical reactivity and subcritical reactivity analyzed. ► Comparison between fractional and classical neutron density is presented. - Abstract: In the present article, a numerical procedure to efficiently calculate the solution for fractional point kinetics equation in nuclear reactor dynamics is investigated. The Explicit Finite Difference Method is applied to solve the fractional neutron point kinetic equation with the Grunwald–Letnikov (GL) definition (). Fractional Neutron Point Kinetic Model has been analyzed for the dynamic behavior of the neutron motion in which the relaxation time associated with a variation in the neutron flux involves a fractional order acting as exponent of the relaxation time, to obtain the best operation of a nuclear reactor dynamics. Results for neutron dynamic behavior for subcritical reactivity, supercritical reactivity and critical reactivity and also for different values of fractional order have been presented and compared with the classical neutron point kinetic (NPK) equation as well as the results obtained by the learned researchers .
Parallelized implicit propagators for the finite-difference Schrödinger equation
Parker, Jonathan; Taylor, K. T.
1995-08-01
We describe the application of block Gauss-Seidel and block Jacobi iterative methods to the design of implicit propagators for finite-difference models of the time-dependent Schrödinger equation. The block-wise iterative methods discussed here are mixed direct-iterative methods for solving simultaneous equations, in the sense that direct methods (e.g. LU decomposition) are used to invert certain block sub-matrices, and iterative methods are used to complete the solution. We describe parallel variants of the basic algorithm that are well suited to the medium- to coarse-grained parallelism of work-station clusters, and MIMD supercomputers, and we show that under a wide range of conditions, fine-grained parallelism of the computation can be achieved. Numerical tests are conducted on a typical one-electron atom Hamiltonian. The methods converge robustly to machine precision (15 significant figures), in some cases in as few as 6 or 7 iterations. The rate of convergence is nearly independent of the finite-difference grid-point separations.
Elastic frequency-domain finite-difference contrast source inversion method
International Nuclear Information System (INIS)
He, Qinglong; Chen, Yong; Han, Bo; Li, Yang
2016-01-01
In this work, we extend the finite-difference contrast source inversion (FD-CSI) method to the frequency-domain elastic wave equations, where the parameters describing the subsurface structure are simultaneously reconstructed. The FD-CSI method is an iterative nonlinear inversion method, which exhibits several strengths. First, the finite-difference operator only relies on the background media and the given angular frequency, both of which are unchanged during inversion. Therefore, the matrix decomposition is performed only once at the beginning of the iteration if a direct solver is employed. This makes the inversion process relatively efficient in terms of the computational cost. In addition, the FD-CSI method automatically normalizes different parameters, which could avoid the numerical problems arising from the difference of the parameter magnitude. We exploit a parallel implementation of the FD-CSI method based on the domain decomposition method, ensuring a satisfactory scalability for large-scale problems. A simple numerical example with a homogeneous background medium is used to investigate the convergence of the elastic FD-CSI method. Moreover, the Marmousi II model proposed as a benchmark for testing seismic imaging methods is presented to demonstrate the performance of the elastic FD-CSI method in an inhomogeneous background medium. (paper)
International Nuclear Information System (INIS)
Ibral, Asmaa; Zouitine, Asmaa; Assaid, El Mahdi
2015-01-01
Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image–charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap
Energy Technology Data Exchange (ETDEWEB)
Ibral, Asmaa [Equipe d' Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Laboratoire d' Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Zouitine, Asmaa [Département de Physique, Ecole Nationale Supérieure d' Enseignement Technique, Université Mohammed V Souissi, B. P. 6207 Rabat-Instituts, Rabat, Royaume du Maroc (Morocco); Assaid, El Mahdi, E-mail: eassaid@yahoo.fr [Equipe d' Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Laboratoire d' Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); and others
2015-02-01
Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image–charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap.
High-order asynchrony-tolerant finite difference schemes for partial differential equations
Aditya, Konduri; Donzis, Diego A.
2017-12-01
Synchronizations of processing elements (PEs) in massively parallel simulations, which arise due to communication or load imbalances between PEs, significantly affect the scalability of scientific applications. We have recently proposed a method based on finite-difference schemes to solve partial differential equations in an asynchronous fashion - synchronization between PEs is relaxed at a mathematical level. While standard schemes can maintain their stability in the presence of asynchrony, their accuracy is drastically affected. In this work, we present a general methodology to derive asynchrony-tolerant (AT) finite difference schemes of arbitrary order of accuracy, which can maintain their accuracy when synchronizations are relaxed. We show that there are several choices available in selecting a stencil to derive these schemes and discuss their effect on numerical and computational performance. We provide a simple classification of schemes based on the stencil and derive schemes that are representative of different classes. Their numerical error is rigorously analyzed within a statistical framework to obtain the overall accuracy of the solution. Results from numerical experiments are used to validate the performance of the schemes.
A Proposed Stochastic Finite Difference Approach Based on Homogenous Chaos Expansion
Directory of Open Access Journals (Sweden)
O. H. Galal
2013-01-01
Full Text Available This paper proposes a stochastic finite difference approach, based on homogenous chaos expansion (SFDHC. The said approach can handle time dependent nonlinear as well as linear systems with deterministic or stochastic initial and boundary conditions. In this approach, included stochastic parameters are modeled as second-order stochastic processes and are expanded using Karhunen-Loève expansion, while the response function is approximated using homogenous chaos expansion. Galerkin projection is used in converting the original stochastic partial differential equation (PDE into a set of coupled deterministic partial differential equations and then solved using finite difference method. Two well-known equations were used for efficiency validation of the method proposed. First one being the linear diffusion equation with stochastic parameter and the second is the nonlinear Burger's equation with stochastic parameter and stochastic initial and boundary conditions. In both of these examples, the probability distribution function of the response manifested close conformity to the results obtained from Monte Carlo simulation with optimized computational cost.
A moving mesh finite difference method for equilibrium radiation diffusion equations
International Nuclear Information System (INIS)
Yang, Xiaobo; Huang, Weizhang; Qiu, Jianxian
2015-01-01
An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation
A mimetic finite difference method for the Stokes problem with elected edge bubbles
Energy Technology Data Exchange (ETDEWEB)
Lipnikov, K [Los Alamos National Laboratory; Berirao, L [DIPARTMENTO DI MATERMATICA
2009-01-01
A new mimetic finite difference method for the Stokes problem is proposed and analyzed. The unstable P{sub 1}-P{sub 0} discretization is stabilized by adding a small number of bubble functions to selected mesh edges. A simple strategy for selecting such edges is proposed and verified with numerical experiments. The discretizations schemes for Stokes and Navier-Stokes equations must satisfy the celebrated inf-sup (or the LBB) stability condition. The stability condition implies a balance between discrete spaces for velocity and pressure. In finite elements, this balance is frequently achieved by adding bubble functions to the velocity space. The goal of this article is to show that the stabilizing edge bubble functions can be added only to a small set of mesh edges. This results in a smaller algebraic system and potentially in a faster calculations. We employ the mimetic finite difference (MFD) discretization technique that works for general polyhedral meshes and can accomodate non-uniform distribution of stabilizing bubbles.
International Nuclear Information System (INIS)
Potemki, Valeri G.; Borisevich, Valentine D.; Yupatov, Sergei V.
1996-01-01
This paper describes the the next evolution step in development of the direct method for solving systems of Nonlinear Algebraic Equations (SNAE). These equations arise from the finite difference approximation of original nonlinear partial differential equations (PDE). This method has been extended on the SNAE with three variables. The solving SNAE bases on Reiterating General Singular Value Decomposition of rectangular matrix pencils (RGSVD-algorithm). In contrast to the computer algebra algorithm in integer arithmetic based on the reduction to the Groebner's basis that algorithm is working in floating point arithmetic and realizes the reduction to the Kronecker's form. The possibilities of the method are illustrated on the example of solving the one-dimensional diffusion equation for 3-component model isotope mixture in a ga centrifuge. The implicit scheme for the finite difference equations without simplifying the nonlinear properties of the original equations is realized. The technique offered provides convergence to the solution for the single run. The Toolbox SNAE is developed in the framework of the high performance numeric computation and visualization software MATLAB. It includes more than 30 modules in MATLAB language for solving SNAE with two and three variables. (author)
Mustapha, K.; Furati, K.; Knio, Omar; Maitre, O. Le
2017-01-01
Anomalous diffusion is a phenomenon that cannot be modeled accurately by second-order diffusion equations, but is better described by fractional diffusion models. The nonlocal nature of the fractional diffusion operators makes substantially more difficult the mathematical analysis of these models and the establishment of suitable numerical schemes. This paper proposes and analyzes the first finite difference method for solving {\\em variable-coefficient} fractional differential equations, with two-sided fractional derivatives, in one-dimensional space. The proposed scheme combines first-order forward and backward Euler methods for approximating the left-sided fractional derivative when the right-sided fractional derivative is approximated by two consecutive applications of the first-order backward Euler method. Our finite difference scheme reduces to the standard second-order central difference scheme in the absence of fractional derivatives. The existence and uniqueness of the solution for the proposed scheme are proved, and truncation errors of order $h$ are demonstrated, where $h$ denotes the maximum space step size. The numerical tests illustrate the global $O(h)$ accuracy of our scheme, except for nonsmooth cases which, as expected, have deteriorated convergence rates.
Finite difference method calculations of X-ray absorption fine structure for copper
Energy Technology Data Exchange (ETDEWEB)
Bourke, J.D. [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia); Chantler, C.T. [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia)]. E-mail: chantler@physics.unimelb.edu.au; Witte, C. [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia)
2007-01-15
The finite difference method is extended to calculate X-ray absorption fine structure (XAFS) for solid state copper. These extensions include the incorporation of a Monte Carlo frozen phonon technique to simulate the effect of thermal vibrations under a correlated Debye-Waller model, and the inclusion of broadening effects from inelastic processes. Spectra are obtained over an energy range in excess of 300 eV above the K absorption edge-more than twice the greatest energy range previously reported for a solid state calculation using this method. We find this method is highly sensitive to values of the photoelectron inelastic mean free path, allowing us to probe the accuracy of current models of this parameter, particularly at low energies. We therefore find that experimental data for the photoelectron inelastic mean free path can be obtained by this method. Our results compare favourably with high precision measurements of the X-ray mass attenuation coefficient for copper, reaching agreement to within 3%, and improving previous results using the finite difference method by an order of magnitude.
A coarse-mesh nodal method-diffusive-mesh finite difference method
International Nuclear Information System (INIS)
Joo, H.; Nichols, W.R.
1994-01-01
Modern nodal methods have been successfully used for conventional light water reactor core analyses where the homogenized, node average cross sections (XSs) and the flux discontinuity factors (DFs) based on equivalence theory can reliably predict core behavior. For other types of cores and other geometries characterized by tightly-coupled, heterogeneous core configurations, the intranodal flux shapes obtained from a homogenized nodal problem may not accurately portray steep flux gradients near fuel assembly interfaces or various reactivity control elements. This may require extreme values of DFs (either very large, very small, or even negative) to achieve a desired solution accuracy. Extreme values of DFs, however, can disrupt the convergence of the iterative methods used to solve for the node average fluxes, and can lead to a difficulty in interpolating adjacent DF values. Several attempts to remedy the problem have been made, but nothing has been satisfactory. A new coarse-mesh nodal scheme called the Diffusive-Mesh Finite Difference (DMFD) technique, as contrasted with the coarse-mesh finite difference (CMFD) technique, has been developed to resolve this problem. This new technique and the development of a few-group, multidimensional kinetics computer program are described in this paper
International Nuclear Information System (INIS)
Li Bihong; Shuang Na; Liu Qingcheng
2006-01-01
The principle of finite difference method is introduced, and the radon field distribution over sandstone-type uranium deposit is narrated. The radon field distribution theory equation is established. To solve radon field distribution equation using finite difference algorithm is to provide the value computational method for forward calculation about radon field over sandstone-type uranium mine. Study on 2-D finite difference method on the center of either high anomaly radon fields in view of the character of radon field over sandstone-type uranium provide an algorithm for further research. (authors)
Li, Ping; Jiang, Li Jun; Bagci, Hakan
2017-01-01
In this paper, a discontinuous Galerkin time-domain (DGTD) method is developed to analyze the power-ground planes taking into account the decoupling capacitors. In the presence of decoupling capacitors, the whole physical system can be split
On the mixed discretization of the time domain magnetic field integral equation
Ulku, Huseyin Arda; Bogaert, Ignace; Cools, Kristof; Andriulli, Francesco P.; Bagci, Hakan
2012-01-01
Time domain magnetic field integral equation (MFIE) is discretized using divergence-conforming Rao-Wilton-Glisson (RWG) and curl-conforming Buffa-Christiansen (BC) functions as spatial basis and testing functions, respectively. The resulting mixed
Valdé s, Felipe; Andriulli, Francesco P.; Bagci, Hakan; Michielssen, Eric
2013-01-01
Single-source time-domain electric-and magnetic-field integral equations for analyzing scattering from homogeneous penetrable objects are presented. Their temporal discretization is effected by using shifted piecewise polynomial temporal basis
On spurious resonant modes in the MOT solution of time domain EFIE
Shi, Yifei; Bagci, Hakan; Lu, Mingyu
2013-01-01
Theoretically, internal resonant modes should not be induced in the marching-on-in-time (MOT) solution of the time domain electric field integral equation since zero initial conditions are enforced at the beginning of time marching and the internal
Time Domain Terahertz Axial Computed Tomography Non Destructive Evaluation, Phase I
National Aeronautics and Space Administration — We propose to demonstrate key elements of feasibility for a high speed automated time domain terahertz computed axial tomography (TD-THz CT) non destructive...
Time Domain Terahertz Axial Computed Tomography Non Destructive Evaluation, Phase II
National Aeronautics and Space Administration — In this Phase 2 project, we propose to develop, construct, and deliver to NASA a computed axial tomography time-domain terahertz (CT TD-THz) non destructive...
Zhang, Xiao-bo; Tan, Jun; Song, Peng; Li, Jin-shan; Xia, Dong-ming; Liu, Zhao-lun
2017-01-01
The gradient preconditioning approach based on seismic wave energy can effectively avoid the huge storage consumption in the gradient preconditioning algorithms based on Hessian matrices in time-domain full waveform inversion (FWI), but the accuracy
On the initial condition problem of the time domain PMCHWT surface integral equation
Uysal, Ismail Enes; Bagci, Hakan; Ergin, A. Arif; Ulku, H. Arda
2017-01-01
Non-physical, linearly increasing and constant current components are induced in marching on-in-time solution of time domain surface integral equations when initial conditions on time derivatives of (unknown) equivalent currents are not enforced
Fabien-Ouellet, Gabriel; Gloaguen, Erwan; Giroux, Bernard
2017-03-01
Full Waveform Inversion (FWI) aims at recovering the elastic parameters of the Earth by matching recordings of the ground motion with the direct solution of the wave equation. Modeling the wave propagation for realistic scenarios is computationally intensive, which limits the applicability of FWI. The current hardware evolution brings increasing parallel computing power that can speed up the computations in FWI. However, to take advantage of the diversity of parallel architectures presently available, new programming approaches are required. In this work, we explore the use of OpenCL to develop a portable code that can take advantage of the many parallel processor architectures now available. We present a program called SeisCL for 2D and 3D viscoelastic FWI in the time domain. The code computes the forward and adjoint wavefields using finite-difference and outputs the gradient of the misfit function given by the adjoint state method. To demonstrate the code portability on different architectures, the performance of SeisCL is tested on three different devices: Intel CPUs, NVidia GPUs and Intel Xeon PHI. Results show that the use of GPUs with OpenCL can speed up the computations by nearly two orders of magnitudes over a single threaded application on the CPU. Although OpenCL allows code portability, we show that some device-specific optimization is still required to get the best performance out of a specific architecture. Using OpenCL in conjunction with MPI allows the domain decomposition of large models on several devices located on different nodes of a cluster. For large enough models, the speedup of the domain decomposition varies quasi-linearly with the number of devices. Finally, we investigate two different approaches to compute the gradient by the adjoint state method and show the significant advantages of using OpenCL for FWI.
Microprocessor-controlled time domain reflectometer for dynamic shock position measurements
International Nuclear Information System (INIS)
Virchow, C.F.; Conrad, G.E.; Holt, D.M.; Hodson, E.K.
1980-01-01
Time-domain reflectometry is used in a novel way to measure dynamically shock propagation in various media. The primary component in this measurement system is a digital time domain reflectometer, which uses local intelligence, a Motorola 6800 microprocessor, to make the unit adaptable and versatile. The recorder, its operating theory and its method of implementation are described and typical data are reviewed. Applications include nuclear explosion yield estimates and explosive energy flow measurements
Windowing of THz time-domain spectroscopy signals: A study based on lactose
Vázquez-Cabo, José; Chamorro-Posada, Pedro; Fraile-Peláez, Francisco Javier; Rubiños-López, Óscar; López-Santos, José María; Martín-Ramos, Pablo
2016-05-01
Time-domain spectroscopy has established itself as a reference method for determining material parameters in the terahertz spectral range. This procedure requires the processing of the measured time-domain signals in order to estimate the spectral data. In this work, we present a thorough study of the properties of the signal windowing, a step previous to the parameter extraction algorithm, that permits to improve the accuracy of the results. Lactose has been used as sample material in the study.
Time-Domain Optical Fourier Transformation for OTDM-DWDM and DWDM-OTDM Conversion
DEFF Research Database (Denmark)
Mulvad, Hans Christian Hansen; Palushani, Evarist; Galili, Michael
2011-01-01
Applications of time-domain optical Fourier transformation (OFT) in ultra-high-speed optical time-division multiplexed systems (OTDM) are reviewed, with emphasis on the recent demonstrations of OFT-based conversion between the OTDM and DWDM formats.......Applications of time-domain optical Fourier transformation (OFT) in ultra-high-speed optical time-division multiplexed systems (OTDM) are reviewed, with emphasis on the recent demonstrations of OFT-based conversion between the OTDM and DWDM formats....
Directory of Open Access Journals (Sweden)
Yu Shi
2017-02-01
Full Text Available We introduce a finite-difference frequency-domain algorithm for coupled acousto-optic simulations. First-principles acousto-optic simulation in time domain has been challenging due to the fact that the acoustic and optical frequencies differ by many orders of magnitude. We bypass this difficulty by formulating the interactions between the optical and acoustic waves rigorously as a system of coupled nonlinear equations in frequency domain. This approach is particularly suited for on-chip devices that are based on a variety of acousto-optic interactions such as the stimulated Brillouin scattering. We validate our algorithm by simulating a stimulated Brillouin scattering process in a suspended waveguide structure and find excellent agreement with coupled-mode theory. We further provide an example of a simulation for a compact on-chip resonator device that greatly enhances the effect of stimulated Brillouin scattering. Our algorithm should facilitate the design of nanophotonic on-chip devices for the harnessing of photon-phonon interactions.
Gao, Longfei; Ketcheson, David I.; Keyes, David E.
2017-01-01
We consider the long-time instability issue associated with finite difference simulation of seismic acoustic wave equations on discontinuous grids. This issue is exhibited by a prototype algebraic problem abstracted from practical application
International Nuclear Information System (INIS)
Deupree, R.G.
1977-01-01
Finite difference techniques were used to examine the coupling of radial pulsation and convection in stellar models having comparable time scales. Numerical procedures are emphasized, including diagnostics to help determine the range of free parameters
Kelly, Priscilla; Kuznetsova, Lyuba
2018-04-01
A numerical study of the ultra-short pulse propagation in the aluminum-doped zinc oxide multi-layered metamaterial at the epsilon-near-zero spectral point is presented. The Drude model for dielectric permittivity and comparison with recent experimental data predict that damping frequency γD has the highest impact on the material losses and results in enormous second-order dispersion. Numerical simulations using both, the finite-difference time domain algorithm and the split-step Fourier method, show that variations of group velocity across the pulse at the epsilon-near-zero point results in a unique "soliton-like" propagation regime without nonlinearity for the propagation lengths of up to 300 nm.
Thermal Analysis of Ball screw Systems by Explicit Finite Difference Method
Energy Technology Data Exchange (ETDEWEB)
Min, Bog Ki [Hanyang Univ., Seoul (Korea, Republic of); Park, Chun Hong; Chung, Sung Chong [KIMM, Daejeon (Korea, Republic of)
2016-01-15
Friction generated from balls and grooves incurs temperature rise in the ball screw system. Thermal deformation due to the heat degrades positioning accuracy of the feed drive system. To compensate for the thermal error, accurate prediction of the temperature distribution is required first. In this paper, to predict the temperature distribution according to the rotational speed, solid and hollow cylinders are applied for analysis of the ball screw shaft and nut, respectively. Boundary conditions such as the convective heat transfer coefficient, friction torque, and thermal contact conductance (TCC) between balls and grooves are formulated according to operating and fabrication conditions of the ball screw. Explicit FDM (finite difference method) is studied for development of a temperature prediction simulator. Its effectiveness is verified through numerical analysis.
Comparison of finite-difference and variational solutions to advection-diffusion problems
International Nuclear Information System (INIS)
Lee, C.E.; Washington, K.E.
1984-01-01
Two numerical solution methods are developed for 1-D time-dependent advection-diffusion problems on infinite and finite domains. Numerical solutions are compared with analytical results for constant coefficients and various boundary conditions. A finite-difference spectrum method is solved exactly in time for periodic boundary conditions by a matrix operator method and exhibits excellent accuracy compared with other methods, especially at late times, where it is also computationally more efficient. Finite-system solutions are determined from a conservational variational principle with cubic spatial trial functions and solved in time by a matrix operator method. Comparisons of problems with few nodes show excellent agreement with analytical solutions and exhibit the necessity of implementing Lagrangian conservational constraints for physically-correct solutions. (author)
Energy Technology Data Exchange (ETDEWEB)
Russell, M.B. [University of Hertfordshire, Hatfield (United Kingdom). Department of Aerospace, Automotive and Design Engineering; Probert, S.D. [Cranfield University, Bedfordshire (United Kingdom). School of Engineering
2004-12-01
The growing requirement for energy thrift and hence the increasing emphasis on 'low-purchased-energy' designs are stimulating the need for more accurate insights into the thermal behaviours of buildings and their components. This better understanding is preferably achieved, rather than by using 'closed software' or teaching the relevant mathematics outside heat-transfer lessons, but from embedding the pertinent tutoring while dealing with heat-transfer problems using an open-source code approach. Hence a finite-difference software program (FDiff3) has been composed to show the principles of numerical analysis as well as improve the undergraduates' perception of transient conduction. The pedagogic approach behind the development, its present capabilities and applications to sample test-cases are discussed. (author)
CASKETSS-HEAT: a finite difference computer program for nonlinear heat conduction problems
International Nuclear Information System (INIS)
Ikushima, Takeshi
1988-12-01
A heat conduction program CASKETSS-HEAT has been developed. CASKETSS-HEAT is a finite difference computer program used for the solution of multi-dimensional nonlinear heat conduction problems. Main features of CASKETSS-HEAT are as follows. (1) One, two and three-dimensional geometries for heat conduction calculation are available. (2) Convection and radiation heat transfer of boundry can be specified. (3) Phase change and chemical change can be treated. (4) Finned surface heat transfer can be treated easily. (5) Data memory allocation in the program is variable according to problem size. (6) The program is a compatible heat transfer analysis program to the stress analysis program SAP4 and SAP5. (7) Pre- and post-processing for input data generation and graphic representation of calculation results are available. In the paper, brief illustration of calculation method, input data and sample calculation are presented. (author)
Five-point form of the nodal diffusion method and comparison with finite-difference
International Nuclear Information System (INIS)
Azmy, Y.Y.
1988-01-01
Nodal Methods have been derived, implemented and numerically tested for several problems in physics and engineering. In the field of nuclear engineering, many nodal formalisms have been used for the neutron diffusion equation, all yielding results which were far more computationally efficient than conventional Finite Difference (FD) and Finite Element (FE) methods. However, not much effort has been devoted to theoretically comparing nodal and FD methods in order to explain the very high accuracy of the former. In this summary we outline the derivation of a simple five-point form for the lowest order nodal method and compare it to the traditional five-point, edge-centered FD scheme. The effect of the observed differences on the accuracy of the respective methods is established by considering a simple test problem. It must be emphasized that the nodal five-point scheme derived here is mathematically equivalent to previously derived lowest order nodal methods. 7 refs., 1 tab
The delay function in finite difference models for nuclear channels thermo-hydraulic transients
International Nuclear Information System (INIS)
Agazzi, A.
1977-01-01
The study of the thermo-hydraulic transients in a nuclear reactor core often requires a bi- or tri-dimensional mathematical simulation of a reactor channel. The equations involved are generally solved by means of finite-difference methods. The determination of the spatial mesh-width and the time interval is strongly conditioned by the necessity of a good accuracy in the description of the delay function which defines the transfer of thermal perturbations along the cooling channel. In this paper the effects of both space and time discretization on the delay function are considered and for the classical cases of inlet temperature step and ramp universal functions and diagrams are given in order to make possible the determination of optimal spatial mesh-width and time interval, once the requested accuracy of the model is fixed in advance
Directory of Open Access Journals (Sweden)
Beltrán-Prieto Juan Carlos
2016-01-01
Full Text Available The mathematical modelling of diffusion of a bleaching agent into a porous material is studied in the present paper. Law of mass conservation was applied to analize the mass transfer of a reactant from the bulk into the external surface of a solid geometrically described as a flat plate. After diffusion of the reactant, surface reaction following kinetics of first order was considered to take place. The solution of the differential equation that described the process leaded to an equation that represents the concentration profile in function of distance, porosity and Thiele modulus. The case of interfacial mass resistance is also discused. In this case, finite difference method was used for the solution of the differential equation taking into account the respective boundary conditions. The profile of concentration can be obtained after numerical especification of Thiele modulus and Biot number.
Black-Scholes finite difference modeling in forecasting of call warrant prices in Bursa Malaysia
Mansor, Nur Jariah; Jaffar, Maheran Mohd
2014-07-01
Call warrant is a type of structured warrant in Bursa Malaysia. It gives the holder the right to buy the underlying share at a specified price within a limited period of time. The issuer of the structured warrants usually uses European style to exercise the call warrant on the maturity date. Warrant is very similar to an option. Usually, practitioners of the financial field use Black-Scholes model to value the option. The Black-Scholes equation is hard to solve analytically. Therefore the finite difference approach is applied to approximate the value of the call warrant prices. The central in time and central in space scheme is produced to approximate the value of the call warrant prices. It allows the warrant holder to forecast the value of the call warrant prices before the expiry date.
International Nuclear Information System (INIS)
Paul, O.P.K.
1978-01-01
An approach to simulate the flux vanishing boundary condition in solving the two group coupled neutron diffusion equations in three dimensions (x, y, z) employed to calculate the flux distribution and keff of the reactor is summarised. This is of particular interest when the flux vanishing boundary in x, y, z directions is not an integral multiple of the mesh spacings in these directions. The method assumes the flux to be negative, hypothetically at the mesh points lying outside the boundary and thus the finite difference formalism for Laplacian operator, taking into account six neighbours of a mesh point in a square mesh arrangement, is expressed in a general form so as to account for the boundary mesh points of the system. This approach has been incorporated in a three dimensional diffusion code similar to TAPPS23 and has been used for IRT-2000 reactor and the results are quite satisfactory. (author)
Directory of Open Access Journals (Sweden)
Mohammad Hadi Jalali
2018-01-01
Full Text Available Elastic stress analysis of rotating variable thickness annular disk made of functionally graded material (FGM is presented. Elasticity modulus, density, and thickness of the disk are assumed to vary radially according to a power-law function. Radial stress, circumferential stress, and radial deformation of the rotating FG annular disk of variable thickness with clamped-clamped (C-C, clamped-free (C-F, and free-free (F-F boundary conditions are obtained using the numerical finite difference method, and the effects of the graded index, thickness variation, and rotating speed on the stresses and deformation are evaluated. It is shown that using FG material could decrease the value of radial stress and increase the radial displacement in a rotating thin disk. It is also demonstrated that increasing the rotating speed can strongly increase the stress in the FG annular disk.
GPU-accelerated 3D neutron diffusion code based on finite difference method
Energy Technology Data Exchange (ETDEWEB)
Xu, Q.; Yu, G.; Wang, K. [Dept. of Engineering Physics, Tsinghua Univ. (China)
2012-07-01
Finite difference method, as a traditional numerical solution to neutron diffusion equation, although considered simpler and more precise than the coarse mesh nodal methods, has a bottle neck to be widely applied caused by the huge memory and unendurable computation time it requires. In recent years, the concept of General-Purpose computation on GPUs has provided us with a powerful computational engine for scientific research. In this study, a GPU-Accelerated multi-group 3D neutron diffusion code based on finite difference method was developed. First, a clean-sheet neutron diffusion code (3DFD-CPU) was written in C++ on the CPU architecture, and later ported to GPUs under NVIDIA's CUDA platform (3DFD-GPU). The IAEA 3D PWR benchmark problem was calculated in the numerical test, where three different codes, including the original CPU-based sequential code, the HYPRE (High Performance Pre-conditioners)-based diffusion code and CITATION, were used as counterpoints to test the efficiency and accuracy of the GPU-based program. The results demonstrate both high efficiency and adequate accuracy of the GPU implementation for neutron diffusion equation. A speedup factor of about 46 times was obtained, using NVIDIA's Geforce GTX470 GPU card against a 2.50 GHz Intel Quad Q9300 CPU processor. Compared with the HYPRE-based code performing in parallel on an 8-core tower server, the speedup of about 2 still could be observed. More encouragingly, without any mathematical acceleration technology, the GPU implementation ran about 5 times faster than CITATION which was speeded up by using the SOR method and Chebyshev extrapolation technique. (authors)
GPU-accelerated 3D neutron diffusion code based on finite difference method
International Nuclear Information System (INIS)
Xu, Q.; Yu, G.; Wang, K.
2012-01-01
Finite difference method, as a traditional numerical solution to neutron diffusion equation, although considered simpler and more precise than the coarse mesh nodal methods, has a bottle neck to be widely applied caused by the huge memory and unendurable computation time it requires. In recent years, the concept of General-Purpose computation on GPUs has provided us with a powerful computational engine for scientific research. In this study, a GPU-Accelerated multi-group 3D neutron diffusion code based on finite difference method was developed. First, a clean-sheet neutron diffusion code (3DFD-CPU) was written in C++ on the CPU architecture, and later ported to GPUs under NVIDIA's CUDA platform (3DFD-GPU). The IAEA 3D PWR benchmark problem was calculated in the numerical test, where three different codes, including the original CPU-based sequential code, the HYPRE (High Performance Pre-conditioners)-based diffusion code and CITATION, were used as counterpoints to test the efficiency and accuracy of the GPU-based program. The results demonstrate both high efficiency and adequate accuracy of the GPU implementation for neutron diffusion equation. A speedup factor of about 46 times was obtained, using NVIDIA's Geforce GTX470 GPU card against a 2.50 GHz Intel Quad Q9300 CPU processor. Compared with the HYPRE-based code performing in parallel on an 8-core tower server, the speedup of about 2 still could be observed. More encouragingly, without any mathematical acceleration technology, the GPU implementation ran about 5 times faster than CITATION which was speeded up by using the SOR method and Chebyshev extrapolation technique. (authors)
International Nuclear Information System (INIS)
Chernyshenko, Dmitri; Fangohr, Hans
2015-01-01
In the finite difference method which is commonly used in computational micromagnetics, the demagnetizing field is usually computed as a convolution of the magnetization vector field with the demagnetizing tensor that describes the magnetostatic field of a cuboidal cell with constant magnetization. An analytical expression for the demagnetizing tensor is available, however at distances far from the cuboidal cell, the numerical evaluation of the analytical expression can be very inaccurate. Due to this large-distance inaccuracy numerical packages such as OOMMF compute the demagnetizing tensor using the explicit formula at distances close to the originating cell, but at distances far from the originating cell a formula based on an asymptotic expansion has to be used. In this work, we describe a method to calculate the demagnetizing field by numerical evaluation of the multidimensional integral in the demagnetizing tensor terms using a sparse grid integration scheme. This method improves the accuracy of computation at intermediate distances from the origin. We compute and report the accuracy of (i) the numerical evaluation of the exact tensor expression which is best for short distances, (ii) the asymptotic expansion best suited for large distances, and (iii) the new method based on numerical integration, which is superior to methods (i) and (ii) for intermediate distances. For all three methods, we show the measurements of accuracy and execution time as a function of distance, for calculations using single precision (4-byte) and double precision (8-byte) floating point arithmetic. We make recommendations for the choice of scheme order and integrating coefficients for the numerical integration method (iii). - Highlights: • We study the accuracy of demagnetization in finite difference micromagnetics. • We introduce a new sparse integration method to compute the tensor more accurately. • Newell, sparse integration and asymptotic method are compared for all ranges
Dispersion characteristics of plasmonic waveguides for THz waves
Markides, Christos; Viphavakit, Charusluk; Themistos, Christos; Komodromos, Michael; Kalli, Kyriacos; Quadir, Anita; Rahman, Azizur
2013-05-01
Today there is an increasing surge in Surface Plasmon based research and recent studies have shown that a wide range of plasmon-based optical elements and techniques have led to the development of a variety of active switches, passive waveguides, biosensors, lithography masks, to name just a few. The Terahertz (THz) frequency region of the electromagnetic spectrum is located between the traditional microwave spectrum and the optical frequencies, and offers a significant scientific and technological potential in many fields, such as in sensing, in imaging and in spectroscopy. Waveguiding in this intermediate spectral region is a major challenge. Amongst the various THz waveguides suggested, the metal-clad waveguides supporting surface plasmon modes waves and specifically hollow core structures, coated with insulating material are showing the greatest promise as low-loss waveguides for their use in active components and as well as passive waveguides. The H-field finite element method (FEM) based full-vector formulation is used to study the vectorial modal field properties and the complex propagation characteristics of Surface Plasmon modes of a hollow-core dielectric coated rectangular waveguide structure. Additionally, the finite difference time domain (FDTD) method is used to estimate the dispersion parameters and the propagation loss of the rectangular waveguide.
Comparison of Cole-Cole and Constant Phase Angle modeling in time-domain induced polarization
DEFF Research Database (Denmark)
Lajaunie, Myriam; Maurya, Pradip Kumar; Fiandaca, Gianluca
The Cole-Cole model and the constant phase angle (CPA) model are two prevailing phenomenological descriptions of the induced polarization (IP), used for both frequency domain (FD) and time domain (TD) modeling. The former one is a 4-parameter description, while the latest one involves only two......, forward modeling of quadrupolar sequences on 1D and 2D heterogeneous CPA models shows that the CPA decays differ among each other only by a multiplication factor. Consequently, the inspection of field data in log-log plots gives insight on the modeling needed for fitting them: the CPA inversion cannot...... is reflected in TDIP data, and therefore, at identifying (1) if and when it is possible to distinguish, in time domain, between a Cole-Cole description and a CPA one, and (2) if features of time domain data exist in order to know, from a simple data inspection, which model will be the most adapted to the data...
Optimal time-domain combination of the two calibrated output quadratures of GEO 600
International Nuclear Information System (INIS)
Hewitson, M; Grote, H; Hild, S; Lueck, H; Ajith, P; Smith, J R; Strain, K A; Willke, B; Woan, G
2005-01-01
GEO 600 is an interferometric gravitational wave detector with a 600 m arm-length and which uses a dual-recycled optical configuration to give enhanced sensitivity over certain frequencies in the detection band. Due to the dual-recycling, GEO 600 has two main output signals, both of which potentially contain gravitational wave signals. These two outputs are calibrated to strain using a time-domain method. In order to simplify the analysis of the GEO 600 data set, it is desirable to combine these two calibrated outputs to form a single strain signal that has optimal signal-to-noise ratio across the detection band. This paper describes a time-domain method for doing this combination. The method presented is similar to one developed for optimally combining the outputs of two colocated gravitational wave detectors. In the scheme presented in this paper, some simplifications are made to allow its implementation using time-domain methods
Time domain passivity controller for 4-channel time-delay bilateral teleoperation.
Rebelo, Joao; Schiele, Andre
2015-01-01
This paper presents an extension of the time-domain passivity control approach to a four-channel bilateral controller under the effects of time delays. Time-domain passivity control has been used successfully to stabilize teleoperation systems with position-force and position-position controllers; however, the performance with such control architectures is sub-optimal both with and without time delays. This work extends the network representation of the time-domain passivity controller to the four-channel architecture, which provides perfect transparency to the user without time delay. The proposed architecture is based on modelling the controllers as dependent voltage sources and using only series passivity controllers. The obtained results are shown on a one degree-of-freedom setup and illustrate the stabilization behaviour of the proposed controller when time delay is present in the communication channel.
Numerical simulation of electromagnetic wave propagation using time domain meshless method
International Nuclear Information System (INIS)
Ikuno, Soichiro; Fujita, Yoshihisa; Itoh, Taku; Nakata, Susumu; Nakamura, Hiroaki; Kamitani, Atsushi
2012-01-01
The electromagnetic wave propagation in various shaped wave guide is simulated by using meshless time domain method (MTDM). Generally, Finite Differential Time Domain (FDTD) method is applied for electromagnetic wave propagation simulation. However, the numerical domain should be divided into rectangle meshes if FDTD method is applied for the simulation. On the other hand, the node disposition of MTDM can easily describe the structure of arbitrary shaped wave guide. This is the large advantage of the meshless time domain method. The results of computations show that the damping rate is stably calculated in case with R < 0.03, where R denotes a support radius of the weight function for the shape function. And the results indicate that the support radius R of the weight functions should be selected small, and monomials must be used for calculating the shape functions. (author)
Impact of non-white noises in pulse amplitude measurements: a time-domain approach
International Nuclear Information System (INIS)
Pullia, A.
1998-01-01
The contribution of the 1/f-noise to the spectral line broadening in pulse amplitude measurements is derived with a time-domain analysis. The known time-domain relationships which provide the contributions of the series and parallel white noises are generalised for the case of 1/f and other typical non-white noises, by using the fractional derivative of either the system impulse response (time-invariant linear filters) or its weight function folded (time-variant linear filters). It is shown that a time-domain approach is also effective to determine the contribution of Lorentzian noises. A simple rule suitable to derive numerically the fractional derivative is given, which permits to calculate the effect of non-white noises even when the filter impulse response is not known analytically but only in sampled form. (orig.)
DEFF Research Database (Denmark)
Mackenzie, David; Buron, Jonas Christian Due; Bøggild, Peter
2016-01-01
We perform contactless full-wafer maps of the electrical conductance of a 4-inch wafer of single-layer CVD graphene using terahertz time-domain spectroscopy both before and after deposition of metal contacts and fabrication of devices via laser ablation. We find that there is no significant change...... in the measured conductance of graphene before and after device fabrication. We also show that precise terahertz time-domain spectroscopy can be performed when the beam spot is at sufficient distance (>1.2 mm) from metal contacts....
High-Order Calderón Preconditioned Time Domain Integral Equation Solvers
Valdes, Felipe
2013-05-01
Two high-order accurate Calderón preconditioned time domain electric field integral equation (TDEFIE) solvers are presented. In contrast to existing Calderón preconditioned time domain solvers, the proposed preconditioner allows for high-order surface representations and current expansions by using a novel set of fully-localized high-order div-and quasi curl-conforming (DQCC) basis functions. Numerical results demonstrate that the linear systems of equations obtained using the proposed basis functions converge rapidly, regardless of the mesh density and of the order of the current expansion. © 1963-2012 IEEE.
High-Order Calderón Preconditioned Time Domain Integral Equation Solvers
Valdes, Felipe; Ghaffari-Miab, Mohsen; Andriulli, Francesco P.; Cools, Kristof; Michielssen,
2013-01-01
Two high-order accurate Calderón preconditioned time domain electric field integral equation (TDEFIE) solvers are presented. In contrast to existing Calderón preconditioned time domain solvers, the proposed preconditioner allows for high-order surface representations and current expansions by using a novel set of fully-localized high-order div-and quasi curl-conforming (DQCC) basis functions. Numerical results demonstrate that the linear systems of equations obtained using the proposed basis functions converge rapidly, regardless of the mesh density and of the order of the current expansion. © 1963-2012 IEEE.
Perturbative evolution of particle orbits around Kerr black holes: time-domain calculation
Energy Technology Data Exchange (ETDEWEB)
Lopez-Aleman, Ramon [Physical Sciences Department, University of Puerto Rico-Rio Piedras, San Juan, PR 00931 (Puerto Rico); Khanna, Gaurav [Natural Science Division, Long Island University, Southampton, NY 11968 (United States); Pullin, Jorge [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, LA 70803-4001 (United States)
2003-07-21
We consider the problem of the gravitational waves produced by a particle of negligible mass orbiting a Kerr black hole. We treat the Teukolsky perturbation equation in the time domain numerically as a 2 + 1 partial differential equation. We model the particle by smearing the singularities in the source term by the use of narrow Gaussian distributions. We have been able to reproduce earlier results for equatorial circular orbits that were computed using the frequency-domain formalism. The time-domain approach is however geared for a more general evolution, for instance of nearly geodesic orbits under the effects of radiation reaction.
Perturbative evolution of particle orbits around Kerr black holes: time-domain calculation
International Nuclear Information System (INIS)
Lopez-Aleman, Ramon; Khanna, Gaurav; Pullin, Jorge
2003-01-01
We consider the problem of the gravitational waves produced by a particle of negligible mass orbiting a Kerr black hole. We treat the Teukolsky perturbation equation in the time domain numerically as a 2 + 1 partial differential equation. We model the particle by smearing the singularities in the source term by the use of narrow Gaussian distributions. We have been able to reproduce earlier results for equatorial circular orbits that were computed using the frequency-domain formalism. The time-domain approach is however geared for a more general evolution, for instance of nearly geodesic orbits under the effects of radiation reaction
Time-domain Green's Function Method for three-dimensional nonlinear subsonic flows
Tseng, K.; Morino, L.
1978-01-01
The Green's Function Method for linearized 3D unsteady potential flow (embedded in the computer code SOUSSA P) is extended to include the time-domain analysis as well as the nonlinear term retained in the transonic small disturbance equation. The differential-delay equations in time, as obtained by applying the Green's Function Method (in a generalized sense) and the finite-element technique to the transonic equation, are solved directly in the time domain. Comparisons are made with both linearized frequency-domain calculations and existing nonlinear results.
DWDM-TO-OTDM Conversion by Time-Domain Optical Fourier Transformation
DEFF Research Database (Denmark)
Mulvad, Hans Christian Hansen; Hu, Hao; Galili, Michael
2011-01-01
We propose DWDM-OTDM conversion by time-domain optical Fourier transformation. Error-free conversion of a 16×10 Gbit/s 50 GHz-spacing DWDM data signal to a 160 Gbit/s OTDM signal with a 2.1 dB average penalty is demonstrated.......We propose DWDM-OTDM conversion by time-domain optical Fourier transformation. Error-free conversion of a 16×10 Gbit/s 50 GHz-spacing DWDM data signal to a 160 Gbit/s OTDM signal with a 2.1 dB average penalty is demonstrated....
Time-domain analysis of frequency dependent inertial wave forces on cylinders
DEFF Research Database (Denmark)
Krenk, Steen
2013-01-01
a simple time-domain procedure for the inertial force, in which the frequency dependence is represented via a simple explicit time filter on the wave particle acceleration or velocity. The frequency dependence of the inertia coefficient is known analytically as a function of the wave......-number, and the relevant range of waves shorter than about six times the diameter typically corresponds to deep water waves. This permits a universal non-dimensional frequency representation, that is converted to rational form to provide the relevant filter equation. Simple time-domain simulations demonstrate...... the reduction of the resonant part of the response for natural structural frequencies above the dominating wave frequency....
Directory of Open Access Journals (Sweden)
Qian Yang
2017-01-01
Full Text Available The near fields of electric dipole are commonly used in wide-band analysis of complex electromagnetic problems. In this paper, we propose new near field time-domain expressions for electric dipole. The analytical expressions for the frequency-domain of arbitrarily oriented electric dipole are given at first; next we give the time-domain expressions by time-frequency transformation. The proposed expressions are used in hybrid TDIE/DGTD method for analysis of circular antenna with radome. The accuracy of the proposed algorithm is verified by numerical examples.
Mimetic finite difference method for the stokes problem on polygonal meshes
Energy Technology Data Exchange (ETDEWEB)
Lipnikov, K [Los Alamos National Laboratory; Beirao Da Veiga, L [DIPARTIMENTO DI MATE; Gyrya, V [PENNSYLVANIA STATE UNIV; Manzini, G [ISTIUTO DI MATEMATICA
2009-01-01
Various approaches to extend the finite element methods to non-traditional elements (pyramids, polyhedra, etc.) have been developed over the last decade. Building of basis functions for such elements is a challenging task and may require extensive geometry analysis. The mimetic finite difference (MFD) method has many similarities with low-order finite element methods. Both methods try to preserve fundamental properties of physical and mathematical models. The essential difference is that the MFD method uses only the surface representation of discrete unknowns to build stiffness and mass matrices. Since no extension inside the mesh element is required, practical implementation of the MFD method is simple for polygonal meshes that may include degenerate and non-convex elements. In this article, we develop a MFD method for the Stokes problem on arbitrary polygonal meshes. The method is constructed for tensor coefficients, which will allow to apply it to the linear elasticity problem. The numerical experiments show the second-order convergence for the velocity variable and the first-order for the pressure.
Comparison of measured and predicted thermal mixing tests using improved finite difference technique
International Nuclear Information System (INIS)
Hassan, Y.A.; Rice, J.G.; Kim, J.H.
1983-01-01
The numerical diffusion introduced by the use of upwind formulations in the finite difference solution of the flow and energy equations for thermal mixing problems (cold water injection after small break LOCA in a PWR) was examined. The relative importance of numerical diffusion in the flow equations, compared to its effect on the energy equation was demonstrated. The flow field equations were solved using both first order accurate upwind, and second order accurate differencing schemes. The energy equation was treated using the conventional upwind and a mass weighted skew upwind scheme. Results presented for a simple test case showed that, for thermal mixing problems, the numerical diffusion was most significant in the energy equation. The numerical diffusion effect in the flow field equations was much less significant. A comparison of predictions using the skew upwind and the conventional upwind with experimental data from a two dimensional thermal mixing text are presented. The use of the skew upwind scheme showed a significant improvement in the accuracy of the steady state predicted temperatures. (orig./HP)
Non-linear analysis of skew thin plate by finite difference method
International Nuclear Information System (INIS)
Kim, Chi Kyung; Hwang, Myung Hwan
2012-01-01
This paper deals with a discrete analysis capability for predicting the geometrically nonlinear behavior of skew thin plate subjected to uniform pressure. The differential equations are discretized by means of the finite difference method which are used to determine the deflections and the in-plane stress functions of plates and reduced to several sets of linear algebraic simultaneous equations. For the geometrically non-linear, large deflection behavior of the plate, the non-linear plate theory is used for the analysis. An iterative scheme is employed to solve these quasi-linear algebraic equations. Several problems are solved which illustrate the potential of the method for predicting the finite deflection and stress. For increasing lateral pressures, the maximum principal tensile stress occurs at the center of the plate and migrates toward the corners as the load increases. It was deemed important to describe the locations of the maximum principal tensile stress as it occurs. The load-deflection relations and the maximum bending and membrane stresses for each case are presented and discussed
Xu, Zhenli; Ma, Manman; Liu, Pei
2014-07-01
We propose a modified Poisson-Nernst-Planck (PNP) model to investigate charge transport in electrolytes of inhomogeneous dielectric environment. The model includes the ionic polarization due to the dielectric inhomogeneity and the ion-ion correlation. This is achieved by the self energy of test ions through solving a generalized Debye-Hückel (DH) equation. We develop numerical methods for the system composed of the PNP and DH equations. Particularly, toward the numerical challenge of solving the high-dimensional DH equation, we developed an analytical WKB approximation and a numerical approach based on the selective inversion of sparse matrices. The model and numerical methods are validated by simulating the charge diffusion in electrolytes between two electrodes, for which effects of dielectrics and correlation are investigated by comparing the results with the prediction by the classical PNP theory. We find that, at the length scale of the interface separation comparable to the Bjerrum length, the results of the modified equations are significantly different from the classical PNP predictions mostly due to the dielectric effect. It is also shown that when the ion self energy is in weak or mediate strength, the WKB approximation presents a high accuracy, compared to precise finite-difference results.
Evaluation of explicit finite-difference techniques for LMFBR safety analysis
International Nuclear Information System (INIS)
Bernstein, D.; Golden, R.D.; Gross, M.B.; Hofmann, R.
1976-01-01
In the past few years, the use of explicit finite-difference (EFD) and finite-element computer programs for reactor safety calculations has steadily increased. One of the major areas of application has been for the analysis of hypothetical core disruptive accidents in liquid metal fast breeder reactors. Most of these EFD codes were derived to varying degrees from the same roots, but the codes are large and have progressed rapidly, so there may be substantial differences among them in spite of a common ancestry. When this fact is coupled with the complexity of HCDA calculations, it is not possible to assure that independent calculations of an HCDA will produce substantially the same results. Given the extreme importance of nuclear safety, it is essential to be sure that HCDA analyses are correct, and additional code validation is therefore desirable. A comparative evaluation of HCDA computational techniques is being performed under an ERDA-sponsored program called APRICOT (Analysis of PRImary COntainment Transients). The philosophy, calculations, and preliminary results from this program are described in this paper
Calculation of electrical potentials on the surface of a realistic head model by finite differences
International Nuclear Information System (INIS)
Lemieux, L.; McBride, A.; Hand, J.W.
1996-01-01
We present a method for the calculation of electrical potentials at the surface of realistic head models from a point dipole generator based on a 3D finite-difference algorithm. The model was validated by comparing calculated values with those obtained algebraically for a three-shell spherical model. For a 1.25 mm cubic grid size, the mean error was 4.9% for a superficial dipole (3.75 mm from the inner surface of the skull) pointing in the radial direction. The effect of generator discretization and node spacing on the accuracy of the model was studied. Three values of the node spacing were considered: 1, 1.25 and 1.5 mm. The mean relative errors were 4.2, 6.3 and 9.3%, respectively. The quality of the approximation of a point dipole by an array of nodes in a spherical neighbourhood did not depend significantly on the number of nodes used. The application of the method to a conduction model derived from MRI data is demonstrated. (author)
Ping, Jing
2017-05-19
Optimal management of subsurface processes requires the characterization of the uncertainty in reservoir description and reservoir performance prediction. For fractured reservoirs, the location and orientation of fractures are crucial for predicting production characteristics. With the help of accurate and comprehensive knowledge of fracture distributions, early water/CO 2 breakthrough can be prevented and sweep efficiency can be improved. However, since the rock property fields are highly non-Gaussian in this case, it is a challenge to estimate fracture distributions by conventional history matching approaches. In this work, a method that combines vector-based level-set parameterization technique and ensemble Kalman filter (EnKF) for estimating fracture distributions is presented. Performing the necessary forward modeling is particularly challenging. In addition to the large number of forward models needed, each model is used for sampling of randomly located fractures. Conventional mesh generation for such systems would be time consuming if possible at all. For these reasons, we rely on a novel polyhedral mesh method using the mimetic finite difference (MFD) method. A discrete fracture model is adopted that maintains the full geometry of the fracture network. By using a cut-cell paradigm, a computational mesh for the matrix can be generated quickly and reliably. In this research, we apply this workflow on 2D two-phase fractured reservoirs. The combination of MFD approach, level-set parameterization, and EnKF provides an effective solution to address the challenges in the history matching problem of highly non-Gaussian fractured reservoirs.
Accelerated cardiac cine MRI using locally low rank and finite difference constraints.
Miao, Xin; Lingala, Sajan Goud; Guo, Yi; Jao, Terrence; Usman, Muhammad; Prieto, Claudia; Nayak, Krishna S
2016-07-01
To evaluate the potential value of combining multiple constraints for highly accelerated cardiac cine MRI. A locally low rank (LLR) constraint and a temporal finite difference (FD) constraint were combined to reconstruct cardiac cine data from highly undersampled measurements. Retrospectively undersampled 2D Cartesian reconstructions were quantitatively evaluated against fully-sampled data using normalized root mean square error, structural similarity index (SSIM) and high frequency error norm (HFEN). This method was also applied to 2D golden-angle radial real-time imaging to facilitate single breath-hold whole-heart cine (12 short-axis slices, 9-13s single breath hold). Reconstruction was compared against state-of-the-art constrained reconstruction methods: LLR, FD, and k-t SLR. At 10 to 60 spokes/frame, LLR+FD better preserved fine structures and depicted myocardial motion with reduced spatio-temporal blurring in comparison to existing methods. LLR yielded higher SSIM ranking than FD; FD had higher HFEN ranking than LLR. LLR+FD combined the complimentary advantages of the two, and ranked the highest in all metrics for all retrospective undersampled cases. Single breath-hold multi-slice cardiac cine with prospective undersampling was enabled with in-plane spatio-temporal resolutions of 2×2mm(2) and 40ms. Highly accelerated cardiac cine is enabled by the combination of 2D undersampling and the synergistic use of LLR and FD constraints. Copyright © 2016 Elsevier Inc. All rights reserved.
Finite difference solution of the time dependent neutron group diffusion equations
International Nuclear Information System (INIS)
Hendricks, J.S.; Henry, A.F.
1975-08-01
In this thesis two unrelated topics of reactor physics are examined: the prompt jump approximation and alternating direction checkerboard methods. In the prompt jump approximation it is assumed that the prompt and delayed neutrons in a nuclear reactor may be described mathematically as being instantaneously in equilibrium with each other. This approximation is applied to the spatially dependent neutron diffusion theory reactor kinetics model. Alternating direction checkerboard methods are a family of finite difference alternating direction methods which may be used to solve the multigroup, multidimension, time-dependent neutron diffusion equations. The reactor mesh grid is not swept line by line or point by point as in implicit or explicit alternating direction methods; instead, the reactor mesh grid may be thought of as a checkerboard in which all the ''red squares'' and '' black squares'' are treated successively. Two members of this family of methods, the ADC and NSADC methods, are at least as good as other alternating direction methods. It has been found that the accuracy of implicit and explicit alternating direction methods can be greatly improved by the application of an exponential transformation. This transformation is incompatible with checkerboard methods. Therefore, a new formulation of the exponential transformation has been developed which is compatible with checkerboard methods and at least as good as the former transformation for other alternating direction methods
Methods for compressible fluid simulation on GPUs using high-order finite differences
Pekkilä, Johannes; Väisälä, Miikka S.; Käpylä, Maarit J.; Käpylä, Petri J.; Anjum, Omer
2017-08-01
We focus on implementing and optimizing a sixth-order finite-difference solver for simulating compressible fluids on a GPU using third-order Runge-Kutta integration. Since graphics processing units perform well in data-parallel tasks, this makes them an attractive platform for fluid simulation. However, high-order stencil computation is memory-intensive with respect to both main memory and the caches of the GPU. We present two approaches for simulating compressible fluids using 55-point and 19-point stencils. We seek to reduce the requirements for memory bandwidth and cache size in our methods by using cache blocking and decomposing a latency-bound kernel into several bandwidth-bound kernels. Our fastest implementation is bandwidth-bound and integrates 343 million grid points per second on a Tesla K40t GPU, achieving a 3 . 6 × speedup over a comparable hydrodynamics solver benchmarked on two Intel Xeon E5-2690v3 processors. Our alternative GPU implementation is latency-bound and achieves the rate of 168 million updates per second.
Acceleration of Linear Finite-Difference Poisson-Boltzmann Methods on Graphics Processing Units.
Qi, Ruxi; Botello-Smith, Wesley M; Luo, Ray
2017-07-11
Electrostatic interactions play crucial roles in biophysical processes such as protein folding and molecular recognition. Poisson-Boltzmann equation (PBE)-based models have emerged as widely used in modeling these important processes. Though great efforts have been put into developing efficient PBE numerical models, challenges still remain due to the high dimensionality of typical biomolecular systems. In this study, we implemented and analyzed commonly used linear PBE solvers for the ever-improving graphics processing units (GPU) for biomolecular simulations, including both standard and preconditioned conjugate gradient (CG) solvers with several alternative preconditioners. Our implementation utilizes the standard Nvidia CUDA libraries cuSPARSE, cuBLAS, and CUSP. Extensive tests show that good numerical accuracy can be achieved given that the single precision is often used for numerical applications on GPU platforms. The optimal GPU performance was observed with the Jacobi-preconditioned CG solver, with a significant speedup over standard CG solver on CPU in our diversified test cases. Our analysis further shows that different matrix storage formats also considerably affect the efficiency of different linear PBE solvers on GPU, with the diagonal format best suited for our standard finite-difference linear systems. Further efficiency may be possible with matrix-free operations and integrated grid stencil setup specifically tailored for the banded matrices in PBE-specific linear systems.
International Nuclear Information System (INIS)
Filio Lopez, Carlos.
1979-01-01
A calculation program (URA 6.F4) was elaborated on FORTRAN IV language, that through finite differences solves the unidimensional scalar Helmholtz equation, assuming only one energy group, in spherical cylindrical or plane geometry. The purpose is the determination of the flow distribution in a reactor of spherical cylindrical or plane geometry and the critical dimensions. Feeding as entrance datas to the program the geometry, diffusion coefficients and macroscopic transversals cross sections of absorption and fission for each region. The differential diffusion equation is converted with its boundary conditions, to one system of homogeneous algebraic linear equations using the box integration technique. The investigation on criticality is converted then in a succession of eigenvalue problems for the critical eigenvalue. In general, only is necessary to solve the first eigenvalue and its corresponding eigenvector, employing the power method. The obtained results by the program for the critical dimensions of the clean reactors are admissible, the existing error as respect to the analytic is less of 0.5%; by the analysed reactors of three regions, the relative error with respect to the semianalytic result is less of 0.2%. With this program is possible to obtain one quantitative description of one reactor if the transversal sections that appears in the monoenergetic model are adequatedly averaged by the energy group used. (author)
International Nuclear Information System (INIS)
Thompson, S.L.; Herrmann, W.
1977-01-01
Calculations, using the two-dimensional Eulerian finite-difference code CSQ, were performed for the problem of a small spherical high-explosive charge detonated in a closed heavy-walled cylindrical container partially filled with water. Data from corresponding experiments, specifically performed to validate codes used for hypothetical core disruptive accidents of liquid metal fast breeder reactors, are available in the literature. The calculations were performed specifically to test whether Eulerian methods could handle this type of problem, to determine whether water cavitation, which plays a large role in the loadings on the roof of the containment vessel, could be described adequately by an equilibrium liquid-vapor mixed phase model, and to investigate the trade-off between accuracy and cost of the calculations by using different sizes of computational meshes. Comparison of the experimental and computational data shows that the Eulerian method can handle the problem with ease, giving good predictions of wall and floor loadings. While roof loadings are qualitatively correct, peak impulse appears to be affected by numerical resolution and is underestimated somewhat
Directory of Open Access Journals (Sweden)
G. F. Sun
2015-01-01
Full Text Available A novel explicit finite-difference (FD method is presented to simulate the positive and bounded development process of a microbial colony subjected to a substrate of nutrients, which is governed by a nonlinear parabolic partial differential equations (PDE system. Our explicit FD scheme is uniquely designed in such a way that it transfers the nonlinear terms in the original PDE into discrete sets of linear ones in the algebraic equation system that can be solved very efficiently, while ensuring the stability and the boundedness of the solution. This is achieved through (1 a proper design of intertwined FD approximations for the diffusion function term in both time and spatial variations and (2 the control of the time-step through establishing theoretical stability criteria. A detailed theoretical stability analysis is conducted to reveal that our FD method is indeed stable. Our examples verified the fact that the numerical solution can be ensured nonnegative and bounded to simulate the actual physics. Numerical examples have also been presented to demonstrate the efficiency of the proposed scheme. The present scheme is applicable for solving similar systems of PDEs in the investigation of the dynamics of biological films.
Chiranjeevi, C.; Srinivas, T.
2017-11-01
Humidifier is an important component in air humidification-dehumidification desalination plant for fresh water production. Liquid to air flow rate ratio is optimization is reported for an industrial cooling towers but for an air humidifier it is not addressed. The current work is focused on the design and analysis of an air humidifier for solar desalination plant to maximize the yield with better humidification, using finite difference method (FDM). The outlet conditions of air from the humidifier are theoretically predicted by FDM with the given inlet conditions, which will be further used in the design calculation of the humidifier. Hot water to air flow rate ratio and inlet hot water temperature are identified as key operating parameters to evaluate the humidifier performance. The maximum and optimal values of mass flow rate ratio of water to air are found to be 2.15 and 1.5 respectively using packing function and Merkel Integral. The height of humidifier is constrained to 1.5 m and the diameter of the humidifier is found as 0.28m. The performance of humidifier and outlet conditions of air are simulated using FDM and compared with experimental results. The obtained results are within an agreeable range of deviation.
Do, Seongju; Li, Haojun; Kang, Myungjoo
2017-06-01
In this paper, we present an accurate and efficient wavelet-based adaptive weighted essentially non-oscillatory (WENO) scheme for hydrodynamics and ideal magnetohydrodynamics (MHD) equations arising from the hyperbolic conservation systems. The proposed method works with the finite difference weighted essentially non-oscillatory (FD-WENO) method in space and the third order total variation diminishing (TVD) Runge-Kutta (RK) method in time. The philosophy of this work is to use the lifted interpolating wavelets as not only detector for singularities but also interpolator. Especially, flexible interpolations can be performed by an inverse wavelet transformation. When the divergence cleaning method introducing auxiliary scalar field ψ is applied to the base numerical schemes for imposing divergence-free condition to the magnetic field in a MHD equation, the approximations to derivatives of ψ require the neighboring points. Moreover, the fifth order WENO interpolation requires large stencil to reconstruct high order polynomial. In such cases, an efficient interpolation method is necessary. The adaptive spatial differentiation method is considered as well as the adaptation of grid resolutions. In order to avoid the heavy computation of FD-WENO, in the smooth regions fixed stencil approximation without computing the non-linear WENO weights is used, and the characteristic decomposition method is replaced by a component-wise approach. Numerical results demonstrate that with the adaptive method we are able to resolve the solutions that agree well with the solution of the corresponding fine grid.
Solution to PDEs using radial basis function finite-differences (RBF-FD) on multiple GPUs
International Nuclear Information System (INIS)
Bollig, Evan F.; Flyer, Natasha; Erlebacher, Gordon
2012-01-01
This paper presents parallelization strategies for the radial basis function-finite difference (RBF-FD) method. As a generalized finite differencing scheme, the RBF-FD method functions without the need for underlying meshes to structure nodes. It offers high-order accuracy approximation and scales as O(N) per time step, with N being with the total number of nodes. To our knowledge, this is the first implementation of the RBF-FD method to leverage GPU accelerators for the solution of PDEs. Additionally, this implementation is the first to span both multiple CPUs and multiple GPUs. OpenCL kernels target the GPUs and inter-processor communication and synchronization is managed by the Message Passing Interface (MPI). We verify our implementation of the RBF-FD method with two hyperbolic PDEs on the sphere, and demonstrate up to 9x speedup on a commodity GPU with unoptimized kernel implementations. On a high performance cluster, the method achieves up to 7x speedup for the maximum problem size of 27,556 nodes.
Simulations of viscous and compressible gas-gas flows using high-order finite difference schemes
Capuano, M.; Bogey, C.; Spelt, P. D. M.
2018-05-01
A computational method for the simulation of viscous and compressible gas-gas flows is presented. It consists in solving the Navier-Stokes equations associated with a convection equation governing the motion of the interface between two gases using high-order finite-difference schemes. A discontinuity-capturing methodology based on sensors and a spatial filter enables capturing shock waves and deformable interfaces. One-dimensional test cases are performed as validation and to justify choices in the numerical method. The results compare well with analytical solutions. Shock waves and interfaces are accurately propagated, and remain sharp. Subsequently, two-dimensional flows are considered including viscosity and thermal conductivity. In Richtmyer-Meshkov instability, generated on an air-SF6 interface, the influence of the mesh refinement on the instability shape is studied, and the temporal variations of the instability amplitude is compared with experimental data. Finally, for a plane shock wave propagating in air and impacting a cylindrical bubble filled with helium or R22, numerical Schlieren pictures obtained using different grid refinements are found to compare well with experimental shadow-photographs. The mass conservation is verified from the temporal variations of the mass of the bubble. The mean velocities of pressure waves and bubble interface are similar to those obtained experimentally.
International Nuclear Information System (INIS)
Park, Beom Woo; Joo, Han Gyu
2015-01-01
Highlights: • The stiffness confinement method is combined with multigroup CMFD with SENM nodal kernel. • The systematic methods for determining the shape and amplitude frequencies are established. • Eigenvalue problems instead of fixed source problems are solved in the transient calculation. • It is demonstrated that much larger time step sizes can be used with the SCM–CMFD method. - Abstract: An improved Stiffness Confinement Method (SCM) is formulated within the framework of the coarse mesh finite difference (CMFD) formulation for efficient multigroup spatial kinetics calculation. The algorithm for searching for the amplitude frequency that makes the dynamic eigenvalue unity is developed in a systematic way along with the methods for determining the shape and precursor frequencies. A nodal calculation scheme is established within the CMFD framework to incorporate the cross section changes due to thermal feedback and dynamic frequency update. The conditional nodal update scheme is employed such that the transient calculation is performed mostly with the CMFD formulation and the CMFD parameters are conditionally updated by intermittent nodal calculations. A quadratic representation of amplitude frequency is introduced as another improvement. The performance of the improved SCM within the CMFD framework is assessed by comparing the solution accuracy and computing times for the NEACRP control rod ejection benchmark problems with those obtained with the Crank–Nicholson method with exponential transform (CNET). It is demonstrated that the improved SCM is beneficial for large time step size calculations with stability and accuracy enhancement
DETERMINATION OF MOISTURE DIFFUSION COEFFICIENT OF LARCH BOARD WITH FINITE DIFFERENCE METHOD
Directory of Open Access Journals (Sweden)
Qiaofang Zhou
2011-04-01
Full Text Available This paper deals with the moisture diffusion coefficient of Dahurian Larch (Larix gmelinii Rupr. by use of the Finite Difference Method (FDM. To obtain moisture distributions the dimensional boards of Dahurian Larch were dried, from which test samples were cut and sliced evenly into 9 pieces in different drying periods, so that moisture distributions at different locations and times across the thickness of Dahurian Larch were obtained with a weighing method. With these experimental data, FDM was used to solve Fick’s one-dimensional unsteady-state diffusion equation, and the moisture diffusion coefficient across the thickness at specified time was obtained. Results indicated that the moisture diffusion coefficient decreased from the surface to the center of the Dahurian Larch wood, and it decreased with decreasing moisture content at constant wood temperature; as the wood temperature increased, the moisture diffusion coefficient increased, and the effect of the wood temperature on the moisture diffusion coefficient was more significant than that of moisture content. Moisture diffusion coefficients were different for the two experiments due to differing diffusivity of the specimens.
Directory of Open Access Journals (Sweden)
Tsugio Fukuchi
2014-06-01
Full Text Available The finite difference method (FDM based on Cartesian coordinate systems can be applied to numerical analyses over any complex domain. A complex domain is usually taken to mean that the geometry of an immersed body in a fluid is complex; here, it means simply an analytical domain of arbitrary configuration. In such an approach, we do not need to treat the outer and inner boundaries differently in numerical calculations; both are treated in the same way. Using a method that adopts algebraic polynomial interpolations in the calculation around near-wall elements, all the calculations over irregular domains reduce to those over regular domains. Discretization of the space differential in the FDM is usually derived using the Taylor series expansion; however, if we use the polynomial interpolation systematically, exceptional advantages are gained in deriving high-order differences. In using the polynomial interpolations, we can numerically solve the Poisson equation freely over any complex domain. Only a particular type of partial differential equation, Poisson's equations, is treated; however, the arguments put forward have wider generality in numerical calculations using the FDM.
A Finite-Difference Solution of Solute Transport through a Membrane Bioreactor
Directory of Open Access Journals (Sweden)
B. Godongwana
2015-01-01
Full Text Available The current paper presents a theoretical analysis of the transport of solutes through a fixed-film membrane bioreactor (MBR, immobilised with an active biocatalyst. The dimensionless convection-diffusion equation with variable coefficients was solved analytically and numerically for concentration profiles of the solutes through the MBR. The analytical solution makes use of regular perturbation and accounts for radial convective flow as well as axial diffusion of the substrate species. The Michaelis-Menten (or Monod rate equation was assumed for the sink term, and the perturbation was extended up to second-order. In the analytical solution only the first-order limit of the Michaelis-Menten equation was considered; hence the linearized equation was solved. In the numerical solution, however, this restriction was lifted. The solution of the nonlinear, elliptic, partial differential equation was based on an implicit finite-difference method (FDM. An upwind scheme was employed for numerical stability. The resulting algebraic equations were solved simultaneously using the multivariate Newton-Raphson iteration method. The solution allows for the evaluation of the effect on the concentration profiles of (i the radial and axial convective velocity, (ii the convective mass transfer rates, (iii the reaction rates, (iv the fraction retentate, and (v the aspect ratio.
Pagan Munoz, R.; Hornikx, M.C.J.
The wave-based Fourier Pseudospectral time-domain (Fourier-PSTD) method was shown to be an effective way of modeling outdoor acoustic propagation problems as described by the linearized Euler equations (LEE), but is limited to real-valued frequency independent boundary conditions and predominantly
Linearity of Air-Biased Coherent Detection for Terahertz Time-Domain Spectroscopy
DEFF Research Database (Denmark)
Wang, Tianwu; Iwaszczuk, Krzysztof; Wrisberg, Emil Astrup
2016-01-01
The performance of air-biased coherent detection (ABCD) in a broadband two-color laser-induced air plasma system for terahertz time-domain spectroscopy (THz-TDS) has been investigated. Fundamental parameters of the ABCD detection, including signal-to-noise ratio (SNR), dynamic range (DR), and lin...
CSIR Research Space (South Africa)
Loveday, PW
2007-03-01
Full Text Available Piezoelectric transducers are commonly used to excite waves in elastic waveguides such as pipes, rock bolts and rails. While it is possible to simulate the operation of these transducers attached to the waveguide, in the time domain, using...
Stationary echo canceling in velocity estimation by time-domain cross-correlation
DEFF Research Database (Denmark)
Jensen, Jørgen Arendt
1993-01-01
The application of stationary echo canceling to ultrasonic estimation of blood velocities using time-domain cross-correlation is investigated. Expressions are derived that show the influence from the echo canceler on the signals that enter the cross-correlation estimator. It is demonstrated...
Time domain calculation of connector loads of a very large floating structure
Gu, Jiayang; Wu, Jie; Qi, Enrong; Guan, Yifeng; Yuan, Yubo
2015-06-01
Loads generated after an air crash, ship collision, and other accidents may destroy very large floating structures (VLFSs) and create additional connector loads. In this study, the combined effects of ship collision and wave loads are considered to establish motion differential equations for a multi-body VLFS. A time domain calculation method is proposed to calculate the connector load of the VLFS in waves. The Longuet-Higgins model is employed to simulate the stochastic wave load. Fluid force and hydrodynamic coefficient are obtained with DNV Sesam software. The motion differential equation is calculated by applying the time domain method when the frequency domain hydrodynamic coefficient is converted into the memory function of the motion differential equation of the time domain. As a result of the combined action of wave and impact loads, high-frequency oscillation is observed in the time history curve of the connector load. At wave directions of 0° and 75°, the regularities of the time history curves of the connector loads in different directions are similar and the connector loads of C1 and C2 in the X direction are the largest. The oscillation load is observed in the connector in the Y direction at a wave direction of 75° and not at 0°. This paper presents a time domain calculation method of connector load to provide a certain reference function for the future development of Chinese VLFS
Full waveform inversion in the frequency domain using classified time-domain residual wavefields
Son, Woohyun; Koo, Nam-Hyung; Kim, Byoung-Yeop; Lee, Ho-Young; Joo, Yonghwan
2017-04-01
We perform the acoustic full waveform inversion in the frequency domain using residual wavefields that have been separated in the time domain. We sort the residual wavefields in the time domain according to the order of absolute amplitudes. Then, the residual wavefields are separated into several groups in the time domain. To analyze the characteristics of the residual wavefields, we compare the residual wavefields of conventional method with those of our residual separation method. From the residual analysis, the amplitude spectrum obtained from the trace before separation appears to have little energy at the lower frequency bands. However, the amplitude spectrum obtained from our strategy is regularized by the separation process, which means that the low-frequency components are emphasized. Therefore, our method helps to emphasize low-frequency components of residual wavefields. Then, we generate the frequency-domain residual wavefields by taking the Fourier transform of the separated time-domain residual wavefields. With these wavefields, we perform the gradient-based full waveform inversion in the frequency domain using back-propagation technique. Through a comparison of gradient directions, we confirm that our separation method can better describe the sub-salt image than the conventional approach. The proposed method is tested on the SEG/EAGE salt-dome model. The inversion results show that our algorithm is better than the conventional gradient based waveform inversion in the frequency domain, especially for deeper parts of the velocity model.
Conversion of Dielectric Data from the Time Domain to the Frequency Domain
Directory of Open Access Journals (Sweden)
Vladimir Durman
2005-01-01
Full Text Available Polarisation and conduction processes in dielectric systems can be identified by the time domain or the frequency domain measurements. If the systems is a linear one, the results of the time domain measurements can be transformed into the frequency domain, and vice versa. Commonly, the time domain data of the absorption conductivity are transformed into the frequency domain data of the dielectric susceptibility. In practice, the relaxation are mainly evaluated by the frequency domain data. In the time domain, the absorption current measurement were prefered up to now. Recent methods are based on the recovery voltage measurements. In this paper a new method of the recovery data conversion from the time the frequency domain is proposed. The method is based on the analysis of the recovery voltage transient based on the Maxwell equation for the current density in a dielectric. Unlike the previous published solutions, the Laplace fransform was used to derive a formula suitable for practical purposes. the proposed procedure allows also calculating of the insulation resistance and separating the polarisation and conduction losses.
OpenPSTD : The open source implementation of the pseudospectral time-domain method
Krijnen, T.; Hornikx, M.C.J.; Borkowski, B.
2014-01-01
An open source implementation of the pseudospectral time-domain method for the propagation of sound is presented, which is geared towards applications in the built environment. Being a wavebased method, PSTD captures phenomena like diffraction, but maintains efficiency in processing time and memory
Reflection terahertz time-domain imaging for analysis of an 18th century neoclassical easel painting
DEFF Research Database (Denmark)
Dandolo, Corinna Ludovica Koch; Filtenborg, Troels; Fukunaga, Kaori
2015-01-01
Terahertz time-domain imaging (THz-TDI) has been applied for imaging a hidden portrait and other subsurfacecomposition layers of an 18th century (18C) easel painting by Nicolai Abildgaard, the most important 18CDanish neoclassical painter of historical and mythological subjects. For the first time...
Non-Causal Time-Domain Filters for Single-Channel Noise Reduction
DEFF Research Database (Denmark)
Jensen, Jesper Rindom; Benesty, Jacob; Christensen, Mads Græsbøll
2012-01-01
suppression and signal distortion by allowing the filters to be non-causal. Non-causal time-domain filters require knowledge of the future, and are therefore not directly implementable. If the observed signal is processed in blocks, however, the non-causal filters are implementable. In this paper, we propose...
Dekkers, Birgit L.; Kort, de Daan W.; Grabowska, Katarzyna J.; Tian, Bei; As, Van Henk; Goot, van der Atze Jan
2016-01-01
We present a combined time domain NMR and rheology approach to quantify the water distribution in a phase separated protein blend. The approach forms the basis for a new tool to assess the microstructural properties of phase separated biopolymer blends, making it highly relevant for many food and
Time-domain incomplete Gauss-Newton full-waveform inversion of Gulf of Mexico data
AlTheyab, Abdullah; Wang, Xin; Schuster, Gerard T.
2013-01-01
We apply the incomplete Gauss-Newton full-waveform inversion (TDIGN-FWI) to Gulf of Mexico (GOM) data in the space-time domain. In our application, iterative least-squares reverse-time migration (LSRTM) is used to estimate the model update at each
Effects of the airwave in time-domain marine controlled-source electromagnetics
Hunziker, J.W.; Slob, E.C.; Mulder, W.
2011-01-01
In marine time-domain controlled-source electromagnetics (CSEM), there are two different acquisition methods: with horizontal sources for fast and simple data acquisition or with vertical sources for minimizing the effects of the airwave. Illustrations of the electric field as a function of space
Optimal time-domain technique for pulse width modulation in power electronics
Directory of Open Access Journals (Sweden)
I. Mayergoyz
2018-05-01
Full Text Available Optimal time-domain technique for pulse width modulation is presented. It is based on exact and explicit analytical solutions for inverter circuits, obtained for any sequence of input voltage rectangular pulses. Two optimal criteria are discussed and illustrated by numerical examples.
A time-domain binaural detection model and its predictions temporal-resolution data
Breebaart, D.J.; Par, van de S.L.J.D.E.; Kohlrausch, A.G.
2002-01-01
This paper discusses the application of a time-domain binaural signal-detection model in the context of estimates of the temporal resolution of the binaural auditory system. It is demonstrated that the optimal detector which is present in the model is crucial to account for specific temporal
Measuring the Moisture Content of Green Wood Using Time Domain Reflectometry
Laurence Schimleck; Kim Love-Myers; Joe Sanders; Heath Raybon; Richard Daniels; Jerry Mahon; Edward Andrews; Erik Schilling
2011-01-01
The responsible usage of water by facilities that rely on wet log storage in the southern United States has become an issue of great importance as restrictions on water usage have grown in recent years. In order to learn about the dynamics of moisture content in wet-stored logs over time, it is necessary to conduct continuous monitoring of log piles. Time domain...
Non-linear wave loads and ship responses by a time-domain strip theory
DEFF Research Database (Denmark)
Xia, Jinzhu; Wang, Zhaohui; Jensen, Jørgen Juncher
1998-01-01
. Based on this time-domain strip theory, an efficient non-linear hydroelastic method of wave- and slamming-induced vertical motions and structural responses of ships is developed, where the structure is represented as a Timoshenko beam. Numerical calculations are presented for the S175 Containership...
Non-Linear Wave Loads and Ship responses by a time-domain Strip Theory
DEFF Research Database (Denmark)
Xia, Jinzhu; Wang, Zhaohui; Jensen, Jørgen Juncher
1998-01-01
. Based on this time-domain strip theory, an efficient non-linear hyroelastic method of wave- and slamming-induced vertical motions and structural responses of ships is developed, where the structure is represented by the Timoshenko beam theory. Numerical calculations are presented for the S175...
Continuous performance test assessed with time-domain functional near infrared spectroscopy
Torricelli, Alessandro; Contini, Davide; Spinelli, Lorenzo; Caffini, Matteo; Butti, Michele; Baselli, Giuseppe; Bianchi, Anna M.; Bardoni, Alessandra; Cerutti, Sergio; Cubeddu, Rinaldo
2007-07-01
A time-domain fNIRS multichannel system was used in a sustained attention protocol (continuous performance test) to study activation of the prefrontal cortex. Preliminary results on volounteers show significant activation (decrease in deoxy-hemoglobin and increase in oxy-hemoglobin) in both left and right prefrontal cortex.
On-chip Brownian relaxation measurements of magnetic nanobeads in the time domain
DEFF Research Database (Denmark)
Østerberg, Frederik Westergaard; Rizzi, Giovanni; Hansen, Mikkel Fougt
2013-01-01
the time and frequency domain methods on Brownian relaxation detection of clustering of streptavidin coated magnetic beads in the presence of different concentrations of biotin-conjugated bovine serum albumin and obtain comparable results. In the time domain, a measurement is carried out in less than 30 s...
Broadband time domain acoustic holography based on the discrete orthonormal S-transform
Zhou, H.; Lopez Arteaga, I.; Nijmeijer, H.; Lim, Kian Meng
2015-01-01
The purpose of this paper is to deal with the problem of nonstationary broadband sound fields more efficiently. A basis function of the discrete orthonormal S-transform (DOST) is used to analyze the measured signal. With respect to the time domain signal in a certain band, DOST leads to a
Although empirical models have been developed previously, a mechanistic model is needed for estimating electrical conductivity (EC) using time domain reflectometry (TDR) with variable lengths of coaxial cable. The goals of this study are to: (1) derive a mechanistic model based on multisection tra...
Time-domain modeling of electromagnetic diffusion with a frequency-domain code
Mulder, W.A.; Wirianto, M.; Slob, E.C.
2007-01-01
We modeled time-domain EM measurements of induction currents for marine and land applications with a frequency-domain code. An analysis of the computational complexity of a number of numerical methods shows that frequency-domain modeling followed by a Fourier transform is an attractive choice if a
Quantitative terahertz time-domain spectroscopy and analysis in chemistry and biology
DEFF Research Database (Denmark)
Jepsen, Peter Uhd
2005-01-01
I will describe how Terahertz Time-Domain Spectroscopy (THz-TDS) can be used for quantitative, broadband spectroscopy in the far-infrared spectral region. Thz-TDS is sensitive to long-range, non-covalent interactions in the condensed phase, for instance intermolecular hydrogen bonding in molecula...
DEFF Research Database (Denmark)
Hu, Hao; Kong, Deming; Palushani, Evarist
2013-01-01
We demonstrate transmission of a 1.28-Tbaud Nyquist-OTDM signal over a record distance of 100 km with detection by time-domain optical Fourier transformation followed by FEC decoding, resulting in error-free performance for all tributaries....
320 Gb/s Nyquist OTDM received by polarization-insensitive time-domain OFT
DEFF Research Database (Denmark)
Hu, Hao; Kong, Deming; Palushani, Evarist
2014-01-01
We have demonstrated the generation of a 320 Gb/s Nyquist-OTDM signal by rectangular filtering on an RZ-OTDM signal with the filter bandwidth (320 GHz) equal to the baud rate (320 Gbaud) and the reception of such a Nyquist-OTDM signal using polarization-insensitive time-domain optical Fourier tra...
A wavelet-based PWTD algorithm-accelerated time domain surface integral equation solver
Liu, Yang; Yucel, Abdulkadir C.; Gilbert, Anna C.; Bagci, Hakan; Michielssen, Eric
2015-01-01
© 2015 IEEE. The multilevel plane-wave time-domain (PWTD) algorithm allows for fast and accurate analysis of transient scattering from, and radiation by, electrically large and complex structures. When used in tandem with marching-on-in-time (MOT
Fra Angelico’s painting technique revealed by terahertz time-domain imaging (THz-TDI)
DEFF Research Database (Denmark)
Dandolo, Corinna Ludovica Koch; Picollo, Marcello; Cucci, Costanza
2016-01-01
We have investigated with terahertz time-domain imaging (THz-TDI) the well-known Lamentation over the dead Christ panel painting (San Marco Museum, Florence) painted by Fra Giovanni Angelico within 1436 and 1441. The investigation provided a better understanding of the construction and gilding te...
OpenPSTD : The open source pseudospectral time-domain method for acoustic propagation
Hornikx, M.C.J.; Krijnen, T.F.; van Harten, L.
2016-01-01
An open source implementation of the Fourier pseudospectral time-domain (PSTD) method for computing the propagation of sound is presented, which is geared towards applications in the built environment. Being a wave-based method, PSTD captures phenomena like diffraction, but maintains efficiency in
International Nuclear Information System (INIS)
Khorasani, A.; Mousavi Shalmani, M. A.; Piervali Bieranvand, N.
2011-01-01
An accurate, precise, fast and ease as well as the ability for measurements in depth are the characteristics that are desirable in measuring soil moisture methods. To compare methods (time domain reflectometry and capacitance) with neutron scattering for soil water monitoring, an experiment was carried out in a randomized complete block design (Split Split plot) on tomato with three replications on the experimental field of International Atomic Energy Agency (Seibersdorf-Austria). The treatment instruments for the soil moisture monitoring (main factor) consist of neutron gauge, Diviner 2000, time domain reflectometer and an EnviroScan and different irrigation systems (first sub factor) consist of trickle and furrow irrigations and different depths of soil (second sub factor) consist of 0-20, 20-40 and 40-60 cm. The results showed that for the neutron gauge and time domain reflectometer the amount of soil moisture in both of trickle and furrow irrigations were the same, but the significant differences were recorded in Diviner 2000 and EnviroScan measurements. The results of this study showed that the neutron gauge is an acceptable and reliable means with the modern technology, with a precision of ±2 mm in 450 mm soil water to a depth of 1.5 meter and can be considered as the most practical method for measuring soil moisture profiles and irrigation planning program. The time domain reflectometer method in most mineral soils, without the need for calibration, with an accuracy ±0.01m 3 m -3 has a good performance in soil moisture and electrical conductivity measurements. The Diviner 2000 and EnviroScan are not well suitable for the above conditions for several reasons such as much higher soil moisture and a large error measurement and also its sensitivity to the soil gap and to the small change in the soil moisture in comparison with the neutron gauge and the time domain reflectometer methods.
Zhang, Zhendong
2017-07-11
Full waveform inversion for reection events is limited by its linearized update re-quirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate, the resulting gradient can have an inaccurate update direction leading the inversion to converge what we refer to as local minima of the objective function. In our approach, we consider mild lateral variation in the model, and thus, use a gradient given by the oriented time-domain imaging method. Specifically, we apply the oriented time-domain imaging on the data residual to obtain the geometrical features of the velocity perturbation. After updating the model in the time domain, we convert the perturbation from the time domain to depth using the average velocity. Considering density is constant, we can expand the conventional 1D impedance inversion method to 2D or 3D velocity inversion within the process of full waveform inversion. This method is not only capable of inverting for velocity, but it is also capable of retrieving anisotropic parameters relying on linearized representations of the reection response. To eliminate the cross-talk artifacts between different parameters, we utilize what we consider being an optimal parametrization for this step. To do so, we extend the prestack time-domain migration image in incident angle dimension to incorporate angular dependence needed by the multiparameter inversion. For simple models, this approach provides an efficient and stable way to do full waveform inversion or modified seismic inversion and makes the anisotropic inversion more practicable. The proposed method still needs kinematically accurate initial models since it only recovers the high-wavenumber part as conventional full waveform inversion method does. Results on synthetic data of isotropic and anisotropic cases illustrate the benefits and limitations of this method.
Emoto, K.; Saito, T.; Shiomi, K.
2017-12-01
Short-period (2 s) seismograms. We found that the energy of the coda of long-period seismograms shows a spatially flat distribution. This phenomenon is well known in short-period seismograms and results from the scattering by small-scale heterogeneities. We estimate the statistical parameters that characterize the small-scale random heterogeneity by modelling the spatiotemporal energy distribution of long-period seismograms. We analyse three moderate-size earthquakes that occurred in southwest Japan. We calculate the spatial distribution of the energy density recorded by a dense seismograph network in Japan at the period bands of 8-16 s, 4-8 s and 2-4 s and model them by using 3-D finite difference (FD) simulations. Compared to conventional methods based on statistical theories, we can calculate more realistic synthetics by using the FD simulation. It is not necessary to assume a uniform background velocity, body or surface waves and scattering properties considered in general scattering theories. By taking the ratio of the energy of the coda area to that of the entire area, we can separately estimate the scattering and the intrinsic absorption effects. Our result reveals the spectrum of the random inhomogeneity in a wide wavenumber range including the intensity around the corner wavenumber as P(m) = 8πε2a3/(1 + a2m2)2, where ε = 0.05 and a = 3.1 km, even though past studies analysing higher-frequency records could not detect the corner. Finally, we estimate the intrinsic attenuation by modelling the decay rate of the energy. The method proposed in this study is suitable for quantifying the statistical properties of long-wavelength subsurface random inhomogeneity, which leads the way to characterizing a wider wavenumber range of spectra, including the corner wavenumber.
Finite difference modelling of the temperature rise in non-linear medical ultrasound fields.
Divall, S A; Humphrey, V F
2000-03-01
Non-linear propagation of ultrasound can lead to increased heat generation in medical diagnostic imaging due to the preferential absorption of harmonics of the original frequency. A numerical model has been developed and tested that is capable of predicting the temperature rise due to a high amplitude ultrasound field. The acoustic field is modelled using a numerical solution to the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, known as the Bergen Code, which is implemented in cylindrical symmetric form. A finite difference representation of the thermal equations is used to calculate the resulting temperature rises. The model allows for the inclusion of a number of layers of tissue with different acoustic and thermal properties and accounts for the effects of non-linear propagation, direct heating by the transducer, thermal diffusion and perfusion in different tissues. The effect of temperature-dependent skin perfusion and variation in background temperature between the skin and deeper layers of the body are included. The model has been tested against analytic solutions for simple configurations and then used to estimate temperature rises in realistic obstetric situations. A pulsed 3 MHz transducer operating with an average acoustic power of 200 mW leads to a maximum steady state temperature rise inside the foetus of 1.25 degrees C compared with a 0.6 degree C rise for the same transmitted power under linear propagation conditions. The largest temperature rise occurs at the skin surface, with the temperature rise at the foetus limited to less than 2 degrees C for the range of conditions considered.