Applying dispersive changes to Lagrangian particles in groundwater transport models
Konikow, Leonard F.
2010-01-01
Method-of-characteristics groundwater transport models require that changes in concentrations computed within an Eulerian framework to account for dispersion be transferred to moving particles used to simulate advective transport. A new algorithm was developed to accomplish this transfer between nodal values and advecting particles more precisely and realistically compared to currently used methods. The new method scales the changes and adjustments of particle concentrations relative to limiting bounds of concentration values determined from the population of adjacent nodal values. The method precludes unrealistic undershoot or overshoot for concentrations of individual particles. In the new method, if dispersion causes cell concentrations to decrease during a time step, those particles in the cell having the highest concentration will decrease the most, and those with the lowest concentration will decrease the least. The converse is true if dispersion is causing concentrations to increase. Furthermore, if the initial concentration on a particle is outside the range of the adjacent nodal values, it will automatically be adjusted in the direction of the acceptable range of values. The new method is inherently mass conservative.
Budiansky, Stephen
1980-01-01
This article discusses the need for more accurate and complete input data and field verification of the various models of air pollutant dispension. Consideration should be given to changing the form of air quality standards based on enhanced dispersion modeling techniques. (Author/RE)
Girard, Sylvain; Mallet, Vivien; Korsakissok, Irène; Mathieu, Anne
2016-04-01
Simulations of the atmospheric dispersion of radionuclides involve large uncertainties originating from the limited knowledge of meteorological input data, composition, amount and timing of emissions, and some model parameters. The estimation of these uncertainties is an essential complement to modeling for decision making in case of an accidental release. We have studied the relative influence of a set of uncertain inputs on several outputs from the Eulerian model Polyphemus/Polair3D on the Fukushima case. We chose to use the variance-based sensitivity analysis method of Sobol'. This method requires a large number of model evaluations which was not achievable directly due to the high computational cost of Polyphemus/Polair3D. To circumvent this issue, we built a mathematical approximation of the model using Gaussian process emulation. We observed that aggregated outputs are mainly driven by the amount of emitted radionuclides, while local outputs are mostly sensitive to wind perturbations. The release height is notably influential, but only in the vicinity of the source. Finally, averaging either spatially or temporally tends to cancel out interactions between uncertain inputs.
Davis, P. M.; Atkinson, T. C.
An Aggregated Dead Zone (ADZ) model is presented for longitudinal dispersion of tracer in river channels, in which the channel cross-section is divided into two parallel regions: the bulk flow and dead zone storage. Tracer particles in the bulk flow are assumed to obey plug-flow advection at the discharge velocity U without any mixing effects. The dispersive properties of the model are completely embodied in the residence time for tracer storage in the dead zone. The model provides an excellent description and prediction of empirical concentration-time distributions, for times t ADZ model is a potentially useful tool for practical prediction of dispersion in natural channels.
Modelling of the dispersed air flotation process applied to dairy wastewater treatment
Directory of Open Access Journals (Sweden)
F. P. Puget
2004-06-01
Full Text Available The aim of this work was to develop a mathematical model for a continuously operating flotation tank to provide the scale-up and optimization of the separation system. The fluid dynamic of the tank was assumed to be a perfect mixture and the flotation kinetics to be a first-order reaction, as suggested by the batch operation. The experiments were carried out in a continuously operating 60 L tank, used in the treatment of a synthetic dairy waste at its isoelectric point. A mathematical model that describes the behavior of a continuously operating flotation tank used in the treatment of a synthetic dairy waste at its isoelectric point is not only proposed, but also validated with experimental data.
Directory of Open Access Journals (Sweden)
P. M. Davis
2000-01-01
Full Text Available An Aggregated Dead Zone (ADZ model is presented for longitudinal dispersion of tracer in river channels, in which the channel cross-section is divided into two parallel regions: the bulk flow and dead zone storage. Tracer particles in the bulk flow are assumed to obey plug-flow advection at the discharge velocity U without any mixing effects. The dispersive properties of the model are completely embodied in the residence time for tracer storage in the dead zone. The model provides an excellent description and prediction of empirical concentration-time distributions, for times t Its physical realism is demonstrated by using it to describe the evolution of a tracer cloud in the River Severn, U.K., and by comparing it with a more complex model which incorporates the additional effects of shear flow dispersion within the bulk flow. The ADZ model is a potentially useful tool for practical prediction of dispersion in natural channels. Keywords: Channels; dispersion; dead zones; tracers; River Severn
Energy Technology Data Exchange (ETDEWEB)
O' Kula, K. R. [Savannah River Site (SRS), Aiken, SC (United States); East, J. M. [Savannah River Site (SRS), Aiken, SC (United States); Weber, A. H. [Savannah River Site (SRS), Aiken, SC (United States); Savino, A. V. [Savannah River Site (SRS), Aiken, SC (United States); Mazzola, C. A. [Savannah River Site (SRS), Aiken, SC (United States)
2003-01-01
The evaluation of atmospheric dispersion/ radiological dose analysis codes included fifteen models identified in authorization basis safety analysis at DOE facilities, or from regulatory and research agencies where past or current work warranted inclusion of a computer model. All computer codes examined were reviewed using general and specific evaluation criteria developed by the Working Group. The criteria were based on DOE Orders and other regulatory standards and guidance for performing bounding and conservative dose calculations. Included were three categories of criteria: (1) Software Quality/User Interface; (2) Technical Model Adequacy; and (3) Application/Source Term Environment. A consensus-based limited quantitative ranking process was used to base an order of model preference as both an overall conclusion, and under specific conditions.
Stochastic models for atmospheric dispersion
DEFF Research Database (Denmark)
Ditlevsen, Ove Dalager
2003-01-01
Simple stochastic differential equation models have been applied by several researchers to describe the dispersion of tracer particles in the planetary atmospheric boundary layer and to form the basis for computer simulations of particle paths. To obtain the drift coefficient, empirical vertical...... velocity distributions that depend on height above the ground both with respect to standard deviation and skewness are substituted into the stationary Fokker/Planck equation. The particle position distribution is taken to be uniform *the well/mixed condition( and also a given dispersion coefficient...
Stochastic models for atmospheric dispersion
DEFF Research Database (Denmark)
Ditlevsen, Ove Dalager
2003-01-01
Simple stochastic differential equation models have been applied by several researchers to describe the dispersion of tracer particles in the planetary atmospheric boundary layer and to form the basis for computer simulations of particle paths. To obtain the drift coefficient, empirical vertical...... positions close to the boundaries. Different rules have been suggested in the literature with justifications based on simulation studies. Herein the relevant stochastic differential equation model is formulated in a particular way. The formulation is based on the marginal transformation of the position...... dependent particle velocity into a position independent Gaussian velocity. Boundary conditions are obtained from Itos rule of stochastic differentiation. The model directly point at a canonical rule of reflection for the approximating random walk with finite time step. This reflection rule is different from...
Modeling volcanic ash dispersal
CERN. Geneva
2010-01-01
The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard...
Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.; Bieringer, Paul E.; Annunzio, Andrew; Bieberbach, George; Meech, Scott
2016-12-01
The Quick Urban & Industrial Complex (QUIC) atmospheric transport, and dispersion modelling, system was evaluated against the Joint Urban 2003 tracer-gas measurements. This was done using the wind and turbulence fields computed by the Weather Research and Forecasting (WRF) model. We compare the simulated and observed plume transport when using WRF-model-simulated wind fields, and local on-site wind measurements. Degradation of the WRF-model-based plume simulations was cased by errors in the simulated wind direction, and limitations in reproducing the small-scale wind-field variability. We explore two methods for importing turbulence from the WRF model simulations into the QUIC system. The first method uses parametrized turbulence profiles computed from WRF-model-computed boundary-layer similarity parameters; and the second method directly imports turbulent kinetic energy from the WRF model. Using the WRF model's Mellor-Yamada-Janjic boundary-layer scheme, the parametrized turbulence profiles and the direct import of turbulent kinetic energy were found to overpredict and underpredict the observed turbulence quantities, respectively. Near-source building effects were found to propagate several km downwind. These building effects and the temporal/spatial variations in the observed wind field were often found to have a stronger influence over the lateral and vertical plume spread than the intensity of turbulence. Correcting the WRF model wind directions using a single observational location improved the performance of the WRF-model-based simulations, but using the spatially-varying flow fields generated from multiple observation profiles generally provided the best performance.
Coupling constant in dispersive model
Indian Academy of Sciences (India)
R Saleh-Moghaddam; M E Zomorrodian
2013-11-01
The average of the moments for event shapes in + - → hadrons within the context of next-to-leading order (NLO) perturbative QCD prediction in dispersive model is studied. Moments used in this article are $\\langle 1 - T \\rangle, \\langle ρ \\rangle, \\langle B_{T} \\rangle$ and $\\langle B_{W} \\rangle$. We extract , the coupling constant in perturbative theory and α0 in the non-perturbative theory using the dispersive model. By fitting the experimental data, the values of $(M_{Z^{°}})$ = 0.1171 ± 0.00229 and 0 ($_{I} = 2{\\text{GeV}}$) = 0.5068 ± 0.0440 are found. Our results are consistent with the above model. Our results are also consistent with those obtained from other experiments at different energies. All these features are explained in this paper.
Gamma neutron method applied to field measurement of hydrodynamic dispersion
Brissaud, F.; Pappalardo, A.; Couchat, Ph.
1983-06-01
The gamma neutron method is applied to the study of solute movements during field irrigations under steady-state and transient hydrodynamic conditions. Two different types of behavior are discussed. In the first, the labeled water pulse velocity matches the conservation of the vertical rate of water and, when the deuterated water concentration profiles are mass-conservative, the experimental results are accurately described by the equation of dispersion. In the second, the pore water velocity differs considerably from that of strictly vertical displacements and the concentration profiles are not massconservative.
Applied impulsive mathematical models
Stamova, Ivanka
2016-01-01
Using the theory of impulsive differential equations, this book focuses on mathematical models which reflect current research in biology, population dynamics, neural networks and economics. The authors provide the basic background from the fundamental theory and give a systematic exposition of recent results related to the qualitative analysis of impulsive mathematical models. Consisting of six chapters, the book presents many applicable techniques, making them available in a single source easily accessible to researchers interested in mathematical models and their applications. Serving as a valuable reference, this text is addressed to a wide audience of professionals, including mathematicians, applied researchers and practitioners.
Adsorption modeling for macroscopic contaminant dispersal analysis
Energy Technology Data Exchange (ETDEWEB)
Axley, J.W.
1990-05-01
Two families of macroscopic adsorption models are formulated, based on fundamental principles of adsorption science and technology, that may be used for macroscopic (such as whole-building) contaminant dispersal analysis. The first family of adsorption models - the Equilibrium Adsorption (EA) Models - are based upon the simple requirement of equilibrium between adsorbent and room air. The second family - the Boundary Layer Diffusion Controlled Adsorption (BLDC) Models - add to the equilibrium requirement a boundary layer model for diffusion of the adsorbate from the room air to the adsorbent surface. Two members of each of these families are explicitly discussed, one based on the linear adsorption isotherm model and the other on the Langmuir model. The linear variants of each family are applied to model the adsorption dynamics of formaldehyde in gypsum wall board and compared to measured data.
Dispersive internal long wave models
Energy Technology Data Exchange (ETDEWEB)
Camassa, R.; Choi, W.; Holm, D.D. [Los Alamos National Lab., NM (United States); Levermore, C.D.; Lvov, Y. [Univ. of Arizona, Tucson, AZ (United States)
1998-11-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). This work is a joint analytical and numerical study of internal dispersive water wave propagation in a stratified two-layer fluid, a problem that has important geophysical fluid dynamics applications. Two-layer models can capture the main density-dependent effects because they can support, unlike homogeneous fluid models, the observed large amplitude internal wave motion at the interface between layers. The authors have derived new model equations using multiscale asymptotics in combination with the method they have developed for vertically averaging velocity and vorticity fields across fluid layers within the original Euler equations. The authors have found new exact conservation laws for layer-mean vorticity that have exact counterparts in the models. With this approach, they have derived a class of equations that retain the full nonlinearity of the original Euler equations while preserving the simplicity of known weakly nonlinear models, thus providing the theoretical foundation for experimental results so far unexplained.
Modeling the dispersion in electromechanically coupled myocardium
Eriksson, Thomas S. E.; Prassl, Anton J.; Plank, Gernot; Holzapfel, Gerhard A.
2014-01-01
SUMMARY We present an approach to model the dispersion of fiber and sheet orientations in the myocardium. By utilizing structure parameters, an existing orthotropic and invariant-based constitutive model developed to describe the passive behavior of the myocardium is augmented. Two dispersion parameters are fitted to experimentally observed angular dispersion data of the myocardial tissue. Computations are performed on a unit myocardium tissue cube and on a slice of the left ventricle indicating that the dispersion parameter has an effect on the myocardial deformation and stress development. The use of fiber dispersions relating to a pathological myocardium had a rather big effect. The final example represents an ellipsoidal model of the left ventricle indicating the influence of fiber and sheet dispersions upon contraction over a cardiac cycle. Although only a minor shift in the pressure–volume (PV) loops between the cases with no dispersions and with fiber and sheet dispersions for a healthy myocardium was observed, a remarkably different behavior is obtained with a fiber dispersion relating to a diseased myocardium. In future simulations, this dispersion model for myocardial tissue may advantageously be used together with models of, for example, growth and remodeling of various cardiac diseases. PMID:23868817
Modeling the dispersion in electromechanically coupled myocardium.
Eriksson, Thomas S E; Prassl, Anton J; Plank, Gernot; Holzapfel, Gerhard A
2013-11-01
We present an approach to model the dispersion of fiber and sheet orientations in the myocardium. By utilizing structure parameters, an existing orthotropic and invariant-based constitutive model developed to describe the passive behavior of the myocardium is augmented. Two dispersion parameters are fitted to experimentally observed angular dispersion data of the myocardial tissue. Computations are performed on a unit myocardium tissue cube and on a slice of the left ventricle indicating that the dispersion parameter has an effect on the myocardial deformation and stress development. The use of fiber dispersions relating to a pathological myocardium had a rather big effect. The final example represents an ellipsoidal model of the left ventricle indicating the influence of fiber and sheet dispersions upon contraction over a cardiac cycle. Although only a minor shift in the pressure-volume (PV) loops between the cases with no dispersions and with fiber and sheet dispersions for a healthy myocardium was observed, a remarkably different behavior is obtained with a fiber dispersion relating to a diseased myocardium. In future simulations, this dispersion model for myocardial tissue may advantageously be used together with models of, for example, growth and remodeling of various cardiac diseases.
Pollen Forecast and Dispersion Modelling
Costantini, Monica; Di Giuseppe, Fabio; Medaglia, Carlo Maria; Travaglini, Alessandro; Tocci, Raffaella; Brighetti, M. Antonia; Petitta, Marcello
2014-05-01
The aim of this study is monitoring, mapping and forecast of pollen distribution for the city of Rome using in-situ measurements of 10 species of common allergenic pollens and measurements of PM10. The production of daily concentration maps, associated to a mobile phone app, are innovative compared to existing dedicated services to people who suffer from respiratory allergies. The dispersal pollen is one of the most well-known causes of allergic disease that is manifested by disorders of the respiratory functions. Allergies are the third leading cause of chronic disease and it is estimated that tens millions of people in Italy suffer from it. Recent works reveal that during the last few years there was a progressive increase of affected subjects, especially in urban areas. This situation may depend: on the ability to transport of pollutants, on the ability to react between pollutants and pollen and from a combination of other irritants, existing in densely populated and polluted urban areas. The methodology used to produce maps is based on in-situ measurements time series relative to 2012, obtained from networks of air quality and pollen stations in the metropolitan area of Rome. The monitoring station aerobiological of University of Rome "Tor Vergata" is located at the Department of Biology. The instrument used to pollen monitoring is a volumetric sampler type Hirst (Hirst 1952), Model 2000 VPPS Lanzoni; the data acquisition is carried out as reported in Standard UNI 11008:2004 - "Qualità dell'aria - Metodo di campionamento e conteggio dei granuli pollinici e delle spore fungine aerodisperse" - the protocol that describes the procedure for measuring of the concentration of pollen grains and fungal spores dispersed into the atmosphere, and reported in the "Manuale di gestione e qualità della R.I.M.A" (Travaglini et. al. 2009). All 10 allergenic pollen are monitored since 1996. At Tor Vergata university is also operating a meteorological station (SP2000, CAE
Discrete dispersion models and their Tweedie asymptotics
DEFF Research Database (Denmark)
Jørgensen, Bent; Kokonendji, Célestin C.
2016-01-01
in this approach, whereas several overdispersed discrete distributions, such as the Neyman Type A, Pólya-Aeppli, negative binomial and Poisson-inverse Gaussian, turn out to be Poisson-Tweedie factorial dispersion models with power dispersion functions, analogous to ordinary Tweedie exponential dispersion models...... with power variance functions. Using the factorial cumulant generating function as tool, we introduce a dilation operation as a discrete analogue of scaling, generalizing binomial thinning. The Poisson-Tweedie factorial dispersion models are closed under dilation, which in turn leads to a Poisson...
A Boussinesq model with alleviated nonlinearity and dispersion
Institute of Scientific and Technical Information of China (English)
ZHANG Dian-xin; TAO Jian-hua
2008-01-01
The classical Boussinesq equation is a weakly nonlinear and weakly dispersive equation, which has been widely applied to simulate wave propagation in off-coast shallow waters. A new form of the Boussinesq model for an uneven bottoms is derived in this paper. In the new model, nonlinearity is reduced without increasing the order of the highest derivative in the differential equations. Dispersion relationship of the model is improved to the order of Pade (2,2) by adjusting a parameter in the model based on the long wave approximation. Analysis of the linear dispersion, linear shoaling and nonlinearity of the present model shows that the performances in terms of nonlinearity, dispersion and shoaling of this model are improved. Numerical results obtained with the present model are in agreement with experimental data.
Uncertainty in spatially explicit animal dispersal models
Mooij, W.M.; DeAngelis, D.L.
2003-01-01
Uncertainty in estimates of survival of dispersing animals is a vexing difficulty in conservation biology. The current notion is that this uncertainty decreases the usefulness of spatially explicit population models in particular. We examined this problem by comparing dispersal models of three level
Uncertainty in spatially explicit animal dispersal models
Mooij, Wolf M.; DeAngelis, Donald L.
2003-01-01
Uncertainty in estimates of survival of dispersing animals is a vexing difficulty in conservation biology. The current notion is that this uncertainty decreases the usefulness of spatially explicit population models in particular. We examined this problem by comparing dispersal models of three levels of complexity: (1) an event-based binomial model that considers only the occurrence of mortality or arrival, (2) a temporally explicit exponential model that employs mortality and arrival rates, and (3) a spatially explicit grid-walk model that simulates the movement of animals through an artificial landscape. Each model was fitted to the same set of field data. A first objective of the paper is to illustrate how the maximum-likelihood method can be used in all three cases to estimate the means and confidence limits for the relevant model parameters, given a particular set of data on dispersal survival. Using this framework we show that the structure of the uncertainty for all three models is strikingly similar. In fact, the results of our unified approach imply that spatially explicit dispersal models, which take advantage of information on landscape details, suffer less from uncertainly than do simpler models. Moreover, we show that the proposed strategy of model development safeguards one from error propagation in these more complex models. Finally, our approach shows that all models related to animal dispersal, ranging from simple to complex, can be related in a hierarchical fashion, so that the various approaches to modeling such dispersal can be viewed from a unified perspective.
Study of LPG Release & Dispersion Model
Institute of Scientific and Technical Information of China (English)
Mu Shanjun; Peng Xiangwei
2003-01-01
The current applicable release & dispersion models are reviewed. A typical model is developed on the basis of LPG storage conditions in China and the authors' research. The study is focused on the relationship between LPG composition and release rate, and on the influence of buildings or structures located in the surrounding area on the dispersion of gas plume. The established model is compared with existing models by the use of published field test data.
Wamelink, G.W.W.; Jochem, R.; Greft, van der J.G.M.; Franke, J.; Malinowska, A.H.; Geertsema, W.; Prins, A.H.; Ozinga, W.A.; Hoek, van der D.C.J.; Grashof-Bokdam, C.J.
2014-01-01
Due to human activities many natural habitats have become isolated. As a result the dispersal of many plant species is hampered. Isolated populations may become extinct and have a lower probability to become reestablished in a natural way. Moreover, plant species may be forced to migrate to new area
"Dispersion modeling approaches for near road
Roadway design and roadside barriers can have significant effects on the dispersion of traffic-generated pollutants, especially in the near-road environment. Dispersion models that can accurately simulate these effects are needed to fully assess these impacts for a variety of app...
Congdon, Peter
2014-01-01
This book provides an accessible approach to Bayesian computing and data analysis, with an emphasis on the interpretation of real data sets. Following in the tradition of the successful first edition, this book aims to make a wide range of statistical modeling applications accessible using tested code that can be readily adapted to the reader's own applications. The second edition has been thoroughly reworked and updated to take account of advances in the field. A new set of worked examples is included. The novel aspect of the first edition was the coverage of statistical modeling using WinBU
SCIPUFF - a generalized hazard dispersion model
Energy Technology Data Exchange (ETDEWEB)
Sykes, R.I.; Henn, D.S.; Parker, S.F.; Gabruk, R.S. [Titan Research and Technology, Princeton, NJ (United States)
1996-12-31
One of the more popular techniques for efficiently representing the dispersion process is the Gaussian puff model, which uses a collection of Lagrangian puffs with Gaussian concentration profiles. SCIPUFF (Second-order Closure Integrated Puff) is an advanced Gaussian puff model. SCIPUFF which uses second-order turbulence closure techniques to relate the dispersion rates to measurable turbulent velocity statistics, providing a wide range of applicability. In addition, the closure model provides a prediction of the statistical variance in the concentration field which can be used to estimate the uncertainty in the dispersion prediction resulting from the inherent uncertainty in the wind field. SCIPUFF has been greatly extended from a power plant plume model to describe more general source characteristics, material properties, and longer range dispersion. In addition, a Graphical User Interface has been developed to provide interactive problem definition and output display. This presentation describes the major features of the model, and presents several example calculations.
Modeling electrical dispersion phenomena in Earth materials
Directory of Open Access Journals (Sweden)
D. Patella
2008-06-01
Full Text Available It is illustrated that IP phenomena in rocks can be described using conductivity dispersion models deduced as solutions to a 2nd-order linear differential equation describing the motion of a charged particle immersed in an external electrical field. Five dispersion laws are discussed, namely: the non-resonant positive IP model, which leads to the classical Debye-type dispersion law and by extension to the Cole-Cole model, largely used in current practice; the non-resonant negative IP model, which allows negative chargeability values, known in metals at high frequencies, to be explained as an intrinsic physical property of earth materials in specific field cases; the resonant flat, positive or negative IP models, which can explain the presence of peak effects at specific frequencies superimposed on flat, positive or negative dispersion spectra.
A second order Rosenbrock method applied to photochemical dispersion problems
Verwer, J.G.; Spee, E.J.; Blom, J.G.; Hundsdorfer, W.
1997-01-01
A 2nd-order, L-stable Rosenbrock method from the field of stiff ordinary differential equations is studied for application to atmospheric dispersion problems describing photochemistry, advective and turbulent diffusive transport. Partial differential equation problems of this type occur in the field
Modelling surface radioactive spill dispersion in the Alboran Sea
Energy Technology Data Exchange (ETDEWEB)
Perianez, R. [Dpto. Fisica Aplicada I, E.U. Ingenieria Tecnica Agricola, Universidad de Sevilla. Ctra. Utrera km 1, 41013 Sevilla (Spain)]. E-mail: rperianez@us.es
2006-07-01
The Strait of Gibraltar and the Alboran Sea are the only connection between the Atlantic Ocean and the Mediterranean Sea. Intense shipping activities occur in the area, including transport of waste radionuclides and transit of nuclear submarines. Thus, it is relevant to have a dispersion model that can be used in an emergency situation after an accident, to help the decision-making process. Such dispersion model requires an appropriate description of the physical oceanography of the region of interest, with simulations of tides and residual (average) circulation. In this work, a particle-tracking dispersion model that can be used to simulate the dispersion of radionuclides in the system Strait of Gibraltar-Alboran Sea is described. Tides are simulated using a barotropic model and for the average circulation a reduced-gravity model is applied. This model is able to reproduce the main features of the Alboran circulation (the well known Western Alboran Gyre, WAG, and the coastal circulation mode). The dispersion model is run off-line, using previously computed tidal and residual currents. The contamination patch is simulated by a number of particles whose individual paths are computed; diffusion and decay being modelled using a Monte Carlo method. Radionuclide concentrations may be obtained from the density of particles per water volume unit. Results from the hydrodynamic models have been compared with observations in the area. Several examples of dispersion computations under different wind and circulation conditions are presented.
Physical models of polarization mode dispersion
Energy Technology Data Exchange (ETDEWEB)
Menyuk, C.R.; Wai, P.K.A. [Univ. of Maryland, Baltimore, MD (United States)
1995-12-31
The effect of randomly varying birefringence on light propagation in optical fibers is studied theoretically in the parameter regime that will be used for long-distance communications. In this regime, the birefringence is large and varies very rapidly in comparison to the nonlinear and dispersive scale lengths. We determine the polarization mode dispersion, and we show that physically realistic models yield the same result for polarization mode dispersion as earlier heuristic models that were introduced by Poole. We also prove an ergodic theorem.
Longitudinal dispersion modeling in small streams
Pekarova, Pavla; Pekar, Jan; Miklanek, Pavol
2014-05-01
The environmental problems caused by the increasing of pollutant loads discharged into natural water bodies are very complex. For that reason the cognition of transport mechanism and mixing characteristics in natural streams is very important. The mathematical and numerical models have become very useful tools for solving the water management problems. The mathematical simulations based on numerical models of pollution mixing in streams can be used (for example) for prediction of spreading of accidental contaminant waves in rivers. The paper deals with the estimation of the longitudinal dispersion coefficients and with the numerical simulation of transport and transformation of accidental pollution in the small natural streams. There are different ways of solving problems of pollution spreading in open channels, in natural rivers. One of them is the hydrodynamic approach, which endeavours to understand and quantify the spreading phenomenon in a stream. The hydrodynamic models are based on advection-diffusion equation and the majority of them are one-dimensional models. Their disadvantage is inability to simulate the spread of pollution until complete dispersion of pollutant across the stream section is finished. Two-dimensional mixing models do not suffer from these limitations. On the other hand, the one-dimensional models are simpler than two-dimensional ones, they need not so much input data and they are often swifter. Three-dimensional models under conditions of natural streams are applicable with difficulties (or inapplicable) for their complexity and demands on accuracy and amount of input data. As there was mentioned above the two-dimensional models can be used also until complete dispersion of pollutant across the stream section is not finished, so we decided to apply the two-dimensional model SIRENIE. Experimental microbasin Rybarik is the part of the experimental Mostenik brook basin of IH SAS Bratislava. It was established as a Field Hydrological
"Dispersion modeling approaches for near road | Science ...
Roadway design and roadside barriers can have significant effects on the dispersion of traffic-generated pollutants, especially in the near-road environment. Dispersion models that can accurately simulate these effects are needed to fully assess these impacts for a variety of applications. For example, such models can be useful for evaluating the mitigation potential of roadside barriers in reducing near-road exposures and their associated adverse health effects. Two databases, a tracer field study and a wind tunnel study, provide measurements used in the development and/or validation of algorithms to simulate dispersion in the presence of noise barriers. The tracer field study was performed in Idaho Falls, ID, USA with a 6-m noise barrier and a finite line source in a variety of atmospheric conditions. The second study was performed in the meteorological wind tunnel at the US EPA and simulated line sources at different distances from a model noise barrier to capture the effect on emissions from individual lanes of traffic. In both cases, velocity and concentration measurements characterized the effect of the barrier on dispersion.This paper presents comparisons with the two datasets of the barrier algorithms implemented in two different dispersion models: US EPA’s R-LINE (a research dispersion modelling tool under development by the US EPA’s Office of Research and Development) and CERC’s ADMS model (ADMS-Urban). In R-LINE the physical features reveal
Modelling long-distance seed dispersal in heterogeneous landscapes.
Energy Technology Data Exchange (ETDEWEB)
Levey, Douglas, J.; Tewlsbury, Joshua, J.; Bolker, Benjamin, M.
2008-01-01
1. Long-distance seed dispersal is difficult to measure, yet key to understanding plant population dynamics and community composition. 2. We used a spatially explicit model to predict the distribution of seeds dispersed long distances by birds into habitat patches of different shapes. All patches were the same type of habitat and size, but varied in shape. They occurred in eight experimental landscapes, each with five patches of four different shapes, 150 m apart in a matrix of mature forest. The model was parameterized with smallscale movement data collected from field observations of birds. In a previous study we validated the model by testing its predictions against observed patterns of seed dispersal in real landscapes with the same types and spatial configuration of patches as in the model. 3. Here we apply the model more broadly, examining how patch shape influences the probability of seed deposition by birds into patches, how dispersal kernels (distributions of dispersal distances) vary with patch shape and starting location, and how movement of seeds between patches is affected by patch shape. 4. The model predicts that patches with corridors or other narrow extensions receive higher numbers of seeds than patches without corridors or extensions. This pattern is explained by edgefollowing behaviour of birds. Dispersal distances are generally shorter in heterogeneous landscapes (containing patchy habitat) than in homogeneous landscapes, suggesting that patches divert the movement of seed dispersers, ‘holding’ them long enough to increase the probability of seed defecation in the patches. Dispersal kernels for seeds in homogeneous landscapes were smooth, whereas those in heterogenous landscapes were irregular. In both cases, long-distance (> 150 m) dispersal was surprisingly common, usually comprising approximately 50% of all dispersal events. 5. Synthesis . Landscape heterogeneity has a large influence on patterns of long-distance seed dispersal. Our
Modelling and Simulation of Crude Oil Dispersion
Directory of Open Access Journals (Sweden)
Abdulfatai JIMOH
2006-01-01
Full Text Available This research work was carried out to develop a model equation for the dispersion of crude oil in water. Seven different crude oils (Bonny Light, Antan Terminal, Bonny Medium, Qua Iboe Light, Brass Light Mbede, Forcados Blend and Heavy H were used as the subject crude oils. The developed model equation in this project which is given as...It was developed starting from the equation for the oil dispersion rate in water which is given as...The developed equation was then simulated with the aid of MathCAD 2000 Professional software. The experimental and model results obtained from the simulation of the model equation were plotted on the same axis against time of dispersion. The model results revealed close fittings between the experimental and the model results because the correlation coefficients and the r-square values calculated using Spreadsheet Program were both found to be unity (1.00.
Clobert, J.; Danchin, E.; Dhondt, A.A.; Nichols, J.D.
2001-01-01
The ability of species to migrate and disperse is a trait that has interested ecologists for many years. Now that so many species and ecosystems face major environmental threats from habitat fragmentation and global climate change, the ability of species to adapt to these changes by dispersing, migrating, or moving between patches of habitat can be crucial to ensuring their survival. This book provides a timely and wide-ranging overview of the study of dispersal and incorporates much of the latest research. The causes, mechanisms, and consequences of dispersal at the individual, population, species and community levels are considered. The potential of new techniques and models for studying dispersal, drawn from molecular biology and demography, is also explored. Perspectives and insights are offered from the fields of evolution, conservation biology and genetics. Throughout the book, theoretical approaches are combined with empirical data, and care has been taken to include examples from as wide a range of species as possible.
Using Dispersed Modes During Model Correlation
Stewart, Eric; Hathcock, Megan
2017-01-01
Using model dispersions as a starting point allows us to quickly adjust a model to reflect new test data: a) The analyst does a lot of work before the test to save time post-test. b) Creating 1000s of model dispersions to provide "coarse tuning," then use Attune to provide the "fine tuning." ?Successful model tuning on three structures: a) TAURUS. b) Ares I-X C) Cart (in backup charts). ?Mode weighting factors, matrix norm method, and XOR vs. MAC all play key roles in determining the BME. The BME process will be used on future tests: a) ISPE modal test (ongoing work). b) SLS modal test (mid 2018).
Meteorological Uncertainty of atmospheric Dispersion model results (MUD)
DEFF Research Database (Denmark)
Havskov Sørensen, Jens; Amstrup, Bjarne; Feddersen, Henrik
The MUD project addresses assessment of uncertainties of atmospheric dispersion model predictions, as well as optimum presentation to decision makers. Previously, it has not been possible to estimate such uncertainties quantitatively, but merely to calculate the 'most likely' dispersion scenario...... of the meteorological model results. These uncertainties stem from e.g. limits in meteorological obser-vations used to initialise meteorological forecast series. By perturbing the initial state of an NWP model run in agreement with the available observa-tional data, an ensemble of meteorological forecasts is produced....... However, recent developments in numerical weather prediction (NWP) include probabilistic forecasting techniques, which can be utilised also for atmospheric dispersion models. The ensemble statistical methods developed and applied to NWP models aim at describing the inherent uncertainties...
Meteorological Uncertainty of atmospheric Dispersion model results (MUD)
DEFF Research Database (Denmark)
Havskov Sørensen, Jens; Amstrup, Bjarne; Feddersen, Henrik
The MUD project addresses assessment of uncertainties of atmospheric dispersion model predictions, as well as possibilities for optimum presentation to decision makers. Previously, it has not been possible to estimate such uncertainties quantitatively, but merely to calculate the ‘most likely...... uncertainties of the meteorological model results. These uncertainties stem from e.g. limits in meteorological observations used to initialise meteorological forecast series. By perturbing e.g. the initial state of an NWP model run in agreement with the available observational data, an ensemble......’ dispersion scenario. However, recent developments in numerical weather prediction (NWP) include probabilistic forecasting techniques, which can be utilised also for long-range atmospheric dispersion models. The ensemble statistical methods developed and applied to NWP models aim at describing the inherent...
Advances in parallel computer technology for desktop atmospheric dispersion models
Energy Technology Data Exchange (ETDEWEB)
Bian, X.; Ionescu-Niscov, S.; Fast, J.D. [Pacific Northwest National Lab., Richland, WA (United States); Allwine, K.J. [Allwine Enviornmental Serv., Richland, WA (United States)
1996-12-31
Desktop models are those models used by analysts with varied backgrounds, for performing, for example, air quality assessment and emergency response activities. These models must be robust, well documented, have minimal and well controlled user inputs, and have clear outputs. Existing coarse-grained parallel computers can provide significant increases in computation speed in desktop atmospheric dispersion modeling without considerable increases in hardware cost. This increased speed will allow for significant improvements to be made in the scientific foundations of these applied models, in the form of more advanced diffusion schemes and better representation of the wind and turbulence fields. This is especially attractive for emergency response applications where speed and accuracy are of utmost importance. This paper describes one particular application of coarse-grained parallel computer technology to a desktop complex terrain atmospheric dispersion modeling system. By comparing performance characteristics of the coarse-grained parallel version of the model with the single-processor version, we will demonstrate that applying coarse-grained parallel computer technology to desktop atmospheric dispersion modeling systems will allow us to address critical issues facing future requirements of this class of dispersion models.
A model for dispersion of contaminants in the subway environment
Energy Technology Data Exchange (ETDEWEB)
Coke, L. R.; Sanchez, J. G.; Policastro, A. J.
2000-05-03
Although subway ventilation has been studied extensively, very little has been published on dispersion of contaminants in the subway environment. This paper presents a model that predicts dispersion of contaminants in a complex subway system. It accounts for the combined transient effects of train motion, station airflows, train car air exchange rates, and source release properties. Results are presented for a range of typical subway scenarios. The effects of train piston action and train car air exchange are discussed. The model could also be applied to analyze the environmental impact of hazardous materials releases such as chemical and biological agents.
Acceptance criteria for urban dispersion model evaluation
Hanna, Steven; Chang, Joseph
2012-05-01
The authors suggested acceptance criteria for rural dispersion models' performance measures in this journal in 2004. The current paper suggests modified values of acceptance criteria for urban applications and tests them with tracer data from four urban field experiments. For the arc-maximum concentrations, the fractional bias should have a magnitude 0.3. For all data paired in space, for which a threshold concentration must always be defined, the normalized absolute difference should be SCIPUFF dispersion model with the urban canopy option and the urban dispersion model (UDM) option. In each set of evaluations, three or four likely options are tested for meteorological inputs (e.g., a local building top wind speed, the closest National Weather Service airport observations, or outputs from numerical weather prediction models). It is found that, due to large natural variability in the urban data, there is not a large difference between the performance measures for the two model options and the three or four meteorological input options. The more detailed UDM and the state-of-the-art numerical weather models do provide a slight improvement over the other options. The proposed urban dispersion model acceptance criteria are satisfied at over half of the field experiments.
MODA - A hybrid atmospheric pollutant dispersion model
Energy Technology Data Exchange (ETDEWEB)
Favaron, M.; Oliveti Selmi, O. [Servizi Territorio srl, Milan (Italy); Sozzi, R. [Agenzia Regionale Protezione Ambiente (ARPA) Lazio, Rieti (Italy)
2004-07-01
MODA is a Gaussian-hybrid atmospheric dispersion model, intended for regulatory applications, and designed to meet the following requirements: ability to operate in complex terrain, standard use of a refined description of turbulence, operational efficiency (in terms of both speed and ease to change simulation parameters), ease of integration in modelling interfaces, output compatibility with the widely-used ISC3. MODA can operate in two modes: a standard mode, in which the pollutant dispersion is treated as Gaussian, and an advanced mode, in which the hybrid relations are used to compute the pollutant concentrations. (orig.)
Directory of Open Access Journals (Sweden)
Erwin Azizi Jayadipraja
2016-03-01
Full Text Available Background: The cement industry is one of the main contributors of pollutant gasses in the environment through stack emissions. Aim: This study aims to model the dispersion of SO2 and NO2 gasses and to determine the area of the dispersion by American Meteorological Society – Environmental Protection Agency Regulation Model or AERMOD has been utilized by PT. Semen Tonasa (Tonasa Cement, Ltd.. Methods: Meteorological data from AERMENT was collected from reanalysis of MM5 data. While topographical data was extracted from SRTM30 satellite data. The model was carried out for a year, to cover both the dry and rainy season. Results: The result of the modeling showed that the peak value of the concentration of SO2 and NO2 pollutants for one hour are 135 μg/m3 and 160 μg/m3 respectively (quality standards of SO2 and NO2 are 900 μg/Nm3 and 400 μg/Nm3. The area of dispersion tends to be in the eastern area, such as District Minasatene (Sub-district Bontoa, Kalabbirang, Minasatene dan Biraeng, District Bungoro (Sub-district Biringere, Sapanang, Mangilu, Bulu Tellue and District Labakkang (Sub-district Taraweang.
Carbon fiber dispersion models used for risk analysis calculations
1979-01-01
For evaluating the downwind, ground level exposure contours from carbon fiber dispersion, two fiber release scenarios were chosen. The first is the fire and explosion release in which all of the fibers are released instantaneously. This model applies to accident scenarios where an explosion follows a short-duration fire in the aftermath of the accident. The second is the plume release scenario in which the total mass of fibers is released into the fire plume. This model applies to aircraft accidents where only a fire results. These models are described in detail.
A fractional calculus model of anomalous dispersion of acoustic waves.
Wharmby, Andrew W
2016-09-01
An empirical formula based on viscoelastic analysis techniques that employs concepts from the fractional calculus that was used to model the dielectric behavior of materials exposed to oscillating electromagnetic fields in the radiofrequency, terahertz, and infrared bands. This work adapts and applies the formula to model viscoelastic behavior of materials that show an apparent increase of phase velocity of vibration with an increase in frequency, otherwise known as anomalous dispersion. A fractional order wave equation is derived through the application of the classic elastic-viscoelastic correspondence principle whose analytical solution is used to describe absorption and dispersion of acoustic waves in the viscoelastic material displaying anomalous dispersion in a specific frequency range. A brief discussion and comparison of an alternative fractional order wave equation recently formulated is also included.
Debris Dispersion Model Using Java 3D
Thirumalainambi, Rajkumar; Bardina, Jorge
2004-01-01
This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.
How can we make Fickian dispersion models useful in practice?
Lee, J. H.; Rolle, M.; Kitanidis, P. K.
2016-12-01
Dispersion in porous media originates from the variability of fluid velocity jointly with concentration at scales smaller than the ones resolved in the continuum description of solute transport. The unresolved scales are thus associated with the pore-grain geometry and the larger-scale heterogeneity that are ignored when the composite pore-grain medium is replaced by a homogenous continuum. This applies whether the formation is modelled as homogeneous or discretized into homogeneous blocks. The process of dispersion is typically described through the Fickian model, i.e., dispersive flux is proportional to the gradient of the resolved concentration, commonly with the Scheidegger parameterization, i.e., a particular way to compute the dispersion coefficients utilizing dispersivity coefficients. Although the Fick-Scheidegger parameterization is by far the most commonly used in solute transport applications, its validity has been questioned. In this presentation, we will list conditions under which the Fickian dispersion model is justified, then present how the practical Fickian model can approximate what is often thought as "non-Fickian" behavior. Specifically, we will show with several examples that the Fickian dispersion model performs adequately using appropriate dispersion coefficients in a domain that is discretized finely enough for the local equilibrium conditions that the Fickian model requires to be satisfied. Over the last thirty years, advances in numerical linear algebra, adaptive mesh refinement, and high performance computing environments, in combination with a dramatic drop in computational cost, have made it possible to perform fine-resolution simulation. We will also present how upscaled hydraulic conductivity and macrodispersion coefficients change with respect to different grid size and heterogeneity scale and discuss the role of diffusion and mean velocity. From these illustrations, we argue that the predictive ability of transport modeling can be
Evaluation of Turbulence Models in Gas Dispersion
Moen, Alexander
2016-01-01
Several earlier model validation studies for predicting gas dispersion scenarios have been conducted for the three RANS two-equation eddy viscosity turbulence models, the standard k-ε (SKE), Re- Normalisation group k-ε (RNG) and Realizable k-ε (Realizable). However, these studies have mainly validated one or two of the models, and have mostly used one simulation case as a basis for determining which model is the best suited for predicting such scenarios. In addition, the studies have shown co...
Institute of Scientific and Technical Information of China (English)
陶如意; 王浩; 黄蓓
2011-01-01
For the aerial dispersing interior ballistic process and submunition exterior ballistic initial conditions of cluster munition with piston maximum travel limit, a novel model is established, and the numerical simulation is performed. The piston maximum travel limit and the effect of reaction force on carrier body are researched using the internal ballistic model. Guide tube, cluster munition rotating and submunition assembly are analyzed using the submunition initial external ballistic model. The computational results are consistent with the practical process and the experimental data, and prove the rationality of this model. The theoretical methods are presented for the construction design and dispersion analysis of piston dispersal mechanism.
A linearized dispersion relation for orthorhombic pseudo-acoustic modeling
Song, Xiaolei
2012-11-04
Wavefield extrapolation in acoustic orthorhombic anisotropic media suffers from wave-mode coupling and stability limitations in the parameter range. We introduce a linearized form of the dispersion relation for acoustic orthorhombic media to model acoustic wavefields. We apply the lowrank approximation approach to handle the corresponding space-wavenumber mixed-domain operator. Numerical experiments show that the proposed wavefield extrapolator is accurate and practically free of dispersions. Further, there is no coupling of qSv and qP waves, because we use the analytical dispersion relation. No constraints on Thomsen\\'s parameters are required for stability. The linearized expression may provide useful application for parameter estimation in orthorhombic media.
A hybrid plume model for local-scale dispersion
Energy Technology Data Exchange (ETDEWEB)
Nikmo, J.; Tuovinen, J.P.; Kukkonen, J.; Valkama, I.
1997-12-31
The report describes the contribution of the Finnish Meteorological Institute to the project `Dispersion from Strongly Buoyant Sources`, under the `Environment` programme of the European Union. The project addresses the atmospheric dispersion of gases and particles emitted from typical fires in warehouses and chemical stores. In the study only the `passive plume` regime, in which the influence of plume buoyancy is no longer important, is addressed. The mathematical model developed and its numerical testing is discussed. The model is based on atmospheric boundary-layer scaling theory. In the vicinity of the source, Gaussian equations are used in both the horizontal and vertical directions. After a specified transition distance, gradient transfer theory is applied in the vertical direction, while the horizontal dispersion is still assumed to be Gaussian. The dispersion parameters and eddy diffusivity are modelled in a form which facilitates the use of a meteorological pre-processor. Also a new model for the vertical eddy diffusivity (K{sub z}), which is a continuous function of height in the various atmospheric scaling regions is presented. The model includes a treatment of the dry deposition of gases and particulate matter, but wet deposition has been neglected. A numerical solver for the atmospheric diffusion equation (ADE) has been developed. The accuracy of the numerical model was analysed by comparing the model predictions with two analytical solutions of ADE. The numerical deviations of the model predictions from these analytic solutions were less than two per cent for the computational regime. The report gives numerical results for the vertical profiles of the eddy diffusivity and the dispersion parameters, and shows spatial concentration distributions in various atmospheric conditions 39 refs.
Optimisation of dispersion parameters of Gaussian plume model for CO₂ dispersion.
Liu, Xiong; Godbole, Ajit; Lu, Cheng; Michal, Guillaume; Venton, Philip
2015-11-01
The carbon capture and storage (CCS) and enhanced oil recovery (EOR) projects entail the possibility of accidental release of carbon dioxide (CO2) into the atmosphere. To quantify the spread of CO2 following such release, the 'Gaussian' dispersion model is often used to estimate the resulting CO2 concentration levels in the surroundings. The Gaussian model enables quick estimates of the concentration levels. However, the traditionally recommended values of the 'dispersion parameters' in the Gaussian model may not be directly applicable to CO2 dispersion. This paper presents an optimisation technique to obtain the dispersion parameters in order to achieve a quick estimation of CO2 concentration levels in the atmosphere following CO2 blowouts. The optimised dispersion parameters enable the Gaussian model to produce quick estimates of CO2 concentration levels, precluding the necessity to set up and run much more complicated models. Computational fluid dynamics (CFD) models were employed to produce reference CO2 dispersion profiles in various atmospheric stability classes (ASC), different 'source strengths' and degrees of ground roughness. The performance of the CFD models was validated against the 'Kit Fox' field measurements, involving dispersion over a flat horizontal terrain, both with low and high roughness regions. An optimisation model employing a genetic algorithm (GA) to determine the best dispersion parameters in the Gaussian plume model was set up. Optimum values of the dispersion parameters for different ASCs that can be used in the Gaussian plume model for predicting CO2 dispersion were obtained.
Modeling of Rayleigh wave dispersion in Iberia
Directory of Open Access Journals (Sweden)
José Badal
2011-01-01
Full Text Available Phase and group velocities of 15–70 s Rayleigh waves propagating across the Iberian Peninsula have been transformed into local dispersion curves by linear inversion of travel times. The procedure permits that the waveform dispersion to be obtained as a continuous period-dependent velocity function at grid points belonging to the area probed by the waves, thus providing phase- and group-velocity contour maps for several periods within the interval of interest. The regionalization process rests on a homogeneous initial data set in which the number of observations remains almost constant for all periods of reference. Damped least-squares inversion of the local dispersion curves for shear-wave velocity structure is performed to obtain depth-dependent S-wave velocity profiles at the grid points covering the model region. The reliability of the results should improve significantly owing to the use of phase and group velocities simultaneously. On this basis, we have built horizontal depth sections that give an updated view of the seismic velocity structure of the peninsula at lithospheric and upper mantle depths (20–200 km. After averaging all the pure-path S-wave velocities previously determined at each grid point, the velocity-depth models so obtained for major tectonic units allow the comparison between the Hercynian basement and other areas of Mesozoic folding and Tertiary basins.
Air Quality Dispersion Modeling - Alternative Models
Models, not listed in Appendix W, that can be used in regulatory applications with case-by-case justification to the Reviewing Authority as noted in Section 3.2, Use of Alternative Models, in Appendix W.
Statistical detection and modeling of the over-dispersion of winter storm occurrence
Raschke, M.
2015-08-01
In this communication, I improve the detection and modeling of the over-dispersion of winter storm occurrence. For this purpose, the generalized Poisson distribution and the Bayesian information criterion are introduced; the latter is used for statistical model selection. Moreover, I replace the frequently used dispersion statistics by an over-dispersion parameter which does not depend on the considered return period of storm events. These models and methods are applied in order to properly detect the over-dispersion in winter storm data for Germany, carrying out a joint estimation of the distribution models for different samples.
Modelling airborne dispersion for disaster management
Musliman, I. A.; Yohnny, L.
2017-05-01
Industrial disasters, like any other disasters, can happen anytime, anywhere and in any form. Airborne industrial disaster is a kind of catastrophic event involving the release of particles such as chemicals and industrial wastes into environment in gaseous form, for instance gas leakages. Unlike solid and liquid materials, gases are often colourless and odourless, the particles are too tiny to be visible to the naked eyes; hence it is difficult to identify the presence of the gases and to tell the dispersion and location of the substance. This study is to develop an application prototype to perform simulation modelling on the gas particles to determine the dispersion of the gas particles and to identify the coverage of the affected area. The prototype adopted Lagrangian Particle Dispersion (LPD) model to calculate the position of the gas particles under the influence of wind and turbulent velocity components, which are the induced wind due to the rotation of the Earth, and Convex Hull algorithm to identify the convex points of the gas cloud to form the polygon of the coverage area. The application performs intersection and overlay analysis over a set of landuse data at Pasir Gudang, Johor industrial and residential area. Results from the analysis would be useful to tell the percentage and extent of the affected area, and are useful for the disaster management to evacuate people from the affected area. The developed application can significantly increase efficiency of emergency handling during a crisis. For example, by using a simulation model, the emergency handling can predict what is going to happen next, so people can be well informed and preparations works can be done earlier and better. Subsequently, this application helps a lot in the decision making process.
Simplified Atmospheric Dispersion Model andModel Based Real Field Estimation System ofAir Pollution
Institute of Scientific and Technical Information of China (English)
2015-01-01
The atmospheric dispersion model has been well developed and applied in pollution emergency and prediction. Based on thesophisticated air diffusion model, this paper proposes a simplified model and some optimization about meteorological andgeological conditions. The model is suitable for what is proposed as Real Field Monitor and Estimation system. The principle ofsimplified diffusion model and its optimization is studied. The design of Real Field Monitor system based on this model and itsfundamental implementations are introduced.
A new mobile-immobile model for reactive solute transport with scale-dependent dispersion
Gao, Guangyao; Zhan, Hongbin; Feng, Shaoyuan; Fu, Bojie; Ma, Ying; Huang, Guanhua
2010-08-01
This study proposed a new mobile-immobile model (MIM) to describe reactive solute transport with scale-dependent dispersion in heterogeneous porous media. The model was derived from the conventional MIM but assumed the dispersivity to be a linear or exponential function of travel distance. The linear adsorption and the first-order degradation of solute were also considered in the model. The Laplace transform technique and the de Hoog numerical Laplace inversion method were applied to solve the developed model. Solute breakthrough curves (BTCs) obtained from MIM with scale-dependent and constant dispersions were compared, and a constant effective dispersivity was provided to reflect the lumped scale-dependent dispersion effect. The effective dispersivity was calculated by arithmetically averaging the distance-dependent dispersivity. With this effective dispersivity, MIM could produce similar BTC as that from MIM with scale-dependent dispersion in porous media with moderate heterogeneity. The applicability of the proposed new model was tested with concentration data from a 1,250-cm long and highly heterogeneous soil column. The simulation results indicated that MIM with constant and linear distance-dependent dispersivities were unable to adequately describe the measured BTCs in the column, while MIM with exponential distance-dependent dispersivity satisfactorily captured the evolution of BTCs.
Implementation of meso-scale radioactive dispersion model for GPU
Energy Technology Data Exchange (ETDEWEB)
Sunarko [National Nuclear Energy Agency of Indonesia (BATAN), Jakarta (Indonesia). Nuclear Energy Assessment Center; Suud, Zaki [Bandung Institute of Technology (ITB), Bandung (Indonesia). Physics Dept.
2017-05-15
Lagrangian Particle Dispersion Method (LPDM) is applied to model atmospheric dispersion of radioactive material in a meso-scale of a few tens of kilometers for site study purpose. Empirical relationships are used to determine the dispersion coefficient for various atmospheric stabilities. Diagnostic 3-D wind-field is solved based on data from one meteorological station using mass-conservation principle. Particles representing radioactive pollutant are dispersed in the wind-field as a point source. Time-integrated air concentration is calculated using kernel density estimator (KDE) in the lowest layer of the atmosphere. Parallel code is developed for GTX-660Ti GPU with a total of 1 344 scalar processors using CUDA. A test of 1-hour release discovers that linear speedup is achieved starting at 28 800 particles-per-hour (pph) up to about 20 x at 14 4000 pph. Another test simulating 6-hour release with 36 000 pph resulted in a speedup of about 60 x. Statistical analysis reveals that resulting grid doses are nearly identical in both CPU and GPU versions of the code.
Meso-Scale Radioactive Dispersion Modelling using GPU
Sunarko; Suud, Zaki
2017-01-01
Lagrangian Particle Dispersion Method (LPDM) is applied to model atmospheric dispersion of radioactive material in a meso-scale of a few tens of kilometers for site study purpose. Empirical relationships are used to determine the dispersion coefficient for various atmospheric stabilities. Diagnostic 3-D wind field is created based on data from a meteorological station using mass-conservation principle. Particles imitating radioactive pollutant are dispersed in the wind-field as a point source. Time-integrated air concentration is calculated using kernel density estimator (KDE) in the lowest layer of the atmosphere. Parallel code is developed for GTX-660Ti GPU with a total of 1344 scalar processors using CUDA programming. Significant speedup of about 20 times is achieved compared to the serial version of the code while accuracy is kept at reasonable level. Only small differences in particle positions and grid doses are observed when using the same sets of random number and meteorological data in both CPU and GPU versions of the code.
Novel applications of the dispersive optical model
Dickhoff, W H; Mahzoon, M H
2016-01-01
A review of recent developments of the dispersive optical model (DOM) is presented. Starting from the original work of Mahaux and Sartor, several necessary steps are developed and illustrated which increase the scope of the DOM allowing its interpretation as generating an experimentally constrained functional form of the nucleon self-energy. The method could therefore be renamed as the dispersive self-energy method. The aforementioned steps include the introduction of simultaneous fits of data for chains of isotopes or isotones allowing a data-driven extrapolation for the prediction of scattering cross sections and level properties in the direction of the respective drip lines. In addition, the energy domain for data was enlarged to include results up to 200 MeV where available. An important application of this work was implemented by employing these DOM potentials to the analysis of the (\\textit{d,p}) transfer reaction using the adiabatic distorted wave approximation (ADWA). We review the fully non-local DOM...
Computer Models Simulate Fine Particle Dispersion
2010-01-01
Through a NASA Seed Fund partnership with DEM Solutions Inc., of Lebanon, New Hampshire, scientists at Kennedy Space Center refined existing software to study the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces. The software, EDEM, allows users to import particles and obtain accurate representations of their shapes for modeling purposes, such as simulating bulk solids behavior, and was enhanced to be able to more accurately model fine, abrasive, cohesive particles. These new EDEM capabilities can be applied in many industries unrelated to space exploration and have been adopted by several prominent U.S. companies, including John Deere, Pfizer, and Procter & Gamble.
CFD Modeling of LNG Spill: Humidity Effect on Vapor Dispersion
Giannissi, S. G.; Venetsanos, A. G.; Markatos, N.
2015-09-01
The risks entailed by an accidental spill of Liquefied Natural Gas (LNG) should be indentified and evaluated, in order to design measures for prevention and mitigation in LNG terminals. For this purpose, simulations are considered a useful tool to study LNG spills and to understand the mechanisms that influence the vapor dispersion. In the present study, the ADREA-HF CFD code is employed to simulate the TEEX1 experiment. The experiment was carried out at the Brayton Fire Training Field, which is affiliated with the Texas A&M University system and involves LNG release and dispersion over water surface in open- obstructed environment. In the simulation the source was modeled as a two-phase jet enabling the prediction of both the vapor dispersion and the liquid pool spreading. The conservation equations for the mixture are solved along with the mass fraction for natural gas. Due to the low prevailing temperatures during the spill ambient humidity condenses and this might affect the vapor dispersion. This effect was examined in this work by solving an additional conservation equation for the water mass fraction. Two different models were tested: the hydrodynamic equilibrium model which assumes kinetic equilibrium between the phases and the non hydrodynamic equilibrium model, in order to assess the effect of slip velocity on the prediction. The slip velocity is defined as the difference between the liquid phase and the vapor phase and is calculated using the algebraic slip model. Constant droplet diameter of three different sizes and a lognormal distribution of the droplet diameter were applied and the results are discussed and compared with the measurements.
Dispersion modeling of thermal power plant emissions on stochastic space
Gorle, J. M. R.; Sambana, N. R.
2016-05-01
This study aims to couple a deterministic atmospheric dispersion solver based on Gaussian model with a nonintrusive stochastic model to quantify the propagation of multiple uncertainties. The nonintrusive model is based on probabilistic collocation framework. The advantage of nonintrusive nature is to retain the existing deterministic plume dispersion model without missing the accuracy in extracting the statistics of stochastic solution. The developed model is applied to analyze the SO2 emission released from coal firing unit in the second stage of the National Thermal Power Corporation (NTPC) in Dadri, India using "urban" conditions. The entire application is split into two cases, depending on the source of uncertainty. In case 1, the uncertainties in stack gas exit conditions are used to construct the stochastic space while in case 2, meteorological conditions are considered as the sources of uncertainty. Both cases develop 2D uncertain random space in which the uncertainty propagation is quantified in terms of plume rise and pollutant concentration distribution under slightly unstable atmospheric stability conditions. Starting with deterministic Gaussian plume model demonstration and its application, development of stochastic collocation model, convergence study, error analysis, and uncertainty quantification are presented in this paper.
Modelling Aerosol Dispersion in Urban Street Canyons
Tay, B. K.; Jones, D. P.; Gallagher, M. W.; McFiggans, G. B.; Watkins, A. P.
2009-04-01
Flow patterns within an urban street canyon are influenced by various micrometeorological factors. It also represents an environment where pollutants such as aerosols accumulate to high levels due to high volumes of traffic. As adverse health effects are being attributed to exposure to aerosols, an investigation of the dispersion of aerosols within such environments is of growing importance. In particular, one is concerned with the vertical structure of the aerosol concentration, the ventilation characteristics of the street canyon and the influence of aerosol microphysical processes. Due to the inherent heterogeneity of the aerosol concentrations within the street canyon and the lack of spatial resolution of measurement campaigns, these issues are an on-going debate. Therefore, a modelling tool is required to represent aerosol dispersion patterns to provide insights to results of past measurement campaigns. Computational Fluid Dynamics (CFD) models are able to predict detailed airflow patterns within urban geometries. This capability may be further extended to include aerosol dispersion, by an Euler-Euler multiphase approach. To facilitate the investigation, a two-dimensional, multiphase CFD tool coupled with the k-epsilon turbulence model and with the capability of modelling mixed convection flow regimes arising from both wind driven flows and buoyancy effects from heated walls was developed. Assuming wind blowing perpendicularly to the canyon axis and treating aerosols as a passive scalar, an attempt will be made to assess the sensitivities of aerosol vertical structure and ventilation characteristics to the various flow conditions. Numerical studies were performed using an idealized 10m by 10m canyon to represent a regular canyon and 10m by 5m to represent a deep one. An aerosol emission source was assigned on the centerline of the canyon to represent exhaust emissions. The vertical structure of the aerosols would inform future directives regarding the
Directory of Open Access Journals (Sweden)
Laura E. Venegas
2012-06-01
Full Text Available En los cañones urbanos, frecuentemente, se presentan concentraciones de contaminantes en aire varias veces superiores a la contaminación de fondo urbana. En este trabajo, se comparan valores de concentraciones de monóxido de carbono (CO en aire medidas dentro de un cañón urbano con las estimadas mediante algunos modelos de dispersión atmosférica aplicables a procesos que se verifican en los cañones: STREET, STREET-BOX, OSPM y AEOLIUS. Se presenta la evaluación para condiciones de sotavento, barlovento y para direcciones intermedias del viento. En la comparación, se utilizaron los valores horarios de concentraciones de CO en aire medidas durante un año en el interior de un cañón urbano de Göttinger Strässe (Hannover, Alemania y en el techo de un edificio lindero, de velocidad y dirección del viento observadas en el techo del mismo edificio y de flujo de tránsito vehicular en la calle del cañón. Los resultados generados por el modelo STREET con una constante empírica k=7, subestimaron las concentraciones observadas, obteniéndose un mejor desempeño con k= 12,1. El modelo STREET-BOX es adecuado para condiciones de sotavento y direcciones intermedias, pero presenta diferencias importantes con las concentraciones observadas a barlovento. En general, los resultados aportados por los modelos OSPM y AEOLIUS fueron los que menos se apartaron de los valores observados.Air pollutant concentrations inside street canyons are usually several times background concentrations in urban areas. In this paper, carbon monoxide (CO concentrations observed in a street canyon are compared with estimated values obtained using four atmospheric dispersion models: STREET, STREET-BOX, OSPM and AEOLIUS. Results for leeward, windward and intermediate wind directions are analyzed. Data used in the model evaluation include one year of hourly CO concentrations measured inside a street canyon of Göttinger Strässe (Hannover, Germany and at the roof of a
Ionic Liquids Applied to Improve the Dispersion of Coagent Particles in an Elastomer
Magdalena Maciejewska; Marian Zaborski
2013-01-01
The aim of this work was to study the activity of several ionic liquids (alkylimidazolium salts) that are used to improve the dispersion of coagent particles in peroxide-cross-linked hydrogenated acrylonitrile butadiene elastomer (HNBR). Hydrotalcite grafted with monoallyl maleate was applied as a coagent for the HNBR vulcanization. In this paper, we discuss the effect of the ionic liquids (alkylimidazolium salts) with respect to their anion (bromide, chloride, tetrafluoroborate, and hexafluo...
FEM numerical model study of electrosurgical dispersive electrode design parameters.
Pearce, John A
2015-01-01
Electrosurgical dispersive electrodes must safely carry the surgical current in monopolar procedures, such as those used in cutting, coagulation and radio frequency ablation (RFA). Of these, RFA represents the most stringent design constraint since ablation currents are often more than 1 to 2 Arms (continuous) for several minutes depending on the size of the lesion desired and local heat transfer conditions at the applicator electrode. This stands in contrast to standard surgical activations, which are intermittent, and usually less than 1 Arms, but for several seconds at a time. Dispersive electrode temperature rise is also critically determined by the sub-surface skin anatomy, thicknesses of the subcutaneous and supra-muscular fat, etc. Currently, we lack fundamental engineering design criteria that provide an estimating framework for preliminary designs of these electrodes. The lack of a fundamental design framework means that a large number of experiments must be conducted in order to establish a reasonable design. Previously, an attempt to correlate maximum temperatures in experimental work with the average current density-time product failed to yield a good match. This paper develops and applies a new measure of an electrode stress parameter that correlates well with both the previous experimental data and with numerical models of other electrode shapes. The finite element method (FEM) model work was calibrated against experimental RF lesions in porcine skin to establish the fundamental principle underlying dispersive electrode performance. The results can be used in preliminary electrode design calculations, experiment series design and performance evaluation.
Optimization of wind speed on dispersion of pollutants using coupled receptor and dispersion model
Indian Academy of Sciences (India)
N Anu; S Rangabhashiyam; Rahul Antony; N Selvaraju
2015-08-01
Air pollutants emission from various source categories can be quantified through mass balance (receptor model) techniques, multivariate data analysis and dispersion model. The composition of particulate matter from various emission points (emission inventory) and the massive analysis of the composition in the collected samples from various locations (receptor) are used to estimate quantitative source contribution through receptor models. In dispersion model, on the other hand the emission rates (g/m3) from various sources together with particle size, stack height, topography, meteorological conditions (temperature, humidity, wind speed and directions, etc.) will affect the pollutant concentration at a point or in a region. The parameters used in dispersion model are not considering in receptor models but have been affecting indirectly as difference concentration at various receptor locations. These differences are attributed and possible erroneous results can be viewed through coupled receptor-dispersion model analysis. The current research work proposed a coupled receptor-dispersion model to reduce the difference between predicted concentrations through optimized wind velocity used in dispersion model. The converged wind velocities for various error percentages (10%, 40%, 60% and 80%) in receptor concentration have been obtained with corresponding increase in the error. The proposed combined approaches help to reconcile the differences arise when the two models used in an individual mode.
Novel applications of the dispersive optical model
Dickhoff, W. H.; Charity, R. J.; Mahzoon, M. H.
2017-03-01
A review of recent developments of the dispersive optical model (DOM) is presented. Starting from the original work of Mahaux and Sartor, several necessary steps are developed and illustrated which increase the scope of the DOM allowing its interpretation as generating an experimentally constrained functional form of the nucleon self-energy. The method could therefore be renamed as the dispersive self-energy method. The aforementioned steps include the introduction of simultaneous fits of data for chains of isotopes or isotones allowing a data-driven extrapolation for the prediction of scattering cross sections and level properties in the direction of the respective drip lines. In addition, the energy domain for data was enlarged to include results up to 200 MeV where available. An important application of this work was implemented by employing these DOM potentials to the analysis of the (d, p) transfer reaction using the adiabatic distorted wave approximation. We review these calculations which suggest that physically meaningful results are easier to obtain by employing DOM ingredients as compared to the traditional approach which relies on a phenomenologically-adjusted bound-state wave function combined with a global (nondispersive) optical-model potential. Application to the exotic 132Sn nucleus also shows great promise for the extrapolation of DOM potentials towards the drip line with attendant relevance for the physics of FRIB. We note that the DOM method combines structure and reaction information on the same footing providing a unique approach to the analysis of exotic nuclei. We illustrate the importance of abandoning the custom of representing the non-local Hartree–Fock (HF) potential in the DOM by an energy-dependent local potential as it impedes the proper normalization of the solution of the Dyson equation. This important step allows for the interpretation of the DOM potential as representing the nucleon self-energy permitting the calculations of
Modeling of dilute and dense dispersed fluid-particle flow
Energy Technology Data Exchange (ETDEWEB)
Laux, Harald
1998-08-01
A general two-fluid model is derived and applied in CFD computations to various test cases of important industrial multiphase flows. It is general in the sense of its applicability to dilute and dense dispersed fluid-particle flows. The model is limited to isothermal flow without mass transfer and only one particle phase is described. The instantaneous fluid phase equations, including the phase interaction terms, are derived from a volume averaging technique, and the instantaneous particle phase equations are derived from the kinetic theory of granular material. Whereas the averaging procedure, the treatment of the interaction terms, and the kinetic theory approach have been reported in literature prior to this work the combination of the approaches is new. The resulting equations are derived without ambiguity in the interpretation of the particle phase pressure (equation-of-state of particle phase). The basic modeling for the particle phase is improved in two steps. Because in the basic modeling only stresses due to kinetic and collisional interactions are included, a simple model for an effective viscosity is developed in order to allow also frictional stresses within the particle phase. Moreover, turbulent stresses and turbulent dispersion of particles play often an important role for the transport processes. Therefore in a second step, a two-equation turbulence model for both fluid and particle phase turbulence is derived by applying the phasic average to the instantaneous equations. The resulting k-{epsilon}-k{sup d}-{epsilon}{sup d} model is new. Mathematical closure is attempted such that the resulting set of equations is valid for both dilute arid dense flows. During the development of the closure relations a clear distinction is made between granular or ''viscous'' microscale fluctuations and turbulent macro scale fluctuations (true particle turbulence) within the particle phase. The set of governing equations is discretized by using a
Modeling compressible multiphase flows with dispersed particles in both dense and dilute regimes
McGrath, T.; St. Clair, J.; Balachandar, S.
2017-06-01
Many important explosives and energetics applications involve multiphase formulations employing dispersed particles. While considerable progress has been made toward developing mathematical models and computational methodologies for these flows, significant challenges remain. In this work, we apply a mathematical model for compressible multiphase flows with dispersed particles to existing shock and explosive dispersal problems from the literature. The model is cast in an Eulerian framework, treats all phases as compressible, is hyperbolic, and satisfies the second law of thermodynamics. It directly applies the continuous-phase pressure gradient as a forcing function for particle acceleration and thereby retains relaxed characteristics for the dispersed particle phase that remove the constituent material sound velocity from the eigenvalues. This is consistent with the expected characteristics of dispersed particle phases and can significantly improve the stable time-step size for explicit methods. The model is applied to test cases involving the shock and explosive dispersal of solid particles and compared to data from the literature. Computed results compare well with experimental measurements, providing confidence in the model and computational methods applied.
Dispersion modelling approaches for near road applications involving noise barriers
The talk will present comparisons with two datasets of the barrier algorithms implemented in two different dispersion models: US EPA’s R-LINE (a research dispersion modelling tool under development by the US EPA’s Office of Research and Development) and CERC’s A...
CFD model simulation of LPG dispersion in urban areas
Pontiggia, Marco; Landucci, Gabriele; Busini, Valentina; Derudi, Marco; Alba, Mario; Scaioni, Marco; Bonvicini, Sarah; Cozzani, Valerio; Rota, Renato
2011-08-01
There is an increasing concern related to the releases of industrial hazardous materials (either toxic or flammable) due to terrorist attacks or accidental events in congested industrial or urban areas. In particular, a reliable estimation of the hazardous cloud footprint as a function of time is required to assist emergency response decision and planning as a primary element of any Decision Support System. Among the various hazardous materials, the hazard due to the road and rail transportation of liquefied petroleum gas (LPG) is well known since large quantities of LPG are commercialized and the rail or road transportation patterns are often close to downtown areas. Since it is well known that the widely-used dispersion models do not account for the effects of any obstacle like buildings, tanks, railcars, or trees, in this paper a CFD model has been applied to simulate the reported consequences of a recent major accident involving an LPG railcar rupture in a congested urban area (Viareggio town, in Italy), showing both the large influence of the obstacles on LPG dispersion as well as the potentials of CFD models to foresee such an influence.
TESTING FOR VARYING DISPERSION IN DISCRETE EXPONENTIAL FAMILY NONLINEAR MODELS
Institute of Scientific and Technical Information of China (English)
LinJinguan; WeiBocheng; ZhangNansong
2003-01-01
It is necessary to test for varying dispersion in generalized nonlinear models. Wei ,et al(1998) developed a likelihood ratio test,a score test and their adjustments to test for varying dispersion in continuous exponential family nonlinear models. This type of problem in the framework of general discrete exponential family nonlinear models is discussed. Two types of varying dispersion, which are random coefficients model and random effects model, are proposed,and corresponding score test statistics are constructed and expressed in simple ,easy to use ,matrix formulas.
Shou, Yiyun; Smithson, Michael
2015-03-01
Conventional measures of predictor importance in linear models are applicable only when the assumption of homoscedasticity is satisfied. Moreover, they cannot be adapted to evaluating predictor importance in models of heteroscedasticity (i.e., dispersion), an issue that seems not to have been systematically addressed in the literature. We compare two suitable approaches, Dominance Analysis (DA) and Bayesian Model Averaging (BMA), for simultaneously evaluating predictor importance in models of location and dispersion. We apply them to the beta general linear model as a test-case, illustrating this with an example using real data. Simulations using several different model structures, sample sizes, and degrees of multicollinearity suggest that both DA and BMA largely agree on the relative importance of predictors of the mean, but differ when ranking predictors of dispersion. The main implication of these findings for researchers is that the choice between DA and BMA is most important when they wish to evaluate the importance of predictors of dispersion.
Viscosity model of high-viscosity dispersing system
Institute of Scientific and Technical Information of China (English)
魏先福; 王娜; 黄蓓青; 孙承博
2008-01-01
High-viscosity dispersing system is formed by dispersing the solid particles in the high-viscosity continuous medium.It is very easy to form the three-dimensional network structure for solid particles in the system and the rheology behavior becomes complicated.The apparent viscosity of this dispersing system always has the connection with the volume ratio and the shear rate.In order to discuss the rheology behavior and put up the viscosity model,the suspension of silicon dioxide and silicon oil were prepared.Through testing the viscosity,the solid concentration and the shear rate,the effects of the ratio and the shear rate on viscosity was analyzed,the model of the high-viscosity dispersing system was designed and the model with the printing ink were validated.The experiment results show that the model is applicable to the high-viscosity dispersing systems.
Fused deposition modelling of sodium caseinate dispersions
Schutyser, M.A.I.; Houlder, S.; Wit, de Martin; Buijsse, C.A.P.; Alting, A.C.
2017-01-01
Only recently, researchers have started experimenting with 3D printing of foods. The aim of this study was to investigate 3D printed objects from sodium caseinate dispersions, exhibiting reversible gelation behaviour. Gelation and dispensing behaviour were explored and structures of different pro
Modeling Responses of Leafy Spurge Dispersal to Control Strategies
Institute of Scientific and Technical Information of China (English)
Zewei Miao
2007-01-01
Leafy spurge (Euphorbia esula L.) has substantial negative effects on grassland biodiversity, productivity, and economic benefit in North America.To predict these negative impacts, we need an appropriate plant-spread model which can simulate the response of an invading population to different control strategies.In this study, using a stochastic map lattice approach we generated a spatially explicitly stochastic process-based model to simulate dispersal trajectories of leafy spurge under various control scenarios.The model integrated dispersal curve, propagule pressure, and population growth of leafy spurge at local and short-temporal scales to capture spread features of leafy spurge at large spatial and long-temporal scales.Our results suggested that narrow-, medium-, and fat-tailed kernels did not differ In their ability to predict spread, in contrast to previous works.For all kernels, Allee effects were significantly present and could explain the lag phase (three decades)before leafy spurge spread accelerated.When simulating from the initial stage of introduction, Allee effects were critical in predicting spread rate of leafy spurge, because the prediction could be seriously affected by the low density period of leafy spurge community.No Allee effects models were not able to simulate spread rate well in this circumstance.When applying control strategies to the current diatribution, Allee effects could stop the spread of leafy spurge; no Allee effects models, however, were able to slow but not stop the spread.The presence of Allee effects had significant ramifications on the efficiencies of control strategies.For both Allee and no Allee effects models, the later that control strategies were implemented, the more effort had to be input to achieve similar control results.
Modeling CO2 air dispersion from gas driven lake eruptions
Chiodini, Giovanni; Costa, Antonio; Rouwet, Dmitri; Tassi, Franco
2016-04-01
The most tragic event of gas driven lake eruption occurred at Lake Nyos (Cameroon) on 21 August 1986, when a dense cloud of CO2 suffocated more than 1700 people and an uncounted number of animals in just one night. The event stimulated a series of researches aimed to understand gas origins, gas release mechanisms and strategies for gas hazard mitigation. Very few studies have been carried out for describing the transport of dense CO2 clouds in the atmosphere. Although from a theoretical point of view, gas dispersion can be fully studied by solving the complete equations system for mass, momentum and energy transport, in actual practice, different simplified models able to describe only specific phases or aspects have to be used. In order to simulate dispersion of a heavy gas and to assess the consequent hazard we used a model based on a shallow layer approach (TWODEE2). This technique which uses depth-averaged variables to describe the flow behavior of dense gas over complex topography represents a good compromise between the complexity of computational fluid dynamic models and the simpler integral models. Recently the model has been applied for simulating CO2 dispersion from natural gas emissions in Central Italy. The results have shown how the dispersion pattern is strongly affected by the intensity of gas release, the topography and the ambient wind speed. Here for the first time we applied TWODEE2 code to simulate the dispersion of the large CO2 clouds released by limnic eruptions. An application concerns the case of the 1986 event at lake Nyos. Some difficulties for the simulations were related to the lack of quantitative information: gas flux estimations are not well constrained, meteorological conditions are only qualitatively known, the digital model of the terrain is of poor quality. Different scenarios were taken into account in order to reproduce the qualitative observations available for such episode. The observations regard mainly the effects of gas on
Atmospheric Dispersion Model Validation in Low Wind Conditions
Energy Technology Data Exchange (ETDEWEB)
Sawyer, Patrick
2007-11-01
Atmospheric plume dispersion models are used for a variety of purposes including emergency planning and response to hazardous material releases, determining force protection actions in the event of a Weapons of Mass Destruction (WMD) attack and for locating sources of pollution. This study provides a review of previous studies that examine the accuracy of atmospheric plume dispersion models for chemical releases. It considers the principles used to derive air dispersion plume models and looks at three specific models currently in use: Aerial Location of Hazardous Atmospheres (ALOHA), Emergency Prediction Information Code (EPIcode) and Second Order Closure Integrated Puff (SCIPUFF). Results from this study indicate over-prediction bias by the EPIcode and SCIPUFF models and under-prediction bias by the ALOHA model. The experiment parameters were for near field dispersion (less than 100 meters) in low wind speed conditions (less than 2 meters per second).
Atmospheric Dispersion Model Validation in Low Wind Conditions
Energy Technology Data Exchange (ETDEWEB)
Sawyer, Patrick
2007-11-01
Atmospheric plume dispersion models are used for a variety of purposes including emergency planning and response to hazardous material releases, determining force protection actions in the event of a Weapons of Mass Destruction (WMD) attack and for locating sources of pollution. This study provides a review of previous studies that examine the accuracy of atmospheric plume dispersion models for chemical releases. It considers the principles used to derive air dispersion plume models and looks at three specific models currently in use: Aerial Location of Hazardous Atmospheres (ALOHA), Emergency Prediction Information Code (EPIcode) and Second Order Closure Integrated Puff (SCIPUFF). Results from this study indicate over-prediction bias by the EPIcode and SCIPUFF models and under-prediction bias by the ALOHA model. The experiment parameters were for near field dispersion (less than 100 meters) in low wind speed conditions (less than 2 meters per second).
Modelling non-symmetric collagen fibre dispersion in arterial walls.
Holzapfel, Gerhard A; Niestrawska, Justyna A; Ogden, Ray W; Reinisch, Andreas J; Schriefl, Andreas J
2015-05-06
New experimental results on collagen fibre dispersion in human arterial layers have shown that the dispersion in the tangential plane is more significant than that out of plane. A rotationally symmetric dispersion model is not able to capture this distinction. For this reason, we introduce a new non-symmetric dispersion model, based on the bivariate von Mises distribution, which is used to construct a new structure tensor. The latter is incorporated in a strain-energy function that accommodates both the mechanical and structural features of the material, extending our rotationally symmetric dispersion model (Gasser et al. 2006 J. R. Soc. Interface 3, 15-35. (doi:10.1098/rsif.2005.0073)). We provide specific ranges for the dispersion parameters and show how previous models can be deduced as special cases. We also provide explicit expressions for the stress and elasticity tensors in the Lagrangian description that are needed for a finite-element implementation. Material and structural parameters were obtained by fitting predictions of the model to experimental data obtained from human abdominal aortic adventitia. In a finite-element example, we analyse the influence of the fibre dispersion on the homogeneous biaxial mechanical response of aortic strips, and in a final example the non-homogeneous stress distribution is obtained for circumferential and axial strips under fixed extension. It has recently become apparent that this more general model is needed for describing the mechanical behaviour of a variety of fibrous tissues.
Local Influence Analysis for Semiparametric Reproductive Dispersion Nonlinear Models
Institute of Scientific and Technical Information of China (English)
Xue-dong CHEN; Nian-sheng TANG; Xue-ren WANG
2012-01-01
The present paper proposes a semiparametric reproductive dispersion nonlinear model (SRDNM)which is an extension of the nonlinear reproductive dispersion models and the semiparameter regression models.Maximum penalized likelihood estimates (MPLEs) of unknown parameters and nonparametric functions in SRDNM are presented.Assessment of local influence for various perturbation schemes are investigated.Some local influence diagnostics are given.A simulation study and a real example are used to illustrate the proposed methodologies.
Essays on pricing dynamics, price dispersion, and nested logit modelling
Verlinda, Jeremy Alan
The body of this dissertation comprises three standalone essays, presented in three respective chapters. Chapter One explores the possibility that local market power contributes to the asymmetric relationship observed between wholesale costs and retail prices in gasoline markets. I exploit an original data set of weekly gas station prices in Southern California from September 2002 to May 2003, and take advantage of highly detailed station and local market-level characteristics to determine the extent to which spatial differentiation influences price-response asymmetry. I find that brand identity, proximity to rival stations, bundling and advertising, operation type, and local market features and demographics each influence a station's predicted asymmetric relationship between prices and wholesale costs. Chapter Two extends the existing literature on the effect of market structure on price dispersion in airline fares by modeling the effect at the disaggregate ticket level. Whereas past studies rely on aggregate measures of price dispersion such as the Gini coefficient or the standard deviation of fares, this paper estimates the entire empirical distribution of airline fares and documents how the shape of the distribution is determined by market structure. Specifically, I find that monopoly markets favor a wider distribution of fares with more mass in the tails while duopoly and competitive markets exhibit a tighter fare distribution. These findings indicate that the dispersion of airline fares may result from the efforts of airlines to practice second-degree price discrimination. Chapter Three adopts a Bayesian approach to the problem of tree structure specification in nested logit modelling, which requires a heavy computational burden in calculating marginal likelihoods. I compare two different techniques for estimating marginal likelihoods: (1) the Laplace approximation, and (2) reversible jump MCMC. I apply the techniques to both a simulated and a travel mode
Modelling surface radioactive spill dispersion in the Alborán Sea.
Periáñez, R
2006-01-01
The Strait of Gibraltar and the Alborán Sea are the only connection between the Atlantic Ocean and the Mediterranean Sea. Intense shipping activities occur in the area, including transport of waste radionuclides and transit of nuclear submarines. Thus, it is relevant to have a dispersion model that can be used in an emergency situation after an accident, to help the decision-making process. Such dispersion model requires an appropriate description of the physical oceanography of the region of interest, with simulations of tides and residual (average) circulation. In this work, a particle-tracking dispersion model that can be used to simulate the dispersion of radionuclides in the system Strait of Gibraltar-Alborán Sea is described. Tides are simulated using a barotropic model and for the average circulation a reduced-gravity model is applied. This model is able to reproduce the main features of the Alborán circulation (the well known Western Alborán Gyre, WAG, and the coastal circulation mode). The dispersion model is run off-line, using previously computed tidal and residual currents. The contamination patch is simulated by a number of particles whose individual paths are computed; diffusion and decay being modelled using a Monte Carlo method. Radionuclide concentrations may be obtained from the density of particles per water volume unit. Results from the hydrodynamic models have been compared with observations in the area. Several examples of dispersion computations under different wind and circulation conditions are presented.
Ionic Liquids Applied to Improve the Dispersion of Coagent Particles in an Elastomer
Directory of Open Access Journals (Sweden)
Magdalena Maciejewska
2013-01-01
Full Text Available The aim of this work was to study the activity of several ionic liquids (alkylimidazolium salts that are used to improve the dispersion of coagent particles in peroxide-cross-linked hydrogenated acrylonitrile butadiene elastomer (HNBR. Hydrotalcite grafted with monoallyl maleate was applied as a coagent for the HNBR vulcanization. In this paper, we discuss the effect of the ionic liquids (alkylimidazolium salts with respect to their anion (bromide, chloride, tetrafluoroborate, and hexafluorophosphate and the length of alkyl chain in the cation (allyl-, ethyl-, butyl-, hexyl-, and octyl- on the vulcanization kinetics of rubber compounds. The influence of ionic liquids on the cross-link density, the mechanical properties of the vulcanizates, and their resistance to weather ageing were also studied. Alkylimidazolium salts seem to improve the dispersion of the coagent particles and to be active in the cross-linking of HNBR with peroxide. The type of ionic liquid considerably influences the activity of the coagent particles toward the HNBR. The application of ionic liquids increases the cross-link density of the vulcanizates and improves their resistance to weather aging.
Modeling of dilute and dense dispersed fluid-particle flow
Energy Technology Data Exchange (ETDEWEB)
Laux, Harald
1998-08-01
A general two-fluid model is derived and applied in CFD computations to various test cases of important industrial multiphase flows. It is general in the sense of its applicability to dilute and dense dispersed fluid-particle flows. The model is limited to isothermal flow without mass transfer and only one particle phase is described. The instantaneous fluid phase equations, including the phase interaction terms, are derived from a volume averaging technique, and the instantaneous particle phase equations are derived from the kinetic theory of granular material. Whereas the averaging procedure, the treatment of the interaction terms, and the kinetic theory approach have been reported in literature prior to this work the combination of the approaches is new. The resulting equations are derived without ambiguity in the interpretation of the particle phase pressure (equation-of-state of particle phase). The basic modeling for the particle phase is improved in two steps. Because in the basic modeling only stresses due to kinetic and collisional interactions are included, a simple model for an effective viscosity is developed in order to allow also frictional stresses within the particle phase. Moreover, turbulent stresses and turbulent dispersion of particles play often an important role for the transport processes. Therefore in a second step, a two-equation turbulence model for both fluid and particle phase turbulence is derived by applying the phasic average to the instantaneous equations. The resulting k-{epsilon}-k{sup d}-{epsilon}{sup d} model is new. Mathematical closure is attempted such that the resulting set of equations is valid for both dilute arid dense flows. During the development of the closure relations a clear distinction is made between granular or ''viscous'' microscale fluctuations and turbulent macro scale fluctuations (true particle turbulence) within the particle phase. The set of governing equations is discretized by using a
Theoretical model for a Stark anomalous dispersion optical filter
Yin, B.; Shay, T. M.
1993-01-01
A theoretical model for the first atomic Stark anomalous dispersion optical filter is reported. The results show the filter may serve as a widely tunable narrow bandwidth and high throughput optical filter for freespace laser communications and remote sensing.
Velocity dispersion of M87 using a population model
Angione, R. J.; Junkkarinen, V.; Talbert, F. D.; Brandt, J. C.
1980-01-01
The velocity dispersion of M 87 (NGC 4486) is determined using (1) a single star of class K0 III and (2) two different population models to represent the spectral region of the G-band. Although the models fit the overall spectrum better than the single-star, there is only a small difference in the derived velocity dispersion. This work revises the earlier velocity dispersion result of Brandt and Roosen (1969) down to 350 km/sec, in agreement with Faber and Jackson (1976) and Sargent et al. (1978).
Applied groundwater modeling, 2nd Edition
Anderson, Mary P.; Woessner, William W.; Hunt, Randall J.
2015-01-01
This second edition is extensively revised throughout with expanded discussion of modeling fundamentals and coverage of advances in model calibration and uncertainty analysis that are revolutionizing the science of groundwater modeling. The text is intended for undergraduate and graduate level courses in applied groundwater modeling and as a comprehensive reference for environmental consultants and scientists/engineers in industry and governmental agencies.
Dispersion model computations of urban air pollution in Espoo, Finland
Energy Technology Data Exchange (ETDEWEB)
Valkonen, E.; Haerkoenen, J.; Kukkonen, J.; Rantakrans, E.; Jalkanen, L.
1997-12-31
This report presents the numerical results of air quality studies of the city of Espoo in southern Finland. This city is one of the four cities in the Helsinki metropolitan area, having a total population of 850 000. A thorough emission inventory was made of both mobile and stationary sources in the Helsinki metropolitan area. The atmospheric dispersion was evaluated using an urban dispersion modelling system, including a Gaussian multiple-source plume model and a meteorological pre-processing model. The hourly time series of CO, NO{sub 2} and SO{sub 2} concentrations were predicted, using the emissions and meteorological data for the year 1990. The predicted results show a clear decrease in the yearly mean concentrations from southeast to northwest. This is due in part to the denser traffic in the southern parts of Espoo, and in part to pollution from the neighbouring cities of Helsinki and Vantaa, located east of Espoo. The statistical concentration parameters found for Espoo were lower than the old national air quality guidelines (1984); however, some occurrences of above-threshold values were found for NO{sub 2} in terms of the new guidelines (1996). The contribution of traffic to the total concentrations varies spatially from 30 to 90 % for NO{sub 2} from 1 to 65 % for SO{sub 2} while for CO it is nearly 100 %. The concentrations database will be further utilised to analyse the influence of urban air pollution on the health of children attending selected day nurseries in Espoo. The results of this study can also be applied in traffic and city planning. In future work the results will also be compared with data from the urban measurement network of the Helsinki Metropolitan Area Council. (orig.) 19 refs.
A continuum solvent model of the multipolar dispersion solvation energy.
Duignan, Timothy T; Parsons, Drew F; Ninham, Barry W
2013-08-15
The dispersion energy is an important contribution to the total solvation energies of ions and neutral molecules. Here, we present a new continuum model calculation of these energies, based on macroscopic quantum electrodynamics. The model uses the frequency dependent multipole polarizabilities of molecules in order to accurately calculate the dispersion interaction of a solute particle with surrounding water molecules. It includes the dipole, quadrupole, and octupole moment contributions. The water is modeled via a bulk dielectric susceptibility with a spherical cavity occupied by the solute. The model invokes damping functions to account for solute-solvent wave function overlap. The assumptions made are very similar to those used in the Born model. This provides consistency and additivity of electrostatic and dispersion (quantum mechanical) interactions. The energy increases in magnitude with cation size, but decreases slightly with size for the highly polarizable anions. The higher order multipole moments are essential, making up more than 50% of the dispersion solvation energy of the fluoride ion. This method provides an accurate and simple way of calculating the notoriously problematic dispersion contribution to the solvation energy. The result establishes the importance of using accurate calculations of the dispersion energy for the modeling of solvation.
Energy Technology Data Exchange (ETDEWEB)
Maron Dominguez, David Ernesto [Instituto Superior Politecnico Jose A. Echeverrria (Cuba)
2002-09-01
A numeric model is show for the solution of the inverse problem in pollutant transport. Quadratic and cubic elements were used in the discretization by the MEF of the equation of the dispersion. The algorithms of the inverse model are verified and compared with analytic solutions reported in the literature. The application of the model to the calibration of the parameters of a wetland used a s a filter in the treatment of wastewater is shown. The wetland was created in the laboratory and measurements of sodium fluorescein concentrations of a test were used as tracer. The dispersion coefficient, the retardation coefficient, the degradation coefficient, and the parameter of weight of the discretization in time were gauged. The results shown prove the good approximation of the dispersion coefficient obtained with a value estimated by another method. The graphs of the adjustments obtained are also shown. [Spanish] Se muestra un modelo numerico para la resolucion del problema inverso en el transporte de contaminantes. Se emplearon elementos cuadraticos y cubicos en la discretizacion por el metodo de los elementos finitos de la ecuacion de la ecuacion de la dispersion. Se verifican y se comparan los algoritmos del modelo inverso con una solucion analitica reportada en la literatura. Se muestra la aplicacion del modelo a la calibracion de los parametros de un humedal utilizado como filtro en el tratamiento de agua residuales. El humedal se construyo en el laboratorio y se utilizaron mediciones de concentraciones de fluoresceina sodica de una prueba de trazado. Se calibraron el coeficiente de dispersion, el coeficiente de retardo, el coeficiente de degradacion y el parametro de peso de la discretizacion en el tiempo. Se muestran los resultados obtenidos, comprobandose la buena aproximacion del coeficiente de dispersion con un valor estimado por otro metodo. Se muestran las graficas de los ajustes que se lograron.
Far-field dispersal modeling for fuel-air-explosive devices
Energy Technology Data Exchange (ETDEWEB)
Glass, M.W.
1990-05-01
A computer model for simulating the explosive dispersal of a fuel agent in the far-field regime is described and is applied to a wide variety of initial conditions to judge their effect upon the resulting fuel/air cloud. This work was directed toward modeling the dispersal process associated with Fuel-Air-Explosives devices. The far-field dispersal regime is taken to be that time after the initial burster charge detonation in which the shock forces no longer dominate the flow field and initial canister and fuel mass breakup has occurred. The model was applied to a low vapor pressure fuel, a high vapor pressure fuel and a solid fuel. A strong dependence of the final cloud characteristics upon the initial droplet size distribution was demonstrated. The predicted fuel-air clouds were highly non-uniform in concentration. 18 refs., 86 figs., 4 tabs.
Particle dispersion in homogeneous turbulence using the one-dimensional turbulence model
Energy Technology Data Exchange (ETDEWEB)
Sun, Guangyuan, E-mail: gysungrad@gmail.com; Lignell, David O., E-mail: davidlignell@byu.edu [Chemical Engineering Department, Brigham Young University, Provo, Utah 84602 (United States); Hewson, John C., E-mail: jchewso@sandia.gov [Fire Science and Technology Department, Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Gin, Craig R., E-mail: cgin@math.tamu.edu [Department of Mathematics, Texas A and M University, College Station, Texas 77843 (United States)
2014-10-15
Lagrangian particle dispersion is studied using the one-dimensional turbulence (ODT) model in homogeneous decaying turbulence configurations. The ODT model has been widely and successfully applied to a number of reacting and nonreacting flow configurations, but only limited application has been made to multiphase flows. Here, we present a version of the particle implementation and interaction with the stochastic and instantaneous ODT eddy events. The model is characterized by comparison to experimental data of particle dispersion for a range of intrinsic particle time scales and body forces. Particle dispersion, velocity, and integral time scale results are presented. The particle implementation introduces a single model parameter β{sub p}, and sensitivity to this parameter and behavior of the model are discussed. Good agreement is found with experimental data and the ODT model is able to capture the particle inertial and trajectory crossing effects. These results serve as a validation case of the multiphase implementations of ODT for extensions to other flow configurations.
CFD Modeling of Particulate Matter Dispersion from Kerman Cement Plant
Directory of Open Access Journals (Sweden)
M. Panahandeh
2010-04-01
Full Text Available "n "n "nBackgrounds and Objectives: The dispersion of particulate matter has been known as the most serious environmental pollution of cement plants. In the present work, dispersion of the particulate matter from stack of Kerman Cement Plant was investigated using Computational Fluid Dynamics (CFD modeling."nMaterials and Methods: In order to study the dispersion of particulate matter from the stack, a calculation domain with dimensions of 8000m × 800m × 400m was considered. The domain was divided to 936781 tetrahedral control volumes. The mixture two-phase model was employed to model the interaction of the particulate matter (dispersed phase and air (continuous phase. The Large Eddy Simulation (LES method was used for turbulence modeling."nResults: The concentration of particulate matter in the whole calculation domain was computed. The predicted concentrations were compared to the measured values from the literature and a good agreement was observed. The predicted concentration profiles at different cross sections were analyzed."nConclusion:The results of the present work showed that CFD is a useful tool for understanding the dispersion of particulate matter in air. Although the obtained results were promising, more investigations on the properties of the dispersed phase, turbulent parameters and the boundary layer effect is needed to obtain more accurate results.
Lee, Jonghyun; Rolle, Massimo; Kitanidis, Peter K
2017-09-15
Most recent research on hydrodynamic dispersion in porous media has focused on whole-domain dispersion while other research is largely on laboratory-scale dispersion. This work focuses on the contribution of a single block in a numerical model to dispersion. Variability of fluid velocity and concentration within a block is not resolved and the combined spreading effect is approximated using resolved quantities and macroscopic parameters. This applies whether the formation is modeled as homogeneous or discretized into homogeneous blocks but the emphasis here being on the latter. The process of dispersion is typically described through the Fickian model, i.e., the dispersive flux is proportional to the gradient of the resolved concentration, commonly with the Scheidegger parameterization, which is a particular way to compute the dispersion coefficients utilizing dispersivity coefficients. Although such parameterization is by far the most commonly used in solute transport applications, its validity has been questioned. Here, our goal is to investigate the effects of heterogeneity and mass transfer limitations on block-scale longitudinal dispersion and to evaluate under which conditions the Scheidegger parameterization is valid. We compute the relaxation time or memory of the system; changes in time with periods larger than the relaxation time are gradually leading to a condition of local equilibrium under which dispersion is Fickian. The method we use requires the solution of a steady-state advection-dispersion equation, and thus is computationally efficient, and applicable to any heterogeneous hydraulic conductivity K field without requiring statistical or structural assumptions. The method was validated by comparing with other approaches such as the moment analysis and the first order perturbation method. We investigate the impact of heterogeneity, both in degree and structure, on the longitudinal dispersion coefficient and then discuss the role of local dispersion
Modelling the dispersion energy for Van der Waals complexes
Sanz-Garcia, A
2002-01-01
Strictly ab initio calculations of the dispersion energy are unfeasible in practice but for the smallest systems. A sensible alternative is to model the dispersion contribution through a damped multipolar expansion. This thesis proposes to represent the dispersion energy by means of a non-empirical, atom-atom model using damping functions scaled from 'exact' results for one electron-one electron systems. We start by investigating the scalability of ab initio calculated damping functions for closed-shell atom-atom dimers. Ab initio scaling parameters are employed to assess the quality of the damping functions yielded by a predictor scheme based on the charge overlap between the interacting monomers. The investigation of the scaling properties is extended to atom-linear molecule systems, focusing on the dependence on orientation of the short-range dispersion energy and how to account for it using isotropic damping parameters. We study the possibilities of an 'atomic' (multicentre) representation of the dispersi...
A dispersion modelling system for urban air pollution
Energy Technology Data Exchange (ETDEWEB)
Karppinen, A.; Kukkonen, J.; Nordlund, G.; Rantakrans, E.; Valkama, I.
1998-10-01
An Urban Dispersion Modelling system UDM-FMI, developed at the Finnish Meteorological Institute is described in the report. The modelling system includes a multiple source Gaussian plume model and a meteorological pre-processing model. The dispersion model is an integrated urban scale model, taking into account of all source categories (point, line, area and volume sources). It includes a treatment of chemical transformation (for NO{sub 2}) wet and dry deposition (for SO{sub 2}) plume rise, downwash phenomena and dispersion of inert particles. The model allows also for the influence of a finite mixing height. The model structure is mainly based on the state-of-the-art methodology. The system also computes statistical parameters from the time series, which can be compared to air quality guidelines. The relevant meteorological parameters for the dispersion model are evaluated using data produced by a meteorological pre-processor. The model is based mainly on the energy budget method. Results of national investigations have been used for evaluating climate-dependent parameters. The model utilises the synoptic meteorological observations, radiation records and aerological sounding observations. The model results include the hourly time series of the relevant atmospheric turbulence 51 refs.
Theoretical model for a Faraday anomalous dispersion optical filter
Yin, B.; Shay, T. M.
1991-01-01
A model for the Faraday anomalous dispersion optical filter is presented. The model predicts a bandwidth of 0.6 GHz and a transmission peak of 0.98 for a filter operating on the Cs (D2) line. The model includes hyperfine effects and is valid for arbitrary magnetic fields.
Energy Technology Data Exchange (ETDEWEB)
Ma, Denglong [Fuli School of Food Equipment Engineering and Science, Xi’an Jiaotong University, No.28 Xianning West Road, Xi’an 710049 (China); Zhang, Zaoxiao, E-mail: zhangzx@mail.xjtu.edu.cn [State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, No.28 Xianning West Road, Xi’an 710049 (China); School of Chemical Engineering and Technology, Xi’an Jiaotong University, No.28 Xianning West Road, Xi’an 710049 (China)
2016-07-05
Highlights: • The intelligent network models were built to predict contaminant gas concentrations. • The improved network models coupled with Gaussian dispersion model were presented. • New model has high efficiency and accuracy for concentration prediction. • New model were applied to indentify the leakage source with satisfied results. - Abstract: Gas dispersion model is important for predicting the gas concentrations when contaminant gas leakage occurs. Intelligent network models such as radial basis function (RBF), back propagation (BP) neural network and support vector machine (SVM) model can be used for gas dispersion prediction. However, the prediction results from these network models with too many inputs based on original monitoring parameters are not in good agreement with the experimental data. Then, a new series of machine learning algorithms (MLA) models combined classic Gaussian model with MLA algorithm has been presented. The prediction results from new models are improved greatly. Among these models, Gaussian-SVM model performs best and its computation time is close to that of classic Gaussian dispersion model. Finally, Gaussian-MLA models were applied to identifying the emission source parameters with the particle swarm optimization (PSO) method. The estimation performance of PSO with Gaussian-MLA is better than that with Gaussian, Lagrangian stochastic (LS) dispersion model and network models based on original monitoring parameters. Hence, the new prediction model based on Gaussian-MLA is potentially a good method to predict contaminant gas dispersion as well as a good forward model in emission source parameters identification problem.
A transient-network model describing the rheological behaviour of concentrated dispersions
Kamphuis, H.; Jongschaap, R.J.J.; Mijnlieff, P.F.
1984-01-01
Attractive forces acting between particles in dispersions may cause a three-dimensional structure to be built up. A temporary-network model is postulated that describes the rheological behaviour of such systems. Chains of particles are assumed to be created and broken by thermal actions and by appli
When Lagrangian stochastic models for turbulent dispersion are applied to complex flows, some type of ad hoc intervention is almost always necessary to eliminate unphysical behavior in the numerical solution. This paper discusses numerical considerations when solving the Langevin-based particle velo...
A transient-network model describing the rheological behaviour of concentrated dispersions
Kamphuis, H.; Jongschaap, R.J.J.; Mijnlieff, P.F.
1984-01-01
Attractive forces acting between particles in dispersions may cause a three-dimensional structure to be built up. A temporary-network model is postulated that describes the rheological behaviour of such systems. Chains of particles are assumed to be created and broken by thermal actions and by appli
Educational software design: applying models of learning
Directory of Open Access Journals (Sweden)
Stephen Richards
1996-12-01
Full Text Available The model of learning adopted within this paper is the 'spreading ripples' (SR model proposed by Race (1994. This model was chosen for two important reasons. First, it makes use of accessible ideas and language, .and is therefore simple. Second, .Race suggests that the model can be used in the design, of educational and training programmes (and can thereby be applied to the design of computer-based learning materials.
Institute of Scientific and Technical Information of China (English)
David Carruthers; Sheng Xiangyu; Christine McHugh
2005-01-01
This paper makes comparisons between Chinese Environmental Impact Assessment (EIA)Guidelines for Air dispersion modelling and the advanced air dispersion model ADMS. Since 2001 the ADMS model has been the first and only foreign model that has been approved by the Appraisal Center for Environment and Engineering (ACEE) to be used in EIA projects in China (http://www. china-eia.com/inden_content/rjrz/rjrz_ADMS/htm). In the paper the following sections provide brief descriptions of the main features of the Chinese Guidelines for Air Dispersion (Section 2) and ADMS (Section 3);Section 4 provides a comparison of the two modelling methods for some simple cases and conclusions and discussion are given in Section 5.
Geostatistical methods applied to field model residuals
DEFF Research Database (Denmark)
Maule, Fox; Mosegaard, K.; Olsen, Nils
consists of measurement errors and unmodelled signal), and is typically assumed to be uncorrelated and Gaussian distributed. We have applied geostatistical methods to analyse the residuals of the Oersted(09d/04) field model [http://www.dsri.dk/Oersted/Field_models/IGRF_2005_candidates/], which is based...
Mathematical modeling of disperse two-phase flows
Morel, Christophe
2015-01-01
This book develops the theoretical foundations of disperse two-phase flows, which are characterized by the existence of bubbles, droplets or solid particles finely dispersed in a carrier fluid, which can be a liquid or a gas. Chapters clarify many difficult subjects, including modeling of the interfacial area concentration. Basic knowledge of the subjects treated in this book is essential to practitioners of Computational Fluid Dynamics for two-phase flows in a variety of industrial and environmental settings. The author provides a complete derivation of the basic equations, followed by more advanced subjects like turbulence equations for the two phases (continuous and disperse) and multi-size particulate flow modeling. As well as theoretical material, readers will discover chapters concerned with closure relations and numerical issues. Many physical models are presented, covering key subjects including heat and mass transfers between phases, interfacial forces and fluid particles coalescence and breakup, a...
Global atmospheric dispersion modelling after the Fukushima accident
Energy Technology Data Exchange (ETDEWEB)
Suh, K.S.; Youm, M.K.; Lee, B.G.; Min, B.I. [Korea Atomic Energy Research Institute (Korea, Republic of); Raul, P. [Universidad de Sevilla (Spain)
2014-07-01
A large amount of radioactive material was released to the atmosphere due to the Fukushima nuclear accident in March 2011. The radioactive materials released into the atmosphere were mostly transported to the Pacific Ocean, but some of them were fallen on the surface due to dry and wet depositions in the northwest area from the Fukushima nuclear site. Therefore, northwest part of the nuclear site was seriously contaminated and it was designated with the restricted zone within a radius of 20 ∼ 30 km around the Fukushima nuclear site. In the early phase of the accident from 11 March to 30 March, the radioactive materials were dispersed to an area of the inland and offshore of the nuclear site by the variations of the wind. After the Fukushima accident, the radionuclides were detected through the air monitoring in the many places over the world. The radioactive plume was transported to the east part off the site by the westerly jet stream. It had detected in the North America during March 17-21, in European countries during March 23-24, and in Asia during from March 24 to April 6, 2011. The radioactive materials were overall detected across the northern hemisphere passed by 15 ∼ 20 days after the accident. Three dimensional numerical model was applied to evaluate the dispersion characteristics of the radionuclides released into the air. Simulated results were compared with measurements in many places over the world. Comparative results had good agreements in some places, but they had a little differences in some locations. The difference between the calculations and measurements are due to the meteorological data and relatively coarse resolutions in the model. Some radioactive materials were measured in Philippines, Taiwan, Hon Kong and South Korea during from March 23-28. It inferred that it was directly transported from the Fukushima by the northeastern monsoon winds. This event was well represented in the numerical model. Generally, the simulations had a good
Dispersive models describing mosquitoes’ population dynamics
Yamashita, W. M. S.; Takahashi, L. T.; Chapiro, G.
2016-08-01
The global incidences of dengue and, more recently, zica virus have increased the interest in studying and understanding the mosquito population dynamics. Understanding this dynamics is important for public health in countries where climatic and environmental conditions are favorable for the propagation of these diseases. This work is based on the study of nonlinear mathematical models dealing with the life cycle of the dengue mosquito using partial differential equations. We investigate the existence of traveling wave solutions using semi-analytical method combining dynamical systems techniques and numerical integration. Obtained solutions are validated through numerical simulations using finite difference schemes.
Simulation modeling of anthrax spore dispersion in a bioterrorism incident.
Reshetin, Vladimir P; Regens, James L
2003-12-01
Recent events have increased awareness of the risk posed by terrorist attacks. Bacillus anthracis has resurfaced in the 21st century as a deadly agent of bioterrorism because of its potential for causing massive civilian casualties. This analysis presents the results of a computer simulation of the dispersion of anthrax spores in a typical 50-story, high-rise building after an intentional release during a bioterrorist incident. The model simulates aerosol dispersion in the case of intensive, small-scale convection, which equalizes the concentration of anthrax spores over the building volume. The model can be used to predict the time interval required for spore dispersion throughout a building after a terrorist attack in a high-rise building. The analysis reveals that an aerosol release of even a relatively small volume of anthrax spores during a terrorist incident has the potential to quickly distribute concentrations that are infectious throughout the building.
Energy Technology Data Exchange (ETDEWEB)
Sherer, D.L.; Minott, D.H.; Hilst, G.R.
1977-01-01
The Gaussian plume dispersion model is used to calculate expected concentrations of radioactive material downwind from point or line sources, including planned nuclear power stations. The standard Pasquill-Gifford dispersion coefficients (sigma/sub ..gamma../, sigma/sub Z/) normally used with the Gaussian model have been developed primarily for flat, smooth terrain. For terrains that are not flat and smooth, other dispersion coefficients which account for the dispersive effects of terrain-induced mechanical turbulence are needed. It is ERDA's objective to specify reliable dispersion coefficients that will represent a broader range of topographic conditions than was intended for the standard Pasquill-Gifford coefficients. The U. S. Army has carried out a program with similar objectives, but most of the information generated has had little visibility beyond the Department of Defense. During the first phase of this ERDA project, release of the Army data was arranged, and in this second phase of work, data from Army tracer-dispersion tests have been used to develop coefficients for dispersion over rural, rolling terrain. In order to derive vertical dispersion coefficients characteristic of rural, rolling terrain from the Army data, the meandering plume hypothesis has been applied. The meandering plume hypothesis holds that total dispersion (sigma/sub ZT/) is comprised of two components; the first component, sigma/sub ZI/, is the diffusion of a plume segment (puff) about its own center; the other component (sigma/sub ZM/) is the meander of individual puff trajectories about the centerline of the time-averaged plume.
Applying the WEAP Model to Water Resource
DEFF Research Database (Denmark)
Gao, Jingjing; Christensen, Per; Li, Wei
Water resources assessment is a tool to provide decision makers with an appropriate basis to make informed judgments regarding the objectives and targets to be addressed during the Strategic Environmental Assessment (SEA) process. The study shows how water resources assessment can be applied in SEA...... in assessing the effects on water resources using a case study on a Coal Industry Development Plan in an arid region in North Western China. In the case the WEAP model (Water Evaluation And Planning System) were used to simulate various scenarios using a diversity of technological instruments like irrigation...... efficiency, treatment and reuse of water. The WEAP model was applied to the Ordos catchment where it was used for the first time in China. The changes in water resource utilization in Ordos basin were assessed with the model. It was found that the WEAP model is a useful tool for water resource assessment...
Applying incentive sensitization models to behavioral addiction
DEFF Research Database (Denmark)
Rømer Thomsen, Kristine; Fjorback, Lone; Møller, Arne
2014-01-01
The incentive sensitization theory is a promising model for understanding the mechanisms underlying drug addiction, and has received support in animal and human studies. So far the theory has not been applied to the case of behavioral addictions like Gambling Disorder, despite sharing clinical...
Applied probability models with optimization applications
Ross, Sheldon M
1992-01-01
Concise advanced-level introduction to stochastic processes that frequently arise in applied probability. Largely self-contained text covers Poisson process, renewal theory, Markov chains, inventory theory, Brownian motion and continuous time optimization models, much more. Problems and references at chapter ends. ""Excellent introduction."" - Journal of the American Statistical Association. Bibliography. 1970 edition.
Modeling impacts of subscale heterogeneities on dispersive solute transport in subsurface systems.
Vishal, Vikrant; Leung, Juliana Y
2015-11-01
Previous works in the literature demonstrated that dispersion increases with heterogeneities and travel distance in heterogeneous reservoirs. However, it remains challenging to quantify the effects of subscale heterogeneities on dispersion. Scale-up of input dispersivity and other reservoir attributes to the transport modeling scale should account for subscale heterogeneity and its variability. A method is proposed to quantify the uncertainties in reservoir attributes and dispersivity introduced by scale-up. A random walk particle tracking (RWPT) method, which is not prone to numerical dispersion, is used for transport modeling. First, to scale-up rock properties including porosity and permeability, volume variance at the transport modeling scale is computed corresponding to a given spatial correlation model; numerous sets of "conditioning data" are sampled from probability distributions whose mean is the block average of the actual measure values and the variance is the variance of block mean. Stochastic simulations are subsequently performed to generate multiple realizations at the transport modeling scale. Next, multiple sub-grid geostatistical realizations depicting detailed fine-scale heterogeneities and of the same physical sizes as the transport modeling grid block are subjected to RWPT simulation. Effective longitudinal and transverse (horizontal) dispersivities in two-dimensional models are determined simultaneously by matching the corresponding breakthrough concentration history for each realization with an equivalent medium consisting of averaged homogeneous rock properties. Aggregating results derived with all realizations, we generate probability distributions of scaled-up dispersivities conditional to particular averaged rock properties, from which values representative of the transport modeling scale are randomly drawn. The method is applied to model a tracer injection process. Results obtained from coarse-scale models, where reservoir properties and
Spatial capture-recapture models allowing Markovian transience or dispersal
Royle, J. Andrew; Fuller, Angela K.; Sutherland, Chris
2016-01-01
Spatial capture–recapture (SCR) models are a relatively recent development in quantitative ecology, and they are becoming widely used to model density in studies of animal populations using camera traps, DNA sampling and other methods which produce spatially explicit individual encounter information. One of the core assumptions of SCR models is that individuals possess home ranges that are spatially stationary during the sampling period. For many species, this assumption is unlikely to be met and, even for species that are typically territorial, individuals may disperse or exhibit transience at some life stages. In this paper we first conduct a simulation study to evaluate the robustness of estimators of density under ordinary SCR models when dispersal or transience is present in the population. Then, using both simulated and real data, we demonstrate that such models can easily be described in the BUGS language providing a practical framework for their analysis, which allows us to evaluate movement dynamics of species using capture–recapture data. We find that while estimators of density are extremely robust, even to pathological levels of movement (e.g., complete transience), the estimator of the spatial scale parameter of the encounter probability model is confounded with the dispersal/transience scale parameter. Thus, use of ordinary SCR models to make inferences about density is feasible, but interpretation of SCR model parameters in relation to movement should be avoided. Instead, when movement dynamics are of interest, such dynamics should be parameterized explicitly in the model.
Lovreglio, Ruggiero; Ronchi, Enrico; Maragkos, Georgios; Beji, Tarek; Merci, Bart
2016-11-15
The release of toxic gases due to natural/industrial accidents or terrorist attacks in populated areas can have tragic consequences. To prevent and evaluate the effects of these disasters different approaches and modelling tools have been introduced in the literature. These instruments are valuable tools for risk managers doing risk assessment of threatened areas. Despite the significant improvements in hazard assessment in case of toxic gas dispersion, these analyses do not generally include the impact of human behaviour and people movement during emergencies. This work aims at providing an approach which considers both modelling of gas dispersion and evacuation movement in order to improve the accuracy of risk assessment for disasters involving toxic gases. The approach is applied to a hypothetical scenario including a ship releasing Nitrogen dioxide (NO2) on a crowd attending a music festival. The difference between the results obtained with existing static methods (people do not move) and a dynamic approach (people move away from the danger) which considers people movement with different degrees of sophistication (either a simple linear path or more complex behavioural modelling) is discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
An Empirical Model of Wage Dispersion with Sorting
DEFF Research Database (Denmark)
Bagger, Jesper; Lentz, Rasmus
This paper studies wage dispersion in an equilibrium on-the-job-search model with endogenous search intensity. Workers differ in their permanent skill level and firms differ with respect to productivity. Positive (negative) sorting results if the match production function is supermodular...
Fuel dispersal modeling for aircraft-runway impact scenarios
Energy Technology Data Exchange (ETDEWEB)
Tieszen, S.R.
1995-11-01
A fuel dispersal model for C-141 transport accidents was developed for the Defense Nuclear Agency`s Fuel Fire Technology Base Program to support Weapon System Safety Assessments. The spectrum of accidents resulting from aircraft impact on a runway was divided into three fuel dispersal regimes: low, intermediate, and high-velocity impact. Sufficient data existed in the accident, crash test, and fuel-filled bomb literature to support development of a qualitative framework for dispersal models, but not quantitative models for all regimes. Therefore, a test series at intermediate scale was conducted to generate data on which to base the model for the high-velocity regime. Tests were conducted over an impact velocity range from 12 m/s to 91 m/s and angles of impact from 22.5{degrees} to 67.5{degrees}. Dependent variables were area covered by dispersed fuel, amount of mass in that area, and location of the area relative to the impact line. Test results showed that no liquid pooling occurred for impact velocities greater than 61 m/s, independent of the angle of impact. Some pooling did occur at lower velocities, but in no test was the liquid-layer thickness greater than 5.25 mm.
PHYSICAL AND NUMERICAL MODELING OF ASD EXHAUST DISPERSION AROUND HOUSES
The report discusses the use of a wind tunnel to physically model the dispersion of exhaust plumes from active soil depressurization (ASD) radon mitigation systems in houses. he testing studied the effects of exhaust location (grade level vs. above the eave), as house height, roo...
Game-theoretic model of dispersed material drying process
Oleg, Malafeyev; Denis, Rylow; Irina, Zaitseva; Pavel, Zelenkovskii; Marina, Popova; Lydia, Novozhilova
2017-07-01
Continuous and discrete game-theoretic models of dispersed material drying process are formalized and studied in the paper. The existence of optimal drying strategies is shown through application of results from the theory of differential games and dynamic programming. These optimal strategies can be found numerically.
Equilibrium Price Dispersion in a Matching Model with Divisible Money
Kamiya, K.; Sato, T.
2002-01-01
The main purpose of this paper is to show that, for any given parameter values, an equilibrium with dispersed prices (two-price equilibrium) exists in a simple matching model with divisible money presented by Green and Zhou (1998).We also show that our two-price equilibrium is unique in certain envi
Westcott, David A; Bentrupperbäumer, Joan; Bradford, Matt G; McKeown, Adam
2005-11-01
The processes determining where seeds fall relative to their parent plant influence the spatial structure and dynamics of plant populations and communities. For animal dispersed species the factors influencing seed shadows are poorly understood. In this paper we test the hypothesis that the daily temporal distribution of disperser behaviours, for example, foraging and movement, influences dispersal outcomes, in particular the shape and scale of dispersal curves. To do this, we describe frugivory and the dispersal curves produced by the southern cassowary, Casuarius casuarius, the only large-bodied disperser in Australia's rainforests. We found C. casuarius consumed fruits of 238 species and of all fleshy-fruit types. In feeding trials, seeds of 11 species were retained on average for 309 min (+/-256 SD). Sampling radio-telemetry data randomly, that is, assuming foraging occurs at random times during the day, gives an estimated average dispersal distance of 239 m (+/-207 SD) for seeds consumed by C. casuarius. Approximately 4% of seeds were dispersed further than 1,000 m. However, observation of wild birds indicated that foraging and movement occur more frequently early and late in the day. Seeds consumed early in the day were estimated to receive dispersal distances 1.4 times the 'random' average estimate, while afternoon consumed seeds received estimated mean dispersal distances of 0.46 times the 'random' estimate. Sampling movement data according to the daily distribution of C. casuarius foraging gives an estimated mean dispersal distance of 337 m (+/-194 SD). Most animals' behaviour has a non-random temporal distribution. Consequently such effects should be common and need to be incorporated into seed shadow estimation. Our results point to dispersal curves being an emergent property of the plant-disperser interaction rather than being a property of a plant or species.
Uncertainty Quantification of Tracer Dispersion with the PMVP Model under Realistic Conditions
Meyer, D. W.; Duenser, S.
2015-12-01
The polar Markovian velocity process (PVMP) model provides a computationally efficient method to propagate input uncertainty stemming from unknown permeability fields to output flow and transport statistics [Meyer and Tchelepi, WRR, 2010; Meyer, Jenny, and Tchelepi, WRR, 2010; Meyer et al., WRR, 2013]. Compared with classical Monte Carlo (MC) sampling, the PMVP model provides predictions of tracer concentration statistics at computing times that are three orders of magnitude smaller. Consequently, the PMVP model is as well significantly faster than accelerated sampling techniques such as multi-level MC or polynomial chaos expansions. In this work, we further evaluate the PMVP model performance by applying the model for tracer dispersion predictions in a setup derived from the well-known MADE field experiment [Boggs et al., WRR, 1992]. We perform detailed model validations against reference MC simulations and conclude that the model provides overall accurate dispersion predictions under realistic conditions.
Exposure estimates using urban plume dispersion and traffic microsimulation models
Energy Technology Data Exchange (ETDEWEB)
Brown, M.J.; Mueller, C.; Bush, B.; Stretz, P.
1997-12-01
The goal of this research effort was to demonstrate a capability for analyzing emergency response issues resulting from accidental or mediated airborne toxic releases in an urban setting. In the first year of the program, the authors linked a system of fluid dynamics, plume dispersion, and vehicle transportation models developed at Los Alamos National Laboratory to study the dispersion of a plume in an urban setting and the resulting exposures to vehicle traffic. This research is part of a larger laboratory-directed research and development project for studying the relationships between urban infrastructure elements and natural systems.
Efficiency of a statistical transport model for turbulent particle dispersion
Litchford, Ron J.; Jeng, San-Mou
1992-01-01
In developing its theory for turbulent dispersion transport, the Litchford and Jeng (1991) statistical transport model for turbulent particle dispersion took a generalized approach in which the perturbing influence of each turbulent eddy on consequent interactions was transported through all subsequent eddies. Nevertheless, examinations of this transport relation shows it to be able to decay rapidly: this implies that additional computational efficiency may be obtained via truncation of unneccessary transport terms. Attention is here given to the criterion for truncation, as well as to expected efficiency gains.
CFD modeling of dust dispersion through Najaf historic city centre
Directory of Open Access Journals (Sweden)
Maher A.R. Sadiq Al-Baghdadi
2014-01-01
Full Text Available The aim of this project is to study the influences of the wind flow and dust particles dispersion through Najaf historic city centre. Two phase Computational Fluid Dynamics (CFD model using a Reynolds Average Navier Stokes (RANS equations has been used to simulate the wind flow and the transport and dispersion of the dust particles through the historic city centre. This work may provide useful insight to urban designers and planners interested in examining the variation of city breathability as a local dynamic morphological parameter with the local building packing density.
Sáňka, Ondřej; Melymuk, Lisa; Čupr, Pavel; Dvorská, Alice; Klánová, Jana
2014-10-01
This study introduces a new combined air concentration measurement and modeling approach that we propose can be useful in medium and long term air quality assessment. A dispersion study was carried out for four high molecular weight polycyclic aromatic hydrocarbons (PAHs) in an urban area with industrial, traffic and domestic heating sources. A geographic information system (GIS) was used both for processing of input data as well as visualization of the modeling results. The outcomes of the dispersion model were compared to the results of passive air sampling (PAS). Despite discrepancies between measured and modeled concentrations, an approach combining the two techniques is promising for future air quality assessment. Differences between measured and modeled concentrations, in particular when measured values exceed the modeled concentrations, are indicative of undocumented, sporadic pollutant sources. Thus, these differences can also be useful for assessing and refining emission inventories.
Applied Integer Programming Modeling and Solution
Chen, Der-San; Dang, Yu
2011-01-01
An accessible treatment of the modeling and solution of integer programming problems, featuring modern applications and software In order to fully comprehend the algorithms associated with integer programming, it is important to understand not only how algorithms work, but also why they work. Applied Integer Programming features a unique emphasis on this point, focusing on problem modeling and solution using commercial software. Taking an application-oriented approach, this book addresses the art and science of mathematical modeling related to the mixed integer programming (MIP) framework and
A Sensitivity Study of the Validation of Three Regulatory Dispersion Models
Directory of Open Access Journals (Sweden)
Keith D. Harsham
2008-01-01
Full Text Available Lidar measurements were made of the dispersion of the plume from a coastal industrial plant over three weeks between September 1996 and May 1998. 67 experimental runs were obtained, mostly of 30 min duration, and these were analysed to provide plume parameters (i.e. height, vertical and lateral spreads. These measurements were supplemented by local meteorological measurements at two portable meteorological stations and also by radiosonde measurements of wind, temperature and pressure profiles. The dispersion was modelled using three commercial regulatory models: ISC3 (EPA, Trinity Consultants and Lakes Environmental, UK-ADMS (CERC and AERMOD (EPA, Lakes Environmental. Where possible, each model was run applying all choices as between urban or rural surface characteristics; wind speed measured at 10 m or 100 m; and surface corrected for topography or topography plus buildings. We have compared the range of output from each model with the Lidar measurements. In the main, the models underestimated dispersion in the near field and overestimated it beyond a few hundred m. ISC tended to show the smallest dispersion, while AERMOD gave the largest values for the lateral spread and ADMS gave the largest values of the vertical spread. Buoyant plume rise was modelled well in neutral conditions but rather erratically in unstable conditions. The models are quite sensitive to the reasonable input choices listed above: the full range of sensitivity is comparable to the difference between the median modelled value and the measured value.
Measuring and modeling the magnetic settling of superparamagnetic nanoparticle dispersions.
Prigiobbe, Valentina; Ko, Saebom; Huh, Chun; Bryant, Steven L
2015-06-01
In this paper, we present settling experiments and mathematical modeling to study the magnetic separation of superparamagnetic iron-oxide nanoparticles (SPIONs) from a brine. The experiments were performed using SPIONs suspensions of concentration between 3 and 202g/L dispersed in water and separated from the liquid under the effect of a permanent magnet. A 1D model was developed in the framework of the sedimentation theory with a conservation law for SPIONs and a mass flux function based on the Newton's law for motion in a magnetic field. The model describes both the hindering effect of suspension concentration (n) during settling due to particle collisions and the increase in settling rate due to the attraction of the SPIONs towards the magnet. The flux function was derived from the settling experiments and the numerical model validated against the analytical solution and the experimental data. Suspensions of SPIONs were of 2.8cm initial height, placed on a magnet, and monitored continuously with a digital camera. Applying a magnetic field of 0.5T of polarization, the SPION's velocity was of approximately 3·10(-5)m/s close to the magnet and decreases of two orders of magnitude across the domain. The process was characterized initially by a classical sedimentation behavior, i.e., an upper interface between the clear water and the suspension slowly moving towards the magnet and a lower interface between the sediment layer and the suspension moving away from the magnet. Subsequently, a rapid separation of nanoparticle occured suggesting a non-classical settling phenomenon induced by magnetic forces which favor particle aggregation and therefore faster settling. The rate of settling decreased with n and an optimal condition for fast separation was found for an initial n of 120g/L. The model agrees well with the measurements in the early stage of the settling, but it fails to describe the upper interface movement during the later stage, probably because of particle
Applied research in uncertainty modeling and analysis
Ayyub, Bilal
2005-01-01
Uncertainty has been a concern to engineers, managers, and scientists for many years. For a long time uncertainty has been considered synonymous with random, stochastic, statistic, or probabilistic. Since the early sixties views on uncertainty have become more heterogeneous. In the past forty years numerous tools that model uncertainty, above and beyond statistics, have been proposed by several engineers and scientists. The tool/method to model uncertainty in a specific context should really be chosen by considering the features of the phenomenon under consideration, not independent of what is known about the system and what causes uncertainty. In this fascinating overview of the field, the authors provide broad coverage of uncertainty analysis/modeling and its application. Applied Research in Uncertainty Modeling and Analysis presents the perspectives of various researchers and practitioners on uncertainty analysis and modeling outside their own fields and domain expertise. Rather than focusing explicitly on...
Comparison of turbulent particle dispersion models in turbulent shear flows
Directory of Open Access Journals (Sweden)
S. Laín
2007-09-01
Full Text Available This work compares the performance of two Lagrangian turbulent particle dispersion models: the standard model (e.g., that presented in Sommerfeld et al. (1993, in which the fluctuating fluid velocity experienced by the particle is composed of two components, one correlated with the previous time step and a second one randomly sampled from a Wiener process, and the model proposed by Minier and Peirano (2001, which is based on the PDF approach and performs closure at the level of acceleration of the fluid experienced by the particle. Formulation of a Langevin equation model for the increments of fluid velocity seen by the particle allows capturing some underlying physics of particle dispersion in general turbulent flows while keeping the mathematical manipulation of the stochastic model simple, thereby avoiding some pitfalls and simplifying the derivation of macroscopic relations. The performance of both dispersion models is tested in the configurations of grid-generated turbulence (Wells and Stock (1983 experiments, simple shear flow (Hyland et al., 1999 and confined axisymmetric jet flow laden with solids (Hishida and Maeda (1987 experiments.
A multiscale model for bioimpedance dispersion of liver tissue.
Huang, W H; Chui, C K; Teoh, S H; Chang, S K Y
2012-06-01
Radio-frequency ablation (RFA) has been used in liver surgery to minimize blood loss during tissue division. However, the current RFA tissue division method lacks an effective way of determining the stoppage of blood flow. There is limitation on the current state-of-the-art laser Doppler flow sensor due to its small sensing area. A new technique was proposed to use bioimpedance for blood flow sensing. This paper discusses a new geometrical multiscale model of the liver bioimpedance incorporating blood flow impedance. This model establishes correlation between the physical tissue structure and bioimpedance measurement. The basic Debye structure within a multilevel framework is used in the model to account for bioimpedance dispersion. This dispersion is often explained by the Cole-Cole model that includes a constant phase element without physical explanation. Our model is able to account for reduced blood flow in its output with changes in permittivity in gamma dispersion that is mainly due to the polarization of water molecules. This study demonstrates the potential of a multiscale model in determining the stoppage of blood flow during surgery.
Directory of Open Access Journals (Sweden)
Flint Paul L
2007-12-01
Full Text Available Abstract Background The role of wild birds in the dispersal of highly pathogenic avian influenza virus H5N1 continues to be the subject of considerable debate. However, some researchers functionally examining the same question are applying opposing null hypotheses when examining this issue. Discussion I describe the correct method for establishing a null hypothesis under the scientific method. I suggest that the correct null hypothesis is that migratory birds can disperse this virus during migration and encourage researchers to design studies to falsify this null. Finally, I provide several examples where statements made during this debate, while strictly true, are not generally informative or are speculative. Summary By adhering to the scientific method, definitive answers regarding the role of wild birds in the dispersal of highly pathogenic viruses will be reached more effectively.
Applied Mathematics, Modelling and Computational Science
Kotsireas, Ilias; Makarov, Roman; Melnik, Roderick; Shodiev, Hasan
2015-01-01
The Applied Mathematics, Modelling, and Computational Science (AMMCS) conference aims to promote interdisciplinary research and collaboration. The contributions in this volume cover the latest research in mathematical and computational sciences, modeling, and simulation as well as their applications in natural and social sciences, engineering and technology, industry, and finance. The 2013 conference, the second in a series of AMMCS meetings, was held August 26–30 and organized in cooperation with AIMS and SIAM, with support from the Fields Institute in Toronto, and Wilfrid Laurier University. There were many young scientists at AMMCS-2013, both as presenters and as organizers. This proceedings contains refereed papers contributed by the participants of the AMMCS-2013 after the conference. This volume is suitable for researchers and graduate students, mathematicians and engineers, industrialists, and anyone who would like to delve into the interdisciplinary research of applied and computational mathematics ...
Effects of vertical shear in modelling horizontal oceanic dispersion
Lanotte, A. S.; Corrado, R.; Palatella, L.; Pizzigalli, C.; Schipa, I.; Santoleri, R.
2016-02-01
The effect of vertical shear on the horizontal dispersion properties of passive tracer particles on the continental shelf of the South Mediterranean is investigated by means of observation and model data. In situ current measurements reveal that vertical gradients of horizontal velocities in the upper mixing layer decorrelate quite fast ( ˜ 1 day), whereas an eddy-permitting ocean model, such as the Mediterranean Forecasting System, tends to overestimate such decorrelation time because of finite resolution effects. Horizontal dispersion, simulated by the Mediterranean sea Forecasting System, is mostly affected by: (1) unresolved scale motions, and mesoscale motions that are largely smoothed out at scales close to the grid spacing; (2) poorly resolved time variability in the profiles of the horizontal velocities in the upper layer. For the case study we have analysed, we show that a suitable use of deterministic kinematic parametrizations is helpful to implement realistic statistical features of tracer dispersion in two and three dimensions. The approach here suggested provides a functional tool to control the horizontal spreading of small organisms or substance concentrations, and is thus relevant for marine biology, pollutant dispersion as well as oil spill applications.
Applying incentive sensitization models to behavioral addiction
DEFF Research Database (Denmark)
Rømer Thomsen, Kristine; Fjorback, Lone; Møller, Arne
2014-01-01
The incentive sensitization theory is a promising model for understanding the mechanisms underlying drug addiction, and has received support in animal and human studies. So far the theory has not been applied to the case of behavioral addictions like Gambling Disorder, despite sharing clinical...... symptoms and underlying neurobiology. We examine the relevance of this theory for Gambling Disorder and point to predictions for future studies. The theory promises a significant contribution to the understanding of behavioral addiction and opens new avenues for treatment....
Network models of frugivory and seed dispersal: Challenges and opportunities
Carlo, Tomás A.; Yang, Suann
2011-11-01
Network analyses have emerged as a new tool to study frugivory and seed dispersal (FSD) mutualisms because networks can model and simplify the complexity of multiple community-wide species interactions. Moreover, network theory suggests that structural properties, such as the presence of highly generalist species, are linked to the stability of mutualistic communities. However, we still lack empirical validation of network model predictions. Here we outline new research avenues to connect network models to FSD processes, and illustrate the challenges and opportunities of this tool with a field study. We hypothesized that generalist frugivores would be important for forest stability by dispersing seeds into deforested areas and initiating reforestation. We then constructed a network of plant-frugivore interactions using published data and identified the most generalist frugivores. To test the importance of generalists we measured: 1) the frequency with which frugivores moved between pasture and forest, 2) the bird-generated seed rain under perches in the pasture, and 3) the perching frequency of birds above seed traps. The generalist frugivores in the forest network were not important for seed dispersal into pastures, and thus for forest recovery, because the forest network excluded habitat heterogeneities, frugivore behavior, and movements. More research is needed to develop ways to incorporate relevant FSD processes into network models in order for these models to be more useful to community ecology and conservation. The network framework can serve to spark and renew interest in FSD and further our understanding of plant-animal communities.
Dynamical mass modeling of dispersion-supported dwarf galaxies
Wolf, Joseph
The currently favored cold dark matter cosmology (LCDM) has had much success in reproducing the large scale structure of the universe. However, on smaller scales there are some possible discrepancies when attempting to match galactic observations with properties of halos in dissipationless LCDM simulations. One advantageous method to test small scale simulations with observations is through dynamical mass modeling of nearby dwarf spheroidal galaxies (dSphs). The stellar tracers of dSphs are dispersion-supported, which poses a significant challenge in accurately deriving mass profiles. Unlike rotationally-supported galaxies, the dynamics of which can be well-approximated by one-dimensional physics, modeling dispersion-supported systems given only line-of-sight data results in a well-known degeneracy between the mass profile and the velocity dispersion anisotropy. The core of this dissertation is rooted in a new advancement which we have discovered: the range of solutions allowed by the mass-anisotropy degeneracy varies as a function of radius, with a considerable minimal near the deprojected half-light radius of almost all observed dispersion-supported galaxies. This finding allows for a wide range of applications in galaxy formation scenarios to be explored in an attempt to address, amongst other hypotheses, whether the LCDM framework needs to be modified in order to reproduce observations on the small scale. This thesis is comprised of both the derivation of this finding, and its applicability to all dispersion-supported systems, ranging from dwarfs galaxies consisting of a few hundred stars to systems of 'intracluster light', containing over a trillion stars. Rarely does one have the privilege of working with systems that span such a large range in luminosity (or any intrinsic property) in a short graduate career. Although the large applicability of this scale-free finding allows for discussion in many subfields, this thesis will mainly focus on one topic: dwarf
Extension of the D3 dispersion coefficient model
Caldeweyher, Eike; Bannwarth, Christoph; Grimme, Stefan
2017-07-01
A new model, termed D4, for the efficient computation of molecular dipole-dipole dispersion coefficients is presented. As in the related, well established D3 scheme, these are obtained as a sum of atom-in-molecule dispersion coefficients over atom pairs. Both models make use of dynamic polarizabilities obtained from first-principles time-dependent density functional theory calculations for atoms in different chemical environments employing fractional atomic coordination numbers for interpolation. Different from the D3 model, the coefficients are obtained on-the-fly by numerical Casimir-Polder integration of the dynamic, atomic polarizabilities α (iω ). Most importantly, electronic density information is now incorporated via atomic partial charges computed at a semi-empirical quantum mechanical tight-binding level, which is used to scale the polarizabilities. Extended statistical measures show that errors for dispersion coefficients with the proposed D4 method are significantly lower than with D3 and other, computationally more involved schemes. Alongside, accurate isotropic charge and hybridization dependent, atom-in-molecule static polarizabilities are obtained with an unprecedented efficiency. Damping function parameters are provided for three standard density functionals, i.e., TPSS, PBE0, and B3LYP, allowing evaluation of the new DFT-D4 model for common non-covalent interaction energy benchmark sets.
Energy Technology Data Exchange (ETDEWEB)
Martin, F.
2013-07-01
One of the main challenges of the atmospheric sciences is to reproduce as well as possible the phenomena and processes of pollutants in the atmosphere. To do it, mathematical models based in this case on fluid dynamics and mass and energy conservation equations, equations that govern the atmospheric chemistry, etc., adapted to the spatial scales to be simulated, are developed. The dispersion models simulate the processes of transport, dispersion, chemical transformation and elimination by deposition that air pollutants undergo once they are emitted. Atmospheric dispersion models with their multiple applications have become essential tools for the air quality management. (Author)
Tunneling approach and thermality in dispersive models of analogue gravity
Belgiorno, F; Piazza, F Dalla
2014-01-01
We set up a tunneling approach to the analogue Hawking effect in the case of models of analogue gravity which are affected by dispersive effects. An effective Schroedinger-like equation for the basic scattering phenomenon IN->P+N*, where IN is the incident mode, P is the positive norm reflected mode, and N* is the negative norm one, signalling particle creation, is derived, aimed to an approximate description of the phenomenon. Horizons and barrier penetration play manifestly a key-role in giving rise to pair-creation. The non-dispersive limit is also correctly recovered. Drawbacks of the model are also pointed out and a possible solution ad hoc is suggested.
Dispersion Relations for Electroweak Observables in Composite Higgs Models
Contino, Roberto
2015-01-01
We derive dispersion relations for the electroweak oblique observables measured at LEP in the context of $SO(5)/SO(4)$ composite Higgs models. It is shown how these relations can be used and must be modified when modeling the spectral functions through a low-energy effective description of the strong dynamics. The dispersion relation for the parameter $\\epsilon_3$ is then used to estimate the contribution from spin-1 resonances at the 1-loop level. Finally, it is shown that the sign of the contribution to the $\\hat S$ parameter from the lowest-lying spin-1 states is not necessarily positive definite, but depends on the energy scale at which the asymptotic behavior of current correlators is attained.
Energy Technology Data Exchange (ETDEWEB)
Torres Astorga, Romina; Velasco, Hugo; Valladares, Diego L.; Lohaiza, Flavia; Ayub, Jimena Juri; Rizzotto, Marcos [Grupo de Estudios Ambientales. Instituto de Matematica Aplicada San Luis - Universidad Nacional de San Luis - CONICET, San Luis (Argentina)
2014-07-01
{sup 7}Be is a short-lived environmental radionuclide, produced in the upper atmosphere by spallation of nitrogen and oxygen by cosmic rays. After of the production by the nuclear reaction, {sup 7}Be diffuses through the atmosphere until it attaches to atmospheric aerosols. Subsequently, it is deposited on the earth surface mainly as wet fallout. The main physical processes which transport {sup 7}Be in soil are diffusion and advection by water. Migration parameters and measurements confirm that sorption is the main physical process, which confines {sup 7}Be concentration to soil surface. The literature data show that in soils, {sup 7}Be is concentrated near the surface (0-2 cm) as it is adsorbed onto clay minerals after its deposition on the soil surface and does not penetrate deeper into soils due to its short half-life. The maximum mass activity density of {sup 7}Be is found at the point of input of the radionuclide, i.e. at the surface of the soil column, showing a exponential distribution profile typical of a purely diffusive transport. Many studies applying the advection dispersion models have been reported in the literature in order to modelling the transport of {sup 137}Cs in soils. On them, the models are used to achieve information of the mechanisms that govern the transport, i. e. the model is used to explain the soil profile of radionuclide. The effective dispersion coefficient and the apparent advection velocity of radionuclide in soil are also obtained by fitting the analytical solution of the model equation to measured depth distributions of the radionuclide. In this work, the advective dispersive transport model with linear sorption is used to analyze the vertical migration process of {sup 7}Be in soils of undisturbed or reference sites. The deposition history is approximated by pulse-like input functions and time dependent analytical solution of equation model is obtained. The values of dispersion coefficient and apparent advection velocity obtained
Complex source rate estimation for atmospheric transport and dispersion models
Energy Technology Data Exchange (ETDEWEB)
Edwards, L.L.
1993-09-13
The accuracy associated with assessing the environmental consequences of an accidental atmospheric release of radioactivity is highly dependent on our knowledge of the source release rate which is generally poorly known. This paper reports on a technique that integrates the radiological measurements with atmospheric dispersion modeling for more accurate source term estimation. We construct a minimum least squares methodology for solving the inverse problem with no a priori information about the source rate.
EVALUATING EMERGENCY RESPONSE MODELS OF RADIOLOGICAL DISPERSION IN COMPLEX TERRAIN
Dyer, L.L.; Pascoe, J.H.
2008-01-01
Abstract: Operational airborne releases of trace quantities of the radioactive noble gas Ar-41 from the HIFAR Nuclear Research Reactor located in Sydney, Australia are valuable for evaluating emergency response models incorporating radiological dispersion. The Australian Nuclear Science and Technology Organisation (ANSTO), where the reactor is located, has a network of meteorological stations and GR-150 environmental gamma dose detectors placed in complex terrain within a 5km radius ...
Atmospheric dispersion modelling over complex terrain at small scale
Nosek, S.; Janour, Z.; Kukacka, L.; Jurcakova, K.; Kellnerova, R.; Gulikova, E.
2014-03-01
Previous study concerned of qualitative modelling neutrally stratified flow over open-cut coal mine and important surrounding topography at meso-scale (1:9000) revealed an important area for quantitative modelling of atmospheric dispersion at small-scale (1:3300). The selected area includes a necessary part of the coal mine topography with respect to its future expansion and surrounding populated areas. At this small-scale simultaneous measurement of velocity components and concentrations in specified points of vertical and horizontal planes were performed by two-dimensional Laser Doppler Anemometry (LDA) and Fast-Response Flame Ionization Detector (FFID), respectively. The impact of the complex terrain on passive pollutant dispersion with respect to the prevailing wind direction was observed and the prediction of the air quality at populated areas is discussed. The measured data will be used for comparison with another model taking into account the future coal mine transformation. Thus, the impact of coal mine transformation on pollutant dispersion can be observed.
A Atmospheric Dispersion Model for the Sudbury, Ontario, Area.
Huhn, Frank Jones
1982-03-01
A mathematical model was developed and tested to predict the relationship between sulphur oxide and trace metal emissions from smelters in the Sudbury, Ontario area, and atmospheric, precipitation, lake water and sediment chemistry. The model consists of atmospheric and lake chemistry portions. The atmospheric model is a Gaussian crosswind concentration distribution modification to a box model with a uniform vertical concentration gradient limited by a mixing height. In the near-field Briggs' plume rise and vertical dispersion terms are utilized. Oxidation, wet and dry deposition mechanisms are included to account for the gas, liquid and solid phases separately. Important improvements over existing models include (1) near- and far-field conditions treated in a single model; (2) direct linkage of crosswind dispersion to hourly meteorological observations; (3) utilization of maximum to minimum range of input parameters to realistically model the range of outputs; (4) direct linkage of the atmospheric model to a lake model. Precipitation chemistry as calculated by the atmospheric model is related to lake water and sediment chemistry utilizing a mass balance approach and assuming a continuously stirred reactor (CSTR) model to describe lake circulation. All inputs are atmospheric, modified by hydrology, soil chemistry and sedimentation. Model results were tested by comparison with existing atmospheric and precipitation chemistry measurements, supplemented with analyses of lake water and sediment chemistry collected in a field program. Eight pollutant species were selected for modeling: sulphur dioxide, sulphate ion, hydrogen ion, copper, nickel, lead, zinc, and iron. The model effectively predicts precipitation chemistry within 150 km of Sudbury, with an average prediction to measurement ratio of 90 percent. Atmospheric concentrations are effectively predicted within 80 km, with an average prediction to measurement ratio of 81 percent. Lake chemistry predictions are
Predicting Energetics of Supramolecular Systems Using the XDM Dispersion Model.
Otero-de-la-Roza, A; Johnson, Erin R
2015-09-08
In this article, we examine the ability of the exchange-hole dipole moment (XDM) model of dispersion to treat large supramolecular systems. We benchmark several XDM-corrected functionals on the S12L set proposed by Grimme, which comprises large dispersion-bound host-guest systems, for which back-corrected experimental and Quantum Monte Carlo (QMC) reference data are available. PBE-XDM coupled with the relatively economical and efficient pc-2-spd basis set gives excellent statistics (mean absolute error (MAE) = 1.5 kcal/mol), below the deviation between experimental and QMC data. When compared only to the (more accurate) QMC results, PBE-XDM/pc-2-spd (MAE = 1.2 kcal/mol) outperforms all other dispersion-corrected DFT results in the literature, including PBE-dDsC/QZ4P (6.2 kcal/mol), PBE-NL/def2-QZVP (4.7 kcal/mol), PBE-D2/def2-QZVP' (3.5 kcal/mol), PBE-D3/def2-QZVP'(2.3 kcal/mol), M06-L/def2-QZVP (1.9 kcal/mol), and PBE-MBD (1.8 kcal/mol), with no significant bias (mean error (ME) = 0.04 kcal/mol). PBE-XDM/pc-2-spd gives binding energies relatively close to the complete basis-set limit and does not necessitate the use of counterpoise corrections, which facilitates its use. The dipole-quadrupole and quadrupole-quadrupole pairwise dispersion terms (C8 and C10) are critical for the correct description of the dimers. XDM-corrected functionals different from PBE that work well for small dimers do not yield good accuracy for the large supramolecular systems in the S12L, presenting errors that scale linearly with the dispersion contribution to the binding energy.
Applied Regression Modeling A Business Approach
Pardoe, Iain
2012-01-01
An applied and concise treatment of statistical regression techniques for business students and professionals who have little or no background in calculusRegression analysis is an invaluable statistical methodology in business settings and is vital to model the relationship between a response variable and one or more predictor variables, as well as the prediction of a response value given values of the predictors. In view of the inherent uncertainty of business processes, such as the volatility of consumer spending and the presence of market uncertainty, business professionals use regression a
Markov Model Applied to Gene Evolution
Institute of Scientific and Technical Information of China (English)
季星来; 孙之荣
2001-01-01
The study of nucleotide substitution is very important both to our understanding of gene evolution and to reliable estimation of phylogenetic relationships. In this paper nucleotide substitution is assumed to be random and the Markov model is applied to the study of the evolution of genes. Then a non-linear optimization approach is proposed for estimating substitution in real sequences. This substitution is called the "Nucleotide State Transfer Matrix". One of the most important conclusions from this work is that gene sequence evolution conforms to the Markov process. Also, some theoretical evidences for random evolution are given from energy analysis of DNA replication.
Tsai, M.; Lee, C.; Yu, H.
2013-12-01
In the last 20 years, the Yunlin offshore industrial park has significantly contributed to the economic development of Taiwan. Its annual production value has reached almost 12 % of Taiwan's GDP in 2012. The offshore industrial park also balanced development of urban and rural in areas. However, the offshore industrial park is considered the major source of air pollution to nearby counties, especially, the emission of Volatile Organic Compounds(VOCs). Studies have found that exposures to high level of some VOCs have caused adverse health effects on both human and ecosystem. Since both health and ecological effects of air pollution have been the subject of numerous studies in recent years, it is a critical issue in estimating VOCs emissions. Nowadays emission estimation techniques are usually used emissions factors in calculation. Because the methodology considered totality of equipment activities based on statistical assumptions, it would encounter great uncertainty between these coefficients. This study attempts to estimate VOCs emission of the Yunlin Offshore Industrial Park using an inverse atmospheric dispersion model. The inverse modeling approach will be applied to the combination of dispersion modeling result which input a given one-unit concentration and observations at air quality stations in Yunlin. The American Meteorological Society-Environmental Protection Agency Regulatory Model (AERMOD) is chosen as the tool for dispersion modeling in the study. Observed concentrations of VOCs are collected by the Taiwanese Environmental Protection Administration (TW EPA). In addition, the study also analyzes meteorological data including wind speed, wind direction, pressure and temperature etc. VOCs emission estimations from the inverse atmospheric dispersion model will be compared to the official statistics released by Yunlin Offshore Industrial Park. Comparison of estimated concentration from inverse dispersion modeling and official statistical concentrations will
Hlubina, Petr
1999-12-01
Intermodal dispersion in a two-mode optical fiber can be measured in the spectral domain when the spectral interference between modes at the output of the optical fiber shows up as a periodic modulation of the source spectrum that can be processed. However, this technique cannot be used to measure intermodal dispersion in the two- mode optical fiber when the period of modulation is too small to be resolved by a spectrometer. Consequently, we proposed a new measuring technique utilizing a tandem configuration of a dispersive Michelson interferometer and the two-mode optical fiber in which the spectral interference can be resolved even if a low-resolution spectrometer is used. In the tandem configuration of the Michelson interferometer and the two-mode optical fiber, the optical path difference (OPD) in the Michelson interferometer is adjusted close to the group OPD between modes of the optical fiber so that the low-frequency spectral modulation that can be processed is produced. Using the Fourier transform method in processing the measured spectral modulations and subtracting the effect of the dispersive Michelson interferometer, the feasibility of this technique has successfully been demonstrated in obtaining the intermodal dispersion in the two-model optical fiber.
Incorporating animal behavior into seed dispersal models: implications for seed shadows.
Russo, Sabrina E; Portnoy, Stephen; Augspurger, Carol K
2006-12-01
Seed dispersal fundamentally influences plant population and community dynamics but is difficult to quantify directly. Consequently, models are frequently used to describe the seed shadow (the seed deposition pattern of a plant population). For vertebrate-dispersed plants, animal behavior is known to influence seed shadows but is poorly integrated in seed dispersal models. Here, we illustrate a modeling approach that incorporates animal behavior and develop a stochastic, spatially explicit simulation model that predicts the seed shadow for a primate-dispersed tree species (Virola calophylla, Myristicaceae) at the forest stand scale. The model was parameterized from field-collected data on fruit production and seed dispersal, behaviors and movement patterns of the key disperser, the spider monkey (Ateles paniscus), densities of dispersed and non-dispersed seeds, and direct estimates of seed dispersal distances. Our model demonstrated that the spatial scale of dispersal for this V. calophylla population was large, as spider monkeys routinely dispersed seeds >100 m, a commonly used threshold for long-distance dispersal. The simulated seed shadow was heterogeneous, with high spatial variance in seed density resulting largely from behaviors and movement patterns of spider monkeys that aggregated seeds (dispersal at their sleeping sites) and that scattered seeds (dispersal during diurnal foraging and resting). The single-distribution dispersal kernels frequently used to model dispersal substantially underestimated this variance and poorly fit the simulated seed-dispersal curve, primarily because of its multimodality, and a mixture distribution always fit the simulated dispersal curve better. Both seed shadow heterogeneity and dispersal curve multimodality arose directly from these different dispersal processes generated by spider monkeys. Compared to models that did not account for disperser behavior, our modeling approach improved prediction of the seed shadow of this V
On the coalescence-dispersion modeling of turbulent molecular mixing
Givi, Peyman; Kosaly, George
1987-01-01
The general coalescence-dispersion (C/D) closure provides phenomenological modeling of turbulent molecular mixing. The models of Curl and Dopazo and O'Brien appear as two limiting C/D models that bracket the range of results one can obtain by various models. This finding is used to investigate the sensitivtiy of the results to the choice of the model. Inert scalar mixing is found to be less model-sensitive than mixing accompanied by chemical reaction. Infinitely fast chemistry approximation is used to relate the C/D approach to Toor's earlier results. Pure mixing and infinite rate chemistry calculations are compared to study further a recent result of Hsieh and O'Brien who found that higher concentration moments are not sensitive to chemistry.
Modeling Gravitational Waves to Test GR Dispersion and Polarization
Tso, Rhondale; Chen, Yanbei; Isi, Maximilliano
2017-01-01
Given continued observation runs from the Laser Interferometer Gravitational-Wave Observatory Scientific Collaboration, further gravitational wave (GW) events will provide added constraints on beyond-general relativity (b-GR) theories. One approach, independent of the GW generation mechanism at the source, is to look at modification to the GW dispersion and propagation, which can accumulate over vast distances. Generic modification of GW propagation can also, in certain b-GR theories, impact the polarization content of GWs. To this end, a comprehensive approach to testing the dispersion and polarization content is developed by modeling anisotropic deformations to the waveforms' phase, along with birefringence effects and corollary consequences for b-GR polarizations, i.e., breathing, vector, and longitudinal modes. Such an approach can be mapped to specific theories like Lorentz violation, amplitude birefringence in Chern-Simons, and provide hints at additional theories to be included. An overview of data analysis routines to be implemented will also be discussed.
A Deformation Model for Dispersely Failing Elastoplastic Unidirectionally Reinforced Composites
Lagzdins, A.
2001-09-01
A calculation model is proposed for unidirectionally reinforced elastoplastic composites capable of gradually accumulating disperse microdamages under loading. The composite is assumed to be a homogeneous transversely isotropic solid. To describe its elastoplastic behavior, an incremental plasticity theory with a nonlinear combined hardening mechanism is invoked. At each point of the solid, its damage is characterized by a centrally symmetric scalar function on a unit sphere. This function is approximated by a fourth-rank tensor, which is used for describing the degradation of the elastic properties of the solid due to the accumulation of disperse microdamages. It is shown how to determine, using the known experimental data, all material constants appearing in the theoretical relations suggested.
Modeling seed dispersal distances: implications for transgenic Pinus taeda.
Williams, Claire G; LaDeau, Shannon L; Oren, Ram; Katul, Gabriel G
2006-02-01
Predicting forest-tree seed dispersal across a landscape is useful for estimating gene flow from genetically engineered (GE) or transgenic trees. The question of biocontainment has yet to be resolved, although field-trial permits for transgenic forest trees are on the rise. Most current field trials in the United States occur in the Southeast where Pinus taeda L., an indigenous species, is the major timber commodity. Seed dispersal distances were simulated using a model where the major determinants were: (1) forest canopy height at seed release, (2) terminal velocity of the seeds, (3) absolute seed release, and (4) turbulent-flow statistics, all of which were measured or determined within a P. taeda plantation established from seeds collected from wild forest-tree stands at the Duke Forest near Durham, North Carolina, USA. In plantations aged 16 and 25 years our model results showed that most of the seeds fell within local-neighborhood dispersal distances, with estimates ranging from 0.05 to 0.14 km from the source. A fraction of seeds was uplifted above the forest canopy and moved via the long-distance dispersal (LDD) process as far as 11.9-33.7 km. Out of 10(5) seeds produced per hectare per year, roughly 440 seeds were predicted to be uplifted by vertical eddies above the forest canopy and transported via LDD. Of these, 70 seeds/ha traveled distances in excess of 1 km from the source, a distance too great to serve as a biocontainment zone. The probability of LDD occurrence of transgenic conifer seeds at distances exceeding 1 km approached 100%.
Ma, Denglong; Zhang, Zaoxiao
2016-07-05
Gas dispersion model is important for predicting the gas concentrations when contaminant gas leakage occurs. Intelligent network models such as radial basis function (RBF), back propagation (BP) neural network and support vector machine (SVM) model can be used for gas dispersion prediction. However, the prediction results from these network models with too many inputs based on original monitoring parameters are not in good agreement with the experimental data. Then, a new series of machine learning algorithms (MLA) models combined classic Gaussian model with MLA algorithm has been presented. The prediction results from new models are improved greatly. Among these models, Gaussian-SVM model performs best and its computation time is close to that of classic Gaussian dispersion model. Finally, Gaussian-MLA models were applied to identifying the emission source parameters with the particle swarm optimization (PSO) method. The estimation performance of PSO with Gaussian-MLA is better than that with Gaussian, Lagrangian stochastic (LS) dispersion model and network models based on original monitoring parameters. Hence, the new prediction model based on Gaussian-MLA is potentially a good method to predict contaminant gas dispersion as well as a good forward model in emission source parameters identification problem.
Nonlinear dispersion effects in elastic plates: numerical modelling and validation
Kijanka, Piotr; Radecki, Rafal; Packo, Pawel; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.
2017-04-01
Nonlinear features of elastic wave propagation have attracted significant attention recently. The particular interest herein relates to complex wave-structure interactions, which provide potential new opportunities for feature discovery and identification in a variety of applications. Due to significant complexity associated with wave propagation in nonlinear media, numerical modeling and simulations are employed to facilitate design and development of new measurement, monitoring and characterization systems. However, since very high spatio- temporal accuracy of numerical models is required, it is critical to evaluate their spectral properties and tune discretization parameters for compromise between accuracy and calculation time. Moreover, nonlinearities in structures give rise to various effects that are not present in linear systems, e.g. wave-wave interactions, higher harmonics generation, synchronism and | recently reported | shifts to dispersion characteristics. This paper discusses local computational model based on a new HYBRID approach for wave propagation in nonlinear media. The proposed approach combines advantages of the Local Interaction Simulation Approach (LISA) and Cellular Automata for Elastodynamics (CAFE). The methods are investigated in the context of their accuracy for predicting nonlinear wavefields, in particular shifts to dispersion characteristics for finite amplitude waves and secondary wavefields. The results are validated against Finite Element (FE) calculations for guided waves in copper plate. Critical modes i.e., modes determining accuracy of a model at given excitation frequency - are identified and guidelines for numerical model parameters are proposed.
Sun, HongGuang; Zhang, Yong; Chen, Wen; Reeves, Donald M.
2014-02-01
Field and numerical experiments of solute transport through heterogeneous porous and fractured media show that the growth of contaminant plumes may not exhibit constant scaling, and may instead transition between diffusive states (i.e., superdiffusion, subdiffusion, and Fickian diffusion) at various transport scales. These transitions are likely attributed to physical properties of the medium, such as spatial variations in medium heterogeneity. We refer to this transitory dispersive behavior as "transient dispersion", and propose a variable-index fractional-derivative model (FDM) to describe the underlying transport dynamics. The new model generalizes the standard constant-index FDM which is limited to stationary heterogeneous media. Numerical methods including an implicit Eulerian method (for spatiotemporal transient dispersion) and a Lagrangian solver (for multiscaling dispersion) are utilized to produce variable-index FDM solutions. The variable-index FDM is then applied to describe transient dispersion observed at two field tracer tests and a set of numerical experiments. Results show that 1) uranine transport at the small-scale Grimsel test site transitions from strong subdispersion to Fickian dispersion, 2) transport of tritium at the regional-scale Macrodispersion Experimental (MADE) site transitions from near-Fickian dispersion to strong superdispersion, and 3) the conservative particle transport through regional-scale discrete fracture network transitions from superdispersion to Fickian dispersion. The variable-index model can efficiently quantify these transitions, with the scale index varying linearly in time or space.
Sun, Hongguang; Zhang, Yong; Chen, Wen; Reeves, Donald M
2014-02-01
Field and numerical experiments of solute transport through heterogeneous porous and fractured media show that the growth of contaminant plumes may not exhibit constant scaling, and may instead transition between diffusive states (i.e., superdiffusion, subdiffusion, and Fickian diffusion) at various transport scales. These transitions are likely attributed to physical properties of the medium, such as spatial variations in medium heterogeneity. We refer to this transitory dispersive behavior as "transient dispersion", and propose a variable-index fractional-derivative model (FDM) to describe the underlying transport dynamics. The new model generalizes the standard constant-index FDM which is limited to stationary heterogeneous media. Numerical methods including an implicit Eulerian method (for spatiotemporal transient dispersion) and a Lagrangian solver (for multiscaling dispersion) are utilized to produce variable-index FDM solutions. The variable-index FDM is then applied to describe transient dispersion observed at two field tracer tests and a set of numerical experiments. Results show that 1) uranine transport at the small-scale Grimsel test site transitions from strong subdispersion to Fickian dispersion, 2) transport of tritium at the regional-scale Macrodispersion Experimental (MADE) site transitions from near-Fickian dispersion to strong superdispersion, and 3) the conservative particle transport through regional-scale discrete fracture network transitions from superdispersion to Fickian dispersion. The variable-index model can efficiently quantify these transitions, with the scale index varying linearly in time or space.
Inversion of dispersion coefficient in water quality model using optimal perturbation algorithm
Institute of Scientific and Technical Information of China (English)
Hong-tao NIE; Jian-hua TAO
2009-01-01
As a primary parameter in the water quality model for shallow bays,the dispersion coefficient is traditionally determined with a trial-and-error method,which is time-consuming and requires much experience.In this paper,based on the measured data of chemical oxygen demand(COD),the dispersion coefficient is calculated using an inversion method.In the process,the regularization method is applied to treat the ill-posedness.and an operator identity perturbation method is used to obtain the solution.Using the model with an inverted dispersion coefficient,the distributions of COD,inorganic nitrogen(IN),and inorganic phosphorus(IP)in Bohai Bay are predicted and compared with the measured data.The results indicate that the method is feasible and the inverted dispersion coefficient can be used to predict other pollutant distribution.This method may also be further extended to the inversion of other parameters in the water quality model.
Pu, Yichao; Yang, Chao
2014-09-01
Urban vehicle emission models have been utilized to calculate pollutant concentrations at both microscopic and macroscopic levels based on vehicle emission rates which few researches have been able to validate. The objective of our research is to estimate urban roadside emissions and calibrate it with in-field measurement data. We calculated the vehicle emissions based on localized emission rates, and used an atmospheric dispersion model to estimate roadside emissions. A non-linear regression model was applied to calibrate the localized emission rates using in-field measurement data. With the calibrated emission rates, emissions on urban roadside can be estimated with a high accuracy.
Dimitriu, Dan Gheorghe; Dorohoi, Dana Ortansa
2014-10-15
A new method to determine the optical rotatory dispersion (ORD) in the visible range, based on a channeled spectrum obtained with a uniax inorganic crystal introduced between two crossed polarizers with its optical axis parallel to the light propagation direction is detailed in this paper. When the studied inorganic crystals are transparent, this method permits the estimation of the optical rotatory dispersion in the visible range, for which the cheap polarizers are available. The speed of the measurements is very high, because the estimations are made from the channeled spectrum obtained for a single arrangement of the optical components. By using a computer, ORD is quickly determined for the visible range. The results obtained by this method for some Carpathian Quartz samples are consistent with those from literature. The proposed method can be also applied in UV and IR spectral ranges, when the anisotropic layers are transparent and the linearly polarized radiations can be obtained.
Duignan, Timothy T; Parsons, Drew F; Ninham, Barry W
2013-08-15
Physically accurate continuum solvent models that can calculate solvation energies are crucial to explain and predict the behavior of solute particles in water. Here, we present such a model applied to small spherical ions and neutral atoms. It improves upon a basic Born electrostatic model by including a standard cavity energy and adding a dispersion component, consistent with the Born electrostatic energy and using the same cavity size parameter. We show that the well-known, puzzling differences between the solvation energies of ions of the same size is attributable to the neglected dispersion contribution. This depends on dynamic polarizability as well as size. Generally, a large cancellation exists between the cavity and dispersion contributions. This explains the surprising success of the Born model. The model accurately reproduces the solvation energies of the alkali halide ions, as well as the silver(I) and copper(I) ions with an error of 12 kJ mol(-1) (±3%). The solvation energy of the noble gases is also reproduced with an error of 2.6 kJ mol(-1) (±30%). No arbitrary fitting parameters are needed to achieve this. This model significantly improves our understanding of ionic solvation and forms a solid basis for the investigation of other ion-specific effects using a continuum solvent model.
Langevin equation model of dispersion in the convective boundary layer
Energy Technology Data Exchange (ETDEWEB)
Nasstrom, J S
1998-08-01
This dissertation presents the development and evaluation of a Lagrangian stochastic model of vertical dispersion of trace material in the convective boundary layer (CBL). This model is based on a Langevin equation of motion for a fluid particle, and assumes the fluid vertical velocity probability distribution is skewed and spatially homogeneous. This approach can account for the effect of large-scale, long-lived turbulent structures and skewed vertical velocity distributions found in the CBL. The form of the Langevin equation used has a linear (in velocity) deterministic acceleration and a skewed randomacceleration. For the case of homogeneous fluid velocity statistics, this ""linear-skewed" Langevin equation can be integrated explicitly, resulting in a relatively efficient numerical simulation method. It is shown that this approach is more efficient than an alternative using a "nonlinear-Gaussian" Langevin equation (with a nonlinear deterministic acceleration and a Gaussian random acceleration) assuming homogeneous turbulence, and much more efficient than alternative approaches using Langevin equation models assuming inhomogeneous turbulence. "Reflection" boundary conditions for selecting a new velocity for a particle that encounters a boundary at the top or bottom of the CBL were investigated. These include one method using the standard assumption that the magnitudes of the particle incident and reflected velocities are positively correlated, and two alternatives in which the magnitudes of these velocities are negatively correlated and uncorrelated. The constraint that spatial and velocity distributions of a well-mixed tracer must be the same as those of the fluid, was used to develop the Langevin equation models and the reflection boundary conditions. The two Langevin equation models and three reflection methods were successfully tested using cases for which exact, analytic statistical properties of particle velocity and position are known, including well
A capture-recapture model of amphidromous fish dispersal
Smith, W.; Kwak, Thomas J.
2014-01-01
Adult movement scale was quantified for two tropical Caribbean diadromous fishes, bigmouth sleeper Gobiomorus dormitor and mountain mullet Agonostomus monticola, using passive integrated transponders (PITs) and radio-telemetry. Large numbers of fishes were tagged in Rio Mameyes, Puerto Rico, U.S.A., with PITs and monitored at three fixed locations over a 2-5 year period to estimate transition probabilities between upper and lower elevations and survival probabilities with a multistate Cormack-Jolly-Seber model. A sub-set of fishes were tagged with radio-transmitters and tracked at weekly intervals to estimate fine-scale dispersal. Changes in spatial and temporal distributions of tagged fishes indicated that neither G. dormitor nor A. monticola moved into the lowest, estuarine reaches of Rio Mameyes during two consecutive reproductive periods, thus demonstrating that both species follow an amphidromous, rather than catadromous, migratory strategy. Further, both species were relatively sedentary, with restricted linear ranges. While substantial dispersal of these species occurs at the larval stage during recruitment to fresh water, the results indicate minimal dispersal in spawning adults. Successful conservation of diadromous fauna on tropical islands requires management at both broad basin and localized spatial scales.
A THIRD-ORDER BOUSSINESQ MODEL APPLIED TO NONLINEAR EVOLUTION OF SHALLOW-WATER WAVES
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The conventional Boussinesq model is extended to the third order in dispersion and nonlinearity. The new equations are shown to possess better linear dispersion characteristics. For the evolution of periodic waves over a constant depth, the computed wave envelops are spatially aperiodic and skew. The model is then applied to the study of wave focusing by a topographical lens and the results are compared with Whalin's (1971) experimental data as well as some previous results from the conventional Boussinesq model. Encouragingly, improved agreement with Whalin's experimental data is found.
Terahertz spectroscopy applied to food model systems
DEFF Research Database (Denmark)
Møller, Uffe
Water plays a crucial role in the quality of food. Apart from the natural water content of a food product, the state of that water is very important. Water can be found integrated into the biological material or it can be added during production of the product. Currently it is difficult to differ...... to differentiate between these types of water in subsequent quality controls. This thesis describes terahertz time-domain spectroscopy applied on aqueous food model systems, with particular focus on ethanol-water mixtures and confined water pools in inverse micelles.......Water plays a crucial role in the quality of food. Apart from the natural water content of a food product, the state of that water is very important. Water can be found integrated into the biological material or it can be added during production of the product. Currently it is difficult...
2010-08-31
... of Alternative Vapor-Gas Dispersion Models AGENCY: Pipeline and Hazardous Materials Safety... provides guidance on the requirements for obtaining approval of alternative vapor-gas dispersion models... vapor-gas dispersion. Certain mathematical models and other parameters must be used to calculate the...
The NET effect of dispersants - a critical review of testing and modelling of surface oil dispersion
Zeinstra-Helfrich, Marieke; Koops, Wierd; Murk, A.J.
2015-01-01
Application of chemical dispersants or mechanical dispersion on surface oil is a trade-off between surface effects (impact of floating oil) and sub-surface effects (impact of suspended oil). Making an informed decision regarding such response, requires insight in the induced change in fate and tr
The NET effect of dispersants - a critical review of testing and modelling of surface oil dispersion
Zeinstra-Helfrich, Marieke; Koops, Wierd; Murk, A.J.
2015-01-01
Application of chemical dispersants or mechanical dispersion on surface oil is a trade-off between surface effects (impact of floating oil) and sub-surface effects (impact of suspended oil). Making an informed decision regarding such response, requires insight in the induced change in fate and
Combining niche and dispersal in a simple model (NDM) of species distribution.
Génard, Michel; Lescourret, Françoise
2013-01-01
Predicting the distribution of species has become a crucial issue in biodiversity research. Two kinds of model address this question: niche models, which are usually based on static approaches linking species distribution to habitat characteristics, and dispersal models, which are usually dynamic and process-based. We propose a model (NDM: niche and dispersal model) that considers the local presence of a species to result from a dynamic balance between extinction (based on the niche concept) and immigration (based on the dispersal concept), at a given moment in time, in a spatially explicit context. We show that NDM correctly predicts observed bird species and community distributions at different scales. NDM helps to reconcile the contrasting paradigms of metacommunity theory. It shows that sorting and mass effects are the factors determining bird species distribution. One of the most interesting features of NDM is its ability to predict well known properties of communities, such as decreasing species richness with decreasing patch size and increasing distance to the mainland, and the mid-domain effect at the regional scale, contrasting with predictions of much smaller effects at the local scale. NDM shows that habitat destruction in the matrix around patches of forest can affect the forest bird community, principally by decreasing the occurrence of typical matrix birds within the forest. This model could be used as the starting point for applied ecological studies on the management of species and community distributions.
A Cooperation Model Applied in a Kindergarten
Directory of Open Access Journals (Sweden)
Jose I. Rodriguez
2011-10-01
Full Text Available The need for collaboration in a global world has become a key factor for success for many organizations and individuals. However in several regions and organizations in the world, it has not happened yet. One of the settings where major obstacles occur for collaboration is in the business arena, mainly because of competitive beliefs that cooperation could hurt profitability. We have found such behavior in a wide variety of countries, in advanced and developing economies. Such cultural behaviors or traits characterized entrepreneurs by working in isolation, avoiding the possibilities of building clusters to promote regional development. The needs to improve the essential abilities that conforms cooperation are evident. It is also very difficult to change such conduct with adults. So we decided to work with children to prepare future generations to live in a cooperative world, so badly hit by greed and individualism nowadays. We have validated that working with children at an early age improves such behavior. This paper develops a model to enhance the essential abilities in order to improve cooperation. The model has been validated by applying it at a kindergarten school.
Modeling highly-dispersive transparency in planar nonlinear metamaterials
Potravkin, N. N.; Makarov, V. A.; Perezhogin, I. A.
2017-02-01
We consider propagation of light in planar optical metamaterial, which basic element is composed of two silver stripes, and it possesses strong dispersion in optical range. Our method of numerical modeling allows us to take into consideration the nonlinearity of the material and the effects of light self-action without considerable increase of the calculation time. It is shown that plasmonic resonances originating in such a structure result in multiple enhancement of local field and high sensitivity of the transmission coefficient to the intensity of incident monochromatic wave.
A soil-plant model applied to phytoremediation of metals.
Lugli, Francesco; Mahler, Claudio Fernando
2016-01-01
This study reports a phytoremediation pot experiment using an open-source program. Unsaturated water flow was described by the Richards' equation and solute transport by the advection-dispersion equation. Sink terms in the governing flow and transport equations accounted for root water and solute uptake, respectively. Experimental data were related to application of Vetiver grass to soil contaminated by metal ions. Sensitivity analysis revealed that due to the specific experimental set-up (bottom flux not allowed), hydraulic model parameters did not influence root water (and contaminant) uptake. In contrast, the results were highly correlated with plant solar radiation interception efficiency (leaf area index). The amounts of metals accumulated in the plant tissue were compared to numerical values of cumulative uptake. Pb(2+) and Zn(2+) uptake was satisfactorily described using a passive model. However, for Ni(2+) and Cd(2+), a specific calibration of the active uptake model was necessary. Calibrated MM parameters for Ni(2+), Cd(2+), and Pb(2+) were compared to values in the literature, generally suggesting lower rates and saturation advance. A parameter (saturation ratio) was introduced to assess the efficiency of contaminant uptake. Numerical analysis, applying actual field conditions, showed the limitation of the active model for being independent of the transpiration rate.
Light Penetration in Seawater Polluted by Dispersed Oil: Results of Radiative Transfer Modelling
Haule, K.; Darecki, M.; Toczek, H.
2015-11-01
The downwelling light in seawater is shaped by natural seawater constituents as well as by some external substances which can occur locally and temporally. In this study we focused on dispersed oil droplets which can be found in seawater after an oil spill or in the consequence of intensive shipping, oil extraction and transportation. We applied our modified radiative transfer model based on Monte Carlo code to evaluate the magnitude of potential influence of dispersed oil droplets on the downwelling irradiance and the depth of the euphotic zone. Our model was validated on the basis of in situ measurements for natural (unpolluted) seawater in the Southern Baltic Sea, resulting in less than 5% uncertainty. The optical properties of dispersed Petrobaltic crude oil were calculated on the basis of Mie theory and involved into radiative transfer model. We found that the changes in downwelling light caused by dispersed oil depend on several factors such as oil droplet concentration, size distribution, and the penetration depth (i.e. vertical range of oil droplets occurrence below sea surface). Petrobaltic oil droplets of submicron sizes and penetration depth of 5 m showed a potentially detectable reduction in the depth of the euphotic zone of 5.5% at the concentration of only 10 ppb. Micrometer-sized droplets needed 10 times higher concentration to give a similar effect. Our radiative transfer model provided data to analyse and discuss the influence of each factor separately. This study contributes to the understanding of the change in visible light penetration in seawater affected by dispersed oil.
Chai, T.; Stein, A. F.; Ngan, F.
2016-12-01
Over the last few years, the use of dispersion model ensembles has become an increasingly attractive approach to study atmospheric transport in the lower troposphere. The HYSPLIT modeling system has a built-in capability to produce three different simulation ensembles. These ensembles have been constructed based on applied case studies using different sets of initial conditions and internal model physical parameters. They are not meant to be comprehensive and only account for some of the components of the concentration uncertainty. The first one, called "Meteorological Grid" ensemble, is created by slightly offsetting the meteorological data to test the sensitivity of the advection calculation to the gradients in the meteorological data fields. The rationale for the shifting is to assess the effect that a limited spatial and temporal resolution meteorological data field has on the output concentration. The second, called the "Turbulence" ensemble, represents the uncertainty in the concentration calculation arising from the model's discrete characterization of the turbulent random motions of its lagrangian particles. In this ensemble approach, the number of particles released is reduced and multiple simulations are run, each with a different random number seed. The third, the "Physics" ensemble, is constructed by varying key physical model parameters and model options such as the Lagrangian representation of the particles/puffs, Lagrangian timescales, and vertical and horizontal dispersion parameterizations. One of the biggest challenges in creating dispersion ensembles is developing the appropriate member selection process to get the most accurate results, quantify ensemble uncertainty, and use computing resources more efficiently by avoiding the use of redundant model information. In this work, we use the HYSPLIT modeling system to generate ensembles and evaluate them against the Cross-Appalachian Tracer Experiment (CAPTEX). Furthermore, we apply a reduction
Huang, Junqi; Goltz, Mark N.
2017-06-01
To greatly simplify their solution, the equations describing radial advective/dispersive transport to an extraction well in a porous medium typically neglect molecular diffusion. While this simplification is appropriate to simulate transport in the saturated zone, it can result in significant errors when modeling gas phase transport in the vadose zone, as might be applied when simulating a soil vapor extraction (SVE) system to remediate vadose zone contamination. A new analytical solution for the equations describing radial gas phase transport of a sorbing contaminant to an extraction well is presented. The equations model advection, dispersion (including both mechanical dispersion and molecular diffusion), and rate-limited mass transfer of dissolved, separate phase, and sorbed contaminants into the gas phase. The model equations are analytically solved by using the Laplace transform with respect to time. The solutions are represented by confluent hypergeometric functions in the Laplace domain. The Laplace domain solutions are then evaluated using a numerical Laplace inversion algorithm. The solutions can be used to simulate the spatial distribution and the temporal evolution of contaminant concentrations during operation of a soil vapor extraction well. Results of model simulations show that the effect of gas phase molecular diffusion upon concentrations at the extraction well is relatively small, although the effect upon the distribution of concentrations in space is significant. This study provides a tool that can be useful in designing SVE remediation strategies, as well as verifying numerical models used to simulate SVE system performance.
Testing the cleaning effectiveness of new ecological aqueous dispersions applied on old icons
Vasilache, Viorica; Sandu, Irina Crina Anca; Pruteanu, Silvea; Caldeira, Ana Teresa; Simionescu, Atena Elena; Sandu, Ion
2016-03-01
Adherent deposits are very aggressive towards ancient heritage paintings since they affect the varnish and the painting's layers, sometimes reaching the preparative layers. The biggest problem to the restorer is their removal without affecting the patina, the transparent varnish (well preserved) and fine colour glazes made during painting. Therefore, their removal requires preliminary cleaning tests that allow the optimization of the cleaning system composition that is going to be used. The study was focused on organic natural systems, as colourless supernatants, some of them used during ages, but insufficiently studied. The paper presents an evaluation of the effectiveness of cleaning varnished icons of the nineteenth century, with complex conservation cases using supernatants derived from aqueous dispersions extracted from vegetables and dry indigenous herbal infusions. Best results, after six consecutive cleaning steps, on tempera old icon was obtained for a mixture made of mature white onion juice + extract of Soapwort flowers + corn silk tea + acacia tea. As a best result after just one cleaning step was obtained for a quaternary mixture composed from mature white onion juice + mature carrot juice + corn silk tea + aqueous extract of Soapwort flowers.
Neuscamman, Stephanie; Yu, Kristen
2016-05-01
The results of the National Atmospheric Release Advisory Center (NARAC) model simulations are compared to measured data from the Full-Scale Radiological Dispersal Device (FSRDD) field trials. The series of explosive radiological dispersal device (RDD) experiments was conducted in 2012 by Defence Research and Development Canada (DRDC) and collaborating organizations. During the trials, a wealth of data was collected, including a variety of deposition and air concentration measurements. The experiments were conducted with one of the stated goals being to provide measurements to atmospheric dispersion modelers. These measurements can be used to facilitate important model validation studies. For this study, meteorological observations recorded during the tests are input to the diagnostic meteorological model, ADAPT, which provides 3-D, time-varying mean wind and turbulence fields to the LODI dispersion model. LODI concentration and deposition results are compared to the measured data, and the sensitivity of the model results to changes in input conditions (such as the particle activity size distribution of the source) and model physics (such as the rise of the buoyant cloud of explosive products) is explored. The NARAC simulations predicted the experimentally measured deposition results reasonably well considering the complexity of the release. Changes to the activity size distribution of the modeled particles can improve the agreement of the model results to measurement.
The Lagrangian particle dispersion model FLEXPART version 10
Pisso, Ignacio; Sollum, Espen; Grythe, Henrik; Kristiansen, Nina; Cassiani, Massimo; Eckhardt, Sabine; Thompson, Rona; Groot Zwaaftnik, Christine; Evangeliou, Nikolaos; Hamburger, Thomas; Sodemann, Harald; Haimberger, Leopold; Henne, Stephan; Brunner, Dominik; Burkhart, John; Fouilloux, Anne; Fang, Xuekun; Phillip, Anne; Seibert, Petra; Stohl, Andreas
2017-04-01
The Lagrangian particle dispersion model FLEXPART was in its first original release in 1998 designed for calculating the long-range and mesoscale dispersion of air pollutants from point sources, such as after an accident in a nuclear power plant. The model has now evolved into a comprehensive tool for atmospheric transport modelling and analysis. Its application fields are extended to a range of atmospheric transport processes for both atmospheric gases and aerosols, e.g. greenhouse gases, short-lived climate forces like black carbon, volcanic ash and gases as well as studies of the water cycle. We present the newest release, FLEXPART version 10. Since the last publication fully describing FLEXPART (version 6.2), the model code has been parallelised in order to allow for the possibility to speed up computation. A new, more detailed gravitational settling parametrisation for aerosols was implemented, and the wet deposition scheme for aerosols has been heavily modified and updated to provide a more accurate representation of this physical process. In addition, an optional new turbulence scheme for the convective boundary layer is available, that considers the skewness in the vertical velocity distribution. Also, temporal variation and temperature dependence of the OH-reaction are included. Finally, user input files are updated to a more convenient and user-friendly namelist format, and the option to produce the output-files in netCDF-format instead of binary format is implemented. We present these new developments and show recent model applications. Moreover, we also introduce some tools for the preparation of the meteorological input data, as well as for the processing of FLEXPART output data.
Study on Dispersion Properties of Photonic Crystal Fiber by Effective-Index Model
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
The group-velocity-dispersion properties of photonic crystal fiber (PCF) were investigated by effective-index model. The relationship between waveguide dispersion and structure parameters: the pitch A and the relative hole size/was studied.
Study on Dispersion Properties of Photonic Crystal Fiber by Effective-Index Model
Institute of Scientific and Technical Information of China (English)
Ren Guobin; Wang Zhi; Lou Shuqin; Jian Shuisheng
2003-01-01
The group-velocity-dispersion properties of photonic crystal fiber (PCF) were investigated by effective-index model. The relationship between waveguide dispersion and structure parameters: the pitch and the relative hole size f was studied.
Yu, Hesheng; Thé, Jesse
2017-05-01
The dispersion of gaseous pollutant around buildings is complex due to complex turbulence features such as flow detachment and zones of high shear. Computational fluid dynamics (CFD) models are one of the most promising tools to describe the pollutant distribution in the near field of buildings. Reynolds-averaged Navier-Stokes (RANS) models are the most commonly used CFD techniques to address turbulence transport of the pollutant. This research work studies the use of [Formula: see text] closure model for the gas dispersion around a building by fully resolving the viscous sublayer for the first time. The performance of standard [Formula: see text] model is also included for comparison, along with results of an extensively validated Gaussian dispersion model, the U.S. Environmental Protection Agency (EPA) AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model). This study's CFD models apply the standard [Formula: see text] and the [Formula: see text] turbulence models to obtain wind flow field. A passive concentration transport equation is then calculated based on the resolved flow field to simulate the distribution of pollutant concentrations. The resultant simulation of both wind flow and concentration fields are validated rigorously by extensive data using multiple validation metrics. The wind flow field can be acceptably modeled by the [Formula: see text] model. However, the [Formula: see text] model fails to simulate the gas dispersion. The [Formula: see text] model outperforms [Formula: see text] in both flow and dispersion simulations, with higher hit rates for dimensionless velocity components and higher "factor of 2" of observations (FAC2) for normalized concentration. All these validation metrics of [Formula: see text] model pass the quality assurance criteria recommended by The Association of German Engineers (Verein Deutscher Ingenieure, VDI) guideline. Furthermore, these metrics are better than or the same as those
Atmospheric dispersion modeling: Challenges of the Fukushima Daiichi response
Energy Technology Data Exchange (ETDEWEB)
Sugiyama, Gayle [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nasstrom, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pobanz, Brenda [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, Kevin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vogt, Phil [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Aluzzi, Fernando [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homann, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2012-05-01
In this research, the U.S. Department of Energy’s (DOE) National Atmospheric Release Advisory Center (NARAC) provided a wide range of predictions and analyses as part of the response to the Fukushima Daiichi Nuclear Power Plant accident including: daily Japanese weather forecasts and atmospheric transport predictions to inform planning for field monitoring operations and to provide U.S. government agencies with ongoing situational awareness of meteorological conditions; estimates of possible dose in Japan based on hypothetical U.S. Nuclear Regulatory Commission scenarios of potential radionuclide releases to support protective action planning for U.S. citizens; predictions of possible plume arrival times and dose levels at U.S. locations; and source estimation and plume model refinement based on atmospheric dispersion modeling and available monitoring data.
Campo, Jochen; Wenseleers, Wim; Hales, Joel M; Makarov, Nikolay S; Perry, Joseph W
2012-08-16
A practical yet accurate dispersion model for the molecular first hyperpolarizability β is presented, incorporating both homogeneous and inhomogeneous line broadening because these affect the β dispersion differently, even if they are indistinguishable in linear absorption. Consequently, combining the absorption spectrum with one free shape-determining parameter Ginhom, the inhomogeneous line width, turns out to be necessary and sufficient to obtain a reliable description of the β dispersion, requiring no information on the homogeneous (including vibronic) and inhomogeneous line broadening mechanisms involved, providing an ideal model for practical use in extrapolating experimental nonlinear optical (NLO) data. The model is applied to the efficient NLO chromophore picolinium quinodimethane, yielding an excellent fit of the two-photon resonant wavelength-dependent data and a dependable static value β0 = 316 × 10(-30) esu. Furthermore, we show that including a second electronic excited state in the model does yield an improved description of the NLO data at shorter wavelengths but has only limited influence on β0.
Haïat, G; Naili, S
2011-02-01
Speed of sound measurements are used clinically to assess bone strength. Trabecular bone is an attenuating composite material in which negative values of velocity dispersion have been measured; this behavior remaining poorly explained physically. The aim of this work is to describe the ultrasonic propagation in trabecular bone modeled by infinite cylinders immersed in a saturating matrix and to derive the physical determinants of velocity dispersion. An original homogenization model accounting for the coupling of independent scattering and absorption phenomena allows the computation of phase velocity and of dispersion while varying bone properties. The first step of the model consists in the computation of the attenuation coefficient at all frequencies. The second step of the model corresponds to the application of the general Kramers-Krönig relationship to derive the frequency dependence of phase velocity. The model predicts negative values of velocity dispersion in agreement with experimental results obtained in phantoms mimicking trabecular bone. In trabecular bone, only negative values of velocity dispersion are predicted by the model, which span within the range of values measured experimentally. However, the comparison of the present results with results obtained in Haiat et al. (J Acoust Soc Am 124:4047-4058, 2008) assuming multiple scattering indicates that accounting for multiple scattering phenomena leads to a better prediction of velocity dispersion in trabecular bone.
Gosselin, Jeremy M.; Dosso, Stan E.; Cassidy, John F.; Quijano, Jorge E.; Molnar, Sheri; Dettmer, Jan
2017-10-01
This paper develops and applies a Bernstein-polynomial parametrization to efficiently represent general, gradient-based profiles in nonlinear geophysical inversion, with application to ambient-noise Rayleigh-wave dispersion data. Bernstein polynomials provide a stable parametrization in that small perturbations to the model parameters (basis-function coefficients) result in only small perturbations to the geophysical parameter profile. A fully nonlinear Bayesian inversion methodology is applied to estimate shear wave velocity (VS) profiles and uncertainties from surface wave dispersion data extracted from ambient seismic noise. The Bayesian information criterion is used to determine the appropriate polynomial order consistent with the resolving power of the data. Data error correlations are accounted for in the inversion using a parametric autoregressive model. The inversion solution is defined in terms of marginal posterior probability profiles for VS as a function of depth, estimated using Metropolis-Hastings sampling with parallel tempering. This methodology is applied to synthetic dispersion data as well as data processed from passive array recordings collected on the Fraser River Delta in British Columbia, Canada. Results from this work are in good agreement with previous studies, as well as with co-located invasive measurements. The approach considered here is better suited than `layered' modelling approaches in applications where smooth gradients in geophysical parameters are expected, such as soil/sediment profiles. Further, the Bernstein polynomial representation is more general than smooth models based on a fixed choice of gradient type (e.g. power-law gradient) because the form of the gradient is determined objectively by the data, rather than by a subjective parametrization choice.
Directory of Open Access Journals (Sweden)
Simon Hallstan
2013-05-01
Full Text Available Species distribution modeling is used in applied ecology; for example in predicting the consequences of global change. However, questions still remain about the robustness of model predictions. Here we estimate effects of landscape spatial configuration and organism flight ability—factors related to dispersal—on the accuracy of species distribution models. Distribution models were developed for 129 phytoplankton taxa, 164 littoral invertebrate taxa and 44 profundal invertebrate taxa sampled in 105 Swedish lakes, using six different modeling techniques (generalized linear models (GLM, multivariate adaptive regression splines (MARS, classification tree analysis (CTA, mixture discriminant analysis (MDA, generalized boosting models (GBM and random forests (RF. Model accuracy was not affected by dispersal ability (i.e., invertebrate flight ability, but the accuracy of phytoplankton assemblage predictions and, to a lesser extent, littoral invertebrate assemblages were related to ecosystem size and connectivity. Although no general pattern across species or spatial configuration was evident from our study, we recommend that dispersal and spatial configuration of ecosystems should be considered when developing species distribution models.
Energy Technology Data Exchange (ETDEWEB)
Busillo, C.; Calastrini, F.; Gualtieri, G. [Lab. for Meteorol. and Environ. Modell. (LaMMA/CNR-IBIMET), Florence (Italy); Carpentieri, M.; Corti, A. [Dept. of Energetics, Univ. of Florence (Italy); Canepa, E. [INFM, Dept. of Physics, Univ. of Genoa (Italy)
2004-07-01
The behaviour of atmospheric dispersion models is strongly influenced by meteorological input, especially as far as new generation models are concerned. More sophisticated meteorological pre-processors require more extended and more reliable data. This is true in particular when short-term simulations are performed, while in long-term modelling detailed data are less important. In Europe no meteorological standards exist about data, therefore testing and evaluating the results of new generation dispersion models is particularly important in order to obtain information on reliability of model predictions. (orig.)
Pépino, Marc; Rodríguez, Marco A; Magnan, Pierre
2012-07-01
Dispersal is a key determinant of the spatial distribution and abundance of populations, but human-made fragmentation can create barriers that hinder dispersal and reduce population viability. This study presents a modeling framework based on dispersal kernels (modified Laplace distributions) that describe stream fish dispersal in the presence of obstacles to passage. We used mark-recapture trials to quantify summer dispersal of brook trout (Salvelinus fontinalis) in four streams crossed by a highway. The analysis identified population heterogeneity in dispersal behavior, as revealed by the presence of a dominant sedentary component (48-72% of all individuals) characterized by short mean dispersal distance (dispersal distance (56-1086 m). We did not detect evidence of barrier effects on dispersal through highway crossings. Simulation of various plausible scenarios indicated that detectability of barrier effects was strongly dependent on features of sampling design, such as spatial configuration of the sampling area, barrier extent, and sample size. The proposed modeling framework extends conventional dispersal kernels by incorporating structural barriers. A major strength of the approach is that ecological process (dispersal model) and sampling design (observation model) are incorporated simultaneously into the analysis. This feature can facilitate the use of prior knowledge to improve sampling efficiency of mark-recapture trials in movement studies. Model-based estimation of barrier permeability and its associated uncertainty provides a rigorous approach for quantifying the effect of barriers on stream fish dispersal and assessing population dynamics of stream fish in fragmented landscapes.
An Axial Dispersion Model for Evaporating Bubble Column Reactor
Institute of Scientific and Technical Information of China (English)
谢刚; 李希
2004-01-01
Evaporating bubble column reactor (EBCR) is a kind of aerated reactor in which the reaction heat is removed by the evaporation of volatile reaction mixture. In this paper, a mathematical model that accounts for the gas-liquid exothermic reaction and axial dispersions of both gas and liquid phase is employed to study the performance of EBCR for the process of p-xylene(PX) oxidation. The computational results show that there are remarkable concentration and temperature gradients in EBCR for high ratio of height to diameter (H/DT). The temperature is lower at the bottom of column and higher at the top, due to rapid evaporation induced by the feed gas near the bottom. The concentration profiles in the gas phase are more nonuniform than those (except PX) in the liquid phase, which causes more solvent burning consumption at high H/DT ratio. For p-xylene oxidation, theo ptimal H/DT is around 5.
Duri Indonesia air emission inventory and dispersion modeling study
Energy Technology Data Exchange (ETDEWEB)
Soetjiptono, T.E.; Nugraha, S.; VanDerZanden, D.F. [and others
1996-11-01
The Caltex Pacific Indonesia production field located in Duri, Indonesia, is the world`s largest steam flood. Because of the large scale of these operations, there is an interest in understanding the emissions into the atmosphere from the various sources in the field as well as the possible impact on the air quality resulting from these emissions. To be proactive and to fulfill this need, a study was done to inventory emissions from the facilities in the field and to use air dispersion models to estimate impacts on the air quality using the inventory results. This paper will discuss methods and procedures used in & study to quantify the emissions from the following sources in the Duri field: process vents, production impoundments and wastewater canals, roads, fugitive emissions, storage links, and combustion sources. Emissions of the following pounds were addressed in the study: non-methane hydrocarbons (NMHC) and aromatic hydrocarbons (BTEX), hydrogen sulfide, nitrogen oxides, sulfur oxides, particulate matter (PM), and carbon monoxide. Because of the diverse nature of the sources in the field, a wide range of emission estimating procedures were used including direct measurement methods, empirical methods based on mass transfer principles, and standard emission factors or procedures available from the United States Environmental Protection Agency (U.S. EPA). To quantify and track the emissions data generated, a computerized emissions inventory was developed. This paper will also discuss the dispersion modeling methods that were used to estimate the ground level concentrations in the surrounding areas using the data developed in the emission inventory. These discussions are based upon the results of a preliminary study which is limited to a portion of the Duri production field.
TSUNAMI PROPAGATION OVER THE NORTH PACIFIC: DISPERSIVE AND NONDISPERSIVE MODELS
Directory of Open Access Journals (Sweden)
Juan Horrillo
2012-01-01
Full Text Available Hydrostatic (HY and non-hydrostatic (NHY tsunami physics is compared by application to the Kuril Island Tsunami (KIT of November 2006 and the Japan Tsunami (JT of March 2011. Our purpose is to study the significance of dispersive vs. non-dispersive long waves on global tsunami propagation. A tool which is well suited to revealing tsunami wave transformations is the energy flux. Expressions for dispersive and non-dispersive fluxes have been formulated. This provides an understanding of the role of dispersion in tsunami propagation and dissipation. Separating the pressure field into two parts i.e., HY and NHY shows that dispersive waves extract energy from the main wave, directing the dispersive energy flux away from the wave front. The major result of the application of the energy flux to non-dispersive waves is an enhanced understanding of later tsunami wave train arrivals at distant points – with arrivals sometimes occurring several hours after an initial forerunner wave. Computations show that strong differences between non-dispersive and dispersive waves develop along the length of the main energy beam. This has important consequences for accurate tsunami prediction and warnings.
Lithospheric Thickness Modeled from Long Period Surface Wave Dispersion
Energy Technology Data Exchange (ETDEWEB)
Pasyanos, M E
2008-05-15
The behavior of surface waves at long periods is indicative of subcrustal velocity structure. Using recently published dispersion models, we invert surface wave group velocities for lithospheric structure, including lithospheric thickness, over much of the Eastern Hemisphere, encompassing Eurasia, Africa, and the Indian Ocean. Thicker lithosphere under Precambrian shields and platforms are clearly observed, not only under the large cratons (West Africa, Congo, Baltic, Russia, Siberia, India), but also under smaller blocks like the Tarim Basin and Yangtze craton. In contrast, it is found that remobilized Precambrian structures like the Saharan Shield and Sino-Korean Paraplatform do not have well-established lithospheric keels. The thinnest lithospheric thickness is found under oceanic and continental rifts, as well as along convergence zones. We compare our results to thermal models of continental lithosphere, lithospheric cooling models of oceanic lithosphere, lithosphere-asthenosphere boundary (LAB) estimates from S-wave receiver functions, and velocity variations of global tomography models. In addition to comparing results for the broad region, we examine in detail the regions of Central Africa, Siberia, and Tibet. While there are clear differences in the various estimates, overall the results are generally consistent. Inconsistencies between the estimates may be due to a variety of reasons including lateral and depth resolution differences and the comparison of what may be different lithospheric features.
A CFD model for pollutant dispersion in rivers
Directory of Open Access Journals (Sweden)
Modenesi K.
2004-01-01
Full Text Available Studies have shown that humankind will experience a water shortage in the coming decades. It is therefore paramount to develop new techniques and models with a view to minimizing the impact of pollution. It is important to predict the environmental impact of new emissions in rivers, especially during periods of drought. Computational fluid dynamics (CFD has proved to be an invaluable tool to develop models able to analyze in detail particle dispersion in rivers. However, since these models generate grids with thousands (even millions of points to evaluate velocities and concentrations, they still require powerful machines. In this context, this work contributes by presenting a new three-dimensional model based on CFD techniques specifically developed to be fast, providing a significant improvement in performance. It is able to generate predictions in a couple of hours for a one-thousand-meter long section of river using Pentium IV computers. Commercial CFD packages would require weeks to solve the same problem. Another innovation inb this work is that a half channel with a constant elliptical cross section represents the river, so the Navier Stokes equations were derived for the elliptical system. Experimental data were obtained from REPLAN (PETROBRAS refining unit on the Atibaia River in São Paulo, Brazil. The results show good agreement with experimental data.
Zheng, Jihong; Wang, Kangni; Gao, Hui; Lu, Feiyue; Sun, Lijia; Zhuang, Songlin
2016-09-01
Multi-wavelength sensitive holographic polymer dispersed liquid crystal (H-PDLC) grating and its application within image splitter for autostereoscopic display are reported in this paper. Two initiator systems consisting of photoinitiator, Methylene Blue and coinitiator, p-toluenesulfonic acid as well as photoinitiator, Rose Bengal and coinitiator, Nphenylglycine are employed. We demonstrate that Bragg gratings can be formed in this syrup polymerized under three lasers simultaneously including 632.8nm from He-Ne laser, 532nm from Verdi solid state laser, and 441.6nm from He- Cd laser. The diffraction efficiency of three kinds of gratings with different exposure wavelength are 57%, 75% and 33%, respectively. The threshold driving voltages of those gratings are 2.8, 3.05, and 2.85 V/μm, respectively. We also present the results for the feasibility of this proposed H-PDLC grating applied into image splitter without color dispersion for autostereoscopic display according to experimental splitting effect.
Directory of Open Access Journals (Sweden)
M. P. Andersson
2013-01-01
Full Text Available Using sound physical principles we modify the DFT-D2 atom pairwise semiempirical dispersion correction to density functional theory to work for metallic systems and in particular self-assembled monolayers of thiols on gold surfaces. We test our approximation for two functionals PBE-D and revPBE-D for lattice parameters and cohesive energies for Ni, Pd, Pt, Cu, Ag, and Au, adsorption energies of CO on (111 surfaces of Pd, Pt, Cu, Ag, and Au, and adsorption energy of benzene on Ag(111 and Au(111. Agreement with experimental data is substantially improved. We apply the method to self-assembled monolayers of alkanethiols on Au(111 and find reasonable agreement for PBE-D and revPBE-D for both physisorption of n-alkanethiols as well as dissociative chemisorption of dimethyl disulfide as an Au-adatom-dithiolate complex. By modifying the C6 coefficient for Au, we obtain quantitative agreement for physisorption and chemisorption for both PBE-D and revPBE-D using the same set of parameters. Our results confirm that inclusion of dispersion forces is crucial for any quantitative analysis of the thiol and thiolate bonds to the gold surface using quantum chemical calculations.
Hague, J P
2003-01-01
I apply the newly developed dynamical cluster approximation (DCA) to the calculation of the electron and phonon dispersions in the two-dimensional Holstein model. In contrast to previous work, the DCA enables the effects of spatial fluctuations (non-local corrections) to be examined. Approximations neglecting and incorporating lowest-order vertex corrections are investigated. I calculate the phonon density of states, the renormalized phonon dispersion, the electron dispersion and electron spectral functions. I demonstrate how vertex corrections stabilize the solution, stopping a catastrophic softening of the (pi, pi) phonon mode. A kink in the electron dispersion is found in the normal state along the (zeta, zeta) symmetry direction in both the vertex- and non-vertex-corrected theories for low phonon frequencies, corresponding directly to the renormalized phonon frequency at the (pi, 0) point. This kink is accompanied by a sudden drop in the quasi-particle lifetime. Vertex and non-local corrections enhance th...
Applying mechanistic models in bioprocess development
DEFF Research Database (Denmark)
Lencastre Fernandes, Rita; Bodla, Vijaya Krishna; Carlquist, Magnus
2013-01-01
models should be combined with proper model analysis tools, such as uncertainty and sensitivity analysis. When assuming distributed inputs, the resulting uncertainty in the model outputs can be decomposed using sensitivity analysis to determine which input parameters are responsible for the major part...... of the output uncertainty. Such information can be used as guidance for experimental work; i.e., only parameters with a significant influence on model outputs need to be determined experimentally. The use of mechanistic models and model analysis tools is demonstrated in this chapter. As a practical case study......, experimental data from Saccharomyces cerevisiae fermentations are used. The data are described with the well-known model of Sonnleitner and Käppeli (Biotechnol Bioeng 28:927-937, 1986) and the model is analyzed further. The methods used are generic, and can be transferred easily to other, more complex case...
Applied Creativity: The Creative Marketing Breakthrough Model
Titus, Philip A.
2007-01-01
Despite the increasing importance of personal creativity in today's business environment, few conceptual creativity frameworks have been presented in the marketing education literature. The purpose of this article is to advance the integration of creativity instruction into marketing classrooms by presenting an applied creative marketing…
Applying Modeling Tools to Ground System Procedures
Di Pasquale, Peter
2012-01-01
As part of a long-term effort to revitalize the Ground Systems (GS) Engineering Section practices, Systems Modeling Language (SysML) and Business Process Model and Notation (BPMN) have been used to model existing GS products and the procedures GS engineers use to produce them.
Price Dispersion and Short Run Equilibrium in a Queuing Model
Michael Sattinger
2003-01-01
Price dispersion is analyzed in the context of a queuing market where customers enter queues to acquire a good or service and may experience delays. With menu costs, price dispersion arises and can persist in the medium and long run. The queuing market rations goods in the same way whether firm prices are optimal or not. Price dispersion reduces the rate at which customers get the good and reduces customer welfare.
NARAC Dispersion Model Product Integration With RadResponder
Energy Technology Data Exchange (ETDEWEB)
Aluzzi, Fernando [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-09-30
Work on enhanced cooperation and interoperability of Nuclear Incident Response Teams (NIRT) is a joint effort between DHS/FEMA, DOE/NNSA and EPA. One such effort was the integration between the RadResponder Network, a resource sponsored by FEMA for the management of radiological data during an emergency, and the National Atmospheric Advisory Center (NARAC), a DOE/NNSA modeling resource whose predictions are used to aid radiological emergency preparedness and response. Working together under a FEMA-sponsored project these two radiological response assets developed a capability to read and display plume model prediction results from the NARAC computer system in the RadResponder software tool. As a result of this effort, RadResponder users have been provided with NARAC modeling predictions of contamination areas, radiological dose levels, and protective action areas (e.g., areas warranting worker protection or sheltering/evacuation) to help guide protective action decisions and field monitoring surveys, and gain key situation awareness following a radiological/nuclear accident or incident (e.g., nuclear power plant accident, radiological dispersal device incident, or improvised nuclear detonation incident). This document describes the details of this integration effort.
Using data from an encounter sampler to model fish dispersal
Obaza, A.; DeAngelis, D.L.; Trexler, J.C.
2011-01-01
A method to estimate speed of free-ranging fishes using a passive sampling device is described and illustrated with data from the Everglades, U.S.A. Catch per unit effort (CPUE) from minnow traps embedded in drift fences was treated as an encounter rate and used to estimate speed, when combined with an independent estimate of density obtained by use of throw traps that enclose 1 m2 of marsh habitat. Underwater video was used to evaluate capture efficiency and species-specific bias of minnow traps and two sampling studies were used to estimate trap saturation and diel-movement patterns; these results were used to optimize sampling and derive correction factors to adjust species-specific encounter rates for bias and capture efficiency. Sailfin mollies Poecilia latipinna displayed a high frequency of escape from traps, whereas eastern mosquitofish Gambusia holbrooki were most likely to avoid a trap once they encountered it; dollar sunfish Lepomis marginatus were least likely to avoid the trap once they encountered it or to escape once they were captured. Length of sampling and time of day affected CPUE; fishes generally had a very low retention rate over a 24 h sample time and only the Everglades pygmy sunfish Elassoma evergladei were commonly captured at night. Dispersal speed of fishes in the Florida Everglades, U.S.A., was shown to vary seasonally and among species, ranging from 0.05 to 0.15 m s-1 for small poeciliids and fundulids to 0.1 to 1.8 m s-1 for L. marginatus. Speed was generally highest late in the wet season and lowest in the dry season, possibly tied to dispersal behaviours linked to finding and remaining in dry-season refuges. These speed estimates can be used to estimate the diffusive movement rate, which is commonly employed in spatial ecological models.
Pseudospectral modeling and dispersion analysis of Rayleigh waves in viscoelastic media
Zhang, K.; Luo, Y.; Xia, J.; Chen, C.
2011-01-01
Multichannel Analysis of Surface Waves (MASW) is one of the most widely used techniques in environmental and engineering geophysics to determine shear-wave velocities and dynamic properties, which is based on the elastic layered system theory. Wave propagation in the Earth, however, has been recognized as viscoelastic and the propagation of Rayleigh waves presents substantial differences in viscoelastic media as compared with elastic media. Therefore, it is necessary to carry out numerical simulation and dispersion analysis of Rayleigh waves in viscoelastic media to better understand Rayleigh-wave behaviors in the real world. We apply a pseudospectral method to the calculation of the spatial derivatives using a Chebyshev difference operator in the vertical direction and a Fourier difference operator in the horizontal direction based on the velocity-stress elastodynamic equations and relations of linear viscoelastic solids. This approach stretches the spatial discrete grid to have a minimum grid size near the free surface so that high accuracy and resolution are achieved at the free surface, which allows an effective incorporation of the free surface boundary conditions since the Chebyshev method is nonperiodic. We first use an elastic homogeneous half-space model to demonstrate the accuracy of the pseudospectral method comparing with the analytical solution, and verify the correctness of the numerical modeling results for a viscoelastic half-space comparing the phase velocities of Rayleigh wave between the theoretical values and the dispersive image generated by high-resolution linear Radon transform. We then simulate three types of two-layer models to analyze dispersive-energy characteristics for near-surface applications. Results demonstrate that the phase velocity of Rayleigh waves in viscoelastic media is relatively higher than in elastic media and the fundamental mode increases by 10-16% when the frequency is above 10. Hz due to the velocity dispersion of P
Applying MDL to Learning Best Model Granularity
Gao, Q; Vitanyi, P; Gao, Qiong; Li, Ming; Vitanyi, Paul
2000-01-01
The Minimum Description Length (MDL) principle is solidly based on a provably ideal method of inference using Kolmogorov complexity. We test how the theory behaves in practice on a general problem in model selection: that of learning the best model granularity. The performance of a model depends critically on the granularity, for example the choice of precision of the parameters. Too high precision generally involves modeling of accidental noise and too low precision may lead to confusion of models that should be distinguished. This precision is often determined ad hoc. In MDL the best model is the one that most compresses a two-part code of the data set: this embodies ``Occam's Razor.'' In two quite different experimental settings the theoretical value determined using MDL coincides with the best value found experimentally. In the first experiment the task is to recognize isolated handwritten characters in one subject's handwriting, irrespective of size and orientation. Based on a new modification of elastic...
Biplot models applied to cancer mortality rates.
Osmond, C
1985-01-01
"A graphical method developed by Gabriel to display the rows and columns of a matrix is applied to tables of age- and period-specific cancer mortality rates. It is particularly useful when the pattern of age-specific rates changes with time. Trends in age-specific rates and changes in the age distribution are identified as projections. Three examples [from England and Wales] are given."
Roberts, M S; Anissimov, Y G
1999-08-01
The conventional convection-dispersion (also called axial dispersion) model is widely used to interrelate hepatic availability (F) and clearance (Cl) with the morphology and physiology of the liver and to predict effects such as changes in liver blood flow on F and Cl. An extended form of the convection-dispersion model has been developed to adequately describe the outflow concentration-time profiles for vascular markers at both short and long times after bolus injections into perfused livers. The model, based on flux concentration and a convolution of catheters and large vessels, assumes that solute elimination in hepatocytes follows either fast distribution into or radial diffusion in hepatocytes. The model includes a secondary vascular compartment, postulated to be interconnecting sinusoids. Analysis of the mean hepatic transit time (MTT) and normalized variance (CV2) of solutes with extraction showed that the discrepancy between the predictions of MTT and CV2 for the extended and unweighted conventional convection-dispersion models decreases as hepatic extraction increases. A correspondence of more than 95% in F and Cl exists for all solute extractions. In addition, the analysis showed that the outflow concentration-time profiles for both the extended and conventional models are essentially identical irrespective of the magnitude of rate constants representing permeability, volume, and clearance parameters, providing that there is significant hepatic extraction. In conclusion, the application of a newly developed extended convection-dispersion model has shown that the unweighted conventional convection-dispersion model can be used to describe the disposition of extracted solutes and, in particular, to estimate hepatic availability and clearance in both experimental and clinical situations.
Modeling seed dispersal of black cherry, an invasive forest tree: how microsatellites may help?
Pairon, Marie; Jonard, Mathieu; Jacquemart,Anne-Laure
2006-01-01
We used empirical models and three dispersal functions (Weibull, lognormal and 2Dt) to model seed distributions derived from the black cherry (Prunus serotina Ehrh.) understorey of a pine-dominated stand. Two different approaches were used to disentangle the overlapping seed shadows: the traditional inverse modeling approach and the genetic approach that uses microsatellite markers to assign a dispersed seed to its maternal parent. The distinction was made between the seeds passively disperse...
Applying the Sport Education Model to Tennis
Ayvazo, Shiri
2009-01-01
The physical education field abounds with theoretically sound curricular approaches such as fitness education, skill theme approach, tactical approach, and sport education. In an era that emphasizes authentic sport experiences, the Sport Education Model includes unique features that sets it apart from other curricular models and can be a valuable…
Some properties of the Langevin model for dispersion
De Baas, A.F.
1988-01-01
The Langevin Equation is used to describe dispersion of pollutants in the atmosphere. The theoretical background for the equation is discussed in length and a review on previous treatments and applications is given. It is shown that the Langevin equation can describe dispersion in complex circumstan
Modelling substorm chorus events in terms of dispersive azimuthal drift
Directory of Open Access Journals (Sweden)
A. B. Collier
2004-12-01
Full Text Available The Substorm Chorus Event (SCE is a radio phenomenon observed on the ground after the onset of the substorm expansion phase. It consists of a band of VLF chorus with rising upper and lower cutoff frequencies. These emissions are thought to result from Doppler-shifted cyclotron resonance between whistler mode waves and energetic electrons which drift into a ground station's field of view from an injection site around midnight. The increasing frequency of the emission envelope has been attributed to the combined effects of energy dispersion due to gradient and curvature drifts, and the modification of resonance conditions and variation of the half-gyrofrequency cutoff resulting from the radial component of the ExB drift.
A model is presented which accounts for the observed features of the SCE in terms of the growth rate of whistler mode waves due to anisotropy in the electron distribution. This model provides an explanation for the increasing frequency of the SCE lower cutoff, as well as reproducing the general frequency-time signature of the event. In addition, the results place some restrictions on the injected particle source distribution which might lead to a SCE.
Key words. Space plasma physics (Wave-particle interaction – Magnetospheric physics (Plasma waves and instabilities; Storms and substorms
Applied mathematics: Models, Discretizations, and Solvers
Institute of Scientific and Technical Information of China (English)
D.E. Keyes
2007-01-01
@@ Computational plasma physicists inherit decades of developments in mathematical models, numerical algorithms, computer architecture, and software engineering, whose recent coming together marks the beginning of a new era of large-scale simulation.
Applied modelling and computing in social science
Povh, Janez
2015-01-01
In social science outstanding results are yielded by advanced simulation methods, based on state of the art software technologies and an appropriate combination of qualitative and quantitative methods. This book presents examples of successful applications of modelling and computing in social science: business and logistic process simulation and optimization, deeper knowledge extractions from big data, better understanding and predicting of social behaviour and modelling health and environment changes.
An Extension of the Rasch Model for Ratings Providing Both Location and Dispersion Parameters.
Andrich, David
1982-01-01
An elaboration of a psychometric model for rated data, which belongs to the class of Rasch models, is shown to provide a model with two parameters, one characterizing location and one characterizing dispersion. Characteristics of the dispersion parameter are discussed. (Author/JKS)
Kalyuzhnyi, S.V.; Fedorovich, V.V.; Lens, P.N.L.
2006-01-01
A new approach to model upflow anaerobic sludge bed (UASB)-reactors, referred to as a one-dimensional dispersed plug flow model, was developed. This model focusses on the granular sludge dynamics along the reactor height, based on the balance between dispersion, sedimentation and convection using on
Validation data for models of contaminant dispersal : scaling laws and data needs.
Energy Technology Data Exchange (ETDEWEB)
O' Hern, Timothy John; Ceccio, Steven Louis (University of Michigan, Ann Arbor, MI)
2004-09-01
Contaminant dispersal models for use at scales ranging from meters to miles are widely used for planning sensor locations, first-responder actions for release scenarios, etc. and are constantly being improved. Applications range from urban contaminant dispersal to locating buried targets from an exhaust signature. However, these models need detailed data for model improvement and validation. A small Sandia National Laboratories Laboratory Directed Research and Development (LDRD) program was funded in FY04 to examine the feasibility and usefulness of a scale-model capability for quantitative characterization of flow and contaminant dispersal in complex environments. This report summarizes the work performed in that LDRD. The basics of atmospheric dispersion and dispersion modeling are reviewed. We examine the need for model scale data, and the capability of existing model test methods. Currently, both full-scale and model scale experiments are performed in order to collect validation data for numerical models. Full-scale experiments are expensive, are difficult to repeat, and usually produce relatively sparse data fields. Model scale tests often employ wind tunnels, and the data collected is, in many cases, derived from single point measurements. We review the scaling assumptions and methods that are used to relate model and full scale flows. In particular, we examine how liquid flows may be used to examine the process of atmospheric dispersion. The scaling between liquid and gas flows is presented. Use of liquid as the test fluid has some advantages in terms of achieving fully turbulent Reynolds numbers and in seeding the flow with neutrally buoyant tracer particles. In general, using a liquid flow instead of a gas flow somewhat simplifies the use of full field diagnostics, such as Particle Image Velocimetry and Laser Induced Fluorescence. It is also possible to create stratified flows through mixtures of fluids (e.g., water, alcohol, and brine). Lastly, we
Validation data for models of contaminant dispersal : scaling laws and data needs.
Energy Technology Data Exchange (ETDEWEB)
O' Hern, Timothy John; Ceccio, Steven Louis (University of Michigan, Ann Arbor, MI)
2004-09-01
Contaminant dispersal models for use at scales ranging from meters to miles are widely used for planning sensor locations, first-responder actions for release scenarios, etc. and are constantly being improved. Applications range from urban contaminant dispersal to locating buried targets from an exhaust signature. However, these models need detailed data for model improvement and validation. A small Sandia National Laboratories Laboratory Directed Research and Development (LDRD) program was funded in FY04 to examine the feasibility and usefulness of a scale-model capability for quantitative characterization of flow and contaminant dispersal in complex environments. This report summarizes the work performed in that LDRD. The basics of atmospheric dispersion and dispersion modeling are reviewed. We examine the need for model scale data, and the capability of existing model test methods. Currently, both full-scale and model scale experiments are performed in order to collect validation data for numerical models. Full-scale experiments are expensive, are difficult to repeat, and usually produce relatively sparse data fields. Model scale tests often employ wind tunnels, and the data collected is, in many cases, derived from single point measurements. We review the scaling assumptions and methods that are used to relate model and full scale flows. In particular, we examine how liquid flows may be used to examine the process of atmospheric dispersion. The scaling between liquid and gas flows is presented. Use of liquid as the test fluid has some advantages in terms of achieving fully turbulent Reynolds numbers and in seeding the flow with neutrally buoyant tracer particles. In general, using a liquid flow instead of a gas flow somewhat simplifies the use of full field diagnostics, such as Particle Image Velocimetry and Laser Induced Fluorescence. It is also possible to create stratified flows through mixtures of fluids (e.g., water, alcohol, and brine). Lastly, we
Applying Machine Trust Models to Forensic Investigations
Wojcik, Marika; Venter, Hein; Eloff, Jan; Olivier, Martin
Digital forensics involves the identification, preservation, analysis and presentation of electronic evidence for use in legal proceedings. In the presence of contradictory evidence, forensic investigators need a means to determine which evidence can be trusted. This is particularly true in a trust model environment where computerised agents may make trust-based decisions that influence interactions within the system. This paper focuses on the analysis of evidence in trust-based environments and the determination of the degree to which evidence can be trusted. The trust model proposed in this work may be implemented in a tool for conducting trust-based forensic investigations. The model takes into account the trust environment and parameters that influence interactions in a computer network being investigated. Also, it allows for crimes to be reenacted to create more substantial evidentiary proof.
Multistructure Statistical Model Applied To Factor Analysis
Bentler, Peter M.
1976-01-01
A general statistical model for the multivariate analysis of mean and covariance structures is described. Matrix calculus is used to develop the statistical aspects of one new special case in detail. This special case separates the confounding of principal components and factor analysis. (DEP)
Applying waste logistics modeling to regional planning
Energy Technology Data Exchange (ETDEWEB)
Holter, G.M.; Khawaja, A.; Shaver, S.R.; Peterson, K.L.
1995-05-01
Waste logistics modeling is a powerful analytical technique that can be used for effective planning of future solid waste storage, treatment, and disposal activities. Proper waste management is essential for preventing unacceptable environmental degradation from ongoing operations, and is also a critical part of any environmental remediation activity. Logistics modeling allows for analysis of alternate scenarios for future waste flowrates and routings, facility schedules, and processing or handling capacities. Such analyses provide an increased understanding of the critical needs for waste storage, treatment, transport, and disposal while there is still adequate lead time to plan accordingly. They also provide a basis for determining the sensitivity of these critical needs to the various system parameters. This paper discusses the application of waste logistics modeling concepts to regional planning. In addition to ongoing efforts to aid in planning for a large industrial complex, the Pacific Northwest Laboratory (PNL) is currently involved in implementing waste logistics modeling as part of the planning process for material recovery and recycling within a multi-city region in the western US.
Atmospheric mercury dispersion modelling from two nearest hypothetical point sources
Energy Technology Data Exchange (ETDEWEB)
Al Razi, Khandakar Md Habib; Hiroshi, Moritomi; Shinji, Kambara [Environmental and Renewable Energy System (ERES), Graduate School of Engineering, Gifu University, Yanagido, Gifu City, 501-1193 (Japan)
2012-07-01
The Japan coastal areas are still environmentally friendly, though there are multiple air emission sources originating as a consequence of several developmental activities such as automobile industries, operation of thermal power plants, and mobile-source pollution. Mercury is known to be a potential air pollutant in the region apart from SOX, NOX, CO and Ozone. Mercury contamination in water bodies and other ecosystems due to deposition of atmospheric mercury is considered a serious environmental concern. Identification of sources contributing to the high atmospheric mercury levels will be useful for formulating pollution control and mitigation strategies in the region. In Japan, mercury and its compounds were categorized as hazardous air pollutants in 1996 and are on the list of 'Substances Requiring Priority Action' published by the Central Environmental Council of Japan. The Air Quality Management Division of the Environmental Bureau, Ministry of the Environment, Japan, selected the current annual mean environmental air quality standard for mercury and its compounds of 0.04 ?g/m3. Long-term exposure to mercury and its compounds can have a carcinogenic effect, inducing eg, Minamata disease. This study evaluates the impact of mercury emissions on air quality in the coastal area of Japan. Average yearly emission of mercury from an elevated point source in this area with background concentration and one-year meteorological data were used to predict the ground level concentration of mercury. To estimate the concentration of mercury and its compounds in air of the local area, two different simulation models have been used. The first is the National Institute of Advanced Science and Technology Atmospheric Dispersion Model for Exposure and Risk Assessment (AIST-ADMER) that estimates regional atmospheric concentration and distribution. The second is the Hybrid Single Particle Lagrangian Integrated trajectory Model (HYSPLIT) that estimates the atmospheric
Atmospheric mercury dispersion modelling from two nearest hypothetical point sources
Directory of Open Access Journals (Sweden)
Khandakar Md Habib Al Razi, Moritomi Hiroshi, Kambara Shinji
2012-01-01
Full Text Available The Japan coastal areas are still environmentally friendly, though there are multiple air emission sources originating as a consequence of several developmental activities such as automobile industries, operation of thermal power plants, and mobile-source pollution. Mercury is known to be a potential air pollutant in the region apart from SOX, NOX, CO and Ozone. Mercury contamination in water bodies and other ecosystems due to deposition of atmospheric mercury is considered a serious environmental concern. Identification of sources contributing to the high atmospheric mercury levels will be useful for formulating pollution control and mitigation strategies in the region. In Japan, mercury and its compounds were categorized as hazardous air pollutants in 1996 and are on the list of "Substances Requiring Priority Action" published by the Central Environmental Council of Japan. The Air Quality Management Division of the Environmental Bureau, Ministry of the Environment, Japan, selected the current annual mean environmental air quality standard for mercury and its compounds of 0.04 μg/m3. Long-term exposure to mercury and its compounds can have a carcinogenic effect, inducing eg, Minamata disease. This study evaluates the impact of mercury emissions on air quality in the coastal area of Japan. Average yearly emission of mercury from an elevated point source in this area with background concentration and one-year meteorological data were used to predict the ground level concentration of mercury. To estimate the concentration of mercury and its compounds in air of the local area, two different simulation models have been used. The first is the National Institute of Advanced Science and Technology Atmospheric Dispersion Model for Exposure and Risk Assessment (AIST-ADMER that estimates regional atmospheric concentration and distribution. The second is the Hybrid Single Particle Lagrangian Integrated trajectory Model (HYSPLIT that estimates the
Characterization and dispersion modeling of odors from a piggery facility.
Karageorgos, Petros; Latos, Manolis; Mpasiakos, Christos; Chalarakis, Elefterios; Dimitrakakis, Emmanuel; Daskalakis, Charis; Psillakis, Elefteria; Lazaridis, Mihalis; Kalogerakis, Nicolas
2010-01-01
Piggeries are known for their nuisance odors, creating problems for workers and nearby residents. Chemical substances that contribute to these odors include sulfurous organic compounds, hydrogen sulfide, phenols and indoles, ammonia, volatile amines, and volatile fatty acids. In this work, daily mean concentrations of ammonia (NH3) and hydrogen sulfide (H2S) were measured by hand-held devices. Measurements were taken in several places within the facility (farrowing to finishing rooms). Hydrogen sulfide concentration was found to be 40 to 50 times higher than the human odor threshold value in the nursery and fattening room, resulting in strong nuisance odors. Ammonia concentrations ranged from 2 to 18 mL m(-3) and also contributed to the total odor nuisance. Emission data from various chambers of the pig farm were used with the dispersion model AERMOD to determine the odor nuisance caused due to the presence of H2S and NH3 to receptors at various distances from the facility. Because just a few seconds of exposure can cause an odor nuisance, a "peak-to-mean" ratio was used to predict the maximum odor concentrations. Several scenarios were examined using the modified AERMOD program, taking into account the complex terrain around the pig farm.
Directory of Open Access Journals (Sweden)
Franziska Greifzu
2016-01-01
Full Text Available In the present study two benchmark problems for turbulent dispersed particle-laden flow are investigated with computational fluid dynamics (CFD. How the CFD programs OpenFOAM and ANSYS FLUENT model these flows is tested and compared. The numerical results obtained with Lagrangian–Eulerian (LE point-particle (PP models for Reynolds-averaged Navier–Stokes (RANS simulations of the fluid flow in steady state and transient modes are compared with the experimental data available in the literature. The effect of the dispersion model on the particle motion is investigated in particular, as well as the order of coupling between the continuous carrier phase and the dispersed phase. First, a backward-facing step (BFS case is validated. As a second case, the confined bluff body (CBB is used. The simulated fluid flows correspond well with the experimental data for both test cases. The results for the dispersed solid phase reveal a good accordance between the simulation results and the experiments. It seems that particle dispersion is slightly under-predicted when ANSYS FLUENT is used, whereas the applied solver in OpenFOAM overestimates the dispersion somewhat. Only minor differences between the coupling schemes are detected due to the low volume fractions and mass loadings that are investigated. In the BFS test case the importance of the spatial dimension of the numerical model is demonstrated. Even if it is reasonable to assume a two-dimensional fluid flow structure, it is crucial to simulate the turbulent particle-laden flow with a three-dimensional model since the turbulent dispersion of the particles is three-dimensional.
A WEAKLY NONLINEAR WATER WAVE MODEL TAKING INTO ACCOUNT DISPERSION OF WAVE PHASE VELOCITY
Institute of Scientific and Technical Information of China (English)
李瑞杰; 李东永
2002-01-01
This paper presents a weakly nonlinear water wave model using a mild slope equation and a new explicit formulation which takes into account dispersion of wave phase velocity, approximates Hedges' (1987) nonlinear dispersion relationship, and accords well with the original empirical formula. Comparison of the calculating results with those obtained from the experimental data and those obtained from linear wave theory showed that the present water wave model considering the dispersion of phase velocity is rational and in good agreement with experiment data.
Atmospheric dispersion models and pre-processing of meteorological data for real-time application
DEFF Research Database (Denmark)
Mikkelsen, T.; Desiato, F.
1993-01-01
and selects a series of suitable local scale atmospheric flow and dispersion models for RODOS, covering a variety of release types, terrain types and atmospheric stability conditions. The identification and ranking of suitable models is based on a discussion of principal modelling requirements, scale...... considerations, model performance and evaluation records, computational needs, user expertise, and type of sources to be modelled. Models suitable for a given accident scenario are chosen from this hierarchy in order to provide the dose assessments via the dispersion module. A forecasting feasibility......-processor provides the flow and dispersion models with on-site wind and atmospheric stability measures....
Support vector machine applied in QSAR modelling
Institute of Scientific and Technical Information of China (English)
MEI Hu; ZHOU Yuan; LIANG Guizhao; LI Zhiliang
2005-01-01
Support vector machine (SVM), partial least squares (PLS), and Back-Propagation artificial neural network (ANN) were employed to establish QSAR models of 2 dipeptide datasets. In order to validate predictive capabilities on external dataset of the resulting models, both internal and external validations were performed. The division of dataset into both training and test sets was carried out by D-optimal design. The results showed that support vector machine (SVM) behaved well in both calibration and prediction. For the dataset of 48 bitter tasting dipeptides (BTD), the results obtained by support vector regression (SVR) were superior to that by PLS in both calibration and prediction. When compared with BP artificial neural network, SVR showed less calibration power but more predictive capability. For the dataset of angiotensin-converting enzyme (ACE) inhibitors, the results obtained by support vector machine (SVM) regression were equivalent to those by PLS and BP artificial neural network. In both datasets, SVR using linear kernel function behaved well as that using radial basis kernel function. The results showed that there is wide prospect for the application of support vector machine (SVM) into QSAR modeling.
Novel simulation model for many-body multipole dispersion interactions
van der Hoef Paul, Martin A.; Madden, A.
We present a novel simulation technique, within the framework of a molecular dynamics simulation, which accounts for both two- and three-body dispersion interactions, up to the triple-quadrupole interaction. This technique involves a unification of molecular dynamics and quantum-mechanical variational methods, in the spirit of the Car-Parrinello method. The advantage of this new method compared to existing techniques for simulating three-body dispersion forces, is that it allows for a consistent treatment of both dispersion damping and periodic boundary conditions at the pair and three-body level. The latter means that it would be possible, for the first time, to include many-body dispersion effects in the simulation of bulk properties of materials, without making use of effective pair potentials.
User-Oriented Measures of Effectiveness for the Evaluation of Transport and Dispersion Models
2001-01-01
Closure Integrated Puff ( SCIPUFF ) model and an associated mean wind field model. SCIPUFF , which is a Lagrangian model for atmospheric dispersion...references therein; Sykes, R. I., “HPAC/ SCIPUFF : Kamisiyah Modeling Issues,” 3rd Annual GMU/DTRA Transport and Dispersion Modeling Workshop... SCIPUFF ) Model Verification and Evaluation Study, Air Resources Laboratory, NOAA, May 1998. 1-8. DTRA, The HPAC User’s Guide: Version 3.2, October 1999
Transport and dispersion of pollutants in surface impoundments: a finite element model
Energy Technology Data Exchange (ETDEWEB)
Yeh, G.T.
1980-07-01
A surface impoundment model in finite element (SIMFE) is presented to enable the simulation of flow circulations and pollutant transport and dispersion in natural or artificial lakes, reservoirs or ponds with any number of islands. This surface impoundment model consists of two sub-models: hydrodynamic and pollutant transport models. Both submodels are simulated by the finite element method. While the hydrodynamic model is solved by the standard Galerkin finite element scheme, the pollutant transport model can be solved by any of the twelve optional finite element schemes built in the program. Theoretical approximations and the numerical algorithm of SIMFE are described. Detail instruction of the application are given and listing of FORTRAN IV source program are provided. Two sample problems are given. One is for an idealized system with a known solution to show the accuracy and partial validation of the models. The other is applied to Prairie Island for a set of hypothetical input data, typifying a class of problems to which SIMFE may be applied.
NOx dispersion modelling around roundabout in a small city, example from Hungary
Farkas, Orsolya; Rákai, Anikó; Czáder, Károly; Török, Ákos
2013-04-01
The present paper focuses on the modelling of pollutant distribution and dispersion in an urban region that is located in a moderately industrialized town of Hungary, Székesfehérvár, with a population of 100,000. The study area is located close to the city centre, with different housing styles and different building elevations. High-rise buildings with 10 floors to small houses with gardens are found in the modelled area. The roundabout has 5 access roads; three major ones and two minor ones with different geometries and traffic load. The traffic load of the roads was defined by traffic count, while for the meteorological characteristics wind-statistics were created. Additional input parameters were the ground plan and the elevation of buildings. To simulate the airflow and the dispersion of pollutants a Computational Fluid Dynamics code called MISKAM was used. The background concentration was taken from the dataset of a nearby air quality monitoring station. According to vehicle counting the 5 roads of the roundabout have very different loads from 12 vehicles to more than 412 vehicles/hour. Three different grid systems were applied ranging from half million to 5 million cells. The difference in the results related to grid density was also evaluated. Wind speed distribution, wind turbulence and building wake flow patterns were identified by using the model. With the help of the simulation the NOx flow and dispersion of pollutants around the roundabout can be estimated and the critical locations with higher pollution concentration are presented. The results of the modelling can be more generalized and used in the design of the layout, development, traffic-control and environmental aspects of roundabouts located in small urban areas.
Dettmer, Jan; Molnar, Sheri; Steininger, Gavin; Dosso, Stan E.; Cassidy, John F.
2012-02-01
This paper applies a general trans-dimensional Bayesian inference methodology and hierarchical autoregressive data-error models to the inversion of microtremor array dispersion data for shear wave velocity (vs) structure. This approach accounts for the limited knowledge of the optimal earth model parametrization (e.g. the number of layers in the vs profile) and of the data-error statistics in the resulting vs parameter uncertainty estimates. The assumed earth model parametrization influences estimates of parameter values and uncertainties due to different parametrizations leading to different ranges of data predictions. The support of the data for a particular model is often non-unique and several parametrizations may be supported. A trans-dimensional formulation accounts for this non-uniqueness by including a model-indexing parameter as an unknown so that groups of models (identified by the indexing parameter) are considered in the results. The earth model is parametrized in terms of a partition model with interfaces given over a depth-range of interest. In this work, the number of interfaces (layers) in the partition model represents the trans-dimensional model indexing. In addition, serial data-error correlations are addressed by augmenting the geophysical forward model with a hierarchical autoregressive error model that can account for a wide range of error processes with a small number of parameters. Hence, the limited knowledge about the true statistical distribution of data errors is also accounted for in the earth model parameter estimates, resulting in more realistic uncertainties and parameter values. Hierarchical autoregressive error models do not rely on point estimates of the model vector to estimate data-error statistics, and have no requirement for computing the inverse or determinant of a data-error covariance matrix. This approach is particularly useful for trans-dimensional inverse problems, as point estimates may not be representative of the
Putten, van B.; Visser, M.D.; Muller-Landau, H.C.; Jansen, P.A.
2012-01-01
1. Seed and pollen dispersal is often directionally biased, because of the inherent directionality of wind and many other dispersal vectors. Nevertheless, the vast majority of studies of seed and pollen dispersal fit isotropic dispersal kernels to data, implicitly assuming that dispersal is equally
Putten, van B.; Visser, M.D.; Muller-Landau, H.C.; Jansen, P.A.
2012-01-01
1. Seed and pollen dispersal is often directionally biased, because of the inherent directionality of wind and many other dispersal vectors. Nevertheless, the vast majority of studies of seed and pollen dispersal fit isotropic dispersal kernels to data, implicitly assuming that dispersal is equally
Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation.
Tseng, Yu-Heng; Meneveau, Charles; Parlange, Marc B
2006-04-15
Modeling air pollutant transport and dispersion in urban environments is especially challenging due to complex ground topography. In this study, we describe a large eddy simulation (LES) tool including a new dynamic subgrid closure and boundary treatment to model urban dispersion problems. The numerical model is developed, validated, and extended to a realistic urban layout. In such applications fairly coarse grids must be used in which each building can be represented using relatively few grid-points only. By carrying out LES of flow around a square cylinder and of flow over surface-mounted cubes, the coarsest resolution required to resolve the bluff body's cross section while still producing meaningful results is established. Specifically, we perform grid refinement studies showing that at least 6-8 grid points across the bluff body are required for reasonable results. The performance of several subgrid models is also compared. Although effects of the subgrid models on the mean flow are found to be small, dynamic Lagrangian models give a physically more realistic subgrid-scale (SGS) viscosity field. When scale-dependence is taken into consideration, these models lead to more realistic resolved fluctuating velocities and spectra. These results set the minimum grid resolution and subgrid model requirements needed to apply LES in simulations of neutral atmospheric boundary layer flow and scalar transport over a realistic urban geometry. The results also illustrate the advantages of LES over traditional modeling approaches, particularly its ability to take into account the complex boundary details and the unsteady nature of atmospheric boundary layer flow. Thus LES can be used to evaluate probabilities of extreme events (such as probabilities of exceeding threshold pollutant concentrations). Some comments about computer resources required for LES are also included.
Sondermann, Martin; Gies, Maria; Hering, Daniel; Winking, Caroline; Feld, Christian K
2017-12-31
Within a heavily modified catchment, formerly polluted streams are now free of untreated wastewater. Additionally, the morphology of streams has been improved by physical habitat restoration. Both water quality and structural improvements offered a unique opportunity to investigate the recolonisation of restored sections by benthic macroinvertebrates. As dispersal is a key mechanism for recolonisation, we developed a method to predict the dispersal of 18 aquatic insect taxa to 35,338 river sections (section length: 2m) within the catchment. Source populations of insect taxa were sampled at 33 sites. In addition, 14 morphologically restored sites were sampled and constituted the validation dataset. We applied a "least-cost" modelling approach within a raster-based GIS model, combining taxon-specific aquatic and terrestrial dispersal capabilities with the "friction" that physical migration barriers impose on dispersal of aquatic and terrestrial stages. This taxon-specific modelling approach was compared to a conservative modelling approach, assuming a Euclidean distance of 5km as the maximum dispersal distance for any source population regardless of dispersal barriers. Least-cost modelling showed a significantly better performance in terms of the correct classification rate (CCR) and true predicted absences (specificity), with on average 37% points higher CCR and 42% points higher specificity. Sensitivity was 18% points lower. At 71% of the validation sites, recolonisation was predicted with at least a modest goodness of fit (CCR>70%). Conversely, the conservative modelling approach achieved a modest goodness of fit for only 14% of the validation sites. For 44% of the taxa, least-cost modelling showed a high CCR (=100%), whereas the conservative approach showed a high CCR for none of the taxa. Our approach can help water managers select appropriate sites for restoration to increase recolonisation and biological recovery. Copyright © 2017 Elsevier B.V. All rights
Sanchez, Beatriz; Santiago, Jose-Luis; Martilli, Alberto; Palacios, Magdalena; Kirchner, Frank
2016-09-01
the inclusion of chemical reactions are necessary for the study of NO and NO2 dispersion. The conclusions can be applied to future studies in order to establish the chemical reactions needed in terms of an accurate modeling of NO and NO2 dispersion and the CPU time required in a real urban area.
Optimal weighted combinatorial forecasting model of QT dispersion of ECGs in Chinese adults.
Wen, Zhang; Miao, Ge; Xinlei, Liu; Minyi, Cen
2016-07-01
This study aims to provide a scientific basis for unifying the reference value standard of QT dispersion of ECGs in Chinese adults. Three predictive models including regression model, principal component model, and artificial neural network model are combined to establish the optimal weighted combination model. The optimal weighted combination model and single model are verified and compared. Optimal weighted combinatorial model can reduce predicting risk of single model and improve the predicting precision. The reference value of geographical distribution of Chinese adults' QT dispersion was precisely made by using kriging methods. When geographical factors of a particular area are obtained, the reference value of QT dispersion of Chinese adults in this area can be estimated by using optimal weighted combinatorial model and reference value of the QT dispersion of Chinese adults anywhere in China can be obtained by using geographical distribution figure as well.
A statistical model to predict streamwise turbulent dispersion from the wall at small times
Nguyen, Quoc; Papavassiliou, Dimitrios V.
2016-12-01
Data from simulations are used to develop a statistical model that can provide the streamwise dispersion distribution of passive particles released from the wall of a turbulent flow channel. It is found that a three-point gamma probability density function is the statistical distribution that can describe the dispersion of particles with Schmidt numbers ranging from 6 to 2400 at relatively short times after the release of the particles. Scaling arguments are used to physically justify and predict the parameters of the gamma three-point distribution. The model is used to predict particle separation that can occur in turbulent flow under special conditions. Close to the channel wall, turbulent convection is not the dominant transport mechanism, but molecular diffusion can dominate transport depending on the Schmidt number of the particles. This leads to turbulence-induced separation rather than mixing, and the currently proposed model can be used to predict the level of separation. Practically, these results can be applied for separating very small particles or even macromolecules in dilute suspensions.
State of the art atmospheric dispersion modelling. Should the Gaussian plume model still be used?
Energy Technology Data Exchange (ETDEWEB)
Richter, Cornelia [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Koeln (Germany)
2016-11-15
For regulatory purposes with respect to licensing and supervision of airborne releases of nuclear installations, the Gaussian plume model is still in use in Germany. However, for complex situations the Gaussian plume model is to be replaced by a Lagrangian particle model. Now the new EU basic safety standards for protection against the dangers arising from exposure to ionising radiation (EU BSS) [1] asks for a realistic assessment of doses to the members of the public from authorised practices. This call for a realistic assessment raises the question whether dispersion modelling with the Gaussian plume model is an adequate approach anymore or whether the use of more complex models is mandatory.
Dairy farm methane emissions using a dispersion model.
McGinn, S M; Beauchemin, K A
2012-01-01
There is a need to know whole-farm methane (CH(4)) emissions since confined animal facilities such as beef cattle feedlots and dairy farms are emission "hot spots" in the landscape. However, measurements of whole-farm CH(4) emissions can differ between farms because of differences in contributing sources such as manure handling, number of lactating and nonlactating cows, and diet. Such differences may limit the usefulness of whole-farm emissions for national inventories and mitigation purposes unless the variance between farms is taken into account or a large number of farms can be examined. Our study describes the application of a dispersion model used in conjunction with field measurements of CH(4) concentration and stability of the air to calculate whole-farm emissions of CH(4) from three dairy farms in Alberta, Canada, during three sequential campaigns conducted in November 2004 and May and July 2005. The dairy farms ranged in herd size from 208 to 351 cows (102 to 196 lactating cows) and had different manure handling operations. The results indicate that the average CH(4) emission per cow (mixture of lactating and nonlactating) from the three dairy farms was 336 g d(-1), which was reduced to 271 g d(-1) when the emission (estimated) from the manure storage was removed. Further separation of source strength yielded an average CH(4) (enteric) emission of 363 g d(-1) for a lactating cow. The estimated CH(4) emission intensities were approximately 15 g CH(4) kg(-1) dry matter intake and 16.7 L CH(4) L(-1) of milk produced. The approach of understanding the farm-to-farm differences in CH(4) emissions as affected by diet, animal type, and manure management is essential when utilizing whole-farm emission measurements for mitigation and inventory applications.
Trade-offs and coexistence: a lottery model applied to fig wasp communities.
Duthie, A Bradley; Abbott, Karen C; Nason, John D
2014-06-01
Ecological communities in which organisms complete their life cycles on discrete ephemeral patches are common and often support an unusually large number of species. Explaining this diversity is challenging for communities of ecologically similar species undergoing preemptive competition, where classic coexistence mechanisms may not readily apply. We use nonpollinating fig wasps as a model community characterized by high diversity and preemptive competition to show how subadditive population growth and a trade-off between competitor fecundity and dispersal ability can lead to coexistence. Because nonpollinator species are often closely related, have similar life histories, and compete for the same discrete resources, understanding their coexistence is challenging given competitive exclusion is expected. Empirical observations suggest that nonpollinating fig wasp species may face a trade-off between egg loads and dispersal abilities. We model a lottery in which a species' competitive ability is determined by a trade-off between fecundity and dispersal ability. Variation in interpatch distance between figs generates temporal variability in the relative benefit of fecundity versus dispersal. We show that the temporal storage effect leads to coexistence for a range of biologically realistic parameter values. We further use individual-based modeling to show that when species' traits evolve, coexistence is less likely but trait divergence can result. We discuss the implications of this coexistence mechanism for ephemeral patch systems wherein competition is strongly preemptive.
AIR DISPERSION MODELING AT THE WASTE ISOLATION PILOT PLANT
Energy Technology Data Exchange (ETDEWEB)
Rucker, D.F.
2000-08-01
One concern at the Waste Isolation Pilot Plant (WIPP) is the amount of alpha-emitting radionuclides or hazardous chemicals that can become airborne at the facility and reach the Exclusive Use Area boundary as the result of a release from the Waste Handling Building (WHB) or from the underground during waste emplacement operations. The WIPP Safety Analysis Report (SAR), WIPP RCRA Permit, and WIPP Emergency Preparedness Hazards Assessments include air dispersion calculations to address this issue. Meteorological conditions at the WIPP facility will dictate direction, speed, and dilution of a contaminant plume of respirable material due to chronic releases or during an accident. Due to the paucity of meteorological information at the WIPP site prior to September 1996, the Department of Energy (DOE) reports had to rely largely on unqualified climatic data from the site and neighboring Carlsbad, which is situated approximately 40 km (26 miles) to the west of the site. This report examines the validity of the DOE air dispersion calculations using new meteorological data measured and collected at the WIPP site since September 1996. The air dispersion calculations in this report include both chronic and acute releases. Chronic release calculations were conducted with the EPA-approved code, CAP88PC and the calculations showed that in order for a violation of 40 CFR61 (NESHAPS) to occur, approximately 15 mCi/yr of 239Pu would have to be released from the exhaust stack or from the WHB. This is an extremely high value. Hence, it is unlikely that NESHAPS would be violated. A site-specific air dispersion coefficient was evaluated for comparison with that used in acute dose calculations. The calculations presented in Section 3.2 and 3.3 show that one could expect a slightly less dispersive plume (larger air dispersion coefficient) given greater confidence in the meteorological data, i.e. 95% worst case meteorological conditions. Calculations show that dispersion will decrease
[Hyperspectral Detection Model for Soil Dispersion in Zhouqu Debris Flow Source Region].
Wang, Qin-jun; Wei, Yong-ming; Chen, Yu; Chen, Jia-ge; Lin, Qi-zhong
2016-02-01
Sensitive band positions, models and the principles of soil dispersion detected by hyperspectral remote sensing were firstly discussed according to the results of soil dispersive hyperspectral remote sensing experiment. Results showed that, (1) signals and noises could be separated by Fourier transformation. A finely mineral identification system was developed to remove spectral noises and provide highly accurate data for establishing soil dispersive model; (2) Soil dispersive hyperspectral remote sensing model established by the multiple linear regression method was good at soil dispersion forecasting for the high correlation between sensitive bands and the soil dispersions. (3) According to mineral spectra, soil minerals and their absorbed irons were reflected by sensitive bands which revealed reasons causing soils to be dispersive. Sodium was the closest iron correlated with soil dispersion. The secondary was calcite, montmorillonite and illite. However, the correlation between soil dispersion and chlorite, kaolinite, PH value, quartz, potassium feldspar, plagioclase was weak. The main reason was probably that sodium was low in ionic valence, small ionic radius and strong hydration forces; calcite was high water soluble and illite was weak binding forces between two layers under high pH value.
Rioux Paquette, Sébastien; Talbot, Benoit; Garant, Dany; Mainguy, Julien; Pelletier, Fanie
2014-01-01
Predicting the geographic spread of wildlife epidemics requires knowledge about the movement patterns of disease hosts or vectors. The field of landscape genetics provides valuable approaches to study dispersal indirectly, which in turn may be used to understand patterns of disease spread. Here, we applied landscape genetic analyses and spatially explicit models to identify the potential path of raccoon rabies spread in a mesocarnivore community. We used relatedness estimates derived from microsatellite genotypes of raccoons and striped skunks to investigate their dispersal patterns in a heterogeneous landscape composed predominantly of agricultural, forested and residential areas. Samples were collected in an area covering 22 000 km2 in southern Québec, where the raccoon rabies variant (RRV) was first detected in 2006. Multiple regressions on distance matrices revealed that genetic distance among male raccoons was strictly a function of geographic distance, while dispersal in female raccoons was significantly reduced by the presence of agricultural fields. In skunks, our results suggested that dispersal is increased in edge habitats between fields and forest fragments in both males and females. Resistance modelling allowed us to identify likely dispersal corridors used by these two rabies hosts, which may prove especially helpful for surveillance and control (e.g. oral vaccination) activities. PMID:25469156
Smirnov, Konstantin N; Shpigun, Oleg A
2015-01-02
An extension of the Galton-board model of the transverse solute dispersion in laminar flow through ordered arrays of non-porous cylindrical pillars was proposed. In contrast to the original model, which describes the dispersion process as a one-dimensional random walk with independent, equally probable steps, the extended model treats the process as a Markov chain, namely as a random walk with such correlated steps that the velocity-dependent probability to make a step in the same direction as the preceding step is smaller than the probability to reverse the direction of motion. The relationship between the average squared transverse displacement of the solute and the number of steps in the chain was used to find the expression for the velocity dependence of the transverse dispersion coefficient. The obtained equation differs from the one in the Galton-board model by the multiplier that accounts for the leveling-off of the experimental dependences at high reduced velocities. Although this modified Galton-board model cannot be directly applied to low velocities, a few additional assumptions lead to the expression that fits the whole range of the recent simulated dispersion data well.
Numerical modeling of disperse material evaporation in axisymmetric thermal plasma reactor
Directory of Open Access Journals (Sweden)
Stefanović Predrag Lj.
2003-01-01
Full Text Available A numerical 3D Euler-Lagrangian stochastic-deterministic (LSD model of two-phase flow laden with solid particles was developed. The model includes the relevant physical effects, namely phase interaction, panicle dispersion by turbulence, lift forces, particle-particle collisions, particle-wall collisions, heat and mass transfer between phases, melting and evaporation of particles, vapour diffusion in the gas flow. It was applied to simulate the processes in thermal plasma reactors, designed for the production of the ceramic powders. Paper presents results of extensive numerical simulation provided (a to determine critical mechanism of interphase heat and mass transfer in plasma flows, (b to show relative influence of some plasma reactor parameters on solid precursor evaporation efficiency: 1 - inlet plasma temperature, 2 - inlet plasma velocity, 3 - particle initial diameter, 4 - particle injection angle a, and 5 - reactor wall temperature, (c to analyze the possibilities for high evaporation efficiency of different starting solid precursors (Si, Al, Ti, and B2O3 powder, and (d to compare different plasma reactor configurations in conjunction with disperse material evaporation efficiency.
Bell, Michael W; Tang, Y Sim; Dragosits, Ulrike; Flechard, Chris R; Ward, Paul; Braban, Christine F
2016-10-01
Anaerobic digestion (AD) is becoming increasingly implemented within organic waste treatment operations. The storage and processing of large volumes of organic wastes through AD has been identified as a significant source of ammonia (NH3) emissions, however the totality of ammonia emissions from an AD plant have not been previously quantified. The emissions from an AD plant processing food waste were estimated through integrating ambient NH3 concentration measurements, atmospheric dispersion modelling, and comparison with published emission factors (EFs). Two dispersion models (ADMS and a backwards Lagrangian stochastic (bLS) model) were applied to calculate emission estimates. The bLS model (WindTrax) was used to back-calculate a total (top-down) emission rate for the AD plant from a point of continuous NH3 measurement downwind from the plant. The back-calculated emission rates were then input to the ADMS forward dispersion model to make predictions of air NH3 concentrations around the site, and evaluated against weekly passive sampler NH3 measurements. As an alternative approach emission rates from individual sources within the plant were initially estimated by applying literature EFs to the available site parameters concerning the chemical composition of waste materials, room air concentrations, ventilation rates, etc. The individual emission rates were input to ADMS and later tuned by fitting the simulated ambient concentrations to the observed (passive sampler) concentration field, which gave an excellent match to measurements after an iterative process. The total emission from the AD plant thus estimated by a bottom-up approach was 16.8±1.8mgs(-1), which was significantly higher than the back-calculated top-down estimate (7.4±0.78mgs(-1)). The bottom-up approach offered a more realistic treatment of the source distribution within the plant area, while the complexity of the site was not ideally suited to the bLS method, thus the bottom-up method is believed
Accidental benzene release risk assessment in an urban area using an atmospheric dispersion model
Truong, Son C. H.; Lee, Myong-In; Kim, Ganghan; Kim, Dongmin; Park, Jong-Hwa; Choi, Sung-Deuk; Cho, Gi-Hyoug
2016-11-01
This study applied the American Meteorological Society and Environmental Protection Agency Regulatory Model (AERMOD) to assess the risk caused by an accidental release and dispersion of the toxic chemical benzene in the vicinity of a highly populated urban area. The modeling domain encompasses the Korean megacity of Ulsan, which includes two national industrial complexes and is characterized by a complex coastal terrain. Multiple AERMOD simulations were conducted for an assumed emission scenario using background wind data from August between 2009 and 2013. The series of experiments produced the spatial accident probability patterns for different concentration levels during daytime and nighttime scenarios based on the corresponding dominant wind patterns. This study further quantifies the potential accident risk based on the number of affected individuals by combining the accident probability with the indoor and outdoor population estimates. The chemical gas dispersion characteristics depend on various local meteorological conditions, such as the land-sea breeze direction, which alternates between daytime and nighttime, and the atmospheric stability. The results reveal that benzene dispersion affects a much larger area during the nighttime owing to the presence of a nocturnal stable boundary layer with significant temperature stratification. The affected area is smaller during the daytime owing to decreased stability and enhanced vertical mixing in the boundary layer. The results include a high degree of uncertainty during the nighttime owing to weak wind speeds and the lack of a prevailing wind direction, which impact the vulnerable area. However, vulnerable areas are more effectively identified during the daytime, when more consistent meteorological conditions exist. However, the potential risk becomes much lower during the nighttime owing to a substantial reduction of the outdoor population.
Mathematical modelling of generation and forward propagation of dispersive waves
Lie She Liam, L.S.L.
2013-01-01
This dissertation concerns the mathematical theory of forward propagation and generation of dispersive waves. We derive the AB2-equation which describes forward traveling waves in two horizontal dimension. It is the generalization of the Kadomtsev-Petviashvilli (KP) equation. The derivation is based
Nonlocal dispersive optical model ingredients for ${}^{40}$Ca
Mahzoon, M H; Dickhoff, W H; Dussan, H; Waldecker, S J
2013-01-01
A comprehensive description of all single-particle properties associated with the nucleus ${}^{40}$Ca has been generated by employing a nonlocal dispersive optical potential capable of simultaneously reproducing all relevant data above and below the Fermi energy. We gather all relevant functional forms and the numerical values of the parameters in this contribution.
Mechanistic analytical models for long-distance seed dispersal by wind.
Katul, G G; Porporato, A; Nathan, R; Siqueira, M; Soons, M B; Poggi, D; Horn, H S; Levin, S A
2005-09-01
We introduce an analytical model, the Wald analytical long-distance dispersal (WALD) model, for estimating dispersal kernels of wind-dispersed seeds and their escape probability from the canopy. The model is based on simplifications to well-established three-dimensional Lagrangian stochastic approaches for turbulent scalar transport resulting in a two-parameter Wald (or inverse Gaussian) distribution. Unlike commonly used phenomenological models, WALD's parameters can be estimated from the key factors affecting wind dispersal--wind statistics, seed release height, and seed terminal velocity--determined independently of dispersal data. WALD's asymptotic power-law tail has an exponent of -3/2, a limiting value verified by a meta-analysis for a wide variety of measured dispersal kernels and larger than the exponent of the bivariate Student t-test (2Dt). We tested WALD using three dispersal data sets on forest trees, heathland shrubs, and grassland forbs and compared WALD's performance with that of other analytical mechanistic models (revised versions of the tilted Gaussian Plume model and the advection-diffusion equation), revealing fairest agreement between WALD predictions and measurements. Analytical mechanistic models, such as WALD, combine the advantages of simplicity and mechanistic understanding and are valuable tools for modeling large-scale, long-term plant population dynamics.
Diamante, J. M.; Englar, T. S., Jr.; Jazwinski, A. H.
1977-01-01
Estimation theory, which originated in guidance and control research, is applied to the analysis of air quality measurements and atmospheric dispersion models to provide reliable area-wide air quality estimates. A method for low dimensional modeling (in terms of the estimation state vector) of the instantaneous and time-average pollutant distributions is discussed. In particular, the fluctuating plume model of Gifford (1959) is extended to provide an expression for the instantaneous concentration due to an elevated point source. Individual models are also developed for all parameters in the instantaneous and the time-average plume equations, including the stochastic properties of the instantaneous fluctuating plume.
Fushimi, Akihiro; Kawashima, Hiroto; Kajihara, Hideo
Understanding the contribution of each emission source of air pollutants to ambient concentrations is important to establish effective measures for risk reduction. We have developed a source apportionment method based on an atmospheric dispersion model and multiple linear regression analysis (MLR) in conjunction with ambient concentrations simultaneously measured at points in a grid network. We used a Gaussian plume dispersion model developed by the US Environmental Protection Agency called the Industrial Source Complex model (ISC) in the method. Our method does not require emission amounts or source profiles. The method was applied to the case of benzene in the vicinity of the Keiyo Central Coastal Industrial Complex (KCCIC), one of the biggest industrial complexes in Japan. Benzene concentrations were simultaneously measured from December 2001 to July 2002 at sites in a grid network established in the KCCIC and the surrounding residential area. The method was used to estimate benzene emissions from the factories in the KCCIC and from automobiles along a section of a road, and then the annual average contribution of the KCCIC to the ambient concentrations was estimated based on the estimated emissions. The estimated contributions of the KCCIC were 65% inside the complex, 49% at 0.5-km sites, 35% at 1.5-km sites, 20% at 3.3-km sites, and 9% at a 5.6-km site. The estimated concentrations agreed well with the measured values. The estimated emissions from the factories and the road were slightly larger than those reported in the first Pollutant Release and Transfer Register (PRTR). These results support the reliability of our method. This method can be applied to other chemicals or regions to achieve reasonable source apportionments.
Dispersion of conservative properties for SGD effects by numerical modeling
Gallegos, G.; Marino-Tapia, I.; Enriquez, C.
2013-05-01
The submarine groundwater discharges around de coasts of theYucatán Peninsula are very common because of its karstic nature. These discharges of fresh water into the sea can change the thermohaline conditions of the region. There are several studies that demonstrate that point submarine groundwater discharges can change the superficial temperature and haline conditions near the point-SGD. Furthermore, there is evidence that considerable concentrations of nutrients are transported to the sea via SGDs. In order to quantify the area of influence of a point-SGD and the ability of the coastal system to dissipate the ground water, this study presents a numerical simulation of a point-SGD on the north coast of Yucatán, Dzilam Bravo. Teh flow recorded for this SGD is ~1m^3/s and it is located 200m offshore in waters of less than 2m detph.. The numerical simulation was carried out in the model DELFT-3D which has been calibrated with water level and hydrodynamics data for the region with a grid of 486 x 243 nodes that cover an area of 6 km alongshore by 2 km crosshore with a resolution of 14 m. Three ideal numerical scenarios were simulated: only wind forcing, only tidal forcing and wind-tide forcing. The real cases are for two different wind conditions, the first is a southeast wind, and the second is a breeze with an easterly component; the dominant winds in the region are easterly. Seasonal variation was also simulated; the two conditions that exist in the region are the rainy and dry seasons. The extreme events of ENSO and northerly storms locally known as "nortes" were also simulated. The results of the ideal set of scenarios shows wind as the principal forcing for dispersion and it governs the direction of the salinity gradient. The seasonal variations show that the area of influence in terms of salinity is also a function of the contrast between fresh and sea water, and finally the set of extreme condition simulations shows, in case of the northerly storms, that the
Finite element models applied in active structural acoustic control
Oude Nijhuis, Marco H.H.; Boer, de André; Rao, Vittal S.
2002-01-01
This paper discusses the modeling of systems for active structural acoustic control. The finite element method is applied to model structures including the dynamics of piezoelectric sensors and actuators. A model reduction technique is presented to make the finite element model suitable for controll
Dispersal leads to spatial autocorrelation in species distributions: A simulation model
Bahn, V.; Krohn, W.B.; O'Connor, R.J.
2008-01-01
Compared to population growth regulated by local conditions, dispersal has been underappreciated as a central process shaping the spatial distribution of populations. This paper asks: (a) which conditions increase the importance of dispersers relative to local recruits in determining population sizes? and (b) how does dispersal influence the spatial distribution patterns of abundances among connected populations? We approached these questions with a simulation model of populations on a coupled lattice with cells of continuously varying habitat quality expressed as carrying capacities. Each cell contained a population with the basic dynamics of density-regulated growth, and was connected to other populations by immigration and emigration. The degree to which dispersal influenced the distribution of population sizes depended most strongly on the absolute amount of dispersal, and then on the potential population growth rate. Dispersal decaying in intensity with distance left close neighbours more alike in population size than distant populations, leading to an increase in spatial autocorrelation. The spatial distribution of species with low potential growth rates is more dependent on dispersal than that of species with high growth rates; therefore, distribution modelling for species with low growth rates requires particular attention to autocorrelation, and conservation management of these species requires attention to factors curtailing dispersal, such as fragmentation and dispersal barriers. ?? 2007 Elsevier B.V. All rights reserved.
Development and test of an evaluation protocol for heavy gas dispersion models
Duijm, N.J.; Carissimo, B.; Mercer, A.; Bartholome, C.; Giesbrecht, H.
1997-01-01
In order to improve the quality (i.e. fitness-for-purpose) of models used to describe the atmospheric dispersion of heavy gas, an evaluation methodology has been developed and tested through a small evaluation exercise. This activity was carried out by the Heavy Gas Dispersion Expert Group, which wa
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Johansson, M.
1998-01-01
The dynamics of discrete two-dimensional nonlinear Schrodinger models with long-range dispersive interactions is investigated. In particular, we focus on the cases where the dispersion arises from a dipole-dipole interaction, assuming the dipole moments at each lattice site to be aligned either...
Benchmarking of numerical models describing the dispersion of radionuclides in the Arctic Seas
DEFF Research Database (Denmark)
Scott, E.M.; Gurbutt, P.; Harms, I.
1997-01-01
) development of realistic and reliable assessment models for the dispersal of radioactive contaminants both within, and from, the Arctic ocean; and (2) evaluation of the contributions of different transfer mechanisms to contaminant dispersal and hence, ultimately, to the risks to human health and environment...
Zhang, Daojie; Nastac, Laurentiu
2016-08-01
In present study, 6061- and A356-based nano-composites are fabricated by using the ultrasonic stirring technology (UST) in a coreless induction furnace. SiC nanoparticles are used as the reinforcement. Nanoparticles are added into the molten metal and then dispersed by ultrasonic cavitation and acoustic streaming assisted by electromagnetic stirring. The applied UST parameters in the current experiments are used to validate a recently developed magneto-hydro-dynamics (MHD) model, which is capable of modeling the cavitation and nanoparticle dispersion during UST processing. The MHD model accounts for turbulent fluid flow, heat transfer and solidification, and electromagnetic field, as well as the complex interaction between the nanoparticles and both the molten and solidified alloys by using ANSYS Maxwell and ANSYS Fluent. Molecular dynamics (MD) simulations are conducted to analyze the complex interactions between the nanoparticle and the liquid/solid interface. The current modeling results demonstrate that a strong flow can disperse the nanoparticles relatively well during molten metal and solidification processes. MD simulation results prove that ultrafine particles (10 nm) will be engulfed by the solidification front instead of being pushed, which is beneficial for nano-dispersion.
Zhang, Daojie; Nastac, Laurentiu
2016-12-01
In present study, 6061- and A356-based nano-composites are fabricated by using the ultrasonic stirring technology (UST) in a coreless induction furnace. SiC nanoparticles are used as the reinforcement. Nanoparticles are added into the molten metal and then dispersed by ultrasonic cavitation and acoustic streaming assisted by electromagnetic stirring. The applied UST parameters in the current experiments are used to validate a recently developed magneto-hydro-dynamics (MHD) model, which is capable of modeling the cavitation and nanoparticle dispersion during UST processing. The MHD model accounts for turbulent fluid flow, heat transfer and solidification, and electromagnetic field, as well as the complex interaction between the nanoparticles and both the molten and solidified alloys by using ANSYS Maxwell and ANSYS Fluent. Molecular dynamics (MD) simulations are conducted to analyze the complex interactions between the nanoparticle and the liquid/solid interface. The current modeling results demonstrate that a strong flow can disperse the nanoparticles relatively well during molten metal and solidification processes. MD simulation results prove that ultrafine particles (10 nm) will be engulfed by the solidification front instead of being pushed, which is beneficial for nano-dispersion.
Grugel, R. N.; Fedoseyev, A. I.
2000-01-01
There are innumerable two-component systems in which two very different liquid phases co-exist in equilibrium over a range of temperature and composition, e.g., oil and water, salt fluxes and solders, aluminum and lead. Often it is of practical concern to fabricate a solid component consisting of a uniform dispersion of one phase in the other. Unfortunately, uniform microstructural development during solidification of two immiscible liquids is hampered by inherent, often large, density differences between the phases that lead to severe segregation. Uniformity is also compromised by preferential wetting and coalescence phenomena. It is, however, well known that ultrasonic energy can initiate and maintain a fine liquid-liquid dispersion. The work presented here extends that observation by application of ultrasonic energy to promote uniform phase incorporation during controlled directional solidification. To this end experiments with the transparent organic, immiscible, succinonitrile-glycerol system were conducted and the numerous processing parameters associated with this technique were evaluated in view of optimizing dispersion uniformity. In view of the initial experimental results a model that predicts the dispersed liquid droplet size as a function of material properties, sample geometry, and applied energy has been developed. In the mathematical model we consider the ultrasonic field in an experimental ampoule of length L and diameter D induced by a probe having a vibration frequency of f=2OKhz (circular frequency omega = 2 pi f). The amplitude is adjustable from A=65 to 13Omicrons. The probe tip diameter is d, the liquid has a density of p, in which the speed of sound and surface tension are, respectively, c and sigma. The mathematical model and numerical investigation for the experiments [1] is done using the following assumptions: (i) The droplet size is small in comparison to the sound wave length; (ii) The forces between droplets are neglected (relative
Mixing height derived from the DMI-HIRLAM NWP model, and used for ETEX dispersion modelling
Energy Technology Data Exchange (ETDEWEB)
Soerensen, J.H.; Rasmussen, A. [Danish Meteorological Inst., Copenhagen (Denmark)
1997-10-01
For atmospheric dispersion modelling it is of great significance to estimate the mixing height well. Mesoscale and long-range diffusion models using output from numerical weather prediction (NWP) models may well use NWP model profiles of wind, temperature and humidity in computation of the mixing height. This is dynamically consistent, and enables calculation of the mixing height for predicted states of the atmosphere. In autumn 1994, the European Tracer Experiment (ETEX) was carried out with the objective to validate atmospheric dispersion models. The Danish Meteorological Institute (DMI) participates in the model evaluations with the Danish Emergency Response Model of the Atmosphere (DERMA) using NWP model data from the DMI version of the High Resolution Limited Area Model (HIRLAM) as well as from the global model of the European Centre for Medium-Range Weather Forecast (ECMWF). In DERMA, calculation of mixing heights are performed based on a bulk Richardson number approach. Comparing with tracer gas measurements for the first ETEX experiment, a sensitivity study is performed for DERMA. Using DMI-HIRLAM data, the study shows that optimum values of the critical bulk Richardson number in the range 0.15-0.35 are adequate. These results are in agreement with recent mixing height verification studies against radiosonde data. The fairly large range of adequate critical values is a signature of the robustness of the method. Direct verification results against observed missing heights from operational radio-sondes released under the ETEX plume are presented. (au) 10 refs.
Turner, Richard; Moore, Stuart; Pardo, Natalia; Kereszturi, Gabor; Uddstrom, Michael; Hurst, Tony; Cronin, Shane
2014-10-01
The August 6, 2012 Te Maari, New Zealand eruption produced a very small ash-dominated plume (~ 230,000 m3, 8-10 km high) that was rapidly and widely dispersed, covering 1600 km2 within an hour. This paper documents for the August 6, 2012 Te Maari eruption the upper level (troposphere) plume movement based on ash-detection algorithms applied to IR satellite imagery. It also presents the distribution of airborne ash and wind-influenced ashfall as determined by NAME-III aerial dispersion modelling using observed particle characteristics and grain size distribution measurements (that are also presented) and compares the ashfall with observations. The upper level (troposphere) ash movement was also evaluated from ash-detection algorithms, applied to infra-red satellite imagery and the resulting distributions were compared to those forecast by the numerical dispersion models. Forecasts of upper level ash-dispersion patterns explained the satellite imagery observations well, predicting the correct altitudes when using plausible ash size distributions and release levels. Patterns in proximal ashfall could only be partly explained by aerial dispersal of large particles released at low altitudes in the eruption column. The extreme distal (100-150 km away) observed ashfall distributions also cannot be fully explained by NAME-III when using: reasonably prescribed initial particle size distributions, eruption column height, eruption timing, well forecast winds, and dry sedimentation processes. Aggregation and ice nucleation effects (observed in deposits) were not included in the ash dispersion model, but appear as a plausible mechanism to account for the observed fraction of wind dispersed ash particles < 30 μm deposited but not captured by the models.
Energy Technology Data Exchange (ETDEWEB)
Berlowitz, D.R.
1996-11-01
In the last few decades the negative impact by humans on the thin atmospheric layer enveloping the earth, the basis for life on this planet, has increased steadily. In order to halt, or at least slow down this development, the knowledge and study of these anthropogenic influence has to be increased and possible remedies have to be suggested. An important tool for these studies are computer models. With their help the atmospheric system can be approximated and the various processes, which have led to the current situation can be quantified. They also serve as an instrument to assess short or medium term strategies to reduce this human impact. However, to assure efficiency as well as accuracy, a careful analysis of the numerous processes involved in the dispersion of pollutants in the atmosphere is called for. This should help to concentrate on the essentials and also prevent excessive usage of sometimes scarce computing resources. The basis of the presented work is the EUMAC Zooming Model (ETM), and particularly the component calculating the dispersion of pollutants in the atmosphere, the model MARS. The model has two main parts: an explicit solver, where the advection and the horizontal diffusion of pollutants are calculated, and an implicit solution mechanism, allowing the joint computation of the change of concentration due to chemical reactions, coupled with the respective influence of the vertical diffusion of the species. The aim of this thesis is to determine particularly the influence of the horizontal components of the turbulent diffusion on the existing implicit solver of the model. Suggestions for a more comprehensive inclusion of the full three dimensional diffusion operator in the implicit solver are made. This is achieved by an appropriate operator splitting. A selection of numerical approaches to tighten the coupling of the diffusion processes with the calculation of the applied chemical reaction mechanisms are examined. (author) figs., tabs., refs.
Jafar-Zanjani, Samad; Cheng, Jierong; Mosallaei, Hossein
2016-04-10
An efficient auxiliary differential equation method for incorporating 2D inhomogeneous dispersive impedance sheets in the finite-difference time-domain solver is presented. This unique proposed method can successfully solve optical problems of current interest involving 2D sheets. It eliminates the need for ultrafine meshing in the thickness direction, resulting in a significant reduction of computation time and memory requirements. We apply the method to characterize a novel broad-beam leaky-wave antenna created by cascading three sinusoidally modulated reactance surfaces and also to study the effect of curvature on the radiation characteristic of a conformal impedance sheet holographic antenna. Considerable improvement in the simulation time based on our technique in comparison with the traditional volumetric model is reported. Both applications are of great interest in the field of antennas and 2D sheets.
Microscopic Models for Electromagnetic Wave Propagation in Highly Dispersive Media
1990-06-18
rotations, the effects of pressure and temperature and to show the classes of density fluctuations in I which give spatial dispersion, ie, the k- dependance ...complex plane the response e (co, Q) lives on some Riemann surface which is determined by the k- dependance . 2. Talks and Publications Three talks were...sources of 1- dependance (k- dependance in Fourier transform variables) have been identified. One is bubbles or cavitation which scatter the propagating
Tung, Nguyen-Thach; Park, Chun-Woong; Oh, Tack-oon; Kim, Ju-Young; Ha, Jung-Myung; Rhee, Yun-Seok; Park, Eun-Seok
2011-12-01
Rebamipide, a novel anti-ulcer agent, is listed in biopharmaceutics classification class IV because of its low aqueous solubility and permeability. Consequently, the bioavailability of rebamipide is under 10% in humans. The aim of this study was to increase the solubility and determine the effect of solubility enhancement on the bioavailability and efficacy of rebamipide (RBM). After taking into account the physiochemical properties of RBM (solubility, melting point, dosage etc.), solid dispersion was chosen as the solubility enhancement method. A rebamipide solid dispersion system containing the drug, l-lysine, PVP-VA 64 and poloxamer 407 was obtained from a spray-drying method. Solubility enhancement of RBM from the solid dispersion was determined by a dissolution test in 900 ml at pH 1.2. The bioavailability and efficacy of RBM solid dispersion were evaluated in a rat model. The aqueous solubility of RBM was improved 62.17 times by solid dispersion. The oral bioavailability of the drug was also increased 1.74-fold from solid dispersion compared with the reference product in a rat model. With regard to the anti-ulcer effect, the percentage inhibition of the solid dispersion was 2.71 times higher than that of the reference product in the ulcer-induced rat model. A solid dispersion of rebamipide was successfully formulated using the spray-drying method. Bioavailability and efficacy of rebamipide were increased significantly by solubility enhancement of the drug. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.
Eagles, Debbie; Melville, Lorna; Weir, Richard; Davis, Steven; Bellis, Glenn; Zalucki, Myron P; Walker, Peter J; Durr, Peter A
2014-06-19
Previous studies investigating long-distance, wind-borne dispersal of Culicoides have utilised outbreaks of clinical disease (passive surveillance) to assess the relationship between incursion and dispersal event. In this study, species of exotic Culicoides and isolates of novel bluetongue viruses, collected as part of an active arbovirus surveillance program, were used for the first time to assess dispersal into an endemic region. A plausible dispersal event was determined for five of the six cases examined. These include exotic Culicoides specimens for which a possible dispersal event was identified within the range of two days--three weeks prior to their collection and novel bluetongue viruses for which a dispersal event was identified between one week and two months prior to their detection in cattle. The source location varied, but ranged from Lombok, in eastern Indonesia, to Timor-Leste and southern Papua New Guinea. Where bluetongue virus is endemic, the concurrent use of an atmospheric dispersal model alongside existing arbovirus and Culicoides surveillance may help guide the strategic use of limited surveillance resources as well as contribute to continued model validation and refinement. Further, the value of active surveillance systems in evaluating models for long-distance dispersal is highlighted, particularly in endemic regions where knowledge of background virus and vector status is beneficial.
Institute of Scientific and Technical Information of China (English)
WANG He-Lin; YANG Ai-Jun; LENG Yu-Xin; WANG Cheng
2011-01-01
The generation mechanisms of supercontinuum(SC)and the effect of the modified Raman model on SC are further analyzed in a flat dispersion photonic crystal fiber(PCF)with two-zero dispersion wavelengths(TZDWs)by introducing an accurate Raman response function in the scalar nonlinear Scho?dinger equation.The results show that the introduction of Boson peak in the modified Raman gain model not only results in much rapider broadening of SC but also promotes more pump pulse energy transferred to the short wavelength region,which is related to stimulated Raman scattering.Moreover,SC generated from the PCF splits into two spectral bands,and their spectral peaks rapidly separate and broaden with the increase of incidcnt power.Double-band central wavelengths are finally located at about 850 nm and 1220 nm.The pumping energy depletion phenomenon occurs.The simulated results from the modified Raman model are in better agreement with the experimental results than that from the single-Lorentzian moder.
Zimmerling, Jörn; Wei, Lei; Urbach, Paul; Remis, Rob
2016-06-01
In this paper we present a Krylov subspace model-order reduction technique for time- and frequency-domain electromagnetic wave fields in linear dispersive media. Starting point is a self-consistent first-order form of Maxwell's equations and the constitutive relation. This form is discretized on a standard staggered Yee grid, while the extension to infinity is modeled via a recently developed global complex scaling method. By applying this scaling method, the time- or frequency-domain electromagnetic wave field can be computed via a so-called stability-corrected wave function. Since this function cannot be computed directly due to the large order of the discretized Maxwell system matrix, Krylov subspace reduced-order models are constructed that approximate this wave function. We show that the system matrix exhibits a particular physics-based symmetry relation that allows us to efficiently construct the time- and frequency-domain reduced-order models via a Lanczos-type reduction algorithm. The frequency-domain models allow for frequency sweeps meaning that a single model provides field approximations for all frequencies of interest and dominant field modes can easily be determined as well. Numerical experiments for two- and three-dimensional configurations illustrate the performance of the proposed reduction method.
Modelling drivers of mangrove propagule dispersal and restoration of abandoned shrimp farms
Directory of Open Access Journals (Sweden)
D. Di Nitto
2013-01-01
Full Text Available Propagule dispersal of four mangrove species Rhizophora mucronata, R. apiculata, Ceriops tagal and Avicennia officinalis in the Pambala-Chilaw Lagoon Complex (Sri Lanka was studied by combining a hydrodynamic model with species-specific knowledge on propagule dispersal behaviour. Propagule transport was simulated using a finite-volume advection-diffusion model to investigate the effect of dispersal vectors (tidal flow, freshwater discharge and wind, trapping agents (retention by vegetation and seed characteristics (buoyancy on propagule dispersal patterns. Sensitivity analysis showed that smaller propagules, like the oval-shaped propagules of Avicennia officinalis, dispersed over larger distances and were most sensitive to changing values of retention by mangrove vegetation compared to larger, torpedo-shaped propagules of Rhizophora spp. and C. tagal. Directional propagule dispersal in this semi-enclosed lagoon with a small tidal range was strongly concentrated towards the edges of the lagoon and channels. Short distance dispersal appeared to be the main dispersal strategy for all four studied species, with most of the propagules being retained within the vegetation. Only a small proportion (max. 5% of propagules left the lagoon through a channel connecting the lagoon with the open sea. Wind significantly influenced dispersal distance and direction once propagules entered the lagoon or adjacent channels. Implications of these findings for mangrove restoration were tested by simulating partial removal in the model of dikes around abandoned shrimp ponds to restore tidal hydrology and facilitate natural recolonisation by mangroves. The specific location of dike removal, (with respect to the vicinity of mangroves and independently suitable hydrodynamic flows, was found to significantly affect the resultant quantities and species of inflowing of propagules and hence the potential effectiveness of natural
Modelling drivers of mangrove propagule dispersal and restoration of abandoned shrimp farms
Directory of Open Access Journals (Sweden)
D. Di Nitto
2013-07-01
Full Text Available Propagule dispersal of four mangrove species Rhizophora mucronata, R. apiculata, Ceriops tagal and Avicennia officinalis in the Pambala–Chilaw Lagoon Complex (Sri Lanka was studied by combining a hydrodynamic model with species-specific knowledge on propagule dispersal behaviour. Propagule transport was simulated using a finite-volume advection-diffusion model to investigate the effect of dispersal vectors (tidal flow, freshwater discharge and wind, trapping agents (retention by vegetation and seed characteristics (buoyancy on propagule dispersal patterns. Sensitivity analysis showed that smaller propagules, like the oval-shaped propagules of Avicennia officinalis, dispersed over larger distances and were most sensitive to changing values of retention by mangrove vegetation compared to larger, torpedo-shaped propagules of Rhizophora spp. and C. tagal. Directional propagule dispersal in this semi-enclosed lagoon with a small tidal range was strongly concentrated towards the edges of the lagoon and channels. Short distance dispersal appeared to be the main dispersal strategy for all four studied species, with most of the propagules being retained within the vegetation. Only a small proportion (max. 5% of propagules left the lagoon through a channel connecting the lagoon with the open sea. Wind significantly influenced dispersal distance and direction once propagules entered the lagoon or adjacent channels. Implications of these findings for mangrove restoration were tested by simulating partial removal in the model of dikes around abandoned shrimp ponds to restore tidal hydrology and facilitate natural recolonisation by mangroves. The specific location of dike removal, (with respect to the vicinity of mangroves and independently suitable hydrodynamic flows, was found to significantly affect the resultant quantities and species of inflowing propagules and hence the potential effectiveness of natural regeneration. These results demonstrate the
Teaching students to apply multiple physical modeling methods
Wiegers, T.; Verlinden, J.C.; Vergeest, J.S.M.
2014-01-01
Design students should be able to explore a variety of shapes before elaborating one particular shape. Current modelling courses don’t address this issue. We developed the course Rapid Modelling, which teaches students to explore multiple shape models in a short time, applying different methods and
Teaching students to apply multiple physical modeling methods
Wiegers, T.; Verlinden, J.C.; Vergeest, J.S.M.
2014-01-01
Design students should be able to explore a variety of shapes before elaborating one particular shape. Current modelling courses don’t address this issue. We developed the course Rapid Modelling, which teaches students to explore multiple shape models in a short time, applying different methods and
Nonlinear Eddy Viscosity Models applied to Wind Turbine Wakes
DEFF Research Database (Denmark)
Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan;
2013-01-01
The linear k−ε eddy viscosity model and modified versions of two existing nonlinear eddy viscosity models are applied to single wind turbine wake simulations using a Reynolds Averaged Navier-Stokes code. Results are compared with field wake measurements. The nonlinear models give better results...
Zwack, Leonard M.; Hanna, Steven R.; Spengler, John D.; Levy, Jonathan I.
2011-09-01
In urban settings with elevated bridges, buildings, and other complex terrain, the relationship between traffic and air pollution can be highly variable and difficult to accurately characterize. Atmospheric dispersion models are often used in this context, but incorporating background concentrations and characterizing emissions at high spatiotemporal resolution is challenging, especially for ultrafine particles (UFPs). Ambient pollutant monitoring can characterize this relationship, especially when using continuous real-time monitoring. However, it is challenging to quantify local source contributions over background or to characterize spatial patterns across a neighborhood. The goal of this study is to evaluate contributions of traffic to neighborhood-scale air pollution using a combination of regression models derived from mobile UFP monitoring observations collected in Brooklyn, NY and outputs from the Quick Urban & Industrial Complex (QUIC) model. QUIC is a dispersion model that can explicitly take into account the three-dimensional shapes of buildings. The monitoring-based regression model characterized concentration gradients from a major elevated roadway, controlling for real-time traffic volume, meteorological variables, and other local sources. QUIC was applied to simulate dispersion from this same major roadway. The relative concentration decreases with distance from the roadway estimated by the monitoring-based regression model after removal of background and by QUIC were similar. Horizontal contour plots with both models demonstrated non-uniform patterns related to building configuration and source heights. We used the best-fit relationship between the monitoring-based regression model after removal of background and the QUIC outputs ( R2 = 0.80) to estimate a UFP emissions factor of 5.7 × 10 14 particles/vehicle-km, which was relatively consistent across key model assumptions. Our joint applications of novel techniques for analyzing mobile monitoring
Storch, Laura S; Pringle, James M; Alexander, Karen E; Jones, David O
2017-04-01
There is an ongoing debate about the applicability of chaotic and nonlinear models to ecological systems. Initial introduction of chaotic population models to the ecological literature was largely theoretical in nature and difficult to apply to real-world systems. Here, we build upon and expand prior work by performing an in-depth examination of the dynamical complexities of a spatially explicit chaotic population, within an ecologically applicable modeling framework. We pair a classic chaotic growth model (the logistic map) with explicit dispersal length scale and shape via a Gaussian dispersal kernel. Spatio-temporal heterogeneity is incorporated by applying stochastic perturbations throughout the spatial domain. We witness a variety of population dynamics dependent on the growth rate, dispersal distance, and domain size. Dispersal serves to eliminate chaotic population behavior for many of the parameter combinations tested. The model displays extreme sensitivity to changes in growth rate, dispersal distance, or domain size, but is robust to low-level stochastic population perturbations. Large and temporally consistent perturbations can lead to a change in population dynamics. Frequent switching occurs between chaotic/non-chaotic behaviors as dispersal distance, domain size, or growth rate increases. Small changes in these parameters are easy to imagine in real populations, and understanding or anticipating the abrupt resulting shifts in population dynamics is important for population management and conservation. Copyright © 2016 Elsevier Inc. All rights reserved.
The Role of Dispersion in Radionuclide Transport - Data and Modeling Requirements: Revision No. 1
Energy Technology Data Exchange (ETDEWEB)
Stoller-Navarro Joint Venture
2004-02-01
This document is the collaborative effort of the members of an ad hoc subcommittee of the Underground Test Area Project Technical Working Group. This subcommittee was to answer questions and concerns raised by the Nevada Division of Environmental Protection to the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, regarding Pahute Mesa Corrective Action Units (CAUs) 101 and 102. The document attempts to synthesize the combined comments made by each member of this subcommittee into insights made in the role of dispersion in radionuclide transport data and modeling. Dispersion is one of many processes that control the concentration of radionuclides in groundwater beneath the Nevada Test Site where CAUs 101 and 102 are located. In order to understand the role of dispersion in radionuclide transport, there is a critical need for CAU- or site-specific data related to transport parameters which is currently lacking, particularly in the case of Western a nd Central Pahute Mesa. The purpose of this technical basis document is to: (1) define dispersion and its role in contaminant transport, (2) present a synopsis of field-scale dispersion measurements, (3) provide a literature review of theories to explain field-scale dispersion, (4) suggest approaches to account for dispersion in CAU-scale radionuclide modeling, and (5) to determine if additional dispersion measurements should be made at this time.
Abe, K; Iyogi, T; Kawabata, H; Chiang, J H; Suwa, H; Hisamatsu, S
2015-11-01
The spent nuclear fuel reprocessing plant of Japan Nuclear Fuel Limited (JNFL) located in Rokkasho, Japan, discharged small amounts of (85)Kr into the atmosphere during final tests of the plant with actual spent fuel from 31 March 2006 to October 2008. During this period, the gamma-ray dose rates due to discharged (85)Kr were higher than the background rates measured at the Institute for Environmental Sciences and at seven monitoring stations of the Aomori prefectural government and JNFL. The dispersion of (85)Kr was simulated by means of the fifth-generation Penn State/NCAR Mesoscale Model and the CG-MATHEW/ADPIC models (ver. 5.0) with a vertical terrain-following height coordinate. Although the simulated gamma-ray dose rates due to discharged (85)Kr agreed fairly well with measured rates, the agreement between the estimated monthly mean (85)Kr concentrations and the observed concentrations was poor. Improvement of the vertical flow of air may lead to better estimation of (85)Kr dispersion.
The treatment of uncertainties in reactive pollution dispersion models at urban scales.
Tomlin, A S; Ziehn, T; Goodman, P; Tate, J E; Dixon, N S
2016-07-18
The ability to predict NO2 concentrations ([NO2]) within urban street networks is important for the evaluation of strategies to reduce exposure to NO2. However, models aiming to make such predictions involve the coupling of several complex processes: traffic emissions under different levels of congestion; dispersion via turbulent mixing; chemical processes of relevance at the street-scale. Parameterisations of these processes are challenging to quantify with precision. Predictions are therefore subject to uncertainties which should be taken into account when using models within decision making. This paper presents an analysis of mean [NO2] predictions from such a complex modelling system applied to a street canyon within the city of York, UK including the treatment of model uncertainties and their causes. The model system consists of a micro-scale traffic simulation and emissions model, and a Reynolds averaged turbulent flow model coupled to a reactive Lagrangian particle dispersion model. The analysis focuses on the sensitivity of predicted in-street increments of [NO2] at different locations in the street to uncertainties in the model inputs. These include physical characteristics such as background wind direction, temperature and background ozone concentrations; traffic parameters such as overall demand and primary NO2 fraction; as well as model parameterisations such as roughness lengths, turbulent time- and length-scales and chemical reaction rate coefficients. Predicted [NO2] is shown to be relatively robust with respect to model parameterisations, although there are significant sensitivities to the activation energy for the reaction NO + O3 as well as the canyon wall roughness length. Under off-peak traffic conditions, demand is the key traffic parameter. Under peak conditions where the network saturates, road-side [NO2] is relatively insensitive to changes in demand and more sensitive to the primary NO2 fraction. The most important physical parameter was
Werner, Adrian D.
2017-04-01
In this paper, a recent analytical solution that describes the steady-state extent of freshwater lenses adjacent to gaining rivers in saline aquifers is improved by applying an empirical correction for dispersive effects. Coastal aquifers experiencing active seawater intrusion (i.e., seawater is flowing inland) are presented as an analogous situation to the terrestrial freshwater lens problem, although the inland boundary in the coastal aquifer situation must represent both a source of freshwater and an outlet of saline groundwater. This condition corresponds to the freshwater river in the terrestrial case. The empirical correction developed in this research applies to situations of flowing saltwater and static freshwater lenses, although freshwater recirculation within the lens is a prominent consequence of dispersive effects, just as seawater recirculates within the stable wedges of coastal aquifers. The correction is a modification of a previous dispersive correction for Ghyben-Herzberg approximations of seawater intrusion (i.e., stable seawater wedges). Comparison between the sharp interface from the modified analytical solution and the 50% saltwater concentration from numerical modelling, using a range of parameter combinations, demonstrates the applicability of both the original analytical solution and its corrected form. The dispersive correction allows for a prediction of the depth to the middle of the mixing zone within about 0.3 m of numerically derived values, at least on average for the cases considered here. It is demonstrated that the uncorrected form of the analytical solution should be used to calculate saltwater flow rates, which closely match those obtained through numerical simulation. Thus, a combination of the unmodified and corrected analytical solutions should be utilized to explore both the saltwater fluxes and lens extent, depending on the dispersiveness of the problem. The new method developed in this paper is simple to apply and offers a
Ship plume dispersion rates in convective boundary layers for chemistry models
Directory of Open Access Journals (Sweden)
F. Chosson
2008-04-01
Full Text Available Detailed ship plume simulations in various convective boundary layer situations have been performed using a Lagrangian Dispersion Model driven by a Large Eddy Simulation Model. The simulations focus on early stage (1–2 h of plume dispersion regime and take into account the effects of plume rise on dispersion. Results are presented in an attempt to provide to chemical modellers community a realistic description of the impact of characteristic dispersion on exhaust ship plume chemistry. Plume dispersion simulations are used to derive analytical dilution rate functions. Even though results exhibit striking effects of plume rise parameter on dispersion patterns, it is shown that initial buoyancy fluxes at ship stack have minor effect on plume dilution rate. After initial high dispersion regimes a simple characteristic dilution time scale can be used to parameterize the subgrid plume dilution effects in large scale chemistry models. The results show that this parameter is directly related to the typical turn-over time scale of the convective boundary layer.
Notification: Evaluation of EPA’s Approval Process for Air Quality Dispersion Models
Project #OPE-FY17-0016, June 5, 2017. The EPA OIG plans to begin preliminary research to assess the effectiveness of EPA's process for reviewing and approving air quality dispersion models it recommends for use.
Digital Repository Service at National Institute of Oceanography (India)
Swamy, G.N.
This paper highlights on the issues of dispersion processes in coastal waters like space-time description of field parameters, limitation of physical models, limitations of numerical formulations, Eulerian-Lagrangian transformations, shear...
A linear dispersion relation for the hybrid kinetic-ion/fluid-electron model of plasma physics
Told, Daniel; Astfalk, Patrick; Jenko, Frank
2016-01-01
A dispersion relation for a commonly used hybrid model of plasma physics is developed, which combines fully kinetic ions and a massless-electron fluid description. Although this model and variations of it have been used to describe plasma phenomena for about 40 years, to date there exists no general dispersion relation to describe the linear wave physics contained in the model. Previous efforts along these lines are extended here to retain arbitrary wave propagation angles, temperature anisotropy effects, as well as additional terms in the generalized Ohm's law which determines the electric field. A numerical solver for the dispersion relation is developed, and linear wave physics is benchmarked against solutions of a full Vlasov-Maxwell dispersion relation solver. This work opens the door to a more accurate interpretation of existing and future wave and turbulence simulations using this type of hybrid model.
Witte, L.
2014-06-01
To support landing site assessments for HDA-capable flight systems and to facilitate trade studies between the potential HDA architectures versus the yielded probability of safe landing a stochastic landing dispersion model has been developed.
A comparison of measurements and CFD model predictions for pollutant dispersion in cities.
Pospisil, J; Katolicky, J; Jicha, M
2004-12-01
An accurate description of car movements in an urban area is required for accurate prediction of the air pollution concentration field. A 3-D Eulerian-Lagrangian approach to moving vehicles that takes into account the traffic-induced flow field and turbulence is presented. The approach is based on Computational Fluid Dynamics (CFD) calculations using Eulerian approach to the continuous phase and Lagrangian approach to the discrete phase of moving objects-vehicles. In the first part of the present contribution, the method is applied to pollutants dispersion in a city tunnel outlet in Brno and to a street structure in Hannover, Germany. In the second part, a model of traffic dynamics inside a street intersection in the centre of Brno is presented. This model accounts for the dynamics of traffic lights and a corresponding traffic-generated flow field and emissions in different time intervals during the traffic light sequence. All results of numerical modelling are compared with field measurements with very good agreement. A commercial CFD code StarCD was used into which the Lagrangian model and traffic dynamics model were integrated.
Hirsch, Philipp Emanuel; Thorlacius, Magnus; Brodin, Tomas; Burkhardt-Holm, Patricia
2017-01-01
Animal personalities are an important factor that affects the dispersal of animals. In the context of aquatic species, dispersal modeling needs to consider that most freshwater ecosystems are highly fragmented by barriers reducing longitudinal connectivity. Previous research has incorporated such barriers into dispersal models under the neutral assumption that all migrating animals attempt to ascend at all times. Modeling dispersal of animals that do not perform trophic or reproductive migrations will be more realistic if it includes assumptions of which individuals attempt to overcome a barrier. We aimed to introduce personality into predictive modeling of whether a nonmigratory invasive freshwater fish (the round goby, Neogobius melanostomus) will disperse across an in-stream barrier. To that end, we experimentally assayed the personalities of 259 individuals from invasion fronts and established round goby populations. Based on the population differences in boldness, asociability, and activity, we defined a priori thresholds with bolder, more asocial, and more active individuals having a higher likelihood of ascent. We then combined the personality thresholds with swimming speed data from the literature and in situ measurements of flow velocities in the barrier. The resulting binary logistic regression model revealed probabilities of crossing a barrier which depended not only on water flow and fish swimming speed but also on animal personalities. We conclude that risk assessment through predictive dispersal modeling across fragmented landscapes can be advanced by including personality traits as parameters. The inclusion of behavior into modeling the spread of invasive species can help to improve the accuracy of risk assessments.
Computational dispersion properties of horizontal staggered grids for atmospheric and ocean models
Fox-Rabinovitz, Michael S.
1991-01-01
The computational dispersion properties of horizontally and time-horizontally staggered grids utilizing corresponding centered-difference techniques for approximation of the adjustment, or gravity wave equations, are examined in terms of their group velocity characteristics. Results are acquired for oceanic and atmospheric models, the former being characterized by a much smaller Rossby radius of deformation. For all grids considered additional filtering is required to control and even eliminate waves with poor computational dispersion characteristics. Computational dispersion properties along with other computational characteristics and requirements give some guidance for an optimal selection of an appropriate grid for an ocean or atmospheric model.
A general numerical solution of dispersion relations for the nuclear optical model
Capote, R; Quesada, J M; Capote, Roberto; Molina, Alberto; Quesada, Jose Manuel
2001-01-01
A general numerical solution of the dispersion integral relation between the real and the imaginary parts of the nuclear optical potential is presented. Fast convergence is achieved by means of the Gauss-Legendre integration method, which offers accuracy, easiness of implementation and generality for dispersive optical model calculations. The use of this numerical integration method in the optical-model parameter search codes allows for a fast and accurate dispersive analysis. PACS number(s): 11.55.Fv, 24.10.Ht, 02.60.Jh
Dynamical real space renormalization group applied to sandpile models.
Ivashkevich, E V; Povolotsky, A M; Vespignani, A; Zapperi, S
1999-08-01
A general framework for the renormalization group analysis of self-organized critical sandpile models is formulated. The usual real space renormalization scheme for lattice models when applied to nonequilibrium dynamical models must be supplemented by feedback relations coming from the stationarity conditions. On the basis of these ideas the dynamically driven renormalization group is applied to describe the boundary and bulk critical behavior of sandpile models. A detailed description of the branching nature of sandpile avalanches is given in terms of the generating functions of the underlying branching process.
Comparison of two multiaxial fatigue models applied to dental implants
Directory of Open Access Journals (Sweden)
JM. Ayllon
2015-07-01
Full Text Available This paper presents two multiaxial fatigue life prediction models applied to a commercial dental implant. One model is called Variable Initiation Length Model and takes into account both the crack initiation and propagation phases. The second model combines the Theory of Critical Distance with a critical plane damage model to characterise the initiation and initial propagation of micro/meso cracks in the material. This paper discusses which material properties are necessary for the implementation of these models and how to obtain them in the laboratory from simple test specimens. It also describes the FE models developed for the stress/strain and stress intensity factor characterisation in the implant. The results of applying both life prediction models are compared with experimental results arising from the application of ISO-14801 standard to a commercial dental implant.
Hettrich, Sebastian; Wildermuth, Hans; Strobl, Christopher; Wenig, Mark
2016-04-01
In the last couple of years, the Atmospheric Radionuclide Transport Model (ARTM) has been developed by the German Federal Office for Radiation Protection (BfS) and the Society for Plant and Reactor Security (GRS). ARTM is an atmospheric dispersion model for continuous long-term releases of radionuclides into the atmosphere, based on the Lagrangian particle model. This model, developed in the first place as a more realistic replacement for the out-dated Gaussian plume models, is currently being optimised for further scientific purposes to study atmospheric dispersion in short-range scenarios. It includes a diagnostic wind field model, allows for the application of building structures and multiple sources (including linear, 2-and 3-dimensional source geometries), and considers orography and surface roughness. As an output it calculates the activity concentration, dry and wet deposition and can model also the radioactive decay of Rn-222. As such, ARTM requires to undergo an intense validation process. While for short-term and short-range models, which were mainly developed for examining nuclear accidents or explosions, a few measurement data-sets are available for validation, data-sets for validating long-term models are very sparse and the existing ones mostly prove to be not applicable for validation. Here we present a strategy for the validation of long-term Lagrangian particle models based on the work with ARTM. In our validation study, the first part we present is a comprehensive analysis of the model sensitivities on different parameters like e.g. (simulation grid size resolution, starting random number, amount of simulation particles, etc.). This study provides a good estimation for the uncertainties of the simulation results and consequently can be used to generate model outputs comparable to the available measurements data at various distances from the emission source. This comparison between measurement data from selected scenarios and simulation results
Gyrotactic swimmer dispersion in pipe flow: experimental challenge of competing models
Croze, O A; Bees, M A
2016-01-01
Suspensions of microswimmers are a rich source of fascinating new fluid mechanics. Recently we predicted the nonclassical pipe flow dispersion of gyrotactic microalgae, whose orientation is biased by gravity and flow shear. Analytical theory predicts that these active swimmers disperse in a markedly distinct manner from passive tracers (Taylor dispersion). Dispersing swimmers display nonzero drift and effective diffusivity that is non-monotonic with Peclet number. Such predictions agree with numerical simulations, but hitherto have not been tested experimentally. Here, we extend the theory to realistically describe suspensions of negatively buoyant bi-flagellate algae and obtain new predictions for the model species Dunaliella salina, parametrised using tracking video microscopy. We then present a new experimental method to measure gyrotactic dispersion using fluorescently stained D. salina and provide a preliminary comparison with predictions of a nonzero drift above the mean flow. Finally, we propose furthe...
Baba, Toshitaka; Takahashi, Narumi; Kaneda, Yoshiyuki; Ando, Kazuto; Matsuoka, Daisuke; Kato, Toshihiro
2015-12-01
Because of improvements in offshore tsunami observation technology, dispersion phenomena during tsunami propagation have often been observed in recent tsunamis, for example the 2004 Indian Ocean and 2011 Tohoku tsunamis. The dispersive propagation of tsunamis can be simulated by use of the Boussinesq model, but the model demands many computational resources. However, rapid progress has been made in parallel computing technology. In this study, we investigated a parallelized approach for dispersive tsunami wave modeling. Our new parallel software solves the nonlinear Boussinesq dispersive equations in spherical coordinates. A variable nested algorithm was used to increase spatial resolution in the target region. The software can also be used to predict tsunami inundation on land. We used the dispersive tsunami model to simulate the 2011 Tohoku earthquake on the Supercomputer K. Good agreement was apparent between the dispersive wave model results and the tsunami waveforms observed offshore. The finest bathymetric grid interval was 2/9 arcsec (approx. 5 m) along longitude and latitude lines. Use of this grid simulated tsunami soliton fission near the Sendai coast. Incorporating the three-dimensional shape of buildings and structures led to improved modeling of tsunami inundation.
Modelling the atmospheric dispersion of foot-and-mouth disease virus for emergency preparedness
DEFF Research Database (Denmark)
Sørensen, J.H.; Jensen, C.O.; Mikkelsen, T.
2001-01-01
A model system for simulating airborne spread of foot-and-mouth disease (FMD) is described. The system includes a virus production model and the local- and mesoscale atmospheric dispersion model RIMPUFF linked to the LINCOM local-scale Row model. LINCOM is used to calculate the sub-grid scale Row...
Multi-scale Model Coupling for CFD Simulations of Discharge Dispersion in the Sea
Robinson, D.; Wood, M.; Piggott, M. D.; Gorman, G.
2014-12-01
The processes that influence the dispersion of effluent discharges in the sea occur over a wide range of length and time scales. The distance that effluent can travel before it is considered mixed can be several kilometres, whereas the turbulent eddies that affect the near-field mixing of a discharge can be as small as a few centimetres. The range of scales that are involved mean that it is not generally practical to include all influencing physical phenomena within one model. Typically, the modelling of effluent dispersion is performed using two separate numerical models: a local model of the outlet(s), including the near-field effects of momentum, buoyancy and turbulence; and a larger scale model that can include the far-field effects of tidal-, wind- and wave-driven-currents, water depth variations, atmospheric fluxes, and Coriolis forces. The boundary between the two models is often not strictly defined, but is usually placed at the transition from where the behaviour of the effluent is dominated by the ambient environment, rather than the discharge characteristics and outfall configuration. In most real applications, this transition line varies considerably in time and space. This paper presents the findings of collaborative research between the Applied Modelling and Computation Group (AMCG) at Imperial College London, UK, and HR Wallingford Ltd. Results are presented using a range of coupling methods to link the near- and far-field mixing regions. An idealised domain and tidal conditions are used, with the outfall and ambient conditions typical of those found at small coastal desalination plants. Open-source CFD code Fluidity is used for both the near-field and far-field modelling. Fluidity scales well when run in parallel on large numbers of cores. It also has an anisotropic adaptive mesh capability which allows local control over solution accuracy throughout the domain. This combination means that accuracy can be achieved without excessive time costs, with
Testing modern human out-of-Africa dispersal models and implications for modern human origins.
Reyes-Centeno, Hugo; Hubbe, Mark; Hanihara, Tsunehiko; Stringer, Chris; Harvati, Katerina
2015-10-01
The modern human expansion process out of Africa has important implications for understanding the genetic and phenotypic structure of extant populations. While intensely debated, the primary hypotheses focus on either a single dispersal or multiple dispersals out of the continent. Here, we use the human fossil record from Africa and the Levant, as well as an exceptionally large dataset of Holocene human crania sampled from Asia, to model ancestor-descendant relationships along hypothetical dispersal routes. We test the spatial and temporal predictions of competing out-of-Africa models by assessing the correlation of geographical distances between populations and measures of population differentiation derived from quantitative cranial phenotype data. Our results support a model in which extant Australo-Melanesians are descendants of an initial dispersal out of Africa by early anatomically modern humans, while all other populations are descendants of a later migration wave. Our results have implications for understanding the complexity of modern human origins and diversity.
Energy Technology Data Exchange (ETDEWEB)
Chio, Chia-Pin; Yuan, Tzu-Hsuen [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Shie, Ruei-Hao [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan (China); Chan, Chang-Chuan, E-mail: ccchan@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China)
2014-04-01
Highlights: • Two-stage dispersion models can estimate exposures to hazardous air pollutants. • Spatial distribution of V levels is derived for sources without known emission rates. • A distance-to-source gradient is found for V levels from a petrochemical complex. • Two-stage dispersion is useful for modeling air pollution in resource-limited areas. - Abstract: The goal of this study is to demonstrate that it is possible to construct a two-stage dispersion model empirically for the purpose of estimating air pollution levels in the vicinity of petrochemical plants. We studied oil refineries and coal-fired power plants in the No. 6 Naphtha Cracking Complex, an area of 2,603-ha situated on the central west coast of Taiwan. The pollutants targeted were vanadium (V) from oil refineries and arsenic (As) from coal-fired power plants. We applied a backward fitting method to determine emission rates of V and As, with 192 PM{sub 10} filters originally collected between 2009 and 2012. Our first-stage model estimated emission rates of V and As (median and 95% confidence intervals at 0.0202 (0.0040–0.1063) and 0.1368 (0.0398–0.4782) g/s, respectively. In our second stage model, the predicted zone-average concentrations showed a strong correlation with V, but a poor correlation with As. Our findings show that two-stage dispersion models are relatively precise for estimating V levels at residents’ addresses near the petrochemical complex, but they did not work as well for As levels. In conclusion, our model-based approach can be widely used for modeling exposure to air pollution from industrial areas in countries with limited resources.
Lalire, Maxime
2017-01-01
Oceanic currents are known to broadly shape the dispersal of juvenile sea turtles during their pelagic stage. Accordingly, simple passive drift models are widely used to investigate the distribution at sea of various juvenile sea turtle populations. However, evidence is growing that juveniles do not drift purely passively but also display some swimming activity likely directed towards favorable habitats. We therefore present here a novel Sea Turtle Active Movement Model (STAMM) in which juvenile sea turtles actively disperse under the combined effects of oceanic currents and habitat-driven movements. This model applies to all sea turtle species but is calibrated here for leatherback turtles (Dermochelys coriacea). It is first tested in a simulation of the active dispersal of juveniles originating from Jamursba-Medi, a main nesting beach of the western Pacific leatherback population. Dispersal into the North Pacific Ocean is specifically investigated. Simulation results demonstrate that, while oceanic currents broadly shape the dispersal area, modeled habitat-driven movements strongly structure the spatial and temporal distribution of juveniles within this area. In particular, these movements lead juveniles to gather in the North Pacific Transition Zone (NPTZ) and to undertake seasonal north-south migrations. More surprisingly, juveniles in the NPTZ are simulated to swim mostly towards west which considerably slows down their progression towards the American west coast. This increases their residence time, and hence the risk of interactions with fisheries, in the central and eastern part of the North Pacific basin. Simulated habitat-driven movements also strongly reduce the risk of cold-induced mortality. This risk appears to be larger among the juveniles that rapidly circulate into the Kuroshio than among those that first drift into the North Equatorial Counter Current (NECC). This mechanism might induce marked interannual variability in juvenile survival as the
Bailey, Brian N.
2017-01-01
When Lagrangian stochastic models for turbulent dispersion are applied to complex atmospheric flows, some type of ad hoc intervention is almost always necessary to eliminate unphysical behaviour in the numerical solution. Here we discuss numerical strategies for solving the non-linear Langevin-based particle velocity evolution equation that eliminate such unphysical behaviour in both Reynolds-averaged and large-eddy simulation applications. Extremely large or `rogue' particle velocities are caused when the numerical integration scheme becomes unstable. Such instabilities can be eliminated by using a sufficiently small integration timestep, or in cases where the required timestep is unrealistically small, an unconditionally stable implicit integration scheme can be used. When the generalized anisotropic turbulence model is used, it is critical that the input velocity covariance tensor be realizable, otherwise unphysical behaviour can become problematic regardless of the integration scheme or size of the timestep. A method is presented to ensure realizability, and thus eliminate such behaviour. It was also found that the numerical accuracy of the integration scheme determined the degree to which the second law of thermodynamics or `well-mixed condition' was satisfied. Perhaps more importantly, it also determined the degree to which modelled Eulerian particle velocity statistics matched the specified Eulerian distributions (which is the ultimate goal of the numerical solution). It is recommended that future models be verified by not only checking the well-mixed condition, but perhaps more importantly by checking that computed Eulerian statistics match the Eulerian statistics specified as inputs.
Mechanistic models of plant seed dispersal by wind in heterogeneous landscapes
Trakhtenbrot, A.; Katul, G. G.; Nathan, R.
2010-12-01
Seed dispersal, and especially long-distance dispersal (LDD), is a key process in plant population survival, colonization, and gene flow. Its importance is amplified by the man-induced habitat fragmentation, climate change and invasions of exotic species. Mechanistic seed dispersal models are central to quantitative prediction of dispersal patterns and understanding their underlying mechanisms. For wind dispersal, most current mechanistic models assume homogenous environment. Although both topography and sharp transitions in vegetation stature profoundly affect wind flow, accounting for these effects via simplified models remains a vexing research problem. Such simplified models are needed to inform ecosystem managers about consequences of landscape fragmentation. We modified the Coupled Eulerian-Lagrangian closure (CELC) mechanistic dispersal model to represent scenarios of wind flow over a sharp transition from short to tall vegetation or over forested hilly terrain, and predicted the resulting dispersal distances and direction. We parameterized the wind and vegetation factors using measurements taken on a hill with short height Mediterranean shrubland and pine forest vegetation at Mt. Pithulim, Israel. For the short-to-tall vegetation transition scenario, the main feature of the modeled wind field is an exponential decay of the mean horizontal wind velocity, assuming that the mean momentum equation simplifies to a balance between the advective acceleration and the drag force terms. As a consequence of the incompressibility condition, this exponential decay leads to strong upward mean vertical velocity component. We found that for seed release downwind of the edge, the simulated median (short) and 99-th percentile (long) distances were longer than those for the homogeneous tall vegetation scenario. For seed release upwind of the edge the effect on dispersal distance was more complex and depended on the release height and he seed terminal velocity of the seeds
Lee, Woojoo; Kim, Jeonghwan; Lee, Youngjo; Park, Taesung; Suh, Young Ju
2015-01-01
We explored a hierarchical generalized linear model (HGLM) in combination with dispersion modeling to improve the sib-pair linkage analysis based on the revised Haseman-Elston regression model for a quantitative trait. A dispersion modeling technique was investigated for sib-pair linkage analysis using simulation studies and real data applications. We considered 4 heterogeneous dispersion settings according to a signal-to-noise ratio (SNR) in the various statistical models based on the Haseman-Elston regression model. Our numerical studies demonstrated that susceptibility loci could be detected well by modeling the dispersion parameter appropriately. In particular, the HGLM had better performance than the linear regression model and the ordinary linear mixed model when the SNR is low, i.e., when substantial noise was present in the data. The study shows that the HGLM in combination with dispersion modeling can be utilized to identify multiple markers showing linkage to familial complex traits accurately. Appropriate dispersion modeling might be more powerful to identify markers closest to the major genes which determine a quantitative trait. © 2015 S. Karger AG, Basel.
Xu, Guangping; Wang, Jiasong
2017-10-01
Two dynamical models, the traditional method of moments coupled model (MCM) and Taylor-series expansion method of moments coupled model (TECM) for particle dispersion distribution and gravitation deposition are developed in three-dimensional ventilated environments. The turbulent airflow field is modeled with the renormalization group (RNG) k-ε turbulence model. The particle number concentration distribution in a ventilated room is obtained by solving the population balance equation coupled with the airflow field. The coupled dynamical models are validated using experimental data. A good agreement between the numerical and experimental results can be achieved. Both models have a similar characteristic for the spatial distribution of particle concentration. Relative to the MCM model, the TECM model presents a more close result to the experimental data. The vortex structure existed in the air flow makes a relative large concentration difference at the center region and results in a spatial non-uniformity of concentration field. With larger inlet velocity, the mixing level of particles in the room is more uniform. In general, the new dynamical models coupled with computational fluid dynamics (CFD) in the current study provide a reasonable and accurate method for the temporal and spatial evolution of particles effected by the deposition and dispersion behaviors. In addition, two ventilation modes with different inlet velocities are proceeded to study the effect on the particle evolution. The results show that with the ceiling ventilation mode (CVM), the particles can be better mixed and the concentration level is also higher. On the contrast, with the side ceiling ventilation mode (SVM), the particle concentration has an obvious stratified distribution with a relative lower level and it makes a much better environment condition to the human exposure.
Applying the ARCS Motivation Model in Technological and Vocational Education
Liao, Hung-Chang; Wang, Ya-huei
2008-01-01
This paper describes the incorporation of Keller's ARCS (Attention, Relevance, Confidence, and Satisfaction) motivation model into traditional classroom instruction-learning process. Viewing that technological and vocational students have low confidence and motivation in learning, the authors applied the ARCS motivation model not only in the…
The HPT Model Applied to a Kayak Company's Registration Process
Martin, Florence; Hall, Herman A., IV; Blakely, Amanda; Gayford, Matthew C.; Gunter, Erin
2009-01-01
This case study describes the step-by-step application of the traditional human performance technology (HPT) model at a premier kayak company located on the coast of North Carolina. The HPT model was applied to address lost revenues related to three specific business issues: misinformed customers, dissatisfied customers, and guides not showing up…
An applied general equilibrium model for Dutch agribusiness policy analysis.
Peerlings, J.H.M.
1993-01-01
The purpose of this thesis was to develop a basic static applied general equilibrium (AGE) model to analyse the effects of agricultural policy changes on Dutch agribusiness. In particular the effects on inter-industry transactions, factor demand, income, and trade are of interest.The model is fairly
GA-based dynamical correction of dispersion coefficients in Lagrangian puff model
Institute of Scientific and Technical Information of China (English)
马元巍; 王德忠; 吉志龙
2015-01-01
In atmospheric dispersion models of nuclear accident, the dispersion coefficients were usually obtained by tracer experiment, which are constant in different atmospheric stability classifications. In fact, the atmospheric wind field is complex and unstable. The dispersion coefficients change even in the same atmospheric stability, hence the great errors brought in. According to the regulation, the air concentration of nuclides around nuclear power plant should be monitored during an accident. The monitoring data can be used to correct dispersion coefficients dynamically. The error can be minimized by correcting the coefficients. This reverse problem is nonlinear and sensitive to initial value. The property of searching the optimal solution of Genetic Algorithm (GA) is suitable for complex high-dimensional situation. In this paper, coupling with Lagrange dispersion model, GA is used to estimate the coefficients. The simulation results show that GA scheme performs well when the error is big. When the correcting process is used in the experiment data, the GA-estimated results are numerical instable. The success rate of estimation is 5%lower than the one without correction. Taking into account the continuity of the dispersion coefficient, Savitzky-Golay filter is used to smooth the estimated parameters. The success rate of estimation increases to 75.86%. This method can improve the accuracy of atmospheric dispersion simulation.
Benchmarking of numerical models describing the dispersion of radionuclides in the Arctic Seas
Energy Technology Data Exchange (ETDEWEB)
Scott, E.M.; Harms, I. [Department of Statistics, University of Glasgow, Glasgow (United Kingdom); Gurbutt, P. [MAFF, Fisheries Laboratory, Lowestoft (United Kingdom); Heling, R. [KEMA, Arnhem (Netherlands); Nielsen, S.P. [Risoe National Laboratory, Roskilde (Denmark); Osvath, I. [IAEA Marine Environment Laboratory, Monaco (France); Preller, R. [Naval Research Laboratory, Stennis Space Center (United States); Sazykina, T. [SPA Typhoon, Obninsk (Russian Federation); Wada, A. [Department of Civil Engineering, College of Industrial Technology, Nihon University, Nihon (Japan); Sjoeblom, K.L. [IAEA Waste Management Division, Vienna (Austria)
1997-08-25
As part of the International Arctic Seas Assessment Project (IASAP) of the International Atomic Energy Agency (IAEA), a working group was created to model the dispersal and transfer of radionuclides released from radioactive waste disposed of in the Kara Sea. The objectives of this group are: (1) development of realistic and reliable assessment models for the dispersal of radioactive contaminants both within, and from, the Arctic ocean; and (2) evaluation of the contributions of different transfer mechanisms to contaminant dispersal and hence, ultimately, to the risks to human health and environment. With regard to the first objective, the modelling work has been directed towards assessment of model reliability and as one aspect of this, a benchmarking exercise has been carried out. This paper briefly describes the benchmark scenario, the models developed and used, and discusses some of the benchmarking results. The role of the exercise within the modelling programme of IASAP will be discussed and future work described.
The model SIRANE for atmospheric urban pollutant dispersion; part I, presentation of the model
Soulhac, Lionel; Salizzoni, Pietro; Cierco, F.-X.; Perkins, Richard
2011-12-01
In order to control and manage urban air quality, public authorities require an integrated approach that incorporates direct measurements and modelling of mean pollutant concentrations. These have to be performed by means of operational modelling tools, that simulate the transport of pollutants within and above the urban canopy over a large number of streets. The operational models must be able to assess rapidly a large variety of situations and with limited computing resources. SIRANE is an operational urban dispersion model based on a simplified description of the urban geometry that adopts parametric relations for the pollutant transfer phenomena within and out of the urban canopy. The streets in a city district are modelled as a network of connected street segments. The flow within each street is driven by the component of the external wind parallel to the street, and the pollutant is assumed to be uniformly mixed within the street. The model contains three main mechanisms for transport in and out of a street: advection along the street axis, diffusion across the interface between the street and the overlying air flow and exchanges with other streets at street intersections. The dispersion of pollutants advected or diffused out of the streets is taken into account using a Gaussian plume model, with the standard deviations σ y and σ z parameterised by the similarity theory. The input data for the final model are the urban geometry, the meteorological parameters, the background concentration of pollutants advected into the model domain by the wind and the emissions within each street in the network.
Can a Time Fractional-Derivative Model Capture Scale-Dependent Dispersion in Saturated Soils?
Garrard, Rhiannon M; Zhang, Yong; Wei, Song; Sun, HongGuang; Qian, Jiazhong
2017-07-10
Time nonlocal transport models such as the time fractional advection-dispersion equation (t-fADE) were proposed to capture well-documented non-Fickian dynamics for conservative solutes transport in heterogeneous media, with the underlying assumption that the time nonlocality (which means that the current concentration change is affected by previous concentration load) embedded in the physical models can release the effective dispersion coefficient from scale dependency. This assumption, however, has never been systematically examined using real data. This study fills this historical knowledge gap by capturing non-Fickian transport (likely due to solute retention) documented in the literature (Huang et al. 1995) and observed in our laboratory from small to intermediate spatial scale using the promising, tempered t-fADE model. Fitting exercises show that the effective dispersion coefficient in the t-fADE, although differing subtly from the dispersion coefficient in the standard advection-dispersion equation, increases nonlinearly with the travel distance (varying from 0.5 to 12 m) for both heterogeneous and macroscopically homogeneous sand columns. Further analysis reveals that, while solute retention in relatively immobile zones can be efficiently captured by the time nonlocal parameters in the t-fADE, the motion-independent solute movement in the mobile zone is affected by the spatial evolution of local velocities in the host medium, resulting in a scale-dependent dispersion coefficient. The same result may be found for the other standard time nonlocal transport models that separate solute retention and jumps (i.e., displacement). Therefore, the t-fADE with a constant dispersion coefficient cannot capture scale-dependent dispersion in saturated porous media, challenging the application for stochastic hydrogeology methods in quantifying real-world, preasymptotic transport. Hence improvements on time nonlocal models using, for example, the novel subordination
LEARNING SEMANTICS-ENHANCED LANGUAGE MODELS APPLIED TO UNSUEPRVISED WSD
Energy Technology Data Exchange (ETDEWEB)
VERSPOOR, KARIN [Los Alamos National Laboratory; LIN, SHOU-DE [Los Alamos National Laboratory
2007-01-29
An N-gram language model aims at capturing statistical syntactic word order information from corpora. Although the concept of language models has been applied extensively to handle a variety of NLP problems with reasonable success, the standard model does not incorporate semantic information, and consequently limits its applicability to semantic problems such as word sense disambiguation. We propose a framework that integrates semantic information into the language model schema, allowing a system to exploit both syntactic and semantic information to address NLP problems. Furthermore, acknowledging the limited availability of semantically annotated data, we discuss how the proposed model can be learned without annotated training examples. Finally, we report on a case study showing how the semantics-enhanced language model can be applied to unsupervised word sense disambiguation with promising results.
Modeling in applied sciences a kinetic theory approach
Pulvirenti, Mario
2000-01-01
Modeling complex biological, chemical, and physical systems, in the context of spatially heterogeneous mediums, is a challenging task for scientists and engineers using traditional methods of analysis Modeling in Applied Sciences is a comprehensive survey of modeling large systems using kinetic equations, and in particular the Boltzmann equation and its generalizations An interdisciplinary group of leading authorities carefully develop the foundations of kinetic models and discuss the connections and interactions between model theories, qualitative and computational analysis and real-world applications This book provides a thoroughly accessible and lucid overview of the different aspects, models, computations, and methodology for the kinetic-theory modeling process Topics and Features * Integrated modeling perspective utilized in all chapters * Fluid dynamics of reacting gases * Self-contained introduction to kinetic models * Becker–Doring equations * Nonlinear kinetic models with chemical reactions * Kinet...
van Milligen, B Ph
2014-01-01
The dispersion of solute in porous media shows a non-linear increase in the transition from diffusion to advection dominated dispersion as the flow velocity is raised. In the past, the behavior in this intermediate regime has been explained with a variety of models. {We present and use a simplified numerical model which does not contain any turbulence, Taylor dispersion, or fractality. With it, we show that the non-linearity in the intermediate regime nevertheless occurs. Furthermore,} we show that that the intermediate regime can be regarded as a phase transition between random, diffusive transport at low flow velocity and ordered transport controlled by the geometry of the pore space at high flow velocities. This phase transition explains the first-order behavior in the intermediate regime. A new quantifier, the ratio of the amount of solute in dominantly advective versus dominantly diffusive pore channels, plays the role of `order parameter' of this phase transition. Taylor dispersion, often invoked to exp...
Periáñez, R; Bezhenar, R; Brovchenko, I; Duffa, C; Iosjpe, M; Jung, K T; Kobayashi, T; Lamego, F; Maderich, V; Min, B I; Nies, H; Osvath, I; Outola, I; Psaltaki, M; Suh, K S; de With, G
2016-11-01
State-of-the art dispersion models were applied to simulate (137)Cs dispersion from Chernobyl nuclear power plant disaster fallout in the Baltic Sea and from Fukushima Daiichi nuclear plant releases in the Pacific Ocean after the 2011 tsunami. Models were of different nature, from box to full three-dimensional models, and included water/sediment interactions. Agreement between models was very good in the Baltic. In the case of Fukushima, results from models could be considered to be in acceptable agreement only after a model harmonization process consisting of using exactly the same forcing (water circulation and parameters) in all models. It was found that the dynamics of the considered system (magnitude and variability of currents) was essential in obtaining a good agreement between models. The difficulties in developing operative models for decision-making support in these dynamic environments were highlighted. Three stages which should be considered after an emergency, each of them requiring specific modelling approaches, have been defined. They are the emergency, the post-emergency and the long-term phases. Copyright © 2016 Elsevier B.V. All rights reserved.
A Dispersion Model Evaluation Study for Real-Time Application in Complex Terrain.
Desiato, F.
1991-08-01
A few tracer experiments were carried out in autumn 1984 and summer 1985 at the Lago Brasimone site, on the Appennini Mountains approximately 50 km south of Bologna with the purpose assessing the atmospheric dispersion of pollutants under drainage flow conditions. The three-dimensional transport and diffusion model MATHEW/ADPIC (M/A) has been applied to selected tracer and meteorological data with the aim of assessing the model performance under complex terrain and meteorological conditions, and its sensitivity to input data available in real-time applications. Boundary layer input parameters were derived through standard algorithms based on tethersonde and pilot balloon measurements. Model simulations of the most significant tracer experiments have been assessed by means of several evaluation criteria, and the sensitivity to some input data has been investigated. The results show that if a limited spatial uncertainty in the computed concentration pattern is taken into account, M/A provides a good agreement with observed concentrations. The quality of the results is very sensitive to the presence of wind measurements where the deviation of the flow due to the shape of the valley is observed.
Development of NEXRAD Wind Retrievals as Input to Atmospheric Dispersion Models
Energy Technology Data Exchange (ETDEWEB)
Fast, Jerome D.; Newsom, Rob K.; Allwine, K Jerry; Xu, Qin; Zhang, Pengfei; Copeland, Jeffrey H.; Sun, Jenny
2007-03-06
The objective of this study is to determine the feasibility that routinely collected data from the Doppler radars can appropriately be used in Atmospheric Dispersion Models (ADMs) for emergency response. We have evaluated the computational efficiency and accuracy of two variational mathematical techniques that derive the u- and v-components of the wind from radial velocities obtained from Doppler radars. A review of the scientific literature indicated that the techniques employ significantly different approaches in applying the variational techniques: 2-D Variational (2DVar), developed by NOAA¹s (National Oceanic and Atmospheric Administration's) National Severe Storms Laboratory (NSSL) and Variational Doppler Radar Analysis System (VDRAS), developed by the National Center for Atmospheric Research (NCAR). We designed a series of numerical experiments in which both models employed the same horizontal domain and resolution encompassing Oklahoma City for a two-week period during the summer of 2003 so that the computed wind retrievals could be fairly compared. Both models ran faster than real-time on a typical single dual-processor computer, indicating that they could be used to generate wind retrievals in near real-time. 2DVar executed ~2.5 times faster than VDRAS because of its simpler approach.
Technical description of the RIVM/KNMI PUFF dispersion model. Version 4.0
van Pul WAJ
1992-01-01
This report provides a technical description of the RIVM/KNMI PUFF model. The model may be used to calculate, given wind and rain field data, the dispersion of components emitted following an accident, emergency or calamity; the model area may be freely chosen to match the area of concern. The re
A Fractal Model for the Transverse Thermal Dispersion Conductivity in Porous Media
Institute of Scientific and Technical Information of China (English)
郁伯铭; 李建华
2004-01-01
A quasi-analytical model, i.e. the fractal model, for the transverse thermal dispersion conductivity in porous media is presented based on the fractal characteristics of tortuous flow paths/streamlines in porous media. The fractal dimension of tortuous flow paths, the spatial deviation velocity and the transverse thermal dispersion conductivity are derived. The proposed model is expressed as functions of the fractal dimension of tortuous flow paths/streamlines, Peclet number, porosity and structural parameters. The present results are compared with those from the existing correlation, and good agreement is found between the present model predictions and those from the existing correlation.
Rheological and solid-state NMR assessments of copovidone/clotrimazole model solid dispersions.
Yang, Fengyuan; Su, Yongchao; Zhu, Lei; Brown, Chad D; Rosen, Lawrence A; Rosenberg, Kenneth J
2016-03-16
This study aims to assess several model solid dispersions by using dynamic oscillatory rheology, solid-state NMR and other solid phase characterization techniques, and correlate their viscoelastic responses with processing methods and microstructures. A model active pharmaceutical ingredient (API), clotrimazole, was compounded with copovidone to form solid dispersions via various techniques with different mixing capabilities. Physicochemical characterizations of the resulting solid dispersions demonstrated that simple physical mixing led to a poorly mixed blend manifested by existence of large API crystalline content and heterogeneous distribution. Cryogenic milling significantly improved mixing of two components as a result of reduced particle size and increased contact surface area, but produced limited amorphous content. In contrast, hot melt extrusion (HME) processing resulted in a homogenous amorphous solid dispersion because of its inherent mixing efficiency. Storage modulus and viscosities versus frequency of different solid dispersions indicated that the incorporation of API into the polymer matrix resulted in a plasticizing effect which reduced the viscosity. The crystalline/aggregated forms of API also exhibited more elastic response than its amorphous/dispersed counterpart. Temperature ramps of the physical mixture with high API concentration captured a critical temperature, at which a bump was observed in damping factor. This bump was attributed to the dissolution of crystalline API into the polymer. In addition, heating-cooling cycles of various solid dispersions suggested that cryomilling and HME processing could form a homogeneous solid dispersion at low API content, whereas high drug concentration led to a relatively unstable dispersion due to supersaturation of API in the polymer.
Strand, Tara M; Ross, Darrell W; Thistle, Harold W; Ragenovich, Iral R; Guerra, Ivonne Matos; Lamb, Brian K
2012-04-01
An instantaneous puff dispersion model was used to assess concentration fields of the Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins, antiaggregation pheromone, 3-methylcyclohex-2-en-1-one (MCH), within a 1-ha circular plot. Several combinations of MCH release rate and releaser spacing were modeled to theoretically analyze optimal deployment strategies. The combinations of MCH release rate and releaser spacing used in the modeling exercise were based on results of previous field studies of treatment efficacy. Analyses of model results suggest that a release rate up to six times the initial standard, at a correspondingly wider spacing to keep the total amount of pheromone dispersed per unit area constant, may be effective at preventing Douglas-fir beetle infestation. The model outputs also provide a visual representation of pheromone dispersion patterns that can occur after deployment of release devices in the field. These results will help researchers and practitioners design more effective deployment strategies.
Information-theoretic model selection applied to supernovae data
Biesiada, M
2007-01-01
There are several different theoretical ideas invoked to explain the dark energy with relatively little guidance of which one of them might be right. Therefore the emphasis of ongoing and forthcoming research in this field shifts from estimating specific parameters of cosmological model to the model selection. In this paper we apply information-theoretic model selection approach based on Akaike criterion as an estimator of Kullback-Leibler entropy. In particular, we present the proper way of ranking the competing models based on Akaike weights (in Bayesian language - posterior probabilities of the models). Out of many particular models of dark energy we focus on four: quintessence, quintessence with time varying equation of state, brane-world and generalized Chaplygin gas model and test them on Riess' Gold sample. As a result we obtain that the best model - in terms of Akaike Criterion - is the quintessence model. The odds suggest that although there exist differences in the support given to specific scenario...
Forecast model applied to quality control with autocorrelational data
Directory of Open Access Journals (Sweden)
Adriano Mendonça Souza
2013-11-01
Full Text Available This research approaches the prediction models applied to industrial processes, in order to check the stability of the process by means of control charts, applied to residues from linear modeling. The data used for analysis refers to the moisture content, permeability and compression resistance to the green (RCV, belonging to the casting process of green sand molding in A Company, which operates in the casting and machining, for which dynamic multivariate regression model was set. As the observations were auto-correlated, it was necessary to seek a mathematical model that produces independent and identically distribuibed residues. The models found make possible to understand the variables behavior, assisting in the achievement of the forecasts and in the monitoring of the referred process. Thus, it can be stated that the moisture content is very unstable comparing to the others variables.
Methods for model selection in applied science and engineering.
Energy Technology Data Exchange (ETDEWEB)
Field, Richard V., Jr.
2004-10-01
Mathematical models are developed and used to study the properties of complex systems and/or modify these systems to satisfy some performance requirements in just about every area of applied science and engineering. A particular reason for developing a model, e.g., performance assessment or design, is referred to as the model use. Our objective is the development of a methodology for selecting a model that is sufficiently accurate for an intended use. Information on the system being modeled is, in general, incomplete, so that there may be two or more models consistent with the available information. The collection of these models is called the class of candidate models. Methods are developed for selecting the optimal member from a class of candidate models for the system. The optimal model depends on the available information, the selected class of candidate models, and the model use. Classical methods for model selection, including the method of maximum likelihood and Bayesian methods, as well as a method employing a decision-theoretic approach, are formulated to select the optimal model for numerous applications. There is no requirement that the candidate models be random. Classical methods for model selection ignore model use and require data to be available. Examples are used to show that these methods can be unreliable when data is limited. The decision-theoretic approach to model selection does not have these limitations, and model use is included through an appropriate utility function. This is especially important when modeling high risk systems, where the consequences of using an inappropriate model for the system can be disastrous. The decision-theoretic method for model selection is developed and applied for a series of complex and diverse applications. These include the selection of the: (1) optimal order of the polynomial chaos approximation for non-Gaussian random variables and stationary stochastic processes, (2) optimal pressure load model to be
Energy Technology Data Exchange (ETDEWEB)
Abe, Koichi; Kakiuchi, Hideki; Iyogi, Takashi; Hisamatsu, Shun' ichi [Institute for Environmental Sciences, Rokkasho, Aomori 039-3212 (Japan); Akata, Naofumi [Institute for Environmental Sciences, Rokkasho, Aomori 039-3212 (Japan); National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Chiang, Jing-Hsien; Suwa, Hiroji [Japan NUS Co., Ltd., Tokyo 160-0023 (Japan)
2014-07-01
Japan's first large-scale commercial plant for reprocessing spent nuclear fuel was constructed in Rokkasho, Japan, by Japan Nuclear Fuel Limited (JNFL). Final tests of plant operation carried out with spent fuels since 31 March 2006 have indicated that small amounts of radionuclides (mainly {sup 3}H, {sup 14}C, {sup 85}Kr, and {sup 129}I) are discharged into the atmosphere from the main stack of the plant. To estimate the atmospheric dispersion of {sup 3}H discharged from the plant, we used a combination of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5) and the CG-MATHEW/ADPIC models, Version 5.0 (ARAC-2). Simulation results were validated with atmospheric {sup 3}H concentrations and wet deposition rates measured at the Institute for Environmental Sciences (IES), located 2.6 km east from the stack. Biweekly atmospheric HTO, HT, and CH3T samples and monthly precipitation samples were collected at IES from April 2006 to February 2009 (the test period). Concentrations of {sup 3}H in the samples were measured with a low-background liquid scintillation counter (LSC-LB5, Hitachi Aloka Medical, Ltd., Tokyo, Japan). To simulate the dispersion of {sup 3}H from the stack, a meteorological field was calculated by MM5 and used as input to ARAC-2, which consists of a mass-consistent wind model and a particle-tracing-type dispersion model. The simulation areas were 315 km x 315 km for MM5 and 50 km x 50 km for ARAC-2. The following meteorological data were input to MM5: grid point data derived from the Mesoscale Model of the Japan Meteorological Agency (JMA), data from JMA's Automated Meteorological Data Acquisition System (AMeDAS), and wind speed and direction at IES and JNFL measured every 10 min. The weekly discharge rates of {sup 3}H disclosed by JNFL were used as the source term for ARAC-2. The concentrations of {sup 3}H in atmospheric moisture and precipitation samples increased from their background values during the test period. As an index of
A model for the dispersion of pollution from a road network
Energy Technology Data Exchange (ETDEWEB)
Haerkoenen, J.; Valkonen, E.; Kukkonen, J.; Rantakarans, E.; Lahtinen, K.; Karppinen, A.; Jalkanen, L.
1996-12-31
A mathematical model for predicting the dispersion of pollution from a road network, for use in a regulatory context is presented in the report. The model includes an emission model a treatment of the meteorological and background concentration time series, a dispersion model statistical analysis of the computed time series of concentrations and a Windows-based user interface. The dispersion model is based on a partly analytical solution of the Gaussian diffusion equation for a finite dine source. It allows for any wind direction with respect to the road. The dispersion parameters are modelled in a form which facilitates the use of the meteorological preprocessor. The chemical transformation is modelled by using a modified form of the discrete parcel method, developed in this study. The chemistry model contains the basic reactions of nitrogen oxides, oxygen and ozone. An operational model for evaluating the meteorological and background concentration data for the model applications is also presented. The model does not take into account the influence of buildings and inhomogeneous terrain on the dispersion processes. The validity of the mathematical solution presented has been tested against a more detailed numerical model. The overall differences are reasonable, and the solution can be used with confidence in an operational model. The program has been implemented on a personal computer and on a main-frame computer, and in the later case also executed on a Cray C94 supercomputer. The validation of the model against experimental data is reported elsewhere. Testing of the model near a major road Turunvaeylae Finland 1994 showed that the overall agreement of the measured and predicted values for NO{sub x} and NO{sub 2} concentrations was fairly good 30 refs.
Row, Jeffrey R.; Knick, Steven T.; Oyler-McCance, Sara J.; Lougheed, Stephen C.; Fedy, Bradley C.
2017-01-01
Dispersal can impact population dynamics and geographic variation, and thus, genetic approaches that can establish which landscape factors influence population connectivity have ecological and evolutionary importance. Mixed models that account for the error structure of pairwise datasets are increasingly used to compare models relating genetic differentiation to pairwise measures of landscape resistance. A model selection framework based on information criteria metrics or explained variance may help disentangle the ecological and landscape factors influencing genetic structure, yet there are currently no consensus for the best protocols. Here, we develop landscape-directed simulations and test a series of replicates that emulate independent empirical datasets of two species with different life history characteristics (greater sage-grouse; eastern foxsnake). We determined that in our simulated scenarios, AIC and BIC were the best model selection indices and that marginal R2 values were biased toward more complex models. The model coefficients for landscape variables generally reflected the underlying dispersal model with confidence intervals that did not overlap with zero across the entire model set. When we controlled for geographic distance, variables not in the underlying dispersal models (i.e., nontrue) typically overlapped zero. Our study helps establish methods for using linear mixed models to identify the features underlying patterns of dispersal across a variety of landscapes.
Row, Jeffrey R; Knick, Steven T; Oyler-McCance, Sara J; Lougheed, Stephen C; Fedy, Bradley C
2017-06-01
Dispersal can impact population dynamics and geographic variation, and thus, genetic approaches that can establish which landscape factors influence population connectivity have ecological and evolutionary importance. Mixed models that account for the error structure of pairwise datasets are increasingly used to compare models relating genetic differentiation to pairwise measures of landscape resistance. A model selection framework based on information criteria metrics or explained variance may help disentangle the ecological and landscape factors influencing genetic structure, yet there are currently no consensus for the best protocols. Here, we develop landscape-directed simulations and test a series of replicates that emulate independent empirical datasets of two species with different life history characteristics (greater sage-grouse; eastern foxsnake). We determined that in our simulated scenarios, AIC and BIC were the best model selection indices and that marginal R(2) values were biased toward more complex models. The model coefficients for landscape variables generally reflected the underlying dispersal model with confidence intervals that did not overlap with zero across the entire model set. When we controlled for geographic distance, variables not in the underlying dispersal models (i.e., nontrue) typically overlapped zero. Our study helps establish methods for using linear mixed models to identify the features underlying patterns of dispersal across a variety of landscapes.
Development of a fast response dispersion model for virtual urban environments
Singh, Balwinder
According to a UN report, more than 50% of the total world's population resides in urban areas and this fraction is increasing. Urbanization has a wide range of potential environmental impacts, including those related to the dispersion of potentially dangerous substances emitted from activities such as combustion, industrial processing or from deliberate harmful releases. This research is primarily focused on the investigation of various factors which contribute to the dispersion of certain classes of materials in a complex urban environment and improving both of the fundamental components of a fast response dispersion modeling system---wind modeling and dispersion modeling. Specifically, new empirical parameterizations have been suggested for an existing fast response wind model for street canyon flow fields. These new parameterizations are shown to produce more favorable results when compared with the experimental data. It is also demonstrated that the use of Graphics Processing Unit (GPU) technology can enhance the efficiency of an urban Lagrangian dispersion model and can achieve near real-time particle advection. The GPU also enables real-time visualizations which can be used for creating virtual urban environments to aid emergency responders. The dispersion model based on the GPU architecture relies on the so-called "simplified Langevin equations (SLEs)" for particle advection. The full or generalized form of the Langevin equations (GLEs) is known for its stiffness which tends to generate unstable modes in particle trajectory, where a particle may travel significant distances in a small time step. A fractional step methodology has been used to implement the GLEs into an existing Lagrangian random walk model to partially circumvent the stiffness associated with the GLEs. Dispersion estimates from the GLEs-based model have been compared with the SLEs-based model and available wind tunnel data. The GLEs-based model is more dispersive than the SLEs-based model in
Modeling the hyperpolarizability dispersion with the Thomas-Kuhn sum rules
De Mey, Kurt; Perez-Moreno, Javier; Clays, Koen
2011-10-01
The continued interest in molecules that possess large quadratic nonlinear optical (NLO) properties has motivated considerable interplay between molecular synthesis and theory. The screening of viable candidates for NLO applications has been a tedious work, much helped by the advent of the hyper-Rayleigh scattering (HRS) technique. The downside of this technique is the low efficiency, which usually means that measurements have to be performed at wavelengths that are close to the molecular resonances, in the visible area. This means generally that one has to extrapolate the results from HRS characterization to the longer wavelengths that are useful for applications. Such extrapolation is far from trivial and the classic 2-level model can only be used for the most straightforward single charge-transfer chromophores. An alternative is the TKSSOS technique, which uses a few input-hyperpolarizabilities and UV-Vis absorption data to calculate the entire hyperpolarizability spectrum. We have applied this TKS-SOS technique on a set of porphyrines to calculate the hyperpolarizability dispersion. We have also built a tunable HRS set up, capable of determining hyperpolarizabilities in the near infrared (up to 1600 nm). This has allowed us to directly confirm the results predicted in the application region. Due to the very sharp transitions in the hyperpolarizability dispersion, the calculation is subjected to a very precise calibration with respect to the input-hyperpolarizabilities, resulting in very accurate predictions for long wavelength hyperpolarizabilities. Our results not only underscribe the aforementioned technique, but also confirm the use of porphyrines as powerful moieties in NLO applications.
Estimation for zero-inflated over-dispersed count data model with missing response.
Mian, Rajibul; Paul, Sudhir
2016-12-30
In this paper, we develop estimation procedure for the parameters of a zero-inflated over-dispersed/under-dispersed count model in the presence of missing responses. In particular, we deal with a zero-inflated extended negative binomial model in the presence of missing responses. A weighted expectation maximization algorithm is used for the maximum likelihood estimation of the parameters involved. Some simulations are conducted to study the properties of the estimators. Robustness of the procedure is shown when count data follow other over-dispersed models, such as the log-normal mixture of the Poisson distribution or even from a zero-inflated Poisson model. An illustrative example and a discussion leading to some conclusions are given. Copyright © 2016 John Wiley & Sons, Ltd.
Zhang, Daojie; Nastac, Laurentiu
The metal-matrix-nano-composite in this study consist of a A356 alloy matrix reinforced with 1.0 wt.% SiC-nanoparticles dispersed within the matrix via ultrasonic cavitation system, available in the Solidification Laboratory at The University of Alabama. The required ultrasonic parameters to achieve cavitation for adequate degassing and refining of the A356 alloy as well as the fluid flow and solidification characteristics for uniform dispersion of the nanoparticles into the aluminum alloy matrix are being investigated via CFD ultrasonic cavitation modeling. The multiphase CFD model for nanoparticle dispersion accounts for turbulent fluid flow, heat transfer and solidification as well as the complex interaction between the molten alloy and nanoparticles by using the Ansys's Fluent DDPM model. The modeling parametric study includes the effects of ultrasonic probe location, the fluid flow intensity, and the initial location where the nanoparticles are released into the molten alloy.
A model for long-distance dispersal of boll weevils (Coleoptera: Curculionidae)
Westbrook, John K.; Eyster, Ritchie S.; Allen, Charles T.
2011-07-01
The boll weevil, Anthonomus grandis (Boheman), has been a major insect pest of cotton production in the US, accounting for yield losses and control costs on the order of several billion US dollars since the introduction of the pest in 1892. Boll weevil eradication programs have eliminated reproducing populations in nearly 94%, and progressed toward eradication within the remaining 6%, of cotton production areas. However, the ability of weevils to disperse and reinfest eradicated zones threatens to undermine the previous investment toward eradication of this pest. In this study, the HYSPLIT atmospheric dispersion model was used to simulate daily wind-aided dispersal of weevils from the Lower Rio Grande Valley (LRGV) of southern Texas and northeastern Mexico. Simulated weevil dispersal was compared with weekly capture of weevils in pheromone traps along highway trap lines between the LRGV and the South Texas / Winter Garden zone of the Texas Boll Weevil Eradication Program. A logistic regression model was fit to the probability of capturing at least one weevil in individual pheromone traps relative to specific values of simulated weevil dispersal, which resulted in 60.4% concordance, 21.3% discordance, and 18.3% ties in estimating captures and non-captures. During the first full year of active eradication with widespread insecticide applications in 2006, the dispersal model accurately estimated 71.8%, erroneously estimated 12.5%, and tied 15.7% of capture and non-capture events. Model simulations provide a temporal risk assessment over large areas of weevil reinfestation resulting from dispersal by prevailing winds. Eradication program managers can use the model risk assessment information to effectively schedule and target enhanced trapping, crop scouting, and insecticide applications.
Applied data analysis and modeling for energy engineers and scientists
Reddy, T Agami
2011-01-01
""Applied Data Analysis and Modeling for Energy Engineers and Scientists"" discusses mathematical models, data analysis, and decision analysis in modeling. The approach taken in this volume focuses on the modeling and analysis of thermal systems in an engineering environment, while also covering a number of other critical areas. Other material covered includes the tools that researchers and engineering professionals will need in order to explore different analysis methods, use critical assessment skills and reach sound engineering conclusions. The book also covers process and system design and
Mathematical models applied in inductive non-destructive testing
Energy Technology Data Exchange (ETDEWEB)
Wac-Wlodarczyk, A.; Goleman, R.; Czerwinski, D. [Technical University of Lublin, 20 618 Lublin, Nadbystrzycka St 38a (Poland); Gizewski, T. [Technical University of Lublin, 20 618 Lublin, Nadbystrzycka St 38a (Poland)], E-mail: t.gizewski@pollub.pl
2008-10-15
Non-destructive testing are the wide group of investigative methods of non-homogenous material. Methods of computer tomography, ultrasonic, magnetic and inductive methods still developed are widely applied in industry. In apparatus used for non-destructive tests, the analysis of signals is made on the basis of complex system answers. The answer is linearized due to the model of research system. In this paper, the authors will discuss the applications of the mathematical models applied in investigations of inductive magnetic materials. The statistical models and other gathered in similarity classes will be taken into consideration. Investigation of mathematical models allows to choose the correct method, which in consequence leads to precise representation of the inner structure of examined object. Inductive research of conductive media, especially those with ferromagnetic properties, are run with high frequency magnetic field (eddy-currents method), which considerably decrease penetration depth.
Computer model of two-dimensional solute transport and dispersion in ground water
Konikow, Leonard F.; Bredehoeft, J.D.
1978-01-01
This report presents a model that simulates solute transport in flowing ground water. The model is both general and flexible in that it can be applied to a wide range of problem types. It is applicable to one- or two-dimensional problems involving steady-state or transient flow. The model computes changes in concentration over time caused by the processes of convective transport, hydrodynamic dispersion, and mixing (or dilution) from fluid sources. The model assumes that the solute is non-reactive and that gradients of fluid density, viscosity, and temperature do not affect the velocity distribution. However, the aquifer may be heterogeneous and (or) anisotropic. The model couples the ground-water flow equation with the solute-transport equation. The digital computer program uses an alternating-direction implicit procedure to solve a finite-difference approximation to the ground-water flow equation, and it uses the method of characteristics to solve the solute-transport equation. The latter uses a particle- tracking procedure to represent convective transport and a two-step explicit procedure to solve a finite-difference equation that describes the effects of hydrodynamic dispersion, fluid sources and sinks, and divergence of velocity. This explicit procedure has several stability criteria, but the consequent time-step limitations are automatically determined by the program. The report includes a listing of the computer program, which is written in FORTRAN IV and contains about 2,000 lines. The model is based on a rectangular, block-centered, finite difference grid. It allows the specification of any number of injection or withdrawal wells and of spatially varying diffuse recharge or discharge, saturated thickness, transmissivity, boundary conditions, and initial heads and concentrations. The program also permits the designation of up to five nodes as observation points, for which a summary table of head and concentration versus time is printed at the end of the
Transtheoretical Model of Health Behavior Change Applied to Voice Therapy
2007-01-01
Studies of patient adherence to health behavior programs, such as physical exercise, smoking cessation, and diet, have resulted in the formulation and validation of the Transtheoretical Model (TTM) of behavior change. Although widely accepted as a guide for the development of health behavior interventions, this model has not been applied to vocal rehabilitation. Because resolution of vocal difficulties frequently depends on a patient’s ability to make changes in vocal and health behaviors, th...
Dynamical behavior of the Niedermayer algorithm applied to Potts models
Girardi, D.; Penna, T. J. P.; Branco, N. S.
2012-01-01
In this work we make a numerical study of the dynamic universality class of the Niedermayer algorithm applied to the two-dimensional Potts model with 2, 3, and 4 states. This algorithm updates clusters of spins and has a free parameter, $E_0$, which controls the size of these clusters, such that $E_0=1$ is the Metropolis algorithm and $E_0=0$ regains the Wolff algorithm, for the Potts model. For $-1
An applied general equilibrium model for Dutch agribusiness policy analysis
Peerlings, J.
1993-01-01
The purpose of this thesis was to develop a basic static applied general equilibrium (AGE) model to analyse the effects of agricultural policy changes on Dutch agribusiness. In particular the effects on inter-industry transactions, factor demand, income, and trade are of interest.
An applied general equilibrium model for Dutch agribusiness policy analysis
Peerlings, J.
1993-01-01
The purpose of this thesis was to develop a basic static applied general equilibrium (AGE) model to analyse the effects of agricultural policy changes on Dutch agribusiness. In particular the effects on inter-industry transactions, factor demand, income, and trade are of
Knowledge Growth: Applied Models of General and Individual Knowledge Evolution
Silkina, Galina Iu.; Bakanova, Svetlana A.
2016-01-01
The article considers the mathematical models of the growth and accumulation of scientific and applied knowledge since it is seen as the main potential and key competence of modern companies. The problem is examined on two levels--the growth and evolution of objective knowledge and knowledge evolution of a particular individual. Both processes are…
Remarks on orthotropic elastic models applied to wood
Directory of Open Access Journals (Sweden)
Nilson Tadeu Mascia
2006-09-01
Full Text Available Wood is generally considered an anisotropic material. In terms of engineering elastic models, wood is usually treated as an orthotropic material. This paper presents an analysis of two principal anisotropic elastic models that are usually applied to wood. The first one, the linear orthotropic model, where the material axes L (Longitudinal, R( radial and T(tangential are coincident with the Cartesian axes (x, y, z, is more accepted as wood elastic model. The other one, the cylindrical orthotropic model is more adequate of the growth caracteristics of wood but more mathematically complex to be adopted in practical terms. Specifically due to its importance in wood elastic parameters, this paper deals with the fiber orientation influence in these models through adequate transformation of coordinates. As a final result, some examples of the linear model, which show the variation of elastic moduli, i.e., Young´s modulus and shear modulus, with fiber orientation are presented.
Applying computer simulation models as learning tools in fishery management
Johnson, B.L.
1995-01-01
Computer models can be powerful tools for addressing many problems in fishery management, but uncertainty about how to apply models and how they should perform can lead to a cautious approach to modeling. Within this approach, we expect models to make quantitative predictions but only after all model inputs have been estimated from empirical data and after the model has been tested for agreement with an independent data set. I review the limitations to this approach and show how models can be more useful as tools for organizing data and concepts, learning about the system to be managed, and exploring management options. Fishery management requires deciding what actions to pursue to meet management objectives. Models do not make decisions for us but can provide valuable input to the decision-making process. When empirical data are lacking, preliminary modeling with parameters derived from other sources can help determine priorities for data collection. When evaluating models for management applications, we should attempt to define the conditions under which the model is a useful, analytical tool (its domain of applicability) and should focus on the decisions made using modeling results, rather than on quantitative model predictions. I describe an example of modeling used as a learning tool for the yellow perch Perca flavescens fishery in Green Bay, Lake Michigan.
Dispersion Models to Forecast Traffic-related Emissions in Urban Areas
Directory of Open Access Journals (Sweden)
Davide Scannapieco
2011-11-01
Full Text Available Down the centuries, a direct link had been developed between increase in mobility and increase in wealth. On the other hand, air emission of greenhouse gases (GHG due to vehicles equipped with internal combustion engines can be regarded as a negative pressure over the environment. In the coming decades, road transport is likely to remain a significant contributor to air pollution in cities. Many urban trips cover distances of less than 6 km. Since the effectiveness of catalytic converters in the initial minutes of engine operation is small, the average emission per distance driven is very high in urban areas. Also, poorly maintained vehicles that lack exhaust aftertreatment systems are responsible for a major part of pollutant emissions. Therefore in urban areas, where higher concentrations of vehicles can be easily found, air pollution represents a critical issue, being it related with both environment and human health protection: in truth, research in recent decades consistently indicates the adverse effects of outdoor air pollution on human health, and the evidence points to air pollution stemming from transport as an important contributor to these effects. Several institutions (EEA, USEPA, etc. focused their interest in dispersion models because of their potential effectiveness to forecast atmospheric pollution. Furthermore, air micropollutants such as Polycyclic Aromatic Compounds (PAH and Metallic Trace Elements (MTE are traffic-related and although very low concentrations their dispersion is a serious issue. However, dispersion models are usefully implemented to better manage this estimation problem. Nonetheless, policy makers and land managers have to deal with model selection, taking into account that several dispersion models are available, each one of them focused on specific goals (e.g., wind transport of pollutants, land morphology implementation, evaluation of micropollutants transport, etc.; a further aspect to be considered is
UNAMAP 6 Dispersion Modeling with Building Wake Effects
This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
Socio-optics: optical knowledge applied in modeling social phenomena
Chisleag, Radu; Chisleag Losada, Ioana-Roxana
2011-05-01
The term "Socio-optics" (as a natural part of Socio-physics), is rather not found in literature or at Congresses. In Optics books, there are not made references to optical models applied to explain social phenomena, in spite of Optics relying on the duality particle-wave which seems convenient to model relationships among society and its members. The authors, who have developed a few models applied to explain social phenomena based on knowledge in Optics, along with a few other models applying, in Social Sciences, knowledge from other branches of Physics, give their own examples of such optical models, f. e., of relationships among social groups and their sub-groups, by using kowledge from partially coherent optical phenomena or to explain by tunnel effect, the apparently impossible penetration of social barriers by individuals. They consider that the term "Socio-optics" may come to life. There is mentioned the authors' expertise in stimulating Socio-optics approach by systematically asking students taken courses in Optics to find applications of the newly got Wave and Photon Optics knowledge, to model social and even everyday life phenomena, eventually engaging in such activities other possibly interested colleagues.
Comparison of CFD and operational dispersion models in an urban-like environment
Antonioni, G.; Burkhart, S.; Burman, J.; Dejoan, A.; Fusco, A.; Gaasbeek, R.; Gjesdal, T.; Jäppinen, A.; Riikonen, K.; Morra, P.; Parmhed, O.; Santiago, J. L.
2012-02-01
Chemical plants, refineries, transportation of hazardous materials are some of the most attractive facilities for external attacks aimed at the release of toxic substances. Dispersion of these substances into the atmosphere forms a concentration distribution of airborne pollutants with severe consequences for exposed individuals. For emergency preparedness and management, the availability of assessed/validated dispersion models, which can be able to predict concentration distribution and thus dangerous zones for exposed individuals, is of primary importance. Air quality models, integral models and analytical models predict the transport and the turbulent dispersion of gases or aerosols after their release without taking into account in detail the presence of obstacles. Obstacles can modify the velocity field and in turn the concentration field. The Computational Fluid Dynamics (CFD) models on the other hand are able to describe such phenomena, but they need to be correctly set up, tested and validated in order to obtain reliable results. Within the project Europa-ERG1 TA 113.034 "NBC Modelling and Simulation" several different approaches in CFD modelling of turbulent dispersion in closed, semi-confined and urban-like environment were adopted and compared with experimental data and with operational models. In this paper the results of a comparison between models describing the dispersion of a neutral gas in an idealized urban-like environment are presented and discussed. Experimental data available in the literature have been used as a benchmark for assessing statistical performance for each model. Selected experimental trials include some water channel tests, that were performed by Coanda at 1:205 scale, and one full-scale case that was tested in the fall of 2001 at the Dugway Proving Grounds in Utah, using an array of shipping containers. The paper also suggests the adoption of improved statistical parameters in order to better address differences between models
Agricultural activities that are both temporally and spatially variable, such as tillage and harvesting, can be challenging to represent as sources in air quality dispersion modeling. Existing models were mainly developed to predict concentrations resulting from a stationary and continuous source wi...
Shin, Hyeong-Moo; Ryan, P. Barry; Vieira, Verónica M.; Bartell, Scott M.
2012-05-01
As part of an extensive modeling effort on the air-soil-groundwater transport pathway of perfluorooctanoic acid (PFOA), this study was designed to compare the performance of different air dispersion modeling systems (AERMOD vs. ISCST3), and different approaches to handling incomplete meteorological data using a data set with substantial soil measurements and a well characterized point source for air emissions. Two of the most commonly used EPA air dispersion models, AERMOD and ISCST3, were linked with the EPA vadose zone model PRZM-3. Predicted deposition rates from the air dispersion model were used as input values for the vadose zone model to estimate soil concentrations of PFOA at different depths. We applied 34 years of meteorological data including hourly surface measurements from Parkersburg Airport and 5 years of onsite wind direction and speed to the air dispersion models. We compared offsite measured soil concentrations to predictions made for the corresponding sampling depths, focusing on soil rather than air measurements because the offsite soil samples were less likely to be influenced by short-term variability in emission rates and meteorological conditions. PFOA concentrations in surface soil (0-30 cm depth) were under-predicted and those in subsurface soil (>30 cm depth) were over-predicted compared to observed concentrations by both linked air and vadose zone model. Overall, the simulated values from the linked modeling system were positively correlated with those observed in surface soil (Spearman's rho, Rsp = 0.59-0.70) and subsurface soil (Rsp = 0.46-0.48). This approach provides a useful modeling scheme for similar exposure and risk analyses where the air-soil-groundwater transport is a primary contamination pathway.
Applying Particle Tracking Model In The Coastal Modeling System
2011-01-01
Rev. 8-98) Prescribed by ANSI Std Z39-18 ERDC/CHL CHETN-IV-78 January 2011 2 Figure 1. CMS domain, grid, and bathymetry . CMS-Flow is driven by...through the simulation. At the end of the simulation, about 65 percent of the released clay particles are considered “ dead ,” ERDC/CHL CHETN-IV-78 January...2011 11 which means that they are either permanently buried at the sea bed or have moved out of the model domain. Figure 11. Specifications of
Blood-Forsythe, Martin A; DiStasio, Robert A; Car, Roberto; Aspuru-Guzik, Alán
2015-01-01
Accurate treatment of the long-range electron correlation energy, including van der Waals (vdW) or dispersion interactions, is essential for describing the structure, dynamics, and function of a wide variety of systems. Among the most accurate models for including dispersion into density functional theory (DFT) is the range-separated many-body dispersion (MBD) method [A. Ambrossetti et al., J. Chem. Phys. 140, 18A508 (2014)], in which the correlation energy is modeled at short-range by a semi-local density functional and at long-range by a model system of coupled quantum harmonic oscillators. In this work, we develop analytical gradients of the MBD energy with respect to nuclear coordinates, including all implicit coordinate dependencies arising from the partitioning of the charge density into Hirshfeld effective volumes. To demonstrate the efficiency and accuracy of these MBD gradients for geometry optimizations of systems with intermolecular and intramolecular interactions, we optimized conformers of the be...
Emergence of dispersive shocks and rarefaction waves in power-law contact models
Yasuda, H.; Chong, C.; Yang, J.; Kevrekidis, P. G.
2017-06-01
In the present work, motivated by generalized forms of the Hertzian dynamics associated with granular crystals, we consider the possibility of such models to give rise to both dispersive shock and rarefaction waves. Depending on the value p of the nonlinearity exponent, we find that both of these possibilities are realizable. We use a quasicontinuum approximation of a generalized inviscid Burgers model in order to predict the solution profile up to times near the formation of the dispersive shock, as well as to estimate when it will occur. Beyond that time threshold, oscillations associated with the highly dispersive nature of the underlying model emerge, which cannot be captured by the quasicontinuum approximation. Our analytical characterization of the above features is complemented by systematic numerical computations.
Directory of Open Access Journals (Sweden)
Dragos MIHAI
2012-12-01
Full Text Available The paper presents a case study related to air quality assessment along an important high traffic bridge (Giurgiu - Ruse, by dispersion modelling of the main pollutants. In order to estimate the level of pollution caused by bridge road traffic in the closest urban areas, Giurgiu and Ruse and based on the traffic data, four scenarios for the air quality assessment have been carried out according to different meteorological conditions. The dispersion modeling was realized on specialized environmental pollution software, which features a fully operational Gauss model in its base module. There are presented dispersion maps for the main road traffic pollutants (NOx, CO, SO2, THC, aiming to evaluate their impact on the urban areas vicinity, in four different wind directions scenarios, at a constant temperature. Conclusions are presented according to available European Legislation and future scenarios are proposed, for other different meteorological conditions.
Satellite Galaxy Velocity Dispersions in the SDSS and Modified Gravity Models
Directory of Open Access Journals (Sweden)
John W. Moffat
2014-05-01
Full Text Available The Sloan Digital Sky Survey (SDSS provides data on several hundred thousand galaxies. The precise location of these galaxies in the sky, along with information about their luminosities and line-of-sight (Doppler velocities, allows one to construct a three-dimensional map of their location and estimate their line-of-sight velocity dispersion. This information, in principle, allows one to test dynamical gravity models, specifically models of satellite galaxy velocity dispersions near massive hosts. A key difficulty is the separation of true satellites from interlopers. We sidestep this problem by not attempting to derive satellite galaxy velocity dispersions from the data, but instead incorporate an interloper background into the mathematical models and compare the result to the actual data. We find that due to the presence of interlopers, it is not possible to exclude several gravitational theories on the basis of the SDSS data.
The optimal dispersal strategy: a two-patch model with travel loss
Directory of Open Access Journals (Sweden)
Chang-Hong Wu
2016-03-01
Full Text Available The dispersal of organisms plays an important role in determining the dynamics of ecological models. Ecologically, it is of interest in understanding how dispersal strategy influences the distribution of populations. An ideal free distribution (IFD of populations has been used to predict the distribution of organisms among patches, where a key assumption is to assume that species can move freely between patches without paying any cost. If instead one assumes that there are losses when species moves from one patch to another, then ideal free distributions may not appear. In this note, we examine a two-patch resident-mutant model with travel loss and predict the optimal dispersal strategy for resident and mutant. Moreover, such strategy which produces a non-IFD is evolutionarily stable. Some same and different features of patch models with travel loss are discussed.
Eckhardt, Sabine; Cassiani, Massimo; Sollum, Espen; Evangeliou, Nikolaos; Stohl, Andreas
2017-04-01
Lagrangian particle dispersion models are popular tools to simulate the dispersion of trace gases, aerosols or radionuclides in the atmosphere. If they consider only linear processes, they are self-adjoint, i.e., they can be run forward and backward in time without changes to the source code. Backward simulations are very efficient if the number of receptors is smaller than the number of sources, and they are well suited to establish source-receptor (s-r) relationships for measurements of various trace substances in air. However, not only the air concentrations are of interest, but also the s-r relationships for deposition are important for interpreting measurement data. E.g., deposition of dust is measured regularly in ice cores, partly also as a proxy to understand changes in aridity in dust source regions. Contamination of snow by black carbon (BC) aerosols has recently become a hot topic because of the potential impact of BC on the snow albedo. To interpret such deposition measurements and study the sources of the deposited substance, it would be convenient to have a model that is capable of efficient s-r relationship calculations for such types of measurements. We present here the implementation of such an algorithm into the Lagrangian particle dispersion model FLEXPART, and test the new scheme by comparisons with results from forward simulations as well as comparisons with measurements. As an application, we analyse source regions for elemental carbon (EC) measured in snow over the years 2014-2016 in the Russian Arctic. Simulations using an annual constant black carbon inventory based on ECLIPSE V5 and GFED (Global Fire Emission Database), have been performed. The meteorological data used in the simulation are 3 hourly operational data from the European Centre of Medium Range Weather Forecast (ECMWF) on a 1 degree grid resolution and 138 vertical levels. The model is able to capture very well the measured concentrations. Gas flaring and residential
Molecular modeling: An open invitation for applied mathematics
Mezey, Paul G.
2013-10-01
Molecular modeling methods provide a very wide range of challenges for innovative mathematical and computational techniques, where often high dimensionality, large sets of data, and complicated interrelations imply a multitude of iterative approximations. The physical and chemical basis of these methodologies involves quantum mechanics with several non-intuitive aspects, where classical interpretation and classical analogies are often misleading or outright wrong. Hence, instead of the everyday, common sense approaches which work so well in engineering, in molecular modeling one often needs to rely on rather abstract mathematical constraints and conditions, again emphasizing the high level of reliance on applied mathematics. Yet, the interdisciplinary aspects of the field of molecular modeling also generates some inertia and perhaps too conservative reliance on tried and tested methodologies, that is at least partially caused by the less than up-to-date involvement in the newest developments in applied mathematics. It is expected that as more applied mathematicians take up the challenge of employing the latest advances of their field in molecular modeling, important breakthroughs may follow. In this presentation some of the current challenges of molecular modeling are discussed.
Sensitivity model study of regional mercury dispersion in the atmosphere
Gencarelli, Christian N.; Bieser, Johannes; Carbone, Francesco; De Simone, Francesco; Hedgecock, Ian M.; Matthias, Volker; Travnikov, Oleg; Yang, Xin; Pirrone, Nicola
2017-01-01
Atmospheric deposition is the most important pathway by which Hg reaches marine ecosystems, where it can be methylated and enter the base of food chain. The deposition, transport and chemical interactions of atmospheric Hg have been simulated over Europe for the year 2013 in the framework of the Global Mercury Observation System (GMOS) project, performing 14 different model sensitivity tests using two high-resolution three-dimensional chemical transport models (CTMs), varying the anthropogenic emission datasets, atmospheric Br input fields, Hg oxidation schemes and modelling domain boundary condition input. Sensitivity simulation results were compared with observations from 28 monitoring sites in Europe to assess model performance and particularly to analyse the influence of anthropogenic emission speciation and the Hg0(g) atmospheric oxidation mechanism. The contribution of anthropogenic Hg emissions, their speciation and vertical distribution are crucial to the simulated concentration and deposition fields, as is also the choice of Hg0(g) oxidation pathway. The areas most sensitive to changes in Hg emission speciation and the emission vertical distribution are those near major sources, but also the Aegean and the Black seas, the English Channel, the Skagerrak Strait and the northern German coast. Considerable influence was found also evident over the Mediterranean, the North Sea and Baltic Sea and some influence is seen over continental Europe, while this difference is least over the north-western part of the modelling domain, which includes the Norwegian Sea and Iceland. The Br oxidation pathway produces more HgII(g) in the lower model levels, but overall wet deposition is lower in comparison to the simulations which employ an O3 / OH oxidation mechanism. The necessity to perform continuous measurements of speciated Hg and to investigate the local impacts of Hg emissions and deposition, as well as interactions dependent on land use and vegetation, forests, peat
A procedure for Applying a Maturity Model to Process Improvement
Directory of Open Access Journals (Sweden)
Elizabeth Pérez Mergarejo
2014-09-01
Full Text Available A maturity model is an evolutionary roadmap for implementing the vital practices from one or moredomains of organizational process. The use of the maturity models is poor in the Latin-Americancontext. This paper presents a procedure for applying the Process and Enterprise Maturity Modeldeveloped by Michael Hammer [1]. The procedure is divided into three steps: Preparation, Evaluationand Improvement plan. The Hammer´s maturity model joint to the proposed procedure can be used byorganizations to improve theirs process, involving managers and employees.
Predictive control applied to an evaporator mathematical model
Directory of Open Access Journals (Sweden)
Daniel Alonso Giraldo Giraldo
2010-07-01
Full Text Available This paper outlines designing a predictive control model (PCM applied to a mathematical model of a falling film evaporator with mechanical steam compression like those used in the dairy industry. The controller was designed using the Connoisseur software package and data gathered from the simulation of a non-linear mathematical model. A control law was obtained from minimising a cost function sublect to dynamic system constraints, using a quadratic programme (QP algorithm. A linear programming (LP algorithm was used for finding a sub-optimal operation point for the process in stationary state.
Modelling the dispersion of particle numbers in five European cities
Kukkonen, J.; Karl, M.; Keuken, M.P.; Denier van der Gon, H.A.C.; Denby, B.R.; Singh, V.; Douros, J.; Manders, A.M.M.; Samaras, Z.; Moussiopoulos, N.; Jonkers, S.; Aarnio, M.; Karppinen, A.; Kangas, L.; Lutzenkirchen, S.; Petaja, T.; Vouitsis, I.; Sokhi, R.S.
2016-01-01
We present an overview of the modelling of particle number concentrations (PNCs) in five major European cities, namely Helsinki, Oslo, London, Rotterdam and Athens in 2008. Novel emission inventories of particle numbers have been compiled both on urban and European scales. We used atmospheric disper
A model for seed dispersion and vegetation growth
da Silva, Jaqueline Maria; Vieira Kritz, Maurício
2016-08-01
The study of processes associated with vegetation grow is very important to understand the dynamics of flooded ecosystems and their sustainable management. We present a cell-centered individual-based probabilistic model for the dynamics of tree-populations, that is further tailored towards the environmental conditions present in the Amazon floodplains.
Mechanistic model for dispersion coefficients in bubble column
CSIR Research Space (South Africa)
Skosana, PJ
2015-05-01
Full Text Available A mechanistic model describing the mass and momentum exchange in bubble columns is proposed that is based on the observations that the gas distribution in a bubble column is not uniform across the column and that as a consequence large liquid...
Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Eskilsson, Claes; Bigoni, Daniele
2016-01-01
). In the present paper we use a single layer of quadratic (in 2D) and prismatic (in 3D) elements. The model has been stabilized through a combination of over-integration of the Galerkin projections and a mild modal filter. We present numerical tests of nonlinear waves serving as a proof-of-concept validation...
Mulena, Gabriela C.; Allende, David G.; Puliafito, Salvador E.; Lakkis, Susan G.; Cremades, Pablo G.; Ulke, Ana G.
2016-07-01
The performance of the combination of the FALL3D ash dispersion model with the Weather Research and Forecast (WRF) meteorological model in the southern cone of South America under two initial and boundary conditions was evaluated. ERA-Interim and NCEP-GFS datasets were used as dynamic conditions by WRF to simulate meteorological fields for FALL3D. As a study case, we used the eruption of the Puyehue-Cordón Caulle Volcanic Complex occurred in Chile in June 2011. The simulated meteorological results were compared with the horizontal wind direction, meridional and zonal wind components, air and dew point temperatures of 7 radio sounding stations using a set of error indicators. In addition, the ash mass load simulated by FALL3D for a day of maximum dispersion of volcanic ash was evaluated using the Moderate Resolution Imaging Spectroradiometer (MODIS) data, on which the Prata algorithm was applied. As well as this, the WRF-dominant physical processes with both dynamic conditions were analyzed for that same date. Meteorological results indicated that the simulation performed with WRF and NCEP-GFS shows the lowest errors at levels between 925 and 300 hPa. Ash dispersion simulated with FALL3D and WRF in both dynamic conditions shows a different perfomance, which from the synoptic and dynamic viewpoint can be explained for the result of wind intensity and geopotential height. Moreover, WRF intiliazed with NCEP-GFS and FALL3D has a higher degree of concordance with the MODIS image. Based on the analysis and results, it was concluded that for the southern cone of South America, 1) it was not trivial for the simulation of volcanic ash dispersion to use one dynamic condition or another in WRF; 2) in that sense, meteorological variables that influenced the differences in volcanic ash dispersion were horizontal wind intensity and direction and geopotential heights; 3) the system generated from the combination of the WRF model initialized with NCEP-GFS and the FALL3D dispersion
Three-dimensional oil dispersion model in the Campos Basin, Brazil.
Oliveira, Bernardo Lopes Almeida de; Netto, Theodoro Antoun; Assad, Luiz Paulo de Freitas
2017-03-09
This paper presents the physical and mathematical formulation of a three-dimensional oil dispersion model that calculates the trajectory from the seafloor to the sea surface, its assumptions and constraints. It was developed by researchers who are familiar with oil spill dispersion and mathematical analysis. Oil dispersion is calculated through two computational routines. The first calculates the vertical dispersion along the water column and resamples the droplets when the oil reaches the surface. The second calculates the surface displacement of the spill. This model is based on the Eulerian approach, and it uses numerical solution schemes in time and in space to solve the equation for advective-diffusive transport. A case study based on an actual accident that happened in the Campos Basin, in Rio de Janeiro state, considering the instant spill of 1000 m(3) was used to evaluate the proposed model. After calculating the vertical transport, it was estimated that the area covered by the oil spill on the surface was about 35,685 m². After calculating the dispersion at the surface, the plume area was estimated as 20% of the initial area, resulting in a final area of 28,548 m².
A new statistical model for subgrid dispersion in large eddy simulations of particle-laden flows
Muela, Jordi; Lehmkuhl, Oriol; Pérez-Segarra, Carles David; Oliva, Asensi
2016-09-01
Dispersed multiphase turbulent flows are present in many industrial and commercial applications like internal combustion engines, turbofans, dispersion of contaminants, steam turbines, etc. Therefore, there is a clear interest in the development of models and numerical tools capable of performing detailed and reliable simulations about these kind of flows. Large Eddy Simulations offer good accuracy and reliable results together with reasonable computational requirements, making it a really interesting method to develop numerical tools for particle-laden turbulent flows. Nonetheless, in multiphase dispersed flows additional difficulties arises in LES, since the effect of the unresolved scales of the continuous phase over the dispersed phase is lost due to the filtering procedure. In order to solve this issue a model able to reconstruct the subgrid velocity seen by the particles is required. In this work a new model for the reconstruction of the subgrid scale effects over the dispersed phase is presented and assessed. This innovative methodology is based in the reconstruction of statistics via Probability Density Functions (PDFs).
Applying Model Based Systems Engineering to NASA's Space Communications Networks
Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert
2013-01-01
System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its
Emerenini, Blessing O; Sonner, Stefanie; Eberl, Hermann J
2017-06-01
We analyze a mathematical model of quorum sensing induced biofilm dispersal. It is formulated as a system of non-linear, density-dependent, diffusion-reaction equations. The governing equation for the sessile biomass comprises two non-linear diffusion effects, a degeneracy as in the porous medium equation and fast diffusion. This equation is coupled with three semi-linear diffusion-reaction equations for the concentrations of growth limiting nutrients, autoinducers, and dispersed cells. We prove the existence and uniqueness of bounded non-negative solutions of this system and study the behavior of the model in numerical simulations, where we focus on hollowing effects in established biofilms.
DEFF Research Database (Denmark)
Kiil, Søren
2017-01-01
particle size distribution was simulated. Data from two previous experimental investigations were used for model validation. The first concerns two different yellow organic pigments dispersed in nitrocellulose/ethanol vehicles in a ball mill and the second a red organic pigment dispersed in a solvent-based....... The only adjustable parameter used was an apparent rate constant for the linear agglomerate erosion rate. Model simulations, at selected values of time, for the full agglomerate particle size distribution were in good qualitative agreement with the measured values. A quantitative match of the experimental...
CFD modelling of the aerodynamic effect of trees on urban air pollution dispersion.
Amorim, J H; Rodrigues, V; Tavares, R; Valente, J; Borrego, C
2013-09-01
The current work evaluates the impact of urban trees over the dispersion of carbon monoxide (CO) emitted by road traffic, due to the induced modification of the wind flow characteristics. With this purpose, the standard flow equations with a kε closure for turbulence were extended with the capability to account for the aerodynamic effect of trees over the wind field. Two CFD models were used for testing this numerical approach. Air quality simulations were conducted for two periods of 31h in selected areas of Lisbon and Aveiro, in Portugal, for distinct relative wind directions: approximately 45° and nearly parallel to the main avenue, respectively. The statistical evaluation of modelling performance and uncertainty revealed a significant improvement of results with trees, as shown by the reduction of the NMSE from 0.14 to 0.10 in Lisbon, and from 0.14 to 0.04 in Aveiro, which is independent from the CFD model applied. The consideration of the plant canopy allowed to fulfil the data quality objectives for ambient air quality modelling established by the Directive 2008/50/EC, with an important decrease of the maximum deviation between site measurements and CFD results. In the non-aligned wind situation an average 12% increase of the CO concentrations in the domain was observed as a response to the aerodynamic action of trees over the vertical exchange rates of polluted air with the above roof-level atmosphere; while for the aligned configuration an average 16% decrease was registered due to the enhanced ventilation of the street canyon. These results show that urban air quality can be optimised based on knowledge-based planning of green spaces.
A general diagnostic model applied to language testing data.
von Davier, Matthias
2008-11-01
Probabilistic models with one or more latent variables are designed to report on a corresponding number of skills or cognitive attributes. Multidimensional skill profiles offer additional information beyond what a single test score can provide, if the reported skills can be identified and distinguished reliably. Many recent approaches to skill profile models are limited to dichotomous data and have made use of computationally intensive estimation methods such as Markov chain Monte Carlo, since standard maximum likelihood (ML) estimation techniques were deemed infeasible. This paper presents a general diagnostic model (GDM) that can be estimated with standard ML techniques and applies to polytomous response variables as well as to skills with two or more proficiency levels. The paper uses one member of a larger class of diagnostic models, a compensatory diagnostic model for dichotomous and partial credit data. Many well-known models, such as univariate and multivariate versions of the Rasch model and the two-parameter logistic item response theory model, the generalized partial credit model, as well as a variety of skill profile models, are special cases of this GDM. In addition to an introduction to this model, the paper presents a parameter recovery study using simulated data and an application to real data from the field test for TOEFL Internet-based testing.
Size-specific sensitivity: Applying a new structured population model
Energy Technology Data Exchange (ETDEWEB)
Easterling, M.R.; Ellner, S.P.; Dixon, P.M.
2000-03-01
Matrix population models require the population to be divided into discrete stage classes. In many cases, especially when classes are defined by a continuous variable, such as length or mass, there are no natural breakpoints, and the division is artificial. The authors introduce the integral projection model, which eliminates the need for division into discrete classes, without requiring any additional biological assumptions. Like a traditional matrix model, the integral projection model provides estimates of the asymptotic growth rate, stable size distribution, reproductive values, and sensitivities of the growth rate to changes in vital rates. However, where the matrix model represents the size distributions, reproductive value, and sensitivities as step functions (constant within a stage class), the integral projection model yields smooth curves for each of these as a function of individual size. The authors describe a method for fitting the model to data, and they apply this method to data on an endangered plant species, northern monkshood (Aconitum noveboracense), with individuals classified by stem diameter. The matrix and integral models yield similar estimates of the asymptotic growth rate, but the reproductive values and sensitivities in the matrix model are sensitive to the choice of stage classes. The integral projection model avoids this problem and yields size-specific sensitivities that are not affected by stage duration. These general properties of the integral projection model will make it advantageous for other populations where there is no natural division of individuals into stage classes.
Agrochemical fate models applied in agricultural areas from Colombia
Garcia-Santos, Glenda; Yang, Jing; Andreoli, Romano; Binder, Claudia
2010-05-01
The misuse application of pesticides in mainly agricultural catchments can lead to severe problems for humans and environment. Especially in developing countries where there is often found overuse of agrochemicals and incipient or lack of water quality monitoring at local and regional levels, models are needed for decision making and hot spots identification. However, the complexity of the water cycle contrasts strongly with the scarce data availability, limiting the number of analysis, techniques, and models available to researchers. Therefore there is a strong need for model simplification able to appropriate model complexity and still represent the processes. We have developed a new model so-called Westpa-Pest to improve water quality management of an agricultural catchment located in the highlands of Colombia. Westpa-Pest is based on the fully distributed hydrologic model Wetspa and a fate pesticide module. We have applied a multi-criteria analysis for model selection under the conditions and data availability found in the region and compared with the new developed Westpa-Pest model. Furthermore, both models were empirically calibrated and validated. The following questions were addressed i) what are the strengths and weaknesses of the models?, ii) which are the most sensitive parameters of each model?, iii) what happens with uncertainties in soil parameters?, and iv) how sensitive are the transfer coefficients?
A cellular automata model with probability infection and spatial dispersion
Institute of Scientific and Technical Information of China (English)
Jin Zhen; Liu Quan-Xing; Mainul Haque
2007-01-01
In this article, we have proposed an epidemic model based on the probability cellular automata theory. The essential mathematical features are analysed with the help of stability theory. We have given an alternative modelling approach for the spatiotemporal system which is more realistic from the practical point of view. A discrete and spatiotemporal approach is shown by using cellular automata theory. It is interesting to note that both the size of the endemic equilibrium and the density of the individuals increase with the increase of the neighbourhood size and infection rate, but the infections decrease with the increase of the recovery rate. The stability of the system around the positive interior equilibrium has been shown by using a suitable Lyapunov function. Finally, experimental data simulation for SARS disease in China in 2003 and a brief discussion are given.
Atmospheric Dispersion Modeling: Challenges of the Fukushima Daiichi Response
Energy Technology Data Exchange (ETDEWEB)
Sugiyama, Gayle [Lawrence Livermore National Laboratory; Nasstrom, John [Lawrence Livermore National Laboratory; Pobanz, Brenda [Lawrence Livermore National Laboratory; Foster, Kevin [Lawrence Livermore National Laboratory; Simpson, Matthew [Lawrence Livermore National Laboratory; Vogt, Phil [Lawrence Livermore National Laboratory; Aluzzi, Fernando [Lawrence Livermore National Laboratory; Homann, Steve [Lawrence Livermore National Laboratory
2012-05-01
The U.S. Department of Energy’s (DOE) National Atmospheric Release Advisory Center (NARAC) provided a wide range of predictions and analyses as part of the response to the Fukushima Daiichi Nuclear Power Plant accident. This work encompassed: weather forecasts and atmospheric transport predictions, estimates of possible dose in Japan based on hypothetical U.S. Nuclear Regulatory Commission scenarios of potential radionuclide releases, predictions of possible plume arrival times and dose levels at U.S. locations, and source estimation and plume model refinement. An overview of NARAC response activities is provided, along with a more in-depth discussion of some of NARAC’s preliminary source reconstruction analyses. NARAC optimized the overall agreement of model predictions to dose rate measurements using statistical comparisons of data and model values paired in space and time. Estimated emission rates varied depending on the choice of release assumptions (e.g., time-varying vs. constant release rates), the radionuclide mix, meteorology, and/or the radiological data used in the analysis. Results were found to be consistent with other studies within expected uncertainties, despite the application of different source estimation methodologies and the use of significantly different radiological measurement data. A discussion of some of the operational and scientific challenges encountered during the response, along with recommendations for future work, is provided.
Physical model studies of dispersion in fracture systems
Energy Technology Data Exchange (ETDEWEB)
Hull, L.C.
1985-04-01
The purposes of the laboratory-scale fracture network experiments are to study mechanisms controlling solute transport under conditions of known fracture parameters, to evaluate injection-backflow test procedures under conditions of known reservoir parameters, and to acquire data for validation of numerical models. Validation of computer codes against laboratory data collected under controlled conditions provides reassurance that the codes deal with important processes in a realistic manner. Preliminary simulations of the dual-permeability physical model have been made using the FRACSL reservoir code. These simulations permit locating electrodes and piezometers in the most advantageous positions to record tracer migration and pressure response. Much of the physical modeling effort this year was oriented towards validating the particle tracking algorithm used in FRACSL, and developing a better theoretical understanding of transport processes in fractures. Experiments were conducted in single fractures and single fracture junctions, and data on tracer migration collected. The Prickett, Naymik, and Lonnquist Random Walk aquifer simulation program has been modfied to simulate flow in single fractures. The particle tracking algorithm was also used to simulate infinite parallel plates under conditions where analytical solutions to the transport equation could be derived. The first case is for zero diffusion in the fracture, and transport based on a parabolic velocity profile. The second case is for diffusion homogenizing the tracer solution across the fracture. The particle tracking algorithm matched both analytical solutions quite well, with the same grid for both simulations. 48 refs., 41 figs., 2 tabs.
A Model to Predict Thermal Conductivity of Irradiated U-Mo Dispersion Fuel
Energy Technology Data Exchange (ETDEWEB)
Burkes, Douglas; Huber, Tanja K.; Casella, Andrew M.
2016-05-01
The Office of Materials Management and Minimization Reactor Conversion Program continues to develop existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. The program is focused on assisting with the development and qualification of a fuel design that consists of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. Thermal conductivity is an important consideration in determining the operational temperature of the fuel and can be influenced by interaction layer formation between the dispersed phase and matrix and upon the concentration of the dispersed phase within the matrix. This paper extends the use of a simple model developed previously to study the influence of interaction layer formation as well as the size and volume fraction of fuel particles dispersed in the matrix, Si additions to the matrix, and Mo concentration in the fuel particles on the effective thermal conductivity of the U-Mo/Al composite during irradiation. The model has been compared to experimental measurements recently conducted on U-Mo/Al dispersion fuels at two different fission densities with acceptable agreement. Observations of the modeled results indicate that formation of an interaction layer and subsequent consumption of the matrix reveals a rather significant effect on effective thermal conductivity. The modeled interaction layer formation and subsequent consumption of the high thermal conductivity matrix was sensitive to the average dispersed fuel particle size, suggesting this parameter as one of the most effective in minimizing thermal conductivity degradation of the composite, while the influence of Si additions to the matrix in the model was highly dependent upon irradiation conditions.
A model to predict thermal conductivity of irradiated U-Mo dispersion fuel
Burkes, Douglas E.; Huber, Tanja K.; Casella, Andrew M.
2016-05-01
Numerous global programs are focused on the continued development of existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world's remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Some of these programs are focused on assisting with the development and qualification of a fuel design that consists of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. Thermal conductivity is an important consideration in determining the operational temperature of the fuel and can be influenced by interaction layer formation between the dispersed phase and matrix and upon the concentration of the dispersed phase within the matrix. This paper extends the use of a simple model developed previously to study the influence of interaction layer formation as well as the size and volume fraction of fuel particles dispersed in the matrix, Si additions to the matrix, and Mo concentration in the fuel particles on the effective thermal conductivity of the U-Mo/Al composite during irradiation. The model has been compared to experimental measurements recently conducted on U-Mo/Al dispersion fuels at two different fission densities with acceptable agreement. Observations of the modeled results indicate that formation of an interaction layer and subsequent consumption of the matrix reveals a rather significant effect on effective thermal conductivity. The modeled interaction layer formation and subsequent consumption of the high thermal conductivity matrix was sensitive to the average dispersed fuel particle size, suggesting this parameter as one of the most effective in minimizing thermal conductivity degradation of the composite, while the influence of Si additions to the matrix in the model was highly dependent upon irradiation conditions.
General Motors sulfate dispersion experiment: assessment of the EPA HIWAY model
Energy Technology Data Exchange (ETDEWEB)
Chock, D.P.
1977-01-01
A major objective of the General Motors Sulfate Dispersion Experiment was to investigate the validity of the Environmental Protection Agency's HIWAY dispersion model. This model was the basis for the high roadside predictions made by EPA in 1975. Comparisons of measurements with predictions show that at the pedestrian level downwind from the road, the model works fairly well under unstable conditions, but overpredicts for stable conditions. The overpredictions get worse as the wind speed decreases, as the wind direction becomes parallel to the road, and as the distance from the road increases. For the upwind dispersion, however, the model is inapplicable. Under extremely stable or worst meteorological conditions, variable winds at different heights and plume-rise due to the heated exhaust completely invalidate the model. The overpredictions at the bottom level downwind can be very substantial. When the wind is parallel to the road, overpredictions occur at all sampling positions. New dispersion parameters were determined which substantiate the expectation that mechanical mixing due to the traffic wake completely dominates the effects of atmospheric stability, except under extremely stable conditions. It is believed that the overprediction of the HIWAY model at ground level will become worse as the number of traffic lanes increases.
Tsiouri, V; Kovalets, I; Andronopoulos, S; Bartzis, J G
2012-01-01
This paper presents an efficient algorithm for estimating the unknown emission rate of radionuclides in the atmosphere following a nuclear accident. The algorithm is based on assimilation of gamma dose rate measured data in a Lagrangian atmospheric dispersion model. Such models are used in the framework of nuclear emergency response systems (ERSs). It is shown that the algorithm is applicable in both deterministic and stochastic modes of operation of the dispersion model. The method is evaluated by computational simulations of a 3-d field experiment on atmospheric dispersion of ⁴¹Ar emitted routinely from a research reactor. Available measurements of fluence rate (photons flux) in air are assimilated in the Lagrangian dispersion model DIPCOT and the ⁴¹Ar emission rate is estimated. The statistical analysis shows that the model-calculated emission rates agree well with the real ones. In addition the model-predicted fluence rates at the locations of the sensors, which were not used in the data assimilation procedure are in better agreement with the measurements. The first evaluation results of the method presented in this study show that the method performs satisfactorily and therefore it is applicable in nuclear ERSs provided that more comprehensive validation studies will be performed.
Chio, Chia-Pin; Yuan, Tzu-Hsuen; Shie, Ruei-Hao; Chan, Chang-Chuan
2014-04-30
The goal of this study is to demonstrate that it is possible to construct a two-stage dispersion model empirically for the purpose of estimating air pollution levels in the vicinity of petrochemical plants. We studied oil refineries and coal-fired power plants in the No. 6 Naphtha Cracking Complex, an area of 2,603-ha situated on the central west coast of Taiwan. The pollutants targeted were vanadium (V) from oil refineries and arsenic (As) from coal-fired power plants. We applied a backward fitting method to determine emission rates of V and As, with 192 PM10 filters originally collected between 2009 and 2012. Our first-stage model estimated emission rates of V and As (median and 95% confidence intervals at 0.0202 (0.0040-0.1063) and 0.1368 (0.0398-0.4782) g/s, respectively. In our second stage model, the predicted zone-average concentrations showed a strong correlation with V, but a poor correlation with As. Our findings show that two-stage dispersion models are relatively precise for estimating V levels at residents' addresses near the petrochemical complex, but they did not work as well for As levels. In conclusion, our model-based approach can be widely used for modeling exposure to air pollution from industrial areas in countries with limited resources. Copyright © 2014 Elsevier B.V. All rights reserved.
Surface-bounded growth modeling applied to human mandibles
DEFF Research Database (Denmark)
Andresen, Per Rønsholt
1999-01-01
This thesis presents mathematical and computational techniques for three dimensional growth modeling applied to human mandibles. The longitudinal shape changes make the mandible a complex bone. The teeth erupt and the condylar processes change direction, from pointing predominantly backward...... to yield a spatially dense field. Different methods for constructing the sparse field are compared. Adaptive Gaussian smoothing is the preferred method since it is parameter free and yields good results in practice. A new method, geometry-constrained diffusion, is used to simplify The most successful...... growth model is linear and based on results from shape analysis and principal component analysis. The growth model is tested in a cross validation study with good results. The worst case mean modeling error in the cross validation study is 3.7 mm. It occurs when modeling the shape and size of a 12 years...
Applied systems ecology: models, data, and statistical methods
Energy Technology Data Exchange (ETDEWEB)
Eberhardt, L L
1976-01-01
In this report, systems ecology is largely equated to mathematical or computer simulation modelling. The need for models in ecology stems from the necessity to have an integrative device for the diversity of ecological data, much of which is observational, rather than experimental, as well as from the present lack of a theoretical structure for ecology. Different objectives in applied studies require specialized methods. The best predictive devices may be regression equations, often non-linear in form, extracted from much more detailed models. A variety of statistical aspects of modelling, including sampling, are discussed. Several aspects of population dynamics and food-chain kinetics are described, and it is suggested that the two presently separated approaches should be combined into a single theoretical framework. It is concluded that future efforts in systems ecology should emphasize actual data and statistical methods, as well as modelling.
Model Driven Mutation Applied to Adaptative Systems Testing
Bartel, Alexandre; Munoz, Freddy; Klein, Jacques; Mouelhi, Tejeddine; Traon, Yves Le
2012-01-01
Dynamically Adaptive Systems modify their behav- ior and structure in response to changes in their surrounding environment and according to an adaptation logic. Critical sys- tems increasingly incorporate dynamic adaptation capabilities; examples include disaster relief and space exploration systems. In this paper, we focus on mutation testing of the adaptation logic. We propose a fault model for adaptation logics that classifies faults into environmental completeness and adaptation correct- ness. Since there are several adaptation logic languages relying on the same underlying concepts, the fault model is expressed independently from specific adaptation languages. Taking benefit from model-driven engineering technology, we express these common concepts in a metamodel and define the operational semantics of mutation operators at this level. Mutation is applied on model elements and model transformations are used to propagate these changes to a given adaptation policy in the chosen formalism. Preliminary resul...
Scalar potential model of galaxy central mass and central velocity dispersion
Hodge, J C
2006-01-01
The galaxy central mass $M_\\mathrm{c}$ and central velocity dispersion $\\sigma_\\mathrm{c}$ have been found to correlate with large scale galaxy parameters for samples of galaxies with a limited range of characteristics. A scalar potential model (SPM) that derived from considerations of galaxy clusters, of redshift, of discrete redshift, of H{\\scriptsize{I}} rotation curves (RCs) of spiral galaxies and of RC asymmetry is applied to central region parameters. The $\\sigma_\\mathrm{c}$ and $ M_\\mathrm{c}$ are found to correlate to the host galaxy's and neighboring galaxy's B band luminosity. The sample included galaxies with rising, flat and declining RCs; galaxies with a wide range of characteristics; and galaxies excluded from samples of other studies of $\\sigma_\\mathrm{c}$ relationships. The equations have the same form as the SPM equations for the parameters of the H{\\scriptsize{I}} RCs. Because the SPM is consistent with $M_\\mathrm{c}$ and $\\sigma_\\mathrm{c}$ observations of the sample galaxies, the Sources a...
Flämmich, Michael; Danz, Norbert; Michaelis, Dirk; Bräuer, Andreas; Gather, Malte C; Kremer, Jonas H-W M; Meerholz, Klaus
2009-03-10
We describe a method to determine the refractive index and extinction coefficient of thin film materials without prior knowledge of the film thickness and without the assumption of a dispersion model. A straightforward back calculation to the optical parameters can be performed starting from simple measurements of reflection and transmission spectra of a 100-250 nm thick supported film. The exact film thickness is found simultaneously by fulfilling the intrinsic demand of continuity of the refractive index as a function of wavelength. If both the layer and the substrate are homogeneous and isotropic media with plane and parallel interfaces, effects like surface roughness, scattering, or thickness inhomogeneities can be neglected. Then, the accuracy of the measurement is approximately 10(-2) and 10(-3) for the refractive index and the extinction coefficient, respectively. The error of the thin film thickness determination is well below 1 nm. Thus this technique is well suited to determine the input parameters for optical simulations of organic thin film devices, such as organic light-emitting diodes (OLEDs) or organic photovoltaic (OPV) cells. We apply the method to the electroluminescent polymer poly(2,5-dioctyl-p-phenylene vinylene) (PDO-PPV) and show its applicability by comparing the measured and calculated reflection and transmission spectra of OLED stacks with up to five layers.
Average and dispersion of the luminosity-redshift relation in the concordance model
Energy Technology Data Exchange (ETDEWEB)
Ben-Dayan, I. [DESY Hamburg (Germany). Theory Group; Gasperini, M. [Bari Univ. (Italy). Dipt. di Fisica; Istituto Nazionale di Fisica Nucleare, Bari (Italy); Marozzi, G. [College de France, 75 - Paris (France); Geneve Univ. (Switzerland). Dept. de Physique Theorique and CAP; Nugier, F. [Ecole Normale Superieure CNRS, Paris (France). Laboratoire de Physique Theorique; Veneziano, G. [College de France, 75 - Paris (France); CERN, Geneva (Switzerland). Physics Dept.; New York Univ., NY (United States). Dept. of Physics
2013-03-15
Starting from the luminosity-redshift relation recently given up to second order in the Poisson gauge, we calculate the effects of the realistic stochastic background of perturbations of the so-called concordance model on the combined light-cone and ensemble average of various functions of the luminosity distance, and on their variance, as functions of redshift. We apply a gauge-invariant light-cone averaging prescription which is free from infrared and ultraviolet divergences, making our results robust with respect to changes of the corresponding cutoffs. Our main conclusions, in part already anticipated in a recent letter for the case of a perturbation spectrum computed in the linear regime, are that such inhomogeneities not only cannot avoid the need for dark energy, but also cannot prevent, in principle, the determination of its parameters down to an accuracy of order 10{sup -3} - 10{sup -5}, depending on the averaged observable and on the regime considered for the power spectrum. However, taking into account the appropriate corrections arising in the non-linear regime, we predict an irreducible scatter of the data approaching the 10% level which, for limited statistics, will necessarily limit the attainable precision. The predicted dispersion appears to be in good agreement with current observational estimates of the distance-modulus variance due to Doppler and lensing effects (at low and high redshifts, respectively), and represents a challenge for future precision measurements.
Average and dispersion of the luminosity-redshift relation in the concordance model
Energy Technology Data Exchange (ETDEWEB)
Ben-Dayan, I. [DESY Hamburg (Germany). Theory Group; Gasperini, M. [Bari Univ. (Italy). Dipt. di Fisica; Istituto Nazionale di Fisica Nucleare, Bari (Italy); Marozzi, G. [College de France, 75 - Paris (France); Geneve Univ. (Switzerland). Dept. de Physique Theorique and CAP; Nugier, F. [Ecole Normale Superieure CNRS, Paris (France). Laboratoire de Physique Theorique; Veneziano, G. [College de France, 75 - Paris (France); CERN, Geneva (Switzerland). Physics Dept.; New York Univ., NY (United States). Dept. of Physics
2013-03-15
Starting from the luminosity-redshift relation recently given up to second order in the Poisson gauge, we calculate the effects of the realistic stochastic background of perturbations of the so-called concordance model on the combined light-cone and ensemble average of various functions of the luminosity distance, and on their variance, as functions of redshift. We apply a gauge-invariant light-cone averaging prescription which is free from infrared and ultraviolet divergences, making our results robust with respect to changes of the corresponding cutoffs. Our main conclusions, in part already anticipated in a recent letter for the case of a perturbation spectrum computed in the linear regime, are that such inhomogeneities not only cannot avoid the need for dark energy, but also cannot prevent, in principle, the determination of its parameters down to an accuracy of order 10{sup -3} - 10{sup -5}, depending on the averaged observable and on the regime considered for the power spectrum. However, taking into account the appropriate corrections arising in the non-linear regime, we predict an irreducible scatter of the data approaching the 10% level which, for limited statistics, will necessarily limit the attainable precision. The predicted dispersion appears to be in good agreement with current observational estimates of the distance-modulus variance due to Doppler and lensing effects (at low and high redshifts, respectively), and represents a challenge for future precision measurements.
Spatially correlated disturbances in a locally dispersing population model.
Hiebeler, David
2005-01-01
The basic contact process in continuous time is studied, where instead of single occupied sites becoming empty independently, larger-scale disturbance events simultaneously remove the population from contiguous blocks of sites. Stochastic spatial simulations and pair approximations were used to investigate the model. Increasing the spatial scale of disturbance events increases spatial clustering of the population and variability in growth rates within localized regions, reduces the effective overall population density, and increases the critical reproductive rate necessary for the population to persist. Pair approximations yield a closed-form analytic expression for equilibrium population density and the critical value necessary for persistence.
An operative lagrangian model for simulating radioactivity dispersion in the Strait of Gibraltar.
Periáñez, R
2005-01-01
GISPART (GIbraltar Strait PARticle Tracking model) is a three-dimensional particle tracking code to simulate the dispersion of radionuclides in the Strait of Gibraltar. It consists of a hydrodynamic module that is run off-line to determine tidal constants and residuals in the domain. This information is stored in several files that are read by the dispersion module to reconstruct water movements. The dispersion module uses a lagrangian approach. Thus, a radionuclide release is simulated by a number of particles, whose paths are computed individually. Radionuclide concentrations are obtained from the density of particles per water volume unit. Some examples of results are shown. The model is also available on-line.
A Platoon Dispersion Model Based on a Truncated Normal Distribution of Speed
Directory of Open Access Journals (Sweden)
Ming Wei
2012-01-01
Full Text Available Understanding platoon dispersion is critical for the coordination of traffic signal control in an urban traffic network. Assuming that platoon speed follows a truncated normal distribution, ranging from minimum speed to maximum speed, this paper develops a piecewise density function that describes platoon dispersion characteristics as the platoon moves from an upstream to a downstream intersection. Based on this density function, the expected number of cars in the platoon that pass the downstream intersection, and the expected number of cars in the platoon that do not pass the downstream point are calculated. To facilitate coordination in a traffic signal control system, dispersion models for the front and the rear of the platoon are also derived. Finally, a numeric computation for the coordination of successive signals is presented to illustrate the validity of the proposed model.
Shear wave dispersion behaviors of soft, vascularized tissues from the microchannel flow model.
Parker, K J; Ormachea, J; McAleavey, S A; Wood, R W; Carroll-Nellenback, J J; Miller, R K
2016-07-07
The frequency dependent behavior of tissue stiffness and the dispersion of shear waves in tissue can be measured in a number of ways, using integrated imaging systems. The microchannel flow model, which considers the effects of fluid flow in the branching vasculature and microchannels of soft tissues, makes specific predictions about the nature of dispersion. In this paper we introduce a more general form of the 4 parameter equation for stress relaxation based on the microchannel flow model, and then derive the general frequency domain equation for the complex modulus. Dispersion measurements in liver (ex vivo) and whole perfused placenta (post-delivery) correspond to the predictions from theory, guided by independent stress relaxation measurements and consideration of the vascular tree structure.
Modelling and simulation of nutrient dispersion from coated fertilizer granules
Razali, Radzuan; Daud, Hanita; Nor, Shafiq Mohd.
2014-10-01
The usage of Controlled-Release Fertilizer (CRF) is essential in plants and crops to fulfill the need and requirement for the modern agriculture which now feeds 6 billion people. Therefore modeling and simulation of nutrient release from coated fertilizer has become the best method to study the behavior of some parameters toward water saturation in and nutrient release from the coated-fertilizer granule. This paper is the improvement development of modeling and computer simulation by Basu [1] which include some of the factors affecting the water saturation time and nutrient release time from a coated-fertilizer. The effect of granule radius, the diffusivity of water and nutrient, the temperature of surrounding, the contact areas and the characteristic of the coating are studied and the simulation was developed using MATLAB software. The studies and understanding of this project is very important and useful especially to determine the important parameters in the manufacturing process of the coated-fertilizer granule and also will be useful for the farmers/users in the selection of the best fertilizers for their crops.
Liu, Li; Solmon, Fabien; Vautard, Robert; Hamaoui-Laguel, Lynda; Zsolt Torma, Csaba; Giorgi, Filippo
2016-05-01
Common ragweed (Ambrosia artemisiifolia L.) is a highly allergenic and invasive plant in Europe. Its pollen can be transported over large distances and has been recognized as a significant cause of hay fever and asthma (D'Amato et al., 2007; Burbach et al., 2009). To simulate production and dispersion of common ragweed pollen, we implement a pollen emission and transport module in the Regional Climate Model (RegCM) version 4 using the framework of the Community Land Model (CLM) version 4.5. In this online approach pollen emissions are calculated based on the modelling of plant distribution, pollen production, species-specific phenology, flowering probability, and flux response to meteorological conditions. A pollen tracer model is used to describe pollen advective transport, turbulent mixing, dry and wet deposition. The model is then applied and evaluated on a European domain for the period 2000-2010. To reduce the large uncertainties notably due to the lack of information on ragweed density distribution, a calibration based on airborne pollen observations is used. Accordingly a cross validation is conducted and shows reasonable error and sensitivity of the calibration. Resulting simulations show that the model captures the gross features of the pollen concentrations found in Europe, and reproduce reasonably both the spatial and temporal patterns of flowering season and associated pollen concentrations measured over Europe. The model can explain 68.6, 39.2, and 34.3 % of the observed variance in starting, central, and ending dates of the pollen season with associated root mean square error (RMSE) equal to 4.7, 3.9, and 7.0 days, respectively. The correlation between simulated and observed daily concentrations time series reaches 0.69. Statistical scores show that the model performs better over the central Europe source region where pollen loads are larger and the model is better constrained. From these simulations health risks associated to common ragweed pollen
Comparisons of Urban Transport and Dispersion Model Predictions to Field Trial Data
Heagy, J. F.; Warner, S.; Platt, N.; Urban, J.
2007-12-01
For the past 3 years our group at IDA has been involved in validation efforts associated with several Urban Transport and Dispersion (T&D) modeling systems. Models under study include MESO/RUSTIC, QUIC-URB/QUIC-PLUME, CT-Analyst, and four sub-models within HPAC, the Urban Canopy Model, Micro-Swift/Spray, the Urban Dispersion Model, and the Urban Windfield Module. Our main efforts have centered on supplying sponsors, and the T&D community as a whole, credible, protocol-driven comparisons of model predictions and field trial observations. I will review our most recent Urban T&D comparison work, with particular attention paid to comparisons of QUIC-URB/QUIC-PLUME predictions to the 29 continuous SF6 releases carried out during the Joint Urban 2003 (JU2003) field experiment in Oklahoma City.
Nonstandard Analysis Applied to Advanced Undergraduate Mathematics - Infinitesimal Modeling
Herrmann, Robert A.
2003-01-01
This is a Research and Instructional Development Project from the U. S. Naval Academy. In this monograph, the basic methods of nonstandard analysis for n-dimensional Euclidean spaces are presented. Specific rules are deveoped and these methods and rules are applied to rigorous integral and differential modeling. The topics include Robinson infinitesimals, limited and infinite numbers; convergence theory, continuity, *-transfer, internal definition, hyprefinite summation, Riemann-Stieltjes int...
Structure Modeling and Validation applied to Source Physics Experiments (SPEs)
Larmat, C. S.; Rowe, C. A.; Patton, H. J.
2012-12-01
The U. S. Department of Energy's Source Physics Experiments (SPEs) comprise a series of small chemical explosions used to develop a better understanding of seismic energy generation and wave propagation for low-yield explosions. In particular, we anticipate improved understanding of the processes through which shear waves are generated by the explosion source. Three tests, 100, 1000 and 1000 kg yields respectively, were detonated in the same emplacement hole and recorded on the same networks of ground motion sensors in the granites of Climax Stock at the Nevada National Security Site. We present results for the analysis and modeling of seismic waveforms recorded close-in on five linear geophone lines extending radially from ground zero, having offsets from 100 to 2000 m and station spacing of 100 m. These records exhibit azimuthal variations of P-wave arrival times, and phase velocity, spreading and attenuation properties of high-frequency Rg waves. We construct a 1D seismic body-wave model starting from a refraction analysis of P-waves and adjusting to address time-domain and frequency-domain dispersion measurements of Rg waves between 2 and 9 Hz. The shallowest part of the structure we address using the arrival times recorded by near-field accelerometers residing within 200 m of the shot hole. We additionally perform a 2D modeling study with the Spectral Element Method (SEM) to investigate which structural features are most responsible for the observed variations, in particular anomalously weak amplitude decay in some directions of this topographically complicated locality. We find that a near-surface, thin, weathered layer of varying thickness and low wave speeds plays a major role on the observed waveforms. We anticipate performing full 3D modeling of the seismic near-field through analysis and validation of waveforms on the 5 radial receiver arrays.
Dispersing Si{sub 3}N{sub 4} at high solids loading - applied to protein forming
Energy Technology Data Exchange (ETDEWEB)
Lyckfeldt, O.; Palmqvist, L. [Swedish Ceramic Inst., Goeteborg (Sweden); Poeydemenge, F. [ENSCI, Limoges (France)
2002-07-01
The dispersing of a Si{sub 3}N{sub 4} powder (UBE SN-E10) at high solids loading in aqueous media was investigated. The powder was used in the as-received (raw) state, after thermal (calcinations) and/or mechanical pre-treatments (ball milling{yields}freeze granulation{yields}freeze-drying). Slips were prepared using pH adjustment with NH{sub 4}OH or an addition of Tiron (low-M{sub w} sulphonic acid). Zeta potential measurements of diluted systems and rheological evaluations of concentrated suspensions were conducted. The effect of adding whey protein concentrate (WPC) was also studied. Zeta potential measurements showed a clear decrease in pH{sub iep} by calcination, whereas Tiron slightly increased the pH{sub iep} of calcined powder and decreased the pH{sub iep} of the as-received powder. Rheological data showed that pH adjustment to 10 was more efficient in stabilising the as-received powder than the calcined powder. pH adjustment was also considered to be the most important effect of adding small amounts of Tiron (0.08 wt%). However, for calcined powder, Tiron was shown to be equally efficient as pH adjustment. Pre-milling followed by freeze granulation/freeze-drying resulted in de-agglomerated powders with improved ability to rapidly disperse and, hence, extend the possibility of achieving extreme solids loadings. When approaching the practical limits in solids loading of these pre-milled powders, slips with 49.5 vol% of as-received and 46.6 vol% of calcined powders displayed clear shear thickening behaviour. However, addition of WPC (12 wt% based on water) significantly decreased the degree of shear thickening although the viscosity at lower shear rates increased. The gelling of WPC was distinct and rapid in suspensions with the two pre-milled powders, as-received stabilised at pH 10 and calcined stabilised with Tiron. (orig.)
Schiavon, Marco; Ragazzi, Marco; Torretta, Vincenzo; Rada, Elena Cristina
2016-01-01
Biofiltration has been widely applied to remove odours and volatile organic compounds (VOCs) from industrial off-gas and mechanical-biological waste treatments. However, conventional open biofilters cannot guarantee an efficient dispersion of air pollutants emitted into the atmosphere. The aim of this paper is to compare conventional open biofilters with biotrickling filters (BTFs) in terms of VOC dispersion in the atmosphere and air quality in the vicinity of a hypothetical municipal solid waste bio-drying plant. Simulations of dispersion were carried out regarding two VOCs of interest due to their impact in terms of odours and cancer risk: dimethyl disulphide and benzene, respectively. The use of BTFs, instead of conventional biofilters, led to significant improvements in the odour impact and the cancer risk: when adopting BTFs instead of an open biofilter, the area with an odour concentration > 1 OU m(-3) and a cancer risk > 10(-6) was reduced by 91.6% and 95.2%, respectively. When replacing the biofilter with BTFs, the annual mean concentrations of odorants and benzene decreased by more than 90% in the vicinity of the plant. These improvements are achieved above all because of the higher release height of BTFs and the higher velocity of the outgoing air flow.
Mathematical modelling applied to LiDAR data
Directory of Open Access Journals (Sweden)
Javier Estornell
2013-06-01
Full Text Available The aim of this article is to explain the application of several mathematic calculations to LiDAR (Light Detection And Ranging data to estimate vegetation parameters and modelling the relief of a forest area in the town of Chiva (Valencia. To represent the surface that describes the topography of the area, firstly, morphological filters were applied iteratively to select LiDAR ground points. From these data, the Triangulated Irregular Network (TIN structure was applied to model the relief of the area. From LiDAR data the canopy height model (CHM was also calculated. This model allowed obtaining bare soil, shrub and tree vegetation mapping in the study area. In addition, biomass was estimated from measurements taken in the field in 39 circular plots of radius 0.5 m and the 95th percentile of the LiDAR height datanincluded in each plot. The results indicated a high relationship between the two variables (measurednbiomass and 95th percentile with a coeficient of determination (R2 of 0:73. These results reveal the importance of using mathematical modelling to obtain information of the vegetation and land relief from LiDAR data.
Probabilistic Analysis Techniques Applied to Complex Spacecraft Power System Modeling
Hojnicki, Jeffrey S.; Rusick, Jeffrey J.
2005-01-01
Electric power system performance predictions are critical to spacecraft, such as the International Space Station (ISS), to ensure that sufficient power is available to support all the spacecraft s power needs. In the case of the ISS power system, analyses to date have been deterministic, meaning that each analysis produces a single-valued result for power capability because of the complexity and large size of the model. As a result, the deterministic ISS analyses did not account for the sensitivity of the power capability to uncertainties in model input variables. Over the last 10 years, the NASA Glenn Research Center has developed advanced, computationally fast, probabilistic analysis techniques and successfully applied them to large (thousands of nodes) complex structural analysis models. These same techniques were recently applied to large, complex ISS power system models. This new application enables probabilistic power analyses that account for input uncertainties and produce results that include variations caused by these uncertainties. Specifically, N&R Engineering, under contract to NASA, integrated these advanced probabilistic techniques with Glenn s internationally recognized ISS power system model, System Power Analysis for Capability Evaluation (SPACE).
Online traffic flow model applying dynamic flow-density relation
Kim, Y
2002-01-01
This dissertation describes a new approach of the online traffic flow modelling based on the hydrodynamic traffic flow model and an online process to adapt the flow-density relation dynamically. The new modelling approach was tested based on the real traffic situations in various homogeneous motorway sections and a motorway section with ramps and gave encouraging simulation results. This work is composed of two parts: first the analysis of traffic flow characteristics and second the development of a new online traffic flow model applying these characteristics. For homogeneous motorway sections traffic flow is classified into six different traffic states with different characteristics. Delimitation criteria were developed to separate these states. The hysteresis phenomena were analysed during the transitions between these traffic states. The traffic states and the transitions are represented on a states diagram with the flow axis and the density axis. For motorway sections with ramps the complicated traffic fl...
Phonon dispersion relation of liquid metals
Indian Academy of Sciences (India)
P B Thakor; P N Gajjar; A R Jani
2009-06-01
The phonon dispersion curves of some liquid metals, viz. Na ( = 1), Mg ( = 2), Al ( = 3) and Pb ( = 4), have been computed using our model potential. The charged hard sphere (CHS) reference system is applied to describe the structural information. Our model potential along with CHS reference system is capable of explaining the phonon dispersion relation for monovalent, divalent, trivalent and tetravalent liquid metals.
Flexible models for spike count data with both over- and under- dispersion.
Stevenson, Ian H
2016-08-01
A key observation in systems neuroscience is that neural responses vary, even in controlled settings where stimuli are held constant. Many statistical models assume that trial-to-trial spike count variability is Poisson, but there is considerable evidence that neurons can be substantially more or less variable than Poisson depending on the stimuli, attentional state, and brain area. Here we examine a set of spike count models based on the Conway-Maxwell-Poisson (COM-Poisson) distribution that can flexibly account for both over- and under-dispersion in spike count data. We illustrate applications of this noise model for Bayesian estimation of tuning curves and peri-stimulus time histograms. We find that COM-Poisson models with group/observation-level dispersion, where spike count variability is a function of time or stimulus, produce more accurate descriptions of spike counts compared to Poisson models as well as negative-binomial models often used as alternatives. Since dispersion is one determinant of parameter standard errors, COM-Poisson models are also likely to yield more accurate model comparison. More generally, these methods provide a useful, model-based framework for inferring both the mean and variability of neural responses.
Construction and Validation of an Urban Area Flow and Dispersion Model on Building Scales
Institute of Scientific and Technical Information of China (English)
陈笔澄; 刘树华; 缪育聪; 王姝; 李源
2013-01-01
This paper presents a numerical model that simulates the wind fields, turbulence fields, and dispersion of gaseous substances in urban areas on building to city block scales. A Computational Fluid Dynamics (CFD) approach using the steady-state, Reynolds-Averaged Navier-Stokes (RANS) equations with the standard k-ε turbulence model within control volumes of non-uniform cuboid shapes has been employed. Dispersion field is computed by solving an unsteady transport equation of passive scalar. Another approach based on Gaussian plume model is used to correct the turbulent Schmidt number of tracer, in order to improve the dispersion simulation. The experimental data from a wind tunnel under neutral conditions are used to validate the numerical results of velocity, turbulence, and dispersion fields. The numerical results show a reasonable agreement with the wind tunnel data. The deviation of concentration between the simulation with corrected turbulent Schmidt number and the wind tunnel experiments may arise from 1) imperfect point sources, 2) heterogeneous turbulent diffusivity, and 3) the constant turbulent Schmidt assumption used in the model.
2012-03-22
and that approximately 40% of the pollutant was deposited in the 10 by 10 grid ( Schaum et al., 2010). In the late 90’s EPA and American...Sawyer, P. (2007). Atmospheric dispersion model validation in low wind conditions. National Security Technologies, LLC. Schaum , J., Cohen, M., Perry, S
Litchford, Ron J.; Jeng, San-Mou
1992-01-01
The performance of a recently introduced statistical transport model for turbulent particle dispersion is studied here for rigid particles injected into a round turbulent jet. Both uniform and isosceles triangle pdfs are used. The statistical sensitivity to parcel pdf shape is demonstrated.
Périllat, Raphaël; Korsakissok, Irène; Mallet, Vivien; Mathieu, Anne; Sekiyama, Thomas; Didier, Damien; Kajino, Mizuo; Igarashi, Yasuhito; Adachi, Kouji
2016-04-01
Dispersion models are used in response to an accidental release of radionuclides of the atmosphere, to infer mitigation actions, and complement field measurements for the assessment of short and long term environmental and sanitary impacts. However, the predictions of these models are subject to important uncertainties, especially due to input data, such as meteorological fields or source term. This is still the case more than four years after the Fukushima disaster (Korsakissok et al., 2012, Girard et al., 2014). In the framework of the SAKURA project, an MRI-IRSN collaboration, a meteorological ensemble of 20 members designed by MRI (Sekiyama et al. 2013) was used with IRSN's atmospheric dispersion models. Another ensemble, retrieved from ECMWF and comprising 50 members, was also used for comparison. The MRI ensemble is 3-hour assimilated, with a 3-kilometers resolution, designed to reduce the meteorological uncertainty in the Fukushima case. The ECMWF is a 24-hour forecast with a coarser grid, representative of the uncertainty of the data available in a crisis context. First, it was necessary to assess the quality of the ensembles for our purpose, to ensure that their spread was representative of the uncertainty of meteorological fields. Using meteorological observations allowed characterizing the ensembles' spread, with tools such as Talagrand diagrams. Then, the uncertainty was propagated through atmospheric dispersion models. The underlying question is whether the output spread is larger than the input spread, that is, whether small uncertainties in meteorological fields can produce large differences in atmospheric dispersion results. Here again, the use of field observations was crucial, in order to characterize the spread of the ensemble of atmospheric dispersion simulations. In the case of the Fukushima accident, gamma dose rates, air activities and deposition data were available. Based on these data, selection criteria for the ensemble members were
Atmospheric aerosol dispersion models and their applications to environmental risk assessment
Directory of Open Access Journals (Sweden)
Andrzej Mazur
2014-03-01
Full Text Available Introduction. Numerical models of dispersion of atmospheric pollutants are widely used to forecast the spread of contaminants in the air and to analyze the effects of this phenomenon. The aim of the study is to investigate the possibilities and the quality of diagnosis and prediction of atmospheric transport of aerosols in the air using the dispersion model of atmospheric pollutants, developed at the Institute of Meteorology and Water Management (IMWM in Warsaw. Material and methods. A model of the dispersion of atmospheric pollutants, linked with meteorological models in a diagnostic mode, was used to simulate the transport of the cloud of aerosols released during the crash near the town of Ożydiw (Ukraine and of volcanic ash – during the volcanic eruption of Eyjafjallajökull in Iceland. Results. Possible directions of dispersion of pollutants in the air and its concentration in the atmosphere and deposition to the soil were assessed. The analysis of temporal variability of concentrations of aerosols in the atmosphere confirmed that the model developed at IMWM is an effective tool for diagnosis of air quality in the area of Poland as well as for determination of exposure duration to the aerosol clouds for different weather scenarios. Conclusions. The results are a confirmation of the thesis, that because in the environmental risk assessment, an important element is not only current information on the level of pollution concentrations, but also the time of exposure to pollution and forecast of these elements, and consequently the predicted effects on man or the environment in general; so it is necessary to use forecasting tools, similar to presented application. The dispersion model described in the paper is an operational tool for description, analysis and forecasting of emergency situations in case of emissions of hazardous substances.
Dispersal patterns in the North Sea, insights from a high resolution model
Mayorga Adame, Claudia Gabriela; Polton, Jeff; Holt, Jason; Graham, Jennifer; Henry, Lea-Anne
2017-04-01
Lagrangian particle tracking simulations are useful to elucidate the fate of materials transported by ocean currents ( i.e. larvae, pollutants, debris, drifters), and can therefore be useful to study important process in coastal seas. Dispersal patterns should be improved by the new generation of high horizontal resolution (ocean circulation models which provide an improved, more dynamic representation of the coastal ocean. We used the new high resolution Northwest European Shelf NEMO ocean circulation model and LTRANS, a particle tracking code, to study the effects of the increased resolution on the dispersion of Lagrangian particles in the North Sea. Particles were released at the locations of offshore oil and gas platforms in the North Sea and tracked for periods similar to the larval duration of benthic organisms that have colonized the subsea platforms. Dispersal patterns and spatio-temporal scales are identified for the summer (stratified) and winter (mixed) oceanographic regimes. The high resolution of the new NEMO model allows for fine scale detail of flow speed and variability. The small scale features (i.e. eddies and fronts) now represented in the model trap particles, decreasing their dispersal and increasing retention times in comparison to simulations done on a previous coarser resolution NEMO version (7 km AMM7). We isolated the effects of resolution from those due to different representations of the circulation in the different versions of the ocean circulation model by averaging the high resolution model velocity fields to the coarser (7 km) grid, and comparing the results of identical particle tracking experiments using these two flow fields. Our results provide a measure of the importance of high resolution flow fields when estimating transport of materials in an enclosed sea and provide a more realistic characterisation of dispersion in the North Sea.
Pollutant Dispersion Modeling in Natural Streams Using the Transmission Line Matrix Method
Directory of Open Access Journals (Sweden)
Safia Meddah
2015-09-01
Full Text Available Numerical modeling has become an indispensable tool for solving various physical problems. In this context, we present a model of pollutant dispersion in natural streams for the far field case where dispersion is considered longitudinal and one-dimensional in the flow direction. The Transmission Line Matrix (TLM, which has earned a reputation as powerful and efficient numerical method, is used. The presented one-dimensional TLM model requires a minimum input data and provides a significant gain in computing time. To validate our model, the results are compared with observations and experimental data from the river Severn (UK. The results show a good agreement with experimental data. The model can be used to predict the spatiotemporal evolution of a pollutant in natural streams for effective and rapid decision-making in a case of emergency, such as accidental discharges in a stream with a dynamic similar to that of the river Severn (UK.
Sundararaman, Ravishankar; Arias, T A
2014-01-01
Continuum solvation models enable efficient first principles calculations of chemical reactions in solution, but require extensive parametrization and fitting for each solvent and class of solute systems. Here, we examine the assumptions of continuum solvation models in detail and replace empirical terms with physical models in order to construct a minimally-empirical solvation model. Specifically, we derive solvent radii from the nonlocal dielectric response of the solvent from ab initio calculations, construct a closed-form and parameter-free weighted-density approximation for the free energy of the cavity formation, and employ a pair-potential approximation for the dispersion energy. We show that the resulting model with a single solvent-independent parameter: the electron density threshold ($n_c$), and a single solvent-dependent parameter: the dispersion scale factor ($s_6$), reproduces solvation energies of organic molecules in water, chloroform and carbon tetrachloride with RMS errors of 1.1, 0.6 and 0....
SIRANERISK: Modelling dispersion of steady and unsteady pollutant releases in the urban canopy
Soulhac, L.; Lamaison, G.; Cierco, F.-X.; Ben Salem, N.; Salizzoni, P.; Mejean, P.; Armand, P.; Patryl, L.
2016-09-01
SIRANERISK is an operational model for the simulation of the dispersion of unsteady atmospheric releases of pollutant within and above an urban area. SIRANERISK is built on the same principles as the SIRANE model, and couples a street network model for the pollutant transfers within the urban canopy with a Gaussian puff model for the transfers above it. The performance of the model are here analysed by a detailed comparisons with wind-tunnel experiments. These experiments concern the dispersion of steady and unsteady pollutant releases within and above obstacle arrays with varying geometrical configurations, representing different topologies of idealised urban districts. The overall good agreement between numerical and experimental data demonstrates the reliability of SIRANERISK as an operational tool for the assessment of risk analysis and for the management of crises due to the accidental release of harmful airborne pollutants within a built environment.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Semiparametric reproductive dispersion nonlinear model (SRDNM) is an extension of nonlinear reproductive dispersion models and semiparametric nonlinear regression models, and includes semiparametric nonlinear model and semiparametric generalized linear model as its special cases. Based on the local kernel estimate of nonparametric component, profile-kernel and backfitting estimators of parameters of interest are proposed in SRDNM, and theoretical comparison of both estimators is also investigated in this paper. Under some regularity conditions, strong consistency and asymptotic normality of two estimators are proved. It is shown that the backfitting method produces a larger asymptotic variance than that for the profile-kernel method. A simulation study and a real example are used to illustrate the proposed methodologies.
Stenzel, S.; Baumann-Stanzer, K.
2009-04-01
Dispersion modeling of accidental releases of toxic gases - Comparison of the models and their utility for the fire brigades. Sirma Stenzel, Kathrin Baumann-Stanzer In the case of accidental release of hazardous gases in the atmosphere, the emergency responders need a reliable and fast tool to assess the possible consequences and apply the optimal countermeasures. For hazard prediction and simulation of the hazard zones a number of air dispersion models are available. The most model packages (commercial or free of charge) include a chemical database, an intuitive graphical user interface (GUI) and automated graphical output for display the results, they are easy to use and can operate fast and effective during stress situations. The models are designed especially for analyzing different accidental toxic release scenarios ("worst-case scenarios"), preparing emergency response plans and optimal countermeasures as well as for real-time risk assessment and management. There are also possibilities for model direct coupling to automatic meteorological stations, in order to avoid uncertainties in the model output due to insufficient or incorrect meteorological data. Another key problem in coping with accidental toxic release is the relative width spectrum of regulations and values, like IDLH, ERPG, AEGL, MAK etc. and the different criteria for their application. Since the particulate emergency responders and organizations require for their purposes unequal regulations and values, it is quite difficult to predict the individual hazard areas. There are a quite number of research studies and investigations coping with the problem, anyway the end decision is up to the authorities. The research project RETOMOD (reference scenarios calculations for toxic gas releases - model systems and their utility for the fire brigade) was conducted by the Central Institute for Meteorology and Geodynamics (ZAMG) in cooperation with the Vienna fire brigade, OMV Refining & Marketing GmbH and
The building and simulation of color analytical model based on prism dispersion
Yu, Xun; Li, Xiaoming; Wang, Yawei
2015-02-01
The color based on prism dispersion was analyzed and the mathematical model was established in this paper. Firstly, based on Dan Bruton's research, the mapping relationship between visible wavelength and data in color map matrix was created, the geometric data of color after dispersion of the prism was processed with least squares curve fitting, then the mapping relationship between wavelength and the refractive index was built. Secondly, on the basis of the work before, the mapping relationship between wavelength and projection geometry was built. Finally, through the building of color management system, the characterization of spectral lines and colors in LAB color space would be got.
Apply a hydrological model to estimate local temperature trends
Igarashi, Masao; Shinozawa, Tatsuya
2014-03-01
Continuous times series {f(x)} such as a depth of water is written f(x) = T(x)+P(x)+S(x)+C(x) in hydrological science where T(x),P(x),S(x) and C(x) are called the trend, periodic, stochastic and catastrophic components respectively. We simplify this model and apply it to the local temperature data such as given E. Halley (1693), the UK (1853-2010), Germany (1880-2010), Japan (1876-2010). We also apply the model to CO2 data. The model coefficients are evaluated by a symbolic computation by using a standard personal computer. The accuracy of obtained nonlinear curve is evaluated by the arithmetic mean of relative errors between the data and estimations. E. Halley estimated the temperature of Gresham College from 11/1692 to 11/1693. The simplified model shows that the temperature at the time rather cold compared with the recent of London. The UK and Germany data sets show that the maximum and minimum temperatures increased slowly from the 1890s to 1940s, increased rapidly from the 1940s to 1980s and have been decreasing since the 1980s with the exception of a few local stations. The trend of Japan is similar to these results.
A linear model approach for ultrasonic inverse problems with attenuation and dispersion.
Carcreff, Ewen; Bourguignon, Sébastien; Idier, Jérôme; Simon, Laurent
2014-07-01
Ultrasonic inverse problems such as spike train deconvolution, synthetic aperture focusing, or tomography attempt to reconstruct spatial properties of an object (discontinuities, delaminations, flaws, etc.) from noisy and incomplete measurements. They require an accurate description of the data acquisition process. Dealing with frequency-dependent attenuation and dispersion is therefore crucial because both phenomena modify the wave shape as the travel distance increases. In an inversion context, this paper proposes to exploit a linear model of ultrasonic data taking into account attenuation and dispersion. The propagation distance is discretized to build a finite set of radiation impulse responses. Attenuation is modeled with a frequency power law and then dispersion is computed to yield physically consistent responses. Using experimental data acquired from attenuative materials, this model outperforms the standard attenuation-free model and other models of the literature. Because of model linearity, robust estimation methods can be implemented. When matched filtering is employed for single echo detection, the model that we propose yields precise estimation of the attenuation coefficient and of the sound velocity. A thickness estimation problem is also addressed through spike deconvolution, for which the proposed model also achieves accurate results.
Institute of Scientific and Technical Information of China (English)
林金官; 韦博成
2004-01-01
In this paper, it is discussed that two tests for varying dispersion of binomial data in the framework of nonlinear logistic models with random effects, which are widely used in analyzing longitudinal binomial data. One is the individual test and power calculation for varying dispersion through testing the randomness of cluster effects, which is extensions of Dean(1992) and Commenges et al (1994). The second test is the composite test for varying dispersion through simultaneously testing the randomness of cluster effects and the equality of random-effect means. The score test statistics are constructed and expressed in simple, easy to use, matrix formulas. The authors illustrate their test methods using the insecticide data (Giltinan, Capizzi & Malani (1988)).
Simple predictive electron transport models applied to sawtoothing plasmas
Kim, D.; Merle, A.; Sauter, O.; Goodman, T. P.
2016-05-01
In this work, we introduce two simple transport models to evaluate the time evolution of electron temperature and density profiles during sawtooth cycles (i.e. over a sawtooth period time-scale). Since the aim of these simulations is to estimate reliable profiles within a short calculation time, two simplified ad-hoc models have been developed. The goal for these models is to rely on a few easy-to-check free parameters, such as the confinement time scaling factor and the profiles’ averaged scale-lengths. Due to the simplicity and short calculation time of the models, it is expected that these models can also be applied to real-time transport simulations. We show that it works well for Ohmic and EC heated L- and H-mode plasmas. The differences between these models are discussed and we show that their predictive capabilities are similar. Thus only one model is used to reproduce with simulations the results of sawtooth control experiments on the TCV tokamak. For the sawtooth pacing, the calculated time delays between the EC power off and sawtooth crash time agree well with the experimental results. The map of possible locking range is also well reproduced by the simulation.
Shirazi, Mohammadali; Lord, Dominique; Dhavala, Soma Sekhar; Geedipally, Srinivas Reddy
2016-06-01
Crash data can often be characterized by over-dispersion, heavy (long) tail and many observations with the value zero. Over the last few years, a small number of researchers have started developing and applying novel and innovative multi-parameter models to analyze such data. These multi-parameter models have been proposed for overcoming the limitations of the traditional negative binomial (NB) model, which cannot handle this kind of data efficiently. The research documented in this paper continues the work related to multi-parameter models. The objective of this paper is to document the development and application of a flexible NB generalized linear model with randomly distributed mixed effects characterized by the Dirichlet process (NB-DP) to model crash data. The objective of the study was accomplished using two datasets. The new model was compared to the NB and the recently introduced model based on the mixture of the NB and Lindley (NB-L) distributions. Overall, the research study shows that the NB-DP model offers a better performance than the NB model once data are over-dispersed and have a heavy tail. The NB-DP performed better than the NB-L when the dataset has a heavy tail, but a smaller percentage of zeros. However, both models performed similarly when the dataset contained a large amount of zeros. In addition to a greater flexibility, the NB-DP provides a clustering by-product that allows the safety analyst to better understand the characteristics of the data, such as the identification of outliers and sources of dispersion.
Applying a Dynamic Resource Supply Model in a Smart Grid
Directory of Open Access Journals (Sweden)
Kaiyu Wan
2014-09-01
Full Text Available Dynamic resource supply is a complex issue to resolve in a cyber-physical system (CPS. In our previous work, a resource model called the dynamic resource supply model (DRSM has been proposed to handle resources specification, management and allocation in CPS. In this paper, we are integrating the DRSM with service-oriented architecture and applying it to a smart grid (SG, one of the most complex CPS examples. We give the detailed design of the SG for electricity charging request and electricity allocation between plug-in hybrid electric vehicles (PHEV and DRSM through the Android system. In the design, we explain a mechanism for electricity consumption with data collection and re-allocation through ZigBee network. In this design, we verify the correctness of this resource model for expected electricity allocation.
Dynamic Decision Making for Graphical Models Applied to Oil Exploration
Martinelli, Gabriele; Hauge, Ragnar
2012-01-01
We present a framework for sequential decision making in problems described by graphical models. The setting is given by dependent discrete random variables with associated costs or revenues. In our examples, the dependent variables are the potential outcomes (oil, gas or dry) when drilling a petroleum well. The goal is to develop an optimal selection strategy that incorporates a chosen utility function within an approximated dynamic programming scheme. We propose and compare different approximations, from simple heuristics to more complex iterative schemes, and we discuss their computational properties. We apply our strategies to oil exploration over multiple prospects modeled by a directed acyclic graph, and to a reservoir drilling decision problem modeled by a Markov random field. The results show that the suggested strategies clearly improve the simpler intuitive constructions, and this is useful when selecting exploration policies.
Curve Fitting And Interpolation Model Applied In Nonel Dosage Detection
Directory of Open Access Journals (Sweden)
Jiuling Li
2013-06-01
Full Text Available The Curve Fitting and Interpolation Model are applied in Nonel dosage detection in this paper firstly, and the gray of continuous explosive in the Nonel has been forecasted. Although the traditional infrared equipment establishes the relationship of explosive dosage and light intensity, but the forecast accuracy is very low. Therefore, gray prediction models based on curve fitting and interpolation are framed separately, and the deviations from the different models are compared. Simultaneously, combining on the sample library features, the cubic polynomial fitting curve of the higher precision is used to predict grays, and 5mg-28mg Nonel gray values are calculated by MATLAB. Through the predictive values, the dosage detection operations are simplified, and the defect missing rate of the Nonel are reduced. Finally, the quality of Nonel is improved.
Remote sensing applied to numerical modelling. [water resources pollution
Sengupta, S.; Lee, S. S.; Veziroglu, T. N.; Bland, R.
1975-01-01
Progress and remaining difficulties in the construction of predictive mathematical models of large bodies of water as ecosystems are reviewed. Surface temperature is at present the only variable than can be measured accurately and reliably by remote sensing techniques, but satellite infrared data are of sufficient resolution for macro-scale modeling of oceans and large lakes, and airborne radiometers are useful in meso-scale analysis (of lakes, bays, and thermal plumes). Finite-element and finite-difference techniques applied to the solution of relevant coupled time-dependent nonlinear partial differential equations are compared, and the specific problem of the Biscayne Bay and environs ecosystem is tackled in a finite-differences treatment using the rigid-lid model and a rigid-line grid system.
Three-Dimensional Gravity Model Applied to Underwater Navigation
Institute of Scientific and Technical Information of China (English)
YAN Lei; FENG Hao; DENG Zhongliang; GAO Zhengbing
2004-01-01
At present, new integrated navigation, which usesthe location function of reference gravity anomaly map to control the errors of the inertial navigation system (INS), has been developed in marine navigation. It is named the gravityaided INS. Both the INS and real-time computation of gravity anomalies need a 3-D marine normal gravity model.Conventionally, a reduction method applied in geophysical survey is directly introduced to observed data processing. This reduction does not separate anomaly from normal gravity in the observed data, so errors cannot be avoided. The 3-D marine normal gravity model was derived from the J2 gravity model, and is suitable for the region whose depth is less than 1000 m.
Schmiedel, Doreen; Huth, Franka; Wagner, Sven
2013-10-01
Management strategies to control invasive species need information about dispersal distances to predict establishment potential. Fraxinus pennsylvanica is a North American anemochorous tree species that is invasive in many Central European floodplain forests. To predict seed-dispersal potential, the stochastic model WaldStat was used, which enables different options for directionality (isotropic and anisotropic) to be simulated. In this article, we (1) show empirical results of fructification and seed dispersal for this tree species. The model predicts approximately 250,000 seeds for one F. pennsylvanica tree. These results were used to (2) calculate species-specific dispersal distances and effects of wind direction. To consider the influence of wind on dispersal potential of the tree species, long-distance dispersal (LDD [95th percentile dispersal distance]) was calculated. Mean dispersal distances varied between 47 and 66 m. LDD values modelled along the main wind direction ranged from 60 to 150 m. Seed production, dispersal distance, and direction data were (3) incorporated into theoretical management scenarios for forest ecosystems. Finally (4), we discuss management options and the practical relevance of model scenarios in relation to the accuracy of spatial dispersal predictions. Further analyses should be focused on possible, well-adapted management concepts at stand level that could restrict the potential spread of invasive species.
Colgan, N; Siow, B; O'Callaghan, J M; Harrison, I F; Wells, J A; Holmes, H E; Ismail, O; Richardson, S; Alexander, D C; Collins, E C; Fisher, E M; Johnson, R; Schwarz, A J; Ahmed, Z; O'Neill, M J; Murray, T K; Zhang, H; Lythgoe, M F
2016-01-15
Increased hyperphosphorylated tau and the formation of intracellular neurofibrillary tangles are associated with the loss of neurons and cognitive decline in Alzheimer's disease, and related neurodegenerative conditions. We applied two diffusion models, diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI), to in vivo diffusion magnetic resonance images (dMRI) of a mouse model of human tauopathy (rTg4510) at 8.5months of age. In grey matter regions with the highest degree of tau burden, microstructural indices provided by both NODDI and DTI discriminated the rTg4510 (TG) animals from wild type (WT) controls; however only the neurite density index (NDI) (the volume fraction that comprises axons or dendrites) from the NODDI model correlated with the histological measurements of the levels of hyperphosphorylated tau protein. Reductions in diffusion directionality were observed when implementing both models in the white matter region of the corpus callosum, with lower fractional anisotropy (DTI) and higher orientation dispersion (NODDI) observed in the TG animals. In comparison to DTI, histological measures of tau pathology were more closely correlated with NODDI parameters in this region. This in vivo dMRI study demonstrates that NODDI identifies potential tissue sources contributing to DTI indices and NODDI may provide greater specificity to pathology in Alzheimer's disease.
LENUS (Irish Health Repository)
Colgan, N
2015-10-23
Increased hyperphosphorylated tau and the formation of intracellular neurofibrillary tangles are associated with the loss of neurons and cognitive decline in Alzheimer\\'s disease, and related neurodegenerative conditions. We applied two diffusion models, diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI), to in vivo diffusion magnetic resonance images (dMRI) of a mouse model of human tauopathy (rTg4510) at 8.5months of age. In grey matter regions with the highest degree of tau burden, microstructural indices provided by both NODDI and DTI discriminated the rTg4510 (TG) animals from wild type (WT) controls; however only the neurite density index (NDI) (the volume fraction that comprises axons or dendrites) from the NODDI model correlated with the histological measurements of the levels of hyperphosphorylated tau protein. Reductions in diffusion directionality were observed when implementing both models in the white matter region of the corpus callosum, with lower fractional anisotropy (DTI) and higher orientation dispersion (NODDI) observed in the TG animals. In comparison to DTI, histological measures of tau pathology were more closely correlated with NODDI parameters in this region. This in vivo dMRI study demonstrates that NODDI identifies potential tissue sources contributing to DTI indices and NODDI may provide greater specificity to pathology in Alzheimer\\'s disease.
Beckett, F. M.; Witham, C. S.; Hort, M. C.; Stevenson, J. A.; Bonadonna, C.; Millington, S. C.
2015-11-01
This study examines the sensitivity of atmospheric dispersion model forecasts of volcanic ash clouds to the physical characteristics assigned to the particles. We show that the particle size distribution (PSD) used to initialise a dispersion model has a significant impact on the forecast of the mass loading of the ash particles in the atmosphere. This is because the modeled fall velocity of the particles is sensitive to the particle diameter. Forecasts of the long-range transport of the ash cloud consider particles with diameters between 0.1 μm and 100 μm. The fall velocity of particles with diameter 100 μm is over 5 orders of magnitude greater than a particle with diameter 0.1 μm, and 30 μm particles fall 88% slower and travel up to 5× further than a 100 μm particle. Identifying the PSD of the ash cloud at the source, which is required to initialise a model, is difficult. Further, aggregation processes are currently not explicitly modeled in operational dispersion models due to the high computational costs associated with aggregation schemes. We show that using a modified total grain size distribution (TGSD) that effectively accounts for aggregation processes improves the modeled PSD of the ash cloud and deposits from the eruption of Eyjafjallajökull in 2010. Knowledge of the TGSD of an eruption is therefore critical for reducing uncertainty in quantitative forecasts of ash cloud dispersion. The density and shape assigned to the model particles have a lesser but still significant impact on the calculated fall velocity. Accounting for the density distribution and sphericity of ash from the eruption of Eyjafjallajökull in 2010, modeled particles can travel up to 84% further than particles with default particle characteristics that assume the particles are spherical and have a fixed density.
Methodology for risk analysis based on atmospheric dispersion modelling from nuclear risk sites
Baklanov, A.; Mahura, A.; Sørensen, J. H.; Rigina, O.
2003-04-01
The main purpose of this multidisciplinary study is to develop a methodology for complex nuclear risk and vulnerability assessment, and to test it on example of estimation of nuclear risk to the population in the Nordic countries in case of a severe accident at a nuclear risk site (NRS). The main focus of the paper is the methodology for the evaluation of the atmospheric transport and deposition of radioactive pollutants from NRSs. The method developed for this evaluation is derived from a probabilistic point of view. The main question we are trying to answer is: What is the probability for radionuclide atmospheric transport and impact to different neighbouring regions and countries in case of an accident at an NPP? To answer this question we applied a number of different tools: (i) Trajectory Modelling - to calculate multiyear forward trajectories originating over the locations of selected risk sites; (ii) Dispersion Modelling - for long-term simulation and case studies of radionuclide transport from hypothetical accidental releases at NRSs; (iii) Cluster Analysis - to identify atmospheric transport pathways from NRSs; (iv) Probability Fields Analysis - to construct annual, monthly, and seasonal NRS impact indicators to identify the most impacted geographical regions; (v) Specific Case Studies - to estimate consequences for the environment and the populations after a hypothetical accident; (vi) Vulnerability Evaluation to Radioactive Deposition - to describe its persistence in the ecosystems with a focus to the transfer of certain radionuclides into the food chains of key importance for the intake and exposure for a whole population and for certain population groups; (vii) Risk Evaluation and Mapping - to analyse socio-economical consequences for different geographical areas and various population groups taking into account social-geophysical factors and probabilities, and using demographic databases based on GIS analysis.
Institute of Scientific and Technical Information of China (English)
HUANG; Guanhua; HUANG; Quanzhong; ZHAN; Hongbin
2005-01-01
The newly developed Fractional Advection-Dispersion Equation (FADE), which is FADE was extended and used in this paper for modelling adsorbing contaminant transport by adding an adsorbing term. A parameter estimation method and its corresponding FORTRAN based program named FADEMain were developed on the basis of Nonlinear Least Square Algorithm and the analytical solution for one-dimensional FADE under the conditions of step input and steady state flow. Data sets of adsorbing contaminants Cd and NH4+-N transport in short homogeneous soil columns and conservative solute NaCI transport in a long homogeneous soil column, respectively were used to estimate the transport parameters both by FADEMain and the advection-dispersion equation (ADE) based program CXTFIT2.1. Results indicated that the concentration simulated by FADE agreed well with the measured data. Compared to the ADE model, FADE can provide better simulation for the concentration in the initial lower concentration part and the late higher concentration part of the breakthrough curves for both adsorbing contaminants. The dispersion coefficients for ADE were from 0.13 to 7.06 cm2/min, while the dispersion coefficients for FADE ranged from 0.119 to 3.05 cm1.856/min for NaCI transport in the long homogeneous soil column. We found that the dispersion coefficient of FADE increased with the transport distance, and the relationship between them can be quantified with an exponential function. Less scale-dependent was also found for the dispersion coefficient of FADE with respect to ADE.
A simple and accurate model for Love wave based sensors: Dispersion equation and mass sensitivity
Directory of Open Access Journals (Sweden)
Jiansheng Liu
2014-07-01
Full Text Available Dispersion equation is an important tool for analyzing propagation properties of acoustic waves in layered structures. For Love wave (LW sensors, the dispersion equation with an isotropic-considered substrate is too rough to get accurate solutions; the full dispersion equation with a piezoelectric-considered substrate is too complicated to get simple and practical expressions for optimizing LW-based sensors. In this work, a dispersion equation is introduced for Love waves in a layered structure with an anisotropic-considered substrate and an isotropic guiding layer; an intuitive expression for mass sensitivity is also derived based on the dispersion equation. The new equations are in simple forms similar to the previously reported simplified model with an isotropic substrate. By introducing the Maxwell-Weichert model, these equations are also applicable to the LW device incorporating a viscoelastic guiding layer; the mass velocity sensitivity and the mass propagation loss sensitivity are obtained from the real part and the imaginary part of the complex mass sensitivity, respectively. With Love waves in an elastic SiO2 layer on an ST-90°X quartz structure, for example, comparisons are carried out between the velocities and normalized sensitivities calculated by using different dispersion equations and corresponding mass sensitivities. Numerical results of the method presented in this work are very close to those of the method with a piezoelectric-considered substrate. Another numerical calculation is carried out for the case of a LW sensor with a viscoelastic guiding layer. If the viscosity of the layer is not too big, the effect on the real part of the velocity and the mass velocity sensitivity is relatively small; the propagation loss and the mass loss sensitivity are proportional to the viscosity of the guiding layer.
The Lagrangian particle dispersion model FLEXPART-WRF VERSION 3.1
Energy Technology Data Exchange (ETDEWEB)
Brioude, J.; Arnold, D.; Stohl, A.; Cassiani, M.; Morton, Don; Seibert, P.; Angevine, W. M.; Evan, S.; Dingwell, A.; Fast, Jerome D.; Easter, Richard C.; Pisso, I.; Bukhart, J.; Wotawa, G.
2013-11-01
The Lagrangian particle dispersion model FLEXPART was originally designed for cal- culating long-range and mesoscale dispersion of air pollutants from point sources, such as after an accident in a nuclear power plant. In the meantime FLEXPART has evolved into a comprehensive tool for atmospheric transport modeling and analysis at different scales. This multiscale need from the modeler community has encouraged new developments in FLEXPART. In this document, we present a version that works with the Weather Research and Forecasting (WRF) mesoscale meteoro- logical model. Simple procedures on how to run FLEXPART-WRF are presented along with special options and features that differ from its predecessor versions. In addition, test case data, the source code and visualization tools are provided to the reader as supplementary material.
Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2
Directory of Open Access Journals (Sweden)
A. Stohl
2005-01-01
Full Text Available The Lagrangian particle dispersion model FLEXPART was originally (about 8 years ago designed for calculating the long-range and mesoscale dispersion of air pollutants from point sources, such as after an accident in a nuclear power plant. In the meantime FLEXPART has evolved into a comprehensive tool for atmospheric transport modeling and analysis. Its application fields were extended from air pollution studies to other topics where atmospheric transport plays a role (e.g., exchange between the stratosphere and troposphere, or the global water cycle. It has evolved into a true community model that is now being used by at least 25 groups from 14 different countries and is seeing both operational and research applications. A user manual has been kept actual over the years and was distributed over an internet page along with the model's source code. In this note we provide a citeable technical description of FLEXPART's latest version (6.2.
Mixed Platoon Flow Dispersion Model Based on Speed-Truncated Gaussian Mixture Distribution
Directory of Open Access Journals (Sweden)
Weitiao Wu
2013-01-01
Full Text Available A mixed traffic flow feature is presented on urban arterials in China due to a large amount of buses. Based on field data, a macroscopic mixed platoon flow dispersion model (MPFDM was proposed to simulate the platoon dispersion process along the road section between two adjacent intersections from the flow view. More close to field observation, truncated Gaussian mixture distribution was adopted as the speed density distribution for mixed platoon. Expectation maximum (EM algorithm was used for parameters estimation. The relationship between the arriving flow distribution at downstream intersection and the departing flow distribution at upstream intersection was investigated using the proposed model. Comparison analysis using virtual flow data was performed between the Robertson model and the MPFDM. The results confirmed the validity of the proposed model.
A computationally efficient model for turbulent droplet dispersion in spray combustion
Litchford, Ron J.; Jeng, San-Mou
1990-01-01
A novel model for turbulent droplet dispersion is formulated having significantly improved computational efficiency in comparison to the conventional point source stochastic sampling methodology. In the proposed model, a computational parcel representing a group of physical particles is considered to have a normal (Gaussian) probability density function (PDF) in three-dimensional space. The mean of each PDF is determined by Lagrangian tracking of each computational parcel, either deterministically or stochastically. The variance is represented by a turbulence-induced mean squared dispersion which is based on statistical inferences from the linearized direct modeling formulation for particle/eddy interactions. Convolution of the computational parcel PDF's produces a single PDF for the physical particle distribution profile. The validity of the new model is established by comparison with the conventional stochastic sampling method, where in each parcel is represented by a delta function distribution, for non-evaporating particles injected into simple turbulent air flows.
Applying Mechanistic Dam Breach Models to Historic Levee Breaches
Directory of Open Access Journals (Sweden)
Risher Paul
2016-01-01
Full Text Available Hurricane Katrina elevated levee risk in the US national consciousness, motivating agencies to assess and improve their levee risk assessment methodology. Accurate computation of the flood flow magnitude and timing associated with a levee breach remains one of the most difficult and uncertain components of levee risk analysis. Contemporary methods are largely empirical and approximate, introducing substantial uncertainty to the damage and life loss models. Levee breach progressions are often extrapolated to the final width and breach formation time based on limited experience with past breaches or using regression equations developed from a limited data base of dam failures. Physically based embankment erosion models could improve levee breach modeling. However, while several mechanistic embankment breach models are available, they were developed for dams. Several aspects of the levee breach problem are distinct, departing from dam breach assumptions. This study applies three embankments models developed for dam breach analysis (DL Breach, HR BREACH, and WinDAM C to historic levee breaches with observed (or inferred breach rates, assessing the limitations, and applicability of each model to the levee breach problem.
Numerical modelling of odour dispersion around a cubical obstacle using large eddy simulation.
Dourado, Harerton Oliveira; Santos, Jane Meri; Reis, Neyval C; Mavroidis, Ilias
2012-01-01
In the present work two different large eddy simulation (LES) approaches, namely the Dynamic Smagorinsky model and the Wale model, are used to simulate the air flow and pollutant dispersion around a cubical obstacle. Results are compared with wind tunnel data (WT) and with results from the Smagorinsky LES model. Overall agreement was good between the different LES approaches and the WT results, both for the mean and fluctuating flow and concentration patterns. LES models can provide good estimates of concentration fluctuation intensity and enable the calculation of the intermittency factor. The model results indicate that LES is a viable tool for odour impact assessment.
Tso, Rhondale; Chen, Yanbei; Stein, Leo
2016-01-01
We propose a generic, phenomenological approach to modifying the dispersion of gravitational waves, independent of corrections to the generation mechanism. This model-independent approach encapsulates all previously proposed parametrizations, including Lorentz violation in the Standard-Model Extension, and provides a roadmap for additional theories. Furthermore, we present a general approach to include modulations to the gravitational-wave polarization content. The framework developed here can be implemented in existing data analysis pipelines for future gravitational-wave observation runs.
Pratt, D. T.
1984-01-01
An interactive computer code for simulation of a high-intensity turbulent combustor as a single point inhomogeneous stirred reactor was developed from an existing batch processing computer code CDPSR. The interactive CDPSR code was used as a guide for interpretation and direction of DOE-sponsored companion experiments utilizing Xenon tracer with optical laser diagnostic techniques to experimentally determine the appropriate mixing frequency, and for validation of CDPSR as a mixing-chemistry model for a laboratory jet-stirred reactor. The coalescence-dispersion model for finite rate mixing was incorporated into an existing interactive code AVCO-MARK I, to enable simulation of a combustor as a modular array of stirred flow and plug flow elements, each having a prescribed finite mixing frequency, or axial distribution of mixing frequency, as appropriate. Further increase the speed and reliability of the batch kinetics integrator code CREKID was increased by rewriting in vectorized form for execution on a vector or parallel processor, and by incorporating numerical techniques which enhance execution speed by permitting specification of a very low accuracy tolerance.
de Hoogh, Kees; Korek, Michal; Vienneau, Danielle; Keuken, Menno; Kukkonen, Jaakko; Nieuwenhuijsen, Mark J; Badaloni, Chiara; Beelen, Rob; Bolignano, Andrea; Cesaroni, Giulia; Pradas, Marta Cirach; Cyrys, Josef; Douros, John; Eeftens, Marloes; Forastiere, Francesco; Forsberg, Bertil; Fuks, Kateryna; Gehring, Ulrike; Gryparis, Alexandros; Gulliver, John; Hansell, Anna L; Hoffmann, Barbara; Johansson, Christer; Jonkers, Sander; Kangas, Leena; Katsouyanni, Klea; Künzli, Nino; Lanki, Timo; Memmesheimer, Michael; Moussiopoulos, Nicolas; Modig, Lars; Pershagen, Göran; Probst-Hensch, Nicole; Schindler, Christian; Schikowski, Tamara; Sugiri, Dorothee; Teixidó, Oriol; Tsai, Ming-Yi; Yli-Tuomi, Tarja; Brunekreef, Bert; Hoek, Gerard; Bellander, Tom
2014-12-01
Land-use regression (LUR) and dispersion models (DM) are commonly used for estimating individual air pollution exposure in population studies. Few comparisons have however been made of the performance of these methods. Within the European Study of Cohorts for Air Pollution Effects (ESCAPE) we explored the differences between LUR and DM estimates for NO2, PM10 and PM2.5. The ESCAPE study developed LUR models for outdoor air pollution levels based on a harmonised monitoring campaign. In thirteen ESCAPE study areas we further applied dispersion models. We compared LUR and DM estimates at the residential addresses of participants in 13 cohorts for NO2; 7 for PM10 and 4 for PM2.5. Additionally, we compared the DM estimates with measured concentrations at the 20-40 ESCAPE monitoring sites in each area. The median Pearson R (range) correlation coefficients between LUR and DM estimates for the annual average concentrations of NO2, PM10 and PM2.5 were 0.75 (0.19-0.89), 0.39 (0.23-0.66) and 0.29 (0.22-0.81) for 112,971 (13 study areas), 69,591 (7) and 28,519 (4) addresses respectively. The median Pearson R correlation coefficients (range) between DM estimates and ESCAPE measurements were of 0.74 (0.09-0.86) for NO2; 0.58 (0.36-0.88) for PM10 and 0.58 (0.39-0.66) for PM2.5. LUR and dispersion model estimates correlated on average well for NO2 but only moderately for PM10 and PM2.5, with large variability across areas. DM predicted a moderate to large proportion of the measured variation for NO2 but less for PM10 and PM2.5. Copyright © 2014 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Rivera, Fernando F. [Departamento de Quimica, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, C.P. 09340, Mexico, D.F. (Mexico); Cruz-Diaz, Martin R., E-mail: mcruz@tese.edu.m [Division de Quimica y Bioquimica, Tecnologico de Estudios Superiores de Ecatepec, Av. Tecnologico S/N Esq. Av. Hank Gonzalez, Valle de Anahuac, C.P. 55120, Ecatepec, Edo. de Mex (Mexico); Rivero, Eligio P. [Departamento de Ingenieria y Tecnologia, Universidad Nacional Autonoma de Mexico, Facultad de Estudios Superiores Cuautitlan, Av. Primero de Mayo, Cuautitlan Izcalli, C.P. 54740, Edo. de Mex (Mexico); Gonzalez, Ignacio [Departamento de Quimica, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, C.P. 09340, Mexico, D.F. (Mexico)
2010-12-15
The liquid phase mixing flow pattern at low (20 < Re < 120) and intermediate liquid flow rate (120 < Re < 400) was studied by means of residence time distribution (RTD) experimental curve in an up-flow Filter Press electrochemical reactor (FM01-LC) bench scale. For this purpose, a plastic turbulence promoter was used with stainless-steel and platinised titanium structural meshes as electrodes in channel configuration. To visualize and determine the mixing flow pattern in the liquid phase, the stimulus-response technique was employed using dextran blue (D{sub M} = 1.058 x 10{sup -11} m{sup 2} s{sup -1}, 25 {sup o}C, in water) as model tracer. A theoretical analysis and approximation RTD experimental curves with axial dispersion model (ADM) and plug dispersion exchange model (PDE), with 'closed-closed vessel' boundary conditions were used in order to establish a better approximation of the axial dispersion, stagnant zones, channelling and by-pass (preference flow) effects present at low and intermediate Re. RTD curves show that the liquid flow pattern in the FM01-LC deviates considerably from axial dispersion model at low Re, where the FM01-LC exhibits large channelling, stagnant zones, and dead zone. The PDE model represents fairly this deviation from ideal flow (less dead zone).
Model-free kinetics applied to sugarcane bagasse combustion
Energy Technology Data Exchange (ETDEWEB)
Ramajo-Escalera, B.; Espina, A.; Garcia, J.R. [Department of Organic and Inorganic Chemistry, University of Oviedo, 33006 Oviedo (Spain); Sosa-Arnao, J.H. [Mechanical Engineering Faculty, State University of Campinas (UNICAMP), P.O. Box 6122, 13083-970 Campinas, SP (Brazil); Nebra, S.A. [Interdisciplinary Center of Energy Planning, State University of Campinas (UNICAMP), R. Shigeo Mori 2013, 13083-770 Campinas, SP (Brazil)
2006-09-15
Vyazovkin's model-free kinetic algorithms were applied to determine conversion, isoconversion and apparent activation energy to both dehydration and combustion of sugarcane bagasse. Three different steps were detected with apparent activation energies of 76.1+/-1.7, 333.3+/-15.0 and 220.1+/-4.0kJ/mol in the conversion range of 2-5%, 15-60% and 70-90%, respectively. The first step is associated with the endothermic process of drying and release of water. The others correspond to the combustion (and carbonization) of organic matter (mainly cellulose, hemicellulose and lignin) and the combustion of the products of pyrolysis. (author)
Air Flow and Dispersion Section
Energy Technology Data Exchange (ETDEWEB)
Slinn, W. G.N.; Nicola, P. W.; Powell, D. C.; Davis, W. E.
1976-03-01
There are eight papers in this section. Some of the fundamentals of atmospheric dispersion of pollutants are examined with theoretical analyses as well as detailed experimental investigations. Emphasis has been placed on analyzing and summarizing previous experimental dispersion data with more realistic and fundamentally sound approaches to plume behavior. The goal is to finalize improved short-range dispersion models from existing data, removing inconsistencies and inadequacies in presently applied assessment models. Dispersion and transport efforts in the future should aim toward evaluating plume behavior on meso and regional scales. The complex features of flow and dispersion through storms, and in the vicinity of significant terrain characteristics influencing local to regional circulations must receive future emphasis. (auth)
Relative Binding Free Energy Calculations Applied to Protein Homology Models.
Cappel, Daniel; Hall, Michelle Lynn; Lenselink, Eelke B; Beuming, Thijs; Qi, Jun; Bradner, James; Sherman, Woody
2016-12-27
A significant challenge and potential high-value application of computer-aided drug design is the accurate prediction of protein-ligand binding affinities. Free energy perturbation (FEP) using molecular dynamics (MD) sampling is among the most suitable approaches to achieve accurate binding free energy predictions, due to the rigorous statistical framework of the methodology, correct representation of the energetics, and thorough treatment of the important degrees of freedom in the system (including explicit waters). Recent advances in sampling methods and force fields coupled with vast increases in computational resources have made FEP a viable technology to drive hit-to-lead and lead optimization, allowing for more efficient cycles of medicinal chemistry and the possibility to explore much larger chemical spaces. However, previous FEP applications have focused on systems with high-resolution crystal structures of the target as starting points-something that is not always available in drug discovery projects. As such, the ability to apply FEP on homology models would greatly expand the domain of applicability of FEP in drug discovery. In this work we apply a particular implementation of FEP, called FEP+, on congeneric ligand series binding to four diverse targets: a kinase (Tyk2), an epigenetic bromodomain (BRD4), a transmembrane GPCR (A2A), and a protein-protein interaction interface (BCL-2 family protein MCL-1). We apply FEP+ using both crystal structures and homology models as starting points and find that the performance using homology models is generally on a par with the results when using crystal structures. The robustness of the calculations to structural variations in the input models can likely be attributed to the conformational sampling in the molecular dynamics simulations, which allows the modeled receptor to adapt to the "real" conformation for each ligand in the series. This work exemplifies the advantages of using all-atom simulation methods with
Dispersion model for optical thin films applicable in wide spectral range
Franta, Daniel; Nečas, David; Ohlídal, Ivan; Giglia, Angelo
2015-09-01
In the optics industry thin film systems are used to construct various interference devices such as antireflective coatings, high-reflectance mirrors, beam splitters and filters. The optical characterization of complex optical systems can not be performed by measurements only in the short spectral range in which the interference devices will be employed because the measured data do not contain sufficient information about all relevant parameters of these systems. The characterization of film materials requires the extension of the spectral range of the measurements to the IR region containing phonon absorption and to the UV region containing the electronic excitations. However, this leads to necessity of a dispersion model suitable for the description of the dielectric response in the wide spectral range. Such model must respect the physical conditions following from theory of dispersion, particularly Kramers-Kronig relations and integrability imposed by sum rules. This work presents the construction of a universal dispersion model composed from individual contributions representing both electronic and phonon excitations. The efficiency of presented model is given by the fact that all the contributions are described by analytical expressions. It is shown that the model is suitable for precise modeling of spectral dependencies of optical constants of a broad class of materials used in the optical industry for thin film systems such as MgF2, SiO2, Al2O3, HfO2, Ta2O5 and TiO2 in the spectral range from far IR to vacuum UV.
Hibi, Yoshihiko; Kanou, Yuki; Ohira, Yuki
2012-04-01
In a previous study, column experiments were carried out with Toyoura sand (permeability 2.05×10(-11)m(2)) and Toyoura sand mixed with bentonite (permeability 9.96×10(-13)m(2)) to obtain the molecular diffusion coefficient, the Knudsen diffusion coefficient, the tortuosity for the molecular diffusion coefficient, and the mechanical dispersion coefficient of soil-gas systems. In this study, we conducted column experiments with field soil (permeability 2.0×10(-13)m(2)) and showed that the above parameters can be obtained for both less-permeable and more-permeable soils by using the proposed method for obtaining the parameters and performing column experiments. We then estimated dispersivity from the mechanical dispersion coefficients obtained by the column experiments. We found that the dispersivity depended on the mole fraction of the tracer gas and could be represented by a quadratic equation. Copyright Â© 2012 Elsevier B.V. All rights reserved.
Reverse dispersion modeling has been used to determine air emission fluxes from ground-level area sources, including open-lot beef cattle feedlots. This research compared AERMOD, a Gaussian-based and currently the U.S. Environmental Protection Agency (EPA) preferred regulatory dispersion model, and ...
Juodis, Laurynas; Filistovič, Vitold; Maceika, Evaldas; Remeikis, Vidmantas
2016-03-01
An analytical model for dispersion of air pollutants released from a point source forming a secondary pollutant (e.g. chemical transformation or parent-daughter radionuclide chain) is formulated considering the constant wind speed and eddy diffusivities as an explicit function of downwind distance from the source in Cauchy (reflection-deposition type) boundary conditions. The dispersion of pollutants has been investigated by using the Gaussian plume dispersion parameters σy and σz instead of the diffusivity parameters Ky and Kz. For primary pollutant it was proposed to use the derived dry deposition factor instead of the source depletion alternative. An analytical solution for steady-state two-dimensional pollutant transport in the atmosphere is presented. Derived formulas include dependency from effective release height, gravitational and dry deposition velocities of primary and secondary pollutants, advection, surface roughness length and empirical dispersion parameters σy and σz. Demonstration of analytical solution application is provided by calculation of 135Xe and 135C air activity concentrations and the applicability of the model for the solution of atmospheric pollution transport problems.
Purves, Murray; Parkes, David
2016-05-01
Three atmospheric dispersion models--DIFFAL, HPAC, and HotSpot--of differing complexities have been validated against the witness plate deposition dataset taken during the Full-Scale Radiological Dispersal Device (FSRDD) Field Trials. The small-scale nature of these trials in comparison to many other historical radiological dispersion trials provides a unique opportunity to evaluate the near-field performance of the models considered. This paper performs validation of these models using two graphical methods of comparison: deposition contour plots and hotline profile graphs. All of the models tested are assessed to perform well, especially considering that previous model developments and validations have been focused on larger-scale scenarios. Of the models, HPAC generally produced the most accurate results, especially at locations within ∼100 m of GZ. Features present within the observed data, such as hot spots, were not well modeled by any of the codes considered. Additionally, it was found that an increase in the complexity of the meteorological data input to the models did not necessarily lead to an improvement in model accuracy; this is potentially due to the small-scale nature of the trials.
Numerical 3D modelling of oil dispersion in the sea due to different accident scenarios
Guandalini, Roberto; Agate, Giordano; Moia, Fabio
2017-04-01
The purpose of the study has been the development of a methodology, based on a numerical 3D approach, for the analysis of oil dispersion in the sea, in order to simulate with a high level of accuracy the dynamic behavior of the oil plume and its displacement in the environment. As a matter of fact, the numerical simulation is the only approach currently able to analyse in detail possible accident scenarios, even with an high degree of complexity, of different type and intensity, allowing to follow their evolution both in time and space, and to evaluate the effectiveness of suggested prevention or recovery actions. The software for these calculations is therefore an essential tool in order to simulate the impact effects in the short, medium and long period, able to account for the complexity of the sea system involved in the dispersion process and its dependency on the meteorological, marine and morphological local conditions. This software, generally based on fluid dynamic 3D simulators and modellers, is therefore extremely specialized and requires expertise for an appropriate usage, but at the same time it allows detailed scenario analyses and design verifications. It takes into account different parameters as the sea current field and its turbulence, the wind acting on the sea surface, the salinity and temperature gradients, the local coastal morphology, the seabed bathymetry and the tide. The applied methodology is based on the Integrated Fluid Dynamic Simulation System HyperSuite developed by RSE. This simulation system includes the consideration of all the parameters previously listed, in the frame of a 3D Eulerian finite element fluid dynamic model, which accuracy is guaranteed by a very detailed spatial mesh and by an automatically optimized time step management. In order to assess the methodology features, an area of more than 2500 km2 and depth of 200 m located in the middle Adriatic Sea has been modelled. The information required for the simulation in
Applying a realistic evaluation model to occupational safety interventions
DEFF Research Database (Denmark)
Pedersen, Louise Møller
2017-01-01
of occupational safety interventions. Conclusion: The revised realistic evaluation model can help safety science forward in identifying key factors for the success of occupational safety interventions. However, future research should strengthen the link between the immediate intervention results and outcome.......Background: Recent literature characterizes occupational safety interventions as complex social activities, applied in complex and dynamic social systems. Hence, the actual outcomes of an intervention will vary, depending on the intervention, the implementation process, context, personal...... characteristics of key actors (defined mechanisms), and the interplay between them, and can be categorized as expected or unexpected. However, little is known about ’how’ to include context and mechanisms in evaluations of intervention effectiveness. A revised realistic evaluation model has been introduced...
Nature preservation acceptance model applied to tanker oil spill simulations
DEFF Research Database (Denmark)
Friis-Hansen, Peter; Ditlevsen, Ove Dalager
2003-01-01
is exemplified by a study of oil spills due to simulated tanker collisions in the Danish straits. It is found that the distribution of the oil spill volume per spill is well represented by an exponential distribution both in Oeresund and in Great Belt. When applied in the Poisson model, a risk profile reasonably...... close to the standard lognormal profile is obtained. Moreover, based on data pairs (volume, cost) for world wide oil spills it is inferred that the conditional distribution of the costs given the spill volume is well modeled by a lognormal distribution. By unconditioning by the exponential distribution...... of the single oil spill, a risk profile for the costs is obtained that is indistinguishable from the standard lognormal risk profile.Finally the question of formulating a public risk acceptance criterion is addressed following Ditlevsen, and it is argued that a Nature Preservation Willingness Index can...
Zeisberger, Matthias; Tuniz, Alessandro; Schmidt, Markus A
2016-09-05
We present a mathematical model that allows interpreting the dispersion and attenuation of modes in hollow-core fibers (HCFs) on the basis of single interface reflection, giving rise to analytic and semi-analytic expressions for the complex effective indices in the case where the core diameter is large and the guiding is based on the reflection by a thin layer. Our model includes two core-size independent reflection parameters and shows the universal inverse-cubed core diameter dependence of the modal attenuation of HCFs. It substantially reduces simulation complexity and enables large scale parameter sweeps, which we demonstrate on the example of a HCF with a highly anisotropic metallic nanowire cladding, resembling an indefinite metamaterial at high metal filling fractions. We reveal design rules that allow engineering modal discrimination and show that metamaterial HCFs can principally have low losses at mid-IR wavelengths (model can be applied to a great variety of HCFs with large core diameters and can be used for advanced HCF design and performance optimization, in particular with regard to dispersion engineering and modal discrimination.
Smy, Tom J
2016-01-01
An explicit time-domain finite-difference technique for modelling zero-thickness Huygens' metasurfaces based on Generalized Sheet Transition Conditions (GSTCs), is proposed and demonstrated using full-wave simulations. The Huygens' metasurface is modelled using electric and magnetic surface susceptibilities, which are found to follow a double-Lorentz dispersion profile. To solve zero-thickness Huygens' metasurface problems for general broadband excitations, the double-Lorentz dispersion profile is combined with GSTCs, leading to a set of first-order differential fields equations in time-domain. Identifying the exact equivalence between Huygens' metasurfaces and coupled RLC oscillator circuits, the field equations are then subsequently solved using standard circuit modelling techniques based on a finite-difference formulation. Several examples including generalized refraction are shown to illustrate the temporal evolution of scattered fields from the Huygens' metasurface under plane-wave normal incidence, in b...
Neutrino dispersion through hot and dense media in minimally extended standard model
Mughal, M A
1998-01-01
Corrections to neutrino transitions. Some of the implications of these results to the solar neutrino problem supernovae and early universe are discussed and compared with earlier works. We also study the issue of lepton flavour violating Z sup 0 decays in minimal supersymmetric standard model. This result in the vacuum serves as an input in the framework of the FTD theory yielding further results of interest to astrophysics and cosmology. We have explicitly demonstrated that in this model, present limits from low energy processes can in principle accommodate these decays to values near the experimental bounds. The phenomenon of neutrino dispersion traversing and interacting with fields (matter and electromagnetic) in a medium has been under intense study for several years as neutrino dispersion in the framework of minimal standard model. Such a study is known to yield matter and magnetic field induced neutrino oscillations. For its applicability to and interest in solar neutrino problem, cosmology and other i...
D. Granieri; COSTA, A.; Macedonio, G.; Chiodini, G.(INFN Sezione di Lecce, Lecce, Italy); Bisson, M.; Avino, R.; Caliro, S
2011-01-01
A model to describe the cloud dispersion of gas denser than air is presented here. The dispersion of heavy gas is basically governed by the gravity but, when the density contrast (gas vs air) is not important the dispersion is controlled by the wind and atmospheric turbulence (so-called “passive dispersion”). DisGas is a model for dense gases which are dispersed under passive conditions, based on the full solution of the advection-diffusion equations for the gas concentration (Sankaranarayana...
Applying the luminosity function statistics in the fireshell model
Rangel Lemos, L. J.; Bianco, C. L.; Ruffini, R.
2015-12-01
The luminosity function (LF) statistics applied to the data of BATSE, GBM/Fermi and BAT/Swift is the theme approached in this work. The LF is a strong statistical tool to extract useful information from astrophysical samples, and the key point of this statistical analysis is in the detector sensitivity, where we have performed careful analysis. We applied the tool of the LF statistics to three GRB classes predicted by the Fireshell model. We produced, by LF statistics, predicted distributions of: peak ux N(Fph pk), redshift N(z) and peak luminosity N(Lpk) for the three GRB classes predicted by Fireshell model; we also used three GRB rates. We looked for differences among the distributions, and in fact we found. We performed a comparison between the distributions predicted and observed (with and without redshifts), where we had to build a list with 217 GRBs with known redshifts. Our goal is transform the GRBs in a standard candle, where a alternative is find a correlation between the isotropic luminosity and the Band peak spectral energy (Liso - Epk).
Optimal control applied to a thoraco-abdominal CPR model.
Jung, Eunok; Lenhart, Suzanne; Protopopescu, Vladimir; Babbs, Charles
2008-06-01
The techniques of optimal control are applied to a validated blood circulation model of cardiopulmonary resuscitation (CPR), consisting of a system of seven difference equations. In this system, the non-homogeneous forcing terms are chest and abdominal pressures acting as the 'controls'. We seek to maximize the blood flow, as measured by the pressure difference between the thoracic aorta and the right atrium. By applying optimal control methods, we characterize the optimal waveforms for external chest and abdominal compression during cardiac arrest and CPR in terms of the solutions of the circulation model and of the corresponding adjoint system. Numerical results are given for various scenarios. The optimal waveforms confirm the previously discovered positive effects of active decompression and interposed abdominal compression. These waveforms can be implemented with manual (Lifestick-like) and mechanical (vest-like) devices to achieve levels of blood flow substantially higher than those provided by standard CPR, a technique which, despite its long history, is far from optimal.
Model calculating annual mean atmospheric dispersion factor for coastal site of nuclear power plant
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This paper describes an atmospheric dispersion field experiment performed on the coastal site of nuclear power plant in the east part of China during 1995 to 1996. The three-dimension joint frequency are obtained by hourly observation of wind and temperature on a 100m high tower; the frequency of the “event day of land and sea breezes” are given by observation of surface wind and land and sea breezes; the diffusion parameters are got from measurements of turbulent and wind tunnel simulation test.A new model calculating the annual mean atmospheric dispersion factor for coastal site of nuclear power plant is developed and established.This model considers not only the effect from mixing release and mixed layer but also the effect from the internal boundary layer and variation of diffusion parameters due to the distance from coast.The comparison between results obtained by the new model and current model shows that the ratio of annual mean atmospheric dispersion factor gained by the new model and the current one is about 2.0.
Modeling the fallout from stabilized nuclear clouds using the HYSPLIT atmospheric dispersion model.
Rolph, G D; Ngan, F; Draxler, R R
2014-10-01
The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, developed by the National Oceanic and Atmospheric Administration's Air Resources Laboratory, has been configured to simulate the dispersion and deposition of nuclear materials from a surface-based nuclear detonation using publicly available information on nuclear explosions. Much of the information was obtained from "The Effects of Nuclear Weapons" by Glasstone and Dolan (1977). The model was evaluated against the measurements of nuclear fallout from six nuclear tests conducted between 1951 and 1957 at the Nevada Test Site using the global NCEP/NCAR Reanalysis Project (NNRP) and the Weather Research and Forecasting (WRF) meteorological data as input. The model was able to reproduce the general direction and deposition patterns using the coarse NNRP data with Figure of Merit in Space (FMS - the percent overlap between predicted and measured deposition patterns) scores in excess of 50% for four of six simulations for the smallest dose rate contour, with FMS scores declining for higher dose rate contours. When WRF meteorological data were used the FMS scores were 5-20% higher in five of the six simulations, especially at the higher dose rate contours. The one WRF simulation where the scores declined slightly (10-30%) was also the best scoring simulation when using the NNRP data. When compared with measurements of dose rate and time of arrival from the Town Data Base (Thompson et al., 1994), similar results were found with the WRF simulations providing better results for four of six simulations. The overall result was that the different plume simulations using WRF data had more consistent performance than the plume simulations using NNRP data fields.
A Bidirectional Coupling Procedure Applied to Multiscale Respiratory Modeling.
Kuprat, A P; Kabilan, S; Carson, J P; Corley, R A; Einstein, D R
2013-07-01
In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFD) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the Modified Newton's Method with nonlinear Krylov accelerator developed by Carlson and Miller [1, 2, 3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a "pressure-drop" residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD-ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural pressure applied to the multiple sets
A bidirectional coupling procedure applied to multiscale respiratory modeling
Kuprat, A. P.; Kabilan, S.; Carson, J. P.; Corley, R. A.; Einstein, D. R.
2013-07-01
pressure applied to the multiple sets of ODEs. In both the simplified geometry and in the imaging-based geometry, the performance of the method was comparable to that of monolithic schemes, in most cases requiring only a single CFD evaluation per time step. Thus, this new accelerator allows us to begin combining pulmonary CFD models with lower-dimensional models of pulmonary mechanics with little computational overhead. Moreover, because the CFD and lower-dimensional models are totally separate, this framework affords great flexibility in terms of the type and breadth of the adopted lower-dimensional model, allowing the biomedical researcher to appropriately focus on model design. Research funded by the National Heart and Blood Institute Award 1RO1HL073598.
Numerical model of the circulation and dispersion in the east Adriatic coastal waters
Beg Paklar, Gordana; Dzoic, Tomislav; Koracin, Darko; Matijevic, Slavica; Grbec, Branka; Ivatek-Sahdan, Stjepan
2017-04-01
The Regional Ocean Modeling System (ROMS) was implemented to reproduce physical properties of the area around submarine outlet Stobrec in the middle Adriatic coastal area. ROMS model run was forced with realistic atmospheric fields obtained from meteorological model Aladin, climatological river discharges, tides and dynamics of the surrounding area imposed at the open boundaries. Atmospheric forcing included momentum, heat and water fluxes calculated interactively from the Aladin surface fields during ROMS model simulations. Simulated fields from the Adriatic and shelf scale models were used to prescribe the initial and open boundary conditions for fine resolution coastal domain. Model results were compared with available CTD measurements and discussed in the light of the climatological circulation and thermohaline properties of the middle Adriatic coastal area. Variability in the circulation is related to the prevailing atmospheric conditions, changes in the hydrological conditions and water mass exchange at the open boundaries. Basic features of the coastal circulation are well reproduced by the ROMS model, as well as temperatures and salinities which are within corresponding seasonal intervals, although with lower stratification than measured ones. In order to reproduce dispersion of the passive tracer the ROMS model was coupled with Lagrangian dispersion model. Multiyear monitoring of the physical, chemical and biological parameters around the sewage outlet was used to assess the quality of the dispersion model results. Among measured parameters, redox potential of the surface sediment layer was selected to be compared with model results as its negative values are direct consequence of increased organic matter input that can be attributed to the sewage system inflow.
Directory of Open Access Journals (Sweden)
Zhenguo Luo
2014-01-01
Full Text Available An impulsive Lotka-Volterra type predator-prey model with prey dispersal in two-patch environments and time delays is investigated, where we assume the model of patches with a barrier only as far as the prey population is concerned, whereas the predator population has no barriers between patches. By applying the continuation theorem of coincidence degree theory and by means of a suitable Lyapunov functional, a set of easily verifiable sufficient conditions are obtained to guarantee the existence, uniqueness, and global stability of positive periodic solutions of the system. Some known results subject to the underlying systems without impulses are improved and generalized. As an application, we also give two examples to illustrate the feasibility of our main results.
Brondani, Daniela; Scheeren, Carla Weber; Dupont, Jairton; Vieira, Iolanda Cruz
2012-08-21
Halloysite clay nanotubes were used as a support for the immobilization of the enzyme peroxidase from clover sprouts (Trifolium), and employed together with platinum nanoparticles in 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid (Pt-BMI·PF(6)) in the development of a new biosensor for the determination of catecholamines by square-wave voltammetry. Under optimized conditions, the analytical curves showed detection limits of 0.05, 0.06, 0.07, 0.12 μM for dopamine, isoproterenol, dobutamine and epinephrine, respectively. The biosensor demonstrated high sensitivity, good repeatability and reproducibility, and long-term stability (18% decrease in response over 150 days). A recovery study of dopamine in pharmaceutical samples gave values from 97.5 to 101.4%. The proposed biosensor was successfully applied to the determination of dopamine in pharmaceutical samples, with a maximum relative error of ±1.0% in relation to the standard (spectrophotometric) method. The good analytical performance of the proposed method can be attributed to the efficient immobilization of the peroxidase in the nanoclay, and the facilitation of electron transfer between the protein and the electrode surface due to the presence of the Pt nanoparticles and ionic liquid.
Model output statistics applied to wind power prediction
Energy Technology Data Exchange (ETDEWEB)
Joensen, A.; Giebel, G.; Landberg, L. [Risoe National Lab., Roskilde (Denmark); Madsen, H.; Nielsen, H.A. [The Technical Univ. of Denmark, Dept. of Mathematical Modelling, Lyngby (Denmark)
1999-03-01
Being able to predict the output of a wind farm online for a day or two in advance has significant advantages for utilities, such as better possibility to schedule fossil fuelled power plants and a better position on electricity spot markets. In this paper prediction methods based on Numerical Weather Prediction (NWP) models are considered. The spatial resolution used in NWP models implies that these predictions are not valid locally at a specific wind farm. Furthermore, due to the non-stationary nature and complexity of the processes in the atmosphere, and occasional changes of NWP models, the deviation between the predicted and the measured wind will be time dependent. If observational data is available, and if the deviation between the predictions and the observations exhibits systematic behavior, this should be corrected for; if statistical methods are used, this approaches is usually referred to as MOS (Model Output Statistics). The influence of atmospheric turbulence intensity, topography, prediction horizon length and auto-correlation of wind speed and power is considered, and to take the time-variations into account, adaptive estimation methods are applied. Three estimation techniques are considered and compared, Extended Kalman Filtering, recursive least squares and a new modified recursive least squares algorithm. (au) EU-JOULE-3. 11 refs.
TCSC impedance regulator applied to the second benchmark model
Energy Technology Data Exchange (ETDEWEB)
Hamel, J.P.; Dessaint, L.A. [Ecole de Technologie Superieure, Montreal, PQ (Canada). Dept. of Electrical Engineering; Champagne, R. [Ecole de Technologie Superieure, Montreal, PQ (Canada). Dept. of Software and IT Engineering; Pare, D. [Institut de Recherche d' Hydro-Quebec, Varennes, PQ (Canada)
2008-07-01
Due to the combination of electrical demand growth and the high cost of building new power transmission lines, series compensation is increasingly used in power systems all around the world. Series compensation has been proposed as a new way to transfer more power on existing lines. By adding series compensation to an existing line (a relatively small change), the power transfer can be increased significantly. One of the means used for line compensation is the addition of capacitive elements in series with the line. This paper presented a thyristor-controlled series capacitor (TCSC) model that used impedance as reference, had individual controls for each phase, included a linearization module and considered only the fundamental frequency for impedance computations, without using any filter. The model's dynamic behavior was validated by applying it to the second benchmark model for subsynchronous resonance (SSR). Simulation results from the proposed model, obtained using EMTP-RV and SimPowerSystems were demonstrated. It was concluded that SSR was mitigated by the proposed approach. 19 refs., 19 figs.
Energy Technology Data Exchange (ETDEWEB)
Kim, Joo Yeon; Lee, Seung Hyun; Park, Tai Jin [Korean Association for Radiation Application, Seoul (Korea, Republic of)
2016-06-15
Any real application of Bayesian inference must acknowledge that both prior distribution and likelihood function have only been specified as more or less convenient approximations to whatever the analyzer's true belief might be. If the inferences from the Bayesian analysis are to be trusted, it is important to determine that they are robust to such variations of prior and likelihood as might also be consistent with the analyzer's stated beliefs. The robust Bayesian inference was applied to atmospheric dispersion assessment using Gaussian plume model. The scopes of contaminations were specified as the uncertainties of distribution type and parametric variability. The probabilistic distribution of model parameters was assumed to be contaminated as the symmetric unimodal and unimodal distributions. The distribution of the sector-averaged relative concentrations was then calculated by applying the contaminated priors to the model parameters. The sector-averaged concentrations for stability class were compared by applying the symmetric unimodal and unimodal priors, respectively, as the contaminated one based on the class of ε-contamination. Though ε was assumed as 10%, the medians reflecting the symmetric unimodal priors were nearly approximated within 10% compared with ones reflecting the plausible ones. However, the medians reflecting the unimodal priors were approximated within 20% for a few downwind distances compared with ones reflecting the plausible ones. The robustness has been answered by estimating how the results of the Bayesian inferences are robust to reasonable variations of the plausible priors. From these robust inferences, it is reasonable to apply the symmetric unimodal priors for analyzing the robustness of the Bayesian inferences.
Molnar, S.; Dettmer, J.; Steininger, G.; Dosso, S. E.; Cassidy, J. F.
2013-12-01
This paper applies hierarchical, trans-dimensional Bayesian models for earth and residual-error parametrizations to the inversion of microtremor array dispersion data for shear-wave velocity (Vs) structure. The earth is parametrized in terms of flat-lying, homogeneous layers and residual errors are parametrized with a first-order autoregressive data-error model. The inversion accounts for the limited knowledge of the optimal earth and residual error model parametrization (e.g. the number of layers in the Vs profile) in the resulting Vs parameter uncertainty estimates. The assumed earth model parametrization influences estimates of parameter values and uncertainties due to different parametrizations leading to different ranges of data predictions. The support of the data for a particular model is often non-unique and several parametrizations may be supported. A trans-dimensional formulation accounts for this non-uniqueness by including a model-indexing parameter as an unknown so that groups of models (identified by the index) are considered in the results. In addition, serial residual-error correlations are addressed by augmenting the geophysical forward model with a hierarchical autoregressive error model that can account for a wide range of error processes with a small number of parameters. Hence, the limited knowledge about the true statistical distribution of data errors is also accounted for in the earth model parameter estimates, resulting in more realistic uncertainties and parameter values. Hierarchical autoregressive error models do not rely on point estimates of the model vector to estimate residual-error statistics, and have no requirement for computing the inverse or determinant of a covariance matrix. This approach is particularly useful for trans-dimensional inverse problems, as point estimates may not be representative of the state space that spans multiple subspaces of different dimensions. The autoregressive process is restricted to first order and
Applying the model of excellence in dental healthcare
Directory of Open Access Journals (Sweden)
Tekić Jasmina
2015-01-01
Full Text Available Introduction. Models of excellence are considered a practical tool in the field of management that should help a variety of organizations, including dental, to carry out the measurement of the quality of provided services, and so define their position in relation to excellence. The quality of healthcare implies the degree within which the system of healthcare and health services increases the likelihood of positive treatment outcome. Objective. The aim of the present study was to define a model of excellence in the field of dental healthcare (DHC in the Republic of Serbia and suggest the model of DHC whose services will have the characteristics of outstanding service in the dental practice. Methods. In this study a specially designed questionnaire was used for the assessment of the maturity level of applied management regarding quality in healthcare organizations of the Republic of Serbia. The questionnaire consists of 13 units and a total of 240 questions. Results. The results of the study were discussed involving four areas: (1 defining the main criteria and sub-criteria, (2 the elements of excellence of DHC in the Republic of Serbia, (3 the quality of DHC in the Republic of Serbia, and (4 defining the framework of the model of excellence for the DHC in the Republic of Serbia. The main criteria which defined the framework and implementation model of excellence in the field of DHC in Serbia were: leadership, management, human resources, policy and strategy, other resources, processes, patients’ satisfaction, employee’s satisfaction, impact on society and business results. The model had two main parts: the possibilities for the first five criteria and options for the other four criteria. Conclusion. Excellence in DHC business as well as the excellence of provided dental services are increasingly becoming the norm and good practice, and progressively less the exception.
Abril, Gabriela A.; Wannaz, Eduardo D.; Mateos, Ana C.; Pignata, María L.
2014-01-01
The influence of a cement plant that incinerates industrial waste on the air quality of a region in the province of Córdoba, Argentina, was assessed by means of biomonitoring studies (effects of immission) and atmospheric dispersion (effects of emission) of PM10 with the application of the ISC3 model (Industrial Source Complex) developed by the USEPA (Environmental Protection Agency). For the biomonitoring studies, samples from the epiphyte plant Tillandsia capillaris Ruíz & Pav. f. capillaris were transplanted to the vicinities of the cement plant in order to determine the physiological damage and heavy metal accumulation (Ca, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb). For the application of the ISC3 model, point and area sources from the cement plant were considered to obtain average PM10 concentration results from the biomonitoring exposure period. This model permitted it to be determined that the emissions from the cement plant (point and area sources) were confined to the vicinities, without significant dispersion in the study area. This was also observed in the biomonitoring study, which identified Ca, Cd and Pb, pH and electric conductivity (EC) as biomarkers of this cement plant. Vehicular traffic emissions and soil re-suspension could be observed in the biomonitors, giving a more complete scenario. In this study, biomonitoring studies along with the application of atmospheric dispersion models, allowed the atmospheric pollution to be assessed in more detail.
Modelling larval dispersal dynamics of common sole (Solea solea) along the western Iberian coast
Tanner, Susanne E.; Teles-Machado, Ana; Martinho, Filipe; Peliz, Álvaro; Cabral, Henrique N.
2017-08-01
Individual-based coupled physical-biological models have become the standard tool for studying ichthyoplankton dynamics and assessing fish recruitment. Here, common sole (Solea solea L.), a flatfish of high commercial importance in Europe was used to evaluate transport of eggs and larvae and investigate the connectivity between spawning and nursery areas along the western Iberian coast as spatio-temporal variability in dispersal and recruitment patterns can result in very strong or weak year-classes causing large fluctuations in stock size. A three-dimensional particle tracking model coupled to Regional Ocean Modelling System model was used to investigate variability of sole larvae dispersal along the western Iberian coast over a five-year period (2004-2009). A sensitivity analysis evaluating: (1) the importance of diel vertical migrations of larvae and (2) the size of designated recruitment areas was performed. Results suggested that connectivity patterns of sole larvae dispersal and their spatio-temporal variability are influenced by the configuration of the coast with its topographical structures and thus the suitable recruitment area available as well as the wind-driven mesoscale circulation along the Iberian coast.
Indian Academy of Sciences (India)
Rituparna Chutia; Supahi Mahanta; D Datta
2014-04-01
The parameters associated to a environmental dispersion model may include different kinds of variability, imprecision and uncertainty. More often, it is seen that available information is interpreted in probabilistic sense. Probability theory is a well-established theory to measure such kind of variability. However, not all available information, data or model parameters affected by variability, imprecision and uncertainty, can be handled by traditional probability theory. Uncertainty or imprecision may occur due to incomplete information or data, measurement error or data obtained from expert judgement or subjective interpretation of available data or information. Thus for model parameters, data may be affected by subjective uncertainty. Traditional probability theory is inappropriate to represent subjective uncertainty. Possibility theory is used as a tool to describe parameters with insufficient knowledge. Based on the polynomial chaos expansion, stochastic response surface method has been utilized in this article for the uncertainty propagation of atmospheric dispersion model under consideration of both probabilistic and possibility information. The proposed method has been demonstrated through a hypothetical case study of atmospheric dispersion.
Nonlinear Dispersion Effect on Wave Transformation
Institute of Scientific and Technical Information of China (English)
LI Ruijie; Dong-Young LEE
2000-01-01
A new nonlinear dispersion relation is given in this paper, which can overcome the limitation of the intermediate minimum value in the dispersion relation proposed by Kirby and Dalrymple (1986), and which has a better approximation to Hedges＇ empirical relation than the modilied relations by Hedges (1987). Kirby and Dahymple (1987) for shallow waters. The new dispersion relation is simple in form. thus it can be used easily in practice. Meanwhile. a general explicil approximalion to the new dispersion rela tion and olher nonlinear dispersion relations is given. By use of the explicit approximation to the new dispersion relation along with the mild slope equation taking inlo account weakly nonlinear effect, a mathematical model is obtained, and it is applied to laboratory data. The results show that the model developed vith the new dispersion relation predicts wave translornation over complicated topography quite well.
Study of dispersion forces with quantum Monte Carlo: toward a continuum model for solvation.
Amovilli, Claudio; Floris, Franca Maria
2015-05-28
We present a general method to compute dispersion interaction energy that, starting from London's interpretation, is based on the measure of the electronic electric field fluctuations, evaluated on electronic sampled configurations generated by quantum Monte Carlo. A damped electric field was considered in order to avoid divergence in the variance. Dispersion atom-atom C6 van der Waals coefficients were computed by coupling electric field fluctuations with static dipole polarizabilities. The dipole polarizability was evaluated at the diffusion Monte Carlo level by studying the response of the system to a constant external electric field. We extended the method to the calculation of the dispersion contribution to the free energy of solvation in the framework of the polarizable continuum model. We performed test calculations on pairs of some atomic systems. We considered He in ground and low lying excited states and Ne in the ground state and obtained a good agreement with literature data. We also made calculations on He, Ne, and F(-) in water as the solvent. Resulting dispersion contribution to the free energy of solvation shows the reliability of the method illustrated here.
Xie, Dong; Wang, Hanqing; Kearfott, Kimberlee J; Liu, Zehua; Mo, Shunquan
2014-03-01
In the present study, the roles of atmospheric wind profiles in the neutral atmosphere and surface roughness parameters in a complex terrain were examined to determine their impacts on radon ((222)Rn) dispersion from an actual uranium mine ventilation shaft. Simulations were completed on (222)Rn dispersion extending from the shaft to a vulnerable distance, near the location of an occupied farmhouse. The eight dispersion scenarios for the ventilation shaft source included four downwind velocities (0.5, 1.0, 2.0 and 4.0 m s(-1)) and two underlying surface roughness characteristics (0.1 m and 1.0 m). (222)Rn distributions and elevated pollution regions were identified. Effective dose estimation methods involving a historical weighting of wind speeds in the direction of interest coupled to the complex dispersion model were proposed. Using this approach, the radiation effects on the residents assumed to be outside at the location of the farm house 250 m downwind from the ventilation shaft outlet were computed. The maximum effective dose rate calculated for the residents at the outside of the farm house was 2.2 mSv y(-1), which is less than the low limit action level of 3-10 mSv y(-1) recommended by the International Commission on Radiological Protection (ICRP) occupational exposure action level for radon.
DEFF Research Database (Denmark)
Thiessen, K.M.; Andersson, Kasper Grann; Batandjieva, B.
2009-01-01
The Urban Remediation Working Group of the International Atomic Energy Agency's EMRAS (Environmental Modelling for Radiation Safety) program was organized to address issues of remediation assessment modelling for urban areas contaminated with dispersed radionuclides. The present paper describes t...
Energy Technology Data Exchange (ETDEWEB)
Colli, A.N. [Programa de Electroquimica Aplicada e Ingenieria Electroquimica (PRELINE), Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina); Bisang, J.M., E-mail: jbisang@fiq.unl.edu.ar [Programa de Electroquimica Aplicada e Ingenieria Electroquimica (PRELINE), Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina)
2011-08-30
Highlights: {center_dot} The type of turbulence promoters has a strong influence on the hydrodynamics. {center_dot} The dispersion model is appropriate for expanded plastic turbulence promoters. {center_dot} The dispersion model is appropriate for glass beads turbulence promoters. - Abstract: The hydrodynamic behaviour of electrochemical reactors with parallel plate electrodes is experimentally studied using the stimulus-response method either with an empty reactor or with different turbulence promoters. Theoretical results which are in accordance with the analytical and numerical resolution of the dispersion model for a closed system are compared with the classical relationships of the normalized outlet concentration for open systems and the validity range of the equations is discussed. The experimental results were well correlated with the dispersion model using glass beads or expanded plastic meshes as turbulence promoters, which have shown the most advantageous performance. The Peclet number was higher than 63. The dispersion coefficient was found to increase linearly with flow velocity in these cases.
Measurement and modeling of dispersive pulse propagation in draw wire waveguides
Madaras, Eric I.; Kohl, Thomas W.; Rogers, Wayne P.
1995-01-01
An analytical model of dispersive pulse propagation in semi-infinite cylinders due to transient axially symmetric end conditions has been experimentally investigated. Specifically, the dispersive propagation of the first axially symmetric longitudinal mode in thin wire waveguides, which have ends in butt contact with longitudinal piezoelectric ultrasonic transducers, is examined. The method allows for prediction of a propagated waveform given a measured source waveform, together with the material properties of the cylinder. Alternatively, the source waveform can be extracted from measurement of the propagated waveform. The material properties required for implementation of the pulse propagation model are determined using guided wave phase velocity m