WorldWideScience

Sample records for dispersed fractal aggregates

  1. Model of fractal aggregates induced by shear

    Directory of Open Access Journals (Sweden)

    Wan Zhanhong

    2013-01-01

    Full Text Available It is an undoubted fact that particle aggregates from marine, aerosol, and engineering systems have fractal structures. In this study, fractal geometry is used to describe the morphology of irregular aggregates. The mean-field theory is employed to solve coagulation kinetic equation of aggregates. The Taylor-expansion method of moments in conjunction with the self-similar fractal characteristics is used to represent the particulate field. The effect of the target fractal dimensions on zeroth-order moment, second-order moment, and geometric standard deviation of the aggregates is explored. Results show that the developed moment method is an efficient and powerful approach to solving such evolution equations.

  2. Characterization of dispersed and aggregated Al2O3 morphologies for predicting nanofluid thermal conductivities

    International Nuclear Information System (INIS)

    Feng Xuemei; Johnson, Drew W.

    2013-01-01

    Nanofluids are reported to have enhanced thermal conductivities resulting from nanoparticle aggregation. The goal of this study was to explore through experimental measurements, dispersed and aggregated morphology effects on enhanced thermal conductivities for Al 2 O 3 nanoparticles with a primary size of 54.2 ± 2.0 nm. Aggregation effects were investigated by measuring thermal conductivity of different particle morphologies that occurred under different aggregation conditions. Fractal dimensions and aspect ratios were used to quantify the aggregation morphologies. Fractal dimensions were measured using static light scattering and imaging techniques. Aspect ratios were measured using dynamic light scattering, scanning electron microscopy, and atomic force microscopy. Results showed that the enhancements in thermal conductivity can be predicted with effective medium theory when aspect ratio was considered.

  3. Fractal analysis of the effect of particle aggregation distribution on thermal conductivity of nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wei, E-mail: weiw2015@gmail.com [Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074 (China); Cai, Jianchao, E-mail: caijc@cug.edu.cn [Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074 (China); Hu, Xiangyun, E-mail: xyhu@cug.edu.cn [Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074 (China); Han, Qi, E-mail: hanqi426@gmail.com [Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074 (China); Liu, Shuang, E-mail: lius@cug.edu.cn [Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074 (China); Zhou, Yingfang, E-mail: yingfang.zhou@abdn.ac.uk [School of Engineering, University of Aberdeen, FN 264, King' s College, Aberdeen, AB24 3UE (United Kingdom)

    2016-08-26

    A theoretical effective thermal conductivity model for nanofluids is derived based on fractal distribution characteristics of nanoparticle aggregation. Considering two different mechanisms of heat conduction including particle aggregation and convention, the model is expressed as a function of the fractal dimension and concentration. In the model, the change of fractal dimension is related to the variation of aggregation shape. The theoretical computations of the developed model provide a good agreement with the experimental results, which may serve as an effective approach for quantitatively estimating the effective thermal conductivity of nanofluids. - Highlights: • A thermal conductivity model is derived based on fractal aggregation distribution. • The relationship between aggregation shape and fractal dimension is analyzed. • Predictions of the proposed model show good agreement with experimental data.

  4. A study of radiative properties of fractal soot aggregates using the superposition T-matrix method

    International Nuclear Information System (INIS)

    Li Liu; Mishchenko, Michael I.; Patrick Arnott, W.

    2008-01-01

    We employ the numerically exact superposition T-matrix method to perform extensive computations of scattering and absorption properties of soot aggregates with varying state of compactness and size. The fractal dimension, D f , is used to quantify the geometrical mass dispersion of the clusters. The optical properties of soot aggregates for a given fractal dimension are complex functions of the refractive index of the material m, the number of monomers N S , and the monomer radius a. It is shown that for smaller values of a, the absorption cross section tends to be relatively constant when D f f >2. However, a systematic reduction in light absorption with D f is observed for clusters with sufficiently large N S , m, and a. The scattering cross section and single-scattering albedo increase monotonically as fractals evolve from chain-like to more densely packed morphologies, which is a strong manifestation of the increasing importance of scattering interaction among spherules. Overall, the results for soot fractals differ profoundly from those calculated for the respective volume-equivalent soot spheres as well as for the respective external mixtures of soot monomers under the assumption that there are no electromagnetic interactions between the monomers. The climate-research implications of our results are discussed

  5. Taylor dispersion on a fractal

    International Nuclear Information System (INIS)

    Mazo, R.M.

    1998-01-01

    Taylor dispersion is the greatly enhanced diffusion in the direction of a fluid flow caused by ordinary diffusion in directions orthogonal to the flow. It is essential that the system be bounded in space in the directions orthogonal to the flow. We investigate the situation where the medium through which the flow occurs has fractal properties so that diffusion in the orthogonal directions is anomalous and non-Fickian. The effective diffusion in the flow direction remains normal; its width grows proportionally with the time. However, the proportionality constant depends on the fractal dimension of the medium as well as its walk dimension. (author)

  6. Impact of morphology on the radiative properties of fractal soot aggregates

    International Nuclear Information System (INIS)

    Doner, Nimeti; Liu, Fengshan

    2017-01-01

    The impact of morphology on the radiative properties of fractal soot aggregates was investigated using the discrete dipole approximation (DDA). The optical properties of four different types of aggregates of freshly emitted soot with a fractal dimension D f =1.65 and a fractal pre-factor k f =1.76 were calculated. The four types of aggregates investigated are formed by uniform primary particles in point-touch, by uniform but overlapping primary particles, by uniform but enlarged primary particles in point-touch, and formed by point-touch and polydisperse primary particles. The radiative properties of aggregates consisting of N=20, 56 and 103 primary particles were numerically evaluated for a given refractive index at 0.532 and 1.064 μm. The radiative properties of soot aggregates vary strongly with the volume equivalent radius a eff and wavelength. The accuracy of DDA was evaluated in the first and fourth cases against the generalized multi-sphere Mie (GMM) solution in terms of the vertical–vertical differential scattering cross section (C vv ). The model predicted the average relative deviations from the base case to be within 15–25% for C vv , depending on the number of particles for the aggregate. The scattering cross sections are only slightly affected by the overlapping but more significantly influenced by primary particle polydispersity. It was also found that the enlargement of primary particles by 20% has a strong effect on soot aggregate radiative properties. - Highlights: • The radiative properties of aggregates of N=20, 56 and 103 primary particles were investigated. • Four different cases, formed by point-touch, overlapping, aggregate expansion and polydispersion, were studied. • The effects of overlapping and aggregate expansion on morphology are found to be the same.

  7. Archean Earth Atmosphere Fractal Haze Aggregates: Light Scattering Calculations and the Faint Young Sun Paradox

    Science.gov (United States)

    Boness, D. A.; Terrell-Martinez, B.

    2010-12-01

    As part of an ongoing undergraduate research project of light scattering calculations involving fractal carbonaceous soot aggregates relevant to current anthropogenic and natural sources in Earth's atmosphere, we have read with interest a recent paper [E.T. Wolf and O.B Toon,Science 328, 1266 (2010)] claiming that the Faint Young Sun paradox discussed four decades ago by Carl Sagan and others can be resolved without invoking heavy CO2 concentrations as a greenhouse gas warming the early Earth enough to sustain liquid water and hence allow the origin of life. Wolf and Toon report that a Titan-like Archean Earth haze, with a fractal haze aggregate nature due to nitrogen-methane photochemistry at high altitudes, should block enough UV light to protect the warming greenhouse gas NH3 while allowing enough visible light to reach the surface of the Earth. To test this hypothesis, we have employed a rigorous T-Matrix arbitrary-particle light scattering technique, to avoid the simplifications inherent in Mie-sphere scattering, on haze fractal aggregates at UV and visible wavelenths of incident light. We generate these model aggregates using diffusion-limited cluster aggregation (DLCA) algorithms, which much more closely fit actual haze fractal aggregates than do diffusion-limited aggregation (DLA) algorithms.

  8. Effects of multiple scattering on radiative properties of soot fractal aggregates

    International Nuclear Information System (INIS)

    Yon, Jérôme; Liu, Fengshan; Bescond, Alexandre; Caumont-Prim, Chloé; Rozé, Claude; Ouf, François-Xavier; Coppalle, Alexis

    2014-01-01

    The in situ optical characterization of smokes composed of soot particles relies on light extinction, angular static light scattering (SLS), or laser induced incandescence (LII). These measurements are usually interpreted by using the Rayleigh–Debye–Gans theory for Fractal Aggregates (RDG-FA). RDG-FA is simple to use but it completely neglects the impact of multiple scattering (MS) within soot aggregates. In this paper, based on a scaling approach that takes into account MS effects, an extended form of the RDG-FA theory is proposed in order to take into account these effects. The parameters of this extended theory and their dependency on the number of primary sphere inside the aggregate (1 p <1006) and on the wavelength (266nm<λ<1064nm) are evaluated thanks to rigorous calculations based on discrete dipole approximation (DDA) and generalized multi-sphere Mie-solution (GMM) calculations. This study shows that size determination by SLS is not distorted by MS effect. On the contrary, it is shown that fractal dimension can be misinterpreted by light scattering experiments, especially at short wavelengths. MS effects should be taken into account for the interpretation of absorption measurements that are involved in LII or extinction measurements. -- Highlights: • We incorporate multiple scattering effects in a scaling approach for fractal aggregates. • A generalized structure factor is introduced for implementation in RDG-FA theory. • Forward scattering is affected by multiple scattering as well as power law regime. • Absorption cross sections are affected by multiple scattering. • Absorption cross sections are 11% higher than that for forward scattering

  9. The Effect of Morphological Characteristic of Coarse Aggregates Measured with Fractal Dimension on Asphalt Mixture’s High-Temperature Performance

    Directory of Open Access Journals (Sweden)

    Hainian Wang

    2016-01-01

    Full Text Available The morphological properties of coarse aggregates, such as shape, angularity, and surface texture, have a great influence on the mechanical performance of asphalt mixtures. This study aims to investigate the effect of coarse aggregate morphological properties on the high-temperature performance of asphalt mixtures. A modified Los Angeles (LA abrasion test was employed to produce aggregates with various morphological properties by applying abrasion cycles of 0, 200, 400, 600, 800, 1000, and 1200 on crushed angular aggregates. Based on a laboratory-developed Morphology Analysis System for Coarse Aggregates (MASCA, the morphological properties of the coarse aggregate particles were quantified using the index of fractal dimension. The high-temperature performances of the dense-graded asphalt mixture (AC-16, gap-graded stone asphalt mixture (SAC-16, and stone mastic asphalt (SMA-16 mixtures containing aggregates with different fractal dimensions were evaluated through the dynamic stability (DS test and the penetration shear test in laboratory. Good linear correlations between the fractal dimension and high-temperature indexes were obtained for all three types of mixtures. Moreover, the results also indicated that higher coarse aggregate angularity leads to stronger high-temperature shear resistance of asphalt mixtures.

  10. Fractal and digital image processing to determine the degree of dispersion of carbon nanotubes

    International Nuclear Information System (INIS)

    Liang, Xiao-ning; Li, Wei

    2016-01-01

    The degree of dispersion is an important parameter to quantitatively study properties of carbon nanotube composites. Among the many methods for studying dispersion, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy are the most commonly used, intuitive, and convincing methods. However, they have the disadvantage of not being quantitative. To overcome this disadvantage, the fractal theory and digital image processing method can be used to provide a quantitative analysis of the morphology and properties of carbon nanotube composites. In this paper, the dispersion degree of carbon nanotubes was investigated using two fractal methods, namely, the box-counting method and the differential box-counting method. On the basis of the results, we propose a new method for the quantitative characterization of the degree of dispersion of carbon nanotubes. This hierarchical grid method can be used as a supplementary method, and can be combined with the fractal calculation method. Thus, the accuracy and effectiveness of the quantitative characterization of the dispersion degree of carbon nanotubes can be improved. (The outer diameter of the carbon nanotubes is about 50 nm; the length of the carbon nanotubes is 10–20 μm.)

  11. Fractal and digital image processing to determine the degree of dispersion of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xiao-ning, E-mail: xnliang0506@163.com; Li, Wei, E-mail: 1099006@mail.dhu.edu.cn, E-mail: liwei@dhu.edu.cn, E-mail: waiwentougao@outlook.com [Donghua University, College of Textiles (China)

    2016-05-15

    The degree of dispersion is an important parameter to quantitatively study properties of carbon nanotube composites. Among the many methods for studying dispersion, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy are the most commonly used, intuitive, and convincing methods. However, they have the disadvantage of not being quantitative. To overcome this disadvantage, the fractal theory and digital image processing method can be used to provide a quantitative analysis of the morphology and properties of carbon nanotube composites. In this paper, the dispersion degree of carbon nanotubes was investigated using two fractal methods, namely, the box-counting method and the differential box-counting method. On the basis of the results, we propose a new method for the quantitative characterization of the degree of dispersion of carbon nanotubes. This hierarchical grid method can be used as a supplementary method, and can be combined with the fractal calculation method. Thus, the accuracy and effectiveness of the quantitative characterization of the dispersion degree of carbon nanotubes can be improved. (The outer diameter of the carbon nanotubes is about 50 nm; the length of the carbon nanotubes is 10–20 μm.)

  12. An extended fractal growth regime in the diffusion limited aggregation including edge diffusion

    Directory of Open Access Journals (Sweden)

    Aritra Ghosh

    2016-01-01

    Full Text Available We have investigated on-lattice diffusion limited aggregation (DLA involving edge diffusion and compared the results with the standard DLA model. For both cases, we observe the existence of a crossover from the fractal to the compact regime as a function of sticking coefficient. However, our modified DLA model including edge diffusion shows an extended fractal growth regime like an earlier theoretical result using realistic growth models and physical parameters [Zhang et al., Phys. Rev. Lett. 73 (1994 1829]. While the results of Zhang et al. showed the existence of the extended fractal growth regime only on triangular but not on square lattices, we find its existence on the square lattice. There is experimental evidence of this growth regime on a square lattice. The standard DLA model cannot characterize fractal morphology as the fractal dimension (Hausdorff dimension, DH is insensitive to morphology. It also predicts DH = DP (the perimeter dimension. For the usual fractal structures, observed in growth experiments on surfaces, the perimeter dimension can differ significantly (DH ≠ DP depending on the morphology. Our modified DLA model shows minor sensitivity to this difference.

  13. National and International Income Dispersion and Aggregate Expenditures

    NARCIS (Netherlands)

    C. Fillat; J.F. François (Joseph)

    2004-01-01

    textabstractWe examine linkages between aggregate household income, distribution of that income, and aggregate cross-country expenditure patterns. We are able to decompose income effects into international income dispersion effects (from variations in average income) and national income dispersion

  14. Lidar cross-sections of soot fractal aggregates: Assessment of equivalent-sphere models

    Science.gov (United States)

    Ceolato, Romain; Gaudfrin, Florian; Pujol, Olivier; Riviere, Nicolas; Berg, Matthew J.; Sorensen, Christopher M.

    2018-06-01

    This work assesses the ability of equivalent-sphere models to reproduce the optical properties of soot aggregates relevant for lidar remote sensing, i.e. the backscattering and extinction cross sections. Lidar cross-sections are computed with a spectral discrete dipole approximation model over the visible-to-infrared (400-5000 nm) spectrum and compared with equivalent-sphere approximations. It is shown that the equivalent-sphere approximation, applied to fractal aggregates, has a limited ability to calculate such cross-sections well. The approximation should thus be used with caution for the computation of broadband lidar cross-sections, especially backscattering, at small and intermediate wavelengths (e.g. UV to visible).

  15. Variabilidade espacial da agregação do solo avaliada pela geometria fractal e geoestatística Spatial variability of soil aggregation evaluated by fractal geometry and geostatistics

    Directory of Open Access Journals (Sweden)

    J. R. P. Carvalho

    2004-02-01

    Full Text Available Este trabalho teve por objetivo explorar a aplicabilidade da teoria de fractais no estudo da variabilidade espacial em agregação de solo. A geometria de fractais tem sido proposta como um modelo para a distribuição de tamanho de partículas. A distribuição do tamanho de agregados do solo, expressos em termos de massa, é apresentada. Os parâmetros do modelo, tais como: a dimensão fractal D, medida representativa da fragmentação do solo (quanto maior seu valor, maior a fragmentação, e o tamanho do maior agregado R L foram definidos como ferramentas descritivas para a agregação do solo. Os agregados foram coletados em uma profundidade de 0-10 cm de um Latossolo Vermelho distrófico típico álico textura argilosa, em Angatuba, São Paulo. Uma grade regular de 100 x 100 m foi usada e a amostragem realizada em 76 pontos nos quais se determinou a distribuição de agregados por via úmida, usando água, álcool e benzeno como pré-tratamentos. Pelo exame de semivariogramas, constatou-se a ocorrência de dependência espacial. A krigagem ordinária foi usada como interpolador e mapas de contorno mostraram-se de grande utilidade na descrição da variabilidade espacial de agregação do solo.This work explored the applicability of the fractal theory for studies into space variability of soil aggregation. Fractal geometry has become a model for soil size particle distribution. The distribution of soil aggregates in terms of its mass was obtained, and model parameters such as the fractal dimension D, which is a representative measure of the soil fragmentation (the larger its value, the larger the fragmentation, and the largest aggregate size R L were defined as descriptive tools for soil aggregation. The aggregates were collected at a depth of 0-10 cm of a Clayey Ferrasol in Angatuba, São Paulo. A regular grid of 100 x 100 m was used and samples collected from 76 points, where the aggregate distribution was determined by humid way (water

  16. Dielectric dispersion of porous media as a fractal phenomenon

    Science.gov (United States)

    Thevanayagam, S.

    1997-09-01

    It is postulated that porous media is made up of fractal solid skeleton structure and fractal pore surface. The model thus developed satisfies measured anomalous dielectric behavior of three distinctly different porous media: kaolin, montmorillonite, and shaly sand rock. It is shown that the underlying mechanism behind dielectric dispersion in the kHz range to high MHz range is indeed Maxwell-Wagner mechanism but modified to take into account the multiphase nature of the porous media as opposed to the traditional two-phase Maxwell-Wagner charge accumulation effect. The conductivity of the surface water associated with the solid surface and charge accumulation across the surface irregularities, asperity, and bridging between particles at the micro-scale-level pores are shown to contribute to this modified Maxwell-Wagner mechanism. The latter is dominant at low frequencies. The surface water thickness is calculated to be about 2-6 nm for a variety of porous media.

  17. Application of sequential fragmentation/transport theory to deposits of 1723 and 1963-65 eruptions of Volcan Irazu, Costa Rica: positive dispersion case and fractal model

    International Nuclear Information System (INIS)

    Brenes, Jose; Alvarado, Guillermo E.

    2013-01-01

    The theory of Fragmentation and Sequential Transport (FST) was applied to the granulometric analyzes of the deposits from the eruptions of 1723 and 1963-65 of the Volcan Irazu. An appreciable number of cases of positive dispersion was showed, associated in the literature with aggregation processes. A new fractal dimension defined in research has shown to be the product of secondary fragmentation. The application of the new dimension is used in the analyses of the eruptions of 1723 and 1963-65. A fractal model of a volcanic activity is formulated for the first time. The Hurst coefficient and the exponent of the law of powers are incorporated. The existence of values of dissidence near zero have been indicators of an effusive process, as would be the lava pools. The results derived from the model were agreed with field observations. (author) [es

  18. Comparison of different methods for the determination of fractal characteristics of soot aggregates

    International Nuclear Information System (INIS)

    Ouf, F.X.; Coursil, C.; Vendel, J.; Coursil, C.; Gehin, E.

    2007-01-01

    Morphology of particles generated during hydrocarbons or biomass combustion is fundamental as data for characterizing the optical and aerodynamic behaviour of these particles. The fractal nature of soot particles is well known since the works of Jullien and Botet (1987). Nevertheless, the determination of the fractal morphology of these aggregates is based on direct analysis of transmission electronic microscopy (TEM) micrography (Koylo et al., 1995; Sorensen and Feke, 1996; Brasil et al., 2000) which represents a long and tiresome work. We propose in this work to use the method introduced by Kelly and McMurry (1992) and based on serial analysis of electrical mobility and aerodynamic diameters of soot aggregates. This method has been recently used by VanGulijk et al. (2004) and Park et al. (2004), and seems to bring morphological information systematically higher than the TEM analysis. In this study we will detail the TEM analysis method and the theoretical approach associated to the serial method of Kelly and McMurry (1992). We will also present the experimental setup used and the results obtained for aggregates generated during the combustion of acetylene (C 2 H 2 ), toluene (C 7 H 8 ) and Polymethyl Methacrylate (PMMA, C 5 H 8 O 2 ). These results will be compared to TEM analysis results, and discrepancies will be analysed and explained in detail. We will finally conclude on advantages and disadvantages of each method and also on potential of these approaches. The link will be thus established out with the determination of the effective density of the soot aggregates, which is presented in work of Ouf et al. (2005a). (authors)

  19. The fractal character of radiation defects aggregation in crystals

    International Nuclear Information System (INIS)

    Akylbekov, A.; Akimbekov, E.; Baktybekov, K.; Vasil'eva, I.

    2002-01-01

    In processes of self-organization, which characterize open systems, the source of ordering is a non-equilibrium. One of the samples of ordering system is radiation-stimulated aggregation of defects in solids. In real work the analysis of criterions of ordering defects structures in solid, which is continuously irradiate at low temperature is presented. The method of cellular automata used in simulation of irradiation. It allowed us to imitate processes of defects formation and recombination. The simulation realized on the surfaces up to 1000x1000 units with initial concentration of defects C n (the power of dose) 0.1-1 %. The number of iterations N (duration of irradiation) mounted to 10 6 cycles. The single centers, which are the sources of formation aggregates, survive in the result of probabilistic nature of formation and recombination genetic pairs of defects and with strictly fixed radius of recombination (the minimum inter anionic distance). For determination the character of same type defects distribution the potential of their interaction depending of defects type and reciprocal distance is calculated. For more detailed study of processes, proceeding in cells with certain sizes of aggregates, the time dependence of potential interaction is constructed. It is shown, that on primary stage the potential is negative, then it increase and approach the saturation in positive area. The minimum of interaction potential corresponds to state of physical chaos in system. Its increasing occurs with formation of same type defects aggregates. Further transition to saturation and 'undulating' character of curves explains by formation and destruction aggregates. The data indicated that - these processes occur simultaneously in cells with different sizes. It allows us to assume that the radiation defects aggregation have a fractal nature

  20. The 10 μm amorphous silicate feature of fractal aggregates and compact particles with complex shapes

    NARCIS (Netherlands)

    Min, M.; Dominik, C.; Hovenier, J.W.; de Koter, A.; Waters, L.B.F.M.

    2006-01-01

    We model the 10 μm absorption spectra of nonspherical particles composed of amorphous silicate. We consider two classes of particles, compact ones and fractal aggregates composed of homogeneous spheres. For the compact particles we consider Gaussian random spheres with various degrees of

  1. Empirical Relationships Between Optical Properties and Equivalent Diameters of Fractal Soot Aggregates at 550 Nm Wavelength.

    Science.gov (United States)

    Pandey, Apoorva; Chakrabarty, Rajan K.; Liu, Li; Mishchenko, Michael I.

    2015-01-01

    Soot aggregates (SAs)-fractal clusters of small, spherical carbonaceous monomers-modulate the incoming visible solar radiation and contribute significantly to climate forcing. Experimentalists and climate modelers typically assume a spherical morphology for SAs when computing their optical properties, causing significant errors. Here, we calculate the optical properties of freshly-generated (fractal dimension Df = 1.8) and aged (Df = 2.6) SAs at 550 nm wavelength using the numericallyexact superposition T-Matrix method. These properties were expressed as functions of equivalent aerosol diameters as measured by contemporary aerosol instruments. This work improves upon previous efforts wherein SA optical properties were computed as a function of monomer number, rendering them unusable in practical applications. Future research will address the sensitivity of variation in refractive index, fractal prefactor, and monomer overlap of SAs on the reported empirical relationships.

  2. Characterization and modeling of thermal diffusion and aggregation in nanofluids.

    Energy Technology Data Exchange (ETDEWEB)

    Gharagozloo, Patricia E.; Goodson, Kenneth E. (Stanford University, Stanford, CA)

    2010-05-01

    Fluids with higher thermal conductivities are sought for fluidic cooling systems in applications including microprocessors and high-power lasers. By adding high thermal conductivity nanoscale metal and metal oxide particles to a fluid the thermal conductivity of the fluid is enhanced. While particle aggregates play a central role in recent models for the thermal conductivity of nanofluids, the effect of particle diffusion in a temperature field on the aggregation and transport has yet to be studied in depth. The present work separates the effects of particle aggregation and diffusion using parallel plate experiments, infrared microscopy, light scattering, Monte Carlo simulations, and rate equations for particle and heat transport in a well dispersed nanofluid. Experimental data show non-uniform temporal increases in thermal conductivity above effective medium theory and can be well described through simulation of the combination of particle aggregation and diffusion. The simulation shows large concentration distributions due to thermal diffusion causing variations in aggregation, thermal conductivity and viscosity. Static light scattering shows aggregates form more quickly at higher concentrations and temperatures, which explains the increased enhancement with temperature reported by other research groups. The permanent aggregates in the nanofluid are found to have a fractal dimension of 2.4 and the aggregate formations that grow over time are found to have a fractal dimension of 1.8, which is consistent with diffusion limited aggregation. Calculations show as aggregates grow the viscosity increases at a faster rate than thermal conductivity making the highly aggregated nanofluids unfavorable, especially at the low fractal dimension of 1.8. An optimum nanoparticle diameter for these particular fluid properties is calculated to be 130 nm to optimize the fluid stability by reducing settling, thermal diffusion and aggregation.

  3. Growth of fractal structures in flames with silicon admixture

    NARCIS (Netherlands)

    Smirnov, B. M.; Dutka, M.; van Essen, V. M.; Gersen, S.; Visser, P.; Vainchtein, D.; De Hosson, J. Th. M.; Levinsky, H. B.; Mokhov, A. V.

    Transmission electron microscopy (TEM) measurements and theoretical analysis are combined to construct the physical picture of formation of SiO2 fractal aggregates in a methane/hexamethyldisiloxane/air atmospheric pressure flame. The formation of SiO2 fractal aggregates is described as a multistage

  4. Fractals and foods.

    Science.gov (United States)

    Peleg, M

    1993-01-01

    Fractal geometry and related concepts have had only a very minor impact on food research. The very few reported food applications deal mainly with the characterization of the contours of agglomerated instant coffee particles, the surface morphology of treated starch particles, the microstructure of casein gels viewed as a product limited diffusion aggregation, and the jagged mechanical signatures of crunchy dry foods. Fractal geometry describes objects having morphological features that are scale invariant. A demonstration of the self-similarity of fractal objects can be found in the familiar morphology of cauliflower and broccoli, both foods. Processes regulated by nonlinear dynamics can exhibit a chaotic behavior that has fractal characteristics. Examples are mixing of viscous fluids, turbulence, crystallization, agglomeration, diffusion, and possibly food spoilage.

  5. Black and brown carbon fractal aggregates from combustion of two fuels widely used in Asian rituals

    International Nuclear Information System (INIS)

    Chakrabarty, Rajan K.; Arnold, Ian J.; Francisco, Dianna M.; Hatchett, Benjamin; Hosseinpour, Farnaz; Loria, Marcela; Pokharel, Ashok; Woody, Brian M.

    2013-01-01

    Incense sticks and mustard oil are the two most popular combustion fuels during rituals and social ceremonies in Asian countries. Given their widespread use in both closed and open burning activities, it is important to quantify the spectral radiative properties of aerosols emitted from the combustion of both fuels. This information is needed by climate models to assess the impact of these aerosols on radiative forcing. In this study, we used a 3-wavelength integrated photoacoustic-nephelometer – operating simultaneously at 405, 532 and 781 nm – to measure the optical coefficients of aerosols emitted from the laboratory combustion of mustard oil lamp and two types of incense sticks. From the measured optical coefficients at three wavelengths, time-varying single scattering albedo (SSA), absorption Ångström exponent (AAE), and scattering Ångström exponent (SAE) were calculated. For incense smoke particles, the time-averaged mean AAE values were found to be as high as 8.32 (between 405 and 532 nm) and 6.48 (between 532 and 781 nm). This spectrally-varying characteristic of AAE indicates that brown carbon – a class of organic carbon which strongly absorbs solar radiation in the blue and near ultraviolet – is the primary component of incense smoke aerosols. For aerosols emitted from the burning of mustard oil lamp, the time-averaged mean AAE values were ∼1.3 (between 405 and 781 nm) indicating that black carbon (BC) is the primary constituent. Scanning electron microscopy combined with image processing revealed the morphology of incense smoke aerosols to be non-coalescing and weakly-bound aggregates with a mean two-dimensional (2-d) fractal dimension (D f )=1.9±0.07, while the mustard oil smoke aerosols had typical fractal-like BC aggregate morphology with a mean 2-d D f =1.85±0.09. -- Highlights: ► Incense and mustard oil burning aerosols characterized by 3-wavelength photoacoustic spectroscopy and nephelometery, and electron microscopy. ► Brown

  6. Aerodynamic properties of fractal grains: implications for the primordial solar nebula

    International Nuclear Information System (INIS)

    Meakin, P.; Donn, B.

    1988-01-01

    Under conditions in the primordial solar nebula and dense interstellar clouds, small grains have low relative velocities. This is the condition for efficient sticking and formation of fractal aggregates. A calculation of the ratio of cross section, sigma, to number of primary particles, N, for fractal clusters yielded 1n sigma/N = 0.2635 + 0.5189N sup (-0.1748). This ratio decreases slowly with N and approaches a constant for large N. Under the usual assumption of collisions producing spherical compact, uniform density aggregates, sigma/N varies as N sup -1/3 and decreases rapidly. Fractal grains are therefore much more closely coupled to the gas than are compact aggregates. This has a significant effect on the aerodynamic behavior of aggregates and consequently on their evolution and that of the nebula

  7. Bridging Three Orders of Magnitude: Multiple Scattered Waves Sense Fractal Microscopic Structures via Dispersion

    Science.gov (United States)

    Lambert, Simon A.; Näsholm, Sven Peter; Nordsletten, David; Michler, Christian; Juge, Lauriane; Serfaty, Jean-Michel; Bilston, Lynne; Guzina, Bojan; Holm, Sverre; Sinkus, Ralph

    2015-08-01

    Wave scattering provides profound insight into the structure of matter. Typically, the ability to sense microstructure is determined by the ratio of scatterer size to probing wavelength. Here, we address the question of whether macroscopic waves can report back the presence and distribution of microscopic scatterers despite several orders of magnitude difference in scale between wavelength and scatterer size. In our analysis, monosized hard scatterers 5 μ m in radius are immersed in lossless gelatin phantoms to investigate the effect of multiple reflections on the propagation of shear waves with millimeter wavelength. Steady-state monochromatic waves are imaged in situ via magnetic resonance imaging, enabling quantification of the phase velocity at a voxel size big enough to contain thousands of individual scatterers, but small enough to resolve the wavelength. We show in theory, experiments, and simulations that the resulting coherent superposition of multiple reflections gives rise to power-law dispersion at the macroscopic scale if the scatterer distribution exhibits apparent fractality over an effective length scale that is comparable to the probing wavelength. Since apparent fractality is naturally present in any random medium, microstructure can thereby leave its fingerprint on the macroscopically quantifiable power-law exponent. Our results are generic to wave phenomena and carry great potential for sensing microstructure that exhibits intrinsic fractality, such as, for instance, vasculature.

  8. Optical diffraction from fractals with a structural transition

    International Nuclear Information System (INIS)

    Perez Rodriguez, F.; Canessa, E.

    1994-04-01

    A macroscopic characterization of fractals showing up a structural transition from dense to multibranched growth is made using optical diffraction theory. Such fractals are generated via the numerical solution of the 2D Poisson and biharmonic equations and are compared to more 'regular' irreversible clusters such as diffusion limited and Laplacian aggregates. The optical diffraction method enables to identify a decrease of the fractal dimension above the structural point. (author). 19 refs, 6 figs

  9. Fractal Dimension Analysis of Texture Formation of Whey Protein-Based Foods

    Directory of Open Access Journals (Sweden)

    Robi Andoyo

    2018-01-01

    Full Text Available Whey protein in the form of isolate or concentrate is widely used in food industries due to its functionality to form gel under certain condition and its nutritive value. Controlling or manipulating the formation of gel aggregates is used often to evaluate food texture. Many researchers made use of fractal analysis that provides the quantitative data (i.e., fractal dimension for fundamentally and rationally analyzing and designing whey protein-based food texture. This quantitative analysis is also done to better understand how the texture of whey protein-based food is formed. Two methods for fractal analysis were discussed in this review: image analysis (microscopy and rheology. These methods, however, have several limitations which greatly affect the accuracy of both fractal dimension values and types of aggregation obtained. This review therefore also discussed problem encountered and ways to reduce the potential errors during fractal analysis of each method.

  10. Fractal Aggregates in Tennis Ball Systems

    Science.gov (United States)

    Sabin, J.; Bandin, M.; Prieto, G.; Sarmiento, F.

    2009-01-01

    We present a new practical exercise to explain the mechanisms of aggregation of some colloids which are otherwise not easy to understand. We have used tennis balls to simulate, in a visual way, the aggregation of colloids under reaction-limited colloid aggregation (RLCA) and diffusion-limited colloid aggregation (DLCA) regimes. We have used the…

  11. Dispersion of nanoparticulate suspensions using self-assembled surfactant aggregates

    Science.gov (United States)

    Singh, Pankaj Kumar

    The dispersion of particles is critical for several industrial applications such as paints, inks, coatings, and cosmetics. Several emerging applications such as abrasives for precision polishing, and drug delivery systems are increasingly relying on nanoparticulates to achieve the desired performance. In the case of nanoparticles, the dispersion becomes more challenging because of the lack of fundamental understanding of dispersant adsorption and interparticle force prediction. Additionally, many of these processes use severe processing environments such as high normal forces (>100 mN/m), high shear forces (>10,000 s -1), and high ionic strengths (>0.1 M). Under such processing conditions, traditionally used dispersants based on electrostatics, and steric force repulsion mechanism may not be adequate. Hence, the development of optimally performing dispersants requires a fundamental understanding of the dispersion mechanism at the atomic/molecular scale. This study explores the use of self-assembled surfactant aggregates at the solid-liquid interface for dispersing nanoparticles in severe processing environments. Surfactant molecules can provide a feasible alternative to polymeric or inorganic dispersants for stabilizing ultrafine particles. The barrier to aggregation in the presence of surfactant molecules was measured using atomic force microscopy. The barrier heights correlated to suspension stability. To understand the mechanism for nanoparticulate suspension stability in the presence of surfactant films, the interface was characterized using zeta potential, contact angle, adsorption, and FT-IR (adsorbed surfactant film structure measurements). The effect of solution conditions such as pH and ionic strength on the suspension stability, and the self-assembled surfactant films was also investigated. It was determined that a transition from a random to an ordered orientation of the surfactant molecules at the interface was responsible for stability of

  12. Rheological and fractal characteristics of unconditioned and conditioned water treatment residuals.

    Science.gov (United States)

    Dong, Y J; Wang, Y L; Feng, J

    2011-07-01

    The rheological and fractal characteristics of raw (unconditioned) and conditioned water treatment residuals (WTRs) were investigated in this study. Variations in morphology, size, and image fractal dimensions of the flocs/aggregates in these WTR systems with increasing polymer doses were analyzed. The results showed that when the raw WTRs were conditioned with the polymer CZ8688, the optimum polymer dosage was observed at 24 kg/ton dry sludge. The average diameter of irregularly shaped flocs/aggregates in the WTR suspensions increased from 42.54 μm to several hundred micrometers with increasing polymer doses. Furthermore, the aggregates in the conditioned WTR system displayed boundary/surface and mass fractals. At the optimum polymer dosage, the aggregates formed had a volumetric average diameter of about 820.7 μm, with a one-dimensional fractal dimension of 1.01 and a mass fractal dimension of 2.74 on the basis of the image analysis. Rheological tests indicated that the conditioned WTRs at the optimum polymer dosage showed higher levels of shear-thinning behavior than the raw WTRs. Variations in the limiting viscosity (η(∞)) of conditioned WTRs with sludge content could be described by a linear equation, which were different from the often-observed empirical exponential relationship for most municipal sludge. With increasing temperature, the η(∞) of the raw WTRs decreased more rapidly than that of the raw WTRs. Good fitting results for the relationships between lgη(∞)∼T using the Arrhenius equation indicate that the WTRs had a much higher activation energy for viscosity of about 17.86-26.91 J/mol compared with that of anaerobic granular sludge (2.51 J/mol) (Mu and Yu, 2006). In addition, the Bingham plastic model adequately described the rheological behavior of the conditioned WTRs, whereas the rheology of the raw WTRs fit the Herschel-Bulkley model well at only certain sludge contents. Considering the good power-law relationships between the

  13. Aggregation in charged nanoparticles solutions induced by different interactions

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, S.; Kumar, Sugam; Aswal, V. K., E-mail: vkaswal@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kohlbrecher, J. [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 PSI Villigen (Switzerland)

    2016-05-23

    Small-angle neutron scattering (SANS) has been used to study the aggregation of anionic silica nanoparticles as induced through different interactions. The nanoparticle aggregation is induced by addition of salt (NaCl), cationic protein (lysozyme) and non-ionic surfactant (C12E10) employing different kind of interactions. The results show that the interaction in presence of salt can be explained using DLVO theory whereas non-DLVO forces play important role for interaction of nanoparticles with protein and surfactant. The presence of salt screens the repulsion between charged nanoparticles giving rise to a net attraction in the DLVO potential. On the other hand, strong electrostatic attraction between nanoparticle and oppositely charged protein leads to protein-mediated nanoparticle aggregation. In case of non-ionic surfactant, the relatively long-range attractive depletion interaction is found to be responsible for the particle aggregation. Interestingly, the completely different interactions lead to similar kind of aggregate morphology. The nanoparticle aggregates formed are found to have mass fractal nature having a fractal dimension (~2.5) consistent with diffusion limited type of fractal morphology in all three cases.

  14. Feeding on dispersed vs. aggregated particles: The effect of zooplankton feeding behavior on vertical flux

    DEFF Research Database (Denmark)

    Koski, Marja; Boutorh, Julia; De La Rocha, Christina L.

    2017-01-01

    Zooplankton feeding activity is hypothesized to attenuate the downward flux of elements in the ocean. We investigated whether the zooplankton community composition could influence the flux attenuation, due to the differences of feeding modes (feeding on dispersed vs. aggregated particles) and of ......Zooplankton feeding activity is hypothesized to attenuate the downward flux of elements in the ocean. We investigated whether the zooplankton community composition could influence the flux attenuation, due to the differences of feeding modes (feeding on dispersed vs. aggregated particles...

  15. Electrical percolation, morphological and dispersion properties of MWCNT/PMMA nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Paulo Henrique da Silva Leite; Marchesin, Marcel Silva; Morales, Ana Rita; Bartoli, Julio Roberto, E-mail: piyke.coelho@gmail.com [Universidade de Campinas (UNICAMP), SP (Brazil). Escola de Engenharia Quimica

    2014-08-15

    Nanocomposites of poly (methyl methacrylate) (PMMA) and carbon nanotubes have a high potential for applications where conductivity and low specific weight are required. This piece of work concerns investigations of the level of dispersion and morphology on the electrical properties of in situ polymerized nanocomposites in different concentrations of multi-walled carbon nanotubes (MWCNT) in a PMMA matrix. The electrical conductivity was measured by the four point probe. The morphology and dispersion was analyzed by Transmission Electron Microscopy (TEM) and Small Angle X-ray Scattering (SAXS). The correlation between electrical conductivity and the MWCNT amount, presented a typical percolation behavior, whose electrical percolation threshold determined by power law relationship was 0.2 vol. (%) The exponent t from the percolation power law indicated the formation of a 3D network of randomly arranged MWCNT. SAXS detected that the structures are intermediate to disks or spheres indicating fractal geometry for the MWCNT aggregates instead of isolated rods. HR-TEM images allowed us to observe the MWCNT individually dispersed into the matrix, revealing their distribution without preferential space orientation and absence of significant damage to the walls. The combined results of SAXS and HR-TEM suggest that MWCNT into the polymeric matrix might present interconnected aggregates and some dispersed single structures. (author)

  16. Electrical percolation, morphological and dispersion properties of MWCNT/PMMA nanocomposites

    International Nuclear Information System (INIS)

    Coelho, Paulo Henrique da Silva Leite; Marchesin, Marcel Silva; Morales, Ana Rita; Bartoli, Julio Roberto

    2014-01-01

    Nanocomposites of poly (methyl methacrylate) (PMMA) and carbon nanotubes have a high potential for applications where conductivity and low specific weight are required. This piece of work concerns investigations of the level of dispersion and morphology on the electrical properties of in situ polymerized nanocomposites in different concentrations of multi-walled carbon nanotubes (MWCNT) in a PMMA matrix. The electrical conductivity was measured by the four point probe. The morphology and dispersion was analyzed by Transmission Electron Microscopy (TEM) and Small Angle X-ray Scattering (SAXS). The correlation between electrical conductivity and the MWCNT amount, presented a typical percolation behavior, whose electrical percolation threshold determined by power law relationship was 0.2 vol. (%) The exponent t from the percolation power law indicated the formation of a 3D network of randomly arranged MWCNT. SAXS detected that the structures are intermediate to disks or spheres indicating fractal geometry for the MWCNT aggregates instead of isolated rods. HR-TEM images allowed us to observe the MWCNT individually dispersed into the matrix, revealing their distribution without preferential space orientation and absence of significant damage to the walls. The combined results of SAXS and HR-TEM suggest that MWCNT into the polymeric matrix might present interconnected aggregates and some dispersed single structures. (author)

  17. Chlordecone retention in the fractal structure of volcanic clay

    International Nuclear Information System (INIS)

    Woignier, Thierry; Clostre, Florence; Macarie, Hervé; Jannoyer, Magalie

    2012-01-01

    Highlights: ► Allophanic soils are highly polluted but less contaminant for cultivated vegetables. ► SAXS and TEM show the fractal structure of allophane aggregates at the nanoscale. ► Allophane aggregates play the role of a labyrinth which fixes and traps chlordecone. ► Allophane physical properties contribute to chlordecone retention in andosols. - Abstract: Chlordecone (CHLD), a soil and foodstuff pollutant, as well as an environmentally persistent organochlorine insecticide, was used intensively in banana fields. The chlordecone uptake of three crops was measured for two types of polluted soils: allophanic and non-allophanic. The uptake is lower for allophanic soils even if their chlordecone content is higher than with non-allophanic soils. The fractal structure of the allophane aggregates was characterized at the nanoscale by small angle X-rays scattering, pore size distribution and transmission electron microscopy. We showed that clay microstructures should be an important physico-chemical factor governing the fate of chlordecone in the environment. Allophanic clays result in two counterintuitive findings: higher contaminant trappings yet lower contaminant availability. We propose that this specific, tortuous structure, along with its associated low accessibility, partly explains the low availability of chlordecone confined in allophanic soils. Capsule The fractal and tortuous microstructure of allophane clay favours the chlordecone retention in soils and disfavours the crop uptake.

  18. Fractal physiology and the fractional calculus: a perspective

    Directory of Open Access Journals (Sweden)

    Bruce J West

    2010-10-01

    Full Text Available This paper presents a restricted overview of Fractal Physiology focusing on the complexity of the human body and the characterization of that complexity through fractal measures and their dynamics, with fractal dynamics being described by the fractional calculus. We review the allometric aggregation approach to the processing of physiologic time series as a way of determining the fractal character of the underlying phenomena. This straight forward method establishes the scaling behavior of complex physiologic networks and some dynamic models capable of generating such scaling are reviewed. These models include simple and fractional random walks, which describe how the scaling of correlation functions and probability densities are related to time series data. Subsequently, it is suggested that a proper methodology for describing the dynamics of fractal time series may well be the fractional calculus, either through the fractional Langevin equation or the fractional diffusion equation. Fractional operators acting on fractal functions yield fractal functions, allowing us to construct a fractional Langevin equation to describe the evolution of a fractal statistical process. Control of physiologic complexity is one of the goals of medicine. Allometric control incorporates long-time memory, inverse power-law (IPL correlations, and long-range interactions in complex phenomena as manifest by IPL distributions. We hypothesize that allometric control, rather than homeostatic control, maintains the fractal character of erratic physiologic time series to enhance the robustness of physiological networks. Moreover, allometric control can be described using the fractional calculus to capture the dynamics of complex physiologic networks. This hypothesis is supported by a number of physiologic time series data.

  19. Monte Carlo simulation of aggregate morphology for simultaneous coagulation and sintering

    International Nuclear Information System (INIS)

    Schmid, Hans-Joachim; Tejwani, Saurabh; Artelt, Christian; Peukert, Wolfgang

    2004-01-01

    A model for simulation of the three-dimensional morphology of nano-structured aggregates formed by concurrent coagulation and sintering is presented. Diffusion controlled cluster-cluster aggregation is assumed to be the prevailing coagulation mechanism which is implemented using a Monte-Carlo algorithm. Sintering is modeled as a successive overlapping of spherical primary particles, which are allowed to grow as to preserve overall mass. Simulations are characterized by individual ratios τ of characteristic collision to fusion time. A number of resulting aggregate-structures is displayed and reveals structure formation by coagulation and sintering for different values of τ. These aggregates are described qualitatively and quantitatively by their mass fractal dimension D f and radius of gyration. The fractal dimension increases from 1.86 for pure aggregation to ∼ 2.75 for equal characteristic time scales. As sintering turns out to be more and more relevant, increasingly compact aggregates start to form and the radius of gyration decreases significantly. The simulation results clearly reveal a strong dependence of the fractal dimension on the kinetics of the concurrent coagulation and sintering processes. Considering appropriate values of D f in aerosol process simulations may therefore be important in many cases

  20. Structural transition models for a class or irreversible aggregates

    International Nuclear Information System (INIS)

    Canessa, E.

    1995-02-01

    A progress report on two recent theoretical approaches proposed to understand the physics of irreversible fractal aggregates showing up a structural transition from a rather dense to a more multibranched growth is presented. In the first approach the transition is understood by solving the Poisson equation on a squared lattice. The second approach is based on the discretization of the Biharmonic equation. Within these models the transition appears when the growth velocity at the fractal surface presents a minimum. The effects of the surrounding medium and geometrical constraints for the seed particles are considered. By using the optical diffraction method, the structural transition is further characterized by a decrease in the fractal dimension for this peculiar class of aggregates. (author). 17 refs, 4 figs

  1. Long-term Differences in Tillage and Land Use Affect Intra-aggregate Pore Heterogeneity

    International Nuclear Information System (INIS)

    Kravchenko, A.N.; Wang, A.N.W.; Smucker, A.J.M.; Rivers, M.L.

    2011-01-01

    Recent advances in computed tomography provide measurement tools to study internal structures of soil aggregates at micrometer resolutions and to improve our understanding of specific mechanisms of various soil processes. Fractal analysis is one of the data analysis tools that can be helpful in evaluating heterogeneity of the intra-aggregate internal structures. The goal of this study was to examine how long-term tillage and land use differences affect intra-aggregate pore heterogeneity. The specific objectives were: (i) to develop an approach to enhance utility of box-counting fractal dimension in characterizing intra-aggregate pore heterogeneity; (ii) to examine intra-aggregate pores in macro-aggregates (4-6 mm in size) using the computed tomography scanning and fractal analysis, and (iii) to compare heterogeneity of intra-aggregate pore space in aggregates from loamy Alfisol soil subjected to 20 yr of contrasting management practices, namely, conventional tillage (chisel plow) (CT), no-till (NT), and native succession vegetation (NS). Three-dimensional images of the intact aggregates were obtained with a resolution of 14.6 (micro)m at the Advanced Photon Source, Argonne National Laboratory, Argonne, IL. Proposed box-counting fractal dimension normalization was successfully implemented to estimate heterogeneity of pore voxel distributions without bias associated with different porosities in soil aggregates. The aggregates from all three studied treatments had higher porosity associated with large (>100 (micro)m) pores present in their centers than in their exteriors. Pores 15 to 60 (micro)m were equally abundant throughout entire aggregates but their distributions were more heterogeneous in aggregate interiors. The CT aggregates had greater numbers of pores 15 to 60 (micro)m than NT and NS. Distribution of pore voxels belonging to large pores was most heterogeneous in the aggregates from NS, followed by NT and by CT. This result was consistent with presence of

  2. Theoretical study of fractal growth and stability on surface

    DEFF Research Database (Denmark)

    Dick, Veronika V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2009-01-01

    We perform a theoretical study of the fractal growing process on surface by using the deposition, diffusion, aggregation method. We present a detailed analysis of the post-growth processes occurring in a nanofractal on surface. For this study we developed a method which describes the internal...... dynamics of particles in a fractal and accounts for their diffusion and detachment. We demonstrate that these kinetic processes are responsible for the formation of the final shape of the islands on surface after the post-growth relaxation....

  3. Heterogeneity of cerebral blood flow: a fractal approach

    International Nuclear Information System (INIS)

    Kuikka, J.T.; Hartikainen, P.

    2000-01-01

    Aim: We demonstrate the heterogeneity of regional cerebral blood flow using a fractal approach and single-photon emission computed tomography (SPECT). Method: Tc-99m-labelled ethylcysteine dimer was injected intravenously in 10 healthy controls and in 10 patients with dementia of frontal lobe type. The head was imaged with a gamma camera and transaxial, sagittal and coronal slices were reconstructed. Two hundred fifty-six symmetrical regions of interest (ROIs) were drawn onto each hemisphere of functioning brain matter. Fractal analysis was used to examine the spatial heterogeneity of blood flow as a function of the number of ROIs. Results: Relative dispersion (=coefficient of variation of the regional flows) was fractal-like in healthy subjects and could be characterized by a fractal dimension of 1.17±0.05 (mean±SD) for the left hemisphere and 1.15±0.04 for the right hemisphere, respectively. The fractal dimension of 1.0 reflects completely homogeneous blood flow and 1.5 indicates a random blood flow distribution. Patients with dementia of frontal lobe type had a significantly lower fractal dimension of 1.04±0.03 than in healthy controls. (orig.) [de

  4. An event driven algorithm for fractal cluster formation

    NARCIS (Netherlands)

    González, S.; Gonzalez Briones, Sebastián; Thornton, Anthony Richard; Luding, Stefan

    2011-01-01

    A new cluster based event-driven algorithm is developed to simulate the formation of clusters in a two dimensional gas: particles move freely until they collide and "stick" together irreversibly. These clusters aggregate into bigger structures in an isotompic way, forming fractal structures whose

  5. An event driven algorithm for fractal cluster formation

    NARCIS (Netherlands)

    González, S.; Thornton, Anthony Richard; Luding, Stefan

    2010-01-01

    A new cluster based event-driven algorithm is developed to simulate the formation of clusters in a two dimensional gas: particles move freely until they collide and "stick" together irreversibly. These clusters aggregate into bigger structures in an isotompic way, forming fractal structures whose

  6. Fractal analysis of electrolytically-deposited palladium hydride dendrites

    International Nuclear Information System (INIS)

    Bursill, L.A.; Julin, Peng; Xudong, Fan.

    1990-01-01

    The fractal scaling characteristics of the surface profile of electrolytically-deposited palladium hydride dendritic structures have been obtained using conventional and high resolution transmission electron microscopy. The results are in remarkable agreement with the modified diffusion-limited aggregation model. 19 refs., 3 tabs., 13 figs

  7. Effect of shear rate on aggregate size and structure in the process of aggregation and at steady state

    Czech Academy of Sciences Publication Activity Database

    Bubáková, Petra; Pivokonský, Martin; Filip, Petr

    2013-01-01

    Roč. 235, February (2013), s. 540-549 ISSN 0032-5910 R&D Projects: GA ČR GAP105/11/0247 Institutional support: RVO:67985874 Keywords : aggregation * aggregate size * fractal dimension * shear rate * steady state * time evolution Subject RIV: BK - Fluid Dynamics Impact factor: 2.269, year: 2013

  8. Pulse regime in formation of fractal fibers

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, B. M., E-mail: bmsmirnov@gmail.com [Joint Institute for High Temperatures (Russian Federation)

    2016-11-15

    The pulse regime of vaporization of a bulk metal located in a buffer gas is analyzed as a method of generation of metal atoms under the action of a plasma torch or a laser beam. Subsequently these atoms are transformed into solid nanoclusters, fractal aggregates and then into fractal fibers if the growth process proceeds in an external electric field. We are guided by metals in which transitions between s and d-electrons of their atoms are possible, since these metals are used as catalysts and filters in interaction with gas flows. The resistance of metal fractal structures to a gas flow is evaluated that allows one to find optimal parameters of a fractal structure for gas flow propagation through it. The thermal regime of interaction between a plasma pulse or a laser beam and a metal surface is analyzed. It is shown that the basic energy from an external source is consumed on a bulk metal heating, and the efficiency of atom evaporation from the metal surface, that is the ratio of energy fluxes for vaporization and heating, is 10{sup –3}–10{sup –4} for transient metals under consideration. A typical energy flux (~10{sup 6} W/cm{sup 2}), a typical surface temperature (~3000 K), and a typical pulse duration (~1 μs) provide a sufficient amount of evaporated atoms to generate fractal fibers such that each molecule of a gas flow collides with the skeleton of fractal fibers many times.

  9. Streptavidin-coated gold nanoparticles: critical role of oligonucleotides on stability and fractal aggregation

    Directory of Open Access Journals (Sweden)

    Roberta D'Agata

    2017-01-01

    Full Text Available Gold nanoparticles (AuNPs exhibit unique properties that can be modulated through a tailored surface functionalization, enabling their targeted use in biochemical sensing and medical diagnostics. In particular, streptavidin-modified AuNPs are increasingly used for biosensing purposes. We report here a study of AuNPs surface-functionalized with streptavidin-biotinylated oligonucleotide, focussing on the role played by the oligonucleotide probes in the stabilization/destabilization of the functionalized nanoparticle dispersion. The behaviour of the modified AuNP dispersion as a consequence of the competitive displacement of the biotinylated oligonucleotide has been investigated and the critical role of displaced oligonucletides in triggering the quasi one-dimensional aggregation of nanoparticles is demonstrated for the first time. The thorough understanding of the fundamental properties of bioconjugated AuNPs is of great importance for the design of highly sensitive and reliable functionalized AuNP-based assays.

  10. Band structures in Sierpinski triangle fractal porous phononic crystals

    International Nuclear Information System (INIS)

    Wang, Kai; Liu, Ying; Liang, Tianshu

    2016-01-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  11. Band structures in Sierpinski triangle fractal porous phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kai; Liu, Ying, E-mail: yliu5@bjtu.edu.cn; Liang, Tianshu

    2016-10-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  12. Fractal characteristics of fracture morphology of steels irradiated with high-energy ions

    Energy Technology Data Exchange (ETDEWEB)

    Xian, Yongqiang; Liu, Juan [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China); University of Chinese Academy of Science, Beijing 100049 (China); Zhang, Chonghong, E-mail: c.h.zhang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China); Chen, Jiachao [Paul Scherrer Institute, Villigen PSI (Switzerland); Yang, Yitao; Zhang, Liqing; Song, Yin [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China)

    2015-06-15

    Highlights: • Fractal dimensions of fracture surfaces of steels before and after irradiation were calculated. • Fractal dimension can effectively describe change of fracture surfaces induced by irradiation. • Correlation of change of fractal dimension with embrittlement of irradiated steels is discussed. - Abstract: A fractal analysis of fracture surfaces of steels (a ferritic/martensitic steel and an oxide-dispersion-strengthened ferritic steel) before and after the irradiation with high-energy ions is presented. Fracture surfaces were acquired from a tensile test and a small-ball punch test (SP). Digital images of the fracture surfaces obtained from scanning electron microscopy (SEM) were used to calculate the fractal dimension (FD) by using the pixel covering method. Boundary of binary image and fractal dimension were determined with a MATLAB program. The results indicate that fractal dimension can be an effective parameter to describe the characteristics of fracture surfaces before and after irradiation. The rougher the fracture surface, the larger the fractal dimension. Correlation of the change of fractal dimension with the embrittlement of the irradiated steels is discussed.

  13. Aggregated and dispersed configuration of microhabitats in coastal defenses: Implications for restoration of populations

    Directory of Open Access Journals (Sweden)

    Eva Cacabelos

    2014-06-01

    Full Text Available The additions of artificial structures to the landscape are usually translated into habitat loss and fragmentation, since they provide homogeneous habitats less diverse in types and number of microhabitats. Moreover, the smooth surface of artificial structures increases the degree of environmental stress (e.g. desiccation experienced by intertidal organisms. Local biodiversity can be increased with microhabitats availability by attracting or supporting species of macrofauna and seaweeds. E.g., distribution and survival of the mollusc Patella candei, a limpet exploited in intertidal coasts of Açores, has been showed to be strongly influenced by availability of microhabitats. We experimentally analyzed the influence of microhabitat aggregation and dispersion on the distribution of several species of gastropods on midshores of artificial substrates. Data were compared with distributions within unmanipulated plots. Effects were found among treatments and control plots in densities of Tectarius striatus and at the different life-history stages of limpets (recruits, immature and adult individuals inhabiting artificial substrata with manipulated aggregation levels. In case of Melaraphe neritoides, only in site 2 numbers of were greater in manipulated than in control plots. Configurations with different dispersion levels also showed greater densities than controls. Both aggregation and dispersion effects were more evident at site 2; however, due to the high variability among examined plots, no clear significant responses were found among the different treatments.

  14. Numerical modeling of fine particle fractal aggregates in turbulent flow

    Directory of Open Access Journals (Sweden)

    Cao Feifeng

    2015-01-01

    Full Text Available A method for prediction of fine particle transport in a turbulent flow is proposed, the interaction between particles and fluid is studied numerically, and fractal agglomerate of fine particles is analyzed using Taylor-expansion moment method. The paper provides a better understanding of fine particle dynamics in the evolved flows.

  15. Aggregates, broccoli and cauliflower

    Science.gov (United States)

    Grey, Francois; Kjems, Jørgen K.

    1989-09-01

    Naturally grown structures with fractal characters like broccoli and cauliflower are discussed and compared with DLA-type aggregates. It is suggested that the branching density can be used to characterize the growth process and an experimental method to determine this parameter is proposed.

  16. From dendrimers to fractal polymers and beyond

    Directory of Open Access Journals (Sweden)

    Charles N. Moorefield

    2013-01-01

    Full Text Available The advent of dendritic chemistry has facilitated materials research by allowing precise control of functional component placement in macromolecular architecture. The iterative synthetic protocols used for dendrimer construction were developed based on the desire to craft highly branched, high molecular weight, molecules with exact mass and tailored functionality. Arborols, inspired by trees and precursors of the utilitarian macromolecules known as dendrimers today, were the first examples to employ predesigned, 1 → 3 C-branched, building blocks; physical characteristics of the arborols, including their globular shapes, excellent solubilities, and demonstrated aggregation, combined to reveal the inherent supramolecular potential (e.g., the unimolecular micelle of these unique species. The architecture that is a characteristic of dendritic materials also exhibits fractal qualities based on self-similar, repetitive, branched frameworks. Thus, the fractal design and supramolecular aspects of these constructs are suggestive of a larger field of fractal materials that incorporates repeating geometries and are derived by complementary building block recognition and assembly. Use of terpyridine-M2+-terpyridine (where, M = Ru, Zn, Fe, etc connectivity in concert with mathematical algorithms, such as forms the basis for the Seirpinski gasket, has allowed the beginning exploration of fractal materials construction. The propensity of the fractal molecules to self-assemble into higher order architectures adds another dimension to this new arena of materials and composite construction.

  17. Cluster-cluster aggregation of Ising dipolar particles under thermal noise

    KAUST Repository

    Suzuki, Masaru

    2009-08-14

    The cluster-cluster aggregation processes of Ising dipolar particles under thermal noise are investigated in the dilute condition. As the temperature increases, changes in the typical structures of clusters are observed from chainlike (D1) to crystalline (D2) through fractal structures (D1.45), where D is the fractal dimension. By calculating the bending energy of the chainlike structure, it is found that the transition temperature is associated with the energy gap between the chainlike and crystalline configurations. The aggregation dynamics changes from being dominated by attraction to diffusion involving changes in the dynamic exponent z=0.2 to 0.5. In the region of temperature where the fractal clusters grow, different growth rates are observed between charged and neutral clusters. Using the Smoluchowski equation with a twofold kernel, this hetero-aggregation process is found to result from two types of dynamics: the diffusive motion of neutral clusters and the weak attractive motion between charged clusters. The fact that changes in structures and dynamics take place at the same time suggests that transitions in the structure of clusters involve marked changes in the dynamics of the aggregation processes. © 2009 The American Physical Society.

  18. Computer simulation of temperature-dependent growth of fractal and compact domains in diluted Ising models

    DEFF Research Database (Denmark)

    Sørensen, Erik Schwartz; Fogedby, Hans C.; Mouritsen, Ole G.

    1989-01-01

    temperature are studied as functions of temperature, time, and concentration. At zero temperature and high dilution, the growing solid is found to have a fractal morphology and the effective fractal exponent D varies with concentration and ratio of time scales of the two dynamical processes. The mechanism...... responsible for forming the fractal solid is shown to be a buildup of a locally high vacancy concentration in the active growth zone. The growth-probability measure of the fractals is analyzed in terms of multifractality by calculating the f(α) spectrum. It is shown that the basic ideas of relating...... probability measures of static fractal objects to the growth-probability distribution during formation of the fractal apply to the present model. The f(α) spectrum is found to be in the universality class of diffusion-limited aggregation. At finite temperatures, the fractal solid domains become metastable...

  19. Nanoscale morphological analysis of soft matter aggregates with fractal dimension ranging from 1 to 3.

    Science.gov (United States)

    Valle, Francesco; Brucale, Marco; Chiodini, Stefano; Bystrenova, Eva; Albonetti, Cristiano

    2017-09-01

    While the widespread emergence of nanoscience and nanotechnology can be dated back to the early eighties, the last decade has witnessed a true coming of age of this research field, with novel nanomaterials constantly finding their way into marketed products. The performance of nanomaterials being dominated by their nanoscale morphology, their quantitative characterization with respect to a number of properties is often crucial. In this context, those imaging techniques able to resolve nanometer scale details are clearly key players. In particular, atomic force microscopy can yield a fully quantitative tridimensional (3D) topography at the nanoscale. Herein, we will review a set of morphological analysis based on the scaling approach, which give access to important quantitative parameters for describing nanomaterial samples. To generalize the use of such morphological analysis on all D-dimensions (1D, 2D and 3D), the review will focus on specific soft matter aggregates with fractal dimension ranging from just above 1 to just below 3. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Fractal cosmology

    International Nuclear Information System (INIS)

    Dickau, Jonathan J.

    2009-01-01

    The use of fractals and fractal-like forms to describe or model the universe has had a long and varied history, which begins long before the word fractal was actually coined. Since the introduction of mathematical rigor to the subject of fractals, by Mandelbrot and others, there have been numerous cosmological theories and analyses of astronomical observations which suggest that the universe exhibits fractality or is by nature fractal. In recent years, the term fractal cosmology has come into usage, as a description for those theories and methods of analysis whereby a fractal nature of the cosmos is shown.

  1. Ag nanoparticles formed by femtosecond pulse laser ablation in water: self-assembled fractal structures

    Energy Technology Data Exchange (ETDEWEB)

    Santillán, Jesica M. J. [CONICET La Plata-CIC, Centro de Investigaciones Ópticas (CIOp) (Argentina); Fernández van Raap, Marcela B., E-mail: raap@fisica.unlp.edu.ar; Mendoza Zélis, Pedro; Coral, Diego [CONICET, Instituto de Física La Plata (IFLP) (Argentina); Muraca, Diego [Universidade Estadual de Campinas, Instituto de Física “Gleb Wataghin” (IFGW) (Brazil); Schinca, Daniel C.; Scaffardi, Lucía B., E-mail: lucias@ciop.unlp.edu.ar [CONICET La Plata-CIC, Centro de Investigaciones Ópticas (CIOp) (Argentina)

    2015-02-15

    We report for the first time on the formation of self-assembled fractals of spherical Ag nanoparticles (Nps) fabricated by femtosecond pulse laser ablation of a solid silver target in water. Fractal structures grew both in two and three Euclidean dimensions (d). Ramified-fractal assemblies of 2 nm height and 5–14 μm large, decorated with Ag Nps of 3 nm size, were obtained in a 2d geometry when highly diluted drops of colloidal suspension were dried at a fast heating rate over a mica substrate. When less-diluted drops were dried at slow heating rate, isolated single Nps or rosette-like structures were formed. Fractal aggregates about 31 nm size in 3d geometry were observed in the as-prepared colloidal suspension. Electron diffraction and optical extinction spectroscopy (OES) analyses performed on the samples confirmed the presence of Ag and Ag{sub 2}O. The analysis of the optical extinction spectrum, using the electrostatic approximation of Mie theory for small spheres, showed the existence of Ag bare core, Ag–Ag{sub 2}O and air–Ag core–shell Nps, Ag–Ag{sub 2}O being the most frequent type [69 % relative abundance (r.a.)]. Core-size and shell-thickness distribution was derived from OES. In situ scattering measurements of the Ag colloidal suspension, carried out by small-angle X-ray scattering, indicate a mass fractal composed of packaged 〈D{sub SAXS}〉 = (5 ± 1) nm particles and fractal dimension d{sub f} = 2.5. Ex situ atomic force microscopy imaging displayed well-ramified structures, which, analyzed with box-counting method, yield a fractal dimension d{sub f} = 1.67. The growing behavior of these 2d and 3d self-assembled fractals is consistent with the diffusion-limited aggregation model.

  2. Naturaleza fractal en redes de cristales de grasas

    Directory of Open Access Journals (Sweden)

    Gómez Herrera, C.

    2004-06-01

    Full Text Available The determination of the mechanical and rheological characteris­tics of several plastic fats requires a detailed understanding of the microstructure of the fat crystal network aggregates. The (or A fractal approach is useful for the characterization of this micros­tructure. This review begins with information on fractality and statistical self-similar structure. Estimations for fractal dimension by means of equations relating the volume fraction of solid fat to shear elastic modulus G' in linear region are described. The influence of interesterification on fractal dimension decrease (from 2, 46 to 2 ,15 for butterfat-canola oil blends is notable . This influence is not significant for fat blends without butterfat. The need for an increase in research concerning the relationship between fractality and rheology in plastic fats is emphasized.La determinación de las características mecánicas y reológicas de ciertas grasas plásticas requiere conocimientos detallados sobre las microestructuras de los agregados que forman la red de cristales grasos. El estudio de la naturaleza fractal de estas microestructuras resulta útil para su carac­terización. Este artículo de información se inicia con descripciones de la dimensión fractal y de la "autosimilitud estadística". A continuación se describe el cálculo de la dimensión fractal mediante ecuaciones que relacionan la fracción en volumen de grasa sólida con el módulo de recuperación (G' dentro de un comportamiento viscoelástico lineal. Se destaca la influencia que la interesterificación ejerce sobre la dimensión fractal de una mezcla de grasa láctea y aceite de canola (que pasa de 2,64 a 2,15. Esta influencia no se presenta en mezclas sin grasa láctea. Se insiste sobre la necesidad de incrementar las investi­gaciones sobre la relación entre reología y estructura fractal en grasas plásticas.

  3. Shape characteristics of equilibrium and non-equilibrium fractal clusters.

    Science.gov (United States)

    Mansfield, Marc L; Douglas, Jack F

    2013-07-28

    It is often difficult in practice to discriminate between equilibrium and non-equilibrium nanoparticle or colloidal-particle clusters that form through aggregation in gas or solution phases. Scattering studies often permit the determination of an apparent fractal dimension, but both equilibrium and non-equilibrium clusters in three dimensions frequently have fractal dimensions near 2, so that it is often not possible to discriminate on the basis of this geometrical property. A survey of the anisotropy of a wide variety of polymeric structures (linear and ring random and self-avoiding random walks, percolation clusters, lattice animals, diffusion-limited aggregates, and Eden clusters) based on the principal components of both the radius of gyration and electric polarizability tensor indicates, perhaps counter-intuitively, that self-similar equilibrium clusters tend to be intrinsically anisotropic at all sizes, while non-equilibrium processes such as diffusion-limited aggregation or Eden growth tend to be isotropic in the large-mass limit, providing a potential means of discriminating these clusters experimentally if anisotropy could be determined along with the fractal dimension. Equilibrium polymer structures, such as flexible polymer chains, are normally self-similar due to the existence of only a single relevant length scale, and are thus anisotropic at all length scales, while non-equilibrium polymer structures that grow irreversibly in time eventually become isotropic if there is no difference in the average growth rates in different directions. There is apparently no proof of these general trends and little theoretical insight into what controls the universal anisotropy in equilibrium polymer structures of various kinds. This is an obvious topic of theoretical investigation, as well as a matter of practical interest. To address this general problem, we consider two experimentally accessible ratios, one between the hydrodynamic and gyration radii, the other

  4. A small-angle neutron scattering study of the structure of graphitized carbon black aggregates in Triton X-100/water solutions

    DEFF Research Database (Denmark)

    Garamus, V.M.; Pedersen, J.S.

    1998-01-01

    concentration to a lower value. The CB aggregates have a fractal structure and the apparent fractal dimension is lower near the match point (75% heavy water). The scattering data are modelled using fractal-like aggregates (CB+surfactant), and voids in the CB particles and micelles. The data are fitted...... simultaneously for three different contrasts. The fractal dimension is found to be larger than 3 with the maximum size of the fractal aggregate being around 150-200 Angstrom. The primary CB particles have a broad size distribution with an average size of about 30-80 Angstrom. The surfactant coverage of the CB...... particles is 8% and is constant with varying CB and surfactant concentration. The volume fraction of the voids does not exceed 1% of the CB; The micelle structure is found to be the same as in surfactant/water solutions. (C) 1998 Elsevier Science B.V....

  5. L-system fractals

    CERN Document Server

    Mishra, Jibitesh

    2007-01-01

    The book covers all the fundamental aspects of generating fractals through L-system. Also it provides insight to various researches in this area for generating fractals through L-system approach & estimating dimensions. Also it discusses various applications of L-system fractals. Key Features: - Fractals generated from L-System including hybrid fractals - Dimension calculation for L-system fractals - Images & codes for L-system fractals - Research directions in the area of L-system fractals - Usage of various freely downloadable tools in this area - Fractals generated from L-System including hybrid fractals- Dimension calculation for L-system fractals- Images & codes for L-system fractals- Research directions in the area of L-system fractals- Usage of various freely downloadable tools in this area

  6. Dispersion index of aggregates in a Rhodic Ferrasol cultivated with cane under stillage application

    Directory of Open Access Journals (Sweden)

    Eber Augusto Ferreira do Prado

    2014-09-01

    Full Text Available The sugar and alcohol plants generate waste stillage one that needs proper destination. One alternative is the application of this residue to improve soil properties. The objective of this study was to evaluate the effect of stillage in the aggregation and productivity of sugar cane grown in three seasons of the soil sampling. The study was conducted in an Red dystrophic Latosol, sandy clay frank, at the BUNGE Monte Verde plant in the municipality of Ponta Porã, MS, Brasil. Cultivated with sugarcane third year. We used the (4x4 factorial design, evaluated 4 applications of stillage (0, 450, 600 and 750 m3 ha-1 and their soil characteristics measured at four depths (0,0-0,5; 0,5-0,10; 0,10-0,20; 0,20-0,40 m with five repetitions. To determine the rate of dispersion of aggregates (ID sample were obtained undisturbed soil at 38, 75 and 111 days after application of stillage. With increasing doses of stillage were increased concentrations of potassium and organic matter and reduce the rate of dispersion and increased stability of soil aggregates.

  7. Fractal Metrology for biogeosystems analysis

    Directory of Open Access Journals (Sweden)

    V. Torres-Argüelles

    2010-11-01

    Full Text Available The solid-pore distribution pattern plays an important role in soil functioning being related with the main physical, chemical and biological multiscale and multitemporal processes of this complex system. In the present research, we studied the aggregation process as self-organizing and operating near a critical point. The structural pattern is extracted from the digital images of three soils (Chernozem, Solonetz and "Chocolate" Clay and compared in terms of roughness of the gray-intensity distribution quantified by several measurement techniques. Special attention was paid to the uncertainty of each of them measured in terms of standard deviation. Some of the applied methods are known as classical in the fractal context (box-counting, rescaling-range and wavelets analyses, etc. while the others have been recently developed by our Group. The combination of these techniques, coming from Fractal Geometry, Metrology, Informatics, Probability Theory and Statistics is termed in this paper Fractal Metrology (FM. We show the usefulness of FM for complex systems analysis through a case study of the soil's physical and chemical degradation applying the selected toolbox to describe and compare the structural attributes of three porous media with contrasting structure but similar clay mineralogy dominated by montmorillonites.

  8. Infiltration of water in disturbed soil columns as affected by clay dispersion and aggregate slaking

    OpenAIRE

    Amezketa, E.; Aragües, R.; Gazol, R.

    2004-01-01

    Soil crusting negatively affects the productivity and sustainability of irrigated agriculture, reducing water infiltration and plant emergence, and enhancing surface runoff and erosion. Clay dispersion and slaking of the aggregates at the soil surface are the main processes responsible for crusting. The infiltration rates (IR) of ten arid-zone soils in disturbed soil columns were measured and their relative susceptibilities to dispersion and slaking were determined. It was also examined wheth...

  9. Investigation and visualization of internal flow through particle aggregates and microbial flocs using particle image velocimetry.

    Science.gov (United States)

    Xiao, Feng; Lam, Kit Ming; Li, Xiao-yan

    2013-05-01

    An advanced particle-tracking and flow-visualization technology, particle image velocimetry (PIV), was utilized to investigate the hydrodynamic properties of large aggregates in water. The laser-based PIV system was used together with a settling column to capture the streamlines around two types of aggregates: latex particle aggregates and activated sludge (AS) flocs. Both types of the aggregates were highly porous and fractal with fractal dimensions of 2.13±0.31 for the latex particle aggregates (1210-2144 μm) and 1.78±0.24 for the AS flocs (1265-3737 μm). The results show that PIV is a powerful flow visualization technique capable of determining flow field details at the micrometer scale around and through settling aggregates and flocs. The PIV streamlines provided direct experimental proof of internal flow through the aggregate interiors. According to the PIV images, fluid collection efficiency ranged from 0.052 to 0.174 for the latex particle aggregates and from 0.008 to 0.126 for AS flocs. AS flocs are apparently less permeable than the particle aggregates, probably due to the extracellular polymeric substances (EPSs) produced by bacteria clogging the pores within the flocs. The internal permeation of fractal aggregates and bio-flocs would enhance flocculation between particles and material transport into the aggregates. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Fractal analysis of Xylella fastidiosa biofilm formation

    Science.gov (United States)

    Moreau, A. L. D.; Lorite, G. S.; Rodrigues, C. M.; Souza, A. A.; Cotta, M. A.

    2009-07-01

    We have investigated the growth process of Xylella fastidiosa biofilms inoculated on a glass. The size and the distance between biofilms were analyzed by optical images; a fractal analysis was carried out using scaling concepts and atomic force microscopy images. We observed that different biofilms show similar fractal characteristics, although morphological variations can be identified for different biofilm stages. Two types of structural patterns are suggested from the observed fractal dimensions Df. In the initial and final stages of biofilm formation, Df is 2.73±0.06 and 2.68±0.06, respectively, while in the maturation stage, Df=2.57±0.08. These values suggest that the biofilm growth can be understood as an Eden model in the former case, while diffusion-limited aggregation (DLA) seems to dominate the maturation stage. Changes in the correlation length parallel to the surface were also observed; these results were correlated with the biofilm matrix formation, which can hinder nutrient diffusion and thus create conditions to drive DLA growth.

  11. Tidal effects on ichthyoplankton aggregation and dispersion in the Southern Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    María Adela Monreal Gómez

    2013-12-01

    Full Text Available The role of vertical barotropic and baroclinic tidal forcing in the aggregation and dispersion of ichthyoplankton in the Southern Gulf of Mexico was analyzed in this study. Samplings of ichthyoplankton and the determination of hydrographic parameters were performed during September 1992 at a single point of 180 m depth, near the shelf break (19º32'N - 92º38.5'W. A 24 h CTD yo-yoing casting and biological samples were taken every 2 h and these measurements were combined with water velocity and density simulations from the Regional Ocean Model System (ROMS. One thermocline and two haloclines were depicted. The Froude number increased with a 2 h lag with respect to the maximal barotropic tide, suggesting the existence of a baroclinic tide. Aggregation and dispersion of the ichthyoplankton showed vertical oscillations in the abundance and the numbers of taxa and larvae with a 5 h lag with respect to the maximal barotropic tide and were in phase with the thermocline oscillation. The vertical oscillation was attributed to a hydraulic control forced by the internal tide.

  12. Fractal physiology and the fractional calculus: a perspective.

    Science.gov (United States)

    West, Bruce J

    2010-01-01

    This paper presents a restricted overview of Fractal Physiology focusing on the complexity of the human body and the characterization of that complexity through fractal measures and their dynamics, with fractal dynamics being described by the fractional calculus. Not only are anatomical structures (Grizzi and Chiriva-Internati, 2005), such as the convoluted surface of the brain, the lining of the bowel, neural networks and placenta, fractal, but the output of dynamical physiologic networks are fractal as well (Bassingthwaighte et al., 1994). The time series for the inter-beat intervals of the heart, inter-breath intervals and inter-stride intervals have all been shown to be fractal and/or multifractal statistical phenomena. Consequently, the fractal dimension turns out to be a significantly better indicator of organismic functions in health and disease than the traditional average measures, such as heart rate, breathing rate, and stride rate. The observation that human physiology is primarily fractal was first made in the 1980s, based on the analysis of a limited number of datasets. We review some of these phenomena herein by applying an allometric aggregation approach to the processing of physiologic time series. This straight forward method establishes the scaling behavior of complex physiologic networks and some dynamic models capable of generating such scaling are reviewed. These models include simple and fractional random walks, which describe how the scaling of correlation functions and probability densities are related to time series data. Subsequently, it is suggested that a proper methodology for describing the dynamics of fractal time series may well be the fractional calculus, either through the fractional Langevin equation or the fractional diffusion equation. A fractional operator (derivative or integral) acting on a fractal function, yields another fractal function, allowing us to construct a fractional Langevin equation to describe the evolution of a

  13. Fractal formation of a Y-Ba-Cu-O thin film on SrTiO3

    International Nuclear Information System (INIS)

    Chow, L.; Chen, J.; Desai, V.; Sundaram, K.; Arora, S.

    1989-01-01

    Fractal formation has been observed after thermal annealing of the rf-sputtered Y-Ba-Cu-O thin film on SrTiO 3 substrate. Through energy-dispersive x-ray analysis, it was found that the composition of the fractal was YBa 2 Cu 3 O x and the surrounding film composition wasY 2 Ba 2 Cu 3 O x . The fractal dimensions D ranging from 1.26 to 1.65 were obtained using the standard sandbox method with different thresholds

  14. Map of fluid flow in fractal porous medium into fractal continuum flow.

    Science.gov (United States)

    Balankin, Alexander S; Elizarraraz, Benjamin Espinoza

    2012-05-01

    This paper is devoted to fractal continuum hydrodynamics and its application to model fluid flows in fractally permeable reservoirs. Hydrodynamics of fractal continuum flow is developed on the basis of a self-consistent model of fractal continuum employing vector local fractional differential operators allied with the Hausdorff derivative. The generalized forms of Green-Gauss and Kelvin-Stokes theorems for fractional calculus are proved. The Hausdorff material derivative is defined and the form of Reynolds transport theorem for fractal continuum flow is obtained. The fundamental conservation laws for a fractal continuum flow are established. The Stokes law and the analog of Darcy's law for fractal continuum flow are suggested. The pressure-transient equation accounting the fractal metric of fractal continuum flow is derived. The generalization of the pressure-transient equation accounting the fractal topology of fractal continuum flow is proposed. The mapping of fluid flow in a fractally permeable medium into a fractal continuum flow is discussed. It is stated that the spectral dimension of the fractal continuum flow d(s) is equal to its mass fractal dimension D, even when the spectral dimension of the fractally porous or fissured medium is less than D. A comparison of the fractal continuum flow approach with other models of fluid flow in fractally permeable media and the experimental field data for reservoir tests are provided.

  15. A model study of aggregates composed of spherical soot monomers with an acentric carbon shell

    Science.gov (United States)

    Luo, Jie; Zhang, Yongming; Zhang, Qixing

    2018-01-01

    Influences of morphology on the optical properties of soot particles have gained increasing attentions. However, studies on the effect of the way primary particles are coated on the optical properties is few. Aimed to understand how the primary particles are coated affect the optical properties of soot particles, the coated soot particle was simulated using the acentric core-shell monomers model (ACM), which was generated by randomly moving the cores of concentric core-shell monomers (CCM) model. Single scattering properties of the CCM model with identical fractal parameters were calculated 50 times at first to evaluate the optical diversities of different realizations of fractal aggregates with identical parameters. The results show that optical diversities of different realizations for fractal aggregates with identical parameters cannot be eliminated by averaging over ten random realizations. To preserve the fractal characteristics, 10 realizations of each model were generated based on the identical 10 parent fractal aggregates, and then the results were averaged over each 10 realizations, respectively. The single scattering properties of all models were calculated using the numerically exact multiple-sphere T-matrix (MSTM) method. It is found that the single scattering properties of randomly coated soot particles calculated using the ACM model are extremely close to those using CCM model and homogeneous aggregate (HA) model using Maxwell-Garnett effective medium theory. Our results are different from previous studies. The reason may be that the differences in previous studies were caused by fractal characteristics but not models. Our findings indicate that how the individual primary particles are coated has little effect on the single scattering properties of soot particles with acentric core-shell monomers. This work provides a suggestion for scattering model simplification and model selection.

  16. Fractal Structures on Silica Aerogels Containing Titanium: A Small Angle Neutron Scattering Study

    International Nuclear Information System (INIS)

    Widya Sari; Dian Fitriyani; Abdul Aziz Mohamed; Noordin Ibrahim

    2009-01-01

    Full text: The fractal structure of silica aerogels containing titanium has been investigated by means of small-angle neutron scattering (SANS) technique. The SANS experiments were conducted using a 36 meter SANS BATAN spectrometer (SMARTer) in Serpong, Indonesia in the range of momentum transfer Q, 0.006 -1 ) < 0.3. The power-law for a fractal object scattering Q-D observed from all measured samples. The Fourier transform of pattern I(Q) a pair correlation model function was implemented in analyzing the structure factor from the power-law scattering profiles. The results are showing that the silica aerogels containing titanium has a mass fractal where its dimension DM is larger than the pure silica aerogels. The mass fractal dimension of silica aerogels containing titanium is relatively constant between 2.23 to 2.40 with the decrease of acid concentrations during a sol-gel process and formed a nanometer size of aggregate. Those fractal structures were simulated using a Delphi language and the results are presented in this paper. (author)

  17. Lignin-based polyoxyethylene ether enhanced enzymatic hydrolysis of lignocelluloses by dispersing cellulase aggregates.

    Science.gov (United States)

    Lin, Xuliang; Qiu, Xueqing; Yuan, Long; Li, Zihao; Lou, Hongming; Zhou, Mingsong; Yang, Dongjie

    2015-06-01

    Water-soluble lignin-based polyoxyethylene ether (EHL-PEG), prepared from enzymatic hydrolysis lignin (EHL) and polyethylene glycol (PEG1000), was used to improve enzymatic hydrolysis efficiency of corn stover. The glucose yield of corn stover at 72h was increased from 16.7% to 70.1% by EHL-PEG, while increase in yield with PEG4600 alone was 52.3%. With the increase of lignin content, EHL-PEG improved enzymatic hydrolysis of microcrystalline cellulose more obvious than PEG4600. EHL-PEG could reduce at least 88% of the adsorption of cellulase on the lignin film measured by quartz crystal microbalance with dissipation monitoring (QCM-D), while reduction with PEG4600 was 43%. Cellulase aggregated at 1220nm in acetate buffer analyzed by dynamic light scattering. EHL-PEG dispersed cellulase aggregates and formed smaller aggregates with cellulase, thereby, reduced significantly nonproductive adsorption of cellulase on lignin and enhanced enzymatic hydrolysis of lignocelluloses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Fractal Bread.

    Science.gov (United States)

    Esbenshade, Donald H., Jr.

    1991-01-01

    Develops the idea of fractals through a laboratory activity that calculates the fractal dimension of ordinary white bread. Extends use of the fractal dimension to compare other complex structures as other breads and sponges. (MDH)

  19. Study of soil aggregate breakdown dynamics under low dispersive ultrasonic energies with sedimentation and X-ray attenuation

    Science.gov (United States)

    Schomakers, Jasmin; Zehetner, Franz; Mentler, Axel; Ottner, Franz; Mayer, Herwig

    2015-10-01

    It has been increasingly recognized that soil organic matter stabilization is strongly controlled by physical binding within soil aggregates. It is therefore essential to measure soil aggregate stability reliably over a wide range of disruptive energies and different aggregate sizes. To this end, we tested highaccuracy ultrasonic dispersion in combination with subsequent sedimentation and X-ray attenuation. Three arable topsoils (notillage) from Central Europe were subjected to ultrasound at four different specific energy levels: 0.5, 6.7, 100 and 500 J cm-3, and the resulting suspensions were analyzed for aggregate size distribution by wet sieving (2 000-63 μm) and sedimentation/X-ray attenuation (63-2 μm). The combination of wet sieving and sedimentation technique allowed for a continuous analysis, at high resolution, of soil aggregate breakdown dynamics after defined energy inputs. Our results show that aggregate size distribution strongly varied with sonication energy input and soil type. The strongest effects were observed in the range of low specific energies (aggregate stability and release of soil organic matter upon aggregate breakdown.

  20. Study of soil aggregate breakdown dynamics under low dispersive ultrasonic energies with sedimentation and X-ray attenuation**

    Science.gov (United States)

    Schomakers, Jasmin; Zehetner, Franz; Mentler, Axel; Ottner, Franz; Mayer, Herwig

    2016-01-01

    It has been increasingly recognized that soil organic matter stabilization is strongly controlled by physical binding within soil aggregates. It is therefore essential to measure soil aggregate stability reliably over a wide range of disruptive energies and different aggregate sizes. To this end, we tested high-accuracy ultrasonic dispersion in combination with subsequent sedimentation and X-ray attenuation. Three arable topsoils (notillage) from Central Europe were subjected to ultrasound at four different specific energy levels: 0.5, 6.7, 100 and 500 J cm−3, and the resulting suspensions were analyzed for aggregate size distribution by wet sieving (2 000-63 μm) and sedimentation/X-ray attenuation (63-2 μm). The combination of wet sieving and sedimentation technique allowed for a continuous analysis, at high resolution, of soil aggregate breakdown dynamics after defined energy inputs. Our results show that aggregate size distribution strongly varied with sonication energy input and soil type. The strongest effects were observed in the range of low specific energies (aggregate stability and release of soil organic matter upon aggregate breakdown. PMID:27099408

  1. Space-coiling fractal metamaterial with multi-bandgaps on subwavelength scale

    Science.gov (United States)

    Man, Xianfeng; Liu, Tingting; Xia, Baizhan; Luo, Zhen; Xie, Longxiang; Liu, Jian

    2018-06-01

    Acoustic metamaterials are remarkably different from conventional materials, as they can flexibly manipulate and control the propagation of sound waves. Unlike the locally resonant metamaterials introduced in earlier studies, we designed an ultraslow artificial structure with a sound speed much lower than that in air. In this paper, the space-coiling approach is proposed for achieving artificial metamaterial for extremely low-frequency airborne sound. In addition, the self-similar fractal technique is utilized for designing space-coiling Mie-resonance-based metamaterials (MRMMs) to obtain a band-dispersive spectrum. The band structures of two-dimensional (2D) acoustic metamaterials with different fractal levels are illustrated using the finite element method. The low-frequency bandgap can easily be formed, and multi-bandgap properties are observed in high-level fractals. Furthermore, the designed MRMMs with higher order fractal space coiling shows a good robustness against irregular arrangement. Besides, the proposed artificial structure was found to modify and control the radiation field arbitrarily. Thus, this work provides useful guidelines for the design of acoustic filtering devices and acoustic wavefront shaping applications on the subwavelength scale.

  2. From quantum fields to fractal structures: intermittency in particle physics

    International Nuclear Information System (INIS)

    Peschanski, R.

    1991-01-01

    Some features and theoretical interpretations of the intermittency phenomenon observed in high-energy multi-particle production are recalled. One develops on the various connections found with fractal structuration of fluctuations in turbulence, spin-glass physics and aggregation phenomena described by the non-linear Smoluchowski equation. This may lead to a new approach to quantum field properties

  3. Infrastructural Fractals

    DEFF Research Database (Denmark)

    Bruun Jensen, Casper

    2007-01-01

    . Instead, I outline a fractal approach to the study of space, society, and infrastructure. A fractal orientation requires a number of related conceptual reorientations. It has implications for thinking about scale and perspective, and (sociotechnical) relations, and for considering the role of the social...... and a fractal social theory....

  4. Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation

    International Nuclear Information System (INIS)

    Phenrat, Tanapon; Saleh, Navid; Sirk, Kevin; Kim, Hye-Jin; Tilton, Robert D.; Lowry, Gregory V.

    2008-01-01

    Nanoscale zerovalent iron (NZVI) particles are 5-40 nm sized Fe 0 /Fe-oxide particles that rapidly transform many environmental contaminants to benign products and are a promising in situ remediation agent. Rapid aggregation and limited mobility in water-saturated porous media limits the ability to deliver NZVI dispersions in the subsurface. This study prepares stable NZVI dispersions through physisorption of commercially available anionic polyelectrolytes, characterizes the adsorbed polymer layer, and correlates the polymer coating properties with the ability to prevent rapid aggregation and sedimentation of NZVI dispersions. Poly(styrene sulfonate) with molecular weights of 70 k and 1,000 k g/mol (PSS70K and PSS1M), carboxymethyl cellulose with molecular weights of 90 k and 700 k g/mol (CMC90K and CMC700K), and polyaspartate with molecular weights of 2.5 k and 10 k g/mol (PAP2.5K and 10K) were compared. Particle size distributions were determined by dynamic light scattering during aggregation. The order of effectiveness to prevent rapid aggregation and stabilize the dispersions was PSS70K(83%) > ∼PAP10K(82%) > PAP2.5K(72%) > CMC700K(52%), where stability is defined operationally as the volume percent of particles that do not aggregate after 1 h. CMC90K and PSS1M could not stabilize RNIP relative to bare RNIP. A similar trend was observed for their ability to prevent sedimentation, with 40, 34, 32, 20, and 5 wt%, of the PSS70K, PAP10K, PAP2.5K, CMC700K, and CMC90K modified NZVI remaining suspended after 7 h of quiescent settling, respectively. The stable fractions with respect to both aggregation and sedimentation correlate well with the adsorbed polyelectrolyte mass and thickness of the adsorbed polyelectrolyte layers as determined by Oshima's soft particle theory. A fraction of the particles cannot be stabilized by any modifier and rapidly agglomerates to micron sized aggregates, as is also observed for unmodified NZVI. This non-dispersible fraction is

  5. Finite Element Method Simulations of the Near-Field Enhancement at the Vicinity of Fractal Rough Metallic Surfaces

    International Nuclear Information System (INIS)

    Micic, Miodrag; Klymyshyn, Nicholas A.; Lu, H Peter

    2004-01-01

    Near-field optical enhancement at metal surfaces and methods such as surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS), fluorescent quenching and enhancement, and various near-field scanning microscopies (NSOM) all depend on a metals surface properties, mainly on its morphology and SPR resonant frequency. We report on simulations of the influence of different surface morphologies on electromagnetic field enhancements at the rough surfaces of noble metals and also evaluate the optimal conditions for the generation of a surface-enhanced Raman signal of absorbed species on a metallic substrate. All simulations were performed with a classical electrodynamics approach using the full set of Maxwells equations, which were solved with the three-dimensional finite element method (FEM). Two different classes of surfaces where modeled using fractals, representing diffusion limited aggregation growth dendritic structures, such as one on the surface of electrodes, and second one representing the sponge-like structure used to model surfaces of particles with high porosity, such as metal coated catalyst supports. The simulations depict the high inhomogeneity of an enhanced electromagnetic field as both a field enhancement and field attenuation near the surface. While the diffusion limited aggregation dendritical fractals enhanced the near-field electromagnetic field, the sponge fractals significantly reduced the local electromagnetic field intensity. Moreover, the fractal orders of the fractal objects did not significantly alter the total enhancement, and the distribution of a near-field enhancement was essentially invariant to the changes in the angle of an incoming laser beam

  6. From Fractals to Fractional Vector Calculus: Measurement in the Correct Metric

    Science.gov (United States)

    Wheatcraft, S. W.; Meerschaert, M. M.; Mortensen, J.

    2005-12-01

    Traditional (stationary) stochastic theories have been fairly successful in reproducing transport behavior at relatively homogeneous field sites such as the Borden and Cape Code sites. However, the highly heterogeneous MADE site has produced tracer data that can not be adequately explained with traditional stochastic theories. In recent years, considerable attention has been focused on developing more sophisticated theories that can predict or reproduce the behavior of complex sites such as the MADE site. People began to realize that the model for geologic complexity may in many cases be very different than the model required for stochastic theory. Fractal approaches were useful in conceptualizing scale-invariant heterogeneity by demonstrating that scale dependant transport was just an artifact of our measurement system. Fractal media have dimensions larger than the dimension that measurement is taking place in, thus assuring the scale-dependence of parameters such as dispersivity. What was needed was a rigorous way to develop a theory that was consistent with the fractal dimension of the heterogeneity. The fractional advection-dispersion equation (FADE) was developed with this idea in mind. The second derivative in the dispersion term of the advection-dispersion equation is replaced with a fractional derivative. The order of differentiation, α, is fractional. Values of α in the range: 1 equation is recovered. The 1-D version of the FADE has been used successfully to back-predict tracer test behavior at several heterogeneous field sites, including the MADE site. It has been hypothesized that the order of differentiation in the FADE is equivalent to (or at least related to) the fractal dimension of the particle tracks (or geologic heterogeneity). With this way of thinking, one can think of the FADE as a governing equation written for the correct dimension, thus eliminating scale-dependent behavior. Before a generalized multi-dimensional form of the FADE can be

  7. LIGHT SCATTERING BY FRACTAL DUST AGGREGATES. I. ANGULAR DEPENDENCE OF SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    Tazaki, Ryo [Department of Astronomy, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Tanaka, Hidekazu [Astronomical Institute, Tohoku University, 6-3 Aramaki, Aoba-ku, Sendai 980-8578 (Japan); Okuzumi, Satoshi; Nomura, Hideko [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Kataoka, Akimasa, E-mail: rtazaki@kusastro.kyoto-u.ac.jp [Institute for Theoretical Astrophysics, Heidelberg University, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany)

    2016-06-01

    In protoplanetary disks, micron-sized dust grains coagulate to form highly porous dust aggregates. Because the optical properties of these aggregates are not completely understood, it is important to investigate how porous dust aggregates scatter light. In this study, the light scattering properties of porous dust aggregates were calculated using a rigorous method, the T -matrix method, and the results were then compared with those obtained using the Rayleigh–Gans–Debye (RGD) theory and Mie theory with the effective medium approximation (EMT). The RGD theory is applicable to moderately large aggregates made of nearly transparent monomers. This study considered two types of porous dust aggregates—ballistic cluster–cluster agglomerates (BCCAs) and ballistic particle–cluster agglomerates. First, the angular dependence of the scattered intensity was shown to reflect the hierarchical structure of dust aggregates; the large-scale structure of the aggregates is responsible for the intensity at small scattering angles, and their small-scale structure determines the intensity at large scattering angles. Second, it was determined that the EMT underestimates the backward scattering intensity by multiple orders of magnitude, especially in BCCAs, because the EMT averages the structure within the size of the aggregates. It was concluded that the RGD theory is a very useful method for calculating the optical properties of BCCAs.

  8. Fractal vector optical fields.

    Science.gov (United States)

    Pan, Yue; Gao, Xu-Zhen; Cai, Meng-Qiang; Zhang, Guan-Lin; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2016-07-15

    We introduce the concept of a fractal, which provides an alternative approach for flexibly engineering the optical fields and their focal fields. We propose, design, and create a new family of optical fields-fractal vector optical fields, which build a bridge between the fractal and vector optical fields. The fractal vector optical fields have polarization states exhibiting fractal geometry, and may also involve the phase and/or amplitude simultaneously. The results reveal that the focal fields exhibit self-similarity, and the hierarchy of the fractal has the "weeding" role. The fractal can be used to engineer the focal field.

  9. Influence of ultrasonic energy on dispersion of aggregates and released amounts of organic matter and polyvalent cations

    Science.gov (United States)

    Kaiser, M.; Kleber, M.; Berhe, A. A.

    2010-12-01

    Aggregates play important roles in soil carbon storage and stabilization. Identification of scale-dependent mechanisms of soil aggregate formation and stability is necessary to predict and eventually manage the flow of carbon through terrestrial ecosystems. Application of ultrasonic energy is a common tool to disperse soil aggregates. In this study, we used ultra sonic energy (100 to 2000 J cm-3) to determine the amount of polyvalent cations and organic matter involved in aggregation processes in three arable and three forest soils that varied in soil mineral composition. To determine the amount of organic matter and cations released after application of different amount of ultrasonic energy, we removed the coarse fraction (>250 µm). The remaining residue (solid residue freeze dried before we analyzed the amounts of water-extracted organic carbon (OC), Fe, Al, Ca, Mn, and Mg in the filtrates. The extracted OM and solid residues were further characterized by Fourier Transformed Infra Red spectroscopy and Scanning Electron Microscopy. Our results show a linear increase in amount of dissolved OC with increasing amounts of ultra sonic energy up to 1500 J cm-3 indicating maximum dispersion of soil aggregates at this energy level independent from soil type or land use. In contrast to Mn, and Mg, the amounts of dissolved Ca, Fe, and Al increase with increasing ultra sonic energy up to 1500 J cm-3. At 1500 J cm-3, the absolute amounts of OC, Ca, Fe, and Al released were specific for each soil type, likely indicating differences in type of OM-mineral interactions involved in micro-scaled aggregation processes. The amounts of dissolved Fe, and Al released after an application of 1500 J cm-3 are not related to oxalate- and dithionite- extractable, or total Al content indicating less disintegration of pedogenic oxides or clay minerals due to high levels of ultrasonic energy.

  10. Fractals: Giant impurity nonlinearities in optics of fractal clusters

    International Nuclear Information System (INIS)

    Butenko, A.V.; Shalaev, V.M.; Stockman, M.I.

    1988-01-01

    A theory of nonlinear optical properties of fractals is developed. Giant enhancement of optical susceptibilities is predicted for impurities bound to a fractal. This enhancement occurs if the exciting radiation frequency lies within the absorption band of the fractal. The giant optical nonlinearities are due to existence of high local electric fields in the sites of impurity locations. Such fields are due to the inhomogeneously broadened character of a fractal spectrum, i.e. partial conservation of individuality of fractal-forming particles (monomers). The field enhancement is proportional to the Q-factor of the resonance of a monomer. The effects of coherent anti-Stokes Raman scattering (CARS) and phase conjugation (PC) of light waves are enhanced to a much greater degree than generation of higher harmonics. In a general case the susceptibility of a higher-order is enhanced in the maximum way if the process includes ''subtraction'' of photons (at least one of the strong field frequencies enters the susceptibility with the minus sign). Alternatively, enhancement for the highest-order harmonic generation (when all the photons are ''accumulated'') is minimal. The predicted phenomena bear information on spectral properties of both impurity molecules and a fractal. In particular, in the CARS spectra a narrow (with the natural width) resonant structure, which is proper to an isolated monomer of a fractal, is predicted to be observed. (orig.)

  11. Fractal dimension and turbulence in Giant HII Regions

    International Nuclear Information System (INIS)

    Caicedo-Ortiz, H E; Santiago-Cortes, E; López-Bonilla, J; er piso, CP 07738, México D.F (Mexico))" data-affiliation=" (ESFM, Instituto Politécnico Nacional, Edif. 9, 1er piso, CP 07738, México D.F (Mexico))" >Castañeda, H O

    2015-01-01

    We have measured the fractal dimensions of the Giant HII Regions Hubble X and Hubble V in NGC6822 using images obtained with the Hubble's Wide Field Planetary Camera 2 (WFPC2). These measures are associated with the turbulence observed in these regions, which is quantified through the velocity dispersion of emission lines in the visible. Our results suggest low turbulence behaviour

  12. Effects of vegetation restoration on the aggregate stability and distribution of aggregate-associated organic carbon in a typical karst gorge region

    Science.gov (United States)

    Tang, F. K.; Cui, M.; Lu, Q.; Liu, Y. G.; Guo, H. Y.; Zhou, J. X.

    2015-08-01

    Changes in soil utilization significantly affect aggregate stability and aggregate-associated soil organic carbon (SOC). A field investigation and indoor analysis were conducted in order to study the soil aggregate stability and organic carbon distribution in the water-stable aggregates (WSA) of the bare land (BL), grassland (GL), shrubland (SL), and woodland (WL) in a typical karst gorge region. The results indicated that the BL, GL, SL, and WL were dominated by particles with sizes > 5 mm under dry sieving treatment, and that the soil aggregate contents of various sizes decreased as the particle size decreased. In addition, the BL, GL, SL, and WL were predominantly comprised of WSA sieving treatment, and that the WSA contents initially increased, then decreased, and then increased again as the particle size decreased. Furthermore, at a soil depth of 0-60 cm, the mean weight diameter (MWD), geometrical mean diameter (GMD), and fractal dimensions (D) of the dry aggregates and water-stable aggregates in the different types of land were ranked, in descending order, as WL > GL > SL > BL. The contents of WSA > 0.25 mm, MWD and GMD increased significantly, in that order, and the percentage of aggregate destruction (PAD) and fractal dimensions decreased significantly as the soil aggregate stability improved. The results of this study indicated that, as the SOC contents increased after vegetation restoration, the average SOC content of WL was 2.35, 1.37, and 1.26 times greater than that in the BL, GL, and SL, respectively. The total SOC and SOC associated in WSA of various sizes were the highest at a soil depth of 0-20 cm. In addition, the SOC contents of the WSA increased as the soil aggregate sizes decreased. The SOC contents of the WSA aggregates aggregate SOC contents. The woodland and grassland facilitated WSA stability and SOC protection, thus, promoting the natural restoration of vegetation by reducing artificial disturbances could effectively restore the ecology

  13. Helicalised fractals

    OpenAIRE

    Saw, Vee-Liem; Chew, Lock Yue

    2013-01-01

    We formulate the helicaliser, which replaces a given smooth curve by another curve that winds around it. In our analysis, we relate this formulation to the geometrical properties of the self-similar circular fractal (the discrete version of the curved helical fractal). Iterative applications of the helicaliser to a given curve yields a set of helicalisations, with the infinitely helicalised object being a fractal. We derive the Hausdorff dimension for the infinitely helicalised straight line ...

  14. Fractal differential equations and fractal-time dynamical systems

    Indian Academy of Sciences (India)

    like fractal subsets of the real line may be termed as fractal-time dynamical systems. Formulation ... involving scaling and memory effects. But most of ..... begin by recalling the definition of the Riemann integral in ordinary calculus [33]. Let g: [a ...

  15. Flocculation kinetics and aggregate structure of kaolinite mixtures in laminar tube flow.

    Science.gov (United States)

    Vaezi G, Farid; Sanders, R Sean; Masliyah, Jacob H

    2011-03-01

    Flocculation is commonly used in various solid-liquid separation processes in chemical and mineral industries to separate desired products or to treat waste streams. This paper presents an experimental technique to study flocculation processes in laminar tube flow. This approach allows for more realistic estimation of the shear rate to which an aggregate is exposed, as compared to more complicated shear fields (e.g. stirred tanks). A direct sampling method is used to minimize the effect of sampling on the aggregate structure. A combination of aggregate settling velocity and image analysis was used to quantify the structure of the aggregate. Aggregate size, density, and fractal dimension were found to be the most important aggregate structural parameters. The two methods used to determine aggregate fractal dimension were in good agreement. The effects of advective flow through an aggregate's porous structure and transition-regime drag coefficient on the evaluation of aggregate density were considered. The technique was applied to investigate the flocculation kinetics and the evolution of the aggregate structure of kaolin particles with an anionic flocculant under conditions similar to those of oil sands fine tailings. Aggregates were formed using a well controlled two-stage aggregation process. Detailed statistical analysis was performed to investigate the establishment of dynamic equilibrium condition in terms of aggregate size and density evolution. An equilibrium steady state condition was obtained within 90 s of the start of flocculation; after which no further change in aggregate structure was observed. Although longer flocculation times inside the shear field could conceivably cause aggregate structure conformation, statistical analysis indicated that this did not occur for the studied conditions. The results show that the technique and experimental conditions employed here produce aggregates having a well-defined, reproducible structure. Copyright © 2011

  16. Inverted fractal analysis of TiO{sub x} thin layers grown by inverse pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Égerházi, L., E-mail: egerhazi.laszlo@gmail.com [University of Szeged, Faculty of Medicine, Department of Medical Physics and Informatics, Korányi fasor 9., H-6720 Szeged (Hungary); Smausz, T. [University of Szeged, Faculty of Science, Department of Optics and Quantum Electronics, Dóm tér 9., H-6720 Szeged (Hungary); Bari, F. [University of Szeged, Faculty of Medicine, Department of Medical Physics and Informatics, Korányi fasor 9., H-6720 Szeged (Hungary)

    2013-08-01

    Inverted fractal analysis (IFA), a method developed for fractal analysis of scanning electron microscopy images of cauliflower-like thin films is presented through the example of layers grown by inverse pulsed laser deposition (IPLD). IFA uses the integrated fractal analysis module (FracLac) of the image processing software ImageJ, and an objective thresholding routine that preserves the characteristic features of the images, independently of their brightness and contrast. IFA revealed f{sub D} = 1.83 ± 0.01 for TiO{sub x} layers grown at 5–50 Pa background pressures. For a series of images, this result was verified by evaluating the scaling of the number of still resolved features on the film, counted manually. The value of f{sub D} not only confirms the fractal structure of TiO{sub x} IPLD thin films, but also suggests that the aggregation of plasma species in the gas atmosphere may have only limited contribution to the deposition.

  17. The fractal spatial distribution of pancreatic islets in three dimensions: a self-avoiding growth model

    International Nuclear Information System (INIS)

    Jo, Junghyo; Periwal, Vipul; Hörnblad, Andreas; Ahlgren, Ulf; Kilimnik, German; Hara, Manami

    2013-01-01

    The islets of Langerhans, responsible for controlling blood glucose levels, are dispersed within the pancreas. A universal power law governing the fractal spatial distribution of islets in two-dimensional pancreatic sections has been reported. However, the fractal geometry in the actual three-dimensional pancreas volume, and the developmental process that gives rise to such a self-similar structure, has not been investigated. Here, we examined the three-dimensional spatial distribution of islets in intact mouse pancreata using optical projection tomography and found a power law with a fractal dimension of 2.1. Furthermore, based on two-dimensional pancreatic sections of human autopsies, we found that the distribution of human islets also follows a universal power law with a fractal dimension of 1.5 in adult pancreata, which agrees with the value previously reported in smaller mammalian pancreas sections. Finally, we developed a self-avoiding growth model for the development of the islet distribution and found that the fractal nature of the spatial islet distribution may be associated with the self-avoidance in the branching process of vascularization in the pancreas. (paper)

  18. Electromagnetic fields in fractal continua

    Energy Technology Data Exchange (ETDEWEB)

    Balankin, Alexander S., E-mail: abalankin@ipn.mx [Grupo “Mecánica Fractal”, Instituto Politécnico Nacional, México D.F., 07738 Mexico (Mexico); Mena, Baltasar [Instituto de Ingeniería, Universidad Nacional Autónoma de México, México D.F. (Mexico); Patiño, Julián [Grupo “Mecánica Fractal”, Instituto Politécnico Nacional, México D.F., 07738 Mexico (Mexico); Morales, Daniel [Instituto Mexicano del Petróleo, México D.F., 07730 Mexico (Mexico)

    2013-04-01

    Fractal continuum electrodynamics is developed on the basis of a model of three-dimensional continuum Φ{sub D}{sup 3}⊂E{sup 3} with a fractal metric. The generalized forms of Maxwell equations are derived employing the local fractional vector calculus related to the Hausdorff derivative. The difference between the fractal continuum electrodynamics based on the fractal metric of continua with Euclidean topology and the electrodynamics in fractional space F{sup α} accounting the fractal topology of continuum with the Euclidean metric is outlined. Some electromagnetic phenomena in fractal media associated with their fractal time and space metrics are discussed.

  19. Fractals for Geoengineering

    Science.gov (United States)

    Oleshko, Klaudia; de Jesús Correa López, María; Romero, Alejandro; Ramírez, Victor; Pérez, Olga

    2016-04-01

    The effectiveness of fractal toolbox to capture the scaling or fractal probability distribution, and simply fractal statistics of main hydrocarbon reservoir attributes, was highlighted by Mandelbrot (1995) and confirmed by several researchers (Zhao et al., 2015). Notwithstanding, after more than twenty years, it's still common the opinion that fractals are not useful for the petroleum engineers and especially for Geoengineering (Corbett, 2012). In spite of this negative background, we have successfully applied the fractal and multifractal techniques to our project entitled "Petroleum Reservoir as a Fractal Reactor" (2013 up to now). The distinguishable feature of Fractal Reservoir is the irregular shapes and rough pore/solid distributions (Siler, 2007), observed across a broad range of scales (from SEM to seismic). At the beginning, we have accomplished the detailed analysis of Nelson and Kibler (2003) Catalog of Porosity and Permeability, created for the core plugs of siliciclastic rocks (around ten thousand data were compared). We enriched this Catalog by more than two thousand data extracted from the last ten years publications on PoroPerm (Corbett, 2012) in carbonates deposits, as well as by our own data from one of the PEMEX, Mexico, oil fields. The strong power law scaling behavior was documented for the major part of these data from the geological deposits of contrasting genesis. Based on these results and taking into account the basic principles and models of the Physics of Fractals, introduced by Per Back and Kan Chen (1989), we have developed new software (Muukíl Kaab), useful to process the multiscale geological and geophysical information and to integrate the static geological and petrophysical reservoir models to dynamic ones. The new type of fractal numerical model with dynamical power law relations among the shapes and sizes of mesh' cells was designed and calibrated in the studied area. The statistically sound power law relations were established

  20. Fractals everywhere

    CERN Document Server

    Barnsley, Michael F

    2012-01-01

    ""Difficult concepts are introduced in a clear fashion with excellent diagrams and graphs."" - Alan E. Wessel, Santa Clara University""The style of writing is technically excellent, informative, and entertaining."" - Robert McCartyThis new edition of a highly successful text constitutes one of the most influential books on fractal geometry. An exploration of the tools, methods, and theory of deterministic geometry, the treatment focuses on how fractal geometry can be used to model real objects in the physical world. Two sixteen-page full-color inserts contain fractal images, and a bonus CD of

  1. The influence of the fractal particle size distribution on the mobility of dry granular materials

    Directory of Open Access Journals (Sweden)

    Vallejo Luis E.

    2017-01-01

    Full Text Available This study presents an experimental analysis on the influence of the particle size distribution (psd on the mobility of dry granular materials. The psd obeys a power law of the form: N(L>d=kd-Df, where N is the number of particles with diameter L greater than a given diameter d, k is a proportionality constant, and Df is the fractal dimension of the psd. No laboratory or numerical study has been conducted to date analysing how a fractal psd influences the mobility of granular flows as in the case of rock avalanches. In this study, the flow characteristics of poly-dispersed granular materials that have a fractal psd were investigated in the laboratory. Granular mixtures having different fractal psd values were placed in a hollow cylinder. The cylinder was lifted and the distance of flow of the mixture was measured with respect to the original position of the cylinder. It was determined that the distance of flow of the mixtures was directly related to their fractal psd values. That is, the larger the distance of flow of the mixture, the larger is the fractal psd of the granular mixture tested. Thus, the fractal psd in dry granular mixtures seems to have a large influence on the easiness by which dry granular mixtures move in the field.

  2. Steady laminar flow of fractal fluids

    Energy Technology Data Exchange (ETDEWEB)

    Balankin, Alexander S., E-mail: abalankin@ipn.mx [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico); Mena, Baltasar [Laboratorio de Ingeniería y Procesos Costeros, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Sisal, Yucatán, 97355 (Mexico); Susarrey, Orlando; Samayoa, Didier [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico)

    2017-02-12

    We study laminar flow of a fractal fluid in a cylindrical tube. A flow of the fractal fluid is mapped into a homogeneous flow in a fractional dimensional space with metric induced by the fractal topology. The equations of motion for an incompressible Stokes flow of the Newtonian fractal fluid are derived. It is found that the radial distribution for the velocity in a steady Poiseuille flow of a fractal fluid is governed by the fractal metric of the flow, whereas the pressure distribution along the flow direction depends on the fractal topology of flow, as well as on the fractal metric. The radial distribution of the fractal fluid velocity in a steady Couette flow between two concentric cylinders is also derived. - Highlights: • Equations of Stokes flow of Newtonian fractal fluid are derived. • Pressure distribution in the Newtonian fractal fluid is derived. • Velocity distribution in Poiseuille flow of fractal fluid is found. • Velocity distribution in a steady Couette flow is established.

  3. Self-assembly of caseinomacropeptide as a potential key mechanism in the formation of visible storage induced aggregates in acidic whey protein isolate dispersions

    DEFF Research Database (Denmark)

    Villumsen, Nanna Stengaard; Jensen, Hanne Bak; Thu Le, Thao Thi

    2015-01-01

    Visible aggregates formed during storage in acidic whey protein isolate (WPI) dispersions represent a challenge to the beverage industry. Batch-to-batch variations are observed that prevents consistent quality and shelf-life prediction. Heat-treatment of WPI dispersions at 120°C for 20s instead...

  4. Aggregation dynamics and magnetic properties of magnetic micrometer-sized particles dispersed in a fluid under the action of rotating magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Llera, María [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires (Argentina); Codnia, Jorge [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires (Argentina); Centro de Investigaciones en Láseres y Aplicaciones, CITEDEF-CONICET, Buenos Aires (Argentina); Jorge, Guillermo A., E-mail: gjorge@ungs.edu.ar [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires (Argentina)

    2015-06-15

    We present a dynamic study of soft magnetic, commercial Fe and Ni micrometer-sized particles dispersed in oleic acid and subjected to a variable (rotating) magnetic field in the horizontal plane. A very complex structure is formed after the particles decant towards the bottom liquid–solid interface and the magnetic field is applied for several minutes. The dynamics of structure formation was studied by means of the registration and analysis of microscopic video images, through a Matlab image analysis script. Several parameters, such as the number of clusters, the perimeter-based fractal dimension and circularity, were calculated as a function of time. The time evolution of the number of clusters was found to follow a power-law behavior, with an exponent consistent with that found in other studies for magnetic systems, whereas the typical formation time depends on the particle diameter and field configuration. Complementarily, the magnetic properties of the formed structure were studied, reproducing the experiment with liquid paraffin as the containing fluid, and then letting it solidify. The sample obtained was studied by vibrating sample magnetometry. The magnetization curves show that the material obtained is a planar magnetically anisotropic material, which could eventually be used as an anisotropic magnetic sensor or actuator. - Highlights: • Dynamic study of Fe and Ni particles in oleic acid under rotating fields. • A very complex system of interconnected clusters was observed. • Larger particles had a smaller aggregation time. • A power law behavior of the number of clusters vs. time. • A Fe-paraffin sample with planar anisotropy characterized.

  5. Aggregation dynamics and magnetic properties of magnetic micrometer-sized particles dispersed in a fluid under the action of rotating magnetic fields

    International Nuclear Information System (INIS)

    Llera, María; Codnia, Jorge; Jorge, Guillermo A.

    2015-01-01

    We present a dynamic study of soft magnetic, commercial Fe and Ni micrometer-sized particles dispersed in oleic acid and subjected to a variable (rotating) magnetic field in the horizontal plane. A very complex structure is formed after the particles decant towards the bottom liquid–solid interface and the magnetic field is applied for several minutes. The dynamics of structure formation was studied by means of the registration and analysis of microscopic video images, through a Matlab image analysis script. Several parameters, such as the number of clusters, the perimeter-based fractal dimension and circularity, were calculated as a function of time. The time evolution of the number of clusters was found to follow a power-law behavior, with an exponent consistent with that found in other studies for magnetic systems, whereas the typical formation time depends on the particle diameter and field configuration. Complementarily, the magnetic properties of the formed structure were studied, reproducing the experiment with liquid paraffin as the containing fluid, and then letting it solidify. The sample obtained was studied by vibrating sample magnetometry. The magnetization curves show that the material obtained is a planar magnetically anisotropic material, which could eventually be used as an anisotropic magnetic sensor or actuator. - Highlights: • Dynamic study of Fe and Ni particles in oleic acid under rotating fields. • A very complex system of interconnected clusters was observed. • Larger particles had a smaller aggregation time. • A power law behavior of the number of clusters vs. time. • A Fe-paraffin sample with planar anisotropy characterized

  6. Texture-contrast profile development across the prairie-forest ecotone in northern Minnesota, USA, and its relation to soil aggregation and clay dispersion.

    Science.gov (United States)

    Kasmerchak, C. S.; Mason, J. A.

    2016-12-01

    Along the prairie-forest ecotone, Alfisols with distinct clay-enriched B horizons are found under forest, established only within the past 4 ka, including outlying patches of prairie groves surrounded by prairie. Grassland soils only 5-10 km away from the vegetation boundary show much weaker texture-contrast. In order for clay to be dispersed it must first be released from aggregates upper horizons, which occurs when exposed top soil undergoes wetting and mechanical stress. The relationship between physiochemical soil characteristics and soil aggregation/clay dispersion is of particular interest in explaining texture-contrast development under forest. Soil samples were collected along a transect in northern Minnesota on gentle slopes in similar glacial sediment. Aggregate stability experiments show Mollisol A and B horizons have the most stable aggregates, while Alfisol E horizons have the weakest aggregates and disintegrate rapidly. This demonstrates the strong influence of OM and exchange chemistry on aggregation. Analysis of other physiochemical soil characteristics such as base saturation and pH follow a gradual decreasing eastward trend across the study sites, and do not abruptly change at the prairie-forest boundary like soil morphology does. Linear models show the strongest relationship between rapid aggregate disintegration and ECEC, although they only explain 47-50% of the variance. Higher surface charge enhances aggregation by allowing for greater potential of cation bridging between OM and clay particles. ECEC also represents multiple soil characteristics such as OC, clay, mineralogy, and carbonate presence, suggesting the relationship between aggregation stability and soil characteristics is not simple. Given the parent material consists of calcareous glacial sediment, abundant Ca2+ and Mg2+ from carbonates weathering also contributes to enhanced aggregation in upper horizons. Differences in the rates of bioturbation, most likely also contribute

  7. THE FRACTAL MARKET HYPOTHESIS

    Directory of Open Access Journals (Sweden)

    FELICIA RAMONA BIRAU

    2012-05-01

    Full Text Available In this article, the concept of capital market is analysed using Fractal Market Hypothesis which is a modern, complex and unconventional alternative to classical finance methods. Fractal Market Hypothesis is in sharp opposition to Efficient Market Hypothesis and it explores the application of chaos theory and fractal geometry to finance. Fractal Market Hypothesis is based on certain assumption. Thus, it is emphasized that investors did not react immediately to the information they receive and of course, the manner in which they interpret that information may be different. Also, Fractal Market Hypothesis refers to the way that liquidity and investment horizons influence the behaviour of financial investors.

  8. THE FRACTAL MARKET HYPOTHESIS

    OpenAIRE

    FELICIA RAMONA BIRAU

    2012-01-01

    In this article, the concept of capital market is analysed using Fractal Market Hypothesis which is a modern, complex and unconventional alternative to classical finance methods. Fractal Market Hypothesis is in sharp opposition to Efficient Market Hypothesis and it explores the application of chaos theory and fractal geometry to finance. Fractal Market Hypothesis is based on certain assumption. Thus, it is emphasized that investors did not react immediately to the information they receive and...

  9. An enhanced fractal image denoising algorithm

    International Nuclear Information System (INIS)

    Lu Jian; Ye Zhongxing; Zou Yuru; Ye Ruisong

    2008-01-01

    In recent years, there has been a significant development in image denoising using fractal-based method. This paper presents an enhanced fractal predictive denoising algorithm for denoising the images corrupted by an additive white Gaussian noise (AWGN) by using quadratic gray-level function. Meanwhile, a quantization method for the fractal gray-level coefficients of the quadratic function is proposed to strictly guarantee the contractivity requirement of the enhanced fractal coding, and in terms of the quality of the fractal representation measured by PSNR, the enhanced fractal image coding using quadratic gray-level function generally performs better than the standard fractal coding using linear gray-level function. Based on this enhanced fractal coding, the enhanced fractal image denoising is implemented by estimating the fractal gray-level coefficients of the quadratic function of the noiseless image from its noisy observation. Experimental results show that, compared with other standard fractal-based image denoising schemes using linear gray-level function, the enhanced fractal denoising algorithm can improve the quality of the restored image efficiently

  10. A fractal nature for polymerized laminin.

    Directory of Open Access Journals (Sweden)

    Camila Hochman-Mendez

    Full Text Available Polylaminin (polyLM is a non-covalent acid-induced nano- and micro-structured polymer of the protein laminin displaying distinguished biological properties. Polylaminin stimulates neuritogenesis beyond the levels achieved by ordinary laminin and has been shown to promote axonal regeneration in animal models of spinal cord injury. Here we used confocal fluorescence microscopy (CFM, scanning electron microscopy (SEM and atomic force microscopy (AFM to characterize its three-dimensional structure. Renderization of confocal optical slices of immunostained polyLM revealed the aspect of a loose flocculated meshwork, which was homogeneously stained by the antibody. On the other hand, an ordinary matrix obtained upon adsorption of laminin in neutral pH (LM was constituted of bulky protein aggregates whose interior was not accessible to the same anti-laminin antibody. SEM and AFM analyses revealed that the seed unit of polyLM was a flat polygon formed in solution whereas the seed structure of LM was highly heterogeneous, intercalating rod-like, spherical and thin spread lamellar deposits. As polyLM was visualized at progressively increasing magnifications, we observed that the morphology of the polymer was alike independently of the magnification used for the observation. A search for the Hausdorff dimension in images of the two matrices showed that polyLM, but not LM, presented fractal dimensions of 1.55, 1.62 and 1.70 after 1, 8 and 12 hours of adsorption, respectively. Data in the present work suggest that the intrinsic fractal nature of polymerized laminin can be the structural basis for the fractal-like organization of basement membranes in the neurogenic niches of the central nervous system.

  11. A fractal nature for polymerized laminin.

    Science.gov (United States)

    Hochman-Mendez, Camila; Cantini, Marco; Moratal, David; Salmeron-Sanchez, Manuel; Coelho-Sampaio, Tatiana

    2014-01-01

    Polylaminin (polyLM) is a non-covalent acid-induced nano- and micro-structured polymer of the protein laminin displaying distinguished biological properties. Polylaminin stimulates neuritogenesis beyond the levels achieved by ordinary laminin and has been shown to promote axonal regeneration in animal models of spinal cord injury. Here we used confocal fluorescence microscopy (CFM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) to characterize its three-dimensional structure. Renderization of confocal optical slices of immunostained polyLM revealed the aspect of a loose flocculated meshwork, which was homogeneously stained by the antibody. On the other hand, an ordinary matrix obtained upon adsorption of laminin in neutral pH (LM) was constituted of bulky protein aggregates whose interior was not accessible to the same anti-laminin antibody. SEM and AFM analyses revealed that the seed unit of polyLM was a flat polygon formed in solution whereas the seed structure of LM was highly heterogeneous, intercalating rod-like, spherical and thin spread lamellar deposits. As polyLM was visualized at progressively increasing magnifications, we observed that the morphology of the polymer was alike independently of the magnification used for the observation. A search for the Hausdorff dimension in images of the two matrices showed that polyLM, but not LM, presented fractal dimensions of 1.55, 1.62 and 1.70 after 1, 8 and 12 hours of adsorption, respectively. Data in the present work suggest that the intrinsic fractal nature of polymerized laminin can be the structural basis for the fractal-like organization of basement membranes in the neurogenic niches of the central nervous system.

  12. Fractal description of fractures

    International Nuclear Information System (INIS)

    Lung, C.W.

    1991-06-01

    Recent studies on the fractal description of fractures are reviewed. Some problems on this subject are discussed. It seems hopeful to use the fractal dimension as a parameter for quantitative fractography and to apply fractal structures to the development of high toughness materials. (author). 28 refs, 7 figs

  13. Dispersal of adult black marlin (Istiompax indica) from a Great Barrier Reef spawning aggregation.

    Science.gov (United States)

    Domeier, Michael L; Speare, Peter

    2012-01-01

    The black marlin (Istiompax indica) is one of the largest bony fishes in the world with females capable of reaching a mass of over 700 kg. This highly migratory predator occurs in the tropical regions of the Pacific and Indian Oceans, and is the target of regional recreational and commercial fisheries. Through the sampling of ichthyoplankton and ovaries we provide evidence that the relatively high seasonal abundance of black marlin off the Great Barrier Reef is, in fact, a spawning aggregation. Furthermore, through the tracking of individual black marlin via satellite popup tags, we document the dispersal of adult black marlin away from the spawning aggregation, thereby identifying the catchment area for this spawning stock. Although tag shedding is an issue when studying billfish, we tentatively identify the catchment area for this stock of black marlin to extend throughout the Coral Sea, including the waters of Papua New Guinea, the Solomon Islands, Micronesia, New Caledonia, Kiribati, Vanuatu, Fiji, Tuvalu and Nauru.

  14. Dispersal of adult black marlin (Istiompax indica from a Great Barrier Reef spawning aggregation.

    Directory of Open Access Journals (Sweden)

    Michael L Domeier

    Full Text Available The black marlin (Istiompax indica is one of the largest bony fishes in the world with females capable of reaching a mass of over 700 kg. This highly migratory predator occurs in the tropical regions of the Pacific and Indian Oceans, and is the target of regional recreational and commercial fisheries. Through the sampling of ichthyoplankton and ovaries we provide evidence that the relatively high seasonal abundance of black marlin off the Great Barrier Reef is, in fact, a spawning aggregation. Furthermore, through the tracking of individual black marlin via satellite popup tags, we document the dispersal of adult black marlin away from the spawning aggregation, thereby identifying the catchment area for this spawning stock. Although tag shedding is an issue when studying billfish, we tentatively identify the catchment area for this stock of black marlin to extend throughout the Coral Sea, including the waters of Papua New Guinea, the Solomon Islands, Micronesia, New Caledonia, Kiribati, Vanuatu, Fiji, Tuvalu and Nauru.

  15. Fractal Analysis of Mobile Social Networks

    International Nuclear Information System (INIS)

    Zheng Wei; Pan Qian; Sun Chen; Deng Yu-Fan; Zhao Xiao-Kang; Kang Zhao

    2016-01-01

    Fractal and self similarity of complex networks have attracted much attention in recent years. The fractal dimension is a useful method to describe the fractal property of networks. However, the fractal features of mobile social networks (MSNs) are inadequately investigated. In this work, a box-covering method based on the ratio of excluded mass to closeness centrality is presented to investigate the fractal feature of MSNs. Using this method, we find that some MSNs are fractal at different time intervals. Our simulation results indicate that the proposed method is available for analyzing the fractal property of MSNs. (paper)

  16. Fractal dust grains in plasma

    International Nuclear Information System (INIS)

    Huang, F.; Peng, R. D.; Liu, Y. H.; Chen, Z. Y.; Ye, M. F.; Wang, L.

    2012-01-01

    Fractal dust grains of different shapes are observed in a radially confined magnetized radio frequency plasma. The fractal dimensions of the dust structures in two-dimensional (2D) horizontal dust layers are calculated, and their evolution in the dust growth process is investigated. It is found that as the dust grains grow the fractal dimension of the dust structure decreases. In addition, the fractal dimension of the center region is larger than that of the entire region in the 2D dust layer. In the initial growth stage, the small dust particulates at a high number density in a 2D layer tend to fill space as a normal surface with fractal dimension D = 2. The mechanism of the formation of fractal dust grains is discussed.

  17. Detangling the Effects of Environmental Filtering and Dispersal Limitation on Aggregated Distributions of Tree and Shrub Species: Life Stage Matters

    Science.gov (United States)

    Liu, He-Ming; Wang, Zhang-Hua; Ma, Zun-Ping; Fang, Xiao-Feng; Zhang, Jian; Wang, Xi-Hua

    2016-01-01

    The pervasive pattern of aggregated tree distributions in natural communities is commonly explained by the joint effect of two clustering processes: environmental filtering and dispersal limitation, yet little consensus remains on the relative importance of the two clustering processes on tree aggregations. Different life stages of examined species were thought to be one possible explanation of this disagreement, because the effect of environmental filtering and dispersal limitation are expected to increase and decrease with tree life stages, respectively. However, few studies have explicitly tested these expectations. In this study, we evaluated these expectations by three different methods (species-habitat association test based on Poisson Clustering model and spatial point pattern analyses based on Heterogeneous Poisson model and the jointly modeling approach) using 36 species in a 20-ha subtropical forest plot. Our results showed that the percentage of species with significant habitat association increased with life stages, and there were fewer species affected by dispersal limitation in later life stages compared with those in earlier stages. Percentage of variance explained by the environmental filtering and dispersal limitation also increases and decreases with life stages. These results provided a promising alternative explanation on the existing mixed results about the relative importance of the two clustering processes. These findings also highlighted the importance of plant life stages for fully understanding species distributions and species coexistence. PMID:27227538

  18. Discovery of cosmic fractals

    CERN Document Server

    Baryshev, Yuri

    2002-01-01

    This is the first book to present the fascinating new results on the largest fractal structures in the universe. It guides the reader, in a simple way, to the frontiers of astronomy, explaining how fractals appear in cosmic physics, from our solar system to the megafractals in deep space. It also offers a personal view of the history of the idea of self-similarity and of cosmological principles, from Plato's ideal architecture of the heavens to Mandelbrot's fractals in the modern physical cosmos. In addition, this invaluable book presents the great fractal debate in astronomy (after Luciano Pi

  19. Fractal zeta functions and fractal drums higher-dimensional theory of complex dimensions

    CERN Document Server

    Lapidus, Michel L; Žubrinić, Darko

    2017-01-01

    This monograph gives a state-of-the-art and accessible treatment of a new general higher-dimensional theory of complex dimensions, valid for arbitrary bounded subsets of Euclidean spaces, as well as for their natural generalization, relative fractal drums. It provides a significant extension of the existing theory of zeta functions for fractal strings to fractal sets and arbitrary bounded sets in Euclidean spaces of any dimension. Two new classes of fractal zeta functions are introduced, namely, the distance and tube zeta functions of bounded sets, and their key properties are investigated. The theory is developed step-by-step at a slow pace, and every step is well motivated by numerous examples, historical remarks and comments, relating the objects under investigation to other concepts. Special emphasis is placed on the study of complex dimensions of bounded sets and their connections with the notions of Minkowski content and Minkowski measurability, as well as on fractal tube formulas. It is shown for the f...

  20. Fractal geometry and number theory complex dimensions of fractal strings and zeros of zeta functions

    CERN Document Server

    Lapidus, Michael L

    1999-01-01

    A fractal drum is a bounded open subset of R. m with a fractal boundary. A difficult problem is to describe the relationship between the shape (geo­ metry) of the drum and its sound (its spectrum). In this book, we restrict ourselves to the one-dimensional case of fractal strings, and their higher dimensional analogues, fractal sprays. We develop a theory of complex di­ mensions of a fractal string, and we study how these complex dimensions relate the geometry with the spectrum of the fractal string. We refer the reader to [Berrl-2, Lapl-4, LapPol-3, LapMal-2, HeLapl-2] and the ref­ erences therein for further physical and mathematical motivations of this work. (Also see, in particular, Sections 7. 1, 10. 3 and 10. 4, along with Ap­ pendix B. ) In Chapter 1, we introduce the basic object of our research, fractal strings (see [Lapl-3, LapPol-3, LapMal-2, HeLapl-2]). A 'standard fractal string' is a bounded open subset of the real line. Such a set is a disjoint union of open intervals, the lengths of which ...

  1. Partitioning of fresh crude oil between floating, dispersed and sediment phases: Effect of exposure order to dispersant and granular materials.

    Science.gov (United States)

    Boglaienko, Daria; Tansel, Berrin

    2016-06-15

    When three or more high and low energy substrates are mixed, wetting order can significantly affect the behavior of the mixture. We analyzed the phase distribution of fresh floating Louisiana crude oil into dispersed, settled and floating phases depending on the exposure sequence to Corexit 9500A (dispersant) and granular materials. In the experiments artificial sea water at salinity 34‰ was used. Limestone (2.00-0.300 mm) and quartz sand (0.300-0.075 mm) were used as the natural granular materials. Dispersant Corexit 9500A increased the amount of dispersed oil up to 33.76 ± 7.04%. Addition of granular materials after the dispersant increased dispersion of oil to 47.96 ± 1.96%. When solid particles were applied on the floating oil before the dispersant, oil was captured as oil-particle aggregates and removed from the floating layer. However, dispersant addition led to partial release of the captured oil, removing it from the aggregated form to the dispersed and floating phases. There was no visible oil aggregation with the granular materials when quartz or limestone was at the bottom of the flask before the addition of oil and dispersant. The results show that granular materials can be effective when applied from the surface for aggregating or dispersing oil. However, the granular materials in the sediments are not effective neither for aggregating nor dispersing floating oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Quantum Fractal Eigenstates

    OpenAIRE

    Casati, Giulio; Maspero, Giulio; Shepelyansky, Dima L.

    1997-01-01

    We study quantum chaos in open dynamical systems and show that it is characterized by quantum fractal eigenstates located on the underlying classical strange repeller. The states with longest life times typically reveal a scars structure on the classical fractal set.

  3. Electromagnetism on anisotropic fractal media

    Science.gov (United States)

    Ostoja-Starzewski, Martin

    2013-04-01

    Basic equations of electromagnetic fields in anisotropic fractal media are obtained using a dimensional regularization approach. First, a formulation based on product measures is shown to satisfy the four basic identities of the vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Ampère laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, so as to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions in three different directions and reduce to conventional forms for continuous media with Euclidean geometries upon setting these each of dimensions equal to unity.

  4. Inkjet-Printed Ultra Wide Band Fractal Antennas

    KAUST Repository

    Maza, Armando Rodriguez

    2012-05-01

    In this work, Paper-based inkjet-printed Ultra-wide band (UWB) fractal antennas are presented. Three new designs, a combined UWB fractal monopole based on the fourth order Koch Snowflake fractal which utilizes a Sierpinski Gasket fractal for ink reduction, a Cantor-based fractal antenna which performs a larger bandwidth compared to previously published UWB Cantor fractal monopole antenna, and a 3D loop fractal antenna which attains miniaturization, impedance matching and multiband characteristics. It is shown that fractals prove to be a successful method of reducing fabrication cost in inkjet printed antennas while retaining or enhancing printed antenna performance.

  5. Thermoswitchable catalysis controlled by reversible dispersion/aggregation change of nanoreactors in the presence of α-CD polymers

    Science.gov (United States)

    Li, Yinfeng; Hu, Jie; Niu, Chengrong; Leng, Jinghang; Li, Songjun

    2018-06-01

    The present work was aimed at preparing a thermosensitive nanoreactor system which could adjust its dispersion/aggregation status according to external temperature change to achieve the switchable catalysis. The mesoporous silica nanoparticle (MSNP) was selected as the framework material of the nanoreactor, and Ag nanoparticles were encapsulated in the mesoporous silica by an in situ reaction. Dodecyl groups were introduced onto MSNP surface, which could transform reversibly between complexation and disassociation with α-cyclodextrin (CD) cavity upon temperature change. It was found that the nanoreactors aggregated and the catalysis was effectively switched ‘off’ in the presence of CD polymers at low temperature (20 °C). However, when the temperature increased to 50 °C, the nanoreactors redispersed and catalysis successfully switched ‘on’.

  6. Effect of preparation conditions on fractal structure and phase transformations in the synthesis of nanoscale M-type barium hexaferrite

    Energy Technology Data Exchange (ETDEWEB)

    Pashkova, E.V. [V.I. Vernadskii Institute of General and Inorganic Chemistry, 32/34 Prospect Palladina, Kyiv-142, 03680 (Ukraine); Solovyova, E.D., E-mail: solovyovak@mail.ru [V.I. Vernadskii Institute of General and Inorganic Chemistry, 32/34 Prospect Palladina, Kyiv-142, 03680 (Ukraine); Kotenko, I.E., E-mail: Hab2420@yahoo.com [National Technical University of Ukraine ' KPI' , Pr. Pobedy, 37, Kyiv-57 (Ukraine); Kolodiazhnyi, T.V., E-mail: kolodiazhnyi.taras@nims.go.jp [National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Belous, A.G., E-mail: belous@ionc.kar.net [V.I. Vernadskii Institute of General and Inorganic Chemistry, 32/34 Prospect Palladina, Kyiv-142, 03680 (Ukraine)

    2011-10-15

    The conditions of the synthesis of carbonate-hydroxide precursors (pH of FeOOH precipitation and heat treatment regimes) were studied in terms of their effect on the fractal structure and physical-chemical properties of precursors. Phase transformations which occur during the synthesis of nanosize M-type barium hexaferrite (BHF) were studied as well. The first structural level of precursors' aggregation for mass fractals, the correlation between fractal dimension and precursors' activity during the synthesis of BHF were determined. Synthesis parameters for the precursors with the optimal fractal structure were determined. These data permit an enhancement of the filtration coefficient of the precipitates by a factor of 4-5, obtaining substantial decrease in the temperature required for synthesis of a single-phase BHF, and monodispersed plate-like nanoparticles (60 nm diameter) with the shape anisotropy and good magnetic characteristics (saturation magnetization (M{sub s})=68,7 emu/g and coercitivity (H{sub c})=5440 Oe). - Highlights: > The nanosize M-type BHF obtained by precipitation of hydroxicarbonates technique. > Optimal fractal structure of a precursor for nanosize M-type BHF has been determined. > The precursor precipitated at pH 4.3 allows getting monodisperse particles of BHF.

  7. Random walk through fractal environments

    OpenAIRE

    Isliker, H.; Vlahos, L.

    2002-01-01

    We analyze random walk through fractal environments, embedded in 3-dimensional, permeable space. Particles travel freely and are scattered off into random directions when they hit the fractal. The statistical distribution of the flight increments (i.e. of the displacements between two consecutive hittings) is analytically derived from a common, practical definition of fractal dimension, and it turns out to approximate quite well a power-law in the case where the dimension D of the fractal is ...

  8. Fractals in several electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chunyong, E-mail: zhangchy@njau.edu.cn [Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095 (China); Suzhou Key Laboratory of Environment and Biosafety, Suzhou Academy of Southeast University, Dushuhu lake higher education town, Suzhou 215123 (China); Wu, Jingyu [Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095 (China); Fu, Degang [Suzhou Key Laboratory of Environment and Biosafety, Suzhou Academy of Southeast University, Dushuhu lake higher education town, Suzhou 215123 (China); State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096 (China)

    2014-09-15

    Highlights: • Fractal geometry was employed to characterize three important electrode materials. • The surfaces of all studied electrodes were proved to be very rough. • The fractal dimensions of BDD and ACF were scale dependent. • MMO film was more uniform than BDD and ACF in terms of fractal structures. - Abstract: In the present paper, the fractal properties of boron-doped diamond (BDD), mixed metal oxide (MMO) and activated carbon fiber (ACF) electrode have been studied by SEM imaging at different scales. Three materials are self-similar with mean fractal dimension in the range of 2.6–2.8, confirming that they all exhibit very rough surfaces. Specifically, it is found that MMO film is more uniform in terms of fractal structure than BDD and ACF. As a result, the intriguing characteristics make these electrodes as ideal candidates for high-performance decontamination processes.

  9. Fractals via iterated functions and multifunctions

    International Nuclear Information System (INIS)

    Singh, S.L.; Prasad, Bhagwati; Kumar, Ashish

    2009-01-01

    Fractals have wide applications in biology, computer graphics, quantum physics and several other areas of applied sciences (see, for instance [Daya Sagar BS, Rangarajan Govindan, Veneziano Daniele. Preface - fractals in geophysics. Chaos, Solitons and Fractals 2004;19:237-39; El Naschie MS. Young double-split experiment Heisenberg uncertainty principles and cantorian space-time. Chaos, Solitons and Fractals 1994;4(3):403-09; El Naschie MS. Quantum measurement, information, diffusion and cantorian geodesics. In: El Naschie MS, Rossler OE, Prigogine I, editors. Quantum mechanics, diffusion and Chaotic fractals. Oxford: Elsevier Science Ltd; 1995. p. 191-205; El Naschie MS. Iterated function systems, information and the two-slit experiment of quantum mechanics. In: El Naschie MS, Rossler OE, Prigogine I, editors. Quantum mechanics, diffusion and Chaotic fractals. Oxford: Elsevier Science Ltd; 1995. p. 185-9; El Naschie MS, Rossler OE, Prigogine I. Forward. In: El Naschie MS, Rossler OE, Prigogine I, editors. Quantum mechanics, diffusion and Chaotic fractals. Oxford: Elsevier Science Ltd; 1995; El Naschie MS. A review of E-infinity theory and the mass spectrum of high energy particle physics. Chaos, Solitons and Fractals 2004;19:209-36; El Naschie MS. Fractal black holes and information. Chaos, Solitons and Fractals 2006;29:23-35; El Naschie MS. Superstring theory: what it cannot do but E-infinity could. Chaos, Solitons and Fractals 2006;29:65-8). Especially, the study of iterated functions has been found very useful in the theory of black holes, two-slit experiment in quantum mechanics (cf. El Naschie, as mentioned above). The intent of this paper is to give a brief account of recent developments of fractals arising from IFS. We also discuss iterated multifunctions.

  10. Aggregation kinetics and structure of cryoimmunoglobulins clusters

    CERN Document Server

    De Spirito, M; Bassi, F A; Di Stasio, E; Giardina, B; Arcovito, G

    2002-01-01

    Cryoimmunoglobulins are pathological antibodies characterized by a temperature-dependent reversible insolubility. Rheumatoid factors (RF) are immunoglobulins possessing anti-immunoglobulin activity and usually consist of an IgM antibody that recognizes IgG as antigen. These proteins are present in sera of patients affected by a large variety of different pathologies, such as HCV infection, neoplastic and autoimmune diseases. Aggregation and precipitation of cryoimmunoglobulins, leading to vasculiti, are physical phenomena behind such pathologies. A deep knowledge of the physico-chemical mechanisms regulating such phenomena plays a fundamental role in biological and clinical applications. In this work, a preliminary investigation of the aggregation kinetics and of the final macro- molecular structure of the aggregates is presented. Through static light scattering techniques, the gyration radius R/sub g/ and the fractal dimension D/sub m/ of the growing clusters have been determined. However, while the initial ...

  11. Fractal Electrochemical Microsupercapacitors

    KAUST Repository

    Hota, Mrinal Kanti

    2017-08-17

    The first successful fabrication of microsupercapacitors (μ-SCs) using fractal electrode designs is reported. Using sputtered anhydrous RuO thin-film electrodes as prototypes, μ-SCs are fabricated using Hilbert, Peano, and Moore fractal designs, and their performance is compared to conventional interdigital electrode structures. Microsupercapacitor performance, including energy density, areal and volumetric capacitances, changes with fractal electrode geometry. Specifically, the μ-SCs based on the Moore design show a 32% enhancement in energy density compared to conventional interdigital structures, when compared at the same power density and using the same thin-film RuO electrodes. The energy density of the Moore design is 23.2 mWh cm at a volumetric power density of 769 mW cm. In contrast, the interdigital design shows an energy density of only 17.5 mWh cm at the same power density. We show that active electrode surface area cannot alone explain the increase in capacitance and energy density. We propose that the increase in electrical lines of force, due to edging effects in the fractal electrodes, also contribute to the higher capacitance. This study shows that electrode fractal design is a viable strategy for improving the performance of integrated μ-SCs that use thin-film electrodes at no extra processing or fabrication cost.

  12. Fractal Electrochemical Microsupercapacitors

    KAUST Repository

    Hota, Mrinal Kanti; Jiang, Qiu; Mashraei, Yousof; Salama, Khaled N.; Alshareef, Husam N.

    2017-01-01

    The first successful fabrication of microsupercapacitors (μ-SCs) using fractal electrode designs is reported. Using sputtered anhydrous RuO thin-film electrodes as prototypes, μ-SCs are fabricated using Hilbert, Peano, and Moore fractal designs, and their performance is compared to conventional interdigital electrode structures. Microsupercapacitor performance, including energy density, areal and volumetric capacitances, changes with fractal electrode geometry. Specifically, the μ-SCs based on the Moore design show a 32% enhancement in energy density compared to conventional interdigital structures, when compared at the same power density and using the same thin-film RuO electrodes. The energy density of the Moore design is 23.2 mWh cm at a volumetric power density of 769 mW cm. In contrast, the interdigital design shows an energy density of only 17.5 mWh cm at the same power density. We show that active electrode surface area cannot alone explain the increase in capacitance and energy density. We propose that the increase in electrical lines of force, due to edging effects in the fractal electrodes, also contribute to the higher capacitance. This study shows that electrode fractal design is a viable strategy for improving the performance of integrated μ-SCs that use thin-film electrodes at no extra processing or fabrication cost.

  13. Real-time observation of template-assisted colloidal aggregation and colloidal dispersion under an alternating electric field

    International Nuclear Information System (INIS)

    Chao-Rong, Li; Shu-Wen, Li; Jie, Mei; Qing, Xu; Ying-Ying, Zheng; Wen-Jun, Dong

    2011-01-01

    A fascinating colloid phenomenon was observed in a specially designed template-assisted cell under an alternating electrical field. Most colloidal particles experienced the processes of aggregation, dispersion and climbing up to the plateaus of the patterns pre-lithographed on the indium tin oxide glass as the frequency of the alternating electrical field increased. Two critical frequencies f crit1 ≈ 15 kHz and f crit2 ≈ 40 kHz, corresponding to the transitions of the colloid behaviour were observed. When f < 15 kHz, the particles were forced to aggregate along the grooves of the negative photoresist patterned template. When 15 kHz < f < 40 kHz, the particle clusters became unstable and most particles started to disperse and were blocked by the fringes of the negative photoresist patterns. As the frequency increased to above 40 kHz, the majority of particles started to climb up to the plateaus of the patterns. Furthermore, the dynamics analysis for the behaviour of the colloids was given and we found out that positive or negative dielectrophoresis force, electrohydrodynamic force, particle—particle interactions and Brownian motion change with the frequency of the alternating electric field. Thus, changes of the related forces affect or control the behaviour of the colloids. (interdisciplinary physics and related areas of science and technology)

  14. Fractal structures in two-metal electrodeposition systems I: Pb and Zn

    International Nuclear Information System (INIS)

    Nakouzi, Elias; Sultan, Rabih

    2011-01-01

    Pattern formation in two-metal electrochemical deposition has been scarcely explored in the chemical literature. In this paper, we report new experiments on zinc-lead fractal co-deposition. Electrodeposits are grown in special cells at a fixed large value of the zinc ion concentration, while that of the lead ion is increased gradually. A very wide diversity of morphologies are obtained and classified. Most of the deposited domains are almost exclusively Pb or Zn. But certain regions originating at the base cathode, ranging from a short grass alley to dense, grown-up bushes or shrubs, manifest a combined Pb-Zn composition. Composition is determined using scanning electron microscopy/energy dispersive x ray measurements as well atomic absorption spectroscopy. Pb domains are characterized by shiny leaf-like and dense deposits as well as flowers with round, balloon-like corollas. The Zn zones display a greater variety of morphologies such as thick trunks and thin and fine branching, in addition to minute ''cigar flower'' structures. The various morphologies are analyzed and classified from the viewpoint of fractal nature, characterized by the box-count fractal dimension. Finally, macroscopic spatial alternation between two different characteristic morphologies is observed under certain conditions.

  15. Fractals and chaos

    CERN Document Server

    Earnshow, R; Jones, H

    1991-01-01

    This volume is based upon the presentations made at an international conference in London on the subject of 'Fractals and Chaos'. The objective of the conference was to bring together some of the leading practitioners and exponents in the overlapping fields of fractal geometry and chaos theory, with a view to exploring some of the relationships between the two domains. Based on this initial conference and subsequent exchanges between the editors and the authors, revised and updated papers were produced. These papers are contained in the present volume. We thank all those who contributed to this effort by way of planning and organisation, and also all those who helped in the production of this volume. In particular, we wish to express our appreciation to Gerhard Rossbach, Computer Science Editor, Craig Van Dyck, Production Director, and Nancy A. Rogers, who did the typesetting. A. J. Crilly R. A. Earnshaw H. Jones 1 March 1990 Introduction Fractals and Chaos The word 'fractal' was coined by Benoit Mandelbrot i...

  16. Comparison of two fractal interpolation methods

    Science.gov (United States)

    Fu, Yang; Zheng, Zeyu; Xiao, Rui; Shi, Haibo

    2017-03-01

    As a tool for studying complex shapes and structures in nature, fractal theory plays a critical role in revealing the organizational structure of the complex phenomenon. Numerous fractal interpolation methods have been proposed over the past few decades, but they differ substantially in the form features and statistical properties. In this study, we simulated one- and two-dimensional fractal surfaces by using the midpoint displacement method and the Weierstrass-Mandelbrot fractal function method, and observed great differences between the two methods in the statistical characteristics and autocorrelation features. From the aspect of form features, the simulations of the midpoint displacement method showed a relatively flat surface which appears to have peaks with different height as the fractal dimension increases. While the simulations of the Weierstrass-Mandelbrot fractal function method showed a rough surface which appears to have dense and highly similar peaks as the fractal dimension increases. From the aspect of statistical properties, the peak heights from the Weierstrass-Mandelbrot simulations are greater than those of the middle point displacement method with the same fractal dimension, and the variances are approximately two times larger. When the fractal dimension equals to 1.2, 1.4, 1.6, and 1.8, the skewness is positive with the midpoint displacement method and the peaks are all convex, but for the Weierstrass-Mandelbrot fractal function method the skewness is both positive and negative with values fluctuating in the vicinity of zero. The kurtosis is less than one with the midpoint displacement method, and generally less than that of the Weierstrass-Mandelbrot fractal function method. The autocorrelation analysis indicated that the simulation of the midpoint displacement method is not periodic with prominent randomness, which is suitable for simulating aperiodic surface. While the simulation of the Weierstrass-Mandelbrot fractal function method has

  17. Turbulence Enhancement by Fractal Square Grids: Effects of the Number of Fractal Scales

    Science.gov (United States)

    Omilion, Alexis; Ibrahim, Mounir; Zhang, Wei

    2017-11-01

    Fractal square grids offer a unique solution for passive flow control as they can produce wakes with a distinct turbulence intensity peak and a prolonged turbulence decay region at the expense of only minimal pressure drop. While previous studies have solidified this characteristic of fractal square grids, how the number of scales (or fractal iterations N) affect turbulence production and decay of the induced wake is still not well understood. The focus of this research is to determine the relationship between the fractal iteration N and the turbulence produced in the wake flow using well-controlled water-tunnel experiments. Particle Image Velocimetry (PIV) is used to measure the instantaneous velocity fields downstream of four different fractal grids with increasing number of scales (N = 1, 2, 3, and 4) and a conventional single-scale grid. By comparing the turbulent scales and statistics of the wake, we are able to determine how each iteration affects the peak turbulence intensity and the production/decay of turbulence from the grid. In light of the ability of these fractal grids to increase turbulence intensity with low pressure drop, this work can potentially benefit a wide variety of applications where energy efficient mixing or convective heat transfer is a key process.

  18. Towards a physics on fractals: Differential vector calculus in three-dimensional continuum with fractal metric

    Science.gov (United States)

    Balankin, Alexander S.; Bory-Reyes, Juan; Shapiro, Michael

    2016-02-01

    One way to deal with physical problems on nowhere differentiable fractals is the mapping of these problems into the corresponding problems for continuum with a proper fractal metric. On this way different definitions of the fractal metric were suggested to account for the essential fractal features. In this work we develop the metric differential vector calculus in a three-dimensional continuum with a non-Euclidean metric. The metric differential forms and Laplacian are introduced, fundamental identities for metric differential operators are established and integral theorems are proved by employing the metric version of the quaternionic analysis for the Moisil-Teodoresco operator, which has been introduced and partially developed in this paper. The relations between the metric and conventional operators are revealed. It should be emphasized that the metric vector calculus developed in this work provides a comprehensive mathematical formalism for the continuum with any suitable definition of fractal metric. This offers a novel tool to study physics on fractals.

  19. Order-fractal transitions in abstract paintings

    Energy Technology Data Exchange (ETDEWEB)

    Calleja, E.M. de la, E-mail: elsama79@gmail.com [Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970, Porto Alegre, RS (Brazil); Cervantes, F. [Department of Applied Physics, CINVESTAV-IPN, Carr. Antigua a Progreso km.6, Cordemex, C.P.97310, Mérida, Yucatán (Mexico); Calleja, J. de la [Department of Informatics, Universidad Politécnica de Puebla, 72640 (Mexico)

    2016-08-15

    In this study, we determined the degree of order for 22 Jackson Pollock paintings using the Hausdorff–Besicovitch fractal dimension. Based on the maximum value of each multi-fractal spectrum, the artworks were classified according to the year in which they were painted. It has been reported that Pollock’s paintings are fractal and that this feature was more evident in his later works. However, our results show that the fractal dimension of these paintings ranges among values close to two. We characterize this behavior as a fractal-order transition. Based on the study of disorder-order transition in physical systems, we interpreted the fractal-order transition via the dark paint strokes in Pollock’s paintings as structured lines that follow a power law measured by the fractal dimension. We determined self-similarity in specific paintings, thereby demonstrating an important dependence on the scale of observations. We also characterized the fractal spectrum for the painting entitled Teri’s Find. We obtained similar spectra for Teri’s Find and Number 5, thereby suggesting that the fractal dimension cannot be rejected completely as a quantitative parameter for authenticating these artworks. -- Highlights: •We determined the degree of order in Jackson Pollock paintings using the Hausdorff–Besicovitch dimension. •We detected a fractal-order transition from Pollock’s paintings between 1947 and 1951. •We suggest that Jackson Pollock could have painted Teri’s Find.

  20. Effects of humic acid and solution chemistry on the aggregation and dispersion of carboxyl-functionalized carbon black nanoparticles

    Science.gov (United States)

    Hwang, G.; Gomez-Flores, A.; Choi, S.; Han, Y., , Dr; Kim, H.

    2017-12-01

    The influence of humic acid, ionic strength and ionic species on the aggregation and dispersion of carboxyl-functionalized carbon black nanoparticles (CB-NPs) was systemically investigated in aqueous media. The experimental conditions of stability tests were selected to the changes in the solution chemistry (0.1-10 mM NaCl and 0.01-1 mM CaCl2) and in the presence/absence of humic acid (1 and 5 mg L-1) in an aquatic environment. The CB-NPs suspension was more rapidly settled in NaCl solution than in CaCl2. Specifically, in the case of NaCl, the aggregation rate of CB-NPs increased with ionic strength. Contrary, CB-NPs dispersed in CaCl2 were insensitive to the aggregation as the ionic strength increased; that was because specific adsorption of the divalent cation Ca2+ occurred since the zeta potential of the CB-NPs is reversed to a positive charge with increasing of the ionic strength. It was confirmed that humic acid greatly influences the stability of the CB-NPs. In particular, the dispersion of CB-NPs was improved in the whole range of ionic strengths of NaCl as well as of CaCl2. To support the results, the interaction energy between CB-NPs was calculated for each condition by using the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) and modified-DLVO theories. In the presence of humic acid, the improved stability of CB-NPs is attributed to the steric repulsive force.This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A3A01020766), the Ministry of Education (MOE) and National Research Foundation of Korea (NRF) through the Human Resource Training Project for Regional Innovation (2015H1C1A1035930) and Korea Energy and Mineral Resources Engineering Program (KEMREP).

  1. Entrainment to a real time fractal visual stimulus modulates fractal gait dynamics.

    Science.gov (United States)

    Rhea, Christopher K; Kiefer, Adam W; D'Andrea, Susan E; Warren, William H; Aaron, Roy K

    2014-08-01

    Fractal patterns characterize healthy biological systems and are considered to reflect the ability of the system to adapt to varying environmental conditions. Previous research has shown that fractal patterns in gait are altered following natural aging or disease, and this has potential negative consequences for gait adaptability that can lead to increased risk of injury. However, the flexibility of a healthy neurological system to exhibit different fractal patterns in gait has yet to be explored, and this is a necessary step toward understanding human locomotor control. Fifteen participants walked for 15min on a treadmill, either in the absence of a visual stimulus or while they attempted to couple the timing of their gait with a visual metronome that exhibited a persistent fractal pattern (contained long-range correlations) or a random pattern (contained no long-range correlations). The stride-to-stride intervals of the participants were recorded via analog foot pressure switches and submitted to detrended fluctuation analysis (DFA) to determine if the fractal patterns during the visual metronome conditions differed from the baseline (no metronome) condition. DFA α in the baseline condition was 0.77±0.09. The fractal patterns in the stride-to-stride intervals were significantly altered when walking to the fractal metronome (DFA α=0.87±0.06) and to the random metronome (DFA α=0.61±0.10) (both p<.05 when compared to the baseline condition), indicating that a global change in gait dynamics was observed. A variety of strategies were identified at the local level with a cross-correlation analysis, indicating that local behavior did not account for the consistent global changes. Collectively, the results show that a gait dynamics can be shifted in a prescribed manner using a visual stimulus and the shift appears to be a global phenomenon. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Positron annihilation near fractal surfaces

    International Nuclear Information System (INIS)

    Lung, C.W.; Deng, K.M.; Xiong, L.Y.

    1991-07-01

    A model for positron annihilation in the sub-surface region near a fractal surface is proposed. It is found that the power law relationship between the mean positron implantation depth and incident positron energy can be used to measure the fractal dimension of the fractal surface in materials. (author). 10 refs, 2 figs

  3. Contour fractal analysis of grains

    Science.gov (United States)

    Guida, Giulia; Casini, Francesca; Viggiani, Giulia MB

    2017-06-01

    Fractal analysis has been shown to be useful in image processing to characterise the shape and the grey-scale complexity in different applications spanning from electronic to medical engineering (e.g. [1]). Fractal analysis consists of several methods to assign a dimension and other fractal characteristics to a dataset describing geometric objects. Limited studies have been conducted on the application of fractal analysis to the classification of the shape characteristics of soil grains. The main objective of the work described in this paper is to obtain, from the results of systematic fractal analysis of artificial simple shapes, the characterization of the particle morphology at different scales. The long term objective of the research is to link the microscopic features of granular media with the mechanical behaviour observed in the laboratory and in situ.

  4. Fractal pattern growth simulation in electrodeposition and study of the shifting of center of mass

    International Nuclear Information System (INIS)

    Shaikh, Yusuf H.; Khan, A.R.; Pathan, J.M.; Patil, Aruna; Behere, S.H.

    2009-01-01

    We presented simulation of fractal pattern in electrodeposition (Diffusion limited aggregation) using concept of off lattice walk. It is seen that the growth patterns are based on a parameter called 'bias'. This parameter 'bias' controls the growth of patterns similar to that of electric field in electrodeposition technique. In present study the fractal patterns are grown for different values of 'bias'. Dendritic patterns grown at lower value of 'bias' comprises open structure and show limited branching. As the bias is increased the growth tends to be dense and show more crowded branching. Box counting was implemented to calculate fractal dimension. The structural and textural complexities and are compared with the experimental observations. It was also noted that in the evolution of DLA patterns, the center of mass of the growth is shifted slightly. We tracked the position of the center of mass of simulated electro deposits under different electric field conditions. The center of mass exhibit random walk like patterns and it wanders around the origin or the starting point of the growth.

  5. [Composition and stability of soil aggregates in hedgerow-crop slope land].

    Science.gov (United States)

    Pu, Yu-Lin; Lin, Chao-Wen; Xie, De-Ti; Wei, Chao-Fu; Ni, Jiu-Pai

    2013-01-01

    Based on a long-term experiment of using hedgerow to control soil and water loss, this paper studied the composition and stability of soil aggregates in a hedgerow-crop slope land. Compared with those under routine contour cropping, the contents of > 0.25 mm soil mechanical-stable and water-stable aggregates under the complex mode hedgerow-crop increased significantly by 13.3%-16.1% and 37.8% -55.6%, respectively. Under the complex mode, the contents of > 0.25 mm soil water-stable aggregates on each slope position increased obviously, and the status of > 0.25 mm soil water-stable aggregates being relatively rich at low slope and poor at top slope was improved. Planting hedgerow could significantly increase the mean mass diameter and geometric mean diameter of soil aggregates, decrease the fractal dimension of soil aggregates and the destruction rate of > 0.25 mm soil aggregates, and thus, increase the stability and erosion-resistance of soil aggregates in slope cropland. No significant effects of slope and hedgerow types were observed on the composition, stability and distribution of soil aggregates.

  6. Encounters with chaos and fractals

    CERN Document Server

    Gulick, Denny

    2012-01-01

    Periodic Points Iterates of Functions Fixed Points Periodic Points Families of Functions The Quadratic Family Bifurcations Period-3 Points The Schwarzian Derivative One-Dimensional Chaos Chaos Transitivity and Strong Chaos Conjugacy Cantor Sets Two-Dimensional Chaos Review of Matrices Dynamics of Linear FunctionsNonlinear Maps The Hénon Map The Horseshoe Map Systems of Differential Equations Review of Systems of Differential Equations Almost Linearity The Pendulum The Lorenz System Introduction to Fractals Self-Similarity The Sierpiński Gasket and Other "Monsters"Space-Filling Curves Similarity and Capacity DimensionsLyapunov Dimension Calculating Fractal Dimensions of Objects Creating Fractals Sets Metric Spaces The Hausdorff Metric Contractions and Affine Functions Iterated Function SystemsAlgorithms for Drawing Fractals Complex Fractals: Julia Sets and the Mandelbrot Set Complex Numbers and Functions Julia Sets The Mandelbrot Set Computer Programs Answers to Selected Exercises References Index.

  7. Fractal analysis of the hydraulic conductivity on a sandy porous media reproduced in a laboratory facility.

    Science.gov (United States)

    de Bartolo, S.; Fallico, C.; Straface, S.; Troisi, S.; Veltri, M.

    2009-04-01

    The complexity characterization of the porous media structure, in terms of the "pore" phase and the "solid" phase, can be carried out by means of the fractal geometry which is able to put in relationship the soil structural properties and the water content. It is particularly complicated to describe analytically the hydraulic conductivity for the irregularity of the porous media structure. However these can be described by many fractal models considering the soil structure as the distribution of particles dimensions, the distribution of the solid aggregates, the surface of the pore-solid interface and the fractal mass of the "pore" and "solid" phases. In this paper the fractal model of Yu and Cheng (2002) and Yu and Liu (2004), for a saturated bidispersed porous media, was considered. This model, using the Sierpinsky-type gasket scheme, doesn't contain empiric constants and furnishes a well accord with the experimental data. For this study an unconfined aquifer was reproduced by means of a tank with a volume of 10 Ã- 7 Ã- 3 m3, filled with a homogeneous sand (95% of SiO2), with a high percentage (86.4%) of grains between 0.063mm and 0.125mm and a medium-high permeability. From the hydraulic point of view, 17 boreholes, a pumping well and a drainage ring around its edge were placed. The permeability was measured utilizing three different methods, consisting respectively in pumping test, slug test and laboratory analysis of an undisturbed soil cores, each of that involving in the measurement a different support volume. The temporal series of the drawdown obtained by the pumping test were analyzed by the Neuman-type Curve method (1972), because the saturated part above the bottom of the facility represents an unconfined aquifer. The data analysis of the slug test were performed by the Bouwer & Rice (1976) method and the laboratory analysis were performed on undisturbed saturated soil samples utilizing a falling head permeameter. The obtained values either of the

  8. Fractal Structures For Fixed Mems Capacitors

    KAUST Repository

    Elshurafa, Amro M.

    2014-08-28

    An embodiment of a fractal fixed capacitor comprises a capacitor body in a microelectromechanical system (MEMS) structure. The capacitor body has a first plate with a fractal shape separated by a horizontal distance from a second plate with a fractal shape. The first plate and the second plate are within the same plane. Such a fractal fixed capacitor further comprises a substrate above which the capacitor body is positioned.

  9. Enhanced Graphene Photodetector with Fractal Metasurface

    DEFF Research Database (Denmark)

    Fan, Jieran; Wang, Di; DeVault, Clayton

    2016-01-01

    We designed and fabricated a broadband, polarization-independent photodetector by integrating graphene with a fractal Cayley tree metasurface. Our measurements show an almost uniform, tenfold enhancement in photocurrent generation due to the fractal metasurface structure.......We designed and fabricated a broadband, polarization-independent photodetector by integrating graphene with a fractal Cayley tree metasurface. Our measurements show an almost uniform, tenfold enhancement in photocurrent generation due to the fractal metasurface structure....

  10. Fractal Structures For Fixed Mems Capacitors

    KAUST Repository

    Elshurafa, Amro M.; Radwan, Ahmed Gomaa Ahmed; Emira, Ahmed A.; Salama, Khaled N.

    2014-01-01

    An embodiment of a fractal fixed capacitor comprises a capacitor body in a microelectromechanical system (MEMS) structure. The capacitor body has a first plate with a fractal shape separated by a horizontal distance from a second plate with a fractal shape. The first plate and the second plate are within the same plane. Such a fractal fixed capacitor further comprises a substrate above which the capacitor body is positioned.

  11. Psicodiagnóstico fractal

    OpenAIRE

    Moghilevsky, Débora Estela

    2011-01-01

    A lo largo de los últimos años del siglo veinte se ha desarrollado la teoría de la complejidad. Este modelo relaciona las ciencias duras tales como la matemática, la teoría del caos, la física cuántica y la geometría fractal con las llamadas seudo ciencias. Dentro de este contexto podemos definir la Psicología Fractal como la ciencia que estudia los aspectos psíquicos como dinámicamente fractales.

  12. Design of LTCC Based Fractal Antenna

    KAUST Repository

    AdbulGhaffar, Farhan

    2010-09-01

    The thesis presents a Sierpinski Carpet fractal antenna array designed at 24 GHz for automotive radar applications. Miniaturized, high performance and low cost antennas are required for this application. To meet these specifications a fractal array has been designed for the first time on Low Temperature Co-fired Ceramic (LTCC) based substrate. LTCC provides a suitable platform for the development of these antennas due to its properties of vertical stack up and embedded passives. The complete antenna concept involves integration of this fractal antenna array with a Fresnel lens antenna providing a total gain of 15dB which is appropriate for medium range radar applications. The thesis also presents a comparison between the designed fractal antenna and a conventional patch antenna outlining the advantages of fractal antenna over the later one. The fractal antenna has a bandwidth of 1.8 GHz which is 7.5% of the centre frequency (24GHz) as compared to 1.9% of the conventional patch antenna. Furthermore the fractal design exhibits a size reduction of 53% as compared to the patch antenna. In the end a sensitivity analysis is carried out for the fractal antenna design depicting the robustness of the proposed design against the typical LTCC fabrication tolerances.

  13. 2-D Fractal Carpet Antenna Design and Performance

    Science.gov (United States)

    Barton, C. C.; Tebbens, S. F.; Ewing, J. J.; Peterman, D. J.; Rizki, M. M.

    2017-12-01

    A 2-D fractal carpet antenna uses a fractal (self-similar) pattern to increase its perimeter by iteration and can receive or transmit electromagnetic radiation within its perimeter-bounded surface area. 2-D fractals are shapes that, at their mathematical limit (infinite iterations) have an infinite perimeter bounding a finite surface area. The fractal dimension describes the degree of space filling and lacunarity which quantifies the size and spatial distribution of open space bounded by a fractal shape. A key aspect of fractal antennas lies in iteration (repetition) of a fractal pattern over a range of length scales. Iteration produces fractal antennas that are very compact, wideband and multiband. As the number of iterations increases, the antenna operates at higher and higher frequencies. Manifestly different from traditional antenna designs, a fractal antenna can operate at multiple frequencies simultaneously. We have created a MATLAB code to generate deterministic and stochastic modes of Sierpinski carpet fractal antennas with a range of fractal dimensions between 1 and 2. Variation in fractal dimension, stochasticity, number of iterations, and lacunarities have been computationally tested using COMSOL Multiphysics software to determine their effect on antenna performance

  14. 2-D Fractal Wire Antenna Design and Performance

    Science.gov (United States)

    Tebbens, S. F.; Barton, C. C.; Peterman, D. J.; Ewing, J. J.; Abbott, C. S.; Rizki, M. M.

    2017-12-01

    A 2-D fractal wire antenna uses a fractal (self-similar) pattern to increase its length by iteration and can receive or transmit electromagnetic radiation. 2-D fractals are shapes that, at their mathematical limit (of infinite iterations) have an infinite length. The fractal dimension describes the degree of space filling. A fundamental property of fractal antennas lies in iteration (repetition) of a fractal pattern over a range of length scales. Iteration produces fractal antennas that can be very compact, wideband and multiband. As the number of iterations increases, the antenna tends to have additional frequencies that minimize far field return loss. This differs from traditional antenna designs in that a single fractal antenna can operate well at multiple frequencies. We have created a MATLAB code to generate deterministic and stochastic modes of fractal wire antennas with a range of fractal dimensions between 1 and 2. Variation in fractal dimension, stochasticity, and number of iterations have been computationally tested using COMSOL Multiphysics software to determine their effect on antenna performance.

  15. Formation of Non-symmetric Fractals During the First Stage of Pre-planetesimal Dust Growth

    Science.gov (United States)

    Kempf, S.; Blum, J.; Wurm, G.

    It is a generally accepted view that the genesis of a planetary system coincide s with the formation of sun-like young stellar objects surrounded by gaseous disc s. The building blocks of the planetesimals are micron-sized solid particles (the so-called dust) embedded in the gas of the disc. The relevant process for formi ng larger aggregates is the growth due to collisional sticking. For particles to c ollide and stick, a relative velocity component between the grains must be present. In the onset of dust growth, Brownian motion dominates other relative-velocity sources . However, numerically determined time scales of the pure Brownian dust growth are much too large for explaining the formation of planets within the lifetime of a proto-planetary di sc. In order to verify the validity of the theoretical models, the Cosmic Dust Aggr egation Experiment CODAG was developed. It allows to observe the growth of micron-sized dust analogs under astrophysical realistic conditions. Surprisingly, the experi ments showed that at least in the onset of the dust growth needle-like fractal aggreg ates rather than symmetric fractals are formed. Here we discuss the implication of this experimental finding for the pre-planetesimal growth models.

  16. Neutron scattering from fractals

    DEFF Research Database (Denmark)

    Kjems, Jørgen; Freltoft, T.; Richter, D.

    1986-01-01

    The scattering formalism for fractal structures is presented. Volume fractals are exemplified by silica particle clusters formed either from colloidal suspensions or by flame hydrolysis. The determination of the fractional dimensionality through scattering experiments is reviewed, and recent small...

  17. FONT DISCRIMINATIO USING FRACTAL DIMENSIONS

    Directory of Open Access Journals (Sweden)

    S. Mozaffari

    2014-09-01

    Full Text Available One of the related problems of OCR systems is discrimination of fonts in machine printed document images. This task improves performance of general OCR systems. Proposed methods in this paper are based on various fractal dimensions for font discrimination. First, some predefined fractal dimensions were combined with directional methods to enhance font differentiation. Then, a novel fractal dimension was introduced in this paper for the first time. Our feature extraction methods which consider font recognition as texture identification are independent of document content. Experimental results on different pages written by several font types show that fractal geometry can overcome the complexities of font recognition problem.

  18. Fractal-Based Image Analysis In Radiological Applications

    Science.gov (United States)

    Dellepiane, S.; Serpico, S. B.; Vernazza, G.; Viviani, R.

    1987-10-01

    We present some preliminary results of a study aimed to assess the actual effectiveness of fractal theory and to define its limitations in the area of medical image analysis for texture description, in particular, in radiological applications. A general analysis to select appropriate parameters (mask size, tolerance on fractal dimension estimation, etc.) has been performed on synthetically generated images of known fractal dimensions. Moreover, we analyzed some radiological images of human organs in which pathological areas can be observed. Input images were subdivided into blocks of 6x6 pixels; then, for each block, the fractal dimension was computed in order to create fractal images whose intensity was related to the D value, i.e., texture behaviour. Results revealed that the fractal images could point out the differences between normal and pathological tissues. By applying histogram-splitting segmentation to the fractal images, pathological areas were isolated. Two different techniques (i.e., the method developed by Pentland and the "blanket" method) were employed to obtain fractal dimension values, and the results were compared; in both cases, the appropriateness of the fractal description of the original images was verified.

  19. Surface fractal dimensions and textural properties of mesoporous alkaline-earth hydroxyapatites

    International Nuclear Information System (INIS)

    Vilchis-Granados, J.; Granados-Correa, F.; Barrera-Díaz, C.E.

    2013-01-01

    This work examines the surface fractal dimensions (D f ) and textural properties of three different alkaline-earth hydroxyapatites. Calcium, strontium and barium hydroxyapatite compounds were successfully synthesized via chemical precipitation method and characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry, Fourier transform infrared spectroscopy, and N 2 -physisorption measurements. Surface fractal dimensions were determined using single N 2 -adsorption/desorption isotherms method to quantify the irregular surface of as-prepared compounds. The obtained materials were also characterized through their surface hydroxyl group content, determined by the mass titration method. It was found that the D f values for the three materials covered the range of 0.77 ± 0.04–2.33 ± 0.11; these results indicated that the materials tend to have smooth surfaces, except the irregular surface of barium hydroxyapatite. Moreover, regarding the synthesized calcium hydroxyapatite exhibited better textural properties compared with the synthesized strontium and barium hydroxyapatites for adsorbent purposes. However, barium hydroxyapatite shows irregular surface, indicating a high population of active sites across the surface, in comparison with the others studied hydroxyapatites. Finally, the results showed a linear correlation between the surface hydroxyl group content at the external surface of materials and their surface fractal dimensions.

  20. Fractal analysis of sulphidic mineral

    Directory of Open Access Journals (Sweden)

    Miklúšová Viera

    2002-03-01

    Full Text Available In this paper, the application of fractal theory in the characterization of fragmented surfaces, as well as the mass-size distributions are discussed. The investigated mineral-chalcopyrite of Slovak provenience is characterised after particle size reduction processes-crushing and grinding. The problem how the different size reduction methods influence the surface irregularities of obtained particles is solved. Mandelbrot (1983, introducing the fractal geometry, offered a new way of characterization of surface irregularities by the fractal dimension. The determination of the surface fractal dimension DS consists in measuring the specific surface by the BET method in several fractions into which the comminuted chalcopyrite is sieved. This investigation shows that the specific surface of individual fractions were higher for the crushed sample than for the short-term (3 min ground sample. The surface fractal dimension can give an information about the adsorption sites accessible to molecules of nitrogen and according to this, the value of the fractal dimension is higher for crushed sample.The effect of comminution processes on the mass distribution of particles crushed and ground in air as well as in polar liquids is also discussed. The estimation of fractal dimensions of particles mass distribution is done on the assumption that the particle size distribution is described by the power-law (1. The value of fractal dimension for the mass distribution in the crushed sample is lower than in the sample ground in air, because it is influenced by the energy required for comminution.The sample of chalcopyrite was ground (10min in ethanol and i-butanol [which according to Ikazaki (1991] are characterized by the parameter µ /V, where µ is its dipole moment and V is the molecular volume. The values of µ /V for the used polar liquids are of the same order. That is why the expressive differences in particle size distributions as well as in the values of

  1. The dynamics of aggregates of galaxies as related to their main galaxies

    International Nuclear Information System (INIS)

    Einasto, J.; Joeveer, M.; Kaasik, A.; Vennik, J.

    1976-01-01

    The dynamics of the aggregates of galaxies is compared with the dynamics of their member galaxies. It is demonstrated that within a factor 1.5-2 the dispersion of relative line-of-sight velocities is constant from the nuclei of main galaxies to the periphery of an aggregate. This isothermality of aggregates of galaxies is observed in all aggregates studied so far, from poor groups to rich clusters. The fact that the velocity dispersion of stars in galaxies is equal to that of galaxies in aggregates applies only to main galaxies. The stars in all companion galaxies have a smaller velocity dispersion of stars. The dynamical evolution of both galaxies and aggregates of galaxies is very slow. Thus the above data suggest that galaxies and their aggregates were formed together. (orig.) [de

  2. Bilipschitz embedding of homogeneous fractals

    OpenAIRE

    Lü, Fan; Lou, Man-Li; Wen, Zhi-Ying; Xi, Li-Feng

    2014-01-01

    In this paper, we introduce a class of fractals named homogeneous sets based on some measure versions of homogeneity, uniform perfectness and doubling. This fractal class includes all Ahlfors-David regular sets, but most of them are irregular in the sense that they may have different Hausdorff dimensions and packing dimensions. Using Moran sets as main tool, we study the dimensions, bilipschitz embedding and quasi-Lipschitz equivalence of homogeneous fractals.

  3. Cross-Sectional Dispersion of Firm Valuations and Expected Stock Returns

    OpenAIRE

    Jiang, Danling

    2008-01-01

    This paper develops two competing hypotheses for the relation between the cross-sectional standard deviation of logarithmic firm fundamental-to-price ratios (``dispersion'') and expected aggregate returns. In models with fully rational beliefs, greater dispersion indicates greater risk and higher expected aggregate returns. In models with investor overconfidence, greater dispersion indicates greater mispricing and lower expected aggregate returns. Consistent with the behavioral models, the re...

  4. Recognition of fractal graphs

    NARCIS (Netherlands)

    Perepelitsa, VA; Sergienko, [No Value; Kochkarov, AM

    1999-01-01

    Definitions of prefractal and fractal graphs are introduced, and they are used to formulate mathematical models in different fields of knowledge. The topicality of fractal-graph recognition from the point of view, of fundamental improvement in the efficiency of the solution of algorithmic problems

  5. Random walk through fractal environments

    International Nuclear Information System (INIS)

    Isliker, H.; Vlahos, L.

    2003-01-01

    We analyze random walk through fractal environments, embedded in three-dimensional, permeable space. Particles travel freely and are scattered off into random directions when they hit the fractal. The statistical distribution of the flight increments (i.e., of the displacements between two consecutive hittings) is analytically derived from a common, practical definition of fractal dimension, and it turns out to approximate quite well a power-law in the case where the dimension D F of the fractal is less than 2, there is though, always a finite rate of unaffected escape. Random walks through fractal sets with D F ≤2 can thus be considered as defective Levy walks. The distribution of jump increments for D F >2 is decaying exponentially. The diffusive behavior of the random walk is analyzed in the frame of continuous time random walk, which we generalize to include the case of defective distributions of walk increments. It is shown that the particles undergo anomalous, enhanced diffusion for D F F >2 is normal for large times, enhanced though for small and intermediate times. In particular, it follows that fractals generated by a particular class of self-organized criticality models give rise to enhanced diffusion. The analytical results are illustrated by Monte Carlo simulations

  6. Chaos and fractals. Applications to nuclear engineering; Caos y fractales. Aplicaciones en ingenieria nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Clausse, A; Delmastro, D F

    1991-12-31

    This work presents a description of the research lines carried out by the authors on chaos and fractal theories, oriented to the nuclear field. The possibilities that appear in the nuclear security branch where the information deriving from chaos and fractal techniques may help to the development of better criteria and more reliable designs, are of special importance. (Author). [Espanol] En este trabajo se presenta una descripcion de las lineas de investigacion que los autores estan llevando a cabo en teoria de caos y fractales orientadas al campo nuclear. Es de especial importancia las posibilidades que se abren en el area de la seguridad nuclear, en donde la informacion proveniente de las tecnicas de caos y fractales pueden ayudar al desarrollo de mejores criterios y disenos mas confiables. (Autor).

  7. Fractal analysis of fractures and microstructures in rocks

    International Nuclear Information System (INIS)

    Merceron, T.; Nakashima, S.; Velde, B.; Badri, A.

    1991-01-01

    Fractal geometry was used to characterize the distribution of fracture fields in rocks, which represent main pathways for material migration such as groundwater flow. Fractal investigations of fracture distribution were performed on granite along Auriat and Shikoku boreholes. Fractal dimensions range between 0.3 and 0.5 according to the different sets of fracture planes selected for the analyses. Shear, tension and compressional modes exhibit different fractal values while the composite fracture patterns are also fractal but with a different, median, fractal value. These observations indicate that the fractal method can be used to distinguish fracture types of different origins in a complex system. Fractal results for Shikoku borehole also correlate with geophysical parameters recorded along, drill-holes such as resistivity and possibly permeability. These results represent the first steps of the fractal investigation along drill-holes. Future studies will be conducted to verify relationships between fractal dimensions and permeability by using available geophysical data. Microstructures and microcracks were analysed in the Inada granite. Microcrack patterns are fractal but fractal dimensions values vary according to both mineral type and orientations of measurement within the mineral. Microcracks in quartz are characterized by more irregular distribution (average D = 0.40) than those in feldspars (D = 0.50) suggesting a different mode of rupture. Highest values of D are reported along main cleavage planes for feldspars or C axis for quartz. Further fractal investigations of microstructure in granite will be used to characterize the potential pathways for fluid migration and diffusion in the rock matrix. (author)

  8. Fractal structures and fractal functions as disease indicators

    Science.gov (United States)

    Escos, J.M; Alados, C.L.; Emlen, J.M.

    1995-01-01

    Developmental instability is an early indicator of stress, and has been used to monitor the impacts of human disturbance on natural ecosystems. Here we investigate the use of different measures of developmental instability on two species, green peppers (Capsicum annuum), a plant, and Spanish ibex (Capra pyrenaica), an animal. For green peppers we compared the variance in allometric relationship between control plants, and a treatment group infected with the tomato spotted wilt virus. The results show that infected plants have a greater variance about the allometric regression line than the control plants. We also observed a reduction in complexity of branch structure in green pepper with a viral infection. Box-counting fractal dimension of branch architecture declined under stress infection. We also tested the reduction in complexity of behavioral patterns under stress situations in Spanish ibex (Capra pyrenaica). Fractal dimension of head-lift frequency distribution measures predator detection efficiency. This dimension decreased under stressful conditions, such as advanced pregnancy and parasitic infection. Feeding distribution activities reflect food searching efficiency. Power spectral analysis proves to be the most powerful tool for character- izing fractal behavior, revealing a reduction in complexity of time distribution activity under parasitic infection.

  9. Fractal geometry mathematical foundations and applications

    CERN Document Server

    Falconer, Kenneth

    2013-01-01

    The seminal text on fractal geometry for students and researchers: extensively revised and updated with new material, notes and references that reflect recent directions. Interest in fractal geometry continues to grow rapidly, both as a subject that is fascinating in its own right and as a concept that is central to many areas of mathematics, science and scientific research. Since its initial publication in 1990 Fractal Geometry: Mathematical Foundations and Applications has become a seminal text on the mathematics of fractals.  The book introduces and develops the general theory and applica

  10. Fractal nature of hydrocarbon deposits. 2. Spatial distribution

    International Nuclear Information System (INIS)

    Barton, C.C.; Schutter, T.A; Herring, P.R.; Thomas, W.J.; Scholz, C.H.

    1991-01-01

    Hydrocarbons are unevenly distributed within reservoirs and are found in patches whose size distribution is a fractal over a wide range of scales. The spatial distribution of the patches is also fractal and this can be used to constrain the design of drilling strategies also defined by a fractal dimension. Fractal distributions are scale independent and are characterized by a power-law scaling exponent termed the fractal dimension. The authors have performed fractal analyses on the spatial distribution of producing and showing wells combined and of dry wells in 1,600-mi 2 portions of the Denver and Powder River basins that were nearly completely drilled on quarter-mile square-grid spacings. They have limited their analyses to wells drilled to single stratigraphic intervals so that the map pattern revealed by drilling is representative of the spatial patchiness of hydrocarbons at depth. The fractal dimensions for the spatial patchiness of hydrocarbons in the two basins are 1.5 and 1.4, respectively. The fractal dimension for the pattern of all wells drilled is 1.8 for both basins, which suggests a drilling strategy with a fractal dimension significantly higher than the dimensions 1.5 and 1.4 sufficient to efficiently and economically explore these reservoirs. In fact, the fractal analysis reveals that the drilling strategy used in these basins approaches a fractal dimension of 2.0, which is equivalent to random drilling with no geologic input. Knowledge of the fractal dimension of a reservoir prior to drilling would provide a basis for selecting and a criterion for halting a drilling strategy for exploration whose fractal dimension closely matches that of the spatial fractal dimension of the reservoir, such a strategy should prove more efficient and economical than current practice

  11. Fractal electrodynamics via non-integer dimensional space approach

    Science.gov (United States)

    Tarasov, Vasily E.

    2015-09-01

    Using the recently suggested vector calculus for non-integer dimensional space, we consider electrodynamics problems in isotropic case. This calculus allows us to describe fractal media in the framework of continuum models with non-integer dimensional space. We consider electric and magnetic fields of fractal media with charges and currents in the framework of continuum models with non-integer dimensional spaces. An application of the fractal Gauss's law, the fractal Ampere's circuital law, the fractal Poisson equation for electric potential, and equation for fractal stream of charges are suggested. Lorentz invariance and speed of light in fractal electrodynamics are discussed. An expression for effective refractive index of non-integer dimensional space is suggested.

  12. Aggregation of montmorillonite and organic matter in aqueous media containing artificial seawater

    Directory of Open Access Journals (Sweden)

    Kim Jinwook

    2009-01-01

    Full Text Available Abstract Background The dispersion-aggregation behaviors of suspended colloids in rivers and estuaries are affected by the compositions of suspended materials (i.e., clay minerals vs. organic macromolecules and salinity. Laboratory experiments were conducted to investigate the dispersion and aggregation mechanisms of suspended particles under simulated river and estuarine conditions. The average hydrodynamic diameters of suspended particles (representing degree of aggregation and zeta potential (representing the electrokinetic properties of suspended colloids and aggregates were determined for systems containing suspended montmorillonite, humic acid, and/or chitin at the circumneutral pH over a range of salinity (0 – 7.2 psu. Results The montmorillonite-only system increased the degree of aggregation with salinity increase, as would be expected for suspended colloids whose dispersion-aggregation behavior is largely controlled by the surface electrostatic properties and van der Waals forces. When montmorillonite is combined with humic acid or chitin, the aggregation of montmorillonite was effectively inhibited. The surface interaction energy model calculations reveal that the steric repulsion, rather than the increase in electronegativity, is the primary cause for the inhibition of aggregation by the addition of humic acid or chitin. Conclusion These results help explain the range of dispersion-aggregation behaviors observed in natural river and estuarine systems. It is postulated that the composition of suspended particles, specifically the availability of steric polymers such as those contained in humic acid, determine whether the river suspension is rapidly aggregated and settled or remains dispersed in suspension when it encounters increasingly saline environments of estuaries and oceans.

  13. Fractal scattering of Gaussian solitons in directional couplers with logarithmic nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Rafael M.P.; Cardoso, Wesley B., E-mail: wesleybcardoso@gmail.com

    2016-08-12

    In this paper we study the interaction of Gaussian solitons in a dispersive and nonlinear media with log-law nonlinearity. The model is described by the coupled logarithmic nonlinear Schrödinger equations, which is a nonintegrable system that allows the observation of a very rich scenario in the collision patterns. By employing a variational approach and direct numerical simulations, we observe a fractal-scattering phenomenon from the exit velocities of each soliton as a function of the input velocities. Furthermore, we introduce a linearization model to identify the position of the reflection/transmission window that emerges within the chaotic region. This enables us the possibility of controlling the scattering of solitons as well as the lifetime of bound states. - Highlights: • We study the interaction of Gaussian solitons in a system with log-law nonlinearity. • The model is described by the coupled logarithmic nonlinear Schrödinger equations. • We observe a fractal-scattering phenomenon of the solitons.

  14. A Double-Minded Fractal

    Science.gov (United States)

    Simoson, Andrew J.

    2009-01-01

    This article presents a fun activity of generating a double-minded fractal image for a linear algebra class once the idea of rotation and scaling matrices are introduced. In particular the fractal flip-flops between two words, depending on the level at which the image is viewed. (Contains 5 figures.)

  15. Conference on Fractals and Related Fields III

    CERN Document Server

    Seuret, Stéphane

    2017-01-01

    This contributed volume provides readers with an overview of the most recent developments in the mathematical fields related to fractals, including both original research contributions, as well as surveys from many of the leading experts on modern fractal theory and applications. It is an outgrowth of the Conference of Fractals and Related Fields III, that was held on September 19-25, 2015 in île de Porquerolles, France. Chapters cover fields related to fractals such as harmonic analysis, multifractal analysis, geometric measure theory, ergodic theory and dynamical systems, probability theory, number theory, wavelets, potential theory, partial differential equations, fractal tilings, combinatorics, and signal and image processing. The book is aimed at pure and applied mathematicians in these areas, as well as other researchers interested in discovering the fractal domain.

  16. Inkjet-Printed Ultra Wide Band Fractal Antennas

    KAUST Repository

    Maza, Armando Rodriguez

    2012-01-01

    reduction, a Cantor-based fractal antenna which performs a larger bandwidth compared to previously published UWB Cantor fractal monopole antenna, and a 3D loop fractal antenna which attains miniaturization, impedance matching and multiband characteristics

  17. The effect of shear rate on aggregate size distribution and structure at steady state: a comparison between a Taylor–Couette reactor to a mixing tank

    Czech Academy of Sciences Publication Activity Database

    Bubáková, Petra; Pivokonský, Martin; Pivokonský, Radek; Filip, Petr

    2013-01-01

    Roč. 62, č. 5 (2013), s. 288-295 ISSN 0003-7214 R&D Projects: GA ČR GAP105/11/0247 Institutional support: RVO:67985874 Keywords : aggregate size distribution * aggregation * flocculation * fractal dimension * shear rate Subject RIV: BK - Fluid Dynamics Impact factor: 0.521, year: 2013

  18. Categorization of new fractal carpets

    International Nuclear Information System (INIS)

    Rani, Mamta; Goel, Saurabh

    2009-01-01

    Sierpinski carpet is one of the very beautiful fractals from the historic gallery of classical fractals. Carpet designing is not only a fascinating activity in computer graphics, but it has real applications in carpet industry as well. One may find illusionary delighted carpets designed here, which are useful in real designing of carpets. In this paper, we attempt to systematize their generation and put them into categories. Each next category leads to a more generalized form of the fractal carpet.

  19. Active motility in bimodular bacterial aggregates

    Science.gov (United States)

    Zeng, Yu; Liu, Bin

    2017-11-01

    Dispersal capability is essential for microorganisms to achieve long-distance translocation, thus crucial for their abundance in various environments. In general, active dispersals are attributed to the movements of self-powered planktonic cells, while sessile cells that live a colonial life often disperse passively through flow entrainments. Here, we report another means of active dispersal employed by aggregates of sessile cells. The spherical rosette colonies of the bacterium Caulobacter crescentus are aggregates of sessile stalked cells, of which a small proportion undergo cell division, grow active flagella and effect whole-rosette motility. We show that these rosettes actively disperse both in bulk water and near the solid-liquid interface. In particular, the proximity of a self-powered rosette to the solid surface promotes a rolling movement, leading to its persistent transportation along the solid boundary. The active dispersal of these rosettes demonstrated a novel mode of colonial transportation that is based on the division of labor between sessile and motile cells. The authors thank the support of National Science Foundation CREST: Center for Cellular and Biomolecular Machines at UC Merced (NSF-HRD-1547848).

  20. On the Lipschitz condition in the fractal calculus

    International Nuclear Information System (INIS)

    Golmankhaneh, Alireza K.; Tunc, Cemil

    2017-01-01

    In this paper, the existence and uniqueness theorems are proved for the linear and non-linear fractal differential equations. The fractal Lipschitz condition is given on the F"α-calculus which applies for the non-differentiable function in the sense of the standard calculus. More, the metric spaces associated with fractal sets and about functions with fractal supports are defined to build fractal Cauchy sequence. Furthermore, Picard iterative process in the F"α-calculus which have important role in the numerical and approximate solution of fractal differential equations is explored. We clarify the results using the illustrative examples.

  1. Fractal dimension of turbulent black holes

    Science.gov (United States)

    Westernacher-Schneider, John Ryan

    2017-11-01

    We present measurements of the fractal dimension of a turbulent asymptotically anti-de Sitter black brane reconstructed from simulated boundary fluid data at the perfect fluid order using the fluid-gravity duality. We argue that the boundary fluid energy spectrum scaling as E (k )˜k-2 is a more natural setting for the fluid-gravity duality than the Kraichnan-Kolmogorov scaling of E (k )˜k-5 /3, but we obtain fractal dimensions D for spatial sections of the horizon H ∩Σ in both cases: D =2.584 (1 ) and D =2.645 (4 ), respectively. These results are consistent with the upper bound of D =3 , thereby resolving the tension with the recent claim in Adams et al. [Phys. Rev. Lett. 112, 151602 (2014), 10.1103/PhysRevLett.112.151602] that D =3 +1 /3 . We offer a critical examination of the calculation which led to their result, and show that their proposed definition of the fractal dimension performs poorly as a fractal dimension estimator on one-dimensional curves with known fractal dimension. Finally, we describe how to define and in principle calculate the fractal dimension of spatial sections of the horizon H ∩Σ in a covariant manner, and we speculate on assigning a "bootstrapped" value of fractal dimension to the entire horizon H when it is in a statistically quasisteady turbulent state.

  2. Fractals as objects with nontrivial structures at all scales

    International Nuclear Information System (INIS)

    Lacan, Francis; Tresser, Charles

    2015-01-01

    Toward the middle of 2001, the authors started arguing that fractals are important when discussing the operational resilience of information systems and related computer sciences issues such as artificial intelligence. But in order to argue along these lines it turned out to be indispensable to define fractals so as to let one recognize as fractals some sets that are very far from being self similar in the (usual) metric sense. This paper is devoted to define (in a loose sense at least) fractals in ways that allow for instance all the Cantor sets to be fractals and that permit to recognize fractality (the property of being fractal) in the context of the information technology issues that we had tried to comprehend. Starting from the meta-definition of a fractal as an “object with non-trivial structure at all scales” that we had used for long, we ended up taking these words seriously. Accordingly we define fractals in manners that depend both on the structures that the fractals are endowed with and the chosen sets of structure compatible maps, i.e., we approach fractals in a category-dependent manner. We expect that this new approach to fractals will contribute to the understanding of more of the fractals that appear in exact and other sciences than what can be handled presently

  3. Focusing behavior of the fractal vector optical fields designed by fractal lattice growth model.

    Science.gov (United States)

    Gao, Xu-Zhen; Pan, Yue; Zhao, Meng-Dan; Zhang, Guan-Lin; Zhang, Yu; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian

    2018-01-22

    We introduce a general fractal lattice growth model, significantly expanding the application scope of the fractal in the realm of optics. This model can be applied to construct various kinds of fractal "lattices" and then to achieve the design of a great diversity of fractal vector optical fields (F-VOFs) combinating with various "bases". We also experimentally generate the F-VOFs and explore their universal focusing behaviors. Multiple focal spots can be flexibly enginnered, and the optical tweezers experiment validates the simulated tight focusing fields, which means that this model allows the diversity of the focal patterns to flexibly trap and manipulate micrometer-sized particles. Furthermore, the recovery performance of the F-VOFs is also studied when the input fields and spatial frequency spectrum are obstructed, and the results confirm the robustness of the F-VOFs in both focusing and imaging processes, which is very useful in information transmission.

  4. Fractal Structures For Mems Variable Capacitors

    KAUST Repository

    Elshurafa, Amro M.

    2014-08-28

    In accordance with the present disclosure, one embodiment of a fractal variable capacitor comprises a capacitor body in a microelectromechanical system (MEMS) structure, wherein the capacitor body has an upper first metal plate with a fractal shape separated by a vertical distance from a lower first metal plate with a complementary fractal shape; and a substrate above which the capacitor body is suspended.

  5. Pre-Service Teachers' Concept Images on Fractal Dimension

    Science.gov (United States)

    Karakus, Fatih

    2016-01-01

    The analysis of pre-service teachers' concept images can provide information about their mental schema of fractal dimension. There is limited research on students' understanding of fractal and fractal dimension. Therefore, this study aimed to investigate the pre-service teachers' understandings of fractal dimension based on concept image. The…

  6. Fractal THz metamaterials

    DEFF Research Database (Denmark)

    Malureanu, Radu; Jepsen, Peter Uhd; Xiao, S.

    2010-01-01

    applications. THz radiation can be employed for various purposes, among them the study of vibrations in biological molecules, motion of electrons in semiconductors and propagation of acoustic shock waves in crystals. We propose here a new THz fractal MTM design that shows very high transmission in the desired...... frequency range as well as a clear differentiation between one polarisation and another. Based on theoretical predictions we fabricated and measured a fractal based THz metamaterial that shows more than 60% field transmission at around 1THz for TE polarized light while the TM waves have almost 80% field...... transmission peak at 0.6THz. One of the main characteristics of this design is its tunability by design: by simply changing the length of the fractal elements one can choose the operating frequency window. The modelling, fabrication and characterisation results will be presented in this paper. Due to the long...

  7. Categorization of fractal plants

    International Nuclear Information System (INIS)

    Chandra, Munesh; Rani, Mamta

    2009-01-01

    Fractals in nature are always a result of some growth process. The language of fractals which has been created specifically for the description of natural growth process is called L-systems. Recently, superior iterations (essentially, investigated by Mann [Mann WR. Mean value methods in iteration. Proc Am Math Soc 1953;4:506-10 [MR0054846 (14,988f)

  8. FRACTAL ANALYSIS OF TRABECULAR BONE: A STANDARDISED METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Ian Parkinson

    2011-05-01

    Full Text Available A standardised methodology for the fractal analysis of histological sections of trabecular bone has been established. A modified box counting method has been developed for use on a PC based image analyser (Quantimet 500MC, Leica Cambridge. The effect of image analyser settings, magnification, image orientation and threshold levels, was determined. Also, the range of scale over which trabecular bone is effectively fractal was determined and a method formulated to objectively calculate more than one fractal dimension from the modified Richardson plot. The results show that magnification, image orientation and threshold settings have little effect on the estimate of fractal dimension. Trabecular bone has a lower limit below which it is not fractal (λ<25 μm and the upper limit is 4250 μm. There are three distinct fractal dimensions for trabecular bone (sectional fractals, with magnitudes greater than 1.0 and less than 2.0. It has been shown that trabecular bone is effectively fractal over a defined range of scale. Also, within this range, there is more than 1 fractal dimension, describing spatial structural entities. Fractal analysis is a model independent method for describing a complex multifaceted structure, which can be adapted for the study of other biological systems. This may be at the cell, tissue or organ level and compliments conventional histomorphometric and stereological techniques.

  9. Morphometric relations of fractal-skeletal based channel network model

    Directory of Open Access Journals (Sweden)

    B. S. Daya Sagar

    1998-01-01

    Full Text Available A fractal-skeletal based channel network (F-SCN model is proposed. Four regular sided initiator-basins are transformed as second order fractal basins by following a specific generating mechanism with non-random rule. The morphological skeletons, hereafter referred to as channel networks, are extracted from these fractal basins. The morphometric and fractal relationships of these F-SCNs are shown. The fractal dimensions of these fractal basins, channel networks, and main channel lengths (computed through box counting method are compared with those of estimated length–area measures. Certain morphometric order ratios to show fractal relations are also highlighted.

  10. Fractal Analysis of Rock Joint Profiles

    Science.gov (United States)

    Audy, Ondřej; Ficker, Tomáš

    2017-10-01

    Surface reliefs of rock joints are analyzed in geotechnics when shear strength of rocky slopes is estimated. The rock joint profiles actually are self-affine fractal curves and computations of their fractal dimensions require special methods. Many papers devoted to the fractal properties of these profiles were published in the past but only a few of those papers employed a convenient computational method that would have guaranteed a sound value of that dimension. As a consequence, anomalously low dimensions were presented. This contribution deals with two computational modifications that lead to sound fractal dimensions of the self-affine rock joint profiles. These are the modified box-counting method and the modified yard-stick method sometimes called the compass method. Both these methods are frequently applied to self-similar fractal curves but the self-affine profile curves due to their self-affine nature require modified computational procedures implemented in computer programs.

  11. A random walk through fractal dimensions

    CERN Document Server

    Kaye, Brian H

    2008-01-01

    Fractal geometry is revolutionizing the descriptive mathematics of applied materials systems. Rather than presenting a mathematical treatise, Brian Kaye demonstrates the power of fractal geometry in describing materials ranging from Swiss cheese to pyrolytic graphite. Written from a practical point of view, the author assiduously avoids the use of equations while introducing the reader to numerous interesting and challenging problems in subject areas ranging from geography to fine particle science. The second edition of this successful book provides up-to-date literature coverage of the use of fractal geometry in all areas of science.From reviews of the first edition:''...no stone is left unturned in the quest for applications of fractal geometry to fine particle problems....This book should provide hours of enjoyable reading to those wishing to become acquainted with the ideas of fractal geometry as applied to practical materials problems.'' MRS Bulletin

  12. Effects of fractal pore on coal devolatilization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yongli; He, Rong [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Wang, Xiaoliang; Cao, Liyong [Dongfang Electric Corporation, Chengdu (China). Centre New Energy Inst.

    2013-07-01

    Coal devolatilization is numerically investigated by drop tube furnace and a coal pyrolysis model (Fragmentation and Diffusion Model). The fractal characteristics of coal and char pores are investigated. Gas diffusion and secondary reactions in fractal pores are considered in the numerical simulations of coal devolatilization, and the results show that the fractal dimension is increased firstly and then decreased later with increased coal conversions during devolatilization. The mechanisms of effects of fractal pores on coal devolatilization are analyzed.

  13. Particle size distribution models of small angle neutron scattering pattern on ferro fluids

    International Nuclear Information System (INIS)

    Sistin Asri Ani; Darminto; Edy Giri Rachman Putra

    2009-01-01

    The Fe 3 O 4 ferro fluids samples were synthesized by a co-precipitation method. The investigation of ferro fluids microstructure is known to be one of the most important problems because the presence of aggregates and their internal structure influence greatly the properties of ferro fluids. The size and the size dispersion of particle in ferro fluids were determined assuming a log normal distribution of particle radius. The scattering pattern of the measurement by small angle neutron scattering were fitted by the theoretical scattering function of two limitation models are log normal sphere distribution and fractal aggregate. Two types of particle are detected, which are presumably primary particle of 30 Armstrong in radius and secondary fractal aggregate of 200 Armstrong with polydispersity of 0.47 up to 0.53. (author)

  14. Closed contour fractal dimension estimation by the Fourier transform

    International Nuclear Information System (INIS)

    Florindo, J.B.; Bruno, O.M.

    2011-01-01

    Highlights: → A novel fractal dimension concept, based on Fourier spectrum, is proposed. → Computationally simple. Computational time smaller than conventional fractal methods. → Results are closer to Hausdorff-Besicovitch than conventional methods. → The method is more accurate and robustness to geometric operations and noise addition. - Abstract: This work proposes a novel technique for the numerical calculus of the fractal dimension of fractal objects which can be represented as a closed contour. The proposed method maps the fractal contour onto a complex signal and calculates its fractal dimension using the Fourier transform. The Fourier power spectrum is obtained and an exponential relation is verified between the power and the frequency. From the parameter (exponent) of the relation, is obtained the fractal dimension. The method is compared to other classical fractal dimension estimation methods in the literature, e.g., Bouligand-Minkowski, box-counting and classical Fourier. The comparison is achieved by the calculus of the fractal dimension of fractal contours whose dimensions are well-known analytically. The results showed the high precision and robustness of the proposed technique.

  15. Band structures in fractal grading porous phononic crystals

    Science.gov (United States)

    Wang, Kai; Liu, Ying; Liang, Tianshu; Wang, Bin

    2018-05-01

    In this paper, a new grading porous structure is introduced based on a Sierpinski triangle routine, and wave propagation in this fractal grading porous phononic crystal is investigated. The influences of fractal hierarchy and porosity on the band structures in fractal graidng porous phononic crystals are clarified. Vibration modes of unit cell at absolute band gap edges are given to manifest formation mechanism of absolute band gaps. The results show that absolute band gaps are easy to form in fractal structures comparatively to the normal ones with the same porosity. Structures with higher fractal hierarchies benefit multiple wider absolute band gaps. This work provides useful guidance in design of fractal porous phononic crystals.

  16. Classification of radar echoes using fractal geometry

    International Nuclear Information System (INIS)

    Azzaz, Nafissa; Haddad, Boualem

    2017-01-01

    Highlights: • Implementation of two concepts of fractal geometry to classify two types of meteorological radar echoes. • A new approach, called a multi-scale fractal dimension is used for classification between fixed echoes and rain echoes. • An Automatic identification system of meteorological radar echoes was proposed using fractal geometry. - Abstract: This paper deals with the discrimination between the precipitation echoes and the ground echoes in meteorological radar images using fractal geometry. This study aims to improve the measurement of precipitations by weather radars. For this, we considered three radar sites: Bordeaux (France), Dakar (Senegal) and Me lbourne (USA). We showed that the fractal dimension based on contourlet and the fractal lacunarity are pertinent to discriminate between ground and precipitation echoes. We also demonstrated that the ground echoes have a multifractal structure but the precipitations are more homogeneous than ground echoes whatever the prevailing climate. Thereby, we developed an automatic classification system of radar using a graphic interface. This interface, based on the fractal geometry makes possible the identification of radar echoes type in real time. This system can be inserted in weather radar for the improvement of precipitation estimations.

  17. Thermodynamics for Fractal Statistics

    OpenAIRE

    da Cruz, Wellington

    1998-01-01

    We consider for an anyon gas its termodynamics properties taking into account the fractal statistics obtained by us recently. This approach describes the anyonic excitations in terms of equivalence classes labeled by fractal parameter or Hausdorff dimension $h$. An exact equation of state is obtained in the high-temperature and low-temperature limits, for gases with a constant density of states.

  18. Rapid Formation of Microbe-Oil Aggregates and Changes in Community Composition in Coastal Surface Water Following Exposure to Oil and the Dispersant Corexit

    Directory of Open Access Journals (Sweden)

    Shawn M. Doyle

    2018-04-01

    Full Text Available During the Deepwater Horizon (DWH oil spill, massive quantities of oil were deposited on the seafloor via a large-scale marine oil-snow sedimentation and flocculent accumulation (MOSSFA event. The role of chemical dispersants (e.g., Corexit applied during the DWH oil spill clean-up in helping or hindering the formation of this MOSSFA event are not well-understood. Here, we present the first experiment related to the DWH oil spill to specifically investigate the relationship between microbial community structure, oil and Corexit®, and marine oil-snow in coastal surface waters. We observed the formation of micron-scale aggregates of microbial cells around droplets of oil and dispersant and found that their rate of formation was directly related to the concentration of oil within the water column. These micro-aggregates are potentially important precursors to the formation of larger marine oil-snow particles. Therefore, our observation that Corexit® significantly enhanced their formation suggests dispersant application may play a role in the development of MOSSFA events. We also observed that microbial communities in marine surface waters respond to oil and oil plus Corexit® differently and much more rapidly than previously measured, with major shifts in community composition occurring within only a few hours of experiment initiation. In the oil-amended treatments without Corexit®, this manifested as an increase in community diversity due to the outgrowth of several putative aliphatic- and aromatic-hydrocarbon degrading genera, including phytoplankton-associated taxa. In contrast, microbial community diversity was reduced in mesocosms containing chemically dispersed oil. Importantly, different consortia of hydrocarbon degrading bacteria responded to oil and chemically dispersed oil, indicating that functional redundancy in the pre-spill community likely results in hydrocarbon consumption in both undispersed and dispersed oils, but by different

  19. Rapid Formation of Microbe-Oil Aggregates and Changes in Community Composition in Coastal Surface Water Following Exposure to Oil and the Dispersant Corexit.

    Science.gov (United States)

    Doyle, Shawn M; Whitaker, Emily A; De Pascuale, Veronica; Wade, Terry L; Knap, Anthony H; Santschi, Peter H; Quigg, Antonietta; Sylvan, Jason B

    2018-01-01

    During the Deepwater Horizon (DWH) oil spill, massive quantities of oil were deposited on the seafloor via a large-scale marine oil-snow sedimentation and flocculent accumulation (MOSSFA) event. The role of chemical dispersants (e.g., Corexit) applied during the DWH oil spill clean-up in helping or hindering the formation of this MOSSFA event are not well-understood. Here, we present the first experiment related to the DWH oil spill to specifically investigate the relationship between microbial community structure, oil and Corexit®, and marine oil-snow in coastal surface waters. We observed the formation of micron-scale aggregates of microbial cells around droplets of oil and dispersant and found that their rate of formation was directly related to the concentration of oil within the water column. These micro-aggregates are potentially important precursors to the formation of larger marine oil-snow particles. Therefore, our observation that Corexit® significantly enhanced their formation suggests dispersant application may play a role in the development of MOSSFA events. We also observed that microbial communities in marine surface waters respond to oil and oil plus Corexit® differently and much more rapidly than previously measured, with major shifts in community composition occurring within only a few hours of experiment initiation. In the oil-amended treatments without Corexit®, this manifested as an increase in community diversity due to the outgrowth of several putative aliphatic- and aromatic-hydrocarbon degrading genera, including phytoplankton-associated taxa. In contrast, microbial community diversity was reduced in mesocosms containing chemically dispersed oil. Importantly, different consortia of hydrocarbon degrading bacteria responded to oil and chemically dispersed oil, indicating that functional redundancy in the pre-spill community likely results in hydrocarbon consumption in both undispersed and dispersed oils, but by different bacterial taxa

  20. Turbulent wakes of fractal objects

    NARCIS (Netherlands)

    Staicu, A.D.; Mazzi, B.; Vassilicos, J.C.; Water, van de W.

    2003-01-01

    Turbulence of a windtunnel flow is stirred using objects that have a fractal structure. The strong turbulent wakes resulting from three such objects which have different fractal dimensions are probed using multiprobe hot-wire anemometry in various configurations. Statistical turbulent quantities are

  1. Fractal geometry and computer graphics

    CERN Document Server

    Sakas, Georgios; Peitgen, Heinz-Otto; Englert, Gabriele

    1992-01-01

    Fractal geometry has become popular in the last 15 years, its applications can be found in technology, science, or even arts. Fractal methods and formalism are seen today as a general, abstract, but nevertheless practical instrument for the description of nature in a wide sense. But it was Computer Graphics which made possible the increasing popularity of fractals several years ago, and long after their mathematical formulation. The two disciplines are tightly linked. The book contains the scientificcontributions presented in an international workshop in the "Computer Graphics Center" in Darmstadt, Germany. The target of the workshop was to present the wide spectrum of interrelationships and interactions between Fractal Geometry and Computer Graphics. The topics vary from fundamentals and new theoretical results to various applications and systems development. All contributions are original, unpublished papers.The presentations have been discussed in two working groups; the discussion results, together with a...

  2. Scaling of transverse nuclear magnetic relaxation due to magnetic nanoparticle aggregation

    International Nuclear Information System (INIS)

    Brown, Keith A.; Vassiliou, Christophoros C.; Issadore, David; Berezovsky, Jesse; Cima, Michael J.; Westervelt, R.M.

    2010-01-01

    The aggregation of superparamagnetic iron oxide (SPIO) nanoparticles decreases the transverse nuclear magnetic resonance (NMR) relaxation time T 2 CP of adjacent water molecules measured by a Carr-Purcell-Meiboom-Gill (CPMG) pulse-echo sequence. This effect is commonly used to measure the concentrations of a variety of small molecules. We perform extensive Monte Carlo simulations of water diffusing around SPIO nanoparticle aggregates to determine the relationship between T 2 CP and details of the aggregate. We find that in the motional averaging regime T 2 CP scales as a power law with the number N of nanoparticles in an aggregate. The specific scaling is dependent on the fractal dimension d of the aggregates. We find T 2 CP ∝Ν -0.44 for aggregates with d=2.2, a value typical of diffusion limited aggregation. We also find that in two-nanoparticle systems, T 2 CP is strongly dependent on the orientation of the two nanoparticles relative to the external magnetic field, which implies that it may be possible to sense the orientation of a two-nanoparticle aggregate. To optimize the sensitivity of SPIO nanoparticle sensors, we propose that it is best to have aggregates with few nanoparticles, close together, measured with long pulse-echo times.

  3. Symmetric intersections of Rauzy fractals | Sellami | Quaestiones ...

    African Journals Online (AJOL)

    In this article we study symmetric subsets of Rauzy fractals of unimodular irreducible Pisot substitutions. The symmetry considered is re ection through the origin. Given an unimodular irreducible Pisot substitution, we consider the intersection of its Rauzy fractal with the Rauzy fractal of the reverse substitution. This set is ...

  4. Fractal characteristic in the wearing of cutting tool

    Science.gov (United States)

    Mei, Anhua; Wang, Jinghui

    1995-11-01

    This paper studies the cutting tool wear with fractal geometry. The wearing image of the flank has been collected by machine vision which consists of CCD camera and personal computer. After being processed by means of preserving smoothing, binary making and edge extracting, the clear boundary enclosing the worn area has been obtained. The fractal dimension of the worn surface is calculated by the methods called `Slit Island' and `Profile'. The experiments and calciating give the conclusion that the worn surface is enclosed by a irregular boundary curve with some fractal dimension and characteristics of self-similarity. Furthermore, the relation between the cutting velocity and the fractal dimension of the worn region has been submitted. This paper presents a series of methods for processing and analyzing the fractal information in the blank wear, which can be applied to research the projective relation between the fractal structure and the wear state, and establish the fractal model of the cutting tool wear.

  5. The fractal dimension of cell membrane correlates with its capacitance: A new fractal single-shell model

    Science.gov (United States)

    Wang, Xujing; Becker, Frederick F.; Gascoyne, Peter R. C.

    2010-01-01

    The scale-invariant property of the cytoplasmic membrane of biological cells is examined by applying the Minkowski–Bouligand method to digitized scanning electron microscopy images of the cell surface. The membrane is found to exhibit fractal behavior, and the derived fractal dimension gives a good description of its morphological complexity. Furthermore, we found that this fractal dimension correlates well with the specific membrane dielectric capacitance derived from the electrorotation measurements. Based on these findings, we propose a new fractal single-shell model to describe the dielectrics of mammalian cells, and compare it with the conventional single-shell model (SSM). We found that while both models fit with experimental data well, the new model is able to eliminate the discrepancy between the measured dielectric property of cells and that predicted by the SSM. PMID:21198103

  6. Prey aggregation is an effective olfactory predator avoidance strategy

    Directory of Open Access Journals (Sweden)

    Asa Johannesen

    2014-05-01

    Full Text Available Predator–prey interactions have a major effect on species abundance and diversity, and aggregation is a well-known anti-predator behaviour. For immobile prey, the effectiveness of aggregation depends on two conditions: (a the inability of the predator to consume all prey in a group and (b detection of a single large group not being proportionally easier than that of several small groups. How prey aggregation influences predation rates when visual cues are restricted, such as in turbid water, has not been thoroughly investigated. We carried out foraging (predation experiments using a fish predator and (dead chironomid larvae as prey in both laboratory and field settings. In the laboratory, a reduction in visual cue availability (in turbid water led to a delay in the location of aggregated prey compared to when visual cues were available. Aggregated prey suffered high mortality once discovered, leading to better survival of dispersed prey in the longer term. We attribute this to the inability of the dead prey to take evasive action. In the field (where prey were placed in feeding stations that allowed transmission of olfactory but not visual cues, aggregated (large groups and semi-dispersed prey survived for longer than dispersed prey—including long term survival. Together, our results indicate that similar to systems where predators hunt using vision, aggregation is an effective anti-predator behaviour for prey avoiding olfactory predators.

  7. Fractal characteristics of an asphaltene deposited heterogeneous surface

    International Nuclear Information System (INIS)

    Amin, J. Sayyad; Ayatollahi, Sh.; Alamdari, A.

    2009-01-01

    Several methods have been employed in recent years to investigate homogeneous surface topography based on image analysis, such as AFM (atomic force microscopy) and SEM (scanning electron microscopy). Fractal analysis of the images provides fractal dimension of the surface which is used as one of the most common surface indices. Surface topography has generally been considered to be mono-fractal. On the other hand, precipitation of organic materials on a rough surface and its irregular growth result in morphology alteration and converts a homogeneous surface to a heterogeneous one. In this case a mono-fractal description of the surface does not completely describe the nature of the altered surface. This work aims to investigate the topography alteration of a glass surface as a result of asphaltene precipitation and its growth at various pressures using a bi-fractal approach. The experimental results of the deposited surfaces were clearly indicating two regions of micro- and macro-asperities namely, surface types I and II, respectively. The fractal plots were indicative of bi-fractal behavior and for each surface type one fractal dimension was calculated. The topography information of the surfaces was obtained by two image analyses, AFM and SEM imaging techniques. Results of the bi-fractal analysis demonstrated that topography alteration in surface type II (macro-asperities) is more evident than that in surface type I (micro-asperities). Compared to surface type II, a better correlation was observed between the fractal dimensions inferred from the AFM images (D A ) and those of the SEM images (D S ) in surface type I.

  8. Poiseuille equation for steady flow of fractal fluid

    Science.gov (United States)

    Tarasov, Vasily E.

    2016-07-01

    Fractal fluid is considered in the framework of continuous models with noninteger dimensional spaces (NIDS). A recently proposed vector calculus in NIDS is used to get a description of fractal fluid flow in pipes with circular cross-sections. The Navier-Stokes equations of fractal incompressible viscous fluids are used to derive a generalization of the Poiseuille equation of steady flow of fractal media in pipe.

  9. Fractal dimensions the digital art of Eric Hammel

    CERN Document Server

    Hammel, Eric

    2014-01-01

    The concept behind fractal geometry is extremely difficult to explain . . . but easy to see and enjoy. Eric Hammel, a professional author of military history books, is unable to explain fractals in a way that will be clear to anyone else, but most mathematicians can't explain fractals in language most people can understand. The simplest explanation is that fractals are graphic representations of high-order mathematical formulas that repeat patterns to infinity.Don't get hung up on the math. It's really all in the seeing. Like Volume 1 of Eric Hammel's Fractal Dimensions, Volume 2 is filled wit

  10. Fractal dimensions the digital art of Eric Hammel

    CERN Document Server

    Hammel, Eric

    2014-01-01

    The concept behind fractal geometry is extremely difficult to explain . . . but easy to see and enjoy. Eric Hammel, a professional author of military history books, is unable to explain fractals in a way that will be clear to anyone else, but most mathematicians can't explain fractals in language most people can understand. The simplest explanation is that fractals are graphic representations of high-order mathematical formulas that repeat patterns to infinity.Don't get hung up on the math. It's really all in the seeing. Like Volumes 1, 2, and 3 of Eric Hammel's Fractal Dimensions, Volume 4 is

  11. Fractal dimensions the digital art of Eric Hammel

    CERN Document Server

    Hammel, Eric

    2014-01-01

    The concept behind fractal geometry is extremely difficult to explain . . . but easy to see and enjoy. Eric Hammel, a professional author of military history books, is unable to explain fractals in a way that will be clear to anyone else, but most mathematicians can't explain fractals in language most people can understand. The simplest explanation is that fractals are graphic representations of high-order mathematical formulas that repeat patterns to infinity.Don't get hung up on the math. It's really all in the seeing. Like Volumes 1 and 2 of Eric Hammel's Fractal Dimensions, Volume 3 is fil

  12. Fractal analysis in oral leukoplakia

    Directory of Open Access Journals (Sweden)

    Prashant Bhai Pandey

    2015-01-01

    Full Text Available Introduction: Fractal analysis (FA quantifies complex geometric structures by generating a fractal dimension (FD, which can measure the complexity of mucosa. FA is a quantitative tool used to measure the complexity of self-similar or semi-self-similar structures. Aim and Objective: The study was done to perform the FA of oral mucosa with keratotic changes, as it is also made up of self-similar tissues, and thus, its FD can be calculated. Results: In oral leukoplakia, keratinization increases the complexity of mucosa, which denotes fractal geometry. We evaluated and compared pretreated and post-treated oral leukoplakia in 50 patients with clinically proven oral leukoplakia and analyzed the normal oral mucosa and lesional or keratinized mucosa in oral leukoplakia patients through FA using box counting method. Conclusion: FA using the fractal geometry is an efficient, noninvasive prediction tool for early detection of oral leukoplakia and other premalignant conditions in patients.

  13. Investigation of the hydrodynamic behavior of diatom aggregates using particle image velocimetry.

    Science.gov (United States)

    Xiao, Feng; Li, Xiaoyan; Lam, Kitming; Wang, Dongsheng

    2012-01-01

    The hydrodynamic behavior of diatom aggregates has a significant influence on the interactions and flocculation kinetics of algae. However, characterization of the hydrodynamics of diatoms and diatom aggregates in water is rather difficult. In this laboratory study, an advanced visualization technique in particle image velocimetry (PIV) was employed to investigate the hydrodynamic properties of settling diatom aggregates. The experiments were conducted in a settling column filled with a suspension of fluorescent polymeric beads as seed tracers. A laser light sheet was generated by the PIV setup to illuminate a thin vertical planar region in the settling column, while the motions of particles were recorded by a high speed charge-coupled device (CCD) camera. This technique was able to capture the trajectories of the tracers when a diatom aggregate settled through the tracer suspension. The PIV results indicated directly the curvilinear feature of the streamlines around diatom aggregates. The rectilinear collision model largely overestimated the collision areas of the settling particles. Algae aggregates appeared to be highly porous and fractal, which allowed streamlines to penetrate into the aggregate interior. The diatom aggregates have a fluid collection efficiency of 10%-40%. The permeable feature of aggregates can significantly enhance the collisions and flocculation between the aggregates and other small particles including algal cells in water.

  14. Fractal-based exponential distribution of urban density and self-affine fractal forms of cities

    International Nuclear Information System (INIS)

    Chen Yanguang; Feng Jian

    2012-01-01

    Highlights: ► The model of urban population density differs from the common exponential function. ► Fractal landscape influences the exponential distribution of urban density. ► The exponential distribution of urban population suggests a self-affine fractal. ► Urban space can be divided into three layers with scaling and non-scaling regions. ► The dimension of urban form with characteristic scale can be treated as 2. - Abstract: Urban population density always follows the exponential distribution and can be described with Clark’s model. Because of this, the spatial distribution of urban population used to be regarded as non-fractal pattern. However, Clark’s model differs from the exponential function in mathematics because that urban population is distributed on the fractal support of landform and land-use form. By using mathematical transform and empirical evidence, we argue that there are self-affine scaling relations and local power laws behind the exponential distribution of urban density. The scale parameter of Clark’s model indicating the characteristic radius of cities is not a real constant, but depends on the urban field we defined. So the exponential model suggests local fractal structure with two kinds of fractal parameters. The parameters can be used to characterize urban space filling, spatial correlation, self-affine properties, and self-organized evolution. The case study of the city of Hangzhou, China, is employed to verify the theoretical inference. Based on the empirical analysis, a three-ring model of cities is presented and a city is conceptually divided into three layers from core to periphery. The scaling region and non-scaling region appear alternately in the city. This model may be helpful for future urban studies and city planning.

  15. Fractional hydrodynamic equations for fractal media

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2005-01-01

    We use the fractional integrals in order to describe dynamical processes in the fractal medium. We consider the 'fractional' continuous medium model for the fractal media and derive the fractional generalization of the equations of balance of mass density, momentum density, and internal energy. The fractional generalization of Navier-Stokes and Euler equations are considered. We derive the equilibrium equation for fractal media. The sound waves in the continuous medium model for fractional media are considered

  16. Ghost quintessence in fractal gravity

    Indian Academy of Sciences (India)

    In this study, using the time-like fractal theory of gravity, we mainly focus on the ghost dark energy model which was recently suggested to explain the present acceleration of the cosmic expansion. Next, we establish a connection between the quintessence scalar field and fractal ghost dark energy density.

  17. The fractal nature of vacuum arc cathode spots

    International Nuclear Information System (INIS)

    Anders, Andre

    2005-01-01

    Cathode spot phenomena show many features of fractals, for example self-similar patterns in the emitted light and arc erosion traces. Although there have been hints on the fractal nature of cathode spots in the literature, the fractal approach to spot interpretation is underutilized. In this work, a brief review of spot properties is given, touching the differences between spot type 1 (on cathodes surfaces with dielectric layers) and spot type 2 (on metallic, clean surfaces) as well as the known spot fragment or cell structure. The basic properties of self-similarity, power laws, random colored noise, and fractals are introduced. Several points of evidence for the fractal nature of spots are provided. Specifically power laws are identified as signature of fractal properties, such as spectral power of noisy arc parameters (ion current, arc voltage, etc) obtained by fast Fourier transform. It is shown that fractal properties can be observed down to the cutoff by measurement resolution or occurrence of elementary steps in physical processes. Random walk models of cathode spot motion are well established: they go asymptotically to Brownian motion for infinitesimal step width. The power spectrum of the arc voltage noise falls as 1/f 2 , where f is frequency, supporting a fractal spot model associated with Brownian motion

  18. Variability of fractal dimension of solar radio flux

    Science.gov (United States)

    Bhatt, Hitaishi; Sharma, Som Kumar; Trivedi, Rupal; Vats, Hari Om

    2018-04-01

    In the present communication, the variation of the fractal dimension of solar radio flux is reported. Solar radio flux observations on a day to day basis at 410, 1415, 2695, 4995, and 8800 MHz are used in this study. The data were recorded at Learmonth Solar Observatory, Australia from 1988 to 2009 covering an epoch of two solar activity cycles (22 yr). The fractal dimension is calculated for the listed frequencies for this period. The fractal dimension, being a measure of randomness, represents variability of solar radio flux at shorter time-scales. The contour plot of fractal dimension on a grid of years versus radio frequency suggests high correlation with solar activity. Fractal dimension increases with increasing frequency suggests randomness increases towards the inner corona. This study also shows that the low frequency is more affected by solar activity (at low frequency fractal dimension difference between solar maximum and solar minimum is 0.42) whereas, the higher frequency is less affected by solar activity (here fractal dimension difference between solar maximum and solar minimum is 0.07). A good positive correlation is found between fractal dimension averaged over all frequencies and yearly averaged sunspot number (Pearson's coefficient is 0.87).

  19. Undergraduate experiment with fractal diffraction gratings

    International Nuclear Information System (INIS)

    Monsoriu, Juan A; Furlan, Walter D; Pons, Amparo; Barreiro, Juan C; Gimenez, Marcos H

    2011-01-01

    We present a simple diffraction experiment with fractal gratings based on the triadic Cantor set. Diffraction by fractals is proposed as a motivating strategy for students of optics in the potential applications of optical processing. Fraunhofer diffraction patterns are obtained using standard equipment present in most undergraduate physics laboratories and compared with those obtained with conventional periodic gratings. It is shown that fractal gratings produce self-similar diffraction patterns which can be evaluated analytically. Good agreement is obtained between experimental and numerical results.

  20. On the arithmetic of fractal dimension using hyperhelices

    International Nuclear Information System (INIS)

    Toledo-Suarez, Carlos D.

    2009-01-01

    A hyperhelix is a fractal curve generated by coiling a helix around a rect line, then another helix around the first one, a third around the second... an infinite number of times. A way to generate hyperhelices with any desired fractal dimension is presented, leading to the result that they have embedded an algebraic structure that allows making arithmetic with fractal dimensions and to the idea of an infinitesimal of fractal dimension

  1. SERS microRaman spectral probing of adsorbate-containing, liquid-overlayed nanosponge Ag aggregates assembled from fractal aggregates

    Czech Academy of Sciences Publication Activity Database

    Sutrova, V.; Šloufová, I.; Nevoralová, Martina; Vlčková, B.

    2015-01-01

    Roč. 46, č. 6 (2015), s. 559-565 ISSN 0377-0486 R&D Projects: GA ČR GAP208/10/0941 Institutional support: RVO:61389013 Keywords : surface-enhanced Raman scattering (SERS) spectroscopy * Ag nanoparticles * Ag nanosponge aggregate Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.395, year: 2015

  2. Design of LTCC Based Fractal Antenna

    KAUST Repository

    AdbulGhaffar, Farhan

    2010-01-01

    The thesis presents a Sierpinski Carpet fractal antenna array designed at 24 GHz for automotive radar applications. Miniaturized, high performance and low cost antennas are required for this application. To meet these specifications a fractal array

  3. Fractal Structures For Mems Variable Capacitors

    KAUST Repository

    Elshurafa, Amro M.; Radwan, Ahmed Gomaa Ahmed; Emira, Ahmed A.; Salama, Khaled N.

    2014-01-01

    In accordance with the present disclosure, one embodiment of a fractal variable capacitor comprises a capacitor body in a microelectromechanical system (MEMS) structure, wherein the capacitor body has an upper first metal plate with a fractal shape

  4. A fractal-based image encryption system

    KAUST Repository

    Abd-El-Hafiz, S. K.; Radwan, Ahmed Gomaa; Abdel Haleem, Sherif H.; Barakat, Mohamed L.

    2014-01-01

    single-fractal image and statistical analysis is performed. A general encryption system utilising multiple fractal images is, then, introduced to improve the performance and increase the encryption key up to hundreds of bits. This improvement is achieved

  5. Fractal Structure and Entropy Production within the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Andrew J. E. Seely

    2014-08-01

    Full Text Available Our goal is to explore the relationship between two traditionally unrelated concepts, fractal structure and entropy production, evaluating both within the central nervous system (CNS. Fractals are temporal or spatial structures with self-similarity across scales of measurement; whereas entropy production represents the necessary exportation of entropy to our environment that comes with metabolism and life. Fractals may be measured by their fractal dimension; and human entropy production may be estimated by oxygen and glucose metabolism. In this paper, we observe fractal structures ubiquitously present in the CNS, and explore a hypothetical and unexplored link between fractal structure and entropy production, as measured by oxygen and glucose metabolism. Rapid increase in both fractal structures and metabolism occur with childhood and adolescent growth, followed by slow decrease during aging. Concomitant increases and decreases in fractal structure and metabolism occur with cancer vs. Alzheimer’s and multiple sclerosis, respectively. In addition to fractals being related to entropy production, we hypothesize that the emergence of fractal structures spontaneously occurs because a fractal is more efficient at dissipating energy gradients, thus maximizing entropy production. Experimental evaluation and further understanding of limitations and necessary conditions are indicated to address broad scientific and clinical implications of this work.

  6. a Fractal Network Model for Fractured Porous Media

    Science.gov (United States)

    Xu, Peng; Li, Cuihong; Qiu, Shuxia; Sasmito, Agus Pulung

    2016-04-01

    The transport properties and mechanisms of fractured porous media are very important for oil and gas reservoir engineering, hydraulics, environmental science, chemical engineering, etc. In this paper, a fractal dual-porosity model is developed to estimate the equivalent hydraulic properties of fractured porous media, where a fractal tree-like network model is used to characterize the fracture system according to its fractal scaling laws and topological structures. The analytical expressions for the effective permeability of fracture system and fractured porous media, tortuosity, fracture density and fraction are derived. The proposed fractal model has been validated by comparisons with available experimental data and numerical simulation. It has been shown that fractal dimensions for fracture length and aperture have significant effect on the equivalent hydraulic properties of fractured porous media. The effective permeability of fracture system can be increased with the increase of fractal dimensions for fracture length and aperture, while it can be remarkably lowered by introducing tortuosity at large branching angle. Also, a scaling law between the fracture density and fractal dimension for fracture length has been found, where the scaling exponent depends on the fracture number. The present fractal dual-porosity model may shed light on the transport physics of fractured porous media and provide theoretical basis for oil and gas exploitation, underground water, nuclear waste disposal and geothermal energy extraction as well as chemical engineering, etc.

  7. Fractals in DNA sequence analysis

    Institute of Scientific and Technical Information of China (English)

    Yu Zu-Guo(喻祖国); Vo Anh; Gong Zhi-Min(龚志民); Long Shun-Chao(龙顺潮)

    2002-01-01

    Fractal methods have been successfully used to study many problems in physics, mathematics, engineering, finance,and even in biology. There has been an increasing interest in unravelling the mysteries of DNA; for example, how can we distinguish coding and noncoding sequences, and the problems of classification and evolution relationship of organisms are key problems in bioinformatics. Although much research has been carried out by taking into consideration the long-range correlations in DNA sequences, and the global fractal dimension has been used in these works by other people, the models and methods are somewhat rough and the results are not satisfactory. In recent years, our group has introduced a time series model (statistical point of view) and a visual representation (geometrical point of view)to DNA sequence analysis. We have also used fractal dimension, correlation dimension, the Hurst exponent and the dimension spectrum (multifractal analysis) to discuss problems in this field. In this paper, we introduce these fractal models and methods and the results of DNA sequence analysis.

  8. Long-Range Order and Fractality in the Structure and Organization of Eukaryotic Genomes

    Science.gov (United States)

    Polychronopoulos, Dimitris; Tsiagkas, Giannis; Athanasopoulou, Labrini; Sellis, Diamantis; Almirantis, Yannis

    2014-12-01

    The late Professor J.S. Nicolis always emphasized, both in his writings and in presentations and discussions with students and friends, the relevance of a dynamical systems approach to biology. In particular, viewing the genome as a "biological text" captures the dynamical character of both the evolution and function of the organisms in the form of correlations indicating the presence of a long-range order. This genomic structure can be expressed in forms reminiscent of natural languages and several temporal and spatial traces l by the functioning of dynamical systems: Zipf laws, self-similarity and fractality. Here we review several works of our group and recent unpublished results, focusing on the chromosomal distribution of biologically active genomic components: Genes and protein-coding segments, CpG islands, transposable elements belonging to all major classes and several types of conserved non-coding genomic elements. We report the systematic appearance of power-laws in the size distribution of the distances between elements belonging to each of these types of functional genomic elements. Moreover, fractality is also found in several cases, using box-counting and entropic scaling.We present here, for the first time in a unified way, an aggregative model of the genomic dynamics which can explain the observed patterns on the grounds of known phenomena accompanying genome evolution. Our results comply with recent findings about a "fractal globule" geometry of chromatin in the eukaryotic nucleus.

  9. Semiflexible crossing-avoiding trails on plane-filling fractals

    International Nuclear Information System (INIS)

    Živić, I.; Elezović-Hadžić, S.; Milošević, S.

    2015-01-01

    We have studied the statistics of semiflexible polymer chains modeled by crossing-avoiding trails (CAT) situated on the family of plane-filling (PF) fractals. The fractals are compact, that is, their fractal dimension d_f is equal to 2 for all members of the fractal family. By applying the exact and Monte Carlo real-space renormalization group method we have calculated the critical exponent ν, which governs the scaling behavior of the end-to-end distance of the polymer, as well as the entropic critical exponent γ, for a large set of fractals, and various values of polymer flexibility. Our results, obtained for CAT model on PF fractals, show that both critical exponents depend on the polymer flexibility, in such a way that less flexible polymer chains display enlarged values of ν, and diminished values of γ. We have compared the obtained results for CAT model with the known results for the self-avoiding walk and self-avoiding trail models and discussed the influence of excluded volume effect on the values of semiflexible polymer critical exponents, for a large set of studied compact fractals.

  10. Generalized Warburg impedance on realistic self-affine fractals ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... We analyse the problem of impedance for a diffusion controlled charge transfer process across an irregular interface. These interfacial irregularities are characterized as two class of random fractals: (i) a statistically isotropic self-affine fractals and (ii) a statistically corrugated self-affine fractals.

  11. Monitoring of dry sliding wear using fractal analysis

    NARCIS (Netherlands)

    Zhang, Jindang; Regtien, Paulus P.L.; Korsten, Maarten J.

    2005-01-01

    Reliable online monitoring of wear remains a challenge to tribology research as well as to the industry. This paper presents a new method for monitoring of dry sliding wear using digital imaging and fractal analysis. Fractal values, namely fractal dimension and intercept, computed from the power

  12. Fractals and multifractals in physics

    International Nuclear Information System (INIS)

    Arcangelis, L. de.

    1987-01-01

    We present a general introduction to the world of fractals. The attention is mainly devoted to stress how fractals do indeed appear in the real world and to find quantitative methods for characterizing their properties. The idea of multifractality is also introduced and it is presented in more details within the framework of the percolation problem

  13. A Novel Method to Quantify Soil Aggregate Stability by Measuring Aggregate Bond Energies

    Science.gov (United States)

    Efrat, Rachel; Rawlins, Barry G.; Quinton, John N.; Watts, Chris W.; Whitmore, Andy P.

    2016-04-01

    Soil aggregate stability is a key indicator of soil quality because it controls physical, biological and chemical functions important in cultivated soils. Micro-aggregates are responsible for the long term sequestration of carbon in soil, therefore determine soils role in the carbon cycle. It is thus vital that techniques to measure aggregate stability are accurate, consistent and reliable, in order to appropriately manage and monitor soil quality, and to develop our understanding and estimates of soil as a carbon store to appropriately incorporate in carbon cycle models. Practices used to assess the stability of aggregates vary in sample preparation, operational technique and unit of results. They use proxies and lack quantification. Conflicting results are therefore drawn between projects that do not provide methodological or resultant comparability. Typical modern stability tests suspend aggregates in water and monitor fragmentation upon exposure to an un-quantified amount of ultrasonic energy, utilising a laser granulometer to measure the change in mean weight diameter. In this project a novel approach has been developed based on that of Zhu et al., (2009), to accurately quantify the stability of aggregates by specifically measuring their bond energies. The bond energies are measured operating a combination of calorimetry and a high powered ultrasonic probe, with computable output function. Temperature change during sonication is monitored by an array of probes which enables calculation of the energy spent heating the system (Ph). Our novel technique suspends aggregates in heavy liquid lithium heteropolytungstate, as opposed to water, to avoid exposing aggregates to an immeasurable disruptive energy source, due to cavitation, collisions and clay swelling. Mean weight diameter is measured by a laser granulometer to monitor aggregate breakdown after successive periods of calculated ultrasonic energy input (Pi), until complete dispersion is achieved and bond

  14. Generalized Warburg impedance on realistic self-affine fractals

    Indian Academy of Sciences (India)

    We analyse the problem of impedance for a diffusion controlled charge transfer process across an irregular interface. These interfacial irregularities are characterized as two class of random fractals: (i) a statistically isotropic self-affine fractals and (ii) a statistically corrugated self-affine fractals. The information about the ...

  15. Fractal analytical approach of urban form based on spatial correlation function

    International Nuclear Information System (INIS)

    Chen, Yanguang

    2013-01-01

    Highlights: ► Many fractal parameter relations of cities can be derived by scaling analysis. ► The area-radius scaling of cities suggests a spatial correlation function. ► Spectral analysis can be used to estimate fractal dimension values of urban form. ► The valid range of fractal dimension of urban form comes between 1.5 and 2. ► The traditional scale concept will be replaced by scaling concept in geography. -- Abstract: Urban form has been empirically demonstrated to be of scaling invariance and can be described with fractal geometry. However, the rational range of fractal dimension value and the relationships between various fractal indicators of cities are not yet revealed in theory. By mathematical deduction and transform (e.g., Fourier transform), I find that scaling analysis, spectral analysis, and spatial correlation analysis are all associated with fractal concepts and can be integrated into a new approach to fractal analysis of cities. This method can be termed ‘3S analyses’ of urban form. Using the 3S analysis, I derived a set of fractal parameter equations, by which different fractal parameters of cities can be linked up with one another. Each fractal parameter has its own reasonable extent of values. According to the fractal parameter equations, the intersection of the rational ranges of different fractal parameters suggests the proper scale of the fractal dimension of urban patterns, which varies from 1.5 to 2. The fractal dimension equations based on the 3S analysis and the numerical relationships between different fractal parameters are useful for geographers to understand urban evolution and potentially helpful for future city planning

  16. International Conference and Workshop on Fractals and Wavelets

    CERN Document Server

    Barnsley, Michael; Devaney, Robert; Falconer, Kenneth; Kannan, V; PB, Vinod

    2014-01-01

    Fractals and wavelets are emerging areas of mathematics with many common factors which can be used to develop new technologies. This volume contains the selected contributions from the lectures and plenary and invited talks given at the International Workshop and Conference on Fractals and Wavelets held at Rajagiri School of Engineering and Technology, India from November 9-12, 2013. Written by experts, the contributions hope to inspire and motivate researchers working in this area. They provide more insight into the areas of fractals, self similarity, iterated function systems, wavelets and the applications of both fractals and wavelets. This volume will be useful for the beginners as well as experts in the fields of fractals and wavelets.

  17. Convergence of trajectories in fractal interpolation of stochastic processes

    International Nuclear Information System (INIS)

    MaIysz, Robert

    2006-01-01

    The notion of fractal interpolation functions (FIFs) can be applied to stochastic processes. Such construction is especially useful for the class of α-self-similar processes with stationary increments and for the class of α-fractional Brownian motions. For these classes, convergence of the Minkowski dimension of the graphs in fractal interpolation of the Hausdorff dimension of the graph of original process was studied in [Herburt I, MaIysz R. On convergence of box dimensions of fractal interpolation stochastic processes. Demonstratio Math 2000;4:873-88.], [MaIysz R. A generalization of fractal interpolation stochastic processes to higher dimension. Fractals 2001;9:415-28.], and [Herburt I. Box dimension of interpolations of self-similar processes with stationary increments. Probab Math Statist 2001;21:171-8.]. We prove that trajectories of fractal interpolation stochastic processes converge to the trajectory of the original process. We also show that convergence of the trajectories in fractal interpolation of stochastic processes is equivalent to the convergence of trajectories in linear interpolation

  18. Aggregate size and structure determination of nanomaterials in physiological media: importance of dynamic evolution

    Science.gov (United States)

    Afrooz, A. R. M. Nabiul; Hussain, Saber M.; Saleh, Navid B.

    2014-12-01

    Most in vitro nanotoxicological assays are performed after 24 h exposure. However, in determining size and shape effect of nanoparticles in toxicity assays, initial characterization data are generally used to describe experimental outcome. The dynamic size and structure of aggregates are typically ignored in these studies. This brief communication reports dynamic evolution of aggregation characteristics of gold nanoparticles. The study finds that gradual increase in aggregate size of gold nanospheres (AuNS) occurs up to 6 h duration; beyond this time period, the aggregation process deviates from gradual to a more abrupt behavior as large networks are formed. Results of the study also show that aggregated clusters possess unique structural conformation depending on nominal diameter of the nanoparticles. The differences in fractal dimensions of the AuNS samples likely occurred due to geometric differences, causing larger packing propensities for smaller sized particles. Both such observations can have profound influence on dosimetry for in vitro nanotoxicity analyses.

  19. Aggregate size and structure determination of nanomaterials in physiological media: importance of dynamic evolution

    International Nuclear Information System (INIS)

    Afrooz, A. R. M. Nabiul; Hussain, Saber M.; Saleh, Navid B.

    2014-01-01

    Most in vitro nanotoxicological assays are performed after 24 h exposure. However, in determining size and shape effect of nanoparticles in toxicity assays, initial characterization data are generally used to describe experimental outcome. The dynamic size and structure of aggregates are typically ignored in these studies. This brief communication reports dynamic evolution of aggregation characteristics of gold nanoparticles. The study finds that gradual increase in aggregate size of gold nanospheres (AuNS) occurs up to 6 h duration; beyond this time period, the aggregation process deviates from gradual to a more abrupt behavior as large networks are formed. Results of the study also show that aggregated clusters possess unique structural conformation depending on nominal diameter of the nanoparticles. The differences in fractal dimensions of the AuNS samples likely occurred due to geometric differences, causing larger packing propensities for smaller sized particles. Both such observations can have profound influence on dosimetry for in vitro nanotoxicity analyses.Graphical Abstract

  20. Aggregate size and structure determination of nanomaterials in physiological media: importance of dynamic evolution

    Energy Technology Data Exchange (ETDEWEB)

    Afrooz, A. R. M. Nabiul [The University of Texas, Civil, Architectural and Environmental Engineering (United States); Hussain, Saber M. [Wright-Patterson AFB, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory (United States); Saleh, Navid B., E-mail: navid.saleh@utexas.edu [The University of Texas, Civil, Architectural and Environmental Engineering (United States)

    2014-12-15

    Most in vitro nanotoxicological assays are performed after 24 h exposure. However, in determining size and shape effect of nanoparticles in toxicity assays, initial characterization data are generally used to describe experimental outcome. The dynamic size and structure of aggregates are typically ignored in these studies. This brief communication reports dynamic evolution of aggregation characteristics of gold nanoparticles. The study finds that gradual increase in aggregate size of gold nanospheres (AuNS) occurs up to 6 h duration; beyond this time period, the aggregation process deviates from gradual to a more abrupt behavior as large networks are formed. Results of the study also show that aggregated clusters possess unique structural conformation depending on nominal diameter of the nanoparticles. The differences in fractal dimensions of the AuNS samples likely occurred due to geometric differences, causing larger packing propensities for smaller sized particles. Both such observations can have profound influence on dosimetry for in vitro nanotoxicity analyses.Graphical Abstract.

  1. Fractal Dimension Of CT Images Of Normal Parotid Glands

    International Nuclear Information System (INIS)

    Lee, Sang Jin; Heo, Min Suk; You, Dong Soo

    1999-01-01

    This study was to investigate the age and sex differences of the fractal dimension of the normal parotid glands in the digitized CT images. The six groups, which were composed of 42 men and women from 20's, 40's and 60's and over were picked. Each group contained seven people of the same sex. The normal parotid CT images were digitized, and their fractal dimensions were calculated using Scion Image PC program. The mean of fractal dimensions in males was 1.7292 (+/-0.0588) and 1.6329 (+/-0.0425) in females. The mean of fractal dimensions in young males was 1.7617, 1.7328 in middle males, and 1.6933 in old males. The mean of fractal dimensions in young females was 1.6318, 1.6365 in middle females, and 1.6303 in old females. There was no statistical difference in fractal dimension between left and right parotid gland of the same subject (p>0.05). Fractal dimensions in male were decreased in older group (p 0.05). The fractal dimension of parotid glands in the digitized CT images will be useful to evaluate the age and sex differences.

  2. Chaos and fractals an elementary introduction

    CERN Document Server

    Feldman, David P

    2012-01-01

    For students with a background in elementary algebra, this text provides a vivid introduction to the key phenomena and ideas of chaos and fractals, including the butterfly effect, strange attractors, fractal dimensions, Julia sets and the Mandelbrot set, power laws, and cellular automata.

  3. A fractal-like resistive network

    International Nuclear Information System (INIS)

    Saggese, A; De Luca, R

    2014-01-01

    The equivalent resistance of a fractal-like network is calculated by means of approaches similar to those employed in defining the equivalent resistance of an infinite ladder. Starting from an elementary triangular circuit, a fractal-like network, named after Saggese, is developed. The equivalent resistance of finite approximations of this network is measured, and the didactical implications of the model are highlighted. (paper)

  4. Electro-chemical manifestation of nanoplasmonics in fractal media

    Science.gov (United States)

    Baskin, Emmanuel; Iomin, Alexander

    2013-06-01

    Electrodynamics of composite materials with fractal geometry is studied in the framework of fractional calculus. This consideration establishes a link between fractal geometry of the media and fractional integrodifferentiation. The photoconductivity in the vicinity of the electrode-electrolyte fractal interface is studied. The methods of fractional calculus are employed to obtain an analytical expression for the giant local enhancement of the optical electric field inside the fractal composite structure at the condition of the surface plasmon excitation. This approach makes it possible to explain experimental data on photoconductivity in the nano-electrochemistry.

  5. FAST TRACK COMMUNICATION: Weyl law for fat fractals

    Science.gov (United States)

    Spina, María E.; García-Mata, Ignacio; Saraceno, Marcos

    2010-10-01

    It has been conjectured that for a class of piecewise linear maps the closure of the set of images of the discontinuity has the structure of a fat fractal, that is, a fractal with positive measure. An example of such maps is the sawtooth map in the elliptic regime. In this work we analyze this problem quantum mechanically in the semiclassical regime. We find that the fraction of states localized on the unstable set satisfies a modified fractal Weyl law, where the exponent is given by the exterior dimension of the fat fractal.

  6. Paper-based inkjet-printed ultra-wideband fractal antennas

    KAUST Repository

    Maza, Armando Rodriguez

    2012-01-01

    For the first time, paper-based inkjet-printed ultra-wideband (UWB) fractal antennas are presented. Two new designs, a miniaturised UWB monopole, which utilises a fractal matching network and is the smallest reported inkjet-printed UWB printed antenna to date, and a fourth-order Koch Snowflake monopole, which utilises a Sierpinski gasket fractal for ink reduction, are demonstrated. It is shown that fractals prove to be a successful method of reducing fabrication costs in inkjet-printed antennas, while retaining or enhancing printed antenna performance. © 2012 The Institution of Engineering and Technology.

  7. Effective degrees of freedom of a random walk on a fractal

    Science.gov (United States)

    Balankin, Alexander S.

    2015-12-01

    We argue that a non-Markovian random walk on a fractal can be treated as a Markovian process in a fractional dimensional space with a suitable metric. This allows us to define the fractional dimensional space allied to the fractal as the ν -dimensional space Fν equipped with the metric induced by the fractal topology. The relation between the number of effective spatial degrees of freedom of walkers on the fractal (ν ) and fractal dimensionalities is deduced. The intrinsic time of random walk in Fν is inferred. The Laplacian operator in Fν is constructed. This allows us to map physical problems on fractals into the corresponding problems in Fν. In this way, essential features of physics on fractals are revealed. Particularly, subdiffusion on path-connected fractals is elucidated. The Coulomb potential of a point charge on a fractal embedded in the Euclidean space is derived. Intriguing attributes of some types of fractals are highlighted.

  8. Self-Similarity of Plasmon Edge Modes on Koch Fractal Antennas.

    Science.gov (United States)

    Bellido, Edson P; Bernasconi, Gabriel D; Rossouw, David; Butet, Jérémy; Martin, Olivier J F; Botton, Gianluigi A

    2017-11-28

    We investigate the plasmonic behavior of Koch snowflake fractal geometries and their possible application as broadband optical antennas. Lithographically defined planar silver Koch fractal antennas were fabricated and characterized with high spatial and spectral resolution using electron energy loss spectroscopy. The experimental data are supported by numerical calculations carried out with a surface integral equation method. Multiple surface plasmon edge modes supported by the fractal structures have been imaged and analyzed. Furthermore, by isolating and reproducing self-similar features in long silver strip antennas, the edge modes present in the Koch snowflake fractals are identified. We demonstrate that the fractal response can be obtained by the sum of basic self-similar segments called characteristic edge units. Interestingly, the plasmon edge modes follow a fractal-scaling rule that depends on these self-similar segments formed in the structure after a fractal iteration. As the size of a fractal structure is reduced, coupling of the modes in the characteristic edge units becomes relevant, and the symmetry of the fractal affects the formation of hybrid modes. This analysis can be utilized not only to understand the edge modes in other planar structures but also in the design and fabrication of fractal structures for nanophotonic applications.

  9. Power Load Prediction Based on Fractal Theory

    OpenAIRE

    Jian-Kai, Liang; Cattani, Carlo; Wan-Qing, Song

    2015-01-01

    The basic theories of load forecasting on the power system are summarized. Fractal theory, which is a new algorithm applied to load forecasting, is introduced. Based on the fractal dimension and fractal interpolation function theories, the correlation algorithms are applied to the model of short-term load forecasting. According to the process of load forecasting, the steps of every process are designed, including load data preprocessing, similar day selecting, short-term load forecasting, and...

  10. Condensation versus diffusion. A spatial-scale-independent theory of aggregate structures in edible oils: applications to model systems and commercial shortenings studied via rheology and USAXS

    Science.gov (United States)

    Pink, David A.; Peyronel, Fernanda; Quinn, Bonnie; Singh, Pratham; Marangoni, Alejandro G.

    2015-09-01

    Understanding how solid fats structures come about in edible oils and quantifying their structures is of fundamental importance in developing edible oils with pre-selected characteristics. We considered the great range of fractal dimensions, from 1.91 to 2.90, reported from rheological measurements. We point out that, if the structures arise via DLA/RLA or DLCA/RLCA, as has been established using ultra small angle x-ray scattering (USAXS), we would expect fractal dimensions in the range ~1.7 to 2.1, and ~2.5 or ~3.0. We present new data for commercial fats and show that the fractal dimensions deduced lie outside these values. We have developed a model in which competition between two processes can lead to the range of fractal dimensions observed. The two processes are (i) the rate at which the solid fat particles are created as the temperature is decreased, and (ii) the rate at which these particles diffuse, thereby meeting and forming aggregates. We assumed that aggregation can take place essentially isotropically and we identified two characteristic times: a time characterizing the rate of creation of solid fats, {τ\\text{create}}(T)\\equiv 1/{{R}S}(T) , where {{R}S}(T) is the rate of solid condensation (cm3 s-1), and the diffusion time of solid fats, {τ\\text{diff}}≤ft(T,{{c}S}\\right)= /6{D}≤ft(T,{{c}S}\\right) , where {D}≤ft(T,{{c}S}\\right) is their diffusion coefficient and is the typical average distance that fats must move in order to aggregate. The intent of this model is to show that a simple process can lead to a wide range of fractal dimensions. We showed that in the limit of very fast solid creation, {τ\\text{create}}\\ll {τ\\text{diff}} the fractal dimension is predicted to be that of DLCA, ~1.7, relaxing to that of RLCA, 2.0-2.1, and that in the limit of very slow solid creation, {τ\\text{create}}\\gg {τ\\text{diff}} , the fractal dimension is predicted to be that obtained via DLA, ~2.5, relaxing to that of RLA, 3.0. We predict that

  11. Fractal analysis of cervical intraepithelial neoplasia.

    Directory of Open Access Journals (Sweden)

    Markus Fabrizii

    Full Text Available INTRODUCTION: Cervical intraepithelial neoplasias (CIN represent precursor lesions of cervical cancer. These neoplastic lesions are traditionally subdivided into three categories CIN 1, CIN 2, and CIN 3, using microscopical criteria. The relation between grades of cervical intraepithelial neoplasia (CIN and its fractal dimension was investigated to establish a basis for an objective diagnosis using the method proposed. METHODS: Classical evaluation of the tissue samples was performed by an experienced gynecologic pathologist. Tissue samples were scanned and saved as digital images using Aperio scanner and software. After image segmentation the box counting method as well as multifractal methods were applied to determine the relation between fractal dimension and grades of CIN. A total of 46 images were used to compare the pathologist's neoplasia grades with the predicted groups obtained by fractal methods. RESULTS: Significant or highly significant differences between all grades of CIN could be found. The confusion matrix, comparing between pathologist's grading and predicted group by fractal methods showed a match of 87.1%. Multifractal spectra were able to differentiate between normal epithelium and low grade as well as high grade neoplasia. CONCLUSION: Fractal dimension can be considered to be an objective parameter to grade cervical intraepithelial neoplasia.

  12. Aggregation and adhesion of gold nanoparticles in phosphate buffered saline

    Energy Technology Data Exchange (ETDEWEB)

    Du Shangfeng, E-mail: s.du@bham.ac.uk; Kendall, Kevin; Toloueinia, Panteha; Mehrabadi, Yasamin; Gupta, Gaurav; Newton, Jill [University of Birmingham, School of Chemical Engineering (United Kingdom)

    2012-03-15

    In applications in medicine and more specifically drug delivery, the dispersion stability of nanoparticles plays a significant role on their final performances. In this study, with the use of two laser technologies, dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA), we report a simple method to estimate the stability of nanoparticles dispersed in phosphate buffered saline (PBS). Stability has two features: (1) self-aggregation as the particles tend to stick to each other; (2) disappearance of particles as they adhere to surrounding substrate surfaces such as glass, metal, or polymer. By investigating the effects of sonication treatment and surface modification by five types of surfactants, including nonylphenol ethoxylate (NP9), polyvinyl pyrrolidone (PVP), human serum albumin (HSA), sodium dodecyl sulfate (SDS) and citrate ions on the dispersion stability, the varying self-aggregation and adhesion of gold nanoparticles dispersed in PBS are demonstrated. The results showed that PVP effectively prevented aggregation, while HSA exhibited the best performance in avoiding the adhesion of gold nanoparticle in PBS onto glass and metal. The simple principle of this method makes it a high potential to be applied to other nanoparticles, including virus particles, used in dispersing and processing.

  13. Fractal nature of humic materials

    International Nuclear Information System (INIS)

    Rice, J.A.

    1992-01-01

    Fractals are geometric representatives of strongly disordered systems whose structure is described by nonintegral dimensions. A fundamental tenet of fractal geometry is that disorder persists at any characterization scale-length used to describe the system. The nonintegral nature of these fractal dimensions is the result of the realization that a disordered system must possess more structural detail than an ordered system with classical dimensions of 1, 2, or 3 in order to accommodate this ''disorder within disorder.'' Thus from a fractal perspective, disorder is seen as an inherent characteristic of the system rather than as a perturbative phenomena forced upon it. Humic materials are organic substances that are formed by the profound alteration of organic matter in a natural environment. They can be operationally divided into 3 fractions; humic acid (soluble in base), fulvic acid (soluble in acid or base), and humin (insoluble in acid or base). Each of these fraction has been shown to be an extremely heterogeneous mixture. These mixtures have proven so intractable that they may represent the ultimate in molecular disorder. In fact, based on the characteristics that humic materials must possess in order to perform their functions in natural systems, it has been proposed that the fundamental chemical characteristic of a humic material is not a discrete chemical structure but a pronounced lack of order on a molecular level. If the fundamental chemical characteristic of a humic material is a strongly disordered nature, as has been proposed, then humic materials should be amenable to characterization by fractal geometry. The purpose of this paper is to test this hypothesis

  14. Node insertion in Coalescence Fractal Interpolation Function

    International Nuclear Information System (INIS)

    Prasad, Srijanani Anurag

    2013-01-01

    The Iterated Function System (IFS) used in the construction of Coalescence Hidden-variable Fractal Interpolation Function (CHFIF) depends on the interpolation data. The insertion of a new point in a given set of interpolation data is called the problem of node insertion. In this paper, the effect of insertion of new point on the related IFS and the Coalescence Fractal Interpolation Function is studied. Smoothness and Fractal Dimension of a CHFIF obtained with a node are also discussed

  15. Fractals in Power Reactor Noise

    International Nuclear Information System (INIS)

    Aguilar Martinez, O.

    1994-01-01

    In this work the non- lineal dynamic problem of power reactor is analyzed using classic concepts of fractal analysis as: attractors, Hausdorff-Besikovics dimension, phase space, etc. A new non-linear problem is also analyzed: the discrimination of chaotic signals from random neutron noise signals and processing for diagnosis purposes. The advantages of a fractal analysis approach in the power reactor noise are commented in details

  16. Transport properties of electrons in fractal magnetic-barrier structures

    Science.gov (United States)

    Sun, Lifeng; Fang, Chao; Guo, Yong

    2010-09-01

    Quantum transport properties in fractal magnetically modulated structures are studied by the transfer-matrix method. It is found that the transmission spectra depend sensitively not only on the incident energy and the direction of the wave vector but also on the stage of the fractal structures. Resonance splitting, enhancement, and position shift of the resonance peaks under different magnetic modulation are observed at four different fractal stages, and the relationship between the conductance in the fractal structure and magnetic modulation is also revealed. The results indicate the spectra of the transmission can be considered as fingerprints for the fractal structures, which show the subtle correspondence between magnetic structures and transport behaviors.

  17. The effect of global velocity gradient on the character and filterability of aggregates formed during the coagulation/flocculation process

    Czech Academy of Sciences Publication Activity Database

    Pivokonský, Martin; Bubáková, Petra; Pivokonská, Lenka; Hnaťuková, Petra

    2011-01-01

    Roč. 32, č. 12 (2011), s. 1355-1366 ISSN 0959-3330 R&D Projects: GA AV ČR IAA200600902 Institutional research plan: CEZ:AV0Z20600510 Keywords : aggregate size distribution * flocculation * mixing * fractal dimension * filtration Subject RIV: BK - Fluid Dynamics Impact factor: 1.406, year: 2011

  18. mc1r Pathway regulation of zebrafish melanosome dispersion

    DEFF Research Database (Denmark)

    Richardson, Jennifer; Lundegaard, Pia Rengtved; Reynolds, Natalie L

    2008-01-01

    Zebrafish rapidly alter their pigmentation in response to environmental changes. For black melanocytes, this change is due to aggregation or dispersion of melanin in the cell. Dispersion and aggregation are controlled by intracellular cyclic adenosine monophosphate (cAMP) levels, which increase...... in mammals, and melanosome dispersal in cold-blood vertebrates, the pathway components are highly conserved. However, it has only been assumed that mc1r mediates melanosome dispersal in fish. Here, using morpholino oligonucleotides designed to knockdown mc1r expression, we find that mc1r morphants are unable...... to disperse melanosomes when grown in dark conditions. We also use chemical modifiers of the cAMP pathway, and find an unexpected response to the specific phosphodiesterase 4 (PDE4) inhibitor, rolipram, in melanosome dispersal. When treated with the drug, melanosomes fail to fully disperse in dark conditions...

  19. Towards thermomechanics of fractal media

    Science.gov (United States)

    Ostoja-Starzewski, Martin

    2007-11-01

    Hans Ziegler’s thermomechanics [1,2,3], established half a century ago, is extended to fractal media on the basis of a recently introduced continuum mechanics due to Tarasov [14,15]. Employing the concept of internal (kinematic) variables and internal stresses, as well as the quasiconservative and dissipative stresses, a field form of the second law of thermodynamics is derived. In contradistinction to the conventional Clausius Duhem inequality, it involves generalized rates of strain and internal variables. Upon introducing a dissipation function and postulating the thermodynamic orthogonality on any lengthscale, constitutive laws of elastic-dissipative fractal media naturally involving generalized derivatives of strain and stress can then be derived. This is illustrated on a model viscoelastic material. Also generalized to fractal bodies is the Hill condition necessary for homogenization of their constitutive responses.

  20. Dimensional analysis, scaling and fractals

    International Nuclear Information System (INIS)

    Timm, L.C.; Reichardt, K.; Oliveira Santos Bacchi, O.

    2004-01-01

    Dimensional analysis refers to the study of the dimensions that characterize physical entities, like mass, force and energy. Classical mechanics is based on three fundamental entities, with dimensions MLT, the mass M, the length L and the time T. The combination of these entities gives rise to derived entities, like volume, speed and force, of dimensions L 3 , LT -1 , MLT -2 , respectively. In other areas of physics, four other fundamental entities are defined, among them the temperature θ and the electrical current I. The parameters that characterize physical phenomena are related among themselves by laws, in general of quantitative nature, in which they appear as measures of the considered physical entities. The measure of an entity is the result of its comparison with another one, of the same type, called unit. Maps are also drawn in scale, for example, in a scale of 1:10,000, 1 cm 2 of paper can represent 10,000 m 2 in the field. Entities that differ in scale cannot be compared in a simple way. Fractal geometry, in contrast to the Euclidean geometry, admits fractional dimensions. The term fractal is defined in Mandelbrot (1982) as coming from the Latin fractus, derived from frangere which signifies to break, to form irregular fragments. The term fractal is opposite to the term algebra (from the Arabic: jabara) which means to join, to put together the parts. For Mandelbrot, fractals are non topologic objects, that is, objects which have as their dimension a real, non integer number, which exceeds the topologic dimension. For the topologic objects, or Euclidean forms, the dimension is an integer (0 for the point, 1 for a line, 2 for a surface, and 3 for a volume). The fractal dimension of Mandelbrot is a measure of the degree of irregularity of the object under consideration. It is related to the speed by which the estimate of the measure of an object increases as the measurement scale decreases. An object normally taken as uni-dimensional, like a piece of a

  1. Undergraduate Experiment with Fractal Diffraction Gratings

    Science.gov (United States)

    Monsoriu, Juan A.; Furlan, Walter D.; Pons, Amparo; Barreiro, Juan C.; Gimenez, Marcos H.

    2011-01-01

    We present a simple diffraction experiment with fractal gratings based on the triadic Cantor set. Diffraction by fractals is proposed as a motivating strategy for students of optics in the potential applications of optical processing. Fraunhofer diffraction patterns are obtained using standard equipment present in most undergraduate physics…

  2. Pore Structure and Fractal Characteristics of Niutitang Shale from China

    Directory of Open Access Journals (Sweden)

    Zhaodong Xi

    2018-04-01

    Full Text Available A suite of shale samples from the Lower Cambrian Niutitang Formation in northwestern Hunan Province, China, were investigated to better understand the pore structure and fractal characteristics of marine shale. Organic geochemistry, mineralogy by X-ray diffraction, porosity, permeability, mercury intrusion and nitrogen adsorption and methane adsorption experiments were conducted for each sample. Fractal dimension D was obtained from the nitrogen adsorption data using the fractal Frenkel-Halsey-Hill (FHH model. The relationships between total organic carbon (TOC content, mineral compositions, pore structure parameters and fractal dimension are discussed, along with the contributions of fractal dimension to shale gas reservoir evaluation. Analysis of the results showed that Niutitang shale samples featured high TOC content (2.51% on average, high thermal maturity (3.0% on average, low permeability and complex pore structures, which are highly fractal. TOC content and mineral compositions are two major factors affecting pore structure but they have different impacts on the fractal dimension. Shale samples with higher TOC content had a larger specific surface area (SSA, pore volume (PV and fractal dimension, which enhanced the heterogeneity of the pore structure. Quartz content had a relatively weak influence on shale pore structure, whereas SSA, PV and fractal dimension decreased with increasing clay mineral content. Shale with a higher clay content weakened pore structure heterogeneity. The permeability and Langmuir volume of methane adsorption were affected by fractal dimension. Shale samples with higher fractal dimension had higher adsorption capacity but lower permeability, which is favorable for shale gas adsorption but adverse to shale gas seepage and diffusion.

  3. Entanglement dynamics of J-aggregate systems

    Energy Technology Data Exchange (ETDEWEB)

    Thilagam, A, E-mail: Thilagam.Lohe@unisa.edu.au [Information Technology, Engineering and the Environment, Mawson Institute, University of South Australia, South Australia 5095 (Australia)

    2011-04-01

    The entanglement dynamics of one-dimensional J-aggregate systems are examined using entanglement measures such as the von Neumann entropy and Wootters concurrence. The effect of dispersion and resonance terms associated with the exciton-phonon interaction are analyzed using Green's function formalism. A probability propagator term, derived using the Markovian approximation, presents J-aggregate systems as potential channels for large scale energy propagation for a select range of parameters. We highlight the role of a critical number of coherently coupled monomer sites and two-exciton states in determining superradiance in J-aggregate systems.

  4. Experimental investigation on the morphology of soot aggregates from the burning of typical solid and liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Dongmei, E-mail: 20021567@163.com; Guo, Chenning [China Jiliang University, College of Quality and Safety Engineering (China); Shi, Long [RMIT University, Civil and Infrastructure Engineering Discipline, School of Engineering (Australia)

    2017-03-15

    Soot particles from the burning of typical fuels are one of the critical sources causing environmental problems and human disease. To understand the soot formation of these typical fuels, the size and morphology of soot aggregates produced from the burning of typical solid and liquid fuels, including diesel, kerosene, natural rubber (NR) latex foam, and wood crib, were studied by both extractive sampling and subsequent image analysis. The 2D and 3D fractal dimensions together with the diameter distribution of agglomerate and primary particles were analyzed for these four typical fuels. The average diameters of the primary particles were within 45–85 nm when sampling from different heights above the fire sources. Irregular sheet structures and flake-like masses were observed from the burning of NR latex foam and wood cribs. Superaggregates with a mean maximum length scale of over 100 μm were also found from the burning of all these four tested fuels. The fractal dimension of a single aggregate was 3 for all the tested fuels.

  5. Fractal actors and infrastructures

    DEFF Research Database (Denmark)

    Bøge, Ask Risom

    2011-01-01

    -network-theory (ANT) into surveillance studies (Ball 2002, Adey 2004, Gad & Lauritsen 2009). In this paper, I further explore the potential of this connection by experimenting with Marilyn Strathern’s concept of the fractal (1991), which has been discussed in newer ANT literature (Law 2002; Law 2004; Jensen 2007). I...... under surveillance. Based on fieldwork conducted in 2008 and 2011 in relation to my Master’s thesis and PhD respectively, I illustrate fractal concepts by describing the acts, actors and infrastructure that make up the ‘DNA surveillance’ conducted by the Danish police....

  6. The analysis of the influence of fractal structure of stimuli on fractal dynamics in fixational eye movements and EEG signal

    Science.gov (United States)

    Namazi, Hamidreza; Kulish, Vladimir V.; Akrami, Amin

    2016-05-01

    One of the major challenges in vision research is to analyze the effect of visual stimuli on human vision. However, no relationship has been yet discovered between the structure of the visual stimulus, and the structure of fixational eye movements. This study reveals the plasticity of human fixational eye movements in relation to the ‘complex’ visual stimulus. We demonstrated that the fractal temporal structure of visual dynamics shifts towards the fractal dynamics of the visual stimulus (image). The results showed that images with higher complexity (higher fractality) cause fixational eye movements with lower fractality. Considering the brain, as the main part of nervous system that is engaged in eye movements, we analyzed the governed Electroencephalogram (EEG) signal during fixation. We have found out that there is a coupling between fractality of image, EEG and fixational eye movements. The capability observed in this research can be further investigated and applied for treatment of different vision disorders.

  7. Fractal dimension analysis of complexity in Ligeti piano pieces

    Science.gov (United States)

    Bader, Rolf

    2005-04-01

    Fractal correlation dimensional analysis has been performed with whole solo piano pieces by Gyrgy Ligeti at every 50ms interval of the pieces. The resulting curves of development of complexity represented by the fractal dimension showed up a very reasonable correlation with the perceptional density of events during these pieces. The seventh piece of Ligeti's ``Musica ricercata'' was used as a test case. Here, each new part of the piece was followed by an increase of the fractal dimension because of the increase of information at the part changes. The second piece ``Galamb borong,'' number seven of the piano Etudes was used, because Ligeti wrote these Etudes after studying fractal geometry. Although the piece is not fractal in the strict mathematical sense, the overall structure of the psychoacoustic event-density as well as the detailed event development is represented by the fractal dimension plot.

  8. Random walks of oriented particles on fractals

    International Nuclear Information System (INIS)

    Haber, René; Prehl, Janett; Hoffmann, Karl Heinz; Herrmann, Heiko

    2014-01-01

    Random walks of point particles on fractals exhibit subdiffusive behavior, where the anomalous diffusion exponent is smaller than one, and the corresponding random walk dimension is larger than two. This is due to the limited space available in fractal structures. Here, we endow the particles with an orientation and analyze their dynamics on fractal structures. In particular, we focus on the dynamical consequences of the interactions between the local surrounding fractal structure and the particle orientation, which are modeled using an appropriate move class. These interactions can lead to particles becoming temporarily or permanently stuck in parts of the structure. A surprising finding is that the random walk dimension is not affected by the orientation while the diffusion constant shows a variety of interesting and surprising features. (paper)

  9. Quantitative assessment of early diabetic retinopathy using fractal analysis.

    Science.gov (United States)

    Cheung, Ning; Donaghue, Kim C; Liew, Gerald; Rogers, Sophie L; Wang, Jie Jin; Lim, Shueh-Wen; Jenkins, Alicia J; Hsu, Wynne; Li Lee, Mong; Wong, Tien Y

    2009-01-01

    Fractal analysis can quantify the geometric complexity of the retinal vascular branching pattern and may therefore offer a new method to quantify early diabetic microvascular damage. In this study, we examined the relationship between retinal fractal dimension and retinopathy in young individuals with type 1 diabetes. We conducted a cross-sectional study of 729 patients with type 1 diabetes (aged 12-20 years) who had seven-field stereoscopic retinal photographs taken of both eyes. From these photographs, retinopathy was graded according to the modified Airlie House classification, and fractal dimension was quantified using a computer-based program following a standardized protocol. In this study, 137 patients (18.8%) had diabetic retinopathy signs; of these, 105 had mild retinopathy. Median (interquartile range) retinal fractal dimension was 1.46214 (1.45023-1.47217). After adjustment for age, sex, diabetes duration, A1C, blood pressure, and total cholesterol, increasing retinal vascular fractal dimension was significantly associated with increasing odds of retinopathy (odds ratio 3.92 [95% CI 2.02-7.61] for fourth versus first quartile of fractal dimension). In multivariate analysis, each 0.01 increase in retinal vascular fractal dimension was associated with a nearly 40% increased odds of retinopathy (1.37 [1.21-1.56]). This association remained after additional adjustment for retinal vascular caliber. Greater retinal fractal dimension, representing increased geometric complexity of the retinal vasculature, is independently associated with early diabetic retinopathy signs in type 1 diabetes. Fractal analysis of fundus photographs may allow quantitative measurement of early diabetic microvascular damage.

  10. Fractals and spectra related to fourier analysis and function spaces

    CERN Document Server

    Triebel, Hans

    1997-01-01

    Fractals and Spectra Hans Triebel This book deals with the symbiotic relationship between the theory of function spaces, fractal geometry, and spectral theory of (fractal) pseudodifferential operators as it has emerged quite recently. Atomic and quarkonial (subatomic) decompositions in scalar and vector valued function spaces on the euclidean n-space pave the way to study properties (compact embeddings, entropy numbers) of function spaces on and of fractals. On this basis, distributions of eigenvalues of fractal (pseudo)differential operators are investigated. Diverse versions of fractal drums are played. The book is directed to mathematicians interested in functional analysis, the theory of function spaces, fractal geometry, partial and pseudodifferential operators, and, in particular, in how these domains are interrelated. ------ It is worth mentioning that there is virtually no literature on this topic and hence the most of the presented material is published here the first time. - Zentralblatt MATH (…) ...

  11. Usefulness of fractal analysis for the diagnosis of periodontitis

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sang Yun; Han, Won Jeong; Kim, Eun Kyung [Dankook Univ. School of Dentistry, Seoul (Korea, Republic of)

    2001-03-15

    To evaluate the usefulness of fractal analysis for diagnosis of periodontitis. Each 30 cases of periapical films of male mandibular molar were selected in normal group and patient group which had complete furcation involvement. They were digitized at 300 dpi, 256 gray levels and saved with gif format. Rectangular ROIs (10 X 20 pixel) were selected at furcation, interdental crest, and interdental middle 1/3 area. Fractal dimensions were calculated three times at each area by mass radius method and were determined using a mean of three measurements. We computed fractal dimensions at furcation and interdental crest area of normal group with those of patient group. And then we compared ratio of fractal dimensions at furcation area, interdental crest area to interdental middle 1/3 area. Fractal dimension at interdental crest area of normal group was 1.979{+-}0.018 (p<0.05). The radio of fractal dimension at furcation area to interdental middle 1/3 of normal group was 1.006{+-}0.018 and that of patient group 0.9940.018 (p<0.05). The radio of fractal dimension at interdental crest and furcation area to interdental middle 1/3 area showed a statistically significant difference between normal and patient group. In conclusion, it is thought that fractal analysis might be useful for the diagnosis of periodontitis.

  12. Using Peano Curves to Construct Laplacians on Fractals

    Science.gov (United States)

    Molitor, Denali; Ott, Nadia; Strichartz, Robert

    2015-12-01

    We describe a new method to construct Laplacians on fractals using a Peano curve from the circle onto the fractal, extending an idea that has been used in the case of certain Julia sets. The Peano curve allows us to visualize eigenfunctions of the Laplacian by graphing the pullback to the circle. We study in detail three fractals: the pentagasket, the octagasket and the magic carpet. We also use the method for two nonfractal self-similar sets, the torus and the equilateral triangle, obtaining appealing new visualizations of eigenfunctions on the triangle. In contrast to the many familiar pictures of approximations to standard Peano curves, that do no show self-intersections, our descriptions of approximations to the Peano curves have self-intersections that play a vital role in constructing graph approximations to the fractal with explicit graph Laplacians that give the fractal Laplacian in the limit.

  13. Fractal and spectroscopic analysis of soot from internal combustion engines

    Science.gov (United States)

    Swapna, M. S.; Saritha Devi, H. V.; Raj, Vimal; Sankararaman, S.

    2018-03-01

    Today diesel engines are used worldwide for various applications and very importantly in transportation. Hydrocarbons are the most widespread precursors among carbon sources employed in the production of carbon nanotubes (CNTs). The aging of internal combustion engine is an important parameter in deciding the carbon emission and particulate matter due to incomplete combustion of fuel. In the present work, an attempt has been made for the effective utilization of the aged engines for potential applicationapplications in fuel cells and nanoelectronics. To analyze the impact of aging, the particulate matter rich in carbon content areis collected from diesel engines of different ages. The soot with CNTs is purified by the liquid phase oxidation method and analyzed by Field Emission Scanning Electron Microscopy, High-Resolution Transmission Electron Microscopy, Energy Dispersive Spectroscopy, UV-Visible spectroscopy, Raman spectroscopy and Thermogravimetric analysis. The SEM image contains self-similar patterns probing fractal analysis. The fractal dimensions of the samples are determined by the box counting method. We could find a greater amount of single-walled carbon nanotubes (SWCNTs) in the particulate matter emitted by aged diesel engines and thereby giving information about the combustion efficiency of the engine. The SWCNT rich sample finds a wide range of applicationapplications in nanoelectronics and thereby pointing a potential use of these aged engines.

  14. Highly dispersed spherical Bi3.25La0.75Ti3O12 nanocrystals via topotactic crystallization of aggregation-free gel particles from an effective inverse miniemulsion sol-gel approach

    Science.gov (United States)

    Wang, Aijun; Zeng, Yanwei; Han, Longxiang; Ding, Chuan; Cao, Liangliang; Li, Rongjie

    2015-09-01

    Aggregation-free spherical lanthanum-doped bismuth titanate (Bi3.25La0.75Ti3O12, BLT) gel particles with an average size of about 150 nm were successfully obtained from an inverse miniemulsion sol-gel process, with Span-80 acting as surfactant, n-butanol as co-surfactant, cyclohexane as continuous phase, and submicro-droplets of aqueous solution containing Bi3+, La3+ and Ti4+ ions as dispersed phase, and then topotactically transformed into highly dispersed spherical BLT nanocrystals after an in situ crystallization at 600 °C for 8 h. It has been found that the BLT gel particles can be obtained via a moderate sol-gel reaction inside the miniemulsion droplets at 65 °C, but their morphology and aggregation degree are strongly affected by the relative amounts of Span-80 and n-butanol. The perfect spherical BLT gel particles with no aggregation can be achieved only under the condition of 3 wt% n-butanol relative to the mass of cyclohexane, with excessive amount of n-butanol leading to the formation of ill-gelled particles with irregular shapes, while insufficient addition of n-butanol resulting in terrible aggregation of gel particles. To understand the formation of aggregation-free spherical BLT gel particles, a tentative mechanism is proposed and discussed, which reveals that a well-coordinated oil-water interfacial film made up of Span-80 and n-butanol molecules and the appropriately enhanced evaporation of water from such interfaces should be responsible for the formation of aggregation-free spherical BLT gel particles.

  15. ABC of multi-fractal spacetimes and fractional sea turtles

    Energy Technology Data Exchange (ETDEWEB)

    Calcagni, Gianluca [Instituto de Estructura de la Materia, CSIC, Madrid (Spain)

    2016-04-15

    We clarify what it means to have a spacetime fractal geometry in quantum gravity and show that its properties differ from those of usual fractals. A weak and a strong definition of multi-scale and multi-fractal spacetimes are given together with a sketch of the landscape of multi-scale theories of gravitation. Then, in the context of the fractional theory with q-derivatives, we explore the consequences of living in a multi-fractal spacetime. To illustrate the behavior of a non-relativistic body, we take the entertaining example of a sea turtle. We show that, when only the time direction is fractal, sea turtles swim at a faster speed than in an ordinary world, while they swim at a slower speed if only the spatial directions are fractal. The latter type of geometry is the one most commonly found in quantum gravity. For time-like fractals, relativistic objects can exceed the speed of light, but strongly so only if their size is smaller than the range of particle-physics interactions. We also find new results about log-oscillating measures, the measure presentation and their role in physical observations and in future extensions to nowhere-differentiable stochastic spacetimes. (orig.)

  16. ABC of multi-fractal spacetimes and fractional sea turtles

    International Nuclear Information System (INIS)

    Calcagni, Gianluca

    2016-01-01

    We clarify what it means to have a spacetime fractal geometry in quantum gravity and show that its properties differ from those of usual fractals. A weak and a strong definition of multi-scale and multi-fractal spacetimes are given together with a sketch of the landscape of multi-scale theories of gravitation. Then, in the context of the fractional theory with q-derivatives, we explore the consequences of living in a multi-fractal spacetime. To illustrate the behavior of a non-relativistic body, we take the entertaining example of a sea turtle. We show that, when only the time direction is fractal, sea turtles swim at a faster speed than in an ordinary world, while they swim at a slower speed if only the spatial directions are fractal. The latter type of geometry is the one most commonly found in quantum gravity. For time-like fractals, relativistic objects can exceed the speed of light, but strongly so only if their size is smaller than the range of particle-physics interactions. We also find new results about log-oscillating measures, the measure presentation and their role in physical observations and in future extensions to nowhere-differentiable stochastic spacetimes. (orig.)

  17. ABC of multi-fractal spacetimes and fractional sea turtles

    Science.gov (United States)

    Calcagni, Gianluca

    2016-04-01

    We clarify what it means to have a spacetime fractal geometry in quantum gravity and show that its properties differ from those of usual fractals. A weak and a strong definition of multi-scale and multi-fractal spacetimes are given together with a sketch of the landscape of multi-scale theories of gravitation. Then, in the context of the fractional theory with q-derivatives, we explore the consequences of living in a multi-fractal spacetime. To illustrate the behavior of a non-relativistic body, we take the entertaining example of a sea turtle. We show that, when only the time direction is fractal, sea turtles swim at a faster speed than in an ordinary world, while they swim at a slower speed if only the spatial directions are fractal. The latter type of geometry is the one most commonly found in quantum gravity. For time-like fractals, relativistic objects can exceed the speed of light, but strongly so only if their size is smaller than the range of particle-physics interactions. We also find new results about log-oscillating measures, the measure presentation and their role in physical observations and in future extensions to nowhere-differentiable stochastic spacetimes.

  18. Evaluation of recycled concrete as aggregate in new concrete pavements.

    Science.gov (United States)

    2014-04-01

    This study evaluated the use of recycled concrete as coarse aggregate in new concrete pavements. : Recycled concrete aggregate (RCA) produced from demolished pavements in three geographically dispersed locations in Washington state were used to perfo...

  19. Effect of pore structure on anomalous behaviour of the lithium intercalation into porous V2O5 film electrode using fractal geometry concept

    International Nuclear Information System (INIS)

    Jung, Kyu-Nam; Pyun, Su-Il

    2006-01-01

    The effect of pore structure on anomalous behaviour of the lithium intercalation into porous V 2 O 5 film electrode has been investigated in terms of fractal geometry by employing ac-impedance spectroscopy combined with N 2 gas adsorption method and atomic force microscopy (AFM). For this purpose, porous V 2 O 5 film electrodes with different pore structures were prepared by the polymer surfactant templating method. From the analysis of N 2 gas adsorption isotherms and the triangulation analysis of AFM images, it was found that porous V 2 O 5 surfaces exhibited self-similar scaling properties with different fractal dimensions depending upon amount of the polymer surfactant in solution and the spatial cut-off ranges. All the ac-impedance spectra measured on porous V 2 O 5 film electrodes showed the non-ideal behaviour of the charge-transfer reaction and the diffusion reaction, which resulted from the interfacial capacitance dispersion and the frequency dispersion of the diffusion impedance, respectively. From the comparison between the surface fractal dimensions by using N 2 gas adsorption method and AFM, and the analysis of ac-impedance spectra by employing a constant phase element (CPE), it is experimentally confirmed that the lithium intercalation into porous V 2 O 5 film electrode is crucially influenced by the pore surface irregularity and the film surface irregularity

  20. Heritability of Retinal Vascular Fractals

    DEFF Research Database (Denmark)

    Vergmann, Anna Stage; Broe, Rebecca; Kessel, Line

    2017-01-01

    Purpose: To determine the genetic contribution to the pattern of retinal vascular branching expressed by its fractal dimension. Methods: This was a cross-sectional study of 50 monozygotic and 49 dizygotic, same-sex twin pairs aged 20 to 46 years. In 50°, disc-centered fundus photographs, the reti...... fractal dimension did not differ statistically significantly between monozygotic and dizygotic twin pairs (1.505 vs. 1.495, P = 0.06), supporting that the study population was suitable for quantitative analysis of heritability. The intrapair correlation was markedly higher (0.505, P = 0.......0002) in monozygotic twins than in dizygotic twins (0.108, P = 0.46), corresponding to a heritability h2 for the fractal dimension of 0.79. In quantitative genetic models, dominant genetic effects explained 54% of the variation and 46% was individually environmentally determined. Conclusions: In young adult twins...

  1. Fractal characterization of the compaction and sintering of ferrites

    NARCIS (Netherlands)

    Glass, H.J.; With, de G.

    2001-01-01

    A novel parameter, the fractal exponent DE, is derived using the concept of fractal scaling. The fractal exponent DE relates the development of a feature within a material to the development of the size of the material. As an application, structural changes during the compaction and sintering of

  2. A Tutorial Review on Fractal Spacetime and Fractional Calculus

    Science.gov (United States)

    He, Ji-Huan

    2014-11-01

    This tutorial review of fractal-Cantorian spacetime and fractional calculus begins with Leibniz's notation for derivative without limits which can be generalized to discontinuous media like fractal derivative and q-derivative of quantum calculus. Fractal spacetime is used to elucidate some basic properties of fractal which is the foundation of fractional calculus, and El Naschie's mass-energy equation for the dark energy. The variational iteration method is used to introduce the definition of fractional derivatives. Fractal derivative is explained geometrically and q-derivative is motivated by quantum mechanics. Some effective analytical approaches to fractional differential equations, e.g., the variational iteration method, the homotopy perturbation method, the exp-function method, the fractional complex transform, and Yang-Laplace transform, are outlined and the main solution processes are given.

  3. Fractal analysis for heat extraction in geothermal system

    Directory of Open Access Journals (Sweden)

    Shang Xiaoji

    2017-01-01

    Full Text Available Heat conduction and convection play a key role in geothermal development. These two processes are coupled and influenced by fluid seepage in hot porous rock. A number of integer dimension thermal fluid models have been proposed to describe this coupling mechanism. However, fluid flow, heat conduction and convection in porous rock are usually non-linear, tortuous and fractal, thus the integer dimension thermal fluid flow models can not well describe these phenomena. In this study, a fractal thermal fluid coupling model is proposed to describe the heat conduction and flow behaviors in fractal hot porous rock in terms of local fractional time and space derivatives. This coupling equation is analytically solved through the fractal travelling wave transformation method. Analytical solutions of Darcy’s velocity, fluid temperature with fractal time and space are obtained. The solutions show that the introduction of fractional parameters is essential to describe the mechanism of heat conduction and convection.

  4. Fractal characterization of brain lesions in CT images

    International Nuclear Information System (INIS)

    Jauhari, Rajnish K.; Trivedi, Rashmi; Munshi, Prabhat; Sahni, Kamal

    2005-01-01

    Fractal Dimension (FD) is a parameter used widely for classification, analysis, and pattern recognition of images. In this work we explore the quantification of CT (computed tomography) lesions of the brain by using fractal theory. Five brain lesions, which are portions of CT images of diseased brains, are used for the study. These lesions exhibit self-similarity over a chosen range of scales, and are broadly characterized by their fractal dimensions

  5. Investigation into How 8th Grade Students Define Fractals

    Science.gov (United States)

    Karakus, Fatih

    2015-01-01

    The analysis of 8th grade students' concept definitions and concept images can provide information about their mental schema of fractals. There is limited research on students' understanding and definitions of fractals. Therefore, this study aimed to investigate the elementary students' definitions of fractals based on concept image and concept…

  6. Fractal Image Coding with Digital Watermarks

    Directory of Open Access Journals (Sweden)

    Z. Klenovicova

    2000-12-01

    Full Text Available In this paper are presented some results of implementation of digitalwatermarking methods into image coding based on fractal principles. Thepaper focuses on two possible approaches of embedding digitalwatermarks into fractal code of images - embedding digital watermarksinto parameters for position of similar blocks and coefficients ofblock similarity. Both algorithms were analyzed and verified on grayscale static images.

  7. River networks and ecological corridors: Reactive transport on fractals, migration fronts, hydrochory

    Science.gov (United States)

    Bertuzzo, E.; Maritan, A.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2007-04-01

    Moving from a recent quantitative model of the US colonization in the 19th century that relies on analytical and numerical results of reactive-diffusive transport on fractal river networks, this paper considers its generalization to include an embedded flow direction which biases transport. We explore the properties of biased reaction-dispersal models, in which the reaction rates are described by a logistic equation. The relevance of the work is related to the prediction of the role of hydrologic controls on invasion processes (of species, populations, propagules, or infective agents, depending on the specifics of reaction and transport) occurring in river basins. Exact solutions are obtained along with general numerical solutions, which are applied to fractal constructs like Peano basins and real rivers. We also explore similarities and departures from different one-dimensional invasion models where a bias is added to both the diffusion and the telegraph equations, considering their respective ecological insight. We find that the geometrical constraints imposed by the fractal networks imply strong corrections on the speed of traveling fronts that can be enhanced or smoothed by the bias. Applications to real river networks show that the chief morphological parameters affecting the front speed are those characterizing the node-to-node distances measured along the network structure. The spatial density and number of reactive sites thus prove to be a vital hydrologic control on invasions. We argue that our solutions, currently tied to the validity of the logistic growth, might be relevant to the general study of species' spreading along ecological corridors defined by the river network structure.

  8. Biometric feature extraction using local fractal auto-correlation

    International Nuclear Information System (INIS)

    Chen Xi; Zhang Jia-Shu

    2014-01-01

    Image texture feature extraction is a classical means for biometric recognition. To extract effective texture feature for matching, we utilize local fractal auto-correlation to construct an effective image texture descriptor. Three main steps are involved in the proposed scheme: (i) using two-dimensional Gabor filter to extract the texture features of biometric images; (ii) calculating the local fractal dimension of Gabor feature under different orientations and scales using fractal auto-correlation algorithm; and (iii) linking the local fractal dimension of Gabor feature under different orientations and scales into a big vector for matching. Experiments and analyses show our proposed scheme is an efficient biometric feature extraction approach. (condensed matter: structural, mechanical, and thermal properties)

  9. Fractal dimension of cantori

    International Nuclear Information System (INIS)

    Li, W.; Bak, P.

    1986-01-01

    At a critical point the golden-mean Kolmogorov-Arnol'd-Moser trajectory of Chirikov's standard map breaks up into a fractal orbit called a cantorus. The transition describes a pinning of the incommensurate phase of the Frenkel-Kontorowa model. We find that the fractal dimension of the cantorus is D = 0 and that the transition from the Kolmogorov-Arnol'd-Moser trajectory with dimension D = 1 to the cantorus is governed by an exponent ν = 0.98. . . and a universal scaling function. It is argued that the exponent is equal to that of the Lyapunov exponent

  10. A series of new soliton-like solutions and double-like periodic solutions of a (2 + 1)-dimensional dispersive long wave equation

    International Nuclear Information System (INIS)

    Yong Chen; Qi Wang

    2005-01-01

    In this paper, we extend the algebraic method proposed by Fan (Chaos, Solitons and Fractals 20 (2004) 609) and the improved extended tanh method by Yomba (Chaos, Solitons and Fractals 20 (2004) 1135) to uniformly construct a series of soliton-like solutions and double-like periodic solutions for nonlinear partial differential equations (NPDE). Some new soliton-like solutions and double-like periodic solutions of a (2 + 1)-dimensional dispersive long wave equation are obtained

  11. Fractal characteristic study of shearer cutter cutting resistance curves

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Heilongjiang Scientific and Technical Institute, Haerbin (China). Dept of Mechanical Engineering

    2004-02-01

    The cutting resistance curve is the most useful tool for reflecting the overall cutting performance of a cutting machine. The cutting resistance curve is influenced by many factors such as the pick structure and arrangement, the cutter operation parameters, coal quality and geologic conditions. This paper discusses the use of fractal geometry to study the properties of the cutting resistance curve, and the use of fractal dimensions to evaluate cutting performance. On the basis of fractal theory, the general form and calculation method of fractal characteristics are given. 4 refs., 3 figs., 1 tab.

  12. Well-dispersed gold nanowire suspension for assembly application

    International Nuclear Information System (INIS)

    Xu Cailing; Zhang Li; Zhang Haoli; Li Hulin

    2005-01-01

    A method for fabricating well-dispersed nanowire suspension has been demonstrated in the paper. Thin gold nanowires were prepared by template synthesis, and then functionalized with sulphonate group-terminated thiols before suspended in different solvents. The degree of aggregation of the obtained suspension was evaluated with transmission electron microscopy (TEM) and UV-vis spectroscopy. It was found that the degree of aggregation was predominated by the solvents, and the best degree of dispersion was obtained when isopropyl alcohol (IPA) was used as the solvent. The gold nanowires from the suspension can be selectively assembled onto chemically patterned substrates. This well-dispersed nanowire suspension is potentially useful for fabricating novel nanodevices

  13. Constructing and applying the fractal pied de poule (houndstooth)

    NARCIS (Netherlands)

    Feijs, L.M.G.; Toeters, M.J.; Hart, G.; Sarhangi, R.

    2013-01-01

    Time is ready for a fractal version of pied de poule; it is almost "in the air". Taking inspiration from the Cantor set, and using the analysis of the classical pattern, we obtain a family of elegant new fractal Pied de Poules. We calculate the fractal dimension and develop an attractive fashion

  14. Multirate diversity strategy of fractal modulation

    International Nuclear Information System (INIS)

    Yuan Yong; Shi Si-Hong; Luo Mao-Kang

    2011-01-01

    Previous analyses of fractal modulation were carried out mostly from a signle perspective or a subband, but the analyses from the perspective of multiscale synthesis have not been found yet; while multiscale synthesis is just the essence of the mutlirate diversity which is the most important characteristic of fractal modulation. As for the mutlirate diversity of fractal modulation, previous studies only dealt with the general outspread of its concept, lacked the thorough and intensive quantitative comparison and analysis. In light of the above fact, from the perspective of multiscale synthesis, in this paper we provide a comprehensive analysis of the multirate diversity of fractal modulation and corresponding quantitative analysis. The results show that mutlirate diversity, which is a fusion of frequency diversity and time diversity, pays an acceptable price in spectral efficiency in exchange for a significant improvement in bit error rate. It makes fractal modulation particularly suitable for the channels whose bandwidth and duration parameters are unknown or cannot be predicted to the transmitter. Surely it is clearly of great significance for reliable communications. Moreover, we also attain the ability to flexibly make various rate-bandwidth tradeoffs between the transmitter and the receiver, to freely select the reception time and to expediently control the total bandwidth. Furthermore, the acquisitions or improvements of these fine features could provide support of the technical feasibility for the electromagnetic spectrum control technology in a complex electromagnetic environment. (general)

  15. Aggregated particles caused by instrument artifact

    Science.gov (United States)

    Pierce, Ashley M.; Loría-Salazar, S. Marcela; Arnott, W. Patrick; Edwards, Grant C.; Miller, Matthieu B.; Gustin, Mae S.

    2018-04-01

    Previous studies have indicated that superaggregates, clusters of aggregates of soot primary particles, can be formed in large-scale turbulent fires. Due to lower effective densities, higher porosity, and lower aerodynamic diameters, superaggregates may pass through inlets designed to remove particles 2.5 µm in aerodynamic diameter were collected on 36 out of 158 sample days. On preliminary analysis, it was thought that these aggregated particles were superaggregates, depositing past PM10 (particles wind speeds, as well as the use of generators on site. Samples with aggregated particles, referred to as aggregates, were analyzed using a scanning electron microscope for size and shape and energy dispersive X-ray spectroscopy was used for elemental analysis. It was determined, based on the high amounts of aluminum present in the aggregate samples, that a sampling artifact associated with the sample inlet and prolonged, high wind events was the probable reason for the observed aggregates.

  16. Highly dispersed spherical Bi3.25La0.75Ti3O12 nanocrystals via topotactic crystallization of aggregation-free gel particles from an effective inverse miniemulsion sol–gel approach

    International Nuclear Information System (INIS)

    Wang, Aijun; Zeng, Yanwei; Han, Longxiang; Ding, Chuan; Cao, Liangliang; Li, Rongjie

    2015-01-01

    Aggregation-free spherical lanthanum-doped bismuth titanate (Bi 3.25 La 0.75 Ti 3 O 12 , BLT) gel particles with an average size of about 150 nm were successfully obtained from an inverse miniemulsion sol–gel process, with Span-80 acting as surfactant, n-butanol as co-surfactant, cyclohexane as continuous phase, and submicro-droplets of aqueous solution containing Bi 3+ , La 3+ and Ti 4+ ions as dispersed phase, and then topotactically transformed into highly dispersed spherical BLT nanocrystals after an in situ crystallization at 600 °C for 8 h. It has been found that the BLT gel particles can be obtained via a moderate sol–gel reaction inside the miniemulsion droplets at 65 °C, but their morphology and aggregation degree are strongly affected by the relative amounts of Span-80 and n-butanol. The perfect spherical BLT gel particles with no aggregation can be achieved only under the condition of 3 wt% n-butanol relative to the mass of cyclohexane, with excessive amount of n-butanol leading to the formation of ill-gelled particles with irregular shapes, while insufficient addition of n-butanol resulting in terrible aggregation of gel particles. To understand the formation of aggregation-free spherical BLT gel particles, a tentative mechanism is proposed and discussed, which reveals that a well-coordinated oil–water interfacial film made up of Span-80 and n-butanol molecules and the appropriately enhanced evaporation of water from such interfaces should be responsible for the formation of aggregation-free spherical BLT gel particles. Graphical Abstract: Aggregation-free spherical BLT (Bi 3.25 La 0.75 Ti 3 O 12 ) gel particles can be prepared from an effective inverse miniemulsion sol–gel process, and subsequently topotactically transformed into spherical BLT nanocrystals through an in situ crystallization

  17. Vibration modes of 3n-gaskets and other fractals

    Energy Technology Data Exchange (ETDEWEB)

    Bajorin, N; Chen, T; Dagan, A; Emmons, C; Hussein, M; Khalil, M; Mody, P; Steinhurst, B; Teplyaev, A [Department of Mathematics, University of Connecticut, Storrs CT 06269 (United States)

    2008-01-11

    We rigorously study eigenvalues and eigenfunctions (vibration modes) on the class of self-similar symmetric finitely ramified fractals, which include the Sierpinski gasket and other 3n-gaskets. We consider the classical Laplacian on fractals which generalizes the usual one-dimensional second derivative, is the generator of the self-similar diffusion process, and has possible applications as the quantum Hamiltonian. We develop a theoretical matrix analysis, including analysis of singularities, which allows us to compute eigenvalues, eigenfunctions and their multiplicities exactly. We support our theoretical analysis by symbolic and numerical computations. Our analysis, in particular, allows the computation of the spectral zeta function on fractals and the limiting distribution of eigenvalues (i.e., integrated density of states). We consider such examples as the level-3 Sierpinski gasket, a fractal 3-tree, and the diamond fractal.

  18. Fractal analysis of polar bear hairs

    Directory of Open Access Journals (Sweden)

    Wang Qing-Li

    2015-01-01

    Full Text Available Hairs of a polar bear (Ursus maritimus are of superior properties such as the excellent thermal protection. Why do polar bears can resist such cold environment? The paper concludes that its fractal porosity plays an important role, and its fractal dimensions are very close to the golden mean, 1.618, revealing the possible optimal structure of polar bear hair.

  19. Twitching motility of bacteria with type-IV pili: Fractal walks, first passage time, and their consequences on microcolonies

    Science.gov (United States)

    Bisht, Konark; Klumpp, Stefan; Banerjee, Varsha; Marathe, Rahul

    2017-11-01

    A human pathogen, Neisseria gonorrhoeae (NG), moves on surfaces by attaching and retracting polymeric structures called Type IV pili. The tug-of-war between the pili results in a two-dimensional stochastic motion called twitching motility. In this paper, with the help of real-time NG trajectories, we develop coarse-grained models for their description. The fractal properties of these trajectories are determined and their influence on first passage time and formation of bacterial microcolonies is studied. Our main observations are as follows: (i) NG performs a fast ballistic walk on small time scales and a slow diffusive walk over long time scales with a long crossover region; (ii) there exists a characteristic persistent length lp*, which yields the fastest growth of bacterial aggregates or biofilms. Our simulations reveal that lp*˜L0.6 , where L ×L is the surface on which the bacteria move; (iii) the morphologies have distinct fractal characteristics as a consequence of the ballistic and diffusive motion of the constituting bacteria.

  20. Fractal tomography and its application in 3D vision

    Science.gov (United States)

    Trubochkina, N.

    2018-01-01

    A three-dimensional artistic fractal tomography method that implements a non-glasses 3D visualization of fractal worlds in layered media is proposed. It is designed for the glasses-free 3D vision of digital art objects and films containing fractal content. Prospects for the development of this method in art galleries and the film industry are considered.

  1. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    Science.gov (United States)

    Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy

    2017-01-01

    This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  2. Teaching about Fractals.

    Science.gov (United States)

    Willson, Stephen J.

    1991-01-01

    Described is a course designed to teach students about fractals using various teaching methods including the computer. Discussed are why the course drew students, prerequisites, clientele, textbook, grading, computer usage, and the syllabus. (KR)

  3. A short history of fractal-Cantorian space-time

    International Nuclear Information System (INIS)

    Marek-Crnjac, L.

    2009-01-01

    The article attempts to give a short historical overview of the discovery of fractal-Cantorian space-time starting from the 17th century up to the present. In the last 25 years a great number of scientists worked on fractal space-time notably Garnet Ord in Canada, Laurent Nottale in France and Mohamed El Naschie in England who gave an exact mathematical procedure for the derivation of the dimensionality and curvature of fractal space-time fuzzy manifold.

  4. Enhancement of critical temperature in fractal metamaterial superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Smolyaninov, Igor I., E-mail: smoly@umd.edu [Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742 (United States); Smolyaninova, Vera N. [Department of Physics Astronomy and Geosciences, Towson University, 8000 York Road, Towson, MD 21252 (United States)

    2017-04-15

    Fractal metamaterial superconductor geometry has been suggested and analyzed based on the recently developed theoretical description of critical temperature increase in epsilon near zero (ENZ) metamaterial superconductors. Considerable enhancement of critical temperature has been predicted in such materials due to appearance of large number of additional poles in the inverse dielectric response function of the fractal. Our results agree with the recent observation (Fratini et al. Nature 466, 841 (2010)) that fractal defect structure promotes superconductivity.

  5. Fractal characteristics investigation on electromagnetic scattering from 2-D Weierstrass fractal dielectric rough surface

    International Nuclear Information System (INIS)

    Ren Xincheng; Guo Lixin

    2008-01-01

    A normalized two-dimensional band-limited Weierstrass fractal function is used for modelling the dielectric rough surface. An analytic solution of the scattered field is derived based on the Kirchhoff approximation. The variance of scattering intensity is presented to study the fractal characteristics through theoretical analysis and numerical calculations. The important conclusion is obtained that the diffracted envelope slopes of scattering pattern can be approximated as a slope of linear equation. This conclusion will be applicable for solving the inverse problem of reconstructing rough surface and remote sensing. (classical areas of phenomenology)

  6. Fractal Dimension of Fracture Surface in Rock Material after High Temperature

    Directory of Open Access Journals (Sweden)

    Z. Z. Zhang

    2015-01-01

    Full Text Available Experiments on granite specimens after different high temperature under uniaxial compression were conducted and the fracture surfaces were observed by scanning electron microscope (SEM. The fractal dimensions of the fracture surfaces with increasing temperature were calculated, respectively. The fractal dimension of fracture surface is between 1.44 and 1.63. Its value approximately goes up exponentially with the increase of temperature. There is a quadratic polynomial relationship between the rockburst tendency and fractal dimension of fracture surface; namely, a fractal dimension threshold can be obtained. Below the threshold value, a positive correlativity shows between rockburst tendency and fractal dimension; when the fractal dimension is greater than the threshold value, it shows an inverse correlativity.

  7. Evaluation of peri-implant bone using fractal analysis

    International Nuclear Information System (INIS)

    Jung, Yun Hoa

    2005-01-01

    The purpose of this study was to investigate whether the fractal dimension of successive panoramic radiographs of bone after implant placement is useful in the characterization of structural change in alveolar bone. Twelve subjects with thirty-five implants were retrospectively followed-up from one week to six months after implantation. Thirty-six panoramic radiographs from twelve patients were classified into 1 week. 1-2 months and 3-6 months after implantation and digitized. The windows of bone apical and mesial or distal to the implant were defined as peri apical region of interest (ROI) and inter dental ROI; the fractal dimension of the image was calculated. There was not a statistically significant difference in fractal dimensions during the period up to 6 months after implantation. The fractal dimensions were higher in 13 and 15 mm than 10 and 11.5 mm implant length at inter dental ROIs in 3-6 months after implantation (p<0.01). Longer fixtures showed the higher fractal dimension of bone around implant. This investigation needs further exploration with large numbers of implants for longer follow-up periods.

  8. Fractal analysis for studying the evolution of forests

    International Nuclear Information System (INIS)

    Andronache, Ion C.; Ahammer, Helmut; Jelinek, Herbert F.; Peptenatu, Daniel; Ciobotaru, Ana-M.; Draghici, Cristian C.; Pintilii, Radu D.; Simion, Adrian G.

    2016-01-01

    Highlights: • Legal and illegal deforestation is investigated by fractal analysis. • A new fractal fragmentation index FFI is proposed. • Differences in shapes of forest areas indicate the type of deforestation. • Support of ecological management. - Abstract: Deforestation is an important phenomenon that may create major imbalances in ecosystems. In this study we propose a new mathematical analysis of the forest area dynamic, enabling qualitative as well as quantitative statements and results. Fractal dimensions of the area and the perimeter of a forest were determined using digital images. The difference between fractal dimensions of the area and the perimeter images turned out to be a crucial quantitative parameter. Accordingly, we propose a new fractal fragmentation index, FFI, which is based on this difference and which highlights the degree of compaction or non-compaction of the forest area in order to interpret geographic features. Particularly, this method was applied to forests, where large areas have been legally or illegally deforested. However, these methods can easily be used for other ecological or geographical investigations based on digital images, including deforestation of rainforests.

  9. MEASURING THE FRACTAL STRUCTURE OF INTERSTELLAR CLOUDS

    NARCIS (Netherlands)

    VOGELAAR, MGR; WAKKER, BP; SCHWARZ, UJ

    1991-01-01

    To study the structure of interstellar clouds we used the so-called perimeter-area relation to estimate fractal dimensions. We studied the reliability of the method by applying it to artificial fractals and discuss some of the problems and pitfalls. Results for two different cloud types

  10. Fractal Geometry and Stochastics V

    CERN Document Server

    Falconer, Kenneth; Zähle, Martina

    2015-01-01

    This book brings together leading contributions from the fifth conference on Fractal Geometry and Stochastics held in Tabarz, Germany, in March 2014. The book is divided into five sections covering different facets of this fast developing area: geometric measure theory, self-similar fractals and recurrent structures, analysis and algebra on fractals, multifractal theory, and random constructions. There are state-of-the-art surveys as well as papers highlighting more specific recent advances. The authors are world-experts who present their topics comprehensibly and attractively. The book provides an accessible gateway to the subject for newcomers as well as a reference for recent developments for specialists. Authors include: Krzysztof Barański, Julien Barral, Kenneth Falconer, De-Jun Feng, Peter J. Grabner, Rostislav Grigorchuk, Michael Hinz, Stéphane Jaffard, Maarit Järvenpää, Antti Käenmäki, Marc Kesseböhmer, Michel Lapidus, Klaus Mecke, Mark Pollicott,  Michał Rams, Pablo Shmerkin, and András Te...

  11. Elasticity of fractal materials using the continuum model with non-integer dimensional space

    Science.gov (United States)

    Tarasov, Vasily E.

    2015-01-01

    Using a generalization of vector calculus for space with non-integer dimension, we consider elastic properties of fractal materials. Fractal materials are described by continuum models with non-integer dimensional space. A generalization of elasticity equations for non-integer dimensional space, and its solutions for the equilibrium case of fractal materials are suggested. Elasticity problems for fractal hollow ball and cylindrical fractal elastic pipe with inside and outside pressures, for rotating cylindrical fractal pipe, for gradient elasticity and thermoelasticity of fractal materials are solved.

  12. Dispersion and stabilization of cochleate nanoparticles.

    Science.gov (United States)

    Bozó, Tamás; Wacha, András; Mihály, Judith; Bóta, Attila; Kellermayer, Miklós S Z

    2017-08-01

    Cochleates, calcium-stabilized membrane rolls of nanoscale diameter, promise a unique and efficient way of delivering lipid-soluble drugs, proteins or nucleic acids into biological systems because they protect the encapsulated material against enzymatic or chemical degradation. Self-aggregation, which typically arises during production and storage is a major obstacle that has so far precluded the development of an efficient cochleate-based drug-delivery system. Here we show that citric acid, added transiently in a narrow concentration range, effectively disperses cochleate aggregates, stabilizes the disperse state for long-term storage and preserves the canonical ultrastructure and topological characteristics of cochleate nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Aggregation control of quantum dots through ion-mediated hydrogen bonding shielding.

    Science.gov (United States)

    Liu, Jianbo; Yang, Xiaohai; Wang, Kemin; He, Xiaoxiao; Wang, Qing; Huang, Jin; Liu, Yan

    2012-06-26

    Nanoparticle stabilization against detrimental aggregation is a critical parameter that needs to be well controlled. Herein, we present a facile and rapid ion-mediated dispersing technique that leads to hydrophilic aggregate-free quantum dots (QDs). Because of the shielding of the hydrogen bonds between cysteamine-capped QDs, the presence of F(-) ions disassembled the aggregates of QDs and afforded their high colloidal stability. The F(-) ions also greatly eliminated the nonspecific adsorption of the QDs on glass slides and cells. Unlike the conventional colloidal stabilized method that requires the use of any organic ligand and/or polymer for the passivation of the nanoparticle surface, the proposed approach adopts the small size and large diffusion coefficient of inorganic ions as dispersant, which offers the disaggregation a fast reaction dynamics and negligible influence on their intrinsic surface functional properties. Therefore, the ion-mediated dispersing strategy showed great potential in chemosensing and biomedical applications.

  14. Determining Effective Thermal Conductivity of Fabrics by Using Fractal Method

    Science.gov (United States)

    Zhu, Fanglong; Li, Kejing

    2010-03-01

    In this article, a fractal effective thermal conductivity model for woven fabrics with multiple layers is developed. Structural models of yarn and plain woven fabric are derived based on the fractal characteristics of macro-pores (gap or channel) between the yarns and micro-pores inside the yarns. The fractal effective thermal conductivity model can be expressed as a function of the pore structure (fractal dimension) and architectural parameters of the woven fabric. Good agreement is found between the fractal model and the thermal conductivity measurements in the general porosity ranges. It is expected that the model will be helpful in the evaluation of thermal comfort for woven fabric in the whole range of porosity.

  15. Tracer dispersion in two-dimensional rough fractures.

    Science.gov (United States)

    Drazer, G; Koplik, J

    2001-05-01

    Tracer diffusion and hydrodynamic dispersion in two-dimensional fractures with self-affine roughness are studied by analytic and numerical methods. Numerical simulations were performed via the lattice-Boltzmann approach, using a boundary condition for tracer particles that improves the accuracy of the method. The reduction in the diffusive transport, due to the fractal geometry of the fracture surfaces, is analyzed for different fracture apertures. In the limit of small aperture fluctuations we derive the correction to the diffusive coefficient in terms of the tortuosity, which accounts for the irregular geometry of the fractures. Dispersion is studied when the two fracture surfaces are simply displaced normally to the mean fracture plane and when there is a lateral shift as well. Numerical results are analyzed using the Lambda parameter, related to convective transport within the fracture, and simple arguments based on lubrication approximation. At very low Péclet number, in the case where fracture surfaces are laterally shifted, we show using several different methods that convective transport reduces dispersion.

  16. Heritability of Retinal Vascular Fractals

    DEFF Research Database (Denmark)

    Vergmann, Anna Stage; Broe, Rebecca; Kessel, Line

    2017-01-01

    , the retinal vascular fractal dimension was measured using the box-counting method and compared within monozygotic and dizygotic twin pairs using Pearson correlation coefficients. Falconer's formula and quantitative genetic models were used to determine the genetic component of variation. Results: The mean...... fractal dimension did not differ statistically significantly between monozygotic and dizygotic twin pairs (1.505 vs. 1.495, P = 0.06), supporting that the study population was suitable for quantitative analysis of heritability. The intrapair correlation was markedly higher (0.505, P = 0...

  17. International Conference on Advances of Fractals and Related Topics

    CERN Document Server

    Lau, Ka-Sing

    2014-01-01

    This volume collects thirteen expository or survey articles on topics including Fractal Geometry, Analysis of Fractals, Multifractal Analysis, Ergodic Theory and Dynamical Systems, Probability and Stochastic Analysis, written by the leading experts in their respective fields. The articles are based on papers presented at the International Conference on Advances on Fractals and Related Topics, held on December 10-14, 2012 at the Chinese University of Hong Kong. The volume offers insights into a number of exciting, cutting-edge developments in the area of fractals, which has close ties to and applications in other areas such as analysis, geometry, number theory, probability and mathematical physics.   

  18. A new numerical approximation of the fractal ordinary differential equation

    Science.gov (United States)

    Atangana, Abdon; Jain, Sonal

    2018-02-01

    The concept of fractal medium is present in several real-world problems, for instance, in the geological formation that constitutes the well-known subsurface water called aquifers. However, attention has not been quite devoted to modeling for instance, the flow of a fluid within these media. We deem it important to remind the reader that the concept of fractal derivative is not to represent the fractal sharps but to describe the movement of the fluid within these media. Since this class of ordinary differential equations is highly complex to solve analytically, we present a novel numerical scheme that allows to solve fractal ordinary differential equations. Error analysis of the method is also presented. Application of the method and numerical approximation are presented for fractal order differential equation. The stability and the convergence of the numerical schemes are investigated in detail. Also some exact solutions of fractal order differential equations are presented and finally some numerical simulations are presented.

  19. Evaluation of 3D Printer Accuracy in Producing Fractal Structure.

    Science.gov (United States)

    Kikegawa, Kana; Takamatsu, Kyuuichirou; Kawakami, Masaru; Furukawa, Hidemitsu; Mayama, Hiroyuki; Nonomura, Yoshimune

    2017-01-01

    Hierarchical structures, also known as fractal structures, exhibit advantageous material properties, such as water- and oil-repellency as well as other useful optical characteristics, owing to its self-similarity. Various methods have been developed for producing hierarchical geometrical structures. Recently, fractal structures have been manufactured using a 3D printing technique that involves computer-aided design data. In this study, we confirmed the accuracy of geometrical structures when Koch curve-like fractal structures with zero to three generations were printed using a 3D printer. The fractal dimension was analyzed using a box-counting method. This analysis indicated that the fractal dimension of the third generation hierarchical structure was approximately the same as that of the ideal Koch curve. These findings demonstrate that the design and production of fractal structures can be controlled using a 3D printer. Although the interior angle deviated from the ideal value, the side length could be precisely controlled.

  20. MEASURING THE FRACTAL STRUCTURE OF INTERSTELLAR CLOUDS

    NARCIS (Netherlands)

    VOGELAAR, MGR; WAKKER, BP

    To study the structure of interstellar matter we have applied the concept of fractal curves to the brightness contours of maps of interstellar clouds and from these estimated the fractal dimension for some of them. We used the so-called perimeter-area relation as the basis for these estimates. We

  1. MEASURING THE FRACTAL STRUCTURE OF INTERSTELLAR CLOUDS

    NARCIS (Netherlands)

    VOGELAAR, MGR; WAKKER, BP

    1994-01-01

    To study the structure of interstellar matter we have applied the concept of fractal curves to the brightness contours of maps of interstellar clouds and from these estimated the fractal dimension for some of them. We used the so-called perimeter-area relation as the basis for these estimates. We

  2. Dispersion stability of thermal nanofluids

    Directory of Open Access Journals (Sweden)

    Fan Yu

    2017-10-01

    Full Text Available Thermal nanofluids, the engineered fluids with dispersed functional nanoparticles, have exhibited extraordinary thermophysical properties and added functionalities, and thus have enabled a broad range of important applications. The poor dispersion stability of thermal nanofluids, however, has been considered as a long-existing issue that limits their further development and practical application. This review overviews the recent efforts and progresses in improving the dispersion stability of thermal nanofluids such as mechanistic understanding of dispersion behavior of nanofluids, examples of both water-based and oil-based nanofluids, strategies to stabilize nanofluids, and characterization techniques for dispersion behavior of nanofluids. Finally, on-going research needs, and possible solutions to research challenges and future research directions in exploring stably dispersed thermal nanofluids are discussed. Keywords: Thermal nanofluids, Dispersion, Aggregation, Electrostatic stabilization, Steric stabilization

  3. Short-term prediction method of wind speed series based on fractal interpolation

    International Nuclear Information System (INIS)

    Xiu, Chunbo; Wang, Tiantian; Tian, Meng; Li, Yanqing; Cheng, Yi

    2014-01-01

    Highlights: • An improved fractal interpolation prediction method is proposed. • The chaos optimization algorithm is used to obtain the iterated function system. • The fractal extrapolate interpolation prediction of wind speed series is performed. - Abstract: In order to improve the prediction performance of the wind speed series, the rescaled range analysis is used to analyze the fractal characteristics of the wind speed series. An improved fractal interpolation prediction method is proposed to predict the wind speed series whose Hurst exponents are close to 1. An optimization function which is composed of the interpolation error and the constraint items of the vertical scaling factors in the fractal interpolation iterated function system is designed. The chaos optimization algorithm is used to optimize the function to resolve the optimal vertical scaling factors. According to the self-similarity characteristic and the scale invariance, the fractal extrapolate interpolation prediction can be performed by extending the fractal characteristic from internal interval to external interval. Simulation results show that the fractal interpolation prediction method can get better prediction result than others for the wind speed series with the fractal characteristic, and the prediction performance of the proposed method can be improved further because the fractal characteristic of its iterated function system is similar to that of the predicted wind speed series

  4. Persistent fluctuations in stride intervals under fractal auditory stimulation.

    Science.gov (United States)

    Marmelat, Vivien; Torre, Kjerstin; Beek, Peter J; Daffertshofer, Andreas

    2014-01-01

    Stride sequences of healthy gait are characterized by persistent long-range correlations, which become anti-persistent in the presence of an isochronous metronome. The latter phenomenon is of particular interest because auditory cueing is generally considered to reduce stride variability and may hence be beneficial for stabilizing gait. Complex systems tend to match their correlation structure when synchronizing. In gait training, can one capitalize on this tendency by using a fractal metronome rather than an isochronous one? We examined whether auditory cues with fractal variations in inter-beat intervals yield similar fractal inter-stride interval variability as isochronous auditory cueing in two complementary experiments. In Experiment 1, participants walked on a treadmill while being paced by either an isochronous or a fractal metronome with different variation strengths between beats in order to test whether participants managed to synchronize with a fractal metronome and to determine the necessary amount of variability for participants to switch from anti-persistent to persistent inter-stride intervals. Participants did synchronize with the metronome despite its fractal randomness. The corresponding coefficient of variation of inter-beat intervals was fixed in Experiment 2, in which participants walked on a treadmill while being paced by non-isochronous metronomes with different scaling exponents. As expected, inter-stride intervals showed persistent correlations similar to self-paced walking only when cueing contained persistent correlations. Our results open up a new window to optimize rhythmic auditory cueing for gait stabilization by integrating fractal fluctuations in the inter-beat intervals.

  5. Paper-based inkjet-printed ultra-wideband fractal antennas

    KAUST Repository

    Maza, Armando Rodriguez; Cook, Benjamin Stassen; Jabbour, Ghassan E.; Shamim, Atif

    2012-01-01

    For the first time, paper-based inkjet-printed ultra-wideband (UWB) fractal antennas are presented. Two new designs, a miniaturised UWB monopole, which utilises a fractal matching network and is the smallest reported inkjet-printed UWB printed

  6. Applications of fractals in ecology.

    Science.gov (United States)

    Sugihara, G; M May, R

    1990-03-01

    Fractal models describe the geometry of a wide variety of natural objects such as coastlines, island chains, coral reefs, satellite ocean-color images and patches of vegetation. Cast in the form of modified diffusion models, they can mimic natural and artificial landscapes having different types of complexity of shape. This article provides a brief introduction to fractals and reports on how they can be used by ecologists to answer a variety of basic questions, about scale, measurement and hierarchy in, ecological systems. Copyright © 1990. Published by Elsevier Ltd.

  7. Assessment of textural differentiations in forest resources in Romania using fractal analysis

    DEFF Research Database (Denmark)

    Andronache, Ion; Fensholt, Rasmus; Ahammer, Helmut

    2017-01-01

    regions in Romania affected by both deforestation and reforestation using a non-Euclidean method based on fractal analysis.We calculated four fractal dimensions of forest areas: the fractal box-counting dimension of the forest areas, the fractal box-counting dimension of the dilated forest areas......, the fractal dilation dimension and the box-counting dimension of the border of the dilated forest areas. Fractal analysis revealed morpho-structural and textural differentiations of forested, deforested and reforested areas in development regions with dominant mountain relief and high hills (more forested...... and compact organization) in comparison to the development regions dominated by plains or low hills (less forested, more fragmented with small and isolated clusters). Our analysis used the fractal analysis that has the advantage of analyzing the entire image, rather than studying local information, thereby...

  8. Fractal studies on the positron annihilation in metals

    International Nuclear Information System (INIS)

    Lung, C.W.

    1994-06-01

    Traditionally, the Euclidean lines, circles and spheres have served as the basis of the intuitive understanding of the geometry of nature. Recently, the concept of fractals has caught the imagination of scientists in many fields. This paper is to continue our previous work on position annihilation near fractal surfaces to demonstrate that the concept of fractals provides a powerful tool for understanding the structure and properties of defects and rough surfaces in relation to positron annihilation studies. Some problems on Berry geometrical phase have also been discussed. (author). 15 refs, fig., 1 tab

  9. Delay Bound: Fractal Traffic Passes through Network Servers

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-01-01

    Full Text Available Delay analysis plays a role in real-time systems in computer communication networks. This paper gives our results in the aspect of delay analysis of fractal traffic passing through servers. There are three contributions presented in this paper. First, we will explain the reasons why conventional theory of queuing systems ceases in the general sense when arrival traffic is fractal. Then, we will propose a concise method of delay computation for hard real-time systems as shown in this paper. Finally, the delay computation of fractal traffic passing through severs is presented.

  10. Particle Aggregation During Fe(III) Bioreduction in Nontronite

    Science.gov (United States)

    Jaisi, D. P.; Dong, H.; Hi, Z.; Kim, J.

    2005-12-01

    This study was performed to evaluate the rate and mechanism of particle aggregation during bacterial Fe (III) reduction in different size fractions of nontronite and to investigate the role of different factors contributing to particle aggregation. To achieve this goal, microbial Fe(III) reduction experiments were performed with lactate as an electron donor, Fe(III) in nontronite as an electron acceptor, and AQDS as an electron shuttle in bicarbonate buffer using Shewanella putrefaceins CN32. These experiments were performed with and without Na- pyrophosphate as a dispersant in four size fractions of nontronite (0.12-0.22, 0.41-0.69, 0.73-0.96 and 1.42-1.8 mm). The rate of nontronite aggregation during the Fe(III) bioreduction was measured by analyzing particle size distribution using photon correlation spectroscopy (PCS) and SEM images analysis. Similarly, the changes in particle morphology during particle aggregation were determined by analyses of SEM images. Changes in particle surface charge were measured with electrophoretic mobility analyzer. The protein and carbohydrate fraction of EPS produced by cells during Fe(III) bioreduction was measured using Bradford and phenol-sulfuric acid extraction method, respectively. In the presence of the dispersant, the extent of Fe(III) bioreduction was 11.5-12.2% within the first 56 hours of the experiment. There was no measurable particle aggregation in control experiments. The PCS measurements showed that the increase in the effective diameter (95% percentile) was by a factor of 3.1 and 1.9 for particle size of 0.12-0.22 mm and 1.42-1.80 mm, respectively. The SEM image analyses also gave the similar magnitude of increase in particle size. In the absence of the dispersant, the extent of Fe(III) bioreduction was 13.4-14.5% in 56 hours of the experiment. The rate of aggregation was higher than that in the presence of the dispersant. The increase in the effective diameter (95% percentile) was by a factor of 13.6 and 4.1 for

  11. Experimental study of circle grid fractal pattern on turbulent intensity in pipe flow

    International Nuclear Information System (INIS)

    Manshoor, B; Zaman, I; Othman, M F; Khalid, Amir

    2013-01-01

    Fractal turbulence is deemed much more efficient than grid turbulence in terms of a turbulence generation. In this paper, the hotwire experimental results for the circle grids fractal pattern as a turbulent generator will be presented. The self-similar edge characteristic of the circle grid fractal pattern is thought to play a vital role in the enhancement of turbulent intensity. Three different beta ratios of perforated plates based on circle grids fractal pattern were used in the experimental work and each paired with standard circle grids with similar porosity. The objectives were to study the fractal scaling influence on the flow and also to explore the potential of the circle grids fractal pattern in enhancing the turbulent intensity. The results provided an excellent insight of the fractal generated turbulence and the fractal flow physics. Across the circle grids fractal pattern, the pressure drop was lower but the turbulent intensity was higher than those across the paired standard circle grids

  12. An efficient fractal image coding algorithm using unified feature and DCT

    International Nuclear Information System (INIS)

    Zhou Yiming; Zhang Chao; Zhang Zengke

    2009-01-01

    Fractal image compression is a promising technique to improve the efficiency of image storage and image transmission with high compression ratio, however, the huge time consumption for the fractal image coding is a great obstacle to the practical applications. In order to improve the fractal image coding, efficient fractal image coding algorithms using a special unified feature and a DCT coder are proposed in this paper. Firstly, based on a necessary condition to the best matching search rule during fractal image coding, the fast algorithm using a special unified feature (UFC) is addressed, and it can reduce the search space obviously and exclude most inappropriate matching subblocks before the best matching search. Secondly, on the basis of UFC algorithm, in order to improve the quality of the reconstructed image, a DCT coder is combined to construct a hybrid fractal image algorithm (DUFC). Experimental results show that the proposed algorithms can obtain good quality of the reconstructed images and need much less time than the baseline fractal coding algorithm.

  13. Characterisation of human non-proliferativediabetic retinopathy using the fractal analysis

    Directory of Open Access Journals (Sweden)

    Carmen Alina Lupaşcu

    2015-08-01

    Full Text Available AIM:To investigate and quantify changes in the branching patterns of the retina vascular network in diabetes using the fractal analysis method.METHODS:This was a clinic-based prospective study of 172 participants managed at the Ophthalmological Clinic of Cluj-Napoca, Romania, between January 2012 and December 2013. A set of 172 segmented and skeletonized human retinal images, corresponding to both normal (24 images and pathological (148 images states of the retina were examined. An automatic unsupervised method for retinal vessel segmentation was applied before fractal analysis. The fractal analyses of the retinal digital images were performed using the fractal analysis software ImageJ. Statistical analyses were performed for these groups using Microsoft Office Excel 2003 and GraphPad InStat software.RESULTS:It was found that subtle changes in the vascular network geometry of the human retina are influenced by diabetic retinopathy (DR and can be estimated using the fractal geometry. The average of fractal dimensions D for the normal images (segmented and skeletonized versions is slightly lower than the corresponding values of mild non-proliferative DR (NPDR images (segmented and skeletonized versions. The average of fractal dimensions D for the normal images (segmented and skeletonized versions is higher than the corresponding values of moderate NPDR images (segmented and skeletonized versions. The lowest values were found for the corresponding values of severe NPDR images (segmented and skeletonized versions.CONCLUSION:The fractal analysis of fundus photographs may be used for a more complete undeTrstanding of the early and basic pathophysiological mechanisms of diabetes. The architecture of the retinal microvasculature in diabetes can be quantitative quantified by means of the fractal dimension. Microvascular abnormalities on retinal imaging may elucidate early mechanistic pathways for microvascular complications and distinguish patients with

  14. Design of Normal Concrete Mixtures Using Workability-Dispersion-Cohesion Method

    OpenAIRE

    Qasrawi, Hisham

    2016-01-01

    The workability-dispersion-cohesion method is a new proposed method for the design of normal concrete mixes. The method uses special coefficients called workability-dispersion and workability-cohesion factors. These coefficients relate workability to mobility and stability of the concrete mix. The coefficients are obtained from special charts depending on mix requirements and aggregate properties. The method is practical because it covers various types of aggregates that may not be within sta...

  15. Persistent fluctuations in stride intervals under fractal auditory stimulation.

    Directory of Open Access Journals (Sweden)

    Vivien Marmelat

    Full Text Available Stride sequences of healthy gait are characterized by persistent long-range correlations, which become anti-persistent in the presence of an isochronous metronome. The latter phenomenon is of particular interest because auditory cueing is generally considered to reduce stride variability and may hence be beneficial for stabilizing gait. Complex systems tend to match their correlation structure when synchronizing. In gait training, can one capitalize on this tendency by using a fractal metronome rather than an isochronous one? We examined whether auditory cues with fractal variations in inter-beat intervals yield similar fractal inter-stride interval variability as isochronous auditory cueing in two complementary experiments. In Experiment 1, participants walked on a treadmill while being paced by either an isochronous or a fractal metronome with different variation strengths between beats in order to test whether participants managed to synchronize with a fractal metronome and to determine the necessary amount of variability for participants to switch from anti-persistent to persistent inter-stride intervals. Participants did synchronize with the metronome despite its fractal randomness. The corresponding coefficient of variation of inter-beat intervals was fixed in Experiment 2, in which participants walked on a treadmill while being paced by non-isochronous metronomes with different scaling exponents. As expected, inter-stride intervals showed persistent correlations similar to self-paced walking only when cueing contained persistent correlations. Our results open up a new window to optimize rhythmic auditory cueing for gait stabilization by integrating fractal fluctuations in the inter-beat intervals.

  16. Cost and time-effective method for multi-scale measures of rugosity, fractal dimension, and vector dispersion from coral reef 3D models.

    Directory of Open Access Journals (Sweden)

    G C Young

    Full Text Available We present a method to construct and analyse 3D models of underwater scenes using a single cost-effective camera on a standard laptop with (a free or low-cost software, (b no computer programming ability, and (c minimal man hours for both filming and analysis. This study focuses on four key structural complexity metrics: point-to-point distances, linear rugosity (R, fractal dimension (D, and vector dispersion (1/k. We present the first assessment of accuracy and precision of structure-from-motion (SfM 3D models from an uncalibrated GoPro™ camera at a small scale (4 m2 and show that they can provide meaningful, ecologically relevant results. Models had root mean square errors of 1.48 cm in X-Y and 1.35 in Z, and accuracies of 86.8% (R, 99.6% (D at scales 30-60 cm, 93.6% (D at scales 1-5 cm, and 86.9 (1/k. Values of R were compared to in-situ chain-and-tape measurements, while values of D and 1/k were compared with ground truths from 3D printed objects modelled underwater. All metrics varied less than 3% between independently rendered models. We thereby improve and rigorously validate a tool for ecologists to non-invasively quantify coral reef structural complexity with a variety of multi-scale metrics.

  17. Fractal dimension evolution and spatial replacement dynamics of urban growth

    International Nuclear Information System (INIS)

    Chen Yanguang

    2012-01-01

    Highlights: ► The fractal dimension growth can be modeled by Boltzmann’s equation. ► Boltzmann’s model suggests urban spatial replacement dynamics. ► If the rate of urban growth is too high, periodic oscillations or chaos will arise. ► Chaos is associated with fractals by the fractal dimension evolution model. ► The fractal dimension of urban form implies the space-filling ratio of a city. - Abstract: This paper presents a new perspective of looking at the relation between fractals and chaos by means of cities. Especially, a principle of space filling and spatial replacement is proposed to interpret the fractal dimension of urban form. The fractal dimension evolution of urban growth can be empirically modeled with Boltzmann’s equation. For the normalized data, Boltzmann’s equation is just equivalent to the logistic function. The logistic equation can be transformed into the well-known 1-dimensional logistic map, which is based on a 2-dimensional map suggesting spatial replacement dynamics of city development. The 2-dimensional recurrence relations can be employed to generate the nonlinear dynamical behaviors such as bifurcation and chaos. A discovery is thus made in this article that, for the fractal dimension growth following the logistic curve, the normalized dimension value is the ratio of space filling. If the rate of spatial replacement (urban growth) is too high, the periodic oscillations and chaos will arise. The spatial replacement dynamics can be extended to general replacement dynamics, and bifurcation and chaos mirror a process of complex replacement.

  18. Fractal and multifractal analyses of bipartite networks

    Science.gov (United States)

    Liu, Jin-Long; Wang, Jian; Yu, Zu-Guo; Xie, Xian-Hua

    2017-03-01

    Bipartite networks have attracted considerable interest in various fields. Fractality and multifractality of unipartite (classical) networks have been studied in recent years, but there is no work to study these properties of bipartite networks. In this paper, we try to unfold the self-similarity structure of bipartite networks by performing the fractal and multifractal analyses for a variety of real-world bipartite network data sets and models. First, we find the fractality in some bipartite networks, including the CiteULike, Netflix, MovieLens (ml-20m), Delicious data sets and (u, v)-flower model. Meanwhile, we observe the shifted power-law or exponential behavior in other several networks. We then focus on the multifractal properties of bipartite networks. Our results indicate that the multifractality exists in those bipartite networks possessing fractality. To capture the inherent attribute of bipartite network with two types different nodes, we give the different weights for the nodes of different classes, and show the existence of multifractality in these node-weighted bipartite networks. In addition, for the data sets with ratings, we modify the two existing algorithms for fractal and multifractal analyses of edge-weighted unipartite networks to study the self-similarity of the corresponding edge-weighted bipartite networks. The results show that our modified algorithms are feasible and can effectively uncover the self-similarity structure of these edge-weighted bipartite networks and their corresponding node-weighted versions.

  19. Vortex-ring-fractal Structure of Atom and Molecule

    International Nuclear Information System (INIS)

    Osmera, Pavel

    2010-01-01

    This chapter is an attempt to attain a new and profound model of the nature's structure using a vortex-ring-fractal theory (VRFT). Scientists have been trying to explain some phenomena in Nature that have not been explained so far. The aim of this paper is the vortex-ring-fractal modeling of elements in the Mendeleev's periodic table, which is not in contradiction to the known laws of nature. We would like to find some acceptable structure model of the hydrogen as a vortex-fractal-coil structure of the proton and a vortex-fractal-ring structure of the electron. It is known that planetary model of the hydrogen atom is not right, the classical quantum model is too abstract. Our imagination is that the hydrogen is a levitation system of the proton and the electron. Structures of helium, oxygen, and carbon atoms and a hydrogen molecule are presented too.

  20. Effects of long-term fertilisation on aggregates and dynamics of soil organic carbon in a semi-arid agro-ecosystem in China

    Directory of Open Access Journals (Sweden)

    Jiaoyang Zhang

    2018-05-01

    Full Text Available Background Long-term fertilisation has a large influence on soil physical and chemical properties in agro-ecosystems. The effects on the distribution of aggregates, however, are not fully understood. We determined the dynamic change of the distribution of aggregates and soil organic carbon (SOC content over time in a long-term field experiment established in 1998 on the Loess Plateau of China and illustrated the relationship between them. Methods We determined SOC content and the distribution of aggregates in nine fertiliser treatments: manure (M; nitrogen (N; phosphorus (P; M and N; M, N, and P; M and P; N and P; bare land; and an unfertilised control. These parameters were then used for a path analysis and to analyse the fractal dimension (Dv. Results The organic fertiliser increased SOC content. The proportions of 0.1–0.25 mm microaggregates and 0.25–0.5 mm macroaggregates were higher and the proportion of the 0.01–0.05 mm size class of the silt + clay fraction was lower in the treatments receiving organic fertiliser (M, MN, MNP, and MP than that in the control, indicating that the addition of organic fertiliser promoted aggregation. The distribution of aggregates characterised by their fractal dimension (Dv, however, did not differ among the treatments. Discussion Dv was strongly correlated with the proportion of the <0.002 mm size class of the silt + clay fraction that did not differ significantly among the treatments. The change in the distribution of aggregates was strongly correlated with SOC content, which could produce organic polymer binding agents to increase the proportion of larger particles. Long-term application of organic fertiliser is thus necessary for the improvement and maintenance of soil quality in semi-arid agricultural land when residues are removed.

  1. Fractal analysis of bone architecture at distal radius

    International Nuclear Information System (INIS)

    Tomomitsu, Tatsushi; Mimura, Hiroaki; Murase, Kenya; Sone, Teruki; Fukunaga, Masao

    2005-01-01

    Bone strength depends on bone quality (architecture, turnover, damage accumulation, and mineralization) as well as bone mass. In this study, human bone architecture was analyzed using fractal image analysis, and the clinical relevance of this method was evaluated. The subjects were 12 healthy female controls and 16 female patients suspected of having osteoporosis (age range, 22-70 years; mean age, 49.1 years). High-resolution CT images of the distal radius were acquired and analyzed using a peripheral quantitative computed tomography (pQCT) system. On the same day, bone mineral densities of the lumbar spine (L-BMD), proximal femur (F-BMD), and distal radius (R-BMD) were measured by dual-energy X-ray absorptiometry (DXA). We examined the correlation between the fractal dimension and six bone mass indices. Subjects diagnosed with osteopenia or osteoporosis were divided into two groups (with and without vertebral fracture), and we compared measured values between these two groups. The fractal dimension correlated most closely with L-BMD (r=0.744). The coefficient of correlation between the fractal dimension and L-BMD was very similar to the coefficient of correlation between L-BMD and F-BMD (r=0.783) and the coefficient of correlation between L-BMD and R-BMD (r=0.742). The fractal dimension was the only measured value that differed significantly between both the osteopenic and the osteoporotic subjects with and without vertebral fracture. The present results suggest that the fractal dimension of the distal radius can be reliably used as a bone strength index that reflects bone architecture as well as bone mass. (author)

  2. Hyper-Fractal Analysis: A visual tool for estimating the fractal dimension of 4D objects

    Science.gov (United States)

    Grossu, I. V.; Grossu, I.; Felea, D.; Besliu, C.; Jipa, Al.; Esanu, T.; Bordeianu, C. C.; Stan, E.

    2013-04-01

    This work presents a new version of a Visual Basic 6.0 application for estimating the fractal dimension of images and 3D objects (Grossu et al. (2010) [1]). The program was extended for working with four-dimensional objects stored in comma separated values files. This might be of interest in biomedicine, for analyzing the evolution in time of three-dimensional images. New version program summaryProgram title: Hyper-Fractal Analysis (Fractal Analysis v03) Catalogue identifier: AEEG_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEG_v3_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 745761 No. of bytes in distributed program, including test data, etc.: 12544491 Distribution format: tar.gz Programming language: MS Visual Basic 6.0 Computer: PC Operating system: MS Windows 98 or later RAM: 100M Classification: 14 Catalogue identifier of previous version: AEEG_v2_0 Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 831-832 Does the new version supersede the previous version? Yes Nature of problem: Estimating the fractal dimension of 4D images. Solution method: Optimized implementation of the 4D box-counting algorithm. Reasons for new version: Inspired by existing applications of 3D fractals in biomedicine [3], we extended the optimized version of the box-counting algorithm [1, 2] to the four-dimensional case. This might be of interest in analyzing the evolution in time of 3D images. The box-counting algorithm was extended in order to support 4D objects, stored in comma separated values files. A new form was added for generating 2D, 3D, and 4D test data. The application was tested on 4D objects with known dimension, e.g. the Sierpinski hypertetrahedron gasket, Df=ln(5)/ln(2) (Fig. 1). The algorithm could be extended, with minimum effort, to

  3. Passenger flow analysis of Beijing urban rail transit network using fractal approach

    Science.gov (United States)

    Li, Xiaohong; Chen, Peiwen; Chen, Feng; Wang, Zijia

    2018-04-01

    To quantify the spatiotemporal distribution of passenger flow and the characteristics of an urban rail transit network, we introduce four radius fractal dimensions and two branch fractal dimensions by combining a fractal approach with passenger flow assignment model. These fractal dimensions can numerically describe the complexity of passenger flow in the urban rail transit network and its change characteristics. Based on it, we establish a fractal quantification method to measure the fractal characteristics of passenger follow in the rail transit network. Finally, we validate the reasonability of our proposed method by using the actual data of Beijing subway network. It has been shown that our proposed method can effectively measure the scale-free range of the urban rail transit network, network development and the fractal characteristics of time-varying passenger flow, which further provides a reference for network planning and analysis of passenger flow.

  4. A transfer matrix method for the analysis of fractal quantum potentials

    International Nuclear Information System (INIS)

    Monsoriu, Juan A; Villatoro, Francisco R; Marin, Maria J; UrchueguIa, Javier F; Cordoba, Pedro Fernandez de

    2005-01-01

    The scattering properties of quantum particles on a sequence of potentials converging towards a fractal one are obtained by means of the transfer matrix method. The reflection coefficients for both the fractal potential and finite periodic potential are calculated and compared. It is shown that the reflection coefficient for the fractal potential has a self-similar structure associated with the fractal distribution of the potential whose degree of self-similarity has been quantified by means of the correlation function

  5. Speculations on self-avoiding surfaces in fractals. A mean field treatment

    International Nuclear Information System (INIS)

    Pandey, R.B.; Kumar, N.; Stauffer, D.

    1984-08-01

    We estimate the exponents characterizing the self-avoiding surfaces using an approximation in the framework of a Flory-type theory. We find for planar self-avoiding surfaces embedded randomly in a fractal of dimensionality D':theta=3/(4+D'); for random surfaces of fractal dimension D embedded in a Euclidian space of dimensionality d:theta=3/(2D+d-2); and for fractal surfaces embedded in a structure of fractal dimensionality D':theta=3/(2D+D'-2). (author)

  6. A transfer matrix method for the analysis of fractal quantum potentials

    Energy Technology Data Exchange (ETDEWEB)

    Monsoriu, Juan A [Departamento de Fisica Aplicada, Universidad Politecnica de Valencia, E-46022 Valencia (Spain); Villatoro, Francisco R [Departamento de Lenguajes y Ciencias de la Computacion, Universidad de Malaga, E-29071 Malaga (Spain); Marin, Maria J [Departamento de Termodinamica, Universitat de Valencia, E-46100 Burjassot (Spain); UrchueguIa, Javier F [Departamento de Fisica Aplicada, Universidad Politecnica de Valencia, E-46022 Valencia (Spain); Cordoba, Pedro Fernandez de [Departamento de Matematica Aplicada, Universidad Politecnica de Valencia, E-46022 Valencia (Spain)

    2005-07-01

    The scattering properties of quantum particles on a sequence of potentials converging towards a fractal one are obtained by means of the transfer matrix method. The reflection coefficients for both the fractal potential and finite periodic potential are calculated and compared. It is shown that the reflection coefficient for the fractal potential has a self-similar structure associated with the fractal distribution of the potential whose degree of self-similarity has been quantified by means of the correlation function.

  7. Determination of fish gender using fractal analysis of ultrasound images

    DEFF Research Database (Denmark)

    McEvoy, Fintan J.; Tomkiewicz, Jonna; Støttrup, Josianne

    2009-01-01

    The gender of cod Gadus morhua can be determined by considering the complexity in their gonadal ultrasonographic appearance. The fractal dimension (DB) can be used to describe this feature in images. B-mode gonadal ultrasound images in 32 cod, where gender was known, were collected. Fractal...... by subjective analysis alone. The mean (and standard deviation) of the fractal dimension DB for male fish was 1.554 (0.073) while for female fish it was 1.468 (0.061); the difference was statistically significant (P=0.001). The area under the ROC curve was 0.84 indicating the value of fractal analysis in gender...... result. Fractal analysis is useful for gender determination in cod. This or a similar form of analysis may have wide application in veterinary imaging as a tool for quantification of complexity in images...

  8. Ulam method and fractal Weyl law for Perron-Frobenius operators

    Science.gov (United States)

    Ermann, L.; Shepelyansky, D. L.

    2010-06-01

    We use the Ulam method to study spectral properties of the Perron-Frobenius operators of dynamical maps in a chaotic regime. For maps with absorption we show numerically that the spectrum is characterized by the fractal Weyl law recently established for nonunitary operators describing poles of quantum chaotic scattering with the Weyl exponent ν = d-1, where d is the fractal dimension of corresponding strange set of trajectories nonescaping in future times. In contrast, for dissipative maps we numerically find the Weyl exponent ν = d/2 where d is the fractal dimension of strange attractor. The Weyl exponent can be also expressed via the relation ν = d0/2 where d0 is the fractal dimension of the invariant sets. We also discuss the properties of eigenvalues and eigenvectors of such operators characterized by the fractal Weyl law.

  9. Insulator Contamination Forecasting Based on Fractal Analysis of Leakage Current

    Directory of Open Access Journals (Sweden)

    Bing Luo

    2012-07-01

    Full Text Available In this paper, an artificial pollution test is carried out to study the leakage current of porcelain insulators. Fractal theory is adopted to extract the characteristics hidden in leakage current waveforms. Fractal dimensions of the leakage current for the security, forecast and danger zones are analyzed under four types of degrees of contamination. The mean value and the standard deviation of the fractal dimension in the forecast zone are calculated to characterize the differences. The analysis reveals large differences in the fractal dimension of leakage current under different contamination discharge stages and degrees. The experimental and calculation results suggest that the fractal dimension of a leakage current waveform can be used as a new indicator of the discharge process and contamination degree of insulators. The results provide new methods and valid indicators for forecasting contamination flashovers.

  10. Fractal universe and quantum gravity.

    Science.gov (United States)

    Calcagni, Gianluca

    2010-06-25

    We propose a field theory which lives in fractal spacetime and is argued to be Lorentz invariant, power-counting renormalizable, ultraviolet finite, and causal. The system flows from an ultraviolet fixed point, where spacetime has Hausdorff dimension 2, to an infrared limit coinciding with a standard four-dimensional field theory. Classically, the fractal world where fields live exchanges energy momentum with the bulk with integer topological dimension. However, the total energy momentum is conserved. We consider the dynamics and the propagator of a scalar field. Implications for quantum gravity, cosmology, and the cosmological constant are discussed.

  11. Fractals control in particle's velocity

    International Nuclear Information System (INIS)

    Zhang Yongping; Liu Shutang; Shen Shulan

    2009-01-01

    Julia set, a fractal set of the literature of nonlinear physics, has significance for the engineering applications. For example, the fractal structure characteristics of the generalized M-J set could visually reflect the change rule of particle's velocity. According to the real world requirement, the system need show various particle's velocity in some cases. Thus, the control of the nonlinear behavior, i.e., Julia set, has attracted broad attention. In this work, an auxiliary feedback control is introduced to effectively control the Julia set that visually reflects the change rule of particle's velocity. It satisfies the performance requirement of the real world problems.

  12. Synergetics and fractals in tribology

    CERN Document Server

    Janahmadov, Ahad Kh

    2016-01-01

    This book examines the theoretical and practical aspects of tribological process using synergy, fractal and multifractal methods, and the fractal and multifractal models of self-similar tribosystems developed on their basis. It provides a comprehensive analysis of their effectiveness, and also considers the method of flicker noise spectroscopy with detailed parameterization of surface roughness friction. All models, problems and solutions are taken and tested on the set of real-life examples of oil-gas industry. The book is intended for researchers, graduate students and engineers specialising in the field of tribology, and also for senior students of technical colleges.

  13. Fractal characterization of acupuncture-induced spike trains of rat WDR neurons

    International Nuclear Information System (INIS)

    Chen, Yingyuan; Guo, Yi; Wang, Jiang; Hong, Shouhai; Wei, Xile; Yu, Haitao; Deng, Bin

    2015-01-01

    Highlights: •Fractal analysis is a valuable tool for measuring MA-induced neural activities. •In course of the experiments, the spike trains display different fractal properties. •The fractal properties reflect the long-term modulation of MA on WDR neurons. •The results may explain the long-lasting effects induced by acupuncture. -- Abstract: The experimental and the clinical studies have showed manual acupuncture (MA) could evoke multiple responses in various neural regions. Characterising the neuronal activities in these regions may provide more deep insights into acupuncture mechanisms. This paper used fractal analysis to investigate MA-induced spike trains of Wide Dynamic Range (WDR) neurons in rat spinal dorsal horn, an important relay station and integral component in processing acupuncture information. Allan factor and Fano factor were utilized to test whether the spike trains were fractal, and Allan factor were used to evaluate the scaling exponents and Hurst exponents. It was found that these two fractal exponents before and during MA were different significantly. During MA, the scaling exponents of WDR neurons were regulated in a small range, indicating a special fractal pattern. The neuronal activities were long-range correlated over multiple time scales. The scaling exponents during and after MA were similar, suggesting that the long-range correlations not only displayed during MA, but also extended to after withdrawing the needle. Our results showed that fractal analysis is a useful tool for measuring acupuncture effects. MA could modulate neuronal activities of which the fractal properties change as time proceeding. This evolution of fractal dynamics in course of MA experiments may explain at the level of neuron why the effect of MA observed in experiment and in clinic are complex, time-evolutionary, long-range even lasting for some time after stimulation

  14. A fractal-based image encryption system

    KAUST Repository

    Abd-El-Hafiz, S. K.

    2014-12-01

    This study introduces a novel image encryption system based on diffusion and confusion processes in which the image information is hidden inside the complex details of fractal images. A simplified encryption technique is, first, presented using a single-fractal image and statistical analysis is performed. A general encryption system utilising multiple fractal images is, then, introduced to improve the performance and increase the encryption key up to hundreds of bits. This improvement is achieved through several parameters: feedback delay, multiplexing and independent horizontal or vertical shifts. The effect of each parameter is studied separately and, then, they are combined to illustrate their influence on the encryption quality. The encryption quality is evaluated using different analysis techniques such as correlation coefficients, differential attack measures, histogram distributions, key sensitivity analysis and the National Institute of Standards and Technology (NIST) statistical test suite. The obtained results show great potential compared to other techniques.

  15. Hybrid 3D Fractal Coding with Neighbourhood Vector Quantisation

    Directory of Open Access Journals (Sweden)

    Zhen Yao

    2004-12-01

    Full Text Available A hybrid 3D compression scheme which combines fractal coding with neighbourhood vector quantisation for video and volume data is reported. While fractal coding exploits the redundancy present in different scales, neighbourhood vector quantisation, as a generalisation of translational motion compensation, is a useful method for removing both intra- and inter-frame coherences. The hybrid coder outperforms most of the fractal coders published to date while the algorithm complexity is kept relatively low.

  16. a New Method for Calculating Fractal Dimensions of Porous Media Based on Pore Size Distribution

    Science.gov (United States)

    Xia, Yuxuan; Cai, Jianchao; Wei, Wei; Hu, Xiangyun; Wang, Xin; Ge, Xinmin

    Fractal theory has been widely used in petrophysical properties of porous rocks over several decades and determination of fractal dimensions is always the focus of researches and applications by means of fractal-based methods. In this work, a new method for calculating pore space fractal dimension and tortuosity fractal dimension of porous media is derived based on fractal capillary model assumption. The presented work establishes relationship between fractal dimensions and pore size distribution, which can be directly used to calculate the fractal dimensions. The published pore size distribution data for eight sandstone samples are used to calculate the fractal dimensions and simultaneously compared with prediction results from analytical expression. In addition, the proposed fractal dimension method is also tested through Micro-CT images of three sandstone cores, and are compared with fractal dimensions by box-counting algorithm. The test results also prove a self-similar fractal range in sandstone when excluding smaller pores.

  17. Facile fabrication of superhydrophobic films with fractal structures using epoxy resin microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Yun-Yun; Zhang, Li-Zhi, E-mail: lzzhang@scut.edu.cn

    2014-02-15

    A simple method has been developed to fabricate superhydrophobic surfaces with fractal structures with epoxy resin microspheres (ERMs). The ERMs is produced by phase separation in an epoxy-amine curing system with a silica sol (SS) dispersant. The transparent epoxy solution becomes cloudy and turns into epoxy suspension (ES) in this process. The fractal structure (two tier structure) generated by synthetic epoxy resin microspheres (ERMs) and deposited nanoincrutations on the surfaces of these ERMs, which have been observed by scanning electron microscope (SEM). The curing time of ES is an important condition to obtain films with good comprehensive performances. Superhydrophobic films can be prepared by adding extra SS into ES with a curing time longer than 5 h. The optimal curing time is 10 h to fabricate a film with good mechanical stability and high superhydrophobicity. In addition, a surface with anti-wetting property of impacting microdroplets can be fabricated by prolonging the curing time of ES to 24 h. The gradually decreased hydrophilic groups resulted from a longer curing time enable the surface to have smaller surface adhesions to water droplets, which is the main reason to keep its superhydrophobicity under impacting conditions. The coated surface is highly hydrophobic and the impacting water droplets are bounced off from the surface.

  18. Facile fabrication of superhydrophobic films with fractal structures using epoxy resin microspheres

    Science.gov (United States)

    Quan, Yun-Yun; Zhang, Li-Zhi

    2014-02-01

    A simple method has been developed to fabricate superhydrophobic surfaces with fractal structures with epoxy resin microspheres (ERMs). The ERMs is produced by phase separation in an epoxy-amine curing system with a silica sol (SS) dispersant. The transparent epoxy solution becomes cloudy and turns into epoxy suspension (ES) in this process. The fractal structure (two tier structure) generated by synthetic epoxy resin microspheres (ERMs) and deposited nanoincrutations on the surfaces of these ERMs, which have been observed by scanning electron microscope (SEM). The curing time of ES is an important condition to obtain films with good comprehensive performances. Superhydrophobic films can be prepared by adding extra SS into ES with a curing time longer than 5 h. The optimal curing time is 10 h to fabricate a film with good mechanical stability and high superhydrophobicity. In addition, a surface with anti-wetting property of impacting microdroplets can be fabricated by prolonging the curing time of ES to 24 h. The gradually decreased hydrophilic groups resulted from a longer curing time enable the surface to have smaller surface adhesions to water droplets, which is the main reason to keep its superhydrophobicity under impacting conditions. The coated surface is highly hydrophobic and the impacting water droplets are bounced off from the surface.

  19. An investigation of fractal characteristics of mesoporous carbon electrodes with various pore structures

    International Nuclear Information System (INIS)

    Pyun, Su-Il; Rhee, Chang-Kyu

    2004-01-01

    Fractal characteristics of mesoporous carbon electrodes were investigated with various pore structures using the N 2 gas adsorption method and the transmission electron microscopy (TEM) image analysis method. The mesoporous carbons with various pore structures were prepared by imprinting mesophase pitch used as a carbonaceous precursor with different colloidal silica particles. All imprinted mesoporous carbons were composed of two groups of pores produced from the carbonisation of mesophase pitch and from the silica imprinting. The overall surface fractal dimensions of the carbon specimens were determined from the analyses of the N 2 gas adsorption isotherms. In order to distinguish the surface fractal dimension of the carbonisation-induced pore surface from that fractal dimension of the silica-imprinted pore surface, the individual surface fractal dimensions were determined from the image analyses of the TEM images. From the comparison of the overall surface fractal dimension with the individual surface fractal dimensions, it was recognised that the overall surface fractal dimension is crucially influenced by the individual surface fractal dimension of the silica-imprinted pore surface. Moreover, from the fact that the silica-imprinted pore surface with broad relative pore size distribution (PSD) gave lower value of the individual surface fractal dimension than that pore surface with narrow relative PSD, it is concluded that as the silica-imprinted pores comprising the carbon specimen agglomerate, the individual surface fractal dimension of that pore surface decreases

  20. FRACTAL IMAGE FEATURE VECTORS WITH APPLICATIONS IN FRACTOGRAPHY

    Directory of Open Access Journals (Sweden)

    Hynek Lauschmann

    2011-05-01

    Full Text Available The morphology of fatigue fracture surface (caused by constant cycle loading is strictly related to crack growth rate. This relation may be expressed, among other methods, by means of fractal analysis. Fractal dimension as a single numerical value is not sufficient. Two types of fractal feature vectors are discussed: multifractal and multiparametric. For analysis of images, the box-counting method for 3D is applied with respect to the non-homogeneity of dimensions (two in space, one in brightness. Examples of application are shown: images of several fracture surfaces are analyzed and related to crack growth rate.

  1. Fractal aspects and convergence of Newton`s method

    Energy Technology Data Exchange (ETDEWEB)

    Drexler, M. [Oxford Univ. Computing Lab. (United Kingdom)

    1996-12-31

    Newton`s Method is a widely established iterative algorithm for solving non-linear systems. Its appeal lies in its great simplicity, easy generalization to multiple dimensions and a quadratic local convergence rate. Despite these features, little is known about its global behavior. In this paper, we will explain a seemingly random global convergence pattern using fractal concepts and show that the behavior of the residual is entirely explicable. We will also establish quantitative results for the convergence rates. Knowing the mechanism of fractal generation, we present a stabilization to the orthodox Newton method that remedies the fractal behavior and improves convergence.

  2. Electron spin-lattice relaxation in fractals

    International Nuclear Information System (INIS)

    Shrivastava, K.N.

    1986-08-01

    We have developed the theory of the spin-fracton interaction for paramagnetic ions in fractal structures. The interaction is exponentially damped by the self-similarity length of the fractal and by the range dimensionality d Φ . The relaxation time of the spin due to the absorption and emission of the fracton has been calculated for a general dimensionality called the Raman dimensionality d R , which for the fractons differs from the Hausdorff (fractal) dimensionality, D, as well as from the Euclidean dimensionality, d. The exponent of the energy level separation in the relaxation rate varies with d R d Φ /D. We have calculated the spin relaxation rate due to a new type of Raman process in which one fracton is absorbed to affect a spin transition from one electronic level to another and later another fracton is emitted along with a spin transition such that the difference in the energies of the two fractons is equal to the electronic energy level separation. The temperature and the dimensionality dependence of such a process has been found in several approximations. In one of the approximations where the van Vleck relaxation rate for a spin in a crystal is known to vary with temperature as T 9 , our calculated variation for fractals turns out to be T 6.6 , whereas the experimental value for Fe 3+ in frozen solutions of myoglobin azide is T 6.3 . Since we used d R =4/3 and the fracton range dimensionality d Φ =D/1.8, we expect to measure the dimensionalities of the problem by measuring the temperature dependence of the relaxation times. We have also calculated the shift of the paramagnetic resonance transition for a spin in a fractal for general dimensionalities. (author)

  3. Launching the chaotic realm of iso-fractals: A short remark

    Energy Technology Data Exchange (ETDEWEB)

    O' Schmidt, Nathan [Department of Mathematics, Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Katebi, Reza [Department of Physics, California State University in Fullerton, 800 North State College Boulevard, Fullerton, CA 92831 (United States); Corda, Christian [Institute for Theoretical Physics and Advanced Mathematics Einstein-Galilei (IFM), Via Santa Gonda 14, 59100 Prato (Italy)

    2015-03-10

    In this brief note, we introduce the new, emerging sub-discipline of iso-fractals by highlighting and discussing the preliminary results of recent works. First, we note the abundance of fractal, chaotic, non-linear, and self-similar structures in nature while emphasizing the importance of studying such systems because fractal geometry is the language of chaos. Second, we outline the iso-fractal generalization of the Mandelbrot set to exemplify the newly generated Mandelbrot iso-sets. Third, we present the cutting-edge notion of dynamic iso-spaces and explain how a mathematical space can be iso-topically lifted with iso-unit functions that (continuously or discretely) change; in the discrete case examples, we mention that iteratively generated sequences like Fibonacci’s numbers and (the complex moduli of) Mandelbrot’s numbers can supply a deterministic chain of iso-units to construct an ordered series of (magnified and/or de-magnified) iso-spaces that are locally iso-morphic. Fourth, we consider the initiation of iso-fractals with Inopin’s holographic ring (IHR) topology and fractional statistics for 2D and 3D iso-spaces. In total, the reviewed iso-fractal results are a significant improvement over traditional fractals because the application of Santilli’s iso-mathematics arms us an extra degree of freedom for attacking problems in chaos. Finally, we conclude by proposing some questions and ideas for future research work.

  4. Fractals as macroscopic manifestation of squeezed coherent states and brain dynamics

    International Nuclear Information System (INIS)

    Vitiello, Giuseppe

    2012-01-01

    Recent results on the relation between self-similarity and squeezed coherent states are presented. I consider fractals which are generated iteratively according to a prescribed recipe, the so-called deterministic fractals. Fractal properties are incorporated in the framework of the theory of the entire analytical functions and deformed coherent states. Conversely, fractal properties of squeezed coherent states are recognized. This sheds some light on the understanding of the dynamical origin of fractals and their global nature emerging from local deformation processes. The self-similarity in brain background activity suggested by laboratory observations of power-law distributions of power spectral densities of electrocorticograms is also discussed and accounted in the frame of the dissipative many-body model of brain.

  5. Fractal Dimension and Maximum Sunspot Number in Solar Cycle

    Directory of Open Access Journals (Sweden)

    R.-S. Kim

    2006-09-01

    Full Text Available The fractal dimension is a quantitative parameter describing the characteristics of irregular time series. In this study, we use this parameter to analyze the irregular aspects of solar activity and to predict the maximum sunspot number in the following solar cycle by examining time series of the sunspot number. For this, we considered the daily sunspot number since 1850 from SIDC (Solar Influences Data analysis Center and then estimated cycle variation of the fractal dimension by using Higuchi's method. We examined the relationship between this fractal dimension and the maximum monthly sunspot number in each solar cycle. As a result, we found that there is a strong inverse relationship between the fractal dimension and the maximum monthly sunspot number. By using this relation we predicted the maximum sunspot number in the solar cycle from the fractal dimension of the sunspot numbers during the solar activity increasing phase. The successful prediction is proven by a good correlation (r=0.89 between the observed and predicted maximum sunspot numbers in the solar cycles.

  6. Chaos and fractals. Applications to nuclear engineering

    International Nuclear Information System (INIS)

    Clausse, A.; Delmastro, D.F.

    1990-01-01

    This work presents a description of the research lines carried out by the authors on chaos and fractal theories, oriented to the nuclear field. The possibilities that appear in the nuclear security branch where the information deriving from chaos and fractal techniques may help to the development of better criteria and more reliable designs, are of special importance. (Author) [es

  7. Human physiological benefits of viewing nature: EEG responses to exact and statistical fractal patterns.

    Science.gov (United States)

    Hagerhall, C M; Laike, T; Küller, M; Marcheschi, E; Boydston, C; Taylor, R P

    2015-01-01

    Psychological and physiological benefits of viewing nature have been extensively studied for some time. More recently it has been suggested that some of these positive effects can be explained by nature's fractal properties. Virtually all studies on human responses to fractals have used stimuli that represent the specific form of fractal geometry found in nature, i.e. statistical fractals, as opposed to fractal patterns which repeat exactly at different scales. This raises the question of whether human responses like preference and relaxation are being driven by fractal geometry in general or by the specific form of fractal geometry found in nature. In this study we consider both types of fractals (statistical and exact) and morph one type into the other. Based on the Koch curve, nine visual stimuli were produced in which curves of three different fractal dimensions evolve gradually from an exact to a statistical fractal. The patterns were shown for one minute each to thirty-five subjects while qEEG was continuously recorded. The results showed that the responses to statistical and exact fractals differ, and that the natural form of the fractal is important for inducing alpha responses, an indicator of a wakefully relaxed state and internalized attention.

  8. Pulmonary vasculature in dogs assessed by three-dimensional fractal analysis and chemometrics

    DEFF Research Database (Denmark)

    Müller, Anna V; Marschner, Clara B; Kristensen, Annemarie T

    2017-01-01

    Fractal analysis of canine pulmonary vessels could allow quantification of their space-filling properties. Aims of this prospective, analytical, cross-sectional study were to describe methods for reconstructing three dimensional pulmonary arterial vascular trees from computed tomographic pulmonary...... angiogram, applying fractal analyses of these vascular trees in dogs with and without diseases that are known to predispose to thromboembolism, and testing the hypothesis that diseased dogs would have a different fractal dimension than healthy dogs. A total of 34 dogs were sampled. Based on computed...... for each dog using a semiautomated segmentation technique. Vascular three-dimensional reconstructions were then evaluated using fractal analysis. Fractal dimensions were analyzed, by group, using analysis of variance and principal component analysis. Fractal dimensions were significantly different among...

  9. Fractal character of structural control on uranium mineralization in south china

    International Nuclear Information System (INIS)

    Zhou Quanyu; Tan Kaixuan; Xie Yanshi

    2009-01-01

    South China is the most important uranium producer in the country. Most uranium ore deposits in south China are strictly controlled by NE-NNE trending regional fracture structure. Fractal analyses on spatial distribution of uranium ore deposits and regional fracture structure in south China have been done in this paper. It indicates that the spatial distribution of both uranium ore deposits and regional fracture structure in south China show fractal character. The fractal dimension D=1.414 2 for the spatial distribution of regional fracture structure in the whole area indicate a higher ripening degree in the fracture structure evolution and an advantages to fluid flow and uranium mineralization. The fractal dimension D=1.052 7 for the spatial distribution of uranium ore deposits in south China show a lower complexity than regional fracture structure. The fractal dimensions in three sub-areas in south China on spatial distribution of uranium ore deposits show a positive correlation to which of regional fracture structure. The fractal spatial distribution of uranium ore deposits in south China is the result of the evolution of the fractal fracture structure system. (authors)

  10. Anisotropic fractal media by vector calculus in non-integer dimensional space

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation)

    2014-08-15

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.

  11. Anisotropic fractal media by vector calculus in non-integer dimensional space

    Science.gov (United States)

    Tarasov, Vasily E.

    2014-08-01

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.

  12. Anisotropic fractal media by vector calculus in non-integer dimensional space

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2014-01-01

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media

  13. Design of silicon-based fractal antennas

    KAUST Repository

    Ghaffar, Farhan A.

    2012-11-20

    This article presents Sierpinski carpet fractal antennas implemented in conventional low resistivity (Ï =10 Ω cm) as well as high resistivity (Ï =1500 Ω cm) silicon mediums. The fractal antenna is 36% smaller as compared with a typical patch antenna at 24 GHz and provides 13% bandwidth on high resistivity silicon, suitable for high data rate applications. For the first time, an on-chip fractal antenna array is demonstrated in this work which provides double the gain of a single fractal element as well as enhanced bandwidth. A custom test fixture is utilized to measure the radiation pattern and gain of these probe-fed antennas. In addition to gain and impedance characterization, measurements have also been made to study intrachip communication through these antennas. The comparison between the low resistivity and high resistivity antennas indicate that the former is not a suitable medium for array implementation and is only suitable for short range communication whereas the latter is appropriate for short and medium range wireless communication. The design is well-suited for compact, high data rate System-on-Chip (SoC) applications as well as for intrachip communication such as wireless global clock distribution in synchronous systems. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:180-186, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27245 Copyright © 2012 Wiley Periodicals, Inc.

  14. Design of silicon-based fractal antennas

    KAUST Repository

    Ghaffar, Farhan A.; Shamim, Atif

    2012-01-01

    This article presents Sierpinski carpet fractal antennas implemented in conventional low resistivity (Ï =10 Ω cm) as well as high resistivity (Ï =1500 Ω cm) silicon mediums. The fractal antenna is 36% smaller as compared with a typical patch antenna at 24 GHz and provides 13% bandwidth on high resistivity silicon, suitable for high data rate applications. For the first time, an on-chip fractal antenna array is demonstrated in this work which provides double the gain of a single fractal element as well as enhanced bandwidth. A custom test fixture is utilized to measure the radiation pattern and gain of these probe-fed antennas. In addition to gain and impedance characterization, measurements have also been made to study intrachip communication through these antennas. The comparison between the low resistivity and high resistivity antennas indicate that the former is not a suitable medium for array implementation and is only suitable for short range communication whereas the latter is appropriate for short and medium range wireless communication. The design is well-suited for compact, high data rate System-on-Chip (SoC) applications as well as for intrachip communication such as wireless global clock distribution in synchronous systems. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:180-186, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27245 Copyright © 2012 Wiley Periodicals, Inc.

  15. Fractal and mechanical micro- and nanorange properties of sylvite and halite crystals

    Directory of Open Access Journals (Sweden)

    Valery N. Aptukov

    2017-09-01

    Full Text Available This article involves the treatment of micro- and nanorange scanning and indentation data for salt rock crystals obtained with help of the scanning microscope Dimension Icon using the mathematical models. It also describes the basic methods of fractal analysis. It shows the effectiveness of the method of minimal covering which is chosen to research the fractal properties of salt rock crystal surfaces. The article includes the algorithm of this method and the description of its generalization for the two-dimensional case. The values of fractal index and multifractal parameters have been calculated on the basis of the minimal covering method. The article also involves the anisotropy effects for fractal properties, comparison of fractal behavior on different scale levels. It gives the values of hardness for different parts of the crystals and studies the correlation between hardness and fractal index and describes the character of the influence of fractal dimension on roughness.

  16. Return to axi-symmetry for pipe flows generated after a fractal orifice

    Energy Technology Data Exchange (ETDEWEB)

    Nicolleau, F C G A, E-mail: F.Nicolleau@Sheffield.ac.uk [SFMG, Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2013-12-15

    We present experimental results obtained from pipe flows generated by fractal shaped orifices or openings. We compare different fractal orifices and their efficiencies to re-generate axi-symmetric flows and to return to the standard flow generated by a perforated plate or a circular orifice plate. We consider two families of fractal openings: mono-orifice and complex orifice and emphasize the differences between the two fractal families. For the Reynolds number we used, we found that there is an optimum iteration for the fractal level above which no improvement for practical applications such as flowmetering is to be expected. The main parameters we propose for the characterization of the fractal orifice are the connexity parameter, the symmetry angle and the gap to the wall {delta}*{sub g}. The results presented here are among the first for flows forced through fractal openings and will serve as a reference for future studies and benchmarks for numerical applications. (paper)

  17. Return to axi-symmetry for pipe flows generated after a fractal orifice

    International Nuclear Information System (INIS)

    Nicolleau, F C G A

    2013-01-01

    We present experimental results obtained from pipe flows generated by fractal shaped orifices or openings. We compare different fractal orifices and their efficiencies to re-generate axi-symmetric flows and to return to the standard flow generated by a perforated plate or a circular orifice plate. We consider two families of fractal openings: mono-orifice and complex orifice and emphasize the differences between the two fractal families. For the Reynolds number we used, we found that there is an optimum iteration for the fractal level above which no improvement for practical applications such as flowmetering is to be expected. The main parameters we propose for the characterization of the fractal orifice are the connexity parameter, the symmetry angle and the gap to the wall δ* g . The results presented here are among the first for flows forced through fractal openings and will serve as a reference for future studies and benchmarks for numerical applications. (paper)

  18. Turbulent premixed flames on fractal-grid-generated turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Soulopoulos, N; Kerl, J; Sponfeldner, T; Beyrau, F; Hardalupas, Y; Taylor, A M K P [Mechanical Engineering Department, Imperial College London, London SW7 2AZ (United Kingdom); Vassilicos, J C, E-mail: ns6@ic.ac.uk [Department of Aeronautics, Imperial College London, London SW7 2AZ (United Kingdom)

    2013-12-15

    A space-filling, low blockage fractal grid is used as a novel turbulence generator in a premixed turbulent flame stabilized by a rod. The study compares the flame behaviour with a fractal grid to the behaviour when a standard square mesh grid with the same effective mesh size and solidity as the fractal grid is used. The isothermal gas flow turbulence characteristics, including mean flow velocity and rms of velocity fluctuations and Taylor length, were evaluated from hot-wire measurements. The behaviour of the flames was assessed with direct chemiluminescence emission from the flame and high-speed OH-laser-induced fluorescence. The characteristics of the two flames are considered in terms of turbulent flame thickness, local flame curvature and turbulent flame speed. It is found that, for the same flow rate and stoichiometry and at the same distance downstream of the location of the grid, fractal-grid-generated turbulence leads to a more turbulent flame with enhanced burning rate and increased flame surface area. (paper)

  19. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ethan, E-mail: ethan.davis4@huskers.unl.edu [Nano & Microsystems Research Laboratory, Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, W342 Nebraska Hall, Lincoln, NE 68588-0526 (United States); Liu, Ying; Jiang, Lijia; Lu, Yongfeng [Laser Assisted Nano Engineering Lab, Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, 209N Scott Engineering Center, Lincoln, NE 68588-0511 (United States); Ndao, Sidy, E-mail: sndao2@unl.edu [Nano & Microsystems Research Laboratory, Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, W342 Nebraska Hall, Lincoln, NE 68588-0526 (United States)

    2017-01-15

    Highlights: • Hierarchically structured surfaces were fabricated on the micro/nano-scale. • These structures reduced the contact angle of the inherently hydrophilic material. • Similar surfaces have applications in two-phase heat transfer and microfluidics. - Abstract: This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  20. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    International Nuclear Information System (INIS)

    Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy

    2017-01-01

    Highlights: • Hierarchically structured surfaces were fabricated on the micro/nano-scale. • These structures reduced the contact angle of the inherently hydrophilic material. • Similar surfaces have applications in two-phase heat transfer and microfluidics. - Abstract: This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  1. Fractal scale-free networks resistant to disease spread

    International Nuclear Information System (INIS)

    Zhang, Zhongzhi; Zhou, Shuigeng; Zou, Tao; Chen, Guisheng

    2008-01-01

    The conventional wisdom is that scale-free networks are prone to epidemic propagation; in the paper we demonstrate that, on the contrary, disease spreading is inhibited in fractal scale-free networks. We first propose a novel network model and show that it simultaneously has the following rich topological properties: scale-free degree distribution, tunable clustering coefficient, 'large-world' behavior, and fractal scaling. Existing network models do not display these characteristics. Then, we investigate the susceptible–infected–removed (SIR) model of the propagation of diseases in our fractal scale-free networks by mapping it to the bond percolation process. We establish the existence of non-zero tunable epidemic thresholds by making use of the renormalization group technique, which implies that power law degree distribution does not suffice to characterize the epidemic dynamics on top of scale-free networks. We argue that the epidemic dynamics are determined by the topological properties, especially the fractality and its accompanying 'large-world' behavior

  2. Self-stabilized Fractality of Sea-coasts Through Damped Erosion

    Science.gov (United States)

    Sapoval, B.; Baldassari, A.; Gabrielli, A.

    2004-05-01

    Coastline morphology is of current interest in geophysical research and coastline erosion has important economic consequences. At the same time, although the geometry of seacoasts is often used as an introductory archetype of fractal morphology in nature there has been no explanation about which physical mechanism could justify that empirical observation. The present work propose a minimal, but robust, model of evolution of rocky coasts towards fractality. The model describes how a stationary fractal geometry arises spontaneously from the mutual self-stabilization of a rocky coast morphology and sea eroding power. If, on one hand, erosion generally increases the geometrical irregularity of the coast, on the other hand this increase creates a stronger damping of the sea and a consequent diminution of its eroding power. The increased damping argument relies on the studies of fractal acoustical cavities, which have shown that viscous damping is augmented on a longer, irregular, surface. A minimal two-dimensional model of erosion is introduced which leads to the through a complex dynamics of the earth-sea interface, to the appearance of a stationary fractal seacoast with dimension close to 4/3. Fractal geometry plays here the role of a morphological attractor directly related to percolation geometry. The model reproduces at least qualitatively some of the features of real coasts using only simple ingredients: the randomness of the lithology and the decrease of the erosion power of the sea. B. Sapoval, Fractals (Aditech, Paris, 1989). B. Sapoval, O. Haeberlé, and S.Russ, J. Acoust. Soc. Am., 2014 (1997). B. Hébert B., B. Sapoval, and S.Russ, J. Acoust. Soc. Am., 1567 (1999).

  3. Engineering flat electronic bands in quasiperiodic and fractal loop geometries

    Energy Technology Data Exchange (ETDEWEB)

    Nandy, Atanu, E-mail: atanunandy1989@gmail.com; Chakrabarti, Arunava, E-mail: arunava_chakrabarti@yahoo.co.in

    2015-11-06

    Exact construction of one electron eigenstates with flat, non-dispersive bands, and localized over clusters of various sizes is reported for a class of quasi-one-dimensional looped networks. Quasiperiodic Fibonacci and Berker fractal geometries are embedded in the arms of the loop threaded by a uniform magnetic flux. We work out an analytical scheme to unravel the localized single particle states pinned at various atomic sites or over clusters of them. The magnetic field is varied to control, in a subtle way, the extent of localization and the location of the flat band states in energy space. In addition to this we show that an appropriate tuning of the field can lead to a re-entrant behavior of the effective mass of the electron in a band, with a periodic flip in its sign. - Highlights: • Exact construction of eigenstates with flat and dispersive bands is reported. • Competition between translational order and growth of aperiodicity is discussed. • The effect of magnetic field on the location of flat band states is shown. • Flux tunable re-entrant behavior of the effective mass of electron is studied.

  4. Fractal Geometry in the Arts: AN Overview across the Different Cultures

    Science.gov (United States)

    Sala, Nicoletta

    Fractal, in mathematics, is a geometric shape that is complex and detailed in structure at any level of magnification. The word "fractal" was coined less than thirty years ago by one of history's most creative and mathematicians, Benoit Mandelbrot, whose work, The Fractal Geometry of Nature, first introduced and explained concepts underlying this new vision of the geometry. Although other mathematical thinkers like Georg Cantor (1845-1918), Felix Hausdorff (1868-1942), Gaston Julia (1893-1978), Helge von Koch (1870-1924), Giuseppe Peano (1858-1932), Lewis Richardson (1891-1953), Waclaw Sierpinski (1882-1969) and others had attained isolated insights of fractal understanding, such ideas were largely ignored until Mandelbrot's genius forged them at a single blow into a gorgeously coherent and fascinating discipline. Fractal geometry is applied in different field now: engineering, physics, chemistry, biology, and architecture. The aim of this paper is to introduce an approach where the arts are analysed using a fractal point of view.

  5. A variational principle for the Hausdorff dimension of fractal sets

    DEFF Research Database (Denmark)

    Olsen, Lars; Cutler, Colleen D.

    1994-01-01

    Matematik, fraktal (fractal), Hausdorff dimension, Renyi dimension, pakke dimension (packing dimension)......Matematik, fraktal (fractal), Hausdorff dimension, Renyi dimension, pakke dimension (packing dimension)...

  6. Fractal analysis as a potential tool for surface morphology of thin films

    Science.gov (United States)

    Soumya, S.; Swapna, M. S.; Raj, Vimal; Mahadevan Pillai, V. P.; Sankararaman, S.

    2017-12-01

    Fractal geometry developed by Mandelbrot has emerged as a potential tool for analyzing complex systems in the diversified fields of science, social science, and technology. Self-similar objects having the same details in different scales are referred to as fractals and are analyzed using the mathematics of non-Euclidean geometry. The present work is an attempt to correlate fractal dimension for surface characterization by Atomic Force Microscopy (AFM). Taking the AFM images of zinc sulphide (ZnS) thin films prepared by pulsed laser deposition (PLD) technique, under different annealing temperatures, the effect of annealing temperature and surface roughness on fractal dimension is studied. The annealing temperature and surface roughness show a strong correlation with fractal dimension. From the regression equation set, the surface roughness at a given annealing temperature can be calculated from the fractal dimension. The AFM images are processed using Photoshop and fractal dimension is calculated by box-counting method. The fractal dimension decreases from 1.986 to 1.633 while the surface roughness increases from 1.110 to 3.427, for a change of annealing temperature 30 ° C to 600 ° C. The images are also analyzed by power spectrum method to find the fractal dimension. The study reveals that the box-counting method gives better results compared to the power spectrum method.

  7. Fractal based curves in musical creativity: A critical annotation

    Science.gov (United States)

    Georgaki, Anastasia; Tsolakis, Christos

    In this article we examine fractal curves and synthesis algorithms in musical composition and research. First we trace the evolution of different approaches for the use of fractals in music since the 80's by a literature review. Furthermore, we review representative fractal algorithms and platforms that implement them. Properties such as self-similarity (pink noise), correlation, memory (related to the notion of Brownian motion) or non correlation at multiple levels (white noise), can be used to develop hierarchy of criteria for analyzing different layers of musical structure. L-systems can be applied in the modelling of melody in different musical cultures as well as in the investigation of musical perception principles. Finally, we propose a critical investigation approach for the use of artificial or natural fractal curves in systematic musicology.

  8. Study on Conversion Between Momentum and Contrarian Based on Fractal Game

    Science.gov (United States)

    Wu, Xu; Song, Guanghui; Deng, Yan; Xu, Lin

    2015-06-01

    Based on the fractal game which is performed by the majority and the minority, the fractal market theory (FMT) is employed to describe the features of investors' decision-making. Accordingly, the process of fractal games is formed in order to analyze the statistical features of conversion between momentum and contrarian. The result shows that among three fractal game mechanisms, the statistical feature of simulated return rate series is much more similar to log returns on actual series. In addition, the conversion between momentum and contrarian is also extremely similar to real situation, which can reflect the effectiveness of using fractal game in analyzing the conversion between momentum and contrarian. Moreover, it also provides decision-making reference which helps investors develop effective investment strategy.

  9. Arctic sea ice melt pond fractal dimension - explained

    Science.gov (United States)

    Popovic, Predrag

    As Arctic sea ice starts to melt in the summer, pools of melt water quickly form on its surface, significantly changing its albedo, and impacting its subsequent evolution. These melt ponds often form complex geometric shapes. One characteristic of their shape, the fractal dimension of the pond boundaries, D, when plotted as a function of pond size, has been shown to transition between the two fundamental limits of D = 1 and D = 2 at some critical pond size. Here, we provide an explanation for this behavior. First, using aerial photographs, we show how this fractal transition curve changes with time, and show that there is a qualitative difference in the pond shape as ice transitions from impermeable to permeable. Namely, while ice is impermeable, maximum fractal dimension is less than 2, whereas after it becomes permeable, maximum fractal dimension becomes very close to 2. We then show how the fractal dimension of a collection of overlapping circles placed randomly on a plane also transitions from D = 1 to D = 2 at a size equal to the average size of a single circle. We, therefore, conclude that this transition is a simple geometric consequence of regular shapes connecting. The one physical parameter that can be extracted from the fractal transition curve is the length scale at which transition occurs. We provide a possible explanation for this length scale by noting that the flexural wavelength of the ice poses a fundamental limit on the size of melt ponds on permeable ice. If this is true, melt ponds could be used as a proxy for ice thickness.

  10. Fractal Nanotechnology

    Directory of Open Access Journals (Sweden)

    Amato P

    2008-01-01

    Full Text Available Abstract Self-similar patterns are frequently observed in Nature. Their reproduction is possible on a length scale 102–105 nm with lithographic methods, but seems impossible on the nanometer length scale. It is shown that this goal may be achieved via a multiplicative variant of the multi-spacer patterning technology, in this way permitting the controlled preparation of fractal surfaces.

  11. Fractal design concepts for stretchable electronics.

    Science.gov (United States)

    Fan, Jonathan A; Yeo, Woon-Hong; Su, Yewang; Hattori, Yoshiaki; Lee, Woosik; Jung, Sung-Young; Zhang, Yihui; Liu, Zhuangjian; Cheng, Huanyu; Falgout, Leo; Bajema, Mike; Coleman, Todd; Gregoire, Dan; Larsen, Ryan J; Huang, Yonggang; Rogers, John A

    2014-01-01

    Stretchable electronics provide a foundation for applications that exceed the scope of conventional wafer and circuit board technologies due to their unique capacity to integrate with soft materials and curvilinear surfaces. The range of possibilities is predicated on the development of device architectures that simultaneously offer advanced electronic function and compliant mechanics. Here we report that thin films of hard electronic materials patterned in deterministic fractal motifs and bonded to elastomers enable unusual mechanics with important implications in stretchable device design. In particular, we demonstrate the utility of Peano, Greek cross, Vicsek and other fractal constructs to yield space-filling structures of electronic materials, including monocrystalline silicon, for electrophysiological sensors, precision monitors and actuators, and radio frequency antennas. These devices support conformal mounting on the skin and have unique properties such as invisibility under magnetic resonance imaging. The results suggest that fractal-based layouts represent important strategies for hard-soft materials integration.

  12. Fractal design concepts for stretchable electronics

    Science.gov (United States)

    Fan, Jonathan A.; Yeo, Woon-Hong; Su, Yewang; Hattori, Yoshiaki; Lee, Woosik; Jung, Sung-Young; Zhang, Yihui; Liu, Zhuangjian; Cheng, Huanyu; Falgout, Leo; Bajema, Mike; Coleman, Todd; Gregoire, Dan; Larsen, Ryan J.; Huang, Yonggang; Rogers, John A.

    2014-02-01

    Stretchable electronics provide a foundation for applications that exceed the scope of conventional wafer and circuit board technologies due to their unique capacity to integrate with soft materials and curvilinear surfaces. The range of possibilities is predicated on the development of device architectures that simultaneously offer advanced electronic function and compliant mechanics. Here we report that thin films of hard electronic materials patterned in deterministic fractal motifs and bonded to elastomers enable unusual mechanics with important implications in stretchable device design. In particular, we demonstrate the utility of Peano, Greek cross, Vicsek and other fractal constructs to yield space-filling structures of electronic materials, including monocrystalline silicon, for electrophysiological sensors, precision monitors and actuators, and radio frequency antennas. These devices support conformal mounting on the skin and have unique properties such as invisibility under magnetic resonance imaging. The results suggest that fractal-based layouts represent important strategies for hard-soft materials integration.

  13. Dispersal of grouper larvae drives local resource sharing in a coral reef fishery

    KAUST Repository

    Almany, Glenn R.; Hamilton, Richard J.; Bode, Michael; Matawai, Manuai; Potuku, Tapas; Saenz Agudelo, Pablo; Planes, Serge; Berumen, Michael L.; Rhodes, Kevin L.; Thorrold, Simon R.; Russ, Garry Ronald; Jones, Geoffrey P.

    2013-01-01

    In many tropical nations, fisheries management requires a community-based approach because small customary marine tenure areas define the spatial scale of management [1]. However, the fate of larvae originating from a community's tenure is unknown, and thus the degree to which a community can expect their management actions to replenish the fisheries within their tenure is unclear [2, 3]. Furthermore, whether and how much larval dispersal links tenure areas can provide a strong basis for cooperative management [4, 5]. Using genetic parentage analysis, we measured larval dispersal from a single, managed spawning aggregation of squaretail coral grouper (Plectropomus areolatus) and determined its contribution to fisheries replenishment within five community tenure areas up to 33 km from the aggregation at Manus Island, Papua New Guinea. Within the community tenure area containing the aggregation, 17%-25% of juveniles were produced by the aggregation. In four adjacent tenure areas, 6%-17% of juveniles were from the aggregation. Larval dispersal kernels predict that 50% of larvae settled within 14 km of the aggregation. These results strongly suggest that both local and cooperative management actions can provide fisheries benefits to communities over small spatial scales. © 2013 Elsevier Ltd.

  14. Dispersal of grouper larvae drives local resource sharing in a coral reef fishery

    KAUST Repository

    Almany, Glenn R.

    2013-04-01

    In many tropical nations, fisheries management requires a community-based approach because small customary marine tenure areas define the spatial scale of management [1]. However, the fate of larvae originating from a community\\'s tenure is unknown, and thus the degree to which a community can expect their management actions to replenish the fisheries within their tenure is unclear [2, 3]. Furthermore, whether and how much larval dispersal links tenure areas can provide a strong basis for cooperative management [4, 5]. Using genetic parentage analysis, we measured larval dispersal from a single, managed spawning aggregation of squaretail coral grouper (Plectropomus areolatus) and determined its contribution to fisheries replenishment within five community tenure areas up to 33 km from the aggregation at Manus Island, Papua New Guinea. Within the community tenure area containing the aggregation, 17%-25% of juveniles were produced by the aggregation. In four adjacent tenure areas, 6%-17% of juveniles were from the aggregation. Larval dispersal kernels predict that 50% of larvae settled within 14 km of the aggregation. These results strongly suggest that both local and cooperative management actions can provide fisheries benefits to communities over small spatial scales. © 2013 Elsevier Ltd.

  15. Two and Three-Phases Fractal Models Application in Soil Saturated Hydraulic Conductivity Estimation

    Directory of Open Access Journals (Sweden)

    ELNAZ Rezaei abajelu

    2017-03-01

    Full Text Available Introduction: Soil Hydraulic conductivity is considered as one of the most important hydraulic properties in water and solutionmovement in porous media. In recent years, variousmodels as pedo-transfer functions, fractal models and scaling technique are used to estimate the soil saturated hydraulic conductivity (Ks. Fractal models with two subset of two (solid and pore and three phases (solid, pore and soil fractal (PSF are used to estimate the fractal dimension of soil particles. The PSF represents a generalization of the solid and pore mass fractal models. The PSF characterizes both the solid and pore phases of the porous material. It also exhibits self-similarity to some degree, in the sense that where local structure seems to be similar to the whole structure.PSF models can estimate interface fractal dimension using soil pore size distribution data (PSD and soil moisture retention curve (SWRC. The main objective of this study was to evaluate different fractal models to estimate the Ksparameter. Materials and Methods: The Schaapetal data was used in this study. The complex consists of sixty soil samples. Soil texture, soil bulk density, soil saturated hydraulic conductivity and soil particle size distribution curve were measured by hydrometer method, undistributed soil sample, constant head method and wet sieve method, respectively for all soil samples.Soil water retention curve were determined by using pressure plates apparatus.The Ks parameter could be estimated by Ralws model as a function of fractal dimension by seven fractal models. Fractal models included Fuentes at al. (1996, Hunt and Gee (2002, Bird et al. (2000, Huang and Zhang (2005, Tyler and Wheatcraft (1990, Kutlu et al. (2008, Sepaskhah and Tafteh (2013.Therefore The Ks parameter can be estimated as a function of the DS (fractal dimension by seven fractal models (Table 2.Sensitivity analysis of Rawls model was assessed by making changes±10%, ±20% and±30%(in input parameters

  16. Fractal growth in impurity-controlled solidification in lipid monolayers

    DEFF Research Database (Denmark)

    Fogedby, Hans C.; Sørensen, Erik Schwartz; Mouritsen, Ole G.

    1987-01-01

    A simple two-dimensional microscopic model is proposed to describe solidifcation processes in systems with impurities which are miscible only in the fluid phase. Computer simulation of the model shows that the resulting solids are fractal over a wide range of impurity concentrations and impurity...... diffusional constants. A fractal-forming mechanism is suggested for impurity-controlled solidification which is consistent with recent experimental observations of fractal growth of solid phospholipid domains in monolayers. The Journal of Chemical Physics is copyrighted by The American Institute of Physics....

  17. Shower fractal dimension analysis in a highly-granular calorimeter

    CERN Document Server

    Ruan, M

    2014-01-01

    We report on an investigation of the self-similar structure of particle showers recorded at a highly-granular calorimeter. On both simulated and experimental data, a strong correlation between the number of hits and the spatial scale of the readout channels is observed, from which we define the shower fractal dimension. The measured fractal dimension turns out to be strongly dependent on particle type, which enables new approaches for particle identification. A logarithmic dependence of the particle energy on the fractal dimension is also observed.

  18. Fractal Dimension analysis for seismicity spatial and temporal ...

    Indian Academy of Sciences (India)

    23

    The research can further promote the application of fractal theory in the study ... spatial-temporal propagation characteristics of seismic activities, fractal theory is not ... provide a theoretical basis for the prevention and control of earthquakes. 2. ... random self-similar structure of the earthquake in the time series and the spatial.

  19. Experiencia en el aula de secundaria con fractales

    OpenAIRE

    Gallardo, Sandra; Martínez-Santaolalla, Manuel José; Molina, Marta; Peñas, María; Cañadas, María C.; Crisóstomo, Edson

    2006-01-01

    Presentamos una experiencia docente en un aula de 2º ESO en la que trabajamos los fractales mediante el uso de material de carácter manipulativo. La metodología seguida se basa en la construcción de casos particulares con el fin de llegar al concepto de fractal.

  20. A fractal view of Chernobyl fallout in Northern Italy and Europe

    International Nuclear Information System (INIS)

    Salvadori, G.; Ratti, S.P.; Belli, G.; Quinto, E.

    1996-01-01

    Fractals are associated with irregularity and represent a powerful tool for investigating phenomena featuring a complex behaviour, as it is the case of the atmospheric processes playing a role in spreading the radioactive pollution of Chernobyl in the environment. The introduction of fractals in environmental sciences is quite recent. Fractals may account for the presence of strong fluctuations and for the high variability characterising the natural events involved in the Chernobyl fallout: the geographical sparseness of pollutant and the presence of 'hot spots' make it advisable to use fractals as a theoretical framework for modelling

  1. Fractal Dimension of Particle Showers Measured in a Highly Granular Calorimeter

    CERN Document Server

    Ruan, Manqi; Bourdy, Vincent; Brients, Jean-Claude; Videau, Henri

    2014-01-01

    fractal dimension of showers measured in a high granularity calorimeter designed for a future lepton collider. The shower fractal dimension reveals detailed information of the spatial configuration of the shower. It is found to be characteristic of the type of interaction and highly sensitive to the nature of the incident particle. Using the shower fractal dimension, we demonstrate a particle identification algorithm that can efficiently separate electromagnetic showers, hadronic showers and non-showering tracks. We also find a logarithmic dependence of the shower fractal dimension on the particle energy.

  2. A family of fractal sets with Hausdorff dimension 0.618

    Energy Technology Data Exchange (ETDEWEB)

    Zhong Ting [Information Management and Engineering Institute, Jishou University, Zhangjiajie 427000, Hunan (China)], E-mail: zhongting_2005@126.com

    2009-10-15

    In this paper, we introduce a class of fractal sets, which can be recursively constructed by two sequences {l_brace}n{sub k}{r_brace}{sub k{>=}}{sub 1} and {l_brace}c{sub k}{r_brace}{sub k{>=}}{sub 1}. We obtain the exact Hausdorff dimensions of these types of fractal sets using the continued fraction map. Connection of continued fraction with El Naschie's fractal spacetime is also illustrated. Furthermore, we restrict one sequence {l_brace}c{sub k}{r_brace}{sub k{>=}}{sub 1} to make every irrational number {alpha} element of (0, 1) correspond to only one of the above fractal sets called {alpha}-Cantor sets, and we found that almost all {alpha}-Cantor sets possess a common Hausdorff dimension of 0.618, which is also the Hausdorff dimension of the one-dimensional random recursive Cantor set and it is the foundation stone of E-infinity fractal spacetime theory.

  3. Incomplete information and fractal phase space

    International Nuclear Information System (INIS)

    Wang, Qiuping A.

    2004-01-01

    The incomplete statistics for complex systems is characterized by a so called incompleteness parameter ω which equals unity when information is completely accessible to our treatment. This paper is devoted to the discussion of the incompleteness of accessible information and of the physical signification of ω on the basis of fractal phase space. ω is shown to be proportional to the fractal dimension of the phase space and can be linked to the phase volume expansion and information growth during the scale refining process

  4. The study of morphology and formation mechanism for tourmaline nodules of aplites from Khaku area (Hamedan with using fractal and three dimensional analysis

    Directory of Open Access Journals (Sweden)

    Ali Asghar Sepahi-Gerow

    2017-03-01

    Full Text Available In aplites of Khaku area, located in the east of the Alvand body, tourmaline noduleswith spherical and dendritic shapes are dispersed. Some of these nodules have light halothat is actually a transition zone between the core of nodules and the host aplites.Geometrically, these nodules are fractal shapes. In these nodules fractal dimension vary from 1.46 in dendritic nodules to 1.92 in spherical nodules. In three-dimensionalreconstructions of the studied nodule, the average volume for the core is 34% and 66%for its margin. Based on evidences such as lack of veins between nodules, tourmalineswith anhedral forms, presence of a leucocratic halo in the aureole of some nodules, theirspherical shape, their linear and flow dispersion in the host rock these nodules have been crystallized in magmatic condition. In the final stages of magma crystallizationand the B content increment followed by beginning of unmixing in the melt, distinctspherical bubbles have been developed which gave rise to nodules formation. Magmaticsystem acts as chaotic systems and the presence of rotational and limited closed areas inthe vicinity of areas with disturbed paths has led to the formation of rounded anddendritic nodules beside each other.

  5. Theoretical concepts of fractal geometry semkow by radon emanation in solids

    International Nuclear Information System (INIS)

    Cruz G, H.

    1996-01-01

    The objective of this work is to introduce the fractal geometry concept to the study of gaseous emanations in solids, specially with reference to radon emission in mineral grains. The basic elements of fractals theory are developed. A fractal is defined as an auto similar subassembly, which fractal dimension is greater than the topological dimension. Starting from this, and making a brief description of the physicals basis of radon emission in solids, a model between emanation power (E R ) and the ratio s/v (surface to volume), is founded. A Gaussian model is assumed for extent of recoil from alpha decay of Ra-226. Using the results of Pfeifer it is obtained that distribution of pore size is scaled like Br -D-1 , where D: fractal[dimension, B: constant and r: pore radius. After an adequate mathematics expansion, it is found that the expression for emanation power is scaled like r 0 D-3 (r 0 grain radius). We may concluded that if we have a logarithmic graph of E R vs size of grain we can deduce the fractal dimension of the emanation surface. The experimental data of different materials provides an interval into fractal dimension D , between 2.1 to 2.86. (author). 5 refs., 1 tab

  6. Form in the Natural Environment: Fractal Computer Graphics and Wassily Kandinsky.

    Science.gov (United States)

    Geake, John; Porter, Jim

    1992-01-01

    Reports on study of use of fractal geometry in a computer graphics program to improve the perception of intermediate grade level students in their paintings. Finds that students are more likely to use changing shapes and colors after viewing slides of fractal computer graphics. Concludes that fractal computer graphics would make highly engaging…

  7. Prediction of pork quality parameters by applying fractals and data mining on MRI

    DEFF Research Database (Denmark)

    Caballero, Daniel; Pérez-Palacios, Trinidad; Caro, Andrés

    2017-01-01

    This work firstly investigates the use of MRI, fractal algorithms and data mining techniques to determine pork quality parameters non-destructively. The main objective was to evaluate the capability of fractal algorithms (Classical Fractal algorithm, CFA; Fractal Texture Algorithm, FTA and One...... Point Fractal Texture Algorithm, OPFTA) to analyse MRI in order to predict quality parameters of loin. In addition, the effect of the sequence acquisition of MRI (Gradient echo, GE; Spin echo, SE and Turbo 3D, T3D) and the predictive technique of data mining (Isotonic regression, IR and Multiple linear...... regression, MLR) were analysed. Both fractal algorithm, FTA and OPFTA are appropriate to analyse MRI of loins. The sequence acquisition, the fractal algorithm and the data mining technique seems to influence on the prediction results. For most physico-chemical parameters, prediction equations with moderate...

  8. Fractal markets: Liquidity and investors on different time horizons

    Science.gov (United States)

    Li, Da-Ye; Nishimura, Yusaku; Men, Ming

    2014-08-01

    In this paper, we propose a new agent-based model to study the source of liquidity and the “emergent” phenomenon in financial market with fractal structure. The model rests on fractal market hypothesis and agents with different time horizons of investments. What is interesting is that though the agent-based model reveals that the interaction between these heterogeneous agents affects the stability and liquidity of the financial market the real world market lacks detailed data to bring it to light since it is difficult to identify and distinguish the investors with different time horizons in the empirical approach. results show that in a relatively short period of time fractal market provides liquidity from investors with different horizons and the market gains stability when the market structure changes from uniformity to diversification. In the real world the fractal structure with the finite of horizons can only stabilize the market within limits. With the finite maximum horizons, the greater diversity of the investors and the fractal structure will not necessarily bring more stability to the market which might come with greater fluctuation in large time scale.

  9. Plot-slope soil erosion using 7Be measurement and rill fractal dimension

    International Nuclear Information System (INIS)

    Zhang Fengbao; Yang Mingyi

    2010-01-01

    In this study, we intended to use 7 Be measurement and fractal theory to quantify soil erosion process on slope. The results showed that contribution rate of inter rill erosion was more than that of rill erosion during early stage of rainfall. When it rained, contribution rate of rill erosion began to be higher than inter rill erosion and become the main part of erosion during medium stage of rainfall. The trend of contribution rate of inter rill erosion was growing and the rill erosion was lowering during late stage of rainfall. Rill fractal dimension on the plot slope was almost growing larger during rainfall,growing quickly during early stage of rainfall and slowly during the late stage. Correlations was positive between rill fractal dimension and total erosion amount, also positive between rill fractal dimension and rill erosion. The correlations was positive between rill fractal dimension variation and total erosion amount, also was positive between rill fractal dimension variation and rill erosion amount. The best correlation was observed between rill fractal dimension and rill erosion amount. These results indicated that the rill fractal dimension on the plot slope could represent the development process of rill,the complex degree of rill and the variation of soil erosion intensity on the entire slope. (authors)

  10. Fractal dimension of the fractured surface of materials

    International Nuclear Information System (INIS)

    Lung, C.W.; Zhang, S.Z.

    1989-05-01

    Fractal dimension of the fractured surface of materials is discussed to show that the origin of the negative correlation between D F and toughness lies in the method of fractal dimension measurement with perimeter-area relation and also in the physical mechanism of crack propagation. (author). 8 refs, 4 figs, 1 tab

  11. A variable-order fractal derivative model for anomalous diffusion

    Directory of Open Access Journals (Sweden)

    Liu Xiaoting

    2017-01-01

    Full Text Available This paper pays attention to develop a variable-order fractal derivative model for anomalous diffusion. Previous investigations have indicated that the medium structure, fractal dimension or porosity may change with time or space during solute transport processes, results in time or spatial dependent anomalous diffusion phenomena. Hereby, this study makes an attempt to introduce a variable-order fractal derivative diffusion model, in which the index of fractal derivative depends on temporal moment or spatial position, to characterize the above mentioned anomalous diffusion (or transport processes. Compared with other models, the main advantages in description and the physical explanation of new model are explored by numerical simulation. Further discussions on the dissimilitude such as computational efficiency, diffusion behavior and heavy tail phenomena of the new model and variable-order fractional derivative model are also offered.

  12. Moisture diffusivity in structure of random fractal fiber bed

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Fanglong, E-mail: zhufanglong_168@163.com [College of Textile, Zhongyuan University of Technology, Zhengzhou City (China); The Chinese People' s Armed Police Forces Academy, Langfan City (China); Zhou, Yu; Feng, Qianqian [College of Textile, Zhongyuan University of Technology, Zhengzhou City (China); Xia, Dehong [School of Mechanical Engineering, University of Science and Technology, Beijing (China)

    2013-11-08

    A theoretical expression related to effective moisture diffusivity to random fiber bed is derived by using fractal theory and considering both parallel and perpendicular channels to diffusion flow direction. In this Letter, macroporous structure of hydrophobic nonwoven material is investigated, and Knudsen diffusion and surface diffusion are neglected. The effective moisture diffusivity predicted by the present fractal model are compared with water vapor transfer rate (WVTR) experiment data and calculated values obtained from other theoretical models. This verifies the validity of the present fractal diffusivity of fibrous structural beds.

  13. An Efficient Computational Technique for Fractal Vehicular Traffic Flow

    Directory of Open Access Journals (Sweden)

    Devendra Kumar

    2018-04-01

    Full Text Available In this work, we examine a fractal vehicular traffic flow problem. The partial differential equations describing a fractal vehicular traffic flow are solved with the aid of the local fractional homotopy perturbation Sumudu transform scheme and the local fractional reduced differential transform method. Some illustrative examples are taken to describe the success of the suggested techniques. The results derived with the aid of the suggested schemes reveal that the present schemes are very efficient for obtaining the non-differentiable solution to fractal vehicular traffic flow problem.

  14. Fractal corrections of BaTiO3-ceramic sintering parameters

    Directory of Open Access Journals (Sweden)

    Mitić V.V.

    2014-01-01

    Full Text Available Morphology of ceramics grains and pores as well as Brownian character of particle dynamics inside ceramics specimen contributes to better understanding of the sintering process. BaTiO3-ceramics, studied in this paper, has light fractal form and it is emanated in three aspects. First, the surface of grains, even in starting green body as well as distribution of grains shows fractal behavior. Second, existence of pores and their distribution follow the rules of fractal geometry. Third, movement of particles inside viscous flow underlies the rule of Brownian motion, which is essentially a fractal category. These three elements, each in its domain influence sintering dynamics, and can be described by dimensionless quantitative factors, αs αp and αm, being normalized to the interval [0,1]. Following sintering process, the associate formulae of Frenkel, Scherer and Mackenzie-Shuttleworth are shown from the angle of view of ceramics fractal dimension changing that approaches to 3. Also, it is shown that the energy balance is not violated after applying fractal correction to quasi equilibrium of the energy emanating from surface area reduction ES and energy adopted by viscous flow Ef .[Projekat Ministarstva nauke Republike Srbije, br. 172057: Directed synthesis, structure and properties of multifunctional materials

  15. Exploring the relationship between fractal features and bacterial essential genes

    International Nuclear Information System (INIS)

    Yu Yong-Ming; Yang Li-Cai; Zhao Lu-Lu; Liu Zhi-Ping; Zhou Qian

    2016-01-01

    Essential genes are indispensable for the survival of an organism in optimal conditions. Rapid and accurate identifications of new essential genes are of great theoretical and practical significance. Exploring features with predictive power is fundamental for this. Here, we calculate six fractal features from primary gene and protein sequences and then explore their relationship with gene essentiality by statistical analysis and machine learning-based methods. The models are applied to all the currently available identified genes in 27 bacteria from the database of essential genes (DEG). It is found that the fractal features of essential genes generally differ from those of non-essential genes. The fractal features are used to ascertain the parameters of two machine learning classifiers: Naïve Bayes and Random Forest. The area under the curve (AUC) of both classifiers show that each fractal feature is satisfactorily discriminative between essential genes and non-essential genes individually. And, although significant correlations exist among fractal features, gene essentiality can also be reliably predicted by various combinations of them. Thus, the fractal features analyzed in our study can be used not only to construct a good essentiality classifier alone, but also to be significant contributors for computational tools identifying essential genes. (paper)

  16. The aggregation efficiency of very fine volcanic ash

    Science.gov (United States)

    Del Bello, E.; Taddeucci, J.; Scarlato, P.

    2013-12-01

    Explosive volcanic eruptions can discharge large amounts of very small sized pyroclasts (under 0.090 mm) into the atmosphere that may cause problems to people, infrastructures and environment. The transport and deposition of fine ash are ruled by aggregation that causes premature settling of fine ash and, as consequence, significantly reduces the concentration of airborne material over long distances. Parameterizing the aggregation potential of fine ash is then needed to provide accurate modelling of ash transport and deposition from volcanic plumes. Here we present the first results of laboratory experiments investigating the aggregation efficiency of very fine volcanic particles. Previous laboratory experiments have shown that collision kinetic and relative humidity provide the strongest effect on aggregation behaviour but were only limited to particles with size > 0.125 mm. In our work, we focus on natural volcanic ash at ambient humidity with particles size aggregation potential. Two types of ash were used in our experiments: fresh ash, collected during fall-out from a recent plume-forming eruption at Sakurajima (Japan -July 2013) and old ash, collected from fall-out tephra deposits at Campi Flegrei (Italy, ca. 10 ka), to account for the different chemical composition and morphoscopic effects of altered ash on aggregation efficiency. Total samples were hand sieved to obtain three classes with unimodal grain size distributions (sieved from the top of a transparent tank where a fan, placed at the bottom, allows turbulent dispersion of particles. Collision and sticking of particles on a vertical glass slide were filmed with a high speed cameras at 6000 fps. Our lenses arrangement provide high image resolution allowing to capture particles down to 0.005 mm in diameter. Video sequences of particles motion and collision were then processed with image analysis and particle tracking tools to determine i) the particle number density and ii) the grain size distribution

  17. Flames in fractal grid generated turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Goh, K H H; Hampp, F; Lindstedt, R P [Department of Mechanical Engineering, Imperial College, London SW7 2AZ (United Kingdom); Geipel, P, E-mail: p.lindstedt@imperial.ac.uk [Siemens Industrial Turbomachinery AB, SE-612 83 Finspong (Sweden)

    2013-12-15

    Twin premixed turbulent opposed jet flames were stabilized for lean mixtures of air with methane and propane in fractal grid generated turbulence. A density segregation method was applied alongside particle image velocimetry to obtain velocity and scalar statistics. It is shown that the current fractal grids increase the turbulence levels by around a factor of 2. Proper orthogonal decomposition (POD) was applied to show that the fractal grids produce slightly larger turbulent structures that decay at a slower rate as compared to conventional perforated plates. Conditional POD (CPOD) was also implemented using the density segregation technique and the results show that CPOD is essential to segregate the relative structures and turbulent kinetic energy distributions in each stream. The Kolmogorov length scales were also estimated providing values {approx}0.1 and {approx}0.5 mm in the reactants and products, respectively. Resolved profiles of flame surface density indicate that a thin flame assumption leading to bimodal statistics is not perfectly valid under the current conditions and it is expected that the data obtained will be of significant value to the development of computational methods that can provide information on the conditional structure of turbulence. It is concluded that the increase in the turbulent Reynolds number is without any negative impact on other parameters and that fractal grids provide a route towards removing the classical problem of a relatively low ratio of turbulent to bulk strain associated with the opposed jet configuration. (paper)

  18. Effect of noise on fractal structure

    Energy Technology Data Exchange (ETDEWEB)

    Serletis, Demitre [Division of Neurosurgery, Hospital for Sick Children, 1504-555 University Avenue, Toronto, Ont., M5G 1X8 (Canada)], E-mail: demitre.serletis@utoronto.ca

    2008-11-15

    In this paper, I investigate the effect of dynamical noise on the estimation of the Hurst exponent and the fractal dimension of time series. Recently, Serletis et al. [Serletis, Apostolos, Asghar Shahmoradi, Demitre Serletis. Effect of noise on estimation of Lyapunov exponents from a time series. Chaos, Solitons and Fractals, forthcoming] have shown that dynamical noise can make the detection of chaotic dynamics very difficult, and Serletis et al. [Serletis, Apostolos, Asghar Shahmoradi, Demitre Serletis. Effect of noise on the bifurcation behavior of dynamical systems. Chaos, Solitons and Fractals, forthcoming] have shown that dynamical noise can also shift bifurcation points and produce noise-induced transitions, making the determination of bifurcation boundaries difficult. Here I apply the detrending moving average (DMA) method, recently developed by Alessio et al. [Alessio E, Carbone A, Castelli G, Frappietro V. Second-order moving average and scaling of stochastic time series. The Eur Phys J B 2002;27:197-200] and Carbone et al. [Carbone A, Castelli G, Stanley HE. Time-dependent Hurst exponent in financial time series. Physica A 2004;344:267-71; Carbone A, Castelli G, Stanley HE. Analysis of clusters formed by the moving average of a long-range correlated time series. Phys Rev E 2004;69:026105], to estimate the Hurst exponent of a Brownian walk with a Hurst exponent of 0.5, coupled with low and high intensity noise, and show that dynamical noise has no effect on fractal structure.

  19. Modeling of mixing processes: Fluids, particulates, and powders

    Energy Technology Data Exchange (ETDEWEB)

    Ottino, J.M.; Hansen, S. [Northwestern Univ., Evanston, IL (United States)

    1995-12-31

    Work under this grant involves two main areas: (1) Mixing of Viscous Liquids, this first area comprising aggregation, fragmentation and dispersion, and (2) Mixing of Powders. In order to produce a coherent self-contained picture, we report primarily on results obtained under (1), and within this area, mostly on computational studies of particle aggregation in regular and chaotic flows. Numerical simulations show that the average cluster size of compact clusters grows algebraically, while the average cluster size of fractal clusters grows exponentially; companion mathematical arguments are used to describe the initial growth of average cluster size and polydispersity. It is found that when the system is well mixed and the capture radius independent of mass, the polydispersity is constant for long-times and the cluster size distribution is self-similar. Furthermore, our simulations indicate that the fractal nature of the clusters is dependent upon the mixing.

  20. Bouguer correction density determination from fractal analysis using ...

    African Journals Online (AJOL)

    In this work, Bouguer density is determined using the fractal approach. This technique was applied to the gravity data of the Kwello area of the Basement Complex, north-western Nigeria. The density obtained using the fractal approach is 2500 kgm which is lower than the conventional value of 2670 kgm used for average ...

  1. Thermal properties of bodies in fractal and cantorian physics

    International Nuclear Information System (INIS)

    Zmeskal, Oldrich; Buchnicek, Miroslav; Vala, Martin

    2005-01-01

    Fundamental laws describing the heat diffusion in fractal environment are discussed. It is shown that for the three-dimensional space the heat radiation process occur in structures with fractal dimension D element of heat conduction and convection have the upper hand (generally in the real gases). To describe the heat diffusion a new law has been formulated. Its validity is more general than the Plank's radiation law based on the quantum heat diffusion theory. The energy density w = f (K, D), where K is the fractal measure and D is the fractal dimension exhibit typical dependency peaking with agreement with Planck's radiation law and with the experimental data for the absolutely black body in the energy interval kT m m kT m ∼ 1.5275. The agreement of the fractal model with the experimental outcomes is documented for the spectral characteristics of the Sun. The properties of stellar objects (black holes, relict radiation, etc.) and the elementary particles fields and interactions between them (quarks, leptons, mesons, baryons, bosons and their coupling constants) will be discussed with the help of the described mathematic apparatus in our further contributions. The general gas law for real gases in its more applicable form than the widely used laws (e.g. van der Waals, Berthelot, Kammerlingh-Onnes) has been also formulated. The energy density, which is in this case represented by the gas pressure p = f (K, D), can gain generally complex value and represents the behaviour of real (cohesive) gas in interval D element of (1,3>. The gas behaves as the ideal one only for particular values of the fractal dimensions (the energy density is real-valued). Again, it is shown that above the critical temperature (kT > K h c) and for fractal dimension D m > 2.0269 the results are comparable to the kinetics theory of real (ideal) gas (van der Waals equation of state, compressibility factor, Boyle's temperature). For the critical temperature (K h c = kT r ) the compressibility

  2. Toward a new “Fractals-General Science”

    Directory of Open Access Journals (Sweden)

    Hassen Taher Dorrah

    2014-09-01

    Full Text Available A recent study has shown that everywhere real systems follow common “fractals-general stacking behavior” during their change pathways (or evolutionary life cycles. This fact leads to the emergence of the new discipline “Fractals-General Science” as a mother-discipline (and acting as upper umbrella of existing natural and applied sciences to commonly handle their fractals-general change behavior. It is, therefore, the main targets of this short communication are to present the motives, objectives, relations with other existing sciences, and the development map of such new science. It is discussed that there are many foreseen illustrative applications in geology, archeology, astronomy, life sciences, ecology, environmental science, hydrology, agronomy, engineering, materials sciences, chemistry, nanotechnology, biology, medicine, psychiatry, sociology, humanities, education, and arts that could effectively lead the implementation and experimentation of such new science. It is highlighted that the new “Fractals-General Science” could provide through multi-stacking representations the necessary platforms for investigating interactions and mutual changes between real life systems belonging to several sciences and disciplines. Examples are handling problems of the processing of basic formation and changes of matter and substances, propagation of combined corrosion, creep, fatigue and sedimentation of engineering and industrial systems, and the progressing of humans’ evolutionary life cycles.

  3. Photophysical and adsorption properties of pyronin B in natural bentonite clay dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Rostami, Mohammad Reza [Department of Chemistry, Faculty of Sciences, Atatürk University, 25240, Erzurum (Turkey); Kaya, Mehmet [Recep Tayyip Erdoğan University, Faculty of Arts and Sciences, 53100 Rize (Turkey); Gür, Bahri; Onganer, Yavuz [Department of Chemistry, Faculty of Sciences, Atatürk University, 25240, Erzurum (Turkey); Meral, Kadem, E-mail: kademm@atauni.edu.tr [Department of Chemistry, Faculty of Sciences, Atatürk University, 25240, Erzurum (Turkey)

    2015-12-30

    Graphical abstract: The molecular aggregation of PyB in bentonite aqueous dispersion is observed by using molecular absorption spectrum. - Highlights: • Molecular behavior of PyB adsorbed on bentonite was spectroscopically followed. • H-aggregates of PyB in bentonite aqueous dispersion were formed. • The adsorption characteristics of PyB on bentonite particles were determined. - Abstract: The present study focused on the adsorption and photophysical properties of pyronin B (PyB) in bentonite aqueous dispersion. The photophysical properties of PyB in the aqueous dispersion were studied by using UV–vis absorption, steady-state and time-resolved fluorescence spectroscopy techniques. In this concept, the interaction of the dye with bentonite particles in the aqueous dispersion was spectroscopically followed depending on certain parameters such as interaction time, pH and the dye concentration. Obtained spectral data revealed that the aggregate structures (H-type) of PyB in the aqueous dispersion were formed in the dye concentration range studied. The non-fluorescence nature of H-aggregates and the clay minerals governed the fluorescence property of PyB. The mentioned non-radiative processes caused the fluorescence lifetime of the dye to decrease compared to that in water. The adsorption process of PyB on bentonite was examined depending on contact time and initial adsorbate concentration. An adsorption isotherm was good-fitted by the Freundlich model with a linear regression correlation value of 0.999. The adsorption of PyB on bentonite particles was in agreement with pseudo second-order kinetics.

  4. Testing the effect of a microbial-based soil amendment on aggregate stability and erodibility

    DEFF Research Database (Denmark)

    Malozo, Mponda; Iversen, Bo Vangsø; Heckrath, Goswin Johann

    to the rainfall-runoff experiment where the microbial-based product had a clear effect on soil erodibility. In relation to measurement of aggregate stability as well as clay dispersion, the picture was less clear. Especially for the sandy Tanzania soil with a low content of organic matter, a clear effect was seen...... aggregate stability and erodibility. Two commercial products, gypsum and a microbial-based solution were used for the experiment and were tested on two Danish sandy loamy soils as well on a sandy soil from Tanzania. The carrier of the microbial-based product, a glycerol solution, was tested as well....... In the laboratory, soils were treated with the soil amendments in a two-step procedure at controlled water contents following aerobic incubation in closed containers. Water-aggregate stability and clay dispersion were measured on soil aggregates less than 8 mm in diameter. Aggregate stability was measured...

  5. Fractal sets generated by chemical reactions discrete chaotic dynamics

    International Nuclear Information System (INIS)

    Gontar, V.; Grechko, O.

    2007-01-01

    Fractal sets composed by the parameters values of difference equations derived from chemical reactions discrete chaotic dynamics (DCD) and corresponding to the sequences of symmetrical patterns were obtained in this work. Examples of fractal sets with the corresponding symmetrical patterns have been presented

  6. Analysis of fractal dimensions of rat bones from film and digital images

    Science.gov (United States)

    Pornprasertsuk, S.; Ludlow, J. B.; Webber, R. L.; Tyndall, D. A.; Yamauchi, M.

    2001-01-01

    OBJECTIVES: (1) To compare the effect of two different intra-oral image receptors on estimates of fractal dimension; and (2) to determine the variations in fractal dimensions between the femur, tibia and humerus of the rat and between their proximal, middle and distal regions. METHODS: The left femur, tibia and humerus from 24 4-6-month-old Sprague-Dawley rats were radiographed using intra-oral film and a charge-coupled device (CCD). Films were digitized at a pixel density comparable to the CCD using a flat-bed scanner. Square regions of interest were selected from proximal, middle, and distal regions of each bone. Fractal dimensions were estimated from the slope of regression lines fitted to plots of log power against log spatial frequency. RESULTS: The fractal dimensions estimates from digitized films were significantly greater than those produced from the CCD (P=0.0008). Estimated fractal dimensions of three types of bone were not significantly different (P=0.0544); however, the three regions of bones were significantly different (P=0.0239). The fractal dimensions estimated from radiographs of the proximal and distal regions of the bones were lower than comparable estimates obtained from the middle region. CONCLUSIONS: Different types of image receptors significantly affect estimates of fractal dimension. There was no difference in the fractal dimensions of the different bones but the three regions differed significantly.

  7. Integration of Fractal Biosensor in a Digital Microfluidic Platform

    KAUST Repository

    Mashraei, Yousof

    2016-06-08

    The digital microfluidic (DMF) platform introduces many applications in biomedical assays. If it is to be commercially available to the public, it needs to have the essential features of smart sensing and a compact size. In this work, we report on a fractal electrode biosensor that is used for both droplet actuation and sensing C-reactive protein (CRP) concentration levels to assess cardiac disease risk. Our proposed electrode is the first two-terminal electrode design to be integrated into DMF platforms. A simulation of the electrical field distribution shows reduced peak intensities and uniform distribution of the field. When compared to a V-notch square electrode, the fractal electrode shows a superior performance in both aspects, i.e. field uniformity and intensity. These improvements are translated into a successful and responsive actuation of a water droplet with 100V. Likewise, the effective dielectric strength is improved by a 33% increase in the fractal electrode breakdown voltage. Additionally, the capability of the fractal electrode to work as a capacitive biosensor is evaluated with CRP quantification test. Selected fractal electrodes undergo a surface treatment to immobilize anti-CRP antibodies on their surface. The measurement shows a response to the added CRP in capacitance within three minutes. When the untreated electrodes were used for quantification, there was no significant change in capacitance, and this suggested that immobilization was necessary. The electrodes configuration in the fabricated DMF platform allows the fractal electrodes to be selectively used as biosensors, which means the device could be integrated into point-of-care applications.

  8. Fuzzy fractals, chaos, and noise

    Energy Technology Data Exchange (ETDEWEB)

    Zardecki, A.

    1997-05-01

    To distinguish between chaotic and noisy processes, the authors analyze one- and two-dimensional chaotic mappings, supplemented by the additive noise terms. The predictive power of a fuzzy rule-based system allows one to distinguish ergodic and chaotic time series: in an ergodic series the likelihood of finding large numbers is small compared to the likelihood of finding them in a chaotic series. In the case of two dimensions, they consider the fractal fuzzy sets whose {alpha}-cuts are fractals, arising in the context of a quadratic mapping in the extended complex plane. In an example provided by the Julia set, the concept of Hausdorff dimension enables one to decide in favor of chaotic or noisy evolution.

  9. Some fractal properties of the percolating backbone in two dimensions

    International Nuclear Information System (INIS)

    Laidlaw, D.; MacKay, G.; Jan, N.

    1987-01-01

    A new algorithm is presented, based on elements of artificial intelligence theory, to determine the fractal properties of the backbone of the incipient infinite cluster. It is found that fractal dimensionality of the backbone is d/sub f//sup BB/ = 1.61 +/- 0.01, the chemical dimensionality is d/sub t/ = 1.40 +/- 0.01, and the fractal dimension of the minimum path d/sub min/ = 1.15 +/- 0.02 for the two-dimensional triangular lattice

  10. Assessment of Textural Differentiations in Forest Resources in Romania Using Fractal Analysis

    Directory of Open Access Journals (Sweden)

    Ion Andronache

    2017-02-01

    Full Text Available Deforestation and forest degradation have several negative effects on the environment including a loss of species habitats, disturbance of the water cycle and reduced ability to retain CO2, with consequences for global warming. We investigated the evolution of forest resources from development regions in Romania affected by both deforestation and reforestation using a non-Euclidean method based on fractal analysis. We calculated four fractal dimensions of forest areas: the fractal box-counting dimension of the forest areas, the fractal box-counting dimension of the dilated forest areas, the fractal dilation dimension and the box-counting dimension of the border of the dilated forest areas. Fractal analysis revealed morpho-structural and textural differentiations of forested, deforested and reforested areas in development regions with dominant mountain relief and high hills (more forested and compact organization in comparison to the development regions dominated by plains or low hills (less forested, more fragmented with small and isolated clusters. Our analysis used the fractal analysis that has the advantage of analyzing the entire image, rather than studying local information, thereby enabling quantification of the uniformity, fragmentation, heterogeneity and homogeneity of forests.

  11. Solving fractal steady heat-transfer problems with the local fractional Sumudu transform

    Directory of Open Access Journals (Sweden)

    Wang Yi

    2015-01-01

    Full Text Available In this paper the linear oscillator problem in fractal steady heat-transfer is studied within the local fractional theory. In particular, the local fractional Sumudu transform (LFST will be used to solve both the homogeneous and the non-homogeneous local fractional oscillator equations (LFOEs under fractal steady heat-transfer. It will be shown that the obtained non-differentiable solutions characterize the fractal phenomena with and without the driving force in fractal steady heat transfer at low excess temperatures.

  12. Evaluation of surface quality by Fractal Dimension and Volume ...

    African Journals Online (AJOL)

    Experimental and simulation results have enabled to show than the large diameter ball under low loads and medium feed speeds, favors the elimination of peaks and reduction of fractal dimension whence quality improvement of surface. Keywords: burnishing, volume parameters, fractal dimension, experimental designs ...

  13. Investigation into process-induced de-aggregation of cohesive micronised API particles.

    Science.gov (United States)

    Hoffmann, Magnus; Wray, Patrick S; Gamble, John F; Tobyn, Mike

    2015-09-30

    The aim of this study was to assess the impact of unit processes on the de-aggregation of a cohesive micronised API within a pharmaceutical formulation using near-infrared chemical imaging. The impact on the primary API particles was also investigated using an image-based particle characterization system with integrated Raman analysis. The blended material was shown to contain large, API rich domains which were distributed in-homogeneously across the sample, suggesting that the blending process was not aggressive enough to disperse aggregates of micronised drug particles. Cone milling, routinely used to improve the homogeneity of such cohesive formulations, was observed to substantially reduce the number and size of API rich domains; however, several smaller API domains survived the milling process. Conveyance of the cone milled formulation through the Alexanderwerk WP120 powder feed system completely dispersed all remaining aggregates. Importantly, powder feed transmission of the un-milled formulation was observed to produce an equally homogeneous API distribution. The size of the micronised primary drug particles remained unchanged during powder feed transmission. These findings provide further evidence that this powder feed system does induce shear, and is in fact better able to disperse aggregates of a cohesive micronised API within a blend than the blend-mill-blend step. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  14. Towards Video Quality Metrics Based on Colour Fractal Geometry

    Directory of Open Access Journals (Sweden)

    Richard Noël

    2010-01-01

    Full Text Available Vision is a complex process that integrates multiple aspects of an image: spatial frequencies, topology and colour. Unfortunately, so far, all these elements were independently took into consideration for the development of image and video quality metrics, therefore we propose an approach that blends together all of them. Our approach allows for the analysis of the complexity of colour images in the RGB colour space, based on the probabilistic algorithm for calculating the fractal dimension and lacunarity. Given that all the existing fractal approaches are defined only for gray-scale images, we extend them to the colour domain. We show how these two colour fractal features capture the multiple aspects that characterize the degradation of the video signal, based on the hypothesis that the quality degradation perceived by the user is directly proportional to the modification of the fractal complexity. We claim that the two colour fractal measures can objectively assess the quality of the video signal and they can be used as metrics for the user-perceived video quality degradation and we validated them through experimental results obtained for an MPEG-4 video streaming application; finally, the results are compared against the ones given by unanimously-accepted metrics and subjective tests.

  15. Temporal fractals in seabird foraging behaviour: diving through the scales of time

    Science.gov (United States)

    Macintosh, Andrew J. J.; Pelletier, Laure; Chiaradia, Andre; Kato, Akiko; Ropert-Coudert, Yan

    2013-05-01

    Animal behaviour exhibits fractal structure in space and time. Fractal properties in animal space-use have been explored extensively under the Lévy flight foraging hypothesis, but studies of behaviour change itself through time are rarer, have typically used shorter sequences generated in the laboratory, and generally lack critical assessment of their results. We thus performed an in-depth analysis of fractal time in binary dive sequences collected via bio-logging from free-ranging little penguins (Eudyptula minor) across full-day foraging trips (216 data points; 4 orders of temporal magnitude). Results from 4 fractal methods show that dive sequences are long-range dependent and persistent across ca. 2 orders of magnitude. This fractal structure correlated with trip length and time spent underwater, but individual traits had little effect. Fractal time is a fundamental characteristic of penguin foraging behaviour, and its investigation is thus a promising avenue for research on interactions between animals and their environments.

  16. An online detection system for aggregate sizes and shapes based on digital image processing

    Science.gov (United States)

    Yang, Jianhong; Chen, Sijia

    2017-02-01

    Traditional aggregate size measuring methods are time-consuming, taxing, and do not deliver online measurements. A new online detection system for determining aggregate size and shape based on a digital camera with a charge-coupled device, and subsequent digital image processing, have been developed to overcome these problems. The system captures images of aggregates while falling and flat lying. Using these data, the particle size and shape distribution can be obtained in real time. Here, we calibrate this method using standard globules. Our experiments show that the maximum particle size distribution error was only 3 wt%, while the maximum particle shape distribution error was only 2 wt% for data derived from falling aggregates, having good dispersion. In contrast, the data for flat-lying aggregates had a maximum particle size distribution error of 12 wt%, and a maximum particle shape distribution error of 10 wt%; their accuracy was clearly lower than for falling aggregates. However, they performed well for single-graded aggregates, and did not require a dispersion device. Our system is low-cost and easy to install. It can successfully achieve online detection of aggregate size and shape with good reliability, and it has great potential for aggregate quality assurance.

  17. The alkali-aggregate reaction - concrete microstructure evolution

    International Nuclear Information System (INIS)

    Regourd, M.; Hornain, H.; Poitevin, P.

    1981-01-01

    The alkali-aggregate reaction has been studied by scanning electron microscopy and energy dispersive X-ray analysis, electron probe microanalysis, and X-ray diffraction in concretes containing glass aggregates or hornfels and greywacke aggregates. The surface reaction of the natural aggregates in alkaline solutions has been analysed by X-ray photo-electron spectrometry. The study of concretes with glass aggregates stored at 20 degrees Celcius and 100 percent relative humidity has revealed, irrespective of alkali content and type of cement, the formation of a gel containing SiO 2 , Na 2 O, CaO, MgO and Al 2 O 3 . Under heat and pressure (210 degrees Celcius at MPa for 48 hours), the gel crystallizes and yields silicates not very different from tobermorite found in autoclaved normal concretes but cotaining Na and K in solid solutions. The alkali reaction in two natural aggregate concretes, is also shown by the formation of gels and silicate crystals. The progressive structuring of the gels in silicate crystals is promoted by an increase in temperature. Ettringite and Ca(OH) 2 reinforce the alkali-aggregate reaction which may be looked upon as a hydration reaction, partially of the pozzolanic type

  18. An Investigation of Fractal Characteristics of Marine Shales in the Southern China from Nitrogen Adsorption Data

    Directory of Open Access Journals (Sweden)

    Jian Xiong

    2015-01-01

    Full Text Available We mainly focus on the Permian, Lower Cambrian, Lower Silurian, and Upper Ordovician Formation; the fractal dimensions of marine shales in southern China were calculated using the FHH fractal model based on the low-pressure nitrogen adsorption analysis. The results show that the marine shales in southern China have the dual fractal characteristics. The fractal dimension D1 at low relative pressure represents the pore surface fractal characteristics, whereas the fractal dimension D2 at higher relative pressure describes the pore structure fractal characteristics. The fractal dimensions D1 range from 2.0918 to 2.718 with a mean value of 2.4762, and the fractal dimensions D2 range from 2.5842 to 2.9399 with a mean value of 2.8015. There are positive relationships between fractal dimension D1 and specific surface area and total pore volume, whereas the fractal dimensions D2 have negative correlation with average pore size. The larger the value of the fractal dimension D1 is, the rougher the pore surface is, which could provide more adsorption sites, leading to higher adsorption capacity for gas. The larger the value of the fractal dimension D2 is, the more complicated the pore structure is, resulting in the lower flow capacity for gas.

  19. Fractal effects on excitations in diluted ferromagnets

    International Nuclear Information System (INIS)

    Kumar, D.

    1981-08-01

    The low energy spin-wave like excitations in diluted ferromagnets near percolation threshold are studied. For this purpose an explicit use of the fractal model for the backbone of the infinite percolating cluster due to Kirkpatrick is made. Three physical effects are identified, which cause the softening of spin-waves as the percolation point is approached. The importance of fractal effects in the calculation of density of states and the low temperature thermodynamics is pointed out. (author)

  20. Three-dimensional fractal geometry for gas permeation in microchannels

    NARCIS (Netherlands)

    Malankowska, Magdalena; Schlautmann, Stefan; Berenschot, Erwin J.W.; Tiggelaar, Roald M.; Pina, Maria Pilar; Mallada, Reyes; Tas, Niels R.; Gardeniers, Han

    2018-01-01

    The novel concept of a microfluidic chip with an integrated three-dimensional fractal geometry with nanopores, acting as a gas transport membrane, is presented. The method of engineering the 3D fractal structure is based on a combination of anisotropic etching of silicon and corner lithography. The

  1. A fractal analysis of the public transportation system of Paris

    OpenAIRE

    L Benguigui

    1995-01-01

    An analysis of the railway networks of the public transportation system of Paris, based on the notion of fractals, is presented. The two basic networks, (metropolitan and suburban) which have different functions, have also a different fractal dimension: 1.8 for the metropolitan network, and 1.5 for the suburban network. By means of computer simulation, it is concluded that the true dimension of the metro network is probably 2.0. A fractal model of the suburban network, with the same features ...

  2. On Nonextensive Statistics, Chaos and Fractal Strings

    CERN Document Server

    Castro, C

    2004-01-01

    Motivated by the growing evidence of universality and chaos in QFT and string theory, we study the Tsallis non-extensive statistics ( with a non-additive $ q$-entropy ) of an ensemble of fractal strings and branes of different dimensionalities. Non-equilibrium systems with complex dynamics in stationary states may exhibit large fluctuations of intensive quantities which are described in terms of generalized statistics. Tsallis statistics is a particular representative of such class. The non-extensive entropy and probability distribution of a canonical ensemble of fractal strings and branes is studied in terms of their dimensional spectrum which leads to a natural upper cutoff in energy and establishes a direct correlation among dimensions, energy and temperature. The absolute zero temperature ( Kelvin ) corresponds to zero dimensions (energy ) and an infinite temperature corresponds to infinite dimensions. In the concluding remarks some applications of fractal statistics, quasi-particles, knot theory, quantum...

  3. Two Dimensional Drug Diffusion Between Nanoparticles and Fractal Tumors

    Science.gov (United States)

    Samioti, S. E.; Karamanos, K.; Tsiantis, A.; Papathanasiou, A.; Sarris, I.

    2017-11-01

    Drug delivery methods based on nanoparticles are some of the most promising medical applications in nanotechnology to treat cancer. It is observed that drug released by nanoparticles to the cancer tumors may be driven by diffusion. A fractal tumor boundary of triangular Von Koch shape is considered here and the diffusion mechanism is studied for different drug concentrations and increased fractality. A high order Finite Elements method based on the Fenics library is incorporated in fine meshes to fully resolve these irregular boundaries. Drug concentration, its transfer rates and entropy production are calculated in an up to forth order fractal iteration boundaries. We observed that diffusion rate diminishes for successive prefractal generations. Also, the entropy production around the system changes greatly as the order of the fractal curve increases. Results indicate with precision where the active sites are, in which most of the diffusion takes place and thus drug arrives to the tumor.

  4. Fractality and the law of the wall

    Science.gov (United States)

    Xu, Haosen H. A.; Yang, X. I. A.

    2018-05-01

    Fluid motions in the inertial range of isotropic turbulence are fractal, with their space-filling capacity slightly below regular three-dimensional objects, which is a consequence of the energy cascade. Besides the energy cascade, the other often encountered cascading process is the momentum cascade in wall-bounded flows. Despite the long-existing analogy between the two processes, many of the thoroughly investigated aspects of the energy cascade have so far received little attention in studies of the momentum counterpart, e.g., the possibility of the momentum-transferring scales in the logarithmic region being fractal has not been considered. In this work, this possibility is pursued, and we discuss one of its implications. Following the same dimensional arguments that lead to the D =2.33 fractal dimension of wrinkled surfaces in isotropic turbulence, we show that the large-scale momentum-carrying eddies may also be fractal and non-space-filling, which then leads to the power-law scaling of the mean velocity profile. The logarithmic law of the wall, on the other hand, corresponds to space-filling eddies, as suggested by Townsend [The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1980)]. Because the space-filling capacity is an integral geometric quantity, the analysis presented in this work provides us with a low-order quantity, with which, one would be able to distinguish between the logarithmic law and the power law.

  5. Fractal Image Coding Based on a Fitting Surface

    Directory of Open Access Journals (Sweden)

    Sheng Bi

    2014-01-01

    Full Text Available A no-search fractal image coding method based on a fitting surface is proposed. In our research, an improved gray-level transform with a fitting surface is introduced. One advantage of this method is that the fitting surface is used for both the range and domain blocks and one set of parameters can be saved. Another advantage is that the fitting surface can approximate the range and domain blocks better than the previous fitting planes; this can result in smaller block matching errors and better decoded image quality. Since the no-search and quadtree techniques are adopted, smaller matching errors also imply less number of blocks matching which results in a faster encoding process. Moreover, by combining all the fitting surfaces, a fitting surface image (FSI is also proposed to speed up the fractal decoding. Experiments show that our proposed method can yield superior performance over the other three methods. Relative to range-averaged image, FSI can provide faster fractal decoding process. Finally, by combining the proposed fractal coding method with JPEG, a hybrid coding method is designed which can provide higher PSNR than JPEG while maintaining the same Bpp.

  6. Vector calculus in non-integer dimensional space and its applications to fractal media

    Science.gov (United States)

    Tarasov, Vasily E.

    2015-02-01

    We suggest a generalization of vector calculus for the case of non-integer dimensional space. The first and second orders operations such as gradient, divergence, the scalar and vector Laplace operators for non-integer dimensional space are defined. For simplification we consider scalar and vector fields that are independent of angles. We formulate a generalization of vector calculus for rotationally covariant scalar and vector functions. This generalization allows us to describe fractal media and materials in the framework of continuum models with non-integer dimensional space. As examples of application of the suggested calculus, we consider elasticity of fractal materials (fractal hollow ball and fractal cylindrical pipe with pressure inside and outside), steady distribution of heat in fractal media, electric field of fractal charged cylinder. We solve the correspondent equations for non-integer dimensional space models.

  7. Role of Multicellular Aggregates in Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Kasper N. Kragh

    2016-03-01

    Full Text Available In traditional models of in vitro biofilm development, individual bacterial cells seed a surface, multiply, and mature into multicellular, three-dimensional structures. Much research has been devoted to elucidating the mechanisms governing the initial attachment of single cells to surfaces. However, in natural environments and during infection, bacterial cells tend to clump as multicellular aggregates, and biofilms can also slough off aggregates as a part of the dispersal process. This makes it likely that biofilms are often seeded by aggregates and single cells, yet how these aggregates impact biofilm initiation and development is not known. Here we use a combination of experimental and computational approaches to determine the relative fitness of single cells and preformed aggregates during early development of Pseudomonas aeruginosa biofilms. We find that the relative fitness of aggregates depends markedly on the density of surrounding single cells, i.e., the level of competition for growth resources. When competition between aggregates and single cells is low, an aggregate has a growth disadvantage because the aggregate interior has poor access to growth resources. However, if competition is high, aggregates exhibit higher fitness, because extending vertically above the surface gives cells at the top of aggregates better access to growth resources. Other advantages of seeding by aggregates, such as earlier switching to a biofilm-like phenotype and enhanced resilience toward antibiotics and immune response, may add to this ecological benefit. Our findings suggest that current models of biofilm formation should be reconsidered to incorporate the role of aggregates in biofilm initiation.

  8. Fractal apertures in waveguides, conducting screens and cavities analysis and design

    CERN Document Server

    Ghosh, Basudeb; Kartikeyan, M V

    2014-01-01

    This book deals with the design and analysis of fractal apertures in waveguides, conducting screens and cavities using numerical electromagnetics and field-solvers. The aim is to obtain design solutions with improved accuracy for a wide range of applications. To achieve this goal, a few diverse problems are considered. The book is organized with adequate space dedicated for the design and analysis of fractal apertures in waveguides, conducting screens, and cavities, microwave/millimeter wave applications followed by detailed case-study problems to infuse better insight and understanding of the subject. Finally, summaries and suggestions are given for future work. Fractal geometries were widely used in electromagnetics, specifically for antennas and frequency selective surfaces (FSS). The self-similarity of fractal geometry gives rise to a multiband response, whereas the  space-filling nature of the fractal geometries makes it an efficient element in antenna and FSS unit cell miniaturization. Until now, no e...

  9. Surface structures of equilibrium restricted curvature model on two fractal substrates

    International Nuclear Information System (INIS)

    Song Li-Jian; Tang Gang; Zhang Yong-Wei; Han Kui; Xun Zhi-Peng; Xia Hui; Hao Da-Peng; Li Yan

    2014-01-01

    With the aim to probe the effects of the microscopic details of fractal substrates on the scaling of discrete growth models, the surface structures of the equilibrium restricted curvature (ERC) model on Sierpinski arrowhead and crab substrates are analyzed by means of Monte Carlo simulations. These two fractal substrates have the same fractal dimension d f , but possess different dynamic exponents of random walk z rw . The results show that the surface structure of the ERC model on fractal substrates are related to not only the fractal dimension d f , but also to the microscopic structures of the substrates expressed by the dynamic exponent of random walk z rw . The ERC model growing on the two substrates follows the well-known Family—Vicsek scaling law and satisfies the scaling relations 2α + d f ≍ z ≍ 2z rw . In addition, the values of the scaling exponents are in good agreement with the analytical prediction of the fractional Mullins—Herring equation. (general)

  10. Navigation performance in virtual environments varies with fractal dimension of landscape.

    Science.gov (United States)

    Juliani, Arthur W; Bies, Alexander J; Boydston, Cooper R; Taylor, Richard P; Sereno, Margaret E

    2016-09-01

    Fractal geometry has been used to describe natural and built environments, but has yet to be studied in navigational research. In order to establish a relationship between the fractal dimension (D) of a natural environment and humans' ability to navigate such spaces, we conducted two experiments using virtual environments that simulate the fractal properties of nature. In Experiment 1, participants completed a goal-driven search task either with or without a map in landscapes that varied in D. In Experiment 2, participants completed a map-reading and location-judgment task in separate sets of fractal landscapes. In both experiments, task performance was highest at the low-to-mid range of D, which was previously reported as most preferred and discriminable in studies of fractal aesthetics and discrimination, respectively, supporting a theory of visual fluency. The applicability of these findings to architecture, urban planning, and the general design of constructed spaces is discussed.

  11. A fractal derivative constitutive model for three stages in granite creep

    Directory of Open Access Journals (Sweden)

    R. Wang

    Full Text Available In this paper, by replacing the Newtonian dashpot with the fractal dashpot and considering damage effect, a new constitutive model is proposed in terms of time fractal derivative to describe the full creep regions of granite. The analytic solutions of the fractal derivative creep constitutive equation are derived via scaling transform. The conventional triaxial compression creep tests are performed on MTS 815 rock mechanics test system to verify the efficiency of the new model. The granite specimen is taken from Beishan site, the most potential area for the China’s high-level radioactive waste repository. It is shown that the proposed fractal model can characterize the creep behavior of granite especially in accelerating stage which the classical models cannot predict. The parametric sensitivity analysis is also conducted to investigate the effects of model parameters on the creep strain of granite. Keywords: Beishan granite, Fractal derivative, Damage evolution, Scaling transformation

  12. Retinal vascular fractals predict long-term microvascular complications in type 1 diabetes mellitus

    DEFF Research Database (Denmark)

    Broe, Rebecca; Rasmussen, Malin L; Frydkjaer-Olsen, Ulrik

    2014-01-01

    : We included 180 patients with type 1 diabetes in a 16 year follow-up study. In baseline retinal photographs (from 1995), all vessels in a zone 0.5-2.0 disc diameters from the disc margin were traced using Singapore Institute Vessel Assessment-Fractal image analysis software. Artefacts were removed......AIMS/HYPOTHESIS: Fractal analysis of the retinal vasculature provides a global measure of the complexity and density of retinal vessels summarised as a single variable: the fractal dimension. We investigated fractal dimensions as long-term predictors of microvasculopathy in type 1 diabetes. METHODS....... Retinal fractal analysis therefore is a potential tool for risk stratification in type 1 diabetes....

  13. Designing a fractal antenna of 2400 MHz

    International Nuclear Information System (INIS)

    Miranda Hamburger, Fabio

    2012-01-01

    The design of a fractal antenna with 2400 MHz of frequency has been studied. The fractal used is described by Waclaw Spierpi.ski. The initial figure, also known as seed, is divided using equilateral triangles with the aim of obtaining a perimeter similar to a meaningful portion of wave length. The use of λ to establish an ideal perimeter has reduced the radiation resistance. The adequate number of iterations needed to design the antenna is calculated based on λ. (author) [es

  14. Heat kernels and zeta functions on fractals

    International Nuclear Information System (INIS)

    Dunne, Gerald V

    2012-01-01

    On fractals, spectral functions such as heat kernels and zeta functions exhibit novel features, very different from their behaviour on regular smooth manifolds, and these can have important physical consequences for both classical and quantum physics in systems having fractal properties. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker's 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’. (paper)

  15. Estimation of soil saturated hydraulic conductivity by artificial neural networks ensemble in smectitic soils

    Science.gov (United States)

    Sedaghat, A.; Bayat, H.; Safari Sinegani, A. A.

    2016-03-01

    The saturated hydraulic conductivity ( K s ) of the soil is one of the main soil physical properties. Indirect estimation of this parameter using pedo-transfer functions (PTFs) has received considerable attention. The Purpose of this study was to improve the estimation of K s using fractal parameters of particle and micro-aggregate size distributions in smectitic soils. In this study 260 disturbed and undisturbed soil samples were collected from Guilan province, the north of Iran. The fractal model of Bird and Perrier was used to compute the fractal parameters of particle and micro-aggregate size distributions. The PTFs were developed by artificial neural networks (ANNs) ensemble to estimate K s by using available soil data and fractal parameters. There were found significant correlations between K s and fractal parameters of particles and microaggregates. Estimation of K s was improved significantly by using fractal parameters of soil micro-aggregates as predictors. But using geometric mean and geometric standard deviation of particles diameter did not improve K s estimations significantly. Using fractal parameters of particles and micro-aggregates simultaneously, had the most effect in the estimation of K s . Generally, fractal parameters can be successfully used as input parameters to improve the estimation of K s in the PTFs in smectitic soils. As a result, ANNs ensemble successfully correlated the fractal parameters of particles and micro-aggregates to K s .

  16. The Sun-Earth connect 2: Modelling patterns of a fractal Sun in time and space using the fine structure constant

    Science.gov (United States)

    Baker, Robert G. V.

    2017-02-01

    Self-similar matrices of the fine structure constant of solar electromagnetic force and its inverse, multiplied by the Carrington synodic rotation, have been previously shown to account for at least 98% of the top one hundred significant frequencies and periodicities observed in the ACRIM composite irradiance satellite measurement and the terrestrial 10.7cm Penticton Adjusted Daily Flux data sets. This self-similarity allows for the development of a time-space differential equation (DE) where the solutions define a solar model for transmissions through the core, radiative, tachocline, convective and coronal zones with some encouraging empirical and theoretical results. The DE assumes a fundamental complex oscillation in the solar core and that time at the tachocline is smeared with real and imaginary constructs. The resulting solutions simulate for tachocline transmission, the solar cycle where time-line trajectories either 'loop' as Hermite polynomials for an active Sun or 'tail' as complementary error functions for a passive Sun. Further, a mechanism that allows for the stable energy transmission through the tachocline is explored and the model predicts the initial exponential coronal heating from nanoflare supercharging. The twisting of the field at the tachocline is then described as a quaternion within which neutrinos can oscillate. The resulting fractal bubbles are simulated as a Julia Set which can then aggregate from nanoflares into solar flares and prominences. Empirical examples demonstrate that time and space fractals are important constructs in understanding the behaviour of the Sun, from the impact on climate and biological histories on Earth, to the fractal influence on the spatial distributions of the solar system. The research suggests that there is a fractal clock underpinning solar frequencies in packages defined by the fine structure constant, where magnetic flipping and irradiance fluctuations at phase changes, have periodically impacted on the

  17. Fractal analysis of rainfall occurrence observed in the synoptic ...

    African Journals Online (AJOL)

    Fractal analysis is important for characterizing and modeling rainfall's space-time variations in hydrology. The purpose of this study consists on determining, in a mono-fractal framework, the scale invariance of rainfall series in Benin synopticstations located in two main geographical area: Cotonou, Bohicon , Savè in a sub ...

  18. Fractal analysis of phasic laser images of the myocardium for the purpose of diagnostics of acute coronary insufficiency

    Science.gov (United States)

    Wanchuliak, O. Y.; Bachinskyi, V. T.

    2011-09-01

    In this work on the base of Mueller-matrix description of optical anisotropy, the possibility of monitoring of time changes of myocardium tissue birefringence, has been considered. The optical model of polycrystalline networks of myocardium is suggested. The results of investigating the interrelation between the values correlation (correlation area, asymmetry coefficient and autocorrelation function excess) and fractal (dispersion of logarithmic dependencies of power spectra) parameters are presented. They characterize the distributions of Mueller matrix elements in the points of laser images of myocardium histological sections. The criteria of differentiation of death coming reasons are determined.

  19. Fractales y series de datos geofísicos

    Directory of Open Access Journals (Sweden)

    Montes Vides Luis Alfredo

    1993-10-01

    Full Text Available

    There is a new Geometry which provides a potentially tool for the characterization of geophysical data: The Fractal Geometry. Generally, Geophysical data consist of records in time or data series, for example yearly records of temperature, and they show a random behavior or variation on both a short and a long-term time scale. The trace of a record is a curve with a fractal dimension D, and it is characterized by an exponent H. In this paper, the Hurt's rescaled range analysis method is used to determine the fractal dimension of a geophysical data serie D and H, his self-affinity measure.

    La geometría de fractales ha surgido como una herramienta potencialmente útil para la caracterización de datos en Geofísica. Comúnmente, los datos geofísicos conforman series de tiempo, que exhiben un comportamiento aleatorio o variación a corto y a largo plazo. Un ejemplo típico son los registros anuales de temperatura. La traza de un registro es una curva con una dimensión fractal D, caracterizada por un exponente H.

    En el presente trabajo se utiliza el método de análisis de rango en cambios de escala, creado por H. E. Hurst, para determinar la dimensión fractal de una serie de datos geofísicos, y su medida de auto-afinidad.

  20. Fractal dimensions of silica gels generated using reactive molecular dynamics simulations

    International Nuclear Information System (INIS)

    Bhattacharya, Sudin; Kieffer, John

    2005-01-01

    We have used molecular dynamics simulations based on a three-body potential with charge transfer to generate nanoporous silica aerogels. Care was taken to reproduce the sol-gel condensation reaction that forms the gel backbone as realistically as possible and to thereby produce credible gel structures. The self-similarity of aerogel structures was investigated by evaluating their fractal dimension from geometric correlations. For comparison, we have also generated porous silica glasses by rupturing dense silica and computed their fractal dimension. The fractal dimension of the porous silica structures was found to be process dependent. Finally, we have determined that the effect of supercritical drying on the fractal nature of condensed silica gels is not appreciable

  1. Bony change of apical lesion healing process using fractal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Min; Park, Hyok; Jeong, Ho Gul; Kim, Kee Deog; Park, Chang Seo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2005-06-15

    To investigate the change of bone healing process after endodontic treatment of the tooth with an apical lesion by fractal analysis. Radiographic images of 35 teeth from 33 patients taken on first diagnosis, 6 months, and 1 year after endodontic treatment were selected. Radiographic images were taken by JUPITER computerized Dental X-ray System. Fractal dimensions were calculated three times at each area by Scion Image PC program. Rectangular region of interest (30 x 30) were selected at apical lesion and normal apex of each image. The fractal dimension at apical lesion of first diagnosis (L{sub 0}) is 0.940 {+-} 0.361 and that of normal area (N{sub 0}) is 1.186 {+-} 0.727 (p<0.05). Fractal dimension at apical lesion of 6 months after endodontic treatment (L{sub 1}) is 1.076 {+-} 0.069 and that of normal area (N{sub 1}) is 1.192 {+-} 0.055 (p<0.05). Fractal dimension at apical lesion of 1 year after endodontic treatment (L{sub 2}) is 1.163 {+-} 0.074 and that of normal area (N{sub 2}) is 1.225 {+-} 0.079 (p<0.05). After endodontic treatment, the fractal dimensions at each apical lesions depending on time showed statistically significant difference. And there are statistically significant different between normal area and apical lesion on first diagnosis, 6 months after, 1 year after. But the differences were grow smaller as time flows. The evaluation of the prognosis after the endodontic treatment of the apical lesion was estimated by bone regeneration in apical region. Fractal analysis was attempted to overcome the limit of subjective reading, and as a result the change of the bone during the healing process was able to be detected objectively and quantitatively.

  2. Fractal analysis in radiological and nuclear medicine perfusion imaging: a systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Michallek, Florian; Dewey, Marc [Humboldt-Universitaet zu Berlin, Freie Universitaet Berlin, Charite - Universitaetsmedizin Berlin, Medical School, Department of Radiology, Berlin (Germany)

    2014-01-15

    To provide an overview of recent research in fractal analysis of tissue perfusion imaging, using standard radiological and nuclear medicine imaging techniques including computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) and to discuss implications for different fields of application. A systematic review of fractal analysis for tissue perfusion imaging was performed by searching the databases MEDLINE (via PubMed), EMBASE (via Ovid) and ISI Web of Science. Thirty-seven eligible studies were identified. Fractal analysis was performed on perfusion imaging of tumours, lung, myocardium, kidney, skeletal muscle and cerebral diseases. Clinically, different aspects of tumour perfusion and cerebral diseases were successfully evaluated including detection and classification. In physiological settings, it was shown that perfusion under different conditions and in various organs can be properly described using fractal analysis. Fractal analysis is a suitable method for quantifying heterogeneity from radiological and nuclear medicine perfusion images under a variety of conditions and in different organs. Further research is required to exploit physiologically proven fractal behaviour in the clinical setting. (orig.)

  3. Fractal analysis in radiological and nuclear medicine perfusion imaging: a systematic review

    International Nuclear Information System (INIS)

    Michallek, Florian; Dewey, Marc

    2014-01-01

    To provide an overview of recent research in fractal analysis of tissue perfusion imaging, using standard radiological and nuclear medicine imaging techniques including computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) and to discuss implications for different fields of application. A systematic review of fractal analysis for tissue perfusion imaging was performed by searching the databases MEDLINE (via PubMed), EMBASE (via Ovid) and ISI Web of Science. Thirty-seven eligible studies were identified. Fractal analysis was performed on perfusion imaging of tumours, lung, myocardium, kidney, skeletal muscle and cerebral diseases. Clinically, different aspects of tumour perfusion and cerebral diseases were successfully evaluated including detection and classification. In physiological settings, it was shown that perfusion under different conditions and in various organs can be properly described using fractal analysis. Fractal analysis is a suitable method for quantifying heterogeneity from radiological and nuclear medicine perfusion images under a variety of conditions and in different organs. Further research is required to exploit physiologically proven fractal behaviour in the clinical setting. (orig.)

  4. A simple method for estimating the size of nuclei on fractal surfaces

    Science.gov (United States)

    Zeng, Qiang

    2017-10-01

    Determining the size of nuclei on complex surfaces remains a big challenge in aspects of biological, material and chemical engineering. Here the author reported a simple method to estimate the size of the nuclei in contact with complex (fractal) surfaces. The established approach was based on the assumptions of contact area proportionality for determining nucleation density and the scaling congruence between nuclei and surfaces for identifying contact regimes. It showed three different regimes governing the equations for estimating the nucleation site density. Nuclei in the size large enough could eliminate the effect of fractal structure. Nuclei in the size small enough could lead to the independence of nucleation site density on fractal parameters. Only when nuclei match the fractal scales, the nucleation site density is associated with the fractal parameters and the size of the nuclei in a coupling pattern. The method was validated by the experimental data reported in the literature. The method may provide an effective way to estimate the size of nuclei on fractal surfaces, through which a number of promising applications in relative fields can be envisioned.

  5. Fractal Globule as a model of DNA folding in eukaryotes

    Science.gov (United States)

    Imakaev, Maksim; Mirny, Leonid

    2012-02-01

    A recent study (Lieberman-Aiden et al., Science, 2009) observed that the structure of the genome, on the scale of a few megabases, is consistent with a fractal globule. The fractal globule is a quasi-equilibrium state of a polymer after a rapid collapse. First proposed theoretically in 1988, this structure had never been simulated. Fractal globule was seen as a state, in which each subchain is compact, and doesn't mix with other subchains due to their mutual unentanglement (topological constraints). We use GPU-assisted dynamics to create fractal globules of different sizes and observe their dynamics. Our simulations confirm that a polymer after rapid collapse has compact subchains. We measure the scaling of looping probability of a subchain with it's length, and observe the remarkably robust inverse proportionality. Dynamic simulation of the equilibration of this state show that it exhibits Rose type subdiffusion. Due to diffusion, fractal globule quickly degrades to a quasi-equilibrium state, in which subchains of a polymer are mixed, but topologically unentangled. We propose that separation of spatial and topological equilibration of a polymer chain might have implications in different fields of physics.

  6. Aqueous synthesis of LiFePO4 with Fractal Granularity

    Science.gov (United States)

    Cabán-Huertas, Zahilia; Ayyad, Omar; Dubal, Deepak P.; Gómez-Romero, Pedro

    2016-06-01

    Lithium iron phosphate (LiFePO4) electrodes with fractal granularity are reported. They were made from a starting material prepared in water by a low cost, easy and environmentally friendly hydrothermal method, thus avoiding the use of organic solvents. Our method leads to pure olivine phase, free of the impurities commonly found after other water-based syntheses. The fractal structures consisted of nanoparticles grown into larger micro-sized formations which in turn agglomerate leading to high tap density electrodes, which is beneficial for energy density. These intricate structures could be easily and effectively coated with a thin and uniform carbon layer for increased conductivity, as it is well established for simpler microstructures. Materials and electrodes were studied by means of XRD, SEM, TEM, SAED, XPS, Raman and TGA. Last but not least, lithium transport through fractal LiFePO4 electrodes was investigated based upon fractal theory. These water-made fractal electrodes lead to high-performance lithium cells (even at high rates) tested by CV and galvanostatic charge-discharge, their performance is comparable to state of the art (but less environmentally friendly) electrodes.

  7. Electrical conductivity modeling in fractal non-saturated porous media

    Science.gov (United States)

    Wei, W.; Cai, J.; Hu, X.; Han, Q.

    2016-12-01

    The variety of electrical conductivity in non-saturated conditions is important to study electric conduction in natural sedimentary rocks. The electrical conductivity in completely saturated porous media is a porosity-function representing the complex connected behavior of single conducting phases (pore fluid). For partially saturated conditions, the electrical conductivity becomes even more complicated since the connectedness of pore. Archie's second law is an empirical electrical conductivity-porosity and -saturation model that has been used to predict the formation factor of non-saturated porous rock. However, the physical interpretation of its parameters, e.g., the cementation exponent m and the saturation exponent n, remains questionable. On basis of our previous work, we combine the pore-solid fractal (PSF) model to build an electrical conductivity model in non-saturated porous media. Our theoretical porosity- and saturation-dependent models contain endmember properties, such as fluid electrical conductivities, pore fractal dimension and tortuosity fractal dimension (representing the complex degree of electrical flowing path). We find the presented model with non-saturation-dependent electrical conductivity datasets indicate excellent match between theory and experiments. This means the value of pore fractal dimension and tortuosity fractal dimension change from medium to medium and depends not only on geometrical properties of pore structure but also characteristics of electrical current flowing in the non-saturated porous media.

  8. Fractal geometry in an expanding, one-dimensional, Newtonian universe.

    Science.gov (United States)

    Miller, Bruce N; Rouet, Jean-Louis; Le Guirriec, Emmanuel

    2007-09-01

    Observations of galaxies over large distances reveal the possibility of a fractal distribution of their positions. The source of fractal behavior is the lack of a length scale in the two body gravitational interaction. However, even with new, larger, sample sizes from recent surveys, it is difficult to extract information concerning fractal properties with confidence. Similarly, three-dimensional N-body simulations with a billion particles only provide a thousand particles per dimension, far too small for accurate conclusions. With one-dimensional models these limitations can be overcome by carrying out simulations with on the order of a quarter of a million particles without compromising the computation of the gravitational force. Here the multifractal properties of two of these models that incorporate different features of the dynamical equations governing the evolution of a matter dominated universe are compared. For each model at least two scaling regions are identified. By employing criteria from dynamical systems theory it is shown that only one of them can be geometrically significant. The results share important similarities with galaxy observations, such as hierarchical clustering and apparent bifractal geometry. They also provide insights concerning possible constraints on length and time scales for fractal structure. They clearly demonstrate that fractal geometry evolves in the mu (position, velocity) space. The observed patterns are simply a shadow (projection) of higher-dimensional structure.

  9. Generating hierarchial scale-free graphs from fractals

    Energy Technology Data Exchange (ETDEWEB)

    Komjathy, Julia, E-mail: komyju@math.bme.hu [Department of Stochastics, Institute of Mathematics, Technical University of Budapest, H-1529 P.O. Box 91 (Hungary); Simon, Karoly, E-mail: simonk@math.bme.hu [Department of Stochastics, Institute of Mathematics, Technical University of Budapest, H-1529 P.O. Box 91 (Hungary)

    2011-08-15

    Highlights: > We generate deterministic scale-free networks using graph-directed self similar IFS. > Our model exhibits similar clustering, power law decay properties to real networks. > The average length of shortest path and the diameter of the graph are determined. > Using this model, we generate random graphs with prescribed power law exponent. - Abstract: Motivated by the hierarchial network model of E. Ravasz, A.-L. Barabasi, and T. Vicsek, we introduce deterministic scale-free networks derived from a graph directed self-similar fractal {Lambda}. With rigorous mathematical results we verify that our model captures some of the most important features of many real networks: the scale-free and the high clustering properties. We also prove that the diameter is the logarithm of the size of the system. We point out a connection between the power law exponent of the degree distribution and some intrinsic geometric measure theoretical properties of the underlying fractal. Using our (deterministic) fractal {Lambda} we generate random graph sequence sharing similar properties.

  10. Computer Security: The dilemma of fractal defence

    CERN Multimedia

    Stefan Lueders, Computer Security Team

    2015-01-01

    Aren’t mathematical fractals just beautiful? The Mandelbrot set and the Julia set, the Sierpinski gasket, the Menger sponge, the Koch curve (see here)… Based on very simple mathematical rules, they quickly develop into a mosaic of facets slightly different from each other. More and more features appear the closer you zoom into a fractal and expose similar but not identical features of the overall picture.   Computer security is like these fractals, only much less pretty: simple at first glance, but increasingly complex and complicated when you look more closely at the details. The deeper you dig, the more and more possibilities open up for malicious people as the attack surface grows, just like that of “Koch’s snowflakes”, where the border length grows exponentially. Consequently, the defensive perimeter also increases when we follow the bits and bytes layer by layer from their processing in the CPU, trickling up the software stack thro...

  11. Lectures on fractal geometry and dynamical systems

    CERN Document Server

    Pesin, Yakov

    2009-01-01

    Both fractal geometry and dynamical systems have a long history of development and have provided fertile ground for many great mathematicians and much deep and important mathematics. These two areas interact with each other and with the theory of chaos in a fundamental way: many dynamical systems (even some very simple ones) produce fractal sets, which are in turn a source of irregular "chaotic" motions in the system. This book is an introduction to these two fields, with an emphasis on the relationship between them. The first half of the book introduces some of the key ideas in fractal geometry and dimension theory--Cantor sets, Hausdorff dimension, box dimension--using dynamical notions whenever possible, particularly one-dimensional Markov maps and symbolic dynamics. Various techniques for computing Hausdorff dimension are shown, leading to a discussion of Bernoulli and Markov measures and of the relationship between dimension, entropy, and Lyapunov exponents. In the second half of the book some examples o...

  12. Assessment of disintegrant efficacy with fractal dimensions from real-time MRI.

    Science.gov (United States)

    Quodbach, Julian; Moussavi, Amir; Tammer, Roland; Frahm, Jens; Kleinebudde, Peter

    2014-11-20

    An efficient disintegrant is capable of breaking up a tablet in the smallest possible particles in the shortest time. Until now, comparative data on the efficacy of different disintegrants is based on dissolution studies or the disintegration time. Extending these approaches, this study introduces a method, which defines the evolution of fractal dimensions of tablets as surrogate parameter for the available surface area. Fractal dimensions are a measure for the tortuosity of a line, in this case the upper surface of a disintegrating tablet. High-resolution real-time MRI was used to record videos of disintegrating tablets. The acquired video images were processed to depict the upper surface of the tablets and a box-counting algorithm was used to estimate the fractal dimensions. The influence of six different disintegrants, of different relative tablet density, and increasing disintegrant concentration was investigated to evaluate the performance of the novel method. Changing relative densities hardly affect the progression of fractal dimensions, whereas an increase in disintegrant concentration causes increasing fractal dimensions during disintegration, which are also reached quicker. Different disintegrants display only minor differences in the maximal fractal dimension, yet the kinetic in which the maximum is reached allows a differentiation and classification of disintegrants. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Use of the crumb test as a preliminary indicator of dispersive soils

    CSIR Research Space (South Africa)

    Maharaj, A

    2011-07-01

    Full Text Available to overcome them. Keywords: Dispersive soils, dispersion, failure, identification, crumb test, shortcomings Introduction Dispersive soils are those soils, which when immersed in relatively pure and still water will deflocculate causing the clay particles... developed by Emerson for the classification of soils. Immerse dry aggregates in water Slaking No slaking Complete Dispersion (Class 1) Some Dispersion (Class 2) No Dispersion Swelling (Class 7) No Swelling (Class 8) Remould at water...

  14. Fractal fluctuations in spatiotemporal variables when walking on a self-paced treadmill.

    Science.gov (United States)

    Choi, Jin-Seung; Kang, Dong-Won; Seo, Jeong-Woo; Tack, Gye-Rae

    2017-12-08

    This study investigated the fractal dynamic properties of stride time (ST), stride length (SL) and stride speed (SS) during walking on a self-paced treadmill (STM) in which the belt speed is automatically controlled by the walking speed. Twelve healthy young subjects participated in the study. The subjects walked at their preferred walking speed under four conditions: STM, STM with a metronome (STM+met), fixed-speed (conventional) treadmill (FTM), and FTM with a metronome (FTM+met). To compare the fractal dynamics between conditions, the mean, variability, and fractal dynamics of ST, SL, and SS were compared. Moreover, the relationship among the variables was examined under each walking condition using three types of surrogates. The mean values of all variables did not differ between the two treadmills, and the variability of all variables was generally larger for STM than for FTM. The use of a metronome resulted in a decrease in variability in ST and SS for all conditions. The fractal dynamic characteristics of SS were maintained with STM, in contrast to FTM, and only the fractal dynamic characteristics of ST disappeared when using a metronome. In addition, the fractal dynamic patterns of the cross-correlated surrogate results were identical to those of all variables for the two treadmills. In terms of the fractal dynamic properties, STM walking was generally closer to overground walking than FTM walking. Although further research is needed, the present results will be useful in research on gait fractal dynamics and rehabilitation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Fractal systems of central places based on intermittency of space-filling

    International Nuclear Information System (INIS)

    Chen Yanguang

    2011-01-01

    Highlights: → The idea of intermittency is introduced into central place model. → The revised central place model suggests incomplete space filling. → New central place fractals are presented for urban analysis. → The average nearest distance is proposed to estimate the fractal dimension. → The concept of distance-based space is replaced by that of dimension-based space. - Abstract: The central place models are fundamentally important in theoretical geography and city planning theory. The texture and structure of central place networks have been demonstrated to be self-similar in both theoretical and empirical studies. However, the underlying rationale of central place fractals in the real world has not yet been revealed so far. This paper is devoted to illustrating the mechanisms by which the fractal patterns can be generated from central place systems. The structural dimension of the traditional central place models is d = 2 indicating no intermittency in the spatial distribution of human settlements. This dimension value is inconsistent with empirical observations. Substituting the complete space filling with the incomplete space filling, we can obtain central place models with fractional dimension D < d = 2 indicative of spatial intermittency. Thus the conventional central place models are converted into fractal central place models. If we further integrate the chance factors into the improved central place fractals, the theory will be able to explain the real patterns of urban places very well. As empirical analyses, the US cities and towns are employed to verify the fractal-based models of central places.

  16. Multi-fractal analysis of highway traffic data

    Institute of Scientific and Technical Information of China (English)

    Shang Peng-Jian; Shen Jin-Sheng

    2007-01-01

    The purpose of the present study is to investigate the presence of multi-fractal behaviours in the traffic time series not only by statistical approaches but also by geometrical approaches. The pointwise H(o)lder exponent of a function is calculated by developing an algorithm for the numerical evaluation of H(o)lder exponent of time series. The traffic time series observed on the Beijing Yuquanying highway are analysed. The results from all these methods indicate that the traffic data exhibit the multi-fractal behaviour.

  17. A uniform measurement expression for cross method comparison of nanoparticle aggregate size distributions

    DEFF Research Database (Denmark)

    Dudkiewicz, Agnieszka; Wagner, Stephan; Lehner, Angela

    2015-01-01

    Available measurement methods for nanomaterials are based on very different measurement principles and hence produce different values when used on aggregated nanoparticle dispersions. This paper provides a solution for relating measurements of nanomaterials comprised of nanoparticle aggregates de...... and clarifications in current regulations and definitions concerning nanomaterials....

  18. Fractal Theory for Permeability Prediction, Venezuelan and USA Wells

    Science.gov (United States)

    Aldana, Milagrosa; Altamiranda, Dignorah; Cabrera, Ana

    2014-05-01

    Inferring petrophysical parameters such as permeability, porosity, water saturation, capillary pressure, etc, from the analysis of well logs or other available core data has always been of critical importance in the oil industry. Permeability in particular, which is considered to be a complex parameter, has been inferred using both empirical and theoretical techniques. The main goal of this work is to predict permeability values on different wells using Fractal Theory, based on a method proposed by Pape et al. (1999). This approach uses the relationship between permeability and the geometric form of the pore space of the rock. This method is based on the modified equation of Kozeny-Carman and a fractal pattern, which allows determining permeability as a function of the cementation exponent, porosity and the fractal dimension. Data from wells located in Venezuela and the United States of America are analyzed. Employing data of porosity and permeability obtained from core samples, and applying the Fractal Theory method, we calculated the prediction equations for each well. At the beginning, this was achieved by training with 50% of the data available for each well. Afterwards, these equations were tested inferring over 100% of the data to analyze possible trends in their distribution. This procedure gave excellent results in all the wells in spite of their geographic distance, generating permeability models with the potential to accurately predict permeability logs in the remaining parts of the well for which there are no core samples, using even porority logs. Additionally, empirical models were used to determine permeability and the results were compared with those obtained by applying the fractal method. The results indicated that, although there are empirical equations that give a proper adjustment, the prediction results obtained using fractal theory give a better fit to the core reference data.

  19. The Fractal Patterns of Words in a Text: A Method for Automatic Keyword Extraction.

    Science.gov (United States)

    Najafi, Elham; Darooneh, Amir H

    2015-01-01

    A text can be considered as a one dimensional array of words. The locations of each word type in this array form a fractal pattern with certain fractal dimension. We observe that important words responsible for conveying the meaning of a text have dimensions considerably different from one, while the fractal dimensions of unimportant words are close to one. We introduce an index quantifying the importance of the words in a given text using their fractal dimensions and then ranking them according to their importance. This index measures the difference between the fractal pattern of a word in the original text relative to a shuffled version. Because the shuffled text is meaningless (i.e., words have no importance), the difference between the original and shuffled text can be used to ascertain degree of fractality. The degree of fractality may be used for automatic keyword detection. Words with the degree of fractality higher than a threshold value are assumed to be the retrieved keywords of the text. We measure the efficiency of our method for keywords extraction, making a comparison between our proposed method and two other well-known methods of automatic keyword extraction.

  20. The Fractal Patterns of Words in a Text: A Method for Automatic Keyword Extraction

    Science.gov (United States)

    Najafi, Elham; Darooneh, Amir H.

    2015-01-01

    A text can be considered as a one dimensional array of words. The locations of each word type in this array form a fractal pattern with certain fractal dimension. We observe that important words responsible for conveying the meaning of a text have dimensions considerably different from one, while the fractal dimensions of unimportant words are close to one. We introduce an index quantifying the importance of the words in a given text using their fractal dimensions and then ranking them according to their importance. This index measures the difference between the fractal pattern of a word in the original text relative to a shuffled version. Because the shuffled text is meaningless (i.e., words have no importance), the difference between the original and shuffled text can be used to ascertain degree of fractality. The degree of fractality may be used for automatic keyword detection. Words with the degree of fractality higher than a threshold value are assumed to be the retrieved keywords of the text. We measure the efficiency of our method for keywords extraction, making a comparison between our proposed method and two other well-known methods of automatic keyword extraction. PMID:26091207

  1. Model to estimate fractal dimension for ion-bombarded materials

    Energy Technology Data Exchange (ETDEWEB)

    Hu, A., E-mail: hu77@purdue.edu; Hassanein, A.

    2014-03-15

    Comprehensive fractal Monte Carlo model ITMC-F (Hu and Hassanein, 2012 [1]) is developed based on the Monte Carlo ion bombardment simulation code, i.e., Ion Transport in Materials and Compounds (ITMC) code (Hassanein, 1985 [2]). The ITMC-F studies the impact of surface roughness on the angular dependence of sputtering yield. Instead of assuming material surfaces to be flat or composed of exact self-similar fractals in simulation, we developed a new method to describe the surface shapes. Random fractal surfaces which are generated by midpoint displacement algorithm and support vector machine algorithm are combined with ITMC. With this new fractal version of ITMC-F, we successfully simulated the angular dependence of sputtering yield for various ion-target combinations, with the input surface roughness exponent directly depicted from experimental data (Hu and Hassanein, 2012 [1]). The ITMC-F code showed good agreement with the experimental data. In advanced, we compare other experimental sputtering yield with the results from ITMC-F to estimate the surface roughness exponent for ion-bombarded material in this research.

  2. [Modeling continuous scaling of NDVI based on fractal theory].

    Science.gov (United States)

    Luan, Hai-Jun; Tian, Qing-Jiu; Yu, Tao; Hu, Xin-Li; Huang, Yan; Du, Ling-Tong; Zhao, Li-Min; Wei, Xi; Han, Jie; Zhang, Zhou-Wei; Li, Shao-Peng

    2013-07-01

    Scale effect was one of the very important scientific problems of remote sensing. The scale effect of quantitative remote sensing can be used to study retrievals' relationship between different-resolution images, and its research became an effective way to confront the challenges, such as validation of quantitative remote sensing products et al. Traditional up-scaling methods cannot describe scale changing features of retrievals on entire series of scales; meanwhile, they are faced with serious parameters correction issues because of imaging parameters' variation of different sensors, such as geometrical correction, spectral correction, etc. Utilizing single sensor image, fractal methodology was utilized to solve these problems. Taking NDVI (computed by land surface radiance) as example and based on Enhanced Thematic Mapper Plus (ETM+) image, a scheme was proposed to model continuous scaling of retrievals. Then the experimental results indicated that: (a) For NDVI, scale effect existed, and it could be described by fractal model of continuous scaling; (2) The fractal method was suitable for validation of NDVI. All of these proved that fractal was an effective methodology of studying scaling of quantitative remote sensing.

  3. Petrography study on altered flint aggregate by alkali-silica reaction

    International Nuclear Information System (INIS)

    Bulteel, D.; Rafai, N.; Degrugilliers, P.; Garcia-Diaz, E.

    2004-01-01

    The aim of our study is to improve our understanding of an alkali-silica reaction (ASR) via petrography. We used a chemical concrete subsystem: flint aggregate, portlandite and KOH. The altered flint aggregate is followed by optical microscopy and scanning electron microscopy (SEM) before and after acid treatment at different intervals. After acid treatment, the observations showed an increase in aggregate porosity and revealed internal degradation of the aggregate. This degradation created amorphous zones. Before acid treatment, the analyses on polished sections by scanning electron microscopy coupled with energy dispersive spectroscopy (EDS) enabled visualization of K + and Ca 2+ penetration into the aggregate. The appearance of amorphous zones and penetration of positive ions into the aggregate are correlated with the increase in the molar fraction of silanol sites. This degradation is specific to the alkali-silica reaction

  4. Evolution of fractality in space plasmas of interest to geomagnetic activity

    Science.gov (United States)

    Muñoz, Víctor; Domínguez, Macarena; Alejandro Valdivia, Juan; Good, Simon; Nigro, Giuseppina; Carbone, Vincenzo

    2018-03-01

    We studied the temporal evolution of fractality for geomagnetic activity, by calculating fractal dimensions from the Dst data and from a magnetohydrodynamic shell model for turbulent magnetized plasma, which may be a useful model to study geomagnetic activity under solar wind forcing. We show that the shell model is able to reproduce the relationship between the fractal dimension and the occurrence of dissipative events, but only in a certain region of viscosity and resistivity values. We also present preliminary results of the application of these ideas to the study of the magnetic field time series in the solar wind during magnetic clouds, which suggest that it is possible, by means of the fractal dimension, to characterize the complexity of the magnetic cloud structure.

  5. Biophysical Chemistry of Fractal Structures and Processes in Environmental Systems

    NARCIS (Netherlands)

    Buffle, J.; Leeuwen, van H.P.

    2008-01-01

    This book aims to provide the scientific community with a novel and valuable approach based on fractal geometry concepts on the important properties and processes of diverse environmental systems. The interpretation of complex environmental systems using modern fractal approaches is compared and

  6. Ultraviolet radiation induces dose-dependent pigment dispersion in crustacean chromatophores.

    Science.gov (United States)

    Gouveia, Glauce Ribeiro; Lopes, Thaís Martins; Neves, Carla Amorim; Nery, Luiz Eduardo Maia; Trindade, Gilma Santos

    2004-10-01

    Pigment dispersion in chromatophores as a response to UV radiation was investigated in two species of crustaceans, the crab Chasmagnathus granulata and the shrimp Palaemonetes argentinus. Eyestalkless crabs and shrimps maintained on either a black or a white background were irradiated with different UV bands. In eyestalkless crabs the significant minimal effective dose inducing pigment dispersion was 0.42 J/cm(2) for UVA and 2.15 J/cm(2) for UVB. Maximal response was achieved with 10.0 J/cm(2) UVA and 8.6 J/cm(2) UVB. UVA was more effective than UVB in inducing pigment dispersion. Soon after UV exposure, melanophores once again reached the initial stage of pigment aggregation after 45 min. Aggregated erythrophores of shrimps adapted to a white background showed significant pigment dispersion with 2.5 J/cm(2) UVA and 0.29 J/cm(2) UVC. Dispersed erythrophores of shrimps adapted to a black background did not show any significant response to UVA, UVB or UVC radiation. UVB did not induce any significant pigment dispersion in shrimps adapted to either a white or a black background. As opposed to the tanning response, which only protects against future UV exposure, the pigment dispersion response could be an important agent protecting against the harmful effects of UV radiation exposure.

  7. Rheological properties of dispersions of enzymatically cross-linked apo-α-lactalbumin

    NARCIS (Netherlands)

    Saricay, Yunus; Wierenga, Peter A.; Vries, de Renko

    2016-01-01

    The enzymatic cross-linking of apo-α-lactalbumin (α-LA) with horseradish peroxidase (HRP) leads to the formation of hydrophilic protein aggregates with controlled size and architecture. We explore the rheological properties of dispersions of these HRP-cross-linked α-LA aggregates with a

  8. Highly dispersed spherical Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12} nanocrystals via topotactic crystallization of aggregation-free gel particles from an effective inverse miniemulsion sol–gel approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Aijun; Zeng, Yanwei, E-mail: zengyw-njut@126.com, E-mail: stephen-zeng@njtech.edu.cn, E-mail: stephen-zeng@163.com; Han, Longxiang; Ding, Chuan; Cao, Liangliang; Li, Rongjie [Nanjing Tech University, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering (China)

    2015-09-15

    Aggregation-free spherical lanthanum-doped bismuth titanate (Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12}, BLT) gel particles with an average size of about 150 nm were successfully obtained from an inverse miniemulsion sol–gel process, with Span-80 acting as surfactant, n-butanol as co-surfactant, cyclohexane as continuous phase, and submicro-droplets of aqueous solution containing Bi{sup 3+}, La{sup 3+} and Ti{sup 4+} ions as dispersed phase, and then topotactically transformed into highly dispersed spherical BLT nanocrystals after an in situ crystallization at 600 °C for 8 h. It has been found that the BLT gel particles can be obtained via a moderate sol–gel reaction inside the miniemulsion droplets at 65 °C, but their morphology and aggregation degree are strongly affected by the relative amounts of Span-80 and n-butanol. The perfect spherical BLT gel particles with no aggregation can be achieved only under the condition of 3 wt% n-butanol relative to the mass of cyclohexane, with excessive amount of n-butanol leading to the formation of ill-gelled particles with irregular shapes, while insufficient addition of n-butanol resulting in terrible aggregation of gel particles. To understand the formation of aggregation-free spherical BLT gel particles, a tentative mechanism is proposed and discussed, which reveals that a well-coordinated oil–water interfacial film made up of Span-80 and n-butanol molecules and the appropriately enhanced evaporation of water from such interfaces should be responsible for the formation of aggregation-free spherical BLT gel particles. Graphical Abstract: Aggregation-free spherical BLT (Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12}) gel particles can be prepared from an effective inverse miniemulsion sol–gel process, and subsequently topotactically transformed into spherical BLT nanocrystals through an in situ crystallization.

  9. Navigation performance in virtual environments varies with fractal dimension of landscape

    OpenAIRE

    Juliani, Arthur W.; Bies, Alexander J.; Boydston, Cooper R.; Taylor, Richard P.; Sereno, Margaret E.

    2016-01-01

    Fractal geometry has been used to describe natural and built environments, but has yet to be studied in navigational research. In order to establish a relationship between the fractal dimension (D) of a natural environment and humans’ ability to navigate such spaces, we conducted two experiments using virtual environments that simulate the fractal properties of nature. In Experiment 1, participants completed a goal-driven search task either with or without a map in landscapes that varied in D...

  10. Effect of exposure time and image resolution on fractal dimension

    International Nuclear Information System (INIS)

    An, Byung Mo; Heo, Min Suk; Lee, Seung Pyo; Lee, Sam Sun; Choi, Soon Chul; Park, Tae Won; Kim, Jong Dae

    2002-01-01

    To evaluate the effect of exposure time and image resolution on fractal dimension calculations for determining the optimal range of these two variances. Thirty-one radiographs of the mandibular angle area of sixteen human dry mandibles were taken at different exposure times (0.01, 0.08, 0.16, 0.25, 0.40, 0.64, and 0.80 s). Each radiograph was digitized at 1200 dpi, 8 bit, 256 gray level using a film scanner. We selected an Region of Interest (ROI) that corresponded to the same region as in each radiograph, but the resolution of ROI was degraded to 1000, 800, 600, 500, 400, 300, 200, and 100 dpi. The fractal dimension was calculated by using the tile-counting method for each image, and the calculated values were then compared statistically. As the exposure time and the image resolution increased, the mean value of the fractal dimension decreased, except the case where exposure time was set at 0.01 seconds (alpha = 0.05). The exposure time and image resolution affected the fractal dimension by interaction (p<0.001). When the exposure time was set to either 0.64 seconds or 0.80 seconds, the resulting fractal dimensions were lower, irrespective of image resolution, than at shorter exposure times (alpha = 0.05). The optimal range for exposure time and resolution was determined to be 0.08-0.40 seconds and from 400-1000 dpi, respectively. Adequate exposure time and image resolution is essential for acquiring the fractal dimension using tile-counting method for evaluation of the mandible.

  11. Fractal-Based Analysis of the Influence of Music on Human Respiration

    Science.gov (United States)

    Reza Namazi, H.

    An important challenge in respiration related studies is to investigate the influence of external stimuli on human respiration. Auditory stimulus is an important type of stimuli that influences human respiration. However, no one discovered any trend, which relates the characteristics of the auditory stimuli to the characteristics of the respiratory signal. In this paper, we investigate the correlation between auditory stimuli and respiratory signal from fractal point of view. We found out that the fractal structure of respiratory signal is correlated with the fractal structure of the applied music. Based on the obtained results, the music with greater fractal dimension will result in respiratory signal with smaller fractal dimension. In order to verify this result, we benefit from approximate entropy. The results show the respiratory signal will have smaller approximate entropy by choosing the music with smaller approximate entropy. The method of analysis could be further investigated to analyze the variations of different physiological time series due to the various types of stimuli when the complexity is the main concern.

  12. Evolution of atomic-scale surface structures during ion bombardment: A fractal simulation

    International Nuclear Information System (INIS)

    Shaheen, M.A.; Ruzic, D.N.

    1993-01-01

    Surfaces of interest in microelectronics have been shown to exhibit fractal topographies on the atomic scale. A model utilizing self-similar fractals to simulate surface roughness has been added to the ion bombardment code TRIM. The model has successfully predicted experimental sputtering yields of low energy (less then 1000 eV) Ar on Si and D on C using experimentally determined fractal dimensions. Under ion bombardment the fractal surface structures evolve as the atoms in the collision cascade are displaced or sputtered. These atoms have been tracked and the evolution of the surface in steps of one monolayer of flux has been determined. The Ar--Si system has been studied for incidence energies of 100 and 500 eV, and incidence angles of 0 degree, 30 degree, and 60 degree. As expected, normally incident ion bombardment tends to reduce the roughness of the surface, whereas large angle ion bombardment increases the degree of surface roughness. Of particular interest though, the surfaces are still locally self-similar fractals after ion bombardment and a steady state fractal dimension is reached, except at large angles of incidence

  13. Fractals and humor

    Science.gov (United States)

    Martin, Demetri

    2015-03-01

    Demetri Maritn prepared this palindromic poem as his project for Michael Frame's fractal geometry class at Yale. Notice the first, fourth, and seventh words in the second and next-to-second lines are palindromes, the first two and last two lines are palindromes, the middle line, "Be still if I fill its ebb" minus its last letter is a palindrome, and the entire poem is a palindrome...

  14. Transmission and reflection properties of terahertz fractal metamaterials

    DEFF Research Database (Denmark)

    Malureanu, Radu; Lavrinenko, Andrei; Cooke, David

    2010-01-01

    We use THz time-domain spectroscopy to investigate transmission and reflection properties of metallic fractal metamaterial structures. We observe loss of free-space energy at certain resonance frequencies, indicating excitation of surface modes of the metamaterial.......We use THz time-domain spectroscopy to investigate transmission and reflection properties of metallic fractal metamaterial structures. We observe loss of free-space energy at certain resonance frequencies, indicating excitation of surface modes of the metamaterial....

  15. Retention of ferrofluid aggregates at the target site during magnetic drug targeting

    Energy Technology Data Exchange (ETDEWEB)

    Asfer, Mohammed, E-mail: asfer786@gmail.com [School of Engineering and Technology, BML Munjal University, Haryana (India); Saroj, Sunil Kumar [Department of Mechanical Engineering, IIT Kanpur, Kanpur (India); Panigrahi, Pradipta Kumar, E-mail: panig@iitk.ac.in [Department of Mechanical Engineering, IIT Kanpur, Kanpur (India)

    2017-08-15

    Highlights: • The present in vitro work reports the retention dynamics of ferrofluid aggregates at the target site against a bulk flow of DI water inside a micro capillary during magnetic drug targeting. • The recirculation zone at the downstream of the aggregate is found to be a function of aggregate height, Reynolds number and the degree of surface roughness of the outer boundary of the aggregate. • The reported results of the present work can be used as a guideline for the better design of MDT technique for in vivo applications. - Abstract: The present study reports the retention dynamics of a ferrofluid aggregate localized at the target site inside a glass capillary (500 × 500 µm{sup 2} square cross section) against a bulk flow of DI water (Re = 0.16 and 0.016) during the process of magnetic drug targeting (MDT). The dispersion dynamics of iron oxide nanoparticles (IONPs) into bulk flow for different initial size of aggregate at the target site is reported using the brightfield visualization technique. The flow field around the aggregate during the retention is evaluated using the µPIV technique. IONPs at the outer boundary experience a higher shear force as compared to the magnetic force, resulting in dispersion of IONPs into the bulk flow downstream to the aggregate. The blockage effect and the roughness of the outer boundary of the aggregate resulting from chain like clustering of IONPs contribute to the flow recirculation at the downstream region of the aggregate. The entrapment of seeding particles inside the chain like clusters of IONPs at the outer boundary of the aggregate reduces the degree of roughness resulting in a streamlined aggregate at the target site at later time. The effect of blockage, structure of the aggregate, and disturbed flow such as recirculation around the aggregate are the primary factors, which must be investigated for the effectiveness of the MDT process for in vivo applications.

  16. A fractal model for heat transfer of nanofluids by convection in a pool

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Boqi, E-mail: xiaoboqi2006@126.co [Department of Physics and Electromechanical Engineering, Sanming University, 25 Jingdong Road, Sanming 365004 (China); Yu Boming [School of Physics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074 (China); Wang Zongchi; Chen Lingxia [Department of Physics and Electromechanical Engineering, Sanming University, 25 Jingdong Road, Sanming 365004 (China)

    2009-11-02

    Based on the fractal distribution of nanoparticles, a fractal model for heat transfer of nanofluids is presented in the Letter. Considering heat convection between nanoparticles and liquids due to the Brownian motion of nanoparticles in fluids, the formula of calculating heat flux of nanofluids by convection is given. The proposed model is expressed as a function of the average size of nanoparticle, concentration of nanoparticle, fractal dimension of nanoparticle, temperature and properties of fluids. It is shown that the fractal model is effectual according to a good agreement between the model predictions and experimental data.

  17. A fractal model for heat transfer of nanofluids by convection in a pool

    International Nuclear Information System (INIS)

    Xiao Boqi; Yu Boming; Wang Zongchi; Chen Lingxia

    2009-01-01

    Based on the fractal distribution of nanoparticles, a fractal model for heat transfer of nanofluids is presented in the Letter. Considering heat convection between nanoparticles and liquids due to the Brownian motion of nanoparticles in fluids, the formula of calculating heat flux of nanofluids by convection is given. The proposed model is expressed as a function of the average size of nanoparticle, concentration of nanoparticle, fractal dimension of nanoparticle, temperature and properties of fluids. It is shown that the fractal model is effectual according to a good agreement between the model predictions and experimental data.

  18. Terahertz response of fractal meta-atoms based on concentric rectangular square resonators

    Energy Technology Data Exchange (ETDEWEB)

    Song, Zhiqiang; Zhao, Zhenyu, E-mail: zyzhao@shnu.edu.cn; Shi, Wangzhou [Department of Physics, Shanghai Normal University, Shanghai 200234 (China); Peng, Wei [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2015-11-21

    We investigate the terahertz electromagnetic responses of fractal meta-atoms (MAs) induced by different mode coupling mechanisms. Two types of MAs based on concentric rectangular square (CRS) resonators are presented: independent CRS (I-CRS) and junctional-CRS (J-CRS). In I-CRS, each resonator works as an independent dipole so as to result in the multiple resonance modes when the fractal level is above 1. In J-CRS, however, the generated layer is rotated by π/2 radius to the adjacent CRS in one MA. The multiple resonance modes are coupled into a single mode resonance. The fractal level increasing induces resonance modes redshift in I-CRS while blueshift in J-CRS. When the fractal level is below 4, the mode Q factor of J-CRS is in between the two modes of I-CRS; when the fractal level is 4 or above, the mode Q factor of J-CRS exceeds the two modes of I-CRS. Furthermore, the modulation depth (MD) decreases in I-CRS while it increases in J-CRS with the increase in fractal levels. The surface currents analysis reveals that the capacitive coupling of modes in I-CRS results in the modes redshift, while the conductive coupling of modes in J-CRS induces the mode blueshift. A high Q mode with large MD can be achieved via conductive coupling between the resonators of different scales in a fractal MA.

  19. Characterization of Nanoparticles and Colloids in Aquatic Systems 1. Small Angle Neutron Scattering Investigations of Suwannee River Fulvic Acid Aggregates in Aqueous Solutions

    International Nuclear Information System (INIS)

    Diallo, Mamadou S.; Glinka, Charles J.; Goddard, William A.; Johnson, James H.

    2005-01-01

    Fulvic acids (FA) and humic acids (HA) constitute 30-50% of dissolved organic matter in natural aquatic systems. In aqueous solutions, a commonly accepted view is that FA and HA exist as soluble macroligands at low concentration and as supramolecular aggregates at higher concentration. The size, shape and structure of these aggregates are still the subject of ongoing debate in the environmental chemistry literature. In this article, we use small angle neutron scattering (SANS) to assess the effects of solute concentration, solution pH and background electrolyte (NaCl) concentration on the structures of Suwannee River FA (SRFA) aggregates in D 2 O. The qualitative features of the SANS curves and data analysis are not consistent with the view point that SRFA forms micelle-like aggregates as its concentration in aqueous solution increases. We find that SRFA forms fractal aggregates in D 2 0 with size greater than 242 nm. The SRFA aggregates undergo a significant degree of restructuring in compactness as solution pH, solute concentration and NaCl concentration increase

  20. Aggregation in concentrated protein solutions: Insights from rheology, neutron scattering and molecular simulations

    Science.gov (United States)

    Castellanos, Maria Monica

    -angle neutron scattering experiments were used to characterize the antibody aggregates responsible for this non-Newtonian response. From the neutron scattering data, a weak barrier leading to reversible aggregation is identified. Therefore, proteins aggregate weakly after colliding hydrodynamically, unless they find a favorable contact with high binding energy. Two types of antibody aggregates were identified: oligomers with average radius of gyration of ˜10 nm, and fractal aggregates larger than ˜ 0.1 microm formed by a reaction-limited aggregation process. A characteristic upturn in the scattered intensity at low wavevector and a low shear viscosity increase are observed in aggregated protein solutions. These features are removed by filtering with a 0.2 microm filter, which also eliminates the submicron fractal aggregates. Biophysical characterization supports the conclusions from the rheology and neutron scattering experiments. Finally, molecular dynamics simulations were used to understand the effects of disulfide bonds on the conformational stability of serum albumin. Changes in disulfide bonds in the native structure could lead to partial unfolding, and the formation of aggregates through inter-molecular disulfide bonds. Therefore, it is important to understand the role of each disulfide bond on the structure and dynamics of the protein. After removing disulfide bonds, changes occur in the dynamic correlations between different residues, and the secondary and tertiary structure of albumin. However, not all disulfide bonds affect the conformation of the protein, suggesting that other interactions are more relevant to keep the stability in certain regions. Removal of all disulfide bonds using molecular dynamics is proposed as a practical prescreening tool to identify disulfide bonds that are important for the conformational stability. As a result, some disulfide bonds can be mutated without affecting the conformation of the protein.