WorldWideScience

Sample records for disparate oxidant gene

  1. Racial disparities: disruptive genes in prostate carcinogenesis.

    Science.gov (United States)

    Singh, Savita; Plaga, Alexis; Shukla, Girish C

    2017-06-01

    Population specific studies in prostate cancer (PCa) reveal a unique heterogeneous etiology. Various factors, such as genetics, environment and dietary regimen seems to determine disease progression, therapeutic resistance and rate of mortality. Enormous disparity documented in disease incidences, aggressiveness and mortality in PCa among AAs (African Americans) and CAs (Caucasian Americans) is attributed to the variations in genetics, epigenetics and their association with metabolism. Scientific and clinical evidences have revealed the influence of variations in Androgen Receptor (AR), RNAse L, macrophage scavenger receptor 1 ( MRS1 ), androgen metabolism by cytochrome P450 3A4, differential regulation of microRNAs, epigenetic alterations and diet in racial disparity in PCa incidences and mortality. Concerted efforts are needed to identify race specific prognostic markers and treatment regimen for a better management of the disease.

  2. Gene transcription in polar bears (Ursus maritimus) from disparate populations

    Science.gov (United States)

    Bowen, Lizabeth; Miles, A. Keith; Waters, Shannon C.; Meyerson, Randi; Rode, Karyn D.; Atwood, Todd C.

    2015-01-01

    Polar bears in the Beaufort (SB) and Chukchi (CS) Seas experience different environments due primarily to a longer history of sea ice loss in the Beaufort Sea. Ecological differences have been identified as a possible reason for the generally poorer body condition and reproduction of Beaufort polar bears compared to those from the Chukchi, but the influence of exposure to other stressors remains unknown. We use molecular technology, quantitative PCR, to identify gene transcription differences among polar bears from the Beaufort and Chukchi Seas as well as captive healthy polar bears. We identified significant transcriptional differences among a priori groups (i.e., captive bears, SB 2012, SB 2013, CS 2013) for ten of the 14 genes of interest (i.e., CaM, HSP70, CCR3, TGFβ, COX2, THRα, T-bet, Gata3, CD69, and IL17); transcription levels of DRβ, IL1β, AHR, and Mx1 did not differ among groups. Multivariate analysis also demonstrated separation among the groups of polar bears. Specifically, we detected transcript profiles consistent with immune function impairment in polar bears from the Beaufort Sea, when compared with Chukchi and captive polar bears. Although there is no strong indication of differential exposure to contaminants or pathogens between CS and SB bears, there are clearly differences in important transcriptional responses between populations. Further investigation is warranted to refine interpretation of potential effects of described stress-related conditions for the SB population.

  3. Differential splicing of oncogenes and tumor suppressor genes in African and Caucasian American populations: contributing factor in prostate cancer disparities

    Science.gov (United States)

    2017-12-01

    populations: contributing factor in prostate cancer disparities? PRINCIPAL INVESTIGATOR: Norman H Lee, PhD CONTRACTING ORGANIZATION: George Washington...splicing of oncogenes and tumor suppressor genes in African and Caucasian American populations: contributing factor in prostate cancer disparities? 5b...American (AA) versus Caucasian American (CA) prostate cancer (PCa). We focused our efforts on two oncogenes, phosphatidylinositol-4,5-bisphosphate 3

  4. PSPHL as a candidate gene influencing racial disparities in endometrial cancer incidence and survival

    Directory of Open Access Journals (Sweden)

    Jay eAllard

    2012-07-01

    Full Text Available Endometrial cancer is the most commonly diagnosed gynecologic malignancy in the United States and is characterized by a well recognized racial disparity in both incidence and survival. Specifically Caucasians are about two times more likely to develop endometrial cancer than are African Americans. However, African American women are more likely to die from this disease than are Caucasians. The basis for this disparity remains unknown. Previous studies have identified differences in the types and frequencies of gene mutations among endometrial cancers from Caucasians and African Americans suggesting. We performed a gene expression microarray study in an effort to further examine differences between African American and Caucasian women’s endometrial cancers. This expression screen identified a list of potential biomarkers differentially expressed between these two groups of cancers. Of these we identified a poorly characterized transcript with a region of homology to phospho serine phospatase (PSPH and designated phospho serine phospatase like (PSPHL as the most differentially over-expressed gene in cancers from African Americans. We clarified the nature of expressed transcripts. Northern blot analysis confirmed PSPHL messages under 1 KB. Sequence analysis of transcripts confirmed two alternate open reading frame (ORF isoforms due to alternative splicing events. Splice specific primer sets confirmed both isoforms were differentially expressed in tissues from Caucasians and African Americans. We further examined the expression in other tissues from women to include normal endometrium, normal and malignant ovary. In all cases PSPHL expression was more often present in tissues from African-Americans than Caucasians. Our data confirm the African-American based expression of the PSPHL transcript several tissue types. PSPHL represents a candidate gene that might influence the observed racial disparity in endometrial and other cancers.

  5. Analysis of PSPHL as a Candidate Gene Influencing the Racial Disparity in Endometrial Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Allard, Jay E. [Walter Reed Army Medical Center, Washington, DC (United States); Chandramouli, Gadisetti V. R. [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI (United States); Stagliano, Katherine [Curtis and Elizabeth Anderson Cancer Institute at Memorial Health University Medical Center, Savannah, GA (United States); Hood, Brian L. [Women’s Health Integrated Research Center at Inova Health System, Annandale, VA (United States); Litzi, Tracy [Walter Reed Army Medical Center, Washington, DC (United States); Women’s Health Integrated Research Center at Inova Health System, Annandale, VA (United States); Shoji, Yutaka [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI (United States); Curtis and Elizabeth Anderson Cancer Institute at Memorial Health University Medical Center, Savannah, GA (United States); Boyd, Jeff [Curtis and Elizabeth Anderson Cancer Institute at Memorial Health University Medical Center, Savannah, GA (United States); Fox Chase Cancer Center, Philadelphia, PA (United States); Berchuck, Andrew [Division of Gynecologic Oncology, Duke University, Durham, NC (United States); Conrads, Thomas P. [Curtis and Elizabeth Anderson Cancer Institute at Memorial Health University Medical Center, Savannah, GA (United States); Maxwell, G. Larry [Walter Reed Army Medical Center, Washington, DC (United States); Women’s Health Integrated Research Center at Inova Health System, Annandale, VA (United States); Risinger, John I., E-mail: john.risinger@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI (United States); Curtis and Elizabeth Anderson Cancer Institute at Memorial Health University Medical Center, Savannah, GA (United States)

    2012-07-04

    Endometrial cancer is the most commonly diagnosed gynecologic malignancy in the United States. A well recognized disparity by race in both incidence and survival outcome exists for this cancer. Specifically Caucasians are about two times more likely to develop endometrial cancer than are African-Americans. However, African-American women are more likely to die from this disease than are Caucasians. The basis for this disparity remains unknown. Previous studies have identified differences in the types and frequencies of gene mutations among endometrial cancers from Caucasians and African-Americans suggesting that the tumors from these two groups might have differing underlying genetic defects. We performed a gene expression microarray study in an effort to identify differentially expressed transcripts between African-American and Caucasian women’s endometrial cancers. Our gene expression screen identified a list of potential biomarkers that are differentially expressed between these two groups of cancers. Of these we identified a poorly characterized transcript with a region of homology to phospho serine phosphatase (PSPH) and designated phospho serine phosphatase like (PSPHL) as the most differentially over-expressed gene in cancers from African-Americans. We further clarified the nature of expressed transcripts. Northern blot analysis confirmed the message was limited to a transcript of under 1 kB. Sequence analysis of transcripts confirmed two alternate open reading frame (ORF) isoforms due to alternative splicing events. Splice specific primer sets confirmed both isoforms were differentially expressed in tissues from Caucasians and African-Americans. We further examined the expression in other tissues from women to include normal endometrium, normal and malignant ovary. In all cases PSPHL expression was more often present in tissues from African-Americans than Caucasians. Our data confirm the African-American based expression of the PSPHL transcript in

  6. Analysis of PSPHL as a Candidate Gene Influencing the Racial Disparity in Endometrial Cancer

    International Nuclear Information System (INIS)

    Allard, Jay E.; Chandramouli, Gadisetti V. R.; Stagliano, Katherine; Hood, Brian L.; Litzi, Tracy; Shoji, Yutaka; Boyd, Jeff; Berchuck, Andrew; Conrads, Thomas P.; Maxwell, G. Larry; Risinger, John I.

    2012-01-01

    Endometrial cancer is the most commonly diagnosed gynecologic malignancy in the United States. A well recognized disparity by race in both incidence and survival outcome exists for this cancer. Specifically Caucasians are about two times more likely to develop endometrial cancer than are African-Americans. However, African-American women are more likely to die from this disease than are Caucasians. The basis for this disparity remains unknown. Previous studies have identified differences in the types and frequencies of gene mutations among endometrial cancers from Caucasians and African-Americans suggesting that the tumors from these two groups might have differing underlying genetic defects. We performed a gene expression microarray study in an effort to identify differentially expressed transcripts between African-American and Caucasian women’s endometrial cancers. Our gene expression screen identified a list of potential biomarkers that are differentially expressed between these two groups of cancers. Of these we identified a poorly characterized transcript with a region of homology to phospho serine phosphatase (PSPH) and designated phospho serine phosphatase like (PSPHL) as the most differentially over-expressed gene in cancers from African-Americans. We further clarified the nature of expressed transcripts. Northern blot analysis confirmed the message was limited to a transcript of under 1 kB. Sequence analysis of transcripts confirmed two alternate open reading frame (ORF) isoforms due to alternative splicing events. Splice specific primer sets confirmed both isoforms were differentially expressed in tissues from Caucasians and African-Americans. We further examined the expression in other tissues from women to include normal endometrium, normal and malignant ovary. In all cases PSPHL expression was more often present in tissues from African-Americans than Caucasians. Our data confirm the African-American based expression of the PSPHL transcript in

  7. Endothelial nitric oxide synthase gene polymorphisms associated ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-24

    May 24, 2010 ... chronic periodontitis (CP), 31 with gingivitis (G) and 50 healthy controls. Probing depth ..... Periodontal disease in pregnancy I. Prevalence and severity. ... endothelial nitric oxide synthase gene in premenopausal women with.

  8. Diet-Gene Interactions and PUFA Metabolism: A Potential Contributor to Health Disparities and Human Diseases

    Directory of Open Access Journals (Sweden)

    Floyd H. Chilton

    2014-05-01

    Full Text Available The “modern western” diet (MWD has increased the onset and progression of chronic human diseases as qualitatively and quantitatively maladaptive dietary components give rise to obesity and destructive gene-diet interactions. There has been a three-fold increase in dietary levels of the omega-6 (n-6 18 carbon (C18, polyunsaturated fatty acid (PUFA linoleic acid (LA; 18:2n-6, with the addition of cooking oils and processed foods to the MWD. Intense debate has emerged regarding the impact of this increase on human health. Recent studies have uncovered population-related genetic variation in the LCPUFA biosynthetic pathway (especially within the fatty acid desaturase gene (FADS cluster that is associated with levels of circulating and tissue PUFAs and several biomarkers and clinical endpoints of cardiovascular disease (CVD. Importantly, populations of African descent have higher frequencies of variants associated with elevated levels of arachidonic acid (ARA, CVD biomarkers and disease endpoints. Additionally, nutrigenomic interactions between dietary n-6 PUFAs and variants in genes that encode for enzymes that mobilize and metabolize ARA to eicosanoids have been identified. These observations raise important questions of whether gene-PUFA interactions are differentially driving the risk of cardiovascular and other diseases in diverse populations, and contributing to health disparities, especially in African American populations.

  9. OxyGene: an innovative platform for investigating oxidative-response genes in whole prokaryotic genomes

    Directory of Open Access Journals (Sweden)

    Barloy-Hubler Frédérique

    2008-12-01

    Full Text Available Abstract Background Oxidative stress is a common stress encountered by living organisms and is due to an imbalance between intracellular reactive oxygen and nitrogen species (ROS, RNS and cellular antioxidant defence. To defend themselves against ROS/RNS, bacteria possess a subsystem of detoxification enzymes, which are classified with regard to their substrates. To identify such enzymes in prokaryotic genomes, different approaches based on similarity, enzyme profiles or patterns exist. Unfortunately, several problems persist in the annotation, classification and naming of these enzymes due mainly to some erroneous entries in databases, mistake propagation, absence of updating and disparity in function description. Description In order to improve the current annotation of oxidative stress subsystems, an innovative platform named OxyGene has been developed. It integrates an original database called OxyDB, holding thoroughly tested anchor-based signatures associated to subfamilies of oxidative stress enzymes, and a new anchor-driven annotator, for ab initio detection of ROS/RNS response genes. All complete Bacterial and Archaeal genomes have been re-annotated, and the results stored in the OxyGene repository can be interrogated via a Graphical User Interface. Conclusion OxyGene enables the exploration and comparative analysis of enzymes belonging to 37 detoxification subclasses in 664 microbial genomes. It proposes a new classification that improves both the ontology and the annotation of the detoxification subsystems in prokaryotic whole genomes, while discovering new ORFs and attributing precise function to hypothetical annotated proteins. OxyGene is freely available at: http://www.umr6026.univ-rennes1.fr/english/home/research/basic/software

  10. Endothelial nitric oxide synthase gene polymorphisms associated ...

    African Journals Online (AJOL)

    Endothelial nitric oxide synthase (NOS3) is involved in key steps of immune response. Genetic factors predispose individuals to periodontal disease. This study's aim was to explore the association between NOS3 gene polymorphisms and clinical parameters in patients with periodontal disease. Genomic DNA was obtained ...

  11. Nitric oxide synthase gene G298 allele

    International Nuclear Information System (INIS)

    Nagib El-Kilany, Galal E.; Nayel, Ehab; Hazzaa, Sahar

    2004-01-01

    Background: Nitric oxide (NO) has an important effect on blood pressure, arterial wall, and the basal release of endothelial NO in hypertension (HPN) may be reduced. Until now, there is no solid data revealing the potential role of the polymorphism of the nitric oxide synthase gene (NOS) in patients with HPN and microvascular angina. Aim: The aim of the present study is to investigate the gene of endothelial nitric oxide synthase (eNOS), as the polymorphism of this gene may be a putative candidate for HPN and initiate the process of atherosclerosis. Methods: Sixty participants were recruited for this study; 50 were hypertensive patients complaining of chest pain [30 of them have electrocardiogram (EKG) changes of ischemia], 20 had isolated HPN, and 10 healthy volunteers served as control. All patients underwent stress myocardial perfusion imaging (MPI) and coronary angiography. Genotyping of eNOS for all patients and controls was performed. The linkages between HPN, microvascular angina and eNOS gene polymorphism were investigated. Results: MPI and coronary angiography revealed that 15 patients had chest pain with true ischemia and reversible myocardial perfusion defects (multiple and mild) but normal epicardial coronary arteries (microvascular angina), while 15 patients had significant coronary artery disease (CAD), and 20 hypertensive patients showed normal perfusion scan and coronary angiography. The prevalence of the NOS G 298 allele was higher in the hypertensive group with microvascular angina (documented by MPI) than it was among the control participants (P<.005). The eNOS allele was significantly higher in the hypertensive group than in the control participants, but there was no significant difference in homozygote mutants among hypertensive participants, x-syndrome and patients with CAD. Conclusion: eNOS gene polymorphism is proved to be an important etiology in microvascular angina (x-syndrome) among hypertensive patients. In addition, the eNOS mutant

  12. Data for increase of Lymantria dispar male survival after topical application of single-stranded RING domain fragment of IAP-3 gene of its nuclear polyhedrosis virus

    Science.gov (United States)

    Oberemok, Volodymyr V.; Laikova, Kateryna V.; Zaitsev, Aleksei S.; Gushchin, Vladimir A.; Skorokhod, Oleksii A.

    2016-01-01

    This data article is related to the research article entitled “The RING for gypsy moth control: topical application of fragment of its nuclear polyhedrosis virus anti-apoptosis gene as insecticide” [1]. This article reports on significantly higher survival of gypsy moth Lymantria dispar male individuals in response to topical application of single-stranded DNA, based on RING (really interesting new gene) domain fragment of LdMNPV (L. dispar multicapsid nuclear polyhedrosis virus) IAP-3 (inhibitor of apoptosis) gene and acted as DNA insecticide. PMID:27054151

  13. Disparate effects of oxidation on plasma acyltransferase activities: inhibition of cholesterol esterification but stimulation of transesterification of oxidized phospholipids.

    Science.gov (United States)

    Subbaiah, P V; Liu, M

    1996-05-31

    Oxidation of lipoproteins results in the formation of several polar phospholipids with pro-inflammatory and pro-atherogenic properties. To examine the possible role of lecithin/cholesterol acyltransferase (LCAT) in the metabolism of these oxidized phospholipids, we oxidized whole plasma with either Cu(2+) or a free-radical generator, and determined the various activities of LCAT. Oxidation caused a reduction in plasma phosphatidylcholine (PC), an increase in a short-chain polar PC (SCP-PC), and an inhibition of the transfer of long-chain acyl groups to cholesterol (LCAT activity) or to lyso PC (lysolecithin acyltransferase (LAT) I activity). However, the transfer of short-chain acyl groups from SCP-PC to lyso PCLAT II activity) was stimulated several fold, in direct correlation with the degree of oxidation. LAT II activity was not stimulated by oxidation in LCAT-deficient plasma, showing that it is carried out by LCAT. Oxidized normal plasma exhibited low LCAT activity even in the presence of exogenous proteoliposome substrate, indicating that the depletion of substrate PC was not responsible for the loss of activity. Oxidation of isolated LDL or HDL abolished their ability to support LCAT and LAT I activities of exogenous enzyme, but promoted the LAT II activity. Purified LCAT lost its LCAT and LAT I functions, but not its LAT II function, when oxidized in vitro. These results show that while oxidation of plasma causes a loss of LCAT's ability to transfer long-chain acyl groups, its ability to transfer short-chain acyl groups, from SCP-PC is retained, and even stimulated, suggesting that LCAT may have a physiological role in the metabolism of oxidized PC in plasma.

  14. Disparate sequence characteristics of the Erysiphe graminis f.sp. hordei glyceraldehyde-3-phosphate dehydrogenase gene

    DEFF Research Database (Denmark)

    Christiansen, S.K.; Justesen, A.F.; Giese, H.

    1997-01-01

    to be similar for all four genes. The results of the codon-usage analysis suggest that Egh is more flexible than other fungi in the choice of nucleotides at the wobble position. Codon-usage preferences in Egh and barley genes indicate a level of difference which may be exploited to discriminate between fungal...

  15. Cancer Disparities

    Science.gov (United States)

    Basic information about cancer disparities in the U.S., factors that contribute to the disproportionate burden of cancer in some groups, and examples of disparities in incidence and mortality among certain populations.

  16. Health Disparities

    Science.gov (United States)

    ... Health and Health Disparities conduct transdisciplinary research involving social, behavioral, biological, and genetic research to improve knowledge of the causes of health disparities and devise effective methods of preventing, diagnosing, and treating disease and promoting ...

  17. Oxidative Metabolism Genes Are Not Responsive to Oxidative Stress in Rodent Beta Cell Lines

    Directory of Open Access Journals (Sweden)

    Faer Morrison

    2012-01-01

    Full Text Available Altered expression of oxidative metabolism genes has been described in the skeletal muscle of individuals with type 2 diabetes. Pancreatic beta cells contain low levels of antioxidant enzymes and are particularly susceptible to oxidative stress. In this study, we explored the effect of hyperglycemia-induced oxidative stress on a panel of oxidative metabolism genes in a rodent beta cell line. We exposed INS-1 rodent beta cells to low (5.6 mmol/L, ambient (11 mmol/L, and high (28 mmol/L glucose conditions for 48 hours. Increases in oxidative stress were measured using the fluorescent probe dihydrorhodamine 123. We then measured the expression levels of a panel of 90 oxidative metabolism genes by real-time PCR. Elevated reactive oxygen species (ROS production was evident in INS-1 cells after 48 hours (P<0.05. TLDA analysis revealed a significant (P<0.05 upregulation of 16 of the 90 genes under hyperglycemic conditions, although these expression differences did not reflect differences in ROS. We conclude that although altered glycemia may influence the expression of some oxidative metabolism genes, this effect is probably not mediated by increased ROS production. The alterations to the expression of oxidative metabolism genes previously observed in human diabetic skeletal muscle do not appear to be mirrored in rodent pancreatic beta cells.

  18. Comparing the Expression of Olfaction-Related Genes in Gypsy Moth (Lymantria dispar Adult Females and Larvae from One Flightless and Two Flight-Capable Populations

    Directory of Open Access Journals (Sweden)

    Andrea Clavijo McCormick

    2017-09-01

    Full Text Available In insects, flight and sophisticated olfactory systems go hand in hand and are essential to survival and evolutionary success. Females of many Lepidopteran species have secondarily lost their flight ability, which may lead to changes in the olfactory capabilities of both larval and adult stages. The gypsy moth, Lymantria dispar, an important forest pest worldwide, is currently undergoing a diversification process with three recognized subspecies: the Asian gypsy moth (AGM, Lymantria dispar asiatica; the Japanese gypsy moth (JGM, Lymantria dispar japonica; and the European gypsy moth (EGM, Lymantria dispar dispar. Females of EGM populations from North America have lost their flight capacity whereas the JGM and AGM females are flight capable, making this an ideal system to investigate the relationship between flight and olfaction. We used next-generation sequencing to obtain female antennal and larval head capsule transcriptomes in order to (i investigate the differences in expression of olfaction-related genes among populations; (ii identify the most similar protein sequences reported for other organisms through a BLAST search, and (iii establish the phylogenetic relationships of these sequences with respect to other insect species. Using this approach, we identified 115 putative chemosensory genes belonging to five families of olfaction-related genes. A principal component analysis (PCA revealed that the gene-expression patterns of female antennal transcriptomes from different subspecies were more similar to one another than to the larval head capsules of their respective subspecies supporting strong chemosensory differences between the two developmental stages. An analysis of the shared and exclusively expressed genes for three populations shows no evidence that loss of flight affects the number or type of genes being expressed. These results indicate either (a that loss of flight does not impact the olfactory gene repertoire or (b that the

  19. Ethnic disparity in 21-hydroxylase gene mutations identified in Pakistani congenital adrenal hyperplasia patients

    Directory of Open Access Journals (Sweden)

    Jabbar Abdul

    2011-02-01

    Full Text Available Abstract Background Congenital adrenal hyperplasia (CAH is a group of autosomal recessive disorders caused by defects in the steroid 21 hydroxylase gene (CYP21A2. We studied the spectrum of mutations in CYP21A2 gene in a multi-ethnic population in Pakistan to explore the genetics of CAH. Methods A cross sectional study was conducted for the identification of mutations CYP21A2 and their phenotypic associations in CAH using ARMS-PCR assay. Results Overall, 29 patients were analyzed for nine different mutations. The group consisted of two major forms of CAH including 17 salt wasters and 12 simple virilizers. There were 14 phenotypic males and 15 females representing all the major ethnic groups of Pakistan. Parental consanguinity was reported in 65% cases and was equally distributed in the major ethnic groups. Among 58 chromosomes analyzed, mutations were identified in 45 (78.6% chromosomes. The most frequent mutation was I2 splice (27% followed by Ile173Asn (26%, Arg 357 Trp (19%, Gln319stop, 16% and Leu308InsT (12%, whereas Val282Leu was not observed in this study. Homozygosity was seen in 44% and heterozygosity in 34% cases. I2 splice mutation was found to be associated with SW in the homozygous. The Ile173Asn mutation was identified in both SW and SV forms. Moreover, Arg357Trp manifested SW in compound heterozygous state. Conclusion Our study showed that CAH exists in our population with ethnic difference in the prevalence of mutations examined.

  20. Expression of genes associated with immunity in the endometrium of cattle with disparate postpartum uterine disease and fertility

    Directory of Open Access Journals (Sweden)

    Herath Shan

    2009-05-01

    Full Text Available Abstract Background Contamination of the uterine lumen with bacteria is ubiquitous in cattle after parturition. Some animals develop endometritis and have reduced fertility but others have no uterine disease and readily conceive. The present study tested the hypothesis that postpartum cattle that develop persistent endometritis and infertility are unable to limit the inflammatory response to uterine bacterial infection. Methods Endometrial biopsies were collected several times during the postpartum period from animals that were subsequently infertile with persistent endometritis (n = 4 or had no clinical disease and conceived to first insemination (n = 4. Quantitative PCR was used to determine the expression of candidate genes in the endometrial biopsies, including the Toll-like receptor (TLR 1 to 10 family of innate immune receptors, inflammatory mediators and their cognate receptors. Selected proteins were examined by immunohistochemistry. Results The expression of genes encoding pro-inflammatory mediators such as interleukins (IL1A, IL1B and IL6, and nitric oxide synthase 2 (NOS2 were higher during the first week post partum than subsequently. During the first week post partum, there was higher gene expression in infertile than fertile animals of TLR4, the receptor for bacterial lipopolysaccharide, and the pro-inflammatory cytokines IL1A and IL1B, and their receptor IL1R2. The expression of genes encoding other Toll-like receptors, transforming growth factor beta receptor 1 (TGFBR1 or prostaglandin E2 receptors (PTGER2 and PTGER4 did not differ significantly between the animal groups. Gene expression did not differ significantly between infertile and fertile animals after the first week postpartum. However, there were higher ratios of IL1A or IL1B mRNA to the anti-inflammatory cytokine IL10, during the first week post partum in the infertile than fertile animals, and the protein products of these genes were mainly localised to the epithelium

  1. Application of Ferriferous Oxide Modified by Chitosan in Gene Delivery

    Directory of Open Access Journals (Sweden)

    Yu Kuang

    2012-01-01

    Full Text Available New approaches to improve the traditional gene carriers are still required. Here we explore Fe3O4 modified with degradable polymers that enhances gene delivery and target delivery using permanent magnetic field. Two magnetic Fe3O4 nanoparticles coated with chitosan (CTS and polyethylene glycol (PEG were synthesized by means of controlled chemical coprecipitation. Plasmid pEGFP was encapsulated as a reported gene. The ferriferous oxide complexes were approximately spherical; surface charge of CTS-Fe3O4 and PEG-Fe3O4 was about 20 mv and 0 mv, respectively. The controlled release of DNA from the CTS-Fe3O4 nanoparticles was observed. Concurrently, a desired Fe3O4 concentration of less than 2 mM was verified as safe by means of a cytotoxicity test in vitro. Presence of the permanent magnetic field significantly increased the transfection efficiency. Furthermore, the passive target property and safety of magnetic nanoparticles were also demonstrated in an in vivo test. The novel gene delivery system was proved to be an effective tool required for future target expression and gene therapy in vivo.

  2. Association of oxidative stress gene polymorphisms with presbycusis.

    Science.gov (United States)

    Manche, Santoshi Kumari; Jangala, Madhavi; Putta, Padmavathi; Koralla, Raja Meganadh; Akka, Jyothy

    2016-11-30

    Presbycusis is characterised by etiopathological changes in the cochlea of the inner ear due to genetic and environmental factors and has a serious impact on quality of life. The present study was aimed to evaluate the role of oxidant stress gene polymorphisms in the development of presbycusis. 220 subjects with confirmed presbycusis from ENT specialists of MAA ENT hospital, Hyderabad, India from 2012 to 2014 were considered for the study. 270 age and sex matched controls were included in the study. Analysis of gene polymorphisms of SNPs cytochrome P450 1A1 (CYP1A1) 3801 T>C, 2455 A>G and 2453 A>C; glutathione S transferase (GST) T1 and M1; N-acetyl transferase (NAT2) 282 C>T and 857 G>A; uncoupled proteins (UCP1) (-3826) A>G and (UCP2) (866)G>A was carried out. Variations in the allelic and genotypic frequencies obtained were computed and analysed using appropriate statistical methods. The results of the study indicated that CYP1A1 gene polymorphism at 2453 C>A (adjusted OR: 1.59, 95% CI: 1.01-2.87) and 2455 A>G (adjusted OR: 1.87, 95% CI: 1.07-3.37), double null genotype of GSTM1 and GSTT1 (adjusted OR: 8.88, 95% CI: 4.10-19.19), NAT2 gene at C282T (adjusted OR: 1.77, 95% CI: 1.02-3.11) and G590 A (adjusted OR: 1.83, 95% CI 1.20-3.63) and UCP2 (-866) G>A (adjusted OR: 12.39; 95% CI: 6.51-23.56) showed increased risk for presbycusis while CYP1A1 at 3801 T>C and UCP1 (-3286) A>G exhibited no association. The haplotype combinations of T-G-A of CYP1A1 at 3801, 2455 and 2453 positions as well as T-A of NAT2*6 at 282 and 590 positions were found to contribute significant risk for the onset of presbycusis. Gene polymorphisms of CYP1A1 (A2455G, C2453A), NAT2*6 (C282T, G590 A), GST T1/M1 (double null genotype) and UCP2 (G-866 A) were found to contribute significant risk to presbycusis. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Phenotypic and genetic analysis of Lymantria dispar nucleopolyhedrovirus few polyhedra mutants: Mutations in the 25K FP gene may be caused by DNA replication errors

    Science.gov (United States)

    David S. Bischoff; James M. Slavicek

    1997-01-01

    We previously demonstrated that polyhedron formation (PF) mutants arise at a high frequency during serial passage of the Lymantria dispar nucleopolyhedrovirus (LdMNPV) in the L. dispar 652Y cell line (J.M. Slavicek, N. Hayes-Plazolles, and M.E. Kelly, Biol. Control 5:251-261, 1995). Most of these PF mutants...

  4. Differential Gene Expression in Colon Tissue Associated With Diet, Lifestyle, and Related Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Martha L Slattery

    Full Text Available Several diet and lifestyle factors may impact health by influencing oxidative stress levels. We hypothesize that level of cigarette smoking, alcohol, anti-inflammatory drugs, and diet alter gene expression. We analyzed RNA-seq data from 144 colon cancer patients who had information on recent cigarette smoking, recent alcohol consumption, diet, and recent aspirin/non-steroidal anti-inflammatory use. Using a false discovery rate of 0.1, we evaluated gene differential expression between high and low levels of exposure using DESeq2. Ingenuity Pathway Analysis (IPA was used to determine networks associated with de-regulated genes in our data. We identified 46 deregulated genes associated with recent cigarette use; these genes enriched causal networks regulated by TEK and MAP2K3. Different differentially expressed genes were associated with type of alcohol intake; five genes were associated with total alcohol, six were associated with beer intake, six were associated with wine intake, and four were associated with liquor consumption. Recent use of aspirin and/or ibuprofen was associated with differential expression of TMC06, ST8SIA4, and STEAP3 while a summary oxidative balance score (OBS was associated with SYCP3, HDX, and NRG4 (all up-regulated with greater oxidative balance. Of the dietary antioxidants and carotenoids evaluated only intake of beta carotene (1 gene, Lutein/Zeaxanthine (5 genes, and Vitamin E (4 genes were associated with differential gene expression. There were similarities in biological function of de-regulated genes associated with various dietary and lifestyle factors. Our data support the hypothesis that diet and lifestyle factors associated with oxidative stress can alter gene expression. However genes altered were unique to type of alcohol and type of antioxidant. Because of potential differences in associations observed between platforms these findings need replication in other populations.

  5. Regulation of Gene Expression during the Onset of Ligninolytic Oxidation by Phanerochaete chrysosporium on Spruce Wood

    Science.gov (United States)

    Premsagar Korripally; Christopher G. Hunt; Carl J. Houtman; Don C. Jones; Peter J. Kitin; Dan Cullen; Kenneth E. Hammel; A. A. Brakhage

    2015-01-01

    Since uncertainty remains about how white rot fungi oxidize and degrade lignin in wood, it would be useful to monitor changes in fungal gene expression during the onset of ligninolysis on a natural substrate. We grew Phanerochaete chrysosporium on solid spruce wood and included oxidant-sensing beads bearing the fluorometric dye BODIPY 581/591 in...

  6. Lipid Oxidation in Carriers of Lecithin: Cholesterol Acyltransferase Gene Mutations

    NARCIS (Netherlands)

    Holleboom, Adriaan G.; Daniil, Georgios; Fu, Xiaoming; Zhang, Renliang; Hovingh, G. Kees; Schimmel, Alinda W.; Kastelein, John J. P.; Stroes, Erik S. G.; Witztum, Joseph L.; Hutten, Barbara A.; Tsimikas, Sotirios; Hazen, Stanley L.; Chroni, Angeliki; Kuivenhoven, Jan Albert

    2012-01-01

    Objective-Lecithin:cholesterol acyltransferase (LCAT) has been shown to play a role in the depletion of lipid oxidation products, but this has so far not been studied in humans. In this study, we investigated processes and parameters relevant to lipid oxidation in carriers of functional LCAT

  7. Lipid Oxidation in Carriers of Lecithin : Cholesterol Acyltransferase Gene Mutations

    NARCIS (Netherlands)

    Holleboom, Adriaan G.; Daniil, Georgios; Fu, Xiaoming; Zhang, Renliang; Hovingh, G. Kees; Schimmel, Alinda W.; Kastelein, John J. P.; Stroes, Erik S. G.; Witztum, Joseph L.; Hutten, Barbara A.; Tsimikas, Sotirios; Hazen, Stanley L.; Chroni, Angeliki; Kuivenhoven, Jan Albert

    2012-01-01

    OBJECTIVE: Lecithin:cholesterol acyltransferase (LCAT) has been shown to play a role in the depletion of lipid oxidation products, but this has so far not been studied in humans. In this study, we investigated processes and parameters relevant to lipid oxidation in carriers of functional LCAT

  8. Identification and Heterologous Expression of Genes Involved in Anaerobic Dissimilatory Phosphite Oxidation by Desulfotignum phosphitoxidans▿

    Science.gov (United States)

    Simeonova, Diliana Dancheva; Wilson, Marlena Marie; Metcalf, William W.; Schink, Bernhard

    2010-01-01

    Desulfotignum phosphitoxidans is a strictly anaerobic, Gram-negative bacterium that utilizes phosphite as the sole electron source for homoacetogenic CO2 reduction or sulfate reduction. A genomic library of D. phosphitoxidans, constructed using the fosmid vector pJK050, was screened for clones harboring the genes involved in phosphite oxidation via PCR using primers developed based on the amino acid sequences of phosphite-induced proteins. Sequence analysis of two positive clones revealed a putative operon of seven genes predicted to be involved in phosphite oxidation. Four of these genes (ptxD-ptdFCG) were cloned and heterologously expressed in Desulfotignum balticum, a related strain that cannot use phosphite as either an electron donor or as a phosphorus source. The ptxD-ptdFCG gene cluster was sufficient to confer phosphite uptake and oxidation ability to the D. balticum host strain but did not allow use of phosphite as an electron donor for chemolithotrophic growth. Phosphite oxidation activity was measured in cell extracts of D. balticum transconjugants, suggesting that all genes required for phosphite oxidation were cloned. Genes of the phosphite gene cluster were assigned putative functions on the basis of sequence analysis and enzyme assays. PMID:20622064

  9. Identification and heterologous expression of genes involved in anaerobic dissimilatory phosphite oxidation by Desulfotignum phosphitoxidans.

    Science.gov (United States)

    Simeonova, Diliana Dancheva; Wilson, Marlena Marie; Metcalf, William W; Schink, Bernhard

    2010-10-01

    Desulfotignum phosphitoxidans is a strictly anaerobic, Gram-negative bacterium that utilizes phosphite as the sole electron source for homoacetogenic CO2 reduction or sulfate reduction. A genomic library of D. phosphitoxidans, constructed using the fosmid vector pJK050, was screened for clones harboring the genes involved in phosphite oxidation via PCR using primers developed based on the amino acid sequences of phosphite-induced proteins. Sequence analysis of two positive clones revealed a putative operon of seven genes predicted to be involved in phosphite oxidation. Four of these genes (ptxD-ptdFCG) were cloned and heterologously expressed in Desulfotignum balticum, a related strain that cannot use phosphite as either an electron donor or as a phosphorus source. The ptxD-ptdFCG gene cluster was sufficient to confer phosphite uptake and oxidation ability to the D. balticum host strain but did not allow use of phosphite as an electron donor for chemolithotrophic growth. Phosphite oxidation activity was measured in cell extracts of D. balticum transconjugants, suggesting that all genes required for phosphite oxidation were cloned. Genes of the phosphite gene cluster were assigned putative functions on the basis of sequence analysis and enzyme assays.

  10. CuZnSOD gene expression and its relationship with anti-oxidative ...

    African Journals Online (AJOL)

    ... and the minimum in the LY. The proportion of gene expression was positively correlated with the anti-oxidative capacity in muscle. The expression of the CuZnSOD gene was positively correlated with meat colour and tenderness; and negatively correlated with marbling score, drip loss, cooking loss and intramuscular fat.

  11. Design and Fabrication of N-Alkyl-Polyethylenimine-Stabilized Iron Oxide Nanoclusters for Gene Delivery

    OpenAIRE

    Liu, Gang; Wang, Zhiyong; Lee, Seulki; Ai, Hua; Chen, Xiaoyuan

    2012-01-01

    With the rapid development of nanotechnology, inorganic magnetic nanoparticles, especially iron oxide nanoparticles (IOs), have emerged as great vehicles for biomedical diagnostic and therapeutic applications. In order to rationally design IO-based gene delivery nanovectors, surface modification is essential and determines the loading and release of the gene of interest. Here we highlight the basic concepts and applications of nonviral gene delivery vehicles based on low molecular weight N-al...

  12. Alkane oxidation by Pseudomonas oleovorans : genes and proteins

    NARCIS (Netherlands)

    van Beilen, Jan Berthold

    1994-01-01

    This thesis deals with the molecular genetics and biochemistry of oxidation of medium chainlength alkanes by P. oleovorans, as part of a program to develop biotechnological processes, based on oxygenases.

  13. What Are Cancer Disparities?

    Science.gov (United States)

    This infographic shows the factors associated with cancer disparities, examples of how the cancer burden differs across certain population groups, and NCI actions to understand and reduce cancer disparities.

  14. Mapping Medicare Disparities Tool

    Data.gov (United States)

    U.S. Department of Health & Human Services — The CMS Office of Minority Health has designed an interactive map, the Mapping Medicare Disparities Tool, to identify areas of disparities between subgroups of...

  15. Halobenzoquinone-Induced Alteration of Gene Expression Associated with Oxidative Stress Signaling Pathways.

    Science.gov (United States)

    Li, Jinhua; Moe, Birget; Liu, Yanming; Li, Xing-Fang

    2018-06-05

    Halobenzoquinones (HBQs) are emerging disinfection byproducts (DBPs) that effectively induce reactive oxygen species and oxidative damage in vitro. However, the impacts of HBQs on oxidative-stress-related gene expression have not been investigated. In this study, we examined alterations in the expression of 44 genes related to oxidative-stress-induced signaling pathways in human uroepithelial cells (SV-HUC-1) upon exposure to six HBQs. The results show the structure-dependent effects of HBQs on the studied gene expression. After 2 h of exposure, the expression levels of 9 to 28 genes were altered, while after 8 h of exposure, the expression levels of 29 to 31 genes were altered. Four genes ( HMOX1, NQO1, PTGS2, and TXNRD1) were significantly upregulated by all six HBQs at both exposure time points. Ingenuity pathway analysis revealed that the Nrf2 pathway was significantly responsive to HBQ exposure. Other canonical pathways responsive to HBQ exposure included GSH redox reductions, superoxide radical degradation, and xenobiotic metabolism signaling. This study has demonstrated that HBQs significantly alter the gene expression of oxidative-stress-related signaling pathways and contributes to the understanding of HBQ-DBP-associated toxicity.

  16. Thymosin beta 4 protects cardiomyocytes from oxidative stress by targeting anti-oxidative enzymes and anti-apoptotic genes.

    Directory of Open Access Journals (Sweden)

    Chuanyu Wei

    Full Text Available Thymosin beta-4 (Tβ4 is a ubiquitous protein with many properties relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory mediators. The mechanism by which Tβ4 modulates cardiac protection under oxidative stress is not known. The purpose of this study is to dissect the cardioprotective mechanism of Tβ4 on H(2O(2 induced cardiac damage.Rat neonatal cardiomyocytes with or without Tβ4 pretreatment were exposed to H(2O(2 and expression of antioxidant, apoptotic, and anti-inflammatory genes was evaluated by quantitative real-time PCR and western blotting. ROS levels were estimated by DCF-DA using fluorescent microscopy and fluorimetry. Selected antioxidant, anti-inflammatory and antiapoptotic genes were silenced by siRNA transfections in neonatal cardiomyocytes and effect of Tβ4 on H(2O(2-induced cardiac damage was evaluated.Pre-treatment of Tβ4 resulted in reduction of the intracellular ROS levels induced by H(2O(2 in cardiomyocytes. Tβ4 pretreatment also resulted in an increase in the expression of antiapoptotic proteins and reduction of Bax/BCl(2 ratio in the cardiomyocytes. Pretreatment with Tβ4 resulted in stimulating the expression of antioxidant enzymes copper/zinc SOD and catalase in cardiomyocytes at both transcription and translation levels. Tβ4 treatment resulted in the increased expression of anti-apoptotic and anti-inflammatory genes. Silencing of Cu/Zn SOD and catalase gene resulted in apoptotic cell death in the cardiomyocytes which was prevented by treatment with Tβ4.This is the first report that demonstrates the effect of Tβ4 on cardiomyocytes and its capability to selectively upregulate anti-oxidative enzymes, anti-inflammatory genes, and antiapoptotic enzymes in the neonatal cardiomyocytes thus preventing cell death thereby protecting the myocardium. Tβ4 treatment resulted in decreased oxidative stress and inflammation in the myocardium under oxidative stress.

  17. Fungal Biodegradative Oxidants in Lignocellulose: Fluorescence Mapping and Correlation With Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Hammel, Kenneth E. [Univ. of Wisconsin, Madison, WI (United States); Ralph, John [Univ. of Wisconsin, Madison, WI (United States); Hunt, Christopher G. [U.S. Forest Products Lab., Madison, WI (United States); Houtman, Carl J. [U.S. Forest Products Lab., Madison, WI (United States)

    2016-09-06

    This work focused on new methods for the detection of oxidation in natural substrates during the deconstruction of lignocellulose by microoganisms. Oxidation was the focus because all known biological systems that degrade lignin are oxidative. The detection methods involved the used of (a) micrometer-scale beads carrying a fluorescent dye that is sensitive to oxidation, (b) 13C-labeled synthetic lignins whose breakdown products can be assessed using mass spectrometry and nuclear magnetic resonance spectroscopy, and (c) a fluorometric stain that is highly sensitive to incipient oxidation during microbial attack. The results showed (a) that one white rot fungus, Phanerochaete chrysosporium, produces diffusible oxidants on wood, and that the onset of oxidation is coincident with the marked up-regulation of genes that encode ligninolytic peroxidases and auxiliary oxidative enzymes; (b) that a more selectively ligninolytic white rot fungus, Ceriporiopsis subvermispora, produces a highly diastereoselective oxidative system for attack on lignin; (c) that a brown rot fungus, Serpula lacrymans, uses extracellular hydroquinone metabolites to drive the production of lignocellulose-oxidizing free radicals; (d) that both white rot and brown rot fungi produce highly diffusible mild oxidants that modify lignocellulose at the earliest stage of substrate deconstruction; and (e) that lignin degradation in a tropical soil is not inhibited as much as expected during periods of flooding-induced hypoxia, which indicates that unknown mechanisms for attack on lignin remain to be discovered.

  18. Temperature and Oxidative Stress as Triggers for Virulence Gene Expression in Pathogenic Leptospira spp.

    Directory of Open Access Journals (Sweden)

    Tricia Fraser

    2017-05-01

    Full Text Available Leptospirosis is a zooanthroponosis aetiologically caused by pathogenic bacteria belonging to the genus, Leptospira. Environmental signals such as increases in temperatures or oxidative stress can trigger response regulatory modes of virulence genes during infection. This study sought to determine the effect of temperature and oxidative stress on virulence associated genes in highly passaged Leptospira borgpeterseneii Jules and L. interrogans Portlandvere. Bacteria were grown in EMJH at 30°C, 37°C, or at 30°C before being transferred to 37°C. A total of 14 virulence-associated genes (fliY, invA, lenA, ligB, lipL32, lipL36, lipL41, lipL45, loa22, lsa21, mce, ompL1, sph2, and tlyC were assessed using endpoint PCR. Transcriptional analyses of lenA, lipL32, lipL41, loa22, sph2 were assessed by quantitative real-time RT-PCR at the temperature conditions. To assess oxidative stress, bacteria were exposed to H2O2 for 30 and 60 min with or without the temperature stress. All genes except ligB (for Portlandvere and ligB and mce (for Jules were detectable in the strains. Quantitatively, temperature stress resulted in significant changes in gene expression within species or between species. Temperature changes were more influential in gene expression for Jules, particularly at 30°C and upshift conditions; at 37°C, expression levels were higher for Portlandvere. However, compared to Jules, where temperature was influential in two of five genes, temperature was an essential element in four of five genes in Portlandvere exposed to oxidative stress. At both low and high oxidative stress levels, the interplay between genetic predisposition (larger genome size and temperature was biased towards Portlandvere particularly at 30°C and upshift conditions. While it is clear that expression of many virulence genes in highly passaged strains of Leptospira are attenuated or lost, genetic predisposition, changes in growth temperature and/or oxidative intensity and

  19. Regulation of dsr genes encoding proteins responsible for the oxidation of stored sulfur in Allochromatium vinosum.

    Science.gov (United States)

    Grimm, Frauke; Dobler, Nadine; Dahl, Christiane

    2010-03-01

    Sulfur globules are formed as obligatory intermediates during the oxidation of reduced sulfur compounds in many environmentally important photo- and chemolithoautotrophic bacteria. It is well established that the so-called Dsr proteins are essential for the oxidation of zero-valent sulfur accumulated in the globules; however, hardly anything is known about the regulation of dsr gene expression. Here, we present a closer look at the regulation of the dsr genes in the phototrophic sulfur bacterium Allochromatium vinosum. The dsr genes are expressed in a reduced sulfur compound-dependent manner and neither sulfite, the product of the reverse-acting dissimilatory sulfite reductase DsrAB, nor the alternative electron donor malate inhibit the gene expression. Moreover, we show the oxidation of sulfur to sulfite to be the rate-limiting step in the oxidation of sulfur to sulfate as sulfate production starts concomitantly with the upregulation of the expression of the dsr genes. Real-time RT-PCR experiments suggest that the genes dsrC and dsrS are additionally expressed from secondary internal promoters, pointing to a special function of the encoded proteins. Earlier structural analyses indicated the presence of a helix-turn-helix (HTH)-like motif in DsrC. We therefore assessed the DNA-binding capability of the protein and provide evidence for a possible regulatory function of DsrC.

  20. Race/Ethnic Based Genetic Variations in Human Genes: Defining the Genetic Evidence for Disparity of Prostate Cancer Risk and Mortality Between Different Populations

    National Research Council Canada - National Science Library

    Franklin, John

    1999-01-01

    .... The study will evaluate variations in androgen receptor gene, the vitamin D receptor gene, and the APOJ/clusterin gene by amplifying specific DNA segments from certain genes utilizing a commonly used...

  1. Gene expression related to oxidative stress in the heart of mice after intestinal ischemia

    International Nuclear Information System (INIS)

    Somaio Neto, Frederico; Ikejiri, Adauto Tsutomu; Bertoletto, Paulo Roberto; Chaves, José Carlos Bertoletto; Teruya, Roberto; Fagundes, Djalma José; Taha, Murched Omar

    2014-01-01

    Intestinal ischemia-reperfusion is a frequent clinical event associated to injury in distant organs, especially the heart. To investigate the gene expression of oxidative stress and antioxidant defense in the heart of inbred mice subjected to intestinal ischemia and reperfusion (IR). Twelve mice (C57BL / 6) were assigned to: IR Group (GIR) with 60 minutes of superior mesenteric artery occlusion followed by 60 minutes of reperfusion; Control Group (CG) which underwent anesthesia and laparotomy without IR procedure and was observed for 120 minutes. Intestine and heart samples were processed using the RT-qPCR / Reverse transcriptase-quantitative Polymerase Chain Reaction method for the gene expression of 84 genes related to oxidative stress and oxidative defense (Student's 't' test, p < 0.05). The intestinal tissue (GIR) was noted to have an up-regulation of 65 genes (74.71%) in comparison to normal tissue (CG), and 37 genes (44.04%) were hyper-expressed (greater than three times the threshold allowed by the algorithm). Regarding the remote effects of intestinal I/R in cardiac tissue an up-regulation of 28 genes (33.33%) was seen, but only eight genes (9.52%) were hyper-expressed three times above threshold. Four (7.14%) of these eight genes were expressed in both intestinal and cardiac tissues. Cardiomyocytes with smaller and pyknotic nuclei, rich in heterochromatin with rare nucleoli, indicating cardiac distress, were observed in the GIR. Intestinal I/R caused a statistically significant over expression of 8 genes associated with oxidative stress in remote myocardial tissue

  2. Gene expression related to oxidative stress in the heart of mice after intestinal ischemia

    Science.gov (United States)

    Somaio Neto, Frederico; Ikejiri, Adauto Tsutomu; Bertoletto, Paulo Roberto; Chaves, José Carlos Bertoletto; Teruya, Roberto; Fagundes, Djalma José; Taha, Murched Omar

    2014-01-01

    Background Intestinal ischemia-reperfusion is a frequent clinical event associated to injury in distant organs, especially the heart. Objective To investigate the gene expression of oxidative stress and antioxidant defense in the heart of inbred mice subjected to intestinal ischemia and reperfusion (IR). Methods Twelve mice (C57BL / 6) were assigned to: IR Group (GIR) with 60 minutes of superior mesenteric artery occlusion followed by 60 minutes of reperfusion; Control Group (CG) which underwent anesthesia and laparotomy without IR procedure and was observed for 120 minutes. Intestine and heart samples were processed using the RT-qPCR / Reverse transcriptase-quantitative Polymerase Chain Reaction method for the gene expression of 84 genes related to oxidative stress and oxidative defense (Student's "t" test, p < 0.05). Results The intestinal tissue (GIR) was noted to have an up-regulation of 65 genes (74.71%) in comparison to normal tissue (CG), and 37 genes (44.04%) were hyper-expressed (greater than three times the threshold allowed by the algorithm). Regarding the remote effects of intestinal I/R in cardiac tissue an up-regulation of 28 genes (33.33%) was seen, but only eight genes (9.52%) were hyper-expressed three times above threshold. Four (7.14%) of these eight genes were expressed in both intestinal and cardiac tissues. Cardiomyocytes with smaller and pyknotic nuclei, rich in heterochromatin with rare nucleoli, indicating cardiac distress, were observed in the GIR. Conclusion Intestinal I/R caused a statistically significant over expression of 8 genes associated with oxidative stress in remote myocardial tissue. PMID:24346830

  3. Gene expression related to oxidative stress in the heart of mice after intestinal ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Somaio Neto, Frederico; Ikejiri, Adauto Tsutomu; Bertoletto, Paulo Roberto; Chaves, José Carlos Bertoletto [Universidade Federal da Grande Dourados - UFGD, Dourados, MS (Brazil); Teruya, Roberto [Universidade Federal do Mato Grosso do Sul - UFMS, Campo Grande, MS (Brazil); Fagundes, Djalma José, E-mail: fsomaio@cardiol.br; Taha, Murched Omar [Universidade Federal de São Paulo - UNIFESP, São Paulo, SP (Brazil)

    2014-02-15

    Intestinal ischemia-reperfusion is a frequent clinical event associated to injury in distant organs, especially the heart. To investigate the gene expression of oxidative stress and antioxidant defense in the heart of inbred mice subjected to intestinal ischemia and reperfusion (IR). Twelve mice (C57BL / 6) were assigned to: IR Group (GIR) with 60 minutes of superior mesenteric artery occlusion followed by 60 minutes of reperfusion; Control Group (CG) which underwent anesthesia and laparotomy without IR procedure and was observed for 120 minutes. Intestine and heart samples were processed using the RT-qPCR / Reverse transcriptase-quantitative Polymerase Chain Reaction method for the gene expression of 84 genes related to oxidative stress and oxidative defense (Student's 't' test, p < 0.05). The intestinal tissue (GIR) was noted to have an up-regulation of 65 genes (74.71%) in comparison to normal tissue (CG), and 37 genes (44.04%) were hyper-expressed (greater than three times the threshold allowed by the algorithm). Regarding the remote effects of intestinal I/R in cardiac tissue an up-regulation of 28 genes (33.33%) was seen, but only eight genes (9.52%) were hyper-expressed three times above threshold. Four (7.14%) of these eight genes were expressed in both intestinal and cardiac tissues. Cardiomyocytes with smaller and pyknotic nuclei, rich in heterochromatin with rare nucleoli, indicating cardiac distress, were observed in the GIR. Intestinal I/R caused a statistically significant over expression of 8 genes associated with oxidative stress in remote myocardial tissue.

  4. Role of Endothelial Nitric Oxide Synthase Gene Polymorphisms ...

    African Journals Online (AJOL)

    maintenance of pregnancy, but it is rather controversial whether polymorphisms of the gene encoding for eNOS are associated ... specific human leukocyte antigen alleles that seem to be ... prevents the contractions of the uterine myometrium directly or by an ... an anatomical factor, to avoid this possible bias all candidates.

  5. Endothelial nitric oxide synthase gene Glu298Asp polymorphism ...

    African Journals Online (AJOL)

    Administrator

    2011-09-12

    Sep 12, 2011 ... Figure 1. The Glu298Asp polymorphism of eNOS gene was shown by .... mechanisms by which eNOS Asp298 polymorphism ... Asp298 is exposed to selective proteolytic cleavage in ... grounds, inclusion and exclusion criteria for PE women ... attention to meta analysis study, it is more probable that.

  6. Copper oxide nanoparticles induce the transcriptional modulation of oxidative stress-related genes in Arbacia lixula embryos.

    Science.gov (United States)

    Giannetto, Alessia; Cappello, Tiziana; Oliva, Sabrina; Parrino, Vincenzo; De Marco, Giuseppe; Fasulo, Salvatore; Mauceri, Angela; Maisano, Maria

    2018-06-14

    Copper oxide nanoparticles (CuO NPs) are widely used in various industrial applications, i.e. semiconductor devices, batteries, solar energy converter, gas sensor, microelectronics, heat transfer fluids, and have been recently recognized as emerging pollutants of increasing concern for human and marine environmental health. Therefore, the toxicity of CuO NPs needs to be thoroughly understood. In this study, we evaluated the potential role of oxidative stress in CuO NP toxicity by exploring the molecular response of Arbacia lixula embryos to three CuO NP concentrations (0.7, 10, 20 ppb) by investigating the transcriptional patterns of oxidative stress-related genes (catalase and superoxide dismutase) and metallothionein, here cloned and characterized for the first time. Time- and concentration-dependent changes in gene expression were detected in A. lixula embryos exposed to CuO NPs, up to pluteus stage (72 h post-fertilization, hpf), indicating that oxidative stress is one of the toxicity mechanisms for CuO NPs. These findings provide new insights into the comprehension of the molecular mechanisms underlying copper nanoparticle toxicity in A. lixula sea urchin and give new tools for monitoring of aquatic areas, thus corroborating the suitability of this embryotoxicity assay for future evaluation of impacted sites. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Halliday, Gary M. [Dermatology Research Laboratories, Division of Medicine, Melanoma and Skin Cancer Research Institute, Royal Prince Alfred Hospital at the University of Sydney, Sydney, NSW (Australia)]. E-mail: garyh@med.usyd.edu.au

    2005-04-01

    Ultraviolet (UV) radiation causes inflammation, gene mutation and immunosuppression in the skin. These biological changes are responsible for photocarcinogenesis. UV radiation in sunlight is divided into two wavebands, UVB and UVA, both of which contribute to these biological changes, and therefore probably to skin cancer in humans and animal models. Oxidative damage caused by UV contributes to inflammation, gene mutation and immunosuppression. This article reviews evidence for the hypothesis that UV oxidative damage to these processes contributes to photocarcinogenesis. UVA makes a larger impact on oxidative stress in the skin than UVB by inducing reactive oxygen and nitrogen species which damage DNA, protein and lipids and which also lead to NAD+ depletion, and therefore energy loss from the cell. Lipid peroxidation induces prostaglandin production that in association with UV-induced nitric oxide production causes inflammation. Inflammation drives benign human solar keratosis (SK) to undergo malignant conversion into squamous cell carcinoma (SCC) probably because the inflammatory cells produce reactive oxygen species, thus increasing oxidative damage to DNA and the immune system. Reactive oxygen or nitrogen appears to cause the increase in mutational burden as SK progress into SCC in humans. UVA is particularly important in causing immunosuppression in both humans and mice, and UV lipid peroxidation induced prostaglandin production and UV activation of nitric oxide synthase is important mediators of this event. Other immunosuppressive events are likely to be initiated by UV oxidative stress. Antioxidants have also been shown to reduce photocarcinogenesis. While most of this evidence comes from studies in mice, there is supporting evidence in humans that UV-induced oxidative damage contributes to inflammation, gene mutation and immunosuppression. Available evidence implicates oxidative damage as an important contributor to sunlight-induced carcinogenesis in humans.

  8. Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis

    International Nuclear Information System (INIS)

    Halliday, Gary M.

    2005-01-01

    Ultraviolet (UV) radiation causes inflammation, gene mutation and immunosuppression in the skin. These biological changes are responsible for photocarcinogenesis. UV radiation in sunlight is divided into two wavebands, UVB and UVA, both of which contribute to these biological changes, and therefore probably to skin cancer in humans and animal models. Oxidative damage caused by UV contributes to inflammation, gene mutation and immunosuppression. This article reviews evidence for the hypothesis that UV oxidative damage to these processes contributes to photocarcinogenesis. UVA makes a larger impact on oxidative stress in the skin than UVB by inducing reactive oxygen and nitrogen species which damage DNA, protein and lipids and which also lead to NAD+ depletion, and therefore energy loss from the cell. Lipid peroxidation induces prostaglandin production that in association with UV-induced nitric oxide production causes inflammation. Inflammation drives benign human solar keratosis (SK) to undergo malignant conversion into squamous cell carcinoma (SCC) probably because the inflammatory cells produce reactive oxygen species, thus increasing oxidative damage to DNA and the immune system. Reactive oxygen or nitrogen appears to cause the increase in mutational burden as SK progress into SCC in humans. UVA is particularly important in causing immunosuppression in both humans and mice, and UV lipid peroxidation induced prostaglandin production and UV activation of nitric oxide synthase is important mediators of this event. Other immunosuppressive events are likely to be initiated by UV oxidative stress. Antioxidants have also been shown to reduce photocarcinogenesis. While most of this evidence comes from studies in mice, there is supporting evidence in humans that UV-induced oxidative damage contributes to inflammation, gene mutation and immunosuppression. Available evidence implicates oxidative damage as an important contributor to sunlight-induced carcinogenesis in humans

  9. Oxidative stress gene expression profile in inbred mouse after ischemia/reperfusion small bowel injury.

    Science.gov (United States)

    Bertoletto, Paulo Roberto; Ikejiri, Adauto Tsutomu; Somaio Neto, Frederico; Chaves, José Carlos; Teruya, Roberto; Bertoletto, Eduardo Rodrigues; Taha, Murched Omar; Fagundes, Djalma José

    2012-11-01

    To determine the profile of gene expressions associated with oxidative stress and thereby contribute to establish parameters about the role of enzyme clusters related to the ischemia/reperfusion intestinal injury. Twelve male inbred mice (C57BL/6) were randomly assigned: Control Group (CG) submitted to anesthesia, laparotomy and observed by 120 min; Ischemia/reperfusion Group (IRG) submitted to anesthesia, laparotomy, 60 min of small bowel ischemia and 60 min of reperfusion. A pool of six samples was submitted to the qPCR-RT protocol (six clusters) for mouse oxidative stress and antioxidant defense pathways. On the 84 genes investigated, 64 (76.2%) had statistic significant expression and 20 (23.8%) showed no statistical difference to the control group. From these 64 significantly expressed genes, 60 (93.7%) were up-regulated and 04 (6.3%) were down-regulated. From the group with no statistical significantly expression, 12 genes were up-regulated and 8 genes were down-regulated. Surprisingly, 37 (44.04%) showed a higher than threefold up-regulation and then arbitrarily the values was considered as a very significant. Thus, 37 genes (44.04%) were expressed very significantly up-regulated. The remained 47 (55.9%) genes were up-regulated less than three folds (35 genes - 41.6%) or down-regulated less than three folds (12 genes - 14.3%). The intestinal ischemia and reperfusion promote a global hyper-expression profile of six different clusters genes related to antioxidant defense and oxidative stress.

  10. Schizophrenia and oxidative stress: glutamate cysteine ligase modifier as a susceptibility gene

    DEFF Research Database (Denmark)

    Tosic, Mirjana; Ott, Jurg; Barral, Sandra

    2006-01-01

    Oxidative stress could be involved in the pathophysiology of schizophrenia, a major psychiatric disorder. Glutathione (GSH), a redox regulator, is decreased in patients' cerebrospinal fluid and prefrontal cortex. The gene of the key GSH-synthesizing enzyme, glutamate cysteine ligase modifier (GCLM......) subunit, is strongly associated with schizophrenia in two case-control studies and in one family study. GCLM gene expression is decreased in patients' fibroblasts. Thus, GSH metabolism dysfunction is proposed as one of the vulnerability factors for schizophrenia....

  11. Schizophrenia and oxidative stress: glutamate cysteine ligase modifier as a susceptibility gene

    DEFF Research Database (Denmark)

    Tosic, Mirjana; Ott, Jurg; Barral, Sandra

    2006-01-01

    Oxidative stress could be involved in the pathophysiology of schizophrenia, a major psychiatric disorder. Glutathione (GSH), a redox regulator, is decreased in patients' cerebrospinal fluid and prefrontal cortex. The gene of the key GSH-synthesizing enzyme, glutamate cysteine ligase modifier (GCL......) subunit, is strongly associated with schizophrenia in two case-control studies and in one family study. GCLM gene expression is decreased in patients' fibroblasts. Thus, GSH metabolism dysfunction is proposed as one of the vulnerability factors for schizophrenia....

  12. Increased fat oxidation and regulation of metabolic genes with ultraendurance exercise

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Rehrer, N J; Pilegaard, H

    2007-01-01

    AIM: Regular endurance exercise stimulates muscle metabolic capacity, but effects of very prolonged endurance exercise are largely unknown. This study examined muscle substrate availability and utilization during prolonged endurance exercise, and associated metabolic genes. METHODS: Data were...... exercise markedly increases plasma fatty acid availability and fat utilization during exercise. Exercise-induced regulation of genes encoding proteins involved in fatty acid recruitment and oxidation may contribute to these changes....

  13. TET-mediated oxidation of methylcytosine causes TDG or NEIL glycosylase dependent gene reactivation.

    Science.gov (United States)

    Müller, Udo; Bauer, Christina; Siegl, Michael; Rottach, Andrea; Leonhardt, Heinrich

    2014-07-01

    The discovery of hydroxymethyl-, formyl- and carboxylcytosine, generated through oxidation of methylcytosine by TET dioxygenases, raised the question how these modifications contribute to epigenetic regulation. As they are subjected to complex regulation in vivo, we dissected links to gene expression with in vitro modified reporter constructs. We used an Oct4 promoter-driven reporter gene and demonstrated that in vitro methylation causes gene silencing while subsequent oxidation with purified catalytic domain of TET1 leads to gene reactivation. To identify proteins involved in this pathway we screened for TET interacting factors and identified TDG, PARP1, XRCC1 and LIG3 that are involved in base-excision repair. Knockout and rescue experiments demonstrated that gene reactivation depended on the glycosylase TDG, but not MBD4, while NEIL1, 2 and 3 could partially rescue the loss of TDG. These results clearly show that oxidation of methylcytosine by TET dioxygenases and subsequent removal by TDG or NEIL glycosylases and the BER pathway results in reactivation of epigenetically silenced genes. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Differential Splicing of Oncogenes and Tumor Suppressor Genes in African- and Caucasian-American Populations: Contributing Factor in Prostate Cancer Disparities

    Science.gov (United States)

    2016-10-01

    for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data...Olender (PhD graduate student) 5d. PROJECT NUMBER 5e. TASK NUMBER E-Mail: nhlee@gwu. edu 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION...inhibitory effects of idelalisib. 15. SUBJECT TERMS prostate cancer, cancer health disparities, alternative splicing, African American, European

  15. Enhanced transfection by antioxidative polymeric gene carrier that reduces polyplex-mediated cellular oxidative stress.

    Science.gov (United States)

    Lee, Min Sang; Kim, Nak Won; Lee, Kyuri; Kim, Hongtae; Jeong, Ji Hoon

    2013-06-01

    To test the hypothesis in which polyplex-induced oxidative stress may affect overall transfection efficiency, an antioxidative transfection system minimizing cellular oxidative stress was designed for enhanced transfection. An amphiphilic copolymer (PEI-PLGA) was synthesized and used as a micelle-type gene carrier containing hydrophobic antioxidant, α-tocopherol. Cellular oxidative stress and the change of mitochondrial membrane potential after transfection was measured by using a fluorescent probe (H₂DCFDA) and lipophilic cationic probe (JC-1), respectively. Transfection efficiency was determined by measuring a reporter gene (luciferase) expression level. The initial transfection study with conventional PEI/plasmid DNA polyplex showed significant generation of reactive oxygen species (ROS). The PEI-PLGA copolymer successfully carried out the simultaneous delivery of α-tocopherol and plasmid DNA (PEI-PLGA/Toco/pDNA polyplex) into cells, resulting in a significant reduction in cellular ROS generation after transfection and helped to maintain the mitochondrial membrane potential (ΔΨ). In addition, the transfection efficiency was dramatically increased using the antioxidative transfection system. This work showed that oxidative stress would be one of the important factors that should be considered in designing non-viral gene carriers and suggested a possible way to reduce the carrier-mediated oxidative stress, which consequently leads to enhanced transfection.

  16. Coexpression of bile salt hydrolase gene and catalase gene remarkably improves oxidative stress and bile salt resistance in Lactobacillus casei.

    Science.gov (United States)

    Wang, Guohong; Yin, Sheng; An, Haoran; Chen, Shangwu; Hao, Yanling

    2011-08-01

    Lactic acid bacteria (LAB) encounter various types of stress during industrial processes and gastrointestinal transit. Catalase (CAT) and bile salt hydrolase (BSH) can protect bacteria from oxidative stress or damage caused by bile salts by decomposing hydrogen peroxide (H(2)O(2)) or deconjugating the bile salts, respectively. Lactobacillus casei is a valuable probiotic strain and is often deficient in both CAT and BSH. In order to improve the resistance of L. casei to both oxidative and bile salts stress, the catalase gene katA from L. sakei and the bile salt hydrolase gene bsh1 from L. plantarum were coexpressed in L. casei HX01. The enzyme activities of CAT and BSH were 2.41 μmol H(2)O(2)/min/10(8) colony-forming units (CFU) and 2.11 μmol glycine/min/ml in the recombinant L. casei CB, respectively. After incubation with 8 mM H(2)O(2), survival ratio of L. casei CB was 40-fold higher than that of L. casei CK. Treatment of L. casei CB with various concentrations of sodium glycodeoxycholate (GDCA) showed that ~10(5) CFU/ml cells survived after incubation with 0.5% GDCA, whereas almost all the L. casei CK cells were killed when treaded with 0.4% GDCA. These results indicate that the coexpression of CAT and BSH confers high-level resistance to both oxidative and bile salts stress conditions in L. casei HX01.

  17. Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingying; Zhuang, Yao; Geng, Jinju, E-mail: jjgeng@nju.edu.cn; Ren, Hongqiang; Xu, Ke; Ding, Lili

    2016-04-15

    This study investigated the reduction of antibiotic resistance genes (ARGs), intI1 and 16S rRNA genes, by advanced oxidation processes (AOPs), namely Fenton oxidation (Fe{sup 2+}/H{sub 2}O{sub 2}) and UV/H{sub 2}O{sub 2} process. The ARGs include sul1, tetX, and tetG from municipal wastewater effluent. The results indicated that the Fenton oxidation and UV/H{sub 2}O{sub 2} process could reduce selected ARGs effectively. Oxidation by the Fenton process was slightly better than that of the UV/H{sub 2}O{sub 2} method. Particularly, for the Fenton oxidation, under the optimal condition wherein Fe{sup 2+}/H{sub 2}O{sub 2} had a molar ratio of 0.1 and a H{sub 2}O{sub 2} concentration of 0.01 mol L{sup −1} with a pH of 3.0 and reaction time of 2 h, 2.58–3.79 logs of target genes were removed. Under the initial effluent pH condition (pH = 7.0), the removal was 2.26–3.35 logs. For the UV/H{sub 2}O{sub 2} process, when the pH was 3.5 with a H{sub 2}O{sub 2} concentration of 0.01 mol L{sup −1} accompanied by 30 min of UV irradiation, all ARGs could achieve a reduction of 2.8–3.5 logs, and 1.55–2.32 logs at a pH of 7.0. The Fenton oxidation and UV/H{sub 2}O{sub 2} process followed the first-order reaction kinetic model. The removal of target genes was affected by many parameters, including initial Fe{sup 2+}/H{sub 2}O{sub 2} molar ratios, H{sub 2}O{sub 2} concentration, solution pH, and reaction time. Among these factors, reagent concentrations and pH values are the most important factors during AOPs. - Highlights: • AOPs including Fenton oxidation and UV/H{sub 2}O{sub 2} process could reduce ARGs effectively. • Fenton oxidation is slightly more effective than UV/H{sub 2}O{sub 2} process in ARG reduction. • Removal of ARGs by AOPs follows the first-order reaction kinetic model. • Selected ARGs and 16S rRNA genes exhibit similar change trends during AOPs.

  18. Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes

    International Nuclear Information System (INIS)

    Zhang, Yingying; Zhuang, Yao; Geng, Jinju; Ren, Hongqiang; Xu, Ke; Ding, Lili

    2016-01-01

    This study investigated the reduction of antibiotic resistance genes (ARGs), intI1 and 16S rRNA genes, by advanced oxidation processes (AOPs), namely Fenton oxidation (Fe"2"+/H_2O_2) and UV/H_2O_2 process. The ARGs include sul1, tetX, and tetG from municipal wastewater effluent. The results indicated that the Fenton oxidation and UV/H_2O_2 process could reduce selected ARGs effectively. Oxidation by the Fenton process was slightly better than that of the UV/H_2O_2 method. Particularly, for the Fenton oxidation, under the optimal condition wherein Fe"2"+/H_2O_2 had a molar ratio of 0.1 and a H_2O_2 concentration of 0.01 mol L"−"1 with a pH of 3.0 and reaction time of 2 h, 2.58–3.79 logs of target genes were removed. Under the initial effluent pH condition (pH = 7.0), the removal was 2.26–3.35 logs. For the UV/H_2O_2 process, when the pH was 3.5 with a H_2O_2 concentration of 0.01 mol L"−"1 accompanied by 30 min of UV irradiation, all ARGs could achieve a reduction of 2.8–3.5 logs, and 1.55–2.32 logs at a pH of 7.0. The Fenton oxidation and UV/H_2O_2 process followed the first-order reaction kinetic model. The removal of target genes was affected by many parameters, including initial Fe"2"+/H_2O_2 molar ratios, H_2O_2 concentration, solution pH, and reaction time. Among these factors, reagent concentrations and pH values are the most important factors during AOPs. - Highlights: • AOPs including Fenton oxidation and UV/H_2O_2 process could reduce ARGs effectively. • Fenton oxidation is slightly more effective than UV/H_2O_2 process in ARG reduction. • Removal of ARGs by AOPs follows the first-order reaction kinetic model. • Selected ARGs and 16S rRNA genes exhibit similar change trends during AOPs.

  19. Cancer Disparities - Cancer Currents Blog

    Science.gov (United States)

    Blog posts on cancer health disparities research—including factors that influence disparities, disparities-related research efforts, and diversity in the cancer research workforce—from NCI Cancer Currents.

  20. Effects of Nebivolol on Endothelial Gene Expression during Oxidative Stress in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Ulisse Garbin

    2008-01-01

    Full Text Available The endothelium plays a key role in the development of atherogenesis and its inflammatory and proliferative status influences the progression of atherosclerosis. The aim of this study is to compare the effects of two beta blockers such as nebivolol and atenolol on gene expression in human umbilical vein endothelial cells (HUVECs following an oxidant stimulus. HUVECs were incubated with nebivolol or atenolol (10 micromol/L for 24 hours and oxidative stress was induced by the addition of oxidized (ox-LDL. Ox-LDL upregulated adhesion molecules (ICAM-1, ICAM-2, ICAM-3, E-selectin, and P-selectin; proteins linked to inflammation (IL-6 and TNFalpha, thrombotic state (tissue factor, PAI-1 and uPA, hypertension such as endothelin-1 (ET-1, and vascular remodeling such as metalloproteinases (MMP-2, MMP-9 and protease inhibitor (TIMP-1. The exposure of HUVECs to nebivolol, but not to atenolol, reduced these genes upregulated by oxidative stress both in terms of protein and RNA expression. The known antioxidant properties of the third generation beta blocker nebivolol seem to account to the observed differences seen when compared to atenolol and support the specific potential protective role of this beta blocker on the expression of a number of genes involved in the initiation and progression of atherosclerosis.

  1. Interactions among genes, tumor biology and the environment in cancer health disparities: examining the evidence on a national and global scale.

    Science.gov (United States)

    Wallace, Tiffany A; Martin, Damali N; Ambs, Stefan

    2011-08-01

    Cancer incidence and mortality rates show great variations across nations and between population groups. These variations are largely explained by differences in age distribution, diet and lifestyle, access to health care, cultural barriers and exposure to carcinogens and pathogens. Cancers caused by infections are significantly more common in developing than developed countries, and they overproportionally affect immigrant populations in the USA and other countries. The global pattern of cancer is not stagnant. Instead, it is dynamic because of fluctuations in the age distribution of populations, improvements in cancer prevention and early detection in affluent countries and rapid changes in diet and lifestyle in parts of the world. For example, increased smoking rates have caused tobacco-induced cancers to rise in various Asian countries, whereas reduced smoking rates have caused these cancers to plateau or even begin to decline in Western Europe and North America. Some population groups experience a disproportionally high cancer burden. In the USA and the Caribbean, cancer incidence and mortality rates are excessively high in populations of African ancestry when compared with other population groups. The causes of this disparity are multifaceted and may include tumor biological and genetic factors and their interaction with the environment. In this review, we will discuss the magnitude and causes of global cancer health disparities and will, with a focus on African-Americans and selected cancer sites, evaluate the evidence that genetic and tumor biological factors contribute to existing cancer incidence and outcome differences among population groups in the USA.

  2. Identification and molecular characterization of nitric oxide synthase (NOS) gene in the intertidal copepod Tigriopus japonicus.

    Science.gov (United States)

    Jeong, Chang-Bum; Kang, Hye-Min; Seo, Jung Soo; Park, Heum Gi; Rhee, Jae-Sung; Lee, Jae-Seong

    2016-02-10

    In copepods, no information has been reported on the structure or molecular characterization of the nitric oxide synthase (NOS) gene. In the intertidal copepod Tigriopus japonicus, we identified a NOS gene that is involved in immune responses of vertebrates and invertebrates. In silico analyses revealed that nitric oxide (NO) synthase domains, such as the oxygenase and reductase domains, are highly conserved in the T. japonicus NOS gene. The T. japonicus NOS gene was highly transcribed in the nauplii stages, implying that it plays a role in protecting the host during the early developmental stages. To examine the involvement of the T. japonicus NOS gene in the innate immune response, the copepods were exposed to lipopolysaccharide (LPS) and two Vibrio sp. After exposure to different concentrations of LPS and Vibrio sp., T. japonicus NOS transcription was significantly increased over time in a dose-dependent manner, and the NO/nitrite concentration increased as well. Taken together, our findings suggest that T. japonicus NOS transcription is induced in response to an immune challenge as part of the conserved innate immunity. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Community Composition of Nitrous Oxide-Related Genes in Salt Marsh Sediments Exposed to Nitrogen Enrichment.

    Science.gov (United States)

    Angell, John H; Peng, Xuefeng; Ji, Qixing; Craick, Ian; Jayakumar, Amal; Kearns, Patrick J; Ward, Bess B; Bowen, Jennifer L

    2018-01-01

    Salt marshes provide many key ecosystem services that have tremendous ecological and economic value. One critical service is the removal of fixed nitrogen from coastal waters, which limits the negative effects of eutrophication resulting from increased nutrient supply. Nutrient enrichment of salt marsh sediments results in higher rates of nitrogen cycling and, commonly, a concurrent increase in the flux of nitrous oxide, an important greenhouse gas. Little is known, however, regarding controls on the microbial communities that contribute to nitrous oxide fluxes in marsh sediments. To address this disconnect, we generated profiles of microbial communities and communities of micro-organisms containing specific nitrogen cycling genes that encode several enzymes ( amoA, norB, nosZ) related to nitrous oxide flux from salt marsh sediments. We hypothesized that communities of microbes responsible for nitrogen transformations will be structured by nitrogen availability. Taxa that respond positively to high nitrogen inputs may be responsible for the elevated rates of nitrogen cycling processes measured in fertilized sediments. Our data show that, with the exception of ammonia-oxidizing archaea, the community composition of organisms involved in the production and consumption of nitrous oxide was altered under nutrient enrichment. These results suggest that previously measured rates of nitrous oxide production and consumption are likely the result of changes in community structure, not simply changes in microbial activity.

  4. The detection of HBV DNA with gold-coated iron oxide nanoparticle gene probes

    International Nuclear Information System (INIS)

    Xi Dong; Luo Xiaoping; Lu Qianghua; Yao Kailun; Liu Zuli; Ning Qin

    2008-01-01

    Gold-coated iron oxide nanoparticle Hepatitis B virus (HBV) DNA probes were prepared, and their application for HBV DNA measurement was studied. Gold-coated iron oxide nanoparticles were prepared by the citrate reduction of tetra-chloroauric acid in the presence of iron oxide nanoparticles which were added as seeds. With a fluorescence-based method, the maximal surface coverage of hexaethiol 30-mer oligonucleotides and the maximal percentage of hybridization strands on gold-coated iron oxide nanoparticles were (120 ± 8) oligonucleotides per nanoparticle, and (14 ± 2%), respectively, which were comparable with those of (132 ± 10) and (22 ± 3%) in Au nanoparticle groups. Large network aggregates were formed when gold-coated iron oxide nanoparticle HBV DNA gene probe was applied to detect HBV DNA molecules as evidenced by transmission electron microscopy and the high specificity was verified by blot hybridization. Our results further suggested that detecting DNA with iron oxide nanoparticles and magnetic separator was feasible and might be an alternative effective method

  5. Active ribosomal genes, translational homeostasis and oxidative stress in the pathogenesis of schizophrenia and autism.

    Science.gov (United States)

    Porokhovnik, Lev N; Passekov, Vladimir P; Gorbachevskaya, Nataliya L; Sorokin, Alexander B; Veiko, Nataliya N; Lyapunova, Nataliya A

    2015-04-01

    Infantile autism and schizophrenia are severe multifactorial disorders with a pronounced genetic predisposition. Their pathogeneses are often associated with oxidative stress in the brain. Previously, we established that a cell's resistance to oxidative stress depended on the copy number of transcriptionally active genes for rRNA (ribosomal genes) in the cell's genome. The feature is measured cytogenetically in cultured lymphocytes derived from patients. It varies from 120 up to 190 copies per diploid genome, with an arithmetic mean of 150±4 (SE) copies in a healthy population (n=239), being considerably lower, according to our previous results, in a sample of patients with rheumatoid arthritis (n=49), another multifactorial disease with a proven significant role of oxidative stress in its pathogenesis: from 115 to 165 copies, with a mean of 140±4 (SE). Conversely, a sample of schizophrenic patients (n=42) previously showed a higher value of copy number of active rRNA genes compared with a healthy population: from 145 to 190 copies, with a mean of 170±4. This fact is of special interest in the context of the well-known, but still unexplained phenomenon of the reduced comorbidity rate of schizophrenia and rheumatoid arthritis. The copy number of active ribosomal genes was estimated in a sample of autistic children (n=51). In contrast with the schizophrenic patients studied previously, we found that the values were significantly lower than those in the healthy population: from 125 to 160 copies, with a mean of 142±5. In this work, we suggest a mathematical model of the oxidative stress dynamics on the basis of Lotka-Volterra's approach to predator-prey interactions. In our model, the 'prey' represents reactive oxygen species, whereas the 'predator' simulates molecules of the antioxidant enzymes. The rate of biosynthesis of the latter is limited by the number of ribosomes available, which, in turn, is determined by the copy number of active rRNA genes. Analysis of

  6. Literacy and Health Disparities

    Science.gov (United States)

    Prins, Esther; Mooney, Angela

    2014-01-01

    This chapter explores the relationship between literacy and health disparities, focusing on the concept of health literacy. Recommendations are provided for ways to bridge the health literacy gap for learners in adult basic education and family literacy programs.

  7. Nitric Oxide Modulates Histone Acetylation at Stress Genes by Inhibition of Histone Deacetylases1[OPEN

    Science.gov (United States)

    Mengel, Alexander; Ageeva, Alexandra; Durner, Jörg

    2017-01-01

    Histone acetylation, which is an important mechanism to regulate gene expression, is controlled by the opposing action of histone acetyltransferases and histone deacetylases (HDACs). In animals, several HDACs are subjected to regulation by nitric oxide (NO); in plants, however, it is unknown whether NO affects histone acetylation. We found that treatment with the physiological NO donor S-nitrosoglutathione (GSNO) increased the abundance of several histone acetylation marks in Arabidopsis (Arabidopsis thaliana), which was strongly diminished in the presence of the NO scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. This increase was likely triggered by NO-dependent inhibition of HDAC activity, since GSNO and S-nitroso-N-acetyl-dl-penicillamine significantly and reversibly reduced total HDAC activity in vitro (in nuclear extracts) and in vivo (in protoplasts). Next, genome-wide H3K9/14ac profiles in Arabidopsis seedlings were generated by chromatin immunoprecipitation sequencing, and changes induced by GSNO, GSNO/2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide or trichostatin A (an HDAC inhibitor) were quantified, thereby identifying genes that display putative NO-regulated histone acetylation. Functional classification of these genes revealed that many of them are involved in the plant defense response and the abiotic stress response. Furthermore, salicylic acid, which is the major plant defense hormone against biotrophic pathogens, inhibited HDAC activity and increased histone acetylation by inducing endogenous NO production. These data suggest that NO affects histone acetylation by targeting and inhibiting HDAC complexes, resulting in the hyperacetylation of specific genes. This mechanism might operate in the plant stress response by facilitating the stress-induced transcription of genes. PMID:27980017

  8. Nitric Oxide Modulates Histone Acetylation at Stress Genes by Inhibition of Histone Deacetylases.

    Science.gov (United States)

    Mengel, Alexander; Ageeva, Alexandra; Georgii, Elisabeth; Bernhardt, Jörg; Wu, Keqiang; Durner, Jörg; Lindermayr, Christian

    2017-02-01

    Histone acetylation, which is an important mechanism to regulate gene expression, is controlled by the opposing action of histone acetyltransferases and histone deacetylases (HDACs). In animals, several HDACs are subjected to regulation by nitric oxide (NO); in plants, however, it is unknown whether NO affects histone acetylation. We found that treatment with the physiological NO donor S-nitrosoglutathione (GSNO) increased the abundance of several histone acetylation marks in Arabidopsis (Arabidopsis thaliana), which was strongly diminished in the presence of the NO scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. This increase was likely triggered by NO-dependent inhibition of HDAC activity, since GSNO and S-nitroso-N-acetyl-dl-penicillamine significantly and reversibly reduced total HDAC activity in vitro (in nuclear extracts) and in vivo (in protoplasts). Next, genome-wide H3K9/14ac profiles in Arabidopsis seedlings were generated by chromatin immunoprecipitation sequencing, and changes induced by GSNO, GSNO/2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide or trichostatin A (an HDAC inhibitor) were quantified, thereby identifying genes that display putative NO-regulated histone acetylation. Functional classification of these genes revealed that many of them are involved in the plant defense response and the abiotic stress response. Furthermore, salicylic acid, which is the major plant defense hormone against biotrophic pathogens, inhibited HDAC activity and increased histone acetylation by inducing endogenous NO production. These data suggest that NO affects histone acetylation by targeting and inhibiting HDAC complexes, resulting in the hyperacetylation of specific genes. This mechanism might operate in the plant stress response by facilitating the stress-induced transcription of genes. © 2017 American Society of Plant Biologists. All Rights Reserved.

  9. Engendering health disparities.

    Science.gov (United States)

    Spitzer, Denise L

    2005-01-01

    How is gender implicated in our exploration of health disparities in Canada? Set against the backdrop of federal government policy, this review paper examines the ways in which gender intersects with other health determinants to produce disparate health outcomes. An overview of salient issues including the impact of gender roles, environmental exposures, gender violence, workplace hazards, economic disparities, the costs of poverty, social marginalization and racism, aging, health conditions, interactions with health services, and health behaviours are considered. This review suggests health is detrimentally affected by gender roles and statuses as they intersect with economic disparities, cultural, sexual, physical and historical marginalization as well as the strains of domestic and paid labour. These conditions result in an unfair health burden borne in particular by women whose access to health determinants is--in various degrees--limited. While progress has certainly been made on some fronts, the persistence of health disparities among diverse populations of women and men suggests a postponement of the vision of a just society with health for all that was articulated in the Federal Plan on Gender Equality. Commitment, creativity and collaboration from stakeholders ranging from various levels of government, communities, academics, non-governmental agencies and health professionals will be required to reduce and eliminate health disparities between and among all members of our society.

  10. Expression of Aluminum-Induced Genes in Transgenic Arabidopsis Plants Can Ameliorate Aluminum Stress and/or Oxidative Stress1

    Science.gov (United States)

    Ezaki, Bunichi; Gardner, Richard C.; Ezaki, Yuka; Matsumoto, Hideaki

    2000-01-01

    To examine the biological role of Al-stress-induced genes, nine genes derived from Arabidopsis, tobacco (Nicotiana tabacum L.), wheat (Triticum aestivum L.), and yeast (Saccharomyces cerevisiae) were expressed in Arabidopsis ecotype Landsberg. Lines containing eight of these genes were phenotypically normal and were tested in root elongation assays for their sensitivity to Al, Cd, Cu, Na, Zn, and to oxidative stresses. An Arabidopsis blue-copper-binding protein gene (AtBCB), a tobacco glutathione S-transferase gene (parB), a tobacco peroxidase gene (NtPox), and a tobacco GDP-dissociation inhibitor gene (NtGDI1) conferred a degree of resistance to Al. Two of these genes, AtBCB and parB, and a peroxidase gene from Arabidopsis (AtPox) also showed increased resistance to oxidative stress induced by diamide, while parB conferred resistance to Cu and Na. Al content of Al-treated root tips was reduced in the four Al-resistant plant lines compared with wild-type Ler-0, as judged by morin staining. All four Al-resistant lines also showed reduced staining of roots with 2′,7′-dichloro fluorescein diacetate (H2DCFDA), an indicator of oxidative stress. We conclude that Al-induced genes can serve to protect against Al toxicity, and also provide genetic evidence for a link between Al stress and oxidative stress in plants. PMID:10712528

  11. Simultaneous pentafluorobenzyl derivatization and GC-ECNICI-MS measurement of nitrite and malondialdehyde in human urine : Close positive correlation between these disparate oxidative stress biomarkers

    NARCIS (Netherlands)

    Hanff, Erik; Eisenga, Michele F.; Beckmann, Bibiana; Bakker, Stephan J. L.; Tsikas, Dimitrios

    2017-01-01

    Urinary nitrite and malondialdehyde (MDA) are biomarkers of nitrosative and oxidative stress, respectively. At physiological pH values of urine and plasma, nitrite and MDA exist almost entirely in their dissociated forms, i.e., as ONO- (ONOH, p Kappa a =3.4) and -CH(CHO)(2) (CH2(CHO)(2), p Kappa a

  12. Oxidant and enzymatic antioxidant status (gene expression and activity) in the brain of chickens with cold-induced pulmonary hypertension

    Science.gov (United States)

    Hassanpour, Hossein; Khalaji-Pirbalouty, Valiallah; Nasiri, Leila; Mohebbi, Abdonnaser; Bahadoran, Shahab

    2015-11-01

    To evaluate oxidant and antioxidant status of the brain (hindbrain, midbrain, and forebrain) in chickens with cold-induced pulmonary hypertension, the measurements of lipid peroxidation, protein oxidation, antioxidant capacity, enzymatic activity, and gene expression (for catalase, glutathione peroxidase, and superoxide dismutases) were done. There were high lipid peroxidation/protein oxidation and low antioxidant capacity in the hindbrain of cold-induced pulmonary hypertensive chickens compared to control ( P pulmonary hypertension.

  13. Nitric Oxide Synthase Type III Overexpression By Gene Therapy Exerts Antitumoral Activity In Mouse Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Raúl González

    2015-08-01

    Full Text Available Hepatocellular carcinoma develops in cirrhotic liver. The nitric oxide (NO synthase type III (NOS-3 overexpression induces cell death in hepatoma cells. The study developed gene therapy designed to specifically overexpress NOS-3 in cultured hepatoma cells, and in tumors derived from orthotopically implanted tumor cells in fibrotic livers. Liver fibrosis was induced by CCl4 administration in mice. Hepa 1-6 cells were used for in vitro and in vivo experiments. The first generation adenovirus was designed to overexpress NOS-3 (or GFP and luciferase cDNA under the regulation of murine alpha-fetoprotein (AFP and Rous Sarcoma Virus (RSV promoters, respectively. Both adenoviruses were administered through the tail vein two weeks after orthotopic tumor cell implantation. AFP-NOS-3/RSV-Luciferase increased oxidative-related DNA damage, p53, CD95/CD95L expression and caspase-8 activity in cultured Hepa 1-6 cells. The increased expression of CD95/CD95L and caspase-8 activity was abolished by l-NAME or p53 siRNA. The tail vein infusion of AFP-NOS- 3/RSV-Luciferase adenovirus increased cell death markers, and reduced cell proliferation of established tumors in fibrotic livers. The increase of oxidative/nitrosative stress induced by NOS-3 overexpression induced DNA damage, p53, CD95/CD95L expression and cell death in hepatocellular carcinoma cells. The effectiveness of the gene therapy has been demonstrated in vitro and in vivo.

  14. The biofilm-specific antibiotic resistance gene ndvB is important for expression of ethanol oxidation genes in Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Beaudoin, Trevor; Zhang, Li; Hinz, Aaron J; Parr, Christopher J; Mah, Thien-Fah

    2012-06-01

    Bacteria growing in biofilms are responsible for a large number of persistent infections and are often more resistant to antibiotics than are free-floating bacteria. In a previous study, we identified a Pseudomonas aeruginosa gene, ndvB, which is important for the formation of periplasmic glucans. We established that these glucans function in biofilm-specific antibiotic resistance by sequestering antibiotic molecules away from their cellular targets. In this study, we investigate another function of ndvB in biofilm-specific antibiotic resistance. DNA microarray analysis identified 24 genes that were responsive to the presence of ndvB. A subset of 20 genes, including 8 ethanol oxidation genes (ercS', erbR, exaA, exaB, eraR, pqqB, pqqC, and pqqE), was highly expressed in wild-type biofilm cells but not in ΔndvB biofilms, while 4 genes displayed the reciprocal expression pattern. Using quantitative real-time PCR, we confirmed the ndvB-dependent expression of the ethanol oxidation genes and additionally demonstrated that these genes were more highly expressed in biofilms than in planktonic cultures. Expression of erbR in ΔndvB biofilms was restored after the treatment of the biofilm with periplasmic extracts derived from wild-type biofilm cells. Inactivation of ethanol oxidation genes increased the sensitivity of biofilms to tobramycin. Together, these results reveal that ndvB affects the expression of multiple genes in biofilms and that ethanol oxidation genes are linked to biofilm-specific antibiotic resistance.

  15. Regulatory role of tetR gene in a novel gene cluster of Acidovorax avenae subsp. avenae RS-1 under oxidative stress

    Directory of Open Access Journals (Sweden)

    He eLiu

    2014-10-01

    Full Text Available Acidovorax avenae subsp. avenae is the causal agent of bacterial brown stripe disease in rice. In this study, we characterized a novel horizontal transfer of a gene cluster, including tetR, on the chromosome of A. avenae subsp. avenae RS-1 by genome-wide analysis. TetR acted as a repressor in this gene cluster and the oxidative stress resistance was enhanced in tetR-deletion mutant strain. Electrophoretic mobility shift assay (EMSA demonstrated that TetR regulator bound directly to the promoter of this gene cluster. Consistently, the results of quantitative real-time PCR also showed alterations in expression of associated genes. Moreover, the proteins affected by TetR under oxidative stress were revealed by comparing proteomic profiles of wild-type and mutant strains via 1D SDS-PAGE and LC-MS/MS analyses. Taken together, our results demonstrated that tetR gene in this novel gene cluster contributed to cell survival under oxidative stress, and TetR protein played an important regulatory role in growth kinetics, biofilm-forming capability, SOD and catalase activity, and oxide detoxicating ability.

  16. Regulatory role of tetR gene in a novel gene cluster of Acidovorax avenae subsp. avenae RS-1 under oxidative stress.

    Science.gov (United States)

    Liu, He; Yang, Chun-Lan; Ge, Meng-Yu; Ibrahim, Muhammad; Li, Bin; Zhao, Wen-Jun; Chen, Gong-You; Zhu, Bo; Xie, Guan-Lin

    2014-01-01

    Acidovorax avenae subsp. avenae is the causal agent of bacterial brown stripe disease in rice. In this study, we characterized a novel horizontal transfer of a gene cluster, including tetR, on the chromosome of A. avenae subsp. avenae RS-1 by genome-wide analysis. TetR acted as a repressor in this gene cluster and the oxidative stress resistance was enhanced in tetR-deletion mutant strain. Electrophoretic mobility shift assay demonstrated that TetR regulator bound directly to the promoter of this gene cluster. Consistently, the results of quantitative real-time PCR also showed alterations in expression of associated genes. Moreover, the proteins affected by TetR under oxidative stress were revealed by comparing proteomic profiles of wild-type and mutant strains via 1D SDS-PAGE and LC-MS/MS analyses. Taken together, our results demonstrated that tetR gene in this novel gene cluster contributed to cell survival under oxidative stress, and TetR protein played an important regulatory role in growth kinetics, biofilm-forming capability, superoxide dismutase and catalase activity, and oxide detoxicating ability.

  17. Association of Endothelial Nitric Oxide Synthase Gene Polymorphisms With Acute Rejection in Liver Transplant Recipients.

    Science.gov (United States)

    Azarpira, Negar; Namazi, Soha; Malahi, Sayan; Kazemi, Kourosh

    2016-06-01

    Polymorphisms of the endothelial nitric oxide synthase gene have been associated with altered endothelial nitric oxide synthase activity. The purpose of this study was to investigate the relation between endothelial nitric oxide synthase -786T/C and 894G/T polymorphism and their haplotypes on the occurrence of acute rejection episodes in liver transplant recipients. We conducted a case control study in which 100 liver transplant recipients and 100 healthy controls were recruited from Shiraz Transplant Center. The patients used triple therapy including tacrolimus, mycophenolate mofetil, and prednisolone for immunosuppression maintenance. DNA was extracted from peripheral blood and endothelial nitric oxide synthase polymorphisms were determined by polymerase chain reaction and restriction fragment length polymorphism. Patients included 60 men and 40 women (mean age, 32.35 ± 10.2 y). There was a significant association of endothelial nitric oxide synthase 894G/T and acute rejection episode. The GT* gen-otype and acute rejection episodes had a significant association (odds ratio, 2.42; 95% confidence interval, 0.97-6.15; P = .03). The GG and GT* genotype and T* allele frequency were significantly different between patients and control subjects (P = .001). Haplotype TT* was higher in recipients than control subjects (odds ratio, 2.17; 95% confidence interval, 1.12-4.25; P = .01). Haplotype TG was higher in the control group (odds ratio, 0.62; 95% confidence interval, 0.40-0.96; P = .02). Our results suggest a relation between different endothelial nitric oxide synthase geno-types and risk of acute rejection episodes. However, further study is necessary to determine genetic susceptibility for transplant patients.

  18. Gene expression patterns of oxidative phosphorylation complex I subunits are organized in clusters.

    Directory of Open Access Journals (Sweden)

    Yael Garbian

    Full Text Available After the radiation of eukaryotes, the NUO operon, controlling the transcription of the NADH dehydrogenase complex of the oxidative phosphorylation system (OXPHOS complex I, was broken down and genes encoding this protein complex were dispersed across the nuclear genome. Seven genes, however, were retained in the genome of the mitochondrion, the ancient symbiote of eukaryotes. This division, in combination with the three-fold increase in subunit number from bacteria (N = approximately 14 to man (N = 45, renders the transcription regulation of OXPHOS complex I a challenge. Recently bioinformatics analysis of the promoter regions of all OXPHOS genes in mammals supported patterns of co-regulation, suggesting that natural selection favored a mechanism facilitating the transcriptional regulatory control of genes encoding subunits of these large protein complexes. Here, using real time PCR of mitochondrial (mtDNA- and nuclear DNA (nDNA-encoded transcripts in a panel of 13 different human tissues, we show that the expression pattern of OXPHOS complex I genes is regulated in several clusters. Firstly, all mtDNA-encoded complex I subunits (N = 7 share a similar expression pattern, distinct from all tested nDNA-encoded subunits (N = 10. Secondly, two sub-clusters of nDNA-encoded transcripts with significantly different expression patterns were observed. Thirdly, the expression patterns of two nDNA-encoded genes, NDUFA4 and NDUFA5, notably diverged from the rest of the nDNA-encoded subunits, suggesting a certain degree of tissue specificity. Finally, the expression pattern of the mtDNA-encoded ND4L gene diverged from the rest of the tested mtDNA-encoded transcripts that are regulated by the same promoter, consistent with post-transcriptional regulation. These findings suggest, for the first time, that the regulation of complex I subunits expression in humans is complex rather than reflecting global co-regulation.

  19. Disparities in Gynecological Malignancies

    Directory of Open Access Journals (Sweden)

    Sudeshna eChatterjee

    2016-02-01

    Full Text Available Objectives: Health disparities and inequalities in access to care among different socioeconomic, ethnic, and racial groups have been well documented in the U.S. healthcare system. In this review, we aimed to provide an overview of barriers to care contributing to health disparities in gynecological oncology management and to describe site-specific disparities in gynecologic care for endometrial, ovarian, and cervical cancer. Methods: We performed a literature review of peer-reviewed academic and governmental publications focusing on disparities in gynecological care in the United States by searching PubMed and Google Scholar electronic databases. Results: There are multiple important underlying issues that may contribute to the disparities in gynecological oncology management in the United States, namely geographic access and hospital based-discrepancies, research-based discrepancies, influence of socioeconomic and health insurance status, and finally the influence of race and biological factors. Despite the reduction in overall cancer-related deaths since the 1990s, the 5-year survival for Black women is significantly lower than for White women for each gynecologic cancer type and each stage of diagnosis. For ovarian and endometrial cancer, black patients are less likely to receive treatment consistent with evidence-based guidelines and have worse survival outcomes even after accounting for stage and comorbidities. For cervical and endometrial cancer, the mortality rate for black women remains twice that of White women. Conclusions: Health care disparities in the incidence and outcome of gynecologic cancers are complex and involve biologic factors as well as racial, socioeconomic and geographic barriers that influence treatment and survival. These barriers must be addressed to provide optimal care to women in the U.S. with gynecologic cancer.

  20. Post-prandial effects of hazelnut-enriched high fat meal on LDL oxidative status, oxidative and inflammatory gene expression of healthy subjects: a randomized trial.

    Science.gov (United States)

    Di Renzo, L; Merra, G; Botta, R; Gualtieri, P; Manzo, A; Perrone, M A; Mazza, M; Cascapera, S; De Lorenzo, A

    2017-04-01

    Postprandial oxidative stress is characterized by an increased susceptibility of the organism towards oxidative damage after consumption of a meal rich in lipids and/or carbohydrates. Micronutrients modulate the immune system and exert a protective action by reducing low-density lipoproteins oxidation (ox-LDL) via induction of antioxidant enzymes. The clinical study was a randomized and cross-over trial, conducted through the CONSORT flowchart. We evaluated the gene expression of 103 genes related to oxidative stress (HOSp) and human inflammasome pathways (HIp), and ox-LDL level at fasting and after 40 g raw "Tonda Gentile delle Langhe" hazelnut consumption, in association with a McDonald's® Meal (McDM) in 22 healthy human volunteers. Ox-LDL levels significantly increased comparing no dietary treatment (NDT) vs. McDM, and decreased comparing McDM vs. McDM + H (p<0.05). Percentage of significant genes expressed after each dietary treatment were the follows: (A) NDT vs. McDM: 3.88% HIp and 17.48% HOSp; (B) NDT vs. McDM + H: 17.48% HIp and 23.30% HOSp; (C) McDM vs. McDM + H: 17.48% HIp and 33.98% HOSp. Hazelnut consumption reduced post prandial risk factors of atherosclerosis, such as ox-LDL, and the expression of inflammation and oxidative stress related genes. Chronic studies on larger population are necessary before definitive conclusions.

  1. Heme oxygenase-2 gene deletion attenuates oxidative stress in neurons exposed to extracellular hemin

    Directory of Open Access Journals (Sweden)

    Benvenisti-Zarom Luna

    2004-09-01

    Full Text Available Abstract Background Hemin, the oxidized form of heme, accumulates in intracranial hematomas and is a potent oxidant. Growing evidence suggests that it contributes to delayed injury to surrounding tissue, and that this process is affected by the heme oxygenase enzymes. In a prior study, heme oxygenase-2 gene deletion increased the vulnerability of cultured cortical astrocytes to hemin. The present study tested the effect of HO-2 gene deletion on protein oxidation, reactive oxygen species formation, and cell viability after mixed cortical neuron/astrocyte cultures were incubated with neurotoxic concentrations of hemin. Results Continuous exposure of wild-type cultures to 1–10 μM hemin for 14 h produced concentration-dependent neuronal death, as detected by both LDH release and fluorescence intensity after propidium iodide staining, with an EC50 of 1–2 μM; astrocytes were not injured by these low hemin concentrations. Cell death was consistently reduced by at least 60% in knockout cultures. Exposure to hemin for 4 hours, a time point that preceded cell lysis, increased protein oxidation in wild-type cultures, as detected by staining of immunoblots for protein carbonyl groups. At 10 μM hemin, carbonylation was increased 2.3-fold compared with control sister cultures subjected to medium exchanges only; this effect was reduced by about two-thirds in knockout cultures. Cellular reactive oxygen species, detected by fluorescence intensity after dihydrorhodamine 123 (DHR staining, was markedly increased by hemin in wild-type cultures and was localized to neuronal cell bodies and processes. In contrast, DHR fluorescence intensity in knockout cultures did not differ from that of sham-washed controls. Neuronal death in wild-type cultures was almost completely prevented by the lipid-soluble iron chelator phenanthroline; deferoxamine had a weaker but significant effect. Conclusions These results suggest that HO-2 gene deletion protects neurons in mixed

  2. Endothelial nitric oxide synthase gene haplotypes and diabetic nephropathy among Asian Indians

    DEFF Research Database (Denmark)

    Ahluwalia, Tarun Veer Singh; Ahuja, Monica; Rai, Taranjit Singh

    2008-01-01

    of the constitutive endothelial nitric oxide synthase gene (eNOS) polymorphisms with type 2 diabetic nephropathy. We genotyped three polymorphisms of eNOS (Two SNPs: -786T > C, 894G > T and one 27-bp repeat polymorphism in Intron 4 (27VNTR)) in type 2 diabetic nephropathy patients (cases: n = 195) and type 2 diabetic...... without nephropathy (controls: n = 255), using validated PCR-RFLP assays. We measured serum NO levels in these subjects and examined its correlation with diabetic nephropathy and eNOS genotypes. The frequency of CC (-786T > C), TT (894G > T) and aa genotypes (27VNTR) were significantly higher in diabetic...

  3. A Promising Combo Gene Delivery System Developed from (3-Aminopropyl)triethoxysilane-Modified Iron Oxide Nanoparticles and Cationic Polymers

    Science.gov (United States)

    Zhang, Zubin; Song, Lina; Dong, Jinlai; Guo, Dawei; Du, Xiaolin; Cao, Biyin; Zhang, Yu; Gu, Ning; Mao, Xinliang

    2013-05-01

    (3-Aminopropyl)triethoxysilane-modified iron oxide nanoparticles (APTES-IONPs) have been evaluated for various biomedical applications, including medical imaging and drug delivery. Cationic polymers (CPs) such as Lipofectamine and TurboFect are widely used for research in gene delivery, but their toxicity and low in vivo efficiency limited their further application. In the present study, we synthesized water-soluble APTES-IONPs and developed a combo gene delivery system based on APTES-IONPs and CPs. This system significantly increased gene-binding capacity, protected genes from degradation, and improved gene transfection efficiency for DNA and siRNA in both adherent and suspension cells. Because of its great biocompatibility, high gene-carrying ability, and very low cytotoxicity, this combo gene delivery system will be expected for a wide application, and it might provide a new method for gene therapy.

  4. A Promising Combo Gene Delivery System Developed from (3-Aminopropyl)triethoxysilane-Modified Iron Oxide Nanoparticles and Cationic Polymers

    International Nuclear Information System (INIS)

    Zhang Zubin; Song Lina; Dong Jinlai; Guo Dawei; Du Xiaolin; Cao Biyin; Zhang Yu; Gu Ning; Mao Xinliang

    2013-01-01

    (3-Aminopropyl)triethoxysilane-modified iron oxide nanoparticles (APTES-IONPs) have been evaluated for various biomedical applications, including medical imaging and drug delivery. Cationic polymers (CPs) such as Lipofectamine and TurboFect are widely used for research in gene delivery, but their toxicity and low in vivo efficiency limited their further application. In the present study, we synthesized water-soluble APTES-IONPs and developed a combo gene delivery system based on APTES-IONPs and CPs. This system significantly increased gene-binding capacity, protected genes from degradation, and improved gene transfection efficiency for DNA and siRNA in both adherent and suspension cells. Because of its great biocompatibility, high gene-carrying ability, and very low cytotoxicity, this combo gene delivery system will be expected for a wide application, and it might provide a new method for gene therapy.

  5. Development of radiation-inducible promoters for use in nitric oxide synthase gene therapy of cancer

    International Nuclear Information System (INIS)

    Hirst, D.G.; Worthington, J.; Adams, C.; Robson, T.; Scott, S.D.

    2003-01-01

    Full text: The free radical nitric oxide (NO) at nM concentrations performs multiple signaling roles that are essential for survival. These processes are regulated via the enzymes nNOS and eNOS, but another isoform, inducible nitric oxide synthase (iNOS) is capable of generating much higher concentrations (mM) over longer periods, resulting in the generation of very toxic species such as peroxynitrite. At high concentrations NO has many of the characteristics of an ideal anticancer molecule: it is cytotoxic (pro-apoptotic via peroxynitrite), it is a potent chemical radiosensitizer, it is anti-angiogenic and anti-metastatic. Thus, we see iNOS gene therapy as a strategy for targeting the generation of high concentrations of NO to tumours for therapeutic benefit. iNOS gene therapy should be used in combination with radiotherapy; so it is logical that the use of a radiation-inducible promoter should be part of the targeting strategy. We have tested several candidate promoters in vitro and in vivo. The WAF1 promoter has many of the properties desirable for therapeutic use including: rapid 3-4 fold induction at X-ray doses of 2 and 4Gy and no significant leakiness. WAF1 also has the advantage of being inducible by hypoxia and by the final product, NO. We have also tested the synthetic CArG promoter and demonstrated that, in addition to a high level of radiation inducibility, it is also inducible by NO. We have also been able to demonstrate potent radiosensitization (SER 2.0-2.5) in tumour cells in vitro and in vivo using iNOS gene transfer with constitutive or radiation-inducible promoters. We have also tested the use of iNOS gene therapy in combination with cisplatin and shown significant enhancement

  6. Solvent-Directed Sol-Gel Assembly of 3-Dimensional Graphene-Tented Metal Oxides and Strong Synergistic Disparities in Lithium Storage

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Jianchao; An, Yonghao; Montalvo, Elizabeth; Campbell, Patrick G.; Worsley, Marcus A.; Tran, Ich C.; Liu, Yuanyue; Wood, Brandon C.; Biener, Juergen; Jiang, Hanqing; Tang, Ming; Wang, Y. Morris

    2016-03-21

    Graphene/metal oxide (GMO) nanocomposites promise a broad range of utilities for lithium ion batteries (LIBs), pseudocapacitors, catalysts, and sensors. When applied as anodes for LIBs, GMOs often exhibit high capacity, improved rate capability and cycling performance. Numerous studies have attributed these favorable properties to a passive role played by the exceptional electronic and mechanical properties of graphene in enabling metal oxides (MOs) to achieve near-theoretical capacities. In contrast, the effects of MOs on the active lithium storage mechanisms of graphene remain enigmatic. Via a unique two-step solvent-directed sol-gel process, we have synthesized and directly compared the electrochemical performance of several representative GMOs, namely Fe2O3/graphene, SnO2/graphene, and TiO2/graphene. We observe that MOs can play an equally important role in empowering graphene to achieve large reversible lithium storage capacity. The magnitude of capacity improvement is found to scale roughly with the surface coverage of MOs, and depend sensitively on the type of MOs. We define a synergistic factor based on the capacity contributions. Our quantitative assessments indicate that the synergistic effect is most achievable in conversion-reaction GMOs (Fe2O3/graphene and SnO2/graphene) but not in intercalation-based TiO2/graphene. However, a long cycle stability up to 2000 cycles was observed in TiO2/graphene nanocomposites. We propose a surface coverage model to qualitatively rationalize the beneficial roles of MOs to graphene. Our first-principles calculations further suggest that the extra lithium storage sites could result from the formation of Li2O at the interface with graphene during the conversion-reaction. These results suggest an effective pathway for reversible lithium storage in graphene and shift design paradigms for graphene-based electrodes.

  7. Zinc oxide nanoparticle exposure triggers different gene expression patterns in maize shoots and roots.

    Science.gov (United States)

    Xun, Hongwei; Ma, Xintong; Chen, Jing; Yang, Zhongzhou; Liu, Bao; Gao, Xiang; Li, Guo; Yu, Jiamiao; Wang, Li; Pang, Jinsong

    2017-10-01

    The potential impacts of environmentally accumulated zinc oxide nanoparticles (nZnOs) on plant growth have not been well studied. A transcriptome profile analysis of maize exposed to nZnOs showed that the genes in the shoots and roots responded differently. Although the number of differentially expressed genes (DEGs) in the roots was greater than that in the shoots, the number of up- or down-regulated genes in both the shoots and roots was similar. The enrichment of gene ontology (GO) terms was also significantly different in the shoots and roots. The "nitrogen compound metabolism" and "cellular component" terms were specifically and highly up-regulated in the nZnO-exposed roots, whereas the categories "cellular metabolic process", "primary metabolic process" and "secondary metabolic process" were down-regulated in the exposed roots only. Our results revealed the DEG response patterns in maize shoots and roots after nZnO exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Rural Health Disparities

    Science.gov (United States)

    ... in the Delta Region for specific data. U.S. – Mexico Border While life expectancy in many counties of ... documents the successes, challenges, and relevant information for planning. ... on rural/urban disparities see What sources cover health behaviors and ...

  9. Minority Health and Health Disparities

    Science.gov (United States)

    ... ik People" People Awakening Resilience Project (PARP), Cuqyun "Measuring" Treatment and Health Services Research Alcohol Treatment and ... addressing Health Disparities . 1 2009-2013 Health Disparities Strategic Plan, p.4 2 Ibid, p.4 3 ...

  10. Energy homeostasis genes and breast cancer risk: The influence of ancestry, body size, and menopausal status, the breast cancer health disparities study.

    Science.gov (United States)

    Slattery, Martha L; Lundgreen, Abbie; Hines, Lisa; Wolff, Roger K; Torres-Mejia, Gabriella; Baumgartner, Kathy N; John, Esther M

    2015-12-01

    Obesity and breast cancer risk is multifaceted and genes associated with energy homeostasis may modify this relationship. We evaluated 10 genes that have been associated with obesity and energy homeostasis to determine their association with breast cancer risk in Hispanic/Native American (2111 cases, 2597 controls) and non-Hispanic white (1481 cases, 1585 controls) women. Cholecystokinin (CCK) rs747455 and proopiomelanocortin (POMC) rs6713532 and rs7565877 (for low Indigenous American (IA) ancestry); CCK rs8192472 and neuropeptide Y (NYP) rs16141 and rs14129 (intermediate IA ancestry); and leptin receptor (LEPR) rs11585329 (high IA ancestry) were strongly associated with multiple indicators of body size. There were no significant associations with breast cancer risk between genes and SNPs overall. However, LEPR was significantly associated with breast cancer risk among women with low IA ancestry (PARTP=0.024); POMC was significantly associated with breast cancer risk among women with intermediate (PARTP=0.015) and high (PARTP=0.012) IA ancestry. The overall pathway was statistically significant for pre-menopausal women with low IA ancestry (PARTP=0.05), as was cocaine and amphetamine regulated transcript protein (CARTPT) (PARTP=0.014) and ghrelin (GHRL) (PARTP=0.007). POMC was significantly associated with breast cancer risk among post-menopausal women with higher IA ancestry (PARTP=0.005). Three SNPs in LEPR (rs6704167, rs17412175, and rs7626141), and adiponectin (ADIPOQ); rs822391) showed significant 4-way interactions (GxExMenopausexAncestry) for multiple indicators of body size among pre-menopausal women. Energy homeostasis genes were associated with breast cancer risk; menopausal status, body size, and genetic ancestry influenced this relationship. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Differential Splicing of Oncogenes and Tumor Suppressor Genes in African- and Caucasian-American Populations: Contributing Factor in Prostate Cancer Disparities

    Science.gov (United States)

    2015-10-01

    Anatomy and Regen- erativeBiology,TheGeorgeWashingtonUniversitySchoolofMedicine and Health Sciences,Washington, District of Columbia. 7Department of...types of cancers, including prostate, head and neck, renal , lung, breast, colon, ovarian, glioma, pan- creas, and bladder cancers (22, 23). In terms of...triphosphate receptor type 2 (ITPR2) gene as a novel risk locus for renal cell carcinoma (47, 48).MiR-145 has been implicated as a tumor-suppressive miRNA

  12. Analysis of Human Bradykinin Receptor Gene and Endothelial Nitric Oxide Synthase Gene Polymorphisms in End-Stage Renal Disease Among Malaysians

    Directory of Open Access Journals (Sweden)

    R. Vasudevan

    2014-06-01

    Full Text Available The aim of this study was to determine the association of the c.894G>T; p.Glu298Asp polymorphism and the variable number tandem repeat (VNTR polymorphism of the endothelial nitric oxide synthase (eNOS gene and c.181C>T polymorphism of the bradykinin type 2 receptor gene (B2R in Malaysian end-stage renal disease (ESRD subjects.

  13. Alteration of gene expression profile in Niemann-Pick type C mice correlates with tissue damage and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Mary C Vázquez

    Full Text Available BACKGROUND: Niemann-Pick type C disease (NPC is a neurovisceral lipid storage disorder mainly characterized by unesterified cholesterol accumulation in lysosomal/late endosomal compartments, although there is also an important storage for several other kind of lipids. The main tissues affected by the disease are the liver and the cerebellum. Oxidative stress has been described in various NPC cells and tissues, such as liver and cerebellum. Although considerable alterations occur in the liver, the pathological mechanisms involved in hepatocyte damage and death have not been clearly defined. Here, we assessed hepatic tissue integrity, biochemical and oxidative stress parameters of wild-type control (Npc1(+/+; WT and homozygous-mutant (Npc1(-/-; NPC mice. In addition, the mRNA abundance of genes encoding proteins associated with oxidative stress, copper metabolism, fibrosis, inflammation and cholesterol metabolism were analyzed in livers and cerebella of WT and NPC mice. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed various oxidative stress parameters in the liver and hepatic and cerebellum gene expression in 7-week-old NPC1-deficient mice compared with control animals. We found signs of inflammation and fibrosis in NPC livers upon histological examination. These signs were correlated with increased levels of carbonylated proteins, diminished total glutathione content and significantly increased total copper levels in liver tissue. Finally, we analyzed liver and cerebellum gene expression patterns by qPCR and microarray assays. We found a correlation between fibrotic tissue and differential expression of hepatic as well as cerebellar genes associated with oxidative stress, fibrosis and inflammation in NPC mice. CONCLUSIONS/SIGNIFICANCE: In NPC mice, liver disease is characterized by an increase in fibrosis and in markers associated with oxidative stress. NPC is also correlated with altered gene expression, mainly of genes involved in oxidative stress

  14. Catecholamines promote the expression of virulence and oxidative stress genes in Porphyromonas gingivalis.

    Science.gov (United States)

    Graziano, T S; Closs, P; Poppi, T; Franco, G C; Cortelli, J R; Groppo, F C; Cogo, K

    2014-10-01

    Stress has been identified as an important risk factor in the development of many infectious diseases, including periodontitis. Porphyromonas gingivalis, a gram-negative oral anaerobic bacterium, is considered an important pathogen in chronic periodontitis. Microorganisms, including P. gingivalis, that participate in infectious diseases have been shown to respond to catecholamines released during stress processes by modifying their growth and virulence. Therefore, the purpose of this study was to evaluate the effects of adrenaline and noradrenaline on the growth, antimicrobial susceptibility and gene expression in P. gingivalis. P. gingivalis was incubated in the presence of adrenaline and noradrenaline (100 μm) for different time-periods in rich (Tryptic soy broth supplemented with 0.2% yeast extract, 5 μg/mL of hemin and 1 μg/mL of menadione) and poor (serum-SAPI minimal medium and serum-SAPI minimal medium supplemented with 5 μg/mL of hemin and 1 μg/mL of menadione) media, and growth was evaluated based on absorbance at 660 nm. Bacterial susceptibility to metronidazole was examined after exposure to adrenaline and noradrenaline. The expression of genes involved in iron acquisition, stress oxidative protection and virulence were also evaluated using RT-quantitative PCR. Catecholamines did not interfere with the growth of P. gingivalis, regardless of nutritional or hemin conditions. In addition, bacterial susceptibility to metronidazole was not modified by exposure to adrenaline or noradrenaline. However, the expression of genes related to iron acquisition (hmuR), oxidative stress (tpx, oxyR, dps, sodB and aphC) and pathogenesis (hem, hagA and ragA) were stimulated upon exposure to adrenaline and/or noradrenaline. Adrenaline and noradrenaline can induce changes in gene expression related to oxidative stress and virulence factors in P. gingivalis. The present study is, in part, a step toward understanding the stress-pathogen interactions that may

  15. A gene network switch enhances the oxidative capacity of ovine skeletal muscle during late fetal development

    Directory of Open Access Journals (Sweden)

    Bidwell Christopher A

    2010-06-01

    Full Text Available Abstract Background The developmental transition between the late fetus and a newborn animal is associated with profound changes in skeletal muscle function as it adapts to the new physiological demands of locomotion and postural support against gravity. The mechanisms underpinning this adaption process are unclear but are likely to be initiated by changes in hormone levels. We tested the hypothesis that this developmental transition is associated with large coordinated changes in the transcription of skeletal muscle genes. Results Using an ovine model, transcriptional profiling was performed on Longissimus dorsi skeletal muscle taken at three fetal developmental time points (80, 100 and 120 d of fetal development and two postnatal time points, one approximately 3 days postpartum and a second at 3 months of age. The developmental time course was dominated by large changes in expression of 2,471 genes during the interval between late fetal development (120 d fetal development and 1-3 days postpartum. Analysis of the functions of genes that were uniquely up-regulated in this interval showed strong enrichment for oxidative metabolism and the tricarboxylic acid cycle indicating enhanced mitochondrial activity. Histological examination of tissues from these developmental time points directly confirmed a marked increase in mitochondrial activity between the late fetal and early postnatal samples. The promoters of genes that were up-regulated during this fetal to neonatal transition were enriched for estrogen receptor 1 and estrogen related receptor alpha cis-regulatory motifs. The genes down-regulated during this interval highlighted de-emphasis of an array of functions including Wnt signaling, cell adhesion and differentiation. There were also changes in gene expression prior to this late fetal - postnatal transition and between the two postnatal time points. The former genes were enriched for functions involving the extracellular matrix and immune

  16. Zinc oxide nanoparticle exposure triggers different gene expression patterns in maize shoots and roots

    International Nuclear Information System (INIS)

    Xun, Hongwei; Ma, Xintong; Chen, Jing; Yang, Zhongzhou; Liu, Bao; Gao, Xiang; Li, Guo; Yu, Jiamiao; Wang, Li; Pang, Jinsong

    2017-01-01

    The potential impacts of environmentally accumulated zinc oxide nanoparticles (nZnOs) on plant growth have not been well studied. A transcriptome profile analysis of maize exposed to nZnOs showed that the genes in the shoots and roots responded differently. Although the number of differentially expressed genes (DEGs) in the roots was greater than that in the shoots, the number of up- or down-regulated genes in both the shoots and roots was similar. The enrichment of gene ontology (GO) terms was also significantly different in the shoots and roots. The “nitrogen compound metabolism” and “cellular component” terms were specifically and highly up-regulated in the nZnO-exposed roots, whereas the categories “cellular metabolic process”, “primary metabolic process” and “secondary metabolic process” were down-regulated in the exposed roots only. Our results revealed the DEG response patterns in maize shoots and roots after nZnO exposure. - Highlights: • The gene expression patterns of maize exposed to ZnO nanoparticles (nZnO) varied in the shoots and roots. • A majority of the differentially expressed genes induced by nZnO exposure were exclusive to either the shoots or roots. • A similar number of up- and down-regulated genes was observed in the exposed shoots. • More up-regulated than down-regulated genes were found in the exposed roots. • A greater number of GO processes were observed in the nZnO exposed maize roots than in the exposed shoots. • GO terms in the “nitrogen compound metabolic process” category were exclusively and highly expressed in the exposed roots. • GO terms in the “nutrient reservoir” category were exclusively and highly expressed in the exposed roots. • Term “small molecule metabolic process” was also exclusively up-regulated in the exposed roots. • Processes in “cellular metabolic”, “primary metabolic” and “secondary metabolic” were down-regulated in the exposed roots.

  17. Dietary Berries and Ellagic Acid Prevent Oxidative DNA Damage and Modulate Expression of DNA Repair Genes

    Directory of Open Access Journals (Sweden)

    Ramesh C. Gupta

    2008-03-01

    Full Text Available DNA damage is a pre-requisite for the initiation of cancer and agents that reduce this damage are useful in cancer prevention. In this study, we evaluated the ability of whole berries and berry phytochemical, ellagic acid to reduce endogenous oxidative DNA damage. Ellagic acid was selected based on > 95% inhibition of 8-oxodeoxyguosine (8-oxodG and other unidentified oxidative DNA adducts induced by 4-hydroxy-17B;-estradiol and CuCl2 in vitro. Inhibition of the latter occurred at lower concentrations (10 u(microM than that for 8-oxodG (100 u(microM. In the in vivo study, female CD-1 mice (n=6 were fed either a control diet or diet supplemented with ellagic acid (400 ppm and dehydrated berries (5% w/w with varying ellagic acid contents -- blueberry (low, strawberry (medium and red raspberry (high, for 3 weeks. Blueberry and strawberry diets showed moderate reductions in endogenous DNA adducts (25%. However, both red raspberry and ellagic acid diets showed a significant reduction of 59% (p < 0.001 and 48% (p < 0.01, respectively. Both diets also resulted in a 3-8 fold over-expression of genes involved in DNA repair such as xeroderma pigmentosum group A complementing protein (XPA, DNA excision repair protein (ERCC5 and DNA ligase III (DNL3. These results suggest that red raspberry and ellagic acid reduce endogenous oxidative DNA damage by mechanisms which may involve increase in DNA repair.

  18. Changes in LDL Oxidative Status and Oxidative and Inflammatory Gene Expression after Red Wine Intake in Healthy People: A Randomized Trial

    Science.gov (United States)

    Di Renzo, Laura; Marsella, Luigi Tonino; Gualtieri, Paola; Gratteri, Santo; Tomasi, Diego; Gaiotti, Federica

    2015-01-01

    Postprandial oxidative stress is characterized by an increased susceptibility of the organism towards oxidative damage after consumption of a meal rich in lipids and/or carbohydrates. Micronutrients modulate immune system and exert a protective action by reducing low density lipoproteins (LDL) oxidation via induction of antioxidant enzymes. We evaluated the gene expression of oxidative stress (HOSp), inflammasome (HIp), and human drug metabolism pathways (HDM) and ox-LDL level at baseline and after the intake of red wine naturally enriched with resveratrol (NPVRW), in association with or without a McDonald's meal (McDM). The ox-LDL levels significantly increase comparing baseline (B) versus McDM and decreased comparing McDM versus McDM + NPVRW (P ≤ 0.05). Percentages of significant genes expressed after each nutritional intervention were the following: (1) B versus McDM, 2.88% HOSp, 2.40% of HIp, and 3.37% of HDMp; (2) B versus McDM + NPVRW, 1.44% of HOSp, 4.81% of HIp, and 0.96% of HDMp; (3) McDM versus McDM + NPVRW, 2.40% of HOSp, 2.40% of HIp, and 5.77% of HDMp; (4) B versus NPVRW, 4.80% HOSp, 3.85% HIp, and 3.85% HDMp. NPVRW intake reduced postprandial ox-LDL and the expression of inflammation and oxidative stress related genes. Chronic studies on larger population are necessary before definitive conclusions. PMID:26101461

  19. Changes in LDL Oxidative Status and Oxidative and Inflammatory Gene Expression after Red Wine Intake in Healthy People: A Randomized Trial

    Directory of Open Access Journals (Sweden)

    Laura Di Renzo

    2015-01-01

    Full Text Available Postprandial oxidative stress is characterized by an increased susceptibility of the organism towards oxidative damage after consumption of a meal rich in lipids and/or carbohydrates. Micronutrients modulate immune system and exert a protective action by reducing low density lipoproteins (LDL oxidation via induction of antioxidant enzymes. We evaluated the gene expression of oxidative stress (HOSp, inflammasome (HIp, and human drug metabolism pathways (HDM and ox-LDL level at baseline and after the intake of red wine naturally enriched with resveratrol (NPVRW, in association with or without a McDonald’s meal (McDM. The ox-LDL levels significantly increase comparing baseline (B versus McDM and decreased comparing McDM versus McDM + NPVRW (P≤0.05. Percentages of significant genes expressed after each nutritional intervention were the following: (1 B versus McDM, 2.88% HOSp, 2.40% of HIp, and 3.37% of HDMp; (2 B versus McDM + NPVRW, 1.44% of HOSp, 4.81% of HIp, and 0.96% of HDMp; (3 McDM versus McDM + NPVRW, 2.40% of HOSp, 2.40% of HIp, and 5.77% of HDMp; (4 B versus NPVRW, 4.80% HOSp, 3.85% HIp, and 3.85% HDMp. NPVRW intake reduced postprandial ox-LDL and the expression of inflammation and oxidative stress related genes. Chronic studies on larger population are necessary before definitive conclusions.

  20. Effects of curcumin on angiotensin-converting enzyme gene expression, oxidative stress and anti-oxidant status in thioacetamide-induced hepatotoxicity.

    Science.gov (United States)

    Fazal, Yumna; Fatima, Syeda Nuzhat; Shahid, Syed Muhammad; Mahboob, Tabassum

    2015-12-01

    This study aimed to evaluate the protective effects of curcumin on angiotensin-converting enzyme (ACE) gene expression, oxidative stress and anti-oxidant status in thioacetamide (TAA)-induced hepatotoxicity in rats. Total 32 albino Wistar rats (male, 200-250 g) were divided into six groups (n=8). Group 1: untreated controls; Group 2: received TAA (200 mg/kg body weight (b.w.); i.p.) for 12 weeks; Group 3: received curcumin (75 mg/kg b.w.) for 24 weeks; Group 4: received TAA (200 mg/kg b.w.; i.p.) for 12 weeks+curcumin (75 mg/kg b.w.) for 12 weeks. A significantly higher ACE gene expression was observed in TAA-induced groups as compared with control, indicating more synthesis of ACE proteins. Treatment with curcumin suppressed ACE expression in TAA liver and reversed the toxicity produced. TAA treatment results in higher lipid peroxidation and lower GSH, SOD and CAT than the normal, and this produces oxidative stress in the liver. Cirrhotic conditions were confirmed by serum enzymes (ALT, AST and ALP) as well as histopathological observations. Curcumin treatment reduced oxidative stress in animals by scavenging reactive oxygen species, protecting the anti-oxidant enzymes from being denatured and reducing the oxidative stress marker lipid peroxidation. Curcumin treatment restores hepatocytes, damaged by TAA, and protects liver tissue approaching cirrhosis. © The Author(s) 2014.

  1. Oxidative stress and DNA repair and detoxification gene expression in adolescents exposed to heavy metals living in the Milazzo-Valle del Mela area (Sicily, Italy

    Directory of Open Access Journals (Sweden)

    Gabriele Pizzino

    2014-01-01

    Conclusions: Continuous exposure at relatively low concentrations of heavy metals is associated with increased oxidative DNA damage and impaired expression of DNA repair and detoxification genes in adolescents.

  2. Disparities in Intratumoral Steroidogenesis

    Science.gov (United States)

    2017-12-01

    cancer. The reasons for this racial disparity in prostate cancer incidence and mortality are unknown but may stem from economic , social, psychological...them are elevated in the prostate tumors of African American men. We further hypothesize that elevated cholesterol, which is an essential component of...cancer promotional effects of high cholesterol. Essentially , we anticipate the level of cholesterol reduction needed to protect the prostate will be

  3. Simultaneous pentafluorobenzyl derivatization and GC-ECNICI-MS measurement of nitrite and malondialdehyde in human urine: Close positive correlation between these disparate oxidative stress biomarkers.

    Science.gov (United States)

    Hanff, Erik; Eisenga, Michele F; Beckmann, Bibiana; Bakker, Stephan J L; Tsikas, Dimitrios

    2017-02-01

    Urinary nitrite and malondialdehyde (MDA) are biomarkers of nitrosative and oxidative stress, respectively. At physiological pH values of urine and plasma, nitrite and MDA exist almost entirely in their dissociated forms, i.e., as ONO - (ONOH, pK a =3.4) and - CH(CHO) 2 (CH 2 (CHO) 2 , pK a =4.5). Previously, we reported that nitrite and MDA react with pentafluorobenzyl (PFB) bromide (PFB-Br) in aqueous acetone. Here, we report on the simultaneous derivatization of nitrite and MDA and their stable-isotope labeled analogs O 15 NO - (4μM) and CH 2 (CDO) 2 (1μM or 10μM) with PFB-Br (10μL) to PFBNO 2 , PFB 15 NO 2 , C(PFB) 2 (CHO) 2 ), C(PFB) 2 (CDO) 2 by heating acetonic urine (urine-acetone, 100:400μL) for 60min at 50°C. After acetone evaporation under a stream of nitrogen, derivatives were extracted with ethyl acetate (1mL). A 1-μL aliquot of the ethyl acetate phase dried over anhydrous Na 2 SO 4 was injected in the splitless mode for simultaneous GC-MS analysis in the electron capture negative-ion chemical ionization mode. Quantification was performed by selected-ion monitoring (SIM) the anions [M-PFB] - m/z 46 for ONO - , m/z 47 for O 15 NO - , m/z 251 for - C(PFB)(CHO) 2 , and m/z 253 for - C(PFB)(CDO) 2 . The retention times were 3.18min for PFB-ONO 2 /PFB-O 15 NO 2 , and 7.13min for - C(PFB)(CHO) 2 / - C(PFB)(CDO) 2 . Use of CH 2 (CDO) 2 at 1μM but not at 10μM was associated with an unknown interference with the C(PFB) 2 (CDO) 2 peak. Endogenous MDA can be quantified using O 15 NO - (4μM) and CH 2 (CDO) 2 (10μM) as the internal standards. The method is also useful for the measurement of nitrate and creatinine in addition to nitrite and MDA. Nitrite and MDA were measured by this method in urine of elderly healthy subjects (10 females, 9 males; age, 60-70 years; BMI, 25-30kg/m 2 ). Creatinine-corrected excretion rates did not differ between males and females for MDA (62.6 [24-137] vs 80.2 [52-118]nmol/mmol, P=0.448) and for nitrite (102 [71-174] vs

  4. Gene expression profiles deciphering rice phenotypic variation between Nipponbare (Japonica and 93-11 (Indica during oxidative stress.

    Directory of Open Access Journals (Sweden)

    Fengxia Liu

    Full Text Available Rice is a very important food staple that feeds more than half the world's population. Two major Asian cultivated rice (Oryza sativa L. subspecies, japonica and indica, show significant phenotypic variation in their stress responses. However, the molecular mechanisms underlying this phenotypic variation are still largely unknown. A common link among different stresses is that they produce an oxidative burst and result in an increase of reactive oxygen species (ROS. In this study, methyl viologen (MV as a ROS agent was applied to investigate the rice oxidative stress response. We observed that 93-11 (indica seedlings exhibited leaf senescence with severe lesions under MV treatment compared to Nipponbare (japonica. Whole-genome microarray experiments were conducted, and 1,062 probe sets were identified with gene expression level polymorphisms between the two rice cultivars in addition to differential expression under MV treatment, which were assigned as Core Intersectional Probesets (CIPs. These CIPs were analyzed by gene ontology (GO and highlighted with enrichment GO terms related to toxin and oxidative stress responses as well as other responses. These GO term-enriched genes of the CIPs include glutathine S-transferases (GSTs, P450, plant defense genes, and secondary metabolism related genes such as chalcone synthase (CHS. Further insertion/deletion (InDel and regulatory element analyses for these identified CIPs suggested that there may be some eQTL hotspots related to oxidative stress in the rice genome, such as GST genes encoded on chromosome 10. In addition, we identified a group of marker genes individuating the japonica and indica subspecies. In summary, we developed a new strategy combining biological experiments and data mining to study the possible molecular mechanism of phenotypic variation during oxidative stress between Nipponbare and 93-11. This study will aid in the analysis of the molecular basis of quantitative traits.

  5. Effects of long-term football training on the expression profile of genes involved in muscle oxidative metabolism

    DEFF Research Database (Denmark)

    Alfieri, A; Martone, D; Randers, Morten Bredsgaard

    2015-01-01

    and a muscle biopsy from the vastus lateralis were collected at T0 (pre intervention) and at T1 (post intervention). Gene expression was measured by RTqPCR on RNA extracted from muscle biopsies. The expression levels of the genes principally involved in energy metabolism (PPARγ, adiponectin, AMPKα1/α2, TFAM...... to improve the expression of muscle molecular biomarkers that are correlated to oxidative metabolism in healthy males....... are directly or indirectly involved in the glucose and lipid oxidative metabolism. Multiple linear regression analysis revealed that fat percentage was independently associated with NAMPT, PPARγ and adiponectin expression. In conclusion, long-term recreational football training could be a useful tool...

  6. Intake of Red Wine in Different Meals Modulates Oxidized LDL Level, Oxidative and Inflammatory Gene Expression in Healthy People: A Randomized Crossover Trial

    Directory of Open Access Journals (Sweden)

    Laura Di Renzo

    2014-01-01

    Full Text Available Several studies have found that adherence to the Mediterranean Diet, including consumption of red wine, is associated with beneficial effects on oxidative and inflammatory conditions. We evaluate the outcome of consumption of a McDonald’s Meal (McD and a Mediterranean Meal (MM, with and without the additive effect of red wine, in order to ascertain whether the addition of the latter has a positive impact on oxidized (ox- LDL and on expression of oxidative and inflammatory genes. A total of 24 subjects were analyzed for ox-LDL, CAT, GPX1, SOD2, SIRT2, and CCL5 gene expression levels, before and after consumption of the 4 different meal combinations with washout intervals between each meal. When red wine is associated with McD or MM, values of ox-LDL are lowered (P<0.05 and expression of antioxidant genes is increased, while CCL5 expression is decreased (P<0.05. SIRT2 expression after MM and fasting with red wine is significantly correlated with downregulation of CCL5 and upregulation of CAT (P<0.001. GPX1 increased significantly in the comparison between baseline and all conditions with red wine. We highlighted for the first time the positive effect of red wine intake combined with different but widely consumed meal types on ox-LDL and gene expression. Trial Registration. This trial is registered with ClinicalTrials.gov NCT01890070.

  7. Intake of Red Wine in Different Meals Modulates Oxidized LDL Level, Oxidative and Inflammatory Gene Expression in Healthy People: A Randomized Crossover Trial

    Science.gov (United States)

    Di Renzo, Laura; Valente, Roberto; Colica, Carmen

    2014-01-01

    Several studies have found that adherence to the Mediterranean Diet, including consumption of red wine, is associated with beneficial effects on oxidative and inflammatory conditions. We evaluate the outcome of consumption of a McDonald's Meal (McD) and a Mediterranean Meal (MM), with and without the additive effect of red wine, in order to ascertain whether the addition of the latter has a positive impact on oxidized (ox-) LDL and on expression of oxidative and inflammatory genes. A total of 24 subjects were analyzed for ox-LDL, CAT, GPX1, SOD2, SIRT2, and CCL5 gene expression levels, before and after consumption of the 4 different meal combinations with washout intervals between each meal. When red wine is associated with McD or MM, values of ox-LDL are lowered (P < 0.05) and expression of antioxidant genes is increased, while CCL5 expression is decreased (P < 0.05). SIRT2 expression after MM and fasting with red wine is significantly correlated with downregulation of CCL5 and upregulation of CAT (P < 0.001). GPX1 increased significantly in the comparison between baseline and all conditions with red wine. We highlighted for the first time the positive effect of red wine intake combined with different but widely consumed meal types on ox-LDL and gene expression. Trial Registration. This trial is registered with ClinicalTrials.gov NCT01890070. PMID:24876915

  8. Influence of nitrous oxide anesthesia, B-vitamins, and MTHFR gene polymorphisms on perioperative cardiac events: the vitamins in nitrous oxide (VINO) randomized trial.

    Science.gov (United States)

    Nagele, Peter; Brown, Frank; Francis, Amber; Scott, Mitchell G; Gage, Brian F; Miller, J Philip

    2013-07-01

    Nitrous oxide causes an acute increase in plasma homocysteine that is more pronounced in patients with the methylenetetrahydrofolate reductase (MTHFR) C677T or A1298C gene variant. In this randomized controlled trial, the authors sought to determine whether patients carrying the MTHFR C677T or A1298C variant had a higher risk for perioperative cardiac events after nitrous oxide anesthesia and whether this risk could be mitigated by B-vitamins. The authors randomized adult patients with cardiac risk factors undergoing noncardiac surgery, to receive nitrous oxide plus intravenous B-vitamins before and after surgery, or to nitrous oxide and placebo. Serial cardiac biomarkers and 12-lead electrocardiograms were obtained. The primary study endpoint was the incidence of myocardial injury, as defined by cardiac troponin I increase within the first 72 h after surgery. A total of 500 patients completed the trial. Patients who were homozygous for either MTHFR C677T, or A1298C gene variant (n=98; 19.6%) had no increased rate of postoperative cardiac troponin I increase compared with wild-type and heterozygous patients (11.2 vs. 14.0%; relative risk 0.96; 95% CI, 0.85-1.07; P=0.48). B-vitamins blunted the rise in homocysteine, but had no effect on cardiac troponin I increase compared with patients receiving placebo (13.2 vs. 13.6%; relative risk 1.02; 95% CI 0.78 to 1.32; P=0.91). Neither MTHFR C677T and A1298C gene variant, nor acute homocysteine increase are associated with perioperative cardiac troponin increase after nitrous oxide anesthesia. B-vitamins blunt nitrous oxide-induced homocysteine increase but have no effect on cardiac troponin I increase.

  9. Nitrous oxide production and consumption: regulation of gene expression by gas-sensitive transcription factors

    Science.gov (United States)

    Spiro, Stephen

    2012-01-01

    Several biochemical mechanisms contribute to the biological generation of nitrous oxide (N2O). N2O generating enzymes include the respiratory nitric oxide (NO) reductase, an enzyme from the flavo-diiron family, and flavohaemoglobin. On the other hand, there is only one enzyme that is known to use N2O as a substrate, which is the respiratory N2O reductase typically found in bacteria capable of denitrification (the respiratory reduction of nitrate and nitrite to dinitrogen). This article will briefly review the properties of the enzymes that make and consume N2O, together with the accessory proteins that have roles in the assembly and maturation of those enzymes. The expression of the genes encoding the enzymes that produce and consume N2O is regulated by environmental signals (typically oxygen and NO) acting through regulatory proteins, which, either directly or indirectly, control the frequency of transcription initiation. The roles and mechanisms of these proteins, and the structures of the regulatory networks in which they participate will also be reviewed. PMID:22451107

  10. Nitrous oxide production and consumption: regulation of gene expression by gas-sensitive transcription factors.

    Science.gov (United States)

    Spiro, Stephen

    2012-05-05

    Several biochemical mechanisms contribute to the biological generation of nitrous oxide (N(2)O). N(2)O generating enzymes include the respiratory nitric oxide (NO) reductase, an enzyme from the flavo-diiron family, and flavohaemoglobin. On the other hand, there is only one enzyme that is known to use N(2)O as a substrate, which is the respiratory N(2)O reductase typically found in bacteria capable of denitrification (the respiratory reduction of nitrate and nitrite to dinitrogen). This article will briefly review the properties of the enzymes that make and consume N(2)O, together with the accessory proteins that have roles in the assembly and maturation of those enzymes. The expression of the genes encoding the enzymes that produce and consume N(2)O is regulated by environmental signals (typically oxygen and NO) acting through regulatory proteins, which, either directly or indirectly, control the frequency of transcription initiation. The roles and mechanisms of these proteins, and the structures of the regulatory networks in which they participate will also be reviewed.

  11. Oxidative stress/reactive metabolite gene expression signature in rat liver detects idiosyncratic hepatotoxicants

    Energy Technology Data Exchange (ETDEWEB)

    Leone, Angelique; Nie, Alex; Brandon Parker, J.; Sawant, Sharmilee; Piechta, Leigh-Anne; Kelley, Michael F., E-mail: mkelley2@its.jnj.com; Mark Kao, L.; Jim Proctor, S.; Verheyen, Geert; Johnson, Mark D.; Lord, Peter G.; McMillian, Michael K.

    2014-03-15

    Previously we reported a gene expression signature in rat liver for detecting a specific type of oxidative stress (OS) related to reactive metabolites (RM). High doses of the drugs disulfiram, ethinyl estradiol and nimesulide were used with another dozen paradigm OS/RM compounds, and three other drugs flutamide, phenacetin and sulindac were identified by this signature. In a second study, antiepileptic drugs were compared for covalent binding and their effects on OS/RM; felbamate, carbamazepine, and phenobarbital produced robust OS/RM gene expression. In the present study, liver RNA samples from drug-treated rats from more recent experiments were examined for statistical fit to the OS/RM signature. Of all 97 drugs examined, in addition to the nine drugs noted above, 19 more were identified as OS/RM-producing compounds—chlorpromazine, clozapine, cyproterone acetate, dantrolene, dipyridamole, glibenclamide, isoniazid, ketoconazole, methapyrilene, naltrexone, nifedipine, sulfamethoxazole, tamoxifen, coumarin, ritonavir, amitriptyline, valproic acid, enalapril, and chloramphenicol. Importantly, all of the OS/RM drugs listed above have been linked to idiosyncratic hepatotoxicity, excepting chloramphenicol, which does not have a package label for hepatotoxicity, but does have a black box warning for idiosyncratic bone marrow suppression. Most of these drugs are not acutely toxic in the rat. The OS/RM signature should be useful to avoid idiosyncratic hepatotoxicity of drug candidates. - Highlights: • 28 of 97 drugs gave a positive OS/RM gene expression signature in rat liver. • The specificity of the signature for human idiosyncratic hepatotoxicants was 98%. • The sensitivity of the signature for human idiosyncratic hepatotoxicants was 75%. • The signature can help eliminate hepatotoxicants from drug development.

  12. Forearm vascular response to nitric oxide and calcitonin gene-related peptide: comparison between migraine patients and control subjects.

    NARCIS (Netherlands)

    Hoon, J.N. de; Smits, P.; Troost, J.; Struijker-Boudier, H.A.; Bortel, L.M. van

    2006-01-01

    The forearm vascular response to nitric oxide (NO) and calcitonin gene-related peptide (CGRP) was investigated in 10 migraine patients and 10 matched control subjects. Changes in forearm blood flow (FBF) during intrabrachial infusion of: (i) serotonin (releasing endogenous NO), (ii) sodium

  13. Influence of Nitrous Oxide Anesthesia, B-Vitamins, and MTHFR gene polymorphisms on Perioperative Cardiac Events: The Vitamins in Nitrous Oxide (VINO) Randomized Trial

    Science.gov (United States)

    Nagele, Peter; Brown, Frank; Francis, Amber; Scott, Mitchell G.; Gage, Brian F.; Miller, J. Philip

    2013-01-01

    Background Nitrous oxide causes an acute increase in plasma homocysteine that is more pronounced in patients with the MTHFR C677T or A1298C gene variant. In this randomized controlled trial we sought to determine if patients carrying the MTHFR C677T or A1298C variant had a higher risk for perioperative cardiac events after nitrous oxide anesthesia and if this risk could be mitigated by B-vitamins. Methods We randomized adult patients with cardiac risk factors undergoing noncardiac surgery to receive nitrous oxide plus intravenous B-vitamins before and after surgery or to nitrous oxide and placebo. Serial cardiac biomarkers and 12-lead electrocardiograms were obtained. The primary study endpoint was the incidence of myocardial injury, as defined by cardiac troponin I elevation within the first 72 hours after surgery. Results A total of 500 patients completed the trial. Patients who were homozygous for either MTHFR C677T or A1298C gene variant (n= 98; 19.6%) had no increased rate of postoperative cardiac troponin I elevation compared to wild-type and heterozygous patients (11.2% vs. 14.0%; relative risk 0.96, 95% CI 0.85 to 1.07, p=0.48). B-vitamins blunted the rise in homocysteine, but had no effect on cardiac troponin I elevation compared to patients receiving placebo (13.2% vs. 13.6%; relative risk 1.02, 95% CI 0.78 to 1.32, p=0.91). Conclusions Neither MTHFR C677T and A1298C gene variant nor acute homocysteine increase are associated with perioperative cardiac troponin elevation after nitrousoxide anesthesia. B-vitamins blunt nitrous oxide-induced homocysteine increase but have no effect on cardiac troponin elevation. PMID:23856660

  14. Detection of Promyelocytic Leukemia/Retinoic Acid Receptor α (PML/RARα Fusion Gene with Functionalized Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Hongwei Wang

    2013-06-01

    Full Text Available An attempt was made to use functionalized graphene oxide (GO to detect the Promyelocytic leukemia/Retinoic acid receptor α fusion gene (PML/RARα fusion gene, a marker gene of acute promyelocytic leukemia. The functionalized GO was prepared by chemical exfoliation method, followed by a polyethylene glycol grafting. It is found that the functionalized GO can selectively adsorb the fluorescein isothiocyanate (FITC-labeled single-stranded DNA probe and quench its fluorescence. The probe can be displaced by the PML/RARα fusion gene to restore the fluorescence, which can be detected by laser confocal microscopy and flow cytometry. These can be used to detect the presence of the PML/RARα fusion gene. This detection method is verified to be fast, simple and reliable.

  15. Regulatory role of tetR gene in a novel gene cluster of Acidovorax avenae subsp. avenae RS-1 under oxidative stress

    OpenAIRE

    Liu, He; Yang, Chun-Lan; Ge, Meng-Yu; Ibrahim, Muhammad; Li, Bin; Zhao, Wen-Jun; Chen, Gong-You; Zhu, Bo; Xie, Guan-Lin

    2014-01-01

    Acidovorax avenae subsp. avenae is the causal agent of bacterial brown stripe disease in rice. In this study, we characterized a novel horizontal transfer of a gene cluster, including tetR, on the chromosome of A. avenae subsp. avenae RS-1 by genome-wide analysis. TetR acted as a repressor in this gene cluster and the oxidative stress resistance was enhanced in tetR-deletion mutant strain. Electrophoretic mobility shift assay demonstrated that TetR regulator bound directly to the promoter of ...

  16. Alteration in the expression of antioxidant and detoxification genes in Chironomus riparius exposed to zinc oxide nanoparticles.

    Science.gov (United States)

    Gopalakrishnan Nair, Prakash M; Chung, Ill Min

    2015-12-01

    Zinc oxide nanoparticles (ZnONPs) are widely used in several commercial products due to their unique physicochemical properties. However, their release into the aquatic environments through various anthropogenic activities will lead to toxic effect in aquatic organisms. Although several investigations have been reported on the effect of ZnONPs in aquatic organisms using traditional end points such as survival, growth, and reproduction, the molecular level end points are faster and sensitive. In this study, the expression of different genes involved in oxidative stress response, detoxification, and cellular defense was studied in an ecotoxicologically important bio-monitoring organism Chironomus riparius in order to understand the subcellular effects of ZnONPs. The fourth instar larvae were exposed to 0, 0.2, 2, 10, and 20 mg/L of ZnONPs and Zn ions (in the form of ZnSO4.7H2O) for 24 and 48 h period. The expression of CuZn superoxide dismutase, manganese superoxide dismutase, catalase, phospholipid hydroperoxide glutathione peroxidase, thioredoxin reductase 1 and delta-3, sigma-4 and epsilon-1 classes of glutathione S-transferases, cytochrome p4509AT2, and heat shock protein 70 were studied using real-time polymerase chain reaction method. Gene expression results showed that the expression of genes related to oxidative stress response was more pronounced as a result of ZnONPs exposure as compared to Zn ions. The mRNA expression of genes involved in detoxification and cellular protection was also modulated. Significantly higher expression levels of oxidative stress-related genes shows that oxidative stress is an important mechanism of toxicity as a result of ZnONPs exposure in C. riparius. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Citrus nobiletin suppresses inducible nitric oxide synthase gene expression in interleukin-1β-treated hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshigai, Emi [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Machida, Toru [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Okuyama, Tetsuya [Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Mori, Masatoshi; Murase, Hiromitsu; Yamanishi, Ryota [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Okumura, Tadayoshi [Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga (Japan); Department of Surgery, Kansai Medical University, Hirakata, Osaka (Japan); Ikeya, Yukinobu [Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga (Japan); Nishino, Hoyoku [Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Department of Biochemistry, Kyoto Prefectural University of Medicine, Kyoto (Japan); Nishizawa, Mikio, E-mail: nishizaw@sk.ritsumei.ac.jp [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan)

    2013-09-13

    Highlights: •Nobiletin is a polymethoxylated flavone that is abundant in citrus peels. •Nobiletin is a major constituent of the Citrus unshiu peel extract. •Nobiletin suppresses induction of NO and reduces iNOS expression in hepatocytes. •Nobiletin reduces the iNOS promoter activity and the DNA-binding activity of NF-κB. -- Abstract: Background: Nobiletin is a polymethoxylated flavone that is abundant in the peels of citrus fruits, such as Citrus unshiu (Satsuma mandarin) and Citrus sinensis. The dried peels of C. unshiu (chinpi) have been included in several formulae of Japanese Kampo medicines. Nobiletin may suppress the induction of inducible nitric oxide synthase (iNOS), which synthesizes the inflammatory mediator nitric oxide (NO) in hepatocytes. Methods: A C. unshiu peel (CUP) extract was prepared. Primary cultured rat hepatocytes were treated with the CUP extract or nobiletin in the presence of interleukin 1β (IL-1β), which induces iNOS expression. NO production and iNOS gene expression were analyzed. Results: High-performance liquid chromatography analyses revealed that the nobiletin content in the CUP extract was 0.14%. Nobiletin dose-dependently reduced the NO levels and decreased iNOS expression at the protein, mRNA and antisense transcript levels. Flavone, which does not contain any methoxy groups, also suppressed iNOS induction. Nobiletin reduced the transcriptional activity of iNOS promoter-luciferase constructs and the DNA-binding activity of nuclear factor κB (NF-κB) in the nuclei. Conclusions: The suppression of iNOS induction by nobiletin suggests that nobiletin may be responsible for the anti-inflammatory effects of citrus peels and have a therapeutic potential for liver diseases.

  18. DISRUPTION OF ARABIDOPSIS RETICULON GENE RTNLB16 RESULTS IN CHLOROPLAST DYSFUNCTION AND OXIDATIVE STRESS

    Directory of Open Access Journals (Sweden)

    Tarasenko V.I.

    2012-08-01

    dysfunction and resembles the phenotype of plants with inactivated genes encoding chloroplast proteins. The study of reactive oxygen species (ROS level revealed the significantly elevated superoxide content in the mutant plant leaves. Moreover, the measurement of enzymatic activity of different superoxide dismutase isoforms showed an increased level of CuZnSOD which is localized predominantly in chloroplasts. At the same time, the level of mitochondria-localized MnSOD remained unchanged. This fact also points to chloroplasts as a potential source of increased ROS content in mutant plants. To test this hypothesis, we studied the ROS level in the guard cells of mutant and wild-type plants. As a result, the significant increase of chloroplast-derived ROS content in guard cells of mutant plants was showed. Therefore, we conclude that an inactivation of the RTNLB16 gene leads to severe defects in chloroplast functioning and assotiated oxidative stress. We suppose that RTNLB16 protein participates in interactions between chloroplasts and other intracellular structures.

  19. Distribution of microbial arsenic reduction, oxidation and extrusion genes along a wide range of environmental arsenic concentrations.

    Directory of Open Access Journals (Sweden)

    Lorena V Escudero

    Full Text Available The presence of the arsenic oxidation, reduction, and extrusion genes arsC, arrA, aioA, and acr3 was explored in a range of natural environments in northern Chile, with arsenic concentrations spanning six orders of magnitude. A combination of primers from the literature and newly designed primers were used to explore the presence of the arsC gene, coding for the reduction of As (V to As (III in one of the most common detoxification mechanisms. Enterobacterial related arsC genes appeared only in the environments with the lowest As concentration, while Firmicutes-like genes were present throughout the range of As concentrations. The arrA gene, involved in anaerobic respiration using As (V as electron acceptor, was found in all the systems studied. The As (III oxidation gene aioA and the As (III transport gene acr3 were tracked with two primer sets each and they were also found to be spread through the As concentration gradient. Sediment samples had a higher number of arsenic related genes than water samples. Considering the results of the bacterial community composition available for these samples, the higher microbial phylogenetic diversity of microbes inhabiting the sediments may explain the increased number of genetic resources found to cope with arsenic. Overall, the environmental distribution of arsenic related genes suggests that the occurrence of different ArsC families provides different degrees of protection against arsenic as previously described in laboratory strains, and that the glutaredoxin (Grx-linked arsenate reductases related to Enterobacteria do not confer enough arsenic resistance to live above certain levels of As concentrations.

  20. Air pollution alters brain and pituitary endothelin-1 and inducible nitric oxide synthase gene expression.

    Science.gov (United States)

    Thomson, Errol M; Kumarathasan, Prem; Calderón-Garcidueñas, Lilian; Vincent, Renaud

    2007-10-01

    Recent work suggests that air pollution is a risk factor for cerebrovascular and neurodegenerative disease. Effects of inhaled pollutants on the production of vasoactive factors such as endothelin (ET) and nitric oxide (NO) in the brain may be relevant to disease pathogenesis. Inhaled pollutants increase circulating levels of ET-1 and ET-3, and the pituitary is a potential source of plasma ET, but the effects of pollutants on the expression of ET and NO synthase genes in the brain and pituitary are not known. In the present study, Fischer-344 rats were exposed by nose-only inhalation to particles (0, 5, 50mg/m3 EHC-93), ozone (0, 0.4, 0.8 ppm), or combinations of particles and ozone for 4 h. Real-time reverse transcription polymerase chain reaction was used to measure mRNA levels in the cerebral hemisphere and pituitary 0 and 24 h post-exposure. Ozone inhalation significantly increased preproET-1 but decreased preproET-3 mRNAs in the cerebral hemisphere, while increasing mRNA levels of preproET-1, preproET-3, and the ET-converting enzyme (ECE)-1 in the pituitary. Inducible NO synthase (iNOS) was initially decreased in the cerebral hemisphere after ozone inhalation, but increased 24 h post-exposure. Particles decreased tumour necrosis factor (TNF)-alpha mRNA in the cerebral hemisphere, and both particles and ozone decreased TNF-alpha mRNA in the pituitary. Our results show that ozone and particulate matter rapidly modulate the expression of genes involved in key vasoregulatory pathways in the brain and pituitary, substantiating the notion that inhaled pollutants induce cerebrovascular effects.

  1. Association of Nitric Oxide Synthase2 gene polymorphisms with leprosy reactions in northern Indian population.

    Science.gov (United States)

    Dubey, Amit; Biswas, Sanjay Kumar; Sinha, Ekata; Chakma, Joy Kumar; Kamal, Raj; Arora, Mamta; Sagar, Harish; Natarajan, Mohan; Bhagyawant, Sameer S; Mohanty, Keshar Kunja

    2017-07-01

    The pathogen Mycobacterium leprae causes leprosy that affects mainly skin and nerves. Polymorphisms of certain genes are substantiated to be associated with the susceptibility/resistance to leprosy. The present investigation addressed the association of Nitric Oxide Synthase2 gene polymorphisms and leprosy in a population from northern part of India. A total of 323 leprosy cases and 288 healthy controls were genotyped for four NOS2 promoter variants (rs1800482, rs2779249, rs8078340 and rs2301369) using FRET technology in Real Time PCR. None of these SNPs in promoter sites was associated with susceptibility/resistance to leprosy. NOS2 rs1800482 was found to be monomorphic with GG genotype. However, NOS2-1026T allele was observed to be in higher frequency with leprosy cases (BL and LL) who were not suffering from any reactional episodes compared to cases with ENL reaction {OR=0.30, 95% CI (0.10-0.86), p=0.024}. NOS2-1026GT genotype was more prevalent in cases without reaction (BT, BB and BL) compared to RR reactional patients {OR=0.38, 95% CI (0.17-0.86), p=0.02}. Although haplotype analysis revealed that no haplotype was associated with leprosy susceptibility/resistance with statistical significance, GTG haplotype was noted to be more frequent in healthy controls. These SNPs are observed to be in linkage disequilibrium. Although, these SNPs are not likely to influence leprosy vulnerability, -1026G>T SNP was indicated to have noteworthy role in leprosy reactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Frequency of polymorphism -262 c/t in catalase gene and oxidative damage in Slovak children with bronchial asthma.

    Science.gov (United States)

    Babusikova, Eva; Jesenak, Milos; Evinova, Andrea; Banovcin, Peter; Dobrota, Dusan

    2013-12-01

    Bronchial asthma is a complex disease in which genetic factors, environmental factors and oxidative damage are responsible for the initiation and modulation of disease progression. If antioxidant mechanisms fail, reactive oxygen species damage the biomolecules followed by progression of the disease. Catalase is one of the most important endogenous enzymatic antioxidants. In the present study, we examined the hypothesis that increased oxidative damage and polymorphism in the CAT gene (-262 promoter region, C/T) are associated with childhood bronchial asthma. Genotyping of the polymorphisms in the CAT gene in healthy (249) and asthmatic children (248) was performed using polymerase chain reaction-restriction fragment length polymorphism. Markers of oxidative damage: content of sulfhydryl groups and thiobarbituric acid-reactive substances were determined by spectrophotometry in children. The TT genotype of catalase was more frequent among the asthmatic patients (22.6%) than in healthy children (4.8%) (odds ratio=5.63; 95% confidence interval=2.93-10.81, P<.001). The amount of sulfhydryl groups decreased significantly and conversely, the content of thiobarbituric acid-reactive substances increased significantly in bronchial asthma and in catalase TT genotype compared to other catalase genotypes of this gene. These results suggest that catalase polymorphism might participate in development of bronchial asthma and in enhanced oxidative damage in asthmatic children. Genetic variation of enzymatic antioxidants may modulate disease risk. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  3. DNA damage and defence gene expression after oxidative stress induced by x-rays and diesel exhaust particles

    International Nuclear Information System (INIS)

    Risom, Lotte

    2004-01-01

    Particulate air pollution is one the most important environmental health factors for people living in cities. Especially the exhaust particles from traffic are possible causes for cancer and cardiopulmonary diseases. The aim of this thesis was to characterize the health effects of diesel exhaust particles (DEP) by inducing oxidative stress and analyse the underlying mechanisms. Methods for determining oxidative stress, DNA damage, and gene expression were validated and calibrated in lung tissue by studying the dose response relations after ionizing radiation. The study showed the feasibility of partial-body x-ray irradiation as an in vivo model for induction and repair of oxidative DNA damage, of DNA repair enzymes expression, and antioxidant defense genes. A 'nose-only' mouse model for inhalation of ultra-fine particles showed that particles induce oxidative DNA damage in lung tissue and in bronchoalveolar lavage cells. The exposure increased the expression of HO-1 mRNA and oxoguanine DNA glycosylase OGG1 mRNA. The levels of 8-oxodG and OGG1 mRNA were mirror images. Colon and liver were analysed after administration of DEP in the diet with or without increasing doses of sucrose. This study indicated that DEP induces DNA adducts and oxidative stress through formation of DNA strand breaks, DNA repair enzyme expression, apoptosis, and protein oxidisation in colon and liver at relatively low exposure doses. The thesis is based on four published journal articles. (ln)

  4. DNA damage and defence gene expression after oxidative stress induced by x-rays and diesel exhaust particles

    Energy Technology Data Exchange (ETDEWEB)

    Risom, Lotte

    2004-07-01

    Particulate air pollution is one the most important environmental health factors for people living in cities. Especially the exhaust particles from traffic are possible causes for cancer and cardiopulmonary diseases. The aim of this thesis was to characterize the health effects of diesel exhaust particles (DEP) by inducing oxidative stress and analyse the underlying mechanisms. Methods for determining oxidative stress, DNA damage, and gene expression were validated and calibrated in lung tissue by studying the dose response relations after ionizing radiation. The study showed the feasibility of partial-body x-ray irradiation as an in vivo model for induction and repair of oxidative DNA damage, of DNA repair enzymes expression, and antioxidant defense genes. A 'nose-only' mouse model for inhalation of ultra-fine particles showed that particles induce oxidative DNA damage in lung tissue and in bronchoalveolar lavage cells. The exposure increased the expression of HO-1 mRNA and oxoguanine DNA glycosylase OGG1 mRNA. The levels of 8-oxodG and OGG1 mRNA were mirror images. Colon and liver were analysed after administration of DEP in the diet with or without increasing doses of sucrose. This study indicated that DEP induces DNA adducts and oxidative stress through formation of DNA strand breaks, DNA repair enzyme expression, apoptosis, and protein oxidisation in colon and liver at relatively low exposure doses. The thesis is based on four published journal articles. (ln)

  5. Comparative Genomic Analysis of Neutrophilic Iron(II Oxidizer Genomes for Candidate Genes in Extracellular Electron Transfer

    Directory of Open Access Journals (Sweden)

    Shaomei He

    2017-08-01

    Full Text Available Extracellular electron transfer (EET is recognized as a key biochemical process in circumneutral pH Fe(II-oxidizing bacteria (FeOB. In this study, we searched for candidate EET genes in 73 neutrophilic FeOB genomes, among which 43 genomes are complete or close-to-complete and the rest have estimated genome completeness ranging from 5 to 91%. These neutrophilic FeOB span members of the microaerophilic, anaerobic phototrophic, and anaerobic nitrate-reducing FeOB groups. We found that many microaerophilic and several anaerobic FeOB possess homologs of Cyc2, an outer membrane cytochrome c originally identified in Acidithiobacillus ferrooxidans. The “porin-cytochrome c complex” (PCC gene clusters homologous to MtoAB/PioAB are present in eight FeOB, accounting for 19% of complete and close-to-complete genomes examined, whereas PCC genes homologous to OmbB-OmaB-OmcB in Geobacter sulfurreducens are absent. Further, we discovered gene clusters that may potentially encode two novel PCC types. First, a cluster (tentatively named “PCC3” encodes a porin, an extracellular and a periplasmic cytochrome c with remarkably large numbers of heme-binding motifs. Second, a cluster (tentatively named “PCC4” encodes a porin and three periplasmic multiheme cytochromes c. A conserved inner membrane protein (IMP encoded in PCC3 and PCC4 gene clusters might be responsible for translocating electrons across the inner membrane. Other bacteria possessing PCC3 and PCC4 are mostly Proteobacteria isolated from environments with a potential niche for Fe(II oxidation. In addition to cytochrome c, multicopper oxidase (MCO genes potentially involved in Fe(II oxidation were also identified. Notably, candidate EET genes were not found in some FeOB, especially the anaerobic ones, probably suggesting EET genes or Fe(II oxidation mechanisms are different from the searched models. Overall, based on current EET models, the search extends our understanding of bacterial EET and

  6. Polymorphisms in nitric oxide synthase and endothelin genes among children with obstructive sleep apnea.

    Science.gov (United States)

    Chatsuriyawong, Siriporn; Gozal, David; Kheirandish-Gozal, Leila; Bhattacharjee, Rakesh; Khalyfa, Ahamed A; Wang, Yang; Sukhumsirichart, Wasana; Khalyfa, Abdelnaby

    2013-09-06

    Obstructive sleep apnea (OSA) is associated with adverse and interdependent cognitive and cardiovascular consequences. Increasing evidence suggests that nitric oxide synthase (NOS) and endothelin family (EDN) genes underlie mechanistic aspects of OSA-associated morbidities. We aimed to identify single nucleotide polymorphisms (SNPs) in the NOS family (3 isoforms), and EDN family (3 isoforms) to identify potential associations of these SNPs in children with OSA. A pediatric community cohort (ages 5-10 years) enriched for snoring underwent overnight polysomnographic (NPSG) and a fasting morning blood draw. The diagnostic criteria for OSA were an obstructive apnea-hypopnea Index (AHI) >2/h total sleep time (TST), snoring during the night, and a nadir oxyhemoglobin saturation DNA from peripheral blood was extracted and allelic frequencies were assessed for, NOS1 (209 SNPs), NOS2 (122 SNPs), NOS3 (50 SNPs), EDN1 (43 SNPs), EDN2 (48 SNPs), EDN3 (14 SNPs), endothelin receptor A, EDNRA, (27 SNPs), and endothelin receptor B, EDNRB (23 SNPs) using a custom SNPs array. The relative frequencies of NOS-1,-2, and -3, and EDN-1,-2,-3,-EDNRA, and-EDNRB genotypes were evaluated in 608 subjects [128 with OSA, and 480 without OSA (NOSA)]. Furthermore, subjects with OSA were divided into 2 subgroups: OSA with normal endothelial function (OSA-NEF), and OSA with endothelial dysfunction (OSA-ED). Linkage disequilibrium was analyzed using Haploview version 4.2 software. For NOSA vs. OSA groups, 15 differentially distributed SNPs for NOS1 gene, and 1 SNP for NOS3 emerged, while 4 SNPs for EDN1 and 1 SNP for both EDN2 and EDN3 were identified. However, in the smaller sub-group for whom endothelial function was available, none of the significant SNPs was retained due to lack of statistical power. Differences in the distribution of polymorphisms among NOS and EDN gene families suggest that these SNPs could play a contributory role in the pathophysiology and risk of OSA-induced cardiovascular

  7. Simple and label-free electrochemical impedance Amelogenin gene hybridization biosensing based on reduced graphene oxide.

    Science.gov (United States)

    Benvidi, Ali; Rajabzadeh, Nooshin; Mazloum-Ardakani, Mohammad; Heidari, Mohammad Mehdi; Mulchandani, Ashok

    2014-08-15

    The increasing desire for sensitive, easy, low-cost, and label free methods for the detection of DNA sequences has become a vital matter in biomedical research. For the first time a novel label-free biosensor for sensitive detection of Amelogenin gene (AMEL) using reduced graphene oxide modified glassy carbon electrode (GCE/RGO) has been developed. In this work, detection of DNA hybridization of the target and probe DNA was investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The optimum conditions were found for the immobilization of probe on RGO surface and its hybridization with the target DNA. CV and EIS carried out in an aqueous solution containing [Fe(CN)6](3-/4-) redox pair have been used for the biosensor characterization. The biosensor has a wide linear range from 1.0×10(-20) to 1.0×10(-14)M with the lower detection limit of 3.2×10(-21)M. Moreover, the present electrochemical detection offers some unique advantages such as ultrahigh sensitivity, simplicity, and feasibility for apparatus miniaturization in analytical tests. The excellent performance of the biosensor is attributed to large surface-to-volume ratio and high conductivity of RGO, which enhances the probe absorption and promotes direct electron transfer between probe and the electrode surface. This electrochemical DNA sensor could be used for the detection of specific ssDNA sequence in real biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Oxidative stress and gene expression of earthworm (Eisenia fetida) to clothianidin.

    Science.gov (United States)

    Liu, Tong; Wang, Xiuguo; You, Xiangwei; Chen, Dan; Li, Yiqiang; Wang, Fenglong

    2017-08-01

    Neonicotinoid insecticides have become the most widely used pesticides in the world. Clothianidin is a novel neonicotinoid insecticide with a thiazolyl ring that exhibits excellent biological efficacy against a variety of pests. In the present study, the oxidative stress and genotoxicity of clothianidin on earthworms were evaluated. Moreover, the effective concentrations of clothianidin in artificial soil were monitored during the whole exposure period. The results showed that clothianidin was stable in artificial soil and that the residue concentrations were 0.094, 0.476, and 0.941mg/kg after 28 d of exposure, which represented changes no more than 10% compared to the concentrations on the 0th day. Additionally, both the concentration of and exposure time to clothianidin had a substantial influence on biomarkers in earthworms. At 0.5mg/kg and 1.0mg/kg, the reactive oxygen species (ROS) levels were greatly enhanced, causing changes in antioxidant enzyme activities, damage to biological macromolecules and abnormal expression of functional genes. Additionally, the present results showed that superoxide dismutase (SOD), DNA damage and heat shock protein 70 (HSP70) may be good indicators for environmental risk assessment of clothianidin to earthworms. Copyright © 2017. Published by Elsevier Inc.

  9. Scalable Combinatorial Tools for Health Disparities Research

    Directory of Open Access Journals (Sweden)

    Michael A. Langston

    2014-10-01

    Full Text Available Despite staggering investments made in unraveling the human genome, current estimates suggest that as much as 90% of the variance in cancer and chronic diseases can be attributed to factors outside an individual’s genetic endowment, particularly to environmental exposures experienced across his or her life course. New analytical approaches are clearly required as investigators turn to complicated systems theory and ecological, place-based and life-history perspectives in order to understand more clearly the relationships between social determinants, environmental exposures and health disparities. While traditional data analysis techniques remain foundational to health disparities research, they are easily overwhelmed by the ever-increasing size and heterogeneity of available data needed to illuminate latent gene x environment interactions. This has prompted the adaptation and application of scalable combinatorial methods, many from genome science research, to the study of population health. Most of these powerful tools are algorithmically sophisticated, highly automated and mathematically abstract. Their utility motivates the main theme of this paper, which is to describe real applications of innovative transdisciplinary models and analyses in an effort to help move the research community closer toward identifying the causal mechanisms and associated environmental contexts underlying health disparities. The public health exposome is used as a contemporary focus for addressing the complex nature of this subject.

  10. Expression of genes belonging to the interacting TLR cascades, NADPH-oxidase and mitochondrial oxidative phosphorylation in septic patients.

    Directory of Open Access Journals (Sweden)

    Laura A Nucci

    Full Text Available Sepsis is a complex disease that is characterized by activation and inhibition of different cell signaling pathways according to the disease stage. Here, we evaluated genes involved in the TLR signaling pathway, oxidative phosphorylation and oxidative metabolism, aiming to assess their interactions and resulting cell functions and pathways that are disturbed in septic patients.Blood samples were obtained from 16 patients with sepsis secondary to community acquired pneumonia at admission (D0, and after 7 days (D7, N = 10 of therapy. Samples were also collected from 8 healthy volunteers who were matched according to age and gender. Gene expression of 84 genes was performed by real-time polymerase chain reactions. Their expression was considered up- or down-regulated when the fold change was greater than 1.5 compared to the healthy volunteers. A p-value of ≤ 0.05 was considered significant.Twenty-two genes were differently expressed in D0 samples; most of them were down-regulated. When gene expression was analyzed according to the outcomes, higher number of altered genes and a higher intensity in the disturbance was observed in non-survivor than in survivor patients. The canonical pathways altered in D0 samples included interferon and iNOS signaling; the role of JAK1, JAK2 and TYK2 in interferon signaling; mitochondrial dysfunction; and superoxide radical degradation pathways. When analyzed according to outcomes, different pathways were disturbed in surviving and non-surviving patients. Mitochondrial dysfunction, oxidative phosphorylation and superoxide radical degradation pathway were among the most altered in non-surviving patients.Our data show changes in the expression of genes belonging to the interacting TLR cascades, NADPH-oxidase and oxidative phosphorylation. Importantly, distinct patterns are clearly observed in surviving and non-surviving patients. Interferon signaling, marked by changes in JAK-STAT modulation, had prominent changes in

  11. The involvement of wheat F-box protein gene TaFBA1 in the oxidative stress tolerance of plants.

    Directory of Open Access Journals (Sweden)

    Shu-Mei Zhou

    Full Text Available As one of the largest gene families, F-box domain proteins have been found to play important roles in abiotic stress responses via the ubiquitin pathway. TaFBA1 encodes a homologous F-box protein contained in E3 ubiquitin ligases. In our previous study, we found that the overexpression of TaFBA1 enhanced drought tolerance in transgenic plants. To investigate the mechanisms involved, in this study, we investigated the tolerance of the transgenic plants to oxidative stress. Methyl viologen was used to induce oxidative stress conditions. Real-time PCR and western blot analysis revealed that TaFBA1 expression was up-regulated by oxidative stress treatments. Under oxidative stress conditions, the transgenic tobacco plants showed a higher germination rate, higher root length and less growth inhibition than wild type (WT. The enhanced oxidative stress tolerance of the transgenic plants was also indicated by lower reactive oxygen species (ROS accumulation, malondialdehyde (MDA content and cell membrane damage under oxidative stress compared with WT. Higher activities of antioxidant enzymes, including superoxide dismutase (SOD, catalase (CAT, ascorbate peroxidase (APX and peroxidase (POD, were observed in the transgenic plants than those in WT, which may be related to the upregulated expression of some antioxidant genes via the overexpression of TaFBA1. In others, some stress responsive elements were found in the promoter region of TaFBA1, and TaFBA1 was located in the nucleus, cytoplasm and plasma membrane. These results suggest that TaFBA1 plays an important role in the oxidative stress tolerance of plants. This is important for understanding the functions of F-box proteins in plants' tolerance to multiple stress conditions.

  12. Wounding stimulates ALLENE OXIDE SYNTHASE gene and increases the level of jasmonic acid in Ipomoea nil cotyledons

    Directory of Open Access Journals (Sweden)

    Emilia Wilmowicz

    2016-03-01

    Full Text Available Allene oxide synthase (AOS encodes the first enzyme in the lipoxygenase pathway, which is responsible for jasmonic acid (JA formation. In this study we report the molecular cloning and characterization of InAOS from Ipomoea nil. The full-length gene is composed of 1662 bp and encodes for 519 amino acids. The predicted InAOS contains PLN02648 motif, which is evolutionarily conserved and characteristic for functional enzymatic proteins. We have shown that wounding led to a strong stimulation of the examined gene activity in cotyledons and an increase in JA level, which suggest that this compound may be a modulator of stress responses in I. nil.

  13. Healthcare disparities in critical illness.

    Science.gov (United States)

    Soto, Graciela J; Martin, Greg S; Gong, Michelle Ng

    2013-12-01

    To summarize the current literature on racial and gender disparities in critical care and the mechanisms underlying these disparities in the course of acute critical illness. MEDLINE search on the published literature addressing racial, ethnic, or gender disparities in acute critical illness, such as sepsis, acute lung injury, pneumonia, venous thromboembolism, and cardiac arrest. Clinical studies that evaluated general critically ill patient populations in the United States as well as specific critical care conditions were reviewed with a focus on studies evaluating factors and contributors to health disparities. Study findings are presented according to their association with the prevalence, clinical presentation, management, and outcomes in acute critical illness. This review presents potential contributors for racial and gender disparities related to genetic susceptibility, comorbidities, preventive health services, socioeconomic factors, cultural differences, and access to care. The data are organized along the course of acute critical illness. The literature to date shows that disparities in critical care are most likely multifactorial involving individual, community, and hospital-level factors at several points in the continuum of acute critical illness. The data presented identify potential targets as interventions to reduce disparities in critical care and future avenues for research.

  14. Gene expression profiling for nitric oxide prodrug JS-K to kill HL-60 myeloid leukemia cells.

    Science.gov (United States)

    Liu, Jie; Malavya, Swati; Wang, Xueqian; Saavedra, Joseph E; Keefer, Larry K; Tokar, Erik; Qu, Wei; Waalkes, Michael P; Shami, Paul J

    2009-07-01

    The nitric oxide (NO) prodrug JS-K is shown to have anticancer activity. To profile the molecular events associated with the anticancer effects of JS-K, HL-60 leukemia cells were treated with JS-K and subjected to microarray and real-time RT-PCR analysis. JS-K induced concentration- and time-dependent gene expression changes in HL-60 cells corresponding to the cytolethality effects. The apoptotic genes (caspases, Bax, and TNF-alpha) were induced, and differentiation-related genes (CD14, ITGAM, and VIM) were increased. For acute phase protein genes, some were increased (TP53, JUN) while others were suppressed (c-myc, cyclin E). The expression of anti-angiogenesis genes THBS1 and CD36 and genes involved in tumor cell migration such as tissue inhibitors of metalloproteinases, were also increased by JS-K. Confocal analysis confirmed key gene changes at the protein levels. Thus, multiple molecular events are associated with JS-K effects in killing HL-60, which could be molecular targets for this novel anticancer NO prodrug.

  15. Diversity Surveys and Evolutionary Relationships of aoxB Genes in Aerobic Arsenite-Oxidizing Bacteria▿ †

    Science.gov (United States)

    Quéméneur, Marianne; Heinrich-Salmeron, Audrey; Muller, Daniel; Lièvremont, Didier; Jauzein, Michel; Bertin, Philippe N.; Garrido, Francis; Joulian, Catherine

    2008-01-01

    A new primer set was designed to specifically amplify ca. 1,100 bp of aoxB genes encoding the As(III) oxidase catalytic subunit from taxonomically diverse aerobic As(III)-oxidizing bacteria. Comparative analysis of AoxB protein sequences showed variable conservation levels and highlighted the conservation of essential amino acids and structural motifs. AoxB phylogeny of pure strains showed well-discriminated taxonomic groups and was similar to 16S rRNA phylogeny. Alphaproteobacteria-, Betaproteobacteria-, and Gammaproteobacteria-related sequences were retrieved from environmental surveys, demonstrating their prevalence in mesophilic As-contaminated soils. Our study underlines the usefulness of the aoxB gene as a functional marker of aerobic As(III) oxidizers. PMID:18502920

  16. Effect of fenofibrate on oxidative DNA damage and on gene expression related to cell proliferation and apoptosis in rats.

    Science.gov (United States)

    Nishimura, Jihei; Dewa, Yasuaki; Muguruma, Masako; Kuroiwa, Yuichi; Yasuno, Hiroaki; Shima, Tomomi; Jin, Mailan; Takahashi, Miwa; Umemura, Takashi; Mitsumori, Kunitoshi

    2007-05-01

    To investigate the relationship between fenofibrate (FF) and oxidative stress, enzymatic, histopathological, and molecular biological analyses were performed in the liver of male F344 rats fed 2 doses of FF (Experiment 1; 0 and 6000 ppm) for 3 weeks and 3 doses (Experiment 2; 0, 3000, and 6000 ppm) for 9 weeks. FF treatment increased the activity of enzymes such as carnitine acetyltransferase, carnitine palmitoyltransferase, fatty acyl-CoA oxidizing system, and catalase in the liver. However, it decreased those of superoxide dismutase in the liver in both experiments. Increased 8-hydroxy-2'-deoxyguanosine levels in liver DNA and lipofuscin accumulation were observed in the treated rats of Experiment 2. In vitro measurement of reactive oxygen species (ROS) in rat liver microsomes revealed a dose-dependent increase due to FF treatment. Microarray (only Experiment 1) or real-time reverse transcription-polymerase chain reaction analyses revealed that the expression levels of metabolism and DNA repair-related genes such as Aco, Cyp4a1, Cat, Yc2, Gpx2, Apex1, Xrcc5, Mgmt, Mlh1, Gadd45a, and Nbn were increased in FF-treated rats. These results provide evidence of a direct or indirect relationship between oxidative stress and FF treatment. In addition, increases in the expression levels of cell cycle-related genes such as Chek1, Cdc25a, and Ccdn1; increases in the expression levels of cell proliferation-related genes such as Hdgfrp3 and Vegfb; and fluctuations in the expression levels of apoptosis-related genes such as Casp11 and Trp53inp1 were observed in these rats. This suggests that cell proliferation induction, apoptosis suppression, and DNA damage due to oxidative stresses are probably involved in the mechanism of hepatocarcinogenesis due to FF in rats.

  17. Energy-mediated versus ammonium-regulated gene expression in the obligate ammonia-oxidizing bacterium, Nitrosococcus oceani

    Directory of Open Access Journals (Sweden)

    Lisa Y Stein

    2013-09-01

    Full Text Available Ammonia serves as the source of energy and reductant and as a signaling molecule that regulates gene expression in obligate ammonia-oxidizing chemolithotrophic microorganisms. The gammaproteobacterium, Nitrosococcus oceani, was the first obligate ammonia-oxidizer isolated from seawater and is one of the model systems for ammonia chemolithotrophy. We compared global transcriptional responses to ammonium and the catabolic intermediate, hydroxylamine, in ammonium-starved and non-starved cultures of N. oceani to discriminate transcriptional effects of ammonium from a change in overall energy and redox status upon catabolite availability. The most highly expressed genes from ammonium- or hydroxylamine-treated relative to starved cells are implicated in catabolic electron flow, carbon fixation, nitrogen assimilation, ribosome structure and stress tolerance. Catabolic inventory-encoding genes, including electron flow-terminating Complexes IV, FoF1 ATPase, transporters, and transcriptional regulators were among the most highly expressed genes in cells exposed only to ammonium relative to starved cells, although the differences compared to steady-state transcript levels were less pronounced. Reduction in steady-state mRNA levels from hydroxylamine-treated relative to starved-cells were less than five-fold. In contrast, several transcripts from ammonium-treated relative to starved cells were significantly less abundant including those for forward Complex I and a gene cluster of cytochrome c encoding proteins. Identified uneven steady-state transcript levels of co-expressed clustered genes support previously reported differential regulation at the levels of transcription and transcript stability. Our results differentiated between rapid regulation of core genes upon a change in cellular redox status versus those responsive to ammonium as a signaling molecule in N. oceani, both confirming and extending our knowledge of metabolic modules involved in ammonia

  18. RACIAL DISPARITIES IN HEALTH

    Science.gov (United States)

    Sternthal, Michelle J.; Slopen, Natalie; Williams, David R.

    2017-01-01

    Despite the widespread assumption that racial differences in stress exist and that stress is a key mediator linking racial status to poor health, relatively few studies have explicitly examined this premise. We examine the distribution of stress across racial groups and the role of stress vulnerability and exposure in explaining racial differences in health in a community sample of Black, Hispanic, and White adults, employing a modeling strategy that accounts for the correlation between types of stressors and the accumulation of stressors in the prediction of health outcomes. We find significant racial differences in overall and cumulative exposure to eight stress domains. Blacks exhibit a higher prevalence and greater clustering of high stress scores than Whites. American-born Hispanics show prevalence rates and patterns of accumulation of stressors comparable to Blacks, while foreign-born Hispanics have stress profiles similar to Whites. Multiple stressors correlate with poor physical and mental health, with financial and relationship stressors exhibiting the largest and most consistent effects. Though we find no support for the stress-vulnerability hypothesis, the stress-exposure hypothesis does account for some racial health disparities. We discuss implications for future research and policy.

  19. Adenoviral transfer of the heme oxygenase-1 gene protects striatal astrocytes from heme-mediated oxidative injury.

    Science.gov (United States)

    Teng, Zhi-Ping; Chen, Jing; Chau, Lee-Young; Galunic, Nicholas; Regan, Raymond F

    2004-11-01

    Heme oxygenase-1 (HO-1) is induced in the CNS after hemorrhage, and may have an effect on injury to surrounding tissue. Hemin, the preferred substrate of HO, is a neurotoxin that is present in intracranial hematomas. In a prior study, we observed that HO inhibitors increased the vulnerability of cultured cortical astrocytes to heme-mediated oxidative injury. To investigate the effect of HO more specifically, we used an adenoviral vector encoding the human HO-1 gene to specifically increase HO-1 expression. Incubation with 100 MOI of the HO-1 adenovirus (Adv-HHO-1) for 24 h increased both HO-1 protein and HO activity; a control adenovirus lacking the HO-1 gene had no effect. Using a DNA probe that was specific for human HO-1, 80.5 +/- 7.2% of astrocytes were observed to be infected by in situ hybridization. The cell death produced by 30-60 microM hemin was significantly reduced by pretreatment with 100 MOI Adv-HHO-1, as assessed by LDH release, propidium iodide exclusion, and MTT reduction assay. The threefold increase in cell protein oxidation produced by hemin was also attenuated in cultures pretreated with Adv-HHO-1. These results support the hypothesis that HO-1 protects astrocytes from heme-mediated oxidative injury. Specifically increasing astrocytic HO-1 by gene transfer may have a beneficial effect on hemorrhagic CNS injury.

  20. Vitamin D Impacts the Expression of Runx2 Target Genes and Modulates Inflammation, Oxidative Stress and Membrane Vesicle Biogenesis Gene Networks in 143B Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Rama Garimella

    2017-03-01

    Full Text Available Osteosarcoma (OS is an aggressive malignancy of bone affecting children, adolescents and young adults. Understanding vitamin D metabolism and vitamin D regulated genes in OS is an important aspect of vitamin D/cancer paradigm, and in evaluating vitamin D as adjuvant therapy for human OS. Vitamin D treatment of 143B OS cells induced significant and novel changes in the expression of genes that regulate: (a inflammation and immunity; (b formation of reactive oxygen species, metabolism of cyclic nucleotides, sterols, vitamins and mineral (calcium, quantity of gap junctions and skeletogenesis; (c bone mineral density; and (d cell viability of skeletal cells, aggregation of bone cancer cells and exocytosis of secretory vesicles. Ingenuity pathway analysis revealed significant reduction in Runx2 target genes such as fibroblast growth factor -1, -12 (FGF1 and FGF12, bone morphogenetic factor-1 (BMP1, SWI/SNF related, matrix associated actin dependent regulator of chromatin subfamily a, member 4 (SMARCA4, Matrix extracellular phosphoglycoprotein (MEPE, Integrin, β4 (ITGBP4, Matrix Metalloproteinase -1, -28 (MMP1 and MMP28, and signal transducer and activator of transcription-4 (STAT4 in vitamin D treated 143B OS cells. These genes interact with the inflammation, oxidative stress and membrane vesicle biogenesis gene networks. Vitamin D not only inhibited the expression of Runx2 target genes MMP1, MMP28 and kallikrein related peptidase-7 (KLK7, but also migration and invasion of 143B OS cells. Vitamin D regulated Runx2 target genes or their products represent potential therapeutic targets and laboratory biomarkers for applications in translational oncology.

  1. Vitamin D Impacts the Expression of Runx2 Target Genes and Modulates Inflammation, Oxidative Stress and Membrane Vesicle Biogenesis Gene Networks in 143B Osteosarcoma Cells

    Science.gov (United States)

    Garimella, Rama; Tadikonda, Priyanka; Tawfik, Ossama; Gunewardena, Sumedha; Rowe, Peter; Van Veldhuizen, Peter

    2017-01-01

    Osteosarcoma (OS) is an aggressive malignancy of bone affecting children, adolescents and young adults. Understanding vitamin D metabolism and vitamin D regulated genes in OS is an important aspect of vitamin D/cancer paradigm, and in evaluating vitamin D as adjuvant therapy for human OS. Vitamin D treatment of 143B OS cells induced significant and novel changes in the expression of genes that regulate: (a) inflammation and immunity; (b) formation of reactive oxygen species, metabolism of cyclic nucleotides, sterols, vitamins and mineral (calcium), quantity of gap junctions and skeletogenesis; (c) bone mineral density; and (d) cell viability of skeletal cells, aggregation of bone cancer cells and exocytosis of secretory vesicles. Ingenuity pathway analysis revealed significant reduction in Runx2 target genes such as fibroblast growth factor -1, -12 (FGF1 and FGF12), bone morphogenetic factor-1 (BMP1), SWI/SNF related, matrix associated actin dependent regulator of chromatin subfamily a, member 4 (SMARCA4), Matrix extracellular phosphoglycoprotein (MEPE), Integrin, β4 (ITGBP4), Matrix Metalloproteinase -1, -28 (MMP1 and MMP28), and signal transducer and activator of transcription-4 (STAT4) in vitamin D treated 143B OS cells. These genes interact with the inflammation, oxidative stress and membrane vesicle biogenesis gene networks. Vitamin D not only inhibited the expression of Runx2 target genes MMP1, MMP28 and kallikrein related peptidase-7 (KLK7), but also migration and invasion of 143B OS cells. Vitamin D regulated Runx2 target genes or their products represent potential therapeutic targets and laboratory biomarkers for applications in translational oncology. PMID:28300755

  2. Functional genes and thermophilic microorganisms responsible for arsenite oxidation from the shallow sediment of an untraversed hot spring outlet.

    Science.gov (United States)

    Yang, Ye; Mu, Yao; Zeng, Xian-Chun; Wu, Weiwei; Yuan, Jie; Liu, Yichen; Guoji, E; Luo, Feng; Chen, Xiaoming; Li, Hao; Wang, Jianing

    2017-05-01

    Hot Springs have unique geochemical features. Microorganisms-mediated arsenite oxidation is one of the major biogeochemical processes occurred in some hot springs. This study aimed to understand the diversities of genes and microorganisms involved in arsenite oxidation from the outlet of an untraversed hot spring located at an altitude of 4226 m. Microcosm assay indicated that the microbial community from the hot spring was able to efficiently oxidize As(III) using glucose, lactic acid, yeast extract or sodium bicarbonate as the sole carbon source. The microbial community contained 7 phyla of microorganisms, of which Proteobacteria and Firmicutes are largely dominant; this composition is unique and differs significantly from those of other described hot springs. Twenty one novel arsenite oxidase genes were identified from the samples, which are affiliated with the arsenite oxidase families of α-Proteobacteria, β-Proteobacteria or Archaea; this highlights the high diversity of the arsenite-oxidizing microorganisms from the hot spring. A cultivable arsenite-oxidizer Chelatococcu sp. GHS311 was also isolated from the sample using enrichment technique. It can completely convert 75.0 mg/L As(III) into As(V) in 18 days at 45 °C. The arsenite oxidase of GHS311 shares the maximal sequence identity (84.7%) to that of Hydrogenophaga sp. CL3, a non-thermotolerant bacterium. At the temperature lower than 30 °C or higher than 65 °C, the growth of this strain was completely inhibited. These data help us to better understand the diversity and functional features of the thermophilic arsenite-oxidizing microorganisms from hot springs.

  3. Temporal variations in the gene expression levels of cyanobacterial anti-oxidant enzymes through geological history: implications for biological evolution during the Great Oxidation Event

    Science.gov (United States)

    Harada, M.; Furukawa, R.; Yokobori, S. I.; Tajika, E.; Yamagishi, A.

    2016-12-01

    A significant rise in atmospheric O2 levels during the GOE (Great Oxidation Event), ca. 2.45-2.0 Ga, must have caused a great stress to biosphere, enforcing life to adapt to oxic conditions. Cyanobacteria, oxygenic photosynthetic bacteria that had been responsible for the GOE, are at the same time one of the organisms that would have been greatly affected by the rise of O2 level in the surface environments. Knowledge on the evolution of cyanobacteria is not only important to elucidate the cause of the GOE, but also helps us to better understand the adaptive evolution of life in response to the GOE. Here we performed phylogenetic analysis of an anti-oxidant enzyme Fe-SOD (iron superoxide dismutase) of cyanobacteria, to assess the adaptive evolution of life under the GOE. The rise of O2 level must have increased the level of toxic reactive oxygen species in cyanobacterial cells, thus forced them to change activities or the gene expression levels of Fe-SOD. In the present study, we focus on the change in the gene expression levels of the enzyme, which can be estimated from the promoter sequences of the gene. Promoters are DNA sequences found upstream of protein encoding regions, where RNA polymerase binds and initiates transcription. "Strong" promoters that efficiently interact with RNA polymerase induce high rates of transcription, leading to high levels of gene expression. Thus, from the temporal changes in the promoter sequences, we can estimate the variations in the gene expression levels during the geological time. Promoter sequences of Fe-SOD at each ancestral node of cyanobacteria were predicted from phylogenetic analysis, and the ancestral promoter sequences were compared to the promoters of known highly expressed genes. The similarity was low at the time of the emergence of cyanobacteria; however, increased at the branching nodes diverged 2.4 billon years ago. This roughly coincided with the onset of the GOE, implying that the transition from low to high gene

  4. Examples of Cancer Health Disparities

    Science.gov (United States)

    ... and the bacterium H. pylori (stomach cancer) in immigrant countries of origin contributes to these disparities. ( ACS ) ... Cancer.gov en español Multimedia Publications Site Map Digital Standards for NCI Websites POLICIES Accessibility Comment Policy ...

  5. Allometric disparity in rodent evolution

    OpenAIRE

    Wilson LAB

    2013-01-01

    In this study, allometric trajectories for 51 rodent species, comprising equal representatives from each of the major clades (Ctenohystrica, Muroidea, Sciuridae), are compared in a multivariate morphospace (=allometric space) to quantify magnitudes of disparity in cranial growth. Variability in allometric trajectory patterns was compared to measures of adult disparity in each clade, and dietary habit among the examined species, which together encapsulated an ecomorphological breadth. Results ...

  6. Practicality of intermittent fasting in humans and its effect on oxidative stress and genes related to aging and metabolism.

    Science.gov (United States)

    Wegman, Martin P; Guo, Michael H; Bennion, Douglas M; Shankar, Meena N; Chrzanowski, Stephen M; Goldberg, Leslie A; Xu, Jinze; Williams, Tiffany A; Lu, Xiaomin; Hsu, Stephen I; Anton, Stephen D; Leeuwenburgh, Christiaan; Brantly, Mark L

    2015-04-01

    Caloric restriction has consistently been shown to extend life span and ameliorate aging-related diseases. These effects may be due to diet-induced reactive oxygen species acting to up-regulate sirtuins and related protective pathways, which research suggests may be partially inhibited by dietary anti-oxidant supplementation. Because caloric restriction is not sustainable long term for most humans, we investigated an alternative dietary approach, intermittent fasting (IF), which is proposed to act on similar biological pathways. We hypothesized that a modified IF diet, where participants maintain overall energy balance by alternating between days of fasting (25% of normal caloric intake) and feasting (175% of normal), would increase expression of genes associated with aging and reduce oxidative stress and that these effects would be suppressed by anti-oxidant supplementation. To assess the tolerability of the diet and to explore effects on biological mechanisms related to aging and metabolism, we recruited a cohort of 24 healthy individuals in a double-crossover, double-blinded, randomized clinical trial. Study participants underwent two 3-week treatment periods-IF and IF with anti-oxidant (vitamins C and E) supplementation. We found strict adherence to study-provided diets and that participants found the diet tolerable, with no adverse clinical findings or weight change. We detected a marginal increase (2.7%) in SIRT3 expression due to the IF diet, but no change in expression of other genes or oxidative stress markers analyzed. We also found that IF decreased plasma insulin levels (1.01 μU/mL). Although our study suggests that the IF dieting paradigm is acceptable in healthy individuals, additional research is needed to further assess the potential benefits and risks.

  7. Isorhamnetin protects against oxidative stress by activating Nrf2 and inducing the expression of its target genes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ji Hye; Shin, Bo Yeon; Han, Jae Yun; Kim, Mi Gwang; Wi, Ji Eun [College of Pharmacy, Chosun University, Gwangju, 501-759 (Korea, Republic of); Kim, Young Woo; Cho, Il Je; Kim, Sang Chan [Medical Research Center for Globalization of Herbal Formulation, College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715 (Korea, Republic of); Shin, Sang Mi [College of Pharmacy, Chosun University, Gwangju, 501-759 (Korea, Republic of); Ki, Sung Hwan, E-mail: shki@chosun.ac.kr [College of Pharmacy, Chosun University, Gwangju, 501-759 (Korea, Republic of)

    2014-01-15

    Isorhamentin is a 3′-O-methylated metabolite of quercetin, and has been reported to have anti-inflammatory and anti-proliferative effects. However, the effects of isorhamnetin on Nrf2 activation and on the expressions of its downstream genes in hepatocytes have not been elucidated. Here, we investigated whether isorhamnetin has the ability to activate Nrf2 and induce phase II antioxidant enzyme expression, and to determine the protective role of isorhamnetin on oxidative injury in hepatocytes. In HepG2 cells, isorhamnetin increased the nuclear translocation of Nrf2 in a dose- and time-dependent manner, and consistently, increased antioxidant response element (ARE) reporter gene activity and the protein levels of hemeoxygenase (HO-1) and of glutamate cysteine ligase (GCL), which resulted in intracellular GSH level increases. The specific role of Nrf2 in isorhamnetin-induced Nrf2 target gene expression was verified using an ARE-deletion mutant plasmid and Nrf2-knockout MEF cells. Deletion of the ARE in the promoter region of the sestrin2 gene, which is recently identified as the Nrf2 target gene by us, abolished the ability of isorhamnetin to increase luciferase activity. In addition, Nrf2 deficiency completely blocked the ability of isorhamnetin to induce HO-1 and GCL. Furthermore, isorhamnetin pretreatment blocked t-BHP-induced ROS production and reversed GSH depletion by t-BHP and consequently, due to reduced ROS levels, decreased t-BHP-induced cell death. In addition isorhamnetin increased ERK1/2, PKCδ and AMPK phosphorylation. Finally, we showed that Nrf2 deficiency blocked the ability of isorhamnetin to protect cells from injury induced by t-BHP. Taken together, our results demonstrate that isorhamnetin is efficacious in protecting hepatocytes against oxidative stress by Nrf2 activation and in inducing the expressions of its downstream genes. - Highlights: • We investigated the effect of isorhamnetin on Nrf2 activation. • Isorhamnetin increased Nrf2

  8. Nitric oxide synthase, calcitonin gene-related peptide and NK-1 receptor mechanisms are involved in GTN-induced neuronal activation

    DEFF Research Database (Denmark)

    Ramachandran, Roshni; Bhatt, Deepak Kumar; Ploug, Kenneth Beri

    2014-01-01

    BACKGROUND AND AIM: Infusion of glyceryltrinitrate (GTN), a nitric oxide (NO) donor, in awake, freely moving rats closely mimics a universally accepted human model of migraine and responds to sumatriptan treatment. Here we analyse the effect of nitric oxide synthase (NOS) and calcitonin gene-rela...

  9. Lactate up-regulates the expression of lactate oxidation complex-related genes in left ventricular cardiac tissue of rats.

    Directory of Open Access Journals (Sweden)

    Daniele Gabriel-Costa

    Full Text Available Besides its role as a fuel source in intermediary metabolism, lactate has been considered a signaling molecule modulating lactate-sensitive genes involved in the regulation of skeletal muscle metabolism. Even though the flux of lactate is significantly high in the heart, its role on regulation of cardiac genes regulating lactate oxidation has not been clarified yet. We tested the hypothesis that lactate would increase cardiac levels of reactive oxygen species and up-regulate the expression of genes related to lactate oxidation complex.Isolated hearts from male adult Wistar rats were perfused with control, lactate or acetate (20mM added Krebs-Henseleit solution during 120 min in modified Langendorff apparatus. Reactive oxygen species (O2●-/H2O2 levels, and NADH and NADPH oxidase activities (in enriched microsomal or plasmatic membranes, respectively were evaluated by fluorimetry while SOD and catalase activities were evaluated by spectrophotometry. mRNA levels of lactate oxidation complex and energetic enzymes MCT1, MCT4, HK, LDH, PDH, CS, PGC1α and COXIV were quantified by real time RT-PCR. Mitochondrial DNA levels were also evaluated. Hemodynamic parameters were acquired during the experiment. The key findings of this work were that lactate elevated cardiac NADH oxidase activity but not NADPH activity. This response was associated with increased cardiac O2●-/H2O2 levels and up-regulation of MCT1, MCT4, LDH and PGC1α with no changes in HK, PDH, CS, COXIV mRNA levels and mitochondrial DNA levels. Lactate increased NRF-2 nuclear expression and SOD activity probably as counter-regulatory responses to increased O2●-/H2O2.Our results provide evidence for lactate-induced up-regulation of lactate oxidation complex associated with increased NADH oxidase activity and cardiac O2●-/H2O2 driving to an anti-oxidant response. These results unveil lactate as an important signaling molecule regulating components of the lactate oxidation complex in

  10. Upregulation of Oxidative Stress Related Genes in a Chronic Kidney Disease Attributed to Specific Geographical Locations of Sri Lanka

    Directory of Open Access Journals (Sweden)

    Saravanabavan Sayanthooran

    2016-01-01

    Full Text Available Objective. To infer the influence of internal and external oxidative stress in chronic kidney disease patients of unknown etiology (CKDu in Sri Lanka, by analyzing expression of genes related directly or indirectly to oxidative stress: glutamate-cysteine ligase catalytic subunit (GCLC, glutathione S-transferase mu 1 (GSTM1, glucose-6-phosphate dehydrogenase (G6PD, fibroblast growth factor-23 (FGF23, and NLR family pyrin domain containing 3 (NLRP3. Methods. Reverse transcription quantitative polymerase chain reaction (RT-qPCR was carried out for the selected populations: CKDu patients (n=43, chronic kidney disease patients (CKD; n=14, healthy individuals from a CKDu endemic area (GHI; n=9, and nonendemic area (KHI; n=16. Fold changes were quantified relative to KHI. Results. GCLC had greater than threefold upregulation in all three study groups, with a maximum of 7.27-fold upregulation in GHI (p=0.000. GSTM1 was not expressed in 25.6% of CKDu and 42.9% of CKD patients, but CKDu patients expressing GSTM1 showed upregulation of 2.60-fold (p<0.05. Upregulation of FGF23 and NLRP3 genes in CKD and CKDu was observed (p<0.01, with greater fold changes in CKD. Conclusion. Results suggest higher influence of external sources of oxidative stress in CKDu, possibly owing to environmental conditions.

  11. Organization of Genes Required for the Oxidation of Methanol to Formaldehyde in Three Type II Methylotrophs

    Science.gov (United States)

    Bastien, C.; Machlin, S.; Zhang, Y.; Donaldson, K.; Hanson, R. S.

    1989-01-01

    Restriction maps of genes required for the synthesis of active methanol dehydrogenase in Methylobacterium organophilum XX and Methylobacterium sp. strain AM1 have been completed and compared. In these two species of pink-pigmented, type II methylotrophs, 15 genes were identified that were required for the expression of methanol dehydrogenase activity. None of these genes were required for the synthesis of the prosthetic group of methanol dehydrogenase, pyrroloquinoline quinone. The structural gene required for the synthesis of cytochrome cL, an electron acceptor uniquely required for methanol dehydrogenase, and the genes encoding small basic peptides that copurified with methanol dehydrogenases were closely linked to the methanol dehydrogenase structural genes. A cloned 22-kilobase DNA insert from Methylsporovibrio methanica 81Z, an obligate type II methanotroph, complemented mutants that contained lesions in four genes closely linked to the methanol dehydrogenase structural genes. The methanol dehydrogenase and cytochrome cL structural genes were found to be transcribed independently in M. organophilum XX. Only two of the genes required for methanol dehydrogenase synthesis in this bacterium were found to be cotranscribed. PMID:16348074

  12. Functionally undefined gene, yggE, alleviates oxidative stress generated by monoamine oxidase in recombinant Escherichia coli.

    Science.gov (United States)

    Ojima, Yoshihiro; Kawase, Daisuke; Nishioka, Motomu; Taya, Masahito

    2009-01-01

    Real-time PCR analysis showed that yggE gene was about two and three times up-regulated in Escherichia coli cells exposed to UVA irradiation and thermal elevation, respectively, suggesting that this gene is responsive to physiological stress. The yggE gene was introduced into E. coli BL21 cells, together with a monoamine oxidase (MAO) gene as a model source for oxidative stress generation. The distribution of independently isolated transformants (two dozen isolates) was examined in terms of MAO activity and cell vitality. In the case of control strain expressing MAO alone, the largest number of transformants existed in the low range of MAO activity less than 2 units mg(-1) and the number significantly decreased at increased MAO activity. On the other hand, the distribution of MAO/YggE-coexpressing transformants shifted to higher MAO activity with frequent appearance in the activity range of 4-8 units mg(-1). The yggE gene product therefore has a possible function for alleviating the stress generated in the cells.

  13. Water quality assessment using the AREc32 reporter gene assay indicative of the oxidative stress response pathway.

    Science.gov (United States)

    Escher, Beate I; Dutt, Mriga; Maylin, Erin; Tang, Janet Y M; Toze, Simon; Wolf, C Roland; Lang, Matti

    2012-11-01

    The reporter gene assay AREc32 is based on the induction of the Nrf2 mediated oxidative stress response pathway in the human breast cancer cell line MCF7, where eight copies of the antioxidant response element (ARE) are linked to a reporter gene encoding for luciferase. The Nrf2-ARE pathway is responsive to many chemicals that cause oxidative stress, among them a large number of pesticides and skin irritants. We adopted and validated the AREc32 bioassay for water quality testing. tert-Butylhydroquinone served as the positive control, phenol as the negative control and other reactive chemicals were assessed for their specificity. An environmentally relevant reference chemical, benzo(a)pyrene was the most potent inducer of all tested chemicals. The concentration causing an induction ratio (IR) of 1.5 (EC(IR1.5)) was chosen as the effect benchmark value. The assay was applied to 21 water samples ranging from sewage to drinking water, including secondary treatment and various tertiary treatment options (ozonation, biologically activated carbon filtration, membrane filtration, reverse osmosis, advanced oxidation, chlorination, chloramination). The samples were enriched by solid phase extraction. In most samples the oxidative stress response was far more sensitive than cytotoxicity. The primary and secondary treated effluent exceeded the effect threshold IR 1.5 at a relative enrichment factor (REF) of 1, i.e., the native samples were active. All tertiary treated samples were less potent and their EC(IR1.5) lay between REF 1 and 10. The Nrf2 pathway was induced at a REF of approximately 10 for surface waters and drinking water, and above this enrichment cytotoxicity took over in most samples and quenched the induction. The blank (ultrapure water run through the sample enrichment process) was cytotoxic at an REF of 100, which is the limit of concentrations range that can be evaluated. Treatment typically decreased both the cytotoxicity and oxidative stress response apart

  14. Correlation of plasma nitrite/nitrate levels and inducible nitric oxide gene expression among women with cervical abnormalities and cancer.

    Science.gov (United States)

    Sowjanya, A Pavani; Rao, Meera; Vedantham, Haripriya; Kalpana, Basany; Poli, Usha Rani; Marks, Morgan A; Sujatha, M

    2016-01-30

    Cervical cancer is caused by infection with high risk human papillomavirus (HR-HPV). Inducible nitric oxide synthase (iNOS), a soluble factor involved in chronic inflammation, may modulate cervical cancer risk among HPV infected women. The aim of the study was to measure and correlate plasma nitrite/nitrate levels with tissue specific expression of iNOS mRNA among women with different grades of cervical lesions and cervical cancer. Tissue biopsy and plasma specimens were collected from 120 women with cervical neoplasia or cancer (ASCUS, LSIL, HSIL and invasive cancer) and 35 women without cervical abnormalities. Inducible nitric oxide synthase (iNOS) mRNA from biopsy and plasma nitrite/nitrate levels of the same study subjects were measured. Single nucleotide polymorphism (SNP) analysis was performed on the promoter region and Ser608Leu (rs2297518) in exon 16 of the iNOS gene. Differences in iNOS gene expression and plasma nitrite/nitrate levels were compared across disease stage using linear and logistic regression analysis. Compared to normal controls, women diagnosed with HSIL or invasive cancer had a significantly higher concentration of plasma nitrite/nitrate and a higher median fold-change in iNOS mRNA gene expression. Genotyping of the promoter region showed three different variations: A pentanucleotide repeat (CCTTT) n, -1026T > G (rs2779249) and a novel variant -1153T > A. These variants were associated with increased levels of plasma nitrite/nitrate across all disease stages. The higher expression of iNOS mRNA and plasma nitrite/nitrate among women with pre-cancerous lesions suggests a role for nitric oxide in the natural history of cervical cancer. Copyright © 2015. Published by Elsevier Inc.

  15. Environmental Health Disparities in Housing

    Science.gov (United States)

    2011-01-01

    The physical infrastructure and housing make human interaction possible and provide shelter. How well that infrastructure performs and which groups it serves have important implications for social equity and health. Populations in inadequate housing are more likely to have environmental diseases and injuries. Substantial disparities in housing have remained largely unchanged. Approximately 2.6 million (7.5%) non-Hispanic Blacks and 5.9 million Whites (2.8%) live in substandard housing. Segregation, lack of housing mobility, and homelessness are all associated with adverse health outcomes. Yet the experience with childhood lead poisoning in the United States has shown that housing-related disparities can be reduced. Effective interventions should be implemented to reduce environmental health disparities related to housing. PMID:21551378

  16. Prebiotic and Synbiotic Modifications of Beta Oxidation and Lipogenic Gene Expression after Experimental Hypercholesterolemia in Rat Liver

    Directory of Open Access Journals (Sweden)

    Claudia C. Alves

    2017-10-01

    Full Text Available Background and aims: Non-alcoholic fatty liver disease (NAFLD is characterized by the presence of fat in hepatocytes because of decreased β-oxidation and increased lipogenesis. Prebiotics, probiotics, and synbiotic have modulatory effects on intestinal microbiota and may influence the gut-liver axis. Our aim was to evaluate the effects of prebiotic, probiotics, and synbiotic on liver histopathology and gene expression related to β-oxidation and lipogenesis after hypercholesterolemia.Methods: Wistar male adult rats (n = 40 were submitted to hypercholesterolemic conditions (HPC (60 days. On Day 30 of HPC, rats were subdivided in 5 groups: negative control (NC: without HPC + Gv (distilled water; positive control (PC: with HPC + Gv (distilled water; prebiotic (PRE: HPC + Gv with prebiotic (Fiber FOS®; probiotic (PRO: HPC + Gv with probiotic strains Gv (Probiatop®; and synbiotic (SYN: HPC + Gv with synbiotic (Simbioflora®. All rats were sacrificed on Day 30 post-treatment. Blood was collected to verify total serum cholesterol, and liver tissue was sampled to verify histopathological changes and gene expression. Gene expression related to ß-oxidation (PPAR-α and CPT-1 and lipogenesis (SREBP-1c, FAS and ME was evaluated in liver tissue using RT-qPCR.Results: PC had higher cholesterol levels when compared to NC. PRE and SYN rats had lower cholesterol levels than PC. PC rats showed more histopathological changes than NC rats; PRE and SYN rats showed fewer alterations than PC rats. PPAR-α was expressed at higher levels in SYN and PC rats compared with PRE and PRO rats. CPT-1 expression was similar in all groups. SREBP-1c was expressed at higher levels in PC rats compared with NC rats; levels were lower in SYN rats compared with PRO rats; levels were lower in PRE rats compared with PC and PRO rats. FAS was expressed at lower levels in PRE rats compared with SYN rats. ME expression was lower in PC rats compared with NC rats.Conclusion: Prebiotic and

  17. Prevalence of endothelial nitric oxide synthase (eNOS) gene exon 7 Glu298Asp variant in North Eastern India

    Science.gov (United States)

    Shankarishan, Priyanka; Borah, Prasanta Kumar; Ahmed, Giasuddin; Mahanta, Jagadish

    2011-01-01

    Background & objectives Endothelial nitric oxide is a potent vasodilator and impairment of its generation brought about by gene polymorphism is considered a major predictor for several diseases. A single nucleotide polymorphism G894T within exon 7 of endothelial nitric oxide synthase (eNOS-7) gene, resulting in a replacement of glutamic acid by aspartic acid, has been studied as a putative candidate gene for cardiovascular diseases. The pattern of eNOS-7 Glu298Asp variant in the Indian population is poorly known. The present study was planned to determine the prevalence of the variant of this gene among tea garden community in Assam, North-East India with high prevalence of hypertension. Methods Study participants of both sex aged ≥18 yr were recruited randomly from temporary field clinics established in tea gardens of Dibrugarh, Assam. Genomic DNA was extracted from 409 subjects by the conventional phenol-chloroform method. The prevalence of the eNOS exon 7 Glu298Asp variant was determined by polymerase chain reaction and restriction fragment length polymorphism analysis. Results The study population was in Hardy-Weinberg Equilibrium. The frequency of the eNOS GG, GT and TT genotypes was found to be 75, 22 and 3 per cent respectively and did not show any significant difference in gender wise analysis. Interpretation & conclusions Our results showed that the prevalence of the homozygous GG genotype was high (75%) and the rare mutant genotype (homozygous, TT) was 3 per cent in a population at risk with cardiovascular disease. Such population-based data on various polymorphisms can ultimately be exploited in pharmacogenomics. PMID:21623032

  18. Downregulation of the psychiatric susceptibility gene Cacna1c promotes mitochondrial resilience to oxidative stress in neuronal cells.

    Science.gov (United States)

    Michels, Susanne; Ganjam, Goutham K; Martins, Helena; Schratt, Gerhard M; Wöhr, Markus; Schwarting, Rainer K W; Culmsee, Carsten

    2018-01-01

    Affective disorders such as major depression and bipolar disorder are among the most prevalent forms of mental illness and their etiologies involve complex interactions between genetic and environmental risk factors. Over the past ten years, several genome wide association studies (GWAS) have identified CACNA1C as one of the strongest genetic risk factors for the development of affective disorders. However, its role in disease pathogenesis is still largely unknown. Vulnerability to affective disorders also involves diverse environmental risk factors such as perinatal insults, childhood maltreatment, and other adverse pathophysiological or psychosocial life events. At the cellular level, such environmental influences may activate oxidative stress pathways, thereby altering neuronal plasticity and function. Mitochondria are the key organelles of energy metabolism and, further, highly important for the adaptation to oxidative stress. Accordingly, multiple lines of evidence including post-mortem brain and neuro-imaging studies suggest that psychiatric disorders are accompanied by mitochondrial dysfunction. In this study, we investigated the effects of Cacna1c downregulation in combination with glutamate-induced oxidative stress on mitochondrial function, Ca 2+ homeostasis, and cell viability in mouse hippocampal HT22 cells. We found that the siRNA-mediated knockdown of Cacna1c preserved mitochondrial morphology, mitochondrial membrane potential, and ATP levels after glutamate treatment. Further, Cacna1c silencing inhibited excessive mitochondrial reactive oxygen species formation and calcium influx, and protected the HT22 cells from oxidative cell death. Overall, our findings suggest that the GWAS-confirmed psychiatric risk gene CACNA1C plays a major role in oxidative stress pathways with particular impact on mitochondrial integrity and function.

  19. Association of a neuronal nitric oxide synthase gene polymorphism with levodopa-induced dyskinesia in Parkinson's disease.

    Science.gov (United States)

    Santos-Lobato, Bruno Lopes; Borges, Vanderci; Ferraz, Henrique Ballalai; Mata, Ignacio Fernandez; Zabetian, Cyrus P; Tumas, Vitor

    2018-04-01

    Levodopa-induced dyskinesia (LID) is a common complication of advanced Parkinson's disease (PD). PD physiopathology is associated with dopaminergic and non-dopaminergic pathways, including the nitric oxide system. The present study aims to examine the association of a neuronal nitric oxide synthase gene (NOS1) single nucleotide polymorphism (rs2682826) with LID in PD patients. We studied 186 PD patients using levodopa. The presence of LID was defined as a MDS-UPDRS Part IV score ≥1 on item 4.1. We tested for association between NOS1 rs2682826 and the presence, daily frequency, and functional impact of LID using regression models, adjusting for important covariates. There was no significant association between genotype and any of the LID-related variables examined. Our results suggest that this NOS1 polymorphism does not contribute to LID susceptibility or severity. However, additional studies that include a comprehensive set of NOS1 variants will be needed to fully define the role of this gene in LID. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Phenotype commitment in vascular smooth muscle cells derived from coronary atherosclerotic plaques: differential gene expression of endothelial Nitric Oxide Synthase

    Directory of Open Access Journals (Sweden)

    ML Rossi

    2009-06-01

    Full Text Available Unstable angina and myocardial infarction are the clinical manifestations of the abrupt thrombotic occlusion of an epicardial coronary artery as a result of spontaneous atherosclerotic plaque rupture or fissuring, and the exposure of highly thrombogenic material to blood. It has been demonstrated that the proliferation of vascular smooth muscle cells (VSMCs and impaired bioavailabilty of nitric oxide (NO are among the most important mechanisms involved in the progression of atherosclerosis. It has also been suggested that a NO imbalance in coronary arteries may be involved in myocardial ischemia as a result of vasomotor dysfunction triggering plaque rupture and the thrombotic response. We used 5’ nuclease assays (TaqMan™ PCRs to study gene expression in coronary plaques collected by means of therapeutic directional coronary atherectomy from 15 patients with stable angina (SA and 15 with acute coronary syndromes (ACS without ST elevation. Total RNA was extracted from the 30 plaques and the cDNA was amplified in order to determine endothelial nitric oxide synthase (eNOS gene expression. Analysis of the results showed that the expression of eNOS was significantly higher (p<0.001 in the plaques from the ACS patients. Furthermore, isolated VSMCs from ACS and SA plaques confirmed the above pattern even after 25 plating passages. In situ RT-PCR was also carried out to co-localize the eNOS messengers and the VSMC phenotype.

  1. Effects of intracellular chelatable iron and oxidative stress on transcription of classical cellular glutathione peroxidase gene in murine erythroleukemia cells

    International Nuclear Information System (INIS)

    Fuchs, O.

    1997-01-01

    The effect of intracellular chelatable iron levels and of oxidative stress on nuclear classical cellular glutathione peroxidase (GSHPx-1) RNA nascent chain elongation (run-on transcription) and on the stability of cytoplasmic GSHPx-1 mRNA was investigated in murine erythroleukemia (MEL) cells. The amount in the intracellular low molecular mass iron pool was changed by incubation of MEL cells transformed by Friend virus with iron donors or iron chelators. Transcription in vitro in isolated nuclei from treated cells showed that the treatment with chelators (desferrioxamine (DFO), pyridoxal isonicotinoyl hydrazone) decrease the rate of nuclear GSHPx-1 RNA nascent chain elongation in both un-induced and with 5 mmol hexamethylenebisacetamide to erythroid differentiation induced MEL cells. Iron donors (diferric transferrin,, Fe-PIH or their combination) and t-butyl hydroperoxide (t-BuOOH) had the opposite effect on GSHPx-1 gene transcription in run-on experiments. On the other hand, 50 μmol DFO or 2.5 μmol t-BuOOH did not change the stability of cytoplasmic GSHPx-1 mRNA in both un-induced and induced MEL cells treated with 5 μmol actinomycin D and with or without these agents for 9 h. These findings indicate that iron and oxidative stress play their role at the transcriptional level of GSHPx-1 gene expression. (author)

  2. Oxidative balance and colon and rectal cancer: interaction of lifestyle factors and genes.

    Science.gov (United States)

    Slattery, Martha L; Lundgreen, Abbie; Welbourn, Bill; Wolff, Roger K; Corcoran, Christopher

    2012-06-01

    Pro-oxidant and anti-oxidant genetic and lifestyle factors can contribute to an individual's level of oxidative stress. We hypothesize that diet, lifestyle and genetic factors work together to influence colon and rectal cancer through an oxidative balance mechanism. We evaluated nine markers for eosinophil peroxidase (EPX), two for myeloperoxidase (MPO), four for hypoxia-inducible factor-1A (HIFIA), and 16 for inducible nitric oxide synthase (NOS2A) in conjunction with dietary antioxidants, aspirin/NSAID use, and cigarette smoking. We used data from population-based case-control studies (colon cancer n=1555 cases, 1956 controls; rectal cancer n=754 cases, 959 controls). Only NOS2A rs2297518 was associated with colon cancer (OR 0.86 95% CI 0.74, 0.99) and EPX rs2302313 and MPO rs2243828 were associated with rectal cancer (OR 0.75 95% CI 0.59, 0.96; OR 0.81 95% CI 0.67, 0.99 respectively) for main effects. However, after adjustment for multiple comparisons we observed the following significant interactions for colon cancer: NOS2A and lutein, EPX and aspirin/NSAID use, and NOS2A (4 SNPs) and cigarette smoking. For rectal cancer we observed the following interactions after adjustment for multiple comparisons: HIF1A and vitamin E, NOS2A (3SNPs) with calcium; MPO with lutein; HIF1A with lycopene; NOS2A with selenium; EPX and NOS2A with aspirin/NSAID use; HIF1A, MPO, and NOS2A (3 SNPs) with cigarette smoking. We observed significant interaction between a composite oxidative balance score and a polygenic model for both colon (p interaction 0.0008) and rectal cancer (p=0.0018). These results suggest the need to comprehensively evaluate interactions to assess the contribution of risk from both environmental and genetic factors. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Reduced Disparities in Birth Rates Among Teens

    Science.gov (United States)

    ... Teens Winnable Battles Social Media at CDC Reduced Disparities in Birth Rates among Teens Aged 15–19 ... Pregnancy Prevention Community-Wide Initiative. National Rates and Disparities Nationally, the teen birth rate (number of births ...

  4. Phorate-induced oxidative stress, DNA damage and transcriptional activation of p53 and caspase genes in male Wistar rats

    International Nuclear Information System (INIS)

    Saquib, Quaiser; Attia, Sabry M.; Siddiqui, Maqsood A.; Aboul-Soud, Mourad A.M.; Al-Khedhairy, Abdulaziz A.; Giesy, John P.; Musarrat, Javed

    2012-01-01

    Male Wistar rats exposed to a systemic organophosphorus insecticide, phorate [O,O-diethyl S-[(ethylthio) methyl] phosphorothioate] at varying oral doses of 0.046, 0.092 or 0.184 mg phorate/kg bw for 14 days, exhibited substantial oxidative stress, cellular DNA damage and activation of apoptosis-related p53, caspase 3 and 9 genes. The histopathological changes including the pyknotic nuclei, inflammatory leukocyte infiltrations, renal necrosis, and cardiac myofiber degeneration were observed in the liver, kidney and heart tissues. Biochemical analysis of catalase and glutathione revealed significantly lesser activities of antioxidative enzymes and lipid peroxidation in tissues of phorate exposed rats. Furthermore, generation of intracellular reactive oxygen species and reduced mitochondrial membrane potential in bone marrow cells confirmed phorate-induced oxidative stress. Significant DNA damage was measured through comet assay in terms of the Olive tail moment in bone marrow cells of treated animals as compared to control. Cell cycle analysis also demonstrated the G 2 /M arrest and appearance of a distinctive SubG 1 peak, which signified induction of apoptosis. Up-regulation of tumor suppressor p53 and caspase 3 and 9 genes, determined by quantitative real-time PCR and enzyme-linked immunosorbent assay, elucidated the activation of intrinsic apoptotic pathways in response to cellular stress. Overall, the results suggest that phorate induces genetic alterations and cellular toxicity, which can adversely affect the normal cellular functioning in rats. -- Highlights: ► This is the first report on molecular toxicity of phorate in an in vivo test system. ► Phorate induces biochemical and histological changes in liver, kidney and heart. ► Rats treated with phorate exhibited DNA damage in bone marrow cells. ► Phorate induces apoptosis, oxidative stress and alters mitochondrial fluorescence. ► Phorate induces transcriptional changes and enhanced activities of

  5. Phorate-induced oxidative stress, DNA damage and transcriptional activation of p53 and caspase genes in male Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Saquib, Quaiser [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Attia, Sabry M. [Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh (Saudi Arabia); Siddiqui, Maqsood A. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Aboul-Soud, Mourad A.M. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Biochemistry Department, Faculty of Agriculture, Cairo University, 12613 Giza (Egypt); Al-Khedhairy, Abdulaziz A. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Giesy, John P. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Department of Biomedical and Veterinary Biosciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Canada S7N 5B3 (Canada); Zoology Department and Center for Integrative Toxicology, Michigan State University, East Lansing 48824 (United States); Musarrat, Javed, E-mail: musarratj1@yahoo.com [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Department of Microbiology, Faculty of Agricultural Sciences, AMU, Aligarh (India)

    2012-02-15

    Male Wistar rats exposed to a systemic organophosphorus insecticide, phorate [O,O-diethyl S-[(ethylthio) methyl] phosphorothioate] at varying oral doses of 0.046, 0.092 or 0.184 mg phorate/kg bw for 14 days, exhibited substantial oxidative stress, cellular DNA damage and activation of apoptosis-related p53, caspase 3 and 9 genes. The histopathological changes including the pyknotic nuclei, inflammatory leukocyte infiltrations, renal necrosis, and cardiac myofiber degeneration were observed in the liver, kidney and heart tissues. Biochemical analysis of catalase and glutathione revealed significantly lesser activities of antioxidative enzymes and lipid peroxidation in tissues of phorate exposed rats. Furthermore, generation of intracellular reactive oxygen species and reduced mitochondrial membrane potential in bone marrow cells confirmed phorate-induced oxidative stress. Significant DNA damage was measured through comet assay in terms of the Olive tail moment in bone marrow cells of treated animals as compared to control. Cell cycle analysis also demonstrated the G{sub 2}/M arrest and appearance of a distinctive SubG{sub 1} peak, which signified induction of apoptosis. Up-regulation of tumor suppressor p53 and caspase 3 and 9 genes, determined by quantitative real-time PCR and enzyme-linked immunosorbent assay, elucidated the activation of intrinsic apoptotic pathways in response to cellular stress. Overall, the results suggest that phorate induces genetic alterations and cellular toxicity, which can adversely affect the normal cellular functioning in rats. -- Highlights: ► This is the first report on molecular toxicity of phorate in an in vivo test system. ► Phorate induces biochemical and histological changes in liver, kidney and heart. ► Rats treated with phorate exhibited DNA damage in bone marrow cells. ► Phorate induces apoptosis, oxidative stress and alters mitochondrial fluorescence. ► Phorate induces transcriptional changes and enhanced

  6. Mechanism Profiling of Hepatotoxicity Caused by Oxidative Stress Using Antioxidant Response Element Reporter Gene Assay Models and Big Data.

    Science.gov (United States)

    Kim, Marlene Thai; Huang, Ruili; Sedykh, Alexander; Wang, Wenyi; Xia, Menghang; Zhu, Hao

    2016-05-01

    Hepatotoxicity accounts for a substantial number of drugs being withdrawn from the market. Using traditional animal models to detect hepatotoxicity is expensive and time-consuming. Alternative in vitro methods, in particular cell-based high-throughput screening (HTS) studies, have provided the research community with a large amount of data from toxicity assays. Among the various assays used to screen potential toxicants is the antioxidant response element beta lactamase reporter gene assay (ARE-bla), which identifies chemicals that have the potential to induce oxidative stress and was used to test > 10,000 compounds from the Tox21 program. The ARE-bla computational model and HTS data from a big data source (PubChem) were used to profile environmental and pharmaceutical compounds with hepatotoxicity data. Quantitative structure-activity relationship (QSAR) models were developed based on ARE-bla data. The models predicted the potential oxidative stress response for known liver toxicants when no ARE-bla data were available. Liver toxicants were used as probe compounds to search PubChem Bioassay and generate a response profile, which contained thousands of bioassays (> 10 million data points). By ranking the in vitro-in vivo correlations (IVIVCs), the most relevant bioassay(s) related to hepatotoxicity were identified. The liver toxicants profile contained the ARE-bla and relevant PubChem assays. Potential toxicophores for well-known toxicants were created by identifying chemical features that existed only in compounds with high IVIVCs. Profiling chemical IVIVCs created an opportunity to fully explore the source-to-outcome continuum of modern experimental toxicology using cheminformatics approaches and big data sources. Kim MT, Huang R, Sedykh A, Wang W, Xia M, Zhu H. 2016. Mechanism profiling of hepatotoxicity caused by oxidative stress using antioxidant response element reporter gene assay models and big data. Environ Health Perspect 124:634-641;

  7. Oxidant-NO dependent gene regulation in dogs with type I diabetes: impact on cardiac function and metabolism

    Directory of Open Access Journals (Sweden)

    Ojaimi Caroline

    2010-08-01

    Full Text Available Abstract Background The mechanisms responsible for the cardiovascular mortality in type I diabetes (DM have not been defined completely. We have shown in conscious dogs with DM that: 1 baseline coronary blood flow (CBF was significantly decreased, 2 endothelium-dependent (ACh coronary vasodilation was impaired, and 3 reflex cholinergic NO-dependent coronary vasodilation was selectively depressed. The most likely mechanism responsible for the depressed reflex cholinergic NO-dependent coronary vasodilation was the decreased bioactivity of NO from the vascular endothelium. The goal of this study was to investigate changes in cardiac gene expression in a canine model of alloxan-induced type 1 diabetes. Methods Mongrel dogs were chronically instrumented and the dogs were divided into two groups: one normal and the other diabetic. In the diabetic group, the dogs were injected with alloxan monohydrate (40-60 mg/kg iv over 1 min. The global changes in cardiac gene expression in dogs with alloxan-induced diabetes were studied using Affymetrix Canine Array. Cardiac RNA was extracted from the control and DM (n = 4. Results The array data revealed that 797 genes were differentially expressed (P 2+ cycling genes (ryanodine receptor; SERCA2 Calcium ATPase, structural proteins (actin alpha. Of particular interests are genes involved in glutathione metabolism (glutathione peroxidase 1, glutathione reductase and glutathione S-transferase, which were markedly down regulated. Conclusion our findings suggest that type I diabetes might have a direct effect on the heart by impairing NO bioavailability through oxidative stress and perhaps lipid peroxidases.

  8. Nitric Oxide- and Hydrogen Peroxide-Responsive Gene Regulation during Cell Death Induction in Tobacco1[W

    Science.gov (United States)

    Zago, Elisa; Morsa, Stijn; Dat, James F.; Alard, Philippe; Ferrarini, Alberto; Inzé, Dirk; Delledonne, Massimo; Van Breusegem, Frank

    2006-01-01

    Nitric oxide (NO) and hydrogen peroxide (H2O2) are regulatory molecules in various developmental processes and stress responses. Tobacco (Nicotiana tabacum) leaves exposed to moderate high light dramatically potentiated NO-mediated cell death in catalase-deficient (CAT1AS) but not in wild-type plants, providing genetic evidence for a partnership between NO and H2O2 during the induction of programmed cell death. With this experimental model system, the specific impact on gene expression was characterized by either NO or H2O2 alone or both molecules combined. By means of genome-wide cDNA-amplified fragment length polymorphism analysis, transcriptional changes were compared in high light-treated CAT1AS and wild-type leaves treated with or without the NO donor sodium nitroprusside. Differential gene expression was detected for 214 of the approximately 8,000 transcript fragments examined. For 108 fragments, sequence analysis revealed homology to genes with a role in signal transduction, defense response, hormone interplay, proteolysis, transport, and metabolism. Surprisingly, only 16 genes were specifically induced by the combined action of NO and H2O2, whereas the majority were regulated by either of them alone. At least seven transcription factors were mutually up-regulated, indicating significant overlap between NO and H2O2 signaling pathways. These results consolidate significant cross-talk between NO and H2O2, provide new insight into the early transcriptional response of plants to increased NO and H2O2 levels, and identify target genes of the combined action of NO and H2O2 during the induction of plant cell death. PMID:16603664

  9. of endothelial nitric oxide synthase gene and serum level of vascular ...

    African Journals Online (AJOL)

    uwerhiavwe

    Davignon and Ganz, 2004). NO is synthe- sized via a reaction that includes the conversion of L- arginine to L-citruline catalyzed by endothelial nitric oxide synthase (eNOS), which is one of the three isoforms of the enzyme (Mayer and Hemmens, 1997) ...

  10. Nitric oxide synthase during early embryonic development in silkworm Bombyx mori: Gene expression, enzyme activity, and tissue distribution.

    Science.gov (United States)

    Kitta, Ryo; Kuwamoto, Marina; Yamahama, Yumi; Mase, Keisuke; Sawada, Hiroshi

    2016-12-01

    To elucidate the mechanism for embryonic diapause or the breakdown of diapause in Bombyx mori, we biochemically analyzed nitric oxide synthase (NOS) during the embryogenesis of B. mori. The gene expression and enzyme activity of B. mori NOS (BmNOS) were examined in diapause, non-diapause, and HCl-treated diapause eggs. In the case of HCl-treated diapause eggs, the gene expression and enzyme activity of BmNOS were induced by HCl treatment. However, in the case of diapause and non-diapause eggs during embryogenesis, changes in the BmNOS activity and gene expressions did not coincide except 48-60 h after oviposition in diapause eggs. The results imply that changes in BmNOS activity during the embryogenesis of diapause and non-diapause eggs are regulated not only at the level of transcription but also post-transcription. The distribution and localization of BmNOS were also investigated with an immunohistochemical technique using antibodies against the universal NOS; the localization of BmNOS was observed mainly in the cytoplasm of yolk cells in diapause eggs and HCl-treated diapause eggs. These data suggest that BmNOS has an important role in the early embryonic development of the B. mori. © 2016 Japanese Society of Developmental Biologists.

  11. Role of Endothelial Nitric Oxide Synthase Gene Polymorphisms in Predicting Aneurysmal Subarachnoid Hemorrhage in South Indian Patients

    Directory of Open Access Journals (Sweden)

    Linda Koshy

    2008-01-01

    Full Text Available Endothelial nitric oxide synthase (eNOS gene polymorphisms have been implicated as predisposing genetic factors that can predict aneurysmal subarachnoid hemorrhage (aSAH, but with controversial results from different populations. Using a case-control study design, we tested the hypothesis whether variants in eNOS gene can increase risk of aSAH among South Indian patients, either independently, or by interacting with other risk factors of the disease. We enrolled 122 patients, along with 224 ethnically matched controls. We screened the intron-4 27-bp VNTR, the promoter T-786C and the exon-7 G894T SNPs in the eNOS gene. We found marked interethnic differences in the genotype distribution of eNOS variants when comparing the South Indian population with the reported frequencies from Caucasian and Japanese populations. Genotype distributions in control and patient populations were found to be in Hardy-Weinberg equilibrium. In patients, the allele, genotype and estimated haplotype frequencies did not differ significantly from the controls. Multiple logistic regression indicated hypertension and smoking as risk factors for the disease, however the risk alleles did not have any interaction with these risk factors. Although the eNOS polymorphisms were not found to be a likely risk factor for aSAH, the role of factors such as ethnicity, gender, smoking and hypertension should be evaluated cautiously to understand the genotype to phenotype conversion.

  12. Reverse-transcriptional gene expression of anammox and ammonia-oxidizing archaea and bacteria in soybean and rice paddy soils of Northeast China.

    Science.gov (United States)

    Wang, Jing; Dong, Hailiang; Wang, Weidong; Gu, Ji-Dong

    2014-03-01

    The relative gene expression of hydrazine oxidoreductase encoding gene (hzo) for anaerobic ammonium oxidizing bacteria (anammox) and ammonia monooxygenase encoding gene (amoA) for both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in Sanjiang Plain soybean and rice paddy soils of Northeast China was investigated by using real-time reverse-transcriptional quantitative PCR. Metabolically active populations of anammox, AOA, and AOB in rice paddy soils were evident by the presence and successful quantification of hzo mRNA and amoA mRNA genes. The expression ratio of amoA gene for both AOA and AOB varied between soybean soils and different rice paddy soils while the expression of hzo gene for anammox was detectable only in rice paddy soils by showing a diverse relative expression ratio in each soil sample. Gene expression of both archaeal and bacterial amoA genes in rice paddy soils differed among the three sampling depths, but that of hzo was not. Both archaeal and bacterial amoA genes showed an increase trend of expression level with continuation of rice paddy cultivation, but the low expression ratio of hzo gene indicated a relatively small contribution of anammox in overall removal of inorganic nitrogen through N2 even under anoxic and high nitrogen input in agriculture. Bacterial amoA gene from two soybean fields and three rice paddy fields were also analyzed for community composition by denaturing gradient gel electrophoresis fingerprint. Community shift was observed between soybean and paddy fields and within each of them. The consistent occurrence of three bands 5, 6, and 7 in all samples showed their high adaptability for both arid cultivation and continuous rice paddy cultivation. Our data suggest that AOA and AOB are playing a more important role in nitrogen transformation in agricultural soils in oxic or anoxic environment and anammox bacteria may also contribute but in a less extent to N transformation in these agricultural soils

  13. Expression of Critical Sulfur- and Iron-Oxidation Genes and the Community Dynamics During Bioleaching of Chalcopyrite Concentrate by Moderate Thermophiles.

    Science.gov (United States)

    Zhou, Dan; Peng, Tangjian; Zhou, Hongbo; Liu, Xueduan; Gu, Guohua; Chen, Miao; Qiu, Guanzhou; Zeng, Weimin

    2015-07-01

    Sulfate adenylyltransferase gene and 4Fe-4S ferredoxin gene are the key genes related to sulfur and iron oxidations during bioleaching system, respectively. In order to better understand the bioleaching and microorganism synergistic mechanism in chalcopyrite bioleaching by mixed culture of moderate thermophiles, expressions of the two energy metabolism genes and community dynamics of free and attached microorganisms were investigated. Specific primers were designed for real-time quantitative PCR to study the expression of these genes. Real-time PCR results showed that sulfate adenylyltransferase gene was more highly expressed in Sulfobacillus thermosulfidooxidans than that in Acidithiobacillus caldus, and expression of 4Fe-4S ferredoxin gene was higher in Ferroplasma thermophilum than that in S. thermosulfidooxidans and Leptospirillum ferriphilum. The results indicated that in the bioleaching system of chalcopyrite concentrate, sulfur and iron oxidations were mainly performed by S. thermosulfidooxidans and F. thermophilum, respectively. The community dynamics results revealed that S. thermosulfidooxidans took up the largest proportion during the whole period, followed by F. thermophilum, A. caldus, and L. ferriphilum. The CCA analysis showed that 4Fe-4S ferredoxin gene expression was mainly affected (positively correlated) by high pH and elevated concentration of ferrous ion, while no factor was observed to prominently influence the expression of sulfate adenylyltransferase gene.

  14. The regulatory G4 motif of the Kirsten ras (KRAS) gene is sensitive to guanine oxidation

    DEFF Research Database (Denmark)

    Cogoi, Susanna; Ferino, Annalisa; Miglietta, Giulia

    2018-01-01

    KRAS is one of the most mutated genes in human cancer. It is controlled by a G4 motif located upstream of the transcription start site. In this paper, we demonstrate that 8-oxoguanine (8-oxoG), being more abundant in G4 than in non-G4 regions, is a new player in the regulation of this oncogene. W...

  15. Gene expression profiles of Aspergillus flavus isolates responding to oxidative stress in different culture media

    Science.gov (United States)

    Aflatoxin contamination of peanut by Aspergillus flavus is exacerbated by drought stress. Drought also stimulates the production of reactive oxygen species (ROS) in plant tissues implying a correlation between ROS and aflatoxin production. Here, we performed gene expression analysis by RNAseq of tox...

  16. Role of nitric oxide and flavohemoglobin homolog genes in Aspergillus nidulans sexual development and mycotoxin production

    Science.gov (United States)

    Flavohemoglobins are widely distributed proteins in both prokaryotic and eukaryotic organisms, conferring resistance against nitrosative stress. In the present study we investigated the role of two flavohemoglobin homologous genes, fhbA and fhbB, in morphogenesis and in the production of the mycotox...

  17. Differential expression of genes encoding anti-oxidant enzymes in Sydney rock oysters, Saccostrea glomerata (Gould) selected for disease resistance.

    Science.gov (United States)

    Green, Timothy J; Dixon, Tom J; Devic, Emilie; Adlard, Robert D; Barnes, Andrew C

    2009-05-01

    Sydney rock oysters (Saccostrea glomerata) selectively bred for disease resistance (R) and wild-caught control oysters (W) were exposed to a field infection of disseminating neoplasia. Cumulative mortality of W oysters (31.7%) was significantly greater than R oysters (0.0%) over the 118 days of the experiment. In an attempt to understand the biochemical and molecular pathways involved in disease resistance, differentially expressed sequence tags (ESTs) between R and W S. glomerata hemocytes were identified using the PCR technique, suppression subtractive hybridisation (SSH). Sequencing of 300 clones from two SSH libraries revealed 183 distinct sequences of which 113 shared high similarity to sequences in the public databases. Putative function could be assigned to 64 of the sequences. Expression of nine ESTs homologous to genes previously shown to be involved in bivalve immunity was further studied using quantitative reverse-transcriptase PCR (qRT-PCR). The base-line expression of an extracellular superoxide dismutase (ecSOD) and a small heat shock protein (sHsP) were significantly increased, whilst peroxiredoxin 6 (Prx6) and interferon inhibiting cytokine factor (IK) were significantly decreased in R oysters. From these results it was hypothesised that R oysters would be able to generate the anti-parasitic compound, hydrogen peroxide (H(2)O(2)) faster and to higher concentrations during respiratory burst due to the differential expression of genes for the two anti-oxidant enzymes of ecSOD and Prx6. To investigate this hypothesis, protein extracts from hemolymph were analysed for oxidative burst enzyme activity. Analysis of the cell free hemolymph proteins separated by native-polyacrylamide gel electrophoresis (PAGE) failed to detect true superoxide dismutase (SOD) activity by assaying dismutation of superoxide anion in zymograms. However, the ecSOD enzyme appears to generate hydrogen peroxide, presumably via another process, which is yet to be elucidated. This

  18. Gender disparities in health care.

    Science.gov (United States)

    Kent, Jennifer A; Patel, Vinisha; Varela, Natalie A

    2012-01-01

    The existence of disparities in delivery of health care has been the subject of increased empirical study in recent years. Some studies have suggested that disparities between men and women exist in the diagnoses and treatment of health conditions, and as a result measures have been taken to identify these differences. This article uses several examples to illustrate health care gender bias in medicine. These examples include surgery, peripheral artery disease, cardiovascular disease, critical care, and cardiovascular risk factors. Additionally, we discuss reasons why these issues still occur, trends in health care that may address these issues, and the need for acknowledgement of the current system's inequities in order to provide unbiased care for women in the future. © 2012 Mount Sinai School of Medicine.

  19. Antimicrobial effect of hydroalcoholic extract of saturega multica and zinc oxide namoparticle on coagulase gene expression on clinical and standard samples of MRSA (Methicilin resistant staph aureus

    Directory of Open Access Journals (Sweden)

    F Moridikia

    2016-06-01

    Full Text Available Background & aim: Methicillin-resistant Staphylococcus aureus (MRSA as nosocomial pathogens have been causing severe and deadly diseases around the world.  Coagulase is an important virulence factor for this bacterium and exisist in all staphylococcus aureus isolates. In recent years, studies carried out into the effects of medicinal plants, nanoparticles against bacteria and pathogenic bacteria’s expression genes. The aim of this study was to investigate the antimicrobial effect of satureja mutica hydroalcoholic extract, zinc oxide nanoparticle, and zinc complex on the coagulase gene expression in clinical and standard isolates of methicillin-resistant staphylococcus aureus (MRSA Methods: In the present quasi-experimental study, using micro dilution and MTT, the minimum inhibitory concentration (MIC of hydro-alcoholic extracts of satureja mutica and zinc oxide nanoparticles were tested against MRSA strains. By polymerase chain reaction ((RT- PCR coa gene expression in satureja mutica extract and zinc oxide nanoparticles treated were qualitatively evaluated. Data were analyzed using statistical tests Results: The MIC of hydro alcoholic extract of Satureja mutica  for standard strains and clinical S. aureus  were 3000 and 1500 µg/ml respectively, whereas, the MIC  of nanoparticle zinc oxide on Standards and clinical isolates  were 40 and 20 µg/ml.The hydro alcoholic extract of Satureja mutica on MIC concentration has significant inhibitory effect on coagulase gene expression but no effect was seen for clinical and standard MRSA. Conclusion: The results show a decline in the coa gene expression in vitro by RT- PCR method using satureja mutica  , but no effect on gene expression Housekeeping arc C. An inhibitory effect was observed on bacterial growth by zinc oxide nanoparticles, but no inhibitory effect on gene expression was seen.

  20. Ambient particulate air pollution induces oxidative stress and alterations of mitochondria and gene expression in brown and white adipose tissues

    Directory of Open Access Journals (Sweden)

    Harkema Jack R

    2011-07-01

    Full Text Available Abstract Background Prior studies have demonstrated a link between air pollution and metabolic diseases such as type II diabetes. Changes in adipose tissue and its mitochondrial content/function are closely associated with the development of insulin resistance and attendant metabolic complications. We investigated changes in adipose tissue structure and function in brown and white adipose depots in response to chronic ambient air pollutant exposure in a rodent model. Methods Male ApoE knockout (ApoE-/- mice inhaled concentrated fine ambient PM (PM 2.5 or filtered air (FA for 6 hours/day, 5 days/week, for 2 months. We examined superoxide production by dihydroethidium staining; inflammatory responses by immunohistochemistry; and changes in white and brown adipocyte-specific gene profiles by real-time PCR and mitochondria by transmission electron microscopy in response to PM2.5 exposure in different adipose depots of ApoE-/- mice to understand responses to chronic inhalational stimuli. Results Exposure to PM2.5 induced an increase in the production of reactive oxygen species (ROS in brown adipose depots. Additionally, exposure to PM2.5 decreased expression of uncoupling protein 1 in brown adipose tissue as measured by immunohistochemistry and Western blot. Mitochondrial number was significantly reduced in white (WAT and brown adipose tissues (BAT, while mitochondrial size was also reduced in BAT. In BAT, PM2.5 exposure down-regulated brown adipocyte-specific genes, while white adipocyte-specific genes were differentially up-regulated. Conclusions PM2.5 exposure triggers oxidative stress in BAT, and results in key alterations in mitochondrial gene expression and mitochondrial alterations that are pronounced in BAT. We postulate that exposure to PM2.5 may induce imbalance between white and brown adipose tissue functionality and thereby predispose to metabolic dysfunction.

  1. Explaining Disparities in Unemployment Dynamics

    OpenAIRE

    Karanassou, Marika; Snower, Dennis J.

    1993-01-01

    This paper attempts to explain disparities among the unemployment experiences of different OECD countries in terms of the `fragility' of the short-run unemployment equilibrium (the impact of labour market shocks on the short-run unemployment rate) and the lag structure of the employment determination, wage setting, and labour force participation decisions. The effects of this lag structure on unemployment dynamics are captured through two general measures of `unemployment persistence' (occurr...

  2. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  3. The moral problem of health disparities.

    Science.gov (United States)

    Jones, Cynthia M

    2010-04-01

    Health disparities exist along lines of race/ethnicity and socioeconomic class in US society. I argue that we should work to eliminate these health disparities because their existence is a moral wrong that needs to be addressed. Health disparities are morally wrong because they exemplify historical injustices. Contractarian ethics, Kantian ethics, and utilitarian ethics all provide theoretical justification for viewing health disparities as a moral wrong, as do several ethical principles of primary importance in bioethics. The moral consequences of health disparities are also troubling and further support the claim that these disparities are a moral wrong. The Universal Declaration of Human Rights provides additional support that health disparities are a moral wrong, as does an analogy with the generally accepted duty to provide equal access to education. In this article, I also consider and respond to 3 objections to my thesis.

  4. Carbonated soft drinks induce oxidative stress and alter the expression of certain genes in the brains of Wistar rats.

    Science.gov (United States)

    El-Terras, Adel; Soliman, Mohamed Mohamed; Alkhedaide, Adel; Attia, Hossam Fouad; Alharthy, Abdullah; Banaja, Abdel Elah

    2016-04-01

    In Saudi Arabia, the consumption of carbonated soft drinks is common and often occurs with each meal. Carbonated soft drink consumption has been shown to exhibit effects on the liver, kidney and bone. However, the effects of these soft drinks on brain activity have not been widely examined, particularly at the gene level. Therefore, the current study was conducted with the aim of evaluating the effects of chronic carbonated soft drink consumption on oxidative stress, brain gene biomarkers associated with aggression and brain histology. In total, 40 male Wistar rats were divided into four groups: Group 1 served as a control and was provided access to food and water ad libitum; and groups 2‑4 were given free access to food and carbonated soft drinks only (Cola for group 2, Pepsi for group 3 and 7‑UP for group 4). Animals were maintained on these diets for 3 consecutive months. Upon completion of the experimental period, animals were sacrificed and serological and histopathological analyses were performed on blood and tissues samples. Reverse transcription‑polymerase chain reaction was used to analyze alterations in gene expression levels. Results revealed that carbonated soft drinks increased the serum levels of malondialdehyde (MDA). Carbonated soft drinks were also observed to downregulate the expression of antioxidants glutathione reductase (GR), catalase and glutathione peroxidase (GPx) in the brain when compared with that in the control rats. Rats administered carbonated soft drinks also exhibited decreased monoamine oxidase A (MAO‑A) and acetylcholine esterase (AChE) serum and mRNA levels in the brain. In addition, soft drink consumption upregulated mRNA expression of dopamine D2 receptor (DD2R), while 5-hydroxytryptamine transporter (5‑HTT) expression was decreased. However, following histological examination, all rats had a normal brain structure. The results of this study demonstrated that that carbonated soft drinks induced oxidative stress and

  5. Ginger extract modulates Pb-induced hepatic oxidative stress and expression of antioxidant gene transcripts in rat liver.

    Science.gov (United States)

    Mohamed, Omnia Ismail; El-Nahas, Abeer Fekry; El-Sayed, Yasser Said; Ashry, Khaled Mohamed

    2016-07-01

    Spices and herbs are recognized sources of natural antioxidants that can protect from oxidative stress, thus play an important role in chemoprevention of liver diseases. Ginger is used worldwide primarily as a spicy condiment. This study evaluated the ability of ginger extract (GE) to ameliorate oxidative-hepatic toxicity induced by lead acetate (PbAc) in rats. Five groups of animals were used: group I kept as control; groups II, IV, and V received PbAc (1 ppm in drinking water daily for 6 weeks, and kept for an additional 2 weeks without PbAc exposure); group III treated orally with GE (350 mg/kg body weight, 4 d per week) for 6 weeks; group IV (protective) received GE for 2 weeks before and simultaneously with PbAc; and group V (treatment) received GE for 2 weeks after PbAc exposure. GC-MS analysis of GE revealed its content of gingerol (7.09%), quercetin (3.20%), dl-limonene (0.96%), and zingiberene (0.18%). Treatment of PbAc-treated rats with GE has no effect on hepatic Pb concentrations. However, it maintained serum aspartate aminotransferase level, increased hepatic glutathione (157%), glutathione S-transferase (GST) (228%), glutathione peroxidase (GPx) (138%) and catalase (CAT) (112%) levels, and reduced hepatic malondialdehyde (80%). Co-treatment of PbAc group with GE upregulated mRNA expression of antioxidant genes: GST-α1 (1.4-fold), GPx1 (1.8-fold), and CAT (8-fold), while post-treatment with GE upregulated only mRNA expression of GPx1 (1.5-fold). GE has an antioxidant protective efficacy against PbAc-induced hepatotoxicity, which appears more effective than its therapeutic application. However, the changes in antioxidant gene expression were not reflected at the protein level.

  6. Promoter polymorphisms in the nitric oxide synthase 3 gene are associated with ischemic stroke susceptibility in young black women.

    Science.gov (United States)

    Howard, Timothy D; Giles, Wayne H; Xu, Jianfeng; Wozniak, Marcella A; Malarcher, Ann M; Lange, Leslie A; Macko, Richard F; Basehore, Monica J; Meyers, Deborah A; Cole, John W; Kittner, Steven J

    2005-09-01

    Endothelial nitric oxide exerts a variety of protective effects on endothelial cells and blood vessels, and therefore the nitric oxide synthase 3 gene (NOS3) is a logical candidate gene for stroke susceptibility. We used the population-based Stroke Prevention in Young Women case-control study to assess the association of five NOS3 polymorphisms in 110 cases (46% black) with ischemic stroke and 206 controls (38% black), 15 to 44 years of age. Polymorphisms included 3 single nucleotide polymorphisms (SNPs) in the promoter region (-1468 T>A, -922 G>A, -786 T>C), 1 SNP in exon 7 (G894T), and 1 insertion/deletion polymorphism within intron 4. Significant associations with both the -922 G>A and -786 T>C SNPs with ischemic stroke were observed in the black, but not the white, population. This association was attributable to an increased prevalence of the -922 A allele (OR=3.0, 95% CI=1.3 to 6.8; P=0.005) and the -786 T allele (OR=2.9, 95% CI=1.3 to 6.4; P=0.005) in cases versus controls. These 2 SNPs were in strong linkage disequilibrium (D'=1.0), making it impossible to determine, within the confines of this genetic study, whether 1 or both of these polymorphisms are functionally related to NOS3 expression. Two sets of haplotypes were also identified, 1 of which may confer an increased susceptibility to stroke in blacks, whereas the other appears to be protective. Promoter variants in NOS3 may be associated with ischemic stroke susceptibility among young black women.

  7. Expression of genes involved in oxidative stress response in colonies of the ascidian Botryllus schlosseri exposed to various environmental conditions

    Science.gov (United States)

    Tasselli, Stefano; Ballin, Francesca; Franchi, Nicola; Fabbri, Elena; Ballarin, Loriano

    2017-03-01

    Environmental stress conditions are ultimately related to the induction of oxidative stress in organisms, as a consequence of an increased production of reactive oxygen species (ROS). This could be exploited to study sub-lethal effects induced by the environment in the organisms. In the present work, we evaluate the possibility to use the colonial ascidian Botryllus schlosseri as a bioindicator, to assess the environmental quality in the Lagoon of Venice. Three colony batches were immersed, for 22 days, at two sites (1 and 2) with different grades of hydrodynamics and anthropogenic impact and physico-chemical features of seawater; a control batch was kept in a large tank with continuous seawater flow at the Marine Station of the Department of Biology, University of Padova, in Chioggia (site 3). Seawater at site 2 had higher pH and temperature than site 1. Colonies were then retrieved, their mRNA was extracted and the level of transcription of genes involved in oxidative stress response (glutathione synthase, γ-glutamyl-cysteine ligase, modulatory subunit, two isoforms of glutathione peroxidases and Cu/Zn superoxide dismutase) was evaluated. In colonies from sites 1 and 2, most genes showed significantly increased transcriptional levels with respect to control values. Spectrophotometric analyses of colony homogenates revealed that the enzymatic activity of superoxide dismutase and catalase was higher in colonies from site 2 as compared to site 1, allowing us to speculate that colonies in site 2 were under higher stress level than those in site 1. Overall, we can conclude that B. schlosseri seems a good indicator of the ecological status of the Lagoon environment, within a range of pH and temperature in which colonies are used to live.

  8. Polymorphisms in Genes Involved in Fatty Acid β-Oxidation Interact with Dietary Fat Intakes to Modulate the Plasma TG Response to a Fish Oil Supplementation

    Science.gov (United States)

    Bouchard-Mercier, Annie; Rudkowska, Iwona; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2014-01-01

    A large inter-individual variability in the plasma triglyceride (TG) response to an omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation has been observed. The objective was to examine gene-diet interaction effects on the plasma TG response after a fish oil supplementation, between single-nucleotide polymorphisms (SNPs) within genes involved in fatty acid β-oxidation and dietary fat intakes. Two hundred and eight (208) participants were recruited in the greater Quebec City area. The participants completed a six-week fish oil supplementation (5 g fish oil/day: 1.9–2.2 g EPA and 1.1 g DHA). Dietary fat intakes were measured using three-day food records. SNPs within RXRA, CPT1A, ACADVL, ACAA2, ABCD2, ACOX1 and ACAA1 genes were genotyped using TAQMAN methodology. Gene-diet interaction effects on the plasma TG response were observed for SNPs within RXRA (rs11185660, rs10881576 and rs12339187) and ACOX1 (rs17583163) genes. For rs11185660, fold changes in RXRA gene expression levels were different depending on SFA intakes for homozygotes T/T. Gene-diet interaction effects of SNPs within genes involved in fatty acid β-oxidation and dietary fat intakes may be important in understanding the inter-individual variability in plasma TG levels and in the plasma TG response to a fish oil supplementation. PMID:24647074

  9. Polymorphisms in Genes Involved in Fatty Acid β-Oxidation Interact with Dietary Fat Intakes to Modulate the Plasma TG Response to a Fish Oil Supplementation

    Directory of Open Access Journals (Sweden)

    Annie Bouchard-Mercier

    2014-03-01

    Full Text Available A large inter-individual variability in the plasma triglyceride (TG response to an omega-3 polyunsaturated fatty acid (n-3 PUFA supplementation has been observed. The objective was to examine gene-diet interaction effects on the plasma TG response after a fish oil supplementation, between single-nucleotide polymorphisms (SNPs within genes involved in fatty acid β-oxidation and dietary fat intakes. Two hundred and eight (208 participants were recruited in the greater Quebec City area. The participants completed a six-week fish oil supplementation (5 g fish oil/day: 1.9–2.2 g EPA and 1.1 g DHA. Dietary fat intakes were measured using three-day food records. SNPs within RXRA, CPT1A, ACADVL, ACAA2, ABCD2, ACOX1 and ACAA1 genes were genotyped using TAQMAN methodology. Gene-diet interaction effects on the plasma TG response were observed for SNPs within RXRA (rs11185660, rs10881576 and rs12339187 and ACOX1 (rs17583163 genes. For rs11185660, fold changes in RXRA gene expression levels were different depending on SFA intakes for homozygotes T/T. Gene-diet interaction effects of SNPs within genes involved in fatty acid β-oxidation and dietary fat intakes may be important in understanding the inter-individual variability in plasma TG levels and in the plasma TG response to a fish oil supplementation.

  10. Inheritance and world variation in thermal requirements for egg hatch in Lymantria dispar (Lepidoptera: Erebidae)

    Science.gov (United States)

    M.A. Keena

    2016-01-01

    Mode of inheritance of hatch traits in Lymantria dispar L. was determined by crossing populations nearly fixed for the phenotypic extremes. The nondiapausing phenotype was inherited via a single recessive gene and the phenotype with reduced low temperature exposure requirements before hatch was inherited via a single dominant gene. There was no...

  11. Upregulation of Oxidative Stress Related Genes in a Chronic Kidney Disease Attributed to Specific Geographical Locations of Sri Lanka.

    Science.gov (United States)

    Sayanthooran, Saravanabavan; Magana-Arachchi, Dhammika N; Gunerathne, Lishanthe; Abeysekera, Tilak D J; Sooriyapathirana, Suneth S

    2016-01-01

    Objective. To infer the influence of internal and external oxidative stress in chronic kidney disease patients of unknown etiology (CKDu) in Sri Lanka, by analyzing expression of genes related directly or indirectly to oxidative stress: glutamate-cysteine ligase catalytic subunit (GCLC), glutathione S-transferase mu 1 (GSTM1), glucose-6-phosphate dehydrogenase (G6PD), fibroblast growth factor-23 (FGF23), and NLR family pyrin domain containing 3 (NLRP3). Methods. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was carried out for the selected populations: CKDu patients ( n = 43), chronic kidney disease patients (CKD; n = 14), healthy individuals from a CKDu endemic area (GHI; n = 9), and nonendemic area (KHI; n = 16). Fold changes were quantified relative to KHI. Results. GCLC had greater than threefold upregulation in all three study groups, with a maximum of 7.27-fold upregulation in GHI ( p = 0.000). GSTM1 was not expressed in 25.6% of CKDu and 42.9% of CKD patients, but CKDu patients expressing GSTM1 showed upregulation of 2.60-fold ( p CKDu was observed ( p CKDu, possibly owing to environmental conditions.

  12. Expression of Genes Related to Oxidative Stress in Yeast Treated with Ionizing Radiation and N-acetyl -L-cysteine

    International Nuclear Information System (INIS)

    Park, Ji Young; Kim, Jin Kyu; Nili, Mohammad

    2010-01-01

    Ionizing radiation (IR) induces water radiolysis, which generates highly reactive hydroxyl radicals. Reactive oxygen species (ROS) cause apoptosis and cell damage including DNA strand breaks (DSBs), base damage, protein damage and lipid-hydroperoxide. Detoxifying enzymes are immediately triggered for ROS scavenging. Yeast contains two forms of superoxide dismutase (SOD). SOD1 as a cytosolic copper-zinc superoxide dismutase is located in the cytoplasm and cytosol. SOD2 as a manganese containing enzyme is act in mitochondria matrix and mitochondrion. These enzymes scavenge superoxide radicals by catalyzing the conversion of two of these radicals into hydrogen peroxide and molecular oxygen. The hydrogen peroxide formed by superoxide dismutase and by other processes is scavenged by catalase, a ubiquitous heme protein that catalyzes the dismutation of hydrogen peroxide into water and molecular oxygen. Yeast contains two catalases. Catalase A (CTA1) and Cytosolic catalase T (CTT1) is located in peroxisome and cytoplasm, respectively. Yeast has two glutathione (GSH) peroxidases, which are GPX1 and GPX2. GPX1 and GPX2 are component of cellular component and cytoplasm, respectively. The biochemical function of GSH peroxidase is to reduce lipid-hydroperoxides to their corresponding alcohols and to reduce free hydrogen peroxide to water. Otherwise, chemicals and materials help ROS detoxification against oxidative damage. N-acetyl-Lcysteine (NAC) having a thiol, a precursor for glutathione (GSH), is known as one of the antioxidants. In this study, we examined the effect of NAC through gene expressions related to protective enzyme against oxidative stress in yeast

  13. Endothelial Nitric Oxide Synthase Gene Polymorphism (G894T and Diabetes Mellitus (Type II among South Indians

    Directory of Open Access Journals (Sweden)

    T. Angeline

    2011-01-01

    Full Text Available The objective of the study is to find out whether the endothelial nitric oxide synthase (eNOS G894T single-nucleotide polymorphism is associated with type 2 diabetes mellitus in South Indian (Tamil population. A total number of 260 subjects comprising 100 type 2 diabetic mellitus patients and 160 healthy individuals with no documented history of diabetes were included for the study. DNA was isolated, and eNOS G894T genotyping was performed using the polymerase chain reaction followed by restriction enzyme analysis using Ban II. The genotype distribution in patients and controls were compatible with the Hardy-Weinberg expectations (P>0.05. Odds ratio indicates that the occurrence of mutant genotype (GT/TT was 7.2 times (95% CI = 4.09–12.71 more frequent in the cases than in controls. Thus, the present study demonstrates that there is an association of endothelial nitric oxide synthase gene (G894T polymorphism with diabetes mellitus among South Indians.

  14. Early life stress affects mortality rate more than social behavior, gene expression or oxidative damage in honey bee workers.

    Science.gov (United States)

    Rueppell, Olav; Yousefi, Babak; Collazo, Juan; Smith, Daniel

    2017-04-01

    Early life stressors can affect aging and life expectancy in positive or negative ways. Individuals can adjust their behavior and molecular physiology based on early life experiences but relatively few studies have connected such mechanisms to demographic patterns in social organisms. Sociality buffers individuals from environmental influences and it is unclear how much early life stress affects later life history. Workers of the honey bee (Apis mellifera L.) were exposed to two stressors, Varroa parasitism and Paraquat exposure, early in life. Consequences were measured at the molecular, behavioral, and demographic level. While treatments did not significantly affect levels of oxidative damage, expression of select genes, and titers of the common deformed wing virus, most of these measures were affected by age. Some of the age effects, such as declining levels of deformed wing virus and oxidative damage, were opposite to our predictions but may be explained by demographic selection. Further analyses suggested some influences of worker behavior on mortality and indicated weak treatment effects on behavior. The latter effects were inconsistent among the two experiments. However, mortality rate was consistently reduced by Varroa mite stress during development. Thus, mortality was more responsive to early life stress than our other response variables. The lack of treatment effects on these measures may be due to the social organization of honey bees that buffers the individual from the impact of stressful developmental conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Expression of Genes Related to Oxidative Stress in Yeast Treated with Ionizing Radiation and N-acetyl -L-cysteine

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Young; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2010-10-15

    Ionizing radiation (IR) induces water radiolysis, which generates highly reactive hydroxyl radicals. Reactive oxygen species (ROS) cause apoptosis and cell damage including DNA strand breaks (DSBs), base damage, protein damage and lipid-hydroperoxide. Detoxifying enzymes are immediately triggered for ROS scavenging. Yeast contains two forms of superoxide dismutase (SOD). SOD1 as a cytosolic copper-zinc superoxide dismutase is located in the cytoplasm and cytosol. SOD2 as a manganese containing enzyme is act in mitochondria matrix and mitochondrion. These enzymes scavenge superoxide radicals by catalyzing the conversion of two of these radicals into hydrogen peroxide and molecular oxygen. The hydrogen peroxide formed by superoxide dismutase and by other processes is scavenged by catalase, a ubiquitous heme protein that catalyzes the dismutation of hydrogen peroxide into water and molecular oxygen. Yeast contains two catalases. Catalase A (CTA1) and Cytosolic catalase T (CTT1) is located in peroxisome and cytoplasm, respectively. Yeast has two glutathione (GSH) peroxidases, which are GPX1 and GPX2. GPX1 and GPX2 are component of cellular component and cytoplasm, respectively. The biochemical function of GSH peroxidase is to reduce lipid-hydroperoxides to their corresponding alcohols and to reduce free hydrogen peroxide to water. Otherwise, chemicals and materials help ROS detoxification against oxidative damage. N-acetyl-Lcysteine (NAC) having a thiol, a precursor for glutathione (GSH), is known as one of the antioxidants. In this study, we examined the effect of NAC through gene expressions related to protective enzyme against oxidative stress in yeast

  16. Gene expression, glutathione status and indicators of hepatic oxidative stress in laughing gull (Larus atricilla) hatchlings exposed to methylmercury

    Science.gov (United States)

    Jenko, Kathryn; Karouna-Renier, Natalie K.; Hoffman, David J.

    2012-01-01

    Despite extensive studies of methylmercury (MeHg) toxicity in birds, molecular effects on birds are poorly characterized. To improve our understanding of toxicity pathways and identify novel indicators of avian exposure to Hg, the authors investigated genomic changes, glutathione status, and oxidative status indicators in liver from laughing gull (Larus atricilla) hatchlings that were exposed in ovo to MeHg (0.05–1.6 µg/g). Genes involved in the transsulfuration pathway, iron transport and storage, thyroid-hormone related processes, and cellular respiration were identified by suppression subtractive hybridization as differentially expressed. Quantitative polymerase chain reaction (qPCR) identified statistically significant effects of Hg on cytochrome C oxidase subunits I and II, transferrin, and methionine adenosyltransferase RNA expression. Glutathione-S-transferase activity and protein-bound sulfhydryl levels decreased, whereas glucose-6-phosphate dehydrogenase activity increased dose-dependently. Total sulfhydryl concentrations were significantly lower at 0.4 µg/g Hg than in controls. T ogether, these endpoints provided some evidence of compensatory effects, but little indication of oxidative damage at the tested doses, and suggest that sequestration of Hg through various pathways may be important for minimizing toxicity in laughing gulls. This is the first study to describe the genomic response of an avian species to Hg. Laughing gulls are among the less sensitive avian species with regard to Hg toxicity, and their ability to prevent hepatic oxidative stress may be important for surviving levels of MeHg exposures at which other species succumb.

  17. Thymol reduces oxidative stress, aortic intimal thickening, and inflammation-related gene expression in hyperlipidemic rabbits

    Directory of Open Access Journals (Sweden)

    Ya-Mei Yu

    2016-07-01

    Full Text Available Atherosclerosis plays a key role in the development of cardiovascular diseases, and is often associated with oxidative stress and local inflammation. Thymol, a major polyphenolic compound in thyme, exhibits antioxidant and anti-inflammatory properties. In this study, we measured the in vitro antioxidant activity of thymol, and investigated the effect of thymol on high-fat-diet-induced hyperlipidemia and atherosclerosis. New Zealand white rabbits were fed with regular chow, high-fat and high-cholesterol diet (HC, T3, or T6 (HC with thymol supplementation at 3 mg/kg/d or 6 mg/kg/d, respectively for 8 weeks. Aortic intimal thickening, serum lipid parameters, multiple inflammatory markers, proinflammatory cytokines, and atherosclerosis-associated indicators were significantly increased in the HC group but decreased upon thymol supplementation. In summary, thymol exhibits antioxidant activity, and may suppress the progression of high-fat-diet-induced hyperlipidemia and atherosclerosis by reducing aortic intimal lipid lesion, lowering serum lipids and oxidative stress, and alleviating inflammation-related responses.

  18. Reduction of oxidative cellular damage by overexpression of the thioredoxin TRX2 gene improves yield and quality of wine yeast dry active biomass

    Directory of Open Access Journals (Sweden)

    Ros Joaquim

    2010-02-01

    Full Text Available Abstract Background Wine Saccharomyces cerevisiae strains, adapted to anaerobic must fermentations, suffer oxidative stress when they are grown under aerobic conditions for biomass propagation in the industrial process of active dry yeast production. Oxidative metabolism of sugars favors high biomass yields but also causes increased oxidation damage of cell components. The overexpression of the TRX2 gene, coding for a thioredoxin, enhances oxidative stress resistance in a wine yeast strain model. The thioredoxin and also the glutathione/glutaredoxin system constitute the most important defense against oxidation. Trx2p is also involved in the regulation of Yap1p-driven transcriptional response against some reactive oxygen species. Results Laboratory scale simulations of the industrial active dry biomass production process demonstrate that TRX2 overexpression increases the wine yeast final biomass yield and also its fermentative capacity both after the batch and fed-batch phases. Microvinifications carried out with the modified strain show a fast start phenotype derived from its enhanced fermentative capacity and also increased content of beneficial aroma compounds. The modified strain displays an increased transcriptional response of Yap1p regulated genes and other oxidative stress related genes. Activities of antioxidant enzymes like Sod1p, Sod2p and catalase are also enhanced. Consequently, diminished oxidation of lipids and proteins is observed in the modified strain, which can explain the improved performance of the thioredoxin overexpressing strain. Conclusions We report several beneficial effects of overexpressing the thioredoxin gene TRX2 in a wine yeast strain. We show that this strain presents an enhanced redox defense. Increased yield of biomass production process in TRX2 overexpressing strain can be of special interest for several industrial applications.

  19. Identification and Analysis of a Novel Gene Cluster Involves in Fe2+ Oxidation in Acidithiobacillus ferrooxidans ATCC 23270, a Typical Biomining Acidophile.

    Science.gov (United States)

    Ai, Chenbing; Liang, Yuting; Miao, Bo; Chen, Miao; Zeng, Weimin; Qiu, Guanzhou

    2018-07-01

    Iron-oxidizing Acidithiobacillus spp. are applied worldwide in biomining industry to extract metals from sulfide minerals. They derive energy for survival through Fe 2+ oxidation and generate Fe 3+ for the dissolution of sulfide minerals. However, molecular mechanisms of their iron oxidation still remain elusive. A novel two-cytochrome-encoding gene cluster (named tce gene cluster) encoding a high-molecular-weight cytochrome c (AFE_1428) and a c 4 -type cytochrome c 552 (AFE_1429) in A. ferrooxidans ATCC 23270 was first identified in this study. Bioinformatic analysis together with transcriptional study showed that AFE_1428 and AFE_1429 were the corresponding paralog of Cyc2 (AFE_3153) and Cyc1 (AFE_3152) which were encoded by the extensively studied rus operon and had been proven involving in ferrous iron oxidation. Both AFE_1428 and AFE_1429 contained signal peptide and the classic heme-binding motif(s) as their corresponding paralog. The modeled structure of AFE_1429 showed high resemblance to Cyc1. AFE_1428 and AFE_1429 were preferentially transcribed as their corresponding paralogs in the presence of ferrous iron as sole energy source as compared with sulfur. The tce gene cluster is highly conserved in the genomes of four phylogenetic-related A. ferrooxidans strains that were originally isolated from different sites separated with huge geographical distance, which further implies the importance of this gene cluster. Collectively, AFE_1428 and AFE_1429 involve in Fe 2+ oxidation like their corresponding paralog by integrating with the metalloproteins encoded by rus operon. This study provides novel insights into the Fe 2+ oxidation mechanism in Fe 2+ -oxidizing A. ferrooxidans ssp.

  20. Phycocyanobilin promotes PC12 cell survival and modulates immune and inflammatory genes and oxidative stress markers in acute cerebral hypoperfusion in rats

    Energy Technology Data Exchange (ETDEWEB)

    Marín-Prida, Javier [Centre for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/ 214 y 222, La Lisa, PO Box: 430, Havana (Cuba); Pavón-Fuentes, Nancy [International Centre for Neurological Restoration (CIREN), Ave. 25 e/ 158 y 160, Playa, PO Box: 11300, Havana (Cuba); Llópiz-Arzuaga, Alexey; Fernández-Massó, Julio R. [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba); Delgado-Roche, Liván [Centre for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/ 214 y 222, La Lisa, PO Box: 430, Havana (Cuba); Mendoza-Marí, Yssel; Santana, Seydi Pedroso; Cruz-Ramírez, Alieski; Valenzuela-Silva, Carmen; Nazábal-Gálvez, Marcelo; Cintado-Benítez, Alberto [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba); Pardo-Andreu, Gilberto L. [Centre for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/ 214 y 222, La Lisa, PO Box: 430, Havana (Cuba); Polentarutti, Nadia [Istituto Clinico Humanitas (IRCCS), Rozzano (Italy); Riva, Federica [Department of Veterinary Science and Public Health (DIVET), University of Milano (Italy); Pentón-Arias, Eduardo [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba); Pentón-Rol, Giselle [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba)

    2013-10-01

    Since the inflammatory response and oxidative stress are involved in the stroke cascade, we evaluated here the effects of Phycocyanobilin (PCB, the C-Phycocyanin linked tetrapyrrole) on PC12 cell survival, the gene expression and the oxidative status of hypoperfused rat brain. After the permanent bilateral common carotid arteries occlusion (BCCAo), the animals were treated with saline or PCB, taking samples 24 h post-surgery. Global gene expression was analyzed with GeneChip Rat Gene ST 1.1 from Affymetrix; the expression of particular genes was assessed by the Fast SYBR Green RT-PCR Master Mix and Bioplex methods; and redox markers (MDA, PP, CAT, SOD) were evaluated spectrophotometrically. The PCB treatment prevented the H{sub 2}O{sub 2} and glutamate induced PC12 cell injury assessed by the MTT assay, and modulated 190 genes (93 up- and 97 down-regulated) associated to several immunological and inflammatory processes in BCCAo rats. Furthermore, PCB positively modulated 19 genes mostly related to a detrimental pro-inflammatory environment and counteracted the oxidative imbalance in the treated BCCAo animals. Our results support the view of an effective influence of PCB on major inflammatory mediators in acute cerebral hypoperfusion. These results suggest that PCB has a potential to be a treatment for ischemic stroke for which further studies are needed. - Highlights: • Phycocyanobilin (PCB) prevents H{sub 2}O{sub 2} and glutamate induced PC12 cell viability loss. • Anterior cortex and striatum are highly vulnerable to cerebral hypoperfusion (CH). • PCB modulates 190 genes associated to inflammation in acute CH. • PCB regulates 19 genes mostly related to a detrimental pro-inflammatory environment. • PCB restores redox and immune balances showing promise as potential stroke therapy.

  1. Phycocyanobilin promotes PC12 cell survival and modulates immune and inflammatory genes and oxidative stress markers in acute cerebral hypoperfusion in rats

    International Nuclear Information System (INIS)

    Marín-Prida, Javier; Pavón-Fuentes, Nancy; Llópiz-Arzuaga, Alexey; Fernández-Massó, Julio R.; Delgado-Roche, Liván; Mendoza-Marí, Yssel; Santana, Seydi Pedroso; Cruz-Ramírez, Alieski; Valenzuela-Silva, Carmen; Nazábal-Gálvez, Marcelo; Cintado-Benítez, Alberto; Pardo-Andreu, Gilberto L.; Polentarutti, Nadia; Riva, Federica; Pentón-Arias, Eduardo; Pentón-Rol, Giselle

    2013-01-01

    Since the inflammatory response and oxidative stress are involved in the stroke cascade, we evaluated here the effects of Phycocyanobilin (PCB, the C-Phycocyanin linked tetrapyrrole) on PC12 cell survival, the gene expression and the oxidative status of hypoperfused rat brain. After the permanent bilateral common carotid arteries occlusion (BCCAo), the animals were treated with saline or PCB, taking samples 24 h post-surgery. Global gene expression was analyzed with GeneChip Rat Gene ST 1.1 from Affymetrix; the expression of particular genes was assessed by the Fast SYBR Green RT-PCR Master Mix and Bioplex methods; and redox markers (MDA, PP, CAT, SOD) were evaluated spectrophotometrically. The PCB treatment prevented the H 2 O 2 and glutamate induced PC12 cell injury assessed by the MTT assay, and modulated 190 genes (93 up- and 97 down-regulated) associated to several immunological and inflammatory processes in BCCAo rats. Furthermore, PCB positively modulated 19 genes mostly related to a detrimental pro-inflammatory environment and counteracted the oxidative imbalance in the treated BCCAo animals. Our results support the view of an effective influence of PCB on major inflammatory mediators in acute cerebral hypoperfusion. These results suggest that PCB has a potential to be a treatment for ischemic stroke for which further studies are needed. - Highlights: • Phycocyanobilin (PCB) prevents H 2 O 2 and glutamate induced PC12 cell viability loss. • Anterior cortex and striatum are highly vulnerable to cerebral hypoperfusion (CH). • PCB modulates 190 genes associated to inflammation in acute CH. • PCB regulates 19 genes mostly related to a detrimental pro-inflammatory environment. • PCB restores redox and immune balances showing promise as potential stroke therapy

  2. Abnormal iron metabolism and oxidative stress in mice expressing a mutant form of the ferritin light polypeptide gene

    Science.gov (United States)

    Barbeito, Ana G.; Garringer, Holly J.; Baraibar, Martin A.; Gao, Xiaoying; Arredondo, Miguel; Núñez, Marco T.; Smith, Mark A.; Ghetti, Bernardino; Vidal, Ruben

    2009-01-01

    Insertional mutations in exon 4 of the ferritin light chain (FTL) gene are associated with hereditary ferritinopathy (HF) or neuroferritinopathy, an autosomal dominant neurodegenerative disease characterized by progressive impairment of motor and cognitive functions. To determine the pathogenic mechanisms by which mutations in FTL lead to neurodegeneration, we investigated iron metabolism and markers of oxidative stress in the brain of transgenic (Tg) mice that express the mutant human FTL498-499InsTC cDNA. Compared with wild-type mice, brain extracts from Tg (FTL-Tg) mice showed an increase in the cytoplasmic levels of both FTL and ferritin heavy chain polypeptides, a decrease in the protein and mRNA levels of transferrin receptor-1, and a significant increase in iron levels. Transgenic mice also showed the presence of markers for lipid peroxidation, protein carbonyls, and nitrone–protein adducts in the brain. However, gene expression analysis of iron management proteins in the liver of Tg mice indicates that the FTL-Tg mouse liver is iron deficient. Our data suggest that disruption of iron metabolism in the brain has a primary role in the process of neurodegeneration in HF and that the pathogenesis of HF is likely to result from a combination of reduction in iron storage function and enhanced toxicity associated with iron-induced ferritin aggregates in the brain. PMID:19519778

  3. Low intensity infrared laser affects expression of oxidative DNA repair genes in mitochondria and nucleus

    International Nuclear Information System (INIS)

    Fonseca, A S; Magalhães, L A G; Mencalha, A L; Geller, M; Paoli, F

    2014-01-01

    Practical properties and physical characteristics of low intensity lasers have made possible their application to treat soft tissue diseases. Excitation of intracellular chromophores by red and infrared radiation at low energy fluences with increase of mitochondrial metabolism is the basis of the biostimulation effect but free radicals can be produced. DNA lesions induced by free radicals are repaired by the base excision repair pathway. In this work, we evaluate the expression of POLγ and APEX2 genes related to repair of mitochondrial and nuclear DNA, respectively. Skin and muscle tissue of Wistar rats were exposed to low intensity infrared laser at different fluences. One hour and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of POLγ and APEX2 mRNA expression by real time quantitative polymerase chain reaction. Skin and muscle tissue of Wistar rats exposed to laser radiation show different expression of POLγ and APEX2 mRNA depending of the fluence and time after exposure. Our study suggests that a low intensity infrared laser affects expression of genes involved in repair of oxidative lesions in mitochondrial and nuclear DNA. (paper)

  4. POLYMORPHISMS OF ENDOTHELIAL NITRIC OXIDE SYNTHASE GENE AS PREDICTORS OF WOLFF-PARKINSON-WHITE SYNDROME

    Directory of Open Access Journals (Sweden)

    G. V. Matyushin

    2017-01-01

    Full Text Available Background. The discovery of new genetic predictors of cardiovascular diseases can be used in predicting and diagnosing latent forms of the disease. Wolff-Parkinson-White syndrome (WPW occurs in all age groups  and detected in 1-30 people per 10000, it manifests mainly in young age (on average 20 years, and the risk of sudden cardiac death is higher than in general population.Aim. To study the relationship of WPW syndrome with the polymorphism of endothelial nitric synthase gene (NOS3, and to identify genetic predictors of this syndrome.Material and methods. The study included 51 people with ECG proven WPW syndrome and 153 people with no cardiovascular disease. The patients were divided into subgroups according to sex: 21 women, 30 men. All patients underwent a standard cardiac examination (anamnesis, electrocardiography, echocardiography, bicycle ergometry, transesophageal electrical stimulation of the atria, Holter monitoring and blood was taken for molecular genetic testing of DNA.Results. The results showed a statistically significant prevalence of rare genotype 4b\\4b NOS3 gene in the control group of women (16.3%; р<0.05 compared with women from the main group, who did not have this genotype, while there was significant prevalence of genotype 4a\\4a in the main group of women (81.0%; р<0.05 compared with women from the control group.  In men this prevalence was not found.Conclusion. The presence of genotype 4b\\4b NOS3 gene reduces the likelihood of WPW syndrome and its symptoms in females. In men,  this prevalence is not found, presumably, in connection with some mechanisms of hormonal regulation. The results can be used in the genetic prediction of the course of the disease.

  5. [Abundances of ammonia-oxidizing archaeal accA and amoA genes in response to NO2 - and NO3 - of hot springs in Yunnan province].

    Science.gov (United States)

    Song, Zhaoqi; Wang, Li; Zhou, Enmin; Wang, Fengping; Xiao, Xiang; Zhang, Chuanlun; Li, Wenjun

    2014-12-04

    Yunnan hot springs have highly diverseammonia-oxidizing archaea (AOA), which are autotrophic and can fix CO2 using the 3-hydroxypropionate/ 4-hydroxybutyrate (HP/HD) pathway. In this study, we investigated the abundances of prokaryotic 16S rRNA gene and archaeal accA and amoA genes in the sediments of hot springs of Yunnan Province, and analysed the correlations between the above gene abundances and environmental factors. We selected the sediments of twenty representative hot springs, and detected the gene abundances by quantitative polymerase chain reaction (qPCR). The principal component analysis (PCA) and the Mantel test in the R software package were performed for the correlations of gene abundance and environmental variables. The bacterial and archaeal 16S rRNA gene abundances were from 6.6 x 10(7) to 4.19 x 10(11) and from 1.27 x 10(6) to 1.51 x 10(11) copies/g sediment, respectively; Archaeal accA and amoA genes were from 8.89 x 10(3) to 6.49 x 10(5) and from 7.64 x 10(3) to 4.36 x 10(5) copies/g sediment, respectively. The results of mantel test showed that accA gene was significantly (R = 0.98, P < 0.001) correlated with amoA gene; Both of them also were correlated significantly with NO2- and NO3 -, but not with pH. The abundances of bacterial and archaeal 16S rRNA genes and the ratio between them varied significantly among Yunnan hot springs. The archaealaccA and amoA genes showed significant correlation with each other, validating our previous finding that AOA in terrestrial hot springs might acquire energy from ammonia oxidation coupled with CO2 fixation using the 3-hydroxypropionate/4-hydroxybutyrate pathway.

  6. Spaceflight Modifies Escherichia coli Gene Expression in Response to Antibiotic Exposure and Reveals Role of Oxidative Stress Response

    Directory of Open Access Journals (Sweden)

    Thomas R. Aunins

    2018-03-01

    Full Text Available Bacteria grown in space experiments under microgravity conditions have been found to undergo unique physiological responses, ranging from modified cell morphology and growth dynamics to a putative increased tolerance to antibiotics. A common theory for this behavior is the loss of gravity-driven convection processes in the orbital environment, resulting in both reduction of extracellular nutrient availability and the accumulation of bacterial byproducts near the cell. To further characterize the responses, this study investigated the transcriptomic response of Escherichia coli to both microgravity and antibiotic concentration. E. coli was grown aboard International Space Station in the presence of increasing concentrations of the antibiotic gentamicin with identical ground controls conducted on Earth. Here we show that within 49 h of being cultured, E. coli adapted to grow at higher antibiotic concentrations in space compared to Earth, and demonstrated consistent changes in expression of 63 genes in response to an increase in drug concentration in both environments, including specific responses related to oxidative stress and starvation response. Additionally, we find 50 stress-response genes upregulated in response to the microgravity when compared directly to the equivalent concentration in the ground control. We conclude that the increased antibiotic tolerance in microgravity may be attributed not only to diminished transport processes, but also to a resultant antibiotic cross-resistance response conferred by an overlapping effect of stress response genes. Our data suggest that direct stresses of nutrient starvation and acid-shock conveyed by the microgravity environment can incidentally upregulate stress response pathways related to antibiotic stress and in doing so contribute to the increased antibiotic stress tolerance observed for bacteria in space experiments. These results provide insights into the ability of bacteria to adapt under

  7. Spaceflight Modifies Escherichia coli Gene Expression in Response to Antibiotic Exposure and Reveals Role of Oxidative Stress Response.

    Science.gov (United States)

    Aunins, Thomas R; Erickson, Keesha E; Prasad, Nripesh; Levy, Shawn E; Jones, Angela; Shrestha, Shristi; Mastracchio, Rick; Stodieck, Louis; Klaus, David; Zea, Luis; Chatterjee, Anushree

    2018-01-01

    Bacteria grown in space experiments under microgravity conditions have been found to undergo unique physiological responses, ranging from modified cell morphology and growth dynamics to a putative increased tolerance to antibiotics. A common theory for this behavior is the loss of gravity-driven convection processes in the orbital environment, resulting in both reduction of extracellular nutrient availability and the accumulation of bacterial byproducts near the cell. To further characterize the responses, this study investigated the transcriptomic response of Escherichia coli to both microgravity and antibiotic concentration. E. coli was grown aboard International Space Station in the presence of increasing concentrations of the antibiotic gentamicin with identical ground controls conducted on Earth. Here we show that within 49 h of being cultured, E. coli adapted to grow at higher antibiotic concentrations in space compared to Earth, and demonstrated consistent changes in expression of 63 genes in response to an increase in drug concentration in both environments, including specific responses related to oxidative stress and starvation response. Additionally, we find 50 stress-response genes upregulated in response to the microgravity when compared directly to the equivalent concentration in the ground control. We conclude that the increased antibiotic tolerance in microgravity may be attributed not only to diminished transport processes, but also to a resultant antibiotic cross-resistance response conferred by an overlapping effect of stress response genes. Our data suggest that direct stresses of nutrient starvation and acid-shock conveyed by the microgravity environment can incidentally upregulate stress response pathways related to antibiotic stress and in doing so contribute to the increased antibiotic stress tolerance observed for bacteria in space experiments. These results provide insights into the ability of bacteria to adapt under extreme stress

  8. [Catalase gene rs1001179 polymorphism and oxidative stress in patients with chronic hepatitis C and ulcerative colitis].

    Science.gov (United States)

    Bulatova, I A; Tretyakova, Yu I; Shchekotov, V V; Shchekotova, A P; Ulitina, P V; Krivtsov, A V; Nenasheva, O Yu

    2015-01-01

    To study the rs1001179 polymorphism of the catalase (CAT) gene and to estimate the serum levels of the enzymes catalase and glutathione peroxidase (GP) in patients with chronic hepatitis C (CHC) and in those with ulcerative colitis (UC) in the Perm Territory. Ninety patients with reactivation-phase CHC and 50 patients with exacerbation-phase UC were examined. The serum levels of catalase and GP were determined and the polymorphic variants of the marker of CAT gene rs1001179 in the DNA isolated from whole blood were found in all the patients. In the CHC and UC groups, the levels of catalase and GP were found to be lower than that in apparently healthy individuals. Furthermore, both groups showed a direct correlation between the activities of the enzymes. In the patients with CHC and in those with UC, the spread of genotypes and alleles generally failed to virtually differ from that in the control group. The G/G genotype was prevalent in all the groups. In the patients with CHC, the minor A allele demonstrated a significant inverse correlation with the enzyme catalase (r = -0.16; p = 0.02) and GP (r = -0.13; p = 0.047). The lower serum levels of catalase and GP are indicative of oxidative stress in the patients with CHC or UC. In the patients with CHC, the significant correlation of the pathological rs1701179 A allele marker with the processes of synthesis of antioxidant enzymes may suggest that CAT gene polymorphism in the A/A homozygotes might affect the regulation mechanism involved in the antioxidant system in the liver.

  9. Spaceflight Modifies Escherichia coli Gene Expression in Response to Antibiotic Exposure and Reveals Role of Oxidative Stress Response

    Science.gov (United States)

    Aunins, Thomas R.; Erickson, Keesha E.; Prasad, Nripesh; Levy, Shawn E.; Jones, Angela; Shrestha, Shristi; Mastracchio, Rick; Stodieck, Louis; Klaus, David; Zea, Luis; Chatterjee, Anushree

    2018-01-01

    Bacteria grown in space experiments under microgravity conditions have been found to undergo unique physiological responses, ranging from modified cell morphology and growth dynamics to a putative increased tolerance to antibiotics. A common theory for this behavior is the loss of gravity-driven convection processes in the orbital environment, resulting in both reduction of extracellular nutrient availability and the accumulation of bacterial byproducts near the cell. To further characterize the responses, this study investigated the transcriptomic response of Escherichia coli to both microgravity and antibiotic concentration. E. coli was grown aboard International Space Station in the presence of increasing concentrations of the antibiotic gentamicin with identical ground controls conducted on Earth. Here we show that within 49 h of being cultured, E. coli adapted to grow at higher antibiotic concentrations in space compared to Earth, and demonstrated consistent changes in expression of 63 genes in response to an increase in drug concentration in both environments, including specific responses related to oxidative stress and starvation response. Additionally, we find 50 stress-response genes upregulated in response to the microgravity when compared directly to the equivalent concentration in the ground control. We conclude that the increased antibiotic tolerance in microgravity may be attributed not only to diminished transport processes, but also to a resultant antibiotic cross-resistance response conferred by an overlapping effect of stress response genes. Our data suggest that direct stresses of nutrient starvation and acid-shock conveyed by the microgravity environment can incidentally upregulate stress response pathways related to antibiotic stress and in doing so contribute to the increased antibiotic stress tolerance observed for bacteria in space experiments. These results provide insights into the ability of bacteria to adapt under extreme stress

  10. TGF-beta-induced early gene-1 overexpression promotes oxidative stress protection and actin cytoskeleton rearrangement in human skin fibroblasts.

    Science.gov (United States)

    Leduc, Chloe; Sobilo, Lauren; Toumi, Hechmi; Mondon, Philippe; Lespessailles, Eric; Ossant, Fédéric; Kurfurst, Robin; Pichon, Chantal

    2016-06-01

    Transforming growth factor beta inducible early gene-1 (TIEG-1), a member of the Krüppel-like factor, was identified as a primary response gene for TGF-β. The role of TIEG-1 in skin repair has been mainly addressed in vivo on TIEG-1 null mice model and the mechanism remains unexplored. We investigated the modulation of TIEG-1 expression in normal human skin fibroblasts by either down-expressing or overexpressing the gene. We evaluated reactive oxygen species production and the cell viability of treated cells. The effect of TIEG-1 overexpression was monitored by wound healing assay and immunofluorescence staining of actin fibers organization and alpha-smooth muscle actin (α-SMA). Western blots were carried out to identify the level of expression or phosphorylation of key proteins such as cofilin, Rho GTPases, and p38 mitogen-activated protein kinase (p38 MAPK). TIEG-1 down-regulation had a deleterious effect on the cell viability. It was significantly reduced (65±5%) and exposure to ultraviolet further increased this effect (47±3%). By contrast, cells overexpressing TIEG-1 had a reduced reactive oxygen species production (75%) compared to control and mock-transfected cells. This overexpression also resulted in formation of actin stress fibers and increased α-SMA expression and an enhanced wound healing feature. RhoB GTPase was upregulated and phosphorylation of cofilin and p38 MAPK was observed. TIEG-1 overexpression in normal human skin fibroblasts results in improved resistance to oxidative stress, myofibroblast-like conversion that involved RhoB signaling pathway with cofilin and p38 MAPK proteins activation. This study enlightens the role of TIEG-1 role in skin biology. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Gene expression dynamics in the oxidative stress response of fission yeast

    DEFF Research Database (Denmark)

    Papadakis, Emmanouil

    Changes in the environment continuously challenge living organisms during their lifetime. A cell’s survival depends on its ability to coordinate a rapid and successful stress response when exposed to acute doses of damaging agents. Oxidative stress caused by an excess of reactive oxygen species......, especially using model organisms. The fission yeast Schizosaccharomyces pombe is a unicellular eukaryotic organism that possesses genome features and molecular pathways that are highly conserved in humans. Moreover, the limited redundancy of its genome make S. pombe well suited for phenotypic studies...... (HP, 0.5 mM). The applied experimental design allowed us to measure both the activation and recovery phases of the response at a sufficiently high time resolution to model transcription and translation dynamics. Absolute expression levels (copies per cell) and time-resolved expression profiles for 4...

  12. Polyethylenimine-coated iron oxide magnetic nanoparticles for high efficient gene delivery

    Science.gov (United States)

    Nguyen, Anh H.; Abdelrasoul, Gaser N.; Lin, Donghai; Maadi, Hamid; Tong, Junfeng; Chen, Grace; Wang, Richard; Anwar, Afreen; Shoute, Lian; Fang, Qiang; Wang, Zhixiang; Chen, Jie

    2018-04-01

    Properties of magnetic nanoparticles (MNPs) are of notable interest in many fields of biomedical engineering, especially for gene therapy. In this paper, we report a method for synthesis and delivery of MNPs loaded with DNAs, which overcomes the drawbacks of high cost and cytotoxicity associated with current delivery techniques (chemical- and liposome-based designs). 24-nm MNPs (Fe3O4) were synthesized, functionalized and characterized by analytical techniques to understand the surface properties for DNA binding and cellular uptake. The simple surface functionalization with polyethylenimine (PEI) through glutaraldehyde linker activation gave the complex of PEI-coated MNPs, resulting in high stability with a positive surface charge of about + 31 mV. Under the guidance of an external magnetic field, the functionalized MNPs with a loaded isothiocyanate (FITC) or green fluorescent protein (GFP) will enter the cells, which can be visualized by the fluorescence of FITC or GFP. We also examined the cytotoxicity of our synthesized MNPs by MTT assay. We showed that the IC50s of these MNPs for COS-7 and CHO cells were low and at 0.2 and 0.26 mg/mL, respectively. Moreover, our synthesized MNPs that were loaded with plasmids encoding GFP showed high transfection rate, 38.3% for COS-7cells and 27.6% for CHO cells. In conclusion, we established a promising method with low cost, low toxicity, and high transfection efficiency for siRNA and gene delivery.

  13. Gene expression profiles of inducible nitric oxide synthase and cytokines in Leishmania major-infected macrophage-like RAW 264.7 cells treated with gallic acid

    NARCIS (Netherlands)

    Radtke, O.A.; Kiderlen, A.F.; Kayser, Oliver; Kolodziej, H

    2004-01-01

    The effects of gallic acid on the gene expressions of inducible nitric oxide synthase (iNOS) and the cytokines interleukin (IL)-1, IL-10, IL-12, IL-18, TNF-alpha, and interferon (IFN)-gamma were investigated by reverse-transcription polymerase chain reaction (RT-PCR). The experiments were performed

  14. Influence of thermally-oxidized vegetable oils and animal fats on growth performance, liver gene expression, and liver and serum cholesterol and triglycerides in young pigs

    Science.gov (United States)

    To evaluate the effect of feeding thermally-oxidized vegetable oils and animal fats on growth performance, liver gene expression, and liver and serum fatty acid and cholesterol concentration in young pigs, 102 barrows (6.67 ± 0.03 kg BW) were divided into 3 groups and randomly assigned to dietary tr...

  15. Characterization of the gene encoding serine acetyltransferase, a regulated enzyme of cysteine biosynthesis from the protist parasites Entamoeba histolytica and Entamoeba dispar. Regulation and possible function of the cysteine biosynthetic pathway in Entamoeba.

    Science.gov (United States)

    Nozaki, T; Asai, T; Sanchez, L B; Kobayashi, S; Nakazawa, M; Takeuchi, T

    1999-11-05

    The enteric protist parasites Entamoeba histolytica and Entamoeba dispar possess a cysteine biosynthetic pathway, unlike their mammalian host, and are capable of de novo production of L-cysteine. We cloned and characterized cDNAs that encode the regulated enzyme serine acetyltransferase (SAT) in this pathway from these amoebae by genetic complementation of a cysteine-auxotrophic Escherichia coli strain with the amoebic cDNA libraries. The deduced amino acid sequences of the amoebic SATs exhibited, within the most conserved region, 36-52% identities with the bacterial and plant SATs. The amoebic SATs contain a unique insertion of eight amino acids, also found in the corresponding region of a plasmid-encoded SAT from Synechococcus sp., which showed the highest overall identities to the amoebic SATs. Phylogenetic reconstruction also revealed a close kinship of the amoebic SATs with cyanobacterial SATs. Biochemical characterization of the recombinant E. histolytica SAT revealed several enzymatic features that distinguished the amoebic enzyme from the bacterial and plant enzymes: 1) inhibition by L-cysteine in a competitive manner with L-serine; 2) inhibition by L-cystine; and 3) no association with cysteine synthase. Genetically engineered amoeba strains that overproduced cysteine synthase and SAT were created. The cysteine synthase-overproducing amoebae had a higher level of cysteine synthase activity and total thiol content and revealed increased resistance to hydrogen peroxide. These results indicate that the cysteine biosynthetic pathway plays an important role in antioxidative defense of these enteric parasites.

  16. Molecular analysis of the diversity of sulfate-reducing and sulfur-oxidizing prokaryotes in the environment, using aprA as functional marker gene.

    Science.gov (United States)

    Meyer, Birte; Kuever, Jan

    2007-12-01

    The dissimilatory adenosine-5'-phosphosulfate reductase is a key enzyme of the microbial sulfate reduction and sulfur oxidation processes. Because the alpha- and beta-subunit-encoding genes, aprBA, are highly conserved among sulfate-reducing and sulfur-oxidizing prokaryotes, they are most suitable for molecular profiling of the microbial community structure of the sulfur cycle in environment. In this study, a new aprA gene-targeting assay using a combination of PCR and denaturing gradient gel electrophoresis is presented. The screening of sulfate-reducing and sulfur-oxidizing reference strains as well as the analyses of environmental DNA from diverse habitats (e.g., microbial mats, invertebrate tissue, marine and estuarine sediments, and filtered hydrothermal water) by the new primer pair revealed an improved microbial diversity coverage and less-pronounced template-to-PCR product bias in direct comparison to those of the previously published primer set (B. Deplancke, K. R. Hristova, H. A. Oakley, V. J. McCracken, R. Aminov, R. I. Mackie, and H. R. Gaskins, Appl. Environ. Microbiol. 66:2166-2174, 2000). The concomitant molecular detection of sulfate-reducing and sulfur-oxidizing prokaryotes was confirmed. The new assay was applied in comparison with the 16S rRNA gene-based analysis to investigate the microbial diversity of the sulfur cycle in sediment, seawater, and manganese crust samples from four study sites in the area of the Lesser Antilles volcanic arc, Caribbean Sea (Caribflux project). The aprA gene-based approach revealed putative sulfur-oxidizing Alphaproteobacteria of chemolithoheterotrophic lifestyle to have been abundant in the nonhydrothermal sediment and water column. In contrast, the sulfur-based microbial community that inhabited the surface of the volcanic manganese crust was more complex, consisting predominantly of putative chemolithoautotrophic sulfur oxidizers of the Betaproteobacteria and Gammaproteobacteria.

  17. Disparity in cancer care: a Canadian perspective

    OpenAIRE

    Ahmed, S.; Shahid, R.K.

    2012-01-01

    Canada is facing cancer crisis. Cancer has become the leading cause of death in Canada. Despite recent advances in cancer management and research, growing disparities in cancer care have been noticed, especially in socio-economically disadvantaged groups and under-served communities. With the rising incidence of cancer and the increasing numbers of minorities and of social disparities in general, and without appropriate interventions, cancer care disparities will become only more pronounced. ...

  18. Reduced expression of nuclear-encoded genes involved in mitochondrial oxidative metabolism in skeletal muscle of insulin-resistant women with polycystic ovary syndrome

    DEFF Research Database (Denmark)

    Skov, Vibe; Glintborg, Dorte; Knudsen, Steen

    2007-01-01

    Insulin resistance in skeletal muscle is a major risk factor for the development of type 2 diabetes in women with polycystic ovary syndrome (PCOS). In patients with type 2 diabetes, insulin resistance in skeletal muscle is associated with abnormalities in insulin signaling, fatty acid metabolism......, and mitochondrial oxidative phosphorylation (OXPHOS). In PCOS patients, the molecular mechanisms of insulin resistance are, however, less well characterized. To identify biological pathways of importance for the pathogenesis of insulin resistance in PCOS, we compared gene expression in skeletal muscle...... of metabolically characterized PCOS patients (n = 16) and healthy control subjects (n = 13) using two different approaches for global pathway analysis: gene set enrichment analysis (GSEA 1.0) and gene map annotator and pathway profiler (GenMAPP 2.0). We demonstrate that impaired insulin-stimulated total, oxidative...

  19. [Influence of tissue-specific superoxide dismutase genes expression in brain cells on Drosophila melanogaster sensitivity to oxidative stress and viability].

    Science.gov (United States)

    Vitushynska, M V; Matiytsiv, N P; Chernyk, Y

    2015-01-01

    The study has shown that both functional gene knockout Sodl and Sod2 and their overexpression in neurons and glial tissue increase the sensitivity of Drosophila melanogaster to oxidative stress (OS) conditions. The lowest survival rate was only 20.5% in insects with Sod2 knockout in neurons. Comparative analysis of the survival curves showed that adults with altered tissue-specific expression of the studied genes had reduced average and maximum life span. Under OS conditions induced by 5% hydrogen peroxide the life spans of wild type Oregon R and transgenic insects were significantly reduced. Altered Sod gene expression in glial tissue leads to degenerative changes in Drosophila brain at the young age. During the aging of insects and the action of pro-oxidants increasing of neurodegenerative phenotype is observed.

  20. Preservation Analysis of Macrophage Gene Coexpression Between Human and Mouse Identifies PARK2 as a Genetically Controlled Master Regulator of Oxidative Phosphorylation in Humans

    Directory of Open Access Journals (Sweden)

    Veronica Codoni

    2016-10-01

    Full Text Available Macrophages are key players involved in numerous pathophysiological pathways and an in-depth characterization of their gene regulatory networks can help in better understanding how their dysfunction may impact on human diseases. We here conducted a cross-species network analysis of macrophage gene expression data between human and mouse to identify conserved networks across both species, and assessed whether such networks could reveal new disease-associated regulatory mechanisms. From a sample of 684 individuals processed for genome-wide macrophage gene expression profiling, we identified 27 groups of coexpressed genes (modules. Six modules were found preserved (P < 10−4 in macrophages from 86 mice of the Hybrid Mouse Diversity Panel. One of these modules was significantly [false discovery rate (FDR = 8.9 × 10−11] enriched for genes belonging to the oxidative phosphorylation (OXPHOS pathway. This pathway was also found significantly (FDR < 10−4 enriched in susceptibility genes for Alzheimer, Parkinson, and Huntington diseases. We further conducted an expression quantitative trait loci analysis to identify SNP that could regulate macrophage OXPHOS gene expression in humans. This analysis identified the PARK2 rs192804963 as a trans-acting variant influencing (minimal P-value = 4.3 × 10−8 the expression of most OXPHOS genes in humans. Further experimental work demonstrated that PARK2 knockdown expression was associated with increased OXPHOS gene expression in THP1 human macrophages. This work provided strong new evidence that PARK2 participates to the regulatory networks associated with oxidative phosphorylation and suggested that PARK2 genetic variations could act as a trans regulator of OXPHOS gene macrophage expression in humans.

  1. Linking Diversity and Disparity Measures

    Directory of Open Access Journals (Sweden)

    Sahadeb Sarkar

    2012-07-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} The purpose of this paper is to examine links between the diversity measures (Patil and Taillie 1982 and the disparity measures (Lindsay 1994, quantities apparently developed for somewhat different purposes. We demonstrate that numerous diversity measures satisfying all the desirable criteria mentioned by Patil and Taillie can be defined by the generating functions of certain disparities and the associated residual adjustment functions. This provides the statistician and the ecologist a wide class of flexible indices for the statistical measurement of diversity.

  2. Novel recombinant human lactoferrin: differential activation of oxidative stress related gene expression.

    Science.gov (United States)

    Kruzel, Marian L; Actor, Jeffrey K; Zimecki, Michał; Wise, Jasen; Płoszaj, Paulina; Mirza, Shaper; Kruzel, Mark; Hwang, Shen-An; Ba, Xueqing; Boldogh, Istvan

    2013-12-01

    Lactoferrin, an iron-binding protein found in high concentrations in mammalian exocrine secretions, is an important component of the host defense system. It is also a major protein of the secondary granules of neutrophils from which is released upon activation. Due to its potential clinical utility, recombinant human lactoferrin (rhLF) has been produced in various eukaryotic expression systems; however, none of these are fully compatible with humans. Most of the biopharmaceuticals approved by the FDA for use in humans are produced in mammalian expression systems. The Chinese hamster ovary cells (CHO) have become the system of choice for proteins that require post-translational modifications, such as glycoproteins. The aim of this study was to scale-up expression and purification of rhLF in a CHO expression system, verify its glycan primary structure, and assess its biological properties in cell culture models. A stable CHO cell line producing >200mg/L of rhLF was developed and established. rhLF was purified by a single-step cation-exchange chromatography procedure. The highly homogenous rhLF has a molecular weight of approximately 80 kDa. MALDI-TOF mass spectrometric analysis revealed N-linked, partially sialylated glycans at two glycosylation sites, typical for human milk LF. This novel rhLF showed a protective effect against oxidative stress in a similar manner to its natural counterpart. In addition, rhLF revealed a modulatory effect on cellular redox via upregulation of key antioxidant enzymes. These data imply that the CHO-derived rhLF is fully compatible with the native molecule, thus it has promise for human therapeutic applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Endothelial nitric oxide synthase gene polymorphisms and cardiovascular damage in hypertensive subjects: an Italian case-control study

    Directory of Open Access Journals (Sweden)

    Pizzo Federica

    2008-05-01

    Full Text Available Abstract Background Nitric oxide (NO synthesized by endothelial nitric oxide synthase (eNOS plays an important role in regulation of endothelial function and in the control of blood pressure. However, the results from some studies on the association between three clinically relevant eNOS gene polymorphisms (G894T, T786C and intron 4b/a and essential hypertension are unclear. We designed a case-control study to evaluate the influence of eNOS polymorphisms on target organ damage in 127 hypertensives and 67 normotensives. Clinical evaluation, biochemical parameters, Urinary Albumin Excretion (UAE and echocardiogram were performed to characterize target organ damage. eNOS polymorphism were recognized by PCR method. Results The distribution of eNOS genotypes was similar in hypertensives and normotensives but 4aa was present in the 2.5% of hypertensives and completely absent in normotensives. Subjects with 4bb, G894T, and T786C genotypes showed an increased prevalence of target organ damage. Moreover prevalence of G894T and introne 4 variants was significantly higher in hypertensives than in normotensives both with cardiovascular damage. Logistic regression analysis didn't show any association between eNOS polymorphisms, Body Mass Index (BMI, hypertension, gender and cardiovascular damage. Only the age (OR 1.11; IC 95% 1.06–1.18 was predictive of cardiovascular damage in our population. Conclusion Our results seem to indicate a lack of association with eNOS variants and cardiovascular damage onset.

  4. Lipoplex gene transfer of inducible nitric oxide synthase inhibits the reactive intimal hyperplasia after expanded polytetrafluoroethylene bypass grafting.

    Science.gov (United States)

    Pfeiffer, Tomas; Wallich, Martina; Sandmann, Wilhelm; Schrader, Jürgen; Gödecke, Axel

    2006-05-01

    Intimal hyperplasia (IH) is most commonly the cause of graft occlusion in infrainguinal bypass grafting for arterial occlusive disease. We investigated the influence of nitric oxide on the IH of the arterial vessel wall at the region of prosthetic bypass anastomoses. Experiments were performed in 10 Foxhound dogs. We used a technique of inducible nitric oxide synthase (iNOS) overexpression by a non-virus-mediated, liposome-based iNOS gene transfer. The plasmid pSCMV-iNOS, which drives the expression of iNOS under control of the cytomegalovirus promoter, was complexed with cationic liposomes (lipoplexes). Segments of both carotid arteries were pretreated by intramural injection of a lipoplex solution by using an infiltrator balloon catheter (Infiltrator Drug Delivery Balloon System). In each dog, iNOS was administered at one side, and a control vector (pSCMV2) was administered at the contralateral side. Carotid arteries were ligated, and bypass grafts (expanded polytetrafluoroethylene, 6-mm, ring enforced) were implanted on both sides. The proximal and distal anastomoses (end-to-side fashion; running nonabsorbable sutures) were placed in the pretreated regions. After 6 months, the prostheses were excised, and the intimal thicknesses of 50 cross sections (orcein staining) of each anastomosis were measured planimetrically. The average reduction of the neointima thickness of the iNOS side in proximal anastomoses at the prosthetic wall, suture region, and arterial wall was 43%, 52%, and 81%, respectively. In distal anastomoses, the average reduction was 40%, 47%, and 52%, respectively. All differences of neointima thickness between the iNOS and control sides were statistically significant (Wilcoxon test; P < or = .05). Inducible NOS expression is an efficient approach for inhibition of IH. In contrast to earlier studies, which investigated the efficacy of gene therapeutic NOS expression at 3 to 4 weeks after intervention, the novelty of our findings is that a single

  5. Nifedipine treatment reduces resting calcium concentration, oxidative and apoptotic gene expression, and improves muscle function in dystrophic mdx mice.

    Directory of Open Access Journals (Sweden)

    Francisco Altamirano

    Full Text Available Duchenne Muscular Dystrophy (DMD is a recessive X-linked genetic disease, caused by mutations in the gene encoding dystrophin. DMD is characterized in humans and in mdx mice by a severe and progressive destruction of muscle fibers, inflammation, oxidative/nitrosative stress, and cell death. In mdx muscle fibers, we have shown that basal ATP release is increased and that extracellular ATP stimulation is pro-apoptotic. In normal fibers, depolarization-induced ATP release is blocked by nifedipine, leading us to study the potential therapeutic effect of nifedipine in mdx muscles and its relation with extracellular ATP signaling. Acute exposure to nifedipine (10 µM decreased [Ca(2+]r, NF-κB activity and iNOS expression in mdx myotubes. In addition, 6-week-old mdx mice were treated with daily intraperitoneal injections of nifedipine, 1 mg/Kg for 1 week. This treatment lowered the [Ca(2+]r measured in vivo in the mdx vastus lateralis. We demonstrated that extracellular ATP levels were higher in adult mdx flexor digitorum brevis (FDB fibers and can be significantly reduced after 1 week of treatment with nifedipine. Interestingly, acute treatment of mdx FDB fibers with apyrase, an enzyme that completely degrades extracellular ATP to AMP, reduced [Ca(2+]r to a similar extent as was seen in FDB fibers after 1-week of nifedipine treatment. Moreover, we demonstrated that nifedipine treatment reduced mRNA levels of pro-oxidative/nitrosative (iNOS and gp91(phox/p47(phox NOX2 subunits and pro-apoptotic (Bax genes in mdx diaphragm muscles and lowered serum creatine kinase (CK levels. In addition, nifedipine treatment increased muscle strength assessed by the inverted grip-hanging test and exercise tolerance measured with forced swimming test in mdx mice. We hypothesize that nifedipine reduces basal ATP release, thereby decreasing purinergic receptor activation, which in turn reduces [Ca(2+]r in mdx skeletal muscle cells. The results in this work open new

  6. Culture-Independent Identification of Manganese-Oxidizing Genes from Deep-Sea Hydrothermal Vent Chemoautotrophic Ferromanganese Microbial Communities Using a Metagenomic Approach

    Science.gov (United States)

    Davis, R.; Tebo, B. M.

    2013-12-01

    Microbial activity has long been recognized as being important to the fate of manganese (Mn) in hydrothermal systems, yet we know very little about the organisms that catalyze Mn oxidation, the mechanisms by which Mn is oxidized or the physiological function that Mn oxidation serves in these hydrothermal systems. Hydrothermal vents with thick ferromanganese microbial mats and Mn oxide-coated rocks observed throughout the Pacific Ring of Fire are ideal models to study the mechanisms of microbial Mn oxidation, as well as primary productivity in these metal-cycling ecosystems. We sampled ferromanganese microbial mats from Vai Lili Vent Field (Tmax=43°C) located on the Eastern Lau Spreading Center and Mn oxide-encrusted rhyolytic pumice (4°C) from Niua South Seamount on the Tonga Volcanic Arc. Metagenomic libraries were constructed and assembled from these samples and key genes known to be involved in Mn oxidation and carbon fixation pathways were identified in the reconstructed genomes. The Vai Lili metagenome assembled to form 121,157 contiguous sequences (contigs) greater than 1000bp in length, with an N50 of 8,261bp and a total metagenome size of 593 Mbp. Contigs were binned using an emergent self-organizing map of tetranucleotide frequencies. Putative homologs of the multicopper Mn-oxidase MnxG were found in the metagenome that were related to both the Pseudomonas-like and Bacillus-like forms of the enzyme. The bins containing the Pseudomonas-like mnxG genes are most closely related to uncultured Deltaproteobacteria and Chloroflexi. The Deltaproteobacteria bin appears to be an obligate anaerobe with possible chemoautotrophic metabolisms, while the Chloroflexi appears to be a heterotrophic organism. The metagenome from the Mn-stained pumice was assembled into 122,092 contigs greater than 1000bp in length with an N50 of 7635 and a metagenome size of 385 Mbp. Both forms of mnxG genes are present in this metagenome as well as the genes encoding the putative Mn

  7. Ethnic and Racial Disparities in Education: Psychology's Role in Understanding and Reducing Disparities

    Science.gov (United States)

    Quintana, Stephen M.; Mahgoub, Lana

    2016-01-01

    We review the scope and sources of ethnic and racial disparities in education with a focus on the the implications of psychological theory and research for understanding and redressing these disparities. We identify 3 sources of ethnic and racial disparities including (a) social class differences, (b) differential treatment based on ethnic and…

  8. Deletion of the transcriptional coactivator PGC1α in skeletal muscles is associated with reduced expression of genes related to oxidative muscle function

    International Nuclear Information System (INIS)

    Hatazawa, Yukino; Minami, Kimiko; Yoshimura, Ryoji; Onishi, Takumi; Manio, Mark Christian; Inoue, Kazuo; Sawada, Naoki; Suzuki, Osamu; Miura, Shinji; Kamei, Yasutomi

    2016-01-01

    The expression of the transcriptional coactivator PGC1α is increased in skeletal muscles during exercise. Previously, we showed that increased PGC1α leads to prolonged exercise performance (the duration for which running can be continued) and, at the same time, increases the expression of branched-chain amino acid (BCAA) metabolism-related enzymes and genes that are involved in supplying substrates for the TCA cycle. We recently created mice with PGC1α knockout specifically in the skeletal muscles (PGC1α KO mice), which show decreased mitochondrial content. In this study, global gene expression (microarray) analysis was performed in the skeletal muscles of PGC1α KO mice compared with that of wild-type control mice. As a result, decreased expression of genes involved in the TCA cycle, oxidative phosphorylation, and BCAA metabolism were observed. Compared with previously obtained microarray data on PGC1α-overexpressing transgenic mice, each gene showed the completely opposite direction of expression change. Bioinformatic analysis of the promoter region of genes with decreased expression in PGC1α KO mice predicted the involvement of several transcription factors, including a nuclear receptor, ERR, in their regulation. As PGC1α KO microarray data in this study show opposing findings to the PGC1α transgenic data, a loss-of-function experiment, as well as a gain-of-function experiment, revealed PGC1α’s function in the oxidative energy metabolism of skeletal muscles. - Highlights: • Microarray analysis was performed in the skeletal muscle of PGC1α KO mice. • Expression of genes in the oxidative energy metabolism was decreased. • Bioinformatic analysis of promoter region of the genes predicted involvement of ERR. • PGC1α KO microarray data in this study show the mirror image of transgenic data.

  9. Crude oil exposure results in oxidative stress-mediated dysfunctional development and reproduction in the copepod Tigriopus japonicus and modulates expression of cytochrome P450 (CYP) genes.

    Science.gov (United States)

    Han, Jeonghoon; Won, Eun-Ji; Hwang, Dae-Sik; Shin, Kyung-Hoon; Lee, Yong Sung; Leung, Kenneth Mei-Yee; Lee, Su-Jae; Lee, Jae-Seong

    2014-07-01

    In this study, we investigated the effects of the water-accommodated fraction (WAF) of crude oil on the development and reproduction of the intertidal copepod Tigriopus japonicus through life-cycle experiments. Furthermore, we investigated the mechanisms underlying the toxic effects of WAF on this benthic organism by studying expression patterns of cytochrome P450 (CYP) genes. Development of T. japonicus was delayed and molting was interrupted in response to WAF exposure. Hatching rate was also significantly reduced in response to WAF exposure. Activities of antioxidant enzymes such as glutathione S-transferase (GST), glutathione reductase (GR), and catalase (CAT) were increased by WAF exposure in a concentration-dependent manner. These results indicated that WAF exposure resulted in oxidative stress, which in turn was associated with dysfunctional development and reproduction. To evaluate the involvement of cytochrome P450 (CYP) genes, we cloned the entire repertoire of CYP genes in T. japonicus (n=52) and found that the CYP genes belonged to five different clans (i.e., Clans 2, 3, 4, mitochondrial, and 20). We then examined expression patterns of these 52 CYP genes in response to WAF exposure. Three TJ-CYP genes (CYP3024A2, CYP3024A3, and CYP3027C2) belonging to CYP clan 3 were significantly induced by WAF exposure in a time- and concentration-dependent manner. We identified aryl hydrocarbon responsive elements (AhRE), xenobiotic responsive elements (XREs), and metal response elements (MRE) in the promoter regions of these three CYP genes, suggesting that these genes are involved in detoxification of toxicants. Overall, our results indicate that WAF can trigger oxidative stress and thus induce dysfunctional development and reproduction in the copepod T. japonicus. Furthermore, we identified three TJ-CYP genes that represent potential biomarkers of oil pollution. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Effect of paraquat-induced oxidative stress on gene expression and aging of the filamentous ascomycete Podospora anserina

    Directory of Open Access Journals (Sweden)

    Matthias Wiemer

    2014-06-01

    Full Text Available Aging of biological systems is influenced by various factors, conditions and processes. Among others, processes allowing organisms to deal with various types of stress are of key importance. In particular, oxidative stress as the result of the generation of reactive oxygen species (ROS at the mitochondrial respiratory chain and the accumulation of ROS-induced molecular damage has been strongly linked to aging. Here we view the impact of ROS from a different angle: their role in the control of gene expression. We report a genome-wide transcriptome analysis of the fungal aging model Podospora anserina grown on medium containing paraquat (PQ. This treatment leads to an increased cellular generation and release of H2O2, a reduced growth rate, and a decrease in lifespan. The combined challenge by PQ and copper has a synergistic negative effect on growth and lifespan. The data from the transcriptome analysis of the wild type cultivated under PQ-stress and their comparison to those of a longitudinal aging study as well as of a copper-uptake longevity mutant of P. anserina revealed that PQ-stress leads to the up-regulation of transcripts coding for components involved in mitochondrial remodeling. PQ also affects the expression of copper-regulated genes suggesting an increase of cytoplasmic copper levels as it has been demonstrated earlier to occur during aging of P. anserina and during senescence of human fibroblasts. This effect may result from the induction of the mitochondrial permeability transition pore via PQ-induced ROS, leading to programmed cell death as part of an evolutionary conserved mechanism involved in biological aging and lifespan control.

  11. Association of endothelial nitric oxide synthase gene polymorphisms with coronary artery disease: an updated meta-analysis and systematic review.

    Directory of Open Access Journals (Sweden)

    Himanshu Rai

    Full Text Available Several association studies of endothelial nitric oxide synthase (NOS3 gene polymorphisms with respect to coronary artery disease (CAD have been published in the past two decades. However, their association with the disease, especially among different ethnic subgroups, still remains controversial. This prompted us to conduct a systematic review and an updated structured meta-analysis, which is the largest so far (89 articles, 132 separate studies, and a sample size of 69,235, examining association of three polymorphic forms of the NOS3 gene (i.e. Glu298Asp, T786-C and 27 bp VNTR b/a with CAD. In a subgroup analysis, we tested their association separately among published studies originating predominantly from European, Middle Eastern, Asian, Asian-Indian and African ancestries. The pooled analysis confirmed the association of all the three selected SNP with CAD in three different genetic models transcending all ancestries worldwide. The Glu298Asp polymorphism showed strongest association (OR range = 1.28-1.52, and P<0.00001 for all comparisons, followed by T786-C (OR range = 1.34-1.42, and P<0.00001 for all comparisons and 4b/a, (OR range = 1.19-1.41, and P ≤ 0.002 for all comparisons in our pooled analysis. Subgroup analysis revealed that Glu298Asp (OR range = 1.54-1.87, and P<0.004 for all comparisons and 4b/a (OR range = 1.71-3.02, and P<0.00001 for all comparisons have highest degree of association amongst the Middle Easterners. On the other hand, T786-C and its minor allele seem to carry a highest risk for CAD among subjects of Asian ancestry (OR range = 1.61-1.90, and P ≤ 0.01 for all comparisons.

  12. Nitric oxide-induced murine hematopoietic stem cell fate involves multiple signaling proteins, gene expression, and redox modulation.

    Science.gov (United States)

    Nogueira-Pedro, Amanda; Dias, Carolina C; Regina, Helena; Segreto, C; Addios, Priscilla C; Lungato, Lisandro; D'Almeida, Vania; Barros, Carlos C; Higa, Elisa M S; Buri, Marcus V; Ferreira, Alice T; Paredes-Gamero, Edgar Julian

    2014-11-01

    There are a growing number of reports showing the influence of redox modulation in cellular signaling. Although the regulation of hematopoiesis by reactive oxygen species (ROS) and reactive nitrogen species (RNS) has been described, their direct participation in the differentiation of hematopoietic stem cells (HSCs) remains unclear. In this work, the direct role of nitric oxide (NO(•)), a RNS, in the modulation of hematopoiesis was investigated using two sources of NO(•) , one produced by endothelial cells stimulated with carbachol in vitro and another using the NO(•)-donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) in vivo. Two main NO(•) effects were observed: proliferation of HSCs-especially of the short-term HSCs-and its commitment and terminal differentiation to the myeloid lineage. NO(•)-induced proliferation was characterized by the increase in the number of cycling HSCs and hematopoietic progenitor cells positive to BrdU and Ki-67, upregulation of Notch-1, Cx43, PECAM-1, CaR, ERK1/2, Akt, p38, PKC, and c-Myc. NO(•)-induced HSCs differentiation was characterized by the increase in granulocytic-macrophage progenitors, granulocyte-macrophage colony forming units, mature myeloid cells, upregulation of PU.1, and C/EBPα genes concomitantly to the downregulation of GATA-3 and Ikz-3 genes, activation of Stat5 and downregulation of the other analyzed proteins mentioned above. Also, redox status modulation differed between proliferation and differentiation responses, which is likely associated with the transition of the proliferative to differentiation status. Our findings provide evidence of the role of NO(•) in inducing HSCs proliferation and myeloid differentiation involving multiple signaling. © 2014 AlphaMed Press.

  13. Glutathione peroxidase-1 gene (GPX1) variants, oxidative stress and risk of kidney complications in people with type 1 diabetes.

    Science.gov (United States)

    Mohammedi, Kamel; Patente, Thiago A; Bellili-Muñoz, Naima; Driss, Fathi; Le Nagard, Hervé; Fumeron, Frédéric; Roussel, Ronan; Hadjadj, Samy; Corrêa-Giannella, Maria Lúcia; Marre, Michel; Velho, Gilberto

    2016-02-01

    Glutathione peroxidase (GPX) is a class of antioxidant enzymes that catalyze the reduction of hydrogen peroxide to water. GPX1 is the most abundant isoform and is expressed in all kidney cells. Isoprostane and advanced oxidation protein products (AOPP) were identified as markers of oxidative stress in patients with kidney disease. We investigated associations of GPX1 genotypes with kidney complications, and with plasma concentrations of isoprostane and AOPP in type 1 diabetic patients. Four SNPs in the GPX1 gene region were genotyped in SURGENE (n=340; 10-year follow-up); GENEDIAB (n=461) and GENESIS (n=584) cohorts of type 1 diabetic patients. Subsets of GENEDIAB (n=237) and GENESIS (n=466) participants were followed up for 9 and 5years, respectively. Plasma concentrations of isoprostane and AOPP were measured at baseline in GENEDIAB. Hazard ratios (HR) were estimated for incidence of kidney complications. In SURGENE, 98 renal events (new cases of microalbuminuria or progression to more severe stage of diabetic nephropathy) occurred during follow-up. The minor T-allele of rs3448 was associated with the incidence of renal events (HR 1.81, 95% CI 1.16-2.84, p=0.008). In GENESIS/GENEDIAB pooled study, end stage renal disease (ESRD) occurred during follow-up in 52 individuals. The same variant was associated with the incidence of ESRD (HR 3.34, 95% CI, 1.69-6.98, p=0.0004). The variant was also associated with higher plasma isoprostane concentration in GENEDIAB cohort: 2.02±0.12 (TT+CT) vs 1.75±0.13 (CC) ng/mL (p=0.009), and with higher plasma AOPP in the subset of participants with the baseline history of ESRD (TT+CT 67±6 vs CC 48±6μmol/L, p=0.006). The minor T-allele of rs3448 was associated with kidney complications (incidences of microalbuminuria, renal events and ESRD) in patients with type 1 diabetes. The risk allele was associated with higher plasma concentrations of isoprostane and AOPP. Our results are consistent with the implication of GPX1 in the

  14. Reduced host cell invasiveness and oxidative stress tolerance in double and triple csp gene family deletion mutants of Listeria monocytogenes.

    Science.gov (United States)

    Loepfe, Chantal; Raimann, Eveline; Stephan, Roger; Tasara, Taurai

    2010-07-01

    The cold shock protein (Csp) family comprises small, highly conserved proteins that bind nucleic acids to modulate various bacterial gene expressions. In addition to cold adaptation functions, this group of proteins is thought to facilitate various cellular processes to promote normal growth and stress adaptation responses. Three proteins making up the Listeria monocytogenes Csp family (CspA, CspB, and CspD) promote both cold and osmotic stress adaptation functions in this bacterium. The contribution of these three Csps in the host cell invasion processes of L. monocytogenes was investigated based on human Caco-2 and murine macrophage in vitro cell infection models. The DeltacspB, DeltacspD, DeltacspAB, DeltacspAD, DeltacspBD, and DeltacspABD strains were all significantly impaired in Caco-2 cell invasion compared with the wild-type strain, whereas in the murine macrophage infection assay only, the double (DeltacspBD) and triple (DeltacspABD) csp mutants were also significantly impaired in cell invasion compared with the wild-type strain. The DeltacspBD and DeltacspABD mutants displayed the most severely impaired invasion phenotypes. The invasion ability of these two mutant strains was also further analyzed using cold-stress-exposed organisms. In both cell infection models a significant reduction in invasiveness was observed after cold stress exposure of Listeria organisms. The negative impact of cold stress on subsequent cell invasion ability was, however, more severe in cold-sensitive csp mutants (DeltacspBD and DeltacspABD) compared with the wild type. The impaired macrophage invasion and intracellular growth of DeltacspBD and DeltacspABD also led us to examine oxidative stress resistance capacity in these two mutant strains. Both strains also displayed higher oxidative stress sensitivity relative to the wild-type strain. Our data indicate that besides cold and osmotic stress adaptation roles, Csp family proteins also promote efficient host cell invasion and

  15. Preexposure to Olive Oil Polyphenols Extract Increases Oxidative Load and Improves Liver Mass Restoration after Hepatectomy in Mice via Stress-Sensitive Genes

    Directory of Open Access Journals (Sweden)

    Jelena Marinić

    2016-01-01

    Full Text Available Polyphenols can act as oxidants in some conditions, inducing redox-sensitive genes. We investigated the effect of preexposure to the olive oil polyphenols extract (PFE on time-dependent changes in the hepatic oxidative state in a model of liver regeneration—a process in which oxidative stress associated with the metabolic overload accounts for the early events that contribute to the onset of liver self-repair. Liver regeneration was induced by one-third hepatectomy in mice. Prior to hepatectomy, mice were intraperitoneally given either PFE (50 mg/kg body weight or saline for seven consecutive days, while respective controls received vehicle alone. Redox state-regulating enzymes and thiol proteins along with the mRNA levels of Nrf2 gene and its targets γ-glutamylcysteine synthetase and heme oxygenase-1 were determined at different time intervals after hepatectomy. The liver mass restoration was calculated to assess hepatic regeneration. The resulting data demonstrate the effectiveness of preexposure to PFE in stimulating liver regeneration in a model of a small tissue loss which may be ascribed to the transient increase in oxidant load during the first hours after hepatectomy and associated induction of stress response gene-profiles under the control of Nrf2.

  16. An in vitro evaluation of anti-aging effect of guluronic acid (G2013) based on enzymatic oxidative stress gene expression using healthy individuals PBMCs.

    Science.gov (United States)

    Taeb, Mahsa; Mortazavi-Jahromi, Seyed Shahabeddin; Jafarzadeh, Abdollah; Mirzaei, Mohammad Reza; Mirshafiey, Abbas

    2017-06-01

    Aging is usually associated with increased levels of oxidants, and may result in damages caused by oxidative stress. There is a direct relationship between aging and increased incidence of inflammatory diseases. The present research intended to study the anti-aging and anti-inflammatory effects of the drug G2013 (guluronic acid) at low and high doses on the genes expression of a number of enzymes involved in oxidative stress (including SOD2, GPX1, CAT, GST, iNOS, and MPO) in peripheral blood mononuclear cells (PBMCs) of healthy individuals under in vitro conditions. Venous blood samples were taken from 20 healthy individuals, the PBMCs were isolated and their RNAs extracted and their cDNAs were synthesized, and the genes expression levels were measured using the qRT-PCR technique. Our results indicated that this drug could, at both low and high doses, significantly reduce the expression of the genes for SOD2, GPX1, CAT, and GST compared to the LPS group (phealthy gene expression, and possibly it might reduce the pathological process of aging and age-related inflammatory diseases. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Health Psychology special series on health disparities

    NARCIS (Netherlands)

    Kazak, A.E.; Bosch, J.; Klonoff, E.A.

    2012-01-01

    With the initiation of this new ongoing special series in Health Psychology on health disparities, we will publish articles that highlight ways in which health psychology can contribute to understanding and ameliorating these disparities. We welcome articles for this new special series and

  18. Why the WTA - WTP disparity matters

    Science.gov (United States)

    Brown Thomas C.; Gregory R.

    1999-01-01

    The disparity between willingness to pay (WTP) and willingness to accept compensation (WTA) has been demonstrated repeatedly. Because using WTP estimates of value where a WTA estimate is appropriate tends to undervalue environmental assets, this issue is important to environmental managers. We summarize reasons for the disparity and then discuss some of the...

  19. The Rothmund-Thomson gene product RECQL4 localizes to the nucleolus in response to oxidative stress

    International Nuclear Information System (INIS)

    Woo, Leslie L.; Futami, Kazunobu; Shimamoto, Akira; Furuichi, Yasuhiro; Frank, Karen M.

    2006-01-01

    Mutations in the RECQL4 helicase gene have been linked to Rothmund-Thomson syndrome (RTS), which is characterized by poikiloderma, growth deficiency, and a predisposition to cancer. Examination of RECQL4 subcellular localization in live cells demonstrated a nucleoplasmic pattern and, to a lesser degree, staining in nucleoli. Analysis of RECQL4-GFP deletion mutants revealed two nuclear localization regions in the N-terminal region of RECQL4 and a nucleolar localization signal at amino acids 376-386. RECQL4 localization did not change after treatment with the DNA-damaging agents bleomycin, etoposide, UV irradiation and γ irradiation, in contrast to the Bloom and Werner syndrome helicases that relocate to distinct nuclear foci after damage. However, in a significant number of cells exposed to hydrogen peroxide or streptonigrin, RECQL4 accumulated in nucleoli. Using a T7 phage display screen, we determined that RECQL4 interacts with poly(ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme that promotes genomic integrity through its involvement in DNA repair and signaling pathways. The RECQL4 nucleolar localization was inhibited by pretreatment with a PARP-1 inhibitor. The C-terminal portion of RECQL4 was found to be an in vitro substrate for PARP-1. These results demonstrate changes in the intracellular localization of RECQL4 in response to oxidative stress and identify an interaction between RECQL4 and PARP-1

  20. Altered expression of genes involved in mitochondrial oxidative phosphorylation and insulin signaling in skeletal muscle of obese women with polycystic ovary syndrome (PCOS)

    DEFF Research Database (Denmark)

    Skov, Vibe

    be of similar importance for insulin resistance in the polycystic ovary syndrome (PCOS).   Materials and methods: Using the HG-U133 Plus 2.0 expression array from Affymetrix, we analyzed gene expression in skeletal muscle from obese women with PCOS (n=16) and age- and body mass index-matched control women (n=13...... a sum statistic and conducting a permutation test. Subsequently, we performed biological pathway analysis using Gene Set Enrichment Analysis (GSEA) and Gene Microarray Pathway Profiler (GenMAPP).   Results: Women with PCOS were characterized by fasting hyperinsulinemia and impaired insulin...... validated by quantitative real-time PCR and immunoblot analyses.   Conclusion: Our results, for the first time, provide evidence for an association between insulin resistance and impaired mitochondrial oxidative metabolism in skeletal muscle in women with PCOS. Furthermore, differential expression of genes...

  1. Nitric oxide responsive heavy metal-associated gene AtHMAD1 contributes to development and disease resistance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Qari Muhammad Imran

    2016-11-01

    Full Text Available Exposure of plants to different biotic and abiotic stress condition instigates significant change in the cellular redox status; resulting in the elevation of reactive nitrogen species that play signaling role in mediating defense responses. Heavy metal associated (HMA domain containing genes are required for spatio-temporal transportation of metal ions that bind with various enzymes and co-factors within the cell. To uncover the underlying mechanisms mediated by AtHMA genes, we identified 14 Arabidopsis HMA genes that were differentially expressed in response to nitrosative stress through RNA-seq analysis. Of those 14 genes, the expression of eight HMA genes was significantly increased, whereas that of six genes was significantly reduced. We further validated the RNA-seq results through quantitative real-time PCR analysis. Gene ontology analysis revealed the involvement of these genes in biological processes such as hemostasis and transport. The majority of these nitric oxide (NO-responsive AtHMA gene products are carrier/transport proteins. AtHMAD1 (At1g51090 showed the highest fold change to S-nitrosocystein. We therefore, further investigated its role in oxidative and nitrosative mediated stress conditions and found that AtHMAD1 has antagonistic role in shoot and root growth. Characterization of AtHMAD1 through functional genomics showed that the knock out mutant athmad1 plants were resistant to virulent Pseudomonas syringae (DC3000 and showed early induction and high transcript accumulation of pathogenesis related gene. Furthermore, inoculation of athamd1 with avirulent strain of the same bacteria showed negative regulation of R-gene mediated resistance. These results were supported by hypersensitive cell death response and cell death induced electrolyte leakage. AtHMAD1 was also observed to negatively regulate systemic acquired resistance SAR as the KO mutant showed induction of SAR marker genes. Overall, these results imply that NO

  2. Effects of {sup 12}C{sup 6+} ion radiation and ferulic acid on the zebrafish (Danio rerio) embryonic oxidative stress response and gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Si, Jing [Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000 (China); Zhang, Hong, E-mail: zhangh@impcas.ac.cn [Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000 (China); Wang, Zhenhua; Wu, Zhenhua [Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000 (China); Lu, Jiang [Key Laboratory of Xinjiang Phytomedicine Resources, College of Pharmacy, Shihezi University, Shihezi 832002 (China); Di, Cuixia; Zhou, Xin [Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000 (China); Wang, Xiaowei [Key Laboratory of Xinjiang Phytomedicine Resources, College of Pharmacy, Shihezi University, Shihezi 832002 (China)

    2013-05-15

    Highlights: • Carbon ion radiation increased the oxidative stress in zebrafish embryos. • Carbon ion radiation induced transcriptional level effects. • The transcriptional level displayed more sensitivity to low dose radiation than the antioxidant enzyme activities. • FA induced radioprotective effects by the inhibition of oxidative stress. - Abstract: The effects of carbon ion irradiation and ferulic acid (FA) on the induction of oxidative stress and alteration of gene expression were studied in zebrafish (Danio rerio) embryos. Zebrafish embryos at 8 hpf were divided into seven groups: the control group; the 1 Gy, 3 Gy and 7 Gy irradiation groups; and three FA-pre-treated irradiation groups. In the irradiated groups, a significant increase in the teratogenesis of the zebrafish embryos and oxidative stress was accompanied by increased malondialdehyde (MDA) content, decreased glutathione (GSH) content and alterations in antioxidant enzyme activities (such as catalase [CAT] and superoxide dismutase [SOD]). Moreover, the mRNA levels for Cu/Zn–sod, Mn–sod, cat and gpx, the genes encoding these antioxidant proteins, were altered significantly. However, the mRNA expression patterns were not in accordance with those of the antioxidant enzymes and were more sensitive under low-dose irradiation. In addition, we detected the mRNA expression of ucp-2 and bcl-2, which are located at the mitochondrial inner membrane and related to reactive oxidative species (ROS) production. In the irradiated groups, the mRNA level of ucp-2 was significantly increased, whereas the mRNA level of bcl-2 was significantly decreased. Supplementation with FA, an antioxidant, was better able to reduce the irradiation-induced oxidative damage marked by changes in mortality, morphology, antioxidant enzyme activities and the MDA and GSH content, as well as in the mRNA expression levels. Overall, this study provided helpful information about the transcriptional effects of irradiation to better

  3. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response

    International Nuclear Information System (INIS)

    Soto, Armando; DelRaso, Nicholas J.; Schlager, John J.; Chan, Victor T.

    2008-01-01

    , metabolism and transport, inflammatory response, proteasome-mediated degradation of oxidatively damaged cytosolic proteins, Ras protein signal transduction, TGF-beta signaling pathway and mRNA transcription, processing, splicing and transport. On the other hand, major metabolic pathways, which include carbohydrate metabolism, TCA cycle, oxidative phosphorylation, ATP synthesis coupled electron transport, amino acid metabolism and transport, lipid metabolism, nucleotide metabolism, and vitamin metabolism, and oxidative stress response including induction of antioxidant genes and glutathione metabolism are down-regulated. As tubular epithelia have strong energy demand for normal functions, down-regulation of energy metabolism after D-serine treatment may be related to the mechanism of its nephrotoxicity. In addition, hydrogen peroxide, a reactive oxygen species, is produced as a byproduct of the metabolism of D-serine by D-amino acid oxidase in the peroxisomes of the tubular epithelia. Down-regulation of pathways for antioxidant genes induction and glutathione metabolism will likely exacerbate the cytotoxicity of this reactive oxygen species. The observation that the genes involved in apoptosis, DNA repair, proteasome pathway for the degradation of oxidatively damaged cytosolic proteins were up-regulated lends some supports to this premise. Up-regulation of pathways of cell proliferation cycle, DNA replication and gene expression process, including mRNA transcription, processing, splicing, transport, translation initiation, and protein transport along with protein complex assembly, suggests ongoing tissue repair and regeneration. Consistent with the fibrogenic function of the TGF-beta signaling pathway in various experimental renal diseases, genes encoding major extracellular matrix components such as collagens, laminins, fibronectin 1 and tenascins are also strongly up-regulated. Taken together, the results of this study provide important insights into the molecular mechanism

  4. Effect of nutrient and selective inhibitor amendments on methane oxidation, nitrous oxide production, and key gene presence and expression in landfill cover soils: characterization of the role of methanotrophs, nitrifiers, and denitrifiers.

    Science.gov (United States)

    Lee, Sung-Woo; Im, Jeongdae; Dispirito, Alan A; Bodrossy, Levente; Barcelona, Michael J; Semrau, Jeremy D

    2009-11-01

    Methane and nitrous oxide are both potent greenhouse gasses, with global warming potentials approximately 25 and 298 times that of carbon dioxide. A matrix of soil microcosms was constructed with landfill cover soils collected from the King Highway Landfill in Kalamazoo, Michigan and exposed to geochemical parameters known to affect methane consumption by methanotrophs while also examining their impact on biogenic nitrous oxide production. It was found that relatively dry soils (5% moisture content) along with 15 mg NH (4) (+) (kg soil)(-1) and 0.1 mg phenylacetylene(kg soil)(-1) provided the greatest stimulation of methane oxidation while minimizing nitrous oxide production. Microarray analyses of pmoA showed that the methanotrophic community structure was dominated by Type II organisms, but Type I genera were more evident with the addition of ammonia. When phenylacetylene was added in conjunction with ammonia, the methanotrophic community structure was more similar to that observed in the presence of no amendments. PCR analyses showed the presence of amoA from both ammonia-oxidizing bacteria and archaea, and that the presence of key genes associated with these cells was reduced with the addition of phenylacetylene. Messenger RNA analyses found transcripts of pmoA, but not of mmoX, nirK, norB, or amoA from either ammonia-oxidizing bacteria or archaea. Pure culture analyses showed that methanotrophs could produce significant amounts of nitrous oxide, particularly when expressing the particulate methane monooxygenase (pMMO). Collectively, these data suggest that methanotrophs expressing pMMO played a role in nitrous oxide production in these microcosms.

  5. Studies on meat color, myoglobin content, enzyme activities, and genes associated with oxidative potential of pigs slaughtered at different growth stages

    Science.gov (United States)

    Yu, Qin Ping; Feng, Ding Yuan; Xiao, Juan; Wu, Fan; He, Xiao Jun; Xia, Min Hao; Dong, Tao; Liu, Yi Hua; Tan, Hui Ze; Zou, Shi Geng; Zheng, Tao; Ou, Xian Hua; Zuo, Jian Jun

    2017-01-01

    Objective This experiment investigated meat color, myoglobin content, enzyme activities, and expression of genes associated with oxidative potential of pigs slaughtered at different growth stages. Methods Sixty 4-week-old Duroc×Landrace×Yorkshire pigs were assigned to 6 replicate groups, each containing 10 pigs. One pig from each group was sacrificed at day 35, 63, 98, and 161 to isolate longissimus dorsi and triceps muscles. Results Meat color scores were higher in pigs at 35 d than those at 63 d and 98 d (pMeat color scores were correlated to the proportion of oxymyoglobin (r = 0.59, pmeat color, myoglobin content, enzyme activities, and genes associated with oxidative potential varied at different stages. PMID:28728400

  6. Association between Polymorphism of Endothelial Nitric Oxide Synthase Gene (Glu298Asp) and Chronic Heart Failure in Patients with Ischemic Heart Disease and Obesity

    OpenAIRE

    O.I. Kadykova; P.P. Kravchun

    2016-01-01

    The article reviewed the links between polymorphism of endothelial nitric oxide synthase gene (Glu298Asp) and the development and progression of chronic heart failure in patients with ischemic heart disease and obesity. There has been a comprehensive survey of 222 patients with ischemic heart disease. Comparison group consisted of 115 patients with ischemic heart disease with normal body weight. The control group included 35 healthy individuals. G allele and genotype G/G polymorphism of the g...

  7. The Role of ?786T/C Polymorphism in the Endothelial Nitric Oxide Synthase Gene in Males with Clinical and Biochemical Features of the Metabolic Syndrome

    OpenAIRE

    Misiak, Blazej; Krolik, Marta; Kukowka, Anna; Lewera, Anna; Leszczynski, Przemyslaw; Stankiewicz-Olczyk, Joanna; Slezak, Ryszard

    2011-01-01

    Background. Extensive evidence, arising from models of endothelial nitric oxide synthase gene (NOS3)-knockout mice supports the role of endothelial malfunction in the pathogenesis of the metabolic syndrome (MS). Aims. The aim of this study was to evaluate the role of −786T/C polymorphism in the etiology of MS and assess previously reported interaction with cigarette smoking. Methods. Based on International Diabetes Federation 2005 criteria, we recruited randomly 152 subjects with MS and 75 su...

  8. The Anti-Oxidant Defense System of the Marine Polar Ciliate Euplotes nobilii: Characterization of the MsrB Gene Family

    Directory of Open Access Journals (Sweden)

    Francesca Ricci

    2017-01-01

    Full Text Available Organisms living in polar waters must cope with an extremely stressful environment dominated by freezing temperatures, high oxygen concentrations and UV radiation. To shed light on the genetic mechanisms on which the polar marine ciliate, Euplotes nobilii, relies to effectively cope with the oxidative stress, attention was focused on methionine sulfoxide reductases which repair proteins with oxidized methionines. A family of four structurally distinct MsrB genes, encoding enzymes specific for the reduction of the methionine-sulfoxide R-forms, were identified from a draft of the E. nobilii transcriptionally active (macronuclear genome. The En-MsrB genes are constitutively expressed to synthesize proteins markedly different in amino acid sequence, number of CXXC motifs for zinc-ion binding, and presence/absence of a cysteine residue specific for the mechanism of enzyme regeneration. The En-MsrB proteins take different localizations in the nucleus, mitochondria, cytosol and endoplasmic reticulum, ensuring a pervasive protection of all the major subcellular compartments from the oxidative damage. These observations have suggested to regard the En-MsrB gene activity as playing a central role in the genetic mechanism that enables E. nobilii and ciliates in general to live in the polar environment.

  9. N-glycan structures of human transferrin produced by Lymantria dispar (gypsy moth)cells using the LdMNPV expression system

    Science.gov (United States)

    One Choi; Noboru Tomiya; Jung H. Kim; James M. Slavicek; Michael J. Betenbaugh; Yuan C. Lee

    2003-01-01

    N-glycan structures of recombinant human serum transferrin (hTf) expressed by Lymantria dispar (gypsy moth) 652Y cells were determined. The gene encoding hTf was incorporated into a Lymantria dispar nucleopolyhedrovirus (LdMNPV) under the control of the polyhedrin promoter. This virus was then...

  10. Expression of a serine protease gene prC is up-regulated by oxidative stress in the fungus Clonostachys rosea: implications for fungal survival.

    Directory of Open Access Journals (Sweden)

    Cheng-Gang Zou

    Full Text Available BACKGROUND: Soil fungi face a variety of environmental stresses such as UV light, high temperature, and heavy metals. Adaptation of gene expression through transcriptional regulation is a key mechanism in fungal response to environmental stress. In Saccharomyces cerevisiae, the transcription factors Msn2/4 induce stress-mediated gene expression by binding to the stress response element. Previous studies have demonstrated that the expression of extracellular proteases is up-regulated in response to heat shock in fungi. However, the physiological significance of regulation of these extracellular proteases by heat shock remains unclear. The nematophagous fungus Clonostachys rosea can secret an extracellular serine protease PrC during the infection of nematodes. Since the promoter of prC has three copies of the stress response element, we investigated the effect of environmental stress on the expression of prC. METHODOLOGY/PRINCIPAL FINDINGS: Our results demonstrated that the expression of prC was up-regulated by oxidants (H(2O(2 or menadione and heat shock, most likely through the stress response element. After oxidant treatment or heat shock, the germination of conidia in the wild type strain was significantly higher than that in the prC mutant strain in the presence of nematode cuticle. Interestingly, the addition of nematode cuticle significantly attenuated the production of reactive oxygen species (ROS induced by oxidants and heat shock in the wild type strain, but not in prC mutant strain. Moreover, low molecule weight (<3 kD degradation products of nematode cuticle suppressed the inhibitory effect of conidial germination induced by oxidants and heat shock. CONCLUSIONS/SIGNIFICANCE: These results indicate that PrC plays a protective role in oxidative stress in C. rosea. PrC degrades the nematode cuticle to produce degradation products, which in turn offer a protective effect against oxidative stress by scavenging ROS. Our study reveals a novel

  11. Identification of genes required for secretion of the Francisella oxidative burst-inhibiting acid phosphatase AcpA

    Directory of Open Access Journals (Sweden)

    John S Gunn

    2016-04-01

    Full Text Available Francisella tularensis is a Tier 1 bioterror threat and the intracellular pathogen responsible for tularemia in humans and animals. Upon entry into the host, Francisella uses multiple mechanisms to evade killing. Our previous studies have shown that after entering its primary cellular host, the macrophage, Francisella immediately suppresses the oxidative burst by secreting a series of acid phosphatases including AcpA-B-C and HapA, thereby evading the innate immune response of the macrophage and enhancing survival and further infection. However, the mechanism of acid phosphatase secretion by Francisella is still unknown. In this study, we screened for genes required for AcpA secretion in Francisella. We initially demonstrated that the known secretion systems, the putative Francisella-pathogenicity island (FPI-encoded Type VI secretion system and the Type IV pili, do not secrete AcpA. Using random transposon mutagenesis in conjunction with ELISA, Western blotting and acid phosphatase enzymatic assays, a transposon library of 5450 mutants was screened for strains with a minimum 1.5-fold decrease in secreted (culture supernatant AcpA, but no defect in cytosolic AcpA. Three mutants with decreased supernatant AcpA were identified. The transposon insertion sites of these mutants were revealed by direct genomic sequencing or inverse-PCR and sequencing. One of these mutants has a severe defect in AcpA secretion (at least 85% decrease and is a predicted hypothetical inner membrane protein. Interestingly, this mutant also affected the secretion of the FPI-encoded protein, VgrG. Thus, this screen identified novel protein secretion factors involved in the subversion of host defenses.

  12. Health disparities through a psychological lens.

    Science.gov (United States)

    Adler, Nancy E

    2009-11-01

    There is growing concern in the United States about avoidable, unjust differences in health associated with sociodemographic characteristics, such as socioeconomic status and race/ethnicity. This concern has sparked research to identify how disparities develop and how they can be reduced. Studies showing that disparities occur at all levels of socioeconomic status, not simply at the very bottom, suggest that psychosocial factors play an important role. The author discusses both content and process issues in psychological research on disparities. Copyright 2009 by the American Psychological Association

  13. Global health disparities: crisis in the diaspora.

    Science.gov (United States)

    Cox, Raymond L.

    2004-01-01

    The United States spends more than the rest of the world on healthcare. In 2000, the U.S. health bill was 1.3 trillion dollars, 14.5% of its gross domestic product. Yet, according to the WHO World Health Report 2000, the United States ranked 37th of 191 member nations in overall health system performance. Racial/ethnic disparities in health outcomes are the most obvious examples of an unbalanced healthcare system. This presentation will examine health disparities in the United States and reveal how health disparities among and within countries affect the health and well-being of the African Diaspora. PMID:15101675

  14. Ginger extract mitigates ethanol-induced changes of alpha and beta - myosin heavy chain isoforms gene expression and oxidative stress in the heart of male wistar rats.

    Science.gov (United States)

    Shirpoor, Alireza; Zerehpoosh, Mitra; Ansari, Mohammad Hasan Khadem; Kheradmand, Fatemeh; Rasmi, Yousef

    2017-09-01

    The association between ethanol consumption and heart abnormalities, such as chamber dilation, myocyte damage, ventricular hypertrophy, and hypertension is well known. However, underlying molecular mediators involved in ethanol-induced heart abnormalities remain elusive. The aim of this study was to investigate the effect of chronic ethanol exposure on alpha and beta - myosin heavy chain (MHC) isoforms gene expression transition and oxidative stress in rats' heart. It was also planned to find out whether ginger extract mitigated the abnormalities induced by ethanol in rats' heart. Male wistar rats were divided into three groups of eight animals as follows: Control, ethanol, and ginger extract treated ethanolic (GETE) groups. After six weeks of treatment, the results revealed a significant increase in the β-MHC gene expression, 8- OHdG amount, and NADPH oxidase level. Furthermore, a significant decrease in the ratio of α-MHC/β-MHC gene expression to the amount of paraoxonase enzyme in the ethanol group compared to the control group was found. The consumption of Ginger extract along with ethanol ameliorated the changes in MHC isoforms gene expression and reduced the elevated amount of 8-OHdG and NADPH oxidase. Moreover, compared to the consumption of ethanol alone, it increased the paraoxonase level significantly. These findings indicate that ethanol-induced heart abnormalities may in part be associated with MHC isoforms changes mediated by oxidative stress, and that these effects can be alleviated by using ginger extract as an antioxidant molecule. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Superparamagnetic iron oxide nanoparticle-labeled cells as an effective vehicle for tracking the GFP gene marker using magnetic resonance imaging

    Science.gov (United States)

    Zhang, Z; Mascheri, N; Dharmakumar, R; Fan, Z; Paunesku, T; Woloschak, G; Li, D

    2010-01-01

    Background Detection of a gene using magnetic resonance imaging (MRI) is hindered by the magnetic resonance (MR) targeting gene technique. Therefore it may be advantageous to image gene-expressing cells labeled with superparamagnetic iron oxide (SPIO) nanoparticles by MRI. Methods The GFP-R3230Ac (GFP) cell line was incubated for 24 h using SPIO nanoparticles at a concentration of 20 μg Fe/mL. Cell samples were prepared for iron content analysis and cell function evaluation. The labeled cells were imaged using fluorescent microscopy and MRI. Results SPIO was used to label GFP cells effectively, with no effects on cell function and GFP expression. Iron-loaded GFP cells were successfully imaged with both fluorescent microscopy and T2*-weighted MRI. Prussian blue staining showed intracellular iron accumulation in the cells. All cells were labeled (100% labeling efficiency). The average iron content per cell was 4.75±0.11 pg Fe/cell (P<0.05 versus control). Discussion This study demonstrates that the GFP expression of cells is not altered by the SPIO labeling process. SPIO-labeled GFP cells can be visualized by MRI; therefore, GFP, a gene marker, was tracked indirectly with the SPIO-loaded cells using MRI. The technique holds promise for monitoring the temporal and spatial migration of cells with a gene marker and enhancing the understanding of cell- and gene-based therapeutic strategies. PMID:18956269

  16. The Biology of Cancer Health Disparities

    Science.gov (United States)

    These examples show how biology contributes to health disparities (differences in disease incidence and outcomes among distinct racial and ethnic groups, ), and how biological factors interact with other relevant factors, such as diet and the environment.

  17. Social determinants and sexually transmitted disease disparities.

    Science.gov (United States)

    Hogben, Matthew; Leichliter, Jami S

    2008-12-01

    Social determinants of health play an important role in sexually transmitted disease (STD) transmission and acquisition; consequently, racial and ethnic disparities among social determinants are influences upon disparities in STD rates. In this narrative review, we outline a general model showing the relationship between social determinants and STD outcomes, mediated by epidemiologic context. We then review 4 specific social determinants relevant to STD disparities: segregation, health care, socioeconomics and correctional experiences, followed by 2 facets of the resultant epidemiologic context: core areas and sexual networks. This review shows that disparities exist among the social determinants and that they are related to each other, as well as to core areas, sexual networks, and STD rates. Finally, we discuss the implications of our review for STD prevention and control with particular attention to STD program collaboration and service integration.

  18. Energy price disparity and public welfare

    International Nuclear Information System (INIS)

    Templet, P.H.

    2001-01-01

    The differences in the price of energy to economic sectors are linked to a number of system parameters and to public welfare. There are large disparities in energy prices within states when comparing residential and industrial prices although neoclassical economics predicts one price in markets. The large disparities between the two sectors across states negatively affects the efficiency of resource allocation, creates subsidies for those getting the cheap energy and results in unequal access to energy. These in turn lead to inefficient partitioning of energy between products and waste, higher pollution, leakage of wealth and poorer energy use efficiency, i.e. high energy intensity. States with large energy price disparities between sectors have statistically higher poverty, lower incomes, more pollution and use more energy but with less efficiency. Higher energy price disparities also result in higher throughput per unit of output thus reducing the chances for sustainability and lower public welfare. 31 refs

  19. Guidance for the national healthcare disparities report

    National Research Council Canada - National Science Library

    Swift, Elaine K

    2002-01-01

    The Agency for Healthcare Research Quality commissioned the Institute of Medicine establish a committee to provide guidance on the National Healthcare Disparities Report is of access to health care...

  20. Gender Disparity in Education Enrollment in Pakistan

    OpenAIRE

    Shakil Quayes; Richard David Ramsey

    2015-01-01

    The paper examines the determinants of school enrollment in Pakistan. The likelihood of school enrollment is estimated using separate logistic regression models for three different age groups. The empirical results indicate severe gender disparity in school enrollment across all age groups, particularly among the older age groups. Although the rate of school enrollment is positively associated with household income, the gender disparity actually deteriorates with an increase in household inco...

  1. REGIONAL DISPARITIES – HISTORICAL CULTURAL INFLUENCES AND

    Directory of Open Access Journals (Sweden)

    MARIA OŢIL

    2015-08-01

    Full Text Available In recent decades, the issue of regional disparities has become a highly debated topic, knowledge regarding regional disparities being a matter of political priority as their persistence hinders the appropriate integration process. On the other hand, emphasis was put on integration through the process of EU enlargement, thus highlighting other issues related to the nature and size of disparities. Regional disparities regarding development and the living standards of the population have long been the concern of all Member States. In the case of Romania, recently admitted into the European structures, registering large backlogs to economically developed countries, the intense mobilization of internal and external factors of economic growth in order to reduce and eliminate disparities compared to other countries, represents a clear necessity. The "European Union" (EU project is of an unprecedented complexity and scale because it involves a plurality of states, which are culturally and economically heterogeneous. Moreover, these economic and cultural differences exist even within the states. Hence, there is also the central idea of the Union, regarding unity in diversity. In Romania the local, regional communities have a strong identity, but still evolving. Taking into account Romania's objective of successfully integrating into European structures, and the principles of democratic decision-making requires that regional development should aim at reducing economic and social disparities based on a notable involvement of the local, regional communities. Based on these facts, the paper aims to present the current regional (and intra-regional disparities in Romania with regard to a number of synthetic indicators of capital, of labor and of outcomes. The persistence in time of these economic disparities can be explained by considering the cultural legacies – represented by norms, values, institutions, that impact on how people interact, communicate

  2. Identifying health disparities across the tobacco continuum.

    Science.gov (United States)

    Fagan, Pebbles; Moolchan, Eric T; Lawrence, Deirdre; Fernander, Anita; Ponder, Paris K

    2007-10-01

    Few frameworks have addressed work-force diversity, inequities and inequalities as part of a comprehensive approach to eliminating tobacco-related health disparities. This paper summarizes the literature and describes the known disparities that exist along the tobacco disease continuum for minority racial and ethnic groups, those living in poverty, those with low education and blue-collar and service workers. The paper also discusses how work-force diversity, inequities in research practice and knowledge allocation and inequalities in access to and quality of health care are fundamental to addressing disparities in health. We examined the available scientific literature and existing public health reports to identify disparities across the tobacco disease continuum by minority racial/ethnic group, poverty status, education level and occupation. Results indicate that differences in risk indicators along the tobacco disease continuum do not explain fully tobacco-related cancer consequences among some minority racial/ethnic groups, particularly among the aggregate groups, blacks/African Americans and American Indians/Alaska Natives. The lack of within-race/ethnic group data and its interactions with socio-economic factors across the life-span contribute to the inconsistency we observe in the disease causal paradigm. More comprehensive models are needed to understand the relationships among disparities, social context, diversity, inequalities and inequities. A systematic approach will also help researchers, practitioners, advocates and policy makers determine critical points for interventions, the types of studies and programs needed and integrative approaches needed to eliminate tobacco-related disparities.

  3. A Genetic Biomarker of Oxidative Stress, the Paraoxonase-1 Q192R Gene Variant, Associates with Cardiomyopathy in CKD: A Longitudinal Study

    Directory of Open Access Journals (Sweden)

    E. Dounousi

    2016-01-01

    Full Text Available Background. Oxidative stress is a hallmark of CKD and this alteration is strongly implicated in LV hypertrophy and in LV dysfunction. Methods and Patients. We resorted to the strongest genetic biomarker of paraoxonase-1 (PON1 activity, the Q192R variant in the PON1 gene, to unbiasedly assess (Mendelian randomization the cross-sectional and longitudinal association of this gene-variant with LV mass and function in 206 CKD patients with a 3-year follow-up. Results. The R allele of Q192R polymorphism associated with oxidative stress as assessed by plasma 8-isoPGF2α (P=0.03 and was dose-dependently related in a direct fashion to LVMI (QQ: 131.4 ± 42.6 g/m2; RQ: 147.7 ± 51.1 g/m2; RR: 167.3 ± 41.9 g/m2; P=0.001 and in an inverse fashion to systolic function (LV Ejection Fraction (QQ: 79 ± 12%; RQ: 69 ± 9%; RR: 65 ± 10% P=0.002. On longitudinal observation, this gene variant associated with the evolution of the same echocardiographic indicators [LVMI: 13.40 g/m2 per risk allele, P=0.005; LVEF: −2.96% per risk allele, P=0.001]. Multivariate analyses did not modify these associations. Conclusion. In CKD patients, the R allele of the Q192R variant in the PON1 gene is dose-dependently related to the severity of LVH and LV dysfunction and associates with the longitudinal evolution of these cardiac alterations. These results are compatible with the hypothesis that oxidative stress is implicated in cardiomyopathy in CKD patients.

  4. Fatty acid cosubstrates provide β-oxidation precursors for rhamnolipid biosynthesis in Pseudomonas aeruginosa, as evidenced by isotope tracing and gene expression assays.

    Science.gov (United States)

    Zhang, Lin; Veres-Schalnat, Tracey A; Somogyi, Arpad; Pemberton, Jeanne E; Maier, Raina M

    2012-12-01

    Rhamnolipids have multiple potential applications as "green" surfactants for industry, remediation, and medicine. As a result, they have been intensively investigated to add to our understanding of their biosynthesis and improve yields. Several studies have noted that the addition of a fatty acid cosubstrate increases rhamnolipid yields, but a metabolic explanation has not been offered, partly because biosynthesis studies to date have used sugar or sugar derivatives as the carbon source. The objective of this study was to investigate the role of fatty acid cosubstrates in improving rhamnolipid biosynthesis. A combination of stable isotope tracing and gene expression assays was used to identify lipid precursors and potential lipid metabolic pathways used in rhamnolipid synthesis when fatty acid cosubstrates are present. To this end, we compared the rhamnolipids produced and their yields using either glucose alone or glucose and octadecanoic acid-d(35) as cosubstrates. Using a combination of sugar and fatty acids, the rhamnolipid yield was significantly higher (i.e., doubled) than when glucose was used alone. Two patterns of deuterium incorporation (either 1 or 15 deuterium atoms) in a single Rha-C(10) lipid chain were observed for octadecanoic acid-d(35) treatment, indicating that in the presence of a fatty acid cosubstrate, both de novo fatty acid synthesis and β-oxidation are used to provide lipid precursors for rhamnolipids. Gene expression assays showed a 200- to 600-fold increase in the expression of rhlA and rhlB rhamnolipid biosynthesis genes and a more modest increase of 3- to 4-fold of the fadA β-oxidation pathway gene when octadecanoic acid was present. Taken together, these results suggest that the simultaneous use of de novo fatty acid synthesis and β-oxidation pathways allows for higher production of lipid precursors, resulting in increased rhamnolipid yields.

  5. A field release of genetically engineered gypsy moth (Lymantria dispar L.) Nuclear Polyhedrosis Virus (LdNPV)

    Science.gov (United States)

    Vincent D' Amico; Joseph S. Elkinton; John D. Podgwaite; James M. Slavicek; Michael L. McManus; John P. Burand

    1999-01-01

    The gypsy moth (Lymantria dispar L.) nuclear polyhedrosis virus was genetically engineered for nonpersistence by removal of the gene coding for polyhedrin production and stabilized using a coocclusion process. A β-galactosidase marker gene was inserted into the genetically engineered virus (LdGEV) so that infected larvae could be tested for...

  6. A multilevel prediction of physiological response to challenge: Interactions among child maltreatment, neighborhood crime, endothelial nitric oxide synthase gene (eNOS), and GABA(A) receptor subunit alpha-6 gene (GABRA6).

    Science.gov (United States)

    Lynch, Michael; Manly, Jody Todd; Cicchetti, Dante

    2015-11-01

    Physiological response to stress has been linked to a variety of healthy and pathological conditions. The current study conducted a multilevel examination of interactions among environmental toxins (i.e., neighborhood crime and child maltreatment) and specific genetic polymorphisms of the endothelial nitric oxide synthase gene (eNOS) and GABA(A) receptor subunit alpha-6 gene (GABRA6). One hundred eighty-six children were recruited at age 4. The presence or absence of child maltreatment as well as the amount of crime that occurred in their neighborhood during the previous year were determined at that time. At age 9, the children were brought to the lab, where their physiological response to a cognitive challenge (i.e., change in the amplitude of the respiratory sinus arrhythmia) was assessed and DNA samples were collected for subsequent genotyping. The results confirmed that complex Gene × Gene, Environment × Environment, and Gene × Environment interactions were associated with different patterns of respiratory sinus arrhythmia reactivity. The implications for future research and evidence-based intervention are discussed.

  7. Effects of vanillin on potassium bromate-induced neurotoxicity in adult mice: impact on behavior, oxidative stress, genes expression, inflammation and fatty acid composition.

    Science.gov (United States)

    Ben Saad, Hajer; Kharrat, Nadia; Driss, Dorra; Gargouri, Manel; Marrakchi, Rim; Jammoussi, Kamel; Magné, Christian; Boudawara, Tahia; Ellouz Chaabouni, Samia; Zeghal, Khaled Mounir; Hakim, Ahmed; Ben Amara, Ibtissem

    2017-07-01

    Vanillin is known to possess important antioxidant activity. The current study was conducted to establish the therapeutic efficiency of vanillin against potassium bromate (KBrO 3 )-induced depression-like behavior and oxidative stress in mice. Mice were exposed during 15 days either to potassium bromate (KBrO 3 ), KBrO 3 + vanillin or to only vanillin. Our results revealed a significant modification in the fatty acid composition of the KBrO 3 -treated mice. In addition, KBrO 3 induced a significant reduction in enzymatic activities and gene expressions, Na +  -K +  and Mg 2+ -ATPases, acetylcholinesterase and butylcholinesterase activities. The gene expression of tumor necrosis factor-α, interleukin-1β, interleukin-6 and COX 2 , significantly increased in the cerebrum of KBrO 3 -treated group. Histopathological observations were consistent with these effects. Co-treatment with vanillin significantly attenuated KBrO 3 -induced oxidative stress and inflammation. This work suggests that vanillin mitigates KBrO 3 -induced depression, and that this neuroprotective effect proceeds through anti-oxidant and anti-inflammatory activities.

  8. A novel locus in the oxidative stress-related gene ALOX12 moderates the association between PTSD and thickness of the prefrontal cortex.

    Science.gov (United States)

    Miller, Mark W; Wolf, Erika J; Sadeh, Naomi; Logue, Mark; Spielberg, Jeffrey M; Hayes, Jasmeet P; Sperbeck, Emily; Schichman, Steven A; Stone, Angie; Carter, Weleetka C; Humphries, Donald E; Milberg, William; McGlinchey, Regina

    2015-12-01

    Oxidative stress has been implicated in many common age-related diseases and is hypothesized to play a role in posttraumatic stress disorder (PTSD)-related neurodegeneration (Miller and Sadeh, 2014). This study examined the influence of the oxidative stress-related genes ALOX 12 and ALOX 15 on the association between PTSD and cortical thickness. Factor analyses were used to identify and compare alternative models of the structure of cortical thickness in a sample of 218 veterans. The best-fitting model was then used for a genetic association analysis in White non-Hispanic participants (n=146) that examined relationships between 33 single nucleotide polymorphisms (SNPs) spanning the two genes, 8 cortical thickness factors, and each SNP×PTSD interaction. Results identified a novel ALOX12 locus (indicated by two SNPs in perfect linkage disequilibrium: rs1042357 and rs10852889) that moderated the association between PTSD and reduced thickness of the right prefrontal cortex. A whole-cortex vertex-wise analysis showed this effect to be localized to clusters spanning the rostral middle frontal gyrus, superior frontal gyrus, rostral anterior cingulate cortex, and medial orbitofrontal cortex. These findings illustrate a novel factor-analytic approach to neuroimaging-genetic analyses and provide new evidence for the possible involvement of oxidative stress in PTSD-related neurodegeneration. Published by Elsevier Ltd.

  9. Association of endothelial nitric oxide synthase gene polymorphism with the risk of Henoch-Schönlein purpura/Henoch-Schönlein purpura nephritis.

    Science.gov (United States)

    Zhong, Weiqiang; Zhou, Tian-Biao; Jiang, Zongpei

    2015-04-01

    Association between endothelial nitric oxide synthase (eNOS) gene polymorphism and Henoch-Schönlein purpura (HSP)/Henoch-Schönlein purpura nephritis (HSPN) risk is still controversial. A meta-analysis was performed to evaluate the association between eNOS gene polymorphism and HSP/HSPN susceptibility. A predefined literature search and selection of eligible relevant studies were performed to collect data from electronic database. Three articles were identified for the analysis of association between eNOS gene polymorphism and HSPN/HSP risk. eNOS G894T gene polymorphism was not associated with HSPN susceptibility and the risk of patients with HSP developing into HSPN. Interestingly, eNOS G894T T allele and GG genotype were associated with HSP susceptibility, but not the TT genotype. eNOS T786C TT genotype was associated with HSPN susceptibility, but not C allele and CC genotype. Furthermore, eNOS T786C gene polymorphism was not associated with HSP risk and the risk of patients with HSP developing into HSPN. In conclusion, eNOS T786C TT genotype was associated with and eNOS G894T T allele and GG genotype were associated with HSP susceptibility. However, more studies should be performed in the future.

  10. AMP-Activated Protein Kinase Interacts with the Peroxisome Proliferator-Activated Receptor Delta to Induce Genes Affecting Fatty Acid Oxidation in Human Macrophages.

    Directory of Open Access Journals (Sweden)

    Marina Kemmerer

    Full Text Available AMP-activated protein kinase (AMPK maintains energy homeostasis by suppressing cellular ATP-consuming processes and activating catabolic, ATP-producing pathways such as fatty acid oxidation (FAO. The transcription factor peroxisome proliferator-activated receptor δ (PPARδ also affects fatty acid metabolism, stimulating the expression of genes involved in FAO. To question the interplay of AMPK and PPARδ in human macrophages we transduced primary human macrophages with lentiviral particles encoding for the constitutively active AMPKα1 catalytic subunit, followed by microarray expression analysis after treatment with the PPARδ agonist GW501516. Microarray analysis showed that co-activation of AMPK and PPARδ increased expression of FAO genes, which were validated by quantitative PCR. Induction of these FAO-associated genes was also observed upon infecting macrophages with an adenovirus coding for AMPKγ1 regulatory subunit carrying an activating R70Q mutation. The pharmacological AMPK activator A-769662 increased expression of several FAO genes in a PPARδ- and AMPK-dependent manner. Although GW501516 significantly increased FAO and reduced the triglyceride amount in very low density lipoproteins (VLDL-loaded foam cells, AMPK activation failed to potentiate this effect, suggesting that increased expression of fatty acid catabolic genes alone may be not sufficient to prevent macrophage lipid overload.

  11. Alteration of hepatocellular antioxidant gene expression pattern and biomarkers of oxidative damage in diazinon-induced acute toxicity in Wistar rat: A time-course mechanistic study.

    Science.gov (United States)

    Hassani, Shokoufeh; Maqbool, Faheem; Salek-Maghsoudi, Armin; Rahmani, Soheila; Shadboorestan, Amir; Nili-Ahmadabadi, Amir; Amini, Mohsen; Norouzi, Parviz; Abdollahi, Mohammad

    2018-01-01

    In the present survey, the plasma level of diazinon after acute exposure was measured by HPLC method at a time-course manner. In addition, the impact of diazinon on the expression of the key genes responsible for hepatocellular antioxidative defense, including PON1, GPx and CAT were investigated. The increase in oxidative damages in treated rats was determined by measuring LPO, protein carbonyl content and total antioxidant power in plasma. After administration of 85 mg/kg diazinon in ten groups of male Wistar rats at different time points between 0-24 hours, the activity of AChE enzyme was inhibited to about 77.94 %. Significant increases in carbonyl groups and LPO after 0.75 and 1 hours were also observed while the plasma antioxidant power was significantly decreased. Despite the dramatic reduction of GP X and PON1 gene expression, CAT gene was significantly upregulated in mRNA level by 1.1 fold after 4 hours and 1.5-fold after 24 hours due to diazinon exposure, compared to control group. Furthermore, no significant changes in diazinon plasma levels were found after 4 hours in the treated rats. The limits of detection and quantification were 137.42 and 416.52 ng/mL, respectively. The average percentage recoveries from plasma were between 90.62 % and 95.72 %. In conclusion, acute exposure to diazinon increased oxidative stress markers in a time-dependent manner and the changes were consistent with effects on hepatic antioxidant gene expression pattern. The effect of diazinon even as a non-lethal dose was induced on the gene expression of antioxidant enzymes. The change in antioxidant defense system occurs prior to diazinon plasma peak time. These results provide biochemical and molecular evidence supporting potential acute toxicity of diazinon and is beneficial in the evaluation of acute toxicity of other organophosphorus pesticides as well.

  12. A novel nested multiplex polymerase chain reaction (PCR assay for differential detection of Entamoeba histolytica, E. moshkovskii and E. dispar DNA in stool samples

    Directory of Open Access Journals (Sweden)

    Parija Subhash C

    2007-05-01

    Full Text Available Abstract Background E. histolytica, a pathogenic amoeba, is indistinguishable in its cyst and trophozoite stages from those of non-pathogenic E. moshkovskii and E. dispar by light microscopy. We have developed a nested multiplex PCR targeting a 16S-like rRNA gene for differential detection of all the three morphologically similar forms of E. histolytica, E. moshkovskii and E. dispar simultaneously in stool samples. Results The species specific product size for E. histolytica, E. moshkovskii and E. dispar was 439, 553 and 174 bp respectively, which was clearly different for all the three Entamoeba species. The nested multiplex PCR showed a sensitivity of 94% and specificity of 100% for the demonstration of E. histolytica, E. moshkovskii and E. dispar DNA in stool samples. The PCR was positive for E. histolytica, E. moshkovskii and E. dispar in a total of 190 out of 202 stool specimens (94% sensitive that were positive for E. histolytica/E. dispar/E. moshkovskii by examination of stool by microscopy and/or culture. All the 35 negative control stool samples that were negative for E. histolytica/E. dispar/E. moshkovskii by microscopy and culture were also found negative by the nested multiplex PCR (100% specific. The result from the study shows that only 34.6% of the patient stool samples that were positive for E. histolytica/E. dispar/E. moshkovskii by examination of stool by microscopy and/or culture, were actually positive for pathogenic E. histolytica and the remaining majority of the stool samples were positive for non-pathogenic E. dispar or E. moshkovskii as demonstrated by the use of nested multiplex PCR. Conclusion The present study reports a new nested multiplex PCR strategy for species specific detection and differentiation of E. histolytica, E. dispar and E. moshkovskii DNA in stool specimens. The test is highly specific, sensitive and also rapid, providing the results within 12 hours of receiving stool specimens.

  13. Identification of Novel Signal Transduction, Immune Function, and Oxidative Stress Genes and Pathways by Topiramate for Treatment of Methamphetamine Dependence Based on Secondary Outcomes

    Directory of Open Access Journals (Sweden)

    Tianhua Niu

    2017-12-01

    Full Text Available BackgroundTopiramate (TPM is suggested to be a promising medication for treatment of methamphetamine (METH dependence, but the molecular basis remains to be elucidated.MethodsAmong 140 METH-dependent participants randomly assigned to receive either TPM (N = 69 or placebo (N = 71 in a previously conducted randomized controlled trial, 50 TPM- and 49 placebo-treated participants had a total 212 RNA samples available at baseline, week 8, and week 12 time points. Following our primary analysis of gene expression data, we reanalyzed the microarray expression data based on a latent class analysis of binary secondary outcomes during weeks 1–12 that provided a classification of 21 responders and 31 non-responders with consistent responses at both time points.ResultsBased on secondary outcomes, 1,381, 576, 905, and 711 differentially expressed genes at nominal P values < 0.05 were identified in responders versus non-responders for week 8 TPM, week 8 placebo, week 12 TPM, and week 12 placebo groups, respectively. Among 1,381 genes identified in week 8 TPM responders, 359 genes were identified in both week 8 and week 12 TPM groups, of which 300 genes were exclusively detected in TPM responders. Of them, 32 genes had nominal P values < 5 × 10−3 at either week 8 or week 12 and false discovery rates < 0.15 at both time points with consistent directions of gene expression changes, which include GABARAPL1, GPR155, and IL15RA in GABA receptor signaling that represent direct targets for TPM. Analyses of these 300 genes revealed 7 enriched pathways belonging to neuronal function/synaptic plasticity, signal transduction, inflammation/immune function, and oxidative stress response categories. No pathways were enriched for 72 genes exclusively detected in both week 8 and week 12 placebo groups.ConclusionThis secondary analysis study of gene expression data from a TPM clinical trial not only yielded consistent results with those of primary

  14. Impact of broiler egg storage on the relative expression of selected blastoderm genes associated with apoptosis, oxidative stress, and fatty acid metabolism.

    Science.gov (United States)

    Bakst, M R; Welch, G R; Fetterer, R; Miska, K

    2016-06-01

    Cool temperature storage of eggs prior to incubation is a frequent practice by commercial broiler hatcheries. However, continued storage beyond 7 d leads to a progressive increase in the rate of early embryonic mortality. In this study, we examined the relative expression of 31 genes associated with fatty acid metabolism (8), apoptosis (7), and oxidative stress (16) pathways to better understand the basis of embryo mortality during egg storage. A total of 642 broiler eggs in 2 separate trials were subjected to the following egg treatments: stored 4 d (Control 1, C1); stored 21 d but subjected to short periods of incubation during egg storage (SPIDES); stored un-manipulated 21 d (NonSPIDES, NS); and stored 4 d then incubated for 10 h to advance the embryos to the same developmental stages as the SPIDES embryos (Control 2, C2). Hatchability trials (277 eggs) confirmed the efficacy of SPIDES compared to NS treatments in both trials. To determine relative expression of 31 selected genes, 365 blastoderms were isolated, staged, and flash frozen in batches of 5 to 10 blastoderms per vial (7 vials per egg treatment) prior to RNA extractions. Analysis of gene expression was performed using qRT-PCR and the results presented as relative expression normalized to C1. The relative expression of genes in which the SPIDES and C2 treatments were significantly up- or down-regulated in tandem indicated that the stage-specific expression of those genes was maintained by the SPIDES treatment. This study provides the relative gene expressions of blastodermal cells before and after prolonged egg storage as well as insight as to how SPIDES impacts blastodermal cell gene expression. Published by Oxford University Press on behalf of Poultry Science Association 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  15. Conjunctions between motion and disparity are encoded with the same spatial resolution as disparity alone.

    Science.gov (United States)

    Allenmark, Fredrik; Read, Jenny C A

    2012-10-10

    Neurons in cortical area MT respond well to transparent streaming motion in distinct depth planes, such as caused by observer self-motion, but do not contain subregions excited by opposite directions of motion. We therefore predicted that spatial resolution for transparent motion/disparity conjunctions would be limited by the size of MT receptive fields, just as spatial resolution for disparity is limited by the much smaller receptive fields found in primary visual cortex, V1. We measured this using a novel "joint motion/disparity grating," on which human observers detected motion/disparity conjunctions in transparent random-dot patterns containing dots streaming in opposite directions on two depth planes. Surprisingly, observers showed the same spatial resolution for these as for pure disparity gratings. We estimate the limiting receptive field diameter at 11 arcmin, similar to V1 and much smaller than MT. Higher internal noise for detecting joint motion/disparity produces a slightly lower high-frequency cutoff of 2.5 cycles per degree (cpd) versus 3.3 cpd for disparity. This suggests that information on motion/disparity conjunctions is available in the population activity of V1 and that this information can be decoded for perception even when it is invisible to neurons in MT.

  16. Lack of association between nuclear factor erythroid-derived 2-like 2 promoter gene polymorphisms and oxidative stress biomarkers in amyotrophic lateral sclerosis patients.

    Science.gov (United States)

    LoGerfo, Annalisa; Chico, Lucia; Borgia, Loredana; Petrozzi, Lucia; Rocchi, Anna; D'Amelio, Antonia; Carlesi, Cecilia; Caldarazzo Ienco, Elena; Mancuso, Michelangelo; Siciliano, Gabriele

    2014-01-01

    Oxidative stress involvement has been strongly hypothesized among the possible pathogenic mechanisms of motor neuron degeneration in amyotrophic lateral sclerosis (ALS). The intracellular redox balance is finely modulated by numerous complex mechanisms critical for cellular functions, among which the nuclear factor erythroid-derived 2-like 2 (NFE2L2/Nrf2) pathways. We genotyped, in a cohort of ALS patients (n = 145) and healthy controls (n = 168), three SNPs in Nrf2 gene promoter: -653 A/G, -651 G/A, and -617 C/A and evaluated, in a subset (n = 73) of patients, advanced oxidation protein products (AOPP), iron-reducing ability of plasma (FRAP), and plasma thiols (-SH) as oxidative damage peripheral biomarkers. Nrf2 polymorphisms were not different among patients and controls. Increased levels of AOPP (P < 0.05) and decreased levels of FRAP (P < 0.001) have been observed in ALS patients compared with controls, but no difference in -SH values was found. Furthermore, no association was found between biochemical markers of redox balance and Nrf2 polymorphisms. These data confirm an altered redox balance in ALS and indicate that, while being abnormally modified compared to controls, the oxidative stress biomarkers assessed in this study are independent from the -653 A/G, -651 G/A, and -617 C/A Nrf2 SNPs in ALS patients.

  17. Lack of Association between Nuclear Factor Erythroid-Derived 2-Like 2 Promoter Gene Polymorphisms and Oxidative Stress Biomarkers in Amyotrophic Lateral Sclerosis Patients

    Directory of Open Access Journals (Sweden)

    Annalisa LoGerfo

    2014-01-01

    Full Text Available Oxidative stress involvement has been strongly hypothesized among the possible pathogenic mechanisms of motor neuron degeneration in amyotrophic lateral sclerosis (ALS. The intracellular redox balance is finely modulated by numerous complex mechanisms critical for cellular functions, among which the nuclear factor erythroid-derived 2-like 2 (NFE2L2/Nrf2 pathways. We genotyped, in a cohort of ALS patients (n=145 and healthy controls (n=168, three SNPs in Nrf2 gene promoter: −653 A/G, −651 G/A, and −617 C/A and evaluated, in a subset (n=73 of patients, advanced oxidation protein products (AOPP, iron-reducing ability of plasma (FRAP, and plasma thiols (-SH as oxidative damage peripheral biomarkers. Nrf2 polymorphisms were not different among patients and controls. Increased levels of AOPP (P<0.05 and decreased levels of FRAP (P<0.001 have been observed in ALS patients compared with controls, but no difference in -SH values was found. Furthermore, no association was found between biochemical markers of redox balance and Nrf2 polymorphisms. These data confirm an altered redox balance in ALS and indicate that, while being abnormally modified compared to controls, the oxidative stress biomarkers assessed in this study are independent from the −653 A/G, −651 G/A, and −617 C/A Nrf2 SNPs in ALS patients.

  18. A variant of the endothelial nitric oxide synthase gene (NOS3) associated with AMS susceptibility is less common in the Quechua, a high altitude Native population.

    Science.gov (United States)

    Wang, Pei; Ha, Alice Y N; Kidd, Kenneth K; Koehle, Michael S; Rupert, Jim L

    2010-01-01

    Endothelial nitric oxide synthase (eNOS) is a vascular enzyme that produces nitric oxide, a transient signaling molecule that by vasodilatation regulates blood flow and pressure. Nitric oxide is believed to play roles in both short-term acclimatization and long-term evolutionary adaptation to environmental hypoxia. Several laboratories, including ours, have shown that variants in NOS3 (the gene encoding eNOS) are overrepresented in individuals with altitude-related illnesses such as high altitude pulmonary edema (HAPE) and acute mountain sickness (AMS), suggesting that NOS3 genotypes contribute to altitude tolerance. To further test our hypothesis that the G allele at the G894T polymorphism in NOS3 (dbSNP number: rs1799983; protein polymorphism Glu298Asp) is beneficial in hypoxic environments, we compared frequencies of this allele in an altitude-adapted Amerindian population, Quechua of the Andean altiplano, with those in a lowland Amerindian population, Maya of the Yucatan Peninsula. While common in both populations, the G allele was significantly more frequent in the highlanders. Taken together, our data suggest that this variant in NOS3, which has been previously associated with higher levels of nitric oxide, contributes to both acclimatization and adaptation to altitude.

  19. dFOXO Activates Large and Small Heat Shock Protein Genes in Response to Oxidative Stress to Maintain Proteostasis in Drosophila.

    Science.gov (United States)

    Donovan, Marissa R; Marr, Michael T

    2016-09-02

    Maintaining protein homeostasis is critical for survival at the cellular and organismal level (Morimoto, R. I. (2011) Cold Spring Harb. Symp. Quant. Biol. 76, 91-99). Cells express a family of molecular chaperones, the heat shock proteins, during times of oxidative stress to protect against proteotoxicity. We have identified a second stress responsive transcription factor, dFOXO, that works alongside the heat shock transcription factor to activate transcription of both the small heat shock protein and the large heat shock protein genes. This expression likely protects cells from protein misfolding associated with oxidative stress. Here we identify the regions of the Hsp70 promoter essential for FOXO-dependent transcription using in vitro methods and find a physiological role for FOXO-dependent expression of heat shock proteins in vivo. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. amoA Gene abundances and nitrification potential rates suggest that benthic ammonia-oxidizing bacteria and not Archaea dominate N cycling in the Colne Estuary, United Kingdom.

    Science.gov (United States)

    Li, Jialin; Nedwell, David B; Beddow, Jessica; Dumbrell, Alex J; McKew, Boyd A; Thorpe, Emma L; Whitby, Corinne

    2015-01-01

    Nitrification, mediated by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), is important in global nitrogen cycling. In estuaries where gradients of salinity and ammonia concentrations occur, there may be differential selections for ammonia-oxidizer populations. The aim of this study was to examine the activity, abundance, and diversity of AOA and AOB in surface oxic sediments of a highly nutrified estuary that exhibits gradients of salinity and ammonium. AOB and AOA communities were investigated by measuring ammonia monooxygenase (amoA) gene abundance and nitrification potentials both spatially and temporally. Nitrification potentials differed along the estuary and over time, with the greatest nitrification potentials occurring mid-estuary (8.2 μmol N grams dry weight [gdw](-1) day(-1) in June, increasing to 37.4 μmol N gdw(-1) day(-1) in January). At the estuary head, the nitrification potential was 4.3 μmol N gdw(-1) day(-1) in June, increasing to 11.7 μmol N gdw(-1) day(-1) in January. At the estuary head and mouth, nitrification potentials fluctuated throughout the year. AOB amoA gene abundances were significantly greater (by 100-fold) than those of AOA both spatially and temporally. Nitrosomonas spp. were detected along the estuary by denaturing gradient gel electrophoresis (DGGE) band sequence analysis. In conclusion, AOB dominated over AOA in the estuarine sediments, with the ratio of AOB/AOA amoA gene abundance increasing from the upper (freshwater) to lower (marine) regions of the Colne estuary. These findings suggest that in this nutrified estuary, AOB (possibly Nitrosomonas spp.) were of major significance in nitrification. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Fluxomic evidence for impaired contribution of short-chain acyl-CoA dehydrogenase to mitochondrial palmitate β-oxidation in symptomatic patients with ACADS gene susceptibility variants.

    Science.gov (United States)

    Dessein, Anne-Frédérique; Fontaine, Monique; Joncquel-Chevalier Curt, Marie; Briand, Gilbert; Sechter, Claire; Mention-Mulliez, Karine; Dobbelaere, Dries; Douillard, Claire; Lacour, Arnaud; Redonnet-Vernhet, Isabelle; Lamireau, Delphine; Barth, Magalie; Minot-Myhié, Marie-Christine; Kuster, Alice; de Lonlay, Pascale; Gregersen, Niels; Acquaviva, Cécile; Vianey-Saban, Christine; Vamecq, Joseph

    2017-08-01

    Despite ACADS (acyl-CoA dehydrogenase, short-chain) gene susceptibility variants (c.511C>T and c.625G>A) are considered to be non-pathogenic, encoded proteins are known to exhibit altered kinetics. Whether or not, they might affect overall fatty acid β-oxidation still remains, however, unclear. De novo biosynthesis of acylcarnitines by whole blood samples incubated with deuterated palmitate (16- 2 H 3 ,15- 2 H 2 -palmitate) is suitable as a fluxomic exploration to distinguish between normal and disrupted β-oxidation, abnormal profiles and ratios of acylcarnitines with different chain-lengths being indicative of the site for enzymatic blockade. Determinations in 301 control subjects of ratios between deuterated butyrylcarnitine and sum of deuterated C2 to C14 acylcarnitines served here as reference values to state specifically functional SCAD impairment in patients addressed for clinical and/or biological suspicion of a β-oxidation disorder. Functional SCAD impairment was found in 39 patients. The 27 patients accepting subsequent gene studies were all positive for ACADS mutations. Twenty-six of 27 patients were positive for c.625G>A variant. Twenty-three of 27 patients harbored susceptibility variants as sole ACADS alterations (18 homozygous and 3 heterozygous for c.625G>A, 2 compound heterozygous for c.625G>A/c.511C>T). Our present fluxomic assessment of SCAD suggests a link between ACADS susceptibility variants and abnormal β-oxidation consistent with known altered kinetics of these variants. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Docosahexaenoic (DHA modulates phospholipid-hydroperoxide glutathione peroxidase (Gpx4 gene expression to ensure self-protection from oxidative damage in hippocampal cells

    Directory of Open Access Journals (Sweden)

    Veronica eCasañas-Sanchez

    2015-07-01

    Full Text Available Docosahexaenoic acid (DHA, 22:6n-3 is a unique polyunsaturated fatty acid particularly abundant in nerve cell membrane phospholipids. DHA is a pleiotropic molecule that, not only modulates the physicochemical properties and architecture of neuronal plasma membrane, but it is also involved in multiple facets of neuronal biology, from regulation of synaptic function to neuroprotection and modulation of gene expression. As a highly unsaturated fatty acid due to the presence of six double bonds, DHA is susceptible for oxidation, especially in the highly pro-oxidant environment of brain parenchyma. We have recently reported the ability of DHA to regulate the transcriptional program controlling neuronal antioxidant defenses in a hippocampal cell line, especially the glutathione/glutaredoxin system. Within this antioxidant system, DHA was particularly efficient in triggering the upregulation of Gpx4 gene, which encodes for the nuclear, cytosolic and mitochondrial isoforms of phospholipid-hydroperoxide glutathione peroxidase (PH-GPx/GPx4, the main enzyme protecting cell membranes against lipid peroxidation and capable to reduce oxidized phospholipids in situ. We show here that this novel property of DHA is also significant in the hippocampus of wild-type mice and APP/PS1 transgenic mice, a familial model of Alzheimer’s disease. By doing this, DHA stimulates a mechanism to self-protect from oxidative damage even in the neuronal scenario of high aerobic metabolism and in the presence of elevated levels of transition metals, which inevitably favor the generation of reactive oxygen species. Noticeably, DHA also upregulated a novel Gpx4 splicing variant, harboring part of the first intronic region, which according to the ‘sentinel RNA hypothesis’ would expand the ability of Gpx4 (and DHA to provide neuronal antioxidant defense independently of conventional nuclear splicing in cellular compartments, like dendritic zones, located away from nuclear

  3. Characterization of a Decapentapletic Gene (AccDpp from Apis cerana cerana and Its Possible Involvement in Development and Response to Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Guilin Li

    Full Text Available To tolerate many acute and chronic oxidative stress-producing agents that exist in the environment, organisms have evolved many classes of signal transduction pathways, including the transforming growth factor β (TGFβ signal pathway. Decapentapletic gene (Dpp belongs to the TGFβ superfamily, and studies on Dpp have mainly focused on its role in the regulation of development. No study has investigated the response of Dpp to oxidative pressure in any organism, including Apis cerana cerana (A. cerana cerana. In this study, we identified a Dpp gene from A. cerana cerana named AccDpp. The 5΄ flanking region of AccDpp had many transcription factor binding sites that relevant to development and stress response. AccDpp was expressed at all stages of A. cerana cerana, with its highest expression in 15-day worker bees. The mRNA level of AccDpp was higher in the poison gland and midgut than other tissues. Furthermore, the transcription of AccDpp could be repressed by 4°C and UV, but induced by other treatments, according to our qRT-PCR analysis. It is worth noting that the expression level of AccDpp protein was increased after a certain time when A. cerana cerana was subjected to all simulative oxidative stresses, a finding that was not completely consistent with the result from qRT-PCR. It is interesting that recombinant AccDpp restrained the growth of Escherichia coli, a function that might account for the role of the antimicrobial peptides of AccDpp. In conclusion, these results provide evidence that AccDpp might be implicated in the regulation of development and the response of oxidative pressure. The findings may lay a theoretical foundation for further genetic studies of Dpp.

  4. Disparities at the intersection of marginalized groups

    Science.gov (United States)

    Jackson, John W.; Williams, David R.; VanderWeele, Tyler J.

    2016-01-01

    Mental health disparities exist across several dimensions of social inequality, including race/ethnicity, socioeconomic status and gender. Most investigations of health disparities focus on one dimension. Recent calls by researchers argue for studying persons who are marginalized in multiple ways, often from the perspective of intersectionality, a theoretical framework applied to qualitative studies in law, sociology, and psychology. Quantitative adaptations are emerging but there is little guidance as to what measures or methods are helpful. Here, we consider the concept of a joint disparity and its composition, show that this approach can illuminate how outcomes are patterned for social groups that are marginalized across multiple axes of social inequality, and compare the insights gained with that of other measures of additive interaction. We apply these methods to a cohort of males from the National Longitudinal Survey of Youth, examining disparities for black males with low early life SES vs. white males with high early life SES across several outcomes that predict mental health, including unemployment, wages, and incarceration. We report striking disparities in each outcome, but show that the contribution of race, SES, and their intersection varies. PMID:27531592

  5. Photodynamic Therapy Oxidative Stress as a Molecular Switch Controlling Therapeutic Gene Expression for the Treatment of Locally Recurrent Breast Carcinoma

    National Research Council Canada - National Science Library

    Gomer, Charles

    2002-01-01

    ... a procedure offering local tumoricidal activity. We have demonstrated that PDT-mediated oxidative stress is a strong transcriptional inducer of stress proteins belonging to the heat shock protein (hsp...

  6. HFE gene mutation and oxidative damage biomarkers in patients with myelodysplastic syndromes and its relation to transfusional iron overload: an observational cross-sectional study.

    Science.gov (United States)

    De Souza, Geane Felix; Ribeiro, Howard Lopes; De Sousa, Juliana Cordeiro; Heredia, Fabíola Fernandes; De Freitas, Rivelilson Mendes; Martins, Manoel Ricardo Alves; Gonçalves, Romélia Pinheiro; Pinheiro, Ronald Feitosa; Magalhães, Silvia Maria Meira

    2015-04-03

    A relation between transfusional IOL (iron overload), HFE status and oxidative damage was evaluated. An observational cross-sectional study involving 87 healthy individuals and 78 patients with myelodysplastic syndromes (MDS) with and without IOL, seen at University Hospital of the Federal University of Ceará, Brazil, between May 2010 and September 2011. IOL was defined using repeated measures of serum ferritin ≥1000 ng/mL. Variations in the HFE gene were investigated using PCR/restriction fragment length polymorphism (RFLP). The biomarkers of oxidative stress (plasmatic malonaldehyde (MDA), glutathione peroxidase (GPx) and superoxide dismutase (SOD)) were determined by spectrophotometry. The HFE gene variations were identified in 24 patients (30.77%) and 5 volunteers (5.74%). The H63D variant was observed in 35% and the C282Y variant as heterozygous in 5% of patients with MDS with IOL. One patient showed double heterozygous variant (C282Y/H63D) and serum ferritin of 11,649 ng/mL. In patients without IOL, the H63D variant was detected in 29.34%. Serum MDA levels were highest in patients with MDS with IOL, with a significant difference when compared with patients without IOL and healthy volunteers, pointing to the relationship between IOL and oxidative stress. The GPx and SOD were also significantly higher in these patients, indicating that lipid peroxidation increase was followed by an increase in antioxidant capacity. Higher ferritin levels were observed in patients with HFE gene variation. 95.7% of patients with MDS with the presence of HFE gene variations had received more of 20 transfusions. We observed a significant increase in MDA levels in patients with MDS and IOL, suggesting an increased lipid peroxidation in these patients. The accumulation of MDA alters the organisation of membrane phospholipids, contributing to the process of cellular degeneration. Results show that excess iron intensifies the process of cell damage through oxidative stress

  7. Role of KATP channels in cephalic vasodilatation induced by calcitonin gene-related peptide, nitric oxide, and transcranial electrical stimulation in the rat

    DEFF Research Database (Denmark)

    Gozalov, Aydin; Jansen-Olesen, Inger; Klærke, Dan Arne

    2008-01-01

    OBJECTIVE: The objective of this study was to explore the role of K(ATP) channels in vasodilatation induced by calcitonin gene-related peptide (CGRP), nitric oxide (NO), and transcranial electrical stimulation (TES) in intracranial arteries of rat. BACKGROUND: Dilatation of cerebral and dural...... CGRP, NO, and endogenous CGRP after electrical stimulation. Also diameter changes of pial arteries, mean arterial blood pressure and local cerebral blood flow by Laser Doppler flowmetry (LCBF(Flux)) were measured. RESULTS: CGRP, NO, and TES caused dilatation of the 2 arteries in vivo and in vitro...

  8. Long SAGE analysis of genes differentially expressed in the midgut ...

    African Journals Online (AJOL)

    USER

    identification of genes related to sexual disparity in silk protein production efficiency. ... Ysh, a yellow cocoon color sex-limited strain of the silkworm B. mori, ...... alternative splicing of human genes. ... Structure, function and evolution of.

  9. Cobalt iron oxide nanoparticles induce cytotoxicity and regulate the apoptotic genes through ROS in human liver cells (HepG2).

    Science.gov (United States)

    Ahamed, Maqusood; Akhtar, Mohd Javed; Khan, M A Majeed; Alhadlaq, Hisham A; Alshamsan, Aws

    2016-12-01

    Cobalt iron oxide (CoFe 2 O 4 ) nanoparticles (CIO NPs) have been one of the most widely explored magnetic NPs because of their excellent chemical stability, mechanical hardness and heat generating potential. However, there is limited information concerning the interaction of CIO NPs with biological systems. In this study, we investigated the reactive oxygen species (ROS) mediated cytotoxicity and apoptotic response of CIO NPs in human liver cells (HepG2). Diameter of crystalline CIO NPs was found to be 23nm with a band gap of 1.97eV. CIO NPs induced cell viability reduction and membrane damage, and degree of induction was dose- and time-dependent. CIO NPs were also found to induce oxidative stress revealed by induction of ROS, depletion of glutathione and lower activity of superoxide dismutase enzyme. Real-time PCR data has shown that mRNA level of tumor suppressor gene p53 and apoptotic genes (bax, CASP3 and CASP9) were higher, while the expression level of anti-apoptotic gene bcl-2 was lower in cells following exposure to CIO NPs. Activity of caspase-3 and caspase-9 enzymes was also higher in CIO NPs exposed cells. Furthermore, co-exposure of N-acetyl-cysteine (ROS scavenger) efficiently abrogated the modulation of apoptotic genes along with the prevention of cytotoxicity caused by CIO NPs. Overall, we observed that CIO NPs induced cytotoxicity and apoptosis in HepG2 cells through ROS via p53 pathway. This study suggests that toxicity mechanisms of CIO NPs should be further investigated in animal models. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Characterization of the beta-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice.

    Science.gov (United States)

    Du, Hao; Wang, Nili; Cui, Fei; Li, Xianghua; Xiao, Jinghua; Xiong, Lizhong

    2010-11-01

    Drought is a major limiting factor for crop production. To identify critical genes for drought resistance in rice (Oryza sativa), we screened T-DNA mutants and identified a drought-hypersensitive mutant, dsm2. The mutant phenotype was caused by a T-DNA insertion in a gene encoding a putative β-carotene hydroxylase (BCH). BCH is predicted for the biosynthesis of zeaxanthin, a carotenoid precursor of abscisic acid (ABA). The amounts of zeaxanthin and ABA were significantly reduced in two allelic dsm2 mutants after drought stress compared with the wild type. Under drought stress conditions, the mutant leaves lost water faster than the wild type and the photosynthesis rate, biomass, and grain yield were significantly reduced, whereas malondialdehyde level and stomata aperture were increased in the mutant. The mutant is also hypersensitive to oxidative stresses. The mutant had significantly lower maximal efficiency of photosystem II photochemistry and nonphotochemical quenching capacity than the wild type, indicating photoinhibition in photosystem II and decreased capacity for eliminating excess energy by thermal dissipation. Overexpression of DSM2 in rice resulted in significantly increased resistance to drought and oxidative stresses and increases of the xanthophylls and nonphotochemical quenching. Some stress-related ABA-responsive genes were up-regulated in the overexpression line. DSM2 is a chloroplast protein, and the response of DSM2 to environmental stimuli is distinctive from the other two BCH members in rice. We conclude that the DSM2 gene significantly contributes to control of the xanthophyll cycle and ABA synthesis, both of which play critical roles in the establishment of drought resistance in rice.

  11. Geographic isolates of Lymantria dispar multiple nucleopolyhedrovirus: Genome sequence analysis and pathogenicity against European and Asian gypsy moth strains.

    Science.gov (United States)

    Harrison, Robert L; Rowley, Daniel L; Keena, Melody A

    2016-06-01

    Isolates of the baculovirus species Lymantria dispar multiple nucleopolyhedrovirus have been formulated and applied to suppress outbreaks of the gypsy moth, L. dispar. To evaluate the genetic diversity in this species at the genomic level, the genomes of three isolates from Massachusetts, USA (LdMNPV-Ab-a624), Spain (LdMNPV-3054), and Japan (LdMNPV-3041) were sequenced and compared with four previously determined LdMNPV genome sequences. The LdMNPV genome sequences were collinear and contained the same homologous repeats (hrs) and clusters of baculovirus repeat orf (bro) gene family members in the same relative positions in their genomes, although sequence identities in these regions were low. Of 146 non-bro ORFs annotated in the genome of the representative isolate LdMNPV 5-6, 135 ORFs were found in every other LdMNPV genome, including the 37 core genes of Baculoviridae and other genes conserved in genus Alphabaculovirus. Phylogenetic inference with an alignment of the core gene nucleotide sequences grouped isolates 3041 (Japan) and 2161 (Korea) separately from a cluster containing isolates from Europe, North America, and Russia. To examine phenotypic diversity, bioassays were carried out with a selection of isolates against neonate larvae from three European gypsy moth (Lymantria dispar dispar) and three Asian gypsy moth (Lymantria dispar asiatica and Lymantria dispar japonica) colonies. LdMNPV isolates 2161 (Korea), 3029 (Russia), and 3041 (Japan) exhibited a greater degree of pathogenicity against all L. dispar strains than LdMNPV from a sample of Gypchek. This study provides additional information on the genetic diversity of LdMNPV isolates and their activity against the Asian gypsy moth, a potential invasive pest of North American trees and forests. Published by Elsevier Inc.

  12. Effects of trimethoprim on life history parameters, oxidative stress, and the expression of cytochrome P450 genes in the copepod Tigriopus japonicus.

    Science.gov (United States)

    Han, Jeonghoon; Lee, Min-Chul; Kim, Duck-Hyun; Lee, Young Hwan; Park, Jun Chul; Lee, Jae-Seong

    2016-09-01

    Trimethoprim (TMP) is an antibiotic that has been detected in various environments including marine habitats; however, the toxic effects of TMP are poorly understood in non-target marine organisms. In this study, the effects of TMP on mortality, development, reproduction, intracellular reactive oxygen species (ROS) levels, and transcription levels of antioxidant and xenobiotic detoxification-related enzyme genes were investigated in the copepod Tigriopus japonicus. The TMP half lethal dose at 48 h (LC50-48 h) in nauplius and TMP LC50-96 h in adult T. japonicus copepods was determined as 156 mg/L and 200 mg/L, respectively. In TMP-exposed T. japonicus, delayed developmental time and impaired reproduction were observed as harmful effects on the life history parameters. Increased ROS levels were also shown in response to TMP exposure at the highest concentration (100 mg/L TMP) and the expression of antioxidant- (e.g. GST-kappa, GST-sigma) and xenobiotic detoxification (e.g. CYPs)-related genes were upregulated in a time and/or dose-dependent manner in response to TMP. Particularly, significant upregulation of three CYP genes (Tj-CYP3024A2, Tj-CYP3024A3 and Tj-CYP3027C2) were examined, suggesting that these CYP genes are likely playing an important role in the TMP detoxification metabolism in T. japonicus. In summary, we found that TMP induced oxidative stress via the transcriptional regulation of antioxidant- and xenobiotic detoxification-related genes, leading to changes in life history parameters such as developmental delay and reproduction impairment. Three Tj-CYP genes (Tj-CYP3024A2, Tj-CYP3024A3 and Tj-CYP3027C2) could be useful as potential T. japonicus biomarkers in response to antibiotics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. RNA sequencing reveals differential expression of mitochondrial and oxidation reduction genes in the long-lived naked mole-rat when compared to mice.

    Science.gov (United States)

    Yu, Chuanfei; Li, Yang; Holmes, Andrew; Szafranski, Karol; Faulkes, Chris G; Coen, Clive W; Buffenstein, Rochelle; Platzer, Matthias; de Magalhães, João Pedro; Church, George M

    2011-01-01

    The naked mole-rat (Heterocephalus glaber) is a long-lived, cancer resistant rodent and there is a great interest in identifying the adaptations responsible for these and other of its unique traits. We employed RNA sequencing to compare liver gene expression profiles between naked mole-rats and wild-derived mice. Our results indicate that genes associated with oxidoreduction and mitochondria were expressed at higher relative levels in naked mole-rats. The largest effect is nearly 300-fold higher expression of epithelial cell adhesion molecule (Epcam), a tumour-associated protein. Also of interest are the protease inhibitor, alpha2-macroglobulin (A2m), and the mitochondrial complex II subunit Sdhc, both ageing-related genes found strongly over-expressed in the naked mole-rat. These results hint at possible candidates for specifying species differences in ageing and cancer, and in particular suggest complex alterations in mitochondrial and oxidation reduction pathways in the naked mole-rat. Our differential gene expression analysis obviated the need for a reference naked mole-rat genome by employing a combination of Illumina/Solexa and 454 platforms for transcriptome sequencing and assembling transcriptome contigs of the non-sequenced species. Overall, our work provides new research foci and methods for studying the naked mole-rat's fascinating characteristics.

  14. RNA sequencing reveals differential expression of mitochondrial and oxidation reduction genes in the long-lived naked mole-rat when compared to mice.

    Directory of Open Access Journals (Sweden)

    Chuanfei Yu

    Full Text Available The naked mole-rat (Heterocephalus glaber is a long-lived, cancer resistant rodent and there is a great interest in identifying the adaptations responsible for these and other of its unique traits. We employed RNA sequencing to compare liver gene expression profiles between naked mole-rats and wild-derived mice. Our results indicate that genes associated with oxidoreduction and mitochondria were expressed at higher relative levels in naked mole-rats. The largest effect is nearly 300-fold higher expression of epithelial cell adhesion molecule (Epcam, a tumour-associated protein. Also of interest are the protease inhibitor, alpha2-macroglobulin (A2m, and the mitochondrial complex II subunit Sdhc, both ageing-related genes found strongly over-expressed in the naked mole-rat. These results hint at possible candidates for specifying species differences in ageing and cancer, and in particular suggest complex alterations in mitochondrial and oxidation reduction pathways in the naked mole-rat. Our differential gene expression analysis obviated the need for a reference naked mole-rat genome by employing a combination of Illumina/Solexa and 454 platforms for transcriptome sequencing and assembling transcriptome contigs of the non-sequenced species. Overall, our work provides new research foci and methods for studying the naked mole-rat's fascinating characteristics.

  15. High-level expression of heme-dependent catalase gene katA from Lactobacillus Sakei protects Lactobacillus rhamnosus from oxidative stress.

    Science.gov (United States)

    An, Haoran; Zhou, Hui; Huang, Ying; Wang, Guohong; Luan, Chunguang; Mou, Jing; Luo, Yunbo; Hao, Yanling

    2010-06-01

    Lactic acid bacteria (LAB) are generally sensitive to hydrogen peroxide (H(2)O(2)), Lactobacillus sakei YSI8 is one of the very few LAB strains able to degrade H(2)O(2) through the action of a heme-dependent catalase. Lactobacillus rhamnosus strains are very important probiotic starter cultures in meat product fermentation, but they are deficient in catalase. In this study, the effect of heterologous expression of L. sakei catalase gene katA in L. rhamnosus on its oxidative stress resistance was tested. The recombinant L. rhamnosus AS 1.2466 was able to decompose H(2)O(2) and the catalase activity reached 2.85 mumol H(2)O(2)/min/10(8) c.f.u. Furthermore, the expression of the katA gene in L. rhamnosus conferred enhanced oxidative resistance on the host. The survival ratios after short-term H(2)O(2) challenge were increased 600 and 10(4)-fold at exponential and stationary phase, respectively. Further, viable cells were 100-fold higher in long-term aerated cultures. Simulation experiment demonstrated that both growth and catalase activity of recombinant L. rhamnosus displayed high stability under environmental conditions similar to those encountered during sausage fermentation.

  16. Age-Related Alterations in the Expression of Genes and Synaptic Plasticity Associated with Nitric Oxide Signaling in the Mouse Dorsal Striatum

    Directory of Open Access Journals (Sweden)

    Aisa N. Chepkova

    2015-01-01

    Full Text Available Age-related alterations in the expression of genes and corticostriatal synaptic plasticity were studied in the dorsal striatum of mice of four age groups from young (2-3 months old to old (18–24 months of age animals. A significant decrease in transcripts encoding neuronal nitric oxide (NO synthase and receptors involved in its activation (NR1 subunit of the glutamate NMDA receptor and D1 dopamine receptor was found in the striatum of old mice using gene array and real-time RT-PCR analysis. The old striatum showed also a significantly higher number of GFAP-expressing astrocytes and an increased expression of astroglial, inflammatory, and oxidative stress markers. Field potential recordings from striatal slices revealed age-related alterations in the magnitude and dynamics of electrically induced long-term depression (LTD and significant enhancement of electrically induced long-term potentiation in the middle-aged striatum (6-7 and 12-13 months of age. Corticostriatal NO-dependent LTD induced by pharmacological activation of group I metabotropic glutamate receptors underwent significant reduction with aging and could be restored by inhibition of cGMP hydrolysis indicating that its age-related deficit is caused by an altered NO-cGMP signaling cascade. It is suggested that age-related alterations in corticostriatal synaptic plasticity may result from functional alterations in receptor-activated signaling cascades associated with increasing neuroinflammation and a prooxidant state.

  17. Processing vertical size disparities in distinct depth planes.

    Science.gov (United States)

    Duke, Philip A; Howard, Ian P

    2012-08-17

    A textured surface appears slanted about a vertical axis when the image in one eye is horizontally enlarged relative to the image in the other eye. The surface appears slanted in the opposite direction when the same image is vertically enlarged. Two superimposed textured surfaces with different horizontal size disparities appear as two surfaces that differ in slant. Superimposed textured surfaces with equal and opposite vertical size disparities appear as a single frontal surface. The vertical disparities are averaged. We investigated whether vertical size disparities are averaged across two superimposed textured surfaces in different depth planes or whether they induce distinct slants in the two depth planes. In Experiment 1, two superimposed textured surfaces with different vertical size disparities were presented in two depth planes defined by horizontal disparity. The surfaces induced distinct slants when the horizontal disparity was more than ±5 arcmin. Thus, vertical size disparities are not averaged over surfaces with different horizontal disparities. In Experiment 2 we confirmed that vertical size disparities are processed in surfaces away from the horopter, so the results of Experiment 1 cannot be explained by the processing of vertical size disparities in a fixated surface only. Together, these results show that vertical size disparities are processed separately in distinct depth planes. The results also suggest that vertical size disparities are not used to register slant globally by their effect on the registration of binocular direction of gaze.

  18. The Global Redox Responding RegB/RegA Signal Transduction System Regulates the Genes Involved in Ferrous Iron and Inorganic Sulfur Compound Oxidation of the Acidophilic Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Danielle Moinier

    2017-07-01

    Full Text Available The chemical attack of ore by ferric iron and/or sulfuric acid releases valuable metals. The products of these reactions are recycled by iron and sulfur oxidizing microorganisms. These acidophilic chemolithotrophic prokaryotes, among which Acidithiobacillus ferrooxidans, grow at the expense of the energy released from the oxidation of ferrous iron and/or inorganic sulfur compounds (ISCs. In At. ferrooxidans, it has been shown that the expression of the genes encoding the proteins involved in these respiratory pathways is dependent on the electron donor and that the genes involved in iron oxidation are expressed before those responsible for ISCs oxidation when both iron and sulfur are present. Since the redox potential increases during iron oxidation but remains stable during sulfur oxidation, we have put forward the hypothesis that the global redox responding two components system RegB/RegA is involved in this regulation. To understand the mechanism of this system and its role in the regulation of the aerobic respiratory pathways in At. ferrooxidans, the binding of different forms of RegA (DNA binding domain, wild-type, unphosphorylated and phosphorylated-like forms of RegA on the regulatory region of different genes/operons involved in ferrous iron and ISC oxidation has been analyzed. We have shown that the four RegA forms are able to bind specifically the upstream region of these genes. Interestingly, the phosphorylation of RegA did not change its affinity for its cognate DNA. The transcriptional start site of these genes/operons has been determined. In most cases, the RegA binding site(s was (were located upstream from the −35 (or −24 box suggesting that RegA does not interfere with the RNA polymerase binding. Based on the results presented in this report, the role of the RegB/RegA system in the regulation of the ferrous iron and ISC oxidation pathways in At. ferrooxidans is discussed.

  19. The Global Redox Responding RegB/RegA Signal Transduction System Regulates the Genes Involved in Ferrous Iron and Inorganic Sulfur Compound Oxidation of the Acidophilic Acidithiobacillus ferrooxidans

    Science.gov (United States)

    Moinier, Danielle; Byrne, Deborah; Amouric, Agnès; Bonnefoy, Violaine

    2017-01-01

    The chemical attack of ore by ferric iron and/or sulfuric acid releases valuable metals. The products of these reactions are recycled by iron and sulfur oxidizing microorganisms. These acidophilic chemolithotrophic prokaryotes, among which Acidithiobacillus ferrooxidans, grow at the expense of the energy released from the oxidation of ferrous iron and/or inorganic sulfur compounds (ISCs). In At. ferrooxidans, it has been shown that the expression of the genes encoding the proteins involved in these respiratory pathways is dependent on the electron donor and that the genes involved in iron oxidation are expressed before those responsible for ISCs oxidation when both iron and sulfur are present. Since the redox potential increases during iron oxidation but remains stable during sulfur oxidation, we have put forward the hypothesis that the global redox responding two components system RegB/RegA is involved in this regulation. To understand the mechanism of this system and its role in the regulation of the aerobic respiratory pathways in At. ferrooxidans, the binding of different forms of RegA (DNA binding domain, wild-type, unphosphorylated and phosphorylated-like forms of RegA) on the regulatory region of different genes/operons involved in ferrous iron and ISC oxidation has been analyzed. We have shown that the four RegA forms are able to bind specifically the upstream region of these genes. Interestingly, the phosphorylation of RegA did not change its affinity for its cognate DNA. The transcriptional start site of these genes/operons has been determined. In most cases, the RegA binding site(s) was (were) located upstream from the −35 (or −24) box suggesting that RegA does not interfere with the RNA polymerase binding. Based on the results presented in this report, the role of the RegB/RegA system in the regulation of the ferrous iron and ISC oxidation pathways in At. ferrooxidans is discussed. PMID:28747899

  20. Fenofibrate down-regulates the expressions of androgen receptor (AR) and AR target genes and induces oxidative stress in the prostate cancer cell line LNCaP

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hu; Zhu, Chen; Qin, Chao [State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Tao, Tao [Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Li, Jie; Cheng, Gong; Li, Pu; Cao, Qiang; Meng, Xiaoxin; Ju, Xiaobing; Shao, Pengfei; Hua, Lixin [State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Gu, Min, E-mail: medzhao1980@163.com [State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Yin, Changjun, E-mail: drcjyin@gmail.com [State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China)

    2013-03-08

    Highlights: ► Fenofibrate induces cell cycle arrest in G1 phase and apoptosis in LNCaP cells. ► Fenofibrate reduces the expressions of androgen receptor in LNCaP cells. ► Fenofibrate induces oxidative stress in the prostate cancer cell line LNCaP. -- Abstract: Fenofibrate, a peroxisome proliferator-androgen receptor-alpha agonist, is widely used in treating different forms of hyperlipidemia and hypercholesterolemia. Recent reports have indicated that fenofibrate exerts anti-proliferative and pro-apoptotic properties. This study aims to investigate the effects of fenofibrate on the prostate cancer (PCa) cell line LNCaP. The effects of fenofibrate on LNCaP cells were evaluated by flow cytometry, reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assays, Western blot analysis, and dual-luciferase reporter assay. Fenofibrate induces cell cycle arrest in G1 phase and apoptosis in LNCaP cells, reduces the expressions of androgen receptor (AR) and AR target genes (prostate-specific antigen and TMPRSS2), and inhibits Akt phosphorylation. Fenofibrate can induce the accumulation of intracellular reactive oxygen species and malondialdehyde, and decrease the activities of total anti-oxidant and superoxide dismutase in LNCaP cells. Fenofibrate exerts an anti-proliferative property by inhibiting the expression of AR and induces apoptosis by causing oxidative stress. Therefore, our data suggest fenofibrate may have beneficial effects in fenofibrate users by preventing prostate cancer growth through inhibition of androgen activation and expression.

  1. Impact of Oxidative Stress on Ascorbate Biosynthesis in Chlamydomonas via Regulation of the VTC2 Gene Encoding a GDP-l-galactose Phosphorylase*

    Science.gov (United States)

    Urzica, Eugen I.; Adler, Lital N.; Page, M. Dudley; Linster, Carole L.; Arbing, Mark A.; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S.; Clarke, Steven G.

    2012-01-01

    The l-galactose (Smirnoff-Wheeler) pathway represents the major route to l-ascorbic acid (vitamin C) biosynthesis in higher plants. Arabidopsis thaliana VTC2 and its paralogue VTC5 function as GDP-l-galactose phosphorylases converting GDP-l-galactose to l-galactose-1-P, thus catalyzing the first committed step in the biosynthesis of l-ascorbate. Here we report that the l-galactose pathway of ascorbate biosynthesis described in higher plants is conserved in green algae. The Chlamydomonas reinhardtii genome encodes all the enzymes required for vitamin C biosynthesis via the l-galactose pathway. We have characterized recombinant C. reinhardtii VTC2 as an active GDP-l-galactose phosphorylase. C. reinhardtii cells exposed to oxidative stress show increased VTC2 mRNA and l-ascorbate levels. Genes encoding enzymatic components of the ascorbate-glutathione system (e.g. ascorbate peroxidase, manganese superoxide dismutase, and dehydroascorbate reductase) are also up-regulated in response to increased oxidative stress. These results indicate that C. reinhardtii VTC2, like its plant homologs, is a highly regulated enzyme in ascorbate biosynthesis in green algae and that, together with the ascorbate recycling system, the l-galactose pathway represents the major route for providing protective levels of ascorbate in oxidatively stressed algal cells. PMID:22393048

  2. Effects of aerobic exercise on the blood pressure, oxidative stress and eNOS gene polymorphism in pre-hypertensive older people.

    Science.gov (United States)

    Zago, Anderson Saranz; Park, Joon-Young; Fenty-Stewart, Nicola; Silveira, Leonardo Reis; Kokubun, Eduardo; Brown, Michael D

    2010-11-01

    The polymorphisms of endothelial nitric oxide synthase (eNOS) are associated with reduced eNOS activity. Aerobic exercise training (AEX) may influence resting nitric oxide (NO) production, oxidative stress and blood pressure. The purpose of this study was to investigate the effect of AEX on the relationship among blood pressure, eNOS gene polymorphism and oxidative stress in pre-hypertensive older people. 118 pre-hypertensive subjects (59 ± 6 years) had blood samples collected after a 12 h overnight fast for assessing plasma NO metabolites (NOx) assays, thiobarbituric acid reactive substances (T-BARS) and superoxide dismutase activity (ecSOD). eNOS polymorphism (T-786C and G-894T) was done by standard PCR methods. All people were divided according to the genotype results (G1: TT/GG, G2: TT/GT + TT, G3: TC + CC/GG, G4: TC + CC/GT + TT). All parameters were measured before and after 6 months of AEX (70% of VO(2 max)). At baseline, no difference was found in systolic and diastolic blood pressure, ecSOD and T-BARS activity. Plasma NOx levels were significantly different between G1 (19 ± 1 μM) and G4 (14.2 ± 0.6 μM) and between G2 (20.1 ± 1.7 μM) and G4 (14.2 ± 0.6 μM). Therefore, reduced NOx concentration in G4 group occurred only when the polymorphisms were associated, suggesting that these results are more related to genetic factors than NO-scavenging effect. After AEX, the G4 increased NOx values (17.2 ± 1.2 μM) and decreased blood pressure. G1, G3 and G4 decreased T-BARS levels. These results suggest the AEX can modulate the NOx concentration, eNOS activity and the relationship among eNOS gene polymorphism, oxidative stress and blood pressure especially in C (T-786C) and T (G-894T) allele carriers.

  3. Embryonic exposure to cis-bifenthrin enantioselectively induces the transcription of genes related to oxidative stress, apoptosis and immunotoxicity in zebrafish (Danio rerio).

    Science.gov (United States)

    Jin, Yuanxiang; Pan, Xiuhong; Cao, Limin; Ma, Bufang; Fu, Zhengwei

    2013-02-01

    Cis-bifenthrin (cis-BF) is used widely for agricultural and non-agricultural purpose. Thus, cis-BF is one of the most frequently detected insecticides in the aquatic ecosystem. As a chiral pesticide, the commercial cis-BF contained two enantiomers including 1R-cis-BF and 1S-cis-BF. However, the difference in inducing oxidative stress, apoptosis and immunotoxicity by the two enantiomers in zebrafish still remains unclear. In the present study, the zebrafish were exposed to environmental concentrations of cis-BF, 1R-cis-BF and 1S-cis-BF during the embryos developmental stage. We observed that the mRNA levels of the most genes related to oxidative stress, apoptosis and immunotoxicity including Cu/Zn-superoxide dismutase (Cu/Zn-Sod), catalase (Cat), P53, murine double minute 2 (Mdm2), B-cell lymphoma/leukaemia-2 gene (Bcl2), Bcl2 associated X protein (Bax), apoptotic protease activating factor-1 (Apaf1), Caspase 9 (Cas9), Caspase 3 (Cas3), interleukin-1 beta (IL-1β) and interleukin-8(Il-8) were much higher in 1S-cis-BF treated group than those in cis-BF or 1R-cis-BF treated ones, suggesting that 1S-cis-BF has higher risk to induced oxidative stress, apoptosis and immunotoxicity than 1R-cis-BF in zebrafish. The information presented in this study will help with elucidating the differences and environmental risk of the two enantiomers of cis-BF-induced toxicity in aquatic organisms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Effect of diet on expression of genes involved in lipid metabolism, oxidative stress, and inflammation in mouse liver-insights into mechanisms of hepatic steatosis.

    Directory of Open Access Journals (Sweden)

    Helen J Renaud

    Full Text Available Nutritional intake is a fundamental determinant of health. Many studies have correlated excess caloric intake, as well as a high ratio of n-6:n-3 fatty acids, with detrimental health outcomes, such as the metabolic syndrome. In contrast, low-calorie diets have beneficial health effects. Despite these associations, our understanding of the causal relationship between diet and health remains largely elusive. The present study examined the molecular changes elicited by nine diets with varying fat, sugar, cholesterol, omega-3 fatty acids, omega-6 fatty acids, and calories in C57BL/6 male mice. Microarray analyses were conducted on liver samples from three mice per diet and detected 20,449 genes of which 3,734 were responsive to changes in dietary components. Principal component analysis showed that diet restriction correlated the least with the other diets and also affected more genes than any other diet. Interestingly, Gene Set Enrichment Analysis (GSEA identified gene sets involved in glutathione metabolism, immune response, fatty acid metabolism, cholesterol metabolism, ABC transporters, and oxidative phosphorylation as being highly responsive to changes in diet composition. On the gene level, this study reveals novel findings such as the induction of the drug efflux pump Abcb1a (p-glycoprotein by diet restriction and an atherogenic diet, as well as the suppression of the rate limiting step of bile acid synthesis, Cyp7a1, by a high fructose diet. This study provides considerable insight into the molecular changes incurred by a variety of diets and furthers our understanding of the causal relationships between diet and health.

  5. Effect of Diet on Expression of Genes Involved in Lipid Metabolism, Oxidative Stress, and Inflammation in Mouse Liver–Insights into Mechanisms of Hepatic Steatosis

    Science.gov (United States)

    Renaud, Helen J.; Cui, Julia Y.; Lu, Hong; Klaassen, Curtis D.

    2014-01-01

    Nutritional intake is a fundamental determinant of health. Many studies have correlated excess caloric intake, as well as a high ratio of n-6:n-3 fatty acids, with detrimental health outcomes, such as the metabolic syndrome. In contrast, low-calorie diets have beneficial health effects. Despite these associations, our understanding of the causal relationship between diet and health remains largely elusive. The present study examined the molecular changes elicited by nine diets with varying fat, sugar, cholesterol, omega-3 fatty acids, omega-6 fatty acids, and calories in C57BL/6 male mice. Microarray analyses were conducted on liver samples from three mice per diet and detected 20,449 genes of which 3,734 were responsive to changes in dietary components. Principal component analysis showed that diet restriction correlated the least with the other diets and also affected more genes than any other diet. Interestingly, Gene Set Enrichment Analysis (GSEA) identified gene sets involved in glutathione metabolism, immune response, fatty acid metabolism, cholesterol metabolism, ABC transporters, and oxidative phosphorylation as being highly responsive to changes in diet composition. On the gene level, this study reveals novel findings such as the induction of the drug efflux pump Abcb1a (p-glycoprotein) by diet restriction and an atherogenic diet, as well as the suppression of the rate limiting step of bile acid synthesis, Cyp7a1, by a high fructose diet. This study provides considerable insight into the molecular changes incurred by a variety of diets and furthers our understanding of the causal relationships between diet and health. PMID:24551121

  6. Educational Disparities and Conflict: Evidence from Lebanon

    Science.gov (United States)

    Tfaily, Rania; Diab, Hassan; Kulczycki, Andrzej

    2013-01-01

    This article examines the impact of Lebanon's civil war (1975-1991) on disparities in education among the country's main religious sects and across various regions. District of registration is adopted as a proxy for religious affiliation through a novel, detailed classification to assess sectarian differentials by region and regional differentials…

  7. Determinants of health disparities between Italian regions

    Directory of Open Access Journals (Sweden)

    Giannoni Margherita

    2010-06-01

    Full Text Available Abstract Background Among European countries, Italy is one of the countries where regional health disparities contribute substantially to socioeconomic health disparities. In this paper, we report on regional differences in self-reported poor health and explore possible determinants at the individual and regional levels in Italy. Methods We use data from the "Indagine Multiscopo sulle Famiglie", a survey of aspects of everyday life in the Italian population, to estimate multilevel logistic regressions that model poor self-reported health as a function of individual and regional socioeconomic factors. Next we use the causal step approach to test if living conditions, healthcare characteristics, social isolation, and health behaviors at the regional level mediate the relationship between regional socioeconomic factors and self-rated health. Results We find that residents living in regions with more poverty, more unemployment, and more income inequality are more likely to report poor health and that poor living conditions and private share of healthcare expenditures at the regional level mediate socioeconomic disparities in self-rated health among Italian regions. Conclusion The implications are that regional contexts matter and that regional policies in Italy have the potential to reduce health disparities by implementing interventions aimed at improving living conditions and access to quality healthcare.

  8. 29 CFR 1607.11 - Disparate treatment.

    Science.gov (United States)

    2010-07-01

    ... upon members of a race, sex, or ethnic group where other employees, applicants, or members have not been subjected to that standard. Disparate treatment occurs where members of a race, sex, or ethnic... standards are required by business necessity. This section does not prohibit a user who has not previously...

  9. Gender Wage Disparities among the Highly Educated

    Science.gov (United States)

    Black, Dan A.; Haviland, Amelia M.; Sanders, Seth G.; Taylor, Lowell J.

    2008-01-01

    We examine gender wage disparities for four groups of college-educated women--black, Hispanic, Asian, and non-Hispanic white--using the National Survey of College Graduates. Raw log wage gaps, relative to non-Hispanic white male counterparts, generally exceed -0.30. Estimated gaps decline to between -0.08 and -0.19 in nonparametric analyses that…

  10. Socially disparate trends in lifespan variation

    DEFF Research Database (Denmark)

    Brønnum-Hansen, Henrik

    2017-01-01

    BACKGROUND: Social inequality trends in life expectancy are not informative as to changes in social disparity in the age-at-death distribution. The purpose of the study was to investigate social differentials in trends and patterns of adult mortality in Denmark. METHODS: Register data on income...... quartile. The results do not provide support for a uniformly extension of pension age for all....

  11. Geographic disparity in kidney transplantation under KAS.

    Science.gov (United States)

    Zhou, Sheng; Massie, Allan B; Luo, Xun; Ruck, Jessica M; Chow, Eric K H; Bowring, Mary G; Bae, Sunjae; Segev, Dorry L; Gentry, Sommer E

    2017-12-12

    The Kidney Allocation System fundamentally altered kidney allocation, causing a substantial increase in regional and national sharing that we hypothesized might impact geographic disparities. We measured geographic disparity in deceased donor kidney transplant (DDKT) rate under KAS (6/1/2015-12/1/2016), and compared that with pre-KAS (6/1/2013-12/3/2014). We modeled DSA-level DDKT rates with multilevel Poisson regression, adjusting for allocation factors under KAS. Using the model we calculated a novel, improved metric of geographic disparity: the median incidence rate ratio (MIRR) of transplant rate, a measure of DSA-level variation that accounts for patient casemix and is robust to outlier values. Under KAS, MIRR was 1.75 1.81 1.86 for adults, meaning that similar candidates across different DSAs have a median 1.81-fold difference in DDKT rate. The impact of geography was greater than the impact of factors emphasized by KAS: having an EPTS score ≤20% was associated with a 1.40-fold increase (IRR =  1.35 1.40 1.45 , P geographic disparities with KAS (P = .3). Despite extensive changes to kidney allocation under KAS, geography remains a primary determinant of access to DDKT. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  12. Size of households and income disparities.

    Science.gov (United States)

    Kuznets, S

    1981-01-01

    The author examines "the relation between differentials in size of households, (preponderantly family households including one-person units) and disparities in income per household, per person, or per some version of consuming unit." The analysis is based on data for the United States, the Federal Republic of Germany, Israel, Taiwan, the Philippines, and Thailand. excerpt

  13. Gender Disparity in Turkish Higher Education

    Science.gov (United States)

    Findik, Leyla Yilmaz

    2016-01-01

    Turkey has been concerned about gender inequality in education for many years and has implemented various policy instruments. However, gender disparity still seems to prevail today. This study seeks to provide an insight to the gender differences in terms of enrollment rates, level of education, fields of education and number of graduates in…

  14. Nitrification gene ratio and free ammonia explain nitrite and nitrous oxide production in urea-amended soils

    Science.gov (United States)

    Substantial efforts have been made to characterize soil nitrous oxide (N2O) emissions following N fertilizer addition. While nitrite (NO2-) is a central regulator of N2O production, NO2- and N2O responses to nitrogen (N) fertilizer amendments still cannot be readily predicted. Our objective was to...

  15. Chromium III histidinate exposure modulates antioxidant gene expression in HaCaT human keratinocytes exposed to oxidative stress

    Science.gov (United States)

    While the toxicity of hexavalent chromium is well established, trivalent Cr (Cr(III)) is an essential nutrient involved in insulin and glucose homeostasis. Recently, antioxidant effects of chromium (III) histidinate (Cr(III)His) were reported in HaCaT human keratinocytes exposed to oxidative stress...

  16. Effects of oxidative stress on human embryonic stem cells; global gene expression, advanced glycation end products and NEDD1 levels

    NARCIS (Netherlands)

    Barandalla Sobrados, M.

    2017-01-01

    A number of unfavorable conditions can affect the development of the early embryo inducing oxidative stress both in vivo, for instance in gestational diabetes, and in vitro, when embryos are derived from Assisted Reproductive Technologies (ART). Human Embryonic Stem Cells (hESCs) potentially offer a

  17. Transcriptome-based identification of pro- and antioxidative gene expression in kidney cortex of nitric oxide-depleted rats

    NARCIS (Netherlands)

    Wesseling, Sebastiaan; Joles, Jaap A.; van Goor, Harry; Bluyssen, Hans A.; Kemmeren, Patrick; Holstege, Frank C.; Koomans, Hein A.; Braam, Branko

    2007-01-01

    Nitric oxide (NO) depletion in rats induces severe endothelial dysfunction within 4 days. Subsequently, hypertension and renal injury develop, which are ameliorated by alpha-tocopherol (VitE) cotreatment. The hypothesis of the present study was that NO synthase (NOS) inhibition induces a renal

  18. Comparative diversity of ammonia oxidizer 16S rRNA gene sequences in native, tilled, and successional soils

    NARCIS (Netherlands)

    Bruns, M.A.; Stephen, J.R.; Kowalchuk, G.A.; Prosser, J.I.; Paul, E.A.

    1999-01-01

    Autotrophic ammonia oxidizer (AAO) populations in soils from native, tilled, and successional treatments at the Kellogg Biological Station Long-Term Ecological Research site in southwestern Michigan were compared to assess effects of disturbance on these bacteria. N fertilization effects on AAO

  19. Racializing drug design: implications of pharmacogenomics for health disparities.

    Science.gov (United States)

    Lee, Sandra Soo-Jin

    2005-12-01

    Current practices of using "race" in pharmacogenomics research demands consideration of the ethical and social implications for understandings of group difference and for efforts to eliminate health disparities. This discussion focuses on an "infrastructure of racialization" created by current trajectories of research on genetic differences among racially identified groups, the use of race as a proxy for risk in clinical practice, and increasing interest in new market niches by the pharmaceutical industry. The confluence of these factors has resulted in the conflation of genes, disease, and race. I argue that public investment in pharmacogenomics requires careful consideration of current inequities in health status and social and ethical concerns over reifying race and issues of distributive justice.

  20. A mutation in the HFE gene is associated with altered brain iron profiles and increased oxidative stress in mice.

    Science.gov (United States)

    Nandar, Wint; Neely, Elizabeth B; Unger, Erica; Connor, James R

    2013-06-01

    Because of the increasing evidence that H63D HFE polymorphism appears in higher frequency in neurodegenerative diseases, we evaluated the neurological consequences of H63D HFE in vivo using mice that carry H67D HFE (homologous to human H63D). Although total brain iron concentration did not change significantly in the H67D mice, brain iron management proteins expressions were altered significantly. The 6-month-old H67D mice had increased HFE and H-ferritin expression. At 12 months, H67D mice had increased H- and L-ferritin but decreased transferrin expression suggesting increased iron storage and decreased iron mobilization. Increased L-ferritin positive microglia in H67D mice suggests that microglia increase iron storage to maintain brain iron homeostasis. The 6-month-old H67D mice had increased levels of GFAP, increased oxidatively modified protein levels, and increased cystine/glutamate antiporter (xCT) and hemeoxygenase-1 (HO-1) expression indicating increased metabolic and oxidative stress. By 12 months, there was no longer increased astrogliosis or oxidative stress. The decrease in oxidative stress at 12 months could be related to an adaptive response by nuclear factor E2-related factor 2 (Nrf2) that regulates antioxidant enzymes expression and is increased in the H67D mice. These findings demonstrate that the H63D HFE impacts brain iron homeostasis, and promotes an environment of oxidative stress and induction of adaptive mechanisms. These data, along with literature reports on humans with HFE mutations provide the evidence to overturn the traditional paradigm that the brain is protected from HFE mutations. The H67D knock-in mouse can be used as a model to evaluate how the H63D HFE mutation contributes to neurodegenerative diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. CDC Health Disparities and Inequalities Report--U.S. 2013

    Science.gov (United States)

    ... Women's Health Health Literacy Health Equity CDC Health Disparities & Inequalities Report (CHDIR) Recommend on Facebook Tweet Share ... 2011 Report More Information CDC Releases Second Health Disparities & Inequalities Report - United States, 2013 CDC and its ...

  2. Health Disparities Calculator (HD*Calc) - SEER Software

    Science.gov (United States)

    Statistical software that generates summary measures to evaluate and monitor health disparities. Users can import SEER data or other population-based health data to calculate 11 disparity measurements.

  3. Nephroprotective effects of b-carotene on ACE gene expression, oxidative stress and antioxidant status in thioacetamide induced renal toxicity in rats.

    Science.gov (United States)

    Fazal, Yumna; Fatima, Syeda Nuzhat; Shahid, Syed Muhammad; Mahboob, Tabassum

    2016-07-01

    β -carotene is one of carotenoid natural pigments, which are produced by plants and are accountable for the bright colors of various fruits and vegetables. These pigments have been widely studied for their ability to prevent chronic diseases and toxicities. This study was designed to evaluate the effects of β-carotene on angiotensin converting enzyme (ACE) gene expression, oxidative stress and antioxidant status in thioacetamide induced renal toxicity. Total 24 albino wistar rats of male sex (200-250gm) were divided into 6 groups as Group-1: The control remained untreated; Group-2: Received thioacetamide (200mg/kg b.w; i.p) for 12 weeks; Group-3: Received β-carotene orally (200mg/kg b.w), for 24 weeks; and Group-4: Received thioacetamide (200mg/kg b.w; i.p) for 12 weeks + received β-carotene orally (200mg/kg b.w), for further 12 weeks. The expression of ACE gene in thioacetamide induced renal toxicity in rats as well as supplemented with β-carotene was investigated and compared their level with control groups by using the quantitative RT-PCR method. The ACE gene expression was significantly increase in TAA rats as compare to control rats specifies that TAA induced changes in ACE gene of kidney, elevated renal ACE has been correlated with increase hypertensive end organ renal damage. The quantity of ACE gene were diminish in our rats who received β-Carotene after TAA is administered, for this reason they seemed to be defended against increased ACE levels in kidney bought by TAA. In pre- and post-treatment groups, we studied the role of β-Carotene against thioacetamide in the kidney of Wistar rats. Experimental confirmation from our study illustrates that β-Carotene can certainly work as a successful radical-trapping antioxidant our results proved that TAA injury increased lipid peroxidation and diminish antioxidant GSH, SOD and CAT in renal tissue. Since β-Carotene administration recover renal lipid peroxidation and antioxidants, it give the impression that

  4. Stigma and Racial/Ethnic HIV Disparities: Moving toward Resilience

    Science.gov (United States)

    Earnshaw, Valerie A.; Bogart, Laura M.; Dovidio, John F.; Williams, David R.

    2013-01-01

    Prior research suggests that stigma plays a role in racial/ethnic health disparities. However, there is limited understanding about the mechanisms by which stigma contributes to HIV-related disparities in risk, incidence and screening, treatment, and survival and what can be done to reduce the impact of stigma on these disparities. We introduce…

  5. Semantic Modeling for SNPs Associated with Ethnic Disparities in HapMap Samples

    Directory of Open Access Journals (Sweden)

    HyoYoung Kim

    2014-03-01

    Full Text Available Single-nucleotide polymorphisms (SNPs have been emerging out of the efforts to research human diseases and ethnic disparities. A semantic network is needed for in-depth understanding of the impacts of SNPs, because phenotypes are modulated by complex networks, including biochemical and physiological pathways. We identified ethnicity-specific SNPs by eliminating overlapped SNPs from HapMap samples, and the ethnicity-specific SNPs were mapped to the UCSC RefGene lists. Ethnicity-specific genes were identified as follows: 22 genes in the USA (CEU individuals, 25 genes in the Japanese (JPT individuals, and 332 genes in the African (YRI individuals. To analyze the biologically functional implications for ethnicity-specific SNPs, we focused on constructing a semantic network model. Entities for the network represented by "Gene," "Pathway," "Disease," "Chemical," "Drug," "ClinicalTrials," "SNP," and relationships between entity-entity were obtained through curation. Our semantic modeling for ethnicity-specific SNPs showed interesting results in the three categories, including three diseases ("AIDS-associated nephropathy," "Hypertension," and "Pelvic infection", one drug ("Methylphenidate", and five pathways ("Hemostasis," "Systemic lupus erythematosus," "Prostate cancer," "Hepatitis C virus," and "Rheumatoid arthritis". We found ethnicity-specific genes using the semantic modeling, and the majority of our findings was consistent with the previous studies - that an understanding of genetic variability explained ethnicity-specific disparities.

  6. The joint effect of the endothelin receptor B gene (EDNRB polymorphism rs10507875 and nitric oxide synthase 3 gene (NOS3 polymorphism rs869109213 in Slovenian patients with type 2 diabetes mellitus and diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Dejan Bregar

    2018-02-01

    Full Text Available Increasing evidence suggests that endothelin and nitric oxide synthase genes and their products exert biological effects on the vasculature via the nitric oxide or endothelin pathway. The aim of the study was to evaluate the association of rs10507875 and rs869109213 (alone or in interaction with diabetic retinopathy (DR in subjects with type 2 diabetes mellitus (T2DM. We genotyped the single nucleotide polymorphism rs10507875 of the endothelin receptor B gene (EDNRB and variable number tandem repeats rs869109213 of the nitric oxide synthase 3 gene (NOS3 in 270 Slovenian patients with DR and T2DM and 256 controls with T2DM without clinical signs of DR. The genotyping was performed using either real-time polymerase chain reaction (PCR or standard PCR. We found a significant association between the genotypes of NOS3 rs869109213 polymorphism and the risk of DR in the co-dominant model (4a4b genotype; 1.99-fold increased risk [1.09-3.65]; 95% confidence interval [CI]; p = 0.02, co-dominant model (4a4a genotype; 4.16-fold increased risk [1.03-16.74]; 95% CI; p = 0.04, and dominant model (4a4a and 4a4b genotypes; 2.22-fold increased risk [1.26-3.92]; 95% CI; p = 0.01 compared to the 4b4b genotype. Moreover, the joint effect of the two polymorphisms on DR risk was greater than the individual effect of each polymorphism in the analyzed genetic models. Additionally, adjusted odds ratio showed an increased risk in dominant × dominant (4.15-fold [1.40-12.26]; 95% CI; p = 0.01 and recessive × dominant (2.24-fold [1.25-4.01]; 95% CI; p = 0.02 genotype combinations of the two polymorphisms. In conclusion, our results indicate that NOS3 rs869109213 polymorphism alone or in a combination with EDNRB rs10507875 polymorphism may be associated with DR in Slovenian patients with T2DM.

  7. Fractal structure in the volumetric contrast enhancement of malignant gliomas as a marker of oxidative metabolic pathway gene expression

    NARCIS (Netherlands)

    Miller, Kai J.; Berendsen, Sharon; Seute, Tatjana; Yeom, Kristen; Gephardt, Melanie H.; Grant, Gerald A.; Robe, Pierre A.

    2017-01-01

    Background: Fractal structure is found throughout many processes in nature, and often arises from sets of simple rules. We examined MRI contrast enhancement patterns from glioblastoma patients for evidence of fractal structure and correlated these with gene expression patterns. Methods: For 39

  8. High-Fat Diet Induces Oxidative Stress and MPK2 and HSP83 Gene Expression in Drosophila melanogaster

    OpenAIRE

    Trindade de Paula, Mariane; Poetini Silva, M?rcia R?sula; Machado Araujo, St?fani; Cardoso Bortolotto, Vandreza; Barreto Meichtry, Luana; Zemolin, Ana Paula Pegoraro; Wallau, Gabriel L.; Jesse, Cristiano Ricardo; Franco, Jeferson Lu?s; Posser, Tha?s; Prigol, Marina

    2016-01-01

    The consumption of a high-fat diet (HFD) causes alteration in normal metabolism affecting lifespan of flies; however molecular mechanism associated with this damage in flies is not well known. This study evaluates the effects of ingestion of a diet supplemented with 10% and 20% of coconut oil, which is rich in saturated fatty acids, on oxidative stress and cells stress signaling pathways. After exposure to the diet for seven days, cellular and mitochondrial viability, lipid peroxidation and a...

  9. Activation of endothelial nitric oxide synthase by dietary isoflavones: role of NO in Nrf2-mediated antioxidant gene expression.

    Science.gov (United States)

    Mann, Giovanni E; Rowlands, David J; Li, Francois Y L; de Winter, Patricia; Siow, Richard C M

    2007-07-15

    The endothelium plays a key role in the maintenance of vascular homeostasis, and increased oxidative stress in vascular disease leads to reduced nitric oxide bioavailability and impaired endothelium-dependent relaxation of resistance vessels. Although epidemiological evidence suggests that diets containing high amounts of natural antioxidants afford protection against coronary heart disease (CHD), antioxidant supplementation trials have largely reported only marginal health benefits. There is controversy concerning the cardiovascular benefits of prolonged estrogen/progestin or soy isoflavone therapy for postmenopausal women and patients with an increased risk of CHD. Research on the potential health benefits of soy isoflavones and other polyphenols contained in red wine, green and black tea and dark chocolate developed rapidly during the 1990's, and recent clinical trials and studies in animal models and cultured endothelial cells provide important and novel insights into the mechanisms by which dietary polyphenols afford protection against oxidative stress. In this review, we highlight that NO and reactive oxygen radicals may mediate dietary polyphenol induced activation of Nrf2, which in turn triggers antioxidant response element (ARE) driven transcription of phase II detoxifying and antioxidant defense enzymes in vascular cells.

  10. Effects of JS-K, a novel anti-cancer nitric oxide prodrug, on gene expression in human hepatoma Hep3B cells.

    Science.gov (United States)

    Dong, Ray; Wang, Xueqian; Wang, Huan; Liu, Zhengyun; Liu, Jie; Saavedra, Joseph E

    2017-04-01

    JS-K is a novel anticancer nitric oxide (NO) prodrug effective against a variety of cancer cells, including the inhibition of AM-1 hepatoma cell growth in rats. To further evaluate anticancer effects of JS-K, human hepatoma Hep3B cells were treated with JS-K and the compound control JS-43-126 at various concentrations (0-100μM) for 24h, and cytotoxicity was determined by the MTS assay. The compound control JS-43-126 was not cytotoxic to Hep3B cells at concentrations up to 100μM, while the LC 50 for JS-K was about 10μM. To examine the molecular mechanisms of antitumor effects of JS-K, Hep3B cells were treated with 1-10μM of JS-K for 24h, and then subjected to gene expression analysis via real time RT-PCR and protein immunostain via confocal images. JS-K is a GST-α targeting NO prodrug, and decreased immunostaining for GST-α was associated with JS-K treatment. JS-K activated apoptosis pathways in Hep3B cells, including induction of caspase-3, caspase-9, Bax, TNF-α, and IL-1β, and immunostaining for caspase-3 was intensified. The expressions of thrombospondin-1 (TSP-1) and the tissue inhibitors of metalloproteinase-1 (TIMP-1) were increased by JS-K at both transcript and protein levels. JS-K treatment also increased the expression of differentiation-related genes CD14 and CD11b, and depressed the expression of c-myc in Hep3B cells. Thus, multiple molecular events appear to be associated with anticancer effects of JS-K in human hepatoma Hep3B cells, including activation of genes related to apoptosis and induction of genes involved in antiangiogenesis and tumor cell migration. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. GCN5 regulates the activation of PI3K/Akt survival pathway in B cells exposed to oxidative stress via controlling gene expressions of Syk and Btk.

    Science.gov (United States)

    Kikuchi, Hidehiko; Kuribayashi, Futoshi; Takami, Yasunari; Imajoh-Ohmi, Shinobu; Nakayama, Tatsuo

    2011-02-25

    Histone acetyltransferase(s) (HATs) are involved in the acetylation of core histones, which is an important event for transcription regulation through alterations in the chromatin structure in eukaryotes. General control non-depressible 5 (GCN5) was first identified as a global coactivator and transcription-related HAT. Here we report that GCN5 regulates the activation of phosphatidylinositol 3-kinase (PI3K)/acutely transforming retrovirus AKT8 in rodent T cell lymphoma (Akt) survival pathway in B cells exposed to oxidative stress via controlling gene expressions of spleen tyrosine kinase (Syk) and Bruton's tyrosine kinase (Btk). The GCN5-deficiency remarkably caused apoptotic cell death by treatment with exogenous hydrogen peroxide (H(2)O(2)) in chicken DT40 cells. In GCN5-deficient DT40 cells, gene expressions of Syk and Btk, which are involved in activation of PI3K/Akt survival pathway in DT40 cells exposed to exogenous H(2)O(2), were remarkably decreased compared with those in wild type DT40 cells. In addition, phosphorylation of Akt in H(2)O(2)-treated GCN5-deficient cells was remarkably suppressed as compared to that of DT40. Chromatin immunoprecipitation assay revealed that GCN5 binds to proximal 5'-upstream regions of Syk and Btk genes in vivo. These results suggest that GCN5 takes part in transcriptional regulations of the Syk and Btk genes, and plays a key role in epigenetic regulation of PI3K/Akt survival pathway in B cells exposed to reactive oxygen species such as H(2)O(2). Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Effects of charge and surface ligand properties of nanoparticles on oxidative stress and gene expression within the gut of Daphnia magna

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, Gustavo A.; Lohse, Samuel E.; Torelli, Marco; Murphy, Catherine; Hamers, Robert J.; Orr, Galya; Klaper, Rebecca D.

    2015-05-01

    Concern has been raised regarding the current and future release of engineered nanomaterials into aquatic environments from industry and other sources. However, not all nanomaterials may cause an environ-mental impact and identifying which nanomaterials may be of greatest concern has been difficult. It is thought that the surface groups of a functionalized nanoparticles (NPs) may play a significant role in determining their interactions with aquatic organisms, but the way in which surface properties of NPs impact their toxicity in whole organisms has been minimally explored. A major point of interaction of NPs with aquatic organisms is in the gastrointestinal tract as they ingest particulates from the water column or from the sediment. The main goal of this study was to use model gold NP (AuNPs) to evaluate the potential effects of the different surfaces groups on NPs on the gut of an aquatic model organism, Daphnia magna. In this study, we exposed daphnids to a range of AuNPs concentrations and assessed the impact of AuNP exposure in the daphnid gut by measuring reactive oxygen species (ROS) production and expression of genes associated with oxidative stress and general cellular stress: glutathione S-transferase(gst), catalase (cat), heat shock protein 70 (hsp70), and metallothionein1 (mt1). We found ROS formation and gene expression were impacted by both charge and the specific surface ligand used. We detected some degree of ROS production in all NP exposures, but positively charged AuNPs induced a greater ROS response. Similarly, we observed that, compared to controls, both positively charged AuNPs and only one negatively AuNP impacted expression of genes associated with cellular stress. Finally, ligand-AuNP exposures showed a different toxicity and gene expression profile than the ligand alone, indicating a NP specific effect.

  13. Health-related disparities: influence of environmental factors.

    Science.gov (United States)

    Olden, Kenneth; White, Sandra L

    2005-07-01

    Racial disparities in health cannot be explained solely on the basis of poverty, access to health care, behavior, or environmental factors. Their complex etiology is dependent on interactions between all these factors plus genetics. Scientists have been slow to consider genetics as a risk factor because genetic polymorphisms tend to be more variable within a race than between races. Now that studies are demonstrating the existence of racial differences in allelic frequencies for multiple genes affecting a single biologic mechanism, the present argument for a significant genetic role in contributing to health disparities is gaining support. Individuals vary, often significantly, in their response to environmental agents. This variability provides a high "background noise" when scientists examine human populations to identify environmental links to disease. This variability often masks important environmental contributors to disease risk and is a major impediment to efforts to investigate the causes of diseases.Fortunately, investments in the various genome projects have led to the development of tools and databases that can be used to help identify the genetic variations in environmental response genes that can lead to such wide differences in disease susceptibility. NIEHS developed the environ-mental genome project to catalog these genetic variants (polymorphisms)and to identify the ones that play a major role in human susceptibility to environmental agents. This information is being used in epidemiologic studies to pinpoint environmental contributors to disease better. The research summarized in this article is critically important for tying genetics and the environment to health disparities, and for the development of a rational approach to gauge environmental threats. Common variants in genes play pivotal roles in determining if or when illness or death result from exposure to drugs or environmental xenobiotics. Most common variants exist in all human

  14. Pioglitazone enhances expression of genes involved in mitochondrial oxidative metabolism in skeletal muscle of women with polycystic ovary syndrome (PCOS)

    DEFF Research Database (Denmark)

    Skov, Vibe

    Aims                Polycystic ovary syndrome (PCOS) is a common endocrine disorder in premenopausal women and is associated with insulin resistance increasing the risk for developing type 2 diabetes mellitus. Studies have shown that thiazolidinediones (TZD) improve metabolic disturbances in PCOS...... patients. We hypothesized that the effect of TZD in PCOS is in part mediated by changes in the transcriptional profile of muscle favoring insulin sensitivity. Methods Using the HG-U133 2.0 Plus expression array from Affymetrix, we examined the effect of pioglitazone (30 mg/day for 16 weeks) on gene...... expression in skeletal muscle of 10 obese women with PCOS (dataset 1). Furthermore, evaluation of gene expression changes between PCOS patients before treatment and control subjects were performed (dataset 2). All subjects were metabolically characterised by a euglycemic-hyperinsulinemic clamp combined...

  15. Effects of triclosan (TCS) on fecundity, the antioxidant system, and oxidative stress-mediated gene expression in the copepod Tigriopus japonicus.

    Science.gov (United States)

    Park, Jun Chul; Han, Jeonghoon; Lee, Min-Chul; Seo, Jung Soo; Lee, Jae-Seong

    2017-08-01

    Triclosan (TCS) is an antimicrobial agent that has been widely dispersed and detected in the marine environment. However, the effects of TCS in marine invertebrates are poorly understood. In this study, the effects of TCS on life cycle history (e.g. mortality and fecundity) along with cellular reactive oxygen species (ROS) levels, GSH content, antioxidant enzymatic activities, and mRNA expression levels of oxidative stress-mediated genes were measured in the copepod Tigriopus japonicus. The no observed effect concentration (NOEC) and median lethal concentration (LC50) of TCS in the adult stage were determined to be 300μg/L and 437.476μg/L, respectively, while in the nauplius stages the corresponding values were 20μg/L, and 51.76μg/L, respectively. Fecundity was significantly reduced (Pcopepod T. japonicus. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The human face of health disparities.

    Science.gov (United States)

    Green, Alexander R

    2003-01-01

    In the last 20 years, the issue of disparities in health between racial/ethnic groups has moved from the realm of common sense and anecdote to the realm of science. Hard, cold data now force us to consider what many had long taken for granted. Not only does health differ by race/ethnicity, but our health care system itself is deeply biased. From lack of diversity in the leadership and workforce, to ethnocentric systems of care, to biased clinical decision-making, the American health care system is geared to treat the majority, while the minority suffers. The photos shown here are of patients and scenes that recall some of the important landmarks in research on racial/ethnic disparities in health. The purpose is to put faces and humanity onto the numbers. While we now have great bodies of evidence upon which to lobby for change, in the end, each statistic still represents a personal tragedy or an individual triumph.

  17. Bilaterally Weighted Patches for Disparity Map Computation

    Directory of Open Access Journals (Sweden)

    Laura Fernández Julià

    2015-03-01

    Full Text Available Visual correspondence is the key for 3D reconstruction in binocular stereovision. Local methods perform block-matching to compute the disparity, or apparent motion, of pixels between images. The simplest approach computes the distance of patches, usually square windows, and assumes that all pixels in the patch have the same disparity. A prominent artifact of the method is the "foreground fattening effet" near depth discontinuities. In order to find a more appropriate support, Yoon and Kweon introduced the use of weights based on color similarity and spatial distance, analogous to those used in the bilateral filter. This paper presents the theory of this method and the implementation we have developed. Moreover, some variants are discussed and improvements are used in the final implementation. Several examples and tests are presented and the parameters and performance of the method are analyzed.

  18. [Health disparities: local realities and future challenges].

    Science.gov (United States)

    Bodenmann, P; Green, A R

    2012-11-28

    Since 1887, the Policlinique Médicale Universitaire (PMU) has brought care to vulnerable populations who are at risk of poor physical, mental and social health. These include marginalised Swiss natives and immigrant communities (asylum seekers, undocumented immigrants). These patients are at risk of health disparities given their poor access to the health care system and lack of adapted quality care. Clinical approach must address these potential disparities, reinforced by a research describing them in order to explain their cause, and propose possible solutions, and a medical training addressing these topics from the undergraduate to the attending level. Through those holistic clinical approach, robust research and improved medical training, health providers will contribute to give quality care to all citizens, without exception!

  19. The energy implications of Chinese regional disparities

    International Nuclear Information System (INIS)

    Huang Yuanxi; Todd, Daniel

    2010-01-01

    Chinese regional disparities are readily apparent, with well-being seen the highest at the coast and declining steadily inland. Their mitigation will clearly be hostage to improvement in economic development, since the unevenness of that development created them in the first place. Integral to development is structural change, and the key to effecting that change is improved energy efficiency. Indeed, this paper explores energy usage and regional development from 1952 to the present, establishing that they both conform to an inverted-U pattern. Eastern China, the leader in industrialization, has moved beyond the apogee of the curve, but Central and Western China have failed to follow suit, being held back by poor industrial structures and adverse patterns of energy consumption. Remedying this laggardly performance preoccupies China's Government, for rendering the country energy-efficient and containing regional disparities, both rest on pushing the Central and Western regions down the curve in the wake of the prosperous coast.

  20. The academic advantage: gender disparities in patenting.

    Science.gov (United States)

    Sugimoto, Cassidy R; Ni, Chaoqun; West, Jevin D; Larivière, Vincent

    2015-01-01

    We analyzed gender disparities in patenting by country, technological area, and type of assignee using the 4.6 million utility patents issued between 1976 and 2013 by the United States Patent and Trade Office (USPTO). Our analyses of fractionalized inventorships demonstrate that women's rate of patenting has increased from 2.7% of total patenting activity to 10.8% over the nearly 40-year period. Our results show that, in every technological area, female patenting is proportionally more likely to occur in academic institutions than in corporate or government environments. However, women's patents have a lower technological impact than that of men, and that gap is wider in the case of academic patents. We also provide evidence that patents to which women--and in particular academic women--contributed are associated with a higher number of International Patent Classification (IPC) codes and co-inventors than men. The policy implications of these disparities and academic setting advantages are discussed.

  1. Application of a novel functional gene microarray to probe the functional ecology of ammonia oxidation in nitrifying activated sludge.

    Directory of Open Access Journals (Sweden)

    Michael D Short

    Full Text Available We report on the first study trialling a newly-developed, functional gene microarray (FGA for characterising bacterial and archaeal ammonia oxidisers in activated sludge. Mixed liquor (ML and media biofilm samples from a full-scale integrated fixed-film activated sludge (IFAS plant were analysed with the FGA to profile the diversity and relative abundance of ammonia-oxidising archaea and bacteria (AOA and AOB respectively. FGA analyses of AOA and AOB communities revealed ubiquitous distribution of AOA across all samples - an important finding for these newly-discovered and poorly characterised organisms. Results also revealed striking differences in the functional ecology of attached versus suspended communities within the IFAS reactor. Quantitative assessment of AOB and AOA functional gene abundance revealed a dominance of AOB in the ML and approximately equal distribution of AOA and AOB in the media-attached biofilm. Subsequent correlations of functional gene abundance data with key water quality parameters suggested an important functional role for media-attached AOB in particular for IFAS reactor nitrification performance and indicate possible functional redundancy in some IFAS ammonia oxidiser communities. Results from this investigation demonstrate the capacity of the FGA to resolve subtle ecological shifts in key microbial communities in nitrifying activated sludge and indicate its value as a tool for better understanding the linkages between the ecology and performance of these engineered systems.

  2. GHK-Cu may Prevent Oxidative Stress in Skin by Regulating Copper and Modifying Expression of Numerous Antioxidant Genes

    Directory of Open Access Journals (Sweden)

    Loren Pickart

    2015-07-01

    Full Text Available The copper binding tripeptide GHK (glycyl-l-histidyl-l-lysine is a naturally occurring plasma peptide that significantly declines during human aging. It has been established that GHK:Copper(2+ improves wound healing and tissue regeneration and stimulates collagen and decorin production. GHK-Cu also supports angiogenesis and nerve outgrowth, improves the condition of aging skin and hair, and possesses antioxidant and anti-inflammatory effects. In addition, it increases cellular stemness and secretion of trophic factors by mesenchymal stem cells. GHK’s antioxidant actions have been demonstrated in vitro and in animal studies. They include blocking the formation of reactive oxygen and carbonyl species, detoxifying toxic products of lipid peroxidation such as acrolein, protecting keratinocytes from lethal Ultraviolet B (UVB radiation, and blocking hepatic damage by dichloromethane radicals. In recent studies, GHK has been found to switch gene expression from a diseased state to a healthier state for certain cancers and for chronic obstructive pulmonary disease (COPD. The Broad Institute’s Connectivity Map indicated that GHK induces a 50% or greater change of expression in 31.2% of human genes. This paper reviews biological data demonstrating positive effects of GHK in skin and proposes interaction with antioxidant-related genes as a possible explanation of its antioxidant activity.

  3. Studies on meat color, myoglobin content, enzyme activities, and genes associated with oxidative potential of pigs slaughtered at different growth stages

    Directory of Open Access Journals (Sweden)

    Qin Ping Yu

    2017-12-01

    Full Text Available Objective This experiment investigated meat color, myoglobin content, enzyme activities, and expression of genes associated with oxidative potential of pigs slaughtered at different growth stages. Methods Sixty 4-week-old Duroc×Landrace×Yorkshire pigs were assigned to 6 replicate groups, each containing 10 pigs. One pig from each group was sacrificed at day 35, 63, 98, and 161 to isolate longissimus dorsi and triceps muscles. Results Meat color scores were higher in pigs at 35 d than those at 63 d and 98 d (p<0.05, and those at 98 d were lower than those at 161 d (p<0.05. The total myoglobin was higher on 161 d compared with those at 63 d and 98 d (p<0.05. Increase in the proportions of metmyoglobin and deoxymyoglobin and a decrease in oxymyoglobin were observed between days 35 and 161 (p<0.05. Meat color scores were correlated to the proportion of oxymyoglobin (r = 0.59, p<0.01, and negatively correlated with deoxymyoglobin and metmyoglobin content (r = −0.48 and −0.62, p<0.05. Malate dehydrogenase (MDH activity at 35 d and 98 d was higher than that at 161 d (p<0.05. The highest lactate dehydrogenase/MDH ratio was achieved at 161 d (p<0.05. Calcineurin mRNA expression decreased at 35 d compared to that at 63 d and 98 d (p<0.05. Myocyte enhancer factor 2 mRNA results indicated a higher expression at 161 d than that at 63 d and 98 d (p<0.05. Conclusion Porcine meat color, myoglobin content, enzyme activities, and genes associated with oxidative potential varied at different stages.

  4. Mitochondrial capacity, oxidative damage and hypoxia gene expression are associated with age-related division of labor in honey bee (Apis mellifera L.) workers.

    Science.gov (United States)

    Cervoni, Mário S; Cardoso-Júnior, Carlos A M; Craveiro, Giovana; Souza, Anderson de O; Alberici, Luciane C; Hartfelder, Klaus

    2017-11-01

    During adult life, honey bee workers undergo a succession of behavioral states. Nurse bees perform tasks inside the nest, and when they are about 2-3 weeks old they initiate foraging. This switch is associated with alterations in diet, and with the levels of juvenile hormone and vitellogenin circulating in hemolymph. It is not clear whether this behavioral maturation involves major changes at the cellular level, such as mitochondrial activity and the redox environment in the head, thorax and abdomen. Using high-resolution respirometry, biochemical assays and RT-qPCR, we evaluated the association of these parameters with this behavioral change. We found that tissues from the head and abdomen of nurses have a higher oxidative phosphorylation capacity than those of foragers, while for the thorax we found the opposite situation. As higher mitochondrial activity tends to generate more H 2 O 2 , and H 2 O 2 is known to stabilize HIF-1α, this would be expected to stimulate hypoxia signaling. The positive correlation that we observed between mitochondrial activity and hif-1α gene expression in abdomen and head tissue of nurses would be in line with this hypothesis. Higher expression of antioxidant enzyme genes was observed in foragers, which could explain their low levels of protein carbonylation. No alterations were seen in nitric oxide (NO) levels, suggesting that NO signaling is unlikely to be involved in behavioral maturation. We conclude that the behavioral change seen in honey bee workers is reflected in differential mitochondrial activities and redox parameters, and we consider that this can provide insights into the underlying aging process. © 2017. Published by The Company of Biologists Ltd.

  5. Flavonoids from artichoke (Cynara scolymus L.) up-regulate endothelial-type nitric-oxide synthase gene expression in human endothelial cells.

    Science.gov (United States)

    Li, Huige; Xia, Ning; Brausch, Isolde; Yao, Ying; Förstermann, Ulrich

    2004-09-01

    Nitric oxide (NO) produced by endothelial nitric-oxide synthase (eNOS) represents an antithrombotic and anti-atherosclerotic principle in the vasculature. Hence, an enhanced expression of eNOS in response to pharmacological interventions could provide protection against cardiovascular diseases. In EA.hy 926 cells, a cell line derived from human umbilical vein endothelial cells (HUVECs), an artichoke leaf extract (ALE) increased the activity of the human eNOS promoter (determined by luciferase reporter gene assay). An organic subfraction from ALE was more potent in this respect than the crude extract, whereas an aqueous subfraction of ALE was without effect. ALE and the organic subfraction thereof also increased eNOS mRNA expression (measured by an RNase protection assay) and eNOS protein expression (determined by Western blot) both in EA.hy 926 cells and in native HUVECs. NO production (measured by NO-ozone chemiluminescence) was increased by both extracts. In organ chamber experiments, ex vivo incubation (18 h) of rat aortic rings with the organic subfraction of ALE enhanced the NO-mediated vasodilator response to acetylcholine, indicating that the up-regulated eNOS remained functional. Caffeoylquinic acids and flavonoids are two major groups of constituents of ALE. Interestingly, the flavonoids luteolin and cynaroside increased eNOS promoter activity and eNOS mRNA expression, whereas the caffeoylquinic acids cynarin and chlorogenic acid were without effect. Thus, in addition to the lipid-lowering and antioxidant properties of artichoke, an increase in eNOS gene transcription may also contribute to its beneficial cardiovascular profile. Artichoke flavonoids are likely to represent the active ingredients mediating eNOS up-regulation.

  6. Heavy metals in wild house mice from coal-mining areas of Colombia and expression of genes related to oxidative stress, DNA damage and exposure to metals.

    Science.gov (United States)

    Guerrero-Castilla, Angélica; Olivero-Verbel, Jesús; Marrugo-Negrete, José

    2014-03-01

    Coal mining is a source of pollutants that impact on environmental and human health. This study examined the metal content and the transcriptional status of gene markers associated with oxidative stress, metal transport and DNA damage in livers of feral mice collected near coal-mining operations, in comparison with mice obtained from a reference site. Mus musculus specimens were caught from La Loma and La Jagua, two coal-mining sites in the north of Colombia, as well as from Valledupar (Cesar Department), a city located 100km north of the mines. Concentrations in liver tissue of Hg, Zn, Pb, Cd, Cu and As were determined by differential stripping voltammetry, and real-time PCR was used to measure gene expression. Compared with the reference group (Valledupar), hepatic concentrations of Cd, Cu and Zn were significantly higher in animals living near mining areas. In exposed animals, the mRNA expression of NQ01, MT1, SOD1, MT2, and DDIT3 was 4.2-, 7.3-, 2.5-, 4.6- and 3.4-fold greater in coal mining sites, respectively, than in animals from the reference site (pmining may generate pollutants that could affect the biota, inducing the transcription of biochemical markers related to oxidative stress, metal exposure, and DNA damage. These changes may be in part linked to metal toxicity, and could have implications for the development of chronic disease. Therefore, it is essential to implement preventive measures to minimize the effects of coal mining on its nearby environment, in order to protect human health. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Socioeconomic Disparities and Health: Impacts and Pathways

    Science.gov (United States)

    Kondo, Naoki

    2012-01-01

    Growing socioeconomic disparity is a global concern, as it could affect population health. The author and colleagues have investigated the health impacts of socioeconomic disparities as well as the pathways that underlie those disparities. Our meta-analysis found that a large population has risks of mortality and poor self-rated health that are attributable to income inequality. The study results also suggested the existence of threshold effects (ie, a threshold of income inequality over which the adverse impacts on health increase), period effects (ie, the potential for larger impacts in later years, specifically after the 1990s), and lag effects between income inequality and health outcomes. Our other studies using Japanese national representative survey data and a large-scale cohort study of Japanese older adults (AGES cohort) support the relative deprivation hypothesis, namely, that invidious social comparisons arising from relative deprivation in an unequal society adversely affect health. A study with a natural experiment design found that the socioeconomic gradient in self-rated health might actually have become shallower after the 1997–98 economic crisis in Japan, due to smaller health improvements among middle-class white-collar workers and middle/upper-income workers. In conclusion, income inequality might have adverse impacts on individual health, and psychosocial stress due to relative deprivation may partially explain those impacts. Any study of the effects of macroeconomic fluctuations on health disparities should also consider multiple potential pathways, including expanding income inequality, changes in the labor market, and erosion of social capital. Further studies are needed to attain a better understanding of the social determinants of health in a rapidly changing society. PMID:22156290

  8. The Academic Advantage: Gender Disparities in Patenting

    OpenAIRE

    Sugimoto, Cassidy R.; Ni, Chaoqun; West, Jevin D.; Larivi?re, Vincent

    2015-01-01

    We analyzed gender disparities in patenting by country, technological area, and type of assignee using the 4.6 million utility patents issued between 1976 and 2013 by the United States Patent and Trade Office (USPTO). Our analyses of fractionalized inventorships demonstrate that women's rate of patenting has increased from 2.7% of total patenting activity to 10.8% over the nearly 40-year period. Our results show that, in every technological area, female patenting is proportionally more likely...

  9. Socioeconomic disparities and health: impacts and pathways.

    Science.gov (United States)

    Kondo, Naoki

    2012-01-01

    Growing socioeconomic disparity is a global concern, as it could affect population health. The author and colleagues have investigated the health impacts of socioeconomic disparities as well as the pathways that underlie those disparities. Our meta-analysis found that a large population has risks of mortality and poor self-rated health that are attributable to income inequality. The study results also suggested the existence of threshold effects (ie, a threshold of income inequality over which the adverse impacts on health increase), period effects (ie, the potential for larger impacts in later years, specifically after the 1990s), and lag effects between income inequality and health outcomes. Our other studies using Japanese national representative survey data and a large-scale cohort study of Japanese older adults (AGES cohort) support the relative deprivation hypothesis, namely, that invidious social comparisons arising from relative deprivation in an unequal society adversely affect health. A study with a natural experiment design found that the socioeconomic gradient in self-rated health might actually have become shallower after the 1997-98 economic crisis in Japan, due to smaller health improvements among middle-class white-collar workers and middle/upper-income workers. In conclusion, income inequality might have adverse impacts on individual health, and psychosocial stress due to relative deprivation may partially explain those impacts. Any study of the effects of macroeconomic fluctuations on health disparities should also consider multiple potential pathways, including expanding income inequality, changes in the labor market, and erosion of social capital. Further studies are needed to attain a better understanding of the social determinants of health in a rapidly changing society.

  10. Histopathological effects, responses of oxidative stress, inflammation, apoptosis biomarkers and alteration of gene expressions related to apoptosis, oxidative stress, and reproductive system in chlorpyrifos-exposed common carp (Cyprinus carpio L.).

    Science.gov (United States)

    Altun, Serdar; Özdemir, Selçuk; Arslan, Harun

    2017-11-01

    In this study, we aimed to identify the toxic effects of chlorpyrifos exposure on the tissues of common carp. For this purpose, we evaluated histopathological changes in the brain, gills, liver, kidney, testis, and ovaries after 21 days of chlorpyrifos exposure. Activation of 8-OHdG, cleaved caspase-3, and iNOS were assesed by immunofluorescence assay in chlorpyrifos-exposed brain and liver tissue. Additionally, we measured the expression levels of caspase-3, caspase-8, iNOS, MT1, CYP1A, and CYP3A genes in chlorpyrifos-exposed brain tissue, as well as the expression levels of FSH and LH genes in chlorpyrifos-exposed ovaries, using qRT-PCR. We observed severe histopathological lesions, including inflammation, degeneration, necrosis, and hemorrhage, in the evaluated tissues of common carp after both high and low levels of exposure to chlorpyrifos. We detected strong and diffuse signs of immunofluorescence reaction for 8-OHdG, iNOS, and cleaved caspase-3 in the chlorpyrifos-exposed brain and liver tissues. Furthermore, we found that chlorpyrifos exposure significantly upregulated the expressions of caspase-3, caspase-8, iNOS, and MT1, and also moderately upregulated CYP1A and CYP3A in the brain tissue of exposed carp. We also noted downregulation of FSH and LH gene expressions in chlorpyrifos-exposed ovary tissues. Based on our results, chlorpyrifos toxication caused crucial histopathological lesions in vital organs, induced oxidative stress, inflammation, and apoptosis in liver and brain tissues, and triggered reproductive sterility in common carp. Therefore, we can propose that chlorpyrifos toxication is highly dangerous to the health of common carp. Moreover, chlorpyrifos pollution in the water could threaten the common carp population. Use of chlorpyrifos should be restricted, and aquatic systems should be monitored for chlorpyrifos pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Characterization and mutational analysis of omega-class GST (GSTO1 from Apis cerana cerana, a gene involved in response to oxidative stress.

    Directory of Open Access Journals (Sweden)

    Fei Meng

    Full Text Available The Omega-class of GSTs (GSTOs is a class of cytosolic GSTs that have specific structural and functional characteristics that differ from those of other GST groups. In this study, we demonstrated the involvement of the GSTO1 gene from A. cerana cerana in the oxidative stress response and further investigated the effects of three cysteine residues of GSTO1 protein on this response. Real-time quantitative PCR (qPCR showed that AccGSTO1 was highly expressed in larvae and foragers, primarily in the midgut, epidermis, and flight muscles. The AccGSTO1 mRNA was significantly induced by cold and heat at 1 h and 3 h. The TBA (2-Thiobarbituric acid method indicated that cold or heat resulted in MDA accumulation, but silencing of AccGSTO1 by RNAi in honeybees increased the concentration of MDA. RNAi also increased the temperature sensitivity of honeybees and markedly reduced their survival. Disc diffusion assay indicated that overexpression of AccGSTO1 in E. coli caused the resistance to long-term oxidative stress. Furthermore, AccGSTO1 was active in an in vitro DNA protection assay. Mutations in Cys-28, Cys-70, and Cys-124 affected the catalytic activity and antioxidant activity of AccGSTO1. The predicted three-dimensional structure of AccGSTO1 was also influenced by the replacement of these cysteine residues. These findings suggest that AccGSTO1 plays a protective role in the response to oxidative stress.

  12. Trp64Arg polymorphism of the ADRB3 gene associated with maximal fat oxidation and LDL-C levels in non-obese adolescents.

    Science.gov (United States)

    Jesus, Íncare Correa de; Alle, Lupe Furtado; Munhoz, Eva Cantalejo; Silva, Larissa Rosa da; Lopes, Wendell Arthur; Tureck, Luciane Viater; Purim, Katia Sheylla Malta; Titski, Ana Claudia Kapp; Leite, Neiva

    2017-09-21

    To analyze the association between the Trp64Arg polymorphism of the ADRB3 gene, maximal fat oxidation rates and the lipid profile levels in non-obese adolescents. 72 schoolchildren, of both genders, aged between 11 and 17 years, participated in the study. The anthropometric and body composition variables, in addition to total cholesterol, HDL-c, LDL-c, triglycerides, insulin, and basal glycemia, were evaluated. The sample was divided into two groups according to the presence or absence of the polymorphism: non-carriers of the Arg64 allele, i.e., homozygous (Trp64Trp: n=54), and carriers of the Arg64 allele (Trp64Arg+Arg64Arg: n=18), in which the frequency of the Arg64 allele was 15.2%. The maximal oxygen uptake and peak of oxygen uptake during exercise were obtained through the symptom-limited, submaximal treadmill test. Maximal fat oxidation was determined according to the ventilatory ratio proposed in Lusk's table. Adolescents carrying the less frequent allele (Trp64Arg and Arg64Arg) had higher LDL-c levels (p=0.031) and lower maximal fat oxidation rates (p=0.038) when compared with non-carriers (Trp64Trp). Although the physiological processes related to lipolysis and lipid metabolism are complex, the presence of the Arg 64 allele was associated with lower rates of FATMAX during aerobic exercise, as well as with higher levels of LDL-c in adolescents. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  13. Overexpression of a eukaryotic glutathione reductase gene from Brassica campestris improved resistance to oxidative stress in Escherichia coli

    International Nuclear Information System (INIS)

    Yoon, Ho-Sung; Lee, In-Ae; Lee, Hyoshin; Lee, Byung-Hyun; Jo, Jinki

    2005-01-01

    Glutathione reductase (GR) plays an essential role in a cell's defense against reactive oxygen metabolites by sustaining the reduced status of an important antioxidant glutathione. We constructed a recombinant plasmid based on the expression vector pET-18a that overexpresses a eukaryotic GR from Brassica campestris (BcGR) in Escherichia coli. For comparative analyses, E. coli GR (EcGR) was also subcloned in the same manner. The transformed E. coli with the recombinant constructs accumulated a high level of GR transcripts upon IPTG induction. Also, Western blot analysis showed overproduction of the BcGR protein in a soluble fraction of the transformed E. coli extract. When treated with oxidative stress generating reagents such as paraquat, salicylic acid, and cadmium, the BcGR overproducing E. coli exhibited a higher level of growth and survival rate than the control E. coli strain, but it was not as high as the E. coli strain transformed with the inducible EcGR. The translated amino acid sequences of BcGR and EcGR share 37.3% identity but all the functionally known important residues are conserved. It appears that eukaryotic BcGR functions in a prokaryotic system by providing protection against oxidative damages in E. coli

  14. Trichloroethylene and Its Oxidative Metabolites Enhance the Activated State and Th1 Cytokine Gene Expression in Jurkat Cells.

    Science.gov (United States)

    Pan, Yao; Wei, Xuetao; Hao, Weidong

    2015-08-28

    Trichloroethylene (TCE) is an occupational and ubiquitous environmental contaminant, and TCE exposure will increase the risk of autoimmune diseases and allergic diseases. T cells play an important role in the pathogenesis of TCE-related immune disorders, but the effect of TCE and its oxidative metabolites, trichloroacetic acid (TCA) and dichloroacetic acid (DCA), on the activation of human T cells is still unknown. In this study, Jurkat cells were pre-treated with TCE, TCA and DCA overnight and then stimulated with phorbol 12-myristate 13-acetate and ionomycin for another 4, 8 and 24 hours. IL-2 secretion was detected by ELISA; the expressions of CD25 and CD69 were tested by flow cytometry; and IFN-γ and IL-2 mRNA expression levels were investigated by real-time PCR. The results showed that TCE and its oxidative metabolites, TCA and DCA, significantly enhanced IL-2 releasing and the expression of T cell activation markers, CD25 and CD69. Consistent with this result, these compounds markedly up-regulated the expression levels of IFN-γ and IL-2 mRNA. Collectively, these findings suggest that TCE and its metabolites, TCA and DCA, might enhance the activation of T cells and disrupt various activities of peripheral T cells.

  15. Trichloroethylene and Its Oxidative Metabolites Enhance the Activated State and Th1 Cytokine Gene Expression in Jurkat Cells

    Directory of Open Access Journals (Sweden)

    Yao Pan

    2015-08-01

    Full Text Available Trichloroethylene (TCE is an occupational and ubiquitous environmental contaminant, and TCE exposure will increase the risk of autoimmune diseases and allergic diseases. T cells play an important role in the pathogenesis of TCE-related immune disorders, but the effect of TCE and its oxidative metabolites, trichloroacetic acid (TCA and dichloroacetic acid (DCA, on the activation of human T cells is still unknown. In this study, Jurkat cells were pre-treated with TCE, TCA and DCA overnight and then stimulated with phorbol 12-myristate 13-acetate and ionomycin for another 4, 8 and 24 hours. IL-2 secretion was detected by ELISA; the expressions of CD25 and CD69 were tested by flow cytometry; and IFN-γ and IL-2 mRNA expression levels were investigated by real-time PCR. The results showed that TCE and its oxidative metabolites, TCA and DCA, significantly enhanced IL-2 releasing and the expression of T cell activation markers, CD25 and CD69. Consistent with this result, these compounds markedly up-regulated the expression levels of IFN-γ and IL-2 mRNA. Collectively, these findings suggest that TCE and its metabolites, TCA and DCA, might enhance the activation of T cells and disrupt various activities of peripheral T cells.

  16. High-Fat Diet Induces Oxidative Stress and MPK2 and HSP83 Gene Expression in Drosophila melanogaster.

    Science.gov (United States)

    Trindade de Paula, Mariane; Poetini Silva, Márcia Rósula; Machado Araujo, Stífani; Cardoso Bortolotto, Vandreza; Barreto Meichtry, Luana; Zemolin, Ana Paula Pegoraro; Wallau, Gabriel L; Jesse, Cristiano Ricardo; Franco, Jeferson Luís; Posser, Thaís; Prigol, Marina

    2016-01-01

    The consumption of a high-fat diet (HFD) causes alteration in normal metabolism affecting lifespan of flies; however molecular mechanism associated with this damage in flies is not well known. This study evaluates the effects of ingestion of a diet supplemented with 10% and 20% of coconut oil, which is rich in saturated fatty acids, on oxidative stress and cells stress signaling pathways. After exposure to the diet for seven days, cellular and mitochondrial viability, lipid peroxidation and antioxidant enzymes SOD and CAT activity, and mRNA expression of antioxidant enzymes HSP83 and MPK2 were analyzed. To confirm the damage effect of diet on flies, survival and lifespan were investigated. The results revealed that the HFD augmented the rate of lipid peroxidation and SOD and CAT activity and induced a higher expression of HSP83 and MPK2 mRNA. In parallel, levels of enzymes involved in lipid metabolism (ACSL1 and ACeCS1) were increased. Our data demonstrate that association among metabolic changes, oxidative stress, and protein signalization might be involved in shortening the lifespan of flies fed with a HFD.

  17. High-Fat Diet Induces Oxidative Stress and MPK2 and HSP83 Gene Expression in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Mariane Trindade de Paula

    2016-01-01

    Full Text Available The consumption of a high-fat diet (HFD causes alteration in normal metabolism affecting lifespan of flies; however molecular mechanism associated with this damage in flies is not well known. This study evaluates the effects of ingestion of a diet supplemented with 10% and 20% of coconut oil, which is rich in saturated fatty acids, on oxidative stress and cells stress signaling pathways. After exposure to the diet for seven days, cellular and mitochondrial viability, lipid peroxidation and antioxidant enzymes SOD and CAT activity, and mRNA expression of antioxidant enzymes HSP83 and MPK2 were analyzed. To confirm the damage effect of diet on flies, survival and lifespan were investigated. The results revealed that the HFD augmented the rate of lipid peroxidation and SOD and CAT activity and induced a higher expression of HSP83 and MPK2 mRNA. In parallel, levels of enzymes involved in lipid metabolism (ACSL1 and ACeCS1 were increased. Our data demonstrate that association among metabolic changes, oxidative stress, and protein signalization might be involved in shortening the lifespan of flies fed with a HFD.

  18. Development of antibiotic resistance and up-regulation of the antimutator gene pfpI in mutator Pseudomonas aeruginosa due to inactivation of two DNA oxidative repair genes (mutY, mutM)

    DEFF Research Database (Denmark)

    Mandsberg, Lotte Frigaard; Macia, Maria D.; Bergmann, Kirsten R.

    2011-01-01

    showed only a fivefold increase, whereas the single mutant PAOMMgm (mutM) showed a nonsignificant increase in MR compared with PAO1 and the single mutants. Mutations in the regulator nfxB leading to hyperexpression of MexCD-OprJ efflux pump were found as the mechanism of resistance to ciprofloxacin....... In this study, we constructed a double mutant in mutY and mutM (PAOMY-Mgm) and characterized the phenotype and the gene expression profile using microarray and RT-PCR. PAOMY-Mgm presented 28-fold increases in MR compared with wild-type reference strain PAO1. In comparison, the PAOMYgm (mutY) single mutant...... in the double mutant. A better fitness of the mutator compared with PAO1 was found in growth competition experiments in the presence of ciprofloxacin at concentrations just below minimal inhibitory concentration. Up-regulation of the antimutator gene pfpI, that has been shown to provide protection to oxidative...

  19. Nitrous oxide production and mRNA expression analysis of nitrifying and denitrifying bacterial genes under floodwater disappearance and fertilizer application.

    Science.gov (United States)

    Riya, Shohei; Takeuchi, Yuki; Zhou, Sheng; Terada, Akihiko; Hosomi, Masaaki

    2017-06-01

    A pulse of nitrous oxide (N 2 O) emission has been observed following the disappearance of floodwater by drainage. However, its mechanism is not well understood. We conducted a column study to clarify the mechanism for N 2 O production during floodwater disappearance by using a microsensor and determining the bacterial gene expression. An increase in N 2 O flux was observed following floodwater disappearance after the addition of NH 4 + , with a corresponding increase in the concentrations of NO 3 - and dissolved N 2 O in the oxic and anoxic soil layers, respectively. The transcription level of the bacterial amoA mRNA did not change, while that of nirK mRNA increased sharply after an hour of floodwater disappearance. An additional anoxic soil slurry experiment demonstrated that the addition of NO 3 - induced the expression of nirK gene and caused a concomitant increase in N 2 O production. These findings suggest that NO 3 - production in the oxic layers is important as it provides a substrate and induces the synthesis of denitrification enzymes in the anoxic layer during N 2 O production.

  20. Transgenic mice overexpressing glia maturation factor-β, an oxidative stress inducible gene, show premature aging due to Zmpste24 down-regulation.

    Science.gov (United States)

    Imai, Rika; Asai, Kanae; Hanai, Jun-ichi; Takenaka, Masaru

    2015-07-01

    Glia Maturation Factor-β (GMF), a brain specific protein, is induced by proteinuria in renal tubules. Ectopic GMF overexpression causes apoptosisin vitro via cellular vulnerability to oxidative stress. In order to examine the roles of GMF in non-brain tissue, we constructed transgenic mice overexpressing GMF (GMF-TG). The GMF-TG mice exhibited appearance phenotypes associated with premature aging. The GMF-TG mice also demonstrated short lifespans and reduced hair regrowth, suggesting an accelerated aging process. The production of an abnormal lamin A, a nuclear envelope protein, plays a causal role in both normal aging and accelerated aging diseases, known as laminopathies. Importantly, we identified the abnormal lamin A (prelamin A), accompanied by a down-regulation of a lamin A processing enzyme (Zmpste24) in the kidney of the GMF-TG mice. The GMF-TG mice showed accelerated aging in the kidney, compared with wild-type mice, showing increased TGF-β1, CTGF gene and serum creatinine. The gene expression of p21/waf1 was increased at an earlier stage of life, at 10 weeks, which was in turn down-regulated at a later stage, at 60 weeks. In conclusion, we propose that GMF-TG mice might be a novel mouse model of accelerated aging, due to the abnormal lamin A.

  1. Insight into effects of electro-dewatering pretreatment on nitrous oxide emission involved in related functional genes in sewage sludge composting.

    Science.gov (United States)

    Wang, Ke; Wu, Yiqi; Wang, Zhe; Wang, Wei; Ren, Nanqi

    2018-05-26

    Electro-dewatering (ED) pretreatment could improve sludge dewatering performance and remove heavy metal, but the effect of ED pretreatment on nitrous oxide (N 2 O) emission and related functional genes in sludge composting process is still unknown, which was firstly investigated in this study. The results revealed that ED pretreatment changed the physicochemical characteristics of sludge and impacted N 2 O related functional genes, resulting in the reduction of cumulative N 2 O emission by 77.04% during 60 days composting. The higher pH and NH 4 + -N, but lower moisture, ORP and NO 2 - -N emerged in the composting of ED sludge compared to mechanical dewatering (MD) sludge. Furthermore, ED pretreatment reduced amoA, hao, narG, nirK and nosZ in ED sludge on Day-10 and Day-60 of composting. It was found that nirK reduction was the major factor impacting N 2 O generation in the initial composting of ED sludge, and the decline of amoA restricted N 2 O production in the curing period. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Effects of graphene oxide on the performance, microbial community dynamics and antibiotic resistance genes reduction during anaerobic digestion of swine manure.

    Science.gov (United States)

    Zhang, Junya; Wang, Ziyue; Wang, Yawei; Zhong, Hui; Sui, Qianwen; Zhang, Changping; Wei, Yuansong

    2017-12-01

    The role of graphene oxide (GO) on anaerobic digestion (AD) of swine manure concerning the performance, microbial community and antibiotic resistance genes (ARGs) reduction was investigated. Results showed that methane production was reduced by 13.1%, 10.6%, 2.7% and 17.1% at GO concentration of 5mg/L, 50mg/L, 100mg/L and 500mg/L, respectively, but propionate degradation was enhanced along with GO addition. Both bacterial and archaeal community changed little after GO addition. AD could well reduce ARGs abundance, but it was deteriorated at the GO concentration of 50mg/L and 100mg/L and enhanced at 500mg/L, while no obvious changes at 5mg/L. Network and SEM analysis indicated that changes of each ARG was closely associated with variation of microbial community composition, environmental variables contributed most to the dynamics of ARGs indirectly, GO influenced the ARGs dynamics negatively and (heavy metal resistance genes (MRGs)) influenced the most directly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Overlapping protective roles for glutathione transferase gene family members in chemical and oxidative stress response in Agrobacterium tumefaciens.

    Science.gov (United States)

    Skopelitou, Katholiki; Muleta, Abdi W; Pavli, Ourania; Skaracis, Georgios N; Flemetakis, Emmanouil; Papageorgiou, Anastassios C; Labrou, Nikolaos E

    2012-03-01

    In the present work, we describe the characterisation of the glutathione transferase (GST) gene family from Agrobacterium tumefaciens C58. A genome survey revealed the presence of eight GST-like proteins in A. tumefaciens (AtuGSTs). Comparison by multiple sequence alignment generated a dendrogram revealing the phylogenetic relationships of AtuGSTs-like proteins. The beta and theta classes identified in other bacterial species are represented by five members in A. tumefaciens C58. In addition, there are three "orphan" sequences that do not fit into any previously recognised GST classes. The eight GST-like genes were cloned, expressed in Escherichia coli and their substrate specificity was determined towards 17 different substrates. The results showed that AtuGSTs catalyse a broad range of reactions, with different members of the family exhibiting quite varied substrate specificity. The 3D structures of AtuGSTs were predicted using molecular modelling. The use of comparative sequence and structural analysis of the AtuGST isoenzymes allowed us to identify local sequence and structural characteristics between different GST isoenzymes and classes. Gene expression profiling was conducted under normal culture conditions as well as under abiotic stress conditions (addition of xenobiotics, osmotic stress and cold and heat shock) to induce and monitor early stress-response mechanisms. The results reveal the constitutive expression of GSTs in A. tumefaciens and a modulation of GST activity after treatments, indicating that AtuGSTs presumably participate in a wide range of functions, many of which are important in counteracting stress conditions. These functions may be relevant to maintaining cellular homeostasis as well as in the direct detoxification of toxic compounds.

  4. Diuretics prevent Rho-kinase activation and expression of profibrotic/oxidative genes in the hypertensive aortic wall.

    Science.gov (United States)

    Araos, Patricio; Mondaca, David; Jalil, Jorge E; Yañez, Cristián; Novoa, Ulises; Mora, Italo; Ocaranza, María Paz

    2016-12-01

    Diuretics are current antihypertensive drugs since they reduce blood pressure and cardiovascular risk. Increased vascular tone is modulated in a relevant way by the RhoA/Rho-kinase (ROCK) pathway, by acting on vascular smooth muscle cell contraction. This pathway has also proremodeling vascular effects. There are few data on the role of diuretics on both vascular ROCK activation and on proremodeling effects. We assessed the effects of hydrochlorothiazide (HCTZ) and spironolactone (spiro) alone and in combination with the ROCK inhibitor fasudil (FAS) on ROCK activation, gene expression of proremodeling markers and on hypertrophy in the aortic wall of hypertensive rats. Deoxycorticosterone acetate (DOCA)-salt hypertensive rats (male, Sprague-Dawley) were randomized to the specific ROCK inhibitor FAS, HCTZ, spiro or the combinations of FAS/HCTZ or FAS/spiro for 3 weeks. At the end of the study, ROCK activation (by western blot), gene expression of proremodeling markers (by reverse transcription polymerase chain reaction, RT-PCR) and vascular hypertrophy (by morphometry) were determined in the aortic wall. All treatments significantly reduced blood pressure. In the DOCA rats the p-myosin phosphatase target protein-1 (MYPT1)/t-MYPT1 ratio, index of ROCK activation was higher by 2.8 fold (p diuretics alone or in combination with FAS. In the aortic wall, both HCTZ and spiro in antihypertensive doses reduce ROCK activation, subsequent expression of genes that promote vascular remodeling and hypertrophy in this experimental model of hypertension. These effects could explain some of their clinical benefits in hypertensive patients. © The Author(s), 2016.

  5. 4G/5G Variant of Plasminogen Activator Inhibitor-1 Gene and Severe Pregnancy-Induced Hypertension: Subgroup Analyses of Variants of Angiotensinogen and Endothelial Nitric Oxide Synthase

    Science.gov (United States)

    Kobashi, Gen; Ohta, Kaori; Yamada, Hideto; Hata, Akira; Minakami, Hisanori; Sakuragi, Noriaki; Tamashiro, Hiko; Fujimoto, Seiichiro

    2009-01-01

    Background Pregnancy-induced hypertension (PIH) is a common cause of perinatal mortality. It is believed to result from the interaction of several factors, including those related to the blood coagulation system. We performed genotyping and subgroup analyses to determine if the 4G/5G genotypes of the plasminogen activator inhibitor-1 gene (PAI-1) play a role in the pathogenesis of PIH, and to evaluate possible interactions of the PAI-1 polymorphisms with those of the angiotensinogen gene (AGT) and the endothelial nitric oxide synthase gene (NOS3). Methods An association study of PAI-1 polymorphism, and subgroup analyses of common variants of AGT and NOS3, among 128 patients with PIH and 376 healthy pregnant controls. Results No significant differences were found between the cases and controls in the frequencies of allele 4G or the 4G/4G genotype. In subgroup analyses, after adjustment for multiple comparison, a significant association with the AGT TT genotype was found among women with the PAI-1 4G/4G genotype, and an association with the NOS3 GA+AA genotype was found among women with the 5G/5G or 4G/5G genotypes. Conclusions Our findings suggest that there are at least 2 pathways in the pathogenesis of severe PIH. However, with respect to early prediction and prevention of severe PIH, although the PAI-1 4G/4G genotype alone was not a risk factor for severe PIH, the fact that PAI-1 genotypes are associated with varying risks for severe PIH suggests that PAI-1 genotyping of pregnant women, in combination with other tests, may be useful in the development of individualized measures that may prevent severe PIH. PMID:19838007

  6. Regulation of MicroRNAs, and the Correlations of MicroRNAs and Their Targeted Genes by Zinc Oxide Nanoparticles in Ovarian Granulosa Cells.

    Directory of Open Access Journals (Sweden)

    Yong Zhao

    Full Text Available Zinc oxide (ZnO nanoparticles (NPs have been applied in numerous industrial products and personal care products like sunscreens and cosmetics. The released ZnO NPs from consumer and household products into the environment might pose potential health issues for animals and humans. In this study the expression of microRNAs and the correlations of microRNAs and their targeted genes in ZnO NPs treated chicken ovarian granulosa cells were investigated. ZnSO4 was used as the sole Zn2+ provider to differentiate the effects of NPs from Zn2+. It was found that ZnO-NP-5 μg/ml specifically regulated the expression of microRNAs involved in embryonic development although ZnO-NP-5 μg/ml and ZnSO4-10 μg/ml treatments produced the same intracellular Zn concentrations and resulted in similar cell growth inhibition. And ZnO-NP-5 μg/ml also specifically regulated the correlations of microRNAs and their targeted genes. This is the first investigation that intact NPs in ZnO-NP-5 μg/ml treatment specifically regulated the expression of microRNAs, and the correlations of microRNAs and their targeted genes compared to that by Zn2+. This expands our knowledge for biological effects of ZnO NPs and at the same time it raises the health concerns that ZnO NPs might adversely affect our biological systems, even the reproductive systems through regulation of specific signaling pathways.

  7. Aberrant DNA Methylation: Implications in Racial Health Disparity.

    Directory of Open Access Journals (Sweden)

    Xuefeng Wang

    Full Text Available Incidence and mortality rates of colorectal carcinoma (CRC are higher in African Americans (AAs than in Caucasian Americans (CAs. Deficient micronutrient intake due to dietary restrictions in racial/ethnic populations can alter genetic and molecular profiles leading to dysregulated methylation patterns and the inheritance of somatic to germline mutations.Total DNA and RNA samples of paired tumor and adjacent normal colon tissues were prepared from AA and CA CRC specimens. Reduced Representation Bisulfite Sequencing (RRBS and RNA sequencing were employed to evaluate total genome methylation of 5'-regulatory regions and dysregulation of gene expression, respectively. Robust analysis was conducted using a trimming-and-retrieving scheme for RRBS library mapping in conjunction with the BStool toolkit.DNA from the tumor of AA CRC patients, compared to adjacent normal tissues, contained 1,588 hypermethylated and 100 hypomethylated differentially methylated regions (DMRs. Whereas, 109 hypermethylated and 4 hypomethylated DMRs were observed in DNA from the tumor of CA CRC patients; representing a 14.6-fold and 25-fold change, respectively. Specifically; CHL1, 4 anti-inflammatory genes (i.e., NELL1, GDF1, ARHGEF4, and ITGA4, and 7 miRNAs (of which miR-9-3p and miR-124-3p have been implicated in CRC were hypermethylated in DNA samples from AA patients with CRC. From the same sample set, RNAseq analysis revealed 108 downregulated genes (including 14 ribosomal proteins and 34 upregulated genes (including POLR2B and CYP1B1 [targets of miR-124-3p] in AA patients with CRC versus CA patients.DNA methylation profile and/or products of its downstream targets could serve as biomarker(s addressing racial health disparity.

  8. Pre-treatment with N-acetylcysteine upregulates superoxide dismutase 2 and catalase genes in cadmium-induced oxidative stress in the chick omphalocele model.

    Science.gov (United States)

    Doi, Takashi; Puri, Prem; Bannigan, John; Thompson, Jennifer

    2011-02-01

    In the chick embryo, administration of the heavy metal Cadmium (Cd) induces omphalocele phenotype. Cd is a potent inhibitor of antioxidant enzymes and causes accumulation of reactive oxygen species (ROSs) such as hydrogen peroxide. Previous work with the Cd chick model has demonstrated that increased levels of MDA, as a marker for oxidative stress, 24 h post Cd treatment (24H) are identical in chick embryos exposed to Cd. Furthermore, of the several antioxidants assessed, only N-acetylcysteine (NAC) has been shown to reduce MDA levels to control values in the Cd-treated chick embryo. However, the molecular mechanisms by which NAC acts to maintain oxidative stress in the Cd-induced ventral body wall defect chick model remains to be unclear. We designed this study to investigate the hypothesis that gene expression levels of antioxidant enzymes are downregulated in malformed embryos exposed to Cd compared to controls and to determine the effect of pre-treatment with NAC on the expression levels of genes encoding antioxidant enzymes. After 60 h incubation, chick embryos were pre-treated with NAC and exposed to either chick saline or Cd. Chicks were then harvested at 24H and divided into five groups: control, Cd group without malformation [Cd(-)], Cd group with malformation [Cd(+)], NAC + Cd(-) and NAC + Cd(+). Real-time PCR was performed to evaluate the relative mRNA expression levels of antioxidant enzymes, including superoxide dismutase (SOD)-1, SOD2, catalase (CAT) and glutathione peroxidase (GPX)-4. Differences between five groups were tested by Tukey-Kramer post-hoc test following one-way ANOVA. Statistical significance was accepted at p < 0.05. Immunohistochemistry was also performed to evaluate protein expression. The mRNA expression levels of SOD2 and CAT were significantly decreased in Cd(+) as compared to controls, whereas there was no significant difference between controls and Cd(-) (p < 0.05 vs. controls). In addition, gene expression levels of

  9. Genes for Uranium Bioremediation in the Anaerobic Sulfate-Reducing Bacteria: Desulfovibrio mutants with altered sensitivity to oxidative stress

    International Nuclear Information System (INIS)

    Payne, Rayford B.; Ringbauer, Joseph A. Jr.; Wall, Judy D.

    2006-01-01

    Sulfate-reducing bacteria of the genus Desulfovibrio are ubiquitous in anaerobic environments such as groundwater, sediments, and the gastrointestinal tract of animals. Because of the ability of Desulfovibrio to reduce radionuclides and metals through both enzymatic and chemical means, they have been proposed as a means to bioremediate heavy metal contaminated sites. Although classically thought of as strict anaerobes, Desulfovibrio species are surprisingly aerotolerant. Our objective is to understand the response of Desulfovibrio to oxidative stress so that we may more effectively utilize them in bioremediation of heavy metals in mixed aerobic-anaerobic environments. The enzymes superoxide dismutase, superoxide reductase, catalase, and rubrerythrin have been shown by others to be involved in the detoxification of reactive oxygen species in Desulfovibrio. Some members of the genus Desulfovibrio can even reduce molecular oxygen to water via a membrane bound electron transport chain with the concomitant production of ATP, although their ability to grow with oxygen as the sole electron acceptor is still questioned.

  10. Modulation of inducible nitric oxide synthase gene expression in RAW 264.7 murine macrophages by Pacific ciguatoxin.

    Science.gov (United States)

    Kumar-Roiné, Shilpa; Matsui, Mariko; Chinain, Mireille; Laurent, Dominique; Pauillac, Serge

    2008-08-01

    To investigate the possible involvement of the nitric oxide radical (NO) in ciguatera fish poisoning (CFP), the in vitro effects of the main Pacific ciguatoxin (P-CTX-1B) and bacterial lipopolysaccharide (LPS) were comparatively studied on neuroblastoma Neuro-2a and on macrophage RAW 264.7 cell lines. NO accumulation was quantified by measuring nitrite levels in cellular supernatant using Griess reagent while the up-regulation of inducible nitric oxide synthase (iNOS) at the mRNA level was quantified via Real-Time Reverse-Transcription Polymerase Chain Reaction (RT-PCR). P-CTX-1B caused a concentration- and time-dependent induction of iNOS in RAW 264.7 cells but not in Neuro-2a cells. NO production was evidenced by increased nitrite levels in the 10 microM range after 48 h of RAW 264.7 cells exposure to LPS and P-CTX-1B (0.05 microg/ml and 6 nM, respectively). The expression of iNOS mRNA peaked at 8h for LPS then gradually decreased to low level at 48 h. In contrast, a sustained level was recorded with P-CTX-1B in the 8-48 h time interval. The addition of N(omega)-nitro-L-arginine methyl ester (L-NAME), a stereoselective NOS inhibitor, strongly diminished NO formation but had no effect on iNOS mRNA synthesis. The implication of NO in CFP paves the way for new therapies for both western and traditional medicines.

  11. Vertical binocular disparity is encoded implicitly within a model neuronal population tuned to horizontal disparity and orientation.

    Directory of Open Access Journals (Sweden)

    Jenny C A Read

    2010-04-01

    Full Text Available Primary visual cortex is often viewed as a "cyclopean retina", performing the initial encoding of binocular disparities between left and right images. Because the eyes are set apart horizontally in the head, binocular disparities are predominantly horizontal. Yet, especially in the visual periphery, a range of non-zero vertical disparities do occur and can influence perception. It has therefore been assumed that primary visual cortex must contain neurons tuned to a range of vertical disparities. Here, I show that this is not necessarily the case. Many disparity-selective neurons are most sensitive to changes in disparity orthogonal to their preferred orientation. That is, the disparity tuning surfaces, mapping their response to different two-dimensional (2D disparities, are elongated along the cell's preferred orientation. Because of this, even if a neuron's optimal 2D disparity has zero vertical component, the neuron will still respond best to a non-zero vertical disparity when probed with a sub-optimal horizontal disparity. This property can be used to decode 2D disparity, even allowing for realistic levels of neuronal noise. Even if all V1 neurons at a particular retinotopic location are tuned to the expected vertical disparity there (for example, zero at the fovea, the brain could still decode the magnitude and sign of departures from that expected value. This provides an intriguing counter-example to the common wisdom that, in order for a neuronal population to encode a quantity, its members must be tuned to a range of values of that quantity. It demonstrates that populations of disparity-selective neurons encode much richer information than previously appreciated. It suggests a possible strategy for the brain to extract rarely-occurring stimulus values, while concentrating neuronal resources on the most commonly-occurring situations.

  12. Counteraction of Oxidative Stress by Vitamin E Affects Epigenetic Regulation by Increasing Global Methylation and Gene Expression of MLH1 and DNMT1 Dose Dependently in Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Katja Zappe

    2018-01-01

    Full Text Available Obesity- or diabetes-induced oxidative stress is discussed as a major risk factor for DNA damage. Vitamin E and many polyphenols exhibit antioxidative activities with consequences on epigenetic regulation of inflammation and DNA repair. The present study investigated the counteraction of oxidative stress by vitamin E in the colorectal cancer cell line Caco-2 under normal (1 g/l and high (4.5 g/l glucose cell culture condition. Malondialdehyde (MDA as a surrogate marker of lipid peroxidation and reactive oxygen species (ROS was analyzed. Gene expression and promoter methylation of the DNA repair gene MutL homolog 1 (MLH1 and the DNA methyltransferase 1 (DNMT1 as well as global methylation by LINE-1 were investigated. Results revealed a dose-dependent counteracting effect of vitamin E on H2O2-induced oxidative stress. Thereby, 10 μM vitamin E proved to be more efficient than did 50 μM in reducing MDA. Further, an induction of MLH1 and DNMT1 gene expression was noticed, accompanied by an increase in global methylation. Whether LINE-1 hypomethylation is a cause or effect of oxidative stress is still unclear. In conclusion, supplementation of exogenous antioxidants like vitamin E in vitro exhibits beneficial effects concerning oxidative stress as well as epigenetic regulation involved in DNA repair.

  13. APPLICATION OF CDNA MICROARRAY TECHNOLOGY TO IN VITRO TOXICOLOGY AND THE SELECTION OF GENES FOR A REAL TIME RT-PCR-BASED SCREEN FOR OXIDATIVE STRESS IN HEP-G2 CELLS

    Science.gov (United States)

    Large-scale analysis of gene expression using cDNA microarrays promises therapid detection of the mode of toxicity for drugs and other chemicals. cDNAmicroarrays were used to examine chemically-induced alterations of geneexpression in HepG2 cells exposed to oxidative ...

  14. Cytochrome P450 genes from the aquatic midge Chironomus tentans: Atrazine-induced up-regulation of CtCYP6EX3 contributing to oxidative activation of chlorpyrifos

    Science.gov (United States)

    The open reading frames of 19 cytochrome P450 monooxygenase (CYP) genes were sequenced from Chironomus tentans, a commonly used freshwater invertebrate model. Functional analysis of CtCYP6EX3 confirmed its atrazine-induced oxidative activation for chlorpyrifos by using a nanoparticle-based RNA inter...

  15. DIMETHYLARSINIC ACID ALTERS EXPRESSION OF OXIDATIVE STRESS AND DNA REPAIR GENES IN A DOSE DEPENDENT MANNER IN THE TRANSITIONAL EPITHELIUM OF THE URINARY BLADDER FROM FEMALE F344 RATS.

    Science.gov (United States)

    Dose-dependent alteration of oxidative stress and DNA repair gene expression by Dimethylarsinic acid [DMA(V)] in transitional epithelium of urinary bladder from female F344 rats.Arsenic (As) is a major concern as millions of people are at risk from drinking arsenic contaminat...

  16. Characterization of a dehydrogenase activity responsible for oxidation of 11-cis-retinol in the retinal pigment epithelium of mice with a disrupted RDH5 gene. A model for the human hereditary disease fundus albipunctatus.

    NARCIS (Netherlands)

    Jang, G.F.; Hooser, J.P. van; Kuksa, V.; McBee, J.K.; He, Y.G.; Janssen, J.J.M.; Driessen, C.A.G.G.; Palczewski, K.

    2001-01-01

    In the vertebrate retina, the final step of visual chromophore production is the oxidation of 11-cis-retinol to 11-cis-retinal. This reaction is catalyzed by 11-cis-retinol dehydrogenases (11-cis-RDHs), prior to the chromophore rejoining with the visual pigment apo-proteins. The RDH5 gene encodes a

  17. The intersection of disability and healthcare disparities: a conceptual framework.

    Science.gov (United States)

    Meade, Michelle A; Mahmoudi, Elham; Lee, Shoou-Yih

    2015-01-01

    This article provides a conceptual framework for understanding healthcare disparities experienced by individuals with disabilities. While health disparities are the result of factors deeply rooted in culture, life style, socioeconomic status, and accessibility of resources, healthcare disparities are a subset of health disparities that reflect differences in access to and quality of healthcare and can be viewed as the inability of the healthcare system to adequately address the needs of specific population groups. This article uses a narrative method to identify and critique the main conceptual frameworks that have been used in analyzing disparities in healthcare access and quality, and evaluating those frameworks in the context of healthcare for individuals with disabilities. Specific models that are examined include the Aday and Anderson Model, the Grossman Utility Model, the Institute of Medicine (IOM)'s models of Access to Healthcare Services and Healthcare Disparities, and the Cultural Competency model. While existing frameworks advance understandings of disparities in healthcare access and quality, they fall short when applied to individuals with disabilities. Specific deficits include a lack of attention to cultural and contextual factors (Aday and Andersen framework), unrealistic assumptions regarding equal access to resources (Grossman's utility model), lack of recognition or inclusion of concepts of structural accessibility (IOM model of Healthcare Disparities) and exclusive emphasis on supply side of the healthcare equation to improve healthcare disparities (Cultural Competency model). In response to identified gaps in the literature and short-comings of current conceptualizations, an integrated model of disability and healthcare disparities is put forth. We analyzed models of access to care and disparities in healthcare to be able to have an integrated and cohesive conceptual framework that could potentially address issues related to access to

  18. Pyrethroid insecticide lambda-cyhalothrin and its metabolites induce liver injury through the activation of oxidative stress and proinflammatory gene expression in rats following acute and subchronic exposure.

    Science.gov (United States)

    Aouey, Bakhta; Derbali, Mohamed; Chtourou, Yassine; Bouchard, Michèle; Khabir, Abdelmajid; Fetoui, Hamadi

    2017-02-01

    Lambda-cyhalothrin (LTC) [α-cyano-3-phenoxybenzyl-3-(2-chloro-3,3,3-trifluoro-1-propenyl)-2,2-dimethylcyclo-propanecarboxylate] is a synthetic type II pyrethroid insecticide commonly used in residential and agricultural areas. The potential hepatotoxicity of pyrethroids remains unclear and could easily be assessed by measuring common clinical indicators of liver disease. To understand more about the potential risks for humans associated with LTC exposure, male adult rats were orally exposed to 6.2 and 31.1 mg/kg bw of LTC for 7, 30, 45, and 60 days. Histopathological changes and alterations of main parameters related to oxidative stress and inflammatory responses in the liver were evaluated. Further, lambda-cyhalothrin metabolites [3-(2-chloro-3,3,3-trifluoroprop-1-enyl)-2,2-dimethyl-cyclopropane carboxylic acid (CFMP), 4-hydroxyphenoxybenzoic acid (4-OH-3-PBA), and 3-phenoxybenzoic acid (3-PBA)] in the liver tissues were identified and quantified by ultra-high-performance liquid chromatography coupled to quadripole time-of-flight mass spectrometry (UHPLC-MS-Q-ToF). Results revealed that LTC exposure significantly increased markers of hepatic oxidative stress in a time-dependent and dose-dependent manner, and this was associated with an accumulation of CFMP and 3-PBA in the liver tissues. In addition, the levels of tumor necrosis factor-α (TNF-α) and interleukin (IL-6 and IL-1β) gene expressions were significantly increased in the liver of exposed rats compared to controls. Correlation analyses revealed that CFMP and 3-PBA metabolite levels in the liver tissues were significantly correlated with the indexes of oxidative stress, redox status, and inflammatory markers in rats exposed to lambda-cyhalothin. Overall, this study provided novel evidence that hepatic damage is likely due to increased oxidative stress and inflammation under the condition of acute and subchronic exposure to lambda-cyhalothrin and that LTC metabolites (CFMP and 3-PBA) could be used as

  19. The T -786C, G894T, and Intron 4 VNTR (4a/b) Polymorphisms of the Endothelial Nitric Oxide Synthase Gene in Prostate Cancer Cases.

    Science.gov (United States)

    Diler, S B; Öden, A

    2016-02-01

    In previously conducted some studies it has been revealed that nitric oxide (NO) and nitric oxide synthase (NOS) system play a significant role in carcinogenesis. Nitric oxide (NO) is regulated by endothelial nitric oxide synthase (eNOS) enzyme which is one of the isoenzymes of NO synthase (NOS). In this study we have tried to come to a conclusion about whether eNOS gene T -786C, G894T and Intron 4 VNTR (4a/b) polymorphisms might be considered as a risk factor causing prostate cancer (PCa) or not. A total of 200 subjects were included in this research. 84 patients with PCa (mean age 70.0 ± 6.4) and 116 healthy controls (mean age 69.9 ± 7.5) were recruited in this case-control study. Genomic DNA was extracted using the QIAamp DNA Blood Mini Kit (QIAGEN GmbH, Maryland, USA), according to the manufacturer's guidelines. The T-786C, G894T and Intron 4 VNTR (4a/b) polymorphisms were amplified using polymerase chain reation (PCR), detected by restriction fragment length polymorphism (RFLP). For T -786C polymorphism CC genotype [odds ratio (OR): 0.34, 95% confidence interval (CI): 0.15-0.78, P = 0.009)] and allele frequency (OR: 0.631, CI: 0.421-0.946, P = 0.026) is significant for control. In patients with PCa eNOS G894T polymorphism, both GT (OR: 0.069, CI: 0.027-0.174; P = 0.0001) and TT (OR: 0.040, CI: 0.013-0.123; P = = 0.0001) genotype distribution, and also T allele frequency (OR: 0.237, CI: 0.155-0.362, P = 0.0001) were considered significant statistically. While genotype distribution for the other polymorphism eNOS, intron 4 VNTR (4a/b), is insignificant statistically, "a" allele frequency was found out to be significant (OR: 2.223, CI: 1.311-3.769, P = 0.003). In this study we indicated that genotype and allele frequencies of eNOS T -786C and G894T polymorphisms are statistically significant in patients with PCa. eNOS T -786C and G894T polymorphisms may be associated with PCa susceptibility in the Turkish population. In contrast, intron 4 VNTR (4a

  20. Health Disparities in Veterans: A Map of the Evidence.

    Science.gov (United States)

    Kondo, Karli; Low, Allison; Everson, Teresa; Gordon, Christine D; Veazie, Stephanie; Lozier, Crystal C; Freeman, Michele; Motu'apuaka, Makalapua; Mendelson, Aaron; Friesen, Mark; Paynter, Robin; Friesen, Caroline; Anderson, Johanna; Boundy, Erin; Saha, Somnath; Quiñones, Ana; Kansagara, Devan

    2017-09-01

    Goals for improving the quality of care for all Veterans and eliminating health disparities are outlined in the Veterans Health Administration Blueprint for Excellence, but the degree to which disparities in utilization, health outcomes, and quality of care affect Veterans is not well understood. To characterize the research on health care disparities in the Veterans Health Administration by means of a map of the evidence. We conducted a systematic search for research studies published from 2006 to February 2016 in MEDLINE and other data sources. We included studies of Veteran populations that examined disparities in 3 outcome categories: utilization, quality of health care, and patient health. We abstracted data on study design, setting, population, clinical area, outcomes, mediators, and presence of disparity for each outcome category. We grouped the data by population characteristics including race, disability status, mental illness, demographics (age, era of service, rural location, and distance from care), sex identity, socioeconomic status, and homelessness, and created maps illustrating the evidence. We reviewed 4249 citations and abstracted data from 351 studies which met inclusion criteria. Studies examining disparities by race/ethnicity comprised by far the vast majority of the literature, followed by studies examining disparities by sex, and mental health condition. Very few studies examined disparities related to lesbian, gay, bisexual, or transgender identity or homelessness. Disparities findings vary widely by population and outcome. Our evidence maps provide a "lay of the land" and identify important gaps in knowledge about health disparities experienced by different Veteran populations.

  1. Counties eliminating racial disparities in colorectal cancer mortality.

    Science.gov (United States)

    Rust, George; Zhang, Shun; Yu, Zhongyuan; Caplan, Lee; Jain, Sanjay; Ayer, Turgay; McRoy, Luceta; Levine, Robert S

    2016-06-01

    Although colorectal cancer (CRC) mortality rates are declining, racial-ethnic disparities in CRC mortality nationally are widening. Herein, the authors attempted to identify county-level variations in this pattern, and to characterize counties with improving disparity trends. The authors examined 20-year trends in US county-level black-white disparities in CRC age-adjusted mortality rates during the study period between 1989 and 2010. Using a mixed linear model, counties were grouped into mutually exclusive patterns of black-white racial disparity trends in age-adjusted CRC mortality across 20 three-year rolling average data points. County-level characteristics from census data and from the Area Health Resources File were normalized and entered into a principal component analysis. Multinomial logistic regression models were used to test the relation between these factors (clusters of related contextual variables) and the disparity trend pattern group for each county. Counties were grouped into 4 disparity trend pattern groups: 1) persistent disparity (parallel black and white trend lines); 2) diverging (widening disparity); 3) sustained equality; and 4) converging (moving from disparate outcomes toward equality). The initial principal component analysis clustered the 82 independent variables into a smaller number of components, 6 of which explained 47% of the county-level variation in disparity trend patterns. County-level variation in social determinants, health care workforce, and health systems all were found to contribute to variations in cancer mortality disparity trend patterns from 1990 through 2010. Counties sustaining equality over time or moving from disparities to equality in cancer mortality suggest that disparities are not inevitable, and provide hope that more communities can achieve optimal and equitable cancer outcomes for all. Cancer 2016;122:1735-48. © 2016 American Cancer Society. © 2016 American Cancer Society.

  2. Analysis of T-786C and 4a/b endothelial nitric oxide synthase gene polymorphisms in retinopathy of prematurity

    Directory of Open Access Journals (Sweden)

    Pantelić Jelica R.

    2016-01-01

    Full Text Available Retinopathy of prematurity (ROP is a vascular proliferative disorder of retina, that causes visual impairment in premature children. Beside well known risk factors such as short gestational age, low birth weight and early oxygen exposure, genetic susceptibility is considered as a risk factor for development of the disease. The aim of our study was to explore the association of T-786C and 4a/b eNOS gene polymorphisms with the development of severe ROP. Study included 174 preterm infants, 84 with ROP and 90 as a control group. No differences have been observed in genotypes and alleles distributions of eNOS T-786C and eNOS 4a/b polymorphisms between two analyzed groups. There was significant difference in female infants by dominant model for 4a/b genotypes (4bb/4ba+4aa. Namely, female infants in ROP group were more frequently carriers of 4ba and 4aa genotypes than female infants in control group (p=0.037. Analysis of association between 4a/b eNOS polymorphism and ROP among preterm infants have not shown statistically significant association (p=0.288. Gestational age values by recessive model (4bb+4ba/4aa were significantly lower in infants with 4aa genotype (t=2.034 p=0.044. Almost all detected 4aa genotypes were present in the group of infants with gestational age under 30 weeks (p=0.032, but multivariate linear regression analysis does not show association of 4a/b genotypes with gestational age of premature infants. According to results of the present study T-786C and 4a/b polymorphisms of the eNOS gene may not be the risk factors for the manifestation of severe ROP in Serbian infants. [Projekat Ministarstva nauke Republike Srbije, br. 175091

  3. Mutation in HFE gene decreases manganese accumulation and oxidative stress in the brain after olfactory manganese exposure.

    Science.gov (United States)

    Ye, Qi; Kim, Jonghan

    2016-06-01

    Increased accumulation of manganese (Mn) in the brain is significantly associated with neurobehavioral deficits and impaired brain function. Airborne Mn has a high systemic bioavailability and can be directly taken up into the brain, making it highly neurotoxic. While Mn transport is in part mediated by several iron transporters, the expression of these transporters is altered by the iron regulatory gene, HFE. Mutations in the HFE gene are the major cause of the iron overload disorder, hereditary hemochromatosis, one of the prevalent genetic diseases in humans. However, whether or not HFE mutation modifies Mn-induced neurotoxicity has not been evaluated. Therefore, our goal was to define the role of HFE mutation in Mn deposition in the brain and the resultant neurotoxic effects after olfactory Mn exposure. Mice carrying the H67D HFE mutation, which is homologous to the H63D mutation in humans, and their control, wild-type mice, were intranasally instilled with MnCl2 with different doses (0, 0.2, 1.0 and 5.0 mg kg(-1)) daily for 3 days. Mn levels in the blood, liver and brain were determined using inductively-coupled plasma mass spectrometry (ICP-MS). H67D mutant mice showed significantly lower Mn levels in the blood, liver, and most brain regions, especially in the striatum, while mice fed an iron-overload diet did not. Moreover, mRNA expression of ferroportin, an essential exporter of iron and Mn, was up-regulated in the striatum. In addition, the levels of isoprostane, a marker of lipid peroxidation, were increased in the striatum after Mn exposure in wild-type mice, but were unchanged in H67D mice. Together, our results suggest that the H67D mutation provides decreased susceptibility to Mn accumulation in the brain and neurotoxicity induced by inhaled Mn.

  4. Influences for Gender Disparity in Academic Neuroradiology.

    Science.gov (United States)

    Ahmadi, M; Khurshid, K; Sanelli, P C; Jalal, S; Chahal, T; Norbash, A; Nicolaou, S; Castillo, M; Khosa, F

    2018-01-01

    There has been extensive interest in promoting gender equality within radiology, a predominately male field. In this study, our aim was to quantify gender representation in neuroradiology faculty rankings and determine any related factors that may contribute to any such disparity. We evaluated the academic and administrative faculty members of neuroradiology divisions for all on-line listed programs in the US and Canada. After excluding programs that did not fulfill our selection criteria, we generated a short list of 85 US and 8 Canadian programs. We found 465 faculty members who met the inclusion criteria for our study. We used Elsevier's SCOPUS for gathering the data pertaining to the publications, H-index, citations, and tenure of the productivity of each faculty member. Gender disparity was insignificant when analyzing academic ranks. There are more men working in neuroimaging relative to women (χ 2 = 0.46; P = .79). However, gender disparity was highly significant for leadership positions in neuroradiology (χ 2 = 6.76; P = .009). The median H-index was higher among male faculty members (17.5) versus female faculty members (9). Female faculty members have odds of 0.84 compared with male faculty members of having a higher H-index, adjusting for publications, citations, academic ranks, leadership ranks, and interaction between gender and publications and gender and citations (9). Neuroradiology faculty members follow the same male predominance seen in many other specialties of medicine. In this study, issues such as mentoring, role models, opportunities to engage in leadership/research activities, funding opportunities, and mindfulness regarding research productivity are explored. © 2018 by American Journal of Neuroradiology.

  5. Decomposing Racial Disparities in Obesity Prevalence

    Science.gov (United States)

    Singleton, Chelsea R.; Affuso, Olivia; Sen, Bisakha

    2015-01-01

    Introduction Racial disparities in obesity exist at the individual and community levels. Retail food environment has been hypothesized to be associated with racial disparities in obesity prevalence. This study aimed to quantify how much food environment measures explain racial disparities in obesity at the county level. Methods Data from 2009 to 2010 on 3,135 U.S. counties were extracted from the U.S. Department of Agriculture Food Environment Atlas and the Behavioral Risk Factor Surveillance System and analyzed in 2013. Oaxaca–Blinder decomposition was used to quantify the portion of the gap in adult obesity prevalence observed between counties with a high and low proportion of African American residents is explained by food environment measures (e.g., proximity to grocery stores, per capita fast food restaurants). Counties were considered to have a high African American population if the percentage of African American residents was >13.1%, which represents the 2010 U.S. Census national estimate of percentage African American citizens. Results There were 665 counties (21%) classified as a high African American county. The total gap in mean adult obesity prevalence between high and low African American counties was found to be 3.35 percentage points (32.98% vs 29.63%). Retail food environment measures explained 13.81% of the gap in mean age-adjusted adult obesity prevalence. Conclusions Retail food environment explains a proportion of the gap in adult obesity prevalence observed between counties with a high proportion of African American residents and counties with a low proportion of African American residents. PMID:26507301

  6. Comprehensive Neighborhood Portraits and Child Asthma Disparities.

    Science.gov (United States)

    Kranjac, Ashley W; Kimbro, Rachel T; Denney, Justin T; Osiecki, Kristin M; Moffett, Brady S; Lopez, Keila N

    2017-07-01

    Objectives Previous research has established links between child, family, and neighborhood disadvantages and child asthma. We add to this literature by first characterizing neighborhoods in Houston, TX by demographic, economic, and air quality characteristics to establish differences in pediatric asthma diagnoses across neighborhoods. Second, we identify the relative risk of social, economic, and environmental risk factors for child asthma diagnoses. Methods We geocoded and linked electronic pediatric medical records to neighborhood-level social and economic indicators. Using latent profile modeling techniques, we identified Advantaged, Middle-class, and Disadvantaged neighborhoods. We then used a modified version of the Blinder-Oaxaca regression decomposition method to examine differences in asthma diagnoses across children in these different neighborhoods. Results Both compositional (the characteristics of the children and the ambient air quality in the neighborhood) and associational (the relationship between child and air quality characteristics and asthma) differences within the distinctive neighborhood contexts influence asthma outcomes. For example, unequal exposure to PM 2.5 and O 3 among children in Disadvantaged and Middle-class neighborhoods contribute to asthma diagnosis disparities within these contexts. For children in Disadvantaged and Advantaged neighborhoods, associational differences between racial/ethnic and socioeconomic characteristics and asthma diagnoses explain a significant proportion of the gap. Conclusions for Practice Our results provide evidence that differential exposure to pollution and protective factors associated with non-Hispanic White children and children from affluent families contribute to asthma disparities between neighborhoods. Future researchers should consider social and racial inequalities as more proximate drivers, not merely as associated, with asthma disparities in children.

  7. Long-term nutrient addition differentially alters community composition and diversity of genes that control nitrous oxide flux from salt marsh sediments

    Science.gov (United States)

    Kearns, Patrick J.; Angell, John H.; Feinman, Sarah G.; Bowen, Jennifer L.

    2015-03-01

    Enrichment of natural waters, soils, and sediments by inorganic nutrients, including nitrogen, is occurring at an increasing rate and has fundamentally altered global biogeochemical cycles. Salt marshes are critical for the removal of land-derived nitrogen before it enters coastal waters. This is accomplished via multiple microbially mediated pathways, including denitrification. Many of these pathways, however, are also a source of the greenhouse gas nitrous oxide (N2O). We used clone libraries and quantative PCR (qPCR) to examine the effect of fertilization on the diversity and abundance of two functional genes associated with denitrification and N2O production (norB and nosZ) in experimental plots at the Great Sippewissett Salt Marsh (Falmouth, MA, USA) that have been enriched with nutrients for over 40 years. Our data showed distinct nosZ and norB community structures at different nitrogen loads, especially at the highest level of fertilization. Furthermore, calculations of the Shannon Diversity Index and Chao1 Richness Estimator indicated that nosZ gene diversity and richness increased with increased nitrogen supply, however no such relationship existed with regard to richness and diversity of the norB gene. Results from qPCR demonstrated that nosZ gene abundance was an order of magnitude lower in the extra-highly fertilized plots compared to the other plots, but the abundance of norB was not affected by fertilization. The majority of sequences obtained from the marsh plots had no close cultured relatives and they were divergent from previously sequenced norB and nosZ fragments. Despite their divergence from any cultured representatives, most of the norB and nosZ sequences appeared to be from members of the Alpha- and Betaproteobacteria, suggesting that these classes are particularly important in salt marsh nitrogen cycling. Our results suggest that both norB and nosZ containing microbes are affected by fertilization and that the Great Sippewissett Marsh may

  8. Oxidative stress provokes distinct transcriptional responses in the stress-tolerant atr7 and stress-sensitive loh2 Arabidopsis thaliana mutants as revealed by multi-parallel quantitative real-time PCR analysis of ROS marker and antioxidant genes.

    Science.gov (United States)

    Mehterov, Nikolay; Balazadeh, Salma; Hille, Jacques; Toneva, Valentina; Mueller-Roeber, Bernd; Gechev, Tsanko

    2012-10-01

    The Arabidopsis thaliana atr7 mutant is tolerant to oxidative stress induced by paraquat (PQ) or the catalase inhibitor aminotriazole (AT), while its original background loh2 and wild-type plants are sensitive. Both, AT and PQ, which stimulate the intracellular formation of H₂O₂ or superoxide anions, respectively, trigger cell death in loh2 but do not lead to visible damage in atr7. To study gene expression during oxidative stress and ROS-induced programmed cell death, two platforms for multi-parallel quantitative real-time PCR (qRT-PCR) analysis of 217 antioxidant and 180 ROS marker genes were employed. The qRT-PCR analyses revealed AT- and PQ-induced expression of many ROS-responsive genes mainly in loh2, confirming that an oxidative burst plays a role in the activation of the cell death in this mutant. Some of the genes were specifically regulated by either AT or PQ, serving as markers for particular types of ROS. Genes significantly induced by both AT and PQ in loh2 included transcription factors (ANAC042/JUB1, ANAC102, DREB19, HSFA2, RRTF1, ZAT10, ZAT12, ethylene-responsive factors), signaling compounds, ferritins, alternative oxidases, and antioxidant enzymes. Many of these genes were upregulated in atr7 compared to loh2 under non-stress conditions at the first time point, indicating that higher basal levels of ROS and higher antioxidant capacity in atr7 are responsible for the enhanced tolerance to oxidative stress and suggesting a possible tolerance against multiple stresses of this mutant. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  9. Disparity modifications and the emotional effects of stereoscopic images

    Science.gov (United States)

    Kawai, Takashi; Atsuta, Daiki; Tomiyama, Yuya; Kim, Sanghyun; Morikawa, Hiroyuki; Mitsuya, Reiko; Häkkinen, Jukka

    2014-03-01

    This paper describes a study that focuses on disparity changes in emotional scenes of stereoscopic (3D) images, in which an examination of the effects on pleasant and arousal was carried out by adding binocular disparity to 2D images that evoke specific emotions, and applying disparity modification based on the disparity analysis of famous 3D movies. From the results of the experiment, for pleasant, a significant difference was found only for the main effect of the emotions. On the other hand, for arousal, there was a trend of increasing the evaluation values in the order 2D condition, 3D condition and 3D condition applied the disparity modification for happiness, surprise, and fear. This suggests the possibility that binocular disparity and the modification affect arousal.

  10. Association of polymorphisms in FADS gene with age-related changes in serum phospholipid polyunsaturated fatty acids and oxidative stress markers in middle-aged nonobese men

    Directory of Open Access Journals (Sweden)

    Hong SH

    2013-05-01

    Full Text Available Seul Hee Hong,1,* Jung Hyun Kwak,2,* Jean Kyung Paik,3 Jey Sook Chae,2 Jong Ho Lee1,21National Research Laboratory for Clinical Nutrigenetics/Nutrigenomics, 2Research Institute of Science for Aging, Yonsei University, Seoul, South Korea; 3Department of Food and Nutrition, Eulji University, Gyeonggi-do, South Korea *These authors contributed equally to this workBackground: To investigate the association of FADS gene polymorphisms with age-related changes in polyunsaturated fatty acids (PUFAs in serum phospholipids and oxidative stress markers.Methods: We genotyped 122 nonobese men aged 35–59 years without any known diseases at baseline for rs174537 near FADS1 (FEN1 rs174537G > T, FADS2 (rs174575, rs2727270, and FADS3 (rs1000778, and followed them for 3 years.Results: Among the four single-nucleotide polymorphisms, the minor variants of rs174537 and rs2727270 were significantly associated with lower concentrations of long-chain PUFAs. However, rs174537G > T showed stronger association. At baseline, men with the rs174537T allele had lower arachidonic acid (AA and AA/linoleic acid (LA, and higher interleukin (IL-6 levels than rs174537GG counterparts. After 3 years, rs174537GG men had significantly increased AA (P = 0.022, AA/dihomo-γ-linolenic acid (DGLA (P = 0.007, docosapentaenoic acid (DPA, low-density lipoprotein (LDL cholesterol, and oxidized LDL (ox-LDL, but decreased eicosatrienoic acid. The rs174537T group showed significantly increased γ-linolenic acid and ox-LDL, and decreased eicosadienoic acid, eicosapentaenoic acid (EPA/α-linolenic acid (ALA, and IL-6. After 3 years, the rs174537T group had lower AA (P < 0.001, AA/DGLA (P = 0.019, EPA, DPA, EPA/ALA, and urinary 8-epi-prostaglandin F2α (8-epi-PGF2α (P = 0.011 than rs174537GG. Changes in AA (P = 0.001, AA/DGLA (P = 0.017, EPA, DPA, EPA/ALA, and urinary 8-epi-PGF2α (P < 0.001 were significantly different between the groups after adjusting for baseline values. Overall, changes in AA

  11. Foreword: Big Data and Its Application in Health Disparities Research.

    Science.gov (United States)

    Onukwugha, Eberechukwu; Duru, O Kenrik; Peprah, Emmanuel

    2017-01-01

    The articles presented in this special issue advance the conversation by describing the current efforts, findings and concerns related to Big Data and health disparities. They offer important recommendations and perspectives to consider when designing systems that can usefully leverage Big Data to reduce health disparities. We hope that ongoing Big Data efforts can build on these contributions to advance the conversation, address our embedded assumptions, and identify levers for action to reduce health care disparities.

  12. Functionalized graphene oxide mediated adriamycin delivery and miR-21 gene silencing to overcome tumor multidrug resistance in vitro.

    Directory of Open Access Journals (Sweden)

    Feng Zhi

    Full Text Available Multidrug resistance (MDR is a major impediment to successful cancer chemotherapy. Co-delivery of novel MDR-reversing agents and anticancer drugs to cancer cells holds great promise for cancer treatment. MicroRNA-21 (miR-21 overexpression is associated with the development and progression of MDR in breast cancer, and it is emerging as a novel and promising MDR-reversing target. In this study, a multifunctional nanocomplex, composed of polyethylenimine (PEI/poly(sodium 4-styrenesulfonates (PSS/graphene oxide (GO and termed PPG, was prepared using the layer-by-layer assembly method to evaluate the reversal effects of PPG as a carrier for adriamycin (ADR along with miR-21 targeted siRNA (anti-miR-21 in cancer drug resistance. ADR was firstly loaded onto the PPG surface (PPGADR by physical mixing and anti-miR-21 was sequentially loaded onto PPGADR through electric absorption to form (anti-miR-21PPGADR. Cell experiments showed that PPG significantly enhanced the accumulation of ADR in MCF-7/ADR cells (an ADR resistant breast cancer cell line and exhibited much higher cytotoxicity than free ADR, suggesting that PPG could effectively reverse ADR resistance of MCF-7/ADR. Furthermore, the enhanced therapeutic efficacy of PPG could be correlated with effective silencing of miR-21 and with increased accumulation of ADR in drug-resistant tumor cells. The endocytosis study confirmed that PPG could effectively carry drug molecules into cells via the caveolae and clathrin-mediated endocytosis pathways. These results suggest that this PPG could be a potential and efficient non-viral vector for reversing MDR, and the strategy of combining anticancer drugs with miRNA therapy to overcome MDR could be an attractive approach in cancer treatment.

  13. Effects of rice bran on performance, egg quality, oxidative status, yolk fatty acid composition, and fatty acid metabolism-related gene expression in laying ducks.

    Science.gov (United States)

    Ruan, D; Lin, Y C; Chen, W; Wang, S; Xia, W G; Fouad, A M; Zheng, C T

    2015-12-01

    The study was designed to evaluate the effects of different dietary levels of rice bran (RB) in laying duck diets on performance, egg quality, oxidation status, egg yolk fatty acid composition, and hepatic expression of fatty acid metabolism-related genes. Longyan females (1080) with similar BW at 19 wk of age were randomly assigned to 6 dietary treatments, each consisting of 6 replicates of 30 birds. The basal diet (I) was a typical corn-soybean ration while the experimental diets (II to VI) substituted RB for corn and wheat bran and a small reduction of soybean meal. The level of substitution in diets (II to VI) was 6%, 12%, 18%, 24%, and 30%, respectively. The experiment lasted for 12 wks. Average egg weight and daily egg mass decreased linearly as the level of RB inclusion increased (Pegg yolk linearly decreased with increasing RB, and many of the key polyunsaturated fatty acids (PUFA), like C18:2 n-6 and C18:3 n-3, linearly increased (Pegg yolk cholesterol or triglyceride content (P>0.05). In conclusion, the current study suggests that ducks from 19 to 31 wk could be fed diets with up to about 18% RB without effect on the number of eggs produced, egg quality, and oxidative status. Increasing amounts of RB linearly increased egg yolk concentrations of key fatty acids like C18:2 n-6 and C18:3 n-3 and decreased the hepatic abundance of FAS and SREBP-1 transcripts. © 2015 Poultry Science Association Inc.

  14. Rural Urban Disparity in and around Surabaya Region, Indonesia

    Directory of Open Access Journals (Sweden)

    Vely Kukinul Siswanto

    2014-12-01

    Full Text Available A shift in development towards the outskirts of urban areas changes the characteristics of the region and can ultimately lead to urban disparities in economic and social terms. The current study has tried to divide the study area covers the areas of surrounding Surabaya as urban, peri urban and rural areas with reference to three time periods (2008, 2009 and 2010 and shows that the typology in the study area changes each year. Furthermore, based on the theil index analysis, using a number of pre-prosperous household for social disparity and per capita GDP (Gross Domestic Product for economic disparity shows that urban and peri urban areas have medium and high level of social and economic disparity compare with rural area which have low levels of disparity. Through multivariate correlation analysis can be seen that the health center distance, electricity and water users effecting the social disparity. Moreover, the financial, industrial, electricity, trade, construction, transportation, agriculture, and mining sector's productivity have a significant relationship with the economic disparity. Health facilities, water and electricity improvement strategies to be followed for reducing the social disparity. Electricity improvement, water, services sector, transportation infrastructure, and industrial development to reduce the economic disparity.

  15. Global stereo matching algorithm based on disparity range estimation

    Science.gov (United States)

    Li, Jing; Zhao, Hong; Gu, Feifei

    2017-09-01

    The global stereo matching algorithms are of high accuracy for the estimation of disparity map, but the time-consuming in the optimization process still faces a curse, especially for the image pairs with high resolution and large baseline setting. To improve the computational efficiency of the global algorithms, a disparity range estimation scheme for the global stereo matching is proposed to estimate the disparity map of rectified stereo images in this paper. The projective geometry in a parallel binocular stereo vision is investigated to reveal a relationship between two disparities at each pixel in the rectified stereo images with different baselines, which can be used to quickly obtain a predicted disparity map in a long baseline setting estimated by that in the small one. Then, the drastically reduced disparity ranges at each pixel under a long baseline setting can be determined by the predicted disparity map. Furthermore, the disparity range estimation scheme is introduced into the graph cuts with expansion moves to estimate the precise disparity map, which can greatly save the cost of computing without loss of accuracy in the stereo matching, especially for the dense global stereo matching, compared to the traditional algorithm. Experimental results with the Middlebury stereo datasets are presented to demonstrate the validity and efficiency of the proposed algorithm.

  16. The Academic Advantage: Gender Disparities in Patenting

    Science.gov (United States)

    Sugimoto, Cassidy R.; Ni, Chaoqun; West, Jevin D.; Larivière, Vincent

    2015-01-01

    We analyzed gender disparities in patenting by country, technological area, and type of assignee using the 4.6 million utility patents issued between 1976 and 2013 by the United States Patent and Trade Office (USPTO). Our analyses of fractionalized inventorships demonstrate that women’s rate of patenting has increased from 2.7% of total patenting activity to 10.8% over the nearly 40-year period. Our results show that, in every technological area, female patenting is proportionally more likely to occur in academic institutions than in corporate or government environments. However, women’s patents have a lower technological impact than that of men, and that gap is wider in the case of academic patents. We also provide evidence that patents to which women—and in particular academic women—contributed are associated with a higher number of International Patent Classification (IPC) codes and co-inventors than men. The policy implications of these disparities and academic setting advantages are discussed. PMID:26017626

  17. Neighborhood Disparities in the Restaurant Food Environment.

    Science.gov (United States)

    Martinez-Donate, Ana P; Espino, Jennifer Valdivia; Meinen, Amy; Escaron, Anne L; Roubal, Anne; Nieto, Javier; Malecki, Kristen

    2016-11-01

    Restaurant meals account for a significant portion of the American diet. Investigating disparities in the restaurant food environment can inform targeted interventions to increase opportunities for healthy eating among those who need them most. To examine neighborhood disparities in restaurant density and the nutrition environment within restaurants among a statewide sample of Wisconsin households. Households (N = 259) were selected from the 2009-2010 Survey of the Health of Wisconsin (SHOW), a population-based survey of Wisconsin adults. Restaurants in the household neighborhood were enumerated and audited using the Nutrition Environment Measures Survey for Restaurants (NEMS-R). Neighborhoods were defined as a 2- and 5-mile street-distance buffer around households in urban and non-urban areas, respectively. Adjusted linear regression models identified independent associations between sociodemographic household characteristics and neighborhood restaurant density and nutrition environment scores. On average, each neighborhood contained approximately 26 restaurants. On average, restaurants obtained 36.1% of the total nutrition environment points. After adjusting for household characteristics, higher restaurant density was associated with both younger and older household average age (P restaurant food environment in Wisconsin neighborhoods varies by age, race, and urbanicity, but offers ample room for improvement across socioeconomic groups and urbanicity levels. Future research must identify policy and environmental interventions to promote healthy eating in all restaurants, especially in young and/or rural neighborhoods in Wisconsin.

  18. The academic advantage: gender disparities in patenting.

    Directory of Open Access Journals (Sweden)

    Cassidy R Sugimoto

    Full Text Available We analyzed gender disparities in patenting by country, technological area, and type of assignee using the 4.6 million utility patents issued between 1976 and 2013 by the United States Patent and Trade Office (USPTO. Our analyses of fractionalized inventorships demonstrate that women's rate of patenting has increased from 2.7% of total patenting activity to 10.8% over the nearly 40-year period. Our results show that, in every technological area, female patenting is proportionally more likely to occur in academic institutions than in corporate or government environments. However, women's patents have a lower technological impact than that of men, and that gap is wider in the case of academic patents. We also provide evidence that patents to which women--and in particular academic women--contributed are associated with a higher number of International Patent Classification (IPC codes and co-inventors than men. The policy implications of these disparities and academic setting advantages are discussed.

  19. Effects of dietary supplementation of lipid-coated zinc oxide on intestinal mucosal morphology and expression of the genes associated with growth and immune function in weanling pigs

    Directory of Open Access Journals (Sweden)

    Young Min Song

    2018-03-01

    Full Text Available Objective The present study was conducted to investigate the effects of a lipid-coated zinc oxide (ZnO supplement Shield Zn (SZ at the sub-pharmacological concentration on intestinal morphology and gene expression in weanling pigs, with an aim to gain insights into the mechanism of actions for SZ. Methods Forty 22-day-old weanling pigs were fed a nursery diet supplemented with 100 or 2,500 mg Zn/kg with uncoated ZnO (negative control [NC] or positive control [PC], respectively, 100, 200, or 400 mg Zn/kg with SZ for 14 days and their intestinal tissues were taken for histological and molecular biological examinations. The villus height (VH and crypt depth (CD of the intestinal mucosa were measured microscopically following preparation of the tissue specimen; expression of the genes associated with growth and immune function was determined using the real-time quantitative polymerase chain reaction. Results There was no difference in daily gain, gain:feed, and diarrhea score between the SZ group and either of NC and PC. The VH and VH:CD ratio were less for the SZ group vs NC in the jejunum and duodenum, respectively (p<0.05. The jejunal mucosal mRNA levels of insulin-like growth factor (IGF-I and interleukin (IL-10 regressed and tended to regress (p = 0.053 on the SZ concentration with a positive coefficient, respectively, whereas the IL-6 mRNA level regressed on the SZ concentration with a negative coefficient. The mRNA levels of IGF-I, zonula occludens protein-1, tumor necrosis factor-α, IL-6, and IL-10 did not differ between the SZ group and either of NC and PC; the occludin and transforming growth factor-β1 mRNA levels were lower for the SZ group than for PC. Conclusion The present results are interpreted to suggest that dietary ZnO provided by SZ may play a role in intestinal mucosal growth and immune function by modulating the expression of IGF-I, IL-6, and IL-10 genes.

  20. 78 FR 35837 - National Institute on Minority Health and Health Disparities Research Endowments

    Science.gov (United States)

    2013-06-14

    ... disparities research to close the disparity gap in the burden of illness and death experienced by racial and... Number NIH-2007-0931] RIN 0925-AA61 National Institute on Minority Health and Health Disparities Research... disparities research and other health disparities research. DATES: Comments must be received on or before...

  1. The Role of −786T/C Polymorphism in the Endothelial Nitric Oxide Synthase Gene in Males with Clinical and Biochemical Features of the Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Blazej Misiak

    2011-01-01

    Full Text Available Background. Extensive evidence, arising from models of endothelial nitric oxide synthase gene (NOS3-knockout mice supports the role of endothelial malfunction in the pathogenesis of the metabolic syndrome (MS. Aims. The aim of this study was to evaluate the role of −786T/C polymorphism in the etiology of MS and assess previously reported interaction with cigarette smoking. Methods. Based on International Diabetes Federation 2005 criteria, we recruited randomly 152 subjects with MS and 75 subjects without MS. Results. Allelic and genotype frequencies did not differ significantly between both groups. Total cholesterol level (CHOLT and intima-media thickness of carotid arteries were significantly higher in −786CC homozygotes, in comparison with −786TC and −786TT patients. Regarding current smoking status, −786C allele was associated with higher CHOLT than −786T allele. Conclusion. Our study indicates the putative role of −786T/C polymorphism in the development of hypercholesterolemia, in patients with MS, which might be enhanced by cigarette smoking.

  2. The Role of −786T/C Polymorphism in the Endothelial Nitric Oxide Synthase Gene in Males with Clinical and Biochemical Features of the Metabolic Syndrome

    Science.gov (United States)

    Misiak, Blazej; Krolik, Marta; Kukowka, Anna; Lewera, Anna; Leszczynski, Przemyslaw; Stankiewicz-Olczyk, Joanna; Slezak, Ryszard

    2011-01-01

    Background. Extensive evidence, arising from models of endothelial nitric oxide synthase gene (NOS3)-knockout mice supports the role of endothelial malfunction in the pathogenesis of the metabolic syndrome (MS). Aims. The aim of this study was to evaluate the role of −786T/C polymorphism in the etiology of MS and assess previously reported interaction with cigarette smoking. Methods. Based on International Diabetes Federation 2005 criteria, we recruited randomly 152 subjects with MS and 75 subjects without MS. Results. Allelic and genotype frequencies did not differ significantly between both groups. Total cholesterol level (CHOLT) and intima-media thickness of carotid arteries were significantly higher in −786CC homozygotes, in comparison with −786TC and −786TT patients. Regarding current smoking status, −786C allele was associated with higher CHOLT than −786T allele. Conclusion. Our study indicates the putative role of −786T/C polymorphism in the development of hypercholesterolemia, in patients with MS, which might be enhanced by cigarette smoking. PMID:22164159

  3. The Role of -786T/C Polymorphism in the Endothelial Nitric Oxide Synthase Gene in Males with Clinical and Biochemical Features of the Metabolic Syndrome.

    Science.gov (United States)

    Misiak, Blazej; Krolik, Marta; Kukowka, Anna; Lewera, Anna; Leszczynski, Przemyslaw; Stankiewicz-Olczyk, Joanna; Slezak, Ryszard

    2011-01-01

    Background. Extensive evidence, arising from models of endothelial nitric oxide synthase gene (NOS3)-knockout mice supports the role of endothelial malfunction in the pathogenesis of the metabolic syndrome (MS). Aims. The aim of this study was to evaluate the role of -786T/C polymorphism in the etiology of MS and assess previously reported interaction with cigarette smoking. Methods. Based on International Diabetes Federation 2005 criteria, we recruited randomly 152 subjects with MS and 75 subjects without MS. Results. Allelic and genotype frequencies did not differ significantly between both groups. Total cholesterol level (CHOLT) and intima-media thickness of carotid arteries were significantly higher in -786CC homozygotes, in comparison with -786TC and -786TT patients. Regarding current smoking status, -786C allele was associated with higher CHOLT than -786T allele. Conclusion. Our study indicates the putative role of -786T/C polymorphism in the development of hypercholesterolemia, in patients with MS, which might be enhanced by cigarette smoking.

  4. Inhibitors of Fatty Acid Synthesis Induce PPAR α -Regulated Fatty Acid β -Oxidative Genes: Synergistic Roles of L-FABP and Glucose.

    Science.gov (United States)

    Huang, Huan; McIntosh, Avery L; Martin, Gregory G; Petrescu, Anca D; Landrock, Kerstin K; Landrock, Danilo; Kier, Ann B; Schroeder, Friedhelm

    2013-01-01

    While TOFA (acetyl CoA carboxylase inhibitor) and C75 (fatty acid synthase inhibitor) prevent lipid accumulation by inhibiting fatty acid synthesis, the mechanism of action is not simply accounted for by inhibition of the enzymes alone. Liver fatty acid binding protein (L-FABP), a mediator of long chain fatty acid signaling to peroxisome proliferator-activated receptor- α (PPAR α ) in the nucleus, was found to bind TOFA and its activated CoA thioester, TOFyl-CoA, with high affinity while binding C75 and C75-CoA with lower affinity. Binding of TOFA and C75-CoA significantly altered L-FABP secondary structure. High (20 mM) but not physiological (6 mM) glucose conferred on both TOFA and C75 the ability to induce PPAR α transcription of the fatty acid β -oxidative enzymes CPT1A, CPT2, and ACOX1 in cultured primary hepatocytes from wild-type (WT) mice. However, L-FABP gene ablation abolished the effects of TOFA and C75 in the context of high glucose. These effects were not associated with an increased cellular level of unesterified fatty acids but rather by increased intracellular glucose. These findings suggested that L-FABP may function as an intracellular fatty acid synthesis inhibitor binding protein facilitating TOFA and C75-mediated induction of PPAR α in the context of high glucose at levels similar to those in uncontrolled diabetes.

  5. Prevention of stress- or nitric oxide donor-induced medication overuse headache by a calcitonin gene-related peptide antibody in rodents.

    Science.gov (United States)

    Kopruszinski, Caroline Machado; Xie, Jennifer Yanhua; Eyde, Nathan Mackenzie; Remeniuk, Bethany; Walter, Sarah; Stratton, Jennifer; Bigal, Marcelo; Chichorro, Juliana Geremias; Dodick, David; Porreca, Frank

    2017-05-01

    Objective The objective of this study was the determination of the role of calcitonin gene-related peptide (CGRP) in the induction of medication overuse headache (MOH)-related migraine in an injury-free preclinical model. Methods Rats were primed by a 7-day period of exposure to acute migraine therapies including sumatriptan and morphine. After an additional 14-day drug-free period, rats were exposed to putative migraine triggers including bright light stress (BLS) or nitric oxide (NO) donor in the presence or absence of TEV48125, a fully humanized CGRP antibody. Cutaneous allodynia (CA) was used as an outcome measure and CGRP blood and cerebrospinal fluid (CSF) levels were measured. Results BLS and NO donor challenge evoked delayed, long-lasting CA selectively in rats that were previously treated with sumatriptan or morphine. BLS produced a significant increase in CGRP in the plasma, but not CSF, in animals that were previously exposed to sumatriptan compared to saline controls. TEV48125 did not modify baseline tactile thresholds or produce behavioral side effects, but significantly inhibited both BLS- and NO donor-induced CA in animals that were previously primed with sumatriptan or morphine; an isotype control protein that does not bind CGRP had no effect. Interpretation These data suggest that acute migraine medications may promote MOH in susceptible individuals through CGRP-dependent mechanisms and that anti-CGRP antibodies may be a useful clinical strategy for the treatment of MOH.

  6. Black-white preterm birth disparity: a marker of inequality

    Science.gov (United States)

    Purpose. The racial disparity in preterrn birth (PTB) is a persistent feature of perinatal epidemiology, inconsistently modeled in the literature. Rather than include race as an explanatory variable, or employ race-stratified models, we sought to directly model the PTB disparity ...

  7. Challenges for Multilevel Health Disparities Research in a Transdisciplinary Environment

    Science.gov (United States)

    Holmes, John H.; Lehman, Amy; Hade, Erinn; Ferketich, Amy K.; Sarah, Gehlert; Rauscher, Garth H.; Abrams, Judith; Bird, Chloe E.

    2008-01-01

    Numerous factors play a part in health disparities. Although health disparities are manifested at the level of the individual, other contexts should be considered when investigating the associations of disparities with clinical outcomes. These contexts include families, neighborhoods, social organizations, and healthcare facilities. This paper reports on health disparities research as a multilevel research domain from the perspective of a large national initiative. The Centers for Population Health and Health Disparities (CPHHD) program was established by the NIH to examine the highly dimensional, complex nature of disparities and their effects on health. Because of its inherently transdisciplinary nature, the CPHHD program provides a unique environment in which to perform multilevel health disparities research. During the course of the program, the CPHHD centers have experienced challenges specific to this type of research. The challenges were categorized along three axes: sources of subjects and data, data characteristics, and multilevel analysis and interpretation. The CPHHDs collectively offer a unique example of how these challenges are met; just as importantly, they reveal a broad range of issues that health disparities researchers should consider as they pursue transdisciplinary investigations in this domain, particularly in the context of a large team science initiative. PMID:18619398

  8. Poverty and elimination of urban health disparities: challenge and opportunity.

    Science.gov (United States)

    Thomas, Stephen B; Quinn, Sandra Crouse

    2008-01-01

    The aim of this article is to examine the intersection of race and poverty, two critical factors fueling persistent racial and ethnic health disparities among urban populations. From the morass of social determinants that shape the health of racial and ethnic communities in our urban centers, we will offer promising practices and potential solutions to eliminating racial and ethnic health disparities.

  9. Male/Female Salary Disparity for Professors of Educational Administration.

    Science.gov (United States)

    Pounder, Diana G.

    The earnings gap between male and female workers across all occupational groups has been well documented; full-time women workers earn, on average, approximately 65 percent of men's salaries. Although male/female salary disparity is largest across occupational groups, salary disparity within occupational groups still prevails. For example, the…

  10. Disparities in abortion experience and access to safe abortion ...

    African Journals Online (AJOL)

    In Ghana, abortion mortality constitutes 11% of maternal mortality. Empirical studies on possible disparities in abortion experience and access to safe abortion services are however lacking. Based on a retrospective survey of 1,370 women aged 15-49 years in two districts in Ghana, this paper examines disparities in ...

  11. Luminance, Colour, Viewpoint and Border Enhanced Disparity Energy Model.

    Directory of Open Access Journals (Sweden)

    Jaime A Martins

    Full Text Available The visual cortex is able to extract disparity information through the use of binocular cells. This process is reflected by the Disparity Energy Model, which describes the role and functioning of simple and complex binocular neuron populations, and how they are able to extract disparity. This model uses explicit cell parameters to mathematically determine preferred cell disparities, like spatial frequencies, orientations, binocular phases and receptive field positions. However, the brain cannot access such explicit cell parameters; it must rely on cell responses. In this article, we implemented a trained binocular neuronal population, which encodes disparity information implicitly. This allows the population to learn how to decode disparities, in a similar way to how our visual system could have developed this ability during evolution. At the same time, responses of monocular simple and complex cells can also encode line and edge information, which is useful for refining disparities at object borders. The brain should then be able, starting from a low-level disparity draft, to integrate all information, including colour and viewpoint perspective, in order to propagate better estimates to higher cortical areas.

  12. Asthma Management Disparities: A Photovoice Investigation with African American Youth

    Science.gov (United States)

    Evans-Agnew, Robin

    2016-01-01

    Disparities in asthma management are a burden on African American youth. The objective of this study is to describe and compare the discourses of asthma management disparities (AMDs) in African American adolescents in Seattle to existing youth-related asthma policies in Washington State. Adolescents participated in a three-session photovoice…

  13. Lossless Compression of Stereo Disparity Maps for 3D

    DEFF Research Database (Denmark)

    Zamarin, Marco; Forchhammer, Søren

    2012-01-01

    Efficient compression of disparity data is important for accurate view synthesis purposes in multi-view communication systems based on the “texture plus depth” format, including the stereo case. In this paper a novel technique for lossless compression of stereo disparity images is presented...

  14. January Monthly Spotlight: Cervical Health and Cervical Cancer Disparities

    Science.gov (United States)

    In January, CRCHD joins the nation in raising awareness for Cervical Health and Cervical Cancer Disparities. This month we share a special focus on NCI/CRCHD research programs that are trying to reduce cervical cancer disparities in underserved communities and the people who are spreading the word about the importance of early detection.

  15. Vector disparity sensor with vergence control for active vision systems.

    Science.gov (United States)

    Barranco, Francisco; Diaz, Javier; Gibaldi, Agostino; Sabatini, Silvio P; Ros, Eduardo

    2012-01-01

    This paper presents an architecture for computing vector disparity for active vision systems as used on robotics applications. The control of the vergence angle of a binocular system allows us to efficiently explore dynamic environments, but requires a generalization of the disparity computation with respect to a static camera setup, where the disparity is strictly 1-D after the image rectification. The interaction between vision and motor control allows us to develop an active sensor that achieves high accuracy of the disparity computation around the fixation point, and fast reaction time for the vergence control. In this contribution, we address the development of a real-time architecture for vector disparity computation using an FPGA device. We implement the disparity unit and the control module for vergence, version, and tilt to determine the fixation point. In addition, two on-chip different alternatives for the vector disparity engines are discussed based on the luminance (gradient-based) and phase information of the binocular images. The multiscale versions of these engines are able to estimate the vector disparity up to 32 fps on VGA resolution images with very good accuracy as shown using benchmark sequences with known ground-truth. The performances in terms of frame-rate, resource utilization, and accuracy of the presented approaches are discussed. On the basis of these results, our study indicates that the gradient-based approach leads to the best trade-off choice for the integration with the active vision system.

  16. Health disparities among health care workers.

    Science.gov (United States)

    Mawn, Barbara; Siqueira, Eduardo; Koren, Ainat; Slatin, Craig; Devereaux Melillo, Karen; Pearce, Carole; Hoff, Lee Ann

    2010-01-01

    In this article we describe the process of an interdisciplinary case study that examined the social contexts of occupational and general health disparities among health care workers in two sets of New England hospitals and nursing homes. A political economy of the work environment framework guided the study, which incorporated dimensions related to market dynamics, technology, and political and economic power. The purpose of this article is to relate the challenges encountered in occupational health care settings and how these could have impacted the study results. An innovative data collection matrix that guided small-group analysis provided a firm foundation from which to make design modifications to address these challenges. Implications for policy and research include the use of a political and economic framework from which to frame future studies, and the need to maintain rigor while allowing flexibility in design to adapt to challenges in the field.

  17. Urethroplasty: a geographic disparity in care.

    Science.gov (United States)

    Burks, Frank N; Salmon, Scott A; Smith, Aaron C; Santucci, Richard A

    2012-06-01

    Urethroplasty is the gold standard for urethral strictures but its geographic prevalence throughout the United States is unknown. We analyzed where and how often urethroplasty was being performed in the United States compared to other treatment modalities for urethral stricture. De-identified case logs from the American Board of Urology were collected from certifying/recertifying urologists from 2004 to 2009. Results were categorized by ZIP codes to determine the geographic distribution. Case logs from 3,877 urologists (2,533 recertifying and 1,344 certifying) were reviewed including 1,836 urethroplasties, 13,080 urethrotomies and 19,564 urethral dilations. The proportion of urethroplasty varied widely among states (range 0% to 17%). The ratio of urethroplasty-to-urethrotomy/dilation also varied widely from state to state, but overall 1 urethroplasty was performed for every 17 urethrotomies or dilations performed. Certifying urologists were 3 times as likely to perform urethroplasty as recertifying urologists (12% vs 4%, respectively, pUrethroplasties were performed more commonly in states with residency programs (mean 5% vs 3%). Some states reported no urethroplasties during the observation period (Vermont, North Dakota, South Dakota, Maine and West Virginia). To our knowledge this is the first report on the geographic distribution of urethroplasty for urethral stricture disease. There are large variations in the rates of urethroplasty performed throughout the United States, indicating a disparity of care, especially for those regions in which few or no urethroplasties were reported. This disparity may decrease with time as younger certifying urologists are performing 3 times as many urethroplasties as older recertifying urologists. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. Philanthropy and disparities: progress, challenges, and unfinished business.

    Science.gov (United States)

    Mitchell, Faith; Sessions, Kathryn

    2011-10-01

    Philanthropy has invested millions of dollars to reduce disparities in health care and improve minority health. Grants to strengthen providers' cultural competence, diversify health professions, and collect data have improved understanding of and spurred action on disparities. The persistence of disparities in spite of these advances has shifted philanthropic attention toward strategies to change social, economic, and environmental conditions. We argue that these evolving perspectives, along with earlier groundwork, present new opportunities for funders, especially in combination with progress toward universal health coverage. This article looks at how philanthropy has addressed health disparities over the past decade, with a focus on accomplishments, the work remaining to be done, and how funders can help advance the disparities agenda.

  19. Why should we investigate the morphological disparity of plant clades?

    Science.gov (United States)

    Oyston, Jack W; Hughes, Martin; Gerber, Sylvain; Wills, Matthew A

    2016-04-01

    Disparity refers to the morphological variation in a sample of taxa, and is distinct from diversity or taxonomic richness. Diversity and disparity are fundamentally decoupled; many groups attain high levels of disparity early in their evolution, while diversity is still comparatively low. Diversity may subsequently increase even in the face of static or declining disparity by increasingly fine sub-division of morphological 'design' space (morphospace). Many animal clades reached high levels of disparity early in their evolution, but there have been few comparable studies of plant clades, despite their profound ecological and evolutionary importance. This study offers a prospective and some preliminary macroevolutionary analyses. Classical morphometric methods are most suitable when there is reasonable conservation of form, but lose traction where morphological differences become greater (e.g. in comparisons across higher taxa). Discrete character matrices offer one means to compare a greater diversity of forms. This study explores morphospaces derived from eight discrete data sets for major plant clades, and discusses their macroevolutionary implications. Most of the plant clades in this study show initial, high levels of disparity that approach or attain the maximum levels reached subsequently. These plant clades are characterized by an initial phase of evolution during which most regions of their empirical morphospaces are colonized. Angiosperms, palms, pines and ferns show remarkably little variation in disparity through time. Conifers furnish the most marked exception, appearing at relatively low disparity in the latest Carboniferous, before expanding incrementally with the radiation of successive, tightly clustered constituent sub-clades. Many cladistic data sets can be repurposed for investigating the morphological disparity of plant clades through time, and offer insights that are complementary to more focused morphometric studies. The unique structural and

  20. Do wealth disparities contribute to health disparities within racial/ethnic groups?

    Science.gov (United States)

    Pollack, Craig Evan; Cubbin, Catherine; Sania, Ayesha; Hayward, Mark; Vallone, Donna; Flaherty, Brian; Braveman, Paula A

    2013-05-01

    Though wide disparities in wealth have been documented across racial/ethnic groups, it is largely unknown whether differences in wealth are associated with health disparities within racial/ethnic groups. Data from the Survey of Consumer Finances (2004, ages 25-64) and the Health and Retirement Survey (2004, ages 50+), containing a wide range of assets and debts variables, were used to calculate net worth (a standard measure of wealth). Among non-Hispanic black, Hispanic and non-Hispanic white populations, we tested whether wealth was associated with self-reported poor/fair health status after accounting for income and education. Except among the younger Hispanic population, net worth was significantly associated with poor/fair health status within each racial/ethnic group in both data sets. Adding net worth attenuated the association between education and poor/fair health (in all racial/ethnic groups) and between income and poor/fair health (except among older Hispanics). The results add to the literature indicating the importance of including measures of wealth in health research for what they may reveal about disparities not only between but also within different racial/ethnic groups.

  1. Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria.

    OpenAIRE

    Voordouw, G; Armstrong, S M; Reimer, M F; Fouts, B; Telang, A J; Shen, Y; Gevertz, D

    1996-01-01

    Oil field bacteria were characterized by cloning and sequencing of PCR-amplified 16S rRNA genes. A variety of gram-negative, sulfate-reducing bacteria was detected (16 members of the family Desulfovibrionaceae and 8 members of the family Desulfobacteriaceae). In contrast, a much more limited number of anaerobic, fermentative, or acetogenic bacteria was found (one Clostridium sp., one Eubacterium sp., and one Synergistes sp.). Potential sulfide oxidizers and/or microaerophiles (Thiomicrospira,...

  2. 77 FR 43850 - National Institute on Minority Health and Health Disparities; Notice of Closed Meeting

    Science.gov (United States)

    2012-07-26

    ... and Health Disparities Special Emphasis Panel; NIMHD Community-Based Participatory Research (CBPR... Review Officer, National Institute on Minority Healthand Health Disparities, 6707 Democracy Blvd., Suite...

  3. Ethnic differences in five intronic polymorphisms associated with arsenic metabolism within human arsenic (+ 3 oxidation state) methyltransferase (AS3MT) gene

    International Nuclear Information System (INIS)

    Fujihara, Junko; Fujii, Yoshimi; Agusa, Tetsuro; Kunito, Takashi; Yasuda, Toshihiro; Moritani, Tamami; Takeshita, Haruo

    2009-01-01

    Human arsenic (+ 3 oxidation state) methyltransferase (AS3MT) is known to catalyze the methylation of arsenite, and intronic single-nucleotide polymorphisms (SNPs: G7395A, G12390C, T14215C, T35587C, and G35991A) in the AS3MT gene were shown to be related to inter-individual variation in the arsenic metabolism. In the present study, the genotyping for these SNPs was developed using the polymerase chain reaction and restriction fragment length polymorphism technique. Applying this method, the genotype distribution among the Ovambo, Turkish, Mongolian, Korean, and Japanese populations was investigated, and our results were compared with those from other studies. G7395, G12390, T35587, and A35991 were predominant among the five populations in our study. However, a previous study in Argentina, C12390 and G35991 showed the highest allele frequency among the eight populations studied in other studies. The dominant allele of T14215C differed among populations: the T14215 allele was predominant in Argentina, the allele frequency of C14215 was higher than that of T14215 among Turks, Mongolians, Europeans, and American ancestry. In Korea and Japan, similar allele frequencies were observed in T14215 and C14215. Higher allele frequencies were observed in haplotype G7395/G12390/C14215/T35587 with frequencies of 0.40 (Turks), 0.28 (Mongolians), and 0.23 (Koreans). On the other hand, the allele frequency for G7395/G14215/T35587/A35991 was the highest among the Ovambos (0.32), and the frequency for G7395/G12390/C35587/G35991 was the highest among the Japanese (0.27). It is noteworthy that the Japanese haplotype differs from that of the Koreans and Mongolians, which indicates the importance of investigating other intronic polymorphisms in AS3MT, especially in Asians

  4. Gene design, fusion technology and TEV cleavage conditions influence the purification of oxidized disulphide-rich venom peptides in Escherichia coli.

    Science.gov (United States)

    Sequeira, Ana Filipa; Turchetto, Jeremy; Saez, Natalie J; Peysson, Fanny; Ramond, Laurie; Duhoo, Yoan; Blémont, Marilyne; Fernandes, Vânia O; Gama, Luís T; Ferreira, Luís M A; Guerreiro, Catarina I P I; Gilles, Nicolas; Darbon, Hervé; Fontes, Carlos M G A; Vincentelli, Renaud

    2017-01-17

    Animal venoms are large, complex libraries of bioactive, disulphide-rich peptides. These peptides, and their novel biological activities, are of increasing pharmacological and therapeutic importance. However, recombinant expression of venom peptides in Escherichia coli remains difficult due to the significant number of cysteine residues requiring effective post-translational processing. There is also an urgent need to develop high-throughput recombinant protocols applicable to the production of reticulated peptides to enable efficient screening of their drug potential. Here, a comprehensive study was developed to investigate how synthetic gene design, choice of fusion tag, compartment of expression, tag removal conditions and protease recognition site affect levels of solubility of oxidized venom peptides produced in E. coli. The data revealed that expression of venom peptides imposes significant pressure on cysteine codon selection. DsbC was the best fusion tag for venom peptide expression, in particular when the fusion was directed to the bacterial periplasm. While the redox activity of DsbC was not essential to maximize expression of recombinant fusion proteins, redox activity did lead to higher levels of correctly folded target peptides. With the exception of proline, the canonical TEV protease recognition site tolerated all other residues at its C-terminus, confirming that no non-native residues, which might affect activity, need to be incorporated at the N-terminus of recombinant peptides for tag removal. This study reveals that E. coli is a convenient heterologous host for the expression of soluble and functional venom peptides. Using the optimal construct design, a large and diverse range of animal venom peptides were produced in the µM scale. These results open up new possibilities for the high-throughput production of recombinant disulphide-rich peptides in E. coli.

  5. Effects of endogenous nitric oxide on adrenergic nerve-mediated vasoconstriction and calcitonin gene-related peptide-containing nerve-mediated vasodilation in pithed rats.

    Science.gov (United States)

    Yamawaki, Kousuke; Zamami, Yoshito; Kawasaki, Hiromu; Takatori, Shingo

    2017-05-05

    Vascular adrenergic nerves mainly regulate the tone of blood vessels. Calcitonin gene-related peptide-containing (CGRPergic) vasodilator nerves also participate in the regulation of vascular tone. Furthermore, there are nitric oxide (NO)-containing (nitrergic) nerves, which include NO in blood vessels as vasodilator nerves, but it remains unclear whether nitrergic nerves participate in vascular regulation. The present study investigated the role of nitrergic nerves in vascular responses to spinal cord stimulation (SCS) and vasoactive agents in pithed rats. Wistar rats were anesthetized and pithed, and vasopressor responses to SCS and injections of norepinephrine were observed. To evaluate vasorelaxant responses, the BP was increased by a continuous infusion of methoxamine with hexamethonium to block autonomic outflow. After the elevated BP stabilized, SCS and injections of acetylcholine (ACh), sodium nitroprusside (SNP), and CGRP were intravenously administered. We then evaluated the effects of the NO synthase (NOS) inhibitor, N-ω-nitro-L-arginine methylester hydrochloride (L-NAME), on these vascular responses. Pressor responses to SCS and norepinephrine in pithed rats were enhanced by L-NAME, while the combined infusion of L-NAME and L-arginine had no effect on these responses. L-NAME infusion significantly increased the release of norepinephrine evoked by SCS. In pithed rats with artificially increased BP and L-NAME infusion, depressor response to ACh (except for 0.05nmol/kg) was suppressed and SNP (only 2nmol/kg) was enhanced. However, depressor responses to SCS and CGRP were similar to control responses. The present results suggest endogenous NO regulates vascular tone through endothelium function and inhibition of adrenergic neurotransmission, but not through CGRPergic nerves. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Gender and regional disparities of tuberculosis in Hunan, China.

    Science.gov (United States)

    Chen, Mengshi; Kwaku, Abuaku Benjamin; Chen, Youfang; Huang, Xin; Tan, Hongzhuan; Wen, Shi Wu

    2014-04-27

    Major efforts have been made to improve the health care system in Hunan province, China. The aims of this study were to assess whether and to what extent these efforts have impacted on gender and regional disparities of Tuberculosis (TB) incidence in recent years, especially for less developed areas. We obtained data from the 2005-2009 China Information System for Disease Control and Prevention (CISDCP)to conduct this study in Hunan province. Counties within the province were divided into four regions according to quartiles based on the 2007 per capita GDP. Index of Disparity (ID) and Relative Index of Inequality (RII) were used to measure the disparities of TB incidence in relation to gender and region. Bootstrap technique was used to increase the precision. The average annual incidence of TB was 111.75 per 100,000 in males and 43.44 per 100 000 in females in Hunan. The gender disparity was stable, with ID from 42.34 in 2005 to 43.92 in 2009. For regional disparity, ID, RII (mean) and RII (ratio) decreased significantly from 2005 to 2009 in males (P China, regional disparity in relation to incidence of TB decreased significantly, but the gender disparity remains in the Hunan province.

  7. Chondroitin sulfate-polyethylenimine copolymer-coated superparamagnetic iron oxide nanoparticles as an efficient magneto-gene carrier for microRNA-encoding plasmid DNA delivery

    Science.gov (United States)

    Lo, Yu-Lun; Chou, Han-Lin; Liao, Zi-Xian; Huang, Shih-Jer; Ke, Jyun-Han; Liu, Yu-Sheng; Chiu, Chien-Chih; Wang, Li-Fang

    2015-04-01

    MicroRNA-128 (miR-128) is an attractive therapeutic molecule with powerful glioblastoma regulation properties. However, miR-128 lacks biological stability and leads to poor delivery efficacy in clinical applications. In our previous study, we demonstrated two effective transgene carriers, including polyethylenimine (PEI)-decorated superparamagnetic iron oxide nanoparticles (SPIONs) as well as chemically-conjugated chondroitin sulfate-PEI copolymers (CPs). In this contribution, we report optimized conditions for coating CPs onto the surfaces of SPIONs, forming CPIOs, for magneto-gene delivery systems. The optimized weight ratio of the CPs and SPIONs is 2 : 1, which resulted in the formation of a stable particle as a good transgene carrier. The hydrodynamic diameter of the CPIOs is ~136 nm. The gel electrophoresis results demonstrate that the weight ratio of CPIO/DNA required to completely encapsulate pDNA is >=3. The in vitro tests of CPIO/DNA were done in 293 T, CRL5802, and U87-MG cells in the presence and absence of an external magnetic field. The magnetofection efficiency of CPIO/DNA was measured in the three cell lines with or without fetal bovine serum (FBS). CPIO/DNA exhibited remarkably improved gene expression in the presence of the magnetic field and 10% FBS as compared with a gold non-viral standard, PEI/DNA, and a commercial magnetofection reagent, PolyMag/DNA. In addition, CPIO/DNA showed less cytotoxicity than PEI/DNA and PolyMag/DNA against the three cell lines. The transfection efficiency of the magnetoplex improved significantly with an assisted magnetic field. In miR-128 delivery, a microRNA plate array and fluorescence in situ hybridization were used to demonstrate that CPIO/pMIRNA-128 indeed expresses more miR-128 with the assisted magnetic field than without. In a biodistribution test, CPIO/Cy5-DNA showed higher accumulation at the tumor site where an external magnet is placed nearby.MicroRNA-128 (miR-128) is an attractive therapeutic molecule

  8. Explaining Racial Disparities in Infant Health in Brazil

    Science.gov (United States)

    Nyarko, Kwame A.; Lopez-Camelo, Jorge; Castilla, Eduardo E.

    2015-01-01

    Objectives. We sought to quantify how socioeconomic, health care, demographic, and geographic effects explain racial disparities in low birth weight (LBW) and preterm birth (PTB) rates in Brazil. Methods. We employed a sample of 8949 infants born between 1995 and 2009 in 15 cities and 7 provinces in Brazil. We focused on disparities in LBW (Public policies to improve children’s health should target prenatal care and geographic location differences to reduce health disparities between infants of African and European ancestries in Brazil. PMID:26313046

  9. Integrating intersectionality and biomedicine in health disparities research.

    Science.gov (United States)

    Kelly, Ursula A

    2009-01-01

    Persisting health disparities have lead to calls for an increase in health research to address them. Biomedical scientists call for research that stratifies individual indicators associated with health disparities, for example, ethnicity. Feminist social scientists recommend feminist intersectionality research. Intersectionality is the multiplicative effect of inequalities experienced by nondominant marginalized groups, for example, ethnic minorities, women, and the poor. The elimination of health disparities necessitates integration of both paradigms in health research. This study provides a practical application of the integration of biomedical and feminist intersectionality paradigms in nursing research, using a psychiatric intervention study with battered Latino women as an example.

  10. Racial Disparities in Palliative Care for Prostate Cancer

    Science.gov (United States)

    2016-01-01

    1 | P a g e Award Number: W81XWH-10-1-0802 TITLE: " Racial Disparities in Palliative Care for Prostate Cancer." PRINCIPAL INVESTIGATOR: Alfred I...CONTRACT NUMBER W81XWH-10-1-0802 " Racial Disparities in Palliative Care for Prostate Cancer." 5b. GRANT NUMBER PC094372 5c. PROGRAM ELEMENT NUMBER...developed the tools/methods for working with SEER-Medicare. We plan to use analytic approaches and methods to explore racial disparities in the use of

  11. Regional Disparities in the Transition Period

    Directory of Open Access Journals (Sweden)

    IBOLYA KURKÓ

    2009-01-01

    Full Text Available The abolishment of the communist regime, the establishment of a democratic legal and institutional system brought important changes in the development of the regional economy of Romania. The old – from an economic point of view – differentiating factors have lost some of their importance, mainly the level of industrialization, which, in the past, was used to measure economic development. In addition, other factors came forward, that correlate more with the economic capacity, but, nowadays, their positive effect can only be increased by the combination of several other factors: foreign investments, as an indicator of regional attractiveness, regional GDP, the level of personal income, and the appreciation of human resources. Today, in the interest of enhancing the competitiveness of the regions a special role is reserved for entrepreneurial activity, the strength of the SME sector, the role of foreign working capital in the local economy, but also the territorial concentration of R&D centers. The study focuses on some aspects of disparities regarding the regional economic structure.

  12. Urban poverty and infant mortality rate disparities.

    Science.gov (United States)

    Sims, Mario; Sims, Tammy L; Bruce, Marino A

    2007-04-01

    This study examined whether the relationship between high poverty and infant mortality rates (IMRs) varied across race- and ethnic-specific populations in large urban areas. Data were drawn from 1990 Census and 1992-1994 Vital Statistics for selected U.S. metropolitan areas. High-poverty areas were defined as neighborhoods in which > or = 40% of the families had incomes below the federal poverty threshold. Bivariate models showed that high poverty was a significant predictor of IMR for each group; however, multivariate analyses demonstrate that maternal health and regional factors explained most of the variance in the group-specific models of IMR. Additional analysis revealed that high poverty was significantly associated with minority-white IMR disparities, and country of origin is an important consideration for ethnic birth outcomes. Findings from this study provide a glimpse into the complexity associated with infant mortality in metropolitan areas because they suggest that the factors associated with infant mortality in urban areas vary by race and ethnicity.

  13. Pharmacogenomics and the challenge of health disparities.

    Science.gov (United States)

    Lee, S S

    2009-01-01

    This paper examines emerging technologies and recent research on population differences in pharmacogenomics and the perspectives of scientists, community advocates, policymakers, and social critics on the use of race as a proxy for genetic variation. The discussion focuses on how recent developments in genomic science impact social understandings of racial difference and the public health goal to eliminate ongoing health disparities among racially identified groups. This paper examines how factors such as governmental policies--requiring the use of racial and ethnic categories in genetic research and increasing interest in identifying untapped racial market niches by the pharmaceutical and biotechnology industries--and weak governmental oversight of race-based therapeutics converge to create an 'infrastructure of racialization' that may alter the vision of personalized medicine that has been so highly anticipated. This paper argues that significant public investment in pharmacogenomics requires careful consideration of the emerging discourse that tethers racial justice to notions of racial biology and discusses the social and ethical implications for the pendulum shift towards a geneticization of race in drug development. Copyright 2009 S. Karger AG, Basel.

  14. Brightness masking is modulated by disparity structure.

    Science.gov (United States)

    Pelekanos, Vassilis; Ban, Hiroshi; Welchman, Andrew E

    2015-05-01

    The luminance contrast at the borders of a surface strongly influences surface's apparent brightness, as demonstrated by a number of classic visual illusions. Such phenomena are compatible with a propagation mechanism believed to spread contrast information from borders to the interior. This process is disrupted by masking, where the perceived brightness of a target is reduced by the brief presentation of a mask (Paradiso & Nakayama, 1991), but the exact visual stage that this happens remains unclear. In the present study, we examined whether brightness masking occurs at a monocular-, or a binocular-level of the visual hierarchy. We used backward masking, whereby a briefly presented target stimulus is disrupted by a mask coming soon afterwards, to show that brightness masking is affected by binocular stages of the visual processing. We manipulated the 3-D configurations (slant direction) of the target and mask and measured the differential disruption that masking causes on brightness estimation. We found that the masking effect was weaker when stimuli had a different slant. We suggest that brightness masking is partly mediated by mid-level neuronal mechanisms, at a stage where binocular disparity edge structure has been extracted. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. LAUGHING AT OURSELVES: REFLECTING MALAYSIAN ETHNIC DISPARITIES

    Directory of Open Access Journals (Sweden)

    SWAGATA SINHA ROY

    2014-05-01

    Full Text Available Malaysia’s various ethnic groups make interesting study both sociologically and culturally. With such a heady mix of cultural elements to explore, it is often natural that the many groups stumble upon ‘rare gems’ that reflect their ‘Malaysianess’. Have Malaysians really ever appreciated the many and varied aspects of culture that they are seemingly suddenly thrown into? Do we embrace these happily or are we constantly rejecting them? Fortunately, through the medium of film, we are, from time to time, allowed to reflect on our obvious similarities and even more apparent disparities. In this paper, we explore the culture and perceptions of people from the major ethnic groups that are the human base of this very country. When was it we have last laughed at ourselves … heartily? Nasi Lemak 2.0 provides an interesting, if not disturbing insight into the workings of the Malaysian ‘mind’. Nasi Lemak 2.0 was released on 8th September 2011 and impacted a whole generation of Malaysians. The characters have been well chosen and have done a wonderful job of being representations of the various communities in this nation. Ethnocentrism is a reality and often rears its head, ‘ugly’ or otherwise in several situations. Are we able to grapple with the levels of ethnocentrism that we encounter? These are some of the issues that will trigger much debate and discussion among ourselves and perhaps also reflect our cores.

  16. Mental Health Disparities Among Canadian Transgender Youth.

    Science.gov (United States)

    Veale, Jaimie F; Watson, Ryan J; Peter, Tracey; Saewyc, Elizabeth M

    2017-01-01

    This study documented the prevalence of mental health problems among transgender youth in Canada and made comparisons with population-based studies. This study also compared gender identity subgroups and age subgroups (14-18 and 19-25). A nonprobability sample of 923 transgender youth from Canada completed an online survey. Participants were recruited through community organizations, health care settings, social media, and researchers' networks. Mental health measures were drawn from the British Columbia Adolescent Health Survey and the Canadian Community Health Survey. Transgender youth had a higher risk of reporting psychological distress, self-harm, major depressive episodes, and suicide. For example, 65% of transgender 14- to 18-year olds seriously considered suicide in the past year compared with 13% in the British Columbia Adolescent Health Survey, and only a quarter of participants reported their mental health was good or excellent. Transgender boys/men and nonbinary youth were most likely to report self-harm and overall mental health remained stable across age subgroups. Although a notable minority of transgender youth did not report negative health outcomes, this study shows the mental health disparities faced by transgender youth in Canada are considerable. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  17. Economic disparities between EU states and regions

    Directory of Open Access Journals (Sweden)

    Ion CIUREA

    2010-05-01

    Full Text Available EU has 27 Member States representing a community and a market of 493million citizens, which creates further economic and social disparities between thestates and their 271 regions. In a region in four, the GDP (gross domestic product percapita is 75% below the average for the EU-27. Based on the concepts of solidarity andcohesion, regional policy of the European Union favors reducing structural disparitiesbetween EU regions, the balanced development of the community and promoting aneffective equality of opportunity between people. Over the past 50 years, Europeancooperation has helped build highways, sewage plants, bridges, laboratories forbiotechnology. She helped to revive urban areas and neglected activities, throughcountless projects in the poorest regions of the Union.. Two key values: solidarity andcohesion, underlying these projects and the regional policy of the European Union. Theeconomic, social and territorial cohesion will always be at the heart of Europe Strategy2020, a key mechanism for achieving the priorities for a smart growth, sustainable andinclusive in the Member States and regions.

  18. Gender Wage Disparities among the Highly Educated.

    Science.gov (United States)

    Black, Dan A; Haviland, Amelia; Sanders, Seth G; Taylor, Lowell J

    2008-01-01

    In the U.S. college-educated women earn approximately 30 percent less than their non-Hispanic white male counterparts. We conduct an empirical examination of this wage disparity for four groups of women-non-Hispanic white, black, Hispanic, and Asian-using the National Survey of College Graduates, a large data set that provides unusually detailed information on higher-level education. Nonparametric matching analysis indicates that among men and women who speak English at home, between 44 and 73 percent of the gender wage gaps are accounted for by such pre-market factors as highest degree and major. When we restrict attention further to women who have "high labor force attachment" (i.e., work experience that is similar to male comparables) we account for 54 to 99 percent of gender wage gaps. Our nonparametric approach differs from familiar regression-based decompositions, so for the sake of comparison we conduct parametric analyses as well. Inferences drawn from these latter decompositions can be quite misleading.

  19. Gender Wage Disparities among the Highly Educated

    Science.gov (United States)

    Black, Dan A.; Haviland, Amelia; Sanders, Seth G.; Taylor, Lowell J.

    2015-01-01

    In the U.S. college-educated women earn approximately 30 percent less than their non-Hispanic white male counterparts. We conduct an empirical examination of this wage disparity for four groups of women—non-Hispanic white, black, Hispanic, and Asian—using the National Survey of College Graduates, a large data set that provides unusually detailed information on higher-level education. Nonparametric matching analysis indicates that among men and women who speak English at home, between 44 and 73 percent of the gender wage gaps are accounted for by such pre-market factors as highest degree and major. When we restrict attention further to women who have “high labor force attachment” (i.e., work experience that is similar to male comparables) we account for 54 to 99 percent of gender wage gaps. Our nonparametric approach differs from familiar regression-based decompositions, so for the sake of comparison we conduct parametric analyses as well. Inferences drawn from these latter decompositions can be quite misleading. PMID:26097255

  20. Can universal coverage eliminate health disparities? Reversal of disparate injury outcomes in elderly insured minorities.

    Science.gov (United States)

    Ramirez, Michelle; Chang, David C; Rogers, Selwyn O; Yu, Peter T; Easterlin, Molly; Coimbra, Raul; Kobayashi, Leslie

    2013-06-15

    Health outcome disparities in racial minorities are well documented. However, it is unknown whether such disparities exist among elderly injured patients. We hypothesized that such disparities might be reduced in the elderly owing to insurance coverage under Medicare. We investigated this issue by comparing the trauma outcomes in young and elderly patients in California. A retrospective analysis of the California Office of Statewide Health Planning and Development hospital discharge database was performed for all publicly available years from 1995 to 2008. Trauma admissions were identified by International Classification of Disease, Ninth Revision, primary diagnosis codes from 800 to 959, with certain exclusions. Multivariate analysis examined the adjusted risk of in-hospital mortality in young (<65 y) and elderly (≥65 y) patients, controlling for age, gender, injury severity as measured by the survival risk ratio, Charlson comorbidity index, insurance status, calendar year, and teaching hospital status. A total of 1,577,323 trauma patients were identified. Among the young patients, the adjusted odds ratio of death relative to non-Hispanic whites for blacks, Hispanics, Asians, and Native Americans/others was 1.2, 1.2, 0.90, and 0.78, respectively. The corresponding adjusted odds ratios of death for elderly patients were 0.78, 0.87, 0.92, and 0.61. Young black and Hispanic trauma patients had greater mortality risks relative to non-Hispanic white patients. Interestingly, elderly black and Hispanic patients had lower mortality risks compared with non-Hispanic whites. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Oxidative stress and lung function profiles of male smokers free from ...

    African Journals Online (AJOL)

    Oxidative stress and lung function profiles of male smokers free from COPD compared to those with COPD: A case-control study. ... However, conclusions about the role of blood or lung oxidative stress markers were disparate. Aims: To ... Keywords: inflammation; lung disease; spirometry; tobacco; sedentarily; stress oxidant ...

  2. Development tendencies of regional disparities in the Slovak Republic

    Directory of Open Access Journals (Sweden)

    Klamár Radoslav

    2016-01-01

    Full Text Available Presented paper deals with the issues of regional development and regional disparities in Slovakia in the years 2001-2014. Levelling respectively increase of regional disparities was evaluated through a set of 13 socio-economic indicators (gross birth rate, average monthly wage, monthly labour costs per employee, employment rate, unemployment rate, net monthly income and expenses per capita, completed dwellings, creation of GDP, labour productivity per employee in industry and construction, number of organizations focused on generating profit and number of freelancers which were used in the territorial units at the level of self-governing regions of the Slovak Republic (NUTS III level. In terms of the evaluation and comparison of regional disparities were used the Gini coefficient and the coefficient of variation for mutual comparison and validation of divergent or convergent tendencies of regional disparities in Slovakia.

  3. Potential improvement of Lymantria dispar L. management by quercetin

    Directory of Open Access Journals (Sweden)

    Perić-Mataruga Vesna

    2014-01-01

    Full Text Available Lymantria dispar, a polyphagous insect pest, copes with a wide variety of host-specific allelochemicals. Glutathione S-transferases (GST are important for catalyzing detoxification in L. dispar. Larval mortality, GST activity in midgut tissue and mass of L. dispar with different trophic adaptations (originating from two forests with a suitable host, Quercus robur, and an unsuitable host, Robinia pseudoacacia, differed after feeding on quercetin supplemented diets (2% or 5% w/w. Quercetin inhibited GST most potently in oak forest larvae that were less adapted to flavonoids in their diet. The larvicidal effect of quercetin on L. dispar larvae depended on the host-use history. We believe this is important in strategies for sustainable control of insect pests. [Projekat Ministarstva nauke Republike Srbije, br. 173027

  4. Gender Disparity and Its Impact on Higher Education | Deepika ...

    African Journals Online (AJOL)

    Gender Disparity and Its Impact on Higher Education. ... AFRREV LALIGENS: An International Journal of Language, Literature and Gender Studies ... Alternatively, you can download the PDF file directly to your computer, from where it can be ...

  5. The Role of Data in Health Care Disparities in Medicaid...

    Data.gov (United States)

    U.S. Department of Health & Human Services — According to findings reported in The Role of Data in Health Care Disparities in Medicaid Managed Care, published in Volume 2, Issue 4 of the Medicare and Medicaid...

  6. Stereo Disparity through Cost Aggregation with Guided Filter

    Directory of Open Access Journals (Sweden)

    Pauline Tan

    2014-10-01

    Full Text Available Estimating the depth, or equivalently the disparity, of a stereo scene is a challenging problem in computer vision. The method proposed by Rhemann et al. in 2011 is based on a filtering of the cost volume, which gives for each pixel and for each hypothesized disparity a cost derived from pixel-by-pixel comparison. The filtering is performed by the guided filter proposed by He et al. in 2010. It computes a weighted local average of the costs. The weights are such that similar pixels tend to have similar costs. Eventually, a winner-take-all strategy selects the disparity with the minimal cost for each pixel. Non-consistent labels according to left-right consistency are rejected; a densification step can then be launched to fill the disparity map. The method can be used to solve other labeling problems (optical flow, segmentation but this article focuses on the stereo matching problem.

  7. Disparities in HIV/AIDS, Viral Hepatitis, STDs, and TB

    Science.gov (United States)

    ... Search The CDC Health Disparities in HIV/AIDS, Viral Hepatitis, STDs, and TB Note: Javascript is disabled or ... Other Pacific Islanders MMWR Publications HIV and AIDS Viral Hepatitis STDs Tuberculosis Training and Networking Resources Call for ...

  8. Explaining Ethnic Disparities in Patient Safety: A Qualitative Analysis

    NARCIS (Netherlands)

    Suurmond, Jeanine; Uiters, Ellen; de Bruijne, Martine C.; Stronks, Karien; Essink-Bot, Marie-Louise

    2010-01-01

    Objectives. We explored characteristics of in-hospital care and treatment of immigrant patients to better understand the processes underlying ethnic disparities in patient safety. Methods. We conducted semistructured interviews with care providers regarding patient safety events involving immigrant

  9. Asthma and Health Disparities | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... page please turn Javascript on. Feature: Breathing Easier Asthma and Health Disparities Past Issues / Fall 2013 Table ... under 18 years of age, who currently have asthma, 2010 Non-Hispanic Black Non-Hispanic White Non- ...

  10. Disparities in Healthcare for Racial, Ethnic, and Sexual Minorities

    Science.gov (United States)

    Collins, Joshua C.; Rocco, Tonette S.

    2014-01-01

    This chapter situates healthcare as a concern for the field of adult education through a critique of disparities in access to healthcare, quality of care received, and caregiver services for racial, ethnic, and sexual minorities.

  11. Genes and Gene Therapy

    Science.gov (United States)

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  12. Race, racism, and racial disparities in adverse birth outcomes.

    Science.gov (United States)

    Dominguez, Tyan Parker

    2008-06-01

    While the biologic authenticity of race remains a contentious issue, the social significance of race is indisputable. The chronic stress of racism and the social inequality it engenders may be underlying social determinants of persistent racial disparities in health, including infant mortality, preterm delivery, and low birth weight. This article describes the problem of racial disparities in adverse birth outcomes; outlines the multidimensional nature of racism and the pathways by which it may adversely affect health; and discusses the implications for clinical practice.

  13. Widening Disparity and its Suppression in a Stochastic Replicator Model

    Science.gov (United States)

    Sakaguchi, Hidetsugu

    2016-04-01

    Winner-take-all phenomena are observed in various competitive systems. We find similar phenomena in replicator models with randomly fluctuating growth rates. The disparity between winners and losers increases indefinitely, even if all elements are statistically equivalent. A lognormal distribution describes well the nonstationary time evolution. If a nonlinear load corresponding to progressive taxation is introduced, a stationary distribution is obtained and disparity widening is suppressed.

  14. Disseminating Health Disparities Education Through Tele-Learning

    Directory of Open Access Journals (Sweden)

    LaSonya Knowles

    2008-08-01

    Full Text Available Twenty years of research demonstrate that there are wide disparities in health throughout America. Health disparities are differences in the incidence, prevalence, mortality, and burden of diseases and other adverse health conditions that exist when specific population subgroups are compared. Health Disparities in America: Working Toward Social Justice is a course instructed every fall by Dr. Lovell Jones, director of The Center for Research on Minority Health (CRMH at UT M.D. Anderson Cancer Center. The CRMH has created a course that examines the social and societal factors that are fundamental in creating disparities in health. Students from 10 different academic programs and institutions participate in this course. The course is unique in the aspect that various, diverse speakers whom are experts in their field of study instruct each class. This health disparities course is conducted at one of three different academic institutions in the Houston area and broadcast via satellite to various academic institutions by means of teleeducation. Tele-education is defined as a mode of instruction utilizing different forms of media such as video, audio technology tools and computers. Video and audio technologies involve the transmission of interface between learners and instructors, either interactive or non-interactive. Tele-education technologies have an important role to play in addressing the dissemination of health disparities education. The purpose of this program is to determine the feasibility of tele-education as a mode of instruction to introduce the multi-disciplinary components of health disparities. Our findings suggest that tele-education is a useful tool in imparting health disparities education.

  15. Social, Economic, and Health Disparities Among LGBT Older Adults.

    Science.gov (United States)

    Emlet, Charles A

    2016-01-01

    LGBT older adults are a heterogeneous population with collective and unique strengths and challenges. Health, personal, and economic disparities exist in this group when compared to the general population of older adults, yet subgroups such as transgender and bisexual older adults and individuals living with HIV are at greater risk for disparities and poorer health outcomes. As this population grows, further research is needed on factors that contribute to promoting health equity, while decreasing discrimination and improving competent service delivery.

  16. Reverse genetic approaches in plants and yeast suggest a role for novel, evolutionary conserved, selenoprotein-related genes in oxidative stress defense.

    NARCIS (Netherlands)

    Rodrigo, M.; Moskovitz, M-J.; Salamini, J.F.; Bartels, D.M.E.

    2002-01-01

    Oxidation of methionine residues during periods of oxidative stress can lead to loss of protein function. Organisms have developed defense strategies to minimize such damage. The PilB protein, which is involved in pilus formation in the pathogen Neisseria gonorrhoeae, is composed of three functional

  17. Inducible nitric oxide synthase gene polymorphisms are associated with a risk of nephritis in Henoch-Schönlein purpura children.

    Science.gov (United States)

    Jiang, Jue; Duan, Wuqiong; Shang, Xu; Wang, Hua; Gao, Ya; Tian, Peijun; Zhou, Qi

    2017-08-01

    Henoch-Schönlein purpura (HSP) is the most common form of systemic small-vessel vasculitis in children, and HSP nephritis (HSPN) is a major complication of HSP and is the primary cause of morbidity and mortality. Previous studies have suggested that inducible nitric oxide synthase (iNOS) may play an important role in the pathogenesis of HSP. In this study, we performed a detailed analysis to investigate the potential association between iNOS polymorphisms and the risk of HSP and the tendency for children with HSP to develop HSPN in a Chinese Han population. A promoter pentanucleotide repeat (CCTTT)n and 10 functional single-nucleotide polymorphisms (SNPs) from 532 healthy controls and 513 children with HSP were genotyped using the MassARRAY system and GeneScan. The results suggested that the allelic and genotypic frequencies of the rs3729508 polymorphism were nominally associated with susceptibility to HSP. In addition, there was a significant difference in the allelic distribution of the (CCTTT)12 repeats and rs2297518 between the HSP children with and without nephritis; the HSP children with nephritis exhibited a significantly higher frequency of the (CCTTT)12 repeats and A allele of rs2297518 than the HSP children without nephritis (P FDR  = 0.033, OR = 1.624, 95% CI = 1.177-2.241 and P FDR  = 0.030, OR = 1.660, 95% CI = 1.187-2.321, respectively). Our results support that iNOS polymorphisms are associated with the risk of HSP and may strongly contribute to the genetic basis of individual differences in the progression to nephritis among children with HSP in the Chinese Han population. What is Known: • The etiology of HSP is unknown, but the genetic factors may play an important role in the pathogenesis of HSP. • iNOS could contribute to the development and clinical manifestations of HSP, and this has not been studied extensively so far. What is New: • Our results support that iNOS polymorphisms not only are associated with HSP risk but also

  18. L-Arginine ameliorates cardiac left ventricular oxidative stress by upregulating eNOS and Nrf2 target genes in alloxan-induced hyperglycemic rats

    International Nuclear Information System (INIS)

    Ramprasath, Tharmarajan; Hamenth Kumar, Palani; Syed Mohamed Puhari, Shanavas; Senthil Murugan, Ponniah; Vasudevan, Varadaraj; Selvam, Govindan Sadasivam

    2012-01-01

    Highlights: ► L-Arginine treatment reduced the metabolic disturbances in diabetic animals. ► Antioxidant marker proteins were found high in myocardium by L-arginine treatment. ► Elevated antioxidant status, mediates the reduced TBA-reactivity in left ventricle. ► L-Arginine treatment enhanced the Nrf2 and eNOS signaling in left ventricle. ► Improved cell survival signaling by arginine, offers a novel tactic for targeting. -- Abstract: Hyperglycemia is independently related with excessive morbidity and mortality in cardiovascular disorders. L-Arginine-nitric oxide (NO) pathway and the involvement of NO in modulating nuclear factor-E2-related factor-2 (Nrf2) signaling were well established. In the present study we investigated, whether L-arginine supplementation would improve the myocardial antioxidant defense under hyperglycemia through activation of Nrf2 signaling. Diabetes was induced by alloxan monohydrate (90 mg kg −1 body weight) in rats. Both non-diabetic and diabetic group of rats were divided into three subgroups and they were administered either with L-arginine (2.25%) or L-NAME (0.01%) in drinking water for 12 days. Results showed that L-arginine treatment reduced the metabolic disturbances in diabetic rats. Antioxidant enzymes and glutathione levels were found to be increased in heart left ventricles, thereby reduction of lipid peroxidation by L-arginine treatment. Heart histopathological analysis further validates the reversal of typical diabetic characteristics consisting of alterations in myofibers and myofibrillary degeneration. qRT-PCR studies revealed that L-arginine treatment upregulated the transcription of Akt and downregulated NF-κB. Notably, transcription of eNOS and Nrf2 target genes was also upregulated, which were accompanied by enhanced expression of Nrf2 in left ventricular tissue from diabetic and control rats. Under these findings, we suggest that targeting of eNOS and Nrf2 signaling by L-arginine supplementation could be

  19. L-Arginine ameliorates cardiac left ventricular oxidative stress by upregulating eNOS and Nrf2 target genes in alloxan-induced hyperglycemic rats

    Energy Technology Data Exchange (ETDEWEB)

    Ramprasath, Tharmarajan; Hamenth Kumar, Palani; Syed Mohamed Puhari, Shanavas; Senthil Murugan, Ponniah; Vasudevan, Varadaraj [Molecular Cardiology Unit, Department of Biochemistry, Center for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamilnadu (India); Selvam, Govindan Sadasivam, E-mail: drselvamgsbiochem@rediffmail.com [Molecular Cardiology Unit, Department of Biochemistry, Center for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamilnadu (India)

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer L-Arginine treatment reduced the metabolic disturbances in diabetic animals. Black-Right-Pointing-Pointer Antioxidant marker proteins were found high in myocardium by L-arginine treatment. Black-Right-Pointing-Pointer Elevated antioxidant status, mediates the reduced TBA-reactivity in left ventricle. Black-Right-Pointing-Pointer L-Arginine treatment enhanced the Nrf2 and eNOS signaling in left ventricle. Black-Right-Pointing-Pointer Improved cell survival signaling by arginine, offers a novel tactic for targeting. -- Abstract: Hyperglycemia is independently related with excessive morbidity and mortality in cardiovascular disorders. L-Arginine-nitric oxide (NO) pathway and the involvement of NO in modulating nuclear factor-E2-related factor-2 (Nrf2) signaling were well established. In the present study we investigated, whether L-arginine supplementation would improve the myocardial antioxidant defense under hyperglycemia through activation of Nrf2 signaling. Diabetes was induced by alloxan monohydrate (90 mg kg{sup -1} body weight) in rats. Both non-diabetic and diabetic group of rats were divided into three subgroups and they were administered either with L-arginine (2.25%) or L-NAME (0.01%) in drinking water for 12 days. Results showed that L-arginine treatment reduced the metabolic disturbances in diabetic rats. Antioxidant enzymes and glutathione levels were found to be increased in heart left ventricles, thereby reduction of lipid peroxidation by L-arginine treatment. Heart histopathological analysis further validates the reversal of typical diabetic characteristics consisting of alterations in myofibers and myofibrillary degeneration. qRT-PCR studies revealed that L-arginine treatment upregulated the transcription of Akt and downregulated NF-{kappa}B. Notably, transcription of eNOS and Nrf2 target genes was also upregulated, which were accompanied by enhanced expression of Nrf2 in left ventricular tissue from diabetic

  20. Temporal Integration of Auditory Stimulation and Binocular Disparity Signals

    Directory of Open Access Journals (Sweden)

    Marina Zannoli

    2011-10-01

    Full Text Available Several studies using visual objects defined by luminance have reported that the auditory event must be presented 30 to 40 ms after the visual stimulus to perceive audiovisual synchrony. In the present study, we used visual objects defined only by their binocular disparity. We measured the optimal latency between visual and auditory stimuli for the perception of synchrony using a method introduced by Moutoussis & Zeki (1997. Visual stimuli were defined either by luminance and disparity or by disparity only. They moved either back and forth between 6 and 12 arcmin or from left to right at a constant disparity of 9 arcmin. This visual modulation was presented together with an amplitude-modulated 500 Hz tone. Both modulations were sinusoidal (frequency: 0.7 Hz. We found no difference between 2D and 3D motion for luminance stimuli: a 40 ms auditory lag was necessary for perceived synchrony. Surprisingly, even though stereopsis is often thought to be slow, we found a similar optimal latency in the disparity 3D motion condition (55 ms. However, when participants had to judge simultaneity for disparity 2D motion stimuli, it led to larger latencies (170 ms, suggesting that stereo motion detectors are poorly suited to track 2D motion.

  1. Disparities in Disability by Educational Attainment Across US States.

    Science.gov (United States)

    Montez, Jennifer Karas; Zajacova, Anna; Hayward, Mark D

    2017-07-01

    To examine how disparities in adult disability by educational attainment vary across US states. We used the nationally representative data of more than 6 million adults aged 45 to 89 years in the 2010-2014 American Community Survey. We defined disability as difficulty with activities of daily living. We categorized education as low (less than high school), mid (high school or some college), or high (bachelor's or higher). We estimated age-standardized disability prevalence by educational attainment and state. We assessed whether the variation in disability across states occurs primarily among low-educated adults and whether it reflects the socioeconomic resources of low-educated adults and their surrounding contexts. Disparities in disability by education vary markedly across states-from a 20 percentage point disparity in Massachusetts to a 12-point disparity in Wyoming. Disparities vary across states mainly because the prevalence of disability among low-educated adults varies across states. Personal and contextual socioeconomic resources of low-educated adults account for 29% of the variation. Efforts to reduce disparities in disability by education should consider state and local strategies that reduce poverty among low-educated adults and their surrounding contexts.

  2. Controlling disease and creating disparities: a fundamental cause perspective.

    Science.gov (United States)

    Phelan, Jo C; Link, Bruce G

    2005-10-01

    The United States and other developed countries experienced enormous improvements in population health during the 20th century. In the context of this dramatic positive change, health disparities by race and socioeconomic status emerged for several potent killers. Any explanation for current health disparities must take these changing patterns into account. Any explanation that ignores large improvements in population health and fails to account for the emergence of disparities for specific diseases is an inadequate explanation of current disparities. We argue that genetic explanations and some prominent social causation explanations are incompatible with these facts. We propose that the theory of "fundamental causes" can account for both vast improvements in population health and the creation of large socioeconomic and racial disparities in mortality for specific causes of death over time. Specifically, we argue that it is our enormously expanded capacity to control disease and death in combination with existing social and economic inequalities that create health disparities by race and socioeconomic status: When we develop the ability to control disease and death, the benefits of this new-found ability are distributed according to resources of knowledge, money, power, prestige, and beneficial social connections. We present data on changing mortality patterns by race and socioeconomic status for two types of diseases: those for which our capacity to prevent death has increased significantly and those for which we remain largely unable to prevent death. Time trends in mortality patterns are consistent with the fundamental cause explanation.

  3. Epidemiology, Policy, and Racial/Ethnic Minority Health Disparities

    Science.gov (United States)

    Carter-Pokras, Olivia; Offutt-Powell, Tabatha; Kaufman, Jay S.; Giles, Wayne; Mays, Vickie

    2013-01-01

    Purpose Epidemiologists have long contributed to policy efforts to address health disparities. Three examples illustrate how epidemiologists have addressed health disparities in the U.S. and abroad through a “social determinants of health” lens. Methods To identify examples of how epidemiologic research has been applied to reduce health disparities, we queried epidemiologists engaged in disparities research in the U.S., Canada, and New Zealand, and drew upon the scientific literature. Results Resulting examples covered a wide range of topic areas. Three areas selected for their contributions to policy were: 1) epidemiology's role in definition and measurement, 2) the study of housing and asthma, and 3) the study of food policy strategies to reduce health disparities. While epidemiologic research has done much to define and quantify health inequalities, it has generally been less successful at producing evidence that would identify targets for health equity intervention. Epidemiologists have a role to play in measurement and basic surveillance, etiologic research, intervention research, and evaluation research. However, our training and funding sources generally place greatest emphasis on surveillance and etiologic research. Conclusions: The complexity of health disparities requires better training for epidemiologists to effectively work in multidisciplinary teams. Together we can evaluate contextual and multilevel contributions to disease and study intervention programs in order to gain better insights into evidenced-based health equity strategies. PMID:22626003

  4. Academic musculoskeletal radiology: influences for gender disparity.

    Science.gov (United States)

    Qamar, Sadia R; Khurshid, Kiran; Jalal, Sabeena; Bancroft, Laura; Munk, Peter L; Nicolaou, Savvas; Khosa, Faisal

    2018-03-01

    Research productivity is one of the few quintessential gauges that North American academic radiology departments implement to determine career progression. The rationale of this study is to quantify the relationship of gender, research productivity, and academic advancements in the musculoskeletal (MSK) radiology to account for emerging trends in workforce diversity. Radiology residency programs enlisted in the Fellowship and Residency Electronic Interactive Database (FREIDA), Canadian Resident Matching Service (CaRMS) and International Skeletal Society (ISS) were searched for academic faculty to generate the database for gender and academic profiles of MSK radiologists. Bibliometric data was collected using Elsevier's SCOPUS archives, and analyzed using Stata version 14.2. Among 274 MSK radiologists in North America, 190 (69.34%) were men and 84 (30.66%) were women, indicating a statistically significant difference (χ2 = 6.34; p value = 0.042). The available number of female assistant professors (n = 50) was more than half of the male assistant professors (n = 88), this ratio however, plummeted at higher academic ranks, with only one-fourth of women (n = 11) professors compared to men (n = 45). The male MSK radiologist had 1.31 times the odds of having a higher h-index, keeping all other variables constant. The trend of gender disparity exists in MSK radiology with significant underrepresentation of women in top tiers of academic hierarchy. Even with comparable h-indices, at the lower academic ranks, a lesser number of women are promoted relative to their male colleagues. Further studies are needed to investigate the degree of influence research productivity has, in determining academic advancement of MSK radiologists.

  5. 75 FR 29357 - National Center on Minority and Health Disparities; Notice of Closed Meeting

    Science.gov (United States)

    2010-05-25

    ... and Health Disparities; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... and Health Disparities Special NCMHD Health Disparities Research on Minority and Underserved... Health and Health Disparities, 6707 Democracy Boulevard, Suite 800, Bethesda, MD 20892. (301) 594-8696...

  6. 75 FR 66114 - National Center on Minority Health and Health Disparities; Notice of Closed Meeting

    Science.gov (United States)

    2010-10-27

    ... Health and Health Disparities; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... and Health Disparities Special Emphasis Panel; NCMHD Health Disparities Research on Minority and... Review Officer, National Institute on Minority Health and Health Disparities, 6707 Democracy Boulevard...

  7. 75 FR 12766 - National Center on Minority Health and Health Disparities; Notice of Closed Meetings

    Science.gov (United States)

    2010-03-17

    ... Health and Health Disparities; Notice of Closed Meetings Pursuant to section 10(d) of the Federal... and Health Disparities Special Emphasis Panel Loan Repayment Program for Health Disparities Research... Review, National Center on Minority Health and Health Disparities, 6707 Democracy Boulevard, Suite 800...

  8. 75 FR 9421 - National Center on Minority Health and Health Disparities; Notice of Closed Meeting

    Science.gov (United States)

    2010-03-02

    ... Health and Health Disparities; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... and Health Disparities Special Emphasis Panel; Loan Repayment Program for Health Disparities Research..., National Center on Minority Health and Health Disparities, 6707 Democracy Boulevard, Suite 800, Bethesda...

  9. 76 FR 63310 - National Center On Minority and Health Disparities Notice of Closed Meetings

    Science.gov (United States)

    2011-10-12

    ... and Health Disparities Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... and Health Disparities Special Emphasis Panel; NIMHD Health Disparities Research (R01). Date: November... Disparities, National Institutes of Health, 6707 Democracy Blvd., MSC. 5465, Suite 800, Bethesda, MD 20892...

  10. Cadmium(Cd)-induced oxidative stress down-regulates the gene expression of DNA mismatch recognition proteins MutS homolog 2 (MSH2) and MSH6 in zebrafish (Danio rerio) embryos

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Todd, E-mail: toddhsu@mail.ntou.edu.tw [Institute of Bioscience and Biotechnology and Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan (China); Huang, Kuan-Ming; Tsai, Huei-Ting; Sung, Shih-Tsung; Ho, Tsung-Nan [Institute of Bioscience and Biotechnology and Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan (China)

    2013-01-15

    DNA mismatch repair (MMR) of simple base mismatches and small insertion-deletion loops in eukaryotes is initiated by the binding of the MutS homolog 2 (MSH2)-MSH6 heterodimer to mismatched DNA. Cadmium (Cd) is a genotoxic heavy metal that has been recognized as a human carcinogen. Oxidant stress and inhibition of DNA repair have been proposed as major factors underlying Cd genotoxicity. Our previous studies indicated the ability of Cd to disturb the gene expression of MSH6 in zebrafish (Danio rerio) embryos. This study was undertaken to explore if Cd-induced oxidative stress down-regulated MSH gene activities. Following the exposure of zebrafish embryos at 1 h post fertilization (hpf) to sublethal concentrations of Cd at 3-5 {mu}M for 4 or 9 h, a parallel down-regulation of MSH2, MSH6 and Cu/Zn superoxide dismutase (Cu/Zn-SOD) gene expression was detected by real-time RT-PCR and the expression levels were 40-50% of control after a 9-h exposure. Cd exposure also induced oxidative stress, yet no inhibition of catalase gene activity was observed. Whole mount in situ hybridization revealed a wide distribution of msh6 mRNA in the head regions of 10 hpf embryos and pretreatment of embryos with antioxidants butylhydroxytoluene (BHT), D-mannitol or N-acetylcysteine (NAC) at 1-10 {mu}M restored Cd-suppressed msh6 expression. QPCR confirmed the protective effects of antioxidants on Cd-suppressed msh2/msh6 mRNA production. Down-regulated MSH gene activities reaching about 50% of control were also induced in embryos exposed to paraquat, a reactive oxygen species (ROS)-generating herbicide, or hydrogen peroxide at 200 {mu}M. Hence, Cd at sublethal levels down-regulates msh2/msh6 expression primarily via ROS as signaling molecules. The transcriptional activation of human msh6 is known to be fully dependent on the specificity factor 1 (Sp1). Cd failed to inhibit the DNA binding activity of zebrafish Sp1 unless at lethal concentrations based on band shift assay, therefore

  11. Avaliação da expressão tecidual do gene de reparo MLH1 e dos níveis de dano oxidativo ao DNA em doentes com câncer colorretal Evaluation of expression of mismatch repair gene MLH1 and levels of oxidative DNA damage in normal and neoplastic tissues of patients with colorectal cancer

    Directory of Open Access Journals (Sweden)

    Carlos Augusto Real Martinez

    2009-09-01

    Full Text Available O dano oxidativo ao DNA provocado por radicais livres de oxigênio representa um dos principais mecanismos responsáveis pelas etapas iniciais da carcinogênese colorretal. O estresse oxidativo ocasiona erros de pareamento de bases possibilitando o aparecimento de mutações em genes controladores do ciclo celular. As células possuem um sistema de defesa representado pelos genes de reparo do DNA que corrigindo os erros de pareamento impedem o desenvolvimento de mutações. Poucos estudos avaliaram a relação entre dano oxidativo ao DNA e a expressão tecidual do gene de reparo MLH1. OBJETIVO: O objetivo do presente estudo foi avaliar os níveis de estresse oxidativo ao DNA e a expressão tecidual do