WorldWideScience

Sample records for disordered structural linker

  1. Structure and Functions of Linker Histones.

    Science.gov (United States)

    Lyubitelev, A V; Nikitin, D V; Shaytan, A K; Studitsky, V M; Kirpichnikov, M P

    2016-03-01

    Linker histones such as variants H1, H5, and other similar proteins play an important role in regulation of chromatin structure and dynamics. However, interactions of linker histones with DNA and proteins, as well as specific functions of their different variants, are poorly studied. This is because they acquire tertiary structure only when interacting with a nucleosome, and because of limitations of currently available methods. However, deeper investigation of linker histones and their interactions with other proteins will address a number of important questions - from structure of compacted chromatin to regulation of early embryogenesis. In this review, structures of histone H1 variants and its interaction with chromatin DNA are considered. A possible functional significance of different H1 variants, a role of these proteins in maintaining interphase chromatin structure, and interactions of linker histones with other cellular proteins are also discussed.

  2. Structural Mechanisms of Nucleosome Recognition by Linker Histones.

    Science.gov (United States)

    Zhou, Bing-Rui; Jiang, Jiansheng; Feng, Hanqiao; Ghirlando, Rodolfo; Xiao, T Sam; Bai, Yawen

    2015-08-20

    Linker histones bind to the nucleosome and regulate the structure of chromatin and gene expression. Despite more than three decades of effort, the structural basis of nucleosome recognition by linker histones remains elusive. Here, we report the crystal structure of the globular domain of chicken linker histone H5 in complex with the nucleosome at 3.5 Å resolution, which is validated using nuclear magnetic resonance spectroscopy. The globular domain sits on the dyad of the nucleosome and interacts with both DNA linkers. Our structure integrates results from mutation analyses and previous cross-linking and fluorescence recovery after photobleach experiments, and it helps resolve the long debate on structural mechanisms of nucleosome recognition by linker histones. The on-dyad binding mode of the H5 globular domain is different from the recently reported off-dyad binding mode of Drosophila linker histone H1. We demonstrate that linker histones with different binding modes could fold chromatin to form distinct higher-order structures. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Nanohashtag structures based on carbon nanotubes and molecular linkers

    Science.gov (United States)

    Frye, Connor W.; Rybolt, Thomas R.

    2018-03-01

    Molecular mechanics was used to study the noncovalent interactions between single-walled carbon nanotubes and molecular linkers. Groups of nanotubes have the tendency to form tight, parallel bundles (||||). Molecular linkers were introduced into our models to stabilize nanostructures with carbon nanotubes held in perpendicular orientations. Molecular mechanics makes it possible to estimate the strength of noncovalent interactions holding these structures together and to calculate the overall binding energy of the structures. A set of linkers were designed and built around a 1,3,5,7-cyclooctatetraene tether with two corannulene containing pincers that extend in opposite directions from the central cyclooctatetraene portion. Each pincer consists of a pairs of "arms." These molecular linkers were modified so that the "hand" portions of each pair of "arms" could close together to grab and hold two carbon nanotubes in a perpendicular arrangement. To illustrate the possibility of more complicated and open perpendicular CNTs structures, our primary goal was to create a model of a nanohashtag (#) CNT conformation that is more stable than any parallel CNT arrangements with bound linker molecules forming clumps of CNTs and linkers in non-hashtag arrangements. This goal was achieved using a molecular linker (C280H96) that utilizes van der Waals interactions to two perpendicular oriented CNTs. Hydrogen bonding was then added between linker molecules to augment the stability of the hashtag structure. In the hashtag structure with hydrogen bonding, four (5,5) CNTs of length 4.46 nm (18 rings) and four linkers (C276H92N8O8) stabilized the hashtag so that the average binding energy per pincer was 118 kcal/mol.

  4. Bioinformatic Analysis Reveals Conservation of Intrinsic Disorder in the Linker Sequences of Prokaryotic Dual-family Immunophilin Chaperones.

    Science.gov (United States)

    Barik, Sailen

    2018-01-01

    The two classical immunophilin families, found essentially in all living cells, are: cyclophilin (CYN) and FK506-binding protein (FKBP). We previously reported a novel class of immunophilins that are natural chimera of these two, which we named dual-family immunophilin (DFI). The DFIs were found in either of two conformations: CYN-linker-FKBP (CFBP) or FKBP-3TPR-CYN (FCBP). While the 3TPR domain can serve as a flexible linker between the FKBP and CYN modules in the FCBP-type DFI, the linker sequences in the CFBP-type DFIs are relatively short, diverse in sequence, and contain no discernible motif or signature. Here, I present several lines of computational evidence that, regardless of their primary structure, these CFBP linkers are intrinsically disordered. This report provides the first molecular foundation for the model that the CFBP linker acts as an unstructured, flexible loop, allowing the two flanking chaperone modules function independently while linked in cis , likely to assist in the folding of multisubunit client complexes.

  5. Structural and Functional Analysis of the Signal-Transducing Linker in the pH-Responsive One-Component System CadC of Escherichia coli.

    Science.gov (United States)

    Buchner, Sophie; Schlundt, Andreas; Lassak, Jürgen; Sattler, Michael; Jung, Kirsten

    2015-07-31

    The pH-responsive one-component signaling system CadC in Escherichia coli belongs to the family of ToxR-like proteins, whose members share a conserved modular structure, with an N-terminal cytoplasmic winged helix-turn-helix DNA-binding domain being followed by a single transmembrane helix and a C-terminal periplasmic pH-sensing domain. In E. coli CadC, a cytoplasmic linker comprising approximately 50 amino acids is essential for transmission of the signal from the sensor to the DNA-binding domain. However, the mechanism of transduction is poorly understood. Using NMR spectroscopy, we demonstrate here that the linker region is intrinsically disordered in solution. Furthermore, mutational analyses showed that it tolerates a range of amino acid substitutions (altering polarity, rigidity and α-helix-forming propensity), is robust to extension but is sensitive to truncation. Indeed, truncations either reversed the expression profile of the target operon cadBA or decoupled expression from external pH altogether. CadC dimerizes via its periplasmic domain, but light-scattering analysis provided no evidence for dimerization of the isolated DNA-binding domain, with or without the linker region. However, bacterial two-hybrid analysis revealed that CadC forms stable dimers in a stimulus- and linker-dependent manner, interacting only at pHpH. Thus, we propose that the disordered CadC linker is required for transducing the pH-dependent response of the periplasmic sensor into a structural rearrangement that facilitates dimerization of the cytoplasmic CadC DNA-binding domain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Rapid construction of mechanically- confined multi- cellular structures using dendrimeric intercellular linker.

    Science.gov (United States)

    Mo, Xuejun; Li, Qiushi; Yi Lui, Lena Wai; Zheng, Baixue; Kang, Chiang Huen; Nugraha, Bramasta; Yue, Zhilian; Jia, Rui Rui; Fu, Hong Xia; Choudhury, Deepak; Arooz, Talha; Yan, Jie; Lim, Chwee Teck; Shen, Shali; Hong Tan, Choon; Yu, Hanry

    2010-10-01

    Tissue constructs that mimic the in vivo cell-cell and cell-matrix interactions are especially useful for applications involving the cell- dense and matrix- poor internal organs. Rapid and precise arrangement of cells into functional tissue constructs remains a challenge in tissue engineering. We demonstrate rapid assembly of C3A cells into multi- cell structures using a dendrimeric intercellular linker. The linker is composed of oleyl- polyethylene glycol (PEG) derivatives conjugated to a 16 arms- polypropylenimine hexadecaamine (DAB) dendrimer. The positively charged multivalent dendrimer concentrates the linker onto the negatively charged cell surface to facilitate efficient insertion of the hydrophobic oleyl groups into the cellular membrane. Bringing linker- treated cells into close proximity to each other via mechanical means such as centrifugation and micromanipulation enables their rapid assembly into multi- cellular structures within minutes. The cells exhibit high levels of viability, proliferation, three- dimensional (3D) cell morphology and other functions in the constructs. We constructed defined multi- cellular structures such as rings, sheets or branching rods that can serve as potential tissue building blocks to be further assembled into complex 3D tissue constructs for biomedical applications. 2010 Elsevier Ltd. All rights reserved.

  7. Novel Concepts of MS-Cleavable Cross-linkers for Improved Peptide Structure Analysis

    Science.gov (United States)

    Hage, Christoph; Falvo, Francesco; Schäfer, Mathias; Sinz, Andrea

    2017-10-01

    The chemical cross-linking/mass spectrometry (MS) approach is gaining increasing importance as an alternative method for studying protein conformation and for deciphering protein interaction networks. This study is part of our ongoing efforts to develop innovative cross-linking principles for a facile and efficient assignment of cross-linked products. We evaluate two homobifunctional, amine-reactive, and MS-cleavable cross-linkers regarding their potential for automated analysis of cross-linked products. We introduce the bromine phenylurea (BrPU) linker that possesses a unique structure yielding a distinctive fragmentation pattern on collisional activation. Moreover, BrPU delivers the characteristic bromine isotope pattern and mass defect for all cross-linker-decorated fragments. We compare the fragmentation behavior of the BrPU linker with that of our previously described MS-cleavable TEMPO-Bz linker (which consists of a 2,2,6,6-tetramethylpiperidine-1-oxy moiety connected to a benzyl group) that was developed to perform free-radical-initiated peptide sequencing. Comparative collisional activation experiments (collision-induced dissociation and higher-energy collision-induced dissociation) with both cross-linkers were conducted in negative electrospray ionization mode with an Orbitrap Fusion mass spectrometer using five model peptides. As hypothesized in a previous study, the presence of a cross-linked N-terminal aspartic acid residue seems to be the prerequisite for the loss of an intact peptide from the cross-linked products. As the BrPU linker combines a characteristic mass shift with an isotope signature, it presents a more favorable combination for automated assignment of cross-linked products compared with the TEMPO-Bz linker. [Figure not available: see fulltext.

  8. How to remain nonfolded and pliable: the linkers in modular α-amylases as a case study.

    Science.gov (United States)

    Feller, Georges; Dehareng, Dominique; Lage, Jean-Luc Da

    2011-07-01

    The primary structure of linkers in a new class of modular α-amylases constitutes a paradigm of the structural basis that allows a polypeptide to remain nonfolded, extended and pliable. Unfolding is mediated through a depletion of hydrophobic residues and an enrichment of hydrophilic residues, amongst which Ser and Thr are over-represented. An extended and flexible conformation is promoted by the sequential arrangement of Pro and Gly, which are the most abundant residues in these linkers. This is complemented by charge repulsion, charge clustering and disulfide-bridged loops. Molecular dynamics simulations suggest the existence of conformational transitions resulting from a transient and localized hydrophobic collapse, arising from the peculiar composition of the linkers. Accordingly, these linkers should not be regarded as fully disordered, but rather as possessing various discrete structural patterns allowing them to fulfill their biological function as a free energy reservoir for concerted motions between structured domains. © 2011 The Authors Journal compilation © 2011 FEBS.

  9. Crystallization of Galectin-8 Linker Reveals Intricate Relationship between the N-terminal Tail and the Linker

    Directory of Open Access Journals (Sweden)

    Yunlong Si

    2016-12-01

    Full Text Available Galectin-8 (Gal-8 plays a significant role in normal immunological function as well as in cancer. This lectin contains two carbohydrate recognition domains (CRD connected by a peptide linker. The N-terminal CRD determines ligand binding specificity, whereas the linker has been proposed to regulate overall Gal-8 function, including multimerization and biological activity. Here, we crystallized the Gal-8 N-terminal CRD with the peptide linker using a crystallization condition that contains Ni2+. The Ni2+ ion was found to be complexed between two CRDs via crystal packing contacts. The coordination between Ni2+ and Asp25 plays an indirect role in determining the structure of β-strand F0 and in influencing the linker conformation which could not be defined due to its dynamic nature. The linker was also shortened in situ and crystallized under a different condition, leading to a higher resolution structure refined to 1.08 Å. This crystal structure allowed definition of a short portion of the linker interacting with the Gal-8 N-terminal tail via ionic interactions and hydrogen bonds. Observation of two Gal-8 N-terminal CRD structures implies that the N-terminal tail and the linker may influence each other’s conformation. In addition, under specific crystallization conditions, glycerol could replace lactose and was observed at the carbohydrate binding site. However, glycerol did not show inhibition activity in hemagglutination assay.

  10. Effect of the SH3-SH2 domain linker sequence on the structure of Hck kinase.

    Science.gov (United States)

    Meiselbach, Heike; Sticht, Heinrich

    2011-08-01

    The coordination of activity in biological systems requires the existence of different signal transduction pathways that interact with one another and must be precisely regulated. The Src-family tyrosine kinases, which are found in many signaling pathways, differ in their physiological function despite their high overall structural similarity. In this context, the differences in the SH3-SH2 domain linkers might play a role for differential regulation, but the structural consequences of linker sequence remain poorly understood. We have therefore performed comparative molecular dynamics simulations of wildtype Hck and of a mutant Hck in which the SH3-SH2 domain linker is replaced by the corresponding sequence from the homologous kinase Lck. These simulations reveal that linker replacement not only affects the orientation of the SH3 domain itself, but also leads to an alternative conformation of the activation segment in the Hck kinase domain. The sequence of the SH3-SH2 domain linker thus exerts a remote effect on the active site geometry and might therefore play a role in modulating the structure of the inactive kinase or in fine-tuning the activation process itself.

  11. Linker histones: novel insights into structure-specific recognition of the nucleosome.

    Science.gov (United States)

    Cutter, Amber R; Hayes, Jeffrey J

    2017-04-01

    Linker histones (H1s) are a primary component of metazoan chromatin, fulfilling numerous functions, both in vitro and in vivo, including stabilizing the wrapping of DNA around the nucleosome, promoting folding and assembly of higher order chromatin structures, influencing nucleosome spacing on DNA, and regulating specific gene expression. However, many molecular details of how H1 binds to nucleosomes and recognizes unique structural features on the nucleosome surface remain undefined. Numerous, confounding studies are complicated not only by experimental limitations, but the use of different linker histone isoforms and nucleosome constructions. This review summarizes the decades of research that has resulted in several models of H1 association with nucleosomes, with a focus on recent advances that suggest multiple modes of H1 interaction in chromatin, while highlighting the remaining questions.

  12. The flexibility of modified-linker MIL-53 materials.

    Science.gov (United States)

    Munn, Alexis S; Pillai, Renjith S; Biswas, Shyam; Stock, Norbert; Maurin, Guillaume; Walton, Richard I

    2016-03-14

    The flexibility of eight aluminium hydroxo terephthalates [Al(OH)(BDC-X)]·n(guest) (BDC = 1,4-benzene-dicarboxylate; X = -H, -CH3, -Cl, -Br, -NH2, -NO2, -(OH)2, -CO2H) crystallising in the MIL-53-type structure was investigated upon thermal dehydration of as-made samples, superhydration and methanol adsorption/desorption using in situ powder X-ray diffraction (PXRD). Profile fitting was used to determine lattice parameters as a function of time and/or temperature to describe their structural evolution. It has thus been shown that while methanol vapour adsorption induces an opening of all the modified frameworks, except the -NH2 material, superhydration only leads to open structures for Al-MIL-53-NO2, -Br and -(OH)2. All the MIL-53 solids, except Al-MIL-53-(OH)2 are present in the open structures upon thermal dehydration. In addition to the exploration of the breathing behavior of this MIL-53 series, the issue of disorder in the distribution of the functional groups between the organic linkers was explored. As a typical illustration, density functional theory calculations were carried out on different structures of Al-MIL-53-Cl, in which the distribution of -Cl within two adjacent BDC linkers is varied. The results show that the most energetically stable configuration leads to the best agreement with the experimental PXRD pattern. This observation supports that the distribution of the selected linker substituent in the functionalised solid is governed by energetics and that there is a preference for an ordering of this arrangement.

  13. Initial conformation of kinesin's neck linker

    International Nuclear Information System (INIS)

    Geng Yi-Zhao; Yan Shi-Wei; Ji Qing; Liu Shu-Xia

    2014-01-01

    How ATP binding initiates the docking process of kinesin's neck linker is a key question in understanding kinesin mechanisms. By exploiting a molecular dynamics method, we investigate the initial conformation of kinesin's neck linker in its docking process. We find that, in the initial conformation, the neck linker has interactions with β0 and forms a ‘cover-neck bundle’ structure with β0. From this initial structure, the formation of extra turns and the docking of the cover-neck bundle structure can be achieved. The motor head provides a forward force on the initial cover-neck bundle structure through ATP-induced rotation. This force, together with the hydrophobic interaction of ILE327 with the hydrophobic pocket on the motor head, drives the formation of the extra turn and initiates the neck linker docking process. Based on these findings, a pathway from ATP binding-induced motor head rotation to neck linker docking is proposed. (interdisciplinary physics and related areas of science and technology)

  14. A Novel MS-Cleavable Azo Cross-Linker for Peptide Structure Analysis by Free Radical Initiated Peptide Sequencing (FRIPS)

    Science.gov (United States)

    Iacobucci, Claudio; Hage, Christoph; Schäfer, Mathias; Sinz, Andrea

    2017-10-01

    The chemical cross-linking/mass spectrometry (MS) approach is a growing research field in structural proteomics that allows gaining insights into protein conformations. It relies on creating distance constraints between cross-linked amino acid side chains that can further be used to derive protein structures. Currently, the most urgent task for designing novel cross-linking principles is an unambiguous and automated assignment of the created cross-linked products. Here, we introduce the homobifunctional, amine-reactive, and water soluble cross-linker azobisimidoester (ABI) as a prototype of a novel class of cross-linkers. The ABI-linker possesses an innovative modular scaffold combining the benefits of collisional activation lability with open shell chemistry. This MS-cleavable cross-linker can be efficiently operated via free radical initiated peptide sequencing (FRIPS) in positive ionization mode. Our proof-of-principle study challenges the gas phase behavior of the ABI-linker for the three amino acids, lysine, leucine, and isoleucine, as well as the model peptide thymopentin. The isomeric amino acids leucine and isoleucine could be discriminated by their characteristic side chain fragments. Collisional activation experiments were conducted via positive electrospray ionization (ESI) on two Orbitrap mass spectrometers. The ABI-mediated formation of odd electron product ions in MS/MS and MS3 experiments was evaluated and compared with a previously described azo-based cross-linker. All cross-linked products were amenable to automated analysis by the MeroX software, underlining the future potential of the ABI-linker for structural proteomics studies. [Figure not available: see fulltext.

  15. Structural properties of the linkers connecting the N- and C- terminal domains in the MocR bacterial transcriptional regulators

    Directory of Open Access Journals (Sweden)

    Teresa Milano

    2016-12-01

    Full Text Available Peptide inter-domain linkers are peptide segments covalently linking two adjacent domains within a protein. Linkers play a variety of structural and functional roles in naturally occurring proteins. In this work we analyze the sequence properties of the predicted linker regions of the bacterial transcriptional regulators belonging to the recently discovered MocR subfamily of the GntR regulators. Analyses were carried out on the MocR sequences taken from the phyla Actinobacteria, Firmicutes, Alpha-, Beta- and Gammaproteobacteria. The results suggest that MocR linkers display phylum-specific characteristics and unique features different from those already described for other classes of inter-domain linkers. They show an average length significantly higher: 31.8 ± 14.3 residues reaching a maximum of about 150 residues. Compositional propensities displayed general and phylum-specific trends. Pro is dominating in all linkers. Dyad propensity analysis indicate Pro–Pro as the most frequent amino acid pair in all linkers. Physicochemical properties of the linker regions were assessed using amino acid indices relative to different features: in general, MocR linkers are flexible, hydrophilic and display propensity for β-turn or coil conformations. Linker sequences are hypervariable: only similarities between MocR linkers from organisms related at the level of species or genus could be found with sequence searches. The results shed light on the properties of the linker regions of the new MocR subfamily of bacterial regulators and may provide knowledge-based rules for designing artificial linkers with desired properties.

  16. Mutations in B3GALT6, which encodes a glycosaminoglycan linker region enzyme, cause a spectrum of skeletal and connective tissue disorders.

    Science.gov (United States)

    Nakajima, Masahiro; Mizumoto, Shuji; Miyake, Noriko; Kogawa, Ryo; Iida, Aritoshi; Ito, Hironori; Kitoh, Hiroshi; Hirayama, Aya; Mitsubuchi, Hiroshi; Miyazaki, Osamu; Kosaki, Rika; Horikawa, Reiko; Lai, Angeline; Mendoza-Londono, Roberto; Dupuis, Lucie; Chitayat, David; Howard, Andrew; Leal, Gabriela F; Cavalcanti, Denise; Tsurusaki, Yoshinori; Saitsu, Hirotomo; Watanabe, Shigehiko; Lausch, Ekkehart; Unger, Sheila; Bonafé, Luisa; Ohashi, Hirofumi; Superti-Furga, Andrea; Matsumoto, Naomichi; Sugahara, Kazuyuki; Nishimura, Gen; Ikegawa, Shiro

    2013-06-06

    Proteoglycans (PGs) are a major component of the extracellular matrix in many tissues and function as structural and regulatory molecules. PGs are composed of core proteins and glycosaminoglycan (GAG) side chains. The biosynthesis of GAGs starts with the linker region that consists of four sugar residues and is followed by repeating disaccharide units. By exome sequencing, we found that B3GALT6 encoding an enzyme involved in the biosynthesis of the GAG linker region is responsible for a severe skeletal dysplasia, spondyloepimetaphyseal dysplasia with joint laxity type 1 (SEMD-JL1). B3GALT6 loss-of-function mutations were found in individuals with SEMD-JL1 from seven families. In a subsequent candidate gene study based on the phenotypic similarity, we found that B3GALT6 is also responsible for a connective tissue disease, Ehlers-Danlos syndrome (progeroid form). Recessive loss-of-function mutations in B3GALT6 result in a spectrum of disorders affecting a broad range of skeletal and connective tissues characterized by lax skin, muscle hypotonia, joint dislocation, and spinal deformity. The pleiotropic phenotypes of the disorders indicate that B3GALT6 plays a critical role in a wide range of biological processes in various tissues, including skin, bone, cartilage, tendon, and ligament. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  17. Differential solvation of intrinsically disordered linkers drives the formation of spatially organized droplets in ternary systems of linear multivalent proteins

    Science.gov (United States)

    Harmon, Tyler S.; Holehouse, Alex S.; Pappu, Rohit V.

    2018-04-01

    Intracellular biomolecular condensates are membraneless organelles that encompass large numbers of multivalent protein and nucleic acid molecules. The bodies assemble via a combination of liquid–liquid phase separation and gelation. A majority of condensates included multiple components and show multilayered organization as opposed to being well-mixed unitary liquids. Here, we put forward a simple thermodynamic framework to describe the emergence of spatially organized droplets in multicomponent systems comprising of linear multivalent polymers also known as associative polymers. These polymers, which mimic proteins and/or RNA have the architecture of domains or motifs known as stickers that are interspersed by flexible spacers known as linkers. Using a minimalist numerical model for a four-component system, we have identified features of linear multivalent molecules that are necessary and sufficient for generating spatially organized droplets. We show that differences in sequence-specific effective solvation volumes of disordered linkers between interaction domains enable the formation of spatially organized droplets. Molecules with linkers that are preferentially solvated are driven to the interface with the bulk solvent, whereas molecules that have linkers with negligible effective solvation volumes form cores in the core–shell architectures that emerge in the minimalist four-component systems. Our modeling has relevance for understanding the physical determinants of spatially organized membraneless organelles.

  18. Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Metal-Organic Frameworks.

    Science.gov (United States)

    Feng, Liang; Yuan, Shuai; Zhang, Liang-Liang; Tan, Kui; Li, Jia-Luo; Kirchon, Angelo; Liu, Ling-Mei; Zhang, Peng; Han, Yu; Chabal, Yves J; Zhou, Hong-Cai

    2018-02-14

    Sufficient pore size, appropriate stability, and hierarchical porosity are three prerequisites for open frameworks designed for drug delivery, enzyme immobilization, and catalysis involving large molecules. Herein, we report a powerful and general strategy, linker thermolysis, to construct ultrastable hierarchically porous metal-organic frameworks (HP-MOFs) with tunable pore size distribution. Linker instability, usually an undesirable trait of MOFs, was exploited to create mesopores by generating crystal defects throughout a microporous MOF crystal via thermolysis. The crystallinity and stability of HP-MOFs remain after thermolabile linkers are selectively removed from multivariate metal-organic frameworks (MTV-MOFs) through a decarboxylation process. A domain-based linker spatial distribution was found to be critical for creating hierarchical pores inside MTV-MOFs. Furthermore, linker thermolysis promotes the formation of ultrasmall metal oxide nanoparticles immobilized in an open framework that exhibits high catalytic activity for Lewis acid-catalyzed reactions. Most importantly, this work provides fresh insights into the connection between linker apportionment and vacancy distribution, which may shed light on probing the disordered linker apportionment in multivariate systems, a long-standing challenge in the study of MTV-MOFs.

  19. Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Metal-Organic Frameworks

    KAUST Repository

    Feng, Liang

    2018-01-18

    Sufficient pore size, appropriate stability and hierarchical porosity are three prerequisites for open frameworks designed for drug delivery, enzyme immobilization and catalysis involving large molecules. Herein, we report a powerful and general strate-gy, linker thermolysis, to construct ultra-stable hierarchically porous metal−organic frameworks (HP-MOFs) with tunable pore size distribution. Linker instability, usually an undesirable trait of MOFs, was exploited to create mesopores by generating crystal defects throughout a microporous MOF crystal via thermolysis. The crystallinity and stability of HP-MOFs remain after thermolabile linkers are selectively removed from multivariate metal-organic frameworks (MTV-MOFs) through a decarboxyla-tion process. A domain-based linker spatial distribution was found to be critical for creating hierarchical pores inside MTV-MOFs. Furthermore, linker thermolysis promotes the formation of ultra-small metal oxide (MO) nanoparticles immobilized in an open framework that exhibits high catalytic activity for Lewis acid catalyzed reactions. Most importantly, this work pro-vides fresh insights into the connection between linker apportionment and vacancy distribution, which may shed light on prob-ing the disordered linker apportionment in multivariate systems, a long-standing challenge in the study of MTV-MOFs.

  20. Micromachined silicon acoustic delay line with 3D-printed micro linkers and tapered input for improved structural stability and acoustic directivity

    International Nuclear Information System (INIS)

    Cho, Y; Kumar, A; Xu, S; Zou, J

    2016-01-01

    Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. To achieve deeper imaging depth and wider field of view, a longer delay time and therefore delay length are required. However, as the length of the delay line increases, it becomes more vulnerable to structural instability due to reduced mechanical stiffness. In this paper, we report the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, the improvement of the acoustic acceptance angle of the silicon acoustic delay lines was also investigated to better suppress the reception of unwanted ultrasound signals outside of the imaging plane. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays. (paper)

  1. Crystal structure of the Src family kinase Hck SH3-SH2 linker regulatory region supports an SH3-dominant activation mechanism.

    Science.gov (United States)

    Alvarado, John J; Betts, Laurie; Moroco, Jamie A; Smithgall, Thomas E; Yeh, Joanne I

    2010-11-12

    Most mammalian cell types depend on multiple Src family kinases (SFKs) to regulate diverse signaling pathways. Strict control of SFK activity is essential for normal cellular function, and loss of kinase regulation contributes to several forms of cancer and other diseases. Previous x-ray crystal structures of the SFKs c-Src and Hck revealed that intramolecular association of their Src homology (SH) 3 domains and SH2 kinase linker regions has a key role in down-regulation of kinase activity. However, the amino acid sequence of the Hck linker represents a suboptimal ligand for the isolated SH3 domain, suggesting that it may form the polyproline type II helical conformation required for SH3 docking only in the context of the intact structure. To test this hypothesis directly, we determined the crystal structure of a truncated Hck protein consisting of the SH2 and SH3 domains plus the linker. Despite the absence of the kinase domain, the structures and relative orientations of the SH2 and SH3 domains in this shorter protein were very similar to those observed in near full-length, down-regulated Hck. However, the SH2 kinase linker adopted a modified topology and failed to engage the SH3 domain. This new structure supports the idea that these noncatalytic regions work together as a "conformational switch" that modulates kinase activity in a manner unique to the SH3 domain and linker topologies present in the intact Hck protein. Our results also provide fresh structural insight into the facile induction of Hck activity by HIV-1 Nef and other Hck SH3 domain binding proteins and implicate the existence of innate conformational states unique to individual Src family members that "fine-tune" their sensitivities to activation by SH3-based ligands.

  2. LRRC45 Is a Centrosome Linker Component Required for Centrosome Cohesion

    Directory of Open Access Journals (Sweden)

    Runsheng He

    2013-09-01

    Full Text Available During interphase, centrosomes are connected by a proteinaceous linker between the proximal ends of the centrioles, which is important for the centrosomes to function as a single microtubule-organizing center. However, the composition and regulation of centrosomal linker remain largely unknown. Here, we show that LRRC45 is a centrosome linker that localizes at the proximal ends of the centrioles and forms fiber-like structures between them. Depletion of LRRC45 results in centrosome splitting during interphase. Moreover, LRRC45 interacts with both C-Nap1 and rootletin and is phosphorylated by Nek2A at S661 during mitosis. After phosphorylation, both LRRC45 centrosomal localization and fiber-like structures are significantly reduced, which subsequently leads to centrosome separation. Thus, LRRC45 is a critical component of the proteinaceous linker between two centrioles and is required for centrosome cohesion.

  3. Construction of hierarchically porous metal-organic frameworks through linker labilization

    Science.gov (United States)

    Yuan, Shuai; Zou, Lanfang; Qin, Jun-Sheng; Li, Jialuo; Huang, Lan; Feng, Liang; Wang, Xuan; Bosch, Mathieu; Alsalme, Ali; Cagin, Tahir; Zhou, Hong-Cai

    2017-05-01

    A major goal of metal-organic framework (MOF) research is the expansion of pore size and volume. Although many approaches have been attempted to increase the pore size of MOF materials, it is still a challenge to construct MOFs with precisely customized pore apertures for specific applications. Herein, we present a new method, namely linker labilization, to increase the MOF porosity and pore size, giving rise to hierarchical-pore architectures. Microporous MOFs with robust metal nodes and pro-labile linkers were initially synthesized. The mesopores were subsequently created as crystal defects through the splitting of a pro-labile-linker and the removal of the linker fragments by acid treatment. We demonstrate that linker labilization method can create controllable hierarchical porous structures in stable MOFs, which facilitates the diffusion and adsorption process of guest molecules to improve the performances of MOFs in adsorption and catalysis.

  4. Library of biphenyl privileged substructures using a safety-catch linker approach

    DEFF Research Database (Denmark)

    Severinsen, Rune; Bourne, Gregory T; Tran, Tran T

    2008-01-01

    A biphenyl privileged structure library containing three attachment points were synthesized using a catechol-based safety-catch linker strategy. The method requires the attachment of a bromo-acid to the linker, followed by a Pd-catalyzed Suzuki cross-coupling reaction. Further derivatization...

  5. Mutations in B3GALT6, which Encodes a Glycosaminoglycan Linker Region Enzyme, Cause a Spectrum of Skeletal and Connective Tissue Disorders

    OpenAIRE

    Nakajima, Masahiro; Mizumoto, Shuji; Miyake, Noriko; Kogawa, Ryo; Iida, Aritoshi; Ito, Hironori; Kitoh, Hiroshi; Hirayama, Aya; Mitsubuchi, Hiroshi; Miyazaki, Osamu; Kosaki, Rika; Horikawa, Reiko; Lai, Angeline; Mendoza-Londono, Roberto; Dupuis, Lucie

    2013-01-01

    Proteoglycans (PGs) are a major component of the extracellular matrix in many tissues and function as structural and regulatory molecules. PGs are composed of core proteins and glycosaminoglycan (GAG) side chains. The biosynthesis of GAGs starts with the linker region that consists of four sugar residues and is followed by repeating disaccharide units. By exome sequencing, we found that B3GALT6 encoding an enzyme involved in the biosynthesis of the GAG linker region is responsible for a sever...

  6. Open and Closed: The Roles of Linker Histones in Plants and Animals

    OpenAIRE

    Over, Ryan S.; Michaels, Scott D.

    2014-01-01

    Linker histones play key roles alongside core histones in the regulation and maintenance of chromatin. Here, we illustrate our current understanding of the contributions of linker histones to the cell cycle, development, and chromatin structure in plants and animals.

  7. Cellulase linkers are optimized based on domain type and function: insights from sequence analysis, biophysical measurements, and molecular simulation.

    Directory of Open Access Journals (Sweden)

    Deanne W Sammond

    Full Text Available Cellulase enzymes deconstruct cellulose to glucose, and are often comprised of glycosylated linkers connecting glycoside hydrolases (GHs to carbohydrate-binding modules (CBMs. Although linker modifications can alter cellulase activity, the functional role of linkers beyond domain connectivity remains unknown. Here we investigate cellulase linkers connecting GH Family 6 or 7 catalytic domains to Family 1 or 2 CBMs, from both bacterial and eukaryotic cellulases to identify conserved characteristics potentially related to function. Sequence analysis suggests that the linker lengths between structured domains are optimized based on the GH domain and CBM type, such that linker length may be important for activity. Longer linkers are observed in eukaryotic GH Family 6 cellulases compared to GH Family 7 cellulases. Bacterial GH Family 6 cellulases are found with structured domains in either N to C terminal order, and similar linker lengths suggest there is no effect of domain order on length. O-glycosylation is uniformly distributed across linkers, suggesting that glycans are required along entire linker lengths for proteolysis protection and, as suggested by simulation, for extension. Sequence comparisons show that proline content for bacterial linkers is more than double that observed in eukaryotic linkers, but with fewer putative O-glycan sites, suggesting alternative methods for extension. Conversely, near linker termini where linkers connect to structured domains, O-glycosylation sites are observed less frequently, whereas glycines are more prevalent, suggesting the need for flexibility to achieve proper domain orientations. Putative N-glycosylation sites are quite rare in cellulase linkers, while an N-P motif, which strongly disfavors the attachment of N-glycans, is commonly observed. These results suggest that linkers exhibit features that are likely tailored for optimal function, despite possessing low sequence identity. This study suggests

  8. The First MS-Cleavable, Photo-Thiol-Reactive Cross-Linker for Protein Structural Studies

    Science.gov (United States)

    Iacobucci, Claudio; Piotrowski, Christine; Rehkamp, Anne; Ihling, Christian H.; Sinz, Andrea

    2018-04-01

    Cleavable cross-linkers are gaining increasing importance for chemical cross-linking/mass spectrometry (MS) as they permit a reliable and automated data analysis in structural studies of proteins and protein assemblies. Here, we introduce 1,3-diallylurea (DAU) as the first CID-MS/MS-cleavable, photo-thiol-reactive cross-linker. DAU is a commercially available, inexpensive reagent that efficiently undergoes an anti-Markovnikov hydrothiolation with cysteine residues in the presence of a radical initiator upon UV-A irradiation. Radical cysteine cross-linking proceeds via an orthogonal "click reaction" and yields stable alkyl sulfide products. DAU reacts at physiological pH and cross-linking reactions with peptides, and proteins can be performed at temperatures as low as 4 °C. The central urea bond is efficiently cleaved upon collisional activation during tandem MS experiments generating characteristic product ions. This improves the reliability of automated cross-link identification. Different radical initiators have been screened for the cross-linking reaction of DAU using the thiol-containing compounds cysteine and glutathione. Our concept has also been exemplified for the biologically relevant proteins bMunc13-2 and retinal guanylyl cyclase-activating protein-2. [Figure not available: see fulltext.

  9. Epigenetics and autism spectrum disorder: A report of an autism case with mutation in H1 linker histone HIST1H1e and literature review.

    Science.gov (United States)

    Duffney, Lara J; Valdez, Purnima; Tremblay, Martine W; Cao, Xinyu; Montgomery, Sarah; McConkie-Rosell, Allyn; Jiang, Yong-Hui

    2018-04-27

    Genetic mutations in genes encoding proteins involved in epigenetic machinery have been reported in individuals with autism spectrum disorder (ASD), intellectual disability, congenital heart disease, and other disorders. H1 histone linker protein, the basic component in nucleosome packaging and chromatin organization, has not been implicated in human disease until recently. We report a de novo deleterious mutation of histone cluster 1 H1 family member e (HIST1H1E; c.435dupC; p.Thr146Hisfs*50), encoding H1 histone linker protein H1.4, in a 10-year-old boy with autism and intellectual disability diagnosed through clinical whole exome sequencing. The c.435dupC at the 3' end of the mRNA leads to a frameshift and truncation of the positive charge in the carboxy-terminus of the protein. An expression study demonstrates the mutation leads to reduced protein expression, supporting haploinsufficiency of HIST1H1E protein and loss of function as an underlying mechanism of dysfunction in the brain. Taken together with other recent cases with mutations of HIST1H1E in intellectual disability, the evidence supporting the link to causality in disease is strong. Our finding implicates the deficiency of H1 linker histone protein in autism. The systematic review of candidate genes implicated in ASD revealed that 42 of 215 (19.5%) genes are directly involved in epigenetic regulations and the majority of these genes belong to histone writers, readers, and erasers. While the mechanism of how haploinsufficiency of HIST1H1E causes autism is entirely unknown, our report underscores the importance of further study of the function of this protein and other histone linker proteins in brain development. © 2018 Wiley Periodicals, Inc.

  10. Structural basis for activation of ZAP-70 by phosphorylation of the SH2-kinase linker.

    Science.gov (United States)

    Yan, Qingrong; Barros, Tiago; Visperas, Patrick R; Deindl, Sebastian; Kadlecek, Theresa A; Weiss, Arthur; Kuriyan, John

    2013-06-01

    Serial activation of the tyrosine kinases Lck and ZAP-70 initiates signaling downstream of the T cell receptor. We previously reported the structure of an autoinhibited ZAP-70 variant in which two regulatory tyrosine residues (315 and 319) in the SH2-kinase linker were replaced by phenylalanine. We now present a crystal structure of ZAP-70 in which Tyr 315 and Tyr 319 are not mutated, leading to the recognition of a five-residue sequence register error in the SH2-kinase linker of the original crystallographic model. The revised model identifies distinct roles for these two tyrosines. As seen in a recently reported structure of the related tyrosine kinase Syk, Tyr 315 of ZAP-70 is part of a hydrophobic interface between the regulatory apparatus and the kinase domain, and the integrity of this interface would be lost upon engagement of doubly phosphorylated peptides by the SH2 domains. Tyr 319 is not necessarily dislodged by SH2 engagement, which activates ZAP-70 only ∼5-fold in vitro. In contrast, phosphorylation by Lck activates ZAP-70 ∼100-fold. This difference is due to the ability of Tyr 319 to suppress ZAP-70 activity even when the SH2 domains are dislodged from the kinase domain, providing stringent control of ZAP-70 activity downstream of Lck.

  11. Investigation of the Linker Swing Motion in the Zeolitic Imidazolate Framework ZIF-90

    KAUST Repository

    Zheng, Bin

    2018-03-13

    The linker swing motion in the zeolitic imidazolate framework ZIF-90 is investigated by density functional theory (DFT) calculation, molecular dynamics (MD) and grand-canonical Monte Carlo (GCMC) simulations. The relation between the terminal aldehyde group rotation and the linker swing motion is revealed. The extremely high activation energy of the linker swing motion in ZIF-90 can be attributed to the asymmetric geometry and electron distribution of aldehyde groups. The change in the gate structure resulting from the linker rotation is used to understand the guest adsorption in ZIF-90. This study shows that it is possible to tune the linker swing motion and then the properties of ZIF-90 by manipulating the terminal group rotation. The results highlight the importance of considering the internal freedom effects to correctly describe the linker swing motion and the flexibility of metal-organic frameworks (MOFs).

  12. Desorption of 3,3′-diindolylmethane from imprinted particles: An impact of cross-linker structure on binding capacity and selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Klejn, Dorota; Luliński, Piotr; Maciejewska, Dorota, E-mail: dorota.maciejewska@wum.edu.pl

    2015-11-01

    Here, seven cross-linkers (six polar diacrylates or dimethacrylates of different lengths between double bonds, and one aromatic-divinylbenzene) were used to examine the impact of the cross-linker on binding capacity and selectivity of 3,3′-diindolylmethane (DIM) imprinted material. DIM participates in the suppression of viability of human ovarian and human breast cancer cell lines, but has low bioavailability. The investigations of novel imprinted polymer matrices for improvement of DIM release could allow to utilize not only a potency of DIM but also similar alkaloids, which are the important compounds with pharmacological activity. The bulk, thermal radical copolymerization of the cross-linkers in the presence of 3,3′-diindolylmethane (the template) and allylamine (the functional monomer) in dimethyl sulfoxide or in carbon tetrachloride (porogens) was carried out. The binding capacities of imprinted and non-imprinted polymers were compared, and two polymers (these were prepared using ethylene glycol dimethacrylate and polyethylene glycol dimethacrylate as the cross-linkers) with the highest selectivity and binding capacity were selected to desorption test. The desorption profile of polymer prepared using polyethylene glycol dimethacrylate as the cross-linker revealed sustained release of 3,3′-diindolylmethane, and this system was selected for further optimization of the cross-linker amounts. The morphology and structure of the selected particles were analyzed using SEM micrographs, {sup 13}C CP/MAS NMR spectroscopy, and BET measurements. The desorption of 3,3′-diindolylmethane from poly(allylamine-co-polyethylene glycol dimethacrylate) particles was in accordance with pseudo-second-order kinetics and the simplified Higuchi model indicated the diffusion controlled release of 3,3′-diindolylmethane. - Graphical abstract: Sustained release of 3,3′-diindolylmethane from cavity in imprinted poly(allylamine-co-polyethylene glycol dimethacrylate

  13. Desorption of 3,3′-diindolylmethane from imprinted particles: An impact of cross-linker structure on binding capacity and selectivity

    International Nuclear Information System (INIS)

    Klejn, Dorota; Luliński, Piotr; Maciejewska, Dorota

    2015-01-01

    Here, seven cross-linkers (six polar diacrylates or dimethacrylates of different lengths between double bonds, and one aromatic-divinylbenzene) were used to examine the impact of the cross-linker on binding capacity and selectivity of 3,3′-diindolylmethane (DIM) imprinted material. DIM participates in the suppression of viability of human ovarian and human breast cancer cell lines, but has low bioavailability. The investigations of novel imprinted polymer matrices for improvement of DIM release could allow to utilize not only a potency of DIM but also similar alkaloids, which are the important compounds with pharmacological activity. The bulk, thermal radical copolymerization of the cross-linkers in the presence of 3,3′-diindolylmethane (the template) and allylamine (the functional monomer) in dimethyl sulfoxide or in carbon tetrachloride (porogens) was carried out. The binding capacities of imprinted and non-imprinted polymers were compared, and two polymers (these were prepared using ethylene glycol dimethacrylate and polyethylene glycol dimethacrylate as the cross-linkers) with the highest selectivity and binding capacity were selected to desorption test. The desorption profile of polymer prepared using polyethylene glycol dimethacrylate as the cross-linker revealed sustained release of 3,3′-diindolylmethane, and this system was selected for further optimization of the cross-linker amounts. The morphology and structure of the selected particles were analyzed using SEM micrographs, 13 C CP/MAS NMR spectroscopy, and BET measurements. The desorption of 3,3′-diindolylmethane from poly(allylamine-co-polyethylene glycol dimethacrylate) particles was in accordance with pseudo-second-order kinetics and the simplified Higuchi model indicated the diffusion controlled release of 3,3′-diindolylmethane. - Graphical abstract: Sustained release of 3,3′-diindolylmethane from cavity in imprinted poly(allylamine-co-polyethylene glycol dimethacrylate). - Highlights:

  14. Tunable CO 2 Adsorbents by Mixed-Linker Synthesis and Postsynthetic Modification of Zeolitic Imidazolate Frameworks

    KAUST Repository

    Thompson, Joshua A.; Brunelli, Nicholas A.; Lively, Ryan P.; Johnson, J. R.; Jones, Christopher W.; Nair, Sankar

    2013-01-01

    The incorporation of accessible amine functionality in zeolitic imidazolate frameworks (ZIFs) is used to improve the adsorption selectivity for CO 2/CH4 gas separation applications. Two synthetic approaches are described in this work to introduce functionality into the ZIF: (i) mixed-linker ZIF synthesis with 2-aminobenzimidazole as a substitution linker and (ii) postsynthetic modification of a mixed-linker ZIF with ethylenediamine. Using 2-aminobenzimidazole, a linker with a primary amine functional group, substitution of the ZIF-8 linker during synthesis allows for control over the adsorption properties while maintaining the ZIF-8 structure with up to nearly 50% substitution in the mixed-linker ZIF framework, producing a material with tunable pore size and amine functionality. Alternatively, postsynthetic modification of a mixed-linker ZIF containing an aldehyde functional group produces a ZIF material with a primary amine without detrimental loss of micropore volume by controlling the amount of functional group sites for modification. Both approaches using mixed-linker ZIFs yield new materials that show improvement in adsorption selectivity for the CO 2/CH4 gas pair over ZIF-8 and commercially available adsorbents as well as an increase in the heat of adsorption for CO2 without significant changes to the crystal structure. These results indicate that tuning the surface properties of ZIFs by either mixed-linker synthesis and/or postsynthetic modification may generate new materials with improved gas separation properties, thereby providing a new method for tailoring metal-organic frameworks. © 2013 American Chemical Society.

  15. Tunable CO 2 Adsorbents by Mixed-Linker Synthesis and Postsynthetic Modification of Zeolitic Imidazolate Frameworks

    KAUST Repository

    Thompson, Joshua A.

    2013-04-25

    The incorporation of accessible amine functionality in zeolitic imidazolate frameworks (ZIFs) is used to improve the adsorption selectivity for CO 2/CH4 gas separation applications. Two synthetic approaches are described in this work to introduce functionality into the ZIF: (i) mixed-linker ZIF synthesis with 2-aminobenzimidazole as a substitution linker and (ii) postsynthetic modification of a mixed-linker ZIF with ethylenediamine. Using 2-aminobenzimidazole, a linker with a primary amine functional group, substitution of the ZIF-8 linker during synthesis allows for control over the adsorption properties while maintaining the ZIF-8 structure with up to nearly 50% substitution in the mixed-linker ZIF framework, producing a material with tunable pore size and amine functionality. Alternatively, postsynthetic modification of a mixed-linker ZIF containing an aldehyde functional group produces a ZIF material with a primary amine without detrimental loss of micropore volume by controlling the amount of functional group sites for modification. Both approaches using mixed-linker ZIFs yield new materials that show improvement in adsorption selectivity for the CO 2/CH4 gas pair over ZIF-8 and commercially available adsorbents as well as an increase in the heat of adsorption for CO2 without significant changes to the crystal structure. These results indicate that tuning the surface properties of ZIFs by either mixed-linker synthesis and/or postsynthetic modification may generate new materials with improved gas separation properties, thereby providing a new method for tailoring metal-organic frameworks. © 2013 American Chemical Society.

  16. Identification of novel post-translational modifications in linker histones from chicken erythrocytes.

    Science.gov (United States)

    Sarg, Bettina; Lopez, Rita; Lindner, Herbert; Ponte, Inma; Suau, Pedro; Roque, Alicia

    2015-01-15

    Chicken erythrocyte nuclei were digested with micrococcal nuclease and fractionated by centrifugation in low-salt buffer into soluble and insoluble fractions. Post-translational modifications of the purified linker histones of both fractions were analyzed by LC-ESI-MS/MS. All six histone H1 subtypes (H1.01, H1.02, H1.03, H1.10, H1.1L and H1.1R) and histone H5 were identified. Mass spectrometry analysis enabled the identification of a wide range of PTMs, including N(α)-terminal acetylation, acetylation, formylation, phosphorylation and oxidation. A total of nine new modifications in chicken linker histones were mapped, most of them located in the N-terminal and globular domains. Relative quantification of the modified peptides showed that linker histone PTMs were differentially distributed among both chromatin fractions, suggesting their relevance in the regulation of chromatin structure. The analysis of our results combined with previously reported data for chicken and some mammalian species showed that most of the modified positions were conserved throughout evolution, highlighting their importance in specific linker histone functions and epigenetics. Post-translational modifications of linker histones could have a role in the regulation of gene expression through the modulation of chromatin higher-order structure and chromatin remodeling. Finding new PTMs in linker histones is the first step to elucidate their role in the histone code. In this manuscript we report nine new post-translational modifications of the linker histones from chicken erythrocytes, one in H5 and eight in the H1 subtypes. Chromatin fractionated by centrifugation in low-salt buffer resulted in two fractions with different contents and compositions of linker histones and enriched in specific core histone PTMs. Of particular interest is the fact that linker histone PTMs were differentially distributed in both chromatin fractions, suggesting specific functions. Future studies are needed to

  17. Desmosine-Inspired Cross-Linkers for Hyaluronan Hydrogels

    Science.gov (United States)

    Hagel, Valentin; Mateescu, Markus; Southan, Alexander; Wegner, Seraphine V.; Nuss, Isabell; Haraszti, Tamás; Kleinhans, Claudia; Schuh, Christian; Spatz, Joachim P.; Kluger, Petra J.; Bach, Monika; Tussetschläger, Stefan; Tovar, Günter E. M.; Laschat, Sabine; Boehm, Heike

    2013-06-01

    We designed bioinspired cross-linkers based on desmosine, the cross-linker in natural elastin, to prepare hydrogels with thiolated hyaluronic acid. These short, rigid cross-linkers are based on pyridinium salts (as in desmosine) and can connect two polymer backbones. Generally, the obtained semi-synthetic hydrogels are form-stable, can withstand repeated stress, have a large linear-elastic range, and show strain stiffening behavior typical for biopolymer networks. In addition, it is possible to introduce a positive charge to the core of the cross-linker without affecting the gelation efficiency, or consequently the network connectivity. However, the mechanical properties strongly depend on the charge of the cross-linker. The properties of the presented hydrogels can thus be tuned in a range important for engineering of soft tissues by controlling the cross-linking density and the charge of the cross-linker.

  18. Solid colloids with surface-mobile linkers

    International Nuclear Information System (INIS)

    Van der Meulen, Stef A J; Helms, Gesa; Dogterom, Marileen

    2015-01-01

    In this report we review the possibilities of using colloids with surface mobile linkers for the study of colloidal self-assembly processes. A promising route to create systems with mobile linkers is the use of lipid (bi-)layers. These lipid layers can be either used in the form of vesicles or as coatings for hard colloids and emulsion droplets. Inside the lipid bilayers molecules can be inserted via membrane anchors. Due to the fluidity of the lipid bilayer, the anchored molecules remain mobile. The use of different lipid mixtures even allows creating Janus-like particles that exhibit directional bonding if linkers are used which have a preference for a certain lipid phase. In nature mobile linkers can be found e.g. as receptors in cells. Therefore, towards the end of the review, we also briefly address the possibility of using colloids with surface mobile linkers as model systems to mimic cell–cell interactions and cell adhesion processes. (topical review)

  19. Novel mixing method for cross linker introduction into droplet emulsions

    CSIR Research Space (South Africa)

    Land, KJ

    2013-10-01

    Full Text Available the introduction of cross linker after droplet formation, together with the utilisation of topological microfluidic channel structures, allowing for the novel manufacture of particles. Flow over these structures has been simulated in order to choose the most...

  20. Composite materials with metal oxide attached to lead chalcogenide nanocrystal quantum dots with linkers

    Science.gov (United States)

    Fuke, Nobuhiro; Koposov, Alexey Y; Sykora, Milan; Hoch, Laura

    2014-12-16

    Composite materials useful for devices such as photoelectrochemical solar cells include a substrate, a metal oxide film on the substrate, nanocrystalline quantum dots (NQDs) of lead sulfide, lead selenide, and lead telluride, and linkers that attach the NQDs to the metal oxide film. Suitable linkers preserve the 1s absorption peak of the NQDs. A suitable linker has a general structure A-B-C where A is a chemical group adapted for binding to a MO.sub.x and C is a chemical group adapted for binding to a NQD and B is a divalent, rigid, or semi-rigid organic spacer moiety. Other linkers that preserve the 1s absorption peak may also be used.

  1. Development of Bioorthogonally Degradable Linkers and Polymers Using alpha-Azidoethers

    Science.gov (United States)

    Rajagopalan, Chandrasekhar Ramasubramanian

    Degradable polymers have gained a lot of attention in recent years for applications in biotechnology and medicine. External control over polymer degradation can be obtained by incorporating functional groups that cleave in the presence of triggers that would normally be absent in biological environments, i.e. are bioorthogonal. This thesis explores the use of chemically cleavable alpha-azidoethers as a new method to obtain external control over the degradation behavior of polymers. My first goal is to illustrate the potential of alpha-azidoethers toward developing cleavable linkers. We have studied the relationship between alpha-azidoether structure and hydrolytic stability, to prepare linkers that withstand background hydrolytic cleavage until they are exposed to the cleaving trigger. The cleavage kinetics of the alpha-azidoether functional group was quantified. In addition to the conventionally used tris(2-carboxyethyl)phosphine (TCEP), dihydrolipoic acid (DHLA), a previously unexplored, biocompatible reducing agent, was also evaluated as a cleaving trigger. Based on these results, we have proposed design rules for utilizing alpha-azidoethers as cleavable linkers in applications that require bioorthogonal control over linker cleavage. Secondly, the alpha-azidoether cleavable linker chemistry was implemented into the development of polymeric materials. Two different types of polymers were developed. Polyamides incorporating alpha-azidoethers along the backbone were synthesized, and their physical properties and chemically triggered degradation behavior were characterized. The degradation timescale of these polymers can be tuned simply by manipulating the concentration of the externally applied chemical trigger. The alpha-azidoether functional group was then utilized to develop a unique triggered-release polymeric adhesive for potential applications in dental adhesive formulations. A methacrylamide-phosphonate adhesive monomer incorporating an alpha

  2. Specific distribution of the Saccharomyces cerevisiae linker histone homolog HHO1p in the chromatin

    OpenAIRE

    Freidkin, Ilya; Katcoff, Don J.

    2001-01-01

    In virtually all eukaryotic organisms, linker DNA between nucleosomes is associated with a histone termed linker histone or histone H1. In Saccharomyces cerevisiae, HHO1 encodes a putative linker histone with very significant homology to histone H1. The encoded protein is expressed in the nucleus, but has not been shown to affect global chromatin structure, nor has its deletion shown any detectable phenotype. In vitro chromatin assembly experiments with recombinant HHO1p have shown that it is...

  3. Hydroquinone–pyrrole dyads with varied linkers

    Directory of Open Access Journals (Sweden)

    Hao Huang

    2016-01-01

    Full Text Available A series of pyrroles functionalized in the 3-position with p-dimethoxybenzene via various linkers (CH2, CH2CH2, CH=CH, C≡C has been synthesized. Their electronic properties have been deduced from 1H NMR, 13C NMR, and UV–vis spectra to detect possible interactions between the two aromatic subunits. The extent of conjugation between the subunits is largely controlled by the nature of the linker, with the largest conjugation found with the trans-ethene linker and the weakest with the aliphatic linkers. DFT calculations revealed substantial changes in the HOMO–LUMO gap that correlated with the extent of conjugation found experimentally. The results of this work are expected to open up for use of the investigated compounds as components of redox-active materials in sustainable, organic electrical energy storage devices.

  4. The bacterial tubulin FtsZ requires its intrinsically disordered linker to direct robust cell wall construction.

    Science.gov (United States)

    Sundararajan, Kousik; Miguel, Amanda; Desmarais, Samantha M; Meier, Elizabeth L; Casey Huang, Kerwyn; Goley, Erin D

    2015-06-23

    The bacterial GTPase FtsZ forms a cytokinetic ring at midcell, recruits the division machinery and orchestrates membrane and peptidoglycan cell wall invagination. However, the mechanism for FtsZ regulation of peptidoglycan metabolism is unknown. The FtsZ GTPase domain is separated from its membrane-anchoring C-terminal conserved (CTC) peptide by a disordered C-terminal linker (CTL). Here we investigate CTL function in Caulobacter crescentus. Strikingly, production of FtsZ lacking the CTL (ΔCTL) is lethal: cells become filamentous, form envelope bulges and lyse, resembling treatment with β-lactam antibiotics. This phenotype is produced by FtsZ polymers bearing the CTC and a CTL shorter than 14 residues. Peptidoglycan synthesis still occurs downstream of ΔCTL; however, cells expressing ΔCTL exhibit reduced peptidoglycan crosslinking and longer glycan strands than wild type. Importantly, midcell proteins are still recruited to sites of ΔCTL assembly. We propose that FtsZ regulates peptidoglycan metabolism through a CTL-dependent mechanism that extends beyond simple protein recruitment.

  5. Charged Triazole Cross-Linkers for Hyaluronan-Based Hybrid Hydrogels

    Directory of Open Access Journals (Sweden)

    Maike Martini

    2016-09-01

    Full Text Available Polyelectrolyte hydrogels play an important role in tissue engineering and can be produced from natural polymers, such as the glycosaminoglycan hyaluronan. In order to control charge density and mechanical properties of hyaluronan-based hydrogels, we developed cross-linkers with a neutral or positively charged triazole core with different lengths of spacer arms and two terminal maleimide groups. These cross-linkers react with thiolated hyaluronan in a fast, stoichiometric thio-Michael addition. Introducing a positive charge on the core of the cross-linker enabled us to compare hydrogels with the same interconnectivity, but a different charge density. Positively charged cross-linkers form stiffer hydrogels relatively independent of the size of the cross-linker, whereas neutral cross-linkers only form stable hydrogels at small spacer lengths. These novel cross-linkers provide a platform to tune the hydrogel network charge and thus the mechanical properties of the network. In addition, they might offer a wide range of applications especially in bioprinting for precise design of hydrogels.

  6. Two-dimensional layer architecture assembled by Keggin polyoxotungstate, Cu(II)-EDTA complex and sodium linker: Synthesis, crystal structures, and magnetic properties

    International Nuclear Information System (INIS)

    Liu Hong; Xu Lin; Gao Guanggang; Li Fengyan; Yang Yanyan; Li Zhikui; Sun Yu

    2007-01-01

    Reaction of Keggin polyoxotungstate with copper(II)-EDTA (EDTA=ethylenediamine tetraacetate) complex under mild conditions led to the formation of hybrid inorganic-organic compounds Na 4 (OH)[(Cu 2 EDTA)PW 12 O 40 ].17H 2 O (1) and Na 4 [(Cu 2 EDTA)SiW 12 O 40 ].19H 2 O (2). The single-crystal X-ray diffraction analyses reveal their two structural features: (1) one-dimensional chain structure consisting of Keggin polyoxotungstate and copper(II)-EDTA complex; (2) Two-dimensional layer architecture assembled by the one-dimensional chain structure and sodium linker. The results of magnetic measurements in the temperature range 300-2 K indicated the existence of ferromagnetic exchange interactions between the Cu II ions for both compounds. In addition, TGA analysis, IR spectra, and electrochemical properties were also investigated to well characterize these two compounds. - Graphical abstract: Two new polyoxometalate-based hybrids, Na 4 (OH)[Cu 2 (EDTA)PW 12 O 40 ].17H 2 O (1) and Na 4 [Cu 2 (EDTA)SiW 12 O 40 ].19H 2 O (2), have been synthesized and structurally characterized, which consist of one-dimensional chain structure assembled by Keggin polyoxotungstate and copper(II)-EDTA complex. The chains are further connected to form two-dimensional layer architecture assembled by the one-dimensional chain structure and sodium linker

  7. G-CSF receptor-binding cyclic peptides designed with artificial amino-acid linkers

    International Nuclear Information System (INIS)

    Shibata, Kenji; Maruyama-Takahashi, Kumiko; Yamasaki, Motoo; Hirayama, Noriaki

    2006-01-01

    Designing small molecules that mimic the receptor-binding local surface structure of large proteins such as cytokines or growth factors is fascinating and challenging. In this study, we designed cyclic peptides that reproduce the receptor-binding loop structures of G-CSF. We found it is important to select a suitable linker to join two or more discontinuous sequences and both termini of the peptide corresponding to the receptor-binding loop. Structural simulations based on the crystallographic structure of KW-2228, a stable and potent analog of human G-CSF, led us to choose 4-aminobenzoic acid (Abz) as a part of the linker. A combination of 4-Abz with β-alanine or glycine, and disulfide bridges between cysteins or homocysteins, gave a structure suitable for receptor binding. In this structure, the side-chains of several amino acids important for the interactions with the receptor are protruding from one side of the peptide ring. This artificial peptide showed G-CSF antagonistic activity in a cell proliferation assay

  8. A Class of Rigid Linker-bearing Glucosides for Membrane Protein Structural Study

    DEFF Research Database (Denmark)

    Sadaf, Aiman; Mortensen, Jonas S; Capaldi, Stefano

    2016-01-01

    with a branched tail group and a triglucoside head group. These head and tail groups were connected via an amide or ether linkage by using a tris(hydroxylmethyl)aminomethane (TRIS) or neopentyl glycol (NPG) linker to produce TRIS-derived triglucosides (TDTs) and NPG-derived triglucosides (NDTs), respectively...

  9. Saccharomyces cerevisiae Linker Histone—Hho1p Maintains Chromatin Loop Organization during Ageing

    Directory of Open Access Journals (Sweden)

    Katya Uzunova

    2013-01-01

    Full Text Available Intricate, dynamic, and absolutely unavoidable ageing affects cells and organisms through their entire lifetime. Driven by diverse mechanisms all leading to compromised cellular functions and finally to death, this process is a challenge for researchers. The molecular mechanisms, the general rules that it follows, and the complex interplay at a molecular and cellular level are yet little understood. Here, we present our results showing a connection between the linker histones, the higher-order chromatin structures, and the process of chronological lifespan of yeast cells. By deleting the gene for the linker histone in Saccharomyces cerevisiae we have created a model for studying the role of chromatin structures mainly at its most elusive and so far barely understood higher-order levels of compaction in the processes of yeast chronological lifespan. The mutant cells demonstrated controversial features showing slower growth than the wild type combined with better survival during the whole process. The analysis of the global chromatin organization during different time points demonstrated certain loss of the upper levels of chromatin compaction in the cells without linker histone. The results underlay the importance of this histone for the maintenance of the chromatin loop structures during ageing.

  10. A Photolabile Linker for the Solid-Phase Synthesis of Peptide Hydrazides and Heterocycles

    DEFF Research Database (Denmark)

    Qvortrup, Katrine; Komnatnyy, Vitaly V.; Nielsen, Thomas Eiland

    2014-01-01

    A photolabile hydrazine linker for the solid-phase synthesis of peptide hydrazides and hydrazine-derived heterocycles is presented. The developed protocols enable the efficient synthesis of structurally diverse peptide hydrazides derived from the standard amino adds, including those with side......-chain protected residues at the C-terminal of the resulting peptide hydrazide, and are useful for the synthesis of dihydropyrano[2,3-c]pyrazoles. The linker is compatible with most commonly used coupling reagents and protecting groups for solid-phase peptide synthesis....

  11. The Abl SH2-kinase linker naturally adopts a conformation competent for SH3 domain binding.

    Science.gov (United States)

    Chen, Shugui; Brier, Sébastien; Smithgall, Thomas E; Engen, John R

    2007-04-01

    The core of the Abelson tyrosine kinase (c-Abl) is structurally similar to Src-family kinases where SH3 and SH2 domains pack against the backside of the kinase domain in the down-regulated conformation. Both kinase families depend upon intramolecular association of SH3 with the linker joining the SH2 and kinase domains for suppression of kinase activity. Hydrogen deuterium exchange (HX) and mass spectrometry (MS) were used to probe intramolecular interaction of the c-Abl SH3 domain with the linker in recombinant constructs lacking the kinase domain. Under physiological conditions, the c-Abl SH3 domain undergoes partial unfolding, which is stabilized by ligand binding, providing a unique assay for SH3:linker interaction in solution. Using this approach, we observed dynamic association of the SH3 domain with the linker in the absence of the kinase domain. Truncation of the linker before W254 completely prevented cis-interaction with SH3, while constructs containing amino acids past this point showed SH3:linker interactions. The observation that the Abl linker sequence exhibits SH3-binding activity in the absence of the kinase domain is unique to Abl and was not observed with Src-family kinases. These results suggest that SH3:linker interactions may have a more prominent role in Abl regulation than in Src kinases, where the down-regulated conformation is further stabilized by a second intramolecular interaction between the C-terminal tail and the SH2 domain.

  12. Mutations in Biosynthetic Enzymes for the Protein Linker Region of Chondroitin/Dermatan/Heparan Sulfate Cause Skeletal and Skin Dysplasias

    Directory of Open Access Journals (Sweden)

    Shuji Mizumoto

    2015-01-01

    Full Text Available Glycosaminoglycans, including chondroitin, dermatan, and heparan sulfate, have various roles in a wide range of biological events such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Their polysaccharides covalently attach to the serine residues on specific core proteins through the common linker region tetrasaccharide, -xylose-galactose-galactose-glucuronic acid, which is produced through the stepwise addition of respective monosaccharides by four distinct glycosyltransferases. Mutations in the human genes encoding the glycosyltransferases responsible for the biosynthesis of the linker region tetrasaccharide cause a number of genetic disorders, called glycosaminoglycan linkeropathies, including Desbuquois dysplasia type 2, spondyloepimetaphyseal dysplasia, Ehlers-Danlos syndrome, and Larsen syndrome. This review focused on recent studies on genetic diseases caused by defects in the biosynthesis of the common linker region tetrasaccharide.

  13. Lecithin-linker formulations for self-emulsifying delivery of nutraceuticals.

    Science.gov (United States)

    Chu, Jacquelene; Cheng, Yu-Ling; Rao, A Venketeshwer; Nouraei, Mehdi; Zarate-Muñoz, Silvia; Acosta, Edgar J

    2014-08-25

    Lecithin-linker microemulsions are formulations produced with soybean lecithin in combination with a highly lipophilic (lipophilic linker) and highly hydrophilic (hydrophilic linkers) surfactant-like additives. In this work, lecithin-linker systems were formulated to produce self-emulsifying delivery systems for β-carotene and β-sitosterol. The concentration of the lipophilic linker, sorbitan monooleate, was adjusted to minimize the formation of liquid crystals. The concentration of hydrophilic linkers, decaglyceryl caprylate/caprate and PEG-6-caprylic/capric glycerides, was gradually increased (scanned) until single phase clear microemulsions were obtained. For these scans, the oil (ethyl caprate) to water ratio was set to 1. The single phase, clear microemulsions were diluted with fed-state simulated intestinal fluid (FeSSIF) and produced stable emulsions, with drop sizes close to 200 nm. Using pseudo-ternary phase diagrams to evaluate the process of dilution of microemulsion preconcentrates (mixtures of oil, lecithin and linkers with little or no water) with FeSSIF, it was determined that self-emulsifying systems are obtained when the early stages of the dilution produce single phase microemulsions. If liquid crystals or multiple phase systems are obtained during those early stages, then the emulsification yields unstable emulsions with large drop sizes. An in vitro permeability study conducted using a Flow-Thru Dialyzer revealed that stable emulsions with drop sizes of 150-300 nm produce large and irreversible permeation of β-carotene to sheep intestine. On the other hand, unstable emulsions produced without the linker combination separated in the dialyzer chamber. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Impact of cathepsin B-sensitive triggers and hydrophilic linkers on in vitro efficacy of novel site-specific antibody-drug conjugates.

    Science.gov (United States)

    Bryden, Francesca; Martin, Camille; Letast, Stéphanie; Lles, Eva; Viéitez-Villemin, Inmaculada; Rousseau, Anaïs; Colas, Cyril; Brachet-Botineau, Marie; Allard-Vannier, Emilie; Larbouret, Christel; Viaud-Massuard, Marie-Claude; Joubert, Nicolas

    2018-03-14

    Herein we describe the synthesis and evaluation of four novel HER2-targeting, cathepsin B-sensitive antibody-drug conjugates bearing a monomethylauristatin E (MMAE) cytotoxic payload, constructed via the conjugation of cleavable linkers to trastuzumab using a site-specific bioconjugation methodology. These linkers vary by both cleavable trigger motif and hydrophilicity, containing one of two cathepsin B sensitive dipeptides (Val-Cit and Val-Ala), and engendered with either hydrophilic or hydrophobic character via application of a PEG 12 spacer. Through evaluation of physical properties, in vitro cytotoxicity, and receptor affinity of the resulting antibody-drug conjugates (ADCs), we have demonstrated that while both dipeptide triggers are effective, the increased hydrophobicity of the Val-Ala pair limits its utility within this type of linker. In addition, while PEGylation augments linker hydrophilicity, this change does not translate to more favourable ADC hydrophilicity or potency. While all described structures demonstrated excellent and similar in vitro cytotoxicity, the ADC with the ValCitPABMMAE linker shows the most promising combination of in vitro potency, structural homogeneity, and hydrophilicity, warranting further evaluation into its therapeutic potential.

  15. Modulations of DNA Contacts by Linker Histones and Post-translational Modifications Determine the Mobility and Modifiability of Nucleosomal H3 Tails.

    Science.gov (United States)

    Stützer, Alexandra; Liokatis, Stamatios; Kiesel, Anja; Schwarzer, Dirk; Sprangers, Remco; Söding, Johannes; Selenko, Philipp; Fischle, Wolfgang

    2016-01-21

    Post-translational histone modifications and linker histone incorporation regulate chromatin structure and genome activity. How these systems interface on a molecular level is unclear. Using biochemistry and NMR spectroscopy, we deduced mechanistic insights into the modification behavior of N-terminal histone H3 tails in different nucleosomal contexts. We find that linker histones generally inhibit modifications of different H3 sites and reduce H3 tail dynamics in nucleosomes. These effects are caused by modulations of electrostatic interactions of H3 tails with linker DNA and largely depend on the C-terminal domains of linker histones. In agreement, linker histone occupancy and H3 tail modifications segregate on a genome-wide level. Charge-modulating modifications such as phosphorylation and acetylation weaken transient H3 tail-linker DNA interactions, increase H3 tail dynamics, and, concomitantly, enhance general modifiability. We propose that alterations of H3 tail-linker DNA interactions by linker histones and charge-modulating modifications execute basal control mechanisms of chromatin function. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Photolabile linker for the synthesis of hydroxamic acids

    DEFF Research Database (Denmark)

    2013-01-01

    a hydroxylamine - functionalized photolabile linker, and the so produced hydroxylamine - functionalized photolabile solid support. The invention further provides a method for synthesizing a one-bead-one compound library of hydroxamic acid derivatives on a photolabile linker, as well as a method for screening...

  17. A Class of Rigid Linker-bearing Glucosides for Membrane Protein Structural Study.

    Science.gov (United States)

    Sadaf, Aiman; Mortensen, Jonas S; Capaldi, Stefano; Tikhonova, Elena; Hariharan, Parameswaran; de Castro Ribeiro, Orquidea; Loland, Claus J; Guan, Lan; Byrne, Bernadette; Chae, Pil Seok

    2016-03-01

    Membrane proteins are amphipathic bio-macromolecules incompatible with the polar environments of aqueous media. Conventional detergents encapsulate the hydrophobic surfaces of membrane proteins allowing them to exist in aqueous solution. Membrane proteins stabilized by detergent micelles are used for structural and functional analysis. Despite the availability of a large number of detergents, only a few agents are sufficiently effective at maintaining the integrity of membrane proteins to allow successful crystallization. In the present study, we describe a novel class of synthetic amphiphiles with a branched tail group and a triglucoside head group. These head and tail groups were connected via an amide or ether linkage by using a tris(hydroxylmethyl)aminomethane (TRIS) or neopentyl glycol (NPG) linker to produce TRIS-derived triglucosides (TDTs) and NPG-derived triglucosides (NDTs), respectively. Members of this class conferred enhanced stability on target membrane proteins compared to conventional detergents. Because of straightforward synthesis of the novel agents and their favourable effects on a range of membrane proteins, these agents should be of wide applicability to membrane protein science.

  18. Linker-mediated assembly of gold nanoparticles into multimeric motifs

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, Mateusz; Cieplak, Marek [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warsaw (Poland); Szymczak, Piotr [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ulica Hoza 69, 00-681 Warsaw (Poland); Thompson, Damien, E-mail: mc@ifpan.edu.pl [Tyndall National Institute, Lee Maltings, University College Cork, Cork (Ireland)

    2011-11-04

    We present a theoretical description of linker-mediated self-assembly of gold nanoparticles (Au-NP). Using mesoscale simulations with a coarse-grained model for the Au NPs and dirhenium-based linker molecules, we investigate the conditions under which large clusters can grow and construct a phase diagram that identifies favorable growth conditions in terms of floating and bound linker concentrations. The findings can be considered as generic, as we expect other NP-linker systems to behave in a qualitatively similar way. In particular, we also discuss the case of antibody-functionalised Au NPs connected by the C-reactive proteins (CRPs). We extract some general rules for NP linking that may aid the production of size- and shape-specific NP clusters for technology applications.

  19. The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle.

    Science.gov (United States)

    Hergeth, Sonja P; Schneider, Robert

    2015-11-01

    The linker histone H1 family members are a key component of chromatin and bind to the nucleosomal core particle around the DNA entry and exit sites. H1 can stabilize both nucleosome structure and higher-order chromatin architecture. In general, H1 molecules consist of a central globular domain with more flexible tail regions at both their N- and C-terminal ends. The existence of multiple H1 subtypes and a large variety of posttranslational modifications brings about a considerable degree of complexity and makes studying this protein family challenging. Here, we review recent progress in understanding the function of linker histones and their subtypes beyond their role as merely structural chromatin components. We summarize current findings on the role of H1 in heterochromatin formation, transcriptional regulation and embryogenesis with a focus on H1 subtypes and their specific modifications. © 2015 The Authors.

  20. Improved sensitivity of a graphene FET biosensor using porphyrin linkers

    Science.gov (United States)

    Kawata, Takuya; Ono, Takao; Kanai, Yasushi; Ohno, Yasuhide; Maehashi, Kenzo; Inoue, Koichi; Matsumoto, Kazuhiko

    2018-06-01

    Graphene FET (G-FET) biosensors have considerable potential due to the superior characteristics of graphene. Realizing this potential requires judicious choice of the linker molecule connecting the target-specific receptor molecule to the graphene surface, yet there are few reports comparing linker molecules for G-FET biosensors. In this study, tetrakis(4-carboxyphenyl)porphyrin (TCPP) was used as a linker for surface modification of a G-FET and the properties of the device were compared to those of a G-FET device modified with the conventional linker 1-pyrenebutanoic acid succinimidyl ester (PBASE). TCPP modification resulted in a higher density of receptor immunoglobulin E (IgE) aptamer molecules on the G-FET. The detection limit of the target IgE was enhanced from 13 nM for the PBASE-modified G-FET to 2.2 nM for the TCPP-modified G-FET, suggesting that the TCPP linker is a powerful candidate for G-FET modification.

  1. A Traceless Aryl-Triazene Linker for DNA-Directed Chemistry

    DEFF Research Database (Denmark)

    Hejesen, Christian; Pedersen, Lars Kolster; Gothelf, Kurt Vesterager

    2013-01-01

    DNA-directed synthesis of encoded combinatorial libraries of small organic compounds most often involves transfer of organic building blocks from one DNA strand to another. This requires cleavable linkers to enable cleavage of the link to the original DNA strand from which the building block...... is transferred. Relatively few cleavable linkers are available for DNA-directed synthesis and most often they leave an amino group at the organic molecule. Here we have extended the application of 10 aryltriazenes as traceless linkers for DNA-directed synthesis. After reaction of one building block...

  2. Construction, Structural Diversity and Properties of Five Coordination Polymers Based on 5-Nitroisophthalate and Bis(imidazole) Linkers

    Science.gov (United States)

    Arıcı, Mürsel

    2018-06-01

    Five coordination polymers, namely, [Cd(μ3-5-nip)(μ-obix)]n (1), [Co(μ3-5-nip)(μ-obix)]n (2), [Zn(μ-5-nip)(μ-obix)]n (3 and 4) and [Cd(μ-5-nip)(μ-bisobix)]n (5) (5-nip: 5-nitroisophthalate, obix: 1,2-bis(imidazol-1ylmethyl)benzene, bisobix: 1,2-bis(2-isopropylimidazol-1ylmethyl)benzene) were hydrothermally synthesized and characterized by IR spectroscopy, elemental analysis, single crystal and powder X-ray diffraction and thermal analysis (TG/DTA). X-ray results showed that the complexes displayed structural diversity depending on metal ions and conformations of bis(imidazole) linkers. Complexes 1 and 2 were 1D structures and obix ligand displayed cis-conformation. Complexes 3 and 4 exhibited 2D and 3D structures with same components depending on obix conformation. In complex 5, 3D+3D→3D interpenetrated structure was obtained with dia topology when bisobix having sterically hindered groups on imidazole rings was used. Moreover, thermal, photoluminescence and optical properties of the complexes were also investigated.

  3. Accurate distance determination of nucleic acids via Förster resonance energy transfer: implications of dye linker length and rigidity.

    Science.gov (United States)

    Sindbert, Simon; Kalinin, Stanislav; Nguyen, Hien; Kienzler, Andrea; Clima, Lilia; Bannwarth, Willi; Appel, Bettina; Müller, Sabine; Seidel, Claus A M

    2011-03-02

    In Förster resonance energy transfer (FRET) experiments, the donor (D) and acceptor (A) fluorophores are usually attached to the macromolecule of interest via long flexible linkers of up to 15 Å in length. This causes significant uncertainties in quantitative distance measurements and prevents experiments with short distances between the attachment points of the dyes due to possible dye-dye interactions. We present two approaches to overcome the above problems as demonstrated by FRET measurements for a series of dsDNA and dsRNA internally labeled with Alexa488 and Cy5 as D and A dye, respectively. First, we characterize the influence of linker length and flexibility on FRET for different dye linker types (long, intermediate, short) by analyzing fluorescence lifetime and anisotropy decays. For long linkers, we describe a straightforward procedure that allows for very high accuracy of FRET-based structure determination through proper consideration of the position distribution of the dye and of linker dynamics. The position distribution can be quickly calculated with geometric accessible volume (AV) simulations, provided that the local structure of RNA or DNA in the proximity of the dye is known and that the dye diffuses freely in the sterically allowed space. The AV approach provides results similar to molecular dynamics simulations (MD) and is fully consistent with experimental FRET data. In a benchmark study for ds A-RNA, an rmsd value of 1.3 Å is achieved. Considering the case of undefined dye environments or very short DA distances, we introduce short linkers with a propargyl or alkenyl unit for internal labeling of nucleic acids to minimize position uncertainties. Studies by ensemble time correlated single photon counting and single-molecule detection show that the nature of the linker strongly affects the radius of the dye's accessible volume (6-16 Å). For short propargyl linkers, heterogeneous dye environments are observed on the millisecond time scale. A

  4. Germline-specific H1 variants: the "sexy" linker histones.

    Science.gov (United States)

    Pérez-Montero, Salvador; Carbonell, Albert; Azorín, Fernando

    2016-03-01

    The eukaryotic genome is packed into chromatin, a nucleoprotein complex mainly formed by the interaction of DNA with the abundant basic histone proteins. The fundamental structural and functional subunit of chromatin is the nucleosome core particle, which is composed by 146 bp of DNA wrapped around an octameric protein complex formed by two copies of each core histone H2A, H2B, H3, and H4. In addition, although not an intrinsic component of the nucleosome core particle, linker histone H1 directly interacts with it in a monomeric form. Histone H1 binds nucleosomes near the exit/entry sites of linker DNA, determines nucleosome repeat length and stabilizes higher-order organization of nucleosomes into the ∼30 nm chromatin fiber. In comparison to core histones, histone H1 is less well conserved through evolution. Furthermore, histone H1 composition in metazoans is generally complex with most species containing multiple variants that play redundant as well as specific functions. In this regard, a characteristic feature is the presence of specific H1 variants that replace somatic H1s in the germline and during early embryogenesis. In this review, we summarize our current knowledge about their structural and functional properties.

  5. One-pot preparation of mRNA/cDNA display by a novel and versatile puromycin-linker DNA.

    Science.gov (United States)

    Mochizuki, Yuki; Biyani, Manish; Tsuji-Ueno, Sachika; Suzuki, Miho; Nishigaki, Koichi; Husimi, Yuzuru; Nemoto, Naoto

    2011-09-12

    A rapid, easy, and robust preparation method for mRNA/cDNA display using a newly designed puromycin-linker DNA is presented. The new linker is structurally simple, easy to synthesize, and cost-effective for use in "in vitro peptide and protein selection". An introduction of RNase T1 nuclease site to the new linker facilitates the easy recovery of mRNA/cDNA displayed protein by an improvement of the efficiency of ligating the linker to mRNAs and efficient release of mRNA/cDNA displayed protein from the solid-phase (magnetic bead). For application demonstration, affinity selections were successfully performed. Furthermore, we introduced a "one-pot" preparation protocol to perform mRNA display easy. Unlike conventional approaches that require tedious and downstream multistep process including purification, this protocol will make the mRNA/cDNA display methods more practical and convenient and also facilitate the development of next-generation, high-throughput mRNA/cDNA display systems amenable to automation.

  6. Backbone amide linker strategy

    DEFF Research Database (Denmark)

    Shelton, Anne Pernille Tofteng; Jensen, Knud Jørgen

    2013-01-01

    In the backbone amide linker (BAL) strategy, the peptide is anchored not at the C-terminus but through a backbone amide, which leaves the C-terminal available for various modifications. This is thus a very general strategy for the introduction of C-terminal modifications. The BAL strategy...

  7. Rational design of molecularly imprinted polymer: the choice of cross-linker.

    Science.gov (United States)

    Muhammad, Turghun; Nur, Zohre; Piletska, Elena V; Yimit, Osmanjan; Piletsky, Sergey A

    2012-06-07

    The paper describes a rational approach for the selection of cross-linkers during the development of molecularly imprinted polymers (MIPs). As a model system for this research MIPs specific for the drug zidovudine (AZT) were designed and tested. Three cross-linkers trimethylolpropane trimethacrylate (TRIM), ethylene glycol dimethacrylate (EGDMA) and divinylbenzene (DVB) were studied. The analogue of zidovudine (AZT) ester (AZT-ES) was used as a dummy template. The imprinting factors for all of the polymers in the static adsorption experiments were calculated. The data on the AZT adsorption by control polymers (CP), which were prepared with different cross-linkers without a functional monomer, was also analyzed. DVB was found to be more inert towards zidovudine than EGDMA and TRIM, which was confirmed by both molecular modelling and adsorption experiments. It was demonstrated that DVB-based polymers had a higher imprinting factor (I = 1.85) compared with other tested cross-linked polymers. It was suggested that the selection of the cross-linker should be based on the strength of the interaction with the template: the cross-linker which displays lower binding of the template should be preferential because it generates MIPs with lower non-specific binding and a higher imprinting factor, and therefore specificity. Which cross-linker to use for the preparation of any particular MIP can be determined by analysis of the interactions between the cross-linker and template. This could be done either virtually using computational modelling or by template adsorption using a small library of polymers prepared using different cross-linkers.

  8. Structure of calmodulin complexed with an olfactory CNG channel fragment and role of the central linker: Residual dipolar couplings to evaluate calmodulin binding modes outside the kinase family

    International Nuclear Information System (INIS)

    Contessa, Gian Marco; Orsale, Maria; Melino, Sonia; Torre, Vincent; Paci, Maurizio; Desideri, Alessandro; Cicero, Daniel O.

    2005-01-01

    The NMR high-resolution structure of calmodulin complexed with a fragment of the olfactory cyclic-nucleotide gated channel is described. This structure shows features that are unique for this complex, including an active role of the linker connecting the N- and C-lobes of calmodulin upon binding of the peptide. Such linker is not only involved in the formation of an hydrophobic pocket to accommodate a bulky peptide residue, but it also provides a positively charged region complementary to a negative charge of the target. This complex of calmodulin with a target not belonging to the kinase family was used to test the residual dipolar coupling (RDC) approach for the determination of calmodulin binding modes to peptides. Although the complex here characterized belongs to the (1--14) family, high Q values were obtained with all the 1:1 complexes for which crystalline structures are available. Reduction of the RDC data set used for the correlation analysis to structured regions of the complex allowed a clear identification of the binding mode. Excluded regions comprise calcium binding loops and loops connecting the EF-hand motifs

  9. Molecular dissection of the interaction between the SH3 domain and the SH2-Kinase Linker region in PTK6.

    Science.gov (United States)

    Kim, Han Ie; Jung, Jinwon; Lee, Eun-Saem; Kim, Yong-Chul; Lee, Weontae; Lee, Seung-Taek

    2007-11-03

    PTK6 (also known as Brk) is an intracellular tyrosine kinase that contains SH3, SH2, and tyrosine kinase catalytic (Kinase) domains. The SH3 domain of PTK6 interacts with the N-terminal half of the linker (Linker) region between the SH2 and Kinase domains. Site-directed mutagenesis and surface plasmon resonance studies showed that a tryptophan residue (Trp44) in the SH3 domain and proline residues in the Linker region, in the order of Pro177, Pro175, and Pro179, contribute to the interaction. The three-dimensional modeled structure of the SH3-Linker complex was in agreement with the biochemical data. Disruption of the intramolecular interaction between the SH3 domain and the Linker region by mutation of Trp44, Pro175, Pro177, and Pro179 markedly increased the catalytic activity of PTK6 in HEK 293 cells. These results demonstrate that Trp44 in the SH3 domain and Pro177, Pro175, and Pro179 in the N-terminal half of the Linker region play important roles in the SH3-Linker interaction to maintain the protein in an inactive conformation along with the phosphorylated Tyr447-SH2 interaction.

  10. Fivefold increase of hydrogen uptake in MOF74 through linker decorations

    Science.gov (United States)

    Arter, C. A.; Zuluaga, S.; Harrison, D.; Welchman, E.; Thonhauser, T.

    2016-10-01

    We present ab initio results for linker decorations in Mg-MOF74, i.e., attaching various metals M =Li, Na, K, Sc, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Pd, Ag, and Pt near the ring of the linker, creating new strong adsorption sites and thus maximizing small-molecule uptake. We find that in most cases these decorations influence the overall form and structure of Mg-MOF74 only marginally. After the initial screening, we chose metals that bind favorably to the linker and further investigated adsorption of H2,CO2, and H2O for M =Li , Na, K, and Sc. For the case of H2 we show that up to 24 additional guest molecules can be adsorbed in the metal-organic framework (MOF) unit cell, with binding energies comparable to the original open-metal sites at the six corners of the channel. This leads to a fivefold increase of the molecule uptake in Mg-MOF74, with tremendous impact on many applications in general and hydrogen storage in particular, where the gravimetric hydrogen density increases from 1.63 to 7.28 mass % and the volumetric density increases from 15.10 to 75.50 g H2L-1 .

  11. A Helix-Stabilizing Linker Improves Subcutaneous Bioavailability of a Helical Peptide Independent of Linker Lipophilicity

    Science.gov (United States)

    Zhang, Liang; Navaratna, Tejas; Thurber, Greg M.

    2016-01-01

    Stabilized peptides address several limitations to peptide-based imaging agents and therapeutics such as poor stability and low affinity due to conformational flexibility. There is also active research in developing these compounds for intracellular drug targeting, and significant efforts have been invested to determine the effects of helix stabilization on intracellular delivery. However, much less is known about the impact on other pharmacokinetic parameters such as plasma clearance and bioavailability. We investigated the effect of different fluorescent helix-stabilizing linkers with varying lipophilicity on subcutaneous (SC) bioavailability using the glucagon-like peptide-1 (GLP-1) receptor ligand exendin as a model system. The stabilized peptides showed significantly higher protease resistance and increased bioavailability independent of linker hydrophilicity, and all subcutaneously delivered conjugates were able to successfully target the islets of Langerhans with high specificity. The lipophilic peptide variants had slower absorption and plasma clearance than their respective hydrophilic conjugates, and the absolute bioavailability was also lower likely due to the longer residence times in the skin. The ease and efficiency of double-click helix stabilization chemistries is a useful tool for increasing the bioavailability of peptide therapeutics, many of which suffer from rapid in vivo protease degradation. Helix stabilization using linkers of varying lipophilicity can further control SC absorption and clearance rates to customize plasma pharmacokinetics. PMID:27327034

  12. Open and closed: the roles of linker histones in plants and animals.

    Science.gov (United States)

    Over, Ryan S; Michaels, Scott D

    2014-03-01

    Histones package DNA in all eukaryotes and play key roles in regulating gene expression. Approximately 150 base pairs of DNA wraps around an octamer of core histones to form the nucleosome, the basic unit of chromatin. Linker histones compact chromatin further by binding to and neutralizing the charge of the DNA between nucleosomes. It is well established that chromatin packing is regulated by a complex pattern of posttranslational modifications (PTMs) to core histones, but linker histone function is less well understood. In this review, we describe the current understanding of the many roles that linker histones play in cellular processes, including gene regulation, cell division, and development, while putting the linker histone in the context of other nuclear proteins. Although intriguing roles for plant linker histones are beginning to emerge, much of our current understanding comes from work in animal systems. Many unanswered questions remain and additional work is required to fully elucidate the complex processes mediated by linker histones in plants.

  13. SH2-catalytic domain linker heterogeneity influences allosteric coupling across the SFK family.

    Science.gov (United States)

    Register, A C; Leonard, Stephen E; Maly, Dustin J

    2014-11-11

    Src-family kinases (SFKs) make up a family of nine homologous multidomain tyrosine kinases whose misregulation is responsible for human disease (cancer, diabetes, inflammation, etc.). Despite overall sequence homology and identical domain architecture, differences in SH3 and SH2 regulatory domain accessibility and ability to allosterically autoinhibit the ATP-binding site have been observed for the prototypical SFKs Src and Hck. Biochemical and structural studies indicate that the SH2-catalytic domain (SH2-CD) linker, the intramolecular binding epitope for SFK SH3 domains, is responsible for allosterically coupling SH3 domain engagement to autoinhibition of the ATP-binding site through the conformation of the αC helix. As a relatively unconserved region between SFK family members, SH2-CD linker sequence variability across the SFK family is likely a source of nonredundant cellular functions between individual SFKs via its effect on the availability of SH3 and SH2 domains for intermolecular interactions and post-translational modification. Using a combination of SFKs engineered with enhanced or weakened regulatory domain intramolecular interactions and conformation-selective inhibitors that report αC helix conformation, this study explores how SH2-CD sequence heterogeneity affects allosteric coupling across the SFK family by examining Lyn, Fyn1, and Fyn2. Analyses of Fyn1 and Fyn2, isoforms that are identical but for a 50-residue sequence spanning the SH2-CD linker, demonstrate that SH2-CD linker sequence differences can have profound effects on allosteric coupling between otherwise identical kinases. Most notably, a dampened allosteric connection between the SH3 domain and αC helix leads to greater autoinhibitory phosphorylation by Csk, illustrating the complex effects of SH2-CD linker sequence on cellular function.

  14. A streptavidin linker layer that functions after drying.

    Science.gov (United States)

    Xia, Nan; Shumaker-Parry, Jennifer S; Zareie, M Hadi; Campbell, Charles T; Castner, David G

    2004-04-27

    The ability of streptavidin (SA) to simultaneously bind four biotins is often used in linker layers, where a biotinylated molecule is linked to a biotin-functionalized surface via SA. For biosensor and array applications, it is desirable that the SA linker layer be stable to drying and rehydration. In this study it was observed that a significant decrease in binding capacity of a SA layer occurred when that layer was dried. For this study a SA linker layer was constructed by binding SA to a biotin-containing alkylthiolate monolayer (BAT/OEG) self-assembled onto gold. Its stability after drying was investigated using surface plasmon resonance (SPR). Approximately a quarter of the SA layer was removed from the BAT/OEG surface upon drying and rehydration, suggesting disruption of SA-biotin binding when dry. This resulted in the dried SA layer losing approximately 40% of its biotinylated ferritin (BF) binding capacity. Coating the layer with trehalose before drying was found to inhibit the loss of SA from the BAT/OEG surface. SPR showed that the trehalose-protected SA linker layer retained approximately 91% of its original BF binding capacity after drying and rehydration. Atomic force microscopy, which was used to image individual surface-bound SA and BF molecules, qualitatively confirmed these observations.

  15. The linker domain of poly(rC) binding protein 2 is a major determinant in poliovirus cap-independent translation.

    Science.gov (United States)

    Sean, Polen; Nguyen, Joseph H C; Semler, Bert L

    2008-09-01

    Poliovirus, a member of the enterovirus genus in the family Picornaviridae, is the causative agent of poliomyelitis. Translation of the viral genome is mediated through an internal ribosomal entry site (IRES) encoded within the 5' noncoding region (5' NCR). IRES elements are highly structured RNA sequences that facilitate the recruitment of ribosomes for translation. Previous studies have shown that binding of a cellular protein, poly(rC) binding protein 2 (PCBP2), to a major stem-loop structure in the genomic 5' NCR is necessary for the translation of picornaviruses containing type I IRES elements, including poliovirus, coxsackievirus, and human rhinovirus. PCBP1, an isoform that shares approximately 90% amino acid identity to PCBP2, cannot efficiently stimulate poliovirus IRES-mediated translation, most likely due to its reduced binding affinity to stem-loop IV within the poliovirus IRES. The primary differences between PCBP1 and PCBP2 are found in the so-called linker domain between the second and third K-homology (KH) domains of these proteins. We hypothesize that the linker region of PCBP2 augments binding to poliovirus stem-loop IV RNA. To test this hypothesis, we generated six PCBP1/PCBP2 chimeric proteins. The recombinant PCBP1/PCBP2 chimeric proteins were able to interact with poliovirus stem-loop I RNA and participate in protein-protein interactions. We demonstrated that the PCBP1/PCBP2 chimeric proteins with the PCBP2 linker, but not with the PCBP1 linker, were able to interact with poliovirus stem-loop IV RNA, and could subsequently stimulate poliovirus IRES-mediated translation. In addition, using a monoclonal anti-PCBP2 antibody (directed against the PCBP2 linker domain) in mobility shift assays, we showed that the PCBP2 linker domain modulates binding to poliovirus stem-loop IV RNA via a mechanism that is not inhibited by the antibody.

  16. Dipolar cross-linkers for PDMS networks with enhanced dielectric permittivity and low dielectric loss

    DEFF Research Database (Denmark)

    Bahrt, Frederikke; Daugaard, Anders Egede; Hvilsted, Søren

    2013-01-01

    -(4-((4-nitrophenyl)diazenyl)phenoxy)-prop-1-yn-1-ylium, with a synthesized silicone compatible azide-functional cross-linker by click chemistry. The thermal, mechanical and electromechanical properties were investigated for PDMS films with 0 to 3.6 wt% of dipole-cross-linker. The relative dielectric permittivity......Dipole grafted cross-linkers were utilized to prepare polydimethylsiloxane (PDMS) elastomers with various chain lengths and with various concentrations of functional cross-linker. The grafted cross-linkers were prepared by reaction of two alkyne-functional dipoles, 1-ethynyl-4-nitrobenzene and 3...

  17. 5-fold increase of hydrogen uptake in MOF74 through linker decorations

    Science.gov (United States)

    Thonhauser, T.; Zuluaga, S.; Harrison, D.; Welchman, E.; Arter, C.

    We present ab initio results for linker decorations in Mg-MOF74-i.e. attaching various metals  = Li, Na, K, Sc, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Pd, Ag, and Pt near the ring of the linker-creating new strong adsorption sites and thus maximizing small molecule uptake. We find that in most cases these decorations influence the overall form and structure of Mg-MOF74 only marginally. After the initial screening we chose metals that bind favorably to the linker and further investigate adsorption of H2, CO2, and H2O for  = Li, Na, K, and Sc. For the case of H2 we show that up to 24 additional guest molecules can be adsorbed in the MOF unit cell, with binding energies comparable to the original open-metal sites at the six corners of the channel. This leads to a 5-fold increase of the molecule uptake in Mg-MOF74, with tremendous impact on many applications in general and hydrogen storage in particular-where the gravimetric hydrogen density increases from 1 . 63 mass% to 7 . 28 mass% and the volumetric density from 15.10 g H2 L-1 to 75.50 g H2 L-1. This work was supported by NSF Grant No. DMR-1145968.

  18. Pivotal role of extended linker 2 in the activation of Gα by G protein-coupled receptor.

    Science.gov (United States)

    Huang, Jianyun; Sun, Yutong; Zhang, J Jillian; Huang, Xin-Yun

    2015-01-02

    G protein-coupled receptors (GPCRs) relay extracellular signals mainly to heterotrimeric G-proteins (Gαβγ) and they are the most successful drug targets. The mechanisms of G-protein activation by GPCRs are not well understood. Previous studies have revealed a signal relay route from a GPCR via the C-terminal α5-helix of Gα to the guanine nucleotide-binding pocket. Recent structural and biophysical studies uncover a role for the opening or rotating of the α-helical domain of Gα during the activation of Gα by a GPCR. Here we show that β-adrenergic receptors activate eight Gαs mutant proteins (from a screen of 66 Gαs mutants) that are unable to bind Gβγ subunits in cells. Five of these eight mutants are in the αF/Linker 2/β2 hinge region (extended Linker 2) that connects the Ras-like GTPase domain and the α-helical domain of Gαs. This extended Linker 2 is the target site of a natural product inhibitor of Gq. Our data show that the extended Linker 2 is critical for Gα activation by GPCRs. We propose that a GPCR via its intracellular loop 2 directly interacts with the β2/β3 loop of Gα to communicate to Linker 2, resulting in the opening and closing of the α-helical domain and the release of GDP during G-protein activation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Low Density Lipoprotein Receptor Class A Repeats Are O-Glycosylated in Linker Regions

    DEFF Research Database (Denmark)

    Pedersen, Nis Borbye; Wang, Shengjun; Narimatsu, Yoshiki

    2014-01-01

    , which in wild-type CHO cells is glycosylated with the typical sialylated core 1 structure. The glycosites in linker regions of LDLR class A repeats are conserved in LDLR from man to Xenopus and found in other homologous receptors. O-Glycosylation is controlled by a large family of polypeptide Gal...

  20. Monte Carlo analysis of neck linker extension in kinesin molecular motors.

    Directory of Open Access Journals (Sweden)

    Matthew L Kutys

    2010-11-01

    Full Text Available Kinesin stepping is thought to involve both concerted conformational changes and diffusive movement, but the relative roles played by these two processes are not clear. The neck linker docking model is widely accepted in the field, but the remainder of the step--diffusion of the tethered head to the next binding site--is often assumed to occur rapidly with little mechanical resistance. Here, we investigate the effect of tethering by the neck linker on the diffusive movement of the kinesin head, and focus on the predicted behavior of motors with naturally or artificially extended neck linker domains. The kinesin chemomechanical cycle was modeled using a discrete-state Markov chain to describe chemical transitions. Brownian dynamics were used to model the tethered diffusion of the free head, incorporating resistive forces from the neck linker and a position-dependent microtubule binding rate. The Brownian dynamics and chemomechanical cycle were coupled to model processive runs consisting of many 8 nm steps. Three mechanical models of the neck linker were investigated: Constant Stiffness (a simple spring, Increasing Stiffness (analogous to a Worm-Like Chain, and Reflecting (negligible stiffness up to a limiting contour length. Motor velocities and run lengths from simulated paths were compared to experimental results from Kinesin-1 and a mutant containing an extended neck linker domain. When tethered by an increasingly stiff spring, the head is predicted to spend an unrealistically short amount of time within the binding zone, and extending the neck is predicted to increase both the velocity and processivity, contrary to experiments. These results suggest that the Worm-Like Chain is not an adequate model for the flexible neck linker domain. The model can be reconciled with experimental data if the neck linker is either much more compliant or much stiffer than generally assumed, or if weak kinesin-microtubule interactions stabilize the diffusing

  1. Linkers, resins, and general procedures for solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Shelton, Anne Pernille Tofteng; Jensen, Knud Jørgen

    2013-01-01

    and linkers for solid-phase synthesis is a key parameter for successful peptide synthesis. This chapter provides an overview of the most common and useful resins and linkers for the synthesis of peptides with C-terminal amides, carboxylic acids, and more. The chapter finishes with robust protocols for general...

  2. Water-soluble heterobifunctional fluorescent linkers

    Czech Academy of Sciences Publication Activity Database

    Bartoň, Jan; Cígler, Petr

    2017-01-01

    Roč. 15, č. 1 (2017), s. 4 ISSN 2336-7202. [Mezioborové setkání mladých biologů, biochemiků a chemiků /17./. 30.05.2017-01.06.2017, Milovy] Institutional support: RVO:61388963 Keywords : fluorescent probes * heterobifunctional linkers Subject RIV: CA - Inorganic Chemistry

  3. Directing the breathing behavior of pillared-layered metal-organic frameworks via a systematic library of functionalized linkers bearing flexible substituents.

    Science.gov (United States)

    Henke, Sebastian; Schneemann, Andreas; Wütscher, Annika; Fischer, Roland A

    2012-06-06

    Flexible metal-organic frameworks (MOFs), also referred to as soft porous crystals (SPCs), show reversible structural transitions dependent on the nature and quantity of adsorbed guest molecules. In recent studies it has been reported that covalent functionalization of the organic linker can influence or even integrate framework flexibility ("breathing") in MOFs. However, rational fine-tuning of such responsive properties is very desirable but challenging as well. Here we present a powerful approach for the targeted manipulation of responsiveness and framework flexibility of an important family of pillared-layered MOFs based on the parent structure [Zn(2)(bdc)(2)(dabco)](n) (bdc = 1,4-benzenedicarboxylate; dabco = 1,4-diazabicyclo[2.2.2]octane). A library of functionalized bdc-type linkers (fu-bdc), which bear additional dangling side groups at different positions of the benzene core (alkoxy groups of varying chain length with diverse functionalities and polarity), was generated. Synthesis of the materials [Zn(2)(fu-bdc)(2)(dabco)](n) yields the respective collection of highly responsive MOFs. The parent MOF is only weakly flexible; however, the substituted frameworks of [Zn(2)(fu-bdc)(2)(dabco)](n) contract drastically upon guest removal and expand again upon adsorption of DMF (N,N-dimethylformamide), EtOH, or CO(2), etc., while N(2) is hardly adsorbed and does not open the narrow-pored form. These "breathing" dynamics are attributed to the dangling side chains that act as immobilized "guests", which interact with mobile guest molecules as well as with themselves and with the framework backbone. The structural details of the guest-free, contracted form and the gas sorption behavior (phase transition pressure, hysteresis loop) are highly dependent on the nature of the substituent at the linker and can therefore be adjusted using our approach. Combining our library of functionalized linkers with the concept of mixed-component MOFs (solid solutions) offers very rich

  4. Stability and function of interdomain linker variants of glucoamylase 1 from Aspergillus niger.

    Science.gov (United States)

    Sauer, J; Christensen, T; Frandsen, T P; Mirgorodskaya, E; McGuire, K A; Driguez, H; Roepstorff, P; Sigurskjold, B W; Svensson, B

    2001-08-07

    Several variants of glucoamylase 1 (GA1) from Aspergillus niger were created in which the highly O-glycosylated peptide (aa 468--508) connecting the (alpha/alpha)(6)-barrel catalytic domain and the starch binding domain was substituted at the gene level by equivalent segments of glucoamylases from Hormoconis resinae, Humicola grisea, and Rhizopus oryzae encoding 5, 19, and 36 amino acid residues. Variants were constructed in which the H. resinae linker was elongated by proline-rich sequences as this linker itself apparently was too short to allow formation of the corresponding protein variant. Size and isoelectric point of GA1 variants reflected differences in linker length, posttranslational modification, and net charge. While calculated polypeptide chain molecular masses for wild-type GA1, a nonnatural proline-rich linker variant, H. grisea, and R. oryzae linker variants were 65,784, 63,777, 63,912, and 65,614 Da, respectively, MALDI-TOF-MS gave values of 82,042, 73,800, 73,413, and 90,793 Da, respectively, where the latter value could partly be explained by an N-glycosylation site introduced near the linker C-terminus. The k(cat) and K(m) for hydrolysis of maltooligodextrins and soluble starch, and the rate of hydrolysis of barley starch granules were essentially the same for the variants as for wild-type GA1. beta-Cyclodextrin, acarbose, and two heterobidentate inhibitors were found by isothermal titration calorimetry to bind to the catalytic and starch binding domains of the linker variants, indicating that the function of the active site and the starch binding site was maintained. The stability of GA1 linker variants toward GdnHCl and heat, however, was reduced compared to wild-type.

  5. Dissociation Behavior of a TEMPO-Active Ester Cross-Linker for Peptide Structure Analysis by Free Radical Initiated Peptide Sequencing (FRIPS) in Negative ESI-MS.

    Science.gov (United States)

    Hage, Christoph; Ihling, Christian H; Götze, Michael; Schäfer, Mathias; Sinz, Andrea

    2017-01-01

    We have synthesized a homobifunctional amine-reactive cross-linking reagent, containing a TEMPO (2,2,6,6-tetramethylpiperidine-1-oxy) and a benzyl group (Bz), termed TEMPO-Bz-linker, to derive three-dimensional structural information of proteins. The aim for designing this novel cross-linker was to facilitate the mass spectrometric analysis of cross-linked products by free radical initiated peptide sequencing (FRIPS). In an initial study, we had investigated the fragmentation behavior of TEMPO-Bz-derivatized peptides upon collision activation in (+)-electrospray ionization collision-induced dissociation tandem mass spectrometry (ESI-CID-MS/MS) experiments. In addition to the homolytic NO-C bond cleavage FRIPS pathway delivering the desired odd-electron product ions, an alternative heterolytic NO-C bond cleavage, resulting in even-electron product ions mechanism was found to be relevant. The latter fragmentation route clearly depends on the protonation of the TEMPO-Bz-moiety itself, which motivated us to conduct (-)-ESI-MS, CID-MS/MS, and MS 3 experiments of TEMPO-Bz-cross-linked peptides to further clarify the fragmentation behavior of TEMPO-Bz-peptide molecular ions. We show that the TEMPO-Bz-linker is highly beneficial for conducting FRIPS in negative ionization mode as the desired homolytic cleavage of the NO-C bond is the major fragmentation pathway. Based on characteristic fragments, the isomeric amino acids leucine and isoleucine could be discriminated. Interestingly, we observed pronounced amino acid side chain losses in cross-linked peptides if the cross-linked peptides contain a high number of acidic amino acids. Graphical Abstract ᅟ.

  6. Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Metal-Organic Frameworks

    KAUST Repository

    Feng, Liang; Yuan, Shuai; Zhang, Liang-Liang; Tan, Kui; Li, Jia-Luo; Kirchon, Angelo; Liu, Ling-Mei; Zhang, Peng; Han, Yu; Chabal, Yves J.; Zhou, Hong-Cai

    2018-01-01

    strate-gy, linker thermolysis, to construct ultra-stable hierarchically porous metal−organic frameworks (HP-MOFs) with tunable pore size distribution. Linker instability, usually an undesirable trait of MOFs, was exploited to create mesopores

  7. High-resolution two-dimensional liquid chromatography analysis of key linker drug intermediate used in antibody drug conjugates.

    Science.gov (United States)

    Venkatramani, C J; Huang, Shu Rong; Al-Sayah, Mohammad; Patel, Ila; Wigman, Larry

    2017-10-27

    the determination of potential impurities that could impact the downstream process, like ADCs stability, efficacy and patient safety. Peak capacity of this magnitude, sensitivity and reproducibility of 2D-LC for resolving structurally similar impurities co-eluting with the main component has not been demonstrated to date. This application clearly demonstrates the power of 2D-LC in detailed analysis of structurally similar, co-eluting impurities from key linker drug intermediate used in ADCs that is impossible to achieve by conventional 1D-LC. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The S4-S5 linker acts as a signal integrator for HERG K+ channel activation and deactivation gating.

    Directory of Open Access Journals (Sweden)

    Chai Ann Ng

    Full Text Available Human ether-à-go-go-related gene (hERG K(+ channels have unusual gating kinetics. Characterised by slow activation/deactivation but rapid inactivation/recovery from inactivation, the unique gating kinetics underlie the central role hERG channels play in cardiac repolarisation. The slow activation and deactivation kinetics are regulated in part by the S4-S5 linker, which couples movement of the voltage sensor domain to opening of the activation gate at the distal end of the inner helix of the pore domain. It has also been suggested that cytosolic domains may interact with the S4-S5 linker to regulate activation and deactivation kinetics. Here, we show that the solution structure of a peptide corresponding to the S4-S5 linker of hERG contains an amphipathic helix. The effects of mutations at the majority of residues in the S4-S5 linker of hERG were consistent with the previously identified role in coupling voltage sensor movement to the activation gate. However, mutations to Ser543, Tyr545, Gly546 and Ala548 had more complex phenotypes indicating that these residues are involved in additional interactions. We propose a model in which the S4-S5 linker, in addition to coupling VSD movement to the activation gate, also contributes to interactions that stabilise the closed state and a separate set of interactions that stabilise the open state. The S4-S5 linker therefore acts as a signal integrator and plays a crucial role in the slow deactivation kinetics of the channel.

  9. Release of 3-methyladenine from linker and core DNA of chromatin by a purified DNA glycosylase

    International Nuclear Information System (INIS)

    Heller, E.P.; Goldthwait, D.A.

    1983-01-01

    Oligonucleosomes were isolated from [ 14 C]thymidine-labeled HeLa cells by digestion of the nuclei with micrococcal nuclease and were then alkylated with [ 3 H]methylnitrosourea. Nucleosome core particles were also prepared by further digestion of the oligonucleosomes. The distribution of 3 H-labeled methyl groups in the linker versus the core DNA was established by a determination of 3 H: 14 C ratios in oligonucleosome and core DNA. The ratios in the core DNA of 145 and 165 base pair DNA fragments were 5.2 and 5.4, respectively, while the ratio in the oligonucleosomal DNA was 8.2. Assuming an equal mixture (as determined) of 145 and 165 base pair fragments of DNA in the 185 base pair repeat, the relative concentration of 3 H methyl groups in the linker versus the core DNA was 4.2. Thus, 45% of the 3 H methyl groups were in the linker DNA, and 55% were in the core DNA. Some shielding of the DNA was evident during alkylation. The concentrations of alkyl groups on the linker and core DNA were 67 and 12% of that found on free DNA alkylated under comparable conditions. No evidence for preferential shielding of the major or minor groove was observed. The purified 3-methyladenine DNA glycosylase I of Escherichia coli released approximately 37% of the 3-methyladenine from the linker DNA and 13% from the core DNA. The limited enzymatic removal of 3-methyladenine in vitro compared to the efficient removal in vivo suggests that conformational changes of the oligonucleosome and core structure must occur for total repair

  10. Structure and properties of Al-MIL-53-ADP, a breathing MOF based on the aliphatic linker molecule adipic acid.

    Science.gov (United States)

    Reinsch, Helge; Pillai, Renjith S; Siegel, Renée; Senker, Jürgen; Lieb, Alexandra; Maurin, Guillaume; Stock, Norbert

    2016-03-14

    The new aluminium based metal-organic framework [Al(OH)(O2C-C4H8-CO2)]·H2O denoted as Al-MIL-53-ADP-lp (lp stands for large pore) was synthesised under solvothermal conditions. This solid is an analogue of the archetypical aluminium terephthalate Al-MIL-53 based on the aliphatic single-chain linker molecule adipic acid (H2ADP, hexanedioic acid). In contrast to its aromatic counterparts, Al-MIL-53-ADP exhibits a structural breathing behaviour solely upon dehydration/rehydration. The crystal structure of the anhydrous compound denoted as Al-MIL-53-ADP-np (np stands for narrow pore) was determined by a combination of forcefield-based computations and Rietveld refinement of the powder X-ray diffraction data while the structure of the hydrated form Al-MIL-53-ADP-lp was derived computationally by a combination of force field based methods and Density Functional Theory calculations. Both structures were further supported by (1)H, (13)C and (27)Al high-resolution NMR MAS 1D data coupled again with simulations. Al-MIL-53-ADP was further characterised by means of vibrational spectroscopy, elemental analysis, thermogravimetry and water vapour sorption.

  11. Dynamics of Linker Residues Modulate the Nucleic Acid Binding Properties of the HIV-1 Nucleocapsid Protein Zinc Fingers

    Science.gov (United States)

    Zargarian, Loussiné; Tisné, Carine; Barraud, Pierre; Xu, Xiaoqian; Morellet, Nelly; René, Brigitte; Mély, Yves; Fossé, Philippe; Mauffret, Olivier

    2014-01-01

    The HIV-1 nucleocapsid protein (NC) is a small basic protein containing two zinc fingers (ZF) separated by a short linker. It is involved in several steps of the replication cycle and acts as a nucleic acid chaperone protein in facilitating nucleic acid strand transfers occurring during reverse transcription. Recent analysis of three-dimensional structures of NC-nucleic acids complexes established a new property: the unpaired guanines targeted by NC are more often inserted in the C-terminal zinc finger (ZF2) than in the N-terminal zinc finger (ZF1). Although previous NMR dynamic studies were performed with NC, the dynamic behavior of the linker residues connecting the two ZF domains remains unclear. This prompted us to investigate the dynamic behavior of the linker residues. Here, we collected 15N NMR relaxation data and used for the first time data at several fields to probe the protein dynamics. The analysis at two fields allows us to detect a slow motion occurring between the two domains around a hinge located in the linker at the G35 position. However, the amplitude of motion appears limited in our conditions. In addition, we showed that the neighboring linker residues R29, A30, P31, R32, K33 displayed restricted motion and numerous contacts with residues of ZF1. Our results are fully consistent with a model in which the ZF1-linker contacts prevent the ZF1 domain to interact with unpaired guanines, whereas the ZF2 domain is more accessible and competent to interact with unpaired guanines. In contrast, ZF1 with its large hydrophobic plateau is able to destabilize the double-stranded regions adjacent to the guanines bound by ZF2. The linker residues and the internal dynamics of NC regulate therefore the different functions of the two zinc fingers that are required for an optimal chaperone activity. PMID:25029439

  12. Novel silicone compatible cross-linkers for controlled functionalization of PDMS networks

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Daugaard, Anders Egede; Hvilsted, Søren

    2013-01-01

    . In order to improve the dielectric properties of PDMS a novel system is developed where push-pull dipoles are grafted to a new silicone compatible cross-linker. The grafted cross-linkers are prepared by reaction of two different push-pull dipole alkynes as well as a fluorescent alkyne with the new azide...

  13. The measles virus phosphoprotein interacts with the linker domain of STAT1

    International Nuclear Information System (INIS)

    Devaux, Patricia; Priniski, Lauren; Cattaneo, Roberto

    2013-01-01

    The measles virus (MV) phosphoprotein (P) and V proteins block the interferon (IFN) response by impeding phosphorylation of the signal transducer and activator of transcription 1 (STAT1) by the Janus kinase 1 (JAK1). We characterized how STAT1 mutants interact with P and JAK1 phosphorylation. Certain mutants of the linker, the Src-homology 2 domain (SH2), or the transactivation domain had reduced or abolished phosphorylation through JAK1 after IFN treatment. Other mutants, mainly localized in the linker, failed to interact with P as documented by the lack of interference with nuclear translocation. Thus the functional footprint of P on STAT1 localizes mainly to the linker domain; there is also some overlap with the STAT1 phosphorylation functional footprint on the SH2 domain. Based on these observations, we discuss how the MV-P might operate to inhibit the JAK/STAT pathway. - Highlights: • Residue in the linker and SH2 domains of STAT1 are important for MV-P interaction. • Residue in the linker and SH2 domains of STAT1 are important for STAT1 phosphorylation. • Residues interferring with both functions have similar location on STAT1. • The viral P and V proteins may operate in concert to inhibit the JAK/STAT pathway

  14. The measles virus phosphoprotein interacts with the linker domain of STAT1

    Energy Technology Data Exchange (ETDEWEB)

    Devaux, Patricia, E-mail: devaux.patricia@mayo.edu; Priniski, Lauren; Cattaneo, Roberto

    2013-09-15

    The measles virus (MV) phosphoprotein (P) and V proteins block the interferon (IFN) response by impeding phosphorylation of the signal transducer and activator of transcription 1 (STAT1) by the Janus kinase 1 (JAK1). We characterized how STAT1 mutants interact with P and JAK1 phosphorylation. Certain mutants of the linker, the Src-homology 2 domain (SH2), or the transactivation domain had reduced or abolished phosphorylation through JAK1 after IFN treatment. Other mutants, mainly localized in the linker, failed to interact with P as documented by the lack of interference with nuclear translocation. Thus the functional footprint of P on STAT1 localizes mainly to the linker domain; there is also some overlap with the STAT1 phosphorylation functional footprint on the SH2 domain. Based on these observations, we discuss how the MV-P might operate to inhibit the JAK/STAT pathway. - Highlights: • Residue in the linker and SH2 domains of STAT1 are important for MV-P interaction. • Residue in the linker and SH2 domains of STAT1 are important for STAT1 phosphorylation. • Residues interferring with both functions have similar location on STAT1. • The viral P and V proteins may operate in concert to inhibit the JAK/STAT pathway.

  15. Elastin-like Polypeptide Linkers for Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Ott, Wolfgang; Jobst, Markus A; Bauer, Magnus S; Durner, Ellis; Milles, Lukas F; Nash, Michael A; Gaub, Hermann E

    2017-06-27

    Single-molecule force spectroscopy (SMFS) is by now well established as a standard technique in biophysics and mechanobiology. In recent years, the technique has benefitted greatly from new approaches to bioconjugation of proteins to surfaces. Indeed, optimized immobilization strategies for biomolecules and refined purification schemes are being steadily adapted and improved, which in turn has enhanced data quality. In many previously reported SMFS studies, poly(ethylene glycol) (PEG) was used to anchor molecules of interest to surfaces and/or cantilever tips. The limitation, however, is that PEG exhibits a well-known trans-trans-gauche to all-trans transition, which results in marked deviation from standard polymer elasticity models such as the worm-like chain, particularly at elevated forces. As a result, the assignment of unfolding events to protein domains based on their corresponding amino acid chain lengths is significantly obscured. Here, we provide a solution to this problem by implementing unstructured elastin-like polypeptides as linkers to replace PEG. We investigate the suitability of tailored elastin-like polypeptides linkers and perform direct comparisons to PEG, focusing on attributes that are critical for single-molecule force experiments such as linker length, monodispersity, and bioorthogonal conjugation tags. Our results demonstrate that by avoiding the ambiguous elastic response of mixed PEG/peptide systems and instead building the molecular mechanical systems with only a single bond type with uniform elastic properties, we improve data quality and facilitate data analysis and interpretation in force spectroscopy experiments. The use of all-peptide linkers allows alternative approaches for precisely defining elastic properties of proteins linked to surfaces.

  16. A High-Throughput Small Molecule Screen for C. elegans Linker Cell Death Inhibitors.

    Directory of Open Access Journals (Sweden)

    Andrew R Schwendeman

    Full Text Available Programmed cell death is a ubiquitous process in metazoan development. Apoptosis, one cell death form, has been studied extensively. However, mutations inactivating key mammalian apoptosis regulators do not block most developmental cell culling, suggesting that other cell death pathways are likely important. Recent work in the nematode Caenorhabditis elegans identified a non-apoptotic cell death form mediating the demise of the male-specific linker cell. This cell death process (LCD, linker cell-type death is morphologically conserved, and its molecular effectors also mediate axon degeneration in mammals and Drosophila. To develop reagents to manipulate LCD, we established a simple high-throughput screening protocol for interrogating the effects of small molecules on C. elegans linker cell death in vivo. From 23,797 compounds assayed, 11 reproducibly block linker cell death onset. Of these, five induce animal lethality, and six promote a reversible developmental delay. These results provide proof-of principle validation of our screening protocol, demonstrate that developmental progression is required for linker cell death, and suggest that larger scale screens may identify LCD-specific small-molecule regulators that target the LCD execution machinery.

  17. Hemidesmosomal linker proteins regulate cell motility, invasion and tumorigenicity in oral squamous cell carcinoma derived cells.

    Science.gov (United States)

    Chaudhari, Pratik Rajeev; Charles, Silvania Emlit; D'Souza, Zinia Charlotte; Vaidya, Milind Murlidhar

    2017-11-15

    BPAG1e and Plectin are hemidesmosomal linker proteins which anchor intermediate filament proteins to the cell surface through β4 integrin. Recent reports indicate that these proteins play a role in various cellular processes apart from their known anchoring function. However, the available literature is inconsistent. Further, the previous study from our laboratory suggested that Keratin8/18 pair promotes cell motility and tumor progression by deregulating β4 integrin signaling in oral squamous cell carcinoma (OSCC) derived cells. Based on these findings, we hypothesized that linker proteins may have a role in neoplastic progression of OSCC. Downregulation of hemidesmosomal linker proteins in OSCC derived cells resulted in reduced cell migration accompanied by alterations in actin organization. Further, decreased MMP9 activity led to reduced cell invasion in linker proteins knockdown cells. Moreover, loss of these proteins resulted in reduced tumorigenic potential. SWATH analysis demonstrated upregulation of N-Myc downstream regulated gene 1 (NDRG1) in linker proteins downregulated cells as compared to vector control cells. Further, the defects in phenotype upon linker proteins ablation were rescued upon loss of NDRG1 in linker proteins knockdown background. These data together indicate that hemidesmosomal linker proteins regulate cell motility, invasion and tumorigenicity possibly through NDRG1 in OSCC derived cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Linker-dependent Junction Formation Probability in Single-Molecule Junctions

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Pil Sun; Kim, Taekyeong [HankukUniversity of Foreign Studies, Yongin (Korea, Republic of)

    2015-01-15

    We compare the junction formation probabilities of single-molecule junctions with different linker molecules by using a scanning tunneling microscope-based break-junction technique. We found that the junction formation probability varies as SH > SMe > NH2 for the benzene backbone molecule with different types of anchoring groups, through quantitative statistical analysis. These results are attributed to different bonding forces according to the linker groups formed with Au atoms in the electrodes, which is consistent with previous works. Our work allows a better understanding of the contact chemistry in the metal.molecule junction for future molecular electronic devices.

  19. Effect of the linkers between the zinc fingers in zinc finger protein 809 on gene silencing and nuclear localization

    Energy Technology Data Exchange (ETDEWEB)

    Ichida, Yu, E-mail: ichida-y@ncchd.go.jp; Utsunomiya, Yuko; Onodera, Masafumi

    2016-03-18

    Zinc finger protein 809 (ZFP809) belongs to the Kruppel-associated box-containing zinc finger protein (KRAB-ZFP) family and functions in repressing the expression of Moloney murine leukemia virus (MoMLV). ZFP809 binds to the primer-binding site (PBS)located downstream of the MoMLV-long terminal repeat (LTR) and induces epigenetic modifications at integration sites, such as repressive histone modifications and de novo DNA methylation. KRAB-ZFPs contain consensus TGEKP linkers between C2H2 zinc fingers. The phosphorylation of threonine residues within linkers leads to the inactivation of zinc finger binding to target sequences. ZFP809 also contains consensus linkers between zinc fingers. However, the function of ZFP809 linkers remains unknown. In the present study, we constructed ZFP809 proteins containing mutated linkers and examined their ability to silence transgene expression driven by MLV, binding ability to MLV PBS, and cellular localization. The results of the present study revealed that the linkers affected the ability of ZFP809 to silence transgene expression. Furthermore, this effect could be partly attributed to changes in the localization of ZFP809 proteins containing mutated linkers. Further characterization of ZFP809 linkers is required for understanding the functions and features of KRAB-ZFP-containing linkers. - Highlights: • ZFP809 has three consensus linkers between the zinc fingers. • Linkers are required for ZFP809 to silence transgene expression driven by MLV-LTR. • Linkers affect the precise nuclear localization of ZFP809.

  20. Identification of unique interactions between the flexible linker and the RecA-like domains of DEAD-box helicase Mss116

    International Nuclear Information System (INIS)

    Zhang, Yuan; Palla, Mirkó; Liao, Jung-Chi; Sun, Andrew

    2013-01-01

    DEAD-box RNA helicases are ATP-dependent proteins implicated in nearly all aspects of RNA metabolism. The yeast DEAD-box helicase Mss116 is unique in its functions of splicing group I and group II introns and activating mRNA translation, but the structural understanding of why it performs these unique functions remains unclear. Here we used sequence analysis and molecular dynamics simulation to identify residues in the flexible linker specific for yeast Mss116, potentially associated with its unique functions. We first identified residues that are 100% conserved in Mss116 of different species of the Saccharomycetaceae family. The amino acids of these conserved residues were then compared with the amino acids of the corresponding residue positions of other RNA helicases to identify residues that have distinct amino acids from other DEAD-box proteins. Four residues in the flexible linker, i.e. N334, E335, P336 and H339, are conserved and Mss116-specific. Molecular dynamics simulation was conducted for the wild-type Mss116 structure and mutant models to examine mutational effects of the linker on the conformational equilibrium. Relatively short MD simulation runs (within 20 ns) were enough for us to observe mutational effects, suggesting serious structural perturbations by these mutations. The mutation of E335 depletes the interactions between E335 and K95 in domain 1. The interactions between N334/P336 and N496/I497 of domain 2 are also abolished by mutation. Our results suggest that tight interactions between the Mss116-specific flexible linker and the two RecA-like domains may be mechanically required to crimp RNA for the unique RNA processes of yeast Mss116. (paper)

  1. Identification of unique interactions between the flexible linker and the RecA-like domains of DEAD-box helicase Mss116

    Science.gov (United States)

    Zhang, Yuan; Palla, Mirkó; Sun, Andrew; Liao, Jung-Chi

    2013-09-01

    DEAD-box RNA helicases are ATP-dependent proteins implicated in nearly all aspects of RNA metabolism. The yeast DEAD-box helicase Mss116 is unique in its functions of splicing group I and group II introns and activating mRNA translation, but the structural understanding of why it performs these unique functions remains unclear. Here we used sequence analysis and molecular dynamics simulation to identify residues in the flexible linker specific for yeast Mss116, potentially associated with its unique functions. We first identified residues that are 100% conserved in Mss116 of different species of the Saccharomycetaceae family. The amino acids of these conserved residues were then compared with the amino acids of the corresponding residue positions of other RNA helicases to identify residues that have distinct amino acids from other DEAD-box proteins. Four residues in the flexible linker, i.e. N334, E335, P336 and H339, are conserved and Mss116-specific. Molecular dynamics simulation was conducted for the wild-type Mss116 structure and mutant models to examine mutational effects of the linker on the conformational equilibrium. Relatively short MD simulation runs (within 20 ns) were enough for us to observe mutational effects, suggesting serious structural perturbations by these mutations. The mutation of E335 depletes the interactions between E335 and K95 in domain 1. The interactions between N334/P336 and N496/I497 of domain 2 are also abolished by mutation. Our results suggest that tight interactions between the Mss116-specific flexible linker and the two RecA-like domains may be mechanically required to crimp RNA for the unique RNA processes of yeast Mss116.

  2. Mixed-linker zeolitic imidazolate framework mixed-matrix membranes for aggressive CO2 separation from natural gas

    KAUST Repository

    Thompson, Joshua A.

    2014-07-01

    Zeolitic imidazolate framework (ZIF) materials are a promising subclass of metal-organic frameworks (MOF) for gas separations. However, due to the deleterious effects of gate-opening phenomena associated with organic linker rotation near the limiting pore apertures of ZIFs, there have been few demonstrations of improved gas separation properties over pure polymer membranes when utilizing ZIF materials in composite membranes for CO2-based gas separations. Here, we report a study of composite ZIF/polymer membranes, containing mixed-linker ZIF materials with ZIF-8 crystal topologies but composed of different organic linker compositions. Characterization of the mixed-linker ZIFs shows that the mixed linker approach offers control over the porosity and pore size distribution of the materials, as determined from nitrogen physisorption and Horváth-Kawazoe analysis. Single gas permeation measurements on mixed-matrix membranes reveal that inclusion of mixed-linker ZIFs yields membranes with better ideal CO2/CH4 selectivity than membranes containing ZIF-8. This improvement is shown to likely occur from enhancement in the diffusion selectivity of the membranes associated with controlling the pore size distribution of the ZIF filler. Mixed-gas permeation experiments show that membranes with mixed-linker ZIFs display an effective plasticization resistance that is not typical of the pure polymeric matrix. Overall, we demonstrate that mixed-linker ZIFs can improve the gas separation properties in composite membranes and may be applicable to aggressive CO2 concentrations in natural gas feeds. © 2013 Elsevier Inc. All rights reserved.

  3. Improving the performance of DomainDiscovery of protein domain boundary assignment using inter-domain linker index

    Directory of Open Access Journals (Sweden)

    Zomaya Albert Y

    2006-12-01

    Full Text Available Abstract Background Knowledge of protein domain boundaries is critical for the characterisation and understanding of protein function. The ability to identify domains without the knowledge of the structure – by using sequence information only – is an essential step in many types of protein analyses. In this present study, we demonstrate that the performance of DomainDiscovery is improved significantly by including the inter-domain linker index value for domain identification from sequence-based information. Improved DomainDiscovery uses a Support Vector Machine (SVM approach and a unique training dataset built on the principle of consensus among experts in defining domains in protein structure. The SVM was trained using a PSSM (Position Specific Scoring Matrix, secondary structure, solvent accessibility information and inter-domain linker index to detect possible domain boundaries for a target sequence. Results Improved DomainDiscovery is compared with other methods by benchmarking against a structurally non-redundant dataset and also CASP5 targets. Improved DomainDiscovery achieves 70% accuracy for domain boundary identification in multi-domains proteins. Conclusion Improved DomainDiscovery compares favourably to the performance of other methods and excels in the identification of domain boundaries for multi-domain proteins as a result of introducing support vector machine with benchmark_2 dataset.

  4. A Small Number of Residues Can Determine if Linker Histones Are Bound On or Off Dyad in the Chromatosome.

    Science.gov (United States)

    Zhou, Bing-Rui; Feng, Hanqiao; Ghirlando, Rodolfo; Li, Shipeng; Schwieters, Charles D; Bai, Yawen

    2016-10-09

    Linker histones bind to the nucleosome and regulate the structure and function of chromatin. We have previously shown that the globular domains of chicken H5 and Drosophila H1 linker histones bind to the nucleosome with on- or off-dyad modes, respectively. To explore the determinant for the distinct binding modes, we investigated the binding of a mutant globular domain of H5 to the nucleosome. This mutant, termed GH5_pMut, includes substitutions of five globular domain residues of H5 with the corresponding residues in the globular domain of Drosophila H1. The residues at these five positions play important roles in nucleosome binding by either H5 or Drosophila H1. NMR and spin-labeling experiments showed that GH5_pMut bound to the nucleosome off the dyad. We further found that the nucleosome array condensed by either the GH5_pMut or the globular domain of Drosophila H1 displayed a similar sedimentation coefficient, whereas the same nucleosome array condensed by the wild-type globular domain of H5 showed a much larger sedimentation coefficient. Moreover, NMR and spin-labeling results from the study of the nucleosome in complex with the full-length human linker histone H1.0, whose globular domain shares high sequence conservation with the corresponding globular domain of H5, are consistent with an on-dyad binding mode. Taken together, our results suggest that a small number of residues in the globular domain of a linker histone can control its binding location on the nucleosome and higher-order chromatin structure. Copyright © 2016. Published by Elsevier Ltd.

  5. Identification of Inhibitors of Biological Interactions Involving Intrinsically Disordered Proteins

    Directory of Open Access Journals (Sweden)

    Daniela Marasco

    2015-04-01

    Full Text Available Protein–protein interactions involving disordered partners have unique features and represent prominent targets in drug discovery processes. Intrinsically Disordered Proteins (IDPs are involved in cellular regulation, signaling and control: they bind to multiple partners and these high-specificity/low-affinity interactions play crucial roles in many human diseases. Disordered regions, terminal tails and flexible linkers are particularly abundant in DNA-binding proteins and play crucial roles in the affinity and specificity of DNA recognizing processes. Protein complexes involving IDPs are short-lived and typically involve short amino acid stretches bearing few “hot spots”, thus the identification of molecules able to modulate them can produce important lead compounds: in this scenario peptides and/or peptidomimetics, deriving from structure-based, combinatorial or protein dissection approaches, can play a key role as hit compounds. Here, we propose a panoramic review of the structural features of IDPs and how they regulate molecular recognition mechanisms focusing attention on recently reported drug-design strategies in the field of IDPs.

  6. Description of a cellulose-binding domain and a linker sequence from Aspergillus fungi

    NARCIS (Netherlands)

    Quentin, M; Ebbelaar, M; Derksen, J; Mariani, C; van der Valk, H

    A family I cellulose-binding domain (CBD) and a serine- and threonine-rich linker peptide were cloned from the fungi Aspergillus japonicus and Aspergillus aculeatus. A glutathione S-transferase (GST) fusion protein comprising GST and a peptide linker with the CBD fused to its C-terminus, was

  7. Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption.

    Science.gov (United States)

    Wu, Hui; Chua, Yong Shen; Krungleviciute, Vaiva; Tyagi, Madhusudan; Chen, Ping; Yildirim, Taner; Zhou, Wei

    2013-07-17

    UiO-66 is a highly important prototypical zirconium metal-organic framework (MOF) compound because of its excellent stabilities not typically found in common porous MOFs. In its perfect crystal structure, each Zr metal center is fully coordinated by 12 organic linkers to form a highly connected framework. Using high-resolution neutron power diffraction technique, we found the first direct structural evidence showing that real UiO-66 material contains significant amount of missing-linker defects, an unusual phenomenon for MOFs. The concentration of the missing-linker defects is surprisingly high, ∼10% in our sample, effectively reducing the framework connection from 12 to ∼11. We show that by varying the concentration of the acetic acid modulator and the synthesis time, the linker vacancies can be tuned systematically, leading to dramatically enhanced porosity. We obtained samples with pore volumes ranging from 0.44 to 1.0 cm(3)/g and Brunauer-Emmett-Teller surface areas ranging from 1000 to 1600 m(2)/g, the largest values of which are ∼150% and ∼60% higher than the theoretical values of defect-free UiO-66 crystal, respectively. The linker vacancies also have profound effects on the gas adsorption behaviors of UiO-66, in particular CO2. Finally, comparing the gas adsorption of hydroxylated and dehydroxylated UiO-66, we found that the former performs systematically better than the latter (particularly for CO2) suggesting the beneficial effect of the -OH groups. This finding is of great importance because hydroxylated UiO-66 is the practically more relevant, non-air-sensitive form of this MOF. The preferred gas adsorption on the metal center was confirmed by neutron diffraction measurements, and the gas binding strength enhancement by the -OH group was further supported by our first-principles calculations.

  8. High-Flux Zeolitic Imidazolate Framework Membranes for Propylene/Propane Separation by Postsynthetic Linker Exchange.

    Science.gov (United States)

    Lee, Moon Joo; Kwon, Hyuk Taek; Jeong, Hae-Kwon

    2018-01-02

    While zeolitic imidazolate framework, ZIF-8, membranes show impressive propylene/propane separation, their throughput needs to be greatly improved for practical applications. A method is described that drastically reduces the effective thickness of ZIF-8 membranes, thereby substantially improving their propylene permeance (that is, flux). The new strategy is based on a controlled single-crystal to single-crystal linker exchange of 2-methylimidazole in ZIF-8 membrane grains with 2-imidazolecarboxaldehyde (ZIF-90 linker), thereby enlarging the effective aperture size of ZIF-8. The linker-exchanged ZIF-8 membranes showed a drastic increase in propylene permeance by about four times, with a negligible loss in propylene/propane separation factor when compared to as-prepared membranes. The linker-exchange effect depends on the membrane synthesis method. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effect of linkers on the αvβ3 integrin targeting efficiency of cyclic RGD-conjugates

    Science.gov (United States)

    Karmakar, Partha; Grabowska, Dorota; Sudlow, Gail; Ziabrev, Kostiantyn; Sanyal, Nibedita; Achilefu, Samuel

    2018-02-01

    Cyclic arginine-glycine-aspartic acid (cRGD) peptides are well known to target ανβ3 integrin expressed on cancer cells and neovasculature. Conjugation of these peptides with dyes, drugs, antibodies and other biomolecules through covalent linkers provides a facile way to deliver these products to tumor cells for targeted cancer therapy and diagnosis. Click chemistry and acid-amine couplings are widely used conjugation strategies. However, the effects of different linkers and the distance between the cRGD and the conjugates on the binding of cRGD ligand with ανβ3 has been underexplored. In this present study, we prepared cRGD-conjugates using different linkers and determined how they altered the tumor targeting efficiency in vitro and in vivo. The results demonstrate that different linkers significantly altered the pharmacokinetics of the cRGD conjugates and the tumor uptake kinetics. Unlike large antibodies, this preliminary finding shows that linkers used to attach drugs and fluorescent molecular probes to small peptides play a major role in the accuracy of tumor targeting and treatment outcomes. As a result, considerable attention should be paid to the nature of linkers used in the design of molecular probes and targeted therapeutics.

  10. The centrosomal linker and microtubules provide dual levels of spatial coordination of centrosomes.

    Directory of Open Access Journals (Sweden)

    Marko Panic

    2015-05-01

    Full Text Available The centrosome is the principal microtubule organizing center in most animal cells. It consists of a pair of centrioles surrounded by pericentriolar material. The centrosome, like DNA, duplicates exactly once per cell cycle. During interphase duplicated centrosomes remain closely linked by a proteinaceous linker. This centrosomal linker is composed of rootletin filaments that are anchored to the centrioles via the protein C-Nap1. At the onset of mitosis the linker is dissolved by Nek2A kinase to support the formation of the bipolar mitotic spindle. The importance of the centrosomal linker for cell function during interphase awaits characterization. Here we assessed the phenotype of human RPE1 C-Nap1 knockout (KO cells. The absence of the linker led to a modest increase in the average centrosome separation from 1 to 2.5 μm. This small impact on the degree of separation is indicative of a second level of spatial organization of centrosomes. Microtubule depolymerisation or stabilization in C-Nap1 KO cells dramatically increased the inter-centrosomal separation (> 8 μm. Thus, microtubules position centrosomes relatively close to one another in the absence of linker function. C-Nap1 KO cells had a Golgi organization defect with a two-fold expansion of the area occupied by the Golgi. When the centrosomes of C-Nap1 KO cells showed considerable separation, two spatially distinct Golgi stacks could be observed. Furthermore, migration of C-Nap1 KO cells was slower than their wild type RPE1 counterparts. These data show that the spatial organization of centrosomes is modulated by a combination of centrosomal cohesion and microtubule forces. Furthermore a modest increase in centrosome separation has major impact on Golgi organization and cell migration.

  11. Linker Histone Phosphorylation Regulates Global Timing of Replication Origin Firing*S⃞

    Science.gov (United States)

    Thiriet, Christophe; Hayes, Jeffrey J.

    2009-01-01

    Despite the presence of linker histone in all eukaryotes, the primary function(s) of this histone have been difficult to clarify. Knock-out experiments indicate that H1s play a role in regulation of only a small subset of genes but are an essential component in mouse development. Here, we show that linker histone (H1) is involved in the global regulation of DNA replication in Physarum polycephalum. We find that genomic DNA of H1 knock-down cells is more rapidly replicated, an effect due at least in part to disruption of the native timing of replication fork firing. Immunoprecipitation experiments demonstrate that H1 is transiently lost from replicating chromatin via a process facilitated by phosphorylation. Our results suggest that linker histones generate a chromatin environment refractory to replication and that their transient removal via protein phosphorylation during S phase is a critical step in the epigenetic regulation of replication timing. PMID:19015270

  12. Mechanistic Evaluation of Motion in Redox-Driven Rotaxanes Reveals Longer Linkers Hasten Forward Escape's and Hinder Backward Translations

    DEFF Research Database (Denmark)

    Andersen, S. S.; Share, A. I.; Poulsen, B. L.

    2014-01-01

    temperatures to provide activation enthalpies (Delta H-double dagger) and entropies (Delta S-double dagger). Longer glycol linkers led to modest increases in the forward escape (t(1/2) = 60 to 69 s); though not because of a diffusive walk. The reduced rate of motion backward depended on folded structures...

  13. Structural Polymorphism of the Actin-Espin System: A Prototypical System of Filaments and Linkers in Stereocilia

    International Nuclear Information System (INIS)

    Purdy, Kirstin R.; Wong, Gerard C. L.; Bartles, James R.

    2007-01-01

    We examine the interaction between cytoskeletal F-actin and espin 3A, a prototypical actin bundling protein found in sensory cell microvilli, including ear cell stereocilia. Espin induces twist distortions in F-actin as well as facilitates bundle formation. Mutations in one of the two F-actin binding sites of espin, which have been implicated in deafness, can tune espin-actin interactions and radically transform the system's phase behavior. These results are compared to recent theoretical work on the general phase behavior linker-rod systems

  14. Chemical and enzymatic stability of amino acid prodrugs containing methoxy, ethoxy and propylene glycol linkers.

    Science.gov (United States)

    Gupta, Deepak; Gupta, Sheeba Varghese; Lee, Kyung-Dall; Amidon, Gordon L

    2009-01-01

    We evaluated the chemical and enzymatic stabilities of prodrugs containing methoxy, ethoxy and propylene glycol linkers in order to find a suitable linker for prodrugs of carboxylic acids with amino acids. l-Valine and l-phenylalanine prodrugs of model compounds (benzoic acid and phenyl acetic acid) containing methoxy, ethoxy and propylene glycol linkers were synthesized. The hydrolysis rate profile of each compound was studied at physiologically relevant pHs (1.2, 4, 6 and 7.4). Enzymatic hydrolysis of propylene glycol containing compounds was studied using Caco-2 homogenate as well as purified enzyme valacyclovirase. It was observed that the stability of the prodrugs increases with the linker length (propyl > ethyl > methyl). The model prodrugs were stable at acidic pH as compared to basic pH. It was observed that the prodrug with the aliphatic amino acid promoiety was more stable compared to its aromatic counterpart. The comparison between benzyl and the phenyl model compounds revealed that the amino acid side chain is significant in determining the stability of the prodrug whereas the benzyl or phenyl carboxylic acid had little or no effect on the stability. The enzymatic activation studies of propylene glycol linker prodrug in the presence of valacyclovirase and cell homogenate showed faster generation of the parent drug at pH 7.4. The half-life of prodrugs at pH 7.4 was more than 12 h, whereas in the presence of cell homogenate the half-lives were less than 1 h. Hydrolysis by Caco-2 homogenate generated the parent compound in two steps, where the prodrug was first converted to the intermediate, propylene glycol benzoate, which was then converted to the parent compound (benzoic acid). Enzymatic hydrolysis of propylene glycol containing prodrugs by valacyclovirase showed hydrolysis of the amino acid ester part to generate the propylene glycol ester of model compound (propylene glycol benzoate) as the major product. The amino acid prodrugs containing methoxy

  15. Synthetic incorporation of Nile Blue into DNA using 2′-deoxyriboside substitutes: Representative comparison of (R- and (S-aminopropanediol as an acyclic linker

    Directory of Open Access Journals (Sweden)

    Daniel Lachmann

    2010-02-01

    Full Text Available The Nile Blue chromophore was incorporated into oligonucleotides using “click” chemistry for the postsynthetic modification of oligonucleotides. These were synthesized using DNA building block 3 bearing an alkyne group and reacted with the azide 4. (R-3-amino-1,2-propanediol was applied as the linker between the phosphodiester bridges. Two sets of DNA duplexes were prepared. One set carried the chromophore in an A-T environment, the second set in a G-C environment. Both were characterized by optical spectroscopy. Sequence-dependent fluorescence quenching was applied as a sensitive tool to compare the stacking interactions with respect to the chirality of the acyclic linker attachment. The results were compared to recent results from duplexes that carried the Nile Blue label in a sequentially and structurally identical context, except for the opposite chirality of the linker ((S-3-amino-1,2-propandiol. Only minor, negligible differences were observed. Melting temperatures, UV–vis absorption spectra together with fluorescence quenching data indicate that Nile Blue stacks perfectly between the adjacent base pairs regardless of whether it has been attached via an S- or R-configured linker. This result was supported by geometrically optimized DNA models.

  16. Computational engineering of cellulase Cel9A-68 functional motions through mutations in its linker region.

    Science.gov (United States)

    Costa, M G S; Silva, Y F; Batista, P R

    2018-03-14

    Microbial cellulosic degradation by cellulases has become a complementary approach for biofuel production. However, its efficiency is hindered by the recalcitrance of cellulose fibres. In this context, computational protein design methods may offer an efficient way to obtain variants with improved enzymatic activity. Cel9A-68 is a cellulase from Thermobifida fusca that is still active at high temperatures. In a previous work, we described a collective bending motion, which governs the overall cellulase dynamics. This movement promotes the approximation of its CBM and CD structural domains (that are connected by a flexible linker). We have identified two residues (G460 and P461) located at the linker that act as a hinge point. Herein, we applied a new level of protein design, focusing on the modulation of this collective motion to obtain cellulase variants with enhanced functional dynamics. We probed whether specific linker mutations would affect Cel9A-68 dynamics through computational simulations. We assumed that P461G and G460+ (with an extra glycine) constructs would present enhanced interdomain motions, while the G460P mutant would be rigid. From our results, the P461G mutation resulted in a broader exploration of the conformational space, as confirmed by clustering and free energy analyses. The WT enzyme was the most rigid system. However, G460P and P460+ explored distinct conformational states described by opposite directions of low-frequency normal modes; they sampled preferentially closed and open conformations, respectively. Overall, we highlight two significant findings: (i) all mutants explored larger conformational spaces than the WT; (ii) the selection of distinct conformational populations was intimately associated with the mutation considered. Thus, the engineering of Cel9A-68 motions through linker mutations may constitute an efficient way to improve cellulase activity, facilitating the disruption of cellulose fibres.

  17. Narcissistic Personality Disorder and the Structure of Common Mental Disorders.

    Science.gov (United States)

    Eaton, Nicholas R; Rodriguez-Seijas, Craig; Krueger, Robert F; Campbell, W Keith; Grant, Bridget F; Hasin, Deborah S

    2017-08-01

    Narcissistic personality disorder (NPD) shows high rates of comorbidity with mood, anxiety, substance use, and other personality disorders. Previous bivariate comorbidity investigations have left NPD multivariate comorbidity patterns poorly understood. Structural psychopathology research suggests that two transdiagnostic factors, internalizing (with distress and fear subfactors) and externalizing, account for comorbidity among common mental disorders. NPD has rarely been evaluated within this framework, with studies producing equivocal results. We investigated how NPD related to other mental disorders in the internalizing-externalizing model using diagnoses from a nationally representative sample (N = 34,653). NPD was best conceptualized as a distress disorder. NPD variance accounted for by transdiagnostic factors was modest, suggesting its variance is largely unique in the context of other common mental disorders. Results clarify NPD multivariate comorbidity, suggest avenues for classification and clinical endeavors, and highlight the need to understand vulnerable and grandiose narcissism subtypes' comorbidity patterns and structural relations.

  18. Rapid One-Pot Microwave Synthesis of Mixed-Linker Hybrid Zeolitic-Imidazolate Framework Membranes for Tunable Gas Separations.

    Science.gov (United States)

    Hillman, Febrian; Brito, Jordan; Jeong, Hae-Kwon

    2018-02-14

    The relatively slow and complex fabrication processes of polycrystalline metal-organic framework (MOF) membranes often times restrict their way to commercialization, despite their potential for molecular separation applications. Herein, we report a rapid one-pot microwave synthesis of mixed-linker hybrid zeolitic-imidazolate framework (ZIF) membranes consisting of 2-methylimidazolate (ZIF-8 linker) and benzimidazolate (ZIF-7 linker) linkers, termed ZIF-7-8 membranes. The fast-volumetric microwave heating in conjunction with a unique counter diffusion of metal and linker solutions enabled unprecedented rapid synthesis of well-intergrown ZIF-7-8 membranes in ∼90 s, the fastest MOF membrane preparation up to date. Furthermore, we were able to tune the molecular sieving properties of the ZIF-7-8 membranes by varying the benzimidazole-to-2-methylimidazole (bIm-to-mIm) linker ratio in the hybrid frameworks. The tuning of their molecular sieving properties led to the systematic change in the permeance and selectivity of various small gases. The unprecedented rapid synthesis of well-intergrown ZIF-7-8 membranes with tunable molecular sieving properties is an important step forward for the commercial gas separation applications of ZIF membranes.

  19. Synthesis of Selective Butyrylcholinesterase Inhibitors Coupled between α-Lipoic Acid and Polyphenols by Using 2-(Piperazin-1-yl)ethanol Linker

    International Nuclear Information System (INIS)

    Yeun, Go Heun; Lee, Seung Hwan; LIm, Yong Bae; Lee, Hye Sook; Lee, Bong Ho; Park, Jeong Ho; Won, Mooho

    2013-01-01

    In the previous paper (Bull. Korean Chem. Soc., 2011, 32, 2997), the hybrid molecules between α-lipoic acid (ALA) and polyphenols (PPs) connected with neutral 2-(2-aminoethoxy)ethanol linker (linker-1) showed new biological activity such as butyrylcholinesterase (BuChE) inhibition. In order to increase the binding affinity of the hybrid compounds to cholinesterase (ChE), the neutral 2-(2-aminoethoxy)ethanol (linker 1) was switched to the cationic 2-(piperazin-1-yl)ethanol linker (linker 2). The IC 50 values of the linker-2 hybrid molecules for BuChE inhibition were lower than those of linker-1 hybrid molecules (except 9-2) and they also had the same great selectivity for BuChE over AChE (> 800 fold) as linker-1 hybrid molecules. ALA-acetyl caffeic acid (10-2, ALA-AcCA) was shown as an effective inhibitor of BuChE (IC 50 = 0.44 ± 0.24 μM). A kinetic study using 7-2 showed that it is the same mixed type inhibition as 7-1. Its inhibition constant (Ki) to BuChE is 4.3 ± 0.09 μM

  20. Synthesis of Selective Butyrylcholinesterase Inhibitors Coupled between α-Lipoic Acid and Polyphenols by Using 2-(Piperazin-1-yl)ethanol Linker

    Energy Technology Data Exchange (ETDEWEB)

    Yeun, Go Heun; Lee, Seung Hwan; LIm, Yong Bae; Lee, Hye Sook; Lee, Bong Ho; Park, Jeong Ho [Hanbat National Univ., Daejeon (Korea, Republic of); Won, Mooho [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2013-04-15

    In the previous paper (Bull. Korean Chem. Soc., 2011, 32, 2997), the hybrid molecules between α-lipoic acid (ALA) and polyphenols (PPs) connected with neutral 2-(2-aminoethoxy)ethanol linker (linker-1) showed new biological activity such as butyrylcholinesterase (BuChE) inhibition. In order to increase the binding affinity of the hybrid compounds to cholinesterase (ChE), the neutral 2-(2-aminoethoxy)ethanol (linker 1) was switched to the cationic 2-(piperazin-1-yl)ethanol linker (linker 2). The IC{sub 50} values of the linker-2 hybrid molecules for BuChE inhibition were lower than those of linker-1 hybrid molecules (except 9-2) and they also had the same great selectivity for BuChE over AChE (> 800 fold) as linker-1 hybrid molecules. ALA-acetyl caffeic acid (10-2, ALA-AcCA) was shown as an effective inhibitor of BuChE (IC{sub 50} = 0.44 ± 0.24 μM). A kinetic study using 7-2 showed that it is the same mixed type inhibition as 7-1. Its inhibition constant (Ki) to BuChE is 4.3 ± 0.09 μM.

  1. Regulation of Cellular Dynamics and Chromosomal Binding Site Preference of Linker Histones H1.0 and H1.X.

    Science.gov (United States)

    Okuwaki, Mitsuru; Abe, Mayumi; Hisaoka, Miharu; Nagata, Kyosuke

    2016-11-01

    Linker histones play important roles in the genomic organization of mammalian cells. Of the linker histone variants, H1.X shows the most dynamic behavior in the nucleus. Recent research has suggested that the linker histone variants H1.X and H1.0 have different chromosomal binding site preferences. However, it remains unclear how the dynamics and binding site preferences of linker histones are determined. Here, we biochemically demonstrated that the DNA/nucleosome and histone chaperone binding activities of H1.X are significantly lower than those of other linker histones. This explains why H1.X moves more rapidly than other linker histones in vivo Domain swapping between H1.0 and H1.X suggests that the globular domain (GD) and C-terminal domain (CTD) of H1.X independently contribute to the dynamic behavior of H1.X. Our results also suggest that the N-terminal domain (NTD), GD, and CTD cooperatively determine the preferential binding sites, and the contribution of each domain for this determination is different depending on the target genes. We also found that linker histones accumulate in the nucleoli when the nucleosome binding activities of the GDs are weak. Our results contribute to understanding the molecular mechanisms of dynamic behaviors, binding site selection, and localization of linker histones. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. P-Link: A method for generating multicomponent cytochrome P450 fusions with variable linker length

    DEFF Research Database (Denmark)

    Belsare, Ketaki D.; Ruff, Anna Joelle; Martinez, Ronny

    2014-01-01

    Fusion protein construction is a widely employed biochemical technique, especially when it comes to multi-component enzymes such as cytochrome P450s. Here we describe a novel method for generating fusion proteins with variable linker lengths, protein fusion with variable linker insertion (P...

  3. Preparation, structural analysis and bioactivity of ribonuclease A-albumin conjugate: tetra-conjugation or PEG as the linker.

    Science.gov (United States)

    Li, Chunju; Lin, Qixun; Wang, Jun; Shen, Lijuan; Ma, Guanghui; Su, Zhiguo; Hu, Tao

    2012-12-31

    Ribonuclease A (RNase A) is a therapeutic enzyme with cytotoxic action against tumor cells. Its clinical application is limited by the short half-life and insufficient stability. Conjugation of albumin can overcome the limitation, whereas dramatically decrease the enzymatic activity of RNase A. Here, three strategies were proposed to prepare the RNase A-bovine serum albumin (BSA) conjugates. R-SMCC-B (a conjugate of four RNase A attached with one BSA) and R-PEG-B (a mono-conjugate) were prepared using Sulfo-SMCC (a short bifunctional linker) and mal-PEG-NHS (a bifunctional PEG), respectively. Mal-PEG-NHS and hexadecylamine (HDA) were used to prepare the mono-conjugate, R-HDA-B, where HDA was adopted to bind BSA. The PEG linker can elongate the proximity between RNase A and BSA. In contrast, four RNase A were closely located on BSA in R-SMCC-B. R-SMCC-B showed the lowest K(m) and the highest relative enzymatic activity and k(cat)/K(m) in the three conjugates. Presumably, the tetravalent interaction of RNase A in R-SMCC-B can increase the binding affinity to its substrate. In addition, the slow release of BSA from R-HDA-B may increase the enzymatic activity of R-HDA-B. Our study is expected to provide strategies to develop protein-albumin conjugate with high therapeutic potential. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Tethering metal ions to photocatalyst particulate surfaces by bifunctional molecular linkers for efficient hydrogen evolution

    KAUST Repository

    Yu, Weili

    2014-08-19

    A simple and versatile method for the preparation of photocatalyst particulates modified with effective cocatalysts is presented; the method involves the sequential soaking of photocatalyst particulates in solutions containing bifunctional organic linkers and metal ions. The modification of the particulate surfaces is a universal and reproducible method because the molecular linkers utilize strong covalent bonds, which in turn result in modified monolayer with a small but controlled quantity of metals. The photocatalysis results indicated that the CdS with likely photochemically reduced Pd and Ni, which were initially immobilized via ethanedithiol (EDT) as a linker, were highly efficient for photocatalytic hydrogen evolution from Na2S-Na2SO3-containing aqueous solutions. The method developed in this study opens a new synthesis route for the preparation of effective photocatalysts with various combinations of bifunctional linkers, metals, and photocatalyst particulate materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Tethering metal ions to photocatalyst particulate surfaces by bifunctional molecular linkers for efficient hydrogen evolution

    KAUST Repository

    Yu, Weili; Isimjan, Tayirjan T.; Del Gobbo, Silvano; Anjum, Dalaver Hussain; Abdel-Azeim, Safwat; Cavallo, Luigi; Garcia Esparza, Angel T.; Domen, Kazunari; Xu, Wei; Takanabe, Kazuhiro

    2014-01-01

    A simple and versatile method for the preparation of photocatalyst particulates modified with effective cocatalysts is presented; the method involves the sequential soaking of photocatalyst particulates in solutions containing bifunctional organic linkers and metal ions. The modification of the particulate surfaces is a universal and reproducible method because the molecular linkers utilize strong covalent bonds, which in turn result in modified monolayer with a small but controlled quantity of metals. The photocatalysis results indicated that the CdS with likely photochemically reduced Pd and Ni, which were initially immobilized via ethanedithiol (EDT) as a linker, were highly efficient for photocatalytic hydrogen evolution from Na2S-Na2SO3-containing aqueous solutions. The method developed in this study opens a new synthesis route for the preparation of effective photocatalysts with various combinations of bifunctional linkers, metals, and photocatalyst particulate materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The unstructured linker arms of Mlh1-Pms1 are important for interactions with DNA during mismatch repair

    Science.gov (United States)

    Plys, Aaron J.; Rogacheva, Maria V.; Greene, Eric C.; Alani, Eric

    2012-01-01

    DNA mismatch repair (MMR) models have proposed that MSH proteins identify DNA polymerase errors while interacting with the DNA replication fork. MLH proteins (primarily Mlh1-Pms1 in baker’s yeast) then survey the genome for lesion-bound MSH proteins. The resulting MSH-MLH complex formed at a DNA lesion initiates downstream steps in repair. MLH proteins act as dimers and contain long (20 – 30 nanometers) unstructured arms that connect two terminal globular domains. These arms can vary between 100 to 300 amino acids in length, are highly divergent between organisms, and are resistant to amino acid substitutions. To test the roles of the linker arms in MMR, we engineered a protease cleavage site into the Mlh1 linker arm domain of baker’s yeast Mlh1-Pms1. Cleavage of the Mlh1 linker arm in vitro resulted in a defect in Mlh1-Pms1 DNA binding activity, and in vivo proteolytic cleavage resulted in a complete defect in MMR. We then generated a series of truncation mutants bearing Mlh1 and Pms1 linker arms of varying lengths. This work revealed that MMR is greatly compromised when portions of the Mlh1 linker are removed, whereas repair is less sensitive to truncation of the Pms1 linker arm. Purified complexes containing truncations in Mlh1 and Pms1 linker arms were analyzed and found to have differential defects in DNA binding that also correlated with the ability to form a ternary complex with Msh2-Msh6 and mismatch DNA. These observations are consistent with the unstructured linker domains of MLH proteins providing distinct interactions with DNA during MMR. PMID:22659005

  7. Disruption of the IS6-AID linker affects voltage-gated calcium channel inactivation and facilitation.

    Science.gov (United States)

    Findeisen, Felix; Minor, Daniel L

    2009-03-01

    Two processes dominate voltage-gated calcium channel (Ca(V)) inactivation: voltage-dependent inactivation (VDI) and calcium-dependent inactivation (CDI). The Ca(V)beta/Ca(V)alpha(1)-I-II loop and Ca(2+)/calmodulin (CaM)/Ca(V)alpha(1)-C-terminal tail complexes have been shown to modulate each, respectively. Nevertheless, how each complex couples to the pore and whether each affects inactivation independently have remained unresolved. Here, we demonstrate that the IS6-alpha-interaction domain (AID) linker provides a rigid connection between the pore and Ca(V)beta/I-II loop complex by showing that IS6-AID linker polyglycine mutations accelerate Ca(V)1.2 (L-type) and Ca(V)2.1 (P/Q-type) VDI. Remarkably, mutations that either break the rigid IS6-AID linker connection or disrupt Ca(V)beta/I-II association sharply decelerate CDI and reduce a second Ca(2+)/CaM/Ca(V)alpha(1)-C-terminal-mediated process known as calcium-dependent facilitation. Collectively, the data strongly suggest that components traditionally associated solely with VDI, Ca(V)beta and the IS6-AID linker, are essential for calcium-dependent modulation, and that both Ca(V)beta-dependent and CaM-dependent components couple to the pore by a common mechanism requiring Ca(V)beta and an intact IS6-AID linker.

  8. Hidden Structural Codes in Protein Intrinsic Disorder.

    Science.gov (United States)

    Borkosky, Silvia S; Camporeale, Gabriela; Chemes, Lucía B; Risso, Marikena; Noval, María Gabriela; Sánchez, Ignacio E; Alonso, Leonardo G; de Prat Gay, Gonzalo

    2017-10-17

    Intrinsic disorder is a major structural category in biology, accounting for more than 30% of coding regions across the domains of life, yet consists of conformational ensembles in equilibrium, a major challenge in protein chemistry. Anciently evolved papillomavirus genomes constitute an unparalleled case for sequence to structure-function correlation in cases in which there are no folded structures. E7, the major transforming oncoprotein of human papillomaviruses, is a paradigmatic example among the intrinsically disordered proteins. Analysis of a large number of sequences of the same viral protein allowed for the identification of a handful of residues with absolute conservation, scattered along the sequence of its N-terminal intrinsically disordered domain, which intriguingly are mostly leucine residues. Mutation of these led to a pronounced increase in both α-helix and β-sheet structural content, reflected by drastic effects on equilibrium propensities and oligomerization kinetics, and uncovers the existence of local structural elements that oppose canonical folding. These folding relays suggest the existence of yet undefined hidden structural codes behind intrinsic disorder in this model protein. Thus, evolution pinpoints conformational hot spots that could have not been identified by direct experimental methods for analyzing or perturbing the equilibrium of an intrinsically disordered protein ensemble.

  9. Substitutions in conserved regions preceding and within the linker affect activity and flexibility of tRNase ZL, the long form of tRNase Z.

    Directory of Open Access Journals (Sweden)

    Makenzie Saoura

    Full Text Available The enzyme tRNase Z, a member of the metallo-β-lactamase family, endonucleolytically removes 3' trailers from precursor tRNAs, preparing them for CCA addition and aminoacylation. The short form of tRNase Z, tRNase ZS, functions as a homodimer and is found in all prokaryotes and some eukaryotes. The long form, tRNase ZL, related to tRNase ZS through tandem duplication and found only in eukaryotes, possesses ~2,000-fold greater catalytic efficiency than tRNase ZS. tRNase ZL consists of related but diverged amino and carboxy domains connected by a flexible linker (also referred to as a flexible tether and functions as a monomer. The amino domain retains the flexible arm responsible for substrate recognition and binding while the carboxy domain retains the active site. The linker region was explored by Ala-scanning through two conserved regions of D. melanogaster tRNase Z: NdomTprox, located at the carboxy end of the amino domain proximal to the linker, and Tflex, a flexible site in the linker. Periodic substitutions in a hydrophobic patch (F329 and L332 at the carboxy end of NdomTprox show 2,700 and 670-fold impairment relative to wild type, respectively, accompanied by reduced linker flexibility at N-T inside the Ndom- linker boundary. The Ala substitution for N378 in the Tflex region has 10-fold higher catalytic efficiency than wild type and locally decreased flexibility, while the Ala substitution at R382 reduces catalytic efficiency ~50-fold. These changes in pre-tRNA processing kinetics and protein flexibility are interpreted in light of a recent crystal structure for S. cerevisiae tRNase Z, suggesting transmission of local changes in hydrophobicity into the skeleton of the amino domain.

  10. A photolabile linker for the solid-phase synthesis of 4-substituted NH-1,2,3-triazoles

    DEFF Research Database (Denmark)

    Qvortrup, Katrine; Nielsen, Thomas Eiland

    2011-01-01

    A novel photolabile linker for solid-phase synthesis is presented. The linker displays an azido handle for copper-catalyzed azide–alkyne cycloaddition reactions with a variety of alkynes, remains intact under typical solid-phase reaction conditions, and enables a mild photolytic release of 4...

  11. cis-Apa: a practical linker for the microwave-assisted preparation of cyclic pseudopeptides via RCM cyclative cleavage.

    Science.gov (United States)

    Baron, Alice; Verdié, Pascal; Martinez, Jean; Lamaty, Frédéric

    2011-02-04

    A new linker cis-5-aminopent-3-enoic acid (cis-Apa) was prepared for the synthesis of cyclic pseudopeptides by cyclization-cleavage by using ring-closing methatesis (RCM). We developed a new synthetic pathway for the preparation of the cis-Apa linker that was tested in the cyclization-cleavage process of different RGD peptide sequences. Different macrocyclic peptidomimetics were prepared by using this integrated microwave-assisted method, showing that the readily available cis-Apa amino acid is well adapted as a linker in the cyclization-cleavage process.

  12. The structure of common and uncommon mental disorders.

    Science.gov (United States)

    Forbush, K T; Watson, D

    2013-01-01

    Co-morbidity patterns in epidemiological studies of mental illness consistently demonstrate that a latent internalizing factor accounts for co-morbidity patterns among unipolar mood and anxiety disorders, whereas a latent externalizing factor underlies the covariation of substance-use disorders and antisocial behaviors. However, this structure needs to be extended to include a broader range of disorders. Exploratory and confirmatory factor analyses were used to examine the structure of co-morbidity using data from the Collaborative Psychiatric Epidemiological Surveys (n = 16 233). In the best-fitting model, eating and bipolar disorders formed subfactors within internalizing, impulse control disorders were indicators of externalizing, and factor-analytically derived personality disorder scales split between internalizing and externalizing. This was the first large-scale nationally representative study that has included uncommon mental disorders with sufficient power to examine their fit within a structural model of psychopathology. The results of this study have important implications for conceptualizing myriad mental disorders.

  13. Charged residues in the H-NS linker drive DNA binding and gene silencing in single cells.

    Science.gov (United States)

    Gao, Yunfeng; Foo, Yong Hwee; Winardhi, Ricksen S; Tang, Qingnan; Yan, Jie; Kenney, Linda J

    2017-11-21

    Nucleoid-associated proteins (NAPs) facilitate chromosome organization in bacteria, but the precise mechanism remains elusive. H-NS is a NAP that also plays a major role in silencing pathogen genes. We used genetics, single-particle tracking in live cells, superresolution microscopy, atomic force microscopy, and molecular dynamics simulations to examine H-NS/DNA interactions in single cells. We discovered a role for the unstructured linker region connecting the N-terminal oligomerization and C-terminal DNA binding domains. In the present work we demonstrate that linker amino acids promote engagement with DNA. In the absence of linker contacts, H-NS binding is significantly reduced, although no change in chromosome compaction is observed. H-NS is not localized to two distinct foci; rather, it is scattered all around the nucleoid. The linker makes DNA contacts that are required for gene silencing, while chromosome compaction does not appear to be an important H-NS function.

  14. Design of Tail-Clamp Peptide Nucleic Acid Tethered with Azobenzene Linker for Sequence-Specific Detection of Homopurine DNA

    Directory of Open Access Journals (Sweden)

    Shinjiro Sawada

    2017-10-01

    Full Text Available DNA carries genetic information in its sequence of bases. Synthetic oligonucleotides that can sequence-specifically recognize a target gene sequence are a useful tool for regulating gene expression or detecting target genes. Among the many synthetic oligonucleotides, tail-clamp peptide nucleic acid (TC-PNA offers advantages since it has two homopyrimidine PNA strands connected via a flexible ethylene glycol-type linker that can recognize complementary homopurine sequences via Watson-Crick and Hoogsteen base pairings and form thermally-stable PNA/PNA/DNA triplex structures. Here, we synthesized a series of TC-PNAs that can possess different lengths of azobenzene-containing linkers and studied their binding behaviours to homopurine single-stranded DNA. Introduction of azobenzene at the N-terminus amine of PNA increased the thermal stability of PNA-DNA duplexes. Further extension of the homopyrimidine PNA strand at the N-terminus of PNA-AZO further increased the binding stability of the PNA/DNA/PNA triplex to the target homopurine sequence; however, it induced TC-PNA/DNA/TC-PNA complex formation. Among these TC-PNAs, 9W5H-C4-AZO consisting of nine Watson-Crick bases and five Hoogsteen bases tethered with a beta-alanine conjugated azobenzene linker gave a stable 1:1 TC-PNA/ssDNA complex and exhibited good mismatch recognition. Our design for TC-PNA-AZO can be utilized for detecting homopurine sequences in various genes.

  15. Mixed-linker UiO-66: structure-property relationships revealed by a combination of high-resolution powder X-ray diffraction and density functional theory calculations.

    Science.gov (United States)

    Taddei, Marco; Tiana, Davide; Casati, Nicola; van Bokhoven, Jeroen A; Smit, Berend; Ranocchiari, Marco

    2017-01-04

    The use of mixed-linker metal-organic frameworks (MIXMOFs) is one of the most effective strategies to modulate the physical-chemical properties of MOFs without affecting the overall crystal structure. In many instances, MIXMOFs have been recognized as solid solutions, with random distribution of ligands, in agreement with the empirical rule known as Vegard's law. In this work, we have undertaken a study combining high-resolution powder X-ray diffraction (HR-PXRD) and density functional theory (DFT) calculations with the aim of understanding the reasons why UiO-66-based amino- and bromo-functionalized MIXMOFs (MIXUiO-66) undergo cell expansion obeying Vegard's law and how this behaviour is related to their physical-chemical properties. DFT calculations predict that the unit cell in amino-functionalized UiO-66 experiences only minor expansion as a result of steric effects, whereas major modification to the electronic features of the framework leads to weaker metal-linker interaction and consequently to the loss of stability at higher degrees of functionalization. For bromo-functionalized UiO-66, steric repulsion due to the size of bromine yields a large cell expansion, but the electronic features remain very similar to pristine UiO-66, preserving the stability of the framework upon functionalization. MIXUiO-66 obtained by either direct synthesis or by post-synthetic exchange shows Vegard-like behaviour, suggesting that both preparation methods yield solid solutions, but the thermal stability and the textural properties of the post-synthetic exchanged materials do not display a clear dependence on the chemical composition, as observed for the MOFs obtained by direct synthesis.

  16. [Construction of cTnC-linker-TnI (P) Genes, Expression of Fusion Protein and Preparation of Lyophilized Protein].

    Science.gov (United States)

    Song, Xiaoli; Liu, Xiaoyun; Cai, Lei; Wu, Jianwei; Wang, Jihua

    2015-12-01

    In order to construct and express human cardiac troponin C-linker-troponin I(P) [ cTnC-linker-TnI(P)] fusion protein, detect its activity and prepare lyophilized protein, we searched the CDs of human cTnC and cTnI from GenBank, synthesized cTnC and cTnI(30-110aa) into cloning vector by a short DNA sequence coding for 15 neutral amino acid residues. pCold I-cTnC-linker-TnI(P) was constructed and transformed into E. coli BL21(DE3). Then, cTnC-linker-TnI(P) fusion protein was induced by isopropyl-β-D-thiogalactopyranoside (IPTG). Soluable expression of cTnC-linker-TnI(P) in prokaryotic system was successfully obtained. The fusion protein was purified by Ni²⁺ Sepharose 6 Fast Flow affinity chromatography with over 95% purity and prepared into lyophilized protein. The activity of purified cTnC-linker-TnI(P) and its lyophilized protein were detected by Wondfo Finecare™ cTnI Test. Lyophilized protein of cTnC-linker-TnI(P) was stable for 10 or more days at 37 °C and 4 or more months at 25 °C and 4 °C. The expression system established in this research is feasible and efficient. Lyophilized protein is stable enough to be provided as biological raw materials for further research.

  17. Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer.

    OpenAIRE

    Chang, Keejong; Qian, Jin; Jiang, MeiSheng; Liu, Yi-Hsin; Wu, Ming-Che; Chen, Chi-Dar; Lai, Chao-Kuen; Lo, Hsin-Lung; Hsiao, Chin-Ton; Brown, Lucy; Bolen, James; Huang, Hsiao-I; Ho, Pei-Yu; Shih, Ping Yao; Yao, Chen-Wen

    2002-01-01

    Abstract Background Transgenic animals have become valuable tools for both research and applied purposes. The current method of gene transfer, microinjection, which is widely used in transgenic mouse production, has only had limited success in producing transgenic animals of larger or higher species. Here, we report a linker based sperm-mediated gene transfer method (LB-SMGT) that greatly improves the production efficiency of large transgenic animals. Results The linker protein, a monoclonal ...

  18. ATPase Domain and Interdomain Linker Play a Key Role in Aggregation of Mitochondrial Hsp70 Chaperone Ssc1*

    Science.gov (United States)

    Blamowska, Marta; Sichting, Martin; Mapa, Koyeli; Mokranjac, Dejana; Neupert, Walter; Hell, Kai

    2010-01-01

    The co-chaperone Hep1 is required to prevent the aggregation of mitochondrial Hsp70 proteins. We have analyzed the interaction of Hep1 with mitochondrial Hsp70 (Ssc1) and the determinants in Ssc1 that make it prone to aggregation. The ATPase and peptide binding domain (PBD) of Hsp70 proteins are connected by a linker segment that mediates interdomain communication between the domains. We show here that the minimal Hep1 binding entity of Ssc1 consists of the ATPase domain and the interdomain linker. In the absence of Hep1, the ATPase domain with the interdomain linker had the tendency to aggregate, in contrast to the ATPase domain with the mutated linker segment or without linker, and in contrast to the PBD. The closest homolog of Ssc1, bacterial DnaK, and a Ssc1 chimera, in which a segment of the ATPase domain of Ssc1 was replaced by the corresponding segment from DnaK, did not aggregate in Δhep1 mitochondria. The propensity to aggregate appears to be a specific property of the mitochondrial Hsp70 proteins. The ATPase domain in combination with the interdomain linker is crucial for aggregation of Ssc1. In conclusion, our results suggest that interdomain communication makes Ssc1 prone to aggregation. Hep1 counteracts aggregation by binding to this aggregation-prone conformer. PMID:20007714

  19. ATPase domain and interdomain linker play a key role in aggregation of mitochondrial Hsp70 chaperone Ssc1.

    Science.gov (United States)

    Blamowska, Marta; Sichting, Martin; Mapa, Koyeli; Mokranjac, Dejana; Neupert, Walter; Hell, Kai

    2010-02-12

    The co-chaperone Hep1 is required to prevent the aggregation of mitochondrial Hsp70 proteins. We have analyzed the interaction of Hep1 with mitochondrial Hsp70 (Ssc1) and the determinants in Ssc1 that make it prone to aggregation. The ATPase and peptide binding domain (PBD) of Hsp70 proteins are connected by a linker segment that mediates interdomain communication between the domains. We show here that the minimal Hep1 binding entity of Ssc1 consists of the ATPase domain and the interdomain linker. In the absence of Hep1, the ATPase domain with the interdomain linker had the tendency to aggregate, in contrast to the ATPase domain with the mutated linker segment or without linker, and in contrast to the PBD. The closest homolog of Ssc1, bacterial DnaK, and a Ssc1 chimera, in which a segment of the ATPase domain of Ssc1 was replaced by the corresponding segment from DnaK, did not aggregate in Delta hep1 mitochondria. The propensity to aggregate appears to be a specific property of the mitochondrial Hsp70 proteins. The ATPase domain in combination with the interdomain linker is crucial for aggregation of Ssc1. In conclusion, our results suggest that interdomain communication makes Ssc1 prone to aggregation. Hep1 counteracts aggregation by binding to this aggregation-prone conformer.

  20. Brain structural changes in schizoaffective disorder compared to schizophrenia and bipolar disorder.

    Science.gov (United States)

    Amann, B L; Canales-Rodríguez, E J; Madre, M; Radua, J; Monte, G; Alonso-Lana, S; Landin-Romero, R; Moreno-Alcázar, A; Bonnin, C M; Sarró, S; Ortiz-Gil, J; Gomar, J J; Moro, N; Fernandez-Corcuera, P; Goikolea, J M; Blanch, J; Salvador, R; Vieta, E; McKenna, P J; Pomarol-Clotet, E

    2016-01-01

    Brain structural changes in schizoaffective disorder, and how far they resemble those seen in schizophrenia and bipolar disorder, have only been studied to a limited extent. Forty-five patients meeting DSM-IV and RDC criteria for schizoaffective disorder, groups of patients with 45 matched schizophrenia and bipolar disorder, and 45 matched healthy controls were examined using voxel-based morphometry (VBM). Analyses comparing each patient group with the healthy control subjects found that the patients with schizoaffective disorder and the patients with schizophrenia showed widespread and overlapping areas of significant volume reduction, but the patients with bipolar disorder did not. A subsequent analysis compared the combined group of patients with the controls followed by extraction of clusters. In regions where the patients differed significantly from the controls, no significant differences in mean volume between patients with schizoaffective disorder and patients with schizophrenia in any of five regions of volume reduction were found, but mean volumes in the patients with bipolar disorder were significantly smaller in three of five. The findings provide evidence that, in terms of structural gray matter brain abnormality, schizoaffective disorder resembles schizophrenia more than bipolar disorder. © 2015 The Authors. Acta Psychiatrica Scandinavica Published by John Wiley & Sons Ltd.

  1. Structural Disorder Provides Increased Adaptability for Vesicle Trafficking Pathways

    Science.gov (United States)

    Tompa, Peter

    2013-01-01

    Vesicle trafficking systems play essential roles in the communication between the organelles of eukaryotic cells and also between cells and their environment. Endocytosis and the late secretory route are mediated by clathrin-coated vesicles, while the COat Protein I and II (COPI and COPII) routes stand for the bidirectional traffic between the ER and the Golgi apparatus. Despite similar fundamental organizations, the molecular machinery, functions, and evolutionary characteristics of the three systems are very different. In this work, we compiled the basic functional protein groups of the three main routes for human and yeast and analyzed them from the structural disorder perspective. We found similar overall disorder content in yeast and human proteins, confirming the well-conserved nature of these systems. Most functional groups contain highly disordered proteins, supporting the general importance of structural disorder in these routes, although some of them seem to heavily rely on disorder, while others do not. Interestingly, the clathrin system is significantly more disordered (∼23%) than the other two, COPI (∼9%) and COPII (∼8%). We show that this structural phenomenon enhances the inherent plasticity and increased evolutionary adaptability of the clathrin system, which distinguishes it from the other two routes. Since multi-functionality (moonlighting) is indicative of both plasticity and adaptability, we studied its prevalence in vesicle trafficking proteins and correlated it with structural disorder. Clathrin adaptors have the highest capability for moonlighting while also comprising the most highly disordered members. The ability to acquire tissue specific functions was also used to approach adaptability: clathrin route genes have the most tissue specific exons encoding for protein segments enriched in structural disorder and interaction sites. Overall, our results confirm the general importance of structural disorder in vesicle trafficking and

  2. Hybrid Zeolitic Imidazolate Frameworks: Controlling Framework Porosity and Functionality by Mixed-Linker Synthesis

    KAUST Repository

    Thompson, Joshua A.

    2012-05-22

    Zeolitic imidazolate frameworks (ZIFs) are a subclass of nanoporous metal-organic frameworks (MOFs) that exhibit zeolite-like structural topologies and have interesting molecular recognition properties, such as molecular sieving and gate-opening effects associated with their pore apertures. The synthesis and characterization of hybrid ZIFs with mixed linkers in the framework are described in this work, producing materials with properties distinctly different from the parent frameworks (ZIF-8, ZIF-90, and ZIF-7). NMR spectroscopy is used to assess the relative amounts of the different linkers included in the frameworks, whereas nitrogen physisorption shows the evolution of the effective pore size distribution in materials resulting from the framework hybridization. X-ray diffraction shows these hybrid materials to be crystalline. In the case of ZIF-8-90 hybrids, the cubic space group of the parent frameworks is continuously maintained, whereas in the case of the ZIF-7-8 hybrids there is a transition from a cubic to a rhombohedral space group. Nitrogen physisorption data reveal that the hybrid materials exhibit substantial changes in gate-opening phenomena, either occurring at continuously tunable partial pressures of nitrogen (ZIF-8-90 hybrids) or loss of gate-opening effects to yield more rigid frameworks (ZIF-7-8 hybrids). With this synthetic approach, significant alterations in MOF properties may be realized to suit a desired separation or catalytic process. © 2012 American Chemical Society.

  3. Solid-phase synthesis of polyfunctional polylysine dendrons using aldehyde linkers

    DEFF Research Database (Denmark)

    Svenssen, Daniel K.; Mirsharghi, Sahar; Boas, Ulrik

    2014-01-01

    A straightforward method for the solid-phase synthesis of C-terminally modified polylysine dendrons has been developed by applying bisalkoxybenzaldehyde and trisalkoxybenzaldehyde linkers. The method has been used for the synthesis of polylysine dendrons with a variety of C-terminal ‘tail groups’...

  4. Modification of Titanium Substrates with Chimeric Peptides Comprising Antimicrobial and Titanium-Binding Motifs Connected by Linkers To Inhibit Biofilm Formation.

    Science.gov (United States)

    Liu, Zihao; Ma, Shiqing; Duan, Shun; Xuliang, Deng; Sun, Yingchun; Zhang, Xi; Xu, Xinhua; Guan, Binbin; Wang, Chao; Hu, Meilin; Qi, Xingying; Zhang, Xu; Gao, Ping

    2016-03-02

    Bacterial adhesion and biofilm formation are the primary causes of implant-associated infection, which is difficult to eliminate and may induce failure in dental implants. Chimeric peptides with both binding and antimicrobial motifs may provide a promising alternative to inhibit biofilm formation on titanium surfaces. In this study, chimeric peptides were designed by connecting an antimicrobial motif (JH8194: KRLFRRWQWRMKKY) with a binding motif (minTBP-1: RKLPDA) directly or via flexible/rigid linkers to modify Ti surfaces. We evaluated the binding behavior of peptides using quartz crystal microbalance (QCM) and atomic force microscopy (AFM) techniques and investigated the effect of the modification of titanium surfaces with these peptides on the bioactivity of Streptococcus gordonii (S. gordonii) and Streptococcus sanguis (S. sanguis). Compared with the flexible linker (GGGGS), the rigid linker (PAPAP) significantly increased the adsorption of the chimeric peptide on titanium surfaces (p chimeric peptide with the rigid linker exhibited more effective antimicrobial ability than the peptide with the flexible linker. This finding was ascribed to the ability of the rigid linker to separate functional domains and reduce their interference to the maximum extent. Consequently, the performance of chimeric peptides with specific titanium-binding motifs and antimicrobial motifs against bacteria can be optimized by the proper selection of linkers. This rational design of chimeric peptides provides a promising alternative to inhibit the formation of biofilms on titanium surfaces with the potential to prevent peri-implantitis and peri-implant mucositis.

  5. Synthesis, DNA Binding, and Anticancer Properties of Bis-Naphthalimide Derivatives with Lysine-Modified Polyamine Linkers

    Directory of Open Access Journals (Sweden)

    Yu Huang

    2018-01-01

    Full Text Available A series of bis-naphthalimide derivatives with different diamine linkers were designed and synthesized. All of the synthesized bis-naphthalimide derivatives were characterized by NMR and HRMS spectra. The binding ability between the compounds and CT DNA was evaluated by using UV–Vis titration experiments. The bis-naphthalimide compound with an ethylenediamine linker showed the largest binding constant with CT DNA. Hence, it was used as the model compound to study the DNA binding selectivity by UV–Vis titration aiming at different DNA duplexes. As a result, this compound showed binding preference to AT-rich duplexes. The DNA binding modes of the compounds were also measured by viscosity titration. The cytotoxicity of the compounds was evaluated by MTT assay. Compounds with 1,6-diaminohexane or 1,4-phenylenedimethanamine linkers showed higher cytotoxicity compared with other bis-naphthalimide derivatives.

  6. A New Achiral Linker Reagent for the Incorporation of Multiple Amino Groups Into Oligonucleotides

    DEFF Research Database (Denmark)

    1997-01-01

    The present invention relates to a new functionalized achiral linker reagent for incorporating multiple primary amino groups or reporter groups into oligonucleotides following the phosphoramidite methodology. It is possible to substitute any ribodeoxynucleotide, deoxynucleotide, or nucleotide......-oxyl-2,2,5,5-tetramethylpyrrolidine), TEMPO (N-oxyl-2,2,6,6-tetramethylpiperidine), dinitrophenyl, texas red, tetramethyl rhodamine, 7-nitrobenzo-2-oxa-1-diazole (NBD), or pyrene. The present invention also relates to a solid phase support, e.g. a Controlled Pore Glass (CPG), immobilized linker reagent...

  7. Temperature-triggered release of a liquid cross-linker micro-encapsulated in a glassy polymer for low temperature curing

    NARCIS (Netherlands)

    Senatore, D.; Cate, ten A.T.; Laven, J.; Benthem, van R.A.T.M.; With, de G.

    2013-01-01

    In order to prevent a liquid epoxy cross-linker from premature, Arrhenius-law predicted, reaction with an acid-functional polyester resin, the liquid cross-linker has been physically separated from the resin by encapsulation while release is only possible by a temperature-controlled trigger. The

  8. Optimizing the relaxivity of GdIII complexes appended to InP/ZnS quantum dots by linker tuning.

    Science.gov (United States)

    Stasiuk, Graeme J; Tamang, Sudarsan; Imbert, Daniel; Gateau, Christelle; Reiss, Peter; Fries, Pascal; Mazzanti, Marinella

    2013-06-21

    Three bimodal MRI/optical nanosized contrast agents with high per-nanoparticle relaxivity (up to 2523 mM(-1) s(-1) at 35 MHz and 932 mM(-1) s(-1) at 200 MHz) have been prepared connecting up to 115 tris-aqua Gd(III) complexes to fluorescent non-toxic InP/ZnS quantum dots. The structure of the linker has an important effect on the relaxivity of the final multimeric contrast agent.

  9. Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network

    Science.gov (United States)

    Bin Imran, Abu; Esaki, Kenta; Gotoh, Hiroaki; Seki, Takahiro; Ito, Kohzo; Sakai, Yasuhiro; Takeoka, Yukikazu

    2014-01-01

    Stimuli-sensitive hydrogels changing their volumes and shapes in response to various stimulations have potential applications in multiple fields. However, these hydrogels have not yet been commercialized due to some problems that need to be overcome. One of the most significant problems is that conventional stimuli-sensitive hydrogels are usually brittle. Here we prepare extremely stretchable thermosensitive hydrogels with good toughness by using polyrotaxane derivatives composed of α-cyclodextrin and polyethylene glycol as cross-linkers and introducing ionic groups into the polymer network. The ionic groups help the polyrotaxane cross-linkers to become well extended in the polymer network. The resulting hydrogels are surprisingly stretchable and tough because the cross-linked α-cyclodextrin molecules can move along the polyethylene glycol chains. In addition, the polyrotaxane cross-linkers can be used with a variety of vinyl monomers; the mechanical properties of the wide variety of polymer gels can be improved by using these cross-linkers. PMID:25296246

  10. Expression, purification and characterization of hepatitis B virus X protein BH3-like motif-linker-Bcl-xL fusion protein for structural studies

    Directory of Open Access Journals (Sweden)

    Hideki Kusunoki

    2017-03-01

    Full Text Available Hepatitis B virus X protein (HBx is a multifunctional protein that interacts directly with many host proteins. For example, HBx interacts with anti-apoptotic proteins, Bcl-2 and Bcl-xL, through its BH3-like motif, which leads to elevated cytosolic calcium levels, efficient viral DNA replication and the induction of apoptosis. To facilitate sample preparation and perform detailed structural characterization of the complex between HBx and Bcl-xL, we designed and purified a recombinant HBx BH3-like motif-linker-Bcl-xL fusion protein produced in E. coli. The fusion protein was characterized by size exclusion chromatography, circular dichroism and nuclear magnetic resonance experiments. Our results show that the fusion protein is a monomer in aqueous solution, forms a stable intramolecular complex, and likely retains the native conformation of the complex between Bcl-xL and the HBx BH3-like motif. Furthermore, the HBx BH3-like motif of the intramolecular complex forms an α-helix. These observations indicate that the fusion protein should facilitate structural studies aimed at understanding the interaction between HBx and Bcl-xL at the atomic level.

  11. Neutron structure analyses and structural disorders of poly(p-phenylenebenzobisoxazole) and poly(p-phenylenebenzobisthiazole)

    International Nuclear Information System (INIS)

    Takahashi, Yasuhiro

    2001-01-01

    Poly(p-phenylenebenzobisoxazole)(PBO) and poly(p-phenylenebenzobisthiazole)(PBZT) are disordered with respect to the molecular heights. The molecular heights of PBO are disordered by 1/2 along the molecular axis, while the molecular heights of PBZT are disordered by 1/2 on the ac-plane and by every 1/5 on the bc-plane. Neutron structure analyses of both polymers were carried out for the c-projected structure in the temperature range 17 - 295K. The molecular structures of both polymers deviate from the planar structure. The crystal structures are less dependent on the temperature than the flexible polymers, polyethylene and poly(vinyl alcohol). (author)

  12. Bifunctional bridging linker-assisted synthesis and characterization of TiO{sub 2}/Au nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Žunič, Vojka, E-mail: vojka.zunic@ijs.si, E-mail: vojka13@gmail.com; Kurtjak, Mario; Suvorov, Danilo [Jožef Stefan Institute, Advanced Materials Department (Slovenia)

    2016-11-15

    Using a simple organic bifunctional bridging linker, titanium dioxide (TiO{sub 2}) nanoparticles were coupled with the Au nanoparticles to form TiO{sub 2}/Au nanocomposites with a variety of Au loadings. This organic bifunctional linker, meso-2,3-dimercaptosuccinic acid, contains two types of functional groups: (i) the carboxyl group, which enables binding to the TiO{sub 2}, and (ii) the thiol group, which enables binding to the Au. In addition, the organic bifunctional linker acts as a stabilizing agent to prevent the agglomeration and growth of the Au particles, resulting in the formation of highly dispersed Au nanoparticles. To form the TiO{sub 2}/Au nanocomposites in a simple way, we deliberately applied a synthetic method that simultaneously ensures: (i) the capping of the Au nanoparticles and (ii) the binding of different amounts of Au to the TiO{sub 2}. The TiO{sub 2}/Au nanocomposites formed with this method show enhanced UV and Vis photocatalytic activities when compared to the pure TiO{sub 2} nanopowders.Graphical Abstract.

  13. Basal ganglia structure in Tourette's disorder and/or attention-deficit/hyperactivity disorder

    NARCIS (Netherlands)

    Forde, N.J.; Zwiers, M.P.; Naaijen, J.; Akkermans, S.E.A.; Openneer, T.J.; Visscher, F.; Dietrich, A.; Buitelaar, J.K.; Hoekstra, P.J.

    2017-01-01

    BACKGROUND: Tourette's disorder and attention-deficit/hyperactivity disorder often co-occur and have both been associated with structural variation of the basal ganglia. However, findings are inconsistent and comorbidity is often neglected. METHODS: T1-weighted magnetic resonance images from

  14. Iminodiacetic acid as bifunctional linker for dimerization of cyclic RGD peptides

    International Nuclear Information System (INIS)

    Xu, Dong; Zhao, Zuo-Quan; Chen, Shu-Ting; Yang, Yong; Fang, Wei; Liu, Shuang

    2017-01-01

    Introduction: In this study, I2P-RGD 2 was used as the example to illustrate a novel approach for dimerization of cyclic RGD peptides. The main objective of this study was to explore the impact of bifunctional linkers (glutamic acid vs. iminodiacetic acid) on tumor-targeting capability and excretion kinetics of the 99m Tc-labeled dimeric cyclic RGD peptides. Methods: HYNIC-I2P-RGD 2 was prepared by reacting I2P-RGD 2 with HYNIC-OSu in the presence of diisopropylethylamine, and was evaluated for its α v β 3 binding affinity against 125 I-echistatin bound to U87MG glioma cells. 99m Tc-I2P-RGD 2 was prepared with high specific activity (~185 GBq/μmol). The athymic nude mice bearing U87MG glioma xenografts were used to evaluate its biodistribution properties and image quality in comparison with those of 99m Tc-3P-RGD 2 . Results: The IC 50 value for HYNIC-I2P-RGD 2 was determined to be 39 ± 6 nM, which was very close to that (IC 50 = 33 ± 5 nM) of HYNIC-3P-RGD 2 . Replacing glutamic acid with iminodiacetic acid had little impact on α v β 3 binding affinity of cyclic RGD peptides. 99m Tc-I2P-RGD 2 and 99m Tc-3P-RGD 2 shared similar tumor uptake values over the 2 h period, and its α v β 3 -specificity was demonstrated by a blocking experiment. The uptake of 99m Tc-I2P-RGD 2 was significantly lower than 99m Tc-3P-RGD 2 in the liver and kidneys. The U87MG glioma tumors were visualized by SPECT with excellent contrast using both 99m Tc-I2P-RGD 2 and 99m Tc-3P-RGD 2 . Conclusion: Iminodiacetic acid is an excellent bifunctional linker for dimerization of cyclic RGD peptides. Bifunctional linkers have significant impact on the excretion kinetics of 99m Tc radiotracers. Because of its lower liver uptake and better tumor/liver ratios, 99m Tc-I2P-RGD 2 may have advantages over 99m Tc-3P-RGD 2 for diagnosis of tumors in chest region. -- Graphical abstract: This report presents novel approach for dimerization of cyclic RGD peptides using iminodiacetic acid as a

  15. Structural disorder in metallic glass-forming liquids.

    Science.gov (United States)

    Pan, Shao-Peng; Feng, Shi-Dong; Wang, Li-Min; Qiao, Jun-Wei; Niu, Xiao-Feng; Dong, Bang-Shao; Wang, Wei-Min; Qin, Jing-Yu

    2016-06-09

    We investigated structural disorder by a new structural parameter, quasi-nearest atom (QNA), in atomistic configurations of eight metallic glass-forming systems generated through molecular dynamics simulations at various temperatures. Structural analysis reveals that the scaled distribution of the number of QNA appears to be an universal property of metallic liquids and the spatial distribution of the number of QNA displays to be clearly heterogeneous. Furthermore, the new parameter can be directly correlated with potential energy and structural relaxation at the atomic level. Some straightforward relationships between QNA and other properties (per-atom potential energy and α-relaxation time) are introduced to reflect structure-property relationship in metallic liquids. We believe that the new structural parameter can well reflect structure disorder in metallic liquids and play an important role in understanding various properties in metallic liquids.

  16. Onset of grain filling is associated with a change in properties of linker histone variants in maize kernels

    DEFF Research Database (Denmark)

    Kalamajka, R.; Finnie, Christine; Grasser, K.D.

    2010-01-01

    ) initiation of storage synthesis. Six linker histone gene products were identified by MALDI-TOF mass spectrometry. A marked shift of around 4 pH units was observed for the linker histone spot pattern after 2D-gel electrophoresis when comparing the proteins of 11 and 16 dap kernels. The shift from acidic...

  17. Synthesis of two new alkyne-bearing linkers used for the preparation of siRNA for labeling by click chemistry with fluorine-18

    International Nuclear Information System (INIS)

    Flagothier, Jessica; Kaisin, Geoffroy; Mercier, Frederic; Thonon, David; Teller, Nathalie; Wouters, Johan; Luxen, André

    2012-01-01

    Oligonucleotides (ONs) and more particularly siRNAs are promising drugs but their pharmacokinetics and biodistribution are widely unknown. Positron Emission Tomography (PET) using fluorine-18 is a suitable technique to quantify these biological processes. Click chemistry (Huisgen cycloaddition) is the current method for labeling siRNA. In order to study the influence of a linker bearing by [ 18 F] labeled ONs, on the in vivo pharmacokinetic and metabolism, we have developed two modified ONs by two new linkers. Here we report the synthesis of two alkyne-bearing linkers, the incorporation onto a ONs and the conjugation by click chemistry with a [ 18 F] prosthetic group. - Highlights: ► Synthesis of two new alkyne linkers. ► Functionalization at the 3′-end siRNA by alkyne linker derived of proline. ► Click chemistry between alkyne modified siRNA and [ 18 F] prosthetic group.

  18. Structural Brain Abnormalities of Attention-Deficit/Hyperactivity Disorder With Oppositional Defiant Disorder.

    Science.gov (United States)

    Noordermeer, Siri D S; Luman, Marjolein; Greven, Corina U; Veroude, Kim; Faraone, Stephen V; Hartman, Catharina A; Hoekstra, Pieter J; Franke, Barbara; Buitelaar, Jan K; Heslenfeld, Dirk J; Oosterlaan, Jaap

    2017-11-01

    Attention-deficit/hyperactivity disorder (ADHD) is associated with structural abnormalities in total gray matter, basal ganglia, and cerebellum. Findings of structural abnormalities in frontal and temporal lobes, amygdala, and insula are less consistent. Remarkably, the impact of comorbid oppositional defiant disorder (ODD) (comorbidity rates up to 60%) on these neuroanatomical differences is scarcely studied, while ODD (in combination with conduct disorder) has been associated with structural abnormalities of the frontal lobe, amygdala, and insula. The aim of this study was to investigate the effect of comorbid ODD on cerebral volume and cortical thickness in ADHD. Three groups, 16 ± 3.5 years of age (mean ± SD; range 7-29 years), were studied on volumetric and cortical thickness characteristics using structural magnetic resonance imaging (surface-based morphometry): ADHD+ODD (n = 67), ADHD-only (n = 243), and control subjects (n = 233). Analyses included the moderators age, gender, IQ, and scan site. ADHD+ODD and ADHD-only showed volumetric reductions in total gray matter and (mainly) frontal brain areas. Stepwise volumetric reductions (ADHD+ODD attention, (working) memory, and decision-making. Volumetric reductions of frontal lobes were largest in the ADHD+ODD group, possibly underlying observed larger impairments in neurocognitive functions. Previously reported striatal abnormalities in ADHD may be caused by comorbid conduct disorder rather than ODD. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Crystallization and preliminary X-ray analysis of Acetivibrio cellulolyticus cellulosomal type II cohesin module: two versions having different linker lengths

    International Nuclear Information System (INIS)

    Noach, Ilit; Alber, Orly; Bayer, Edward A.; Lamed, Raphael; Levy-Assaraf, Maly; Shimon, Linda J. W.; Frolow, Felix

    2007-01-01

    The cloning, expression, purification, crystallization and preliminary X-ray characterization of two protein constructs of the second type II cohesin module from A. cellulolyticus ScaB are described. Both constructs contain the native N-terminal linker, but only one of them contains the full-length 45-residue C-terminal linker; the other contains a five-residue segment of this linker. The second type II cohesin module of the cellulosomal scaffoldin polypeptide ScaB from Acetivibrio cellulolyticus (CohB2) was cloned into two constructs: one containing a short (five-residue) C-terminal linker (CohB2-S) and the second incorporating the full native 45-residue linker (CohB2-L). Both constructs encode proteins that also include the full native six-residue N-terminal linker. The CohB2-S and CohB2-L proteins were expressed, purified and crystallized in the orthorhombic crystal system, but with different unit cells and symmetries: space group P2 1 2 1 2 1 with unit-cell parameters a = 90.36, b = 68.65, c = 111.29 Å for CohB2-S and space group P2 1 2 1 2 with unit-cell parameters a = 68.76, b = 159.22, c = 44.21 Å for CohB2-L. The crystals diffracted to 2.0 and 2.9 Å resolution, respectively. The asymmetric unit of CohB2-S contains three cohesin molecules, while that of CohB2-L contains two molecules

  20. Site specific replacements of a single loop nucleoside with a dibenzyl linker may switch the activity of TBA from anticoagulant to antiproliferative.

    Science.gov (United States)

    Scuotto, Maria; Rivieccio, Elisa; Varone, Alessia; Corda, Daniela; Bucci, Mariarosaria; Vellecco, Valentina; Cirino, Giuseppe; Virgilio, Antonella; Esposito, Veronica; Galeone, Aldo; Borbone, Nicola; Varra, Michela; Mayol, Luciano

    2015-09-18

    Many antiproliferative G-quadruplexes (G4s) arise from the folding of GT-rich strands. Among these, the Thrombin Binding Aptamer (TBA), as a rare example, adopts a monomolecular well-defined G4 structure. Nevertheless, the potential anticancer properties of TBA are severely hampered by its anticoagulant action and, consequently, no related studies have appeared so far in the literature. We wish to report here that suitable chemical modifications in the TBA sequence can preserve its antiproliferative over anticoagulant activity. Particularly, we replaced one residue of the TT or TGT loops with a dibenzyl linker to develop seven new quadruplex-forming TBA based sequences (TBA-bs), which were studied for their structural (CD, CD melting, 1D NMR) and biological (fibrinogen, PT and MTT assays) properties. The three-dimensional structures of the TBA-bs modified at T13 (TBA-bs13) or T12 (TBA-bs12), the former endowed with selective antiproliferative activity, and the latter acting as potently as TBA in both coagulation and MTT assays, were further studied by 2D NMR restrained molecular mechanics. The comparative structural analyses indicated that neither the stability, nor the topology of the G4s, but the different localization of the two benzene rings of the linker was responsible for the loss of the antithrombin activity for TBA-bs13. © Crown copyright 2015.

  1. Hydroxyl migration disorders the surface structure of hydroxyapatite nanoparticles

    Science.gov (United States)

    Cheng, Xiajie; Wu, Hong; Zhang, Li; Ma, Xingtao; Zhang, Xingdong; Yang, Mingli

    2017-09-01

    The surface structure of nano-hydroxyapatite (HAP) was investigated using a combined simulated annealing and molecular dynamics method. The stationary structures of nano-HAP with 4-7 nm in diameter and annealed under different temperatures were analyzed in terms of pair distribution function, structural factor, mean square displacement and atomic coordination number. The particles possess different structures from bulk crystal. A clear radial change in their atomic arrangements was noted. From core to surface the structures change from ordered to disordered. A three-shell model was proposed to describe the structure evolution of nano-HAP. Atoms in the core zone keep their arrangements as in crystal, while atoms in the surface shell are in short-range order and long-range disorder, adopting a typically amorphous structure. Atoms in the middle shell have small displacements and/or deflections but basically retain their original locations as in crystal. The disordered shell is about 1 nm in thickness, in agreement with experimental observations. The disordering mainly stems from hydroxyl migration during which hydroxyls move to the surface and bond with the exposed Ca ions, and their left vacancies bring about a rearrangement of nearby atoms. The disordering is to some extent different for particles unannealed under different temperatures, resulting from fewer number of migrated hydroxyls at lower temperatures. Particles with different sizes have similar surface structures, and their surface energy decreases with increasing size. Moreover, the surface energy is reduced by hydroxyl migration because the exposed Ca ions on the surface are ionically bonded with the migrated hydroxyls. Our calculations proposed a new structure model for nano-HAP, which indicates a surface structure with activities different from those without surface reorganization. This is particularly interesting because most bioactivities of biomaterials are dominated by their surface activity.

  2. Synthetic surfactant- and cross-linker-free preparation of highly stable lipid-polymer hybrid nanoparticles as potential oral delivery vehicles.

    Science.gov (United States)

    Wang, Taoran; Xue, Jingyi; Hu, Qiaobin; Zhou, Mingyong; Chang, Chao; Luo, Yangchao

    2017-06-05

    The toxicity associated with concentrated synthetic surfactants and the poor stability at gastrointestinal condition are two major constraints for practical applications of solid lipid nanoparticles (SLN) as oral delivery vehicles. In this study, a synthetic surfactant-free and cross-linker-free method was developed to fabricate effective, safe, and ultra-stable lipid-polymer hybrid nanoparticles (LPN). Bovine serum albumin (BSA) and dextran varying in molecular weights were first conjugated through Maillard reaction and the conjugates were exploited to emulsify solid lipid by a solvent diffusion and sonication method. The multilayer structure was formed by self-assembly of BSA-dextran micelles to envelope solid lipid via a pH- and heating-induced facile process with simultaneous surface deposition of pectin. The efficiency of different BSA-dextran conjugates was systematically studied to prepare LPN with the smallest size, the most homogeneous distribution and the greatest stability. The molecular interactions were characterized by Fourier transform infrared and fluorescence spectroscopies. Both nano spray drying and freeze-drying methods were tested to produce spherical and uniform pectin-coated LPN powders that were able to re-assemble nanoscale structure when redispersed in water. The results demonstrated the promise of a synthetic surfactant- and cross-linker-free technique to prepare highly stable pectin-coated LPN from all natural biomaterials as potential oral delivery vehicles.

  3. A Linker for the Solid-Phase Synthesis of Hydroxamic Acids and Identification of HDAC6 Inhibitors

    DEFF Research Database (Denmark)

    Bang, Claus Gunnar; Jensen, Jakob Feldthusen; Cohrt, Anders Emil O'Hanlon

    2017-01-01

    We herein present broadly useful, readily available and nonintegral hydroxylamine linkers for the routine solid-phase synthesis of hydroxamic acids. The developed protocols enable the efficient synthesis and release of a wide range of hydroxamic acids from various resins, relying on high control...... and flexibility with respect to reagents and synthetic processes. A trityl-based hydroxylamine linker was used to synthesize a library of peptide hydroxamic acids. The inhibitory effects of the compounds were examined for seven HDAC enzyme subtypes using a chemiluminescence-based assay....

  4. Structural Brain Abnormalities of Attention-Deficit/Hyperactivity Disorder With Oppositional Defiant Disorder

    NARCIS (Netherlands)

    Noordermeer, Siri D. S.; Luman, Marjolein; Greven, Corina U.; Veroude, Kim; Faraone, Stephen V.; Hartman, Catharina A.; Hoekstra, Pieter J.; Franke, Barbara; Buitelaar, Jan K.; Heslenfeld, Dirk J.; Oosterlaan, Jaap

    2017-01-01

    BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is associated with structural abnormalities in total gray matter, basal ganglia, and cerebellum. Findings of structural abnormalities in frontal and temporal lobes, amygdala, and insula are less consistent. Remarkably, the impact of

  5. An examination of the structure of posttraumatic stress disorder in relation to the anxiety and depressive disorders.

    Science.gov (United States)

    Forbes, David; Lockwood, Emma; Elhai, Jon D; Creamer, Mark; O'Donnell, Meaghan; Bryant, Richard; McFarlane, Alexander; Silove, Derrick

    2011-07-01

    The nature and structure of posttraumatic stress disorder (PTSD) has been the subject of much interest in recent times. This research has been represented by two streams, the first representing a substantive body of work which focuses specifically on the factor structure of PTSD and the second exploring PTSD's relationship with other mood and anxiety disorders. The present study attempted to bring these two streams together by examining structural models of PTSD and their relationship with dimensions underlying other mood and anxiety disorders. PTSD, anxiety and mood disorder data from 989 injury survivors interviewed 3-months following their injury were analyzed using a series of confirmatory factor analyses (CFA) to identify the optimal structural model. CFA analyses indicated that the best fitting model included PTSD's re-experiencing (B1-5), active avoidance (C1-2), and hypervigilance and startle (D4-5) loading onto a Fear factor (represented by panic disorder, agoraphobia and social phobia) and the PTSD dysphoria symptoms (numbing symptoms C3-7 and hyperarousal symptoms D1-3) loading onto an Anxious Misery/Distress factor (represented by depression, generalized anxiety disorder and obsessive compulsive disorder). The findings have implications for informing potential revisions to the structure of the diagnosis of PTSD and the diagnostic algorithm to be applied, with the aim of enhancing diagnostic specificity. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Factor Structure of the Eating Disorder Examination Interview in Patients With Binge-eating Disorder

    Science.gov (United States)

    Grilo, Carlos M.; Crosby, Ross D.; Peterson, Carol B.; Masheb, Robin M.; White, Marney A.; Crow, Scott J.; Wonderlich, Stephen A.; Mitchell, James E.

    2013-01-01

    Despite the widespread use of the Eating Disorder Examination (EDE) as a primary assessment instrument in studies of eating and weight disorders, little is known about the psychometric aspects of this interview measure. The primary purpose of this study was to evaluate the factor structure of the EDE interview in a large series of patients with binge-eating disorder (BED). Participants were 688 treatment-seeking patients with BED who were reliably administered the EDE interview by trained research clinicians at three research centers. Exploratory factor analysis (EFA) performed on EDE interview data from a random split-half of the study group suggested a brief 7-item 3-factor structure. Confirmatory factor analysis (CFA) performed on the second randomly selected half of the study group supported this brief 3-factor structure of the EDE interview. The three factors were interpreted as Dietary Restraint, Shape/Weight Overvaluation, and Body Dissatisfaction. In this series of patients with BED, factor analysis of the EDE interview did not replicate the original subscales but revealed an alternative factor structure. Future research must further evaluate the psychometric properties, including the factor structure, of the EDE interview in this and other eating-disordered groups. The implications of these factor analytic findings for understanding and assessing the specific psychopathology of patients with BED are discussed. PMID:19798064

  7. Investigation of the Linker Swing Motion in the Zeolitic Imidazolate Framework ZIF-90

    KAUST Repository

    Zheng, Bin; Fu, Fang; Wang, Lian Li; Yang, Limin; Zhu, Yihan; Du, Huiling

    2018-01-01

    The linker swing motion in the zeolitic imidazolate framework ZIF-90 is investigated by density functional theory (DFT) calculation, molecular dynamics (MD) and grand-canonical Monte Carlo (GCMC) simulations. The relation between the terminal

  8. Evaluation of ¹¹¹in-labelled exendin-4 derivatives containing different meprin β-specific cleavable linkers.

    Directory of Open Access Journals (Sweden)

    Andreas Jodal

    Full Text Available Cleavable linkers, which are specifically cleaved by defined conditions or enzymes, are powerful tools that can be used for various purposes. Amongst other things, they have been successfully used to deliver toxic payloads as prodrugs into target tissues. In this work novel linker sequences targeting meprin β, a metalloprotease expressed in the kidney brush-border membrane, were designed and included in the sequence of three radiolabelled exendin-4 derivatives. As radiolabelled exendin-4 derivatives strongly accumulate in the kidneys, we hypothesised that specific cleavage of the radiolabelled moiety at the kidney brush-border membrane would allow easier excretion of the activity into the urine and therefore improve the pharmacological properties of the peptide.The insertion of a cleavable linker did not negatively influence the in vitro properties of the peptides. They showed a good affinity to the GLP-1 receptor expressed in CHL cells, a high internalisation and sufficiently high stability in fresh human blood plasma. In vitro digestion with recombinant meprin β rapidly metabolised the corresponding linker sequences. After 60 min the majority of the corresponding peptides were digested and at the same time the anticipated fragments were formed. The peptides were also quickly metabolised in CD1 nu/nu mouse kidney homogenates. Immunofluorescence staining of meprin β in kidney sections confirmed the expression of the protease in the kidney brush-border membrane. Biodistribution in GLP-1 receptor positive tumour-xenograft bearing mice revealed high specific uptake of the 111In-labelled tracers in receptor positive tissue. Accumulation in the kidneys, however, was still high and comparable to the lead compound 111In-Ex4NOD40.In conclusion, we show that the concept of cleavable linkers specific for meprin β is feasible, as the peptides are rapidly cleaved by the enzyme while retaining their biological properties.

  9. Disorders without borders: current and future directions in the meta-structure of mental disorders.

    Science.gov (United States)

    Carragher, Natacha; Krueger, Robert F; Eaton, Nicholas R; Slade, Tim

    2015-03-01

    Classification is the cornerstone of clinical diagnostic practice and research. However, the extant psychiatric classification systems are not well supported by research evidence. In particular, extensive comorbidity among putatively distinct disorders flags an urgent need for fundamental changes in how we conceptualize psychopathology. Over the past decade, research has coalesced on an empirically based model that suggests many common mental disorders are structured according to two correlated latent dimensions: internalizing and externalizing. We review and discuss the development of a dimensional-spectrum model which organizes mental disorders in an empirically based manner. We also touch upon changes in the DSM-5 and put forward recommendations for future research endeavors. Our review highlights substantial empirical support for the empirically based internalizing-externalizing model of psychopathology, which provides a parsimonious means of addressing comorbidity. As future research goals, we suggest that the field would benefit from: expanding the meta-structure of psychopathology to include additional disorders, development of empirically based thresholds, inclusion of a developmental perspective, and intertwining genomic and neuroscience dimensions with the empirical structure of psychopathology.

  10. Efficient Naphthalenediimide-Based Hole Semiconducting Polymer with Vinylene Linkers between Donor and Acceptor Units

    KAUST Repository

    Zhang, Lei

    2016-11-04

    We demonstrate a new method to reverse the polarity and charge transport behavior of naphthalenediimide (NDI)-based copolymers by inserting a vinylene linker between the donor and acceptor units. The vinylene linkers minimize the intrinsic steric congestion between the NDI and thiophene moieties to prompt backbone planarity. The polymers with vinylene linkers exhibit electron n-channel transport characteristics under vacuum, similar to the benchmark polymer, P(NDI2OD-T2). To our surprise, when the polymers are measured in air, the dominant carrier type switches from n- to p-type and yield hole mobilities up to 0.45 cm(2) s(-1) with hole to electron mobility ratio of three (mu(h)/mu(e), similar to 3), which indicates that the hole density in the active layer can be significantly increased by exposure to air. This increase is consistent with the intrinsic more delocalized nature of the highest occupied molecular orbital of the charged vinylene polymer, as estimated by density functional theory (DFT) calculations, which facilitates hole transport within the polymer chains. This is the first demonstration of an efficient NDI-based hole semiconducting polymer, which will enable new developments in all-polymer solar cells, complementary circuits, and dopable polymers for use in thermoelectrics.

  11. Efficient Naphthalenediimide-Based Hole Semiconducting Polymer with Vinylene Linkers between Donor and Acceptor Units

    KAUST Repository

    Zhang, Lei; Rose, Bradley Daniel; Liu, Yao; Nahid, Masrur M.; Gann, Eliot; Ly, Jack; Zhao, Wei; Rosa, Stephen J.; Russell, Thomas P.; Facchetti, Antonio; McNei, Christopher R.; Bredas, Jean-Luc; Briseno, Alejandro L.

    2016-01-01

    We demonstrate a new method to reverse the polarity and charge transport behavior of naphthalenediimide (NDI)-based copolymers by inserting a vinylene linker between the donor and acceptor units. The vinylene linkers minimize the intrinsic steric congestion between the NDI and thiophene moieties to prompt backbone planarity. The polymers with vinylene linkers exhibit electron n-channel transport characteristics under vacuum, similar to the benchmark polymer, P(NDI2OD-T2). To our surprise, when the polymers are measured in air, the dominant carrier type switches from n- to p-type and yield hole mobilities up to 0.45 cm(2) s(-1) with hole to electron mobility ratio of three (mu(h)/mu(e), similar to 3), which indicates that the hole density in the active layer can be significantly increased by exposure to air. This increase is consistent with the intrinsic more delocalized nature of the highest occupied molecular orbital of the charged vinylene polymer, as estimated by density functional theory (DFT) calculations, which facilitates hole transport within the polymer chains. This is the first demonstration of an efficient NDI-based hole semiconducting polymer, which will enable new developments in all-polymer solar cells, complementary circuits, and dopable polymers for use in thermoelectrics.

  12. Linker length dependent binding of a focal adhesion kinase derived peptide to the Src SH3-SH2 domains.

    Science.gov (United States)

    Lindfors, Hanna E; Venkata, Bharat Somireddy; Drijfhout, Jan W; Ubbink, Marcellus

    2011-02-18

    The interaction between a peptide encompassing the SH3 and SH2 binding motifs of focal adhesion kinase (FAK) and the Src SH3-SH2 domains has been investigated with NMR spectroscopy and calorimetry. The binding to both motifs is anti-cooperative. Reduction of the long linker connecting the motifs does not lead to cooperativity. Short linkers that do not allow simultaneous intramolecular binding of the peptide to both motifs cause peptide-mediated dimerisation, even with a linker of only three amino acids. The role of the SH3 binding motif is discussed in view of the independent nature of the SH interactions. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Preparation of value-added metal-organic frameworks (MOFs) using waste PET bottles as source of acid linker

    CSIR Research Space (South Africa)

    Dyosiba, Xoliswa

    2016-12-01

    Full Text Available of Value-added Metal-organic Frameworks (MOFs) Using Waste PET Bottles as Source of Acid Linker Xoliswa Dyosiba, Jianwei Ren, Nicholas M. Musyoka, Henrietta W. Langmi, Mkhulu Mathe, Maurice S. Onyango PII: S2214-9937(16)30053-7 DOI: doi:10.1016/j..., Hen- rietta W. Langmi, Mkhulu Mathe, Maurice S. Onyango, Preparation of Value-added Metal-organic Frameworks (MOFs) Using Waste PET Bottles as Source of Acid Linker, Sustainable Materials and Technologies (2016), doi:10.1016/j.susmat.2016...

  14. Anomalous transport in itinerant metamagnets with structural disorder

    International Nuclear Information System (INIS)

    Burkov, A.T.; Zyuzin, A.Yu.; Nakama, T.; Takaesu, Y.; Takeda, M.; Yagasaki, K.

    2007-01-01

    We report on low-temperature transport in magnetic conductors with structural disorder. The primary motivation for this work was large positive magnetoresistance (MR) found in magnetically ordered ground state of some itinerant metamagnetic alloys. The positive MR suggests that external magnetic field enhances static magnetic disorder δM->(r->)=M->(r->,T,H->)- (r->,T,H->)>, whereas standard approach assumes suppression of magnetic fluctuations by external magnetic field as a source of negative MR. We review the relevant experimental data, mostly the properties of RCo 2 -based alloys and discuss a phenomenological model developed for the interpretation of the experimental results. This model includes new mechanism of magnetoresistivity in structurally disordered itinerant metamagnetic alloys

  15. Relationship between structural abnormalities in the cerebellum and dementia, posttraumatic stress disorder and bipolar disorder.

    Science.gov (United States)

    Baldaçara, Leonardo; Borgio, João Guilherme Fiorani; Araújo, Célia; Nery-Fernandes, Fabiana; Lacerda, Acioly Luiz Taveres; Moraes, Walter André Dos Santos; Montaño, Maria Beatriz Marcondes Macedo; Rocha, Marlos; Quarantini, Lucas C; Schoedl, Aline; Pupo, Mariana; Mello, Marcelo F; Andreoli, Sergio B; Miranda-Scippa, Angela; Ramos, Luiz Roberto; Mari, Jair J; Bressan, Rodrigo Affonseca; Jackowski, Andrea Parolin

    2012-01-01

    New evidence suggests that the cerebellum has structural and functional abnormalities in psychiatric disorders. In this research, the goal was to measure the volume of the cerebellum and its subregions in individuals with psychiatric disorders and to relate these findings to their symptoms. Patients with different degrees of cognitive impairment (Epidemiology of the Elderly - UNIFESP) and patients with post-traumatic stress disorder (PTSD) from population studies were analyzed. Also, patients with bipolar disorder from an outpatient clinic (Center for the Study of Mood and Anxiety Disorders, Universidade Federal da Bahia) were recruited for this study. All subjects underwent a 1.5T structural magnetic resonance scan. Volumetric measures and symptom measurements, by psychometric scales, were performed and compared between patients and controls. The cerebellum volume was reduced in patients with cognitive impairment without dementia and with dementia, in patients with PTSD, and in patients with bipolar disorder compared to controls. In dementia and PTSD, the left cerebellar hemisphere and vermis volume were reduced. In bipolar disorder, volumes of both hemispheres and the vermis were reduced. In the first two studies, these cerebellar volumetric reductions correlated with symptoms of the disease. The exact nature of cerebellar involvement in mental processes is still not fully understood. However, abnormalities in cerebellar structure and its functions have been reported in some of these diseases. Future studies with larger samples are needed to clarify these findings and investigate whether they are important for treatment and prognosis.

  16. Distribution of linker histone variants during plant cell differentiation in the developmental zones of the maize root, dedifferentiation in callus culture after auxin treatment

    Directory of Open Access Journals (Sweden)

    ANASTASIOS ALATZAS

    2008-01-01

    Full Text Available Although several linker histone variants have been studied in both animal and plant organisms, little is known about their distribution during processes that involve alterations in chromatin function, such as differentiation, dedifferentiation and hormone treatment. In this study, we identified linker histone variants by using specific anti-histone Hl antibodies. Each variant's ratio to total Hl in the three developmental zones of maize (Zea mays L. root and in callus cultures derived from them was estimated in order to define possible alterations either during plant cell differentiation or during their dedifferentiation. We also evaluated linker histone variants' ratios in the developmental zones of maize roots treated with auxin in order to examine the effects of exogenous applied auxin to linker histone variant distribution. Finally, immunohistochemical detection was used to identify the root tissues containing each variant and correlate them with the physiological status of the plant cells. According to the results presented in this study, linker histone variants' ratios are altered in the developmental zones of maize root, while they are similar to the meristematic zone in samples from callus cultures and to the differentiation zone in samples from roots treated with auxin. We propose that the alterations in linker histone variants' ratios are correlated with plant cell differentiation and dedifferentiation.

  17. Role of H1 linker histones in mammalian development and stem cell differentiation.

    Science.gov (United States)

    Pan, Chenyi; Fan, Yuhong

    2016-03-01

    H1 linker histones are key chromatin architectural proteins facilitating the formation of higher order chromatin structures. The H1 family constitutes the most heterogeneous group of histone proteins, with eleven non-allelic H1 variants in mammals. H1 variants differ in their biochemical properties and exhibit significant sequence divergence from one another, yet most of them are highly conserved during evolution from mouse to human. H1 variants are differentially regulated during development and their cellular compositions undergo dramatic changes in embryogenesis, gametogenesis, tissue maturation and cellular differentiation. As a group, H1 histones are essential for mouse development and proper stem cell differentiation. Here we summarize our current knowledge on the expression and functions of H1 variants in mammalian development and stem cell differentiation. Their diversity, sequence conservation, complex expression and distinct functions suggest that H1s mediate chromatin reprogramming and contribute to the large variations and complexity of chromatin structure and gene expression in the mammalian genome. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Crucial role of dynamic linker histone binding and divalent ions for DNA accessibility and gene regulation revealed by mesoscale modeling of oligonucleosomes

    Science.gov (United States)

    Collepardo-Guevara, Rosana; Schlick, Tamar

    2012-01-01

    Monte Carlo simulations of a mesoscale model of oligonucleosomes are analyzed to examine the role of dynamic-linker histone (LH) binding/unbinding in high monovalent salt with divalent ions, and to further interpret noted chromatin fiber softening by dynamic LH in monovalent salt conditions. We find that divalent ions produce a fiber stiffening effect that competes with, but does not overshadow, the dramatic softening triggered by dynamic-LH behavior. Indeed, we find that in typical in vivo conditions, dynamic-LH binding/unbinding reduces fiber stiffening dramatically (by a factor of almost 5, as measured by the elasticity modulus) compared with rigidly fixed LH, and also the force needed to initiate chromatin unfolding, making it consistent with those of molecular motors. Our data also show that, during unfolding, divalent ions together with LHs induce linker-DNA bending and DNA–DNA repulsion screening, which guarantee formation of heteromorphic superbeads-on-a-string structures that combine regions of loose and compact fiber independently of the characteristics of the LH–core bond. These structures might be important for gene regulation as they expose regions of the DNA selectively. Dynamic control of LH binding/unbinding, either globally or locally, in the presence of divalent ions, might constitute a mechanism for regulation of gene expression. PMID:22790986

  19. Structural MRI in Autism Spectrum Disorder

    OpenAIRE

    Chen, Rong; Jiao, Yun; Herskovits, Edward H.

    2011-01-01

    Magnetic-resonance (MR) examination provides a powerful tool for investigating brain structural changes in children with Autism Spectrum Disorder (ASD). We review recent advances in the understanding of structural-MR correlates of ASD. We summarize findings from studies based on voxel-based morphometry, surface-based morphometry, and tensor-based morphometry, and diffusion-tensor imaging. Finally, we discuss diagnostic models of ASD, based on MR-derived features.

  20. SEVA Linkers: A Versatile and Automatable DNA Backbone Exchange Standard for Synthetic Biology

    DEFF Research Database (Denmark)

    Kim, Se Hyeuk; Cavaleiro, Mafalda; Rennig, Maja

    2016-01-01

    flexibility, and different researchers prefer and master different molecular technologies. Here, we describe a new, highly versatile and automatable standard “SEVA linkers” for vector exchange. SEVA linkers enable backbone swapping with 20 combinations of classical enzymatic restriction/ligation, Gibson...

  1. Construction of Multivalent Homo- and Heterofunctional ABO Blood Group Glycoconjugates Using a Trifunctional Linker Strategy.

    Science.gov (United States)

    Daskhan, Gour Chand; Tran, Hanh-Thuc Ton; Meloncelli, Peter J; Lowary, Todd L; West, Lori J; Cairo, Christopher W

    2018-02-21

    The design and synthesis of multivalent ligands displaying complex oligosaccharides is necessary for the development of therapeutics, diagnostics, and research tools. Here, we report an efficient conjugation strategy to prepare complex glycoconjugates with 4 copies of 1 or 2 separate glycan epitopes, providing 4-8 carbohydrate residues on a tetravalent poly(ethylene glycol) scaffold. This strategy provides complex glycoconjugates that approach the size of glycoproteins (15-18 kDa) while remaining well-defined. The synthetic strategy makes use of three orthogonal functional groups, including a reactive N-hydroxysuccinimide (NHS)-ester moiety on the linker to install the first carbohydrate epitope via reaction with an amine. A masked amine functionality on the linker is revealed after the removal of a fluorenylmethyloxycarbonyl (Fmoc)-protecting group, allowing the attachment to the NHS-activated poly(ethylene glycol) (PEG) scaffold. An azide group in the linker was then used to incorporate the second carbohydrate epitope via catalyzed alkyne-azide cycloaddition. Using a known tetravalent PEG scaffold (PDI, 1.025), we prepared homofunctional glycoconjugates that display four copies of lactose and the A-type II or the B-type II human blood group antigens. Using our trifunctional linker, we expanded this strategy to produce heterofunctional conjugates with four copies of two separate glycan epitopes. These heterofunctional conjugates included Neu5Ac, 3'-sialyllactose, or 6'-sialyllactose as a second antigen. Using an alternative strategy, we generated heterofunctional conjugates with three copies of the glycan epitope and one fluorescent group (on average) using a sequential dual-amine coupling strategy. These conjugation strategies should be easily generalized for conjugation of other complex glycans. We demonstrate that the glycan epitopes of heterofunctional conjugates engage and cluster target B-cell receptors and CD22 receptors on B cells, supporting the

  2. Prescreening of Nicotine Hapten Linkers in Vitro To Select Hapten-Conjugate Vaccine Candidates for Pharmacokinetic Evaluation in Vivo.

    Science.gov (United States)

    Arutla, Viswanath; Leal, Joseph; Liu, Xiaowei; Sokalingam, Sriram; Raleigh, Michael; Adaralegbe, Adejimi; Liu, Li; Pentel, Paul R; Hecht, Sidney M; Chang, Yung

    2017-05-08

    Since the demonstration of nicotine vaccines as a possible therapeutic intervention for the effects of tobacco smoke, extensive effort has been made to enhance nicotine specific immunity. Linker modifications of nicotine haptens have been a focal point for improving the immunogenicity of nicotine, in which the evaluation of these modifications usually relies on in vivo animal models, such as mice, rats or nonhuman primates. Here, we present two in vitro screening strategies to estimate and predict the immunogenic potential of our newly designed nicotine haptens. One utilizes a competition enzyme-linked immunoabsorbent assay (ELISA) to profile the interactions of nicotine haptens or hapten-protein conjugates with nicotine specific antibodies, both polyclonal and monoclonal. Another relies on computational modeling of the interactions between haptens and amino acid residues near the conjugation site of the carrier protein to infer linker-carrier protein conjugation effect on antinicotine antibody response. Using these two in vitro methods, we ranked the haptens with different linkers for their potential as viable vaccine candidates. The ELISA-based hapten ranking was in an agreement with the results obtained by in vivo nicotine pharmacokinetic analysis. A correlation was found between the average binding affinity (IC 50 ) of the haptens to an anti-Nic monoclonal antibody and the average brain nicotine concentration in the immunized mice. The computational modeling of hapten and carrier protein interactions helps exclude conjugates with strong linker-carrier conjugation effects and low in vivo efficacy. The simplicity of these in vitro screening strategies should facilitate the selection and development of more effective nicotine conjugate vaccines. In addition, these data highlight a previously under-appreciated contribution of linkers and hapten-protein conjugations to conjugate vaccine immunogenicity by virtue of their inclusion in the epitope that binds and

  3. The structure and stability of common mental disorders - The NEMESIS Study

    NARCIS (Netherlands)

    Vollebergh, W.A.M.; Iedema, J; Bijl, R.V.; de Graaf, R.; Smit, F.; Ormel, J.

    Background: We analyzed the underlying latent structure of 12-month DSM-III-R diagnoses of 9 common disorders for the general population in the Netherlands. In addition, we sought to establish (1) the stability of the latent structure underlying mental disorders across a 1-year period (structural

  4. Nucleosome–nucleosome interactions via histone tails and linker DNA regulate nuclear rigidity

    Science.gov (United States)

    Shimamoto, Yuta; Tamura, Sachiko; Masumoto, Hiroshi; Maeshima, Kazuhiro

    2017-01-01

    Cells, as well as the nuclei inside them, experience significant mechanical stress in diverse biological processes, including contraction, migration, and adhesion. The structural stability of nuclei must therefore be maintained in order to protect genome integrity. Despite extensive knowledge on nuclear architecture and components, however, the underlying physical and molecular mechanisms remain largely unknown. We address this by subjecting isolated human cell nuclei to microneedle-based quantitative micromanipulation with a series of biochemical perturbations of the chromatin. We find that the mechanical rigidity of nuclei depends on the continuity of the nucleosomal fiber and interactions between nucleosomes. Disrupting these chromatin features by varying cation concentration, acetylating histone tails, or digesting linker DNA results in loss of nuclear rigidity. In contrast, the levels of key chromatin assembly factors, including cohesin, condensin II, and CTCF, and a major nuclear envelope protein, lamin, are unaffected. Together with in situ evidence using living cells and a simple mechanical model, our findings reveal a chromatin-based regulation of the nuclear mechanical response and provide insight into the significance of local and global chromatin structures, such as those associated with interdigitated or melted nucleosomal fibers. PMID:28428255

  5. Relationship between structural abnormalities in the cerebellum and dementia, posttraumatic stress disorder and bipolar disorder

    Directory of Open Access Journals (Sweden)

    Leonardo Baldaçara

    Full Text Available ABSTRACT. New evidence suggests that the cerebellum has structural and functional abnormalities in psychiatric disorders. Objective: In this research, the goal was to measure the volume of the cerebellum and its subregions in individuals with psychiatric disorders and to relate these findings to their symptoms. Methods: Patients with different degrees of cognitive impairment (Epidemiology of the Elderly - UNIFESP and patients with post-traumatic stress disorder (PTSD from population studies were analyzed. Also, patients with bipolar disorder from an outpatient clinic (Center for the Study of Mood and Anxiety Disorders, Universidade Federal da Bahia were recruited for this study. All subjects underwent a 1.5T structural magnetic resonance scan. Volumetric measures and symptom measurements, by psychometric scales, were performed and compared between patients and controls. Results: The cerebellum volume was reduced in patients with cognitive impairment without dementia and with dementia, in patients with PTSD, and in patients with bipolar disorder compared to controls. In dementia and PTSD, the left cerebellar hemisphere and vermis volume were reduced. In bipolar disorder, volumes of both hemispheres and the vermis were reduced. In the first two studies, these cerebellar volumetric reductions correlated with symptoms of the disease. Conclusion: The exact nature of cerebellar involvement in mental processes is still not fully understood. However, abnormalities in cerebellar structure and its functions have been reported in some of these diseases. Future studies with larger samples are needed to clarify these findings and investigate whether they are important for treatment and prognosis.

  6. Eviction of linker histone H1 by NAP-family histone chaperones enhances activated transcription.

    Science.gov (United States)

    Zhang, Qian; Giebler, Holli A; Isaacson, Marisa K; Nyborg, Jennifer K

    2015-01-01

    In the Metazoan nucleus, core histones assemble the genomic DNA to form nucleosome arrays, which are further compacted into dense chromatin structures by the linker histone H1. The extraordinary density of chromatin creates an obstacle for accessing the genetic information. Regulation of chromatin dynamics is therefore critical to cellular homeostasis, and histone chaperones serve as prominent players in these processes. In the current study, we examined the role of specific histone chaperones in negotiating the inherently repressive chromatin structure during transcriptional activation. Using a model promoter, we demonstrate that the human nucleosome assembly protein family members hNap1 and SET/Taf1β stimulate transcription in vitro during pre-initiation complex formation, prior to elongation. This stimulatory effect is dependent upon the presence of activators, p300, and Acetyl-CoA. We show that transcription from our chromatin template is strongly repressed by H1, and that both histone chaperones enhance RNA synthesis by overcoming H1-induced repression. Importantly, both hNap1 and SET/Taf1β directly bind H1, and function to enhance transcription by evicting the linker histone from chromatin reconstituted with H1. In vivo studies demonstrate that SET/Taf1β, but not hNap1, strongly stimulates activated transcription from the chromosomally-integrated model promoter, consistent with the observation that SET/Taf1β is nuclear, whereas hNap1 is primarily cytoplasmic. Together, these observations indicate that SET/Taf1β may serve as a critical regulator of H1 dynamics and gene activation in vivo. These studies uncover a novel function for SET that mechanistically couples transcriptional derepression with H1 dynamics. Furthermore, they underscore the significance of chaperone-dependent H1 displacement as an essential early step in the transition of a promoter from a dense chromatin state into one that is permissive to transcription factor binding and robust

  7. The cross-national structure of mental disorders: results from the World Mental Health Surveys.

    Science.gov (United States)

    de Jonge, Peter; Wardenaar, Klaas J; Lim, Carmen C W; Aguilar-Gaxiola, Sergio; Alonso, Jordi; Andrade, Laura Helena; Bunting, Brendan; Chatterji, Somnath; Ciutan, Marius; Gureje, Oye; Karam, Elie G; Lee, Sing; Medina-Mora, Maria Elena; Moskalewicz, Jacek; Navarro-Mateu, Fernando; Pennell, Beth-Ellen; Piazza, Marina; Posada-Villa, José; Torres, Yolanda; Kessler, Ronald C; Scott, Kate

    2017-12-19

    The patterns of comorbidity among mental disorders have led researchers to model the underlying structure of psychopathology. While studies have suggested a structure including internalizing and externalizing disorders, less is known with regard to the cross-national stability of this model. Moreover, little data are available on the placement of eating disorders, bipolar disorder and psychotic experiences (PEs) in this structure. We evaluated the structure of mental disorders with data from the World Health Organization Composite International Diagnostic Interview, including 15 lifetime mental disorders and six PEs. Respondents (n = 5478-15 499) were included from 10 high-, middle- and lower middle-income countries across the world aged 18 years or older. Confirmatory factor analyses (CFAs) were used to evaluate and compare the fit of different factor structures to the lifetime disorder data. Measurement invariance was evaluated with multigroup CFA (MG-CFA). A second-order model with internalizing and externalizing factors and fear and distress subfactors best described the structure of common mental disorders. MG-CFA showed that this model was stable across countries. Of the uncommon disorders, bipolar disorder and eating disorder were best grouped with the internalizing factor, and PEs with a separate factor. These results indicate that cross-national patterns of lifetime common mental-disorder comorbidity can be explained with a second-order underlying structure that is stable across countries and can be extended to also cover less common mental disorders.

  8. The Effects of Anchor Groups on (1) TiO2-Catalyzed Photooxidation and (2) Linker-Assisted Assembly on TiO2

    Science.gov (United States)

    Anderson, Ian Mark

    Quantum dot-sensitized solar cells (QDSSCs) are a popular target for research due to their potential for highly efficient, easily tuned absorption. Typically, light is absorbed by quantum dots attached to a semiconductor substrate, such as TiO2, via bifunctional linker molecules. This research aims to create a patterned monolayer of linker molecules on a TiO2 film, which would in turn allow the attachment of a patterned layer of quantum dots. One method for the creation of a patterned monolayer is the functionalization of a TiO2 film with a linker molecule, followed by illumination with a laser at 355 nm. This initiates a TiO 2-catalyzed oxidation reaction, causing loss of surface coverage. A second linker molecule can then be adsorbed onto the TiO2 surface in the illuminated area. Towards that end, the behaviors of carboxylic and phosphonic acids adsorbed on TiO2 have been studied. TiO2 films were functionalized by immersion in solutions a single adsorbate and surface coverage was determined by IR spectroscopy. It is shown that phosphonic acids attain higher surface coverage than carboxylic acids, and will displace them from TiO2 when in a polar solvent. Alkyl chain lengths, which can influence stabilities of monolayers, are shown not to have an effect on this relationship. Equilibrium binding data for the adsorption of n-hexadecanoic acid to TiO2 from a THF solution are presented. It is shown that solvent polarity can affect monolayer stability; carboxylates and phosphonates undergo more desorption into polar solvents than nonpolar. Through illumination, it was possible to remove nearly all adsorbed linkers from TiO2. However, the illuminated areas were found not to be receptive to attachment by a second adsorbate. A possible reason for this behavior is presented. I also report on the synthesis and characterization of a straight-chain, thiol-terminated phosphonic acid. Initial experiments involving monolayer formation and quantum dot attachment are presented

  9. DSM-IV antisocial personality disorder and conduct disorder: evidence for taxonic structures among individuals with and without substance use disorders in the general population.

    Science.gov (United States)

    Kerridge, Bradley T; Saha, Tulshi D; Hasin, Deborah S

    2014-05-01

    The categorical-dimensional status of DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition) conduct disorder (CD) and antisocial personality disorder (ASPD) is a source of controversy. This study examined whether the underlying structure of DSM-IV CD and ASPD was dimensional or categorical (taxonic) among individuals with and without substance use disorders. Using a national large representative survey of U.S. adults (n = 43,093), taxometric analyses of DSM-IV CD and ASPD diagnostic criteria were conducted on the total sample and among those with and without substance use disorders. Results of three taxometric procedures were consistent in showing that the structures underlying DSM-IV CD and ASPD were clearly taxonic in the total sample and among individuals with and without substance use disorders. Comparison curve fit indices exceeded 0.57 for each model. Taxonic findings of the present study were in contrast to the dimensional results of prior taxometric research among incarcerated samples with substantial comorbidity of antisocial syndromes and substance use disorders. Results supported the categorical representation and diagnostic thresholds of ASPD and CD as defined in DSM-IV and DSM-5. That the structure of ASPD and CD may be taxonic suggests that further research on these disorders use group comparative designs in which samples with and without these disorders are compared in terms of sociodemographic and clinical correlates, comorbidity, and treatment utilization. The taxonic structure of ASPD and CD may contribute to future research on causal processes through which these antisocial syndromes develop.

  10. DSM-IV Antisocial Personality Disorder and Conduct Disorder: Evidence for Taxonic Structures Among Individuals With and Without Substance Use Disorders in the General Population

    Science.gov (United States)

    Kerridge, Bradley T; Saha, Tulshi D; Hasin, Deborah S

    2014-01-01

    Objective: The categorical-dimensional status of DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition) conduct disorder (CD) and antisocial personality disorder (ASPD) is a source of controversy. This study examined whether the underlying structure of DSM-IV CD and ASPD was dimensional or categorical (taxonic) among individuals with and without substance use disorders. Method: Using a national large representative survey of U.S. adults (n = 43,093), taxometric analyses of DSM-IV CD and ASPD diagnostic criteria were conducted on the total sample and among those with and without substance use disorders. Results: Results of three taxometric procedures were consistent in showing that the structures underlying DSM-IV CD and ASPD were clearly taxonic in the total sample and among individuals with and without substance use disorders. Comparison curve fit indices exceeded 0.57 for each model. Conclusions: Taxonic findings of the present study were in contrast to the dimensional results of prior taxometric research among incarcerated samples with substantial comorbidity of antisocial syndromes and substance use disorders. Results supported the categorical representation and diagnostic thresholds of ASPD and CD as defined in DSM-IV and DSM-5. That the structure of ASPD and CD may be taxonic suggests that further research on these disorders use group comparative designs in which samples with and without these disorders are compared in terms of sociodemographic and clinical correlates, comorbidity, and treatment utilization. The taxonic structure of ASPD and CD may contribute to future research on causal processes through which these antisocial syndromes develop. PMID:24766762

  11. Inverse Effects on Gating and Modulation Caused by a Mutation in the M2-M3 Linker of the GABAA Receptor γ SubunitS⃞

    OpenAIRE

    O'Shea, Sean M.; Williams, Carrie A.; Jenkins, Andrew

    2009-01-01

    M2-M3 linkers are receptor subunit domains known to be critical for the normal function of cysteine-loop ligand-gated ion channels. Previous studies of α and β subunits of type “A” GABA receptors suggest that these linkers couple extracellular elements involved in GABA binding to the transmembrane segments that control the opening of the ion channel. To study the importance of the γ subunit M2-M3 linker, we examined the macroscopic and single-channel effects of an engi...

  12. The role of H1 linker histone subtypes in preserving the fidelity of elaboration of mesendodermal and neuroectodermal lineages during embryonic development.

    Directory of Open Access Journals (Sweden)

    Giang D Nguyen

    Full Text Available H1 linker histone proteins are essential for the structural and functional integrity of chromatin and for the fidelity of additional epigenetic modifications. Deletion of H1c, H1d and H1e in mice leads to embryonic lethality by mid-gestation with a broad spectrum of developmental alterations. To elucidate the cellular and molecular mechanisms underlying H1 linker histone developmental functions, we analyzed embryonic stem cells (ESCs depleted of H1c, H1d and H1e subtypes (H1-KO ESCs by utilizing established ESC differentiation paradigms. Our study revealed that although H1-KO ESCs continued to express core pluripotency genes and the embryonic stem cell markers, alkaline phosphatase and SSEA1, they exhibited enhanced cell death during embryoid body formation and during specification of mesendoderm and neuroectoderm. In addition, we demonstrated deregulation in the developmental programs of cardiomyocyte, hepatic and pancreatic lineage elaboration. Moreover, ectopic neurogenesis and cardiomyogenesis occurred during endoderm-derived pancreatic but not hepatic differentiation. Furthermore, neural differentiation paradigms revealed selective impairments in the specification and maturation of glutamatergic and dopaminergic neurons with accelerated maturation of glial lineages. These impairments were associated with deregulation in the expression profiles of pro-neural genes in dorsal and ventral forebrain-derived neural stem cell species. Taken together, these experimental observations suggest that H1 linker histone proteins are critical for the specification, maturation and fidelity of organ-specific cellular lineages derived from the three cardinal germ layers.

  13. Novel cross-linkers for PDMS networks for controlled and well distributed grafting of functionalities by click chemistry

    DEFF Research Database (Denmark)

    Bahrt, Frederikke; Dimitrov, Ivaylo; Daugaard, Anders Egede

    2013-01-01

    by 35%. The contact angle of PDMS films was increased from 108° to 116° by the introduction of a small poly(pentafluorostyrene) chain. Finally, 17α-ethynyl-1,3,5(10)-estratriene-3,17β-diol and 1-ethynyl-3,5- bis(trifluoromethyl)benzene were incorporated as examples of other functional groups. © 2013......-linkers have been utilized to prepare novel polydimethylsiloxane (PDMS) networks. All functional cross-linkers were successfully incorporated into the networks and were demonstrated to be well distributed within the PDMS films. This was substantiated by fluorescence microscopy of a film prepared with the 4...

  14. Destabilization of the Outer and Inner Mitochondrial Membranes by Core and Linker Histones

    Science.gov (United States)

    Cascone, Annunziata; Bruelle, Celine; Lindholm, Dan; Bernardi, Paolo; Eriksson, Ove

    2012-01-01

    Background Extensive DNA damage leads to apoptosis. Histones play a central role in DNA damage sensing and may mediate signals of genotoxic damage to cytosolic effectors including mitochondria. Methodology/Principal Findings We have investigated the effects of histones on mitochondrial function and membrane integrity. We demonstrate that both linker histone H1 and core histones H2A, H2B, H3, and H4 bind strongly to isolated mitochondria. All histones caused a rapid and massive release of the pro-apoptotic intermembrane space proteins cytochrome c and Smac/Diablo, indicating that they permeabilize the outer mitochondrial membrane. In addition, linker histone H1, but not core histones, permeabilized the inner membrane with a collapse of the membrane potential, release of pyridine nucleotides, and mitochondrial fragmentation. Conclusions We conclude that histones destabilize the mitochondrial membranes, a mechanism that may convey genotoxic signals to mitochondria and promote apoptosis following DNA damage. PMID:22523586

  15. Modulation of procaspase-7 self-activation by PEST amino acid residues of the N-terminal prodomain and intersubunit linker.

    Science.gov (United States)

    Alves, Juliano; Garay-Malpartida, Miguel; Occhiucci, João M; Belizário, José E

    2017-12-01

    Procaspase-7 zymogen polypeptide is composed of a short prodomain, a large subunit (p20), and a small subunit (p10) connected to an intersubunit linker. Caspase-7 is activated by an initiator caspase-8 and -9, or by autocatalysis after specific cleavage at IQAD 198 ↓S located at the intersubunit linker. Previously, we identified that PEST regions made of amino acid residues Pro (P), Glu (E), Asp (D), Ser (S), Thr (T), Asn (N), and Gln (Q) are conserved flanking amino acid residues in the cleavage sites within a prodomain and intersubunit linker of all caspase family members. Here we tested the impact of alanine substitution of PEST amino acid residues on procaspase-7 proteolytic self-activation directly in Escherichia coli. The p20 and p10 subunit cleavage were significantly delayed in double caspase-7 mutants in the prodomain (N18A/P26A) and intersubunit linker (S199A/P201A), compared with the wild-type caspase-7. The S199A/P201A mutants effectively inhibited the p10 small subunit cleavage. However, the mutations did not change the kinetic parameters (k cat /K M ) and optimal tetrapeptide specificity (DEVD) of the purified mutant enzymes. The results suggest a role of PEST-amino acid residues in the molecular mechanism for prodomain and intersubunit cleavage and caspase-7 self-activation.

  16. Synthesis of highly fluorescent and thio-linkers stabilize gold quantum dots and nano clusters in DMF for bio-labeling

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Shiva K., E-mail: srastogi@uidaho.edu [University of Idaho, Department of Chemistry (United States); Denn, Benjamin D.; Branen, A. Larry [University of Idaho, Coeur D' Alene, Biosensors and Nanotechnology Application Laboratory (BNAL) (United States)

    2012-01-15

    This study demonstrates a one versus two-step synthesis of fluorescent gold quantum dots (F-AuQDs) and nano clusters (F-AuNCs) functionalized with thiolated organic linkers using reduction of gold precursor in N,N Prime -dimethylformamide in 1 h of reaction. The F-AuQDs and F-AuNCs show fluorescence emission at 425 {+-} 5 nm upon excitation at 345 {+-} 5 nm of wavelength, with good water solubility and stability. Five different thiolated organic binary linkers consisting of various functional groups including: carboxylic acid, hydroxyl, and aromatic amine, were conjugated with the F-AuQDs and F-AuNCs. The formation mechanism and functionalization of the F-AuQDs and F-AuNCs was characterized using UV-vis absorption spectra, UV-vis light, fluorescent emission spectra, pH, TEM, and FTIR. The fluorescence emission of the F-AuQDs and F-AuNCs is greatly dependent on the thio-linker. This novel one-step approach provides facile and fast synthesis of F-AuQDs and F-AuNCs over the two-step method, with less than 5 h of reaction and workup compared to more than 28 h of reaction for the two-step approach. These thio-linker functionalized F-AuQDs and F-AuNCs have a wide application in fluorescent labeling of biomolecules, optical devices, imaging, energy transfer, and biosensing.

  17. Structure analysis of liquids and disordered materials using pulsed neutron diffraction and total scattering

    International Nuclear Information System (INIS)

    Suzuya, Kentaro

    2011-01-01

    Neutron diffraction·total scattering at pulsed neutron source is a powerful method to analyze the complex structure of disordered materials: liquids, glasses, amorphous materials and disordered crystals. The basic idea of the structure of disordered materials, the fundamental diffraction theory for disordered materials, and structure analysis of disordered materials using pulsed neutron diffraction·total scattering technique (TOF method) are described in detail. In addition, the precise information of the world highest class J-PARC MLF spallation neutron source and typical J-PARC neutron total scattering instrument NOVA are also given. Recent structural modelling methods of disordered materials such like reverse Monte Carlo (RMC) simulation method is briefly described using an example of the analysis of a typical disordered material silica glass. (author)

  18. Quercetin-glutamic acid conjugate with a non-hydrolysable linker; a novel scaffold for multidrug resistance reversal agents through inhibition of P-glycoprotein.

    Science.gov (United States)

    Kim, Mi Kyoung; Kim, Yunyoung; Choo, Hyunah; Chong, Youhoon

    2017-02-01

    Previously, we have reported remarkable effect of a quercetin-glutamic acid conjugate to reverse multidrug resistance (MDR) of cancer cells to a broad spectrum of anticancer agents through inhibition of P-glycoprotein (Pgp)-mediated drug efflux. Due to the hydrolysable nature, MDR-reversal activity of the quercetin conjugate was attributed to its hydrolysis product, quercetin. However, several lines of evidence demonstrated that the intact quercetin-glutamic acid conjugate has stronger MDR-reversal activity than quercetin. In order to evaluate this hypothesis and to identify a novel scaffold for MDR-reversal agents, we prepared quercetin conjugates with a glutamic acid attached at the 7-O position via a non-hydrolysable linker. Pgp inhibition assay, Pgp ATPase assay, and MDR-reversal activity assay were performed, and the non-hydrolysable quercetin conjugates showed significantly higher activities compared with those of quercetin. Unfortunately, the quercetin conjugates were not as effective as verapamil in Pgp-inhibition and thereby reversing MDR, but it is worth to note that the structurally modified quercetin conjugates with a non-cleavable linker showed significantly improved MDR-reversal activity compared with quercetin. Taken together, the quercetin conjugates with appropriate structural modifications were shown to have a potential to serve as a scaffold for the design of novel MDR-reversal agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Observation of structural universality in disordered systems using bulk diffusion measurement

    Science.gov (United States)

    Papaioannou, Antonios; Novikov, Dmitry S.; Fieremans, Els; Boutis, Gregory S.

    2017-12-01

    We report on an experimental observation of classical diffusion distinguishing between structural universality classes of disordered systems in one dimension. Samples of hyperuniform and short-range disorder were designed, characterized by the statistics of the placement of micrometer-thin parallel permeable barriers, and the time-dependent diffusion coefficient was measured by NMR methods over three orders of magnitude in time. The relation between the structural exponent, characterizing disorder universality class, and the dynamical exponent of the diffusion coefficient is experimentally verified. The experimentally established relation between structure and transport exemplifies the hierarchical nature of structural complexity—dynamics are mainly determined by the universality class, whereas microscopic parameters affect the nonuniversal coefficients. These results open the way for noninvasive characterization of structural correlations in porous media, complex materials, and biological tissues via a bulk diffusion measurement.

  20. Proceedings of the workshop on dynamics and structure of disordered system

    International Nuclear Information System (INIS)

    Arai, M.; Shibata, K.; Ikeda, H.

    1993-11-01

    The workshop was held on March 17 and 18, 1993, at the National Laboratory for High Energy Physics. The topics were particularly limited to lattice system among the problems of the dynamics and structure of disordered system. The problems that became the focus were recent understanding of local structure and middle distance correlation in disordered system, universal thermal properties of disordered system and phonon state density, and further, problems related to fracton, and problems related to glass-transition. At the workshop, lectures were given on dynamic middle distance structure of amorphism, Raman scattering and middle distance correlation of germanium chalcogenide glass, universal thermal properties of glass near several K, low energy excitation of disordered system by photon echo spectroscopy, fracton computer experiment, sound wave absorption of SiO 2 -10% GeO 2 glass, fracton in strong magnetic field, recent topics in Conference on Phonon Scattering, dynamic short distance structure of amorphism, structure of chalcogen nanodroplets, low energy excitation of polymers and glass-transition and so on. (K.I.)

  1. Efficient loading of primary alcohols onto a solid phase using a trityl bromide linker

    DEFF Research Database (Denmark)

    Crestey, François; Ottesen, Lars Korsgaard; Jaroszewski, Jerzy Witold

    2008-01-01

    The Letter describes an improved, rapid and mild strategy for the loading of primary alcohols onto a polystyrene trityl resin via a highly reactive trityl bromide linker. This protocol facilitates an efficient resin loading even of acid-sensitive or heat-labile alcohols, which otherwise require...... expensive or non-commercial resin types. Secondary alcohols were only attached in moderate to low yields, while attempts to load a tertiary alcohol expectedly failed. Importantly, selective attachment of diols via a primary alcohol group in the presence of more hindered alcohol groups proved possible....... The effects of activation time and reagent excess as well as alcohol structure were investigated. This improved method provides a convenient access to O-linked resin-bound N-Fmoc-protected amino alcohols that may be employed in SPS of peptides with C-terminal alcohol functionalities. In the case...

  2. Structural disordering of de-alloyed Pt bimetallic nanocatalysts

    DEFF Research Database (Denmark)

    Spanos, Ioannis; Dideriksen, Knud; Kirkensgaard, Jacob Judas Kain

    2015-01-01

    composition affects their electrocatalytic performance. The results show that upon contact with acid environment the Co leaches out of the particles leading to almost identical compositions, independent of the initial differences. Surprisingly the data show a clear trend in ORR activity, although the PtxCo1-x...... nanoparticles almost completely de-alloy during acid leaching, i.e. under reaction conditions in a fuel cell. To scrutinize the resulting particle structure after de-alloying we used pair distribution function (PDF) analysis and X-ray diffraction (XRD) gaining insight into the structural disorder and its...... dependence on the initial metal composition. Our results suggest that not only the ORR activity, but also the corrosion resistance of the synthesized NPs, are dependent on the structural disorder resulting from the de-alloying process....

  3. Rotational order–disorder structure of fluorescent protein FP480

    International Nuclear Information System (INIS)

    Pletnev, Sergei; Morozova, Kateryna S.; Verkhusha, Vladislav V.; Dauter, Zbigniew

    2009-01-01

    An analysis of the rotational order–disorder structure of fluorescent protein FP480 is presented. In the last decade, advances in instrumentation and software development have made crystallography a powerful tool in structural biology. Using this method, structural information can now be acquired from pathological crystals that would have been abandoned in earlier times. In this paper, the order–disorder (OD) structure of fluorescent protein FP480 is discussed. The structure is composed of tetramers with 222 symmetry incorporated into the lattice in two different ways, namely rotated 90° with respect to each other around the crystal c axis, with tetramer axes coincident with crystallographic twofold axes. The random distribution of alternatively oriented tetramers in the crystal creates a rotational OD structure with statistically averaged I422 symmetry, although the presence of very weak and diffuse additional reflections suggests that the randomness is only approximate

  4. Substitution of the Lys linker with the β-Ala linker dramatically decreased the renal uptake of 99mTc-labeled Arg-X-Asp-conjugated and X-Ala-Asp-conjugated α-melanocyte stimulating hormone peptides.

    Science.gov (United States)

    Flook, Adam M; Yang, Jianquan; Miao, Yubin

    2014-11-13

    The purpose of this study was to examine whether the substitution of the Lys linker with the β-Ala could reduce the renal uptake of (99m)Tc-labeled Arg-X-Asp-conjugated and X-Ala-Asp-conjugated α-melanocyte stimulating hormone (α-MSH) peptides. RSD-β-Ala-(Arg(11))CCMSH (1) {c[Arg-Ser-Asp-dTyr-Asp]-β-Ala-Cys-Cys-Glu-His-dPhe-Arg-Trp-Cys-Arg-Pro-Val-NH2}, RTD-β-Ala-(Arg(11))CCMSH (2), RVD-β-Ala-(Arg(11))CCMSH (3), RAD-β-Ala-(Arg(11))CCMSH (4), NAD-β-Ala-(Arg(11))CCMSH (5), and EAD-β-Ala-(Arg(11))CCMSH (6) peptides were synthesized and evaluated for their melanocortin 1 (MC1) receptor binding affinities in B16/F1 melanoma cells. The biodistribution of their (99m)Tc-conjugates were determined in B16/F1 melanoma-bearing C57 mice. The substitution of the Lys linker with β-Ala linker dramatically reduced the renal uptake of all six (99m)Tc-peptides. (99m)Tc-4 exhibited the highest melanoma uptake (15.66 ± 6.19% ID/g) and the lowest kidney uptake (20.18 ± 3.86% ID/g) among these (99m)Tc-peptides at 2 h postinjection. The B16/F1 melanoma lesions could be clearly visualized by single photon emission computed tomography (SPECT)/CT using (99m)Tc-4 as an imaging probe.

  5. Solving complex and disordered surface structures with electron diffraction

    International Nuclear Information System (INIS)

    Van Hove, M.A.

    1987-10-01

    The past of surface structure determination with low-energy electron diffraction (LEED) will be briefly reviewed, setting the stage for a discussion of recent and future developments. The aim of these developments is to solve complex and disordered surface structures. Some efficient solutions to the theoretical and experimental problems will be presented. Since the theoretical problems dominate, the emphasis will be on theoretical approaches to the calculation of the multiple scattering of electrons through complex and disordered surfaces. 49 refs., 13 figs., 1 tab

  6. [Structural CNS abnormalities responsible for coincidental occurrence of endocrine disorders, epilepsy and psychoneurologic disorders in children and adolescents].

    Science.gov (United States)

    Starzyk, Jerzy; Kwiatkowski, Stanisław; Kaciński, Marek; Kroczka, Sławomir; Wójcik, Małgorzata

    2010-01-01

    In the population of children and adolescents, epilepsy affects 0.5-1% of individuals; approximately 3% of general population suffer from non-epileptic seizures, while endocrine disorders are several times more frequent. All of the above factors result in a relatively common non-accidental occurrence of endocrine disorders, epilepsy and neuropsychiatric disorders. However, structural central nervous system (CNS) abnormalities that cause both endocrine and neurologic disorders seem to be markedly less common. No reports addressing this problem are available in the literature. 1) Assessment of the frequency of non-coincidental occurrence of epilepsy and endocrine disorders in inpatients and outpatients with structural CSN abnormalities managed in Department Endocrinology. 2) Presentation of diagnostic and therapeutic difficulties in these patients, and 3) An attempt at defining a common etiology of both disorders. A retrospective analysis of the medical records of the patients with coincidence of endocrine disorders and epilepsy and psycho-neurologic disorders (treated in Chair and Department of Children's and Adolescents Neurology, University Children's Hospital of Krakow or in another pediatric neurology center) and with organic CNS abnormalities (treated or followed up as inpatients and outpatient of Department of Pediatric Surgery, Children's University Hospital of Krakow, was performed. The patients were selected from among several thousands of children treated as inpatients and outpatients of the Department. Various forms of symptomatic and idiopathic epilepsy and other psychoneurological disorders (disorders of behavior and emotions, obsession-compulsion syndromes, stereotypias, aggression, compulsive ideas and movements, anorexia or hypothalamic obesity) coincident with one or more endocrine disorders such as precocious or delayed puberty, multihormonal pituitary deficiency, panhypopituitarism and secondary hypothyroidism were detected in 42 patients with

  7. Brain structure in post-traumatic stress disorder: A voxel-based morphometry analysis.

    Science.gov (United States)

    Tan, Liwen; Zhang, Li; Qi, Rongfeng; Lu, Guangming; Li, Lingjiang; Liu, Jun; Li, Weihui

    2013-09-15

    This study compared the difference in brain structure in 12 mine disaster survivors with chronic post-traumatic stress disorder, 7 cases of improved post-traumatic stress disorder symptoms, and 14 controls who experienced the same mine disaster but did not suffer post-traumatic stress disorder, using the voxel-based morphometry method. The correlation between differences in brain structure and post-traumatic stress disorder symptoms was also investigated. Results showed that the gray matter volume was the highest in the trauma control group, followed by the symptoms-improved group, and the lowest in the chronic post-traumatic stress disorder group. Compared with the symptoms-improved group, the gray matter volume in the lingual gyrus of the right occipital lobe was reduced in the chronic post-traumatic stress disorder group. Compared with the trauma control group, the gray matter volume in the right middle occipital gyrus and left middle frontal gyrus was reduced in the symptoms-improved group. Compared with the trauma control group, the gray matter volume in the left superior parietal lobule and right superior frontal gyrus was reduced in the chronic post-traumatic stress disorder group. The gray matter volume in the left superior parietal lobule was significantly positively correlated with the State-Trait Anxiety Inventory subscale score in the symptoms-improved group and chronic post-traumatic stress disorder group (r = 0.477, P = 0.039). Our findings indicate that (1) chronic post-traumatic stress disorder patients have gray matter structural damage in the prefrontal lobe, occipital lobe, and parietal lobe, (2) after post-traumatic stress, the disorder symptoms are improved and gray matter structural damage is reduced, but cannot recover to the trauma-control level, and (3) the superior parietal lobule is possibly associated with chronic post-traumatic stress disorder. Post-traumatic stress disorder patients exhibit gray matter abnormalities.

  8. Brain structure in post-traumatic stress disorder: A voxel-based morphometry analysis

    Science.gov (United States)

    Tan, Liwen; Zhang, Li; Qi, Rongfeng; Lu, Guangming; Li, Lingjiang; Liu, Jun; Li, Weihui

    2013-01-01

    This study compared the difference in brain structure in 12 mine disaster survivors with chronic post-traumatic stress disorder, 7 cases of improved post-traumatic stress disorder symptoms, and 14 controls who experienced the same mine disaster but did not suffer post-traumatic stress disorder, using the voxel-based morphometry method. The correlation between differences in brain structure and post-traumatic stress disorder symptoms was also investigated. Results showed that the gray matter volume was the highest in the trauma control group, followed by the symptoms-improved group, and the lowest in the chronic post-traumatic stress disorder group. Compared with the symptoms-improved group, the gray matter volume in the lingual gyrus of the right occipital lobe was reduced in the chronic post-traumatic stress disorder group. Compared with the trauma control group, the gray matter volume in the right middle occipital gyrus and left middle frontal gyrus was reduced in the symptoms-improved group. Compared with the trauma control group, the gray matter volume in the left superior parietal lobule and right superior frontal gyrus was reduced in the chronic post-traumatic stress disorder group. The gray matter volume in the left superior parietal lobule was significantly positively correlated with the State-Trait Anxiety Inventory subscale score in the symptoms-improved group and chronic post-traumatic stress disorder group (r = 0.477, P = 0.039). Our findings indicate that (1) chronic post-traumatic stress disorder patients have gray matter structural damage in the prefrontal lobe, occipital lobe, and parietal lobe, (2) after post-traumatic stress, the disorder symptoms are improved and gray matter structural damage is reduced, but cannot recover to the trauma-control level, and (3) the superior parietal lobule is possibly associated with chronic post-traumatic stress disorder. Post-traumatic stress disorder patients exhibit gray matter abnormalities. PMID:25206550

  9. Determinants of Glycosaminoglycan (GAG Structure

    Directory of Open Access Journals (Sweden)

    Kristian Prydz

    2015-08-01

    Full Text Available Proteoglycans (PGs are glycosylated proteins of biological importance at cell surfaces, in the extracellular matrix, and in the circulation. PGs are produced and modified by glycosaminoglycan (GAG chains in the secretory pathway of animal cells. The most common GAG attachment site is a serine residue followed by a glycine (-ser-gly-, from which a linker tetrasaccharide extends and may continue as a heparan sulfate, a heparin, a chondroitin sulfate, or a dermatan sulfate GAG chain. Which type of GAG chain becomes attached to the linker tetrasaccharide is influenced by the structure of the protein core, modifications occurring to the linker tetrasaccharide itself, and the biochemical environment of the Golgi apparatus, where GAG polymerization and modification by sulfation and epimerization take place. The same cell type may produce different GAG chains that vary, depending on the extent of epimerization and sulfation. However, it is not known to what extent these differences are caused by compartmental segregation of protein cores en route through the secretory pathway or by differential recruitment of modifying enzymes during synthesis of different PGs. The topic of this review is how different aspects of protein structure, cellular biochemistry, and compartmentalization may influence GAG synthesis.

  10. Electronic structure and self-assembly of cross-linked semiconductor nanocrystal arrays

    International Nuclear Information System (INIS)

    Steiner, Dov; Azulay, Doron; Aharoni, Assaf; Salant, Assaf; Banin, Uri; Millo, Oded

    2008-01-01

    We studied the electronic level structure of assemblies of InAs quantum dots and CdSe nanorods cross-linked by 1,4-phenylenediamine molecules using scanning tunneling spectroscopy. We found that the bandgap in these arrays is reduced with respect to the corresponding ligand-capped nanocrystal arrays. In addition, a pronounced sub-gap spectral structure commonly appeared which can be attributed to unpassivated nanocrystal surface states or associated with linker-molecule-related levels. The exchange of the ligands by the linker molecules also affected the structural array properties. Most significantly, clusters of close-packed standing CdSe nanorods were formed

  11. Multivalent cyclic RGD ligands: influence of linker lengths on receptor binding

    Energy Technology Data Exchange (ETDEWEB)

    Kubas, Holger; Schaefer, Martin; Bauder-Wuest, Ulrike; Eder, Matthias; Oltmanns, Doerte [Department of Radiopharmaceutical Chemistry, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Haberkorn, Uwe; Mier, Walter [Department of Nuclear Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Eisenhut, Michael, E-mail: m.eisenhut@dkfz.d [Department of Radiopharmaceutical Chemistry, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)

    2010-11-15

    Peptides involving the RGD motive (arginine-glycine-aspartic acid) recognize members of the integrin receptor family. Since the receptors are located mainly on the surface of endothelial cells, structural modifications including multimers of c(RGDfE) were recently found to improve the binding avidity for {alpha}{sub v{beta}3} integrin significantly. The multivalent RGD peptides exhibited rather loose linkages partly including oligo(ethylene glycol) spacers (EG{sub n}) with different chain lengths. Therefore, the dependence of multivalent RGD systems with and without EG{sub n} linkers were investigated on their binding properties to cultured {alpha}{sub v{beta}3} integrin-expressing U87MG cells. Methods: We synthesized a series of di-, tri- and tetravalent rigid scaffolds (terephthalic acid, trimesic acid and adamantane-1,3,5,7-tetracarboxylic acid) conjugated to c(RGDyK) ligands, which were linked contiguously or separated by the oligo(ethylene glycol) spacers. The inhibition constants of these c(RGDyK) derivatives were determined by competition assays with {sup 125}I-labeled echistatin. Results: While c(RGDyK) function is a relative weak competitor against [{sup 125}I]echistatin (K{sub i}, 329{+-}18 nM) for {alpha}{sub v{beta}3} integrin-expressing U87MG cells, RGD dimers improved the competition potency considerably (K{sub i}, 64{+-}23 nM). This effect was even more pronounced with the RGD trimers (K{sub i}, 40{+-}7 nM) and tetramers (K{sub i}, 26{+-}9 nM). The introduction of EG{sub n} spacers and the increase of linker lengths proved to be detrimental since more competitors were needed to compete with [{sup 125}I]echistatin. The EG{sub 6} group, for example, reduced the inhibition constants by 29% (dimer), 57% (trimer) and 97% (tetramer). Conclusion: The binding experiments performed with the three forms of multivalent RGD ligands indicate the weakening of competitive potency against [{sup 125}I]echistatin with the introduction of EG{sub n} spacers. This effect

  12. Brain Structure Abnormalities in Adolescent Girls with Conduct Disorder

    Science.gov (United States)

    Fairchild, Graeme; Hagan, Cindy C.; Walsh, Nicholas D.; Passamonti, Luca; Calder, Andrew J.; Goodyer, Ian M.

    2013-01-01

    Background: Conduct disorder (CD) in female adolescents is associated with a range of negative outcomes, including teenage pregnancy and antisocial personality disorder. Although recent studies have documented changes in brain structure and function in male adolescents with CD, there have been no neuroimaging studies of female adolescents with CD.…

  13. Preparation and in vivo evaluation of linkers for 211At labeling of humanized anti-Tac

    International Nuclear Information System (INIS)

    Yordanov, A.T.; Garmestani, K.; Zhang, M.; Zhang, Z.; Yao, Z.; Phillips, K.E.; Herring, B.; Horak, E.; Beitzel, M.P.; Schwarz, U.P.; Gansow, O.A.; Plascjak, P.S.; Eckelman, W.C.; Waldmann, T.A.; Brechbiel, M.W.

    2001-01-01

    The syntheses, radiolabeling, antibody conjugation, and in vivo evaluation of new linkers for 211 At labeling of humanized anti-Tac (Hu-anti-Tac), an antibody to the α-chain of the IL-2 receptor (IL-2Rα) shown to be a useful target for radioimmunotherapy are described. Synthesis of the organometallic linker precursors is accomplished by reaction of the corresponding bromo- or iodoaryl esters with bis(tributyltin) in the presence of a palladium catalyst. Subsequent conversion to the corresponding N-succinimidyl ester and labeling with 211 At of two new linkers, N-succinimidyl 4-[ 211 At]astato-3-methylbenzoate and N-succinimidyl N-(4-[ 211 At]astatophenethyl)succinamate (SAPS), together with the previously reported N-succinimidyl 4-[ 211 At]astatobenzoate and N-succinimidyl 3-[ 211 At]astato-4-methylbenzoate, are each conjugated to Hu-anti-Tac. The plasma survival times of these conjugates are compared to those of directly iodinated ( 125 I) Hu-anti-Tac. The N-succinimidyl N-(4-[ 211 At]astatophenethyl)succinamate compound (SAPS) emerged from this assay as the most viable candidate for 211 At-labeling of Hu-anti-Tac. SAPS, along with the directly analogous radio-iodinated reagent, N-succinimidyl N-(4-[ 125 I]astatophenethyl)succinamate (SIPS), are evaluated in a biodistribution study along with directly iodinated ( 125 I) Hu-anti-Tac. Blood clearance and biological accretion results indicate that SAPS is a viable candidate for further evaluation for radioimmunotherapy of cancer

  14. Resolving the ambiguity: Making sense of intrinsic disorder when PDB structures disagree.

    Science.gov (United States)

    DeForte, Shelly; Uversky, Vladimir N

    2016-03-01

    Missing regions in X-ray crystal structures in the Protein Data Bank (PDB) have played a foundational role in the study of intrinsically disordered protein regions (IDPRs), especially in the development of in silico predictors of intrinsic disorder. However, a missing region is only a weak indication of intrinsic disorder, and this uncertainty is compounded by the presence of ambiguous regions, where more than one structure of the same protein sequence "disagrees" in terms of the presence or absence of missing residues. The question is this: are these ambiguous regions intrinsically disordered, or are they the result of static disorder that arises from experimental conditions, ensembles of structures, or domain wobbling? A novel way of looking at ambiguous regions in terms of the pattern between multiple PDB structures has been demonstrated. It was found that the propensity for intrinsic disorder increases as the level of ambiguity decreases. However, it is also shown that ambiguity is more likely to occur as the protein region is placed within different environmental conditions, and even the most ambiguous regions as a set display compositional bias that suggests flexibility. The results suggested that ambiguity is a natural result for many IDPRs crystallized under different conditions and that static disorder and wobbling domains are relatively rare. Instead, it is more likely that ambiguity arises because many of these regions were conditionally or partially disordered. © 2016 The Protein Society.

  15. Doxorubicin conjugation and drug linker chemistry alter the intravenous and pulmonary pharmacokinetics of a PEGylated Generation 4 polylysine dendrimer in rats.

    Science.gov (United States)

    Leong, Nathania J; Mehta, Dharmini; McLeod, Victoria M; Kelly, Brian D; Pathak, Rashmi; Owen, David J; Porter, Christopher Jh; Kaminskas, Lisa M

    2018-05-28

    PEGylated polylysine dendrimers have demonstrated potential as inhalable drug delivery systems that can improve the treatment of lung cancers. Their treatment potential may be enhanced by developing constructs that display prolonged lung retention, together with good systemic absorption, the capacity to passively target lung tumours from the blood and highly selective, yet rapid liberation in the tumour microenvironment. This study sought to characterise how the nature of cathepsin B cleavable peptide linkers, used to conjugate doxorubicin to a PEGylated (PEG570) G4 polylysine dendrimer, affect drug liberation kinetics and intravenous and pulmonary pharmacokinetics in rats. The construct bearing a self-emolative diglycolic acid-V-Citrulline linker exhibited faster doxorubicin release kinetics compared to constructs bearing self emolative diglycolic acid-GLFG, or non-self emolative glutaric acid-GLFG linkers. The V-Citrulline construct exhibited slower plasma clearance, but faster absorption from the lungs than a GLFG construct, although mucociliary clearance and urinary elimination were unchanged. Doxorubicin-conjugation enhanced localisation in the bronchoalveolar lavage fluid compared to lung tissue, suggesting that projection of doxorubicin from the dendrimer surface reduced tissue uptake. These data show that the linker chemistry employed to conjugate drugs to PEGylated carriers can affect drug release profiles and systemic and lung disposition. Copyright © 2018. Published by Elsevier Inc.

  16. A CPA study of the phonon structure of disordered superlattices

    International Nuclear Information System (INIS)

    Shijie Xiong; Gendi Pang; Chienhua Tsai.

    1985-08-01

    The phonon structure of superlattices or modulated alloys with substitutional disorder is studied in the Coherent Phase Approximation (CPA). We consider first the case with diagonal disorder only, by adopting a virtual crystal approximation for the force constants. Then we treat the more complicated case with inclusion of off-diagonal disorder. Numerical examples are also studied in both cases. (author)

  17. Mixed-linker zeolitic imidazolate framework mixed-matrix membranes for aggressive CO2 separation from natural gas

    KAUST Repository

    Thompson, Joshua A.; Vaughn, Justin T.; Brunelli, Nicholas A.; Koros, William J.; Jones, Christopher W.; Nair, Sankar

    2014-01-01

    Zeolitic imidazolate framework (ZIF) materials are a promising subclass of metal-organic frameworks (MOF) for gas separations. However, due to the deleterious effects of gate-opening phenomena associated with organic linker rotation near

  18. Sibship size, birth order, family structure and childhood mental disorders.

    Science.gov (United States)

    Carballo, Juan J; García-Nieto, Rebeca; Alvarez-García, Raquel; Caro-Cañizares, Irene; López-Castromán, Jorge; Muñoz-Lorenzo, Laura; de Leon-Martinez, Victoria; Baca-García, Enrique

    2013-08-01

    The aim of this study was to determine the role that birth order, sibship size and family structure have as risk factors in the development of common childhood mental disorders. A case-control study design was conducted (N = 16,823). The group under study consisted of all those subjects who had consulted with a psychiatrist/psychologist and had received a clinical diagnosis at public mental health centres within the Region of Madrid (Spain), between 1980 and 2008. A multiple logistic regression was used to explore the independent association with each diagnosis: emotional disorders (ED) with onset specific to childhood, attention deficit hyperactivity disorder (ADHD), conduct disorder (CD), mental retardation (MR), and pervasive developmental disorder (PDD). Birth order and family structure significantly predicted the risk of being diagnosed with ED or ADHD. In addition, sibship size and sex predicted the risk of being diagnosed with a childhood mental disorder. We concluded that being the middle child and living with both biological parents appear to be protective factors against the development of ED or ADHD. Living in large families appears to increase the risk of receiving a CD, MR, or PDD diagnosis. Further research is warranted.

  19. Identification of Epithelial-Mesenchymal Transition-related Target Genes Induced by the Mutation of Smad3 Linker Phosphorylation

    Science.gov (United States)

    Park, Sujin; Yang, Kyung-Min; Park, Yuna; Hong, Eunji; Hong, Chang Pyo; Park, Jinah; Pang, Kyoungwha; Lee, Jihee; Park, Bora; Lee, Siyoung; An, Haein; Kwak, Mi-Kyung; Kim, Junil; Kang, Jin Muk; Kim, Pyunggang; Xiao, Yang; Nie, Guangjun; Ooshima, Akira

    2018-01-01

    Background Smad3 linker phosphorylation plays essential roles in tumor progression and metastasis. We have previously reported that the mutation of Smad3 linker phosphorylation sites (Smad3-Erk/Pro-directed kinase site mutant constructs [EPSM]) markedly reduced the tumor progression while increasing the lung metastasis in breast cancer. Methods We performed high-throughput RNA-Sequencing of the human prostate cancer cell lines infected with adenoviral Smad3-EPSM to identify the genes regulated by Smad3-EPSM. Results In this study, we identified genes which are differentially regulated in the presence of Smad3-EPSM. We first confirmed that Smad3-EPSM strongly enhanced a capability of cell motility and invasiveness as well as the expression of epithelial-mesenchymal transition marker genes, CDH2, SNAI1, and ZEB1 in response to TGF-β1 in human pancreatic and prostate cancer cell lines. We identified GADD45B, CTGF, and JUNB genes in the expression profiles associated with cell motility and invasiveness induced by the Smad3-EPSM. Conclusions These results suggested that inhibition of Smad3 linker phosphorylation may enhance cell motility and invasiveness by inducing expression of GADD45B, CTGF, and JUNB genes in various cancers. PMID:29629343

  20. Surface expression and subunit specific control of steady protein levels by the Kv7.2 helix A-B linker.

    Directory of Open Access Journals (Sweden)

    Paloma Aivar

    Full Text Available Kv7.2 and Kv7.3 are the main components of the neuronal voltage-dependent M-current, which is a subthreshold potassium conductance that exerts an important control on neuronal excitability. Despite their predominantly intracellular distribution, these channels must reach the plasma membrane in order to control neuronal activity. Thus, we analyzed the amino acid sequence of Kv7.2 to identify intrinsic signals that may control its surface expression. Removal of the interlinker connecting helix A and helix B of the intracellular C-terminus produces a large increase in the number of functional channels at the plasma membrane. Moreover, elimination of this linker increased the steady-state amount of protein, which was not associated with a decrease of protein degradation. The magnitude of this increase was inversely correlated with the number of helix A - helix B linkers present in the tetrameric channel assemblies. In contrast to the remarkable effect on the amount of Kv7.2 protein, removal of the Kv7.2 linker had no detectable impact on the steady-state levels of Kv7.3 protein.

  1. Mutation of Gly717Phe in human topoisomerase 1B has an effect on enzymatic function, reactivity to the camptothecin anticancer drug and on the linker domain orientation

    DEFF Research Database (Denmark)

    Wang, Zhenxing; D'Annessa, Ilda; Tesauro, Cinzia

    2015-01-01

    –DNA covalent adduct. In this work the role of the Gly717 residue, located in a α-helix structure bridging the active site and the linker domain, has been investigated mutating it in Phe. The mutation gives rise to drug resistance in vivo as observed through a viability assay of yeast cells. In vitro activity...... assays show that the mutant is characterized by a fast religation rate, only partially reduced by the presence of the drug. Comparative molecular dynamics simulations of the native and mutant proteins indicate that the mutation of Gly717 affects the motion orientation of the linker domain, changing its...... interaction with the DNA substrate, likely affecting the strand rotation and religation rate. The mutation also causes a slight rearrangement of the active site and of the drug binding site, providing an additional explanation for the lowered effect of camptothecin toward the mutant....

  2. The specificity of Av3 sea anemone toxin for arthropods is determined at linker DI/SS2-S6 in the pore module of target sodium channels.

    Science.gov (United States)

    Gur Barzilai, Maya; Kahn, Roy; Regev, Noa; Gordon, Dalia; Moran, Yehu; Gurevitz, Michael

    2014-10-15

    Av3 is a peptide neurotoxin from the sea anemone Anemonia viridis that shows specificity for arthropod voltage-gated sodium channels (Navs). Interestingly, Av3 competes with a scorpion α-toxin on binding to insect Navs and similarly inhibits the inactivation process, and thus has been classified as 'receptor site-3 toxin', although the two peptides are structurally unrelated. This raises questions as to commonalities and differences in the way both toxins interact with Navs. Recently, site-3 was partly resolved for scorpion α-toxins highlighting S1-S2 and S3-S4 external linkers at the DIV voltage-sensor module and the juxtaposed external linkers at the DI pore module. To uncover channel determinants involved in Av3 specificity for arthropods, the toxin was examined on channel chimaeras constructed with the external linkers of the mammalian brain Nav1.2a, which is insensitive to Av3, in the background of the Drosophila DmNav1. This approach highlighted the role of linker DI/SS2-S6, adjacent to the channel pore, in determining Av3 specificity. Point mutagenesis at DI/SS2-S6 accompanied by functional assays highlighted Trp404 and His405 as a putative point of Av3 interaction with DmNav1. His405 conservation in arthropod Navs compared with tyrosine in vertebrate Navs may represent an ancient substitution that explains the contemporary selectivity of Av3. Trp404 and His405 localization near the membrane surface and the hydrophobic bioactive surface of Av3 suggest that the toxin possibly binds at a cleft by DI/S6. A partial overlap in receptor site-3 of both toxins nearby DI/S6 may explain their binding competition capabilities.

  3. Quasi-crystalline and disordered photonic structures fabricated using direct laser writing

    Science.gov (United States)

    Sinelnik, Artem D.; Pinegin, Konstantin V.; Bulashevich, Grigorii A.; Rybin, Mikhail V.; Limonov, Mikhail F.; Samusev, Kirill B.

    2017-09-01

    Direct laser writing is a rapid prototyping technology that has been utilized for the fabrication of micro- and nano-scale materials that have a perfect structure in most of the cases. In this study we exploit the direct laser writing to create several classes of non-periodic materials, such as quasi-crystalline lattices and three-dimensional (3D) objects with an orientation disorder in structural elements. Among quasi-crystalline lattices we consider Penrose tiling and Lévy-type photonic glasses. Images of the fabricated structures are obtained with a scanning electron microscope. In experiment we study the optical diffraction from 3D woodpile photonic structures with orientation disorder and analyze diffraction patters observed on a flat screen positioned behind the sample. With increasing of the disorder degree, we find an impressive transformation of the diffraction patterns from perfect Laue picture to a speckle pattern.

  4. Wall to membrane linkers, stretch activated channels, and the detection of tension, voltage, temperature, auxin, and pH

    Science.gov (United States)

    Pickard, B. G.

    1992-01-01

    Introduction. The higher plant is a heterogeneous, mechanically prestressed structure continually subject to shifting forces. When a cell grows in a plant at gravitropic equilibrium, it must create localized maxima of shear in walls of neighboring cells. Such mechanical stress and strain are likely detected in a variety of ways. However, tension-sensitive ion channels are of particular interest because it appears that they are elaborately evolved for sensory function. We hypothesize that 1) the patchy patterns of high shear are focused via wall-to-membrane linkers onto the plasma membrane, where 2) they are translated by mechanosensory cation channels into corresponding patterns of high cytosolic Ca2+, which 3) initiate local enhancement of wall expansion. Further, we hypothesize that the local promotion of enhancement is achieved at least in part by local intensification of auxin transport across the plasma membrane. By implication, when an organ is asymmetrically pressed, rubbed, or bent or when it is displaced in the gravitational field, the net asymmetry of shear stress occurring across the organ would lead to asymmetric redistribution of auxin and corrective asymmetric growth. We shall describe a representative mechanosensitive Ca(2+) -selective cation channel (MCaC) with susceptibilities to xenobiotics implicating it as a force transducer in thigmo- and gravitropism. Then, we shall consider whether a putative wall-to-membrane linker (WML) could be a key feature of the molecular architecture permitting the stress distributed in the wall system to be focused on the channels.

  5. The Impact of O-Glycan Chemistry on the Stability of Intrinsically Disordered Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Prates, Erica T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Crowley, Michael F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Guan, Xiaoyang [University of Colorado; Li, Yaohao [University of Colorado; Wang, Xinfeng [University of Colorado; Chaffey, Patrick K. [University of Colorado; Skaf, Munir S. [University of Campinas; Tan, Zhongping [University of Colorado

    2018-03-02

    Protein glycosylation is a diverse post-translational modification that serves myriad biological functions. O-linked glycans in particular vary widely in extent and chemistry in eukaryotes, with secreted proteins from fungi and yeast commonly exhibiting O-mannosylation in intrinsically disordered regions of proteins, likely for proteolysis protection, among other functions. However, it is not well understood why mannose is often the preferred glycan, and more generally, if the neighboring protein sequence and glycan have coevolved to protect against proteolysis in glycosylated intrinsically disordered proteins (IDPs). Here, we synthesized variants of a model IDP, specifically a natively O-mannosylated linker from a fungal enzyme, with a-O-linked mannose, glucose, and galactose moieties, along with a non-glycosylated linker. Upon exposure to thermolysin, O-mannosylation, by far, provides the highest extent of proteolysis protection. To explain this observation, extensive molecular dynamics simulations were conducted, revealing that the axial configuration of the C2-hydroxyl group (2-OH) of a-mannose adjacent to the glycan-peptide bond strongly influences the conformational features of the linker. Specifically, a-mannose restricts the torsions of the IDP main chain more than other glycans whose equatorial 2-OH groups exhibit interactions that favor perpendicular glycan-protein backbone orientation. We suggest that IDP stiffening due to O-mannosylation impairs protease action, with contributions from protein-glycan interactions, protein flexibility, and protein stability. Our results further imply that resistance to proteolysis is an important driving force for evolutionary selection of a-mannose in eukaryotic IDPs, and more broadly, that glycan motifs for proteolysis protection likely coevolve with the protein sequence to which they attach.

  6. Brain Structural Effects of Psychopharmacological Treatment in Bipolar Disorder

    Science.gov (United States)

    McDonald, Colm

    2015-01-01

    Bipolar disorder is associated with subtle neuroanatomical deficits including lateral ventricular enlargement, grey matter deficits incorporating limbic system structures, and distributed white matter pathophysiology. Substantial heterogeneity has been identified by structural neuroimaging studies to date and differential psychotropic medication use is potentially a substantial contributor to this. This selective review of structural neuroimaging and diffusion tensor imaging studies considers evidence that lithium, mood stabilisers, antipsychotic medication and antidepressant medications are associated with neuroanatomical variation. Most studies are negative and suffer from methodological weaknesses in terms of directly assessing medication effects on neuroanatomy, since they commonly comprise posthoc assessments of medication associations with neuroimaging metrics in small heterogenous patient groups. However the studies which report positive findings tend to form a relatively consistent picture whereby lithium and antiepileptic mood stabiliser use is associated with increased regional grey matter volume, especially in limbic structures. These findings are further supported by the more methodologically robust studies which include large numbers of patients or repeated intra-individual scanning in longitudinal designs. Some similar findings of an apparently ameliorative effect of lithium on white matter microstructure are also emerging. There is less support for an effect of antipsychotic or antidepressant medication on brain structure in bipolar disorder, but these studies are further limited by methodological difficulties. In general the literature to date supports a normalising effect of lithium and mood stabilisers on brain structure in bipolar disorder, which is consistent with the neuroprotective characteristics of these medications identified by preclinical studies. PMID:26412064

  7. Eating disorder examination: Factor structure and norms in a clinical female pediatric eating disorder sample.

    Science.gov (United States)

    O'Brien, Amy; Watson, Hunna J; Hoiles, Kimberley J; Egan, Sarah J; Anderson, Rebecca A; Hamilton, Matthew J; Shu, Chloe; McCormack, Julie

    2016-01-01

    The factor structure of the eating disorder examination (EDE) has never been tested in a clinical pediatric sample, and no normative data exist. The factor structure of an adapted EDE was examined in a clinical sample of 665 females aged 9-17 years with anorexia nervosa spectrum (70%), bulimia nervosa spectrum (12%), purging disorder (3%), and unspecified feeding and eating disorders (15%). The original four-factor model was a good fit in a confirmatory factor analysis as well a higher order model with three dimensions of restraint, eating concern, and combined weight concern/shape concern. Normative data are reported for clinicians to identify the percentiles in which their patients' score. The findings support dimensions of restraint, eating concern, weight concern, and shape concern in a clinical pediatric sample. This supports the factorial validity of the EDE, and the norms may assist clinicians to evaluate symptoms in females under 18 years. © 2015 Wiley Periodicals, Inc.

  8. Abundance of intrinsic structural disorder in the histone H1 subtypes.

    Science.gov (United States)

    Kowalski, Andrzej

    2015-12-01

    The intrinsically disordered proteins consist of partially structured regions linked to the unstructured stretches, which consequently form the transient and dynamic conformational ensembles. They undergo disorder to order transition upon binding their partners. Intrinsic disorder is attributed to histones H1, perceived as assemblers of chromatin structure and the regulators of DNA and proteins activity. In this work, the comparison of intrinsic disorder abundance in the histone H1 subtypes was performed both by the analysis of their amino acid composition and by the prediction of disordered stretches, as well as by identifying molecular recognition features (MoRFs) and ANCHOR protein binding regions (APBR) that are responsible for recognition and binding. Both human and model organisms-animals, plants, fungi and protists-have H1 histone subtypes with the properties typical of disordered state. They possess a significantly higher content of hydrophilic and charged amino acid residues, arranged in the long regions, covering over half of the whole amino acid residues in chain. Almost complete disorder corresponds to histone H1 terminal domains, including MoRFs and ANCHOR. Those motifs were also identified in a more ordered histone H1 globular domain. Compared to the control (globular and fibrous) proteins, H1 histones demonstrate the increased folding rate and a higher proportion of low-complexity segments. The results of this work indicate that intrinsic disorder is an inherent structural property of histone H1 subtypes and it is essential for establishing a protein conformation which defines functional outcomes affecting on DNA- and/or partner protein-dependent cell processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Structural models of the different trimers present in the core of phycobilisomes from Gracilaria chilensis based on crystal structures and sequences.

    Directory of Open Access Journals (Sweden)

    Jorge Dagnino-Leone

    Full Text Available Phycobilisomes (PBS are accessory light harvesting protein complexes that directionally transfer energy towards photosystems. Phycobilisomes are organized in a central core and rods radiating from it. Components of phycobilisomes in Gracilaria chilensis (Gch are Phycobiliproteins (PBPs, Phycoerythrin (PE, and Phycocyanin (PC in the rods, while Allophycocyanin (APC is found in the core, and linker proteins (L. The function of such complexes depends on the structure of each component and their interaction. The core of PBS from cyanobacteria is mainly composed by cylinders of trimers of α and β subunits forming heterodimers of Allophycocyanin, and other components of the core including subunits αII and β18. As for the linkers, Linker core (LC and Linker core membrane (LCM are essential for the final emission towards photoreaction centers. Since we have previously focused our studies on the rods of the PBS, in the present article we investigated the components of the core in the phycobilisome from the eukaryotic algae, Gracilaria chilensis and their organization into trimers. Transmission electron microscopy provided the information for a three cylinders core, while the three dimensional structure of Allophycocyanin purified from Gch was determined by X-ray diffraction method and the biological unit was determined as a trimer by size exclusion chromatography. The protein sequences of all the components of the core were obtained by sequencing the corresponding genes and their expression confirmed by transcriptomic analysis. These subunits have seldom been reported in red algae, but not in Gracilaria chilensis. The subunits not present in the crystallographic structure were modeled to build the different composition of trimers. This article proposes structural models for the different types of trimers present in the core of phycobilisomes of Gch as a first step towards the final model for energy transfer in this system.

  10. Topological microfluidic structures for rapid mixing of emulsions

    CSIR Research Space (South Africa)

    Land, KJ

    2013-10-01

    Full Text Available A novel use for topological structures inside microfluidic channels is presented. These structures have been successfully utilised to aid in mixing of two water-in-oil emulsions in order to force coalescence, thereby introducing a cross linker...

  11. Seizure disorders and developmental disorders: impact on life of affected families-a structured interview.

    Science.gov (United States)

    Spindler, Ulrike Petra; Hotopp, Lena Charlott; Bach, Vivien Angela; Hornemann, Frauke; Syrbe, Steffen; Andreas, Anna; Merkenschlager, Andreas; Kiess, Wieland; Bernhard, Matthias Karl; Bertsche, Thilo; Neininger, Martina Patrizia; Bertsche, Astrid

    2017-08-01

    Seizure disorder and developmental disorder are two of the most common chronic disorders in childhood. Data on perceived parental burden and specific effects on daily life is scarce. We performed a structured interview, consecutively talking to all parents of pediatric outpatients of our university hospital diagnosed with seizure or developmental disorder. Three hundred seven parents (of 317 affected children: 53 with seizure disorder, 44 with specific developmental disorder, 35 with learning disorder, 71 with intellectual disability, 15 with seizure + specific developmental disorder, 23 with seizure + learning disorder, 76 with seizure disorder + intellectual disability) were interviewed. Parents of children with both seizure disorder and intellectual disability stated the highest constraints in daily life, regarding friends, hobbies, emotional pressure, occupation, partnership, habitation, and financial burden. Due to diagnosis of seizure or developmental disorder, 155/307 (51%) parents reduced their working hours/stopped working, 62/307 (20%) changed their habitation, and 46/307 (15%) broke up. As judged by parents, 148/317 (47%) children are being discriminated against, even own family/friends and educators are held responsible. Parents perceive changes in their daily life and discrimination of their children due to their children's seizure and developmental disorders. An intellectual disability combined with seizure disorder caused the highest constraint. What is Known: • Seizure and/or developmental disorders of children may adversely influence quality of life for affected parents. • Caring for a child with special health care needs can take complete attention and own parental needs may therefore be difficult to meet. What is New: • Two out of three parents stated changes of their daily life such as quitting work, change of habitation, or breakup of partnership due to their child's diagnosis. • As judged by the parents, one in two children with

  12. Ab initio study of hydrogen adsorption on benzenoid linkers in metal-organic framework materials

    International Nuclear Information System (INIS)

    Gao Yi; Zeng, X C

    2007-01-01

    We have computed the energies of adsorption of molecular hydrogen on a number of molecular linkers in metal-organic framework solid materials using density functional theory (DFT) and ab initio molecular orbital methods. We find that the hybrid B3LYP (Becke three-parameter Lee-Yang-Parr) DFT method gives a qualitatively incorrect prediction of the hydrogen binding with benzenoid molecular linkers. Both local-density approximation (LDA) and generalized gradient approximation (GGA) DFT methods are inaccurate in predicting the values of hydrogen binding energies, but can give a qualitatively correct prediction of the hydrogen binding. When compared to the more accurate binding-energy results based on the ab initio Moeller-Plesset second-order perturbation (MP2) method, the LDA results may be viewed as an upper limit while the GGA results may be viewed as a lower limit. Since the MP2 calculation is impractical for realistic metal-organic framework systems, the combined LDA and GGA calculations provide a cost-effective way to assess the hydrogen binding capability of these systems

  13. Replication of a Modified Factor Structure for the Eating Disorder Examination-Questionnaire: Extension to Clinical Eating Disorder and Non-clinical Samples in Portugal.

    Science.gov (United States)

    Machado, Paulo P P; Grilo, Carlos M; Crosby, Ross D

    2018-01-01

    Psychometric investigations of the Eating Disorder Examination-Questionnaire (EDE-Q) have generally not supported the original scale structure. The present study tested an alternative brief factor structure in two large Portuguese samples: (1) a non-clinical sample of N = 4117 female students and (2) a treatment-seeking sample of N = 609 patients diagnosed with eating disorders. Confirmatory factor analysis revealed a poor fit for the original EDE-Q structure in both the non-clinical and the clinical samples but revealed a good fit for the alternative 7-item 3-factor structure (dietary restraint, shape/weight overvaluation and body dissatisfaction). Factor loadings were invariant across samples and across the different specific eating disorder diagnoses in the clinical sample. These confirmatory factor analysis findings, which replicate findings from studies with diverse predominately overweight/obese samples, supported a modified 7-item, 3-factor structure for the EDE-Q. The reliable findings across different non-clinical and clinical eating disorder groups provide confidence regarding the potential utility of this brief version. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association.

  14. Crystal Structure of the FERM Domain of Focal Adhesion Kinase

    International Nuclear Information System (INIS)

    Ceccarelli, D.; Song, H.; Poy, F.; Schaller, M.; Eck, M.

    2006-01-01

    Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that localizes to focal adhesions in adherent cells. Through phosphorylation of proteins assembled at the cytoplasmic tails of integrins, FAK promotes signaling events that modulate cellular growth, survival, and migration. The amino-terminal region of FAK contains a region of sequence homology with band 4.1 and ezrin/radixin/moesin (ERM) proteins termed a FERM domain. FERM domains are found in a variety of signaling and cytoskeletal proteins and are thought to mediate intermolecular interactions with partner proteins and phospholipids at the plasma membrane and intramolecular regulatory interactions. Here we report two crystal structures of an NH2-terminal fragment of avian FAK containing the FERM domain and a portion of the regulatory linker that connects the FERM and kinase domains. The tertiary folds of the three subdomains (F1, F2, and F3) are similar to those of known FERM structures despite low sequence conservation. Differences in the sequence and relative orientation of the F3 subdomain alters the nature of the interdomain interface, and the phosphoinositide binding site found in ERM family FERM domains is not present in FAK. A putative protein interaction site on the F3 lobe is masked by the proximal region of the linker. Additionally, in one structure the adjacent Src SH3 and SH2 binding sites in the linker associate with the surfaces of the F3 and F1 lobes, respectively. These structural features suggest the possibility that protein interactions of the FAK FERM domain can be regulated by binding of Src kinases to the linker segment

  15. From Sequence and Forces to Structure, Function and Evolution of Intrinsically Disordered Proteins

    Science.gov (United States)

    Forman-Kay, Julie D.; Mittag, Tanja

    2015-01-01

    Intrinsically disordered proteins (IDPs), which lack persistent structure, are a challenge to structural biology due to the inapplicability of standard methods for characterization of folded proteins as well as their deviation from the dominant structure/function paradigm. Their widespread presence and involvement in biological function, however, has spurred the growing acceptance of the importance of IDPs and the development of new tools for studying their structure, dynamics and function. The interplay of folded and disordered domains or regions for function and the existence of a continuum of protein states with respect to conformational energetics, motional timescales and compactness is shaping a unified understanding of structure-dynamics-disorder/function relationships. On the 20th anniversary of this journal, Structure, we provide a historical perspective on the investigation of IDPs and summarize the sequence features and physical forces that underlie their unique structural, functional and evolutionary properties. PMID:24010708

  16. Electronic structure at metal-smiconductor surfaces and interfaces: effects of disorder

    International Nuclear Information System (INIS)

    Rodrigues, D.E.

    1988-01-01

    The main concern of this work is the study of the electronic structure at metal and semiconductor surfaces or interfaces, with special emphasis in the effects of disorder and local microstructure upon them. Various factors which determine this structure are presented and those of central importance are identified. A model that allows the efficient and exact calculation of the local density of states at disordered interfaces is described. This model is based on a tight-binding hamiltonian that has enough flexibility so as to allow an adequate description of real solids. The disorder is taken into account by including stochastic perturbations in the diagonal elements of the hamiltonian in a site orbital basis. These perturbations are taken at each layer from a lorentzian probability distribution. An exact expression for the calculation of the local density of states is derived and applied to a model surface built up from a type orbitals arranged in a simple cubic lattice. The effects of disorder on the local densities of states and on the existence of surface Tamm states are studied. The properties of the electronic states with this kind of model of disorder are considered. The self-consistent calculation of the electronic structure of the Si(111) - (1x1) surface is presented. The effects of disorder on the electronic properties such as the work function or the position of surface states within the gap are evaluated. The surface of the metallic compound NiSi 2 is also treated. The first self-consistent calculation of the electronic structure of its (111) surface is presented. The electronic structure of the Si/NiSi 2 (111) interfaces is calculated for the two types of junctions that can be grown experimentally. The origin of the difference between the Schottky barrier heights at both interfaces is discussed. The results are compared with available experimental data. The implications of this calculation on existing theories about the microscopic mechanism that causes

  17. Yeast linker histone Hho1p is required for efficient RNA polymerase I processivity and transcriptional silencing at the ribosomal DNA

    OpenAIRE

    Levy, Anat; Eyal, Miri; Hershkovits, Gitit; Salmon-Divon, Mali; Klutstein, Michael; Katcoff, Don Jay

    2008-01-01

    Nucleosome core particles in eukaryotes are linked by a stretch of DNA that is usually associated with a linker histone. Here, we show in yeast, that the presence of yeast linker histone Hho1p represses expression of a pol II transcribed gene (MET15) embedded in the rDNA. In vivo deletions of Hho1p sequences showed that the second globular domain is sufficient for that repression, whereas the presence of the N terminus is required for its derepression. In contrast, a run-on assay confirmed by...

  18. Micromachined silicon acoustic delay line with improved structural stability and acoustic directivity for real-time photoacoustic tomography

    Science.gov (United States)

    Cho, Young; Kumar, Akhil; Xu, Song; Zou, Jun

    2017-03-01

    Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. However, as its length increases to provide longer delay time, the delay line becomes more vulnerable to structural instability due to reduced mechanical stiffness. In addition, the small cross-section area of the delay line results in a large acoustic acceptance angle and therefore poor directivity. To address these two issues, this paper reports the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, a new tapered design for the input terminal of the delay line was also investigate to improve its acoustic directivity by reducing the acoustic acceptance angle. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays.

  19. The Structure of the Human Centrin 2-Xeroderma Pigmentosum Group C Protein Complex

    Energy Technology Data Exchange (ETDEWEB)

    Thompson,J.; Ryan, Z.; Salisbury, J.; Kumar, R.

    2006-01-01

    Human centrin-2 plays a key role in centrosome function and stimulates nucleotide excision repair by binding to the xeroderma pigmentosum group C protein. To determine the structure of human centrin-2 and to develop an understanding of molecular interactions between centrin and xeroderma pigmentosum group C protein, we characterized the crystal structure of calcium-loaded full-length centrin-2 complexed with a xeroderma pigmentosum group C peptide. Our structure shows that the carboxyl-terminal domain of centrin-2 binds this peptide and two calcium atoms, whereas the amino-terminal lobe is in a closed conformation positioned distantly by an ordered {alpha}-helical linker. A stretch of the amino-terminal domain unique to centrins appears disordered. Two xeroderma pigmentosum group C peptides both bound to centrin-2 also interact to form an {alpha}-helical coiled-coil. The interface between centrin-2 and each peptide is predominantly nonpolar, and key hydrophobic residues of XPC have been identified that lead us to propose a novel binding motif for centrin.

  20. The Structure of the Human Centrin 2-Xeroderma Pigmentosum Group C Protein Complex

    International Nuclear Information System (INIS)

    Thompson, J.; Ryan, Z.; Salisbury, J.; Kumar, R.

    2006-01-01

    Human centrin-2 plays a key role in centrosome function and stimulates nucleotide excision repair by binding to the xeroderma pigmentosum group C protein. To determine the structure of human centrin-2 and to develop an understanding of molecular interactions between centrin and xeroderma pigmentosum group C protein, we characterized the crystal structure of calcium-loaded full-length centrin-2 complexed with a xeroderma pigmentosum group C peptide. Our structure shows that the carboxyl-terminal domain of centrin-2 binds this peptide and two calcium atoms, whereas the amino-terminal lobe is in a closed conformation positioned distantly by an ordered α-helical linker. A stretch of the amino-terminal domain unique to centrins appears disordered. Two xeroderma pigmentosum group C peptides both bound to centrin-2 also interact to form an α-helical coiled-coil. The interface between centrin-2 and each peptide is predominantly nonpolar, and key hydrophobic residues of XPC have been identified that lead us to propose a novel binding motif for centrin

  1. Electronic structure of ordered and disordered Fe sub 3 Pt

    CERN Document Server

    Major, Z; Jarlborg, T; Bruno, E; Ginatempo, B; Staunton, J B; Poulter, J

    2003-01-01

    The electronic structure of invar alloys (i.e. materials in which the near absence of thermal expansion is observed) has been the focus of much study, owing both to the technological applications of these materials and interest in the fundamental mechanism that is responsible for the effect. Here, calculations of the magnetic Compton profiles are presented for ordered and disordered Fe sub 3 Pt alloys. Using linear muffin-tin orbital and KKR methods, the latter incorporating the coherent potential approximation to describe the substitutional disorder, the electronic band structure and measurable quantities such as the Fermi surface topology are presented.

  2. The Au-S bond and SAM-protein contact in long-range electron transfer of pure and biomimetic metalloproteins via functionalized alkanethiol linkers

    DEFF Research Database (Denmark)

    Chi, Qijin; Ford, Michael J.; Halder, Arnab

    disentangled a wealth of data to identify the nature of the crucial Au-S contact, all suggesting prevalence of a Au(0)-thiyl radical unit. Molecular packing is further determined by the SAM molecular structure and involves binding either to Au-atoms mined out of the surface or directly to a flat surface. We...... functionalized alkanethiols have emerged as core linkers. We have studied molecular linking in the long-range ET (LRET) processes in detail using electrochemistry, in situ STM and AFM, and electronic structure computations. A focus is the electronic structure of the Au-S link and the SAM packing. We have...... is exceedingly sensitive to the structure of the thiol-based SAM molecules, testifying to the crucial importance of SAM packing and Au-S binding, and of the SAM link to the protein. Some of the subtleties are illustrated simpler by similar size (5-6 nm) nanoparticles (NPs). Biomimetic NPs must possess a certain...

  3. The Latent Class Structure of Chinese Patients with Eating Disorders in Shanghai

    OpenAIRE

    ,; ,; ,; ,; ,; ,; ,; ,; ,; ,

    2017-01-01

    Background Eating disorder is culture related, and the clinical symptoms are different between eastern and western patients. So the validity of feeding and eating disorders in the upcoming ICD-11 guide for Chinese patients is unclear. Aims To explore the latent class structure of Chinese patients with eating disorder and the cross-cultural validity of the eating disorder section of the new ICD-11 guide in China. Methods A total of 379 patients with eating disorders at Shanghai Mental Health C...

  4. Structure of ordered and disordered α-brass

    International Nuclear Information System (INIS)

    Mu''ller, S.; Zunger, Alex

    2001-01-01

    Alloys of copper and zinc (brass) have been widely used since Neolithic times due to the discovery that unlike regular copper this alloy can be worked ''cold'' around a 3:1 copper-to-zinc ratio. While it is now known that the as-grown system is a disordered fcc solid solution, no 3:1 ordered phase has yet been directly observed even though the negative mixing enthalpy of the disordered alloy suggests ordering tendencies. Moreover, neutron scattering experiments have been deduced that this disordered alloy contains peculiar chains of Zn atoms. We have expressed the first-principles calculated total energy of general Cu-Zn fcc-lattice configurations using a mixed-space cluster expansion. Application of Monte Carlo--simulated annealing to this generalized Ising-like Hamiltonian produces the predicted low-temperature ground state as well as finite-temperature phase diagram and short-range order. We find (i) that at low temperature the disordered fcc alloy will order into the DO 23 structure, (ii) the high-temperature short-range order in close agreement with experiment, and (iii) chains of Zn atoms in the [001] direction, as seen experimentally. Furthermore, our model allows a detailed study of the influence and importance of strain on the phase stability

  5. Nano-Sized Structurally Disordered Metal Oxide Composite Aerogels as High-Power Anodes in Hybrid Supercapacitors.

    Science.gov (United States)

    Huang, Haijian; Wang, Xing; Tervoort, Elena; Zeng, Guobo; Liu, Tian; Chen, Xi; Sologubenko, Alla; Niederberger, Markus

    2018-03-27

    A general method for preparing nano-sized metal oxide nanoparticles with highly disordered crystal structure and their processing into stable aqueous dispersions is presented. With these nanoparticles as building blocks, a series of nanoparticles@reduced graphene oxide (rGO) composite aerogels are fabricated and directly used as high-power anodes for lithium-ion hybrid supercapacitors (Li-HSCs). To clarify the effect of the degree of disorder, control samples of crystalline nanoparticles with similar particle size are prepared. The results indicate that the structurally disordered samples show a significantly enhanced electrochemical performance compared to the crystalline counterparts. In particular, structurally disordered Ni x Fe y O z @rGO delivers a capacity of 388 mAh g -1 at 5 A g -1 , which is 6 times that of the crystalline sample. Disordered Ni x Fe y O z @rGO is taken as an example to study the reasons for the enhanced performance. Compared with the crystalline sample, density functional theory calculations reveal a smaller volume expansion during Li + insertion for the structurally disordered Ni x Fe y O z nanoparticles, and they are found to exhibit larger pseudocapacitive effects. Combined with an activated carbon (AC) cathode, full-cell tests of the lithium-ion hybrid supercapacitors are performed, demonstrating that the structurally disordered metal oxide nanoparticles@rGO||AC hybrid systems deliver high energy and power densities within the voltage range of 1.0-4.0 V. These results indicate that structurally disordered nanomaterials might be interesting candidates for exploring high-power anodes for Li-HSCs.

  6. Identification of a minimal functional linker in human topoisomerase I by domain swapping with Cre recombinase

    DEFF Research Database (Denmark)

    Hougaard, Rikke Frøhlich; Juul, Sissel; Vinther, Maria

    2008-01-01

    . In this study we replace 86 amino acids including the linker domain of the cellular type IB topoisomerase, human topoisomerase I, with four, six, or eight amino acids from the corresponding short loop region in Cre recombinase. In vitro characterization of the resulting chimeras, denoted Cropos, reveals...

  7. Electronic structure of disordered Cu-Ag alloys

    International Nuclear Information System (INIS)

    Razee, S.S.A.

    1994-08-01

    We present a self-consistent-field Korringa-Kohn-Rostoker coherent potential approximation study of the electronic structure of disordered Cu x Ag 1-x alloys for x=0.0, 0.25, 0.50, 0.75 and 1.0. In particular, we focus on the Fermi surface, density of states, and Bloch spectral density, and study how they evolve as a function of x. We find that, Fermi surface dimensions have a non-linear composition dependence. The disorder-induced smearing of the Fermi surface, as expected, is very high along the direction; both the Cu and Ag Fermi surfaces have a neck in this direction. Whenever possible we have compared our results with the available experimental data. (author). 34 refs, 4 figs

  8. The interdomain flexible linker of the polypeptide GalNAc transferases dictates their long-range glycosylation preferences

    DEFF Research Database (Denmark)

    Rivas, Matilde De Las; Lira-Navarrete, Erandi; Daniel, Earnest James Paul

    2017-01-01

    The polypeptide GalNAc-transferases (GalNAc-Ts), that initiate mucin-type O-glycosylation, consist of a catalytic and a lectin domain connected by a flexible linker. In addition to recognizing polypeptide sequence, the GalNAc-Ts exhibit unique long-range N- A nd/or C-terminal prior glycosylation ...

  9. Structure of Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition Criteria for Obsessive–Compulsive Personality Disorder in Patients With Binge Eating Disorder

    Science.gov (United States)

    Ansell, Emily B; Pinto, Anthony; Edelen, Maria Orlando; Grilo, Carlos M

    2013-01-01

    Objective To examine 1-, 2-, and 3-factor model structures through confirmatory analytic procedures for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) obsessive–compulsive personality disorder (OCPD) criteria in patients with binge eating disorder (BED). Method Participants were consecutive outpatients (n = 263) with binge eating disorder and were assessed with semi-structured interviews. The 8 OCPD criteria were submitted to confirmatory factor analyses in Mplus Version 4.2 (Los Angeles, CA) in which previously identified factor models of OCPD were compared for fit, theoretical relevance, and parsimony. Nested models were compared for significant improvements in model fit. Results Evaluation of indices of fit in combination with theoretical considerations suggest a multifactorial model is a significant improvement in fit over the current DSM-IV single-factor model of OCPD. Though the data support both 2- and 3-factor models, the 3-factor model is hindered by an underspecified third factor. Conclusion A multifactorial model of OCPD incorporating the factors perfectionism and rigidity represents the best compromise of fit and theory in modelling the structure of OCPD in patients with BED. A third factor representing miserliness may be relevant in BED populations but needs further development. The perfectionism and rigidity factors may represent distinct intrapersonal and interpersonal attempts at control and may have implications for the assessment of OCPD. PMID:19087485

  10. Structure of diagnostic and statistical manual of mental disorders, fourth edition criteria for obsessive-compulsive personality disorder in patients with binge eating disorder.

    Science.gov (United States)

    Ansell, Emily B; Pinto, Anthony; Edelen, Maria Orlando; Grilo, Carlos M

    2008-12-01

    To examine 1-, 2-, and 3-factor model structures through confirmatory analytic procedures for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) obsessive-compulsive personality disorder (OCPD) criteria in patients with binge eating disorder (BED). Participants were consecutive outpatients (n = 263) with binge eating disorder and were assessed with semi-structured interviews. The 8 OCPD criteria were submitted to confirmatory factor analyses in Mplus Version 4.2 (Los Angeles, CA) in which previously identified factor models of OCPD were compared for fit, theoretical relevance, and parsimony. Nested models were compared for significant improvements in model fit. Evaluation of indices of fit in combination with theoretical considerations suggest a multifactorial model is a significant improvement in fit over the current DSM-IV single- factor model of OCPD. Though the data support both 2- and 3-factor models, the 3-factor model is hindered by an underspecified third factor. A multifactorial model of OCPD incorporating the factors perfectionism and rigidity represents the best compromise of fit and theory in modelling the structure of OCPD in patients with BED. A third factor representing miserliness may be relevant in BED populations but needs further development. The perfectionism and rigidity factors may represent distinct intrapersonal and interpersonal attempts at control and may have implications for the assessment of OCPD.

  11. Crystal structure of the N domain of human somatic angiotensin I-converting enzyme provides a structural basis for domain-specific inhibitor design.

    Science.gov (United States)

    Corradi, Hazel R; Schwager, Sylva L U; Nchinda, Aloysius T; Sturrock, Edward D; Acharya, K Ravi

    2006-03-31

    Human somatic angiotensin I-converting enzyme (sACE) is a key regulator of blood pressure and an important drug target for combating cardiovascular and renal disease. sACE comprises two homologous metallopeptidase domains, N and C, joined by an inter-domain linker. Both domains are capable of cleaving the two hemoregulatory peptides angiotensin I and bradykinin, but differ in their affinities for a range of other substrates and inhibitors. Previously we determined the structure of testis ACE (C domain); here we present the crystal structure of the N domain of sACE (both in the presence and absence of the antihypertensive drug lisinopril) in order to aid the understanding of how these two domains differ in specificity and function. In addition, the structure of most of the inter-domain linker allows us to propose relative domain positions for sACE that may contribute to the domain cooperativity. The structure now provides a platform for the design of "domain-specific" second-generation ACE inhibitors.

  12. The structure of Diagnostic and Statistical Manual of Mental Disorders (4th edition, text revision) personality disorder symptoms in a large national sample.

    Science.gov (United States)

    Trull, Timothy J; Vergés, Alvaro; Wood, Phillip K; Jahng, Seungmin; Sher, Kenneth J

    2012-10-01

    We examined the latent structure underlying the criteria for DSM-IV-TR (American Psychiatric Association, 2000, Diagnostic and statistical manual of mental disorders (4th ed., text revision). Washington, DC: Author.) personality disorders in a large nationally representative sample of U.S. adults. Personality disorder symptom data were collected using a structured diagnostic interview from approximately 35,000 adults assessed over two waves of data collection in the National Epidemiologic Survey on Alcohol and Related Conditions. Our analyses suggested that a seven-factor solution provided the best fit for the data, and these factors were marked primarily by one or at most two personality disorder criteria sets. A series of regression analyses that used external validators tapping Axis I psychopathology, treatment for mental health problems, functioning scores, interpersonal conflict, and suicidal ideation and behavior provided support for the seven-factor solution. We discuss these findings in the context of previous studies that have examined the structure underlying the personality disorder criteria as well as the current proposals for DSM-5 personality disorders. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  13. Radioiodination of protein using 2,3,5,6-tetrafluorophenyl 3-(nido-carboranyl) propionate (TCP) as a potential bi-functional linker: Synthesis and biodistribution in mice

    International Nuclear Information System (INIS)

    Lin Rushan; Liu Ning; Yang Yuanyou; Li Bing; Liao Jiali; Jin Jiannan

    2009-01-01

    2,3,5,6-Tetrafluorophenyl 3-(nido-carboranyl) propionate (TCP), as a new potential bi-functional linker for radiohalogenation of proteins or peptides, was synthesized. With this bi-functional linker, the first attempt to conjugate bovine serum albumin (BSA) with 125 I was made and the biodistribution of the conjugated BSA ( 125 I-TCP-BSA) was investigated in NIH strain mice. By the use of TCP as the linker, BSA was conjugated with 125 I in a labeling yield of 58-75% and with radiochemical purity of 99.8% after purification by Sephadex TM G-50. Even after being kept at room temperature for 72 h, the radiochemical purity of 125 I-TCP-BSA was still more than 98%, much higher than that of the directly 125 I-labeled BSA ( 125 I-BSA). Meanwhile, biodistribution experiments in mice indicated that the uptake of 125 I with 125 I-TCP-BSA into thyroid was obviously less than that with 125 I-BSA post-injection. All the results implied that the 125 I-conjugated BSA ( 125 I-TCP-BSA) was considerably stable in vivo as well as in vitro, and TCP was regarded as a promising bi-functional linker for radiohalogenation of proteins

  14. Atomic disorder and amorphization of B2-structure CoZr by ball milling

    International Nuclear Information System (INIS)

    Zhou, G.F.; Bakker, H.

    1996-01-01

    For a considerable number of intermetallic compounds it has been found that ball milling introduces atomic (chemical) disorder. Disorder due to milling was demonstrated by x-ray diffraction in AlRu, crystallizing in the B2 structure (ordered b.c.c.) by a decrease of the intensity of superlattice reflections relative to fundamental reflections. The same technique was used to investigate disordering by milling in Ni 3 Al, crystallizing in the L1 2 structure (ordered f.c.c.). In both cases the disorder is anti-site disorder of both components, i.e. both atomic species substitute on the wrong sublattices. Besides x-ray diffraction measurements of magnetic properties turned out to be useful in monitoring structural changes due to milling. The change in the superconducting transition temperature, measured by magnetic a.c. susceptibility, was used to demonstrate atomic disordering by milling in Nb 3 Sn and Nb 3 Au. The type of disorder turned out to be anti-site disorder. Such a type of disorder occurs in the same materials also at high temperatures or after irradiation by neutrons. The disordering was accompanied by an increase of the lattice parameter. An increase in high-field magnetization accompanied by a decrease of the lattice parameter during milling was found in B2 CoGa and B2 CoAl. In principle in the completely ordered state both compounds are non-magnetic, because the CO atoms are shielded from one another by Ga and Al atoms, respectively. However, when a Co atom is transferred to the wrong sublattice, it is surrounded by Co atoms as nearest neighbors and bears a magnetic moment. This explains the strong increase of the magnetization due to milling

  15. Radiation-Induced Topological Disorder in Irradiated Network Structures

    International Nuclear Information System (INIS)

    Hobbs, Linn W.

    2002-12-01

    This report summarizes results of a research program investigating the fundamental principles underlying the phenomenon of topological disordering in a radiation environment. This phenomenon is known popularly as amorphization, but is more formally described as a process of radiation-induced structural arrangement that leads in crystals to loss of long-range translational and orientational correlations and in glasses to analogous alteration of connectivity topologies. The program focus has been on a set compound ceramic solids with directed bonding exhibiting structures that can be described as networks. Such solids include SiO2, Si3N4, SiC, which are of interest to applications in fusion energy production, nuclear waste storage, and device manufacture involving ion implantation or use in radiation fields. The principal investigative tools comprise a combination of experimental diffraction-based techniques, topological modeling, and molecular-dynamics simulations that have proven a rich source of information in the preceding support period. The results from the present support period fall into three task areas. The first comprises enumeration of the rigidity constraints applying to (1) more complex ceramic structures (such as rutile, corundum, spinel and olivine structures) that exhibit multiply polytopic coordination units or multiple modes of connecting such units, (2) elemental solids (such as graphite, silicon and diamond) for which a correct choice of polytope is necessary to achieve correct representation of the constraints, and (3) compounds (such as spinel and silicon carbide) that exhibit chemical disorder on one or several sublattices. With correct identification of the topological constraints, a unique correlation is shown to exist between constraint and amorphizability which demonstrates that amorphization occurs at a critical constraint loss. The second task involves the application of molecular dynamics (MD) methods to topologically-generated models

  16. Distinguishing crystallite size effects from those of structural disorder ...

    Indian Academy of Sciences (India)

    Administrator

    Both crystallite size effects and structural disorder contribute to the broadening of lines in .... ple contributions to the peak profiles. ... the fit is then corrected by accounting for sample ... Authors thank the Department of Science and Tech-.

  17. Imaging functional and structural brain connectomics in attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Cao, Miao; Shu, Ni; Cao, Qingjiu; Wang, Yufeng; He, Yong

    2014-12-01

    Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopment disorders in childhood. Clinically, the core symptoms of this disorder include inattention, hyperactivity, and impulsivity. Previous studies have documented that these behavior deficits in ADHD children are associated with not only regional brain abnormalities but also changes in functional and structural connectivity among regions. In the past several years, our understanding of how ADHD affects the brain's connectivity has been greatly advanced by mapping topological alterations of large-scale brain networks (i.e., connectomes) using noninvasive neurophysiological and neuroimaging techniques (e.g., electroencephalograph, functional MRI, and diffusion MRI) in combination with graph theoretical approaches. In this review, we summarize the recent progresses of functional and structural brain connectomics in ADHD, focusing on graphic analysis of large-scale brain systems. Convergent evidence suggests that children with ADHD had abnormal small-world properties in both functional and structural brain networks characterized by higher local clustering and lower global integrity, suggesting a disorder-related shift of network topology toward regular configurations. Moreover, ADHD children showed the redistribution of regional nodes and connectivity involving the default-mode, attention, and sensorimotor systems. Importantly, these ADHD-associated alterations significantly correlated with behavior disturbances (e.g., inattention and hyperactivity/impulsivity symptoms) and exhibited differential patterns between clinical subtypes. Together, these connectome-based studies highlight brain network dysfunction in ADHD, thus opening up a new window into our understanding of the pathophysiological mechanisms of this disorder. These works might also have important implications on the development of imaging-based biomarkers for clinical diagnosis and treatment evaluation in ADHD.

  18. Optimization of the Alkyl Linker of TO Base Surrogate in Triplex-Forming PNA for Enhanced Binding to Double-Stranded RNA.

    Science.gov (United States)

    Sato, Takaya; Sato, Yusuke; Nishizawa, Seiichi

    2017-03-23

    A series of triplex-forming peptide nucleic acid (TFP) probes carrying a thiazole orange (TO) base surrogate through an alkyl linker was synthesized, and the interactions between these so-called tFIT probes and purine-rich sequences within double-stranded RNA (dsRNA) were examined. We found that the TO base surrogate linker significantly affected both the binding affinity and the fluorescence response upon triplex formation with the target dsRNA. Among the probes examined, the TO base surrogate connected through the propyl linker in the tFIT probes increased the binding affinity by a factor of ten while maintaining its function as the fluorescent universal base. Isothermal titration calorimetry experiments revealed that the increased binding affinity resulted from the gain in the binding enthalpy, which could be explained by the enhanced π-stacking interaction between the TO base surrogate and the dsRNA part of the triplex. We expect that these results will provide a molecular basis for designing strong binding tFIT probes for fluorescence sensing of various kinds of purine-rich dsRNAs sequences including those carrying a pyrimidine-purine inversion. The obtained data also offers a new insight into further development of the universal bases incorporated in TFP. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Structural vs. intrinsic carriers: contrasting effects of cation chemistry and disorder on ionic conductivity in pyrochlores

    International Nuclear Information System (INIS)

    Perriot, Romain; Uberuaga, Blas P.

    2015-01-01

    We use molecular dynamics simulations to investigate the role of cation disorder on oxygen diffusion in Gd 2 Zr 2 O 7 (GZO) and Gd 2 Ti 2 O 7 (GTO) pyrochlores, a class of complex oxides which contain a structural vacancy relative to the basic fluorite structure. The introduction of disorder has distinct effects depending on the chemistry of the material, increasing the mobility of structural carriers by up to four orders of magnitude in GZO. In contrast, in GTO, there is no mobility at zero or low disorder on the ns timescale, but higher disorder liberates the otherwise immobile carriers, allowing diffusion with rates comparable to GZO for the fully disordered material. Here, we show that the cation disorder enhances the diffusivity by both increasing the concentration of mobile structural carriers and their individual mobility. The disorder also influences the diffusion in materials containing intrinsic carriers, such as additional vacancies VO or oxygen interstitials OI. And while in ordered GZO and GTO the contribution of the intrinsic carriers dominates the overall diffusion of oxygen, OI in GZO contributes along with structural carriers, and the total diffusion rate can be calculated by assuming simple additive contributions from the two sources. Although the disorder in the materials with intrinsic defects usually enhances the diffusivity as in the defect-free case, in low concentrations, cation antisites AB or BA, where A = Gd and B = Zr or Ti, can act as traps for fast intrinsic defects. The trapping results in a lowering of the diffusivity, and causes a non-monotonic behavior of the diffusivity with disorder. Conversely, in the case of slow intrinsic defects, the main effect of the disorder is to liberate the structural carriers, resulting in an increase of the diffusivity regardless of the defect trapping.

  20. A Switchable Linker-Based Immunoassay for Ultrasensitive Visible Detection of Salmonella in Tomatoes.

    Science.gov (United States)

    Hahn, Jungwoo; Kim, Eunghee; You, Young Sang; Gunasekaran, Sundaram; Lim, Seokwon; Choi, Young Jin

    2017-10-01

    On-site detection for sensitive identification of foodborne pathogens on fresh produce with minimal use of specialized instrumentation is crucial to the food industry. A switchable linker (SL)-based immunoassay was designed for ultrasensitive on-site detection of Salmonella in tomato samples. The assay is based on large-scale aggregation of gold nanoparticles (GNPs), induced by a quantitative relationship among the biotinylated Salmonella polyclonal antibody (b-Ab) used as the SL, the functionalized GNPs, and Salmonella. Important factors such as the concentration of SLs, time required for large-scale aggregation, and selectivity of b-Ab were optimized to minimize the detection time (within 45 min with gentle agitation) and achieve the lowest limit of detection (LOD; 10 CFU/g in tomato samples) possible. This SL-based immunoassay with its relatively low LOD and short detection time may meet the need for rapid, simple, on-site analysis of pathogens in fresh produce. The novel switchable linker-based immunoassay is a rapid, specific, and sensitive method that has potential applications for routine diagnostics of Salmonella in tomato products. These advantages make it a practical approach for general use in the processing industry to detect Salmonella rapidly and to implement appropriate regulatory procedures. Furthermore, it could be applied to other fresh products including cantaloupe, strawberry, and cucumbers. © 2017 Institute of Food Technologists®.

  1. About a significance of the avian linker histone (H1) polymorphic ...

    Indian Academy of Sciences (India)

    60

    structural disorder may specify histone H1 interaction with both DNA and partnering proteins through ... from the studies conducted on mammalian model, including the human H1 variants. However ..... Thus, the disparate layout of histone H1.

  2. Brain structure and the relationship with neurocognitive functioning in schizophrenia and bipolar disorder : MRI studies

    OpenAIRE

    Hartberg, Cecilie Bhandari

    2011-01-01

    Brain structural abnormalities as well as neurocognitive dysfunction, are found in schizophrenia and in bipolar disorder. Based on the fact that both brain structure and neurocognitive functioning are significantly heritable and affected in both schizophrenia and bipolar disorder, relationships between them are expected. However, previous studies report inconsistent findings. Also, schizophrenia and bipolar disorder are classified as separate disease entities, but demonstrate overlap with reg...

  3. Experimental model for neutron scattering in disordered systems: static structure factor determination of mode-softening

    International Nuclear Information System (INIS)

    Siegel, E.

    1982-01-01

    The generalized-disorder collective-boson mode-softening universality-principle (GDCBMSUP) for collective-boson mode dispersion in disordered systems (liquids, quantum liquids, glasses, powders, disordered magnets, plasmas...), a unified qualitative and semi-qualitative and semi-quantitative descriptive prescription for treating the properties of very differently disordered systems, is directly dependent upon a measurement (or calculation) of the static structure factor S(k) determined from a frequency average of the dynamic structure factor S(k,w), a multiple of the inelastic differential neutron scattering cross section d 2 sigma/dwdOMEGA. The prescription for this principle is given and, because of its universal applicability to disordered systems of any type with any type and/or degree of disorder, the neutron scattering determination of S(k) takes on renewed importance

  4. Abnormalities of cortical structures in adolescent-onset conduct disorder.

    Science.gov (United States)

    Jiang, Y; Guo, X; Zhang, J; Gao, J; Wang, X; Situ, W; Yi, J; Zhang, X; Zhu, X; Yao, S; Huang, B

    2015-12-01

    Converging evidence has revealed both functional and structural abnormalities in adolescents with early-onset conduct disorder (EO-CD). The neurological abnormalities underlying EO-CD may be different from that of adolescent-onset conduct disorder (AO-CD) patients. However, the cortical structure in AO-CD patients remains largely unknown. The aim of the present study was to investigate the cortical alterations in AO-CD patients. We investigated T1-weighted brain images from AO-CD patients and age-, gender- and intelligence quotient-matched controls. Cortical structures including thickness, folding and surface area were measured using the surface-based morphometric method. Furthermore, we assessed impulsivity and antisocial symptoms using the Barratt Impulsiveness Scale (BIS) and the Antisocial Process Screening Device (APSD). Compared with the controls, we found significant cortical thinning in the paralimbic system in AO-CD patients. For the first time, we observed cortical thinning in the precuneus/posterior cingulate cortex (PCC) in AO-CD patients which has not been reported in EO-CD patients. Prominent folding abnormalities were found in the paralimbic structures and frontal cortex while diminished surface areas were shown in the precentral and inferior temporal cortex. Furthermore, cortical thickness of the paralimbic structures was found to be negatively correlated with impulsivity and antisocial behaviors measured by the BIS and APSD, respectively. The present study indicates that AO-CD is characterized by cortical structural abnormalities in the paralimbic system, and, in particular, we highlight the potential role of deficient structures including the precuneus and PCC in the etiology of AO-CD.

  5. Periodic transmission peak splitting in one dimensional disordered photonic structures

    Science.gov (United States)

    Kriegel, Ilka; Scotognella, Francesco

    2016-08-01

    In the present paper we present ways to modulate the periodic transmission peaks arising in disordered one dimensional photonic structures with hundreds of layers. Disordered structures in which the optical length nd (n is the refractive index and d the layer thickness) is the same for each layer show regular peaks in their transmission spectra. A proper variation of the optical length of the layers leads to a splitting of the transmission peaks. Notably, the variation of the occurrence of high and low refractive index layers, gives a tool to tune also the width of the peaks. These results are of highest interest for optical application, such as light filtering, where the manifold of parameters allows a precise design of the spectral transmission ranges.

  6. Structural covariance of neostriatal and limbic regions in patients with obsessive-compulsive disorder.

    Science.gov (United States)

    Subirà, Marta; Cano, Marta; de Wit, Stella J; Alonso, Pino; Cardoner, Narcís; Hoexter, Marcelo Q; Kwon, Jun Soo; Nakamae, Takashi; Lochner, Christine; Sato, João R; Jung, Wi Hoon; Narumoto, Jin; Stein, Dan J; Pujol, Jesus; Mataix-Cols, David; Veltman, Dick J; Menchón, José M; van den Heuvel, Odile A; Soriano-Mas, Carles

    2016-03-01

    Frontostriatal and frontoamygdalar connectivity alterations in patients with obsessive-compulsive disorder (OCD) have been typically described in functional neuroimaging studies. However, structural covariance, or volumetric correlations across distant brain regions, also provides network-level information. Altered structural covariance has been described in patients with different psychiatric disorders, including OCD, but to our knowledge, alterations within frontostriatal and frontoamygdalar circuits have not been explored. We performed a mega-analysis pooling structural MRI scans from the Obsessive-compulsive Brain Imaging Consortium and assessed whole-brain voxel-wise structural covariance of 4 striatal regions (dorsal and ventral caudate nucleus, and dorsal-caudal and ventral-rostral putamen) and 2 amygdalar nuclei (basolateral and centromedial-superficial). Images were preprocessed with the standard pipeline of voxel-based morphometry studies using Statistical Parametric Mapping software. Our analyses involved 329 patients with OCD and 316 healthy controls. Patients showed increased structural covariance between the left ventral-rostral putamen and the left inferior frontal gyrus/frontal operculum region. This finding had a significant interaction with age; the association held only in the subgroup of older participants. Patients with OCD also showed increased structural covariance between the right centromedial-superficial amygdala and the ventromedial prefrontal cortex. This was a cross-sectional study. Because this is a multisite data set analysis, participant recruitment and image acquisition were performed in different centres. Most patients were taking medication, and treatment protocols differed across centres. Our results provide evidence for structural network-level alterations in patients with OCD involving 2 frontosubcortical circuits of relevance for the disorder and indicate that structural covariance contributes to fully characterizing brain

  7. Dissociation and Alterations in Brain Function and Structure: Implications for Borderline Personality Disorder.

    Science.gov (United States)

    Krause-Utz, Annegret; Frost, Rachel; Winter, Dorina; Elzinga, Bernet M

    2017-01-01

    Dissociation involves disruptions of usually integrated functions of consciousness, perception, memory, identity, and affect (e.g., depersonalization, derealization, numbing, amnesia, and analgesia). While the precise neurobiological underpinnings of dissociation remain elusive, neuroimaging studies in disorders, characterized by high dissociation (e.g., depersonalization/derealization disorder (DDD), dissociative identity disorder (DID), dissociative subtype of posttraumatic stress disorder (D-PTSD)), have provided valuable insight into brain alterations possibly underlying dissociation. Neuroimaging studies in borderline personality disorder (BPD), investigating links between altered brain function/structure and dissociation, are still relatively rare. In this article, we provide an overview of neurobiological models of dissociation, primarily based on research in DDD, DID, and D-PTSD. Based on this background, we review recent neuroimaging studies on associations between dissociation and altered brain function and structure in BPD. These studies are discussed in the context of earlier findings regarding methodological differences and limitations and concerning possible implications for future research and the clinical setting.

  8. Learning a Weighted Sequence Model of the Nucleosome Core and Linker Yields More Accurate Predictions in Saccharomyces cerevisiae and Homo sapiens

    Science.gov (United States)

    Reynolds, Sheila M.; Bilmes, Jeff A.; Noble, William Stafford

    2010-01-01

    DNA in eukaryotes is packaged into a chromatin complex, the most basic element of which is the nucleosome. The precise positioning of the nucleosome cores allows for selective access to the DNA, and the mechanisms that control this positioning are important pieces of the gene expression puzzle. We describe a large-scale nucleosome pattern that jointly characterizes the nucleosome core and the adjacent linkers and is predominantly characterized by long-range oscillations in the mono, di- and tri-nucleotide content of the DNA sequence, and we show that this pattern can be used to predict nucleosome positions in both Homo sapiens and Saccharomyces cerevisiae more accurately than previously published methods. Surprisingly, in both H. sapiens and S. cerevisiae, the most informative individual features are the mono-nucleotide patterns, although the inclusion of di- and tri-nucleotide features results in improved performance. Our approach combines a much longer pattern than has been previously used to predict nucleosome positioning from sequence—301 base pairs, centered at the position to be scored—with a novel discriminative classification approach that selectively weights the contributions from each of the input features. The resulting scores are relatively insensitive to local AT-content and can be used to accurately discriminate putative dyad positions from adjacent linker regions without requiring an additional dynamic programming step and without the attendant edge effects and assumptions about linker length modeling and overall nucleosome density. Our approach produces the best dyad-linker classification results published to date in H. sapiens, and outperforms two recently published models on a large set of S. cerevisiae nucleosome positions. Our results suggest that in both genomes, a comparable and relatively small fraction of nucleosomes are well-positioned and that these positions are predictable based on sequence alone. We believe that the bulk of the

  9. Learning a weighted sequence model of the nucleosome core and linker yields more accurate predictions in Saccharomyces cerevisiae and Homo sapiens.

    Directory of Open Access Journals (Sweden)

    Sheila M Reynolds

    2010-07-01

    Full Text Available DNA in eukaryotes is packaged into a chromatin complex, the most basic element of which is the nucleosome. The precise positioning of the nucleosome cores allows for selective access to the DNA, and the mechanisms that control this positioning are important pieces of the gene expression puzzle. We describe a large-scale nucleosome pattern that jointly characterizes the nucleosome core and the adjacent linkers and is predominantly characterized by long-range oscillations in the mono, di- and tri-nucleotide content of the DNA sequence, and we show that this pattern can be used to predict nucleosome positions in both Homo sapiens and Saccharomyces cerevisiae more accurately than previously published methods. Surprisingly, in both H. sapiens and S. cerevisiae, the most informative individual features are the mono-nucleotide patterns, although the inclusion of di- and tri-nucleotide features results in improved performance. Our approach combines a much longer pattern than has been previously used to predict nucleosome positioning from sequence-301 base pairs, centered at the position to be scored-with a novel discriminative classification approach that selectively weights the contributions from each of the input features. The resulting scores are relatively insensitive to local AT-content and can be used to accurately discriminate putative dyad positions from adjacent linker regions without requiring an additional dynamic programming step and without the attendant edge effects and assumptions about linker length modeling and overall nucleosome density. Our approach produces the best dyad-linker classification results published to date in H. sapiens, and outperforms two recently published models on a large set of S. cerevisiae nucleosome positions. Our results suggest that in both genomes, a comparable and relatively small fraction of nucleosomes are well-positioned and that these positions are predictable based on sequence alone. We believe that the

  10. Learning a weighted sequence model of the nucleosome core and linker yields more accurate predictions in Saccharomyces cerevisiae and Homo sapiens.

    Science.gov (United States)

    Reynolds, Sheila M; Bilmes, Jeff A; Noble, William Stafford

    2010-07-08

    DNA in eukaryotes is packaged into a chromatin complex, the most basic element of which is the nucleosome. The precise positioning of the nucleosome cores allows for selective access to the DNA, and the mechanisms that control this positioning are important pieces of the gene expression puzzle. We describe a large-scale nucleosome pattern that jointly characterizes the nucleosome core and the adjacent linkers and is predominantly characterized by long-range oscillations in the mono, di- and tri-nucleotide content of the DNA sequence, and we show that this pattern can be used to predict nucleosome positions in both Homo sapiens and Saccharomyces cerevisiae more accurately than previously published methods. Surprisingly, in both H. sapiens and S. cerevisiae, the most informative individual features are the mono-nucleotide patterns, although the inclusion of di- and tri-nucleotide features results in improved performance. Our approach combines a much longer pattern than has been previously used to predict nucleosome positioning from sequence-301 base pairs, centered at the position to be scored-with a novel discriminative classification approach that selectively weights the contributions from each of the input features. The resulting scores are relatively insensitive to local AT-content and can be used to accurately discriminate putative dyad positions from adjacent linker regions without requiring an additional dynamic programming step and without the attendant edge effects and assumptions about linker length modeling and overall nucleosome density. Our approach produces the best dyad-linker classification results published to date in H. sapiens, and outperforms two recently published models on a large set of S. cerevisiae nucleosome positions. Our results suggest that in both genomes, a comparable and relatively small fraction of nucleosomes are well-positioned and that these positions are predictable based on sequence alone. We believe that the bulk of the

  11. Protein secondary structure appears to be robust under in silico evolution while protein disorder appears not to be.

    KAUST Repository

    Schaefer, Christian

    2010-01-16

    MOTIVATION: The mutation of amino acids often impacts protein function and structure. Mutations without negative effect sustain evolutionary pressure. We study a particular aspect of structural robustness with respect to mutations: regular protein secondary structure and natively unstructured (intrinsically disordered) regions. Is the formation of regular secondary structure an intrinsic feature of amino acid sequences, or is it a feature that is lost upon mutation and is maintained by evolution against the odds? Similarly, is disorder an intrinsic sequence feature or is it difficult to maintain? To tackle these questions, we in silico mutated native protein sequences into random sequence-like ensembles and monitored the change in predicted secondary structure and disorder. RESULTS: We established that by our coarse-grained measures for change, predictions and observations were similar, suggesting that our results were not biased by prediction mistakes. Changes in secondary structure and disorder predictions were linearly proportional to the change in sequence. Surprisingly, neither the content nor the length distribution for the predicted secondary structure changed substantially. Regions with long disorder behaved differently in that significantly fewer such regions were predicted after a few mutation steps. Our findings suggest that the formation of regular secondary structure is an intrinsic feature of random amino acid sequences, while the formation of long-disordered regions is not an intrinsic feature of proteins with disordered regions. Put differently, helices and strands appear to be maintained easily by evolution, whereas maintaining disordered regions appears difficult. Neutral mutations with respect to disorder are therefore very unlikely.

  12. Protein secondary structure appears to be robust under in silico evolution while protein disorder appears not to be.

    KAUST Repository

    Schaefer, Christian; Schlessinger, Avner; Rost, Burkhard

    2010-01-01

    MOTIVATION: The mutation of amino acids often impacts protein function and structure. Mutations without negative effect sustain evolutionary pressure. We study a particular aspect of structural robustness with respect to mutations: regular protein secondary structure and natively unstructured (intrinsically disordered) regions. Is the formation of regular secondary structure an intrinsic feature of amino acid sequences, or is it a feature that is lost upon mutation and is maintained by evolution against the odds? Similarly, is disorder an intrinsic sequence feature or is it difficult to maintain? To tackle these questions, we in silico mutated native protein sequences into random sequence-like ensembles and monitored the change in predicted secondary structure and disorder. RESULTS: We established that by our coarse-grained measures for change, predictions and observations were similar, suggesting that our results were not biased by prediction mistakes. Changes in secondary structure and disorder predictions were linearly proportional to the change in sequence. Surprisingly, neither the content nor the length distribution for the predicted secondary structure changed substantially. Regions with long disorder behaved differently in that significantly fewer such regions were predicted after a few mutation steps. Our findings suggest that the formation of regular secondary structure is an intrinsic feature of random amino acid sequences, while the formation of long-disordered regions is not an intrinsic feature of proteins with disordered regions. Put differently, helices and strands appear to be maintained easily by evolution, whereas maintaining disordered regions appears difficult. Neutral mutations with respect to disorder are therefore very unlikely.

  13. Dual-purpose linker for alpha helix stabilization and imaging agent conjugation to glucagon-like peptide-1 receptor ligands.

    Science.gov (United States)

    Zhang, Liang; Navaratna, Tejas; Liao, Jianshan; Thurber, Greg M

    2015-02-18

    Peptides display many characteristics of efficient imaging agents such as rapid targeting, fast background clearance, and low non-specific cellular uptake. However, poor stability, low affinity, and loss of binding after labeling often preclude their use in vivo. Using glucagon-like peptide-1 receptor (GLP-1R) ligands exendin and GLP-1 as a model system, we designed a novel α-helix-stabilizing linker to simultaneously address these limitations. The stabilized and labeled peptides showed an increase in helicity, improved protease resistance, negligible loss or an improvement in binding affinity, and excellent in vivo targeting. The ease of incorporating azidohomoalanine in peptides and efficient reaction with the dialkyne linker enable this technique to potentially be used as a general method for labeling α helices. This strategy should be useful for imaging beta cells in diabetes research and in developing and testing other peptide targeting agents.

  14. Ab initio structure determination and quantitative disorder analysis on nanoparticles by electron diffraction tomography.

    Science.gov (United States)

    Krysiak, Yaşar; Barton, Bastian; Marler, Bernd; Neder, Reinhard B; Kolb, Ute

    2018-03-01

    Nanoscaled porous materials such as zeolites have attracted substantial attention in industry due to their catalytic activity, and their performance in sorption and separation processes. In order to understand the properties of such materials, current research focuses increasingly on the determination of structural features beyond the averaged crystal structure. Small particle sizes, various types of disorder and intergrown structures render the description of structures at atomic level by standard crystallographic methods difficult. This paper reports the characterization of a strongly disordered zeolite structure, using a combination of electron exit-wave reconstruction, automated diffraction tomography (ADT), crystal disorder modelling and electron diffraction simulations. Zeolite beta was chosen for a proof-of-principle study of the techniques, because it consists of two different intergrown polymorphs that are built from identical layer types but with different stacking sequences. Imaging of the projected inner Coulomb potential of zeolite beta crystals shows the intergrowth of the polymorphs BEA and BEB. The structures of BEA as well as BEB could be extracted from one single ADT data set using direct methods. A ratio for BEA/BEB = 48:52 was determined by comparison of the reconstructed reciprocal space based on ADT data with simulated electron diffraction data for virtual nanocrystals, built with different ratios of BEA/BEB. In this way, it is demonstrated that this smart interplay of the above-mentioned techniques allows the elaboration of the real structures of functional materials in detail - even if they possess a severely disordered structure.

  15. Research Review: Structural Language in Autistic Spectrum Disorder--Characteristics and Causes

    Science.gov (United States)

    Boucher, Jill

    2012-01-01

    Background: Structural language anomalies or impairments in autistic spectrum disorder (ASD) are theoretically and practically important, although underrecognised as such. This review aims to highlight the ubiquitousness of structural language anomalies and impairments in ASD, and to stimulate investigation of their immediate causes and…

  16. Factor structure of DSM-IV criteria for obsessive compulsive personality disorder in patients with binge eating disorder.

    Science.gov (United States)

    Grilo, C M

    2004-01-01

    To examine the factor structure of DSM-IV criteria for obsessive compulsive personality disorder (OCPD) in patients with binge eating disorder (BED). Two hundred and eleven consecutive out-patients with axis I diagnoses of BED were reliably assessed with semi-structured diagnostic interviews. The eight criteria for the OCPD diagnosis were examined with reliability and correlational analyses. Exploratory factor analysis was performed to identify potential components. Cronbach's coefficient alpha for the OCPD criteria was 0.77. Principal components factor analysis with varimax rotation revealed a three-factor solution (rigidity, perfectionism, and miserliness), which accounted for 65% of variance. The DSM-IV criteria for OCPD showed good internal consistency. Exploratory factor analysis, however, revealed three components that may reflect distinct interpersonal, intrapersonal (cognitive), and behavioral features.

  17. OD (order-disorder) character of the crystal structure of godlevskite Ni9S8

    DEFF Research Database (Denmark)

    Merlino, Stefano; Makovicky, Emil

    2009-01-01

    Godlevskite Ni9S8 has been found to be an OD (order-disorder) structure consisting of two kinds of OD layers in strict alternation; these layers display stacking disorder. They have layer symmetries P( )2m and P212(2), respectively (symmetry elements in parentheses are perpendicular to OD layers......). Two structures with maximum degree of order (MDO polytypes), with space-group symmetries A222 and I4122, respectively, exist, together with more complex polytypes or disordered sequences. The OD character is in keeping with the frequent twinning of godlevskite....

  18. Assessment of Semi-Structured Clinical Interview for Mobile Phone Addiction Disorder

    Science.gov (United States)

    Alavi, Seyyed Salman; Jannatifard, Fereshteh; Mohammadi Kalhori, Soroush; Sepahbodi, Ghazal; BabaReisi, Mohammad; Sajedi, Sahar; Farshchi, Mojtaba; KhodaKarami, Rasul; Hatami Kasvaee, Vahid

    2016-01-01

    Objective: The Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR) classified mobile phone addiction disorder under “impulse control disorder not elsewhere classified”. This study surveyed the diagnostic criteria of DSM-IV-TR for the diagnosis of mobile phone addiction in correspondence with Iranian society and culture. Method: Two hundred fifty students of Tehran universities were entered into this descriptive-analytical and cross-sectional study. Quota sampling method was used. At first, semi- structured clinical interview (based on DSM-IV-TR) was performed for all the cases, and another specialist reevaluated the interviews. Data were analyzed using content validity, inter-scorer reliability (Kappa coefficient) and test-retest via SPSS18 software. Results: The content validity of the semi- structured clinical interview matched the DSM–IV-TR criteria for behavioral addiction. Moreover, their content was appropriate, and two items, including “SMS pathological use” and “High monthly cost of using the mobile phone” were added to promote its validity. Internal reliability (Kappa) and test–retest reliability were 0.55 and r = 0.4 (pmobile phone addiction, and this instrument is an effective tool to diagnose this disorder. PMID:27437008

  19. Assessment of Semi-Structured Clinical Interview for Mobile Phone Addiction Disorder.

    Science.gov (United States)

    Alavi, Seyyed Salman; Mohammadi, Mohammad Reza; Jannatifard, Fereshteh; Mohammadi Kalhori, Soroush; Sepahbodi, Ghazal; BabaReisi, Mohammad; Sajedi, Sahar; Farshchi, Mojtaba; KhodaKarami, Rasul; Hatami Kasvaee, Vahid

    2016-04-01

    The Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR) classified mobile phone addiction disorder under "impulse control disorder not elsewhere classified". This study surveyed the diagnostic criteria of DSM-IV-TR for the diagnosis of mobile phone addiction in correspondence with Iranian society and culture. Two hundred fifty students of Tehran universities were entered into this descriptive-analytical and cross-sectional study. Quota sampling method was used. At first, semi- structured clinical interview (based on DSM-IV-TR) was performed for all the cases, and another specialist reevaluated the interviews. Data were analyzed using content validity, inter-scorer reliability (Kappa coefficient) and test-retest via SPSS18 software. The content validity of the semi- structured clinical interview matched the DSM-IV-TR criteria for behavioral addiction. Moreover, their content was appropriate, and two items, including "SMS pathological use" and "High monthly cost of using the mobile phone" were added to promote its validity. Internal reliability (Kappa) and test-retest reliability were 0.55 and r = 0.4 (pphone addiction, and this instrument is an effective tool to diagnose this disorder.

  20. Disorder Improves Light Absorption in Thin Film Silicon Solar Cells with Hybrid Light Trapping Structure

    Directory of Open Access Journals (Sweden)

    Yanpeng Shi

    2016-01-01

    Full Text Available We present a systematic simulation study on the impact of disorder in thin film silicon solar cells with hybrid light trapping structure. For the periodical structures introducing certain randomness in some parameters, the nanophotonic light trapping effect is demonstrated to be superior to their periodic counterparts. The nanophotonic light trapping effect can be associated with the increased modes induced by the structural disorders. Our study is a systematic proof that certain disorder is conceptually an advantage for nanophotonic light trapping concepts in thin film solar cells. The result is relevant to the large field of research on nanophotonic light trapping which currently investigates and prototypes a number of new concepts including disordered periodic and quasiperiodic textures. The random effect on the shape of the pattern (position, height, and radius investigated in this paper could be a good approach to estimate the influence of experimental inaccuracies for periodic or quasi-periodic structures.

  1. Dehydration of an azeotrope of ethanol/water by sodium carboxymethylcellulose membranes cross-linked with organic or inorganic cross-linker

    Directory of Open Access Journals (Sweden)

    2010-11-01

    Full Text Available To control the swelling of sodium carboxymethylcellulose (CMCNa membranes, mixtures of CMCNa and glutaraldehyde (GA and mixtures of CMCNa as an organic component and tetraethoxysilane (TEOS as an inorganic component were prepared, and CMCNa/GA cross-linked membranes and CMCNa/TEOS hybrid membranes were formed. In the separation of an ethanol/water azeotrope by pervaporation (PV, the effects of the GA or TEOS content on the water/ethanol selectivity and permeability of these CMCNa/GA cross-linked and CMCNa/TEOS hybrid membranes were investigated. Cross-linked and hybrid membranes containing up to 10 wt% GA or 10 wt% TEOS exhibited higher water/ethanol selectivity than CMCNa membrane without any cross-linker. This resulted from both increased density and depressed swelling of the membranes by the formation of a cross-linked structure. The relationship between the structure of the CMCNa/GA cross-linked membranes and CMCNa/TEOS hybrid membranes and their permeation and separation characteristics for an ethanol/water azeotrope during PV is discussed in detail.

  2. Mapping the structural and dynamical features of kinesin motor domains.

    Directory of Open Access Journals (Sweden)

    Guido Scarabelli

    Full Text Available Kinesin motor proteins drive intracellular transport by coupling ATP hydrolysis to conformational changes that mediate directed movement along microtubules. Characterizing these distinct conformations and their interconversion mechanism is essential to determining an atomic-level model of kinesin action. Here we report a comprehensive principal component analysis of 114 experimental structures along with the results of conventional and accelerated molecular dynamics simulations that together map the structural dynamics of the kinesin motor domain. All experimental structures were found to reside in one of three distinct conformational clusters (ATP-like, ADP-like and Eg5 inhibitor-bound. These groups differ in the orientation of key functional elements, most notably the microtubule binding α4-α5, loop8 subdomain and α2b-β4-β6-β7 motor domain tip. Group membership was found not to correlate with the nature of the bound nucleotide in a given structure. However, groupings were coincident with distinct neck-linker orientations. Accelerated molecular dynamics simulations of ATP, ADP and nucleotide free Eg5 indicate that all three nucleotide states could sample the major crystallographically observed conformations. Differences in the dynamic coupling of distal sites were also evident. In multiple ATP bound simulations, the neck-linker, loop8 and the α4-α5 subdomain display correlated motions that are absent in ADP bound simulations. Further dissection of these couplings provides evidence for a network of dynamic communication between the active site, microtubule-binding interface and neck-linker via loop7 and loop13. Additional simulations indicate that the mutations G325A and G326A in loop13 reduce the flexibility of these regions and disrupt their couplings. Our combined results indicate that the reported ATP and ADP-like conformations of kinesin are intrinsically accessible regardless of nucleotide state and support a model where neck-linker

  3. Light Management in Optoelectronic Devices with Disordered and Chaotic Structures

    KAUST Repository

    Khan, Yasser

    2012-07-01

    With experimental realization, energy harvesting capabilities of chaotic microstructures were explored. Incident photons falling into chaotic trajectories resulted in energy buildup for certain frequencies. As a consequence, many fold enhancement in light trapping was observed. These ellipsoid like chaotic microstructures demonstrated 25% enhancement in light trapping at 450nm excitation and 15% enhancement at 550nm excitation. Optimization of these structures can drive novel chaos-assisted energy harvesting systems. In subsequent sections of the thesis, prospect of broadband light extraction from white light emitting diodes were investigated, which is an unchallenged but quintessential problem in solid-state lighting. Size dependent scattering allows microstructures to interact strongly with narrow-band light. If disorder is introduced in spread and sizes of microstructures, broadband light extraction is possible. A novel scheme with Voronoi tessellation to quantify disorder in physical systems was also introduced, and a link between voronoi disorder and state disorder of statistical mechanics was established. Overall, in this thesis some nascent concepts regarding disorder and chaos were investigated to efficiently manage electromagnetic waves in optoelectronic devices.

  4. Enhanced Charge Separation Efficiency in Pyridine-Anchored Phthalocyanine-Sensitized Solar Cells by Linker Elongation.

    Science.gov (United States)

    Ikeuchi, Takuro; Agrawal, Saurabh; Ezoe, Masayuki; Mori, Shogo; Kimura, Mutsumi

    2015-11-01

    A series of zinc phthalocyanine sensitizers (PcS22-24) having a pyridine anchoring group are designed and synthesized to investigate the structural dependence on performance in dye-sensitized solar cells. The pyridine-anchor zinc phthalocyanine sensitizer PcS23 shows 79 % incident-photon to current-conversion efficiency (IPCE) and 6.1 % energy conversion efficiency, which are comparable with similar phthalocyanine dyes having a carboxylic acid anchoring group. Based on DFT calculations, the high IPCE is attributed with the mixture of an excited-state molecular orbital of the sensitizer and the orbitals of TiO2 . Between pyridine and carboxylic acid anchor dyes, opposite trends are observed in the linker-length dependence of the IPCE. The red-absorbing PcS23 is applied for co-sensitization with a carboxyl-anchor organic dye D131 that has a complementary spectral response. The site-selective adsorption of PcS23 and D131 on the TiO2 surface results in a panchromatic photocurrent response for the whole visible-light region of sun light. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer.

    Directory of Open Access Journals (Sweden)

    Shih Ping Yao

    2002-04-01

    Full Text Available Abstract Background Transgenic animals have become valuable tools for both research and applied purposes. The current method of gene transfer, microinjection, which is widely used in transgenic mouse production, has only had limited success in producing transgenic animals of larger or higher species. Here, we report a linker based sperm-mediated gene transfer method (LB-SMGT that greatly improves the production efficiency of large transgenic animals. Results The linker protein, a monoclonal antibody (mAb C, is reactive to a surface antigen on sperm of all tested species including pig, mouse, chicken, cow, goat, sheep, and human. mAb C is a basic protein that binds to DNA through ionic interaction allowing exogenous DNA to be linked specifically to sperm. After fertilization of the egg, the DNA is shown to be successfully integrated into the genome of viable pig and mouse offspring with germ-line transfer to the F1 generation at a highly efficient rate: 37.5% of pigs and 33% of mice. The integration is demonstrated again by FISH analysis and F2 transmission in pigs. Furthermore, expression of the transgene is demonstrated in 61% (35/57 of transgenic pigs (F0 generation. Conclusions Our data suggests that LB-SMGT could be used to generate transgenic animals efficiently in many different species.

  6. Structural brain network analysis in families multiply affected with bipolar I disorder

    NARCIS (Netherlands)

    Forde, Natalie J.; O'Donoghue, Stefani; Scanlon, Cathy; Emsell, Louise; Chaddock, Chris; Leemans, Alexander; Jeurissen, Ben; Barker, Gareth J.; Cannon, Dara M.; Murray, Robin M.; McDonald, Colm

    2015-01-01

    Disrupted structural connectivity is associated with psychiatric illnesses including bipolar disorder (BP). Here we use structural brain network analysis to investigate connectivity abnormalities in multiply affected BP type I families, to assess the utility of dysconnectivity as a biomarker and its

  7. Structural MRI correlates for vulnerability and resilience to major depressive disorder.

    LENUS (Irish Health Repository)

    Amico, Francesco

    2011-01-01

    In major depressive disorder (MDD), it is unclear to what extent structural brain changes are associated with depressive episodes or represent part of the mechanism by which the risk for illness is mediated. The aim of this study was to investigate whether structural abnormalities are related to risk for the development of MDD.

  8. A Dual-Purpose Linker for Alpha Helix Stabilization and Imaging Agent Conjugation to Glucagon-Like Peptide-1 Receptor Ligands

    Science.gov (United States)

    Zhang, Liang; Navaratna, Tejas; Liao, Jianshan; Thurber, Greg M.

    2016-01-01

    Peptides display many characteristics of efficient imaging agents such as rapid targeting, fast background clearance, and low non-specific cellular uptake. However, poor stability, low affinity, and loss of binding after labeling often preclude their use in vivo. Using the glucagon-like peptide-1 receptor (GLP-1R) ligands exendin and GLP-1 as a model system, we designed a novel alpha helix stabilizing linker to simultaneously address these limitations. The stabilized and labeled peptides showed an increase in helicity, improved protease resistance, negligible loss or an improvement in binding affinity, and excellent in vivo targeting. The ease of incorporating azidohomoalanine in peptides and efficient reaction with the dialkyne linker enables this technique to potentially be used as a general method for labeling alpha helices. This strategy should be useful for imaging beta cells in diabetes research and in developing and testing other peptide targeting agents. PMID:25594741

  9. Altered brain structural networks in attention deficit/hyperactivity disorder children revealed by cortical thickness.

    Science.gov (United States)

    Liu, Tian; Chen, Yanni; Li, Chenxi; Li, Youjun; Wang, Jue

    2017-07-04

    This study investigated the cortical thickness and topological features of human brain anatomical networks related to attention deficit/hyperactivity disorder. Data were collected from 40 attention deficit/hyperactivity disorder children and 40 normal control children. Interregional correlation matrices were established by calculating the correlations of cortical thickness between all pairs of cortical regions (68 regions) of the whole brain. Further thresholds were applied to create binary matrices to construct a series of undirected and unweighted graphs, and global, local, and nodal efficiencies were computed as a function of the network cost. These experimental results revealed abnormal cortical thickness and correlations in attention deficit/hyperactivity disorder, and showed that the brain structural networks of attention deficit/hyperactivity disorder subjects had inefficient small-world topological features. Furthermore, their topological properties were altered abnormally. In particular, decreased global efficiency combined with increased local efficiency in attention deficit/hyperactivity disorder children led to a disorder-related shift of the network topological structure toward regular networks. In addition, nodal efficiency, cortical thickness, and correlation analyses revealed that several brain regions were altered in attention deficit/hyperactivity disorder patients. These findings are in accordance with a hypothesis of dysfunctional integration and segregation of the brain in patients with attention deficit/hyperactivity disorder and provide further evidence of brain dysfunction in attention deficit/hyperactivity disorder patients by observing cortical thickness on magnetic resonance imaging.

  10. Self-consistent electronic structure of disordered Fe/sub 0.65/Ni/sub 0.35/

    International Nuclear Information System (INIS)

    Johnson, D.D.; Pinski, F.J.; Stocks, G.M.

    1985-01-01

    We present the results of the first ab initio calculation of the electronic structure of the disordered alloy Fe/sub 0.65/Ni/sub 0.35/. The calculation is based on the multiple-scattering coherent-potential approach (KKR-CPA) and is fully self-consistent and spin polarized. Magnetic effects are included within local-spin-density functional theory using the exchange-correlation function of Vosko--Wilk--Nusair. The most striking feature of the calculation is that electrons of different spins experience different degrees of disorder. The minority spin electrons see a very large disorder, whereas the majority spin electrons see little disorder. Consequently, the minority spin density of states is smooth compared to the very structured majority spin density of states. This difference is due to a subtle balance between exchange splitting and charge neutrality

  11. Effects of Structural and Electronic Disorder in Topological Insulator Sb2Te3 Thin Films

    Science.gov (United States)

    Korzhovska, Inna

    Topological quantum matter is a unique and potentially transformative protectorate against disorder-induced backscattering. The ultimate disorder limits to the topological state, however, are still not known - understanding these limits is critical to potential applications in the fields of spintronics and information processing. In topological insulators spin-orbit interaction and time-reversal-symmetry invariance guarantees - at least up to a certain disorder strength - that charge transport through 2D gapless Dirac surface states is robust against backscattering by non-magnetic disorder. Strong disorder may destroy topological protection and gap out Dirac surface states, although recent theories predict that under severe electronic disorder a quantized topological conductance might yet reemerge. Very strong electronic disorder, however, is not trivial to install and quantify, and topological matter under such conditions thus far has not been experimentally tested. This thesis addresses the behavior of three-dimensional (3D) topological insulator (TI) films in a wide range of structural and electronic disorder. We establish strong positional disorder in thin (20-50 nm) Sb2Te 3 films, free of extrinsic magnetic dopants. Sb 2Te3 is a known 2nd generation topological insulator in the low-disorder crystalline state. It is also a known phase-change material that undergoes insulator-to-metal transition with the concurrent orders of magnitude resistive drop, where a huge range of disorder could be controllably explored. In this work we show that even in the absence of magnetic dopants, disorder may induce spin correlations detrimental to the topological state. Chapter 1 contains a brief introduction to the topological matter and describes the role played by disorder. This is followed by theory considerations and a survey of prior experimental work. Next we describe the motivation for our experiments and explain the choice of the material. Chapter 2 describes deposition

  12. Family structure and eating behavior disorders.

    Science.gov (United States)

    Mateos-Agut, Manuel; García-Alonso, Isabel; De la Gándara-Martín, Jesús J; Vegas-Miguel, María I; Sebastián-Vega, Carlota; Sanz-Cid, Beatriz; Martínez-Villares, Ana; Martín-Martínez, Esther

    2014-01-01

    The modern way of life, characterized by the cult of individualism, discredited authority, and a proliferation of points of view about reality, has modified family structure. This social structure imbues families and the way that its members become ill, in such a way that eating behavior disorders (EDs) have become a typically postmodern way of becoming ill. The aim is to understand the systemic structure and vulnerability of families by comparing 108 families with members who have ED to 108 families without pathology. A questionnaire administered by an interview with trained personnel was used. Families with ED have a different structure from the families in the control group. They have more psychiatric history and poor coping skills. The family hierarchy is not clearly defined and the leadership is diffuse, with strict and unpredictable rules, more intergenerational coalitions, and fewer alliances. The relationship between the parents is distant or confrontational, and their attitudes towards their children are complacent and selfish, with ambivalent and unaffectionate bonds. In the case of mothers, this is manifested by separation anxiety and dyadic dependence. Their expectations concerning their offspring are either very demanding and unrealistic, or indifferent, and there is less control of their behavior, in addition to poor organization of the family meals. The structural differences between the two groups of families seem to be important for the occurrence and maintenance of EDs, although they may not be the only cause. The results suggest strategies for clinical intervention in EDs.

  13. Reliability of the Structured Clinical Interview for DSM-5 Sleep Disorders Module.

    Science.gov (United States)

    Taylor, Daniel J; Wilkerson, Allison K; Pruiksma, Kristi E; Williams, Jacob M; Ruggero, Camilo J; Hale, Willie; Mintz, Jim; Organek, Katherine Marczyk; Nicholson, Karin L; Litz, Brett T; Young-McCaughan, Stacey; Dondanville, Katherine A; Borah, Elisa V; Brundige, Antoinette; Peterson, Alan L

    2018-03-15

    To develop and demonstrate interrater reliability for a Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) Sleep Disorders (SCISD). The SCISD was designed to be a brief, reliable, and valid interview assessment of adult sleep disorders as defined by the DSM-5. A sample of 106 postdeployment active-duty military members seeking cognitive behavioral therapy for insomnia in a randomized clinical trial were assessed with the SCISD prior to treatment to determine eligibility. Audio recordings of these interviews were double-scored for interrater reliability. The interview is 8 pages long, includes 20 to 51 questions, and takes 10 to 20 minutes to administer. Of the nine major disorders included in the SCISD, six had prevalence rates high enough (ie, n ≥ 5) to include in analyses. Cohen kappa coefficient (κ) was used to assess interrater reliability for insomnia, hypersomnolence, obstructive sleep apnea hypopnea (OSAH), circadian rhythm sleep-wake, nightmare, and restless legs syndrome disorders. There was excellent interrater reliability for insomnia (1.0) and restless legs syndrome (0.83); very good reliability for nightmare disorder (0.78) and OSAH (0.73); and good reliability for hypersomnolence (0.50) and circadian rhythm sleep-wake disorders (0.50). The SCISD is a brief, structured clinical interview that is easy for clinicians to learn and use. The SCISD showed moderate to excellent interrater reliability for six of the major sleep disorders in the DSM-5 among active duty military seeking cognitive behavioral therapy for insomnia in a randomized clinical trial. Replication and extension studies are needed. Registry: ClinicalTrials.gov; Title: Comparing Internet and In-Person Brief Cognitive Behavioral Therapy of Insomnia; Identifier: NCT01549899; URL: https://clinicaltrials.gov/ct2/show/NCT01549899. © 2018 American Academy of Sleep Medicine.

  14. Primary Dystonia: Conceptualizing the Disorder through a Structural Brain Imaging Lens

    Directory of Open Access Journals (Sweden)

    Kristina Simonyan

    2013-06-01

    Full Text Available Background: Dystonia is a hyperkinetic movement disorder of involuntary, twisting repetitive movements. The anatomical structures and pathways implicated in its pathogenesis as well as their relationship to the neurophysiological paradigm of abnormal surround inhibition, maladaptive plasticity and impaired sensorimotor integration remain not well delineated. Objective: We review the use of high-resolution structural brain imaging using voxel-based morphometry (VBM and diffusion tensor imaging (DTI techniques for evaluation of brain changes in primary torsion dystonia and their relationships to the pathophysiology of this disorder. Methods: A search in PubMed was conducted to identify the relevant literature. Discussion: Structural imaging has enhanced our understanding of the pathophysiological mechanisms of dystonia. In particular, VBM and DTI data have revealed microstructural disturbances in the basal ganglia, sensorimotor cortices and cerebellum along with aberrations in the cortico-striato-pallido-thalamic and cerebello-thalamo-cortical pathways.  When combined with functional brain imaging and neurophysiological modalities, a structure-function relationship can be established in the dystonia brain network at the sensorimotor, plasticity, cortical disinhibition and cerebellar outflow connectivity levels. Structural imaging highlighted new anatomical substrates and, with a combined structural-functional approach, has offered new opportunities for investigation of the neurodevelopmental, environmental and/or genetic interplay in the brain networks of dystonia patients. 

  15. Linker-free 3D assembly of nanocrystals with tunable unit size for reversible lithium ion storage

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Da; Lee, Jim Yang, E-mail: cheleejy@nus.edu.sg [Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260 (Singapore)

    2011-09-02

    A simple and scalable procedure combining hydrothermal synthesis with post-synthesis calcination was developed to produce a linker-free, thermally stable, mesoscale 3D ordered assembly of spinel-type ZnCo{sub 2}O{sub 4} nanocrystals. The mesoscale assembly with distinctively sharp edges was formed by close-packing the ZnCo{sub 2}O{sub 4} nanocrystal building blocks with a unit size changeable by the synthesis temperature. A self-templating mechanism based on the topotactic transformation of an oxalato-bridged precursor coordination compound was proposed for the assembly. The packaging of crystalline ZnCo{sub 2}O{sub 4} nanoparticles, an active lithium ion storage compound, into a dense organized structure is an effective way to increase the volumetric capacity of ZnCo{sub 2}O{sub 4} nanoparticles for reversible lithium ion storage. The highly ordered 3D assembly of ZnCo{sub 2}O{sub 4} demonstrated excellent reversible lithium ion storage properties and a specific capacity ({approx}800 mAh g{sup -1}) much higher than that of carbon (typically {approx} 350 mAh g{sup -1}).

  16. Linker-free 3D assembly of nanocrystals with tunable unit size for reversible lithium ion storage

    International Nuclear Information System (INIS)

    Deng, Da; Lee, Jim Yang

    2011-01-01

    A simple and scalable procedure combining hydrothermal synthesis with post-synthesis calcination was developed to produce a linker-free, thermally stable, mesoscale 3D ordered assembly of spinel-type ZnCo 2 O 4 nanocrystals. The mesoscale assembly with distinctively sharp edges was formed by close-packing the ZnCo 2 O 4 nanocrystal building blocks with a unit size changeable by the synthesis temperature. A self-templating mechanism based on the topotactic transformation of an oxalato-bridged precursor coordination compound was proposed for the assembly. The packaging of crystalline ZnCo 2 O 4 nanoparticles, an active lithium ion storage compound, into a dense organized structure is an effective way to increase the volumetric capacity of ZnCo 2 O 4 nanoparticles for reversible lithium ion storage. The highly ordered 3D assembly of ZnCo 2 O 4 demonstrated excellent reversible lithium ion storage properties and a specific capacity (∼800 mAh g -1 ) much higher than that of carbon (typically ∼ 350 mAh g -1 ).

  17. Balanced translocation linked to psychiatric disorder, glutamate, and cortical structure/function

    OpenAIRE

    Thomson, Pippa A; Duff, Barbara; Blackwood, Douglas H R; Romaniuk, Liana; Watson, Andrew; Whalley, Heather C; Li, Xiang; Dauvermann, Maria R; Moorhead, T William J; Bois, Catherine; Ryan, Niamh M; Redpath, Holly; Hall, Lynsey; Morris, Stewart W; van Beek, Edwin J R

    2016-01-01

    Rare genetic variants of large effect can help elucidate the pathophysiology of brain disorders. Here we expand the clinical and genetic analyses of a family with a (1;11)(q42;q14.3) translocation multiply affected by major psychiatric illness and test the effect of the translocation on the structure and function of prefrontal, and temporal brain regions. The translocation showed significant linkage (LOD score 6.1) with a clinical phenotype that included schizophrenia, schizoaffective disorde...

  18. Absence of residual structure in the intrinsically disordered regulatory protein CP12 in its reduced state

    Energy Technology Data Exchange (ETDEWEB)

    Launay, Hélène; Barré, Patrick [Laboratory of integrative Structural and Chemical Biology (iSCB), Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS UMR 7258, INSERM U 1068, Institut Paoli-Calmettes, Aix-Marseille Universités, Marseille 13009 (France); Puppo, Carine [Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7281, Laboratoire de Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20 (France); Manneville, Stéphanie [Laboratory of integrative Structural and Chemical Biology (iSCB), Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS UMR 7258, INSERM U 1068, Institut Paoli-Calmettes, Aix-Marseille Universités, Marseille 13009 (France); Gontero, Brigitte [Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7281, Laboratoire de Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20 (France); Receveur-Bréchot, Véronique, E-mail: veronique.brechot@inserm.fr [Laboratory of integrative Structural and Chemical Biology (iSCB), Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS UMR 7258, INSERM U 1068, Institut Paoli-Calmettes, Aix-Marseille Universités, Marseille 13009 (France)

    2016-08-12

    The redox switch protein CP12 is a key player of the regulation of the Benson–Calvin cycle. Its oxidation state is controlled by the formation/dissociation of two intramolecular disulphide bridges during the day/night cycle. CP12 was known to be globally intrinsically disordered on a large scale in its reduced state, while being partly ordered in the oxidised state. By combining Nuclear Magnetic Resonance and Small Angle X-ray Scattering experiments, we showed that, contrary to secondary structure or disorder predictions, reduced CP12 is fully disordered, with no transient or local residual structure likely to be precursor of the structures identified in the oxidised active state and/or in the bound state with GAPDH or PRK. These results highlight the diversity of the mechanisms of regulation of conditionally disordered redox switches, and question the stability of oxidised CP12 scaffold. - Highlights: • CP12 is predicted to form two helices in its N-terminal sequence. • Reduced CP12 is disordered as a random coil according to SAXS. • Limited or no transient structures are observed in reduced CP12 by NMR.

  19. Absence of residual structure in the intrinsically disordered regulatory protein CP12 in its reduced state

    International Nuclear Information System (INIS)

    Launay, Hélène; Barré, Patrick; Puppo, Carine; Manneville, Stéphanie; Gontero, Brigitte; Receveur-Bréchot, Véronique

    2016-01-01

    The redox switch protein CP12 is a key player of the regulation of the Benson–Calvin cycle. Its oxidation state is controlled by the formation/dissociation of two intramolecular disulphide bridges during the day/night cycle. CP12 was known to be globally intrinsically disordered on a large scale in its reduced state, while being partly ordered in the oxidised state. By combining Nuclear Magnetic Resonance and Small Angle X-ray Scattering experiments, we showed that, contrary to secondary structure or disorder predictions, reduced CP12 is fully disordered, with no transient or local residual structure likely to be precursor of the structures identified in the oxidised active state and/or in the bound state with GAPDH or PRK. These results highlight the diversity of the mechanisms of regulation of conditionally disordered redox switches, and question the stability of oxidised CP12 scaffold. - Highlights: • CP12 is predicted to form two helices in its N-terminal sequence. • Reduced CP12 is disordered as a random coil according to SAXS. • Limited or no transient structures are observed in reduced CP12 by NMR.

  20. Butane-1,2,3,4-tetraol-based amphiphilic stereoisomers for membrane protein study: importance of chirality in the linker region

    DEFF Research Database (Denmark)

    Das, Manabendra; Du, Yang; Mortensen, Jonas S.

    2017-01-01

    of the targeted membrane proteins depending on the chirality of the linker region. These findings indicate an important role for detergent stereochemistry in membrane protein stabilization. In addition, we generally observed enhanced detergent efficacy with increasing alkyl chain length, reinforcing...

  1. Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy

    KAUST Repository

    Zhu, Yihan; Ciston, Jim; Zheng, Bin; Miao, Xiaohe; Czarnik, Cory; Pan, Yichang; Sougrat, Rachid; Lai, Zhiping; Hsiung, Chia-En; Yao, Kexin; Pinnau, Ingo; Pan, Ming; Han, Yu

    2017-01-01

    .1 electrons per square ångström to retain the structural integrity. The obtained image involves structural information transferred up to 2.1 Å, allowing the resolution of individual atomic columns of Zn and organic linkers in the framework. Furthermore, TEM

  2. Disorder-specific predictive classification of adolescents with attention deficit hyperactivity disorder (ADHD relative to autism using structural magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Lena Lim

    Full Text Available Attention Deficit Hyperactivity Disorder (ADHD is a neurodevelopmental disorder, but diagnosed by subjective clinical and rating measures. The study's aim was to apply Gaussian process classification (GPC to grey matter (GM volumetric data, to assess whether individual ADHD adolescents can be accurately differentiated from healthy controls based on objective, brain structure measures and whether this is disorder-specific relative to autism spectrum disorder (ASD.Twenty-nine adolescent ADHD boys and 29 age-matched healthy and 19 boys with ASD were scanned. GPC was applied to make disorder-specific predictions of ADHD diagnostic status based on individual brain structure patterns. In addition, voxel-based morphometry (VBM analysis tested for traditional univariate group level differences in GM.The pattern of GM correctly classified 75.9% of patients and 82.8% of controls, achieving an overall classification accuracy of 79.3%. Furthermore, classification was disorder-specific relative to ASD. The discriminating GM patterns showed higher classification weights for ADHD in earlier developing ventrolateral/premotor fronto-temporo-limbic and stronger classification weights for healthy controls in later developing dorsolateral fronto-striato-parieto-cerebellar networks. Several regions were also decreased in GM in ADHD relative to healthy controls in the univariate VBM analysis, suggesting they are GM deficit areas.The study provides evidence that pattern recognition analysis can provide significant individual diagnostic classification of ADHD patients and healthy controls based on distributed GM patterns with 79.3% accuracy and that this is disorder-specific relative to ASD. Findings are a promising first step towards finding an objective differential diagnostic tool based on brain imaging measures to aid with the subjective clinical diagnosis of ADHD.

  3. Stochastic Ratcheting on a Funneled Energy Landscape Is Necessary for Highly Efficient Contractility of Actomyosin Force Dipoles

    Science.gov (United States)

    Komianos, James E.; Papoian, Garegin A.

    2018-04-01

    Current understanding of how contractility emerges in disordered actomyosin networks of nonmuscle cells is still largely based on the intuition derived from earlier works on muscle contractility. In addition, in disordered networks, passive cross-linkers have been hypothesized to percolate force chains in the network, hence, establishing large-scale connectivity between local contractile clusters. This view, however, largely overlooks the free energy of cross-linker binding at the microscale, which, even in the absence of active fluctuations, provides a thermodynamic drive towards highly overlapping filamentous states. In this work, we use stochastic simulations and mean-field theory to shed light on the dynamics of a single actomyosin force dipole—a pair of antiparallel actin filaments interacting with active myosin II motors and passive cross-linkers. We first show that while passive cross-linking without motor activity can produce significant contraction between a pair of actin filaments, driven by thermodynamic favorability of cross-linker binding, a sharp onset of kinetic arrest exists at large cross-link binding energies, greatly diminishing the effectiveness of this contractility mechanism. Then, when considering an active force dipole containing nonmuscle myosin II, we find that cross-linkers can also serve as a structural ratchet when the motor dissociates stochastically from the actin filaments, resulting in significant force amplification when both molecules are present. Our results provide predictions of how actomyosin force dipoles behave at the molecular level with respect to filament boundary conditions, passive cross-linking, and motor activity, which can explicitly be tested using an optical trapping experiment.

  4. Stochastic Ratcheting on a Funneled Energy Landscape Is Necessary for Highly Efficient Contractility of Actomyosin Force Dipoles

    Directory of Open Access Journals (Sweden)

    James E. Komianos

    2018-04-01

    Full Text Available Current understanding of how contractility emerges in disordered actomyosin networks of nonmuscle cells is still largely based on the intuition derived from earlier works on muscle contractility. In addition, in disordered networks, passive cross-linkers have been hypothesized to percolate force chains in the network, hence, establishing large-scale connectivity between local contractile clusters. This view, however, largely overlooks the free energy of cross-linker binding at the microscale, which, even in the absence of active fluctuations, provides a thermodynamic drive towards highly overlapping filamentous states. In this work, we use stochastic simulations and mean-field theory to shed light on the dynamics of a single actomyosin force dipole—a pair of antiparallel actin filaments interacting with active myosin II motors and passive cross-linkers. We first show that while passive cross-linking without motor activity can produce significant contraction between a pair of actin filaments, driven by thermodynamic favorability of cross-linker binding, a sharp onset of kinetic arrest exists at large cross-link binding energies, greatly diminishing the effectiveness of this contractility mechanism. Then, when considering an active force dipole containing nonmuscle myosin II, we find that cross-linkers can also serve as a structural ratchet when the motor dissociates stochastically from the actin filaments, resulting in significant force amplification when both molecules are present. Our results provide predictions of how actomyosin force dipoles behave at the molecular level with respect to filament boundary conditions, passive cross-linking, and motor activity, which can explicitly be tested using an optical trapping experiment.

  5. Construction of porous cationic frameworks by crosslinking polyhedral oligomeric silsesquioxane units with N-heterocyclic linkers

    Science.gov (United States)

    Chen, Guojian; Zhou, Yu; Wang, Xiaochen; Li, Jing; Xue, Shuang; Liu, Yangqing; Wang, Qian; Wang, Jun

    2015-06-01

    In fields of materials science and chemistry, ionic-type porous materials attract increasing attention due to significant ion-exchanging capacity for accessing diversified applications. Facing the fact that porous cationic materials with robust and stable frameworks are very rare, novel tactics that can create new type members are highly desired. Here we report the first family of polyhedral oligomeric silsesquioxane (POSS) based porous cationic frameworks (PCIF-n) with enriched poly(ionic liquid)-like cationic structures, tunable mesoporosities, high surface areas (up to 1,025 m2 g-1) and large pore volumes (up to 0.90 cm3 g-1). Our strategy is designing the new rigid POSS unit of octakis(chloromethyl)silsesquioxane and reacting it with the rigid N-heterocyclic cross-linkers (typically 4,4‧-bipyridine) for preparing the desired porous cationic frameworks. The PCIF-n materials possess large surface area, hydrophobic and special anion-exchanging property, and thus are used as the supports for loading guest species PMo10V2O405- the resultant hybrid behaves as an efficient heterogeneous catalyst for aerobic oxidation of benzene and H2O2-mediated oxidation of cyclohexane.

  6. The roles of the RIIβ linker and N-terminal cyclic nucleotide-binding domain in determining the unique structures of the type IIβ protein kinase A: a small angle x-ray and neutron scattering study.

    Science.gov (United States)

    Blumenthal, Donald K; Copps, Jeffrey; Smith-Nguyen, Eric V; Zhang, Ping; Heller, William T; Taylor, Susan S

    2014-10-10

    Protein kinase A (PKA) is ubiquitously expressed and is responsible for regulating many important cellular functions in response to changes in intracellular cAMP concentrations. The PKA holoenzyme is a tetramer (R2:C2), with a regulatory subunit homodimer (R2) that binds and inhibits two catalytic (C) subunits; binding of cAMP to the regulatory subunit homodimer causes activation of the catalytic subunits. Four different R subunit isoforms exist in mammalian cells, and these confer different structural features, subcellular localization, and biochemical properties upon the PKA holoenzymes they form. The holoenzyme containing RIIβ is structurally unique in that the type IIβ holoenzyme is much more compact than the free RIIβ homodimer. We have used small angle x-ray scattering and small angle neutron scattering to study the solution structure and subunit organization of a holoenzyme containing an RIIβ C-terminal deletion mutant (RIIβ(1-280)), which is missing the C-terminal cAMP-binding domain to better understand the structural organization of the type IIβ holoenzyme and the RIIβ domains that contribute to stabilizing the holoenzyme conformation. Our results demonstrate that compaction of the type IIβ holoenzyme does not require the C-terminal cAMP-binding domain but rather involves large structural rearrangements within the linker and N-terminal cyclic nucleotide-binding domain of the RIIβ homodimer. The structural rearrangements are significantly greater than seen previously with RIIα and are likely to be important in mediating short range and long range interdomain and intersubunit interactions that uniquely regulate the activity of the type IIβ isoform of PKA. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Predicting binding within disordered protein regions to structurally characterised peptide-binding domains.

    Directory of Open Access Journals (Sweden)

    Waqasuddin Khan

    Full Text Available Disordered regions of proteins often bind to structured domains, mediating interactions within and between proteins. However, it is difficult to identify a priori the short disordered regions involved in binding. We set out to determine if docking such peptide regions to peptide binding domains would assist in these predictions.We assembled a redundancy reduced dataset of SLiM (Short Linear Motif containing proteins from the ELM database. We selected 84 sequences which had an associated PDB structures showing the SLiM bound to a protein receptor, where the SLiM was found within a 50 residue region of the protein sequence which was predicted to be disordered. First, we investigated the Vina docking scores of overlapping tripeptides from the 50 residue SLiM containing disordered regions of the protein sequence to the corresponding PDB domain. We found only weak discrimination of docking scores between peptides involved in binding and adjacent non-binding peptides in this context (AUC 0.58.Next, we trained a bidirectional recurrent neural network (BRNN using as input the protein sequence, predicted secondary structure, Vina docking score and predicted disorder score. The results were very promising (AUC 0.72 showing that multiple sources of information can be combined to produce results which are clearly superior to any single source.We conclude that the Vina docking score alone has only modest power to define the location of a peptide within a larger protein region known to contain it. However, combining this information with other knowledge (using machine learning methods clearly improves the identification of peptide binding regions within a protein sequence. This approach combining docking with machine learning is primarily a predictor of binding to peptide-binding sites, and is not intended as a predictor of specificity of binding to particular receptors.

  8. [Non-structural abnormalities of CNS function resulting in coincidence of endocrinopathies, epilepsy and psychoneurologic disorders in children and adolescents].

    Science.gov (United States)

    Starzyk, Jerzy; Pituch-Noworolska, Anna; Pietrzyk, Jacek A; Urbanik, Andrzej; Kroczka, Sławomir; Drozdz, Ryszard; Wójcik, Małgorzata

    2010-01-01

    In the population of children and adolescents, epilepsy affects approximately 1% of cases, nonepileptic seizures are seen in approximately 3%, and endocrine disorders are several times more common. For this reason, coincidence of endocrine disorders and epilepsy and psychoneurologic disorders is frequent. Much less common are structural abnormalities (tumors, developmental abnormalities), and especially non-structural CNS abnormalities, resulting in coincidence of both disorders. There are no reports available in the literature that would address the problem. 1) Assessment of the frequency of coincidental epilepsy and endocrine disorders in patients without structural CSN abnormalities treated as outpatients and inpatients of Department of Endocrinology University Children's Hospital of Krakow. 2) Presentation of diagnostic and therapeutic difficulties in these patients, and 3) An attempt at defining the common etiology of both disorders. On the basis of ICD code patients with coincidance of endocrine disorders, epilepsy and psychoneurologic disorders were selected from several thousands of children treated between 2000 and 2009 in Pediatric Endocrinology Department. The neurologic disorders were diagnosed and treated in Chair and Department of Children's and Adolescents Neurology or in another pediatric neurology center. Various forms of epilepsy (symptomatic or idiopathic) and other psychoneurological disorders (disorders of behavior and emotions, obsession-compulsion syndromes, stereotypias, aggression, autoaggression, or hypothalamic obesity) coincident with one or more endocrine disorders, such as growth disorders, disorders of pubertal development, obesity, thyroid diseases, adrenal diseases, hyperprolactinemia, hypoparathyroidism and ion metabolism disorders were diagnosed in 49 patients. The group included: i) children after cranial irradiation and chemotherapy due to medulloblastoma (3 patients), oligodenroglioma (1 patient), ependymoma (1 patient), optic

  9. Structural hierarchy of autism spectrum disorder symptoms: an integrative framework.

    Science.gov (United States)

    Kim, Hyunsik; Keifer, Cara M; Rodriguez-Seijas, Craig; Eaton, Nicholas R; Lerner, Matthew D; Gadow, Kenneth D

    2018-01-01

    In an attempt to resolve questions regarding the symptom classification of autism spectrum disorder (ASD), previous research generally aimed to demonstrate superiority of one model over another. Rather than adjudicating which model may be optimal, we propose an alternative approach that integrates competing models using Goldberg's bass-ackwards method, providing a comprehensive understanding of the underlying symptom structure of ASD. The study sample comprised 3,825 individuals, consecutive referrals to a university hospital developmental disabilities specialty clinic or a child psychiatry outpatient clinic. This study analyzed DSM-IV-referenced ASD symptom statements from parent and teacher versions of the Child and Adolescent Symptom Inventory-4R. A series of exploratory structural equation models was conducted in order to produce interpretable latent factors that account for multivariate covariance. Results indicated that ASD symptoms were structured into an interpretable hierarchy across multiple informants. This hierarchy includes five levels; key features of ASD bifurcate into different constructs with increasing specificity. This is the first study to examine an underlying structural hierarchy of ASD symptomatology using the bass-ackwards method. This hierarchy demonstrates how core features of ASD relate at differing levels of resolution, providing a model for conceptualizing ASD heterogeneity and a structure for integrating divergent theories of cognitive processes and behavioral features that define the disorder. These findings suggest that a more coherent and complete understanding of the structure of ASD symptoms may be reflected in a metastructure rather than at one level of resolution. © 2017 Association for Child and Adolescent Mental Health.

  10. The latent structure of oppositional defiant disorder in children and adults.

    Science.gov (United States)

    Barry, Tammy D; Marcus, David K; Barry, Christopher T; Coccaro, Emil F

    2013-12-01

    An understanding of the latent structure of oppositional defiant disorder (ODD) is essential for better developing causal models, improving diagnostic and assessment procedures, and enhancing treatments for the disorder. Although much research has focused on ODD-including recent studies informing the diagnostic criteria for DSM-5-research examining the latent structure of ODD is sparse, and no known study has specifically undertaken a taxometric analysis to address the issue of whether ODD is a categorical or dimensional construct. To address this gap, the authors conducted two separate studies using a set of taxometric analyses with data from the NICHD Study of Early Child Care and Youth Development (child study; n = 969) and with data from a large mixed sample of adults, which included participants reporting psychiatric difficulties as well as healthy controls (adult study; n = 600). The results of a variety of non-redundant analyses across both studies revealed a dimensional latent structure for ODD symptoms among both children and adults. These findings are consistent with previous studies that have examined latent structure of related constructs (e.g., aggression, antisocial behavior) as well as studies that have examined the dimensional versus categorical structure of ODD using methods other than taxometric analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Three-dimensional structure of N-terminal domain of DnaB helicase and helicase-primase interactions in Helicobacter pylori.

    Directory of Open Access Journals (Sweden)

    Tara Kashav

    2009-10-01

    Full Text Available Replication initiation is a crucial step in genome duplication and homohexameric DnaB helicase plays a central role in the replication initiation process by unwinding the duplex DNA and interacting with several other proteins during the process of replication. N-terminal domain of DnaB is critical for helicase activity and for DnaG primase interactions. We present here the crystal structure of the N-terminal domain (NTD of H. pylori DnaB (HpDnaB helicase at 2.2 A resolution and compare the structural differences among helicases and correlate with the functional differences. The structural details of NTD suggest that the linker region between NTD and C-terminal helicase domain plays a vital role in accurate assembly of NTD dimers. The sequence analysis of the linker regions from several helicases reveals that they should form four helix bundles. We also report the characterization of H. pylori DnaG primase and study the helicase-primase interactions, where HpDnaG primase stimulates DNA unwinding activity of HpDnaB suggesting presence of helicase-primase cohort at the replication fork. The protein-protein interaction study of C-terminal domain of primase and different deletion constructs of helicase suggests that linker is essential for proper conformation of NTD to interact strongly with HpDnaG. The surface charge distribution on the primase binding surface of NTDs of various helicases suggests that DnaB-DnaG interaction and stability of the complex is most probably charge dependent. Structure of the linker and helicase-primase interactions indicate that HpDnaB differs greatly from E.coli DnaB despite both belong to gram negative bacteria.

  12. Nanoscale structure and atomic disorder in the iron-based chalcogenides

    Directory of Open Access Journals (Sweden)

    Naurang Lal Saini

    2013-01-01

    Full Text Available The multiband iron-based superconductors have layered structure with a phase diagram characterized by a complex interplay of charge, spin and lattice excitations, with nanoscale atomic structure playing a key role in their fundamental electronic properties. In this paper, we briefly review nanoscale structure and atomic disorder in iron-based chalcogenide superconductors. We focus on the Fe(Se,S1−xTex (11-type and K0.8Fe1.6Se2 (122-type systems, discussing their local structure obtained by extended x-ray absorption fine structure. Local structure studies on the Fe(Se,S1−xTex system reveal clear nanoscale phase separation characterized by coexisting components of different atomic configurations, similar to the case of random alloys. In fact, the Fe–Se/S and Fe–Te distances in the ternary Fe(Se,S1−xTex are found to be closer to the respective distances in the binary FeSe/FeS and FeTe systems, showing significant divergence of the local structure from the average one. The observed features are characteristic of ternary random alloys, indicating breaking of the local symmetry in these materials. On the other hand, K0.8Fe1.6Se2 is known for phase separation in an iron-vacancy ordered phase and an in-plane compressed lattice phase. The local structure of these 122-type chalcogenides shows that this system is characterized by a large local disorder. Indeed, the experiments suggest a nanoscale glassy phase in K0.8Fe1.6Se2, with the superconductivity being similar to the granular materials. While the 11-type structure has no spacer layer, the 122-type structure contains intercalated atoms unlike the 1111-type REFeAsO (RE = rare earth oxypnictides, having well-defined REO spacer layers. It is clear that the interlayer atomic correlations in these iron-based superconducting structures play an important role in structural stability as well as superconductivity and magnetism.

  13. Gold nanoparticles deposited on linker-free silicon substrate and embedded in aluminum Schottky contact.

    Science.gov (United States)

    Gorji, Mohammad Saleh; Razak, Khairunisak Abdul; Cheong, Kuan Yew

    2013-10-15

    Given the enormous importance of Au nanoparticles (NPs) deposition on Si substrates as the precursor for various applications, we present an alternative approach to deposit Au NPs on linker-free n- and p-type Si substrates. It is demonstrated that, all conditions being similar, there is a significant difference between densities of the deposited NPs on both substrates. The Zeta-potential and polarity of charges surrounding the hydroxylamine reduced seeded growth Au NPs, are determined by a Zetasizer. To investigate the surface properties of Si substrates, contact angle measurement is performed. Field-emission scanning electron microscope is then utilized to distinguish the NPs density on the substrates. Finally, Al/Si Schottky barrier diodes with embedded Au NPs are fabricated, and their structural and electrical characteristics are further evaluated using an energy-filtered transmission electron microscope and current-voltage measurements, respectively. The results reveal that the density of NPs is significantly higher on n-type Si substrate and consequently has more pronounced effects on the electrical characteristics of the diode. It is concluded that protonation of Si-OH group on Si surface in low pH is responsible for the immobilization of Au NPs, which eventually contributes to the lowering of barrier height and enhances the electrical characteristics. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Factor structure and clinical utility of the Beck depression inventory in patients with binge eating disorder and obesity.

    Science.gov (United States)

    Udo, Tomoko; McKee, Sherry A; Grilo, Carlos M

    2015-01-01

    The Beck Depression Inventory (BDI) is often used to assess depression symptoms, but its factor structure and its clinical utility have not been evaluated in patients with binge eating disorder (BED) and obesity. A total of 882 treatment-seeking obese patients with BED were administered structured interviews (Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition Axis I Disorders) and completed self-report questionnaires. Exploratory and confirmatory factor analyses supported a brief 16-item BDI version with a three-factor structure (affective, attitudinal and somatic). Both 21- and 16-item versions showed excellent internal consistency (both α=0.89) and had significant correlation patterns with different aspects of eating disorder psychopathology; three factors showed significant but variable associations with eating disorder psychopathology. Area under the curves (AUC) for both BDI versions were significant in predicting major depressive disorder (MDD; AUC=0.773 [16-item], 73.5% sensitivity/70.2% specificity, AUC=0.769 [21-item], 79.5% sensitivity/64.1% specificity) and mood disorders (AUC=0.763 [16-item], 67.1% sensitivity/71.5% specificity, AUC=0.769 [21-item], 84.2% sensitivity/55.7% specificity). The 21-item BDI (cutoff score ≥16) showed higher negative predictive values (94.0% vs. 93.0% [MDD]; 92.4% vs. 88.3% [mood disorders]) than the brief 16-item BDI (cutoff score ≥13). Both BDI versions demonstrated moderate performance as a screening instrument for MDD/mood disorders in obese patients with BED. Advantages and disadvantages for both versions are discussed. A three-factor structure has potential to inform the conceptualization of depression features. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Brain structural anomalies in borderline and avoidant personality disorder patients and their associations with disorder-specific symptoms.

    Science.gov (United States)

    Denny, Bryan T; Fan, Jin; Liu, Xun; Guerreri, Stephanie; Mayson, Sarah Jo; Rimsky, Liza; McMaster, Antonia; Alexander, Heather; New, Antonia S; Goodman, Marianne; Perez-Rodriguez, Mercedes; Siever, Larry J; Koenigsberg, Harold W

    2016-08-01

    Borderline personality disorder (BPD) and avoidant personality disorder (AvPD) are characterized by hyper-reactivity to negatively-perceived interpersonal cues, yet they differ in degree of affective instability. Recent work has begun to elucidate the neural (structural and functional) and cognitive-behavioral underpinnings of BPD, although some initial studies of brain structure have reached divergent conclusions. AvPD, however, has been almost unexamined in the cognitive neuroscience literature. In the present study we investigated group differences among 29 BPD patients, 27 AvPD patients, and 29 healthy controls (HC) in structural brain volumes using voxel-based morphometry (VBM) in five anatomically-defined regions of interest: amygdala, hippocampus, medial prefrontal cortex (MPFC), dorsolateral prefrontal cortex (DLPFC), and anterior cingulate cortex (ACC). We also examined the relationship between individual differences in brain structure and self-reported anxiety and affective instability in each group. We observed reductions in MPFC and ACC volume in BPD relative to HC, with no significant difference among patient groups. No group differences in amygdala volume were found. However, BPD and AvPD patients each showed a positive relationship between right amygdala volume and state-related anxiety. By contrast, in HC there was an inverse relationship between MPFC volume and state and trait-related anxiety as well as between bilateral DLPFC volume and affective instability. Current sample sizes did not permit examination of gender effects upon structure-symptom correlations. These results shed light on potentially protective, or compensatory, aspects of brain structure in these populations-namely, relatively reduced amygdala volume or relatively enhanced MPFC and DLPFC volume. Published by Elsevier B.V.

  16. Examining the latent structure mechanisms for comorbid posttraumatic stress disorder and major depressive disorder.

    Science.gov (United States)

    Hurlocker, Margo C; Vidaurri, Desirae N; Cuccurullo, Lisa-Ann J; Maieritsch, Kelly; Franklin, C Laurel

    2018-03-15

    Posttraumatic stress disorder (PTSD) is a complex psychiatric illness that can be difficult to diagnose, due in part to its comorbidity with major depressive disorder (MDD). Given that researchers have found no difference in prevalence rates of PTSD and MDD after accounting for overlapping symptoms, the latent structures of PTSD and MDD may account for the high comorbidity. In particular, the PTSD Negative Alterations in Cognition and Mood (NACM) and Hyperarousal factors have been characterized as non-specific to PTSD. Therefore, we compared the factor structures of the Diagnostic and Statistical Manual of Mental Disorders, 5 th edition (DSM-5) PTSD and MDD and examined the mediating role of the PTSD NACM and Hyperarousal factors on the relationship between MDD and PTSD symptom severity. Participants included 598 trauma-exposed veterans (M age = 48.39, 89% male) who completed symptom self-report measures of DSM-5 PTSD and MDD. Confirmatory factor analyses indicated an adequate-fitting four-factor DSM-5 PTSD model and two-factor MDD model. Compared to other PTSD factors, the PTSD NACM factor had the strongest relationship with the MDD Affective factor, and the PTSD NACM and Hyperarousal factors had the strongest association with the MDD Somatic factor. Further, the PTSD NACM factor explained the relationship between MDD factors and PTSD symptom severity. More Affective and Somatic depression was related to more NACM symptoms, which in turn were related to increased severity of PTSD. Limitations include the reliance on self-report measures and the use of a treatment-seeking, trauma-exposed veteran sample which may not generalize to other populations. Implications concerning the shared somatic complaints and psychological distress in the comorbidity of PTSD and MDD are discussed. Published by Elsevier B.V.

  17. Brain structure-function associations in multi-generational families genetically enriched for bipolar disorder.

    Science.gov (United States)

    Fears, Scott C; Schür, Remmelt; Sjouwerman, Rachel; Service, Susan K; Araya, Carmen; Araya, Xinia; Bejarano, Julio; Knowles, Emma; Gomez-Makhinson, Juliana; Lopez, Maria C; Aldana, Ileana; Teshiba, Terri M; Abaryan, Zvart; Al-Sharif, Noor B; Navarro, Linda; Tishler, Todd A; Altshuler, Lori; Bartzokis, George; Escobar, Javier I; Glahn, David C; Thompson, Paul M; Lopez-Jaramillo, Carlos; Macaya, Gabriel; Molina, Julio; Reus, Victor I; Sabatti, Chiara; Cantor, Rita M; Freimer, Nelson B; Bearden, Carrie E

    2015-07-01

    Recent theories regarding the pathophysiology of bipolar disorder suggest contributions of both neurodevelopmental and neurodegenerative processes. While structural neuroimaging studies indicate disease-associated neuroanatomical alterations, the behavioural correlates of these alterations have not been well characterized. Here, we investigated multi-generational families genetically enriched for bipolar disorder to: (i) characterize neurobehavioural correlates of neuroanatomical measures implicated in the pathophysiology of bipolar disorder; (ii) identify brain-behaviour associations that differ between diagnostic groups; (iii) identify neurocognitive traits that show evidence of accelerated ageing specifically in subjects with bipolar disorder; and (iv) identify brain-behaviour correlations that differ across the age span. Structural neuroimages and multi-dimensional assessments of temperament and neurocognition were acquired from 527 (153 bipolar disorder and 374 non-bipolar disorder) adults aged 18-87 years in 26 families with heavy genetic loading for bipolar disorder. We used linear regression models to identify significant brain-behaviour associations and test whether brain-behaviour relationships differed: (i) between diagnostic groups; and (ii) as a function of age. We found that total cortical and ventricular volume had the greatest number of significant behavioural associations, and included correlations with measures from multiple cognitive domains, particularly declarative and working memory and executive function. Cortical thickness measures, in contrast, showed more specific associations with declarative memory, letter fluency and processing speed tasks. While the majority of brain-behaviour relationships were similar across diagnostic groups, increased cortical thickness in ventrolateral prefrontal and parietal cortical regions was associated with better declarative memory only in bipolar disorder subjects, and not in non-bipolar disorder family

  18. Lymphatic transport and lymph node targeting of methotrexate-conjugated PEGylated dendrimers are enhanced by reducing the length of the drug linker or masking interactions with the injection site.

    Science.gov (United States)

    Ryan, Gemma M; McLeod, Victoria M; Mehta, Dharmini; Kelly, Brian D; Stanislawski, Pauline C; Owen, David J; Kaminskas, Lisa M; Porter, Christopher J H

    2017-11-01

    Drug conjugation to dendrimer-based delivery systems has been shown to enhance delivery to the lymphatic system after subcutaneous administration. Dendrimer interaction with components of the interstitium at the injection site, however, may prevent drainage from the injection site. The current study sought to vary the length of a linker employed to conjugate methotrexate (MTX) to a PEGylated dendrimer, in an attempt to reduce MTX interaction with interstitial binding sites and enhance lymphatic drainage. Dendrimers with shorter linkers resulted in higher lymphatic drainage, presumably via shielding of interaction sites by the PEG mantle, but were not retained in lymph nodes. Improved drainage of dendrimers with longer linkers was achieved through coadministration with dextran to mask interactions at the injection site while maintaining retention within the node. Enhanced drug exposure to the lymph node has the potential to enhance the treatment of lymph-node resident cancer metastases. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Control and large deformations of marginal disordered structures

    Science.gov (United States)

    Murugan, Arvind; Pinson, Matthew; Chen, Elizabeth

    Designed deformations, such as origami patterns, provide a way to make easily controlled mechanical metamaterials with tailored responses to external forces. We focus on an often overlooked regime of origami - non-linear deformations of large disordered origami patterns with no symmetries. We find that practical questions of control in origami have counterintuitive answers, because of intimate connections to spin glasses and neural networks. For example, 1 degree of freedom origami structures are actually difficult to control about the flat state with a single actuator; the actuator is thrown off by an exponential number of `red herring' zero modes for small deformations, all but one of which disappear at larger deformations. Conversely, structures with multiple programmed motions are much easier to control than expected - in fact, they are as easy to control as a dedicated single-motion structure if the number of programmed motions is below a threshold (`memory capacity').

  20. Use of designed sequences in protein structure recognition.

    Science.gov (United States)

    Kumar, Gayatri; Mudgal, Richa; Srinivasan, Narayanaswamy; Sandhya, Sankaran

    2018-05-09

    Knowledge of the protein structure is a pre-requisite for improved understanding of molecular function. The gap in the sequence-structure space has increased in the post-genomic era. Grouping related protein sequences into families can aid in narrowing the gap. In the Pfam database, structure description is provided for part or full-length proteins of 7726 families. For the remaining 52% of the families, information on 3-D structure is not yet available. We use the computationally designed sequences that are intermediately related to two protein domain families, which are already known to share the same fold. These strategically designed sequences enable detection of distant relationships and here, we have employed them for the purpose of structure recognition of protein families of yet unknown structure. We first measured the success rate of our approach using a dataset of protein families of known fold and achieved a success rate of 88%. Next, for 1392 families of yet unknown structure, we made structural assignments for part/full length of the proteins. Fold association for 423 domains of unknown function (DUFs) are provided as a step towards functional annotation. The results indicate that knowledge-based filling of gaps in protein sequence space is a lucrative approach for structure recognition. Such sequences assist in traversal through protein sequence space and effectively function as 'linkers', where natural linkers between distant proteins are unavailable. This article was reviewed by Oliviero Carugo, Christine Orengo and Srikrishna Subramanian.

  1. Microencapsulation of Epoxidized Linseed Oil Liquid Cross-Linker in Poly(N-vinyl-pyrrolidone): Optimization by a Design-of-Experiments Approach

    NARCIS (Netherlands)

    Senatore, D.; Laven, J.; Benthem, van R.A.T.M.; La Camera, D.; With, de G.

    2010-01-01

    A liquid cross-linker, epoxidized linseed oil (ELO), was encapsulated in a plastic with a high glass transition temperature (poly(N-vinyl-2-pyrrolidone); PVP). The process parameters of the spray-drying employed were optimized by a Design-of-Experiments (DoE) approach. Three factors concerning both

  2. The ortho backbone amide linker (o-BAL) is an easily prepared and highly acid-labile handle for solid-phase synthesis

    DEFF Research Database (Denmark)

    Boas, Ulrik; Brask, Jesper; Christensen, J.B.

    2002-01-01

    The tris(alkoxy)benzyl backbone amide linker (BAL) has found widespread application in solid-phase synthesis. The key intermediate for preparation of para BAL (p-BAL) is 2,6-dimethoxy-4-hydroxybenzaldehyde; several reports on its synthesis have appeared. However, the ortho analogue of the handle (o...

  3. Distinct DNA-binding surfaces in the ATPase and linker domains of MutLγ determine its substrate specificities and exert separable functions in meiotic recombination and mismatch repair.

    Directory of Open Access Journals (Sweden)

    Corentin Claeys Bouuaert

    2017-05-01

    Full Text Available Mlh1-Mlh3 (MutLγ is a mismatch repair factor with a central role in formation of meiotic crossovers, presumably through resolution of double Holliday junctions. MutLγ has DNA-binding, nuclease, and ATPase activities, but how these relate to one another and to in vivo functions are unclear. Here, we combine biochemical and genetic analyses to characterize Saccharomyces cerevisiae MutLγ. Limited proteolysis and atomic force microscopy showed that purified recombinant MutLγ undergoes ATP-driven conformational changes. In vitro, MutLγ displayed separable DNA-binding activities toward Holliday junctions (HJ and, surprisingly, single-stranded DNA (ssDNA, which was not predicted from current models. MutLγ bound DNA cooperatively, could bind multiple substrates simultaneously, and formed higher-order complexes. FeBABE hydroxyl radical footprinting indicated that the DNA-binding interfaces of MutLγ for ssDNA and HJ substrates only partially overlap. Most contacts with HJ substrates were located in the linker regions of MutLγ, whereas ssDNA contacts mapped within linker regions as well as the N-terminal ATPase domains. Using yeast genetic assays for mismatch repair and meiotic recombination, we found that mutations within different DNA-binding surfaces exert separable effects in vivo. For example, mutations within the Mlh1 linker conferred little or no meiotic phenotype but led to mismatch repair deficiency. Interestingly, mutations in the N-terminal domain of Mlh1 caused a stronger meiotic defect than mlh1Δ, suggesting that the mutant proteins retain an activity that interferes with alternative recombination pathways. Furthermore, mlh3Δ caused more chromosome missegregation than mlh1Δ, whereas mlh1Δ but not mlh3Δ partially alleviated meiotic defects of msh5Δ mutants. These findings illustrate functional differences between Mlh1 and Mlh3 during meiosis and suggest that their absence impinges on chromosome segregation not only via reduced

  4. Crystal structure of human CRMP-4: correction of intensities for lattice-translocation disorder

    Energy Technology Data Exchange (ETDEWEB)

    Ponnusamy, Rajesh [Universidade Nova de Lisboa, Avenida da República, EAN, 2781-901 Oeiras (Portugal); Lebedev, Andrey A. [Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot OX11 0FA (United Kingdom); Pahlow, Steffen [University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg (Germany); Lohkamp, Bernhard, E-mail: bernhard.lohkamp@ki.se [Karolinska Institutet, Tomtebodavägen 6, 4tr, 17177 Stockholm (Sweden); Universidade Nova de Lisboa, Avenida da República, EAN, 2781-901 Oeiras (Portugal)

    2014-06-01

    Crystals of human CRMP-4 showed severe lattice-translocation disorder. Intensities were demodulated using the so-called lattice-alignment method and a new more general method with simplified parameterization, and the structure is presented. Collapsin response mediator proteins (CRMPs) are cytosolic phosphoproteins that are mainly involved in neuronal cell development. In humans, the CRMP family comprises five members. Here, crystal structures of human CRMP-4 in a truncated and a full-length version are presented. The latter was determined from two types of crystals, which were either twinned or partially disordered. The crystal disorder was coupled with translational NCS in ordered domains and manifested itself with a rather sophisticated modulation of intensities. The data were demodulated using either the two-lattice treatment of lattice-translocation effects or a novel method in which demodulation was achieved by independent scaling of several groups of intensities. This iterative protocol does not rely on any particular parameterization of the modulation coefficients, but uses the current refined structure as a reference. The best results in terms of R factors and map correlation coefficients were obtained using this new method. The determined structures of CRMP-4 are similar to those of other CRMPs. Structural comparison allowed the confirmation of known residues, as well as the identification of new residues, that are important for the homo- and hetero-oligomerization of these proteins, which are critical to nerve-cell development. The structures provide further insight into the effects of medically relevant mutations of the DPYSL-3 gene encoding CRMP-4 and the putative enzymatic activities of CRMPs.

  5. Crystal structure of human CRMP-4: correction of intensities for lattice-translocation disorder

    International Nuclear Information System (INIS)

    Ponnusamy, Rajesh; Lebedev, Andrey A.; Pahlow, Steffen; Lohkamp, Bernhard

    2014-01-01

    Crystals of human CRMP-4 showed severe lattice-translocation disorder. Intensities were demodulated using the so-called lattice-alignment method and a new more general method with simplified parameterization, and the structure is presented. Collapsin response mediator proteins (CRMPs) are cytosolic phosphoproteins that are mainly involved in neuronal cell development. In humans, the CRMP family comprises five members. Here, crystal structures of human CRMP-4 in a truncated and a full-length version are presented. The latter was determined from two types of crystals, which were either twinned or partially disordered. The crystal disorder was coupled with translational NCS in ordered domains and manifested itself with a rather sophisticated modulation of intensities. The data were demodulated using either the two-lattice treatment of lattice-translocation effects or a novel method in which demodulation was achieved by independent scaling of several groups of intensities. This iterative protocol does not rely on any particular parameterization of the modulation coefficients, but uses the current refined structure as a reference. The best results in terms of R factors and map correlation coefficients were obtained using this new method. The determined structures of CRMP-4 are similar to those of other CRMPs. Structural comparison allowed the confirmation of known residues, as well as the identification of new residues, that are important for the homo- and hetero-oligomerization of these proteins, which are critical to nerve-cell development. The structures provide further insight into the effects of medically relevant mutations of the DPYSL-3 gene encoding CRMP-4 and the putative enzymatic activities of CRMPs

  6. Den danske udgave af Structured Clinical Interview for DSM-5 Personality Disorders (SCID-5-PD)

    DEFF Research Database (Denmark)

    Kongerslev, Mickey T; Bach, Bo; Olsen, Cecilie Westergaard

    2017-01-01

    The chapter outlines the rationale for using structured clinical interviews to diagnose personality disorder, provides an overview of the changes from SCID-II to SCID-5-PD, and describes the translation procedures used for the Danish version......The chapter outlines the rationale for using structured clinical interviews to diagnose personality disorder, provides an overview of the changes from SCID-II to SCID-5-PD, and describes the translation procedures used for the Danish version...

  7. OD (order-disorder) character of the crystal structure of maucherite Ni8As11

    DEFF Research Database (Denmark)

    Makovicky, Emil; Merlino, Stefano

    2009-01-01

    Maucherite Ni11As8 has been found to be an OD (order-disorder) structure consisting of unit layers, which display stacking orientation disorder. Maucherite is composed of OD layers of one kind, with layer symmetry P( )m2 (the bracketed element is perpendicular to the layer), the simplest, uniform...

  8. Stomach Chitinase from Japanese Sardine Sardinops melanostictus: Purification, Characterization, and Molecular Cloning of Chitinase Isozymes with a Long Linker

    Directory of Open Access Journals (Sweden)

    Satoshi Kawashima

    2016-01-01

    Full Text Available Fish express two different chitinases, acidic fish chitinase-1 (AFCase-1 and acidic fish chitinase-2 (AFCase-2, in the stomach. AFCase-1 and AFCase-2 have different degradation patterns, as fish efficiently degrade chitin ingested as food. For a comparison with the enzymatic properties and the primary structures of chitinase isozymes obtained previously from the stomach of demersal fish, in this study, we purified chitinase isozymes from the stomach of Japanese sardine Sardinops melanostictus, a surface fish that feeds on plankton, characterized the properties of these isozymes, and cloned the cDNAs encoding chitinases. We also predicted 3D structure models using the primary structures of S. melanostictus stomach chitinases. Two chitinase isozymes, SmeChiA (45 kDa and SmeChiB (56 kDa, were purified from the stomach of S. melanostictus. Moreover, two cDNAs, SmeChi-1 encoding SmeChiA, and SmeChi-2 encoding SmeChiB were cloned. The linker regions of the deduced amino acid sequences of SmeChi-1 and SmeChi-2 (SmeChi-1 and SmeChi-2 are the longest among the fish stomach chitinases. In the cleavage pattern groups toward short substrates and the phylogenetic tree analysis, SmeChi-1 and SmeChi-2 were classified into AFCase-1 and AFCase-2, respectively. SmeChi-1 and SmeChi-2 had catalytic domains that consisted of a TIM-barrel (β/α8–fold structure and a deep substrate-binding cleft. This is the first study showing the 3D structure models of fish stomach chitinases.

  9. Assessment of Semi-Structured Clinical Interview for Mobile ‎Phone ‎Addiction Disorder

    Directory of Open Access Journals (Sweden)

    Seyyed Salman Alavi

    2016-06-01

    Full Text Available Objective: The Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR classified mobile phone addiction disorder under ‎‎"impulse control disorder not elsewhere classified". This study surveyed the ‎diagnostic criteria of DSM-IV-TR for the diagnosis of mobile phone ‎addiction in correspondence with Iranian society and culture.‎Method: Two hundred fifty students of Tehran universities were entered into this ‎descriptive-analytical and cross-sectional study. Quota sampling method ‎was used. At first, semi- structured clinical interview (based on DSM-IV-‎TR was performed for all the cases, and another specialist re-evaluated the ‎interviews. Data were analyzed using content validity, inter-scorer reliability (Kappa coefficient and test-retest via SPSS18 software.Results: The content validity of the semi- structured clinical interview matched the ‎DSM –IV-TR criteria for behavioral addiction. Moreover, their content was ‎appropriate, and two items, including "SMS pathological use" and "High ‎monthly cost of using the mobile phone” were added to promote its validity. ‎Internal reliability (Kappa and test –retest reliability were 0.55 and r = 0.4 ‎‎(p<0. 01 respectively.‎Conclusion: The results of this study revealed that semi- structured diagnostic criteria of ‎DSM-IV-TR are valid and reliable for diagnosing mobile phone addiction, ‎and this instrument is an effective tool to diagnose this disorder.‎

  10. A global view of structure-function relationships in the tautomerase superfamily.

    Science.gov (United States)

    Davidson, Rebecca; Baas, Bert-Jan; Akiva, Eyal; Holliday, Gemma L; Polacco, Benjamin J; LeVieux, Jake A; Pullara, Collin R; Zhang, Yan Jessie; Whitman, Christian P; Babbitt, Patricia C

    2018-02-16

    The tautomerase superfamily (TSF) consists of more than 11,000 nonredundant sequences present throughout the biosphere. Characterized members have attracted much attention because of the unusual and key catalytic role of an N-terminal proline. These few characterized members catalyze a diverse range of chemical reactions, but the full scale of their chemical capabilities and biological functions remains unknown. To gain new insight into TSF structure-function relationships, we performed a global analysis of similarities across the entire superfamily and computed a sequence similarity network to guide classification into distinct subgroups. Our results indicate that TSF members are found in all domains of life, with most being present in bacteria. The eukaryotic members of the cis -3-chloroacrylic acid dehalogenase subgroup are limited to fungal species, whereas the macrophage migration inhibitory factor subgroup has wide eukaryotic representation (including mammals). Unexpectedly, we found that 346 TSF sequences lack Pro-1, of which 85% are present in the malonate semialdehyde decarboxylase subgroup. The computed network also enabled the identification of similarity paths, namely sequences that link functionally diverse subgroups and exhibit transitional structural features that may help explain reaction divergence. A structure-guided comparison of these linker proteins identified conserved transitions between them, and kinetic analysis paralleled these observations. Phylogenetic reconstruction of the linker set was consistent with these findings. Our results also suggest that contemporary TSF members may have evolved from a short 4-oxalocrotonate tautomerase-like ancestor followed by gene duplication and fusion. Our new linker-guided strategy can be used to enrich the discovery of sequence/structure/function transitions in other enzyme superfamilies. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Factor structure of self-reported clinical disorders and personality disorders : A review of the existing literature and a factor analytical study

    NARCIS (Netherlands)

    Bachrach, N.; Croon, M.A.; Bekker, M.H.J.

    2012-01-01

    Objectives The aim of this research is to add to the current understanding of the latent factor structure of personality disorders by performing a review of the existing literature (Study 1) and a factor analytical study on the factor structure and the relationship between self-reported Axis I and

  12. The p Factor: One General Psychopathology Factor in the Structure of Psychiatric Disorders?

    Science.gov (United States)

    Caspi, Avshalom; Houts, Renate M.; Belsky, Daniel W.; Goldman-Mellor, Sidra J.; Harrington, HonaLee; Israel, Salomon; Meier, Madeline H.; Ramrakha, Sandhya; Shalev, Idan; Poulton, Richie; Moffitt, Terrie E.

    2013-01-01

    Mental disorders traditionally have been viewed as distinct, episodic, and categorical conditions. This view has been challenged by evidence that many disorders are sequentially comorbid, recurrent/chronic, and exist on a continuum. Using the Dunedin Multidisciplinary Health and Development Study, we examined the structure of psychopathology, taking into account dimensionality, persistence, co-occurrence, and sequential comorbidity of mental disorders across 20 years, from adolescence to midlife. Psychiatric disorders were initially explained by three higher-order factors (Internalizing, Externalizing, and Thought Disorder) but explained even better with one General Psychopathology dimension. We have called this dimension the p factor because it conceptually parallels a familiar dimension in psychological science: the g factor of general intelligence. Higher p scores are associated with more life impairment, greater familiality, worse developmental histories, and more compromised early-life brain function. The p factor explains why it is challenging to find causes, consequences, biomarkers, and treatments with specificity to individual mental disorders. Transdiagnostic approaches may improve research. PMID:25360393

  13. The structure of post-traumatic stress disorder and complex post-traumatic stress disorder amongst West Papuan refugees.

    Science.gov (United States)

    Tay, Alvin Kuowei; Rees, Susan; Chen, Jack; Kareth, Moses; Silove, Derrick

    2015-05-07

    The validity of applying the construct of post-traumatic stress disorder (PTSD) across cultures has been the subject of contention. Although PTSD symptoms have been identified across multiple cultures, questions remain whether the constellation represents a coherent construct with an interpretable factor structure across diverse populations, especially those naïve to western notions of mental disorder. An important additional question is whether a constellation of Complex-PTSD (C-PTSD) can be identified and if so, whether there are distinctions between that disorder and core PTSD in patterns of antecedent traumatic events. Our study amongst West Papuan refugees in Papua New Guinea (PNG) aimed to examine the factorial structure of PTSD based on the DSM-IV, DSM-5, ICD-10 and ICD-11 definitions, and C-PTSD according to proposed ICD-11 criteria. We also investigated domains of traumatic events (TEs) and broader psychosocial effects of conflict (sense of safety and injustice) associated with the factorial structures identified. Culturally adapted measures were applied to assess exposure to conflict-related traumatic events (TEs), refugees' sense of safety and justice, and symptoms of PTSD and C-PTSD amongst 230 West Papuan refugees residing in Port Morseby, PNG. Confirmatory factor analysis (CFA) supported a unitary construct of both ICD-10 and ICD-11 PTSD, comprising the conventional symptom subdomains of intrusion, avoidance, and hyperarousal. In contrast, CFA did not identify a unitary construct underlying C-PTSD. The interaction of witnessing murders and sense of injustice was associated with both the intrusion and avoidance domains of PTSD, but not with the unique symptom clusters characterizing C-PTSD. Our findings support the ICD PTSD construct and its three-factor structure in this transcultural refugee population. Traumatic experiences of witnessing murder associated with a sense of injustice were specifically related to the intrusion and avoidance domains of

  14. Modeling alcohol use disorder severity: an integrative structural equation modeling approach

    Directory of Open Access Journals (Sweden)

    Nathasha R Moallem

    2013-07-01

    Full Text Available Background: Alcohol dependence is a complex psychological disorder whose phenomenology changes as the disorder progresses. Neuroscience has provided a variety of theories and evidence for the development, maintenance, and severity of addiction; however, clinically, it has been difficult to evaluate alcohol use disorder (AUD severity. Objective: This study seeks to evaluate and validate a data-driven approach to capturing alcohol severity in a community sample. Method: Participants were non-treatment seeking problem drinkers (n = 283. A structural equation modeling (SEM approach was used to (a verify the latent factor structure of the indices of AUD severity; and (b test the relationship between the AUD severity factor and measures of alcohol use, affective symptoms, and motivation to change drinking. Results: The model was found to fit well, with all chosen indices of AUD severity loading significantly and positively onto the severity factor. In addition, the paths from the alcohol use, motivation, and affective factors accounted for 68% of the variance in AUD severity. Greater AUD severity was associated with greater alcohol use, increased affective symptoms, and higher motivation to change.Conclusions: Unlike the categorical diagnostic criteria, the AUD severity factor is comprised of multiple quantitative dimensions of impairment observed across the progression of the disorder. The AUD severity factor was validated by testing it in relation to other outcomes such as alcohol use, affective symptoms, and motivation for change. Clinically, this approach to AUD severity can be used to inform treatment planning and ultimately to improve outcomes.

  15. Probing the Influence of Linker Length and Flexibility in the Design and Synthesis of New Trehalase Inhibitors

    Directory of Open Access Journals (Sweden)

    Giampiero D’Adamio

    2018-02-01

    Full Text Available This work aims to synthesize new trehalase inhibitors selective towards the insect trehalase versus the porcine trehalase, in view of their application as potentially non-toxic insecticides and fungicides. The synthesis of a new pseudodisaccharide mimetic 8, by means of a stereoselective α-glucosylation of the key pyrrolizidine intermediate 13, was accomplished. The activity of compound 8 as trehalase inhibitor towards C. riparius trehalase was evaluated and the results showed that 8 was active in the μM range and showed a good selectivity towards the insect trehalase. To reduce the overall number of synthetic steps, simpler and more flexible disaccharide mimetics 9–11 bearing a pyrrolidine nucleus instead of the pyrrolizidine core were synthesized. The biological data showed the key role of the linker chain’s length in inducing inhibitory properties, since only compounds 9 (α,β-mixture, bearing a two-carbon atom linker chain, maintained activity as trehalase inhibitors. A proper change in the glucosyl donor-protecting groups allowed the stereoselective synthesis of the β-glucoside 9β, which was active in the low micromolar range (IC50 = 0.78 μM and 12-fold more potent (and more selective than 9α towards the insect trehalase.

  16. Parsing the roles of neck-linker docking and tethered head diffusion in the stepping dynamics of kinesin.

    Science.gov (United States)

    Zhang, Zhechun; Goldtzvik, Yonathan; Thirumalai, D

    2017-11-14

    Kinesin walks processively on microtubules (MTs) in an asymmetric hand-over-hand manner consuming one ATP molecule per 16-nm step. The individual contributions due to docking of the approximately 13-residue neck linker to the leading head (deemed to be the power stroke) and diffusion of the trailing head (TH) that contributes in propelling the motor by 16 nm have not been quantified. We use molecular simulations by creating a coarse-grained model of the MT-kinesin complex, which reproduces the measured stall force as well as the force required to dislodge the motor head from the MT, to show that nearly three-quarters of the step occurs by bidirectional stochastic motion of the TH. However, docking of the neck linker to the leading head constrains the extent of diffusion and minimizes the probability that kinesin takes side steps, implying that both the events are necessary in the motility of kinesin and for the maintenance of processivity. Surprisingly, we find that during a single step, the TH stochastically hops multiple times between the geometrically accessible neighboring sites on the MT before forming a stable interaction with the target binding site with correct orientation between the motor head and the [Formula: see text] tubulin dimer.

  17. Does Attention-Deficit/Hyperactivity Disorder Have a Dimensional Latent Structure? A Taxometric Analysis

    Science.gov (United States)

    Marcus, David K.; Barry, Tammy D.

    2010-01-01

    An understanding of the latent structure of attention-deficit/hyperactivity disorder (ADHD) is essential for developing causal models of this disorder. Although some researchers have presumed that ADHD is dimensional and others have assumed that it is taxonic, there has been relatively little research directly examining the latent structure of ADHD. The authors conducted a set of taxometric analyses using data from the NICHD Study of Early Child Care and Youth Development (ns between 667–1078). The results revealed a dimensional latent structure across a variety of different analyses and sets of indicators, for inattention, hyperactivity/impulsivity, and ADHD. Furthermore, analyses of correlations with associated features indicated that dimensional models demonstrated stronger validity coefficients with these criterion measures than dichotomous models. These findings jibe with recent research on the genetic basis of ADHD and with contemporary models of ADHD. PMID:20973595

  18. Does attention-deficit/hyperactivity disorder have a dimensional latent structure? A taxometric analysis.

    Science.gov (United States)

    Marcus, David K; Barry, Tammy D

    2011-05-01

    An understanding of the latent structure of attention-deficit/hyperactivity disorder (ADHD) is essential for developing causal models of this disorder. Although some researchers have presumed that ADHD is dimensional and others have assumed that it is taxonic, there has been relatively little research directly examining the latent structure of ADHD. The authors conducted a set of taxometric analyses using data from the NICHD Study of Early Child Care and Youth Development (ns between 667 and 1,078). The results revealed a dimensional latent structure across a variety of different analyses and sets of indicators for inattention, hyperactivity/impulsivity, and ADHD. Furthermore, analyses of correlations with associated features indicated that dimensional models demonstrated stronger validity coefficients with these criterion measures than dichotomous models. These findings jibe with recent research on the genetic basis of ADHD and with contemporary models of ADHD.

  19. Exciton polaritons and their one-dimensional localization in disordered structure with quantum wells

    International Nuclear Information System (INIS)

    Kosobukin, V.A.

    2003-01-01

    The Anderson light localization theory by disordered ultrathin layers (quantum wells), uniform in lateral directions and featuring intrinsic optical resonances, is presented. A model of the layers with delta-function resonance dielectric polarization is suggested for solution of the multiple scattering problem. Allowance made for interlayer disorder, one- and two-phoron characteristics of electromagnetic transfer, i.e. average energy density and the length of the Anderson light localization were calculated in analytical form. It is shown that in disordered structure average electromagnetic field is propagated as polaritons formed due to excessive emission of excitons between the quantum wells [ru

  20. The structure of DSM-5 posttraumatic stress disorder symptoms in war veterans.

    Science.gov (United States)

    Konecky, Brian; Meyer, Eric C; Kimbrel, Nathan A; Morissette, Sandra B

    2016-09-01

    The present research examined the underlying factor structure of posttraumatic stress disorder (PTSD) as conceptualized in the recently published fifth edition of the Diagnostic and statistical manual of mental disorders (DSM-5). Participants were 258 trauma-exposed Iraq/Afghanistan war veterans. A self-report measure of PTSD symptoms was administered to all participants and confirmatory factor analysis (CFA) was used to compare several different models of PTSD. CFA revealed that the best-fitting model was a six-factor model in which symptoms loaded onto the factors of intrusion, avoidance, negative affect, anhedonia, dysphoric arousal, and anxious arousal. These findings have important implications for ongoing conceptualization of PTSD and suggest that additional modifications to the diagnostic criteria for PTSD may still be warranted to more accurately reflect the underlying structure of PTSD symptoms.

  1. Effect of temperature and magnetic field on disorder in semiconductor structures

    Energy Technology Data Exchange (ETDEWEB)

    Agrinskaya, N. V., E-mail: nina.agrins@mail.ioffe.ru; Kozub, V. I. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2017-02-15

    We present the results of consistent theoretical analysis of various factors that may lead to influence of temperature and external magnetic field on disorder in semiconductor structures. Main attention is paid to quantum well (QW) structures in which only QWs or both QW and barriers are doped (the doping level is assumed to be close to the value corresponding to the metal–insulator transition). The above factors include (i) ionization of localized states to the region of delocalized states above the mobility edge, which is presumed to exist in the impurity band; (ii) the coexistence in the upper and lower Hubbard bands (upon doping of QWs as well as barriers); in this case, in particular, the external magnetic field determines the relative contribution of the upper Hubbard band due to spin correlations at doubly filled sites; and (iii) the contribution of the exchange interaction at pairs of sites, in which the external magnetic field can affect the relation between ferromagnetic and antiferromagnetic configurations. All these factors, which affect the structure and degree of disorder, lead to specific features in the temperature dependence of resistivity and determine specific features of the magnetoresistance. Our conclusions are compared with available experimental data.

  2. Traceless Azido Linker for the Solid-Phase Synthesis of NH-1,2,3-Triazoles via Cu-Catalyzed Azide-Alkyne Cycloaddition Reactions

    DEFF Research Database (Denmark)

    Cohrt, Anders Emil; Jensen, Jakob Feldthusen; Nielsen, Thomas Eiland

    2010-01-01

    A broadly useful acid-labile traceless azido linker for the solid-phase synthesis of NH-1,2,3-triazoles is presented. A variety of alkynes were efficiently immobilized on a range of polymeric supports by Cu(I)-mediated azide-alkyne cycloadditions. Supported triazoles showed excellent compatibility...

  3. Structural disorder of graphite and implications for graphite thermometry

    Science.gov (United States)

    Kirilova, Martina; Toy, Virginia; Rooney, Jeremy S.; Giorgetti, Carolina; Gordon, Keith C.; Collettini, Cristiano; Takeshita, Toru

    2018-02-01

    Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry, we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25 megapascal (MPa) and aseismic velocities of 1, 10 and 100 µm s-1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer is ambiguous in active tectonic settings.

  4. Synthesis and catalytic evaluation in the Heck reaction of deposited palladium catalysts immobilized via amide linkers and their molecular analogues

    Czech Academy of Sciences Publication Activity Database

    Semler, M.; Čejka, Jiří; Štěpnička, P.

    2014-01-01

    Roč. 227, MAY 2014 (2014), s. 207-214 ISSN 0920-5861 R&D Projects: GA ČR GA104/09/0561; GA ČR(CZ) GA13-08944S Institutional support: RVO:61388955 Keywords : deposited catalysts * palladium * amide linkers Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.893, year: 2014

  5. Effects of the capping ligands, linkers and oxide surface on the electron injection mechanism of copper sulfide quantum dot-sensitized solar cells.

    Science.gov (United States)

    Suárez, Javier Amaya; Plata, Jose J; Márquez, Antonio M; Sanz, Javier Fdez

    2017-06-07

    Quantum dot-sensitized solar cells, QDSCs, are a clean and effective alternative to fossil fuels to reduce CO 2 emissions. However, the different components that constitute the QDSCs and the difficulty of isolating experimentally their effects on the performance of the whole system slow down the development of more efficient devices. In this work, DFT calculations are combined with a bottom-up approach to differentiate the effect of each component on the electronic structure and absorption spectra. First, Cu 2 S QDs were built including a U parameter to effectively describe the localization of electrons. The effect of capping agents is addressed using ligands with different electron-donating/withdrawing groups. The role of linkers and their adsorption on the oxide surface are also examined. Finally, we propose a main indirect electron injection mechanism based on the position of the peaks of the spectra.

  6. Solid phase synthesis of mitochondrial triphenylphosphonium-vitamin E metabolite using a lysine linker for reversal of oxidative stress.

    Directory of Open Access Journals (Sweden)

    Mohanad Mossalam

    Full Text Available Mitochondrial targeting of antioxidants has been an area of interest due to the mitochondria's role in producing and metabolizing reactive oxygen species. Antioxidants, especially vitamin E (α-tocopherol, have been conjugated to lipophilic cations to increase their mitochondrial targeting. Synthetic vitamin E analogues have also been produced as an alternative to α-tocopherol. In this paper, we investigated the mitochondrial targeting of a vitamin E metabolite, 2,5,7,8-tetramethyl-2-(2'-carboxyethyl-6-hydroxychroman (α-CEHC, which is similar in structure to vitamin E analogues. We report a fast and efficient method to conjugate the water-soluble metabolite, α-CEHC, to triphenylphosphonium cation via a lysine linker using solid phase synthesis. The efficacy of the final product (MitoCEHC to lower oxidative stress was tested in bovine aortic endothelial cells. In addition the ability of MitoCEHC to target the mitochondria was examined in type 2 diabetes db/db mice. The results showed mitochondrial accumulation in vivo and oxidative stress decrease in vitro.

  7. Minnesota Impulse Disorders Interview (MIDI): Validation of a structured diagnostic clinical interview for impulse control disorders in an enriched community sample.

    Science.gov (United States)

    Chamberlain, Samuel R; Grant, Jon E

    2018-05-08

    Disorders of impulsivity are common, functionally impairing, and highly relevant across different clinical and research settings. Few structured clinical interviews for the identification and diagnosis of impulse control disorders exist, and none have been validated in a community sample in terms of psychometric properties. The Minnesota Impulse control disorders Interview (MIDI v2.0) was administered to an enriched sample of 293 non-treatment seeking adults aged 18-35 years, recruited using media advertisements in two large US cities. In addition to the MIDI, participants undertook extended clinical interview for other mental disorders, the Barratt impulsiveness questionnaire, and the Padua obsessive-compulsive inventory. The psychometric properties of the MIDI were characterized. In logistic regression, the MIDI showed good concurrent validity against the reference measures (versus gambling disorder interview, p  0.05). Test re-test reliability was excellent (0.95). The MIDI has good psychometric properties and thus may be a valuable interview tool for clinical and research studies involving impulse control disorders. Further research is needed to better understanding the optimal diagnostic classification and neurobiology of these neglected disorders. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  8. Missing Linker Defects in a Homochiral Metal-Organic Framework: Tuning the Chiral Separation Capacity.

    Science.gov (United States)

    Slater, Benjamin; Wang, Zeru; Jiang, Shanxue; Hill, Matthew R; Ladewig, Bradley P

    2017-12-20

    Efficient chiral separation remains a very challenging task due to the identical physical and chemical properties of the enantiomers of a molecule. Enantiomers only behave differently from each other in the presence of other chiral species. Homochiral metal-organic frameworks (MOFs) have received much attention for their promising enantioseparation properties. However, there are still challenges to overcome in this field such as high enantiomeric separation. Structural defects play an important role in the properties of MOFs and can significantly change the pore architecture. In this work, we introduced missing linker defects into a homochiral metal-organic framework [Zn 2 (bdc)(l-lac)(dmf)] (ZnBLD; bdc = 1,4-benzenedicarboxylic acid, l-lac = l-lactic acid, dmf = N,N'-dimethylformamide) and observed an increase in enantiomeric excess for 1-phenylethanol of 35% with the defective frameworks. We adjusted the concentration of monocarboxylic acid ligand l-lactic acid by varying the ratio of Zn 2+ to ligand from 0.5 to 0.85 mmol. Additionally, a defective framework was synthesized with propanoic acid as modulator. In order to elucidate the correlation between defects and enantiomeric excess, five characterization techniques (FTIR, TGA, 1 H NMR, ICP, and PXRD) were employed. Full width at half-maximum analysis (fwhm) was performed on the powder X-ray diffraction traces and showed that the higher concentration of monocarboxylic acid MOFs were isostructural but suffered from increased fwhm values.

  9. Local structure in the disordered solid solution of cis- and trans-perinones

    DEFF Research Database (Denmark)

    Teteruk, Jaroslav L.; Glinnemann, Juergen; Heyse, Winfried

    2016-01-01

    preferred local arrangements, ordering lengths, and probabilities for the arrangement of neighbouring molecules. The superposition of the atomic positions of all energetically favourable calculated models corresponds well with the experimentally determined crystal structures, explaining not only the atomic....... The crystal structure of the solid solution was determined by single-crystal X-ray analysis. Extensive lattice-energy minimizations with force-field and DFT-D methods were carried out on combinatorially complete sets of ordered models. For the disordered systems, local structures were calculated, including...

  10. Structural studies of disordered Mg2NiH4 formed by mechanical grinding

    DEFF Research Database (Denmark)

    Rönnebro, Ewa; Jensen, Jens Oluf; Noréus, Dag

    1999-01-01

    The low temperature phase of Mg2NiH4 was mechanically ground in argon atmosphere. The ordered monoclinic structure was destroyed to form the disordered cubic structure, previously only found above 510 K. With a Guinier-Hagg X-ray camera the cell parameter was determined to be a=6.492(3) Angstrom....

  11. Partial wave spectroscopy based nanoscale structural disorder analysis for cancer diagnosis and treatment

    Science.gov (United States)

    Almabadi, Huda; Sahay, Peeyush; Nagesh, Prashanth K. B.; Yallapu, Murali M.; Jaggi, Meena; Chauhan, Subhash C.; Pradhan, Prabhakar

    Mesoscopic physics based partial wave spectroscopy (PWS) was recently introduced to quantify nanoscale structural disorder in weakly disordered optical media such as biological cells. The degree of structural disorder (Ld) , defined as Ld = 〈 dn2 〉 ×lc is quantified in terms of strength of refractive index fluctuation (〈 dn2 〉) in the system and its correlation length (lc) .With nanoscale sensitivity,Ldhas been shown to have potential to be used in cancer diagnostics. In this work, we analyze the hierarchy of different stages of prostate cancer cells by quantifying their intracellular refractive index fluctuations in terms of Ld parameter. We observe that the increase in tumorigenicity levels inside these prostate cancer cells results in proportionally higherLdvalues. For a weakly disordered optical media like biological cells, this result suggests that the progression of carcinogenesis or the increase in the tumorigenicity level is associated with increased 〈 dn2 〉 and/or lcvalues for the samples. Furthermore, we also examined the applicability of Ld parameter in analyzing the effect of drug on these prostate cancer cells. In accordance with the hypothesis that the cancer cells which survives the drug, becomes more aggressive, we found increased Ldvalues for all the drug resistant prostate cells studied.

  12. The importance of correct tautomeric structures for biological molecules

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Mortensen, John; Kamounah, Fadhil S.

    2015-01-01

    The structures of usnic acid and tetracycline are determined using deuterium isotope effects on 13C chemical shifts in a water environment. In case of usnic acid this is achieved by synthesizing a more water soluble usnic acid with a PEG linker. In the usnic acid case an enolic b-triketone (C-1, ...

  13. Electronic Structure Calculations of Hydrogen Storage in Lithium-Decorated Metal-Graphyne Framework.

    Science.gov (United States)

    Kumar, Sandeep; Dhilip Kumar, Thogluva Janardhanan

    2017-08-30

    Porous metal-graphyne framework (MGF) made up of graphyne linker decorated with lithium has been investigated for hydrogen storage. Applying density functional theory spin-polarized generalized gradient approximation with the Perdew-Burke-Ernzerhof functional containing Grimme's diffusion parameter with double numeric polarization basis set, the structural stability, and physicochemical properties have been analyzed. Each linker binds two Li atoms over the surface of the graphyne linker forming MGF-Li 8 by Dewar coordination. On saturation with hydrogen, each Li atom physisorbs three H 2 molecules resulting in MGF-Li 8 -H 24 . H 2 and Li interact by charge polarization mechanism leading to elongation in average H-H bond length indicating physisorption. Sorption energy decreases gradually from ≈0.4 to 0.20 eV on H 2 loading. Molecular dynamics simulations and computed sorption energy range indicate the high reversibility of H 2 in the MGF-Li 8 framework with the hydrogen storage capacity of 6.4 wt %. The calculated thermodynamic practical hydrogen storage at room temperature makes the Li-decorated MGF system a promising hydrogen storage material.

  14. Factor Structure for Autism Spectrum Disorders with Toddlers Using DSM-IV and DSM-5 Criteria

    Science.gov (United States)

    Sipes, Megan; Matson, Johnny L.

    2014-01-01

    With the publication of the "Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition", autism spectrum disorders are defined by two symptom clusters (social communication and restricted/repetitive behaviors) instead of the current three clusters. The current study examined the structure of the Baby and Infant Screen for…

  15. Modelling of the structure and physical properties of simple disordered systems

    International Nuclear Information System (INIS)

    Zagorodnij, A.G.; Gerasimov, O.I.

    1993-01-01

    The statistical modelling of a set of Bogolyubov distribution functions and self-consistent(within the Bogolyubov theory) interatomic potentials are proposed for the appraisals and calculations of many-particle contributions to structural, thermodynamic and polarisation al properties of the disordered systems. (author). 17 refs., 1 tab., 2 figs

  16. Glassy transition in a disordered model for the RNA secondary structure

    International Nuclear Information System (INIS)

    Pagnani, A.; Parisi, G.; Ricci-Tersenghi, F.

    2000-04-01

    We numerically study a disordered model for the RNA secondary structure and we find that it undergoes a phase transition, with a breaking of the replica symmetry in the low temperature region (like in spin glasses). Our results are based on the exact evaluation of the partition function. (author)

  17. Disordered crystal structure of 20H-AlON, Al10O3N8

    International Nuclear Information System (INIS)

    Banno, Hiroki; Funahashi, Shiro; Asaka, Toru; Hirosaki, Naoto; Fukuda, Koichiro

    2015-01-01

    The disordered crystal structure of 20H-AlON (Al 10 O 3 N 8 ) was determined by combined use of X-ray powder diffraction and transmission electron microscopy. The title compound is hexagonal with space group P6 3 /mmc (Z=2) and the unit-cell dimensions are a=0.307082(5) nm, c=5.29447(8) nm and V=0.432376(12) nm 3 . The structural model showed the positional disordering of three of the six Al sites in the unit cell. The reliability indices calculated from the Rietveld method were R wp =6.97%, S (=R wp /R e )=1.68, R p =5.45%, R B =5.13% and R F =4.56%. We interpreted the disordered structure of 20H-AlON as a statistical average of six different types of ordered structural configurations, which are composed of an octahedral [Al(O, N) 6 ] layer and tetrahedral [Al(O, N) 4 ] layers. We demonstrated the high correlations between the hexagonal unit-cell dimensions and the octahedral layer concentrations for AlON and SiAlON polytypoids. - Graphical abstract: Variations of a and c/(n O +n T ) with n O /(n O +n T ). The a and c are the hexagonal unit-cell dimensions of AlON, SiAlON and AlN. The n O and n T are, respectively, the numbers of octahedral and tetrahedral layers in the unit cells. The unit-cell dimensions in literature are plotted in black plus for AlON and black cross for SiAlON. The unit-cell dimensions of AlN are a=0.3110 nm and c=0.4980 nm. - Highlights: • Crystal structure of Al10O3N8 is determined by laboratory X-ray powder diffraction. • The atom arrangements are represented by the split-atom model. • Six types of ordered atom arrangements are derived from the disordered structure. • Hexagonal unit-cell dimensions changed systematically for AlON and SiAlON compounds

  18. Direct Atomic Scale Observation of the Structure and Chemistry of Order/Disorder Interfaces

    National Research Council Canada - National Science Library

    Srinivasan, R; Banerjee, R; Hwang, J. Y; Viswanathan, G. B; Tiley, J; Fraser, H. L

    2008-01-01

    ... distributed ordered intermetallic precipitates within a disordered matrix. The structure and chemistry at the precipitate/matrix interface plays a critical role in determining the effectiveness of the strengthening mechanism...

  19. Structural characterization by NMR of a double phosphorylated chimeric peptide vaccine for treatment of Alzheimer's disease.

    Science.gov (United States)

    Ramírez-Gualito, Karla; Richter, Monique; Matzapetakis, Manolis; Singer, David; Berger, Stefan

    2013-04-26

    Rational design of peptide vaccines becomes important for the treatment of some diseases such as Alzheimer's disease (AD) and related disorders. In this study, as part of a larger effort to explore correlations of structure and activity, we attempt to characterize the doubly phosphorylated chimeric peptide vaccine targeting a hyperphosphorylated epitope of the Tau protein. The 28-mer linear chimeric peptide consists of the double phosphorylated B cell epitope Tau₂₂₉₋₂₃₇[pThr231/pSer235] and the immunomodulatory T cell epitope Ag85B₂₄₁₋₂₅₅ originating from the well-known antigen Ag85B of the Mycobacterium tuberculosis, linked by a four amino acid sequence -GPSL-. NMR chemical shift analysis of our construct demonstrated that the synthesized peptide is essentially unfolded with a tendency to form a β-turn due to the linker. In conclusion, the -GPSL- unit presumably connects the two parts of the vaccine without transferring any structural information from one part to the other. Therefore, the double phosphorylated epitope of the Tau peptide is flexible and accessible.

  20. Impact of functional monomers, cross-linkers and porogens on morphology and recognition properties of 2-(3,4-dimethoxyphenyl)ethylamine imprinted polymers

    International Nuclear Information System (INIS)

    Lulinski, Piotr; Maciejewska, Dorota

    2011-01-01

    The main objective of this paper was to examined the impact of synthetic reagents on morphology and recognition properties of 2-(3,4-dimethoxyphenyl)ethylamine imprinted polymers. The effect of nine different functional monomers, five porogens and four cross-linkers on the binding capacity of particles was analyzed. The results revealed that the highest imprinting factor (1.81) showed the polymer obtained from methacrylic acid and ethylene glycol dimethacrylate in toluene. The binding capacities of imprinted (MIP1) and non-imprinted (NIP1) materials were 135.3 ± 9.8 and 74.8 ± 7.8 μmol g -1 , respectively. The specific surface areas were 55.05 ± 3.89 for MIP1 and 38.72 ± 2.40 m 2 g -1 for NIP1. The SEM analysis confirmed that the surface of MIP1 is rougher and denser than NIP1. Structural analysis supported by 13 C CP/MAS NMR spectra was also performed. The binding abilities of homoveratrylamine and eight structurally related compounds to MIP1 showed that strong interactions between carboxylic group in the polymer and amine group in the analyte together with its molecular volume govern the recognition mechanism.

  1. Structural and functional salivary disorders in type 2 diabetic patients.

    Science.gov (United States)

    Carda, Carmen; Mosquera-Lloreda, Nezly; Salom, Lucas; Gomez de Ferraris, Maria Elsa; Peydró, Amando

    2006-07-01

    Diabetes mellitus type 2 is the most common metabolic disorder and it causes an important morbimortality. The structural modifications in the parotid gland (sialosis) had already been described in these patients and could result in variations in the salivary composition, as well as an increase in periodontal and dental pathology. To compare the biochemical findings in the saliva and to correlate these biochemical disturbances with the morphologic findings previously described. Clinical information were gathered about 33 patients, 17 had type 2 diabetes. Samples of whole saliva were obtained for biochemical analysis and serum samples to determine metabolic control. In the diabetics saliva we found urea and total proteins increased and reduced levels of microalbumina. Salivary glucose was only augmented in patients with poor metabolic control. Clinical symptoms of xerostomia were present in 76,4% and dental and periodontal disease in 100%. The parotid gland was characterised by the presence of small acini, lipid intracytoplasmic droplets, as well as adipose stroma infiltration. The acinar cytoqueratins expression was heterogeneous and very positive in the hyperplasic ducts. These biochemical disorders in the saliva of the type 2 diabetic patients would be related with the structural changes previously observed in parotid glands.

  2. Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder.

    Science.gov (United States)

    Mwangi, Benson; Ebmeier, Klaus P; Matthews, Keith; Steele, J Douglas

    2012-05-01

    Quantitative abnormalities of brain structure in patients with major depressive disorder have been reported at a group level for decades. However, these structural differences appear subtle in comparison with conventional radiologically defined abnormalities, with considerable inter-subject variability. Consequently, it has not been possible to readily identify scans from patients with major depressive disorder at an individual level. Recently, machine learning techniques such as relevance vector machines and support vector machines have been applied to predictive classification of individual scans with variable success. Here we describe a novel hybrid method, which combines machine learning with feature selection and characterization, with the latter aimed at maximizing the accuracy of machine learning prediction. The method was tested using a multi-centre dataset of T(1)-weighted 'structural' scans. A total of 62 patients with major depressive disorder and matched controls were recruited from referred secondary care clinical populations in Aberdeen and Edinburgh, UK. The generalization ability and predictive accuracy of the classifiers was tested using data left out of the training process. High prediction accuracy was achieved (~90%). While feature selection was important for maximizing high predictive accuracy with machine learning, feature characterization contributed only a modest improvement to relevance vector machine-based prediction (~5%). Notably, while the only information provided for training the classifiers was T(1)-weighted scans plus a categorical label (major depressive disorder versus controls), both relevance vector machine and support vector machine 'weighting factors' (used for making predictions) correlated strongly with subjective ratings of illness severity. These results indicate that machine learning techniques have the potential to inform clinical practice and research, as they can make accurate predictions about brain scan data from

  3. The Latent Class Structure of Chinese Patients with Eating Disorders in Shanghai.

    Science.gov (United States)

    Zheng, Yuchen; Kang, Qing; Huang, Jiabin; Jiang, Wenhui; Liu, Qiang; Chen, Han; Fan, Qing; Wang, Zhen; Chen, Jue; Xiao, Zeping

    2017-08-25

    Eating disorder is culture related, and the clinical symptoms are different between eastern and western patients. So the validity of feeding and eating disorders in the upcoming ICD-11 guide for Chinese patients is unclear. To explore the latent class structure of Chinese patients with eating disorder and the cross-cultural validity of the eating disorder section of the new ICD-11 guide in China. A total of 379 patients with eating disorders at Shanghai Mental Health Center were evaluated using the EDI questionnaire and a questionnaire developed by researchers from 2010 to 2016. SPSS 20.0 was used to enter data and analyze demographic data, and Latent GOLD was employed to conduct latent profile analysis. According to the results of latent profile analysis, patients with eating disorder were divided into five classes: low-weight fasting class (23.1%), non-fat-phobic binge/purge class (21.54%), low-fat-phobic binge class (19.27%), fat-phobic binge class (19.27%), and non-fat-phobic low-weight class (16.76%). Among the clinical symptoms extracted, there were significant differences in Body Mass Index (BMI), binge eating behavior, self-induced vomiting, laxative use and fat-phobic opinion; while there was no significant difference in restrictive food intake. Based on the clinical symptoms, there are five latent classes in Chinese patients with eating disorder, which is in accordance with the diagnostic categories of feeding and eating disorder in ICD-11. However, further work is needed in improving the fat-phobic opinion of patients with eating disorder and clarifying the BMI standard of thinness in the Chinese population.

  4. The Latent Factor Structure of Acute Stress Disorder following Bank Robbery

    DEFF Research Database (Denmark)

    Hansen, M.; Lasgaard, M.; Elklit, A.

    2013-01-01

    of the latent structure of ASD were specified and estimated. METHOD: The analyses were based on a national study of bank robbery victims (N = 450) using the acute stress disorder scale. RESULTS: The results of the confirmatory factor analyses showed that the DSM-IV model provided the best fit to the data. Thus...

  5. Self-concept structure and borderline personality disorder: evidence for negative compartmentalization.

    Science.gov (United States)

    Vater, Aline; Schröder-Abé, Michela; Weißgerber, Susan; Roepke, Stefan; Schütz, Astrid

    2015-03-01

    Borderline personality disorder (BPD) is characterized by an unstable and incongruent self-concept. However, there is a dearth of empirical studies investigating self-concept in BPD. In order to bridge this research gap, the purpose of this study was to apply an in-depth analysis of structural aspects of the self-concept in BPD. We examined the degree of compartmentalization, i.e., a tendency to organize knowledge about the self into discrete, extremely valenced (i.e., either positive or negative) categories (Showers, 1992). We hypothesized and found that BPD patients had the most compartmentalized self-concept structure and a higher proportion of negative self-attributes relative to both a non-clinical and a depressed control group. Moreover, BPD patients rated negative self-aspects as more important than positive ones relative to non-clinical controls. We cannot determine whether causal relationships exist between psychological symptoms and self-concept structure. Moreover, further comparisons to patients with other psychiatric disorders are necessary in order to further confirm the clinical specificity of our results. Our findings indicate that a negative compartmentalized self-concept is a specific feature of BPD. Implications for future research, psychological assessment, and psychotherapeutic treatment are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Problems on one-dimensionally disordered lattices, and reliability of structural analysis of liquids and amorphous solids

    International Nuclear Information System (INIS)

    Kakinoki, J.

    1974-01-01

    Methods for obtaining the intensity of X-ray diffraction by one-dimensional by disordered lattices have been studied, and matrix method was developed. The method has been applied for structural analysis. Several problems concerning neutron diffraction were shown in the course of analysis. Large single crystals should be used for measurement. It is hard to grasp the local variation of structure. The technique of topography is still in development. Measurement of weak intensity diffraction is not sufficient. Technique of photography to observe overall feature is not good. General remarks concerning the one-dimensionally disordered lattices are as follows. A large number of parameters for analysis are not practical, and the disorder parameters are preferably two. In case of the disorder between two kinds of layers having same frequency and different structure, peak shift is not caused, and Laue term remains at the position. Reliability of the structural analysis of liquid and amorphous solid is discussed. The analysis is basically the analysis two atom molecule of same kind of atoms. The intensity of diffraction can be obtained from radial distribution function (RDF). Since practical observation is limited to a finite region, termination effect should be taken into consideration. Accuracy of analysis is not good in case of X-ray diffraction. The analysis by neutron diffraction is preferable. (Kato, T.)

  7. Peculiarities of crystalline structure and mechanism of disordering of anion sublattice in superionic conductors of LaF3 structural type

    International Nuclear Information System (INIS)

    Krivorotov, V.F.; Fridman, A.A.

    2005-01-01

    On the basis of the analysis of LaF 3 type lattice structure the physical process of disordering of tysonit type ionic crystals is considered in the region of superionic phase transitions. The correlation of cell movement of disordering sublattice ions with parameter dynamics of Raman scattering spectrum of these crystals is observed. The anomaly behaviour of Raman scattering frequencies and intensities of lines 370, 392 sm -1 (LaF 3 ) and 304, 376, 404 sm -1 (PrF 3 ) in three intervals: 160-180, 260-290, and 440-480 K is obtained. Two more high temperature ones are connected with anion sublattice disordering process in the region of phase transitions. Excessive scattering in the region 160-180 K is described by the change of oscillation state of fluoride ions in small displacements in splitted site positions with several potential minimums. It is shown in the framework of splitted sites model that the possibility of thermoactivational formation of interstitials which are comparable with the size of mobile ions is due to the peculiarities of the structure of tysonit type ionic crystals. (author)

  8. Structural Characterization by NMR of a Double Phosphorylated Chimeric Peptide Vaccine for Treatment of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Stefan Berger

    2013-04-01

    Full Text Available Rational design of peptide vaccines becomes important for the treatment of some diseases such as Alzheimer’s disease (AD and related disorders. In this study, as part of a larger effort to explore correlations of structure and activity, we attempt to characterize the doubly phosphorylated chimeric peptide vaccine targeting a hyperphosphorylated epitope of the Tau protein. The 28-mer linear chimeric peptide consists of the double phosphorylated B cell epitope Tau229-237[pThr231/pSer235] and the immunomodulatory T cell epitope Ag85B241-255 originating from the well-known antigen Ag85B of the Mycobacterium tuberculosis, linked by a four amino acid sequence -GPSL-. NMR chemical shift analysis of our construct demonstrated that the synthesized peptide is essentially unfolded with a tendency to form a β-turn due to the linker. In conclusion, the -GPSL- unit presumably connects the two parts of the vaccine without transferring any structural information from one part to the other. Therefore, the double phosphorylated epitope of the Tau peptide is flexible and accessible.

  9. Childhood Trauma Questionnaire: factor structure, measurement invariance, and validity across emotional disorders

    NARCIS (Netherlands)

    Spinhoven, P.; Penninx, B.W.; Hickendorff, M.; van Hemert, A.M.; Bernstein, D.P.; Elzinga, B.M.

    2014-01-01

    To study the psychometric properties of the Childhood Trauma Questionnaire-Short Form (CTQ-SF), we determined its dimensional structure, measurement invariance across presence of emotional disorders, the association of the CTQ-SF with an analogous interview-based measure (CTI) across presence of

  10. Effects of the Amino Acid Linkers on the Melanoma-Targeting and Pharmacokinetic Properties of Indium-111-labeled Lactam Bridge-Cyclized α-MSH Peptides

    Science.gov (United States)

    Guo, Haixun; Yang, Jianquan; Gallazzi, Fabio; Miao, Yubin

    2011-01-01

    The purpose of this study was to examine the profound effects of the amino acid linkers on the melanoma targeting and pharmacokinetic properties of novel 111In-labeled lactam bridge-cyclized DOTA-[X]-CycMSHhex {1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid-[X]-c[Asp-His-dPhe-Arg-Trp-Lys]-CONH2, X=GlyGlyNle, GlyGluNle or NleGlyGlu} peptides. Methods Three novel DOTA-GGNle-CycMSHhex, DOTA-GENle-CycMSHhex and DOTA-NleGE-CycMSHhex peptides were designed and synthesized. The melanocortin-1 (MC1) receptor binding affinities of the peptides were determined in B16/F1 melanoma cells. The melanoma targeting and pharmacokinetic properties of 111In-DOTA-GGNle-CycMSHhex and 111In-DOTA-GENle-CycMSHhex were determined in B16/F1 melanoma-bearing C57 mice. Results DOTA-GGNle-CycMSHhex and DOTA-GENle-CycMSHhex displayed 2.1 and 11.5 nM MC1 receptor binding affinities, whereas DOTA-NleGE-CycMSHhex showed 873.4 nM MC1 receptor binding affinity. The introduction of the -GlyGly- linker maintained high melanoma uptake while decreased the renal and liver uptakes of 111In-DOTA-GlyGlyNle-CycMSHhex. The tumor uptake values of 111In-DOTA-GGNle-CycMSHhex were 19.05 ± 5.04 and 18.6 ± 3.56 % injected dose/gram (%ID/g) at 2 and 4 h post-injection. 111In-DOTA-GGNle-CycMSHhex exhibited 28, 32 and 42% less renal uptake values than 111In-DOTA-Nle-CycMSHhex we reported previously, and 61, 65 and 68% less liver uptake values than 111In-DOTA-Nle-CycMSHhex at 2, 4 and 24 h post-injection, respectively. Conclusion The amino acid linkers exhibited the profound effects on the melanoma targeting and pharmacokinetic properties of the 111In-labeled lactam bridge-cyclized α-MSH peptides. Introduction of the -GlyGly- linker maintained high melanoma uptake while reducing the renal and liver uptakes of 111In-DOTA-GlyGlyNle-CycMSHhex, highlighting its potential as an effective imaging probe for melanoma detection, as well as a therapeutic peptide for melanoma treatment when labeled with a therapeutic

  11. Structural Magnetic Resonance Imaging Data Do Not Help Support DSM-5 Autism Spectrum Disorder Category

    Science.gov (United States)

    Pina-Camacho, Laura; Villero, Sonia; Boada, Leticia; Fraguas, David; Janssen, Joost; Mayoral, Maria; Llorente, Cloe; Arango, Celso; Parellada, Mara

    2013-01-01

    This systematic review aims to determine whether or not structural magnetic resonance imaging (sMRI) data support the DSM-5 proposal of an autism spectrum disorder (ASD) diagnostic category, and whether or not classical DSM-IV autistic disorder (AD) and Asperger syndrome (AS) categories should be subsumed into it. The most replicated sMRI findings…

  12. Structural disorder of graphite and implications for graphite thermometry

    Directory of Open Access Journals (Sweden)

    M. Kirilova

    2018-02-01

    Full Text Available Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry, we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25  megapascal (MPa and aseismic velocities of 1, 10 and 100 µm s−1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer is ambiguous in active tectonic settings.

  13. The BARD1 C-Terminal Domain Structure and Interactions with Polyadenylation Factor CstF-50

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Ross A.; Lee, Megan S.; Tsutakawa, Susan E.; Williams, R. Scott; Tainer, John A.; Glover, J. N. Mark

    2009-07-13

    The BARD1 N-terminal RING domain binds BRCA1 while the BARD1 C-terminal ankyrin and tandem BRCT repeat domains bind CstF-50 to modulate mRNA processing and RNAP II stability in response to DNA damage. Here we characterize the BARD1 structural biochemistry responsible for CstF- 50 binding. The crystal structure of the BARD1 BRCT domain uncovers a degenerate phosphopeptide binding pocket lacking the key arginine required for phosphopeptide interactions in other BRCT proteins.Small angle X-ray scattering together with limited proteolysis results indicates that ankyrin and BRCT domains are linked by a flexible tether and do not adopt a fixed orientation relative to one another. Protein pull-down experiments utilizing a series of purified BARD1 deletion mutants indicate that interactions between the CstF-50 WD-40 domain and BARD1 involve the ankyrin-BRCT linker but do not require ankyrin or BRCT domains. The structural plasticity imparted by the ANK-BRCT linker helps to explain the regulated assembly of different protein BARD1 complexes with distinct functions in DNA damage signaling including BARD1-dependent induction of apoptosis plus p53 stabilization and interactions. BARD1 architecture and plasticity imparted by the ANK-BRCT linker are suitable to allow the BARD1 C-terminus to act as a hub with multiple binding sites to integrate diverse DNA damage signals directly to RNA polymerase.

  14. Factorial Structure and Preliminary Validation of the Schema Mode Inventory for Eating Disorders (SMI-ED

    Directory of Open Access Journals (Sweden)

    Susan G. Simpson

    2018-04-01

    Full Text Available Objective: The aim of this study was to examine the psychometric properties and factorial structure of the Schema Mode Inventory for Eating Disorders (SMI-ED in a disordered eating population.Method: 573 participants with disordered eating patterns as measured by the Eating Disorder Examination Questionnaire (EDE-Q completed the 190-item adapted version of the Schema Mode Inventory (SMI. The new SMI-ED was developed by clinicians/researchers specializing in the treatment of eating disorders, through combining items from the original SMI with a set of additional questions specifically representative of the eating disorder population. Psychometric testing included Confirmatory Factor Analysis (CFA and internal consistency (Cronbach's α. Multivariate Analyses of Covariance (MANCOVA was also run to test statistical differences between the EDE-Q subscales on the SMI-ED modes, while controlling for possible confounding variables.Results: Factorial analysis confirmed an acceptable 16-related-factors solution for the SMI-ED, thus providing preliminary evidence for the adequate validity of the new measure based on internal structure. Concurrent validity was also established through moderate to high correlations on the modes most relevant to eating disorders with EDE-Q subscales. This study represents the first step in creating a psychometrically sound instrument for measuring schema modes in eating disorders, and provides greater insight into the relevant schema modes within this population.Conclusion: This research represents an important preliminary step toward understanding and labeling the schema mode model for this clinical group. Findings from the psychometric evaluation of SMI-ED suggest that this is a useful tool which may further assist in the measurement and conceptualization of schema modes in this population.

  15. Factorial Structure and Preliminary Validation of the Schema Mode Inventory for Eating Disorders (SMI-ED).

    Science.gov (United States)

    Simpson, Susan G; Pietrabissa, Giada; Rossi, Alessandro; Seychell, Tahnee; Manzoni, Gian Mauro; Munro, Calum; Nesci, Julian B; Castelnuovo, Gianluca

    2018-01-01

    Objective: The aim of this study was to examine the psychometric properties and factorial structure of the Schema Mode Inventory for Eating Disorders (SMI-ED) in a disordered eating population. Method: 573 participants with disordered eating patterns as measured by the Eating Disorder Examination Questionnaire (EDE-Q) completed the 190-item adapted version of the Schema Mode Inventory (SMI). The new SMI-ED was developed by clinicians/researchers specializing in the treatment of eating disorders, through combining items from the original SMI with a set of additional questions specifically representative of the eating disorder population. Psychometric testing included Confirmatory Factor Analysis (CFA) and internal consistency (Cronbach's α). Multivariate Analyses of Covariance (MANCOVA) was also run to test statistical differences between the EDE-Q subscales on the SMI-ED modes, while controlling for possible confounding variables. Results: Factorial analysis confirmed an acceptable 16-related-factors solution for the SMI-ED, thus providing preliminary evidence for the adequate validity of the new measure based on internal structure. Concurrent validity was also established through moderate to high correlations on the modes most relevant to eating disorders with EDE-Q subscales. This study represents the first step in creating a psychometrically sound instrument for measuring schema modes in eating disorders, and provides greater insight into the relevant schema modes within this population. Conclusion: This research represents an important preliminary step toward understanding and labeling the schema mode model for this clinical group. Findings from the psychometric evaluation of SMI-ED suggest that this is a useful tool which may further assist in the measurement and conceptualization of schema modes in this population.

  16. Factorial Structure and Preliminary Validation of the Schema Mode Inventory for Eating Disorders (SMI-ED)

    Science.gov (United States)

    Simpson, Susan G.; Pietrabissa, Giada; Rossi, Alessandro; Seychell, Tahnee; Manzoni, Gian Mauro; Munro, Calum; Nesci, Julian B.; Castelnuovo, Gianluca

    2018-01-01

    Objective: The aim of this study was to examine the psychometric properties and factorial structure of the Schema Mode Inventory for Eating Disorders (SMI-ED) in a disordered eating population. Method: 573 participants with disordered eating patterns as measured by the Eating Disorder Examination Questionnaire (EDE-Q) completed the 190-item adapted version of the Schema Mode Inventory (SMI). The new SMI-ED was developed by clinicians/researchers specializing in the treatment of eating disorders, through combining items from the original SMI with a set of additional questions specifically representative of the eating disorder population. Psychometric testing included Confirmatory Factor Analysis (CFA) and internal consistency (Cronbach's α). Multivariate Analyses of Covariance (MANCOVA) was also run to test statistical differences between the EDE-Q subscales on the SMI-ED modes, while controlling for possible confounding variables. Results: Factorial analysis confirmed an acceptable 16-related-factors solution for the SMI-ED, thus providing preliminary evidence for the adequate validity of the new measure based on internal structure. Concurrent validity was also established through moderate to high correlations on the modes most relevant to eating disorders with EDE-Q subscales. This study represents the first step in creating a psychometrically sound instrument for measuring schema modes in eating disorders, and provides greater insight into the relevant schema modes within this population. Conclusion: This research represents an important preliminary step toward understanding and labeling the schema mode model for this clinical group. Findings from the psychometric evaluation of SMI-ED suggest that this is a useful tool which may further assist in the measurement and conceptualization of schema modes in this population. PMID:29740379

  17. Electron transport in disordered films of metal nanoparticles linked by organic molecules

    International Nuclear Information System (INIS)

    Mueller, K.H.; Wei, G.; Herrmann, J.; Raguse, B.; Baxter, G.

    2004-01-01

    Full text: We have investigated theoretically and experimentally the mechanism of electron transport in films made of ∼10 nm sized gold nanoparticles linked by alkanedithiol molecules. Conduction in these films is due to linker-molecule assisted single-electron tunnelling between neighbouring nanoparticles where electrons have to overcome the Coulomb blockade energy. Strong disorder in our films in the form of separation gap fluctuations between adjacent nanoparticles and variations in Coulomb blockade energies cause electron current percolation. We have found that the dependence of the conduction on the length of the alkanedithiol molecules is affected by the degree of disorder. In addition, we have observed that percolation leads to a non-Arrhenius-like temperature dependence of the conduction and to a film-thickness dependent conductivity. I-V characteristics at low temperatures reveal Coulomb blockade effects. The strong dependence of the electrical conduction on the separation gaps between adjacent nanoparticles can be utilized in strain gauge and gas sensor applications

  18. Vitamin C-linker-conjugated tripeptide AHK stimulates BMP-2-induced osteogenic differentiation of mouse myoblast C2C12 cells.

    Science.gov (United States)

    Jung, Jung-Il; Park, Kyeong-Yong; Lee, Yura; Park, Mira; Kim, Jiyeon

    2018-03-15

    Vitamin C-linker-conjugated Ala-His-Lys tripeptide (Vit C-AHK) is a derivative of Vitamin C-conjugated tripeptides, which were originally developed as a component of a product for collagen synthesis enhancement or human dermal fibroblast growth. Here, we investigated the effect of Vit C-AHK on bone morphogenetic protein (BMP)-2-induced osteoblast differentiation in a cell culture model. Vit C-AHK enhanced proliferation of C2C12 cells and induction of BMP-2-induced alkaline phosphatase, a typical marker of osteoblast differentiation. Vit C-AHK also stimulated the phosphorylation and translocation of Smad1/5/8 to the nucleus and phosphorylation of mitogen-activated protein kinases (MAPKs) including ERK1/2 and p38. In addition, Vit C-AHK enhanced the BMP-2-induced mRNA expression of osteoblast differentiation-related genes such as ALP, BMP-2, Osteocalcin, and Runx2. Our results suggest that Vit C-AHK exerts an enhancing effect on osteoblast proliferation and differentiation through activation of Smad1/5/8 and MAPK ERK1/2 and p38 signaling and without significant cytotoxicity. These results provide important data for the development of peptide-based bone-regenerative agents and treatment of bone-related disorders. Copyright © 2018 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  19. A two potential embedding approach to the electronic structure of disordered binary alloys

    International Nuclear Information System (INIS)

    Ahmed, M.; Mookerjee, A.

    1988-06-01

    Using an embedding technique introduced in a recent publication by one of us, we study the electronic structure of disordered binary alloys within a pair-cluster coherent potential approximation. (author). 4 refs, 3 figs

  20. Omnidirectional light absorption of disordered nano-hole structure inspired from Papilio ulysses.

    Science.gov (United States)

    Wang, Wanlin; Zhang, Wang; Fang, Xiaotian; Huang, Yiqiao; Liu, Qinglei; Bai, Mingwen; Zhang, Di

    2014-07-15

    Butterflies routinely produce nanostructured surfaces with useful properties. Here, we report a disordered nano-hole structure with ridges inspired by Papilio ulysses that produce omnidirectional light absorption compared with the common ordered structure. The result shows that the omnidirectional light absorption is affected by polarization, the incident angle, and the wavelength. Using the finite-difference time-domain (FDTD) method, the stable omnidirectional light absorption is achieved in the structure inspired from the Papilio ulysses over a wide incident angle range and with various wavelengths. This explains some of the mysteries of the structure of the Papilio ulysses butterfly. These conclusions can guide the design of omnidirectional absorption materials.

  1. Factor Structure of the Acute Stress Disorder Scale in a Sample of Hurricane Katrina Evacuees

    Science.gov (United States)

    Edmondson, Donald; Mills, Mary Alice; Park, Crystal L.

    2010-01-01

    Acute stress disorder (ASD) is a poorly understood and controversial diagnosis (A. G. Harvey & R. A. Bryant, 2002). The present study used confirmatory factor analysis (CFA) to test the factor structure of the most widely used self-report measure of ASD, the Acute Stress Disorder Scale (R. A. Bryant, M. L. Moulds, & R. M. Guthrie, 2000),…

  2. Structural covariance network centrality in maltreated youth with posttraumatic stress disorder.

    Science.gov (United States)

    Sun, Delin; Peverill, Matthew R; Swanson, Chelsea S; McLaughlin, Katie A; Morey, Rajendra A

    2018-03-01

    Childhood maltreatment is associated with posttraumatic stress disorder (PTSD) and elevated rates of adolescent and adult psychopathology including major depression, bipolar disorder, substance use disorders, and other medical comorbidities. Gray matter volume changes have been found in maltreated youth with (versus without) PTSD. However, little is known about the alterations of brain structural covariance network topology derived from cortical thickness in maltreated youth with PTSD. High-resolution T1-weighted magnetic resonance imaging scans were from demographically matched maltreated youth with PTSD (N = 24), without PTSD (N = 64), and non-maltreated healthy controls (n = 67). Cortical thickness data from 148 cortical regions was entered into interregional partial correlation analyses across participants. The supra-threshold correlations constituted connections in a structural brain network derived from four types of centrality measures (degree, betweenness, closeness, and eigenvector) estimated network topology and the importance of nodes. Between-group differences were determined by permutation testing. Maltreated youth with PTSD exhibited larger centrality in left anterior cingulate cortex than the other two groups, suggesting cortical network topology specific to maltreated youth with PTSD. Moreover, maltreated youth with versus without PTSD showed smaller centrality in right orbitofrontal cortex, suggesting that this may represent a vulnerability factor to PTSD following maltreatment. Longitudinal follow-up of the present results will help characterize the role that altered centrality plays in vulnerability and resilience to PTSD following childhood maltreatment. Copyright © 2017. Published by Elsevier Ltd.

  3. Electronic structure, magnetism and disorder in the Heusler compound Co2TiSn

    International Nuclear Information System (INIS)

    Kandpal, Hem Chandra; Ksenofontov, Vadim; Wojcik, Marek; Seshadri, Ram; Felser, Claudia

    2007-01-01

    Polycrystalline samples of the Heusler compound Co 2 TiSn have been prepared and studied using bulk techniques (x-ray diffraction and magnetization) as well as local probes ( 119 Sn Moessbauer spectroscopy and 59 Co nuclear magnetic resonance spectroscopy) in order to determine how disorder affects the half-metallic behaviour and also to establish the joint use of Moessbauer and NMR spectroscopies as a quantitative probe of local atom ordering in these compounds. Additionally, density functional electronic structure calculations on ordered and partially disordered Co 2 TiSn compounds have been carried out at a number of different levels of theory in order to simultaneously understand how the particular choice of DFT scheme as well as disorder affects the computed magnetization. Our studies suggest that a sample which seems well ordered by x-ray diffraction and magnetization measurements can possess up to 10% of antisite (Co/Ti) disordering. Computations similarly suggest that even 12.5% antisite Co/Ti disorder does not destroy the half-metallic character of this material. However, the use of an appropriate level of non-local DFT is crucial

  4. Effect of structural disorder on quantum oscillations in graphite

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, B. C., E-mail: b.c-camargo@yahoo.com.br; Kopelevich, Y. [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Unicamp 13083-970, Campinas, São Paulo (Brazil); Usher, A.; Hubbard, S. B. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2016-01-18

    We have studied the effect of structural disorder on the de Haas van Alphen and Shubnikov de Haas quantum oscillations measured in natural, Kish, and highly oriented pyrolytic graphite samples at temperatures down to 30 mK and at magnetic fields up to 14 T. The measurements were performed on different samples characterized by means of x-ray diffractometry, transmission electron microscopy, and atomic-force microscopy techniques. Our results reveal a correlation between the amplitude of quantum oscillations and the sample surface roughness.

  5. Nanomaterial disordering in AlGaN/GaN UV LED structures

    International Nuclear Information System (INIS)

    Shabunina, E I; Levinshtein, M E; Kulagina, M M; Petrov, V N; Ratnikov, V V; Smirnova, I N; Troshkov, S I; Shmidt, N M; Kurin, S Yu; Makarov, Yu N; Chernyakov, A E; Usikov, A S; Helava, H

    2015-01-01

    Multifractal analysis was applied to characterize quantitatively nanostructural disordering in HVPE-grown AlGaN/GaN UV LED structures. A higher level of leakage currents shunting the active region of LEDs by an extended defect system is correlated with higher values of multifractal parameters (MFs). As a result, the concentration of injected carriers participating in radiative recombination in the active region is reduced. MFs and the conductivity of quasi-ohmic shunts localized in an extended defect system are higher in AlGaN/GaN structures than in InGaN/GaN structures. It is one of the reasons behind the low external quantum efficiency of AlGaN/GaN UV LEDs. (paper)

  6. The Eating Disorder Assessment for DSM-5 (EDA-5): Development and Validation of a Structured Interview for Feeding and Eating Disorders

    Science.gov (United States)

    Sysko, Robyn; Glasofer, Deborah R.; Hildebrandt, Tom; Klimek, Patrycja; Mitchell, James E.; Berg, Kelly C.; Peterson, Carol B.; Wonderlich, Stephen A.; Walsh, B. Timothy

    2016-01-01

    Objective Existing measures for DSM-IV eating disorder diagnoses have notable limitations, and there are important differences between DSM-IV and DSM-5 feeding and eating disorders. This study developed and validated a new semi-structured interview, the Eating Disorders Assessment for DSM-5 (EDA-5). Method Two studies evaluated the utility of the EDA-5. Study 1 compared the diagnostic validity of the EDA-5 to the Eating Disorder Examination (EDE) and evaluated the test-retest reliability of the new measure. Study 2 compared the diagnostic validity of an EDA-5 electronic application (“app”) to clinician interview and self-report assessments. Results In Study 1, the kappa for EDE and EDA-5 eating disorder diagnoses was 0.74 across all diagnoses (n= 64), with a range of κ=0.65 for Other Specified Feeding or Eating Disorder (OSFED)/Unspecified Feeding or Eating Disorder (USFED) to κ=0.90 for Binge Eating Disorder (BED). The EDA-5 test-retest kappa coefficient was 0.87 across diagnoses. For Study 2, clinical interview versus “app” conditions revealed a kappa of 0.83 for all eating disorder diagnoses (n=71). Across individual diagnostic categories, kappas ranged from 0.56 for OSFED/USFED to 0.94 for BN. Discussion High rates of agreement were found between diagnoses by EDA-5 and the EDE, and EDA-5 and clinical interviews. As this study supports the validity of the EDA-5 to generate DSM-5 eating disorders and the reliability of these diagnoses, the EDA-5 may be an option for the assessment of Anorexia Nervosa, Bulimia Nervosa, and BED. Additional research is needed to evaluate the utility of the EDA-5 in assessing DSM-5 feeding disorders. PMID:25639562

  7. The First Extracellular Linker Is Important for Several Aspects of the Gating Mechanism of Human TRPA1 Channel

    Czech Academy of Sciences Publication Activity Database

    Maršáková, Lenka; Barvík, I.; Zíma, V.; Zímová, Lucie; Vlachová, Viktorie

    2017-01-01

    Roč. 10, Jan 31 (2017), č. článku 16. ISSN 1662-5099 R&D Projects: GA ČR(CZ) GA15-15839S; GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) EE2.3.30.0025 Institutional support: RVO:67985823 Keywords : TRP channel * S1-S2 linker * allyl isothiocynate * sensor module Subject RIV: FH - Neurology OBOR OECD: Neuroscience s (including psychophysiology Impact factor: 5.076, year: 2016

  8. Comorbid personality disorders in subjects with panic disorder: which personality disorders increase clinical severity?

    OpenAIRE

    Mustafa Ozkan; Abdurrahman Altindag

    2003-01-01

    Personality disorders are common in subjects with panic disorder. Personality disorders have shown to affect the course of panic disorder. The purpose of this study was to examine which personality disorders effect clinical severity in subjects with panic disorder. This study included 122 adults (71 female, 41 male), who met DSM-IV criteria for panic disorder (with or without agoraphobia). Clinical assessment was conducted by using the Structured Clinical Interview for DSM-IV Axis I Disorders...

  9. Food Insecurity and Common Mental Disorders among Ethiopian Youth: Structural Equation Modeling

    Science.gov (United States)

    Lindstrom, David; Belachew, Tefera; Hadley, Craig; Lachat, Carl; Verstraeten, Roos; De Cock, Nathalie; Kolsteren, Patrick

    2016-01-01

    Background Although the consequences of food insecurity on physical health and nutritional status of youth living have been reported, its effect on their mental health remains less investigated in developing countries. The aim of this study was to examine the pathways through which food insecurity is associated with poor mental health status among youth living in Ethiopia. Methods We used data from Jimma Longitudinal Family Survey of Youth (JLFSY) collected in 2009/10. A total of 1,521 youth were included in the analysis. We measured food insecurity using a 5-items scale and common mental disorders using the 20-item Self-Reporting Questionnaire (SRQ-20). Structural and generalized equation modeling using maximum likelihood estimation method was used to analyze the data. Results The prevalence of common mental disorders was 30.8% (95% CI: 28.6, 33.2). Food insecurity was independently associated with common mental disorders (β = 0.323, Pinsecurity on common mental disorders was direct and only 8.2% of their relationship was partially mediated by physical health. In addition, poor self-rated health (β = 0.285, Pinsecurity is directly associated with common mental disorders among youth in Ethiopia. Interventions that aim to improve mental health status of youth should consider strategies to improve access to sufficient, safe and nutritious food. PMID:27846283

  10. Psychosocial factors, musculoskeletal disorders and work-related fatigue amongst nurses in Brunei: structural equation model approach.

    Science.gov (United States)

    Abdul Rahman, Hanif; Abdul-Mumin, Khadizah; Naing, Lin

    2017-09-01

    Psychosocial factors, musculoskeletal disorders and work-related fatigue have adverse effects on individual nurses and place a substantial financial burden on health care. Evidence of an association has been reported in the literature, but no theoretical explanation has been published to date. To explore and develop a structural model to provide a theoretical explanation for this relationship. A cross-sectional study using data from 201 valid samples of emergency and critical care nurses across public hospitals in Brunei was performed via self-administered questionnaire. The structural equation model was assessed using partial least squares analysis. A valid and robust structural model was constructed. This revealed that 61.5% of the variance in chronic fatigue could be explained by psychosocial factors and musculoskeletal disorders pathways. Among the psychosocial factors, work-family conflict was identified as a key mediator for progression of musculoskeletal problems and subsequent fatigue through stress and burnout. This report provides a novel theoretical contribution to understanding the relationship between psychosocial factors, musculoskeletal disorders and work-related fatigue. These preliminary results may be useful for future studies on the development of work-related fatigue and musculoskeletal disorders, particularly the central role of work-family conflict. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Impaired functional but preserved structural connectivity in limbic white matter tracts in youth with conduct disorder or oppositional defiant disorder plus psychopathic traits.

    Science.gov (United States)

    Finger, Elizabeth Carrie; Marsh, Abigail; Blair, Karina Simone; Majestic, Catherine; Evangelou, Iordanis; Gupta, Karan; Schneider, Marguerite Reid; Sims, Courtney; Pope, Kayla; Fowler, Katherine; Sinclair, Stephen; Tovar-Moll, Fernanda; Pine, Daniel; Blair, Robert James

    2012-06-30

    Youths with conduct disorder or oppositional defiant disorder and psychopathic traits (CD/ODD+PT) are at high risk of adult antisocial behavior and psychopathy. Neuroimaging studies demonstrate functional abnormalities in orbitofrontal cortex and the amygdala in both youths and adults with psychopathic traits. Diffusion tensor imaging in psychopathic adults demonstrates disrupted structural connectivity between these regions (uncinate fasiculus). The current study examined whether functional neural abnormalities present in youths with CD/ODD+PT are associated with similar white matter abnormalities. Youths with CD/ODD+PT and comparison participants completed 3.0 T diffusion tensor scans and functional magnetic resonance imaging scans. Diffusion tensor imaging did not reveal disruption in structural connections within the uncinate fasiculus or other white matter tracts in youths with CD/ODD+PT, despite the demonstration of disrupted amygdala-prefrontal functional connectivity in these youths. These results suggest that disrupted amygdala-frontal white matter connectivity as measured by fractional anisotropy is less sensitive than imaging measurements of functional perturbations in youths with psychopathic traits. If white matter tracts are intact in youths with this disorder, childhood may provide a critical window for intervention and treatment, before significant structural brain abnormalities solidify. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Full-spectrum light management by pseudo-disordered moth-eye structures for thin film solar cells.

    Science.gov (United States)

    Liu, Xiaojun; Da, Yun; Xuan, Yimin

    2017-08-07

    In this paper, the role of pseudo-disordered moth-eye structures on the optical features for application to thin-film solar cells is investigated to realize the superior light management for the full-spectrum solar energy utilization, compared with some ordered structures. Without loss of generality, the c-Si thin film solar cell is taken as the example. The results demonstrate that the fluctuations introduced into the geometry parameters of moth-eye elements can lead to the remarkable absorption enhancement in the wavelength region of 0.3-1.1 μm and high transmission in the wavelength range of 1.1-2.5 μm. Two mechanisms including the increasing spectral density of modes and the intensive forescattering intensity are identified to be responsible for the absorption enhancement. In addition, the optical characteristics of the moth-eye surface with both disordered height and disordered diameter are insensitive to the incident angle.

  13. Low resolution crystal structure of Arenicola erythrocruorin: influence of coiled coils on the architecture of a megadalton respiratory protein.

    Science.gov (United States)

    Royer, William E; Omartian, Michael N; Knapp, James E

    2007-01-05

    Annelid erythrocruorins are extracellular respiratory complexes assembled from 180 subunits into hexagonal bilayers. Cryo-electron microscopic experiments have identified two different architectural classes. In one, designated type I, the vertices of the two hexagonal layers are partially staggered, with one hexagonal layer rotated by about 16 degrees relative to the other layer, whereas in the other class, termed type II, the vertices are essentially eclipsed. We report here the first crystal structure of a type II erythrocruorin, that from Arenicola marina, at 6.2 A resolution. The structure reveals the presence of long continuous triple-stranded coiled-coil "spokes" projecting towards the molecular center from each one-twelfth unit; interdigitation of these spokes provides the only contacts between the two hexagonal layers of the complex. This arrangement contrasts with that of a type I erythrocruorin from Lumbricus terrestris in which the spokes are broken into two triple-stranded coiled coils with a disjointed connection. The disjointed connection allows formation of a more compact structure in the type I architecture, with the two hexagonal layers closer together and additional extensive contacts between the layers. Comparison of sequences of the coiled-coil regions of various linker subunits shows that the linker subunits from type II erythrocruorins possess continuous heptad repeats, whereas a sequence gap places these repeats out of register in the type I linker subunits, consistent with a disjointed coiled-coil arrangement.

  14. THz TDS of substance covered by disordered structure

    Science.gov (United States)

    Trofimov, V. A.; Zagursky, D. Y.; Zakharova, I. G.

    2016-04-01

    Computer simulation of a few-cycle pulse interaction with a substance covered by disordered structure is performed in order to study the effects imposed on spectra of transmitted and reflected pulses by presence of the cover. The substance is described by semi-classic approach and the cover is described by classic electrodynamics equations for linear isotropic medium. The cover consists of a number of layers with different properties which is considered to be the cause of the distortions. The influence of relation between pulse wavelength and cover layer thickness is illustrated. Computer simulation results are compared with those of physical experiments conducted for paper and other common materials.

  15. Effects of structural and chemical disorders on the vis/UV spectra of carbonaceous interstellar grains

    Science.gov (United States)

    Papoular, Robert J.; Yuan, Shengjun; Roldán, Rafael; Katsnelson, Mikhail I.; Papoular, Renaud

    2013-07-01

    The recent spectacular progress in the experimental and theoretical understanding of graphene, the basic constituent of graphite, is applied here to compute, from first principles, the ultraviolet extinction of nanoparticles made of stacks of graphene layers. The theory also covers cases where graphene is affected by structural, chemical or orientation disorder, each disorder type being quantitatively defined by a single parameter. The extinction bumps carried by such model materials are found to have positions and widths falling in the same range as the known astronomical 2175 Å features: as the disorder parameter increases, the bump width increases from 0.85 to 2.5 μm-1, while its peak position shifts from 4.65 to 4.75 μm-1. Moderate degrees of disorder are enough to cover the range of widths of the vast majority of observed bumps (0.75 to 1.3 μm-1). Higher degrees account for outliers, also observed in the sky. The introduction of structural or chemical disorder amounts to changing the initial sp2 bondings into sp3 or sp1, so the optical properties of the model material become similar to those of the more or less amorphous carbon-rich materials studied in the laboratory: a-C, a-C:H, HAC, ACH, coals, etc. The present treatment thus bridges gaps between physically different model materials.

  16. Bifactor latent structure of attention-deficit/hyperactivity disorder (ADHD)/oppositional defiant disorder (ODD) symptoms and first-order latent structure of sluggish cognitive tempo symptoms.

    Science.gov (United States)

    Lee, SoYean; Burns, G Leonard; Beauchaine, Theodore P; Becker, Stephen P

    2016-08-01

    The objective was to determine if the latent structure of attention-deficit/hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD) symptoms is best explained by a general disruptive behavior factor along with specific inattention (IN), hyperactivity/impulsivity (HI), and ODD factors (a bifactor model) whereas the latent structure of sluggish cognitive tempo (SCT) symptoms is best explained by a first-order factor independent of the bifactor model of ADHD/ODD. Parents' (n = 703) and teachers' (n = 366) ratings of SCT, ADHD-IN, ADHD-HI, and ODD symptoms on the Child and Adolescent Disruptive Behavior Inventory (CADBI) in a community sample of children (ages 5-13; 55% girls) were used to evaluate 4 models of symptom organization. Results indicated that a bifactor model of ADHD/ODD symptoms, in conjunction with a separate first-order SCT factor, was the best model for both parent and teacher ratings. The first-order SCT factor showed discriminant validity with the general disruptive behavior and specific IN factors in the bifactor model. In addition, higher scores on the SCT factor predicted greater academic and social impairment, even after controlling for the general disruptive behavior and 3 specific factors. Consistent with predictions from the trait-impulsivity etiological model of externalizing liability, a single, general disruptive behavior factor accounted for nearly all common variance in ADHD/ODD symptoms, whereas SCT symptoms represented a factor different from the general disruptive behavior and specific IN factor. These results provide additional support for distinguishing between SCT and ADHD-IN. The study also demonstrates how etiological models can be used to predict specific latent structures of symptom organization. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  17. Identifying Structural Flow Defects in Disordered Solids Using Machine-Learning Methods

    Science.gov (United States)

    Cubuk, E. D.; Schoenholz, S. S.; Rieser, J. M.; Malone, B. D.; Rottler, J.; Durian, D. J.; Kaxiras, E.; Liu, A. J.

    2015-03-01

    We use machine-learning methods on local structure to identify flow defects—or particles susceptible to rearrangement—in jammed and glassy systems. We apply this method successfully to two very different systems: a two-dimensional experimental realization of a granular pillar under compression and a Lennard-Jones glass in both two and three dimensions above and below its glass transition temperature. We also identify characteristics of flow defects that differentiate them from the rest of the sample. Our results show it is possible to discern subtle structural features responsible for heterogeneous dynamics observed across a broad range of disordered materials.

  18. Effect of the Linker in Terephthalate-Functionalized Conducting Redox Polymers

    International Nuclear Information System (INIS)

    Yang, Li; Huang, Xiao; Gogoll, Adolf; Strømme, Maria; Sjödin, Martin

    2016-01-01

    The combination of high capacity redox active pendent groups and conducting polymers, realized in conducting redox polymers (CRPs), provides materials with high charge storage capacity that are electronically conducting which makes CRPs attractive for electrical energy storage applications. In this report, six polythiophene and poly(3,4-ethylenedioxythiophene)(PEDOT)-based CRPs with a diethyl terephthalate unit covalently bound to the polymer chain by various linkers have been synthesized and characterized electrochemically. The effects of the choice of polymer backbone and of the nature of the link on the electrochemistry, and in particular the cycling stability of these polymers, are discussed. All CRPs show both the doping of the polymer backbone as well as the redox behavior of the pendent groups and the redox potential of the pendent groups in the CRPs is close to that of corresponding monomer, indicating insignificant interaction between the pendant and the polymer backbone. While all CRPs show various degrees of charge decay upon electrochemical redox conversion, the PEDOT-based CRPs show significantly improved stability compared to the polythiophene counterparts. Moreover, we show that by the right choice of link the cycling stability of diethyl terephthalate substituted PEDOT-based CRPs can be significantly improved.

  19. Post-traumatic stress disorder and depression co-occurrence: Structural relations among disorder constructs and trait and symptom dimensions.

    Science.gov (United States)

    Post, Loren M; Feeny, Norah C; Zoellner, Lori A; Connell, Arin M

    2016-12-01

    Post-traumatic stress disorder (PTSD) and major depressive disorder (MDD) in response to trauma co-occur at high rates. A better understanding of the nature of this co-occurrence is critical to developing an accurate conceptualization of the disorders. This study examined structural relations among the PTSD and MDD constructs and trait and symptom dimensions within the framework of the integrative hierarchical model of anxiety and depression. Study participants completed clinician-rated and self-report measures during a pre-treatment assessment. The sample consisted of 200 treatment-seeking individuals with a primary DSM-IV PTSD diagnosis. Structural equation modelling was used to examine the relationship between the constructs. The trait negative affect/neuroticism construct had a direct effect on both PTSD and MDD. The trait positive affect/extraversion construct had a unique, negative direct effect on MDD, and PTSD had a unique, direct effect on the physical concerns symptoms construct. An alternative model with the PTSD and MDD constructs combined into an overall general traumatic stress construct produced a decrement in model fit. These findings provide a clearer understanding of the relationship between co-occurring PTSD and MDD as disorders with shared trait negative affect/neuroticism contributing to the overlap between them and unique trait positive affect/extraversion and physical concerns differentiating them. Therefore, PTSD and MDD in response to trauma may be best represented as two distinct, yet strongly related constructs. In assessing individuals who have been exposed to trauma, practitioners should recognize that co-occurring PTSD and MDD appears to be best represented as two distinct, yet strongly related constructs. Negative affect may be the shared vulnerability directly influencing both PTSD and MDD; however, in the presence of both PTSD and MDD, low positive affect appears to be more specifically related to MDD and fear of physical

  20. Sleep Structure in Children With Attention-Deficit/Hyperactivity Disorder.

    Science.gov (United States)

    Akinci, Gulcin; Oztura, Ibrahim; Hiz, Semra; Akdogan, Ozlem; Karaarslan, Dilay; Ozek, Handan; Akay, Aynur

    2015-10-01

    The authors evaluated basic sleep architecture and non-rapid eye movement (NREM) sleep alterations in drug-naïve attention-deficit/hyperactivity disorder (ADHD) children without psychiatric or other comorbidities. This cross-sectional case-control study included 28 drug-naïve children with ADHD and 15 healthy controls. This subjective studies revealed that children with ADHD had a worse sleep quality and increased daytime sleepiness. Polysomnography data showed that the sleep macrostructure was not significantly different in children with ADHD. Sleep microstructure was altered in ADHD children by means of reduced total cyclic alternating pattern rate and duration of cyclic alternating pattern sequences. This reduction was associated with a selective decrease of A1 index during stage 2 NREM. SpO2 in total sleep was slightly decreased; however, the incidence of sleep disordered breathing showed no significant difference. The authors suggest that cyclic alternating pattern scoring would provide a further insight to obtain a better understanding of the sleep structure in children with ADHD. © The Author(s) 2015.

  1. Effect of disorder on the magnetic and electronic structure of a prospective spin-gapless semiconductor MnCrVAl

    Directory of Open Access Journals (Sweden)

    P. Kharel

    2017-05-01

    Full Text Available Recent discovery of a new class of materials, spin-gapless semiconductors (SGS, has attracted considerable attention in the last few years, primarily due to potential applications in the emerging field of spin-based electronics (spintronics. Here, we investigate structural, electronic, and magnetic properties of one potential SGS compound, MnCrVAl, using various experimental and theoretical techniques. Our calculations show that this material exhibits ≈ 0.5 eV band gap for the majority-spin states, while for the minority-spin it is nearly gapless. The calculated magnetic moment for the completely ordered structure is 2.9 μB/f.u., which is different from our experimentally measured value of almost zero. This discrepancy is explained by the structural disorder. In particular, A2 type disorder, where Mn or Cr atoms exchange their positions with Al atoms, results in induced antiferromagnetic exchange coupling, which, at a certain level of disorder, effectively reduces the total magnetic moment to zero. This is consistent with our x-ray diffraction measurements which indicate the presence of A2 disorder in all of our samples. In addition, we also show that B2 disorder does not result in antiferromagnetic exchange coupling and therefore does not significantly reduce the total magnetic moment.

  2. Factor structure of the Psychiatric Diagnostic Screening Questionnaire (PDSQ), a screening questionnaire for DSM-IV axis I disorders.

    Science.gov (United States)

    Sheeran, T; Zimmerman, M

    2004-03-01

    We examined the factor structure of the Psychiatric Diagnostic Screening Questionnaire (PDSQ), a 125-item self-report scale that screens for 15 of the most common Axis I psychiatric disorders for which patients seek treatment in outpatient settings. The sample consisted of 2440 psychiatric outpatients. Thirteen factors were extracted. Ten mapped directly onto the DSM-IV diagnosis for which they were designed and one represented suicidal ideation. The remaining two factors reflected closely related disorders: Panic Disorder/Agoraphobia, and Somatization/Hypochondriasis. A psychosis factor was not extracted. Overall, the factor structure of the PDSQ was consistent with the DSM-IV nosology upon which it was developed.

  3. DISC Predictive Scales (DPS): Factor Structure and Uniform Differential Item Functioning Across Gender and Three Racial/Ethnic Groups for ADHD, Conduct Disorder, and Oppositional Defiant Disorder Symptoms

    OpenAIRE

    Wiesner, Margit; Kanouse, David E.; Elliott, Marc N.; Windle, Michael; Schuster, Mark A.

    2015-01-01

    The factor structure and potential uniform differential item functioning (DIF) among gender and three racial/ethnic groups of adolescents (African American, Latino, White) were evaluated for attention deficit/hyperactivity disorder (ADHD), conduct disorder (CD), and oppositional defiant disorder (ODD) symptom scores of the DISC Predictive Scales (DPS; Leung et al., 2005; Lucas et al., 2001). Primary caregivers reported on DSM–IV ADHD, CD, and ODD symptoms for a probability sample of 4,491 chi...

  4. Structural and Functional Aspects of the Sensor Histidine Kinase PrrB from Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Nowak, E.; Panjikar, S.; Morth, J.P.

    2006-01-01

    We describe the solution structures of two- and three-domain constructs of the sensor histidine kinase PrrB from Mycobacterium tuberculosis, which allow us to locate the HAMP linker relative to the ATP binding and dimerization domains. We show that the three-domain construct is active both...

  5. Effects of the amino acid linkers on the melanoma-targeting and pharmacokinetic properties of 111In-labeled lactam bridge-cyclized alpha-MSH peptides.

    Science.gov (United States)

    Guo, Haixun; Yang, Jianquan; Gallazzi, Fabio; Miao, Yubin

    2011-04-01

    The purpose of this study was to examine the profound effects of the amino acid linkers on the melanoma-targeting and pharmacokinetic properties of (111)In-labeled lactam bridge-cyclized DOTA-[X]-CycMSH(hex) {1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-[X]-c[Asp-His-dPhe-Arg-Trp-Lys]-CONH(2); X = GGNle, GENle, or NleGE; GG = -Gly-Gly- and GE = -Gly-Glu-} peptides. Three novel peptides (DOTA-GGNle-CycMSH(hex), DOTA-GENle-CycMSH(hex), and DOTA-NleGE-CycMSH(hex)) were designed and synthesized. The melanocortin-1 (MC1) receptor-binding affinities of the peptides were determined in B16/F1 melanoma cells. The melanoma-targeting and pharmacokinetic properties of (111)In-DOTA-GGNle-CycMSH(hex) and (111)In-DOTA-GENle-CycMSH(hex) were determined in B16/F1 melanoma-bearing C57 mice. DOTA-GGNle-CycMSH(hex) and DOTA-GENle-CycMSH(hex) displayed 2.1 and 11.5 nM MC1 receptor-binding affinities, whereas DOTA-NleGE-CycMSH(hex) showed 873.4 nM MC1 receptor-binding affinity. The introduction of the -GG- linker maintained high melanoma uptake while decreasing kidney and liver uptake of (111)In-DOTA-GGNle-CycMSH(hex). The tumor uptake of (111)In-DOTA-GGNle-CycMSH(hex) was 19.05 ± 5.04 and 18.6 ± 3.56 percentage injected dose per gram at 2 and 4 h after injection, respectively. (111)In-DOTA-GGNle-CycMSH(hex) exhibited 28%, 32%, and 42% less kidney uptake than (111)In-DOTA-Nle-CycMSH(hex) we reported previously, and 61%, 65%, and 68% less liver uptake than (111)In-DOTA-Nle-CycMSH(hex) at 2, 4, and 24 h after injection, respectively. The amino acid linkers exhibited profound effects on the melanoma-targeting and pharmacokinetic properties of the (111)In-labeled lactam bridge-cyclized α-melanocyte-stimulating hormone peptides. Introduction of the -GG- linker maintained high melanoma uptake while reducing kidney and liver uptake of (111)In-DOTA-GGNle-CycMSH(hex), highlighting its potential as an effective imaging probe for melanoma detection, as well as a therapeutic peptide

  6. Smart nanogels at the air/water interface: structural studies by neutron reflectivity

    Science.gov (United States)

    Zielińska, Katarzyna; Sun, Huihui; Campbell, Richard A.; Zarbakhsh, Ali; Resmini, Marina

    2016-02-01

    The development of effective transdermal drug delivery systems based on nanosized polymers requires a better understanding of the behaviour of such nanomaterials at interfaces. N-Isopropylacrylamide-based nanogels synthesized with different percentages of N,N'-methylenebisacrylamide as cross-linker, ranging from 10 to 30%, were characterized at physiological temperature at the air/water interface, using neutron reflectivity (NR), with isotopic contrast variation, and surface tension measurements; this allowed us to resolve the adsorbed amount and the volume fraction of nanogels at the interface. A large conformational change for the nanogels results in strong deformations at the interface. As the percentage of cross-linker incorporated in the nanogels becomes higher, more rigid matrices are obtained, although less deformed, and the amount of adsorbed nanogels is increased. The data provide the first experimental evidence of structural changes of nanogels as a function of the degree of cross-linking at the air/water interface.The development of effective transdermal drug delivery systems based on nanosized polymers requires a better understanding of the behaviour of such nanomaterials at interfaces. N-Isopropylacrylamide-based nanogels synthesized with different percentages of N,N'-methylenebisacrylamide as cross-linker, ranging from 10 to 30%, were characterized at physiological temperature at the air/water interface, using neutron reflectivity (NR), with isotopic contrast variation, and surface tension measurements; this allowed us to resolve the adsorbed amount and the volume fraction of nanogels at the interface. A large conformational change for the nanogels results in strong deformations at the interface. As the percentage of cross-linker incorporated in the nanogels becomes higher, more rigid matrices are obtained, although less deformed, and the amount of adsorbed nanogels is increased. The data provide the first experimental evidence of structural changes

  7. Assessment of abnormal brain structures and networks in major depressive disorder using morphometric and connectome analyses.

    Science.gov (United States)

    Chen, Vincent Chin-Hung; Shen, Chao-Yu; Liang, Sophie Hsin-Yi; Li, Zhen-Hui; Tyan, Yeu-Sheng; Liao, Yin-To; Huang, Yin-Chen; Lee, Yena; McIntyre, Roger S; Weng, Jun-Cheng

    2016-11-15

    It is hypothesized that the phenomenology of major depressive disorder (MDD) is subserved by disturbances in the structure and function of brain circuits; however, findings of structural abnormalities using MRI have been inconsistent. Generalized q-sampling imaging (GQI) methodology provides an opportunity to assess the functional integrity of white matter tracts in implicated circuits. The study population was comprised of 16 outpatients with MDD (mean age 44.81±2.2 years) and 30 age- and gender-matched healthy controls (mean age 45.03±1.88 years). We excluded participants with any other primary mental disorder, substance use disorder, or any neurological illnesses. We used T1-weighted 3D MRI with voxel-based morphometry (VBM) and vertex-wise shape analysis, and GQI with voxel-based statistical analysis (VBA), graph theoretical analysis (GTA) and network-based statistical (NBS) analysis to evaluate brain structure and connectivity abnormalities in MDD compared to healthy controls correlates with clinical measures of depressive symptom severity, Hamilton Depression Rating Scale 17-item (HAMD) and Hospital Anxiety and Depression Scale (HADS). Using VBM and vertex-wise shape analyses, we found significant volumetric decreases in the hippocampus and amygdala among subjects with MDD (pdisorder with abnormal circuit structure and connectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Synthesis and structures of two new Cu(I) frameworks bearing1,3 ...

    Indian Academy of Sciences (India)

    DOI 10.1007/s12039-016-1100-6. Synthesis and structures of two new Cu(I) frameworks bearing1,3-bis(4-pyridyl)propane and inorganic linkers. ZHAOBO HUa, BO LIb,∗, WENQIANG JUa, YUNING LIANGa and ZILU CHENa,∗. aState Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources,.

  9. Local structure and disorder in crystalline Pb9Al8O21

    International Nuclear Information System (INIS)

    Hannon, Alex C.; Barney, Emma R.; Holland, Diane; Knight, Kevin S.

    2008-01-01

    Crystalline Pb 9 Al 8 O 21 is a model compound for the structure of non-linear optical glasses containing lone-pair ions, and its structure has been investigated by neutron powder diffraction and total scattering, and 27 Al magic angle spinning NMR. Rietveld analysis (space group Pa3-bar (No. 205), a=13.25221(4) A) shows that some of the Pb and O sites have partial occupancies, due to lead volatilisation during sample preparation, and the non-stoichiometric sample composition is Pb 9-δ Al 8 O 21-δ with δ=0.54. The NMR measurements show evidence for a correlation between the chemical shift and the variance of the bond angles at the aluminium sites. The neutron total correlation function shows that the true average Al-O bond length is 0.8% longer than the apparent bond length determined by Rietveld refinement. The thermal variation in bond length is much smaller than the thermal variation in longer interatomic distances determined by Rietveld refinement. The total correlation function is consistent with an interpretation in which AlO 3 groups with an Al-O bond length of 1.651 A occur as a result of the oxygen vacancies in the structure. The width of the tetrahedral Al-O peak in the correlation function for the crystal is very similar to that for lead aluminate glass, indicating that the extent of static disorder is very similar in the two phases. - Graphical abstract: Combined neutron powder diffraction and total scattering, and 27 Al NMR on crystalline Pb 9 Al 8 O 21 shows it to be a non-stoichiometric compound with vacancies due to PbO volatilisation. A detailed consideration of the thermal and static disorder is given, showing that glass and crystal phases have very similar disorder at short range

  10. Schizoaffective Disorder

    Science.gov (United States)

    ... variations in brain chemistry and structure. Risk factors Factors that increase the risk of developing schizoaffective disorder include: Having a close blood relative who has schizoaffective disorder, schizophrenia or bipolar disorder Stressful events that trigger symptoms ...

  11. Electronic, elastic, thermodynamic properties and structure disorder of γ-AlON solid solution from ab initio calculations

    International Nuclear Information System (INIS)

    Wang, Yuezhong; Lu, Tiecheng; Zhang, Rongshi; Jiang, Shengli; Qi, Jianqi; Wang, Ying; Chen, Qingyun; Miao, Naihua; He, Duanwei

    2013-01-01

    Highlights: ► We reassess the chemical bonding character of γ-AlON which shows strong ionicity. ► γ-AlON single-crystals exhibit highly elastic anisotropy. ► The thermodynamic properties are investigated in a wider temperature/pressure range. ► γ-AlON is an O/N partially disordered structure. - Abstract: Spinel aluminium oxynitride (γ-AlON), as a kind of transparent ceramic material expectable, is studied using the ab initio density functional method, in terms of electronic, elastic, thermodynamic properties and structure disorder. The results show that γ-AlON exhibits strong ionicity, as quantitatively expressed by (Al O 2.43+ ) 15 (Al T 2.41+ ) 8 (O 1.64- ) 27 (N 2.27- ) 5 from our reassessment of the ionic character. We summarize and speculate that the considered oxynitride single-crystals exhibit highly elastic anisotropy. The interpretation of the thermodynamic properties of γ-AlON according to quasi-harmonic Debye model confirm the available experiments and are extended to a wider temperature/pressure range. This material holds high elastic strength under extreme environments, where dB/dT absolute value is less than 0.03 GPa/K, independent of the pressure. Finally, we study the O/N structure disorder character of γ-AlON solid solution by investigating nine possible crystal structures. It is found that γ-AlON should be partially disordered, and in fact, the O/N ordering has a significant effect on the properties.

  12. Structural disorder in the decagonal Al-Co-Ni. I. Patterson analysis of diffuse x-ray scattering data

    International Nuclear Information System (INIS)

    Kobas, Miroslav; Weber, Thomas; Steurer, Walter

    2005-01-01

    The three-dimensional (3D) difference Patterson (autocorrelation) function of a disordered quasicrystal (Edagawa phase) has been analyzed. 3D diffuse x-ray diffraction data were collected in situ at 300, 1070, and 1120 K. A method, the punch-and-fill technique, has been developed for separating diffuse scattering and Bragg reflections. Its potential and limits are discussed in detail. The different Patterson maps are interpreted in terms of intercluster correlations as a function of temperature. Both at high and low temperatures, the clusters decorate the vertices of the same quasiperiodic covering. At low temperatures, for the disordered part of the structure, short-range intercluster correlations are present, whereas at higher temperatures, medium-range intercluster correlations are formed. This indicates disorder mainly inside clusters at low temperatures, whereas at higher temperatures disorder takes place inside larger superclusters. Qualitatively, the Patterson maps may be interpreted by intercluster correlations mainly inside pentagonal superclusters below 1120 K, and inside the larger decagonal superclusters at 1120 K. The results of our diffraction study are published in two parts. Part I focuses on the 3D Patterson analysis based on experimental data, Part II reports modeling of structural disorder in decagonal Al-Co-Ni

  13. Mapping the structural organization of the brain in conduct disorder: replication of findings in two independent samples.

    Science.gov (United States)

    Fairchild, Graeme; Toschi, Nicola; Sully, Kate; Sonuga-Barke, Edmund J S; Hagan, Cindy C; Diciotti, Stefano; Goodyer, Ian M; Calder, Andrew J; Passamonti, Luca

    2016-09-01

    Neuroimaging methods that allow researchers to investigate structural covariance between brain regions are increasingly being used to study psychiatric disorders. Structural covariance analyses are particularly well suited for studying disorders with putative neurodevelopmental origins as they appear sensitive to changes in the synchronized maturation of different brain regions. We assessed interregional correlations in cortical thickness as a measure of structural covariance, and applied this method to investigate the coordinated development of different brain regions in conduct disorder (CD). We also assessed whether structural covariance measures could differentiate between the childhood-onset (CO-CD) and adolescence-onset (AO-CD) subtypes of CD, which may differ in terms of etiology and adult outcomes. We examined interregional correlations in cortical thickness in male youths with CO-CD or AO-CD relative to healthy controls (HCs) in two independent datasets. The age range in the Cambridge sample was 16-21 years (mean: 18.0), whereas the age range of the Southampton sample was 13-18 years (mean: 16.7). We used FreeSurfer to perform segmentations and applied structural covariance methods to the resulting parcellations. In both samples, CO-CD participants displayed a strikingly higher number of significant cross-cortical correlations compared to HC or AO-CD participants, whereas AO-CD participants presented fewer significant correlations than HCs. Group differences in the strength of the interregional correlations were observed in both samples, and each set of results remained significant when controlling for IQ and comorbid attention-deficit/hyperactivity disorder symptoms. This study provides new evidence for quantitative differences in structural brain organization between the CO-CD and AO-CD subtypes, and supports the hypothesis that both subtypes of CD have neurodevelopmental origins. © 2016 The Authors. Journal of Child Psychology and Psychiatry

  14. The NEO Five-Factor Inventory: Latent Structure and Relationships with Dimensions of Anxiety and Depressive Disorders in a Large Clinical Sample

    Science.gov (United States)

    Rosellini, Anthony J.; Brown, Timothy A.

    2011-01-01

    The present study evaluated the latent structure of the NEO Five-Factor Inventory (NEO FFI) and relations between the five-factor model (FFM) of personality and dimensions of "DSM-IV" anxiety and depressive disorders (panic disorder, generalized anxiety disorder [GAD], obsessive-compulsive disorder, social phobia [SOC], major depressive disorder…

  15. Cytoskeletal Linker Protein Dystonin Is Not Critical to Terminal Oligodendrocyte Differentiation or CNS Myelination.

    Directory of Open Access Journals (Sweden)

    Samantha F Kornfeld

    Full Text Available Oligodendrocyte differentiation and central nervous system myelination require massive reorganization of the oligodendrocyte cytoskeleton. Loss of specific actin- and tubulin-organizing factors can lead to impaired morphological and/or molecular differentiation of oligodendrocytes, resulting in a subsequent loss of myelination. Dystonin is a cytoskeletal linker protein with both actin- and tubulin-binding domains. Loss of function of this protein results in a sensory neuropathy called Hereditary Sensory Autonomic Neuropathy VI in humans and dystonia musculorum in mice. This disease presents with severe ataxia, dystonic muscle and is ultimately fatal early in life. While loss of the neuronal isoforms of dystonin primarily leads to sensory neuron degeneration, it has also been shown that peripheral myelination is compromised due to intrinsic Schwann cell differentiation abnormalities. The role of this cytoskeletal linker in oligodendrocytes, however, remains unclear. We sought to determine the effects of the loss of neuronal dystonin on oligodendrocyte differentiation and central myelination. To address this, primary oligodendrocytes were isolated from a severe model of dystonia musculorum, Dstdt-27J, and assessed for morphological and molecular differentiation capacity. No defects could be discerned in the differentiation of Dstdt-27J oligodendrocytes relative to oligodendrocytes from wild-type littermates. Survival was also compared between Dstdt-27J and wild-type oligodendrocytes, revealing no significant difference. Using a recently developed migration assay, we further analysed the ability of primary oligodendrocyte progenitor cell motility, and found that Dstdt-27J oligodendrocyte progenitor cells were able to migrate normally. Finally, in vivo analysis of oligodendrocyte myelination was done in phenotype-stage optic nerve, cerebral cortex and spinal cord. The density of myelinated axons and g-ratios of Dstdt-27J optic nerves was normal, as

  16. Diols and anions can control the formation of an exciplex between a pyridinium boronic acid with an aryl group connected via a propylene linker.

    Science.gov (United States)

    Huang, Yan-Jun; Jiang, Yun-Bao; Bull, Steven D; Fossey, John S; James, Tony D

    2010-11-21

    The exciplex formation between a pyridinium boronic acid and phenyl group connected via a propylene linker can be monitored using fluorescence. Addition of pinacol affords a cyclic boronate ester with enhanced Lewis acidity that increases the strength of its cation-π stacking interaction causing a four-fold fluorescence enhancement.

  17. Elucidating structural order and disorder phenomena in mullite-type Al4B2O9 by automated electron diffraction tomography

    International Nuclear Information System (INIS)

    Zhao, Haishuang; Krysiak, Yaşar; Hoffmann, Kristin; Barton, Bastian; Molina-Luna, Leopoldo; Neder, Reinhard B.; Kleebe, Hans-Joachim; Gesing, Thorsten M.; Schneider, Hartmut; Fischer, Reinhard X.

    2017-01-01

    The crystal structure and disorder phenomena of Al 4 B 2 O 9 , an aluminum borate from the mullite-type family, were studied using automated diffraction tomography (ADT), a recently established method for collection and analysis of electron diffraction data. Al 4 B 2 O 9 , prepared by sol-gel approach, crystallizes in the monoclinic space group C2/m. The ab initio structure determination based on three-dimensional electron diffraction data from single ordered crystals reveals that edge-connected AlO 6 octahedra expanding along the b axis constitute the backbone. The ordered structure (A) was confirmed by TEM and HAADF-STEM images. Furthermore, disordered crystals with diffuse scattering along the b axis are observed. Analysis of the modulation pattern implies a mean superstructure (AAB) with a threefold b axis, where B corresponds to an A layer shifted by ½a and ½c. Diffraction patterns simulated for the AAB sequence including additional stacking disorder are in good agreement with experimental electron diffraction patterns. - Graphical abstract: Crystal structure and disorder phenomena of B-rich Al 4 B 2 O 9 studied by automated electron diffraction tomography (ADT) and described by diffraction simulation using DISCUS. - Highlights: • Ab-initio structure solution by electron diffraction from single nanocrystals. • Detected modulation corresponding mainly to three-fold superstructure. • Diffuse diffraction streaks caused by stacking faults in disordered crystals. • Observed streaks explained by simulated electron diffraction patterns.

  18. Universal size properties of a star-ring polymer structure in disordered environments

    Science.gov (United States)

    Haydukivska, K.; Blavatska, V.

    2018-03-01

    We consider the complex polymer system, consisting of a ring polymer connected to the f1-branched starlike structure, in a good solvent in the presence of structural inhomogeneities. In particular cases f1=1 and f1=2 , such a system restores the synthesized tadpole-shaped polystyrenes [Doi et al., Macromolecules 46, 1075 (2013), 10.1021/ma302511j]. We assume that structural defects are correlated at large distances x according to a power law x-a. Applying the direct polymer renormalization approach, we evaluate the universal size characteristics such as the ratio of the radii of gyration of star-ring and star topologies, and compare the effective sizes of single arms in complex structures and isolated polymers of the same total molecular weight. The nontrivial impact of disorder on these quantities is analyzed.

  19. Co-altered functional networks and brain structure in unmedicated patients with bipolar and major depressive disorders.

    Science.gov (United States)

    He, Hao; Sui, Jing; Du, Yuhui; Yu, Qingbao; Lin, Dongdong; Drevets, Wayne C; Savitz, Jonathan B; Yang, Jian; Victor, Teresa A; Calhoun, Vince D

    2017-12-01

    Bipolar disorder (BD) and major depressive disorder (MDD) share similar clinical characteristics that often obscure the diagnostic distinctions between their depressive conditions. Both functional and structural brain abnormalities have been reported in these two disorders. However, the direct link between altered functioning and structure in these two diseases is unknown. To elucidate this relationship, we conducted a multimodal fusion analysis on the functional network connectivity (FNC) and gray matter density from MRI data from 13 BD, 40 MDD, and 33 matched healthy controls (HC). A data-driven fusion method called mCCA+jICA was used to identify the co-altered FNC and gray matter components. Comparing to HC, BD exhibited reduced gray matter density in the parietal and occipital cortices, which correlated with attenuated functional connectivity within sensory and motor networks, as well as hyper-connectivity in regions that are putatively engaged in cognitive control. In addition, lower gray matter density was found in MDD in the amygdala and cerebellum. High accuracy in discriminating across groups was also achieved by trained classification models, implying that features extracted from the fusion analysis hold the potential to ultimately serve as diagnostic biomarkers for mood disorders.

  20. Attention deficit hyperactivity disorder and bipolar mood disorder in ...

    African Journals Online (AJOL)

    2009-06-19

    Jun 19, 2009 ... Bipolar mood disorder (BMD) has traditionally been seen as an adult disorder and .... antisocial behaviour, such as conduct disorder.3. In young ... In personality structure and temperament, children with BMD are more likely to ...

  1. Structural relationships among attachment insecurity, alexithymia, and body esteem in women with eating disorders.

    Science.gov (United States)

    Keating, Leah; Tasca, Giorgio A; Hill, Robert

    2013-08-01

    Patients with eating disorders tend to experience low levels of body esteem. To assess the psychosocial processes that may predict low body esteem in these individuals, we assessed the structural interrelations among attachment anxiety, attachment avoidance, alexithymia, and body esteem in a cross-sectional sample of patients with eating disorders. We tested a model in which alexithymia mediates the relationship between attachment insecurity and body esteem. Participants were 300 women with anorexia nervosa (n = 109), bulimia nervosa (n = 130), and eating disorders not otherwise specified (n = 61) who completed pretreatment self-report questionnaires at intake for a day hospital treatment program. We found a direct and negative relationship between attachment anxiety and body esteem. Additionally, attachment avoidance had an indirect negative relationship to body esteem through alexithymia. These results indicate that therapists may attend to attachment insecurity and affective regulation strategies when addressing body image issues in patients with eating disorders. © 2013 Elsevier Ltd. All rights reserved.

  2. Abnormalities in the structural covariance of emotion regulation networks in major depressive disorder.

    Science.gov (United States)

    Wu, Huawang; Sun, Hui; Wang, Chao; Yu, Lin; Li, Yilan; Peng, Hongjun; Lu, Xiaobing; Hu, Qingmao; Ning, Yuping; Jiang, Tianzi; Xu, Jinping; Wang, Jiaojian

    2017-01-01

    Major depressive disorder (MDD) is a common psychiatric disorder that is characterized by cognitive deficits and affective symptoms. To date, an increasing number of neuroimaging studies have focused on emotion regulation and have consistently shown that emotion dysregulation is one of the central features and underlying mechanisms of MDD. Although gray matter morphological abnormalities in regions within emotion regulation networks have been identified in MDD, the interactions and relationships between these gray matter structures remain largely unknown. Thus, in this study, we adopted a structural covariance method based on gray matter volume to investigate the brain morphological abnormalities within the emotion regulation networks in a large cohort of 65 MDD patients and 65 age- and gender-matched healthy controls. A permutation test with p covariance connectivity strengths between MDD patients and healthy controls. The structural covariance analysis revealed an increased correlation strength of gray matter volume between the left angular gyrus and the left amygdala and between the right angular gyrus and the right amygdala, as well as a decreased correlation strength of the gray matter volume between the right angular gyrus and the posterior cingulate cortex in MDD. Our findings support the notion that emotion dysregulation is an underlying mechanism of MDD by revealing disrupted structural covariance patterns in the emotion regulation network. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A moving target: responding to magnetic and structural disorder in lanthanide- and actinide-based superconductors

    International Nuclear Information System (INIS)

    Booth, Corwin H.; Bauer, Eric D.; Mitchel, Jeremy N.

    2010-01-01

    The effects of various chemical substitutions and induced lattice disorder in the Ce- and Pu-based 115 superconductors are reviewed, with particular emphasis on results from x-ray absorption fine structure (XAFS) measurements. The PuCoGa 5 system offers the opportunity to follow changes in magnetic and electronic properties due to lattice disorder as a function of time in the same samples, in addition to the more traditional approach of perturbing the superconducting state through chemical substitutions. The reviewed work establishes a baseline for such future studies by determining the intrinsic lattice order in the 115 system, successfully understanding disorder as introduced through chemical substitutions in the Ce-based 115s, and beginning to explore the surprisingly large role of self-irradiation damage directly on the PuCoGa 5 lattice. These studies lay the foundation for the harder future work toward measuring chemical substitutions in PuCoGa 5 , correlating effects with non-Fermi liquid behavior, and obtaining a better structural picture of the distortions induced by α-decay of the plutonium nucleus.

  4. Structural and evolutionary relationships of "AT-less" type I polyketide synthase ketosynthases.

    Science.gov (United States)

    Lohman, Jeremy R; Ma, Ming; Osipiuk, Jerzy; Nocek, Boguslaw; Kim, Youngchang; Chang, Changsoo; Cuff, Marianne; Mack, Jamey; Bigelow, Lance; Li, Hui; Endres, Michael; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N; Shen, Ben

    2015-10-13

    Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representation of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs.

  5. Structural and evolutionary relationships of "AT-less" type I polyketide synthase ketosynthases

    Energy Technology Data Exchange (ETDEWEB)

    Lohman, Jeremy; Ma, Ming; Osipiuk, Jerzy; Nocek, Boguslaw; Kim, Youngchang; Chang, Changsoo; Cuff, Marianne E.; Mack, Jamey; Bigelow, Lance; Li, Hui; Endres, Michael; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N.; Shen, B G

    2015-10-13

    Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representation of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs.

  6. Food Insecurity and Common Mental Disorders among Ethiopian Youth: Structural Equation Modeling.

    Directory of Open Access Journals (Sweden)

    Mulusew G Jebena

    Full Text Available Although the consequences of food insecurity on physical health and nutritional status of youth living have been reported, its effect on their mental health remains less investigated in developing countries. The aim of this study was to examine the pathways through which food insecurity is associated with poor mental health status among youth living in Ethiopia.We used data from Jimma Longitudinal Family Survey of Youth (JLFSY collected in 2009/10. A total of 1,521 youth were included in the analysis. We measured food insecurity using a 5-items scale and common mental disorders using the 20-item Self-Reporting Questionnaire (SRQ-20. Structural and generalized equation modeling using maximum likelihood estimation method was used to analyze the data.The prevalence of common mental disorders was 30.8% (95% CI: 28.6, 33.2. Food insecurity was independently associated with common mental disorders (β = 0.323, P<0.05. Most (91.8% of the effect of food insecurity on common mental disorders was direct and only 8.2% of their relationship was partially mediated by physical health. In addition, poor self-rated health (β = 0.285, P<0.05, high socioeconomic status (β = -0.076, P<0.05, parental education (β = 0.183, P<0.05, living in urban area (β = 0.139, P<0.05, and female-headed household (β = 0.192, P<0.05 were associated with common mental disorders.Food insecurity is directly associated with common mental disorders among youth in Ethiopia. Interventions that aim to improve mental health status of youth should consider strategies to improve access to sufficient, safe and nutritious food.

  7. Latent Factor Structure of DSM-5 Posttraumatic Stress Disorder

    Science.gov (United States)

    Gentes, Emily; Dennis, Paul A.; Kimbrel, Nathan A.; Kirby, Angela C.; Hair, Lauren P.; Beckham, Jean C.; Calhoun, Patrick S.

    2015-01-01

    The current study examined the latent factor structure of posttraumatic stress disorder (PTSD) based on DSM-5 criteria in a sample of participants (N = 374) recruited for studies on trauma and health. Confirmatory factor analyses (CFA) were used to compare the fit of the previous 3-factor DSM-IV model of PTSD to the 4-factor model specified in DSM-5 as well as to a competing 4-factor “dysphoria” model (Simms, Watson, & Doebbeling, 2002) and a 5-factor (Elhai et al., 2011) model of PTSD. Results indicated that the Elhai 5-factor model (re-experiencing, active avoidance, emotional numbing, dysphoric arousal, anxious arousal) provided the best fit to the data, although substantial support was demonstrated for the DSM-5 4-factor model. Low factor loadings were noted for two of the symptoms in the DSM-5 model (psychogenic amnesia and reckless/self-destructive behavior), which raises questions regarding the adequacy of fit of these symptoms with other core features of the disorder. Overall, the findings from the present research suggest the DSM-5 model of PTSD is a significant improvement over the previous DSM-IV model of PTSD. PMID:26366290

  8. Structural and functional brain changes in posttraumatic stress disorder.

    Science.gov (United States)

    Nutt, David J; Malizia, Andrea L

    2004-01-01

    Posttraumatic stress disorder (PTSD) is a highly disabling condition that is associated with intrusive recollections of a traumatic event, hyperarousal, avoidance of clues associated with the trauma, and psychological numbing. The field of neuroimaging has made tremendous advances in the past decade and has contributed greatly to our understanding of the physiology of fear and the pathophysiology of PTSD. Neuroimaging studies have demonstrated significant neurobiologic changes in PTSD. There appear to be 3 areas of the brain that are different in patients with PTSD compared with those in control subjects: the hippocampus, the amygdala, and the medial frontal cortex. The amygdala appears to be hyperreactive to trauma-related stimuli. The hallmark symptoms of PTSD, including exaggerated startle response and flashbacks, may be related to a failure of higher brain regions (i.e., the hippocampus and the medial frontal cortex) to dampen the exaggerated symptoms of arousal and distress that are mediated through the amygdala in response to reminders of the traumatic event. The findings of structural and functional neuroimaging studies of PTSD are reviewed as they relate to our current understanding of the pathophysiology of this disorder.

  9. The role of structural order-disorder for visible intense photoluminescence in the BaZr0.5Ti0.5O3 thin films

    International Nuclear Information System (INIS)

    Anicete-Santos, M.; Cavalcante, L.S.; Orhan, E.; Paris, E.C.; Simoes, L.G.P.; Joya, M.R.; Rosa, I.L.V.; Lucena, P.R. de; Santos, M.R.M.C.; Santos-Junior, L.S.; Pizani, P.S.; Leite, E.R.; Varela, J.A.; Longo, E.

    2005-01-01

    The nature of the intense visible room temperature photoluminescence of BaZr 0.5 Ti 0.5 O 3 non-crystalline thin films is discussed in the light of experimental results and theoretical calculations. The photoluminescence measurements reveal that the emission intensity changes with the degree of disorder in the BaZr 0.5 Ti 0.5 O 3 lattice. First principles quantum mechanical techniques, based on density functional theory at B3LYP level, have been employed to study the electronic structure of a crystalline model and of structurally disordered models in order to detect the influence of disorder on the electronic structure. An analysis of the electronic charge distribution reveals local polarization in the disordered structures. The relevance of the present theoretical and experimental results on the photoluminescence behavior of BZT is discussed

  10. The effect of disorder on electronic and magnetic properties of quaternary Heusler alloy CoFeMnSi with LiMgPbSb-type structure

    International Nuclear Information System (INIS)

    Feng, Yu; Chen, Hong; Yuan, Hongkuan; Zhou, Ying; Chen, Xiaorui

    2015-01-01

    Thin films based on Heusler alloy often lost their theoretical predicted ultra-high spin polarization owing to the appearance of disorder. Using the first-principles calculations within density functional theory (DFT), we investigate the effect of disorder including antisite and swap on electronic and magnetic properties of quaternary Heusler alloy CoFeMnSi with LiMgPbSb-type structure. Twelve kinds of antisites and six kinds of swap disorders are proposed and studied comprehensively. In our calculations, Co(Fe)-, Mn(Fe)-, Si(Mn)-antisite and Co–Fe swap disorders are most favorable due to their lowest formation energies. Moreover, the positive binding energies of Co–Fe, Co–Si, Fe–Si and Mn–Si swap disorders with respect to their corresponding antisite disorders indicate that these complex swap disorders are more stable compared with their corresponding isolated antisite disorders. The investigations on density of states (DOS) show that the spin down energy gap of disordered structures suffers contraction and their DOS entirely move towards lower zone. Besides, the 100% spin polarization is maintained in all structures with antisite and swap disorders except for those with Co(Mn)-, Co(Si)-antisite and Co–Mn, Co–Si swap disorders. Therefore, the half-metallicity of quaternary Heusler alloy CoFeMnSi is quite robust against interfering effects such as Si(Mn), Co(Fe) and Co–Fe disorders most possibly formed in the growth. - Highlights: • CoFeMnSi with LiMgPbSb-type structure is found to be a half-metallic ferromagnet. • Si(Mn), Co(Fe), Mn(Fe) antisites and Co–Fe swap disorders are most likely to form. • The half-metallicity of CoFeMnSi is robust against the most possible disorders. • The magnetic moments of the most possible disorders follow the Pauli-Slater rule

  11. Influence of structural disorder on the optical and transport properties of Co0.50 Ti0.50 alloy films

    International Nuclear Information System (INIS)

    Kim, Ki Won; Lee, Y. P.; Rhee, Joo Yull; Kudryavtsev, Yuriy V.; Ri, H. C.

    2000-01-01

    Co 0.50 Ti 0.50 alloy films with a total thickness of about 100 nm were prepared by flash evaporation of the crushed alloy powders onto heated (730 K for the ordered state) and LN 2 -cooled (150 K for the disordered state) substrates. Structural analysis of the films was performed by suing transmission electron microscopy. The optical conductivity (OC) of the samples was measured at room temperature in a spectral range of 265 -2500 nm (4.7 - 0.5 eV). The resistivity measurements were carried out by using the four-probe technique in a temperature range of 4.2 - 300 K. The experimental OC spectra for the Co 0.50 Ti 0.50 alloys show the most significant change in the infrared region upon the order-disorder transformation. The structural disorder in the Co 0.50 Ti 0.50 alloy film leads to a change in the sign of the temperature coefficient of the resistivity from positive to negative. The observed changes in the optical properties and the temperature dependences of resistivity caused by the order-disorder structural transition are analyzed in the framework of the lattice symmetry and the electronic structure of the ordered CoTi compound

  12. Influences of Structure Disorder and Temperature on Properties of Proton Conductivity in Hydrogen-Bond Molecular Systems

    Institute of Scientific and Technical Information of China (English)

    PANG Xiao-Feng; YU Jia-Feng

    2007-01-01

    The dynamic properties of proton conductivity along hydrogen-bonded molecular systems,for example,ice crystal,with structure disorder or damping and finite temperatures exposed in an externally applied electric-field have been numerically studied by Runge-Kutta way in our Soliton model.The results obtained show that the proton-soliton is very robust against the structure disorder including the fluctuation of the force constant and disorder in the sequence of masses and thermal perturbation and damping of medium,the velocity of its conductivity increases with increasing of the externally applied electric-field and decreasing of the damping coefficient of medium,but the proton-soliton disperses for quite great fluctuation of the force constant and damping coefficient.In the numerical simulation we find that the proton-soliton in our model is thermally stable in a large region of temperature of T ≤ 273 K under influences of damping and externally applied electric-field in ice crystal.This shows that our model is available and appropriate to ice.

  13. Influences of Structure Disorder and Temperature on Properties of Proton Conductivity in Hydrogen-Bond Molecular Systems

    International Nuclear Information System (INIS)

    Pang Xiaofeng; Yu Jiafeng

    2007-01-01

    The dynamic properties of proton conductivity along hydrogen-bonded molecular systems, for example, ice crystal, with structure disorder or damping and finite temperatures exposed in an externally applied electric-field have been numerically studied by Runge-Kutta way in our soliton model. The results obtained show that the proton-soliton is very robust against the structure disorder including the fluctuation of the force constant and disorder in the sequence of masses and thermal perturbation and damping of medium, the velocity of its conductivity increases with increasing of the externally applied electric-field and decreasing of the damping coefficient of medium, but the proton-soliton disperses for quite great fluctuation of the force constant and damping coefficient. In the numerical simulation we find that the proton-soliton in our model is thermally stable in a large region of temperature of T≤273 K under influences of damping and externally applied electric-field in ice crystal. This shows that our model is available and appropriate to ice.

  14. Structural disorder and transport in ternary oxides with the pyrochlore structure. Final report; FINAL

    International Nuclear Information System (INIS)

    Tuller, Harry L.

    2001-01-01

    This research program has focused on the structure-electrical property relations in families of pyrochlore compounds which exhibit, on the one hand, controlled levels of structural disorder and on the other, controlled levels of ionic and electronic conductivities. Models have been developed to evaluate the often complex defect chemistry of these systems. Much progress has been made in extracting key thermodynamic and kinetic data. From a technological standpoint, novel solid electrolytes and compatible mixed conducting electrodes have been identified and the concept of the single phase monolithic fuel cell design has been demonstrated and patented. Related work on lanthanum gallate-based perovskites has shown even more promising results for use of such materials in the monolithic fuel cell structures. Recent work on the Bi(sub 3)Zn(sub 2)Sb(sub 3)O(sub 14) Pyrochlore, a phase found at grain boundaries in varistors, was also completed. This material was found to be a mixed ionic-electronic conductor with interesting implications for grain boundary equilibration kinetics in SnO-base varistor materials. Three of the most recent projects are summarized in this paper. The results of work on the perovskites are reported in recent publications

  15. Electronic, elastic, thermodynamic properties and structure disorder of {gamma}-AlON solid solution from ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuezhong, E-mail: wyzphysics@163.com [Department of Physics and Key Laboratory for Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Tianjin Jinhang Institute of Technical Physics, Tianjin 300192 (China); Lu, Tiecheng, E-mail: lutiecheng@scu.edu.cn [Department of Physics and Key Laboratory for Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); International Center for Material Physics, Chinese Academy of Sciences, Shenyang 110015 (China); Zhang, Rongshi [Tianjin Jinhang Institute of Technical Physics, Tianjin 300192 (China); Jiang, Shengli; Qi, Jianqi; Wang, Ying [Department of Physics and Key Laboratory for Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Chen, Qingyun [Department of Physics and Key Laboratory for Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); National Defense Key Discipline Laboratory of Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010 (China); Miao, Naihua [Physique Theorique des Materiaux, Universite de Liege, Sart Tilman B-4000 (Belgium); He, Duanwei [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610064 (China)

    2013-01-25

    Highlights: Black-Right-Pointing-Pointer We reassess the chemical bonding character of {gamma}-AlON which shows strong ionicity. Black-Right-Pointing-Pointer {gamma}-AlON single-crystals exhibit highly elastic anisotropy. Black-Right-Pointing-Pointer The thermodynamic properties are investigated in a wider temperature/pressure range. Black-Right-Pointing-Pointer {gamma}-AlON is an O/N partially disordered structure. - Abstract: Spinel aluminium oxynitride ({gamma}-AlON), as a kind of transparent ceramic material expectable, is studied using the ab initio density functional method, in terms of electronic, elastic, thermodynamic properties and structure disorder. The results show that {gamma}-AlON exhibits strong ionicity, as quantitatively expressed by (Al{sub O}{sup 2.43+}){sub 15}(Al{sub T}{sup 2.41+}){sub 8}(O{sup 1.64-}){sub 27}(N{sup 2.27-}){sub 5} from our reassessment of the ionic character. We summarize and speculate that the considered oxynitride single-crystals exhibit highly elastic anisotropy. The interpretation of the thermodynamic properties of {gamma}-AlON according to quasi-harmonic Debye model confirm the available experiments and are extended to a wider temperature/pressure range. This material holds high elastic strength under extreme environments, where dB/dT absolute value is less than 0.03 GPa/K, independent of the pressure. Finally, we study the O/N structure disorder character of {gamma}-AlON solid solution by investigating nine possible crystal structures. It is found that {gamma}-AlON should be partially disordered, and in fact, the O/N ordering has a significant effect on the properties.

  16. Comorbid personality disorders in subjects with panic disorder: which personality disorders increase clinical severity?

    Directory of Open Access Journals (Sweden)

    Mustafa Ozkan

    2003-03-01

    Full Text Available Personality disorders are common in subjects with panic disorder. Personality disorders have shown to affect the course of panic disorder. The purpose of this study was to examine which personality disorders effect clinical severity in subjects with panic disorder. This study included 122 adults (71 female, 41 male, who met DSM-IV criteria for panic disorder (with or without agoraphobia. Clinical assessment was conducted by using the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I, the Structured Clinical Interview for DSM-IV Axis II Personality Disorders (SCID-II and the Panic and Agoraphobia Scale (PAS, Global Assessment Functioning Scale (GAF, Beck Depression Inventory (BDI, and State-Trait Anxiety Inventory (STAI. Patients who had a history of sexual abuse were assessed with Sexual Abuse Severity Scale. Logistic regressions were used to identify predictors of suicide attempts, suicidal ideation, agoraphobia, different panic attack symptoms, sexual abuse, and early onset of disorders. The rates of comorbid Axis I and Axis II psychiatric disorders were 80.3% and 33.9%, consecutively, in patients with panic disorder. Panic disorder patients with comorbid personality disorders had more severe anxiety, depression and agoraphobia symptoms, and had earlier ages of onset, and lower levels of functioning. The rates of suicidal ideation and suicide attempts were 34.8% and 9.8%, consecutively, in subjects with panic disorder. The rate of patients with panic disorder had a history of childhood sexual abuse was 12.5%. The predictor of sexual abuse was more than one comorbid Axis II diagnosis. The predictors of suicide attempt were comorbid paranoid and borderline personality disorders, and the predictor of suicidal ideation was major depressive disorder in subjects with panic disorder. In conclusion, this study documents that comorbid personality disorders increase the clinical severity of panic disorder. Patients with more than one

  17. Cortical Volume Alterations in Conduct Disordered Adolescents with and without Bipolar Disorder

    OpenAIRE

    Olvera, Rene; Glahn, David; O'Donnell, Louise; Bearden, Carrie; Soares, Jair; Winkler, Anderson; Pliszka, Steven

    2014-01-01

    BACKGROUND: There is increasing evidence that bipolar disorder (BD) and conduct disorder (CD) are co-occurring disorders. Magnetic resonance imaging has revealed differences in the structure and function of the frontal cortex in these disorders when studied separately; however, the impact of BD comorbidity on brain structure in adolescents with CD has not yet been examined. METHOD: We conducted an optimized voxel based morphometry (VBM) study of juvenile offenders with the following diagnoses...

  18. Cortical brain structure and sexual orientation in adult females with bipolar disorder or attention deficit hyperactivity disorder.

    Science.gov (United States)

    Abé, Christoph; Rahman, Qazi; Långström, Niklas; Rydén, Eleonore; Ingvar, Martin; Landén, Mikael

    2018-05-29

    Nonheterosexual individuals have higher risk of psychiatric morbidity. Together with growing evidence for sexual orientation-related brain differences, this raises the concern that sexual orientation may be an important factor to control for in neuroimaging studies of neuropsychiatric disorders. We studied sexual orientation in adult psychiatric patients with bipolar disorder (BD) or ADHD in a large clinical cohort (N = 154). We compared cortical brain structure in exclusively heterosexual women (HEW, n = 29) with that of nonexclusively heterosexual women (nHEW, n = 37) using surface-based reconstruction techniques provided by FreeSurfer. The prevalence of nonheterosexual sexual orientation was tentatively higher than reported in general population samples. Consistent with previously reported cross-sex shifted brain patterns among homosexual individuals, nHEW patients showed significantly larger cortical volumes than HEW in medial occipital brain regions. We found evidence for a sex-reversed difference in cortical volume among nonheterosexual female patients, which provides insights into the neurobiology of sexual orientation, and may provide the first clues toward a better neurobiological understanding of the association between sexual orientation and mental health. We also suggest that sexual orientation is an important factor to consider in future neuroimaging studies of populations with certain mental health disorders. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

  19. Structure of RDE-4 dsRBDs and mutational studies provide insights into dsRNA recognition in the Caenorhabditis elegans RNAi pathway.

    Science.gov (United States)

    Chiliveri, Sai Chaitanya; Deshmukh, Mandar V

    2014-02-15

    The association of RDE-4 (RNAi defective 4), a protein containing two dsRBDs (dsRNA-binding domains), with long dsRNA and Dcr-1 (Dicer1 homologue) initiates the siRNA pathway in Caenorhabditis elegans. Unlike its homologues in higher eukaryotes, RDE-4 dsRBDs possess weak (micromolar) affinity for short dsRNA. With increasing length of dsRNA, RDE-4 exhibits enhanced affinity due to co-operativity. The linker and dsRBD2 are indispensable for RDE-4's simultaneous interaction with dsRNA and Dcr-1. In the present study, we have determined the solution structures of RDE-4 constructs that contain both dsRBDs and the linker region. In addition to the canonical dsRBD fold, both dsRBDs of RDE-4 show modified structural features such as truncation in the β1-β2 loop that rationalize RDE-4's relatively weak dsRNA affinity. Structure and binding studies demonstrate that dsRBD2 plays a decisive role in the RDE-4-dsRNA interaction; however, in contrast with previous findings, we found ephemeral interaction of RDE-4 dsRBD1 with dsRNA. More importantly, mutations in two tandem lysine residues (Lys217 and Lys218) in dsRBD2 impair RDE-4's dsRNA-binding ability and could obliterate RNAi initiation in C. elegans. Additionally, we postulate a structural basis for the minimal requirement of linker and dsRBD2 for RDE-4's association with dsRNA and Dcr-1.

  20. Biophysical characterization of the structural change of Nopp140, an intrinsically disordered protein, in the interaction with CK2α

    International Nuclear Information System (INIS)

    Na, Jung-Hyun; Lee, Won-Kyu; Kim, Yuyoung; Jeong, Cherlhyun; Song, Seung Soo; Cha, Sun-Shin; Han, Kyou-Hoon; Shin, Yeon-Kyun; Yu, Yeon Gyu

    2016-01-01

    Nucleolar phosphoprotein 140 (Nopp140) is a nucleolar protein, more than 80% of which is disordered. Previous studies have shown that the C-terminal region of Nopp140 (residues 568–596) interacts with protein kinase CK2α, and inhibits the catalytic activity of CK2. Although the region of Nopp140 responsible for the interaction with CK2α was identified, the structural features and the effect of this interaction on the structure of Nopp140 have not been defined due to the difficulty of structural characterization of disordered protein. In this study, the disordered feature of Nopp140 and the effect of CK2α on the structure of Nopp140 were examined using single-molecule fluorescence resonance energy transfer (smFRET) and electron paramagnetic resonance (EPR). The interaction with CK2α was increased conformational rigidity of the CK2α-interacting region of Nopp140 (Nopp140C), suggesting that the disordered and flexible conformation of Nopp140C became more rigid conformation as it binds to CK2α. In addition, site specific spin labeling and EPR analysis confirmed that the residues 574–589 of Nopp140 are critical for binding to CK2α. Similar technical approaches can be applied to analyze the conformational changes in other IDPs during their interactions with binding partners. - Highlights: • Nopp140 is intrinsically disordered protein (IDP). • Conformation of Nopp140 became more rigid conformation due to interaction with CK2α. • smFRET and EPR could be applied to analyze the structural changes of IDPs.

  1. Biophysical characterization of the structural change of Nopp140, an intrinsically disordered protein, in the interaction with CK2α

    Energy Technology Data Exchange (ETDEWEB)

    Na, Jung-Hyun [Department of Chemistry, Kookmin University, Jeongneung-dong, Seongbuk-gu, Seoul 02707 (Korea, Republic of); Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792 (Korea, Republic of); Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760 (Korea, Republic of); Lee, Won-Kyu [Department of Chemistry, Kookmin University, Jeongneung-dong, Seongbuk-gu, Seoul 02707 (Korea, Republic of); Kim, Yuyoung; Jeong, Cherlhyun [Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792 (Korea, Republic of); Song, Seung Soo [Department of Chemistry, Kookmin University, Jeongneung-dong, Seongbuk-gu, Seoul 02707 (Korea, Republic of); Cha, Sun-Shin [Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760 (Korea, Republic of); Han, Kyou-Hoon [Division of Biosystems Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141 (Korea, Republic of); Shin, Yeon-Kyun [Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792 (Korea, Republic of); Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 (United States); Yu, Yeon Gyu, E-mail: ygyu@kookmin.ac.kr [Department of Chemistry, Kookmin University, Jeongneung-dong, Seongbuk-gu, Seoul 02707 (Korea, Republic of)

    2016-08-19

    Nucleolar phosphoprotein 140 (Nopp140) is a nucleolar protein, more than 80% of which is disordered. Previous studies have shown that the C-terminal region of Nopp140 (residues 568–596) interacts with protein kinase CK2α, and inhibits the catalytic activity of CK2. Although the region of Nopp140 responsible for the interaction with CK2α was identified, the structural features and the effect of this interaction on the structure of Nopp140 have not been defined due to the difficulty of structural characterization of disordered protein. In this study, the disordered feature of Nopp140 and the effect of CK2α on the structure of Nopp140 were examined using single-molecule fluorescence resonance energy transfer (smFRET) and electron paramagnetic resonance (EPR). The interaction with CK2α was increased conformational rigidity of the CK2α-interacting region of Nopp140 (Nopp140C), suggesting that the disordered and flexible conformation of Nopp140C became more rigid conformation as it binds to CK2α. In addition, site specific spin labeling and EPR analysis confirmed that the residues 574–589 of Nopp140 are critical for binding to CK2α. Similar technical approaches can be applied to analyze the conformational changes in other IDPs during their interactions with binding partners. - Highlights: • Nopp140 is intrinsically disordered protein (IDP). • Conformation of Nopp140 became more rigid conformation due to interaction with CK2α. • smFRET and EPR could be applied to analyze the structural changes of IDPs.

  2. Cd(II)-coordination polymers based on tetracarboxylic acid and diverse bis(imidazole) ligands: Synthesis, structural diversity and photoluminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Arıcı, Mürsel, E-mail: marici@ogu.edu.tr [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Yeşilel, Okan Zafer [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Taş, Murat [Department of Science Education, Education Faculty, Ondokuz Mayıs University, 55139 Samsun (Turkey)

    2017-01-15

    Three new Cd(II)-coordination polymers, namely, ([Cd{sub 2}(μ{sub 6}-ao{sub 2}btc)(μ-1,5-bipe){sub 2}]·2H{sub 2}O){sub n} (1), ([Cd{sub 2}(μ{sub 6}-ao{sub 2}btc)(μ-1,4-bix){sub 2}]{sub n}·2DMF) (2) and ([Cd{sub 2}(μ{sub 8}-abtc)(μ-1,4-betix)]·DMF·H{sub 2}O){sub n} (3) (ao{sub 2}btc=di-oxygenated form of 3,3′,5,5′-azobenzenetetracarboxylate, 1,5-bipe: 1,5-bis(imidazol-1yl)pentane, 1,4-bix=1,4-bis(imidazol-1ylmethyl)benzene, 1,4-betix=1,4-bis(2-ethylimidazol-1ylmethyl)benzene) were synthesized with 3,3′,5,5′-azobenzenetetracarboxylic acid and flexible, semi-flexible and semi-flexible substituted bis(imidazole) linkers. They were characterized by IR spectroscopy, elemental analysis, single-crystal X-ray diffraction, powder X-ray diffractions (PXRD) and thermal analyses (TG/DTA). Complexes 1–3 exhibited structural diversities depending on flexible, semi-flexible and semi-flexible substituted bis(imidazole) ligands. Complex 1 was 2D structure with 3,6L18 topology. Complex 2 had a 3D pillar-layered framework with the rare sqc27 topology. When semi-flexible substituted bis(imidazole) linker was used, 3D framework of complex 3 was obtained with the paddlewheel Cd{sub 2}(CO{sub 2}){sub 4}-type binuclear SBU. Moreover, thermal and photoluminescence properties of the complexes were determined in detailed. - Graphical abstract: In this study, three novel Cd(II)-coordination polymers were synthesized with 3,3′,5,5′-azobenzenetetracarboxylic acid and flexible, semi-flexible and semi-flexible substituted bis(imidazole) linkers. They were characterized by IR spectroscopy, elemental analysis, single-crystal X-ray diffraction, powder X-ray diffractions (PXRD) and thermal analyses (TG/DTA). Complexes 1–3 exhibited structural diversities depending on flexible, semi-flexible and semi-flexible substituted bis(imidazole) ligands. Complex 1 was 2D structure with 3,6L18 topology. Complex 2 had a 3D pillar-layered framework with the rare sqc27 topology. When semi

  3. Structures of SRP54 and SRP19, the two proteins that organize the ribonucleic core of the signal recognition particle from Pyrococcus furiosus.

    Directory of Open Access Journals (Sweden)

    Pascal F Egea

    Full Text Available In all organisms the Signal Recognition Particle (SRP, binds to signal sequences of proteins destined for secretion or membrane insertion as they emerge from translating ribosomes. In Archaea and Eucarya, the conserved ribonucleoproteic core is composed of two proteins, the accessory protein SRP19, the essential GTPase SRP54, and an evolutionarily conserved and essential SRP RNA. Through the GTP-dependent interaction between the SRP and its cognate receptor SR, ribosomes harboring nascent polypeptidic chains destined for secretion are dynamically transferred to the protein translocation apparatus at the membrane. We present here high-resolution X-ray structures of SRP54 and SRP19, the two RNA binding components forming the core of the signal recognition particle from the hyper-thermophilic archaeon Pyrococcus furiosus (Pfu. The 2.5 A resolution structure of free Pfu-SRP54 is the first showing the complete domain organization of a GDP bound full-length SRP54 subunit. In its ras-like GTPase domain, GDP is found tightly associated with the protein. The flexible linker that separates the GTPase core from the hydrophobic signal sequence binding M domain, adopts a purely alpha-helical structure and acts as an articulated arm allowing the M domain to explore multiple regions as it scans for signal peptides as they emerge from the ribosomal tunnel. This linker is structurally coupled to the GTPase catalytic site and likely to propagate conformational changes occurring in the M domain through the SRP RNA upon signal sequence binding. Two different 1.8 A resolution crystal structures of free Pfu-SRP19 reveal a compact, rigid and well-folded protein even in absence of its obligate SRP RNA partner. Comparison with other SRP19*SRP RNA structures suggests the rearrangement of a disordered loop upon binding with the RNA through a reciprocal induced-fit mechanism and supports the idea that SRP19 acts as a molecular scaffold and a chaperone, assisting the SRP

  4. Multiple trapping on a comb structure as a model of electron transport in disordered nanostructured semiconductors

    International Nuclear Information System (INIS)

    Sibatov, R. T.; Morozova, E. V.

    2015-01-01

    A model of dispersive transport in disordered nanostructured semiconductors has been proposed taking into account the percolation structure of a sample and joint action of several mechanisms. Topological and energy disorders have been simultaneously taken into account within the multiple trapping model on a comb structure modeling the percolation character of trajectories. The joint action of several mechanisms has been described within random walks with a mixture of waiting time distributions. Integral transport equations with fractional derivatives have been obtained for an arbitrary density of localized states. The kinetics of the transient current has been calculated within the proposed new model in order to analyze time-of-flight experiments for nanostructured semiconductors

  5. Posttraumatic Stress Disorder Symptom Structure in Chinese Adolescents Exposed to a Deadly Earthquake

    Science.gov (United States)

    Wang, Li; Long, Di; Li, Zhongquan; Armour, Cherie

    2011-01-01

    This present study examined the structure of posttraumatic stress disorder (PTSD) symptoms in a large sample of Chinese adolescents exposed to a deadly earthquake. A total of 2,800 middle school students aged 12 to 18 years participated in the study 6 months after the "Wenchuan Earthquake". Results of confirmatory factor analysis…

  6. Neural signature of developmental coordination disorder in the structural connectome independent of comorbid autism.

    Science.gov (United States)

    Caeyenberghs, Karen; Taymans, Tom; Wilson, Peter H; Vanderstraeten, Guy; Hosseini, Hadi; van Waelvelde, Hilde

    2016-07-01

    Children with autism spectrum disorders (ASD) often exhibit motor clumsiness (Developmental Coordination Disorder, DCD), i.e. they struggle with everyday tasks that require motor coordination like dressing, self-care, and participating in sport and leisure activities. Previous studies in these neurodevelopmental disorders have demonstrated functional abnormalities and alterations of white matter microstructural integrity in specific brain regions. These findings suggest that the global organization of brain networks is affected in DCD and ASD and support the hypothesis of a 'dys-connectivity syndrome' from a network perspective. No studies have compared the structural covariance networks between ASD and DCD in order to look for the signature of DCD independent of comorbid autism. Here, we aimed to address the question of whether abnormal connectivity in DCD overlaps that seen in autism or comorbid DCD-autism. Using graph theoretical analysis, we investigated differences in global and regional topological properties of structural brain networks in 53 children: 8 ASD children with DCD (DCD+ASD), 15 ASD children without DCD (ASD), 11 with DCD only, and 19 typically developing (TD) children. We constructed separate structural correlation networks based on cortical thickness derived from Freesurfer. The children were assessed on the Movement-ABC and the Beery Test of Visual Motor Integration. Behavioral results demonstrated that the DCD group and DCD+ASD group scored on average poorer than the TD and ASD groups on various motor measures. Furthermore, although the brain networks of all groups exhibited small-world properties, the topological architecture of the networks was significantly altered in children with ASD compared with DCD and TD. ASD children showed increased normalized path length and higher values of clustering coefficient. Also, paralimbic regions exhibited nodal clustering coefficient alterations in singular disorders. These changes were disorder

  7. A new structured interview for children with autism spectrum disorder based on the DSM-IV.

    Science.gov (United States)

    Hansakunachai, Tippawan; Roongpraiwan, Rawiwan; Sombuntham, Tasnawat; Limprasert, Pornprot; Ruangdaraganon, Nichara

    2014-08-01

    Autism spectrum disorder (ASD) is a common neurodevelopmental disorder in children. The clinical spectrum of ASD includes autism, childhood disintegrative disorder Asperger syndrome and pervasive developmental disorder not otherwise specified (PDD-NOS). Although the DSM-IVcriteria are well acceptedforASD diagnosis, there are some known limitations for clinicians. The most important issue is lack'ofspecific age-appropriate items in each domain. Thus, the DSM-IVneeds some modifications in order to be appropriate for clinical use. To develop a structured interview for children based on the DSM-IVdiagnostic criteria ofautism and PDD-NOS. MATERIAL ANDMETHOD: From June 2006 to December 2008, 140 Thai children, 121 boys and 19 girls, already diagnosed with ASD, were recruited through the child development clinics of Ramathibodi and Thammasat University Hospitals in Thailand. A 26-item structured interview was developed with scoring according to the DSM-IVdiagnostic criteria for autism andPDD- NOS. To test the accuracy of the structured interview and its reliability, 32 children with ASD were selected and interviewed by four clinicians using the new instrument. One clinician interviewed the parents or caregivers, while three others independently took notes and observed the play behavior of the children. All items from the structured interview as scored by each clinician were compared using inter-rater agreement statistics (Kappa). All of the original 140 patients were then clinically diagnosed again using the structured interview and the results were compared with the initial diagnoses. Ofthe 140patients originally diagnosed with ASD, 110 and 30patients were finally diagnosed with the new interview as having autism and PDD-NOS, respectively. The initial diagnoses from 15 cases (10.7%) were changed according to the structured interview Inter-rater reliability among the four clinicians showed a good level ofagreement (Kappa = 0.897) with statistical significance (pautism and

  8. Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies.

    Science.gov (United States)

    Ghosh, Shibaji; Chandar, Nellore Bhanu; Jana, Kalyanashis; Ganguly, Bishwajit

    2017-08-01

    Inhibition of acetylcholinesterase (AChE) with organophosphorus compounds has a detrimental effect on human life. Oxime K203 seems to be one of the promising reactivators for tabun-inhibited AChE than (K027, K127, and K628). These reactivators differ only in the linker units between the two pyridinium rings. The conformational analyses performed with quantum chemical RHF/6-31G* level for K027, K127, K203 and K628 showed that the minimum energy conformers have different orientations of the active and peripheral pyridinium rings for these reactivator molecules. K203 with (-CH 2 -CH=CH-CH 2 -) linker unit possesses more open conformation compared to the other reactivators. Such orientation of K203 experiences favorable interaction with the surrounding residues of catalytic anionic site (CAS) and peripheral anionic site (PAS) of tabun-inhibited AChE. From the steered molecular dynamics simulations, it has been observed that the oxygen atom of the oxime group of K203 reactivator approaches nearest to the P-atom of the SUN203 (3.75 Å) at lower time scales (less than ~1000 ps) as compared to the other reactivators. K203 experiences less number of hydrophobic interaction with the PAS residues which is suggested to be an important factor for the efficient reactivation process. In addition, K203 crates large number of H-bonding with CAS residues SUN203, Phe295, Tyr337, Phe338 and His447. K203 barely changes its conformation during the SMD simulation process and hence the energy penalty to adopt any other conformation is minimal in this case as compared to the other reactivators. The molecular mechanics and Poisson-Boltzmann surface area binding energies obtained for the interaction of K203 inside the gorge of tabun inhibited AChE is substantially higher (-290.2 kcal/mol) than the corresponding K628 reactivator (-260.4 kcal/mol), which also possess unsaturated aromatic linker unit.

  9. Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies

    Science.gov (United States)

    Ghosh, Shibaji; Chandar, Nellore Bhanu; Jana, Kalyanashis; Ganguly, Bishwajit

    2017-08-01

    Inhibition of acetylcholinesterase (AChE) with organophosphorus compounds has a detrimental effect on human life. Oxime K203 seems to be one of the promising reactivators for tabun-inhibited AChE than (K027, K127, and K628). These reactivators differ only in the linker units between the two pyridinium rings. The conformational analyses performed with quantum chemical RHF/6-31G* level for K027, K127, K203 and K628 showed that the minimum energy conformers have different orientations of the active and peripheral pyridinium rings for these reactivator molecules. K203 with (-CH2-CH=CH-CH2-) linker unit possesses more open conformation compared to the other reactivators. Such orientation of K203 experiences favorable interaction with the surrounding residues of catalytic anionic site (CAS) and peripheral anionic site (PAS) of tabun-inhibited AChE. From the steered molecular dynamics simulations, it has been observed that the oxygen atom of the oxime group of K203 reactivator approaches nearest to the P-atom of the SUN203 (3.75 Å) at lower time scales (less than 1000 ps) as compared to the other reactivators. K203 experiences less number of hydrophobic interaction with the PAS residues which is suggested to be an important factor for the efficient reactivation process. In addition, K203 crates large number of H-bonding with CAS residues SUN203, Phe295, Tyr337, Phe338 and His447. K203 barely changes its conformation during the SMD simulation process and hence the energy penalty to adopt any other conformation is minimal in this case as compared to the other reactivators. The molecular mechanics and Poisson-Boltzmann surface area binding energies obtained for the interaction of K203 inside the gorge of tabun inhibited AChE is substantially higher (-290.2 kcal/mol) than the corresponding K628 reactivator (-260.4 kcal/mol), which also possess unsaturated aromatic linker unit.

  10. The central globular domain of the nucleocapsid protein of human immunodeficiency virus type 1 is critical for virion structure and infectivity.

    Science.gov (United States)

    Ottmann, M; Gabus, C; Darlix, J L

    1995-03-01

    The nucleocapsid protein NCp7 of human immunodeficiency virus type 1 (HIV-1) is a 72-amino-acid peptide containing two CCHC-type zinc fingers linked by a short basic sequence, 29RAPRKKG35, which is conserved in HIV-1 and simian immunodeficiency virus. The complete three-dimensional structure of NCp7 has been determined by 1H-nuclear magnetic resonance spectroscopy (N. Morellet, H. de Rocquigny, Y. Mely, N. Jullian, H. Demene, M. Ottmann, D. Gerard, J. L. Darlix, M. C. Fournié-Zaluski, and B. P. Roques, J. Mol. Biol. 235:287-301, 1994) and revealed a central globular domain where the two zinc fingers are brought in close proximity by the RAPRKKG linker. To examine the role of this globular structure and more precisely of the RAPRKKG linker in virion structure and infectivity, we generated HIV-1 DNA mutants in the RAPRKK sequence of NCp7 and analyzed the mutant virions produced by transfected cells. Mutations that probably alter the structure of NCp7 structure led to the formation of very poorly infectious virus (A30P) or noninfectious virus (P31L and R32G). In addition, the P31L mutant did not contain detectable amounts of reverse transcriptase and had an immature core morphology, as determined by electron microscopy. On the other hand, mutations changing the basic nature of NCp7 had poor effect. R29S had a wild-type phenotype, and the replacement of 32RKK34 by SSS (S3 mutant) resulted in a decrease by no more than 100-fold of the virus titer. These results clearly show that the RAPRKKG linker contains residues that are critical for virion structure and infectivity.

  11. Chiral Molecule-Enhanced Extinction Ratios of Quantum Dots Coupled to Random Plasmonic Structures.

    Science.gov (United States)

    Bezen, Lior; Yochelis, Shira; Jayarathna, Dilhara; Bhunia, Dinesh; Achim, Catalina; Paltiel, Yossi

    2018-03-06

    Devices based on self-assembled hybrid colloidal quantum dots (CQDs) coupled with specific organic linker molecules are a promising way to simply realize room-temperature, spectrally tunable light detectors. Nevertheless, this type of devices usually has low quantum efficiency. Plasmonics has been shown as an efficient tool in guiding and confining light at nanoscale dimensions. As plasmonic modes exhibit highly confined fields, they locally increase light-matter interactions and consequently enhance the performance of CQD-based photodetectors. Recent publications presented experimental results of large extinction enhancement from a monolayer of CQDs coupled to random gold nanoislands using a monolayer of organic alkyl linkers. We report here that a twofold larger extinction enhancement in the visible spectrum is observed when a monolayer of helical chiral molecules connects the CQDs to the gold structure instead of a monolayer of achiral linkers. We also show that this effect provides insight into the chirality of the molecules within the monolayer. In future work, we plan to evaluate the potential of these results to be used in the construction of a more efficient and sensitive photon detector based on surface QDs, as well as to supply a simple way to map the chirality of a single chiral monolayer.

  12. Formaldehyde cross-linking and structural proteomics: Bridging the gap.

    Science.gov (United States)

    Srinivasa, Savita; Ding, Xuan; Kast, Juergen

    2015-11-01

    Proteins are dynamic entities constantly moving and altering their structures based on their functions and interactions inside and outside the cell. Formaldehyde cross-linking combined with mass spectrometry can accurately capture interactions of these rapidly changing biomolecules while maintaining their physiological surroundings. Even with its numerous established uses in biology and compatibility with mass spectrometry, formaldehyde has not yet been applied in structural proteomics. However, formaldehyde cross-linking is moving toward analyzing tertiary structure, which conventional cross-linkers have already accomplished. The purpose of this review is to describe the potential of formaldehyde cross-linking in structural proteomics by highlighting its applications, characteristics and current status in the field. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. The effects of disordered structure on the solubility and dissolution rates of some hydrophilic, sparingly soluble drugs.

    Science.gov (United States)

    Mosharraf, M; Sebhatu, T; Nyström, C

    1999-01-15

    The effects of experimental design on the apparent solubility of two sparingly soluble hydrophilic compounds (barium sulphate and calcium carbonate) were studied in this paper. The apparent solubility appeared to be primarily dependent on the amount of solute added to the solvent in each experiment, increasing with increased amounts. This effect seems to be due to the existence of a peripheral disordered layer. However physico-chemical methods used in the present study were not able to unambiguously verify the existence of any disorder in the solid state structure of the drugs. At higher proportions of solute to solvent, the solubility reached a plateau corresponding to the solubility of the disordered or amorphous molecular form of the material. Milling the powders caused the plateau to be reached at lower proportions of solute to solvent, since this further disordered the surface of the drug particles. It was also found that the apparent solubility of the drugs tested decreased after storage at high relative humidities. A model for describing the effects of a disordered surface layer of varying thickness and continuity on the solubility of a substance is presented. This model may be used as a method for detection of minute amount of disorder, where no other technique is capable of detecting the disordered structure. It is suggested that recrystallisation of the material occurs via slow solid-state transition at the surface of the drug particle; this would slowly reduce the apparent solubility of the substance at the plateau level to the thermodynamically stable value. A biphasic dissolution rate profile was obtained. The solubility of the disordered surface of the particles appeared to be the rate-determining factor during the initial dissolution phase, while the solubility of the crystalline core was the rate-determining factor during the final slower phase.

  14. Correlations between brain structure and symptom dimensions of psychosis in schizophrenia, schizoaffective, and psychotic bipolar I disorders.

    Science.gov (United States)

    Padmanabhan, Jaya L; Tandon, Neeraj; Haller, Chiara S; Mathew, Ian T; Eack, Shaun M; Clementz, Brett A; Pearlson, Godfrey D; Sweeney, John A; Tamminga, Carol A; Keshavan, Matcheri S

    2015-01-01

    Structural alterations may correlate with symptom severity in psychotic disorders, but the existing literature on this issue is heterogeneous. In addition, it is not known how cortical thickness and cortical surface area correlate with symptom dimensions of psychosis. Subjects included 455 individuals with schizophrenia, schizoaffective, or bipolar I disorders. Data were obtained as part of the Bipolar Schizophrenia Network for Intermediate Phenotypes study. Diagnosis was made through the Structured Clinical Interview for DSM-IV. Positive and negative symptom subscales were assessed using the Positive and Negative Syndrome Scale. Structural brain measurements were extracted from T1-weight structural MRIs using FreeSurfer v5.1 and were correlated with symptom subscales using partial correlations. Exploratory factor analysis was also used to identify factors among those regions correlating with symptom subscales. The positive symptom subscale correlated inversely with gray matter volume (GMV) and cortical thickness in frontal and temporal regions, whereas the negative symptom subscale correlated inversely with right frontal cortical surface area. Among regions correlating with the positive subscale, factor analysis identified four factors, including a temporal cortical thickness factor and frontal GMV factor. Among regions correlating with the negative subscale, factor analysis identified a frontal GMV-cortical surface area factor. There was no significant diagnosis by structure interactions with symptom severity. Structural measures correlate with positive and negative symptom severity in psychotic disorders. Cortical thickness demonstrated more associations with psychopathology than cortical surface area. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Electronic structure of disordered Fe-V alloys

    International Nuclear Information System (INIS)

    Krause, J.C.; Paduani, C.; Schaff, J.; Costa, M.I. Jr. da

    1998-01-01

    The first-principles discrete variational method is employed to investigate the electronic structure and local magnetic properties of disordered Fe-V alloys. The spin-polarized case is considered in the formalism of the local-spin-density approximation, with the exchange-correlation term of von Barth endash Hedin. The effect on the local magnetic properties of adding V atoms in the immediate neighborhood of iron atoms is investigated. The partial density of states, hyperfine field (H c ), magnetic moment (μ), and isomer shift are obtained for the central atom of the cluster. For the impurity V atom in the bcc iron host the calculated values for H c and μ are -203 kG and -0.86μ B , respectively. The isolated Fe atom in a bcc vanadium host exhibits a collapsed moment and acts as a receptor for electrons. In ordered alloys the calculations indicate also a vanishing moment at iron sites. copyright 1998 The American Physical Society

  16. Observed Family Interactions among Subtypes of Eating Disorders Using Structural Analysis of Social Behavior.

    Science.gov (United States)

    Humphrey, Laura Lynn

    1989-01-01

    Compared observations of family interactions among anorexic, bulimic-anorexic, bulimic, and normal families (N=74 families) consisting of father, mother, and teenage daughter. Benjamin's structural analysis of social behavior methodology differentiated clinical from normal families. Found unique patterns among subtypes of eating disorders which…

  17. Effects of linker variation on the in vitro and in vivo characteristics of an 111In-labeled RGD peptide

    International Nuclear Information System (INIS)

    Dijkgraaf, Ingrid; Liu, Shuang; Kruijtzer, John A.W.; Soede, Annemieke C.; Oyen, Wim J.G.; Liskamp, Rob M.J.; Corstens, Frans H.M.; Boerman, Otto C.

    2007-01-01

    Introduction: Due to the selective expression of the α v β 3 integrin in tumors, radiolabeled arginine-glycine-aspartic acid (RGD) peptides are attractive candidates for tumor targeting. Minor modifications of these peptides could have a major impact on in vivo characteristics. In this study, we systematically investigated the effects of linker modification between two cyclic RGD sequences and DOTA (1,4,7,10-tetraazadodecane-N,N',N ' ,N'''-tetraacetic acid) on the in vitro and in vivo characteristics of the tracer. Methods: A dimeric RGD peptide was synthesized and conjugated either directly with DOTA or via different linkers: PEG 4 (polyethylene glycol), glutamic acid or lysine. The RGD peptides were radiolabeled with 111 In, and their in vitro and in vivo α v β 3 -binding characteristics were determined. Results: LogP values varied between -2.82±0.06 and -3.95±0.33. The IC 50 values for DOTA-E-[c(RGDfK)] 2 , DOTA-PEG 4 -E-[c(RGDfK)] 2 , DOTA-E-E-[c(RGDfK)] 2 and DOTA-K-E-[c(RGDfK)] 2 were comparable. Two hours after injection, the tumor uptakes of the 111 In-labeled compounds were not significantly different. The kidney accumulation of [ 111 In]-DOTA-K-E-[c(RGDfK)] 2 [4.05±0.20% of the injected dose per gram (ID/g)] was significantly higher as compared with that of [ 111 In]-DOTA-E-[c(RGDfK)] 2 (2.63±0.19% ID/g; P 111 In]-DOTA-E-E-[c(RGDfK)] 2 (2.16±0.21% ID/g; P 111 In]-DOTA-E-E-[c(RGDfK)] 2 (2.12±0.09% ID/g) was significantly higher as compared with that of [ 111 In]-DOTA-E-[c(RGDfK)] 2 (1.64±0.1% ID/g; P 111 In]-DOTA-K-E-[c(RGDfK)] 2 (1.52±0.04% ID/g; P v β 3 and tumor uptake. Insertion of lysine caused enhanced kidney retention; that of glutamic acid also resulted in enhanced retention in the kidneys. PEG 4 appeared to be the most suitable linker as compared with glutamic acid and lysine because it has the highest tumor-to-blood ratio and the lowest uptake in the kidney and liver

  18. Brain structure in schizophrenia vs. psychotic bipolar I disorder: A VBM study.

    Science.gov (United States)

    Nenadic, Igor; Maitra, Raka; Langbein, Kerstin; Dietzek, Maren; Lorenz, Carsten; Smesny, Stefan; Reichenbach, Jürgen R; Sauer, Heinrich; Gaser, Christian

    2015-07-01

    While schizophrenia and bipolar disorder have been assumed to share phenotypic and genotypic features, there is also evidence for overlapping brain structural correlates, although it is unclear whether these relate to shared psychotic features. In this study, we used voxel-based morphometry (VBM8) in 34 schizophrenia patients, 17 euthymic bipolar I disorder patients (with a history of psychotic symptoms), and 34 healthy controls. Our results indicate that compared to healthy controls schizophrenia patients show grey matter deficits (pright dorsolateral prefrontal, as well as bilaterally in ventrolateral prefrontal and insular cortical areas, thalamus (bilaterally), left superior temporal cortex, and minor medial parietal and parietooccipital areas. Comparing schizophrenia vs. bipolar I patients (pleft dorsolateral prefrontal cortex, and left cerebellum. Compared to healthy controls, the deficits in bipolar I patients only reached significance at prights reserved.

  19. Assessing the adsorption selectivity of linker functionalized, moisture-stable metal-organic framework thin films by means of an environment-controlled quartz crystal microbalance.

    Science.gov (United States)

    Bétard, Angélique; Wannapaiboon, Suttipong; Fischer, Roland A

    2012-11-04

    The stepwise thin film deposition of the robust, hydrophobic [Zn(4)O(dmcapz)(3)](n) (dmcapz = 3,5-dimethyl-4-carboxy-pyrazolato) is reported. The adsorption of small organic probe molecules, including alkanols, toluene, aniline and xylenes, was monitored by an environment-controlled quartz crystal microbalance setup. The adsorption selectivity was tuned by introducing alkyl side chains in the dmcapz linker.

  20. Funktionalisierte Linker für Metallorganische Gerüstverbindungen, deren postsynthetische Modifikation und polar markierte Schutzgruppen für terminale Alkine

    OpenAIRE

    Roy, Pascal

    2011-01-01

    Metal-organic frameworks (MOFs) form the class of porous materials with the highest surface areas. This characteristic property combined with the variability of both building blocks, the inorganic node and the organic linker, makes many scientists dream of materials with very special chemical, electronic, optic and/or magnetic properties. For individual applications both building blocks, but also possibly in the framework embedded guests, play a crucial role. This work describes the synthe...

  1. A mechanism for acetylcholine receptor gating based on structure, coupling, phi, and flip.

    Science.gov (United States)

    Gupta, Shaweta; Chakraborty, Srirupa; Vij, Ridhima; Auerbach, Anthony

    2017-01-01

    Nicotinic acetylcholine receptors are allosteric proteins that generate membrane currents by isomerizing ("gating") between resting and active conformations under the influence of neurotransmitters. Here, to explore the mechanisms that link the transmitter-binding sites (TBSs) with the distant gate, we use mutant cycle analyses to measure coupling between residue pairs, phi value analyses to sequence domain rearrangements, and current simulations to reproduce a microsecond shut component ("flip") apparent in single-channel recordings. Significant interactions between amino acids separated by >15 Å are rare; an exception is between the αM2-M3 linkers and the TBSs that are ∼30 Å apart. Linker residues also make significant, local interactions within and between subunits. Phi value analyses indicate that without agonists, the linker is the first region in the protein to reach the gating transition state. Together, the phi pattern and flip component suggest that a complete, resting↔active allosteric transition involves passage through four brief intermediate states, with brief shut events arising from sojourns in all or a subset. We derive energy landscapes for gating with and without agonists, and propose a structure-based model in which resting→active starts with spontaneous rearrangements of the M2-M3 linkers and TBSs. These conformational changes stabilize a twisted extracellular domain to promote transmembrane helix tilting, gate dilation, and the formation of a "bubble" that collapses to initiate ion conduction. The energy landscapes suggest that twisting is the most energetically unfavorable step in the resting→active conformational change and that the rate-limiting step in the reverse process is bubble formation. © 2017 Gupta et al.

  2. Telephone versus face-to-face administration of the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, for diagnosis of psychotic disorders.

    Science.gov (United States)

    Hajebi, Ahmad; Motevalian, Abbas; Amin-Esmaeili, Masoumeh; Hefazi, Mitra; Radgoodarzi, Reza; Rahimi-Movaghar, Afarin; Sharifi, Vandad

    2012-07-01

    The current study aims to compare telephone vs face-to-face administration of the version of Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, (SCID) for diagnosis of "any psychotic disorder" in a clinical population in Iran. The sample consisted of 72 subjects from 2 psychiatric outpatient services in Tehran, Iran. The subjects were interviewed using face-to-face SCID for the purpose of diagnosing psychotic disorders. A second independent telephone SCID was administered to the entire sample within 5 to 10 days, and the lifetime and 12-month diagnoses were compared. The positive likelihood ratio of telephone-administered SCID for diagnosis of "any lifetime psychotic disorder" was 5.1 when compared with the face-to-face SCID. The value for the primary psychotic disorders in the past 12 months was lower (2.3). The data indicate that telephone administration of the SCID is an acceptable method to differentiate between subjects with lifetime psychotic disorders and those who have had no psychotic disorders and provides a less resource-demanding alternative to face-to-face assessments. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Physics of Schottky-barrier change by segregation and structural disorder at metal/Si interfaces: First-principles study

    International Nuclear Information System (INIS)

    Nakayama, T.; Kobinata, K.

    2012-01-01

    Schottky-barrier changes by the segregation and structural disorder are studied using the first-principles calculations and adopting Au/Si interface. The Schottky barrier for electrons simply decreases as increasing the valency of segregated atoms from II to VI families, which variation is shown closely related to how the Si atoms are terminated at the interface. On the other hand, the structural disorders (defects) prefer to locate near the interface and the Schottky barrier for hole carriers does not change in cases of Si vacancy and Au substitution, while it increases in cases of Si and Au interstitials reflecting the appearance of Si dangling bonds.

  4. A highly conserved glycine within linker I and the extreme C terminus of G protein alpha subunits interact cooperatively in switching G protein-coupled receptor-to-effector specificity

    DEFF Research Database (Denmark)

    Kostenis, Evi; Martini, Lene; Ellis, James

    2004-01-01

    Numerous studies have attested to the importance of the extreme C terminus of G protein alpha subunits in determining their selectivity of receptor recognition. We have previously reported that a highly conserved glycine residue within linker I is important for constraining the fidelity of receptor...... recognition by Galpha(q) proteins. Herein, we explored whether both modules (linker I and extreme C terminus) interact cooperatively in switching G protein-coupled receptor (GPCR)-to-effector specificity and created as models mutant Galpha(q) proteins in which glycine was replaced with various amino acids...... and the C-terminal five Galpha(q) residues with the corresponding Galpha(i) or Galpha(s) sequence. Coupling properties of the mutated Galpha(q) proteins were determined after coexpression with a panel of 13 G(i)-and G(s) -selective receptors and compared with those of Galpha proteins modified in only one...

  5. Micropatterning of biomolecules on a glass substrate in fused silica microchannels by using photolabile linker-based surface activation

    International Nuclear Information System (INIS)

    Jang, K.; Mawatari, K.; Kitamori, T.; Xu, Y.; Sato, K.; Tanaka, Y.

    2012-01-01

    We report on a straightforward method for creating micropatterns of multiple biomolecules. The anti-fouling agent 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer and a photolabile linker (PL) were covalently linked to an amino-terminated silane surface. Patterns were generated by selective removal of the MPC polymer via UV irradiation. Multiple micropatterns of fluorescein isothiocyanate (FITC)-labeled bovine serum albumin (BSA) and rhodamine-labeled goat fragment antigen-binding fragments (FAB) were deposited on a same glass substrate. We also employed micropatterning of multiple biomolecules in that Texas red-labeled BSA and FITC-labeled rabbit anti-mouse IgG were placed inside a microchannel. (author)

  6. Miniworkshop on Methods of Electronic Structure Calculations and Working Group on Disordered Alloys

    CERN Document Server

    Andersen, O K; Mookerjee, A

    1994-01-01

    Developments in the density functional theory and the methods of electronic structure calculations have made it possible to carry out ab-initio studies of a variety of materials efficiently and at a predictable level. This book covers many of those state-of-the-art developments and their applications to ordered and disordered materials, surfaces and interfaces and clusters, etc.

  7. The effects of lithium and anticonvulsants on brain structure in bipolar disorder.

    Science.gov (United States)

    Germaná, C; Kempton, M J; Sarnicola, A; Christodoulou, T; Haldane, M; Hadjulis, M; Girardi, P; Tatarelli, R; Frangou, S

    2010-12-01

    To investigate the effect of lithium, anticonvulsants and antipsychotics on brain structure in bipolar disorder (BD). A cross-sectional structural brain magnetic resonance imaging study of 74 remitted patients with BD, aged 18-65, who were receiving long-term prophylactic treatment with lithium or anticonvulsants or antipsychotics. Global and regional grey matter, white matter, and cerebrospinal fluid volumes were compared between treatment groups. Grey matter in the subgenual anterior cingulate gyrus on the right (extending into the hypothalamus) and in the postcentral gyrus, the hippocampus/amygdale complex and the insula on the left was greater in BD patients on lithium treatment compared to all other treatment groups. Lithium treatment in BD has a significant effect on brain structure particularly in limbic/paralimbic regions associated with emotional processing. © 2010 John Wiley & Sons A/S.

  8. Local structural disorder in REFeAsO oxypnictides by RE L3 edge XANES

    International Nuclear Information System (INIS)

    Xu, W; Chu, W S; Wu, Z Y; Marcelli, A; Di Gioacchino, D; Joseph, B; Iadecola, A; Bianconi, A; Saini, N L

    2010-01-01

    The REFeAsO (RE = La, Pr, Nd and Sm) system has been studied by RE L 3 x-ray absorption near edge structure (XANES) spectroscopy to explore the contribution of the REO spacers between the electronically active FeAs slabs in these materials. The XANES spectra have been simulated by full multiple scattering calculations to describe the different experimental features and their evolution with the RE size. The near edge feature just above the L 3 white line is found to be sensitive to the ordering/disordering of oxygen atoms in the REO layers. In addition, shape resonance peaks due to As and O scattering change systematically, indicating local structural changes in the FeAs slabs and the REO spacers due to RE size. The results suggest that interlayer coupling and oxygen order/disorder in the REO spacers may have an important role in the superconductivity and itinerant magnetism of the oxypnictides.

  9. Structural brain abnormalities in a single gene disorder associated with epilepsy, language impairment and intellectual disability

    Directory of Open Access Journals (Sweden)

    Joe Bathelt

    2016-01-01

    Full Text Available Childhood speech and language deficits are highly prevalent and are a common feature of neurodevelopmental disorders. However, it is difficult to investigate the underlying causal pathways because many diagnostic groups have a heterogeneous aetiology. Studying disorders with a shared genetic cause and shared cognitive deficits can provide crucial insight into the cellular mechanisms and neural systems that give rise to those impairments. The current study investigated structural brain differences of individuals with mutations in ZDHHC9, which is associated with a specific neurodevelopmental phenotype including prominent speech and language impairments and intellectual disability. We used multiple structural neuroimaging methods to characterise neuroanatomy in this group, and observed bilateral reductions in cortical thickness in areas surrounding the temporo-parietal junction, parietal lobule, and inferior frontal lobe, and decreased microstructural integrity of cortical, subcortical-cortical, and interhemispheric white matter projections. These findings are compared to reports for other genetic groups and genetically heterogeneous disorders with a similar presentation. Overlap in the neuroanatomical phenotype suggests a common pathway that particularly affects the development of temporo-parietal and inferior frontal areas, and their connections.

  10. Standing spin-wave mode structure and linewidth in partially disordered hexagonal arrays of perpendicularly magnetized sub-micron Permalloy discs

    International Nuclear Information System (INIS)

    Ross, N.; Kostylev, M.; Stamps, R. L.

    2014-01-01

    Standing spin wave mode frequencies and linewidths in partially disordered perpendicular magnetized arrays of sub-micron Permalloy discs are measured using broadband ferromagnetic resonance and compared to analytical results from a single, isolated disc. The measured mode structure qualitatively reproduces the structure expected from the theory. Fitted demagnetizing parameters decrease with increasing array disorder. The frequency difference between the first and second radial modes is found to be higher in the measured array systems than predicted by theory for an isolated disc. The relative frequencies between successive spin wave modes are unaffected by reduction of the long-range ordering of discs in the array. An increase in standing spin wave resonance linewidth at low applied magnetic fields is observed and grows more severe with increased array disorder.

  11. Structural Disorder within Paramyxoviral Nucleoproteins and Phosphoproteins in Their Free and Bound Forms: From Predictions to Experimental Assessment

    Directory of Open Access Journals (Sweden)

    Johnny Habchi

    2015-07-01

    Full Text Available We herein review available computational and experimental data pointing to the abundance of structural disorder within the nucleoprotein (N and phosphoprotein (P from three paramyxoviruses, namely the measles (MeV, Nipah (NiV and Hendra (HeV viruses. We provide a detailed molecular description of the mechanisms governing the disorder-to-order transition that the intrinsically disordered C-terminal domain (NTAIL of their N proteins undergoes upon binding to the C-terminal X domain (PXD of the homologous P proteins. We also show that NTAIL–PXD complexes are “fuzzy”, i.e., they possess a significant residual disorder, and discuss the possible functional significance of this fuzziness. Finally, we emphasize the relevance of N–P interactions involving intrinsically disordered proteins as promising targets for new antiviral approaches, and end up summarizing the general functional advantages of disorder for viruses.

  12. Order and disorder in Ca2ND0.90H0.10-A structural and thermal study

    International Nuclear Information System (INIS)

    Verbraeken, Maarten C.; Suard, Emmanuelle; Irvine, John T.S.

    2011-01-01

    The structure of calcium nitride hydride and its deuterided form has been re-examined at room temperature and studied at high temperature using neutron powder diffraction and thermal analysis. When synthesised at 600 deg. C, a mixture of both ordered and disordered Ca 2 ND 0.90 H 0.10 phases results. The disordered phase is the minor component and has a primitive rocksalt structure (spacegroup Fm3m) with no ordering of D/N on the anion sites and the ordered phase is best described using the rhombohedral spacegroup R-3m with D and N arranged in alternate layers in (111) planes. This mixture of ordered and disordered phases exists up to 580 deg. C, at which the loss of deuterium yields Ca 2 ND 0.85 with the disappearance of the disordered phase. In the new ordered phase there exists a similar content of vacancies on both anion sites; to achieve this balance, a little N transfers onto the D site, whereas there is no indication of D transferring onto the N-sites. These observations are thought to indicate that the D/N ordering is difficult to achieve with fully occupied anion sites. It has previously been reported that Ca 2 ND has an ordered cubic cell with alternating D and N sites in the [100] directions ; however, for the samples studied herein, there were clearly two coexisting phases with apparent broadening/splitting of the primitive peaks but not for the ordered peaks. The rhombohedral phase was in fact metrically cubic; however, all the observed peaks were consistent with the rhombohedral unit cell with no peaks requiring the larger ordered cubic unit cell to be utilised. Furthermore this rhombohedral cell displays the same form of N-D ordering as the Sr and Ba analogues, which are metrically rhombohedral. - Graphical abstract: Ca 2 ND 0.90 H 0.10 forms a mixture of ordered and disordered phases when synthesised at 600 deg. C. The ordered phase disappears at high temperature upon release of structural deuterium/hydrogen, leaving a single, partially disordered

  13. Why seek treatment for temporomandibular disorder pain complaints? A study based on semi-structured interviews

    NARCIS (Netherlands)

    Rollman, A.; Gorter, R.C.; Visscher, C.M.; Naeije, M.

    2013-01-01

    AIMS: To identify potential predictors of self-reported sleep bruxism (SB) within children's family and school environments. METHODS: A Aims: To assess possible differences between care seekers and non-care seekers with temporomandibular disorder (TMD) pain complaints, by using semi-structured

  14. Structure of the first PDZ domain of human PSD-93

    DEFF Research Database (Denmark)

    Fiorentini, Monica; Nielsen, Ann Kallehauge; Kristensen, Ole

    2009-01-01

    The crystal structure of the PDZ1 domain of human PSD-93 has been determined to 2.0 A resolution. The PDZ1 domain forms a crystallographic trimer that is also predicted to be stable in solution. The main contributions to the stabilization of the trimer seem to arise from interactions involving...... the PDZ1-PDZ2 linker region at the extreme C-terminus of PDZ1, implying that the oligomerization that is observed is not of biological significance in full-length PSD-93. Comparison of the structures of the binding cleft of PSD-93 PDZ1 with the previously reported structures of PSD-93 PDZ2 and PDZ3...

  15. The Latent Structure of Attention Deficit/Hyperactivity Disorder in an Adult Sample

    Science.gov (United States)

    Marcus, David K.; Norris, Alyssa L.; Coccaro, Emil F.

    2012-01-01

    The vast majority of studies that have examined the latent structure of attention deficit/hyperactivity disorder (ADHD) in children and adolescents have concluded that ADHD has a dimensional latent structure. In other words, ADHD symptomatology exists along a continuum and there is no natural boundary or qualitative distinction (i.e., taxon) separating youth with ADHD from those with subclinical inattention or hyperactivity/impulsivity problems. Although adult ADHD appears to be less prevalent than ADHD in youth (which could suggest a more severe adult ADHD taxon), researchers have yet to examine the latent structure of ADHD in adults. The present study used a sample (N = 600) of adults who completed a self-report measure of ADHD symptoms. The taxometric analyses revealed a dimensional latent structure for inattention, hyperactivity/impulsivity, and ADHD. These findings are consistent with previous taxometric studies that examined ADHD in children and adolescents, and with contemporary polygenic and multifactorial models of ADHD. PMID:22480749

  16. The latent structure of attention deficit/hyperactivity disorder in an adult sample.

    Science.gov (United States)

    Marcus, David K; Norris, Alyssa L; Coccaro, Emil F

    2012-06-01

    The vast majority of studies that have examined the latent structure of attention deficit/hyperactivity disorder (ADHD) in children and adolescents have concluded that ADHD has a dimensional latent structure. In other words, ADHD symptomatology exists along a continuum and there is no natural boundary or qualitative distinction (i.e., taxon) separating youth with ADHD from those with subclinical inattention or hyperactivity/impulsivity problems. Although adult ADHD appears to be less prevalent than ADHD in youth (which could suggest a more severe adult ADHD taxon), researchers have yet to examine the latent structure of ADHD in adults. The present study used a sample (N = 600) of adults who completed a self-report measure of ADHD symptoms. The taxometric analyses revealed a dimensional latent structure for inattention, hyperactivity/impulsivity, and ADHD. These findings are consistent with previous taxometric studies that examined ADHD in children and adolescents, and with contemporary polygenic and multifactorial models of ADHD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Capturing Structural Heterogeneity in Chromatin Fibers.

    Science.gov (United States)

    Ekundayo, Babatunde; Richmond, Timothy J; Schalch, Thomas

    2017-10-13

    Chromatin fiber organization is implicated in processes such as transcription, DNA repair and chromosome segregation, but how nucleosomes interact to form higher-order structure remains poorly understood. We solved two crystal structures of tetranucleosomes with approximately 11-bp DNA linker length at 5.8 and 6.7 Å resolution. Minimal intramolecular nucleosome-nucleosome interactions result in a fiber model resembling a flat ribbon that is compatible with a two-start helical architecture, and that exposes histone and DNA surfaces to the environment. The differences in the two structures combined with electron microscopy reveal heterogeneous structural states, and we used site-specific chemical crosslinking to assess the diversity of nucleosome-nucleosome interactions through identification of structure-sensitive crosslink sites that provide a means to characterize fibers in solution. The chromatin fiber architectures observed here provide a basis for understanding heterogeneous chromatin higher-order structures as they occur in a genomic context. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Preferential 5-Methylcytosine Oxidation in the Linker Region of Reconstituted Positioned Nucleosomes by Tet1 Protein.

    Science.gov (United States)

    Kizaki, Seiichiro; Zou, Tingting; Li, Yue; Han, Yong-Woon; Suzuki, Yuki; Harada, Yoshie; Sugiyama, Hiroshi

    2016-11-07

    Tet (ten-eleven translocation) family proteins oxidize 5-methylcytosine (mC) to 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), and 5-carboxycytosine (caC), and are suggested to be involved in the active DNA demethylation pathway. In this study, we reconstituted positioned mononucleosomes using CpG-methylated 382 bp DNA containing the Widom 601 sequence and recombinant histone octamer, and subjected the nucleosome to treatment with Tet1 protein. The sites of oxidized methylcytosine were identified by bisulfite sequencing. We found that, for the oxidation reaction, Tet1 protein prefers mCs located in the linker region of the nucleosome compared with those located in the core region. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Structural study of disordered SiC nanowires by three-dimensional rotation electron diffraction

    International Nuclear Information System (INIS)

    Li, Duan; Guo, Peng; Wan, Wei; Zou, Ji; Shen, Zhijian; Guzi de Moraes, Elisângela; Colombo, Paolo

    2014-01-01

    The structure of disordered SiC nanowires was studied by using the three-dimensional rotation electron diffraction (RED) technique. The streaks shown in the RED images indicated the stacking faults of the nanowire. High-resolution transmission electron microscopy imaging was employed to support the results from the RED data. It suggested that a 2H polytype is most possible for the nanowires. (paper)

  20. Early-onset obsessive-compulsive disorder and personality disorders in adulthood.

    Science.gov (United States)

    Maina, Giuseppe; Albert, Umberto; Salvi, Virginio; Pessina, Enrico; Bogetto, Filippo

    2008-03-15

    Obsessive-compulsive disorder (OCD) often emerges in childhood or adolescence. The aim of the present study was to evaluate whether adult patients with prepuberal onset differ from subjects with later onset in terms of personality disorder comorbidity. The Structured Clinical Interview for DSM-IV Axis II Disorders was used to assess 148 patients with a principal diagnosis of OCD according to the Structured Clinical Interview for DSM-IV Axis I Disorders. The following two subgroups of subjects were selected according to the age at onset of symptomatology: patients with an early-onset ( or =17 years). Of the 148 patients screened for the present study, 33 (22.3%) had an early onset and 1369 (46.6%) had a later onset. With regard to personality disorders, early-onset patients showed more OC personality disorders (OCPD) than later onset patients. Our finding suggests that OCD in childhood increases the risk for developing OCPD in adulthood, or that early-onset OCD and OCPD share a common pathogenesis.

  1. Structural and optical studies of local disorder sensitivity in natural organic-inorganic self-assembled semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Vijaya Prakash, G; Pradeesh, K [Nanophotonics Lab, Department of Physics, Indian Institute of Technology Delhi, New Delhi (India); Ratnani, R; Saraswat, K [Department of Pure and Applied Chemistry, MDS University, Ajmer (India); Light, M E [School of Chemistry, University of Southampton, Southampton (United Kingdom); Baumberg, J J, E-mail: prakash@physics.iitd.ac.i [Nanophotonic Centre, Cavendish Laboratory, University Cambridge, Cambridge CB3 OHE (United Kingdom)

    2009-09-21

    The structural and optical spectra of two related lead iodide (PbI) based self-assembled hybrid organic-inorganic semiconductors are compared. During the synthesis, depending on the bridging of organic moiety intercalated between the PbI two-dimensional planes, different crystal structures are produced. These entirely different networks show different structural and optical features, including excitonic bandgaps. In particular, the modified organic environment of the excitons is sensitive to the local disorder both in single crystal and thin film forms. Such information is vital for incorporating these semiconductors into photonic device architectures.

  2. Diffraction by disordered polycrystalline fibers

    International Nuclear Information System (INIS)

    Stroud, W.J.; Millane, R.P.

    1995-01-01

    X-ray diffraction patterns from some polycrystalline fibers show that the constituent microcrystallites are disordered. The relationship between the crystal structure and the diffracted intensities is then quite complicated and depends on the precise kind and degree of disorder present. The effects of disorder on diffracted intensities must be included in structure determinations using diffraction data from such specimens. Theory and algorithms are developed here that allow the full diffraction pattern to be calculated for a disordered polycrystalline fiber made up of helical molecules. The model accommodates various kinds of disorder and includes the effects of finite crystallite size and cylindrical averaging of the diffracted intensities from a fiber. Simulations using these methods show how different kinds, or components, of disorder produce particular diffraction effects. General properties of disordered arrays of helical molecules and their effects on diffraction patterns are described. Implications for structure determination are discussed. (orig.)

  3. A limited 4 Å radial displacement of the S4-S5 linker is sufficient for internal gate closing in Kv channels.

    Science.gov (United States)

    Faure, Élise; Starek, Greg; McGuire, Hugo; Bernèche, Simon; Blunck, Rikard

    2012-11-16

    Voltage-gated ion channels are responsible for the generation of action potentials in our nervous system. Conformational rearrangements in their voltage sensor domains in response to changes of the membrane potential control pore opening and thus ion conduction. Crystal structures of the open channel in combination with a wealth of biophysical data and molecular dynamics simulations led to a consensus on the voltage sensor movement. However, the coupling between voltage sensor movement and pore opening, the electromechanical coupling, occurs at the cytosolic face of the channel, from where no structural information is available yet. In particular, the question how far the cytosolic pore gate has to close to prevent ion conduction remains controversial. In cells, spectroscopic methods are hindered because labeling of internal sites remains difficult, whereas liposomes or detergent solutions containing purified ion channels lack voltage control. Here, to overcome these problems, we controlled the state of the channel by varying the lipid environment. This way, we directly measured the position of the S4-S5 linker in both the open and the closed state of a prokaryotic Kv channel (KvAP) in a lipid environment using Lanthanide-based resonance energy transfer. We were able to reconstruct the movement of the covalent link between the voltage sensor and the pore domain and used this information as restraints for molecular dynamics simulations of the closed state structure. We found that a small decrease of the pore radius of about 3-4 Å is sufficient to prevent ion permeation through the pore.

  4. The health preoccupation diagnostic interview: inter-rater reliability of a structured interview for diagnostic assessment of DSM-5 somatic symptom disorder and illness anxiety disorder.

    Science.gov (United States)

    Axelsson, Erland; Andersson, Erik; Ljótsson, Brjánn; Wallhed Finn, Daniel; Hedman, Erik

    2016-06-01

    Somatic symptom disorder (SSD) and illness anxiety disorder (IAD) are two new diagnoses introduced in the DSM-5. There is a need for reliable instruments to facilitate the assessment of these disorders. We therefore developed a structured diagnostic interview, the Health Preoccupation Diagnostic Interview (HPDI), which we hypothesized would reliably differentiate between SSD, IAD, and no diagnosis. Persons with clinically significant health anxiety (n = 52) and healthy controls (n = 52) were interviewed using the HPDI. Diagnoses were then compared with those made by an independent assessor, who listened to audio recordings of the interviews. Ratings generally indicated moderate to almost perfect inter-rater agreement, as illustrated by an overall Cohen's κ of .85. Disagreements primarily concerned (a) the severity of somatic symptoms, (b) the differential diagnosis of panic disorder, and (c) SSD specifiers. We conclude that the HPDI can be used to reliably diagnose DSM-5 SSD and IAD.

  5. Structural and evolutionary relationships of “AT-less” type I polyketide synthase ketosynthases

    Science.gov (United States)

    Lohman, Jeremy R.; Ma, Ming; Osipiuk, Jerzy; Nocek, Boguslaw; Kim, Youngchang; Chang, Changsoo; Cuff, Marianne; Mack, Jamey; Bigelow, Lance; Li, Hui; Endres, Michael; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N.; Shen, Ben

    2015-01-01

    Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representation of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs. PMID:26420866

  6. Structure of the mixed-metal carbonate KAgCO₃ revisited: order-disorder (OD) polytypism and allotwinning.

    Science.gov (United States)

    Hans, Philipp; Stöger, Berthold; Weil, Matthias; Zobetz, Erich

    2015-04-01

    Crystals of KAgCO3 belong to an order-disorder (OD) family of structures composed of layers of two kinds. There are two polytypes with a maximum degree of order [MDO1: Pccb; MDO2: Ibca, doubled a-axis compared with MDO1], which are both realised to a different extent in two crystals under investigation [volume fraction MDO1:MDO2 in crystal (I): 0.0216:0.9784 (3) and in crystal (II): 0.9657:0.0343 (3)]. Sharp diffraction spots and the absence of diffuse scattering indicate highly ordered macroscopic domains. The structure of KAgCO3 was refined concurrently against all reflections using an allotwin model (addition of the intensities of both domains). It is shown that a disorder model refined against reflections of only one domain can lead to a significant overestimation of the volume fraction of this domain.

  7. Abnormal white matter integrity as a structural endophenotype for bipolar disorder.

    Science.gov (United States)

    Sarıçiçek, A; Zorlu, N; Yalın, N; Hıdıroğlu, C; Çavuşoğlu, B; Ceylan, D; Ada, E; Tunca, Z; Özerdem, A

    2016-05-01

    Several lines of evidence suggest that bipolar disorder (BD) is associated with white matter (WM) pathology. Investigation of unaffected first-degree relatives of BD patients may help to distinguish structural biomarkers of genetic risk without the confounding effects of burden of illness, medication or clinical state. In the present study, we applied tract-based spatial statistics to study WM changes in patients with BD, unaffected siblings and controls. A total of 27 euthymic patients with BD type I, 20 unaffected siblings of bipolar patients and 29 healthy controls who did not have any current or past diagnosis of Axis I psychiatric disorders were enrolled in the study. Fractional anisotropy (FA) was significantly lower in BD patients than in the control group in the corpus callosum, fornix, bilateral superior longitudinal fasciculus, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, anterior thalamic radiation, posterior thalamic radiation, cingulum, uncinate fasciculus, superior corona radiata, anterior corona radiata and left external capsule. In region-of-interest (ROI) analyses, we found that both unaffected siblings and bipolar patients had significantly reduced FA in the left posterior thalamic radiation, the left sagittal stratum, and the fornix compared with healthy controls. Average FA for unaffected siblings was intermediate between the healthy controls and bipolar patients within these ROIs. Decreased FA in the fornix, left posterior thalamic radiation and left sagittal stratum in both bipolar patients and unaffected siblings may represent a potential structural endophenotype or a trait-based marker for BD.

  8. Structural disorder in proteins of the rhabdoviridae replication complex.

    Science.gov (United States)

    Leyrat, Cédric; Gérard, Francine C A; de Almeida Ribeiro, Euripedes; Ivanov, Ivan; Ruigrok, Rob W H; Jamin, Marc

    2010-08-01

    Rhabdoviridae are single stranded negative sense RNA viruses. The viral RNA condensed by the nucleoprotein (N), the phosphoprotein (P) and the large subunit (L) of the RNA-dependent RNA polymerase are the viral components of the transcription/replication machineries. Both P and N contain intrinsically disordered regions (IDRs) that play different roles in the virus life cycle. Here, we describe the modular organization of P based on recent structural, biophysical and bioinformatics data. We show how flexible loops in N participate in the attachment of P to the N-RNA template by an induced-fit mechanism. Finally, we discuss the roles of IDRs in the mechanism of replication/transcription, and propose a new model for the interaction of the L subunit with its N-RNA template.

  9. Brain structural correlates of sensory phenomena in patients with obsessive–compulsive disorder

    Science.gov (United States)

    Subirà, Marta; Sato, João R.; Alonso, Pino; do Rosário, Maria C.; Segalàs, Cinto; Batistuzzo, Marcelo C.; Real, Eva; Lopes, Antonio C.; Cerrillo, Ester; Diniz, Juliana B.; Pujol, Jesús; Assis, Rachel O.; Menchón, José M.; Shavitt, Roseli G.; Busatto, Geraldo F.; Cardoner, Narcís; Miguel, Euripedes C.; Hoexter, Marcelo Q.; Soriano-Mas, Carles

    2015-01-01

    Background Sensory phenomena (SP) are uncomfortable feelings, including bodily sensations, sense of inner tension, “just-right” perceptions, feelings of incompleteness, or “urge-only” phenomena, which have been described to precede, trigger or accompany repetitive behaviours in individuals with obsessive–compulsive disorder (OCD). Sensory phenomena are also observed in individuals with tic disorders, and previous research suggests that sensorimotor cortex abnormalities underpin the presence of SP in such patients. However, to our knowledge, no studies have assessed the neural correlates of SP in patients with OCD. Methods We assessed the presence of SP using the University of São Paulo Sensory Phenomena Scale in patients with OCD and healthy controls from specialized units in São Paulo, Brazil, and Barcelona, Spain. All participants underwent a structural magnetic resonance examination, and brain images were examined using DARTEL voxel-based morphometry. We evaluated grey matter volume differences between patients with and without SP and healthy controls within the sensorimotor and premotor cortices. Results We included 106 patients with OCD and 87 controls in our study. Patients with SP (67% of the sample) showed grey matter volume increases in the left sensorimotor cortex in comparison to patients without SP and bilateral sensorimotor cortex grey matter volume increases in comparison to controls. No differences were observed between patients without SP and controls. Limitations Most patients were medicated. Participant recruitment and image acquisition were performed in 2 different centres. Conclusion We have identified a structural correlate of SP in patients with OCD involving grey matter volume increases within the sensorimotor cortex; this finding is in agreement with those of tic disorder studies showing that abnormal activity and volume increases within this region are associated with the urges preceding tic onset. PMID:25652753

  10. Spectroscopic and X-ray Diffraction Study of Structural Disorder in Cryomilled and Amorphous Griseofulvin

    International Nuclear Information System (INIS)

    Zarow, A.; Zhou, B.; Wang, X.; Pinal, R.; Iqbal, Z.

    2011-01-01

    Structural disorder induced by cryogenic milling and by heating to the amorphous phase in the active pharmaceutical ingredient Griseofulvin has been studied using Raman spectroscopy, X-ray powder diffraction (XRPD), and fluorescence spectroscopy. A broad, exciting-frequency-independent scattering background in the Raman spectra and changes in intensities and splitting of some of the Raman lines due to lattice and molecular modes have been observed. In the cryomilled samples this strong background is deconvoluted into two components: one due to lattice disorder induced by cryomilling and the other due to Mie scattering from nanosized crystallites. A single-component background scattering attributed to lattice disorder is seen in the Raman spectrum of the amorphous sample. Fluorescence measurements showed an intrinsic fluorescence signal in as-received Griseofulvin that does not correspond to the inelastic background in the Raman spectra and, moreover, decreases in intensity upon cryomilling, thus excluding an assignment of the Raman background intensity to impurity- or molecular-defect-induced fluorescence. Wide-angle XRPD measurements on cryomilled Griseofulvin shows a broad two-component background consistent with the background-scattering component in the Raman data associated with lattice disorder, but at longer correlation lengths. Persistence of this disorder to even longer lengths is evident in small-angle synchrotron XRPD data on micronized Griseofulvin taken as a function of temperature from the crystalline to the amorphous phase.

  11. The effect of linker of electrodes prepared from sol–gel ionic liquid precursor and carbon nanoparticles on dioxygen electroreduction bioelectrocatalysis

    International Nuclear Information System (INIS)

    Szot, Katarzyna; Lynch, Robert P.; Lesniewski, Adam; Majewska, Ewa; Sirieix-Plenet, Juliette; Gaillon, Laurent; Opallo, Marcin

    2011-01-01

    The effect of linker of three-dimensional, hydrophilic-carbon-nanoparticle film-electrodes prepared by layer-by-layer method on redox probe accumulation and bioelectrocatalytic dioxygen reduction was studied and compared for two different electrode scaffolds. The linker in both of these scaffolds was based on the same ionic liquid sol–gel precursor, 1-methyl-3-(3-trimethoxysilylpropyl) imidazolium bis(trifluoromethyl-sulfonyl)imide. The first electrode type was prepared by alternative immersion of tin doped indium oxide substrate in an aqueous suspension of carbon nanoparticles modified with phenyl sulphonic groups and a sol composed of ionic liquid sol–gel precursor and tetramethoxysilane. For the second electrode type sol was replaced by a methanolic suspension of silicate submicroparticles with appended imidazolium functional groups. In both films 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) anions accumulate irreversibly. In the case of the first electrode electrostatic attraction plays the more important role in comparison to the case of the second where stable adsorption of the redox probe takes place. After adsorption of bilirubin oxidase, electrodes obtained from sol and carbon nanoparticles exhibit modest bioelectrocatalytic activity towards dioxygen reduction at pH 4.8, however those obtained from oppositely charged particles are much more efficient. The magnitude of the associated catalytic current in both cases depends on the number of immersion and withdrawal steps. Interestingly, mediatorless catalysis at electrodes obtained from oppositely charged particles is more efficient than mediated catalysis.

  12. Brain Volumetric Correlates of Autism Spectrum Disorder Symptoms in Attention Deficit/Hyperactivity Disorder

    NARCIS (Netherlands)

    O'Dwyer, Laurence; Tanner, Colby; van Dongen, Eelco V.; Greven, Corina U.; Braten, Janita; Zwiersl, Marcel P.; Franke, Barbara; Oosterlaan, Jaap; Heslenfeld, Dirk; Hoekstra, Pieter; Hartman, Catharina A.; Rommelse, Nanda; Buitelaar, Jan K.

    2014-01-01

    Autism spectrum disorder (ASD) symptoms frequently occur in subjects with attention deficit/hyperactivity disord (ADHD). While there is evidence that both ADHD and ASD have differential structural correlates, no study to date has nvestigated these structural correlates within a framework that

  13. On the role, ecology, phylogeny, and structure of dual-family immunophilins.

    Science.gov (United States)

    Barik, Sailen

    2017-11-01

    The novel class of dual-family immunophilins (henceforth abbreviated as DFI) represents naturally occurring chimera of classical FK506-binding protein (FKBP) and cyclophilin (CYN), connected by a flexible linker that may include a three-unit tetratricopeptide (TPR) repeat. Here, I report a comprehensive analysis of all current DFI sequences and their host organisms. DFIs are of two kinds: CFBP (cyclosporin- and FK506-binding protein) and FCBP (FK506- and cyclosporin-binding protein), found in eukaryotes. The CFBP type occurs in select bacteria that are mostly extremophiles, such as psychrophilic, thermophilic, halophilic, and sulfur-reducing. Essentially all DFI organisms are unicellular. I suggest that DFIs are specialized bifunctional chaperones that use their flexible interdomain linker to associate with large polypeptides or multisubunit megacomplexes to promote simultaneous folding or renaturation of two clients in proximity, essential in stressful and denaturing environments. Analysis of sequence homology and predicted 3D structures of the FKBP and CYN domains as well as the TPR linkers upheld the modular nature of the DFIs and revealed the uniqueness of their TPR domain. The CFBP and FCBP genes appear to have evolved in parallel pathways with no obvious single common ancestor. The occurrence of both types of DFI in multiple unrelated phylogenetic clades supported their selection in metabolic and environmental niche roles rather than a traditional taxonomic relationship. Nonetheless, organisms with these rare immunophilins may define an operational taxonomic unit (OTU) bound by the commonality of chaperone function.

  14. Multimodal Neuroimaging of Frontolimbic Structure and Function Associated With Suicide Attempts in Adolescents and Young Adults With Bipolar Disorder.

    Science.gov (United States)

    Johnston, Jennifer A Y; Wang, Fei; Liu, Jie; Blond, Benjamin N; Wallace, Amanda; Liu, Jiacheng; Spencer, Linda; Cox Lippard, Elizabeth T; Purves, Kirstin L; Landeros-Weisenberger, Angeli; Hermes, Eric; Pittman, Brian; Zhang, Sheng; King, Robert; Martin, Andrés; Oquendo, Maria A; Blumberg, Hilary P

    2017-07-01

    Bipolar disorder is associated with high risk for suicidal behavior that often develops in adolescence and young adulthood. Elucidation of involved neural systems is critical for prevention. This study of adolescents and young adults with bipolar disorder with and without a history of suicide attempts combines structural, diffusion tensor, and functional MR imaging methods to investigate implicated abnormalities in the morphology and structural and functional connectivity within frontolimbic systems. The study had 26 participants with bipolar disorder who had a prior suicide attempt (the attempter group) and 42 participants with bipolar disorder without a suicide attempt (the nonattempter group). Regional gray matter volume, white matter integrity, and functional connectivity during processing of emotional stimuli were compared between groups, and differences were explored for relationships between imaging modalities and associations with suicide-related symptoms and behaviors. Compared with the nonattempter group, the attempter group showed significant reductions in gray matter volume in the orbitofrontal cortex, hippocampus, and cerebellum; white matter integrity in the uncinate fasciculus, ventral frontal, and right cerebellum regions; and amygdala functional connectivity to the left ventral and right rostral prefrontal cortex. In exploratory analyses, among attempters, there was a significant negative correlation between right rostral prefrontal connectivity and suicidal ideation and between left ventral prefrontal connectivity and attempt lethality. Adolescent and young adult suicide attempters with bipolar disorder demonstrate less gray matter volume and decreased structural and functional connectivity in a ventral frontolimbic neural system subserving emotion regulation. Among attempters, reductions in amygdala-prefrontal functional connectivity may be associated with severity of suicidal ideation and attempt lethality.

  15. Effectiveness of structured teaching programme regarding sleep hygiene and sleep disorders on knowledge of students in a selected pre-university college at Bengaluru

    Directory of Open Access Journals (Sweden)

    Mohammad Isaque Manik

    2016-07-01

    Full Text Available Background: Sleep plays an important role in maintaining good physical and mental health throughout the life. Timely and adequate sleep will improve quality of life, protect mental and physical health. The present study was conducted to evaluate the effectiveness of structured teaching programme regarding sleep hygiene and sleep disorders on knowledge of pre-university students in a selected college at Bengaluru. Methodology: A pre-experimental research was conducted with 60 pre-university students; samples were selected using simple random sampling technique, and the data was collected using structured socio-demographic proforma and knowledge questionnaire on sleep hygiene and sleep disorders. Structured teaching programme on sleep hygiene and sleep disorders was given on the same day. Posttest was conducted after seven days. Results: There was a statistically significant difference in pre- and post-test knowledge scores (t=26.71, p<0.001 of pre-university students with respect to sleep hygiene and sleep disorders. Association between socio-demographic variables and pre-test knowledge scores showed that there was significant association between religion and pre-test knowledge scores. Conclusion: Findings conclude that structured teaching programme regarding sleep hygiene and sleep disorders was effective in increasing knowledge score among pre-university students.

  16. Preparation and in vivo evaluation of a novel stabilized linker for 211At labeling of protein

    International Nuclear Information System (INIS)

    Talanov, Vladimir S.; Garmestani, Kayhan; Regino, Celeste A.S.; Milenic, Diane E.; Plascjak, Paul S.; Waldmann, Thomas A.; Brechbiel, Martin W.

    2006-01-01

    Significant improvement of in vivo stability of 211 At-labeled radioimmunoconjugates achieved upon employment of a recently reported new linker, succinimidyl N-2-(4-[ 211 At]astatophenethyl)succinamate (SAPS), prompted additional studies of its chemistry. The 211 At radiolabeling of succinimidyl N-2-(4-tributylstannylphenethyl)succinamate (1) was noted to decline after storage at -15 o C for greater than 6 months. Compound 1 was found to degrade via a ring closure reaction with the formation of N-2-(4-tributylstannylphenethyl)succinimide (3), and a modified procedure for the preparation of 1 was developed. The N-methyl structural analog of 1, succinimidyl N-2-(4-tributylstannylphenethyl)-N-methyl succinamate (SPEMS), was synthesized to investigate the possibility of improving the stability of reagent-protein linkage chemistry. Radiolabeling of SPEMS with 211 At generates succinimidyl N-2-(4-[ 211 At]astatophenethyl)-N-methyl succinamate (Methyl-SAPS), with yields being consistent for greater than 1 year. Radiolabelings of 1 and SPEMS with 125 I generated succinimidyl N-2-(4-[ 125 I]iodophenethyl)succinamate (SIPS) and succinimidyl N-2-(4-[ 125 I]iodophenethyl)-N-methyl succinamate (Methyl-SIPS), respectively, and showed no decline in yields. Methyl-SAPS, SAPS, Methyl-SIPS and SIPS were conjugated to Herceptin for a comparative assessment in LS-174T xenograft-bearing mice. The conjugates of Herceptin with Methyl-SAPS or Methyl-SIPS demonstrated immunoreactivity equivalent to if not superior to the SAPS and SIPS paired analogs. The in vivo studies also revealed that the N-methyl modification resulted in a superior statinated product

  17. Structural Dynamics Control Allosteric Activation of Cytohesin Family Arf GTPase Exchange Factors

    Energy Technology Data Exchange (ETDEWEB)

    Malaby, Andrew W.; Das, Sanchaita; Chakravarthy, Srinivas; Irving, Thomas C.; Bilsel, Osman; Lambright, David G.

    2018-01-01

    Membrane dynamic processes including vesicle biogenesis depend on Arf guanosine triphosphatase (GTPase) activation by guanine nucleotide exchange factors (GEFs) containing a catalytic Sec7 domain and a membrane-targeting module such as a pleckstrin homology (PH) domain. The catalytic output of cytohesin family Arf GEFs is controlled by autoinhibitory interactions that impede accessibility of the exchange site in the Sec7 domain. These restraints can be relieved through activator Arf-GTP binding to an allosteric site comprising the PH domain and proximal autoinhibitory elements (Sec7-PH linker and C-terminal helix). Small-angle X-ray scattering and negative-stain electron microscopy were used to investigate the structural organization and conformational dynamics of cytohesin-3 (Grp1) in autoinhibited and active states. The results support a model in which hinge dynamics in the autoinhibited state expose the activator site for Arf-GTP binding, while subsequent C-terminal helix unlatching and repositioning unleash conformational entropy in the Sec7-PH linker to drive exposure of the exchange site.

  18. Factor Structure of Attention Deficit Hyperactivity Disorder Symptoms for Children Age 3 to 5 Years

    Science.gov (United States)

    McGoey, Kara E.; Schreiber, James; Venesky, Lindsey; Westwood, Wendy; McGuirk, Lindsay; Schaffner, Kristen

    2015-01-01

    The diagnosis of attention deficit hyperactivity disorder (ADHD) distinguishes two dimensions of symptoms, inattention and hyperactivity-impulsivity for ages 3 to adulthood. Currently, no separate classification for preschool-age children exists, whereas preliminary research suggests that the two-factor structure of ADHD may not match the…

  19. Structure Mapping in Autism Spectrum Disorder: Levels of Information Processing and Relations to Executive Functions

    Science.gov (United States)

    Hetzroni, Orit E.; Shalahevich, Kiril

    2018-01-01

    Analogical reasoning was investigated among children with autism spectrum disorders (ASD) without intellectual disabilities and typical development (TD). Children were asked to select one of two targets in two conditions: (1) with and without spatial structure similarity; (2) with and without a perceptual distractor. Results demonstrate that…

  20. Structural analysis of poly-SUMO chain recognition by the RNF4-SIMs domain.

    Science.gov (United States)

    Kung, Camy C-H; Naik, Mandar T; Wang, Szu-Huan; Shih, Hsiu-Ming; Chang, Che-Chang; Lin, Li-Ying; Chen, Chia-Lin; Ma, Che; Chang, Chi-Fon; Huang, Tai-Huang

    2014-08-15

    The E3 ubiquitin ligase RNF4 (RING finger protein 4) contains four tandem SIM [SUMO (small ubiquitin-like modifier)-interaction motif] repeats for selective interaction with poly-SUMO-modified proteins, which it targets for degradation. We employed a multi-faceted approach to characterize the structure of the RNF4-SIMs domain and the tetra-SUMO2 chain to elucidate the interaction between them. In solution, the SIM domain was intrinsically disordered and the linkers of the tetra-SUMO2 were highly flexible. Individual SIMs of the RNF4-SIMs domains bind to SUMO2 in the groove between the β2-strand and the α1-helix parallel to the β2-strand. SIM2 and SIM3 bound to SUMO with a high affinity and together constituted the recognition module necessary for SUMO binding. SIM4 alone bound to SUMO with low affinity; however, its contribution to tetra-SUMO2 binding avidity is comparable with that of SIM3 when in the RNF4-SIMs domain. The SAXS data of the tetra-SUMO2-RNF4-SIMs domain complex indicate that it exists as an ordered structure. The HADDOCK model showed that the tandem RNF4-SIMs domain bound antiparallel to the tetra-SUMO2 chain orientation and wrapped around the SUMO protamers in a superhelical turn without imposing steric hindrance on either molecule.