WorldWideScience

Sample records for disordered organic semiconductors

  1. Charge carrier relaxation model in disordered organic semiconductors

    International Nuclear Information System (INIS)

    Lu, Nianduan; Li, Ling; Sun, Pengxiao; Liu, Ming

    2013-01-01

    The relaxation phenomena of charge carrier in disordered organic semiconductors have been demonstrated and investigated theoretically. An analytical model describing the charge carrier relaxation is proposed based on the pure hopping transport theory. The relation between the material disorder, electric field and temperature and the relaxation phenomena has been discussed in detail, respectively. The calculated results reveal that the increase of electric field and temperature can promote the relaxation effect in disordered organic semiconductors, while the increase of material disorder will weaken the relaxation. The proposed model can explain well the stretched-exponential law by adopting the appropriate parameters. The calculation shows a good agreement with the experimental data for organic semiconductors

  2. Disorder-tuned charge transport in organic semiconductors

    Science.gov (United States)

    Xu, Feng; Qiu, Dong; Yan, Dadong

    2013-02-01

    We propose that the polaron transport in organic semiconductors is remarkably tuned by the fluctuation of polarization energy. The tuning effect of energetic fluctuation not only causes a continuous transition from non-Arrhenius to Arrhenius temperature activated charge transport with increasing moderate disorder strengths but also results in a band-like conduction in the low disorder regime which benefits from the enhanced mobilities in shallow trap states. As a result, a unified description of polaron transport is obtained for a set of typical organic semiconductors.

  3. Theory and simulation of charge transport in disordered organic semiconductors

    NARCIS (Netherlands)

    Bobbert, P.A.; Kondov, I.; Sutman, G.

    2013-01-01

    Charge transport in polymeric or small-molecule organic semiconductors used in organic light-emitting diodes (OLEDs) occurs by hopping of charges between sites at which the charges are localized. The energetic disorder in these semiconductors has a profound influence on the charge transport: charges

  4. Study of charge-carrier relaxation in a disordered organic semiconductor by simulating impedance spectroscopy

    NARCIS (Netherlands)

    Mesta, M.; Cottaar, J.; Coehoorn, R.; Bobbert, P.A.

    2014-01-01

    Impedance spectroscopy is a very sensitive probe of nonstationary charge transport governed by charge-carrier relaxation in devices of disordered organic semiconductors. We simulate impedance spectroscopy measurements of hole-only devices of a polyfluorene-based disordered organic semiconductor by

  5. Modeling of the transient mobility in disordered organic semiconductors

    NARCIS (Netherlands)

    Germs, W.C.; Van der Holst, J.M.M.; Van Mensfoort, S.L.M.; Bobbert, P.A.; Coehoorn, R.

    2011-01-01

    In non-steady-state experiments, the electrical response of devicesbased on disordered organic semiconductors often shows a large transient contribution due to relaxation of the out-of-equilibrium charge-carrier distribution. We have developed a model describing this process, based only on the

  6. Spin diffusion in disordered organic semiconductors

    Science.gov (United States)

    Li, Ling; Gao, Nan; Lu, Nianduan; Liu, Ming; Bässler, Heinz

    2015-12-01

    An analytical theory for spin diffusion in disordered organic semiconductors is derived. It is based on percolation theory and variable range hopping in a disordered energy landscape with a Gaussian density of states. It describes universally the dependence of the spin diffusion on temperature, carrier density, material disorder, magnetic field, and electric field at the arbitrary magnitude of the Hubbard energy of charge pairs. It is found that, compared to the spin transport carried by carriers hopping, the spin exchange will hinder the spin diffusion process at low carrier density, even under the condition of a weak electric field. Importantly, under the influence of a bias voltage, anomalous spreading of the spin packet will lead to an abnormal temperature dependence of the spin diffusion coefficient and diffusion length. This explains the recent experimental data for spin diffusion length observed in Alq3.

  7. Universal Disorder in Organic Semiconductors Due to Fluctuations in Space Charge

    Science.gov (United States)

    Wu, Tzu-Cheng

    This thesis concerns the study of charge transport in organic semiconductors. These materials are widely used as thin-film photoconductors in copiers and laser printers, and for their electroluminescent properties in organic light-emitting diodes. Much contemporary research is directed towards improving the efficiency of organic photovoltaic devices, which is limited to a large extent by the spatial and energetic disorder that hinders the charge mobility. One contribution to energetic disorder arises from the strong Coulomb interactions between injected charges with one another, but to date this has been largely ignored. We present a mean-field model for the effect of mutual interactions between injected charges hopping from site to site in an organic semiconductor. Our starting point is a modified Fröhlich Hamiltonian in which the charge is linearly coupled to the amplitudes of a wide band of dispersionless plasma modes having a Lorentzian distribution of frequencies. We show that in most applications of interest the hopping rates are fast enough while the plasma frequencies are low enough that random thermal fluctuations in the plasma density give rise to an energetically disordered landscape that is effectively stationary for many thousands of hops. Moreover, the distribution of site energies is Gaussian, and the energy-energy correlation function decays inversely with distance; as such, it can be argued that this disorder contributes to the Poole-Frenkel field dependence seen in a wide variety of experiments. Remarkably, the energetic disorder is universal; although it is caused by the fluctuations in the charge density, it is independent of the charge concentration.

  8. Energy position of the transport path in disordered organic semiconductors

    International Nuclear Information System (INIS)

    Oelerich, J O; Jansson, F; Gebhard, F; Baranovskii, S D; Nenashev, A V

    2014-01-01

    The concept of transport energy is the most transparent theoretical approach to describe hopping transport in disordered systems with steeply energy dependent density of states (DOS), in particular in organic semiconductors with Gaussian DOS. This concept allows one to treat hopping transport in the framework of a simple multiple-trapping model, replacing the mobility edge by a particular energy level called the transport energy. However, there is no consensus among researchers on the position of this transport level. In this article, we suggest a numerical procedure to find out the energy level most significantly contributing to charge transport in organic semiconductors. The procedure is based on studying the effects of DOS modifications on the charge carrier mobility in straightforward computer simulations. We also show why the most frequently visited energy, computed in several numerical studies to determine the transport energy, is not representative for charge transport. (paper)

  9. Structural and optical studies of local disorder sensitivity in natural organic-inorganic self-assembled semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Vijaya Prakash, G; Pradeesh, K [Nanophotonics Lab, Department of Physics, Indian Institute of Technology Delhi, New Delhi (India); Ratnani, R; Saraswat, K [Department of Pure and Applied Chemistry, MDS University, Ajmer (India); Light, M E [School of Chemistry, University of Southampton, Southampton (United Kingdom); Baumberg, J J, E-mail: prakash@physics.iitd.ac.i [Nanophotonic Centre, Cavendish Laboratory, University Cambridge, Cambridge CB3 OHE (United Kingdom)

    2009-09-21

    The structural and optical spectra of two related lead iodide (PbI) based self-assembled hybrid organic-inorganic semiconductors are compared. During the synthesis, depending on the bridging of organic moiety intercalated between the PbI two-dimensional planes, different crystal structures are produced. These entirely different networks show different structural and optical features, including excitonic bandgaps. In particular, the modified organic environment of the excitons is sensitive to the local disorder both in single crystal and thin film forms. Such information is vital for incorporating these semiconductors into photonic device architectures.

  10. Controlling Molecular Doping in Organic Semiconductors.

    Science.gov (United States)

    Jacobs, Ian E; Moulé, Adam J

    2017-11-01

    The field of organic electronics thrives on the hope of enabling low-cost, solution-processed electronic devices with mechanical, optoelectronic, and chemical properties not available from inorganic semiconductors. A key to the success of these aspirations is the ability to controllably dope organic semiconductors with high spatial resolution. Here, recent progress in molecular doping of organic semiconductors is summarized, with an emphasis on solution-processed p-type doped polymeric semiconductors. Highlighted topics include how solution-processing techniques can control the distribution, diffusion, and density of dopants within the organic semiconductor, and, in turn, affect the electronic properties of the material. Research in these areas has recently intensified, thanks to advances in chemical synthesis, improved understanding of charged states in organic materials, and a focus on relating fabrication techniques to morphology. Significant disorder in these systems, along with complex interactions between doping and film morphology, is often responsible for charge trapping and low doping efficiency. However, the strong coupling between doping, solubility, and morphology can be harnessed to control crystallinity, create doping gradients, and pattern polymers. These breakthroughs suggest a role for molecular doping not only in device function but also in fabrication-applications beyond those directly analogous to inorganic doping. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Suppressing molecular vibrations in organic semiconductors by inducing strain.

    Science.gov (United States)

    Kubo, Takayoshi; Häusermann, Roger; Tsurumi, Junto; Soeda, Junshi; Okada, Yugo; Yamashita, Yu; Akamatsu, Norihisa; Shishido, Atsushi; Mitsui, Chikahiko; Okamoto, Toshihiro; Yanagisawa, Susumu; Matsui, Hiroyuki; Takeya, Jun

    2016-04-04

    Organic molecular semiconductors are solution processable, enabling the growth of large-area single-crystal semiconductors. Improving the performance of organic semiconductor devices by increasing the charge mobility is an ongoing quest, which calls for novel molecular and material design, and improved processing conditions. Here we show a method to increase the charge mobility in organic single-crystal field-effect transistors, by taking advantage of the inherent softness of organic semiconductors. We compress the crystal lattice uniaxially by bending the flexible devices, leading to an improved charge transport. The mobility increases from 9.7 to 16.5 cm(2) V(-1) s(-1) by 70% under 3% strain. In-depth analysis indicates that compressing the crystal structure directly restricts the vibration of the molecules, thus suppresses dynamic disorder, a unique mechanism in organic semiconductors. Since strain can be easily induced during the fabrication process, we expect our method to be exploited to build high-performance organic devices.

  12. Validity of the Einstein Relation in Disordered Organic Semiconductors

    NARCIS (Netherlands)

    Wetzelaer, G. A. H.; Koster, L. J. A.; Blom, P. W. M.

    2011-01-01

    It is controversial whether energetic disorder in semiconductors is already sufficient to violate the classical Einstein relation, even in the case of thermal equilibrium. We demonstrate that the Einstein relation is violated only under nonequilibrium conditions due to deeply trapped carriers, as in

  13. Organic semiconductor crystals.

    Science.gov (United States)

    Wang, Chengliang; Dong, Huanli; Jiang, Lang; Hu, Wenping

    2018-01-22

    Organic semiconductors have attracted a lot of attention since the discovery of highly doped conductive polymers, due to the potential application in field-effect transistors (OFETs), light-emitting diodes (OLEDs) and photovoltaic cells (OPVs). Single crystals of organic semiconductors are particularly intriguing because they are free of grain boundaries and have long-range periodic order as well as minimal traps and defects. Hence, organic semiconductor crystals provide a powerful tool for revealing the intrinsic properties, examining the structure-property relationships, demonstrating the important factors for high performance devices and uncovering fundamental physics in organic semiconductors. This review provides a comprehensive overview of the molecular packing, morphology and charge transport features of organic semiconductor crystals, the control of crystallization for achieving high quality crystals and the device physics in the three main applications. We hope that this comprehensive summary can give a clear picture of the state-of-art status and guide future work in this area.

  14. Two-Dimensional Charge Transport in Disordered Organic Semiconductors

    NARCIS (Netherlands)

    Brondijk, J. J.; Roelofs, W. S. C.; Mathijssen, S. G. J.; Shehu, A.; Cramer, T.; Biscarini, F.; Blom, P. W. M.; de Leeuw, D. M.

    2012-01-01

    We analyze the effect of carrier confinement on the charge-transport properties of organic field-effect transistors. Confinement is achieved experimentally by the use of semiconductors of which the active layer is only one molecule thick. The two-dimensional confinement of charge carriers provides

  15. Charge carrier coherence and Hall effect in organic semiconductors

    Science.gov (United States)

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-01-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor. PMID:27025354

  16. Charge carrier coherence and Hall effect in organic semiconductors.

    Science.gov (United States)

    Yi, H T; Gartstein, Y N; Podzorov, V

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.

  17. Effect of Structure and Disorder on the Charge Transport in Defined Self-Assembled Monolayers of Organic Semiconductors.

    Science.gov (United States)

    Schmaltz, Thomas; Gothe, Bastian; Krause, Andreas; Leitherer, Susanne; Steinrück, Hans-Georg; Thoss, Michael; Clark, Timothy; Halik, Marcus

    2017-09-26

    Self-assembled monolayer field-effect transistors (SAMFETs) are not only a promising type of organic electronic device but also allow detailed analyses of structure-property correlations. The influence of the morphology on the charge transport is particularly pronounced, due to the confined monolayer of 2D-π-stacked organic semiconductor molecules. The morphology, in turn, is governed by relatively weak van-der-Waals interactions and is thus prone to dynamic structural fluctuations. Accordingly, combining electronic and physical characterization and time-averaged X-ray analyses with the dynamic information available at atomic resolution from simulations allows us to characterize self-assembled monolayer (SAM) based devices in great detail. For this purpose, we have constructed transistors based on SAMs of two molecules that consist of the organic p-type semiconductor benzothieno[3,2-b][1]benzothiophene (BTBT), linked to a C 11 or C 12 alkylphosphonic acid. Both molecules form ordered SAMs; however, our experiments show that the size of the crystalline domains and the charge-transport properties vary considerably in the two systems. These findings were confirmed by molecular dynamics (MD) simulations and semiempirical molecular-orbital electronic-structure calculations, performed on snapshots from the MD simulations at different times, revealing, in atomistic detail, how the charge transport in organic semiconductors is influenced and limited by dynamic disorder.

  18. Thiophene-Based Organic Semiconductors.

    Science.gov (United States)

    Turkoglu, Gulsen; Cinar, M Emin; Ozturk, Turan

    2017-10-24

    Thiophene-based π-conjugated organic small molecules and polymers are the research subject of significant current interest owing to their potential use as organic semiconductors in material chemistry. Despite simple and similar molecular structures, the hitherto reported properties of thiophene-based organic semiconductors are rather diverse. Design of high performance organic semiconducting materials requires a thorough understanding of inter- and intra-molecular interactions, solid-state packing, and the influence of both factors on the charge carrier transport. In this chapter, thiophene-based organic semiconductors, which are classified in terms of their chemical structures and their structure-property relationships, are addressed for the potential applications as organic photovoltaics (OPVs), organic field-effect transistors (OFETs) and organic light emitting diodes (OLEDs).

  19. Organic Spin-Valves and Beyond: Spin Injection and Transport in Organic Semiconductors and the Effect of Interfacial Engineering.

    Science.gov (United States)

    Jang, Hyuk-Jae; Richter, Curt A

    2017-01-01

    Since the first observation of the spin-valve effect through organic semiconductors, efforts to realize novel spintronic technologies based on organic semiconductors have been rapidly growing. However, a complete understanding of spin-polarized carrier injection and transport in organic semiconductors is still lacking and under debate. For example, there is still no clear understanding of major spin-flip mechanisms in organic semiconductors and the role of hybrid metal-organic interfaces in spin injection. Recent findings suggest that organic single crystals can provide spin-transport media with much less structural disorder relative to organic thin films, thus reducing momentum scattering. Additionally, modification of the band energetics, morphology, and even spin magnetic moment at the metal-organic interface by interface engineering can greatly impact the efficiency of spin-polarized carrier injection. Here, progress on efficient spin-polarized carrier injection into organic semiconductors from ferromagnetic metals by using various interface engineering techniques is presented, such as inserting a metallic interlayer, a molecular self-assembled monolayer (SAM), and a ballistic carrier emitter. In addition, efforts to realize long spin transport in single-crystalline organic semiconductors are discussed. The focus here is on understanding and maximizing spin-polarized carrier injection and transport in organic semiconductors and insight is provided for the realization of emerging organic spintronics technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Charge transport in organic semiconductors.

    Science.gov (United States)

    Bässler, Heinz; Köhler, Anna

    2012-01-01

    Modern optoelectronic devices, such as light-emitting diodes, field-effect transistors and organic solar cells require well controlled motion of charges for their efficient operation. The understanding of the processes that determine charge transport is therefore of paramount importance for designing materials with improved structure-property relationships. Before discussing different regimes of charge transport in organic semiconductors, we present a brief introduction into the conceptual framework in which we interpret the relevant photophysical processes. That is, we compare a molecular picture of electronic excitations against the Su-Schrieffer-Heeger semiconductor band model. After a brief description of experimental techniques needed to measure charge mobilities, we then elaborate on the parameters controlling charge transport in technologically relevant materials. Thus, we consider the influences of electronic coupling between molecular units, disorder, polaronic effects and space charge. A particular focus is given to the recent progress made in understanding charge transport on short time scales and short length scales. The mechanism for charge injection is briefly addressed towards the end of this chapter.

  1. Centro-Apical Self-Organization of Organic Semiconductors in a Line-Printed Organic Semiconductor: Polymer Blend for One-Step Printing Fabrication of Organic Field-Effect Transistors.

    Science.gov (United States)

    Lee, Su Jin; Kim, Yong-Jae; Yeo, So Young; Lee, Eunji; Lim, Ho Sun; Kim, Min; Song, Yong-Won; Cho, Jinhan; Lim, Jung Ah

    2015-09-11

    Here we report the first demonstration for centro-apical self-organization of organic semiconductors in a line-printed organic semiconductor: polymer blend. Key feature of this work is that organic semiconductor molecules were vertically segregated on top of the polymer phase and simultaneously crystallized at the center of the printed line pattern after solvent evaporation without an additive process. The thickness and width of the centro-apically segregated organic semiconductor crystalline stripe in the printed blend pattern were controlled by varying the relative content of the organic semiconductors, printing speed, and solution concentrations. The centro-apical self-organization of organic semiconductor molecules in a printed polymer blend may be attributed to the combination of an energetically favorable vertical phase-separation and hydrodynamic fluids inside the droplet during solvent evaporation. Finally, a centro-apically phase-separated bilayer structure of organic semiconductor: polymer blend was successfully demonstrated as a facile method to form the semiconductor and dielectric layer for OFETs in one- step.

  2. Thermoelectric transport properties of high mobility organic semiconductors

    Science.gov (United States)

    Venkateshvaran, Deepak; Broch, Katharina; Warwick, Chris N.; Sirringhaus, Henning

    2016-09-01

    Transport in organic semiconductors has traditionally been investigated using measurements of the temperature and gate voltage dependent mobility of charge carriers within the channel of organic field-effect transistors (OFETs). In such measurements, the behavior of charge carrier mobility with temperature and gate voltage, studied together with carrier activation energies, provide a metric to quantify the extent of disorder within these van der Waals bonded materials. In addition to the mobility and activation energy, another potent but often-overlooked transport coefficient useful in understanding disorder is the Seebeck coefficient (also known as thermoelectric power). Fundamentally, the Seebeck coefficient represents the entropy per charge carrier in the solid state, and thus proves powerful in distinguishing materials in which charge carriers move freely from those where a high degree of disorder causes the induced carriers to remain trapped. This paper briefly covers the recent highlights in the field of organic thermoelectrics, showing how significant strides have been made both from an applied standpoint as well as from a viewpoint of fundamental thermoelectric transport physics. It shall be illustrated how thermoelectric transport parameters in organic semiconductors can be tuned over a significant range, and how this tunability facilitates an enhanced performance for heat-to-electricity conversion as well as quantifies energetic disorder and the nature of the density of states (DOS). The work of the authors shall be spotlighted in this context, illustrating how Seebeck coefficient measurements in the polymer indacenodithiophene-co-benzothiadiazole (IDTBT) known for its ultra-low degree of torsion within the polymer backbone, has a trend consistent with low disorder. 1 Finally, using examples of the small molecules C8-BTBT and C10-DNTT, it shall be discussed how the Seebeck coefficient can aid the estimation of the density and distribution of trap states

  3. Thiazole-based organic semiconductors for organic electronics.

    Science.gov (United States)

    Lin, Yuze; Fan, Haijun; Li, Yongfang; Zhan, Xiaowei

    2012-06-19

    Over the past two decades, organic semiconductors have been the subject of intensive academic and commercial interests. Thiazole is a common electron-accepting heterocycle due to electron-withdrawing nitrogen of imine (C=N), several moieties based on thiazole have been widely introduced into organic semiconductors, and yielded high performance in organic electronic devices. This article reviews recent developments in the area of thiazole-based organic semiconductors, particularly thiazole, bithiazole, thiazolothiazole and benzobisthiazole-based small molecules and polymers, for applications in organic field-effect transistors, solar cells and light-emitting diodes. The remaining problems and challenges, and the key research direction in near future are discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Organic semiconductors for organic field-effect transistors

    International Nuclear Information System (INIS)

    Yamashita, Yoshiro

    2009-01-01

    The advantages of organic field-effect transistors (OFETs), such as low cost, flexibility and large-area fabrication, have recently attracted much attention due to their electronic applications. Practical transistors require high mobility, large on/off ratio, low threshold voltage and high stability. Development of new organic semiconductors is key to achieving these parameters. Recently, organic semiconductors have been synthesized showing comparable mobilities to amorphous-silicon-based FETs. These materials make OFETs more attractive and their applications have been attempted. New organic semiconductors resulting in high-performance FET devices are described here and the relationship between transistor characteristics and chemical structure is discussed. (topical review)

  5. Organic semiconductors for organic field-effect transistors

    Directory of Open Access Journals (Sweden)

    Yoshiro Yamashita

    2009-01-01

    Full Text Available The advantages of organic field-effect transistors (OFETs, such as low cost, flexibility and large-area fabrication, have recently attracted much attention due to their electronic applications. Practical transistors require high mobility, large on/off ratio, low threshold voltage and high stability. Development of new organic semiconductors is key to achieving these parameters. Recently, organic semiconductors have been synthesized showing comparable mobilities to amorphous-silicon-based FETs. These materials make OFETs more attractive and their applications have been attempted. New organic semiconductors resulting in high-performance FET devices are described here and the relationship between transistor characteristics and chemical structure is discussed.

  6. Range and energetics of charge hopping in organic semiconductors

    Science.gov (United States)

    Abdalla, Hassan; Zuo, Guangzheng; Kemerink, Martijn

    2017-12-01

    The recent upswing in attention for the thermoelectric properties of organic semiconductors (OSCs) adds urgency to the need for a quantitative description of the range and energetics of hopping transport in organic semiconductors under relevant circumstances, i.e., around room temperature (RT). In particular, the degree to which hops beyond the nearest neighbor must be accounted for at RT is still largely unknown. Here, measurements of charge and energy transport in doped OSCs are combined with analytical modeling to reach the univocal conclusion that variable-range hopping is the proper description in a large class of disordered OSC at RT. To obtain quantitative agreement with experiment, one needs to account for the modification of the density of states by ionized dopants. These Coulomb interactions give rise to a deep tail of trap states that is independent of the material's initial energetic disorder. Insertion of this effect into a classical Mott-type variable-range hopping model allows one to give a quantitative description of temperature-dependent conductivity and thermopower measurements on a wide range of disordered OSCs. In particular, the model explains the commonly observed quasiuniversal power-law relation between the Seebeck coefficient and the conductivity.

  7. Organic semiconductors in a spin

    CERN Document Server

    Samuel, I

    2002-01-01

    A little palladium can go a long way in polymer-based light-emitting diodes. Inorganic semiconductors such as silicon and gallium arsenide are essential for countless applications in everyday life, ranging from PCs to CD players. However, while they offer unrivalled computational speed, inorganic semiconductors are also rigid and brittle, which means that they are less suited to applications such as displays and flexible electronics. A completely different class of materials - organic semiconductors - are being developed for these applications. Organic semiconductors have many attractive features: they are easy to make, they can emit visible light, and there is tremendous scope for tailoring their properties to specific applications by changing their chemical structure. Research groups and companies around the world have developed a wide range of organic-semiconductor devices, including transistors, light-emitting diodes (LEDs), solar cells and lasers. (U.K.)

  8. Disorder effect on carrier mobility in Fullerene organic semiconductor

    International Nuclear Information System (INIS)

    Mendil, N; Daoudi, M; Berkai, Z; Belghachi, A

    2015-01-01

    The critical factor that limits the efficiencies of organic electronic devices is the low charge carrier mobility which is attributed to disorder in organic films. In this context, we have studied the effects of disorder on carrier mobility in organic Schottky diode of electrons for the fullerene (C 60 ). Our results show that the mobility is sensitive probes of structural phase transitions and order-disorder underlying C 60 . Where it is one reason behind the low mobility which it take as value 1.4x10 -2 cm 2 /V.s above critical temperature Tc =289K. (paper)

  9. Triplet exciton diffusion in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Anna [Department of Physics, University of Bayreuth (Germany)

    2010-07-01

    Efficient triplet exciton emission has allowed improved operation of organic light-emitting diodes (LEDs). To enhance the device performance, it is necessary to understand what governs the motion of triplet excitons through the organic semiconductor. We use a series of poly(p-phenylene)-type conjugated polymers and oligomers of variable degree of molecular distortion (i.e. polaron formation) and energetic disorder as model systems to study the Dexter-type triplet exciton diffusion in thin films. We show that triplet diffusion can be quantitatively described in the framework of a Holstein small polaron model (Marcus theory) that is extended to include contributions from energetic disorder. The model predicts a tunnelling process at low temperatures followed by a thermally activated hopping process above a transition temperature. In contrast to charge transfer, the activation energy required for triplet exciton transfer can be deduced from the optical spectra. We discuss the implications for device architecture.

  10. Doping of organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Luessem, B.; Riede, M.; Leo, K. [Institut fuer Angewandte Photophysik, TU Dresden (Germany)

    2013-01-15

    The understanding and applications of organic semiconductors have shown remarkable progress in recent years. This material class has been developed from being a lab curiosity to the basis of first successful products as small organic LED (OLED) displays; other areas of application such as OLED lighting and organic photovoltaics are on the verge of broad commercialization. Organic semiconductors are superior to inorganic ones for low-cost and large-area optoelectronics due to their flexibility, easy deposition, and broad variety, making tailor-made materials possible. However, electrical doping of organic semiconductors, i.e. the controlled adjustment of Fermi level that has been extremely important to the success of inorganic semiconductors, is still in its infancy. This review will discuss recent work on both fundamental principles and applications of doping, focused primarily to doping of evaporated organic layers with molecular dopants. Recently, both p- and n-type molecular dopants have been developed that lead to efficient and stable doping of organic thin films. Due to doping, the conductivity of the doped layers increases several orders of magnitude and allows for quasi-Ohmic contacts between organic layers and metal electrodes. Besides reducing voltage losses, doping thus also gives design freedom in terms of transport layer thickness and electrode choice. The use of doping in applications like OLEDs and organic solar cells is highlighted in this review. Overall, controlled molecular doping can be considered as key enabling technology for many different organic device types that can lead to significant improvements in efficiencies and lifetimes. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Doping of organic semiconductors

    International Nuclear Information System (INIS)

    Luessem, B.; Riede, M.; Leo, K.

    2013-01-01

    The understanding and applications of organic semiconductors have shown remarkable progress in recent years. This material class has been developed from being a lab curiosity to the basis of first successful products as small organic LED (OLED) displays; other areas of application such as OLED lighting and organic photovoltaics are on the verge of broad commercialization. Organic semiconductors are superior to inorganic ones for low-cost and large-area optoelectronics due to their flexibility, easy deposition, and broad variety, making tailor-made materials possible. However, electrical doping of organic semiconductors, i.e. the controlled adjustment of Fermi level that has been extremely important to the success of inorganic semiconductors, is still in its infancy. This review will discuss recent work on both fundamental principles and applications of doping, focused primarily to doping of evaporated organic layers with molecular dopants. Recently, both p- and n-type molecular dopants have been developed that lead to efficient and stable doping of organic thin films. Due to doping, the conductivity of the doped layers increases several orders of magnitude and allows for quasi-Ohmic contacts between organic layers and metal electrodes. Besides reducing voltage losses, doping thus also gives design freedom in terms of transport layer thickness and electrode choice. The use of doping in applications like OLEDs and organic solar cells is highlighted in this review. Overall, controlled molecular doping can be considered as key enabling technology for many different organic device types that can lead to significant improvements in efficiencies and lifetimes. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Microscopic modeling of photoluminescence of strongly disordered semiconductors

    International Nuclear Information System (INIS)

    Bozsoki, P.; Kira, M.; Hoyer, W.; Meier, T.; Varga, I.; Thomas, P.; Koch, S.W.

    2007-01-01

    A microscopic theory for the luminescence of ordered semiconductors is modified to describe photoluminescence of strongly disordered semiconductors. The approach includes both diagonal disorder and the many-body Coulomb interaction. As a case study, the light emission of a correlated plasma is investigated numerically for a one-dimensional two-band tight-binding model. The band structure of the underlying ordered system is assumed to correspond to either a direct or an indirect semiconductor. In particular, luminescence and absorption spectra are computed for various levels of disorder and sample temperature to determine thermodynamic relations, the Stokes shift, and the radiative lifetime distribution

  13. High mobility emissive organic semiconductor

    Science.gov (United States)

    Liu, Jie; Zhang, Hantang; Dong, Huanli; Meng, Lingqiang; Jiang, Longfeng; Jiang, Lang; Wang, Ying; Yu, Junsheng; Sun, Yanming; Hu, Wenping; Heeger, Alan J.

    2015-01-01

    The integration of high charge carrier mobility and high luminescence in an organic semiconductor is challenging. However, there is need of such materials for organic light-emitting transistors and organic electrically pumped lasers. Here we show a novel organic semiconductor, 2,6-diphenylanthracene (DPA), which exhibits not only high emission with single crystal absolute florescence quantum yield of 41.2% but also high charge carrier mobility with single crystal mobility of 34 cm2 V−1 s−1. Organic light-emitting diodes (OLEDs) based on DPA give pure blue emission with brightness up to 6,627 cd m−2 and turn-on voltage of 2.8 V. 2,6-Diphenylanthracene OLED arrays are successfully driven by DPA field-effect transistor arrays, demonstrating that DPA is a high mobility emissive organic semiconductor with potential in organic optoelectronics. PMID:26620323

  14. Thienoacene-based organic semiconductors.

    Science.gov (United States)

    Takimiya, Kazuo; Shinamura, Shoji; Osaka, Itaru; Miyazaki, Eigo

    2011-10-11

    Thienoacenes consist of fused thiophene rings in a ladder-type molecular structure and have been intensively studied as potential organic semiconductors for organic field-effect transistors (OFETs) in the last decade. They are reviewed here. Despite their simple and similar molecular structures, the hitherto reported properties of thienoacene-based OFETs are rather diverse. This Review focuses on four classes of thienoacenes, which are classified in terms of their chemical structures, and elucidates the molecular electronic structure of each class. The packing structures of thienoacenes and the thus-estimated solid-state electronic structures are correlated to their carrier transport properties in OFET devices. With this perspective of the molecular structures of thienoacenes and their carrier transport properties in OFET devices, the structure-property relationships in thienoacene-based organic semiconductors are discussed. The discussion provides insight into new molecular design strategies for the development of superior organic semiconductors. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Quantitative Determination of Organic Semiconductor Microstructure from the Molecular to Device Scale

    KAUST Repository

    Rivnay, Jonathan

    2012-10-10

    A study was conducted to demonstrate quantitative determination of organic semiconductor microstructure from the molecular to device scale. The quantitative determination of organic semiconductor microstructure from the molecular to device scale was key to obtaining precise description of the molecular structure and microstructure of the materials of interest. This information combined with electrical characterization and modeling allowed for the establishment of general design rules to guide future rational design of materials and devices. Investigations revealed that a number and variety of defects were the largest contributors to the existence of disorder within a lattice, as organic semiconductor crystals were dominated by weak van der Waals bonding. Crystallite size, texture, and variations in structure due to spatial confinement and interfaces were also found to be relevant for transport of free charge carriers and bound excitonic species over distances that were important for device operation.

  16. The Electrical Characteristics of The N-Organic Semiconductor/P-Inorganic Semiconductor Diode

    International Nuclear Information System (INIS)

    Aydin, M. E.

    2008-01-01

    n-organic semiconductor (PEDOT) / p-inorganic semiconductor Si diode was formed by deep coating method. The method has been achieved by coating n-inorganic semiconductor PEDOT on top of p-inorganic semiconductor. The n-organic semiconductor PEDOT/ p-inorganic semiconductor diode demonstrated rectifying behavior by the current-voltage (I-V) curves studied at room temperature. The barrier height , ideality factor values were obtained as of 0.88 eV and 1.95 respectively. The diode showed non-ideal I-V behavior with an ideality factor greater than unity that could be ascribed to the interfacial layer

  17. Architectures for Improved Organic Semiconductor Devices

    Science.gov (United States)

    Beck, Jonathan H.

    Advancements in the microelectronics industry have brought increasing performance and decreasing prices to a wide range of users. Conventional silicon-based electronics have followed Moore's law to provide an ever-increasing integrated circuit transistor density, which drives processing power, solid-state memory density, and sensor technologies. As shrinking conventional integrated circuits became more challenging, researchers began exploring electronics with the potential to penetrate new applications with a low price of entry: "Electronics everywhere." The new generation of electronics is thin, light, flexible, and inexpensive. Organic electronics are part of the new generation of thin-film electronics, relying on the synthetic flexibility of carbon molecules to create organic semiconductors, absorbers, and emitters which perform useful tasks. Organic electronics can be fabricated with low energy input on a variety of novel substrates, including inexpensive plastic sheets. The potential ease of synthesis and fabrication of organic-based devices means that organic electronics can be made at very low cost. Successfully demonstrated organic semiconductor devices include photovoltaics, photodetectors, transistors, and light emitting diodes. Several challenges that face organic semiconductor devices are low performance relative to conventional devices, long-term device stability, and development of new organic-compatible processes and materials. While the absorption and emission performance of organic materials in photovoltaics and light emitting diodes is extraordinarily high for thin films, the charge conduction mobilities are generally low. Building highly efficient devices with low-mobility materials is one challenge. Many organic semiconductor films are unstable during fabrication, storage, and operation due to reactions with water, oxygen and hydroxide. A final challenge facing organic electronics is the need for new processes and materials for electrodes

  18. Elementary steps in electrical doping of organic semiconductors

    KAUST Repository

    Tietze, Max Lutz

    2018-03-15

    Fermi level control by doping is established since decades in inorganic semiconductors and has been successfully introduced in organic semiconductors. Despite its commercial success in the multi-billion OLED display business, molecular doping is little understood, with its elementary steps controversially discussed and mostly-empirical-materials design. Particularly puzzling is the efficient carrier release, despite a presumably large Coulomb barrier. Here we quantitatively investigate doping as a two-step process, involving single-electron transfer from donor to acceptor molecules and subsequent dissociation of the ground-state integer-charge transfer complex (ICTC). We show that carrier release by ICTC dissociation has an activation energy of only a few tens of meV, despite a Coulomb binding of several 100 meV. We resolve this discrepancy by taking energetic disorder into account. The overall doping process is explained by an extended semiconductor model in which occupation of ICTCs causes the classically known reserve regime at device-relevant doping concentrations.

  19. Simulation of charge transport in organic semiconductors: A time-dependent multiscale method based on nonequilibrium Green's functions

    DEFF Research Database (Denmark)

    Leitherer, Susanne; Jager, C. M.; Krause, A.

    2017-01-01

    In weakly interacting organic semiconductors, static disorder and dynamic disorder often have an important impact on transport properties. Describing charge transport in these systems requires an approach that correctly takes structural and electronic fluctuations into account. Here, we present...... are used in organic field-effect transistors....

  20. Strain effects on the work function of an organic semiconductor

    KAUST Repository

    Wu, Yanfei

    2016-02-01

    Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ~0.05% tensile strain along the rubrene π-stacking direction. The results provide the first concrete link between mechanical strain and WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder in soft organic electronic materials.

  1. Strain effects on the work function of an organic semiconductor

    Science.gov (United States)

    Wu, Yanfei; Chew, Annabel R.; Rojas, Geoffrey A.; Sini, Gjergji; Haugstad, Greg; Belianinov, Alex; Kalinin, Sergei V.; Li, Hong; Risko, Chad; Brédas, Jean-Luc; Salleo, Alberto; Frisbie, C. Daniel

    2016-01-01

    Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ∼0.05% tensile strain along the rubrene π-stacking direction. The results provide the first concrete link between mechanical strain and WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder in soft organic electronic materials. PMID:26831362

  2. Organic Donor-Acceptor Complexes as Novel Organic Semiconductors.

    Science.gov (United States)

    Zhang, Jing; Xu, Wei; Sheng, Peng; Zhao, Guangyao; Zhu, Daoben

    2017-07-18

    Organic donor-acceptor (DA) complexes have attracted wide attention in recent decades, resulting in the rapid development of organic binary system electronics. The design and synthesis of organic DA complexes with a variety of component structures have mainly focused on metallicity (or even superconductivity), emission, or ferroelectricity studies. Further efforts have been made in high-performance electronic investigations. The chemical versatility of organic semiconductors provides DA complexes with a great number of possibilities for semiconducting applications. Organic DA complexes extend the semiconductor family and promote charge separation and transport in organic field-effect transistors (OFETs) and organic photovoltaics (OPVs). In OFETs, the organic complex serves as an active layer across extraordinary charge pathways, ensuring the efficient transport of induced charges. Although an increasing number of organic semiconductors have been reported to exhibit good p- or n-type properties (mobilities higher than 1 or even 10 cm 2 V -1 s -1 ), critical scientific challenges remain in utilizing the advantages of existing semiconductor materials for more and wider applications while maintaining less complicated synthetic or device fabrication processes. DA complex materials have revealed new insight: their unique molecular packing and structure-property relationships. The combination of donors and acceptors could offer practical advantages compared with their unimolecular materials. First, growing crystals of DA complexes with densely packed structures will reduce impurities and traps from the self-assembly process. Second, complexes based on the original structural components could form superior mixture stacking, which can facilitate charge transport depending on the driving force in the coassembly process. Third, the effective use of organic semiconductors can lead to tunable band structures, allowing the operation mode (p- or n-type) of the transistor to be

  3. Molecular fingerprints in the electronic properties of crystalline organic semiconductors

    DEFF Research Database (Denmark)

    Ciuchi, S.; Hatch, R.C.; Höchst, H.

    2012-01-01

    bands can be achieved in organic semiconductors provided that one properly accounts for the coupling to molecular vibrational modes and the presence of disorder. Our findings rationalize the growing experimental evidence that even the best band structure theories based on a many-body treatment...... of electronic interactions cannot reproduce the experimental photoemission data in this important class of materials....

  4. Organic semiconductor heterojunctions and its application in organic light-emitting diodes

    CERN Document Server

    Ma, Dongge

    2017-01-01

    This book systematically introduces the most important aspects of organic semiconductor heterojunctions, including the basic concepts and electrical properties. It comprehensively discusses the application of organic semiconductor heterojunctions as charge injectors and charge generation layers in organic light-emitting diodes (OLEDs). Semiconductor heterojunctions are the basis for constructing high-performance optoelectronic devices. In recent decades, organic semiconductors have been increasingly used to fabricate heterojunction devices, especially in OLEDs, and the subject has attracted a great deal of attention and evoked many new phenomena and interpretations in the field. This important application is based on the low dielectric constant of organic semiconductors and the weak non-covalent electronic interactions between them, which means that they easily form accumulation heterojunctions. As we know, the accumulation-type space charge region is highly conductive, which is an important property for high...

  5. Organic semiconductor growth and morphology considerations for organic thin-film transistors.

    Science.gov (United States)

    Virkar, Ajay A; Mannsfeld, Stefan; Bao, Zhenan; Stingelin, Natalie

    2010-09-08

    Analogous to conventional inorganic semiconductors, the performance of organic semiconductors is directly related to their molecular packing, crystallinity, growth mode, and purity. In order to achieve the best possible performance, it is critical to understand how organic semiconductors nucleate and grow. Clever use of surface and dielectric modification chemistry can allow one to control the growth and morphology, which greatly influence the electrical properties of the organic transistor. In this Review, the nucleation and growth of organic semiconductors on dielectric surfaces is addressed. The first part of the Review concentrates on small-molecule organic semiconductors. The role of deposition conditions on film formation is described. The modification of the dielectric interface using polymers or self-assembled mono-layers and their effect on organic-semiconductor growth and performance is also discussed. The goal of this Review is primarily to discuss the thin-film formation of organic semiconducting species. The patterning of single crystals is discussed, while their nucleation and growth has been described elsewhere (see the Review by Liu et. al).([¹]) The second part of the Review focuses on polymeric semiconductors. The dependence of physico-chemical properties, such as chain length (i.e., molecular weight) of the constituting macromolecule, and the influence of small molecular species on, e.g., melting temperature, as well as routes to induce order in such macromolecules, are described.

  6. Study of interfaces in organic semiconductor heterojunctions

    International Nuclear Information System (INIS)

    Maheshwari, P; Dutta, D; Sudarshan, K; Sharma, S K; Pujari, P K; Samanta, S; Singh, A; Aswal, D K

    2011-01-01

    The defect structure at the organic heterojunctions is studied using slow positron beam. The structural and electronic properties of heterojunctions are of technological and fundamental importance for understanding and optimization of electronic processes in organic devices. Interface trap centres play a significant role in the electrical conduction through the junctions. Depth dependent Doppler broadened annihilation measurements have been carried out in p- and n-type organic semiconductor thin films (30-80 nm) both single as well as multilayers grown on quartz substrate. The objective of the present study is to investigate the defect structure and to understand the behavior of positrons at the charged organic interfaces. Our result shows the sensitivity of positrons to the interfacial disorders that may be a convoluted effect of the presence of defects as well as the influence of the charge dipole in multilayers.

  7. Organic semiconductors in sensor applications

    CERN Document Server

    Malliaras, George; Owens, Róisín

    2008-01-01

    Organic semiconductors offer unique characteristics such as tunability of electronic properties via chemical synthesis, compatibility with mechanically flexible substrates, low-cost manufacturing, and facile integration with chemical and biological functionalities. These characteristics have prompted the application of organic semiconductors and their devices in physical, chemical, and biological sensors. This book covers this rapidly emerging field by discussing both optical and electrical sensor concepts. Novel transducers based on organic light-emitting diodes and organic thin-film transistors, as well as systems-on-a-chip architectures are presented. Functionalization techniques to enhance specificity are outlined, and models for the sensor response are described.

  8. Inkjet-Printed Organic Transistors Based on Organic Semiconductor/Insulating Polymer Blends.

    Science.gov (United States)

    Kwon, Yoon-Jung; Park, Yeong Don; Lee, Wi Hyoung

    2016-08-02

    Recent advances in inkjet-printed organic field-effect transistors (OFETs) based on organic semiconductor/insulating polymer blends are reviewed in this article. Organic semiconductor/insulating polymer blends are attractive ink candidates for enhancing the jetting properties, inducing uniform film morphologies, and/or controlling crystallization behaviors of organic semiconductors. Representative studies using soluble acene/insulating polymer blends as an inkjet-printed active layer in OFETs are introduced with special attention paid to the phase separation characteristics of such blended films. In addition, inkjet-printed semiconducting/insulating polymer blends for fabricating high performance printed OFETs are reviewed.

  9. Inkjet-Printed Organic Transistors Based on Organic Semiconductor/Insulating Polymer Blends

    Science.gov (United States)

    Kwon, Yoon-Jung; Park, Yeong Don; Lee, Wi Hyoung

    2016-01-01

    Recent advances in inkjet-printed organic field-effect transistors (OFETs) based on organic semiconductor/insulating polymer blends are reviewed in this article. Organic semiconductor/insulating polymer blends are attractive ink candidates for enhancing the jetting properties, inducing uniform film morphologies, and/or controlling crystallization behaviors of organic semiconductors. Representative studies using soluble acene/insulating polymer blends as an inkjet-printed active layer in OFETs are introduced with special attention paid to the phase separation characteristics of such blended films. In addition, inkjet-printed semiconducting/insulating polymer blends for fabricating high performance printed OFETs are reviewed. PMID:28773772

  10. The pursuit of electrically-driven organic semiconductor lasers

    NARCIS (Netherlands)

    Bisri, Satria Zulkarnaen; Takenobu, Taishi; Iwasa, Yoshihiro

    2014-01-01

    Organic semiconductors have many favourable and plastic-like optical properties that are promising for the development of low energy consuming laser devices. Although optically-pumped organic semiconductor lasers have been demonstrated since the early days of lasers, electrically-driven organic

  11. The WSPC Reference on Organic Electronics: Organic Semiconductors

    KAUST Repository

    Bredas, Jean-Luc; Marder, Seth R

    2015-01-01

    In this chapter, we provide a basic theoretical perspective on charge-carrier transport in organic semiconductors, with a focus on organic molecular crystals. We introduce the microscopic parameters relevant to the intrinsic charge

  12. Magnetic field effects in organic semiconductors : theory and simulations

    NARCIS (Netherlands)

    Kersten, S.P.

    2013-01-01

    Organic semiconductors are a promising class of materials, offering several advantages over inorganic semiconductors. They are light, flexible, easy and cheap to produce, and easily chemically tunable. Organic semiconductors are currently used for lighting applications and in the displays of some

  13. Wannier-Frenkel hybrid exciton in organic-semiconductor quantum dot heterostructures

    International Nuclear Information System (INIS)

    Birman, Joseph L.; Huong, Nguyen Que

    2007-01-01

    The formation of a hybridization state of Wannier Mott exciton and Frenkel exciton in different hetero-structure configurations involving quantum dots is investigated. The hybrid excitons exist at the interfaces of the semiconductors quantum dots and the organic medium, having unique properties and a large optical non-linearity. The coupling at resonance is very strong and tunable by changing the parameters of the systems (dot radius, dot-dot distance, generation of the organic dendrites and the materials of the system etc...). Different semiconductor quantum dot-organic material combination systems have been considered such as a semiconductor quantum dot lattice embedded in an organic host, a semiconductor quantum dot at the center of an organic dendrite, a semiconductor quantum dot coated by an organic shell

  14. Progress of pyrene-based organic semiconductor in organic field effect transistors

    Institute of Scientific and Technical Information of China (English)

    Yanbin; Gong; Xuejun; Zhan; Qianqian; Li; Zhen; Li

    2016-01-01

    Thanks to the pure blue emitting, high planarity, electron rich and ease of chemical modification, pyrene has been thoroughly investigated for applications in organic electronics such as organic light emitting diodes(OLEDs), organic field effect transistors(OFETs), and organic solar cells(OSCs). Especially, great progresses have been made of pyrene-based organic semiconductors for OFETs in past decades. Due to the difference of molecular structure, pyrene-based organic semiconductors are divided into three categories, pyrene as terminal group, pyrene as center core and fused pyrene derivatives. This minireview gives a brief introduction of the structure-property relationship and application in OFETs about most of pyrene-based semiconducting materials since 2006,illustrating that pyrene is a good building block to construct semiconductors with superior transport property for OFETs. Finally, we provide a summary concerning the methodology to improve the transport property of the pyrene-based semiconducting materials as well as an outlook.

  15. Hybrid organic semiconductor lasers for bio-molecular sensing.

    Science.gov (United States)

    Haughey, Anne-Marie; Foucher, Caroline; Guilhabert, Benoit; Kanibolotsky, Alexander L; Skabara, Peter J; Burley, Glenn; Dawson, Martin D; Laurand, Nicolas

    2014-01-01

    Bio-functionalised luminescent organic semiconductors are attractive for biophotonics because they can act as efficient laser materials while simultaneously interacting with molecules. In this paper, we present and discuss a laser biosensor platform that utilises a gain layer made of such an organic semiconductor material. The simple structure of the sensor and its operation principle are described. Nanolayer detection is shown experimentally and analysed theoretically in order to assess the potential and the limits of the biosensor. The advantage conferred by the organic semiconductor is explained, and comparisons to laser sensors using alternative dye-doped materials are made. Specific biomolecular sensing is demonstrated, and routes to functionalisation with nucleic acid probes, and future developments opened up by this achievement, are highlighted. Finally, attractive formats for sensing applications are mentioned, as well as colloidal quantum dots, which in the future could be used in conjunction with organic semiconductors.

  16. Synchrotron radiation studies of inorganic-organic semiconductor interfaces

    International Nuclear Information System (INIS)

    Evans, D.A.; Steiner, H.J.; Vearey-Roberts, A.R.; Bushell, A.; Cabailh, G.; O'Brien, S.; Wells, J.W.; McGovern, I.T.; Dhanak, V.R.; Kampen, T.U.; Zahn, D.R.T.; Batchelor, D.

    2003-01-01

    Organic semiconductors (polymers and small molecules) are widely used in electronic and optoelectronic technologies. Many devices are based on multilayer structures where interfaces play a central role in device performance and where inorganic semiconductor models are inadequate. Synchrotron radiation techniques such as photoelectron spectroscopy (PES), near-edge X-ray absorption fine structure (NEXAFS) and X-ray standing wave spectroscopy (XSW) provide a powerful means of probing the structural, electronic and chemical properties of these interfaces. The surface-specificity of these techniques allows key properties to be monitored as the heterostructure is fabricated. This methodology has been directed at the growth of hybrid organic-inorganic semiconductor interfaces involving copper phthalocyanine as the model organic material and InSb and GaAs as the model inorganic semiconductor substrates. Core level PES has revealed that these interfaces are abrupt and chemically inert due to the weak bonding between the molecules and the inorganic semiconductor. NEXAFS studies have shown that there is a preferred orientation of the molecules within the organic semiconductor layers. The valence band offsets for the heterojunctions have been directly measured using valence level PES and were found to be very different for copper phthalocyanine on InSb and GaAs (0.7 and -0.3 eV respectively) although an interface dipole is present in both cases

  17. n-Type organic semiconductors in organic electronics.

    Science.gov (United States)

    Anthony, John E; Facchetti, Antonio; Heeney, Martin; Marder, Seth R; Zhan, Xiaowei

    2010-09-08

    Organic semiconductors have been the subject of intensive academic and commercial interest over the past two decades, and successful commercial devices incorporating them are slowly beginning to enter the market. Much of the focus has been on the development of hole transporting, or p-type, semiconductors that have seen a dramatic rise in performance over the last decade. Much less attention has been devoted to electron transporting, or so called n-type, materials, and in this paper we focus upon recent developments in several classes of n-type materials and the design guidelines used to develop them.

  18. New organic semiconductors with imide/amide-containing molecular systems.

    Science.gov (United States)

    Liu, Zitong; Zhang, Guanxin; Cai, Zhengxu; Chen, Xin; Luo, Hewei; Li, Yonghai; Wang, Jianguo; Zhang, Deqing

    2014-10-29

    Due to their high electron affinities, chemical and thermal stabilities, π-conjugated molecules with imide/amide frameworks have received considerable attentions as promising candidates for high-performance optoelectronic materials, particularly for organic semiconductors with high carrier mobilities. The purpose of this Research News is to give an overview of recent advances in development of high performance imide/amide based organic semiconductors for field-effect transistors. It covers naphthalene diimide-, perylene diimide- and amide-based conjugated molecules and polymers for organic semiconductors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The WSPC Reference on Organic Electronics: Organic Semiconductors

    KAUST Repository

    Bredas, Jean-Luc

    2015-05-12

    In this chapter, we provide a basic theoretical perspective on charge-carrier transport in organic semiconductors, with a focus on organic molecular crystals. We introduce the microscopic parameters relevant to the intrinsic charge-transport properties of these materials and describe some of the common quantum-chemical approaches used for their evaluation. We also discuss the nature of the possible charge-transport mechanisms in organic molecular crystals.

  20. Ultrafast dynamics and laser action of organic semiconductors

    CERN Document Server

    Vardeny, Zeev Valy

    2009-01-01

    Spurred on by extensive research in recent years, organic semiconductors are now used in an array of areas, such as organic light emitting diodes (OLEDs), photovoltaics, and other optoelectronics. In all of these novel applications, the photoexcitations in organic semiconductors play a vital role. Exploring the early stages of photoexcitations that follow photon absorption, Ultrafast Dynamics and Laser Action of Organic Semiconductors presents the latest research investigations on photoexcitation ultrafast dynamics and laser action in pi-conjugated polymer films, solutions, and microcavities.In the first few chapters, the book examines the interplay of charge (polarons) and neutral (excitons) photoexcitations in pi-conjugated polymers, oligomers, and molecular crystals in the time domain of 100 fs-2 ns. Summarizing the state of the art in lasing, the final chapters introduce the phenomenon of laser action in organics and cover the latest optoelectronic applications that use lasing based on a variety of caviti...

  1. Elementary steps in electrical doping of organic semiconductors

    KAUST Repository

    Tietze, Max Lutz; Benduhn, Johannes; Pahner, Paul; Nell, Bernhard; Schwarze, Martin; Kleemann, Hans; Krammer, Markus; Zojer, Karin; Vandewal, Koen; Leo, Karl

    2018-01-01

    Fermi level control by doping is established since decades in inorganic semiconductors and has been successfully introduced in organic semiconductors. Despite its commercial success in the multi-billion OLED display business, molecular doping

  2. Semiconductor Metal-Organic Frameworks: Future Low-Bandgap Materials.

    Science.gov (United States)

    Usman, Muhammad; Mendiratta, Shruti; Lu, Kuang-Lieh

    2017-02-01

    Metal-organic frameworks (MOFs) with low density, high porosity, and easy tunability of functionality and structural properties, represent potential candidates for use as semiconductor materials. The rapid development of the semiconductor industry and the continuous miniaturization of feature sizes of integrated circuits toward the nanometer (nm) scale require novel semiconductor materials instead of traditional materials like silicon, germanium, and gallium arsenide etc. MOFs with advantageous properties of both the inorganic and the organic components promise to serve as the next generation of semiconductor materials for the microelectronics industry with the potential to be extremely stable, cheap, and mechanically flexible. Here, a perspective of recent research is provided, regarding the semiconducting properties of MOFs, bandgap studies, and their potential in microelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Nanopatterned organic semiconductors for visible light communications

    Science.gov (United States)

    Yang, Xilu; Dong, Yurong; Zeng, Pan; Yu, Yan; Xie, Yujun; Gong, Junyi; Shi, Meng; Liang, Rongqing; Ou, Qiongrong; Chi, Nan; Zhang, Shuyu

    2018-03-01

    Visible light communication (VLC) is becoming an important and promising supplement to the existing Wi-Fi network for the coming 5G communications. Organic light-emitting semiconductors present much fast fluorescent decay rates compared to those of conventional colour-converting phosphors, therefore capable of achieving much higher bandwidths. Here we explore how nanopatterned organic semiconductors can further enhance the data rates of VLC links by improving bandwidths and signal-to-noise ratios (SNRs) and by supporting spatial multiplexing. We first demonstrate a colour-converting VLC system based on nanopatterned hyperbolic metamaterials (HMM), the bandwidth of which is enhanced by 50%. With regard to enhancing SNRs, we achieve a tripling of optical gain by integrating a nanopatterned luminescent concentrator to a signal receiver. In addition, we demonstrate highly directional fluorescent VLC antennas based on nanoimprinted polymer films, paving the way to achieving parallel VLC communications via spatialmultiplexing. These results indicate nanopatterned organic semiconductors provide a promising route to high speed VLC links.

  4. Highly Sensitive Flexible Pressure Sensors Based on Printed Organic Transistors with Centro-Apically Self-Organized Organic Semiconductor Microstructures.

    Science.gov (United States)

    Yeo, So Young; Park, Sangsik; Yi, Yeon Jin; Kim, Do Hwan; Lim, Jung Ah

    2017-12-13

    A highly sensitive pressure sensor based on printed organic transistors with three-dimensionally self-organized organic semiconductor microstructures (3D OSCs) was demonstrated. A unique organic transistor with semiconductor channels positioned at the highest summit of printed cylindrical microstructures was achieved simply by printing an organic semiconductor and polymer blend on the plastic substrate without the use of additional etching or replication processes. A combination of the printed organic semiconductor microstructure and an elastomeric top-gate dielectric resulted in a highly sensitive organic field-effect transistor (FET) pressure sensor with a high pressure sensitivity of 1.07 kPa -1 and a rapid response time of <20 ms with a high reliability over 1000 cycles. The flexibility and high performance of the 3D OSC FET pressure sensor were exploited in the successful application of our sensors to real-time monitoring of the radial artery pulse, which is useful for healthcare monitoring, and to touch sensing in the e-skin of a realistic prosthetic hand.

  5. Experimental study of disorder in a semiconductor microcavity

    Science.gov (United States)

    Gurioli, M.; Bogani, F.; Wiersma, D. S.; Roussignol, Ph.; Cassabois, G.; Khitrova, G.; Gibbs, H.

    2001-10-01

    A detailed study of the structural disorder in wedge semiconductor microcavities (MC's) is presented. We demonstrate that images of the coherent emission from the MC surface can be used for a careful characterization of both intrinsic and extrinsic optical properties of semiconductor MC's. The polariton broadening can be measured directly, avoiding the well-known problem of inhomogeneous broadening due to the MC wedge. A statistical analysis of the spatial line shape of the images of the MC surface shows the presence of static disorder associated with dielectric fluctuations in the Bragg reflector. Moreover, the presence of local fluctuations of the effective cavity length can be detected with subnanometer resolution. The analysis of the resonant Rayleigh scattering (RRS) gives additional information on the origin of the disorder. We find that the RRS is dominated by the scattering of the photonic component of the MC polariton by disorder in the Bragg reflector. Also the RRS is strongly enhanced along the [110] and [11¯0] directions. This peculiar scattering pattern is attributed to misfit dislocations induced by the large thickness of the mismatched AlGaAs alloy in the Bragg mirrors.

  6. Validity of the concept of band edge in organic semiconductors

    Science.gov (United States)

    Horowitz, Gilles

    2015-09-01

    Because most organic semiconductors are disordered, the more appropriate function to describe their density of states (DOS) is the Gaussian distribution. A striking difference between the Gaussian DOS and the parabolic DOS found in conventional inorganic semiconductors is the fact that it does not allow for a simple and straightforward definition of the band edge. The most usual way found in the literature to define the band edge of a Gaussian DOS consists of extrapolating the tangent to the inflection point of the Gaussian curve. The aim of this paper is to discuss the validity of such a way of conduct. An analysis of data found in the literature shows that the width of the Gaussian distribution is significantly larger than what usually retained in transport models. It is also shown that the validity of the usual definition for the band edge is questioned by the fact that the density of charge carriers behave as a degenerate distribution, even at relatively low doping levels.

  7. Toward continuous-wave operation of organic semiconductor lasers

    Science.gov (United States)

    Sandanayaka, Atula S. D.; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya

    2017-01-01

    The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi–continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture. PMID:28508042

  8. Synthesis and characterization of a new organic semiconductor material

    Energy Technology Data Exchange (ETDEWEB)

    Tiffour, Imane [Laboratoire de Génie Physique, Département de Physique, Université de Tiaret, Tiaret 14000 (Algeria); Faculté des Sciences et Technologies, Université Mustapha Stambouli, Mascara 29000 (Algeria); Dehbi, Abdelkader [Laboratoire de Génie Physique, Département de Physique, Université de Tiaret, Tiaret 14000 (Algeria); Mourad, Abdel-Hamid I., E-mail: ahmourad@uaeu.ac.ae [Mechanical Engineering Department, Faculty of Engineering, United Arab Emirates University, Al-Ain, P.O. Box 15551 (United Arab Emirates); Belfedal, Abdelkader [Faculté des Sciences et Technologies, Université Mustapha Stambouli, Mascara 29000 (Algeria); LPCMME, Département de Physique, Université d' Oran Es-sénia, 3100 Oran (Algeria)

    2016-08-01

    The objective of this study is to create an ideal mixture of Acetaminophen/Curcumin leading to a new and improved semiconductor material, by a study of the electrical, thermal and optical properties. This new material will be compared with existing semiconductor technology to discuss its viability within the industry. The electrical properties were investigated using complex impedance spectroscopy and optical properties were studied by means of UV-Vis spectrophotometry. The electric conductivity σ, the dielectric constant ε{sub r}, the activation energy E{sub a}, the optical transmittance T and the gap energy E{sub g} have been investigated in order to characterize our organic material. The electrical conductivity of the material is approximately 10{sup −5} S/m at room temperature, increasing the temperature causes σ to increase exponentially to approximately 10{sup −4} S/m. The activation energy obtained for the material is equal to 0.49 ± 0.02 ev. The optical absorption spectra show that the investigating material has absorbance in the visible range with a maximum wavelength (λ{sub max}) 424 nm. From analysis, the absorption spectra it was found the optical band gap equal to 2.6 ± 0.02 eV and 2.46 ± 0.02 eV for the direct and indirect transition, respectively. In general, the study shows that the developed material has characteristics of organic semiconductor material that has a promising future in the field of organic electronics and their potential applications, e.g., photovoltaic cells. - Highlights: • Development of a new organic acetaminophen/Curcumin semiconductor material. • The developed material has characteristics of an organic semiconductor. • It has electrical conductivity comparable to available organic semiconductors. • It has high optical transmittance and low permittivity/dielectric constant.

  9. Synthesis and characterization of a new organic semiconductor material

    International Nuclear Information System (INIS)

    Tiffour, Imane; Dehbi, Abdelkader; Mourad, Abdel-Hamid I.; Belfedal, Abdelkader

    2016-01-01

    The objective of this study is to create an ideal mixture of Acetaminophen/Curcumin leading to a new and improved semiconductor material, by a study of the electrical, thermal and optical properties. This new material will be compared with existing semiconductor technology to discuss its viability within the industry. The electrical properties were investigated using complex impedance spectroscopy and optical properties were studied by means of UV-Vis spectrophotometry. The electric conductivity σ, the dielectric constant ε_r, the activation energy E_a, the optical transmittance T and the gap energy E_g have been investigated in order to characterize our organic material. The electrical conductivity of the material is approximately 10"−"5 S/m at room temperature, increasing the temperature causes σ to increase exponentially to approximately 10"−"4 S/m. The activation energy obtained for the material is equal to 0.49 ± 0.02 ev. The optical absorption spectra show that the investigating material has absorbance in the visible range with a maximum wavelength (λ_m_a_x) 424 nm. From analysis, the absorption spectra it was found the optical band gap equal to 2.6 ± 0.02 eV and 2.46 ± 0.02 eV for the direct and indirect transition, respectively. In general, the study shows that the developed material has characteristics of organic semiconductor material that has a promising future in the field of organic electronics and their potential applications, e.g., photovoltaic cells. - Highlights: • Development of a new organic acetaminophen/Curcumin semiconductor material. • The developed material has characteristics of an organic semiconductor. • It has electrical conductivity comparable to available organic semiconductors. • It has high optical transmittance and low permittivity/dielectric constant.

  10. Monolayer-Mediated Growth of Organic Semiconductor Films with Improved Device Performance.

    Science.gov (United States)

    Huang, Lizhen; Hu, Xiaorong; Chi, Lifeng

    2015-09-15

    Increased interest in wearable and smart electronics is driving numerous research works on organic electronics. The control of film growth and patterning is of great importance when targeting high-performance organic semiconductor devices. In this Feature Article, we summarize our recent work focusing on the growth, crystallization, and device operation of organic semiconductors intermediated by ultrathin organic films (in most cases, only a monolayer). The site-selective growth, modified crystallization and morphology, and improved device performance of organic semiconductor films are demonstrated with the help of the inducing layers, including patterned and uniform Langmuir-Blodgett monolayers, crystalline ultrathin organic films, and self-assembled polymer brush films. The introduction of the inducing layers could dramatically change the diffusion of the organic semiconductors on the surface and the interactions between the active layer with the inducing layer, leading to improved aggregation/crystallization behavior and device performance.

  11. Ambipolar organic heterojunction transistors with various p-type semiconductors

    International Nuclear Information System (INIS)

    Shi Jianwu; Wang Haibo; Song De; Tian Hongkun; Geng Yanhou; Yan Donghang

    2008-01-01

    Ambipolar transport has been realized in organic heterojunction transistors with metal phthalocyanines, phenanthrene-based conjugated oligomers as the first semiconductors and copper-hexadecafluoro-phthalocyanine as the second semiconductor. The electron and hole mobilities of ambipolar devices with rod-like molecules were comparable to the corresponding single component devices, while the carrier mobility of ambipolar devices with disk-like molecules was much lower than the corresponding single component devices. The much difference of their device performance was attributed to the roughness of the first semiconductor films, which was original from their distinct growth habits. The flat and continuous films for the first semiconductors layer can lead to a smooth heterojunction interface, and obtained a high device performance for ambipolar organic heterojunction transistors

  12. Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Cundiff, Steven T. [Univ. of Colorado, Boulder, CO (United States)

    2016-05-03

    This final report describes the activities undertaken under grant "Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots". The goal of this program was to implement optical 2-dimensional Fourier transform spectroscopy and apply it to electronic excitations, including excitons, in semiconductors. Specifically of interest are quantum wells that exhibit disorder due to well width fluctuations and quantum dots. In both cases, 2-D spectroscopy will provide information regarding coupling among excitonic localization sites.

  13. Interface Structure of MoO3 on Organic Semiconductors

    Science.gov (United States)

    White, Robin T.; Thibau, Emmanuel S.; Lu, Zheng-Hong

    2016-01-01

    We have systematically studied interface structure formed by vapor-phase deposition of typical transition metal oxide MoO3 on organic semiconductors. Eight organic hole transport materials have been used in this study. Ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy are used to measure the evolution of the physical, chemical and electronic structure of the interfaces at various stages of MoO3 deposition on these organic semiconductor surfaces. For the interface physical structure, it is found that MoO3 diffuses into the underlying organic layer, exhibiting a trend of increasing diffusion with decreasing molecular molar mass. For the interface chemical structure, new carbon and molybdenum core-level states are observed, as a result of interfacial electron transfer from organic semiconductor to MoO3. For the interface electronic structure, energy level alignment is observed in agreement with the universal energy level alignment rule of molecules on metal oxides, despite deposition order inversion. PMID:26880185

  14. Order-disorder transition in nanoscopic semiconductor quantum rings

    NARCIS (Netherlands)

    Borrmann, P.; Harting, J.D.R.

    2001-01-01

    Using the path integral Monte Carlo technique we show that semiconductor quantum rings with up to six electrons exhibit a temperature, ring diameter, and particle number dependent transition between spin ordered and disordered Wigner crystals. Because of the small number of particles the transition

  15. High-mobility pyrene-based semiconductor for organic thin-film transistors.

    Science.gov (United States)

    Cho, Hyunduck; Lee, Sunyoung; Cho, Nam Sung; Jabbour, Ghassan E; Kwak, Jeonghun; Hwang, Do-Hoon; Lee, Changhee

    2013-05-01

    Numerous conjugated oligoacenes and polythiophenes are being heavily studied in the search for high-mobility organic semiconductors. Although many researchers have designed fused aromatic compounds as organic semiconductors for organic thin-film transistors (OTFTs), pyrene-based organic semiconductors with high mobilities and on-off current ratios have not yet been reported. Here, we introduce a new pyrene-based p-type organic semiconductor showing liquid crystal behavior. The thin film characteristics of this material are investigated by varying the substrate temperature during the deposition and the gate dielectric condition using the surface modification with a self-assembled monolayer, and systematically studied in correlation with the performances of transistor devices with this compound. OTFT fabricated under the optimum deposition conditions of this compound, namely, 1,6-bis(5'-octyl-2,2'-bithiophen-5-yl)pyrene (BOBTP) shows a high-performance transistor behavior with a field-effect mobility of 2.1 cm(2) V(-1) s(-1) and an on-off current ratio of 7.6 × 10(6) and enhanced long-term stability compared to the pentacene thin-film transistor.

  16. Multifunctional Organic-Semiconductor Interfacial Layers for Solution-Processed Oxide-Semiconductor Thin-Film Transistor.

    Science.gov (United States)

    Kwon, Guhyun; Kim, Keetae; Choi, Byung Doo; Roh, Jeongkyun; Lee, Changhee; Noh, Yong-Young; Seo, SungYong; Kim, Myung-Gil; Kim, Choongik

    2017-06-01

    The stabilization and control of the electrical properties in solution-processed amorphous-oxide semiconductors (AOSs) is crucial for the realization of cost-effective, high-performance, large-area electronics. In particular, impurity diffusion, electrical instability, and the lack of a general substitutional doping strategy for the active layer hinder the industrial implementation of copper electrodes and the fine tuning of the electrical parameters of AOS-based thin-film transistors (TFTs). In this study, the authors employ a multifunctional organic-semiconductor (OSC) interlayer as a solution-processed thin-film passivation layer and a charge-transfer dopant. As an electrically active impurity blocking layer, the OSC interlayer enhances the electrical stability of AOS TFTs by suppressing the adsorption of environmental gas species and copper-ion diffusion. Moreover, charge transfer between the organic interlayer and the AOS allows the fine tuning of the electrical properties and the passivation of the electrical defects in the AOS TFTs. The development of a multifunctional solution-processed organic interlayer enables the production of low-cost, high-performance oxide semiconductor-based circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Quantitative analysis of lattice disorder and crystallite size in organic semiconductor thin films

    KAUST Repository

    Rivnay, Jonathan; Noriega, Rodrigo; Kline, R. Joseph; Salleo, Alberto; Toney, Michael F.

    2011-01-01

    and qualitatively assess the amount and type of disorder present in a sample. While applied directly to organic systems, this methodology is general for the accurate deconvolution of crystalline size and lattice disorder for any material investigated

  18. Electroless silver plating of the surface of organic semiconductors.

    Science.gov (United States)

    Campione, Marcello; Parravicini, Matteo; Moret, Massimo; Papagni, Antonio; Schröter, Bernd; Fritz, Torsten

    2011-10-04

    The integration of nanoscale processes and devices demands fabrication routes involving rapid, cost-effective steps, preferably carried out under ambient conditions. The realization of the metal/organic semiconductor interface is one of the most demanding steps of device fabrication, since it requires mechanical and/or thermal treatments which increment costs and are often harmful in respect to the active layer. Here, we provide a microscopic analysis of a room temperature, electroless process aimed at the deposition of a nanostructured metallic silver layer with controlled coverage atop the surface of single crystals and thin films of organic semiconductors. This process relies on the reaction of aqueous AgF solutions with the nonwettable crystalline surface of donor-type organic semiconductors. It is observed that the formation of a uniform layer of silver nanoparticles can be accomplished within 20 min contact time. The electrical characterization of two-terminal devices performed before and after the aforementioned treatment shows that the metal deposition process is associated with a redox reaction causing the p-doping of the semiconductor. © 2011 American Chemical Society

  19. Interfacial effects in organic semiconductor heterojunctions

    International Nuclear Information System (INIS)

    Stadler, P.

    2011-01-01

    The field of organic electronics has systematically gained interest in recent years, technologically and scientifically advances have been made leading to practical applications such as organic light emitting diodes, organic field-effect transistors and organic photo-voltaic cells. In this thesis a fundamental study on organic molecules is presented targeting on interfacial effects at organic heterojunctions. Generally in organic electronic devices interfaces are considered as key parameters for achieving high performance applications. Therefore in this work the emphasis is to investigate layer-by-layer heterojunctions of organic molecules. Defined heterojunctions at inorganic III-V semiconductors form superlattices and quantum-wells, which lead to interfacial effects summarized as quantum confinement and two-dimensional electron gases. Although organic molecules differ in many aspects from their inorganic counterparts, similar effects can be theoretically expected at organic heterojunctions as well. Organic molecules form van-der-Waals type crystals and domains which are macroscopically anisotropic and polycrystalline or amorphous. Organic molecules are intrinsic semiconductors and at interfaces dipoles are formed, which control the energy level alignment. In order to characterize such structures and compare them to inorganic superlattices and quantum-wells it is necessary to induce charge carriers. In this work this is established either by interfacial doping using high-performance dielectrics in a field-effect transistor structure or by photo-doping by exciting a donor-acceptor bilayer. In both cases C 60 was chosen as organic semiconductor exhibiting good acceptor properties and an electron mobility in the range of 0.5 cm 2 V -1 s -1 . The fabrication of well-defined few-molecular layers allows probing directly at the interface. Spectroscopic methods and transport measurements are applied for characterization: Photoemission spectroscopy, absorption and photo

  20. Charge transport in amorphous organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lukyanov, Alexander

    2011-03-15

    Organic semiconductors with the unique combination of electronic and mechanical properties may offer cost-effective ways of realizing many electronic applications, e. g. large-area flexible displays, printed integrated circuits and plastic solar cells. In order to facilitate the rational compound design of organic semiconductors, it is essential to understand relevant physical properties e. g. charge transport. This, however, is not straightforward, since physical models operating on different time and length scales need to be combined. First, the material morphology has to be known at an atomistic scale. For this atomistic molecular dynamics simulations can be employed, provided that an atomistic force field is available. Otherwise it has to be developed based on the existing force fields and first principle calculations. However, atomistic simulations are typically limited to the nanometer length- and nanosecond time-scales. To overcome these limitations, systematic coarse-graining techniques can be used. In the first part of this thesis, it is demonstrated how a force field can be parameterized for a typical organic molecule. Then different coarse-graining approaches are introduced together with the analysis of their advantages and problems. When atomistic morphology is available, charge transport can be studied by combining the high-temperature Marcus theory with kinetic Monte Carlo simulations. The approach is applied to the hole transport in amorphous films of tris(8- hydroxyquinoline)aluminium (Alq{sub 3}). First the influence of the force field parameters and the corresponding morphological changes on charge transport is studied. It is shown that the energetic disorder plays an important role for amorphous Alq{sub 3}, defining charge carrier dynamics. Its spatial correlations govern the Poole-Frenkel behavior of the charge carrier mobility. It is found that hole transport is dispersive for system sizes accessible to simulations, meaning that calculated

  1. Preparations and Characterizations of Luminescent Two Dimensional Organic-inorganic Perovskite Semiconductors

    Directory of Open Access Journals (Sweden)

    Sanjun Zhang

    2010-05-01

    Full Text Available This article reviews the synthesis, structural and optical characterizations of some novel luminescent two dimensional organic-inorganic perovskite (2DOIP semiconductors. These 2DOIP semiconductors show a self-assembled nano-layered structure, having the electronic structure of multi-quantum wells. 2DOIP thin layers and nanoparticles have been prepared through different methods. The structures of the 2DOIP semiconductors are characterized by atomic force microscopy and X-ray diffraction. The optical properties of theb DOIP semiconductors are characterized from absorption and photoluminescence spectra measured at room and low temperatures. Influences of different components, in particular the organic parts, on the structural and optical properties of the 2DOIP semiconductors are discussed.

  2. All-polymer organic semiconductor laser chips: Parallel fabrication and encapsulation

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Klinkhammer, Sönke; Christiansen, Mads Brøkner

    2010-01-01

    Organic semiconductor lasers are of particular interest as tunable visible laser light sources. For bringing those to market encapsulation is needed to ensure practicable lifetimes. Additionally, fabrication technologies suitable for mass production must be used. We introduce all-polymer chips...... comprising encapsulated distributed feedback organic semiconductor lasers. Several chips are fabricated in parallel by thermal nanoimprint of the feedback grating on 4? wafer scale out of poly(methyl methacrylate) (PMMA) and cyclic olefin copolymer (COC). The lasers consisting of the organic semiconductor...... tris(8- hydroxyquinoline) aluminum (Alq3) doped with the laser dye 4-dicyanomethylene-2- methyl-6-(p-dimethylaminostyril)-4H-pyrane (DCM) are hermetically sealed by thermally bonding a polymer lid. The organic thin film is placed in a basin within the substrate and is not in direct contact to the lid...

  3. Unraveling the mechanism of molecular doping in organic semiconductors.

    Science.gov (United States)

    Mityashin, Alexander; Olivier, Yoann; Van Regemorter, Tanguy; Rolin, Cedric; Verlaak, Stijn; Martinelli, Nicolas G; Beljonne, David; Cornil, Jérôme; Genoe, Jan; Heremans, Paul

    2012-03-22

    The mechanism by which molecular dopants donate free charge carriers to the host organic semiconductor is investigated and is found to be quite different from the one in inorganic semiconductors. In organics, a strong correlation between the doping concentration and its charge donation efficiency is demonstrated. Moreover, there is a threshold doping level below which doping simply has no electrical effect. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Universal strategy for Ohmic hole injection into organic semiconductors with high ionization energies.

    Science.gov (United States)

    Kotadiya, Naresh B; Lu, Hao; Mondal, Anirban; Ie, Yutaka; Andrienko, Denis; Blom, Paul W M; Wetzelaer, Gert-Jan A H

    2018-04-01

    Barrier-free (Ohmic) contacts are a key requirement for efficient organic optoelectronic devices, such as organic light-emitting diodes, solar cells, and field-effect transistors. Here, we propose a simple and robust way of forming an Ohmic hole contact on organic semiconductors with a high ionization energy (IE). The injected hole current from high-work-function metal-oxide electrodes is improved by more than an order of magnitude by using an interlayer for which the sole requirement is that it has a higher IE than the organic semiconductor. Insertion of the interlayer results in electrostatic decoupling of the electrode from the semiconductor and realignment of the Fermi level with the IE of the organic semiconductor. The Ohmic-contact formation is illustrated for a number of material combinations and solves the problem of hole injection into organic semiconductors with a high IE of up to 6 eV.

  5. Organic / IV, III-V Semiconductor Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    Pang-Leen Ong

    2010-03-01

    Full Text Available We present a review of the emerging class of hybrid solar cells based on organic-semiconductor (Group IV, III-V, nanocomposites, which states separately from dye synthesized, polymer-metal oxides and organic-inorganic (Group II-VI nanocomposite photovoltaics. The structure of such hybrid cell comprises of an organic active material (p-type deposited by coating, printing or spraying technique on the surface of bulk or nanostructured semiconductor (n-type forming a heterojunction between the two materials. Organic components include various photosensitive monomers (e.g., phtalocyanines or porphyrines, conjugated polymers, and carbon nanotubes. Mechanisms of the charge separation at the interface and their transport are discussed. Also, perspectives on the future development of such hybrid cells and comparative analysis with other classes of photovoltaics of third generation are presented.

  6. Quantitative Determination of Organic Semiconductor Microstructure from the Molecular to Device Scale

    KAUST Repository

    Rivnay, Jonathan; Mannsfeld, Stefan C. B.; Miller, Chad E.; Salleo, Alberto; Toney, Michael F.

    2012-01-01

    A study was conducted to demonstrate quantitative determination of organic semiconductor microstructure from the molecular to device scale. The quantitative determination of organic semiconductor microstructure from the molecular to device scale

  7. Determination of the transport levels in thin films of organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Stefan

    2009-07-27

    The approach of using the combination of Ultraviolet (UPS) and Inverse Photoemission (IPS) to determine the transport levels in thin films of organic semiconductors is the scope of this work. For this matter all influences on the peak position and width in Photoelectron Spectroscopy are discussed with a special focus on organic semiconductors. Many of these influences are shown with experimental results of the investigation of diindenoperylene on Ag(111). These findings are applied to inorganic semiconductors silicon in order to establish the use of UPS and IPS on a well-understood system. Finally, the method is used to determine the transport level of several organic semiconductors (PTCDA, Alq3, CuPc, DIP, PBI-H4) and the corresponding exciton binding energies are calculated by comparison to optical absorption data. (orig.)

  8. Novel organic semiconductors and dielectric materials for high performance and low-voltage organic thin-film transistors

    Science.gov (United States)

    Yoon, Myung-Han

    Two novel classes of organic semiconductors based on perfluoroarene/arene-modified oligothiophenes and perfluoroacyl/acyl-derivatized quaterthiophens are developed. The frontier molecular orbital energies of these compounds are studied by optical spectroscopy and electrochemistry while solid-state/film properties are investigated by thermal analysis, x-ray diffraction, and scanning electron microscopy. Organic thin film transistors (OTFTs) performance parameters are discussed in terms of the interplay between semiconductor molecular energetics and film morphologies/microstructures. For perfluoroarene-thiophene oligomer systems, majority charge carrier type and mobility exhibit a strong correlation with the regiochemistry of perfluoroarene incorporation. In quaterthiophene-based semiconductors, carbonyl-functionalization allows tuning of the majority carrier type from p-type to ambipolar and to n-type. In situ conversion of a p-type semiconducting film to n-type film is also demonstrated. Very thin self-assembled or spin-on organic dielectric films have been integrated into OTFTs to achieve 1 - 2 V operating voltages. These new dielectrics are deposited either by layer-by-layer solution phase deposition of molecular precursors or by spin-coating a mixture of polymer and crosslinker, resulting in smooth and virtually pinhole-free thin films having exceptionally large capacitances (300--700 nF/cm2) and low leakage currents (10 -9 - 10-7 A/cm2). These organic dielectrics are compatible with various vapor- or solution-deposited p- and n-channel organic semiconductors. Furthermore, it is demonstrated that spin-on crosslinked-polymer-blend dielectrics can be employed for large-area/patterned electronics, and complementary inverters. A general approach for probing semiconductor-dielectric interface effects on OTFT performance parameters using bilayer gate dielectrics is presented. Organic semiconductors having p-, n-type, or ambipolar majority charge carriers are grown on

  9. n-Channel semiconductor materials design for organic complementary circuits.

    Science.gov (United States)

    Usta, Hakan; Facchetti, Antonio; Marks, Tobin J

    2011-07-19

    Organic semiconductors have unique properties compared to traditional inorganic materials such as amorphous or crystalline silicon. Some important advantages include their adaptability to low-temperature processing on flexible substrates, low cost, amenability to high-speed fabrication, and tunable electronic properties. These features are essential for a variety of next-generation electronic products, including low-power flexible displays, inexpensive radio frequency identification (RFID) tags, and printable sensors, among many other applications. Accordingly, the preparation of new materials based on π-conjugated organic molecules or polymers has been a central scientific and technological research focus over the past decade. Currently, p-channel (hole-transporting) materials are the leading class of organic semiconductors. In contrast, high-performance n-channel (electron-transporting) semiconductors are relatively rare, but they are of great significance for the development of plastic electronic devices such as organic field-effect transistors (OFETs). In this Account, we highlight the advances our team has made toward realizing moderately and highly electron-deficient n-channel oligomers and polymers based on oligothiophene, arylenediimide, and (bis)indenofluorene skeletons. We have synthesized and characterized a "library" of structurally related semiconductors, and we have investigated detailed structure-property relationships through optical, electrochemical, thermal, microstructural (both single-crystal and thin-film), and electrical measurements. Our results reveal highly informative correlations between structural parameters at various length scales and charge transport properties. We first discuss oligothiophenes functionalized with perfluoroalkyl and perfluoroarene substituents, which represent the initial examples of high-performance n-channel semiconductors developed in this project. The OFET characteristics of these compounds are presented with an

  10. Spectroscopy of organic semiconductors from first principles

    Science.gov (United States)

    Sharifzadeh, Sahar; Biller, Ariel; Kronik, Leeor; Neaton, Jeffery

    2011-03-01

    Advances in organic optoelectronic materials rely on an accurate understanding their spectroscopy, motivating the development of predictive theoretical methods that accurately describe the excited states of organic semiconductors. In this work, we use density functional theory and many-body perturbation theory (GW/BSE) to compute the electronic and optical properties of two well-studied organic semiconductors, pentacene and PTCDA. We carefully compare our calculations of the bulk density of states with available photoemission spectra, accounting for the role of finite temperature and surface effects in experiment, and examining the influence of our main approximations -- e.g. the GW starting point and the application of the generalized plasmon-pole model -- on the predicted electronic structure. Moreover, our predictions for the nature of the exciton and its binding energy are discussed and compared against optical absorption data. We acknowledge DOE, NSF, and BASF for financial support and NERSC for computational resources.

  11. Charge Saturation and Intrinsic Doping in Electrolyte-Gated Organic Semiconductors.

    Science.gov (United States)

    Atallah, Timothy L; Gustafsson, Martin V; Schmidt, Elliot; Frisbie, C Daniel; Zhu, X-Y

    2015-12-03

    Electrolyte gating enables low voltage operation of organic thin film transistors, but little is known about the nature of the electrolyte/organic interface. Here we apply charge-modulation Fourier transform infrared spectroscopy, in conjunction with electrical measurements, on a model electrolyte gated organic semiconductor interface: single crystal rubrene/ion-gel. We provide spectroscopic signature for free-hole like carriers in the organic semiconductor and unambiguously show the presence of a high density of intrinsic doping of the free holes upon formation of the rubrene/ion-gel interface, without gate bias (Vg = 0 V). We explain this intrinsic doping as resulting from a thermodynamic driving force for the stabilization of free holes in the organic semiconductor by anions in the ion-gel. Spectroscopy also reveals the saturation of free-hole like carrier density at the rubrene/ion-gel interface at Vg < -0.5 V, which is commensurate with the negative transconductance seen in transistor measurements.

  12. Controlled Growth of Ultrathin Film of Organic Semiconductors by Balancing the Competitive Processes in Dip-Coating for Organic Transistors.

    Science.gov (United States)

    Wu, Kunjie; Li, Hongwei; Li, Liqiang; Zhang, Suna; Chen, Xiaosong; Xu, Zeyang; Zhang, Xi; Hu, Wenping; Chi, Lifeng; Gao, Xike; Meng, Yancheng

    2016-06-28

    Ultrathin film with thickness below 15 nm of organic semiconductors provides excellent platform for some fundamental research and practical applications in the field of organic electronics. However, it is quite challenging to develop a general principle for the growth of uniform and continuous ultrathin film over large area. Dip-coating is a useful technique to prepare diverse structures of organic semiconductors, but the assembly of organic semiconductors in dip-coating is quite complicated, and there are no reports about the core rules for the growth of ultrathin film via dip-coating until now. In this work, we develop a general strategy for the growth of ultrathin film of organic semiconductor via dip-coating, which provides a relatively facile model to analyze the growth behavior. The balance between the three direct factors (nucleation rate, assembly rate, and recession rate) is the key to determine the growth of ultrathin film. Under the direction of this rule, ultrathin films of four organic semiconductors are obtained. The field-effect transistors constructed on the ultrathin film show good field-effect property. This work provides a general principle and systematic guideline to prepare ultrathin film of organic semiconductors via dip-coating, which would be highly meaningful for organic electronics as well as for the assembly of other materials via solution processes.

  13. Tuning polarity and improving charge transport in organic semiconductors

    Science.gov (United States)

    Oh, Joon Hak; Han, A.-Reum; Yu, Hojeong; Lee, Eun Kwang; Jang, Moon Jeong

    2013-09-01

    Although state-of-the-art ambipolar polymer semiconductors have been extensively reported in recent years, highperformance ambipolar polymers with tunable dominant polarity are still required to realize on-demand, target-specific, high-performance organic circuitry. Herein, dithienyl-diketopyrrolopyrrole (TDPP)-based polymer semiconductors with engineered side-chains have been synthesized, characterized and employed in ambipolar organic field-effect transistors, in order to achieve controllable and improved electrical properties. Thermally removable tert-butoxycarbonyl (t-BOC) groups and hybrid siloxane-solubilizing groups are introduced as the solubilizing groups, and they are found to enable the tunable dominant polarity and the enhanced ambipolar performance, respectively. Such outstanding performance based on our molecular design strategies makes these ambipolar polymer semiconductors highly promising for low-cost, large-area, and flexible electronics.

  14. Quantitative analysis of lattice disorder and crystallite size in organic semiconductor thin films

    KAUST Repository

    Rivnay, Jonathan

    2011-07-07

    The crystallite size and cumulative lattice disorder of three prototypical, high-performing organic semiconducting materials are investigated using a Fourier-transform peak shape analysis routine based on the method of Warren and Averbach (WA). A thorough incorporation of error propagation throughout the multistep analysis and a weighted fitting of Fourier-transformed data to the WA model allows for more accurate results than typically obtained and for determination of confidence bounds. We compare results obtained when assuming two types of column-length distributions, and discuss the benefits of each model in terms of simplicity and accuracy. For strongly disordered materials, the determination of a crystallite size is greatly hindered because disorder dominates the coherence length, not finite size. A simple analysis based on trends of peak widths and Lorentzian components of pseudo-Voigt line shapes as a function of diffraction order is also discussed as an approach to more easily and qualitatively assess the amount and type of disorder present in a sample. While applied directly to organic systems, this methodology is general for the accurate deconvolution of crystalline size and lattice disorder for any material investigated with diffraction techniques. © 2011 American Physical Society.

  15. Towards high charge carrier mobilities by rational design of organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Andrienko, Denis; Ruehle, Victor; Baumeier, Bjoern; Vehoff, Thorsten; Lukyanov, Alexander; Kremer, Kurt [Max Planck Institute for Polymer Research, Mainz (Germany); Marcon, Valentina [Technische Universitaet Darmstadt (Germany); Kirkpatrick, James; Nelson, Jenny [Imperial College London (United Kingdom); Lennartz, Christian [BASF AG, Ludwigshafen (Germany)

    2010-07-01

    The role of material morphology on charge carrier mobility in partially disordered organic semiconductors is discussed for several classes of materials: derivatives of hexabenzocoronenens, perylenediimides, triangularly-shaped polyaromatic hydrocarbons, and Alq{sub 3}. Simulations are performed using a package developed by Imperial College, London and Max Planck Institute for Polymer Research, Mainz (votca.org). This package combines several techniques into one scheme: quantum chemical methods for the calculation of molecular electronic structures and reorganization energies; molecular dynamics and systematic coarse-graining approaches for simulation of self-assembly and relative positions and orientations of molecules on large scales; kinetic Monte Carlo and master equation for studies of charge transport.

  16. Low-voltage organic electronics based on a gate-tunable injection barrier in vertical graphene-organic semiconductor heterostructures.

    Science.gov (United States)

    Hlaing, Htay; Kim, Chang-Hyun; Carta, Fabio; Nam, Chang-Yong; Barton, Rob A; Petrone, Nicholas; Hone, James; Kymissis, Ioannis

    2015-01-14

    The vertical integration of graphene with inorganic semiconductors, oxide semiconductors, and newly emerging layered materials has recently been demonstrated as a promising route toward novel electronic and optoelectronic devices. Here, we report organic thin film transistors based on vertical heterojunctions of graphene and organic semiconductors. In these thin heterostructure devices, current modulation is accomplished by tuning of the injection barriers at the semiconductor/graphene interface with the application of a gate voltage. N-channel devices fabricated with a thin layer of C60 show a room temperature on/off ratio >10(4) and current density of up to 44 mAcm(-2). Because of the ultrashort channel intrinsic to the vertical structure, the device is fully operational at a driving voltage of 200 mV. A complementary p-channel device is also investigated, and a logic inverter based on two complementary transistors is demonstrated. The vertical integration of graphene with organic semiconductors via simple, scalable, and low-temperature fabrication processes opens up new opportunities to realize flexible, transparent organic electronic, and optoelectronic devices.

  17. Blue emitting organic semiconductors under high pressure

    DEFF Research Database (Denmark)

    Knaapila, Matti; Guha, Suchismita

    2016-01-01

    This review describes essential optical and emerging structural experiments that use high GPa range hydrostatic pressure to probe physical phenomena in blue-emitting organic semiconductors including π-conjugated polyfluorene and related compounds. The work emphasizes molecular structure and inter......This review describes essential optical and emerging structural experiments that use high GPa range hydrostatic pressure to probe physical phenomena in blue-emitting organic semiconductors including π-conjugated polyfluorene and related compounds. The work emphasizes molecular structure...... and intermolecular self-organization that typically determine transport and optical emission in π-conjugated oligomers and polymers. In this context, hydrostatic pressure through diamond anvil cells has proven to be an elegant tool to control structure and interactions without chemical intervention. This has been...... and intermolecular interactions on optical excitations, electron–phonon interaction, and changes in backbone conformations. This picture is connected to the optical high pressure studies of other π-conjugated systems and emerging x-ray scattering experiments from polyfluorenes which provides a structure-property map...

  18. Elucidation and control of electronic properties related to organic semiconductors

    International Nuclear Information System (INIS)

    Yamane, Hiroyuki; Ueno, Nobuo; Seki, Kazuhiko

    2009-01-01

    The electronic structure of organic solids and interfaces plays a crucial role in the performance of optoelectronic devices using organic semiconductors such as light-emitting diodes, field-effect transistors, and photovoltaic cells. The functionality of these organic devices is seriously dominated by the geometric structure, which varies depending on the molecular structure and the sample preparation condition. Due to the rapid progress in sample preparation methods and surface science techniques, we can now discuss in detail the correlation of the electronic structure with the geometric structure of organic solids, films, and interfaces. This paper reviews the recent progress of studies in the geometric and electronic structures related to organic semiconductors. (author)

  19. Crystallization of Organic Semiconductor Molecules in Nanosized Cavities

    DEFF Research Database (Denmark)

    Milita, Silvia; Dionigi, Chiara; Borgatti, Francesco

    2008-01-01

    The crystallization of an organic semiconductor, viz., tetrahexil-sexithiophene (H4T6) molecules, confined into nanosized cavities of a self-organized polystyrene beads template, has been investigated by means of in situ grazing incidence X-ray diffraction measurements, during the solvent evapora...

  20. Lewis Acid-Base Chemistry of 7-Azaisoindigo-Based Organic Semiconductors.

    Science.gov (United States)

    Randell, Nicholas M; Fransishyn, Kyle M; Kelly, Timothy L

    2017-07-26

    Low-band-gap organic semiconductors are important in a variety of organic electronics applications, such as organic photovoltaic devices, photodetectors, and field effect transistors. Building on our previous work, which introduced 7-azaisoindigo as an electron-deficient building block for the synthesis of donor-acceptor organic semiconductors, we demonstrate how Lewis acids can be used to further tune the energies of the frontier molecular orbitals. Coordination of a Lewis acid to the pyridinic nitrogen of 7-azaisoindigo greatly diminishes the electron density in the azaisoindigo π-system, resulting in a substantial reduction in the lowest unoccupied molecular orbital (LUMO) energy. This results in a smaller highest occupied molecular orbital-LUMO gap and shifts the lowest-energy electronic transition well into the near-infrared region. Both H + and BF 3 are shown to coordinate to azaisoindigo and affect the energy of the S 0 → S 1 transition. A combination of time-dependent density functional theory and UV/vis and 1 H NMR spectroscopic titrations reveal that when two azaisoindigo groups are present and high concentrations of acid are used, both pyridinic nitrogens bind Lewis acids. Importantly, we demonstrate that this acid-base chemistry can be carried out at the solid-vapor interface by exposing thin films of aza-substituted organic semiconductors to vapor-phase BF 3 ·Et 2 O. This suggests the possibility of using the BF 3 -bound 7-azaisoindigo-based semiconductors as n-type materials in various organic electronic applications.

  1. Study of neural cells on organic semiconductor ultra thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bystrenova, Eva; Tonazzini, Ilaria; Stoliar, Pablo; Greco, Pierpaolo; Lazar, Adina; Dutta, Soumya; Dionigi, Chiara; Cacace, Marcello; Biscarini, Fabio [ISMN-CNR, Bologna (Italy); Jelitai, Marta; Madarasz, Emilia [IEM- HAS, Budapest (Hungary); Huth, Martin; Nickel, Bert [LMU, Munich (Germany); Martini, Claudia [Dept. PNPB, Univ. of Pisa (Italy)

    2008-07-01

    Many technological advances are currently being developed for nano-fabrication, offering the ability to create and control patterns of soft materials. We report the deposition of cells on organic semiconductor ultra-thin films. This is a first step towards the development of active bio/non bio systems for electrical transduction. Thin films of pentacene, whose thickness was systematically varied, were grown by high vacuum sublimation. We report adhesion, growth, and differentiation of human astroglial cells and mouse neural stem cells on an organic semiconductor. Viability of astroglial cells in time was measured as a function of the roughness and the characteristic morphology of ultra thin organic film, as well as the features of the patterned molecules. Optical fluorescence microscope coupled to atomic force microscope was used to monitor the presence, density and shape of deposited cells. Neural stem cells remain viable, differentiate by retinoic acid and form dense neuronal networks. We have shown the possibility to integrate living neural cells on organic semiconductor thin films.

  2. Pseudomorphic growth of organic semiconductor thin films driven by incommensurate epitaxy

    International Nuclear Information System (INIS)

    Sassella, A.; Campione, M.; Raimondo, L.; Borghesi, A.; Bussetti, G.; Cirilli, S.; Violante, A.; Goletti, C.; Chiaradia, P.

    2009-01-01

    A stable pseudomorphic phase of α-quaterthiophene, a well known organic semiconductor, is obtained by growing films with organic molecular beam epitaxy (OMBE) on a single crystal of another organic semiconductor, namely, tetracene. The structural characteristics of the new phase are investigated by monitoring in situ the OMBE process by reflectance anisotropy spectroscopy; thus assessing that incommensurate epitaxy is in this case, the driving force for tuning the molecular packing in organic molecular films and in turn, their solid state properties

  3. Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules.

    Science.gov (United States)

    Salzmann, Ingo; Heimel, Georg; Oehzelt, Martin; Winkler, Stefanie; Koch, Norbert

    2016-03-15

    Today's information society depends on our ability to controllably dope inorganic semiconductors, such as silicon, thereby tuning their electrical properties to application-specific demands. For optoelectronic devices, organic semiconductors, that is, conjugated polymers and molecules, have emerged as superior alternative owing to the ease of tuning their optical gap through chemical variability and their potential for low-cost, large-area processing on flexible substrates. There, the potential of molecular electrical doping for improving the performance of, for example, organic light-emitting devices or organic solar cells has only recently been established. The doping efficiency, however, remains conspicuously low, highlighting the fact that the underlying mechanisms of molecular doping in organic semiconductors are only little understood compared with their inorganic counterparts. Here, we review the broad range of phenomena observed upon molecularly doping organic semiconductors and identify two distinctly different scenarios: the pairwise formation of both organic semiconductor and dopant ions on one hand and the emergence of ground state charge transfer complexes between organic semiconductor and dopant through supramolecular hybridization of their respective frontier molecular orbitals on the other hand. Evidence for the occurrence of these two scenarios is subsequently discussed on the basis of the characteristic and strikingly different signatures of the individual species involved in the respective doping processes in a variety of spectroscopic techniques. The critical importance of a statistical view of doping, rather than a bimolecular picture, is then highlighted by employing numerical simulations, which reveal one of the main differences between inorganic and organic semiconductors to be their respective density of electronic states and the doping induced changes thereof. Engineering the density of states of doped organic semiconductors, the Fermi

  4. Doping Polymer Semiconductors by Organic Salts: Toward High-Performance Solution-Processed Organic Field-Effect Transistors.

    Science.gov (United States)

    Hu, Yuanyuan; Rengert, Zachary D; McDowell, Caitlin; Ford, Michael J; Wang, Ming; Karki, Akchheta; Lill, Alexander T; Bazan, Guillermo C; Nguyen, Thuc-Quyen

    2018-04-24

    Solution-processed organic field-effect transistors (OFETs) were fabricated with the addition of an organic salt, trityl tetrakis(pentafluorophenyl)borate (TrTPFB), into thin films of donor-acceptor copolymer semiconductors. The performance of OFETs is significantly enhanced after the organic salt is incorporated. TrTPFB is confirmed to p-dope the organic semiconductors used in this study, and the doping efficiency as well as doping physics was investigated. In addition, systematic electrical and structural characterizations reveal how the doping enhances the performance of OFETs. Furthermore, it is shown that this organic salt doping method is feasible for both p- and n-doping by using different organic salts and, thus, can be utilized to achieve high-performance OFETs and organic complementary circuits.

  5. A new electrode design for ambipolar injection in organic semiconductors.

    Science.gov (United States)

    Kanagasekaran, Thangavel; Shimotani, Hidekazu; Shimizu, Ryota; Hitosugi, Taro; Tanigaki, Katsumi

    2017-10-17

    Organic semiconductors have attracted much attention for low-cost, flexible and human-friendly optoelectronics. However, achieving high electron-injection efficiency is difficult from air-stable electrodes and cannot be equivalent to that of holes. Here, we present a novel concept of electrode composed of a bilayer of tetratetracontane (TTC) and polycrystalline organic semiconductors (pc-OSC) covered by a metal layer. Field-effect transistors of single-crystal organic semiconductors with the new electrodes of M/pc-OSC/TTC (M: Ca or Au) show both highly efficient electron and hole injection. Contact resistance for electron injection from Au/pc-OSC/TTC and hole injection from Ca/pc-OSC/TTC are comparable to those for electron injection from Ca and hole injection from Au, respectively. Furthermore, the highest field-effect mobilities of holes (22 cm 2  V -1  s -1 ) and electrons (5.0 cm 2  V -1  s -1 ) are observed in rubrene among field-effect transistors with electrodes so far proposed by employing Ca/pc-OSC/TTC and Au/pc-OSC/TTC electrodes for electron and hole injection, respectively.One of technological challenges building organic electronics is efficient injection of electrons at metal-semiconductor interfaces compared to that of holes. The authors show an air-stable electrode design with induced gap states, which support Fermi level pinning and thus ambipolar carrier injection.

  6. Microscopic properties of ionic liquid/organic semiconductor interfaces revealed by molecular dynamics simulations.

    Science.gov (United States)

    Yokota, Yasuyuki; Miyamoto, Hiroo; Imanishi, Akihito; Takeya, Jun; Inagaki, Kouji; Morikawa, Yoshitada; Fukui, Ken-Ichi

    2018-05-09

    Electric double-layer transistors based on ionic liquid/organic semiconductor interfaces have been extensively studied during the past decade because of their high carrier densities at low operation voltages. Microscopic structures and the dynamics of ionic liquids likely determine the device performance; however, knowledge of these is limited by a lack of appropriate experimental tools. In this study, we investigated ionic liquid/organic semiconductor interfaces using molecular dynamics to reveal the microscopic properties of ionic liquids. The organic semiconductors include pentacene, rubrene, fullerene, and 7,7,8,8-tetracyanoquinodimethane (TCNQ). While ionic liquids close to the substrate always form the specific layered structures, the surface properties of organic semiconductors drastically alter the ionic dynamics. Ionic liquids at the fullerene interface behave as a two-dimensional ionic crystal because of the energy gain derived from the favorable electrostatic interaction on the corrugated periodic substrate.

  7. Prediction and theoretical characterization of p-type organic semiconductor crystals for field-effect transistor applications.

    Science.gov (United States)

    Atahan-Evrenk, Sule; Aspuru-Guzik, Alán

    2014-01-01

    The theoretical prediction and characterization of the solid-state structure of organic semiconductors has tremendous potential for the discovery of new high performance materials. To date, the theoretical analysis mostly relied on the availability of crystal structures obtained through X-ray diffraction. However, the theoretical prediction of the crystal structures of organic semiconductor molecules remains a challenge. This review highlights some of the recent advances in the determination of structure-property relationships of the known organic semiconductor single-crystals and summarizes a few available studies on the prediction of the crystal structures of p-type organic semiconductors for transistor applications.

  8. Light absorption in disordered semiconductors with a random coulomb-type field

    International Nuclear Information System (INIS)

    Arbuzov, Yu.D.; Evdokimov, V.M.; Kolenkin, M.Yu.

    1988-01-01

    A method is proposed for the formulation of an asymptotic series for the light absorption coefficient in disordered semiconductors with a random field of the Coulomb type. It is shown that the series is obtained by expanding the exponent of an exponential function in powers of a parameter proportional to (E g - ℎω) -1/3 , where E g is the band gap of the semiconductor, and ℎω is the photon energy. The first three terms of the series are calculated in explicit form

  9. Rational In Silico Design of an Organic Semiconductor with Improved Electron Mobility.

    Science.gov (United States)

    Friederich, Pascal; Gómez, Verónica; Sprau, Christian; Meded, Velimir; Strunk, Timo; Jenne, Michael; Magri, Andrea; Symalla, Franz; Colsmann, Alexander; Ruben, Mario; Wenzel, Wolfgang

    2017-11-01

    Organic semiconductors find a wide range of applications, such as in organic light emitting diodes, organic solar cells, and organic field effect transistors. One of their most striking disadvantages in comparison to crystalline inorganic semiconductors is their low charge-carrier mobility, which manifests itself in major device constraints such as limited photoactive layer thicknesses. Trial-and-error attempts to increase charge-carrier mobility are impeded by the complex interplay of the molecular and electronic structure of the material with its morphology. Here, the viability of a multiscale simulation approach to rationally design materials with improved electron mobility is demonstrated. Starting from one of the most widely used electron conducting materials (Alq 3 ), novel organic semiconductors with tailored electronic properties are designed for which an improvement of the electron mobility by three orders of magnitude is predicted and experimentally confirmed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics.

    Science.gov (United States)

    Root, Samuel E; Savagatrup, Suchol; Printz, Adam D; Rodriquez, Daniel; Lipomi, Darren J

    2017-05-10

    Mechanical deformability underpins many of the advantages of organic semiconductors. The mechanical properties of these materials are, however, diverse, and the molecular characteristics that permit charge transport can render the materials stiff and brittle. This review is a comprehensive description of the molecular and morphological parameters that govern the mechanical properties of organic semiconductors. Particular attention is paid to ways in which mechanical deformability and electronic performance can coexist. The review begins with a discussion of flexible and stretchable devices of all types, and in particular the unique characteristics of organic semiconductors. It then discusses the mechanical properties most relevant to deformable devices. In particular, it describes how low modulus, good adhesion, and absolute extensibility prior to fracture enable robust performance, along with mechanical "imperceptibility" if worn on the skin. A description of techniques of metrology precedes a discussion of the mechanical properties of three classes of organic semiconductors: π-conjugated polymers, small molecules, and composites. The discussion of each class of materials focuses on molecular structure and how this structure (and postdeposition processing) influences the solid-state packing structure and thus the mechanical properties. The review concludes with applications of organic semiconductor devices in which every component is intrinsically stretchable or highly flexible.

  11. Thermionic emission and tunneling at carbon nanotube-organic semiconductor interface.

    Science.gov (United States)

    Sarker, Biddut K; Khondaker, Saiful I

    2012-06-26

    We study the charge carrier injection mechanism across the carbon nanotube (CNT)-organic semiconductor interface using a densely aligned carbon nanotube array as electrode and pentacene as organic semiconductor. The current density-voltage (J-V) characteristics measured at different temperatures show a transition from a thermal emission mechanism at high temperature (above 200 K) to a tunneling mechanism at low temperature (below 200 K). A barrier height of ∼0.16 eV is calculated from the thermal emission regime, which is much lower compared to the metal/pentacene devices. At low temperatures, the J-V curves exhibit a direct tunneling mechanism at low bias, corresponding to a trapezoidal barrier, while at high bias the mechanism is well described by Fowler-Nordheim tunneling, which corresponds to a triangular barrier. A transition from direct tunneling to Fowler-Nordheim tunneling further signifies a small injection barrier at the CNT/pentacene interface. Our results presented here are the first direct experimental evidence of low charge carrier injection barrier between CNT electrodes and an organic semiconductor and are a significant step forward in realizing the overall goal of using CNT electrodes in organic electronics.

  12. High Gain Hybrid Graphene-Organic Semiconductor Phototransistors

    NARCIS (Netherlands)

    Huisman, Everardus H.; Shulga, Artem G.; Zomer, Paul J.; Tombros, Nikolaos; Bartesaghi, Davide; Bisri, Satria Zulkarnaen; Loi, Maria A.; Koster, L. Jan Anton; van Wees, Bart J.

    2015-01-01

    Hybrid phototransistors of graphene and the organic semiconductor poly(3-hexylthiophene-2,5-diyl) (P3HT) are presented. Two types of phototransistors are demonstrated with a charge carrier transit time that differs by more than 6 orders of magnitude. High transit time devices are fabricated using a

  13. Applications of confocal laser scanning microscopy in research into organic semiconductor thin films

    DEFF Research Database (Denmark)

    Schiek, Manuela; Balzer, Frank

    2014-01-01

    At the center of opto-electronic devices are thin layers of organic semiconductors, which need to be sandwiched between planar electrodes. With the growing demand for opto-electronic devices now and in the future, new electrode materials are needed to meet the requirements of organic semiconductors...

  14. Organic Semiconductor Photovoltaics

    Science.gov (United States)

    Sariciftci, Niyazi Serdar

    2005-03-01

    Recent developments on organic photovoltaic elements are reviewed. Semiconducting conjugated polymers and molecules as well as nanocrystalline inorganic semiconductors are used in composite thin films. The photophysics of such photoactive devices is based on the photoinduced charge transfer from donor type semiconducting molecules onto acceptor type molecules such as Buckminsterfullerene, C60 and/or nanoparticles. Similar to the first steps in natural photosynthesis, this photoinduced electron transfer leads to a number of potentially interesting applications which include sensitization of the photoconductivity and photovoltaic phenomena. Examples of photovoltaic architectures are discussed with their potential in terrestrial solar energy conversion. Several materials are introduced and discussed for their photovoltaic activities. Furthermore, nanomorphology has been investigated with AFM, SEM and TEM. The morphology/property relationship for a given photoactive system is found to be a major effect.

  15. Effects of electric field and magnetic induction on spin injection into organic semiconductors

    International Nuclear Information System (INIS)

    Wang, Y.M.; Ren, J.F.; Yuan, X.B.; Dou, Z.T.; Hu, G.C.

    2011-01-01

    Spin-polarized injection and transport into ferromagnetic/organic semiconductor structure are studied theoretically in the presence of the external electric field and magnetic induction. Based on the spin-drift-diffusion theory and Ohm's law, we obtain the charge current polarization, which takes into account the special carriers of organic semiconductors. From the calculation, it is found that the current spin polarization is enhanced by several orders of magnitude by tuning the magnetic induction and electric fields. To get an apparent current spin polarization, the effects of spin-depended interfacial resistances and the special carriers in the organic semiconductor, which are polarons and bipolarons, are also discussed. -- Research highlights: → Current polarization in ferromagnetic/organic semiconductor structure is obtained. → Calculations are based on spin-drift-diffusion theory and Ohm's law. → Current polarization is enhanced by tuning magnetic induction and electric fields. → Effects of interfacial resistances and the special carriers are also discussed.

  16. Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors

    International Nuclear Information System (INIS)

    Zhang Sanjun; Lanty, Gaetan; Lauret, Jean-Sebastien; Deleporte, Emmanuelle; Audebert, Pierre; Galmiche, Laurent

    2009-01-01

    We report on the synthesis of some novel organic-inorganic hybrid 2D perovskite semiconductors (R-(CH 2 ) n NH 3 ) 2 PbX 4 . These semiconductors are self-assembled intercalation nanolayers and have a multi-quantum-well energy level structure. We systematically vary the characteristic of organic groups (R-(CH 2 ) n NH 3 + ) to study the relationship between their structures and the optical properties of (R-(CH 2 ) n NH 3 ) 2 PbX 4 . From optical absorption and photoluminescence spectroscopy experiments performed on series of samples, we find some trends of choosing the organic groups to improve the optical performance of (R-(CH 2 ) n NH 3 ) 2 PbX 4 . A new organic group, which allows synthesis of nanolayer perovskite semiconductors with quite high photoluminescence efficiency and better long-term stability, has been found.

  17. Halopentacenes: Promising Candidates for Organic Semiconductors

    International Nuclear Information System (INIS)

    Gong-He, Du; Zhao-Yu, Ren; Ji-Ming, Zheng; Ping, Guo

    2009-01-01

    We introduce polar substituents such as F, Cl, Br into pentacene to enhance the dissolubility in common organic solvents while retaining the high charge-carrier mobilities of pentacene. Geometric structures, dipole moments, frontier molecule orbits, ionization potentials and electron affinities, as well as reorganization energies of those molecules, and of pentacene for comparison, are successively calculated by density functional theory. The results indicate that halopentacenes have rather small reorganization energies (< 0.2 eV), and when the substituents are in position 2 or positions 2 and 9, they are polarity molecules. Thus we conjecture that they can easily be dissolved in common organic solvents, and are promising candidates for organic semiconductors. (condensed matter: electronicstructure, electrical, magnetic, and opticalproperties)

  18. Steady-state photoconductivity and multi-particle interactions in high-mobility organic semiconductors.

    Science.gov (United States)

    Irkhin, P; Najafov, H; Podzorov, V

    2015-10-19

    Fundamental understanding of photocarrier generation, transport and recombination under a steady-state photoexcitation has been an important goal of organic electronics and photonics, since these processes govern such electronic properties of organic semiconductors as, for instance, photoconductivity. Here, we discovered that photoconductivity of a highly ordered organic semiconductor rubrene exhibits several distinct regimes, in which photocurrent as a function of cw (continuous wave) excitation intensity is described by a power law with exponents sequentially taking values 1, 1/3 and ¼. We show that in pristine crystals this photocurrent is generated at the very surface of the crystals, while the bulk photocurrent is drastically smaller and follows a different sequence of exponents, 1 and ½. We describe a simple experimental procedure, based on an application of "gauge effect" in high vacuum, that allows to disentangle the surface and bulk contributions to photoconductivity. A model based on singlet exciton fission, triplet fusion and triplet-charge quenching that can describe these non-trivial effects in photoconductivity of highly ordered organic semiconductors is proposed. Observation of these effects in photoconductivity and modeling of the underlying microscopic mechanisms described in this work represent a significant step forward in our understanding of electronic properties of organic semiconductors.

  19. Electronic and optical properties of diamond/organic semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Gajewski, Wojciech; Garrido, Jose; Niedermeier, Martin; Stutzmann, Martin [Walter Schottky Institute, TU Muenchen, Am Coulombwall 3, 85748 Garching (Germany); Williams, Oliver; Haenen, Ken [Institute for Materials Research, University of Hasselt, Wetenschapspark 1, BE-3590 Diepenbeek (Belgium)

    2007-07-01

    Different diamond substrates (single crystalline: SCD, poly-crystalline: PCD and nano-crystalline: NCD) were used to investigate the electronic and optical properties of the diamond/organic semiconductor heterostructures. Layers of a poly[ethynyl-(2-decyloxy-5methoxy)benzene] - PEB, pentacene and 4-nitro-biphenyl-4-diazonium cations - Ph-Ph-NO{sub 2} were prepared by spin coating, thermal evaporation and grafting, respectively. The measurements of the electronic transport along the organic layer were performed using a Hg probe as well as Hall effect measurements in the temperature range 70-400 K. The I-V characteristics of the B-doped diamond/organic semiconductor heterostructures were measured at room temperature by means of the Hg probe. Undoped IIa and undoped PCD films were used for a study of the optical and optoelectronic properties of prepared heterostructures. The influence of the organic layer homogeneity and layer thickness on the optical properties will be discussed. Furthermore, preliminary data on perpendicular and parallel transport in the heterostructures layer will be reported.

  20. Charge-transport simulations in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    May, Falk

    2012-07-06

    In this thesis we have extended the methods for microscopic charge-transport simulations for organic semiconductors, where weak intermolecular interactions lead to spatially localized charge carriers, and the charge transport occurs as an activated hopping process between diabatic states. In addition to weak electronic couplings between these states, different electrostatic environments in the organic material lead to a broadening of the density of states for the charge energies which limits carrier mobilities. The contributions to the method development include (i) the derivation of a bimolecular charge-transfer rate, (ii) the efficient evaluation of intermolecular (outer-sphere) reorganization energies, (iii) the investigation of effects of conformational disorder on intramolecular reorganization energies or internal site energies and (iv) the inclusion of self-consistent polarization interactions for calculation of charge energies. These methods were applied to study charge transport in amorphous phases of small molecules used in the emission layer of organic light emitting diodes (OLED). When bulky substituents are attached to an aromatic core in order to adjust energy levels or prevent crystallization, a small amount of delocalization of the frontier orbital to the substituents can increase electronic couplings between neighboring molecules. This leads to improved charge-transfer rates and, hence, larger charge-mobility. We therefore suggest using the mesomeric effect (as opposed to the inductive effect) when attaching substituents to aromatic cores, which is necessary for example in deep blue OLEDs, where the energy levels of a host molecule have to be adjusted to those of the emitter. Furthermore, the energy landscape for charges in an amorphous phase cannot be predicted by mesoscopic models because they approximate the realistic morphology by a lattice and represent molecular charge distributions in a multipole expansion. The microscopic approach shows that

  1. Origin and role of gap states in organic semiconductor studied by UPS: as the nature of organic molecular crystals

    International Nuclear Information System (INIS)

    Yang, Jin-Peng; Bussolotti, Fabio; Kera, Satoshi; Ueno, Nobuo

    2017-01-01

    This article reviews experimental studies on ‘bridging electronic structure and charge transport property of organic semiconductors’ performed using ultraviolet photoelectron spectroscopy (UPS) and related methods mainly in Chiba University, Japan, in particular on the investigation of the origin and the role of electronic states existing in the highest occupied molecular orbital band–lowest unoccupied molecular orbital band (HOMO–LUMO) gap. We summarize experimental observations including direct measurements of ‘invisible’ gap states with ultrahigh sensitivity UPS, which demonstrate that there exist intrinsic gap states in organic semiconductors. We firstly describe the nature of organic molecular solids to understand features of organic semiconductors because such intrinsic gap states are a result of the interplay of these features, which give the principal difference between the organic semiconductor and inorganic counterpart. We then discuss (i) the origin and role of the band gap states in relation to intermolecular interaction/band dispersion and electron–phonon coupling, (ii) the Fermi level pinning issue in organic semiconductors, and (iii) the method of computing the Fermi level position within the HOMO–LUMO gap for experimental groups. The gap states of organic semiconductors appear easily when a weak perturbation is applied to the organic system, namely by contact with other material, by injecting a charge, by elevating temperature, and by exposure to 1 atm gas. What we finally found is that tailing states of HOMO and LUMO always exist, and their energy distributions must not be symmetric; they thus produce a larger Fermi level shift from the mid gap position than previously thought. Furthermore, as shown by computational work, Fermi level pinning , which is a well-known phenomena in semiconductor devices field, occurs in weakly interacting organic/conductor systems without any gap states if the system temperature is not zero ( T

  2. Origin and role of gap states in organic semiconductor studied by UPS: as the nature of organic molecular crystals

    Science.gov (United States)

    Yang, Jin-Peng; Bussolotti, Fabio; Kera, Satoshi; Ueno, Nobuo

    2017-10-01

    This article reviews experimental studies on ‘bridging electronic structure and charge transport property of organic semiconductors’ performed using ultraviolet photoelectron spectroscopy (UPS) and related methods mainly in Chiba University, Japan, in particular on the investigation of the origin and the role of electronic states existing in the highest occupied molecular orbital band-lowest unoccupied molecular orbital band (HOMO-LUMO) gap. We summarize experimental observations including direct measurements of ‘invisible’ gap states with ultrahigh sensitivity UPS, which demonstrate that there exist intrinsic gap states in organic semiconductors. We firstly describe the nature of organic molecular solids to understand features of organic semiconductors because such intrinsic gap states are a result of the interplay of these features, which give the principal difference between the organic semiconductor and inorganic counterpart. We then discuss (i) the origin and role of the band gap states in relation to intermolecular interaction/band dispersion and electron-phonon coupling, (ii) the Fermi level pinning issue in organic semiconductors, and (iii) the method of computing the Fermi level position within the HOMO-LUMO gap for experimental groups. The gap states of organic semiconductors appear easily when a weak perturbation is applied to the organic system, namely by contact with other material, by injecting a charge, by elevating temperature, and by exposure to 1 atm gas. What we finally found is that tailing states of HOMO and LUMO always exist, and their energy distributions must not be symmetric; they thus produce a larger Fermi level shift from the mid gap position than previously thought. Furthermore, as shown by computational work, Fermi level pinning, which is a well-known phenomena in semiconductor devices field, occurs in weakly interacting organic/conductor systems without any gap states if the system temperature is not zero (T  >  0). We

  3. Organic-inorganic semiconductor devices and 3, 4, 9, 10 perylenetetracarboxylic dianhydride: an early history of organic electronics

    International Nuclear Information System (INIS)

    Forrest, S R

    2003-01-01

    The demonstration, over 20 years ago, of an organic-inorganic heterojunction (OI HJ) device along with investigations of the growth and physical properties of the archetypal crystalline molecular organic semiconductor 3, 4, 9, 10 perylenetetracarboxylic dianhydride are discussed. Possible applications of OI HJ devices are introduced and the dramatic change in conductive properties of these materials when exposed to high-energy ion beams is described. The past and future prospects for hybrid organic-on-inorganic semiconductor structures for use in electronic and photonic applications are also presented

  4. Efficient light emission from inorganic and organic semiconductor hybrid structures by energy-level tuning.

    Science.gov (United States)

    Schlesinger, R; Bianchi, F; Blumstengel, S; Christodoulou, C; Ovsyannikov, R; Kobin, B; Moudgil, K; Barlow, S; Hecht, S; Marder, S R; Henneberger, F; Koch, N

    2015-04-15

    The fundamental limits of inorganic semiconductors for light emitting applications, such as holographic displays, biomedical imaging and ultrafast data processing and communication, might be overcome by hybridization with their organic counterparts, which feature enhanced frequency response and colour range. Innovative hybrid inorganic/organic structures exploit efficient electrical injection and high excitation density of inorganic semiconductors and subsequent energy transfer to the organic semiconductor, provided that the radiative emission yield is high. An inherent obstacle to that end is the unfavourable energy level offset at hybrid inorganic/organic structures, which rather facilitates charge transfer that quenches light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure's energy levels, here comprising ZnO and a tailored ladder-type oligophenylene. The ZnO work function is substantially lowered with an organometallic donor monolayer, aligning the frontier levels of the inorganic and organic semiconductors. This increases the hybrid structure's radiative emission yield sevenfold, validating the relevance of our approach.

  5. Efficient light emission from inorganic and organic semiconductor hybrid structures by energy-level tuning

    Science.gov (United States)

    Schlesinger, R.; Bianchi, F.; Blumstengel, S.; Christodoulou, C.; Ovsyannikov, R.; Kobin, B.; Moudgil, K.; Barlow, S.; Hecht, S.; Marder, S.R.; Henneberger, F.; Koch, N.

    2015-01-01

    The fundamental limits of inorganic semiconductors for light emitting applications, such as holographic displays, biomedical imaging and ultrafast data processing and communication, might be overcome by hybridization with their organic counterparts, which feature enhanced frequency response and colour range. Innovative hybrid inorganic/organic structures exploit efficient electrical injection and high excitation density of inorganic semiconductors and subsequent energy transfer to the organic semiconductor, provided that the radiative emission yield is high. An inherent obstacle to that end is the unfavourable energy level offset at hybrid inorganic/organic structures, which rather facilitates charge transfer that quenches light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure's energy levels, here comprising ZnO and a tailored ladder-type oligophenylene. The ZnO work function is substantially lowered with an organometallic donor monolayer, aligning the frontier levels of the inorganic and organic semiconductors. This increases the hybrid structure's radiative emission yield sevenfold, validating the relevance of our approach. PMID:25872919

  6. Achieving Optimal Self-Adaptivity for Dynamic Tuning of Organic Semiconductors through Resonance Engineering.

    Science.gov (United States)

    Tao, Ye; Xu, Lijia; Zhang, Zhen; Chen, Runfeng; Li, Huanhuan; Xu, Hui; Zheng, Chao; Huang, Wei

    2016-08-03

    Current static-state explorations of organic semiconductors for optimal material properties and device performance are hindered by limited insights into the dynamically changed molecular states and charge transport and energy transfer processes upon device operation. Here, we propose a simple yet successful strategy, resonance variation-based dynamic adaptation (RVDA), to realize optimized self-adaptive properties in donor-resonance-acceptor molecules by engineering the resonance variation for dynamic tuning of organic semiconductors. Organic light-emitting diodes hosted by these RVDA materials exhibit remarkably high performance, with external quantum efficiencies up to 21.7% and favorable device stability. Our approach, which supports simultaneous realization of dynamically adapted and selectively enhanced properties via resonance engineering, illustrates a feasible design map for the preparation of smart organic semiconductors capable of dynamic structure and property modulations, promoting the studies of organic electronics from static to dynamic.

  7. Surface planarization effect of siloxane derivatives in organic semiconductor layers

    Energy Technology Data Exchange (ETDEWEB)

    Sakanoue, Kei [Center for Organic Photonics and Electronics Research, Kyushu University, Nishi-ku, Fukuoka 819-0395 (Japan); Harada, Hironobu; Ando, Kento [Department of Chemical Engineering, Graduate School of Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395 (Japan); Yahiro, Masayuki [Institute of Systems, Information Technologies and Nanotechnologies, 2-1-22, Sawara-ku, Fukuoka 814-0001 (Japan); Fukai, Jun, E-mail: jfukai@chem-eng.kyushu-u.ac.jp [Department of Chemical Engineering, Graduate School of Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395 (Japan)

    2015-12-31

    The ability of siloxane surface control additives (SCAs) to planarize organic semiconductor films with a thickness of tens of nanometers printed on indium tin oxide (ITO) surfaces with stripe-patterned bank structures using a liquid-phase method is demonstrated. Three types of SCAs with different molecular structures are examined in organic solutions of toluene, anisole and tetralin containing N,N′-bis(3-methylphenyl)-N,N′-bis(phenyl)-benzidine as a solute and typical organic semiconductor. While there is an optimum SCA and concentration for each solution, one type of SCA is comprehensively effective for all solutions. This SCA increased contact angle, which is contrary to the typical behavior of SCAs. Scanning electron microscope images of the thin films near the banks reveal that this SCA did not change the contact area between the film and substrate surface, which is related to the effectiveness of the SCA. SCAs did not affect the current–voltage characteristics of green organic light-emitting diodes, but did increase external quantum efficiencies, suggesting that SCAs can be used to improve the quality of solution-deposited films for use in optical devices. - Highlights: • Surface control additives planarize organic semiconductor films coated on surfaces. • The most effective additive increases the contact angle of solutions during drying. • The effect of additives is deduced from solutal Marangoni forces. • Additives have little effect on organic light-emitting diode performance.

  8. Surface planarization effect of siloxane derivatives in organic semiconductor layers

    International Nuclear Information System (INIS)

    Sakanoue, Kei; Harada, Hironobu; Ando, Kento; Yahiro, Masayuki; Fukai, Jun

    2015-01-01

    The ability of siloxane surface control additives (SCAs) to planarize organic semiconductor films with a thickness of tens of nanometers printed on indium tin oxide (ITO) surfaces with stripe-patterned bank structures using a liquid-phase method is demonstrated. Three types of SCAs with different molecular structures are examined in organic solutions of toluene, anisole and tetralin containing N,N′-bis(3-methylphenyl)-N,N′-bis(phenyl)-benzidine as a solute and typical organic semiconductor. While there is an optimum SCA and concentration for each solution, one type of SCA is comprehensively effective for all solutions. This SCA increased contact angle, which is contrary to the typical behavior of SCAs. Scanning electron microscope images of the thin films near the banks reveal that this SCA did not change the contact area between the film and substrate surface, which is related to the effectiveness of the SCA. SCAs did not affect the current–voltage characteristics of green organic light-emitting diodes, but did increase external quantum efficiencies, suggesting that SCAs can be used to improve the quality of solution-deposited films for use in optical devices. - Highlights: • Surface control additives planarize organic semiconductor films coated on surfaces. • The most effective additive increases the contact angle of solutions during drying. • The effect of additives is deduced from solutal Marangoni forces. • Additives have little effect on organic light-emitting diode performance.

  9. Charge-transfer mobility and electrical conductivity of PANI as conjugated organic semiconductors.

    Science.gov (United States)

    Zhang, Yahong; Duan, Yuping; Song, Lulu; Zheng, Daoyuan; Zhang, Mingxing; Zhao, Guangjiu

    2017-09-21

    The intramolecular charge transfer properties of a phenyl-end-capped aniline tetramer (ANIH) and a chloro-substituted derivative (ANICl) as organic semiconductors were theoretically studied through the first-principles calculation based on the Marcus-Hush theory. The reorganization energies, intermolecular electronic couplings, angular resolution anisotropic mobilities, and density of states of the two crystals were evaluated. The calculated results demonstrate that both ANIH and ANICl crystals show the higher electron transfer mobilities than the hole-transfer mobilities, which means that the two crystals should prefer to function as n-type organic semiconductors. Furthermore, the angle dependence mobilities of the two crystals show remarkable anisotropic character. The maximum mobility μ max of ANIH and ANICl crystals is 1.3893 and 0.0272 cm 2 V -1 s -1 , which appear at the orientation angles near 176°/356° and 119°/299° of a conducting channel on the a-b reference plane. It is synthetically evaluated that the ANIH crystal possesses relatively lower reorganization energy, higher electronic coupling, and electron transfer mobility, which means that the ANIH crystal may be the more ideal candidate as a high performance n-type organic semiconductor material. The systematic theoretical studies on organic crystals should be conducive to evaluating the charge-transport properties and designing higher performance organic semiconductor materials.

  10. Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Sanjun; Lanty, Gaetan; Lauret, Jean-Sebastien [Laboratoire de Photonique Quantique et Moleculaire de l' Ecole Normale Superieure de Cachan, 61 avenue du President Wilson, 94235 Cachan (France); Deleporte, Emmanuelle, E-mail: Emmanuelle.Deleporte@lpqm.ens-cachan.fr [Laboratoire de Photonique Quantique et Moleculaire de l' Ecole Normale Superieure de Cachan, 61 avenue du President Wilson, 94235 Cachan (France); Audebert, Pierre; Galmiche, Laurent [Laboratoire de Photophysique et Photochimie Supramoleculaires et Macromoleculaires de l' Ecole Normale Superieure de Cachan, 61 avenue du President Wilson, 94235 Cachan (France)

    2009-06-15

    We report on the synthesis of some novel organic-inorganic hybrid 2D perovskite semiconductors (R-(CH{sub 2}){sub n}NH{sub 3}){sub 2}PbX{sub 4}. These semiconductors are self-assembled intercalation nanolayers and have a multi-quantum-well energy level structure. We systematically vary the characteristic of organic groups (R-(CH{sub 2}){sub n}NH{sub 3}{sup +}) to study the relationship between their structures and the optical properties of (R-(CH{sub 2}){sub n}NH{sub 3}){sub 2}PbX{sub 4}. From optical absorption and photoluminescence spectroscopy experiments performed on series of samples, we find some trends of choosing the organic groups to improve the optical performance of (R-(CH{sub 2}){sub n}NH{sub 3}){sub 2}PbX{sub 4}. A new organic group, which allows synthesis of nanolayer perovskite semiconductors with quite high photoluminescence efficiency and better long-term stability, has been found.

  11. Ambipolar Small-Molecule:Polymer Blend Semiconductors for Solution-Processable Organic Field-Effect Transistors.

    Science.gov (United States)

    Kang, Minji; Hwang, Hansu; Park, Won-Tae; Khim, Dongyoon; Yeo, Jun-Seok; Kim, Yunseul; Kim, Yeon-Ju; Noh, Yong-Young; Kim, Dong-Yu

    2017-01-25

    We report on the fabrication of an organic thin-film semiconductor formed using a blend solution of soluble ambipolar small molecules and an insulating polymer binder that exhibits vertical phase separation and uniform film formation. The semiconductor thin films are produced in a single step from a mixture containing a small molecular semiconductor, namely, quinoidal biselenophene (QBS), and a binder polymer, namely, poly(2-vinylnaphthalene) (PVN). Organic field-effect transistors (OFETs) based on QBS/PVN blend semiconductor are then assembled using top-gate/bottom-contact device configuration, which achieve almost four times higher mobility than the neat QBS semiconductor. Depth profile via secondary ion mass spectrometry and atomic force microscopy images indicate that the QBS domains in the films made from the blend are evenly distributed with a smooth morphology at the bottom of the PVN layer. Bias stress test and variable-temperature measurements on QBS-based OFETs reveal that the QBS/PVN blend semiconductor remarkably reduces the number of trap sites at the gate dielectric/semiconductor interface and the activation energy in the transistor channel. This work provides a one-step solution processing technique, which makes use of soluble ambipolar small molecules to form a thin-film semiconductor for application in high-performance OFETs.

  12. Integrated Materials Design of Organic Semiconductors for Field-Effect Transistors

    KAUST Repository

    Mei, Jianguo; Diao, Ying; Appleton, Anthony L.; Fang, Lei; Bao, Zhenan

    2013-01-01

    The past couple of years have witnessed a remarkable burst in the development of organic field-effect transistors (OFETs), with a number of organic semiconductors surpassing the benchmark mobility of 10 cm2/(V s). In this perspective, we highlight

  13. Comparison of electron and phonon transport in disordered semiconductor carbon nanotubes

    DEFF Research Database (Denmark)

    Sevincli, Haldun; Lehmann, T.; Ryndyk, D. A.

    2013-01-01

    as a function of length of the disordered device shows that both electrons and phonons with different energies display different transport regimes, i.e. quasi-ballistic, diffusive and localization regimes coexist. In the light of the results we discuss heating of the semiconductor device in electronic...

  14. Electron dynamics in intentionally disordered semiconductor superlattices

    International Nuclear Information System (INIS)

    Diez, E.; Sanchez, A.; Dominguez-Adame, F.; Berman, G.P.

    1996-01-01

    We study the dynamical behavior of disordered quantum well-based semiconductor superlattices where the disorder is intentional and short-range correlated. We show that, whereas the transmission time of a particle grows exponentially with the number of wells in an usual disordered superlattice for any value of the incident particle energy, for specific values of the incident energy this time increases linearly when correlated disorder is included. As expected, those values of the energy coincide with a narrow subband of extended states predicted by the static calculations of Domacute inguez-Adame et al.[Phys. Rev. B 51, 14359 (1994)]; such states are seen in our dynamical results to exhibit a ballistic regime, very close to the WKB approximation of a perfect superlattice. Fourier transform of the output signal for an incident Gaussian wave packet reveals a dramatic filtering of the original signal, which makes us confident that devices based on this property may be designed and used for nanotechnological applications. This is more so in view of the possibility of controlling the output band using a dc-electric field, which we also discuss. In the conclusion we summarize our results and present an outlook for future developments arising from this work. copyright 1996 The American Physical Society

  15. Influence of disorder on transfer characteristics of organic electrochemical transistors

    KAUST Repository

    Friedlein, Jacob T.

    2017-07-13

    Organic electrochemical transistors (OECTs) are receiving a great deal of attention as transducers of biological signals due to their high transconductance. A ubiquitous property of these devices is the non-monotonic dependence of transconductance on gate voltage. However, this behavior is not described by existing models. Using OECTs made of materials with different chemical and electrical properties, we show that this behavior arises from the influence of disorder on the electronic transport properties of the organic semiconductor and occurs even in the absence of contact resistance. These results imply that the non-monotonic transconductance is an intrinsic property of OECTs and cannot be eliminated by device design or contact engineering. Finally, we present a model based on the physics of electronic conduction in disordered materials. This model fits experimental transconductance curves and describes strategies for rational material design to improve OECT performance in sensing applications.

  16. Influence of disorder on transfer characteristics of organic electrochemical transistors

    KAUST Repository

    Friedlein, Jacob T.; Rivnay, Jonathan; Dunlap, David H.; McCulloch, Iain; Shaheen, Sean E.; McLeod, Robert R.; Malliaras, George G.

    2017-01-01

    Organic electrochemical transistors (OECTs) are receiving a great deal of attention as transducers of biological signals due to their high transconductance. A ubiquitous property of these devices is the non-monotonic dependence of transconductance on gate voltage. However, this behavior is not described by existing models. Using OECTs made of materials with different chemical and electrical properties, we show that this behavior arises from the influence of disorder on the electronic transport properties of the organic semiconductor and occurs even in the absence of contact resistance. These results imply that the non-monotonic transconductance is an intrinsic property of OECTs and cannot be eliminated by device design or contact engineering. Finally, we present a model based on the physics of electronic conduction in disordered materials. This model fits experimental transconductance curves and describes strategies for rational material design to improve OECT performance in sensing applications.

  17. Influence of disorder on transfer characteristics of organic electrochemical transistors

    Science.gov (United States)

    Friedlein, Jacob T.; Rivnay, Jonathan; Dunlap, David H.; McCulloch, Iain; Shaheen, Sean E.; McLeod, Robert R.; Malliaras, George G.

    2017-07-01

    Organic electrochemical transistors (OECTs) are receiving a great deal of attention as transducers of biological signals due to their high transconductance. A ubiquitous property of these devices is the non-monotonic dependence of transconductance on gate voltage. However, this behavior is not described by existing models. Using OECTs made of materials with different chemical and electrical properties, we show that this behavior arises from the influence of disorder on the electronic transport properties of the organic semiconductor and occurs even in the absence of contact resistance. These results imply that the non-monotonic transconductance is an intrinsic property of OECTs and cannot be eliminated by device design or contact engineering. Finally, we present a model based on the physics of electronic conduction in disordered materials. This model fits experimental transconductance curves and describes strategies for rational material design to improve OECT performance in sensing applications.

  18. Self-aligned metallization on organic semiconductor through 3D dual-layer thermal nanoimprint

    International Nuclear Information System (INIS)

    Jung, Y; Cheng, X

    2014-01-01

    High-resolution patterning of metal structures on organic semiconductors is important to the realization of high-performance organic transistors for organic integrated circuit applications. The traditional shadow mask technique has a limited resolution, precluding sub-micron metal structures on organic semiconductors. Thus organic transistors cannot benefit from scaling into the deep sub-micron region to improve their dc and ac performances. In this work, we report an efficient multiple-level metallization on poly (3-hexylthiophene) (P3HT) with a deep sub-micron lateral gap. By using a 3D nanoimprint mold in a dual-layer thermal nanoimprint process, we achieved self-aligned two-level metallization on P3HT. The 3D dual-layer thermal nanoimprint enables the first metal patterns to have suspending side-wings that can clearly define a distance from the second metal patterns. Isotropic and anisotropic side-wing structures can be fabricated through two different schemes. The process based on isotropic side-wings achieves a lateral-gap in the order of 100 nm (scheme 1). A gap of 60 nm can be achieved from the process with anisotropic side-wings (scheme 2). Because of the capability of nanoscale metal patterning on organic semiconductors with high overlay accuracy, this self-aligned metallization technique can be utilized to fabricate high-performance organic metal semiconductor field-effect transistor. (paper)

  19. Self-interaction and charge transfer in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Koerzdoerfer, Thomas

    2009-12-18

    This work concentrates on the problem of self-interaction, which is one of the most serious problems of commonly used approximative density functionals. As a major result of this work, it is demonstrated that self-interaction plays a decisive role for the performance of different approximative functionals in predicting accurate electronic properties of organic molecular semiconductors. In search for a solution to the self-interaction problem, a new concept for correcting commonly used density functionals for self-interaction is introduced and applied to a variety of systems, spanning small molecules, extended molecular chains, and organic molecular semiconductors. It is further shown that the performance of functionals that are not free from self-interaction can vary strongly for different systems and observables of interest, thus entailing the danger of misinterpretation of the results obtained from those functionals. The underlying reasons for the varying performance of commonly used density functionals are discussed thoroughly in this work. Finally, this thesis provides strategies that allow to analyze the reliability of commonly used approximations to the exchange-correlation functional for particular systems of interest. This cumulative dissertation is divided into three parts. Part I gives a short introduction into DFT and its time-dependent extension (TDDFT). Part II provides further insights into the self-interaction problem, presents a newly developed concept for the correction of self-interaction, gives an introduction into the publications, and discusses their basic results. Finally, the four publications on self-interaction and charge-transfer in extended molecular systems and organic molecular semiconductors are collected in Part III. (orig.)

  20. Origin of poor doping efficiency in solution processed organic semiconductors.

    Science.gov (United States)

    Jha, Ajay; Duan, Hong-Guang; Tiwari, Vandana; Thorwart, Michael; Miller, R J Dwayne

    2018-05-21

    Doping is an extremely important process where intentional insertion of impurities in semiconductors controls their electronic properties. In organic semiconductors, one of the convenient, but inefficient, ways of doping is the spin casting of a precursor mixture of components in solution, followed by solvent evaporation. Active control over this process holds the key to significant improvements over current poor doping efficiencies. Yet, an optimized control can only come from a detailed understanding of electronic interactions responsible for the low doping efficiencies. Here, we use two-dimensional nonlinear optical spectroscopy to examine these interactions in the course of the doping process by probing the solution mixture of doped organic semiconductors. A dopant accepts an electron from the semiconductor and the two ions form a duplex of interacting charges known as ion-pair complexes. Well-resolved off-diagonal peaks in the two-dimensional spectra clearly demonstrate the electronic connectivity among the ions in solution. This electronic interaction represents a well resolved electrostatically bound state, as opposed to a random distribution of ions. We developed a theoretical model to recover the experimental data, which reveals an unexpectedly strong electronic coupling of ∼250 cm -1 with an intermolecular distance of ∼4.5 Å between ions in solution, which is approximately the expected distance in processed films. The fact that this relationship persists from solution to the processed film gives direct evidence that Coulomb interactions are retained from the precursor solution to the processed films. This memory effect renders the charge carriers equally bound also in the film and, hence, results in poor doping efficiencies. This new insight will help pave the way towards rational tailoring of the electronic interactions to improve doping efficiencies in processed organic semiconductor thin films.

  1. Crystal step edges can trap electrons on the surfaces of n-type organic semiconductors.

    Science.gov (United States)

    He, Tao; Wu, Yanfei; D'Avino, Gabriele; Schmidt, Elliot; Stolte, Matthias; Cornil, Jérôme; Beljonne, David; Ruden, P Paul; Würthner, Frank; Frisbie, C Daniel

    2018-05-30

    Understanding relationships between microstructure and electrical transport is an important goal for the materials science of organic semiconductors. Combining high-resolution surface potential mapping by scanning Kelvin probe microscopy (SKPM) with systematic field effect transport measurements, we show that step edges can trap electrons on the surfaces of single crystal organic semiconductors. n-type organic semiconductor crystals exhibiting positive step edge surface potentials display threshold voltages that increase and carrier mobilities that decrease with increasing step density, characteristic of trapping, whereas crystals that do not have positive step edge surface potentials do not have strongly step density dependent transport. A device model and microelectrostatics calculations suggest that trapping can be intrinsic to step edges for crystals of molecules with polar substituents. The results provide a unique example of a specific microstructure-charge trapping relationship and highlight the utility of surface potential imaging in combination with transport measurements as a productive strategy for uncovering microscopic structure-property relationships in organic semiconductors.

  2. Ferromagnetic clusters induced by a nonmagnetic random disorder in diluted magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bui, Dinh-Hoi [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam); Physics Department, Hue University’s College of Education, 34 Le Loi, Hue (Viet Nam); Phan, Van-Nham, E-mail: phanvannham@dtu.edu.vn [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam)

    2016-12-15

    In this work, we analyze the nonmagnetic random disorder leading to a formation of ferromagnetic clusters in diluted magnetic semiconductors. The nonmagnetic random disorder arises from randomness in the host lattice. Including the disorder to the Kondo lattice model with random distribution of magnetic dopants, the ferromagnetic–paramagnetic transition in the system is investigated in the framework of dynamical mean-field theory. At a certain low temperature one finds a fraction of ferromagnetic sites transiting to the paramagnetic state. Enlarging the nonmagnetic random disorder strength, the paramagnetic regimes expand resulting in the formation of the ferromagnetic clusters.

  3. N-doping of organic semiconductors by bis-metallosandwich compounds

    Science.gov (United States)

    Barlow, Stephen; Qi, Yabing; Kahn, Antoine; Marder, Seth; Kim, Sang Bok; Mohapatra, Swagat K.; Guo, Song

    2016-01-05

    The various inventions disclosed, described, and/or claimed herein relate to the field of methods for n-doping organic semiconductors with certain bis-metallosandwich compounds, the doped compositions produced, and the uses of the doped compositions in organic electronic devices. Metals can be manganese, rhenium, iron, ruthenium, osmium, rhodium, or iridium. Stable and efficient doping can be achieved.

  4. An Ultrasensitive Organic Semiconductor NO2 Sensor Based on Crystalline TIPS-Pentacene Films.

    Science.gov (United States)

    Wang, Zi; Huang, Lizhen; Zhu, Xiaofei; Zhou, Xu; Chi, Lifeng

    2017-10-01

    Organic semiconductor gas sensor is one of the promising candidates of room temperature operated gas sensors with high selectivity. However, for a long time the performance of organic semiconductor sensors, especially for the detection of oxidizing gases, is far behind that of the traditional metal oxide gas sensors. Although intensive attempts have been made to address the problem, the performance and the understanding of the sensing mechanism are still far from sufficient. Herein, an ultrasensitive organic semiconductor NO 2 sensor based on 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-petacene) is reported. The device achieves a sensitivity over 1000%/ppm and fast response/recovery, together with a low limit of detection (LOD) of 20 ppb, all of which reach the level of metal oxide sensors. After a comprehensive analysis on the morphology and electrical properties of the organic films, it is revealed that the ultrahigh performance is largely related to the film charge transport ability, which was less concerned in the studies previously. And the combination of efficient charge transport and low original charge carrier concentration is demonstrated to be an effective access to obtain high performance organic semiconductor gas sensors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Precise, Self-Limited Epitaxy of Ultrathin Organic Semiconductors and Heterojunctions Tailored by van der Waals Interactions.

    Science.gov (United States)

    Wu, Bing; Zhao, Yinghe; Nan, Haiyan; Yang, Ziyi; Zhang, Yuhan; Zhao, Huijuan; He, Daowei; Jiang, Zonglin; Liu, Xiaolong; Li, Yun; Shi, Yi; Ni, Zhenhua; Wang, Jinlan; Xu, Jian-Bin; Wang, Xinran

    2016-06-08

    Precise assembly of semiconductor heterojunctions is the key to realize many optoelectronic devices. By exploiting the strong and tunable van der Waals (vdW) forces between graphene and organic small molecules, we demonstrate layer-by-layer epitaxy of ultrathin organic semiconductors and heterostructures with unprecedented precision with well-defined number of layers and self-limited characteristics. We further demonstrate organic p-n heterojunctions with molecularly flat interface, which exhibit excellent rectifying behavior and photovoltaic responses. The self-limited organic molecular beam epitaxy (SLOMBE) is generically applicable for many layered small-molecule semiconductors and may lead to advanced organic optoelectronic devices beyond bulk heterojunctions.

  6. New mechanism of semiconductor polarization at the interface with an organic insulator

    International Nuclear Information System (INIS)

    Yafyasov, A. M.; Bogevolnov, V. B.; Ryumtsev, E. I.; Kovshik, A. P.; Mikhailovski, V. Yu.

    2017-01-01

    A semiconductor—organic-insulator system with spatially distributed charge is created with a uniquely low density of fast surface states (N_s_s) at the interface. A system with N_s_s ≈ 5 × 10"1"0 cm"–"2 is obtained for the example of n-Ge and the physical characteristics of the interface are measured for this system with liquid and metal field electrodes. For a system with an organic insulator, the range of variation of the surface potential from enrichment of the space-charge region of the semiconductor to the inversion state is first obtained without changing the mechanism of interaction between the adsorbed layer and the semiconductor surface. The effect of enhanced polarization of the space-charge region of the semiconductor occurs due to a change in the spatial structure of mobile charge in the organic dielectric layer. The system developed in the study opens up technological opportunities for the formation of a new generation of electronic devices based on organic film structures and for experimental modeling of the electronic properties of biological membranes.

  7. New mechanism of semiconductor polarization at the interface with an organic insulator

    Energy Technology Data Exchange (ETDEWEB)

    Yafyasov, A. M., E-mail: yafyasov@gmail.com; Bogevolnov, V. B.; Ryumtsev, E. I.; Kovshik, A. P. [St. Petersburg State University (Russian Federation); Mikhailovski, V. Yu. [Interdisciplinary Resource Center for Nanotechnology at St. Petersburg University (Russian Federation)

    2017-02-15

    A semiconductor—organic-insulator system with spatially distributed charge is created with a uniquely low density of fast surface states (N{sub ss}) at the interface. A system with N{sub ss} ≈ 5 × 10{sup 10} cm{sup –2} is obtained for the example of n-Ge and the physical characteristics of the interface are measured for this system with liquid and metal field electrodes. For a system with an organic insulator, the range of variation of the surface potential from enrichment of the space-charge region of the semiconductor to the inversion state is first obtained without changing the mechanism of interaction between the adsorbed layer and the semiconductor surface. The effect of enhanced polarization of the space-charge region of the semiconductor occurs due to a change in the spatial structure of mobile charge in the organic dielectric layer. The system developed in the study opens up technological opportunities for the formation of a new generation of electronic devices based on organic film structures and for experimental modeling of the electronic properties of biological membranes.

  8. Charge separation at disordered semiconductor heterojunctions from random walk numerical simulations.

    Science.gov (United States)

    Mandujano-Ramírez, Humberto J; González-Vázquez, José P; Oskam, Gerko; Dittrich, Thomas; Garcia-Belmonte, Germa; Mora-Seró, Iván; Bisquert, Juan; Anta, Juan A

    2014-03-07

    Many recent advances in novel solar cell technologies are based on charge separation in disordered semiconductor heterojunctions. In this work we use the Random Walk Numerical Simulation (RWNS) method to model the dynamics of electrons and holes in two disordered semiconductors in contact. Miller-Abrahams hopping rates and a tunnelling distance-dependent electron-hole annihilation mechanism are used to model transport and recombination, respectively. To test the validity of the model, three numerical "experiments" have been devised: (1) in the absence of constant illumination, charge separation has been quantified by computing surface photovoltage (SPV) transients. (2) By applying a continuous generation of electron-hole pairs, the model can be used to simulate a solar cell under steady-state conditions. This has been exploited to calculate open-circuit voltages and recombination currents for an archetypical bulk heterojunction solar cell (BHJ). (3) The calculations have been extended to nanostructured solar cells with inorganic sensitizers to study, specifically, non-ideality in the recombination rate. The RWNS model in combination with exponential disorder and an activated tunnelling mechanism for transport and recombination is shown to reproduce correctly charge separation parameters in these three "experiments". This provides a theoretical basis to study relevant features of novel solar cell technologies.

  9. Three-dimensional charge transport in organic semiconductor single crystals.

    Science.gov (United States)

    He, Tao; Zhang, Xiying; Jia, Jiong; Li, Yexin; Tao, Xutang

    2012-04-24

    Three-dimensional charge transport anisotropy in organic semiconductor single crystals - both plates and rods (above and below, respectively, in the figure) - is measured in well-performing organic field-effect transistors for the first time. The results provide an excellent model for molecular design and device preparation that leads to good performance. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Development of n-type polymer semiconductors for organic field-effect transistors

    International Nuclear Information System (INIS)

    Choi, Jongwan; Kim, Nakjoong; Song, Heeseok; Kim, Felix Sunjoo

    2015-01-01

    We review herein the development of unipolar n-type polymer semiconductors in organic field-effect transistors, which would enable large-scale deployment of printed electronics in combination with a fast-growing area of p-type counterparts. After discussing general features of electron transport in organic semiconductors, various π-conjugated polymers that are capable of transporting electrons are selected and summarized to outline the design principles for enhancing electron mobility and stability in air. The n-type polymer semiconductors with high electron mobility and good stability in air share common features of low-lying frontier molecular orbital energy levels achieved by design. In this review, materials are listed in roughly chronological order of the appearance of the key building blocks, such as various arylene diimides, or structural characteristics, including nitrile and fluorinated groups, in order to present the progress in the area of n-type polymers. (paper)

  11. Electrical characterization of organic-on-inorganic semiconductor Schottky structures

    International Nuclear Information System (INIS)

    Guellue, Oe; Tueruet, A; Asubay, S

    2008-01-01

    We prepared a methyl red/p-InP organic-inorganic (OI) Schottky device formed by evaporation of an organic compound solution directly to a p-InP semiconductor wafer. The value of the optical band gap energy of the methyl red organic film on a glass substrate was obtained as 2.0 eV. It was seen that the Al/methyl red/p-InP contacts showed a good rectifying behavior. An ideality factor of 2.02 and a barrier height (Φ b ) of 1.11 eV for the Al/methyl red/p-InP contact were determined from the forward bias I-V characteristics. It was seen that the value of 1.11 eV obtained for Φ b for the Al/methyl red/p-InP contact was significantly larger than the value of 0.83 eV for conventional Al/p-InP Schottky diodes. Modification of the interfacial potential barrier for the Al/p-InP diode was achieved using a thin interlayer of the methyl red organic semiconductor. This ascribed to the fact that the methyl red interlayer increases the effective Φ b by influencing the space charge region of InP

  12. Paramagnetic resonance and electronic conduction in organic semiconductors

    International Nuclear Information System (INIS)

    Nechtschein, M.

    1963-01-01

    As some organic bodies simultaneously display semi-conducting properties and a paramagnetism, this report addresses the study of conduction in organic bodies. The author first briefly recalls how relationships between conductibility and Electron Paramagnetic Resonance (EPR) can be noticed in a specific case (mineral and metallic semiconductors). He discusses published results related to paramagnetism and conductibility in organic bodies. He reviews various categories of organic bodies in which both properties are simultaneously present. He notably addresses radical molecular crystals, non-radical molecular crystals, charge transfer complexes, pyrolyzed coals, and pseudo-ferromagnetic organic structures. He discusses the issue of relationships between conduction (charge transfer by electrons) and ERP (which reveals the existence of non-paired electrons which provide free spins)

  13. Organic semiconductor density of states controls the energy level alignment at electrode interfaces

    Science.gov (United States)

    Oehzelt, Martin; Koch, Norbert; Heimel, Georg

    2014-01-01

    Minimizing charge carrier injection barriers and extraction losses at interfaces between organic semiconductors and metallic electrodes is critical for optimizing the performance of organic (opto-) electronic devices. Here, we implement a detailed electrostatic model, capable of reproducing the alignment between the electrode Fermi energy and the transport states in the organic semiconductor both qualitatively and quantitatively. Covering the full phenomenological range of interfacial energy level alignment regimes within a single, consistent framework and continuously connecting the limiting cases described by previously proposed models allows us to resolve conflicting views in the literature. Our results highlight the density of states in the organic semiconductor as a key factor. Its shape and, in particular, the energy distribution of electronic states tailing into the fundamental gap is found to determine both the minimum value of practically achievable injection barriers as well as their spatial profile, ranging from abrupt interface dipoles to extended band-bending regions. PMID:24938867

  14. Effect of different conductivity between the spin polarons on spin injection in a ferromagnet/organic semiconductor system

    International Nuclear Information System (INIS)

    Mi Yilin; Zhang Ming; Yan Hui

    2008-01-01

    Spin injection across ferromagnet/organic semiconductor system with finite width of the layers was studied theoretically considering spin-dependent conductivity in the organic-semiconductor. It was found that the spin injection efficiency is directly dependent on the difference between the conductivity of the up-spin and down-spin polarons in the spin-injected organic system. Furthermore, the finite width of the structure, interfacial electrochemical-potential and conductivity mismatch have great influence on the spin injection process across ferromagnet/organic semiconductor interface

  15. General Observation of Photocatalytic Oxygen Reduction to Hydrogen Peroxide by Organic Semiconductor Thin Films and Colloidal Crystals.

    Science.gov (United States)

    Gryszel, Maciej; Sytnyk, Mykhailo; Jakešová, Marie; Romanazzi, Giuseppe; Gabrielsson, Roger; Heiss, Wolfgang; Głowacki, Eric Daniel

    2018-04-25

    Low-cost semiconductor photocatalysts offer unique possibilities for industrial chemical transformations and energy conversion applications. We report that a range of organic semiconductors are capable of efficient photocatalytic oxygen reduction to H 2 O 2 in aqueous conditions. These semiconductors, in the form of thin films, support a 2-electron/2-proton redox cycle involving photoreduction of dissolved O 2 to H 2 O 2 , with the concurrent photooxidation of organic substrates: formate, oxalate, and phenol. Photochemical oxygen reduction is observed in a pH range from 2 to 12. In cases where valence band energy of the semiconductor is energetically high, autoxidation competes with oxidation of the donors, and thus turnover numbers are low. Materials with deeper valence band energies afford higher stability and also oxidation of H 2 O to O 2 . We found increased H 2 O 2 evolution rate for surfactant-stabilized nanoparticles versus planar thin films. These results evidence that photochemical O 2 reduction may be a widespread feature of organic semiconductors, and open potential avenues for organic semiconductors for catalytic applications.

  16. Charge transport in nanoscale vertical organic semiconductor pillar devices

    NARCIS (Netherlands)

    Wilbers, J.G.E.; Xu, B.; Bobbert, P.A.; de Jong, M.P.; van der Wiel, W.G.

    2017-01-01

    We report charge transport measurements in nanoscale vertical pillar structures incorporating ultrathin layers of the organic semiconductor poly(3-hexylthiophene) (P3HT). P3HT layers with thickness down to 5 nm are gently top-contacted using wedging transfer, yielding highly reproducible, robust

  17. Structural Design Principle of Small-Molecule Organic Semiconductors for Metal-Free, Visible-Light-Promoted Photocatalysis.

    Science.gov (United States)

    Wang, Lei; Huang, Wei; Li, Run; Gehrig, Dominik; Blom, Paul W M; Landfester, Katharina; Zhang, Kai A I

    2016-08-08

    Herein, we report on the structural design principle of small-molecule organic semiconductors as metal-free, pure organic and visible light-active photocatalysts. Two series of electron-donor and acceptor-type organic semiconductor molecules were synthesized to meet crucial requirements, such as 1) absorption range in the visible region, 2) sufficient photoredox potential, and 3) long lifetime of photogenerated excitons. The photocatalytic activity was demonstrated in the intermolecular C-H functionalization of electron-rich heteroaromates with malonate derivatives. A mechanistic study of the light-induced electron transport between the organic photocatalyst, substrate, and the sacrificial agent are described. With their tunable absorption range and defined energy-band structure, the small-molecule organic semiconductors could offer a new class of metal-free and visible light-active photocatalysts for chemical reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Molecular and polymeric organic semiconductors for applications in photovoltaic devices

    International Nuclear Information System (INIS)

    Meinhardt, G.

    2000-01-01

    Photovoltaic devices based on molecular as well as polymeric semiconductors were investigated and characterized. The organic materials presented here exhibit the advantages of low price, low processing costs and the possibility of tuning their optical properties. The photovoltaic properties were investigated by photocurrent action spectroscopy and I/V-characterization and the electric field distribution in each layer by electroabsorption spectroscopy. Single layer devices of molecular semiconductors and semiconducting polymers like methyl-substituted polyparaphenylene, CN-Ether-PPV, copper-phthalocyanine, the terryleneimide DOTer, the perylene derivatives BBP-perylene and polyBBP-perylene show low photocurrents as well as a small photovoltaic effect in their pristine form. One way to enhance the performance is to blend the active layer with molecular dopands like a soluble form of titaniumoxophthalocyanine or the aromatic macromolecule RS19 or to combine two organic semiconductors in heterostructure devices. The motivation for these experiments was the optimization of either charge transfer or energy transfer from one molecule to its neighbor molecule. A model based on the internal filter effect was used for fitting the photoresponse of single layer devices. For optimising heterostructure solar cells a more sophisticated theoretical model taking into account interference effects was used. (author)

  19. Synthesis of Perylene Imide Diones as Platforms for the Development of Pyrazine Based Organic Semiconductors.

    Science.gov (United States)

    de Echegaray, Paula; Mancheño, María J; Arrechea-Marcos, Iratxe; Juárez, Rafael; López-Espejo, Guzmán; López Navarrete, J Teodomiro; Ramos, María Mar; Seoane, Carlos; Ortiz, Rocío Ponce; Segura, José L

    2016-11-18

    There is a great interest in peryleneimide (PI)-containing compounds given their unique combination of good electron accepting ability, high abosorption in the visible region, and outstanding chemical, thermal, and photochemical stabilities. Thus, herein we report the synthesis of perylene imide derivatives endowed with a 1,2-diketone functionality (PIDs) as efficient intermediates to easily access peryleneimide (PI)-containing organic semiconductors with enhanced absorption cross-section for the design of tunable semiconductor organic materials. Three processable organic molecular semiconductors containing thiophene and terthiophene moieties, PITa, PITb, and PITT, have been prepared from the novel PIDs. The tendency of these semiconductors for molecular aggregation have been investigated by NMR spectroscopy and supported by quantum chemical calculations. 2D NMR experiments and theoretical calculations point to an antiparallel π-stacking interaction as the most stable conformation in the aggregates. Investigation of the optical and electrochemical properties of the materials is also reported and analyzed in combination with DFT calculations. Although the derivatives presented here show modest electron mobilities of ∼10 -4 cm 2 V -1 s -1 , these preliminary studies of their performance in organic field effect transistors (OFETs) indicate the potential of these new building blocks as n-type semiconductors.

  20. Temperature-dependent built-in potential in organic semiconductor devices

    NARCIS (Netherlands)

    Kemerink, M.; Kramer, J.M.; Gommans, H.H.P.; Janssen, R.A.J.

    2006-01-01

    The temperature dependence of the built-in voltage of organic semiconductor devices is studied. The results are interpreted using a simple analytical model for the band bending at the electrodes. It is based on the notion that, even at zero current, diffusion may cause a significant charge density

  1. Fabrication and performance of pressure-sensing device consisting of electret film and organic semiconductor

    Science.gov (United States)

    Kodzasa, Takehito; Nobeshima, Daiki; Kuribara, Kazunori; Uemura, Sei; Yoshida, Manabu

    2017-04-01

    We propose a new concept of a pressure-sensitive device that consists of an organic electret film and an organic semiconductor. This device exhibits high sensitivity and selectivity against various types of pressure. The sensing mechanism of this device originates from a modulation of the electric conductivity of the organic semiconductor film induced by the interaction between the semiconductor film and the charged electret film placed face to face. It is expected that a complicated sensor array will be fabricated by using a roll-to-roll manufacturing system, because this device can be prepared by an all-printing and simple lamination process without high-level positional adjustment for printing processes. This also shows that this device with a simple structure is suitable for application to a highly flexible device array sheet for an Internet of Things (IoT) or wearable sensing system.

  2. Soft liquid phase adsorption for fabrication of organic semiconductor films on wettability patterned surfaces.

    Science.gov (United States)

    Watanabe, Satoshi; Akiyoshi, Yuri; Matsumoto, Mutsuyoshi

    2014-01-01

    We report a soft liquid-phase adsorption (SLPA) technique for the fabrication of organic semiconductor films on wettability-patterned substrates using toluene/water emulsions. Wettability-patterned substrates were obtained by the UV-ozone treatment of self-assembled monolayers of silane coupling agents on glass plates using a metal mask. Organic semiconductor polymer films were formed selectively on the hydrophobic part of the wettability-patterned substrates. The thickness of the films fabricated by the SLPA technique is significantly larger than that of the films fabricated by dip-coating and spin-coating techniques. The film thickness can be controlled by adjusting the volume ratio of toluene to water, immersion angle, immersion temperature, and immersion time. The SLPA technique allows for the direct production of organic semiconductor films on wettability-patterned substrates with minimized material consumption and reduced number of fabrication steps.

  3. Temperature dependent electronic conduction in semiconductors

    International Nuclear Information System (INIS)

    Roberts, G.G.; Munn, R.W.

    1980-01-01

    This review describes the temperature dependence of bulk-controlled electronic currents in semiconductors. The scope of the article is wide in that it contrasts conduction mechanisms in inorganic and organic solids and also single crystal and disordered semiconductors. In many experimental situations it is the metal-semiconductor contact or the interface between two dissimilar semiconductors that governs the temperature dependence of the conductivity. However, in order to keep the length of the review within reasonable bounds, these topics have been largely avoided and emphasis is therefore placed on bulk-limited currents. A central feature of electronic conduction in semiconductors is the concentrations of mobile electrons and holes that contribute to the conductivity. Various statistical approaches may be used to calculate these densities which are normally strongly temperature dependent. Section 1 emphasizes the relationship between the position of the Fermi level, the distribution of quantum states, the total number of electrons available and the absolute temperature of the system. The inclusion of experimental data for several materials is designed to assist the experimentalist in his interpretation of activation energy curves. Sections 2 and 3 refer to electronic conduction in disordered solids and molecular crystals, respectively. In these cases alternative approaches to the conventional band theory approach must be considered. For example, the velocities of the charge carriers are usually substantially lower than those in conventional inorganic single crystal semiconductors, thus introducing the possibility of an activated mobility. Some general electronic properties of these materials are given in the introduction to each of these sections and these help to set the conduction mechanisms in context. (orig.)

  4. Photocatalysis of irradiated semiconductor surfaces: Its application to water splitting and some organic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, T

    1985-05-01

    Hydrogen production from organic compounds and water was investigated using powdered semiconductor photocatalysts. The complete decomposition observed for several organic compounds demonstrated that water is involved in the reactions as an oxidizing agent. Photocatalyses of dyes and semiconductors were found to be applicable to amino acid synthesis. The quantum yields of photocatalytic amino acid synthesis using visible light are about 20%-40% in the absence of a metal catalyst such as platinum. Moreover the reactions are highly selective and depend strongly on the type of semiconductor. This method was applied to the asymmetric synthesis of amino acids using asymmetric catalysts. Rather high optical yields of 50% were achieved for the synthesis of L-phenylalanine.

  5. Reactivity and morphology of vapor-deposited Al/polymer interfaces for organic semiconductor devices

    International Nuclear Information System (INIS)

    Demirkan, K.; Mathew, A.; Weiland, C.; Opila, R. L.; Reid, M.

    2008-01-01

    The chemistry and the morphology of metal-deposited organic semiconductor interfaces play a significant role in determining the performance and reliability of organic semiconductor devices. We investigated the aluminum metallization of poly(2-methoxy-5,2 ' -ethyl-hexyloxy-phenylene vinylene) (MEH-PPV), polystyrene, and ozone-treated polystyrene surfaces by chemical (x-ray and ultraviolet photoelectron spectroscopy) and microscopic [atomic force microscopy, scanning electron microscopy (SEM), focused ion beam (FIB)] analyses. Photoelectron spectroscopy showed the degree of chemical interaction between Al and each polymer; for MEH-PPV, the chemical interactions were mainly through the C-O present in the side chain of the polymer structure. The chemical interaction of aluminum with polystyrene was less significant, but it showed a dramatic increase after ozone treatment of the polystyrene surface (due to the formation of exposed oxygen sites). Results showed a strong relationship between the surface reactivity and the condensation/sticking of the aluminum atoms on the surface. SEM analysis showed that, during the initial stages of the metallization, a significant clustering of aluminum takes place. FIB analysis showed that such clustering yields a notably porous structure. The chemical and the morphological properties of the vapor-deposited Al on organic semiconductor surfaces makes such electrical contacts more complicated. The possible effects of surface chemistry and interface morphology on the electrical properties and reliability of organic semiconductor devices are discussed in light of the experimental findings

  6. Purcell effect in an organic-inorganic halide perovskite semiconductor microcavity system

    International Nuclear Information System (INIS)

    Wang, Jun; Wang, Yafeng; Hu, Tao; Wu, Lin; Shen, Xuechu; Chen, Zhanghai; Cao, Runan; Xu, Fei; Da, Peimei; Zheng, Gengfeng; Lu, Jian

    2016-01-01

    Organic-inorganic halide perovskite semiconductors with the attractive physics properties, including strong photoluminescence (PL), huge oscillator strengths, and low nonradiative recombination losses, are ideal candidates for studying the light-matter interaction in nanostructures. Here, we demonstrate the coupling of the exciton state and the cavity mode in the lead halide perovskite microcavity system at room temperature. The Purcell effect in the coupling system is clearly observed by using angle-resolved photoluminescence spectra. Kinetic analysis based on time-resolved PL reveals that the spontaneous emission rate of the halide perovskite semiconductor is significantly enhanced at resonance of the exciton energy and the cavity mode. Our results provide the way for developing electrically driven organic polariton lasers, optical devices, and on-chip coherent quantum light sources

  7. Charging and exciton-mediated decharging of metal nanoparticles in organic semiconductor matrices

    International Nuclear Information System (INIS)

    Ligorio, Giovanni; Vittorio Nardi, Marco; Christodoulou, Christos; Florea, Ileana; Ersen, Ovidiu; Monteiro, Nicolas-Crespo; Brinkmann, Martin; Koch, Norbert

    2014-01-01

    Gold nanoparticles (Au-NPs) were deposited on the surface of n- and p-type organic semiconductors to form defined model systems for charge storage based electrically addressable memory elements. We used ultraviolet photoelectron spectroscopy to study the electronic properties and found that the Au-NPs become positively charged because of photoelectron emission, evidenced by spectral shifts to higher binding energy. Upon illumination with light that can be absorbed by the organic semiconductors, dynamic charge neutrality of the Au-NPs could be re-established through electron transfer from excitons. The light-controlled charge state of the Au-NPs could add optical addressability to memory elements

  8. Multiple trapping on a comb structure as a model of electron transport in disordered nanostructured semiconductors

    International Nuclear Information System (INIS)

    Sibatov, R. T.; Morozova, E. V.

    2015-01-01

    A model of dispersive transport in disordered nanostructured semiconductors has been proposed taking into account the percolation structure of a sample and joint action of several mechanisms. Topological and energy disorders have been simultaneously taken into account within the multiple trapping model on a comb structure modeling the percolation character of trajectories. The joint action of several mechanisms has been described within random walks with a mixture of waiting time distributions. Integral transport equations with fractional derivatives have been obtained for an arbitrary density of localized states. The kinetics of the transient current has been calculated within the proposed new model in order to analyze time-of-flight experiments for nanostructured semiconductors

  9. Optical conductivity and optical effective mass in a high-mobility organic semiconductor: Implications for the nature of charge transport

    KAUST Repository

    Li, Yuan

    2014-12-03

    We present a multiscale modeling of the infrared optical properties of the rubrene crystal. The results are in very good agreement with the experimental data that point to nonmonotonic features in the optical conductivity spectrum and small optical effective masses. We find that, in the static-disorder approximation, the nonlocal electron-phonon interactions stemming from low-frequency lattice vibrations can decrease the optical effective masses and lead to lighter quasiparticles. On the other hand, the charge-transport and infrared optical properties of the rubrene crystal at room temperature are demonstrated to be governed by localized carriers driven by inherent thermal disorders. Our findings underline that the presence of apparently light carriers in high-mobility organic semiconductors does not necessarily imply bandlike transport.

  10. Optical conductivity and optical effective mass in a high-mobility organic semiconductor: Implications for the nature of charge transport

    KAUST Repository

    Li, Yuan; Yi, Yuanping; Coropceanu, Veaceslav; Bredas, Jean-Luc

    2014-01-01

    We present a multiscale modeling of the infrared optical properties of the rubrene crystal. The results are in very good agreement with the experimental data that point to nonmonotonic features in the optical conductivity spectrum and small optical effective masses. We find that, in the static-disorder approximation, the nonlocal electron-phonon interactions stemming from low-frequency lattice vibrations can decrease the optical effective masses and lead to lighter quasiparticles. On the other hand, the charge-transport and infrared optical properties of the rubrene crystal at room temperature are demonstrated to be governed by localized carriers driven by inherent thermal disorders. Our findings underline that the presence of apparently light carriers in high-mobility organic semiconductors does not necessarily imply bandlike transport.

  11. Organic Single-Crystal Semiconductor Films on a Millimeter Domain Scale.

    Science.gov (United States)

    Kwon, Sooncheol; Kim, Jehan; Kim, Geunjin; Yu, Kilho; Jo, Yong-Ryun; Kim, Bong-Joong; Kim, Junghwan; Kang, Hongkyu; Park, Byoungwook; Lee, Kwanghee

    2015-11-18

    Nucleation and growth processes can be effectively controlled in organic semiconductor films through a new concept of template-mediated molecular crystal seeds during the phase transition; the effective control of these processes ensures millimeter-scale crystal domains, as well as the performance of the resulting organic films with intrinsic hole mobility of 18 cm(2) V(-1) s(-1). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Flexible Synthetic Semiconductor Applied in Optoelectronic Organic Sensor

    Directory of Open Access Journals (Sweden)

    Andre F. S. Guedes

    2017-06-01

    Full Text Available The synthesis and application of new nanostructured organic materials, for the development of technology based on organic devices, have taken great interest from the scientific community. The greatest interest in studying organic semiconductor materials has been connected to its already known potential applications, such as: batteries, organic solar cells, flexible organic solar cells, organic light emitting diodes, organic sensors and others. Phototherapy makes use of different radiation sources, and the treatment of hyperbilirubinemia the most common therapeutic intervention occurs in the neonatal period. In this work we developed an organic optoelectronic sensor capable of detecting and determining the radiation dose rate emitted by the radiation source of neonatal phototherapy equipment. The sensors were developed using optically transparent substrate with Nanostructured thin film layers of Poly(9-Vinylcarbazole covered by a layer of Poly(P-Phenylene Vinylene. The samples were characterized by UV-Vis Spectroscopy, Electrical Measurements and SEM. With the results obtained from this study can be developed dosimeters organics to the neonatal phototherapy equipment.

  13. Impact of Molecular Orientation and Packing Density on Electronic Polarization in the Bulk and at Surfaces of Organic Semiconductors

    KAUST Repository

    Ryno, Sean; Risko, Chad; Bredas, Jean-Luc

    2016-01-01

    The polarizable environment surrounding charge carriers in organic semiconductors impacts the efficiency of the charge transport process. Here, we consider two representative organic semiconductors, tetracene and rubrene, and evaluate

  14. Smooth Growth of Organic Semiconductor Films on Graphene for High-Efficiency Electronics

    NARCIS (Netherlands)

    Hlawacek, G.; Khokhar, F.S.; van Gastel, Raoul; Poelsema, Bene; Teichert, Christian

    2011-01-01

    High-quality thin films of conjugated molecules with smooth interfaces are important to assist the advent of organic electronics. Here, we report on the layer-by-layer growth of the organic semiconductor molecule p-sexiphenyl (6P) on the transparent electrode material graphene. Low energy electron

  15. Optically Detected Magnetic Resonance and Thermal Activation Spectroscopy Study of Organic Semiconductors

    International Nuclear Information System (INIS)

    Chang-Hwan Kim

    2003-01-01

    Organic electronic materials are a new class of emerging materials. Organic light emitting devices (OLEDs) are the most promising candidates for future flat panel display technologies. The photophysical characterization is the basic research step one must follow to understand this new class of materials and devices. The light emission properties are closely related to the transport properties of these materials. The objective of this dissertation is to probe the relation between transport and photophysical properties of organic semiconductors. The transport characteristics were evaluated by using thermally stimulated current and thermally stimulated luminescence techniques. The photoluminescence detected magnetic resonance and photoluminescence quantum yield studies provide valuable photophysical information on this class of materials. OLEDs are already in the market. However, detailed studies on the degradation mechanisms are still lacking. Since both optically detected magnetic resonance and thermal activation spectroscopy probe long-lived defect-related states in organic semiconductors, the combined study generates new insight on the OLED operation and degradation mechanisms

  16. Optically Detected Magnetic Resonance and Thermal Activation Spectroscopy Study of Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Hwan [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    Organic electronic materials are a new class of emerging materials. Organic light emitting devices (OLEDs) are the most promising candidates for future flat panel display technologies. The photophysical characterization is the basic research step one must follow to understand this new class of materials and devices. The light emission properties are closely related to the transport properties of these materials. The objective of this dissertation is to probe the relation between transport and photophysical properties of organic semiconductors. The transport characteristics were evaluated by using thermally stimulated current and thermally stimulated luminescence techniques. The photoluminescence detected magnetic resonance and photoluminescence quantum yield studies provide valuable photophysical information on this class of materials. OLEDs are already in the market. However, detailed studies on the degradation mechanisms are still lacking. Since both optically detected magnetic resonance and thermal activation spectroscopy probe long-lived defect-related states in organic semiconductors, the combined study generates new insight on the OLED operation and degradation mechanisms.

  17. Efficient spin filtering in a disordered semiconductor superlattice in the presence of Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    Khayatzadeh Mahani, Mohammad Reza; Faizabadi, Edris

    2008-01-01

    The influence of the Dresselhaus spin-orbit coupling on spin polarization by tunneling through a disordered semiconductor superlattice was investigated. The Dresselhaus spin-orbit coupling causes the spin polarization of the electron due to transmission possibilities difference between spin up and spin down electrons. The electron tunneling through a zinc-blende semiconductor superlattice with InAs and GaAs layers and two variable distance In x Ga (1-x) As impurity layers was studied. One hundred percent spin polarization was obtained by optimizing the distance between two impurity layers and impurity percent in disordered layers in the presence of Dresselhaus spin-orbit coupling. In addition, the electron transmission probability through the mentioned superlattice is too much near to one and an efficient spin filtering was recommended

  18. Cases series of malignant lymphohematopoietic disorder in korean semiconductor industry.

    Science.gov (United States)

    Kim, Eun-A; Lee, Hye-Eun; Ryu, Hyung-Woo; Park, Seung-Hyun; Kang, Seong-Kyu

    2011-06-01

    Seven cases of malignant lymphohematopoietic (LHP) disorder were claimed to have developed from occupational exposure at two plants of a semiconductor company from 2007 to 2010. This study evaluated the possibility of exposure to carcinogenic agents for the cases. Clinical courses were reviewed with assessing possible exposure to carcinogenic agents related to LHP cancers. Chemicals used at six major semiconductor companies in Korea were reviewed. Airborne monitoring for chemicals, including benzene, was conducted and the ionizing radiation dose was measured from 2008 to 2010. The latency of seven cases (five leukemiae, a Non-Hodgkin's lymphoma, and an aplastic anemia) ranged from 16 months to 15 years and 5 months. Most chemical measurements were at levels of less than 10% of the Korean Occupational Exposure Limit value. No carcinogens related to LHP cancers were used or detected. Complete-shielded radiation-generating devices were used, but the ionizing radiation doses were 0.20-0.22 uSv/hr (background level: 0.21 µSv/hr). Airborne benzene was detected at 0.31 ppb when the detection limit was lowered as low as possible. Ethylene oxide and formaldehyde were not found in the cases' processes, while these two were determined to be among the 263 chemicals in the list that was used at the six semiconductor companies at levels lower than 0.1%. Exposures occurring before 2002 could not be assessed because of the lack of information. Considering the possibility of exposure to carcinogenic agents, we could not find any convincing evidence for occupational exposure in all investigated cases. However, further study is needed because the semiconductor industry is a newly developing one.

  19. Femtosecond time-resolved two-photon photoemission study of organic semiconductor copper phthalocyanine film

    International Nuclear Information System (INIS)

    Tanaka, A.; Tohoku University; University of Rochester, NY; Yan, L.; Watkins, N.J.; Gao, Y.

    2004-01-01

    Full text: Organic semiconductors are recently attracting much interest from the viewpoints of both device and fundamental physics. These organic semiconductors are considered to be important constituents of the future devices, such as organic light-emitting diode, organic field effect transistor, and organic solid-state injection laser. In order to elucidate their detailed physical properties and to develop the future devices, it is indispensable to understand their excited-state dynamics as well as their electronic structures. The femtosecond time-resolved two-photon photoemission (TR-2PPE) spectroscopy is attracting much interest because of its capability to observe the energy-resolved excited electron dynamics. In this work, we have carried out a TR-2PPE study of the organic semiconductor copper phthalocyanine (CuPc) film. Furthermore, we have investigated the detailed electronic structure of CuPc film using the photoemission (PES) and inverse photoemission (IPES) spectroscopies. From the simultaneous PES and IPES measurements for CuPc film with a thickness of 100 nm, the lowest unoccupied molecular orbital (LUMO), highest occupied molecular orbital, and ionization potential of CuPc film have been directly determined. The observed two-photon photoemission (2PPE) spectrum of the present CuPc film, measured with photon energy of about hv=3.3 eV, exhibits a broad feature. From the energy diagram of CuPc film determined by the PES and IPES measurements, the intermediate state observed in the present 2PPE spectrum of CuPc film corresponds to the energy region between about 0.4 and 1.7 eV above the LUMO energy. From the time-resolved pump-probe measurements, it is found that the relaxation lifetimes of excited states in the present CuPc films are very short (all below 50 fs) and monotonously become faster with increasing excitation energy. We attribute this extremely fast relaxation process of photoexcitation to a rapid internal conversion process. From these results

  20. Fabrication of combinatorial nm-planar electrode array for high throughput evaluation of organic semiconductors

    International Nuclear Information System (INIS)

    Haemori, M.; Edura, T.; Tsutsui, K.; Itaka, K.; Wada, Y.; Koinuma, H.

    2006-01-01

    We have fabricated a combinatorial nm-planar electrode array by using photolithography and chemical mechanical polishing processes for high throughput electrical evaluation of organic devices. Sub-nm precision was achieved with respect to the average level difference between each pair of electrodes and a dielectric layer. The insulating property between the electrodes is high enough to measure I-V characteristics of organic semiconductors. Bottom-contact field-effect-transistors (FETs) of pentacene were fabricated on this electrode array by use of molecular beam epitaxy. It was demonstrated that the array could be used as a pre-patterned device substrate for high throughput screening of the electrical properties of organic semiconductors

  1. Transport Gap and exciton binding energy determination in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Stefan; Schoell, Achim; Reinert, Friedrich; Umbach, Eberhard [University of Wuerzburg (Germany). Experimental Physics II; Casu, Benedetta [Inst. f. Physik. u. Theor. Chemie, Tuebingen (Germany)

    2008-07-01

    The transport gap of an organic semiconductor is defined as the energy difference between the HOMO and LUMO levels in the presence of a hole or electron, respectively, after relaxation has occurred. Its knowledge is mandatory for the optimisation of electronic devices based on these materials. UV photoelectron spectroscopy (UPS) and inverse photoelectron spectroscopy (IPES) are routinely applied to measure these molecular levels. However, the precise determination of the transport gap on the basis of the respective data is not an easy task. It involves fundamental questions about the properties of organic molecules and their condensates, about their reaction on the experimental probe, and on the evaluation of the spectroscopic data. In particular electronic relaxation processes, which occur on the time scale of the photo excitation, have to be considered adequately. We determined the transport gap for the organic semiconductors PTCDA, Alq3, DIP, CuPc, and PBI-H4. After careful data analysis and comparison to the respective values for the optical gap we obtain values for the exciton binding energies between 0.1-0.5 eV. This is considerably smaller than commonly believed and indicates a significant delocalisation of the excitonic charge over various molecular units.

  2. Self Organization in Compensated Semiconductors

    Science.gov (United States)

    Berezin, Alexander A.

    2004-03-01

    In partially compensated semiconductor (PCS) Fermi level is pinned to donor sub-band. Due to positional randomness and almost isoenergetic hoppings, donor-spanned electronic subsystem in PCS forms fluid-like highly mobile collective state. This makes PCS playground for pattern formation, self-organization, complexity emergence, electronic neural networks, and perhaps even for origins of life, bioevolution and consciousness. Through effects of impact and/or Auger ionization of donor sites, whole PCS may collapse (spinodal decomposition) into microblocks potentially capable of replication and protobiological activity (DNA analogue). Electronic screening effects may act in RNA fashion by introducing additional length scale(s) to system. Spontaneous quantum computing on charged/neutral sites becomes potential generator of informationally loaded microstructures akin to "Carl Sagan Effect" (hidden messages in Pi in his "Contact") or informational self-organization of "Library of Babel" of J.L. Borges. Even general relativity effects at Planck scale (R.Penrose) may affect the dynamics through (e.g.) isotopic variations of atomic mass and local density (A.A.Berezin, 1992). Thus, PCS can serve as toy model (experimental and computational) at interface of physics and life sciences.

  3. Nanoimprinted organic semiconductor laser pumped by a light-emitting diode.

    Science.gov (United States)

    Tsiminis, Georgios; Wang, Yue; Kanibolotsky, Alexander L; Inigo, Anto R; Skabara, Peter J; Samuel, Ifor D W; Turnbull, Graham A

    2013-05-28

    An organic semiconductor laser, simply fabricated by UV-nanoimprint lithography (UV-NIL), that is pumped with a pulsed InGaN LED is demonstrated. Molecular weight optimization of the polymer gain medium on a nanoimprinted polymer distributed feedback resonator enables the lowest reported UV-NIL laser threshold density of 770 W cm(-2) , establishing the potential for scalable organic laser fabrication compatible with mass-produced LEDs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Organic semiconductors based on [1]benzothieno[3,2-b][1]benzothiophene substructure.

    Science.gov (United States)

    Takimiya, Kazuo; Osaka, Itaru; Mori, Takamichi; Nakano, Masahiro

    2014-05-20

    The design, synthesis, and characterization of organic semiconductors applicable to organic electronic devices, such as organic field-effect transistors (OFETs) and organic photovoltaics (OPVs), had been one of the most important topics in materials chemistry in the past decade. Among the vast number of materials developed, much expectation had been placed on thienoacenes, which are rigid and planar structures formed by fusing thiophenes and other aromatic rings, as a promising candidate for organic semiconductors for high-performance OFETs. However, the thienoacenes examined as an active material in OFETs in the 1990s afforded OFETs with only moderate hole mobilities (approximately 0.1 cm(2) V(-1) s(-1)). We speculated that this was due to the sulfur atoms in the thienoacenes, which hardly contributed to the intermolecular orbital overlap in the solid state. On the other hand, we have focused on other types of thienoacenes, such as [1]benzothieno[3,2-b][1]benzothiophene (BTBT), which seem to have appropriate HOMO spatial distribution for effective intermolecular orbital overlap. In fact, BTBT derivatives and their related materials, including dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT), have turned out to be superior organic semiconductors, affording OFETs with very high mobilities. To illustrate some examples, we have developed 2,7-diphenyl BTBT (DPh-BTBT) that yields vapor-deposited OFETs having mobilities of up to 2.0 cm(2) V(-1) s(-1) under ambient conditions, highly soluble dialkyl-BTBTs (Cn-BTBTs) that afford solution-processed OFETs with mobilities higher than 1.0 cm(2) V(-1) s(-1), and DNTT and its derivatives that yield OFETs with even higher mobilities (>3.0 cm(2) V(-1) s(-1)) and stability under ambient conditions. Such high performances are rationalized by their solid-state electronic structures that are calculated based on their packing structures: the large intermolecular orbital overlap and the isotropic two-dimensional electronic

  5. Control of the Thermal Evaporation of Organic Semiconductors via Exact Linearization

    OpenAIRE

    Martin Steinberger; Martin Horn

    2011-01-01

    In this article, a high vacuum system for the evaporation of organic semiconductors is introduced and a mathematical model is given. Based on the exact input output linearization a deposition rate controller is designed and tested with different evaporation materials.

  6. "Liquid-liquid-solid"-type superoleophobic surfaces to pattern polymeric semiconductors towards high-quality organic field-effect transistors.

    Science.gov (United States)

    Wu, Yuchen; Su, Bin; Jiang, Lei; Heeger, Alan J

    2013-12-03

    Precisely aligned organic-liquid-soluble semiconductor microwire arrays have been fabricated by "liquid-liquid-solid" type superoleophobic surfaces directed fluid drying. Aligned organic 1D micro-architectures can be built as high-quality organic field-effect transistors with high mobilities of >10 cm(2) ·V(-1) ·s(-1) and current on/off ratio of more than 10(6) . All these studies will boost the development of 1D microstructures of organic semiconductor materials for potential application in organic electronics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Charge transport in disordered organic field-effect transistors

    NARCIS (Netherlands)

    Tanase, Cristina; Blom, Paul W.M.; Meijer, Eduard J.; Leeuw, Dago M. de; Jabbour, GE; Carter, SA; Kido, J; Lee, ST; Sariciftci, NS

    2002-01-01

    The transport properties of poly(2,5-thienylene vinylene) (PTV) field-effect transistors (FET) have been investigated as a function of temperature under controlled atmosphere. In a disordered semiconductor as PTV the charge carrier mobility, dominated by hopping between localized states, is

  8. Solution-printed organic semiconductor blends exhibiting transport properties on par with single crystals.

    Science.gov (United States)

    Niazi, Muhammad R; Li, Ruipeng; Qiang Li, Er; Kirmani, Ahmad R; Abdelsamie, Maged; Wang, Qingxiao; Pan, Wenyang; Payne, Marcia M; Anthony, John E; Smilgies, Detlef-M; Thoroddsen, Sigurdur T; Giannelis, Emmanuel P; Amassian, Aram

    2015-11-23

    Solution-printed organic semiconductors have emerged in recent years as promising contenders for roll-to-roll manufacturing of electronic and optoelectronic circuits. The stringent performance requirements for organic thin-film transistors (OTFTs) in terms of carrier mobility, switching speed, turn-on voltage and uniformity over large areas require performance currently achieved by organic single-crystal devices, but these suffer from scale-up challenges. Here we present a new method based on blade coating of a blend of conjugated small molecules and amorphous insulating polymers to produce OTFTs with consistently excellent performance characteristics (carrier mobility as high as 6.7 cm(2) V(-1) s(-1), low threshold voltages oforganic semiconductor films with transport properties and other figures of merit on par with their single-crystal counterparts.

  9. Organic modification of metal / semiconductor Schottky contacts

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Pinzon, H.A.

    2006-07-10

    In the present work a Metal / organic / inorganic semiconductor hybrid heterostructure (Ag / DiMe-PTCDI / GaAs) was built under UHV conditions and characterised in situ. The aim was to investigate the influence of the organic layer in the surface properties of GaAs(100) and in the electrical response of organic-modified Ag / GaAs Schottky diodes. The device was tested by combining surface-sensitive techniques (Photoemission spectroscopy and NEXAFS) with electrical measurements (current-voltage, capacitance-voltage, impedance and charge transient spectroscopies). Core level examination by PES confirms removal of native oxide layers on sulphur passivated (S-GaAs) and hydrogen plasma treated GaAs(100) (H+GaAs) surfaces. Additional deposition of ultrathin layers of DiMe-PTCDI may lead to a reduction of the surface defects density and thereby to an improvement of the electronic properties of GaAs. The energy level alignment through the heterostructure was deduced by combining UPS and I-V measurements. This allows fitting of the I-V characteristics with electron as majority carriers injected over a barrier by thermionic emission as a primary event. For thin organic layers (below 8 nm thickness) several techniques (UPS, I-V, C-V, QTS and AFM) show non homogeneous layer growth, leading to formation of voids. The coverage of the H+GaAs substrate as a function of the nominal thickness of DiMe-PTCDI was assessed via C-V measurements assuming a voltage independent capacitance of the organic layer. The frequency response of the device was evaluated through C-V and impedance measurements in the range 1 kHz-1 MHz. The almost independent behaviour of the capacitance in the measured frequency range confirmed the assumption of a near geometrical capacitor, which was used for modelling the impedance with an equivalent circuit of seven components. From there it was found a predominance of the space charge region impedance, so that A.C. conduction can only takes place through the

  10. Multi-scale modeling of spin transport in organic semiconductors

    Science.gov (United States)

    Hemmatiyan, Shayan; Souza, Amaury; Kordt, Pascal; McNellis, Erik; Andrienko, Denis; Sinova, Jairo

    In this work, we present our theoretical framework to simulate simultaneously spin and charge transport in amorphous organic semiconductors. By combining several techniques e.g. molecular dynamics, density functional theory and kinetic Monte Carlo, we are be able to study spin transport in the presence of anisotropy, thermal effects, magnetic and electric field effects in a realistic morphologies of amorphous organic systems. We apply our multi-scale approach to investigate the spin transport in amorphous Alq3 (Tris(8-hydroxyquinolinato)aluminum) and address the underlying spin relaxation mechanism in this system as a function of temperature, bias voltage, magnetic field and sample thickness.

  11. Current-Voltage Characteristics of the Metal / Organic Semiconductor / Metal Structures: Top and Bottom Contact Configuration Case

    Directory of Open Access Journals (Sweden)

    Šarūnas MEŠKINIS

    2013-03-01

    Full Text Available In present study five synthesized organic semiconductor compounds have been used for fabrication of the planar metal / organic semiconductor / metal structures. Both top electrode and bottom electrode configurations were used. Current-voltage (I-V characteristics of the samples were investigated. Effect of the hysteresis of the I-V characteristics was observed for all the investigated samples. However, strength of the hysteresis was dependent on the organic semiconductor used. Study of I-V characteristics of the top contact Al/AT-RB-1/Al structures revealed, that in (0 – 500 V voltages range average current of the samples measured in air is only slightly higher than current measured in nitrogen ambient. Deposition of the ultra-thin diamond like carbon interlayer resulted in both decrease of the hysteresis of I-V characteristics of top contact Al/AT-RB-1/Al samples. However, decreased current and decreased slope of the I-V characteristics of the samples with diamond like carbon interlayer was observed as well. I-V characteristic hysteresis effect was less pronounced in the case of the bottom contact metal/organic semiconductor/metal samples. I-V characteristics of the bottom contact samples were dependent on electrode metal used.DOI: http://dx.doi.org/10.5755/j01.ms.19.1.3816

  12. Solution-printed organic semiconductor blends exhibiting transport properties on par with single crystals

    KAUST Repository

    Niazi, Muhammad Rizwan; Li, Ruipeng; Li, Erqiang; Kirmani, Ahmad R.; Abdelsamie, Maged; Wang, Qingxiao; Pan, Wenyang; Payne, Marcia M.; Anthony, John E.; Smilgies, Detlef-M.; Thoroddsen, Sigurdur T; Giannelis, Emmanuel P.; Amassian, Aram

    2015-01-01

    Solution-printed organic semiconductors have emerged in recent years as promising contenders for roll-to-roll manufacturing of electronic and optoelectronic circuits. The stringent performance requirements for organic thin-film transistors (OTFTs) in terms of carrier mobility, switching speed, turn-on voltage and uniformity over large areas require performance currently achieved by organic single-crystal devices, but these suffer from scale-up challenges. Here we present a new method based on blade coating of a blend of conjugated small molecules and amorphous insulating polymers to produce OTFTs with consistently excellent performance characteristics (carrier mobility as high as 6.7 cm2 V−1 s−1, low threshold voltages of<1 V and low subthreshold swings <0.5 V dec−1). Our findings demonstrate that careful control over phase separation and crystallization can yield solution-printed polycrystalline organic semiconductor films with transport properties and other figures of merit on par with their single-crystal counterparts.

  13. Solution-printed organic semiconductor blends exhibiting transport properties on par with single crystals

    KAUST Repository

    Niazi, Muhammad Rizwan

    2015-11-23

    Solution-printed organic semiconductors have emerged in recent years as promising contenders for roll-to-roll manufacturing of electronic and optoelectronic circuits. The stringent performance requirements for organic thin-film transistors (OTFTs) in terms of carrier mobility, switching speed, turn-on voltage and uniformity over large areas require performance currently achieved by organic single-crystal devices, but these suffer from scale-up challenges. Here we present a new method based on blade coating of a blend of conjugated small molecules and amorphous insulating polymers to produce OTFTs with consistently excellent performance characteristics (carrier mobility as high as 6.7 cm2 V−1 s−1, low threshold voltages of<1 V and low subthreshold swings <0.5 V dec−1). Our findings demonstrate that careful control over phase separation and crystallization can yield solution-printed polycrystalline organic semiconductor films with transport properties and other figures of merit on par with their single-crystal counterparts.

  14. Simulations of charge transport in organic light emitting diodes

    International Nuclear Information System (INIS)

    Martin, Simon James

    2002-01-01

    In this thesis, two approaches to the modelling of charge transport in organic light emitting diodes (OLEDs) are presented. The first is a drift-diffusion model, normally used when considering conventional crystalline inorganic semiconductors (e.g. Si or lll-V's) which have well defined energy bands. In this model, electron and hole transport is described using the current continuity equations and the drift-diffusion current equations, and coupled to Poisson's equation. These equations are solved with the appropriate boundary conditions, which for OLEDs are Schottky contacts; carriers are injected by thermionic emission and tunnelling. The disordered nature of the organic semiconductors is accounted for by the inclusion of field-dependent carrier mobilities and Langevin optical recombination. The second approach treats the transport of carriers in disordered organic semi-conductors as a hopping process between spatially and energetically disordered sites. This method has been used previously to account for the observed temperature and electric field dependence of carrier mobilities in disordered organic semiconductors. A hopping transport model has been developed which accounts explicitly for the structure in highly ordered films of rigid rod liquid-crystalline conjugated polymers. Chapter 2 discusses the formation of metal-semiconductor contacts, and current injection processes in OLEDs. If the barrier to carrier injection at a metal-semiconductor contact is small, or the contact is Ohmic, then the current may be space charge limited; this second limiting regime of current flow for OLEDs is also described. The remainder of Chapter 2 describes the drift-diffusion model used in this work in some detail. Chapter 3 contains results obtained from modelling the J-V characteristics of single-layer OLEDs, which are compared to experimental data in order to validate the drift-diffusion model. Chapter 4 contains results of simulating bi-layer OLEDs; rather than examining J

  15. Understanding polymorphism in organic semiconductor thin films through nanoconfinement.

    Science.gov (United States)

    Diao, Ying; Lenn, Kristina M; Lee, Wen-Ya; Blood-Forsythe, Martin A; Xu, Jie; Mao, Yisha; Kim, Yeongin; Reinspach, Julia A; Park, Steve; Aspuru-Guzik, Alán; Xue, Gi; Clancy, Paulette; Bao, Zhenan; Mannsfeld, Stefan C B

    2014-12-10

    Understanding crystal polymorphism is a long-standing challenge relevant to many fields, such as pharmaceuticals, organic semiconductors, pigments, food, and explosives. Controlling polymorphism of organic semiconductors (OSCs) in thin films is particularly important given that such films form the active layer in most organic electronics devices and that dramatic changes in the electronic properties can be induced even by small changes in the molecular packing. However, there are very few polymorphic OSCs for which the structure-property relationships have been elucidated so far. The major challenges lie in the transient nature of metastable forms and the preparation of phase-pure, highly crystalline thin films for resolving the crystal structures and evaluating the charge transport properties. Here we demonstrate that the nanoconfinement effect combined with the flow-enhanced crystal engineering technique is a powerful and likely material-agnostic method to identify existing polymorphs in OSC materials and to prepare the individual pure forms in thin films at ambient conditions. With this method we prepared high quality crystal polymorphs and resolved crystal structures of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene), including a new polymorph discovered via in situ grazing incidence X-ray diffraction and confirmed by molecular mechanic simulations. We further correlated molecular packing with charge transport properties using quantum chemical calculations and charge carrier mobility measurements. In addition, we applied our methodology to a [1]benzothieno[3,2-b][1]1benzothiophene (BTBT) derivative and successfully stabilized its metastable form.

  16. Integrated materials design of organic semiconductors for field-effect transistors.

    Science.gov (United States)

    Mei, Jianguo; Diao, Ying; Appleton, Anthony L; Fang, Lei; Bao, Zhenan

    2013-05-08

    The past couple of years have witnessed a remarkable burst in the development of organic field-effect transistors (OFETs), with a number of organic semiconductors surpassing the benchmark mobility of 10 cm(2)/(V s). In this perspective, we highlight some of the major milestones along the way to provide a historical view of OFET development, introduce the integrated molecular design concepts and process engineering approaches that lead to the current success, and identify the challenges ahead to make OFETs applicable in real applications.

  17. Organic Semiconductor-Containing Supramolecules: Effect of Small Molecule Crystallization and Molecular Packing

    KAUST Repository

    Rancatore, Benjamin J.; Kim, BongSoo; Mauldin, Clayton E.; Frechet, Jean; Xu, Ting

    2016-01-01

    on these highly crystalline molecules differs from their less crystalline counterparts. Here, two families of organic semiconductor SMs are investigated, where the composition of the crystalline core, the location (side- vs end-functionalization) of the alkyl

  18. Role of transport band edge variation on delocalized charge transport in high-mobility crystalline organic semiconductors

    Science.gov (United States)

    Kadashchuk, Andrey; Tong, Fei; Janneck, Robby; Fishchuk, Ivan I.; Mityashin, Alexander; Pavlica, Egon; Köhler, Anna; Heremans, Paul; Rolin, Cedric; Bratina, Gvido; Genoe, Jan

    2017-09-01

    We demonstrate that the degree of charge delocalization has a strong impact on polarization energy and thereby on the position of the transport band edge in organic semiconductors. This gives rise to long-range potential fluctuations, which govern the electronic transport through delocalized states in organic crystalline layers. This concept is employed to formulate an analytic model that explains a negative field dependence coupled with a positive temperature dependence of the charge mobility observed by a lateral time-of-flight technique in a high-mobility crystalline organic layer. This has important implications for the further understanding of the charge transport via delocalized states in organic semiconductors.

  19. Photoelectrical Stimulation of Neuronal Cells by an Organic Semiconductor-Electrolyte Interface.

    Science.gov (United States)

    Abdullaeva, Oliya S; Schulz, Matthias; Balzer, Frank; Parisi, Jürgen; Lützen, Arne; Dedek, Karin; Schiek, Manuela

    2016-08-23

    As a step toward the realization of neuroprosthetics for vision restoration, we follow an electrophysiological patch-clamp approach to study the fundamental photoelectrical stimulation mechanism of neuronal model cells by an organic semiconductor-electrolyte interface. Our photoactive layer consisting of an anilino-squaraine donor blended with a fullerene acceptor is supporting the growth of the neuronal model cell line (N2A cells) without an adhesion layer on it and is not impairing cell viability. The transient photocurrent signal upon illumination from the semiconductor-electrolyte layer is able to trigger a passive response of the neuronal cells under physiological conditions via a capacitive coupling mechanism. We study the dynamics of the capacitive transmembrane currents by patch-clamp recordings and compare them to the dynamics of the photocurrent signal and its spectral responsivity. Furthermore, we characterize the morphology of the semiconductor-electrolyte interface by atomic force microscopy and study the stability of the interface in dark and under illuminated conditions.

  20. Solution-Processed Wide-Bandgap Organic Semiconductor Nanostructures Arrays for Nonvolatile Organic Field-Effect Transistor Memory.

    Science.gov (United States)

    Li, Wen; Guo, Fengning; Ling, Haifeng; Liu, Hui; Yi, Mingdong; Zhang, Peng; Wang, Wenjun; Xie, Linghai; Huang, Wei

    2018-01-01

    In this paper, the development of organic field-effect transistor (OFET) memory device based on isolated and ordered nanostructures (NSs) arrays of wide-bandgap (WBG) small-molecule organic semiconductor material [2-(9-(4-(octyloxy)phenyl)-9H-fluoren-2-yl)thiophene]3 (WG 3 ) is reported. The WG 3 NSs are prepared from phase separation by spin-coating blend solutions of WG 3 /trimethylolpropane (TMP), and then introduced as charge storage elements for nonvolatile OFET memory devices. Compared to the OFET memory device with smooth WG 3 film, the device based on WG 3 NSs arrays exhibits significant improvements in memory performance including larger memory window (≈45 V), faster switching speed (≈1 s), stable retention capability (>10 4 s), and reliable switching properties. A quantitative study of the WG 3 NSs morphology reveals that enhanced memory performance is attributed to the improved charge trapping/charge-exciton annihilation efficiency induced by increased contact area between the WG 3 NSs and pentacene layer. This versatile solution-processing approach to preparing WG 3 NSs arrays as charge trapping sites allows for fabrication of high-performance nonvolatile OFET memory devices, which could be applicable to a wide range of WBG organic semiconductor materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Probing Carrier Transport and Structure-Property Relationship of Highly Ordered Organic Semiconductors at the Two-Dimensional Limit.

    Science.gov (United States)

    Zhang, Yuhan; Qiao, Jingsi; Gao, Si; Hu, Fengrui; He, Daowei; Wu, Bing; Yang, Ziyi; Xu, Bingchen; Li, Yun; Shi, Yi; Ji, Wei; Wang, Peng; Wang, Xiaoyong; Xiao, Min; Xu, Hangxun; Xu, Jian-Bin; Wang, Xinran

    2016-01-08

    One of the basic assumptions in organic field-effect transistors, the most fundamental device unit in organic electronics, is that charge transport occurs two dimensionally in the first few molecular layers near the dielectric interface. Although the mobility of bulk organic semiconductors has increased dramatically, direct probing of intrinsic charge transport in the two-dimensional limit has not been possible due to excessive disorders and traps in ultrathin organic thin films. Here, highly ordered single-crystalline mono- to tetralayer pentacene crystals are realized by van der Waals (vdW) epitaxy on hexagonal BN. We find that the charge transport is dominated by hopping in the first conductive layer, but transforms to bandlike in subsequent layers. Such an abrupt phase transition is attributed to strong modulation of the molecular packing by interfacial vdW interactions, as corroborated by quantitative structural characterization and density functional theory calculations. The structural modulation becomes negligible beyond the second conductive layer, leading to a mobility saturation thickness of only ∼3  nm. Highly ordered organic ultrathin films provide a platform for new physics and device structures (such as heterostructures and quantum wells) that are not possible in conventional bulk crystals.

  2. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains

    KAUST Repository

    Diao, Ying

    2013-06-02

    Solution coating of organic semiconductors offers great potential for achieving low-cost manufacturing of large-area and flexible electronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control of thin-film morphology. Here, we report an approach - termed fluid-enhanced crystal engineering (FLUENCE) - that allows for a high degree of morphological control of solution-printed thin films. We designed a micropillar-patterned printing blade to induce recirculation in the ink for enhancing crystal growth, and engineered the curvature of the ink meniscus to control crystal nucleation. Using FLUENCE, we demonstrate the fast coating and patterning of millimetre-wide, centimetre-long, highly aligned single-crystalline organic semiconductor thin films. In particular, we fabricated thin films of 6,13-bis(triisopropylsilylethynyl) pentacene having non-equilibrium single-crystalline domains and an unprecedented average and maximum mobilities of 8.1±1.2 cm2 V-1 s -1 and 11 cm2 V-1 s-1. FLUENCE of organic semiconductors with non-equilibrium single-crystalline domains may find use in the fabrication of high-performance, large-area printed electronics. © 2013 Macmillan Publishers Limited. All rights reserved.

  3. Empirical tight-binding modeling of ordered and disordered semiconductor structures

    International Nuclear Information System (INIS)

    Mourad, Daniel

    2010-01-01

    In this thesis, we investigate the electronic and optical properties of pure as well as of substitutionally alloyed II-VI and III-V bulk semiconductors and corresponding semiconductor quantum dots by means of an empirical tight-binding (TB) model. In the case of the alloyed systems of the type A x B 1-x , where A and B are the pure compound semiconductor materials, we study the influence of the disorder by means of several extensions of the TB model with different levels of sophistication. Our methods range from rather simple mean-field approaches (virtual crystal approximation, VCA) over a dynamical mean-field approach (coherent potential approximation, CPA) up to calculations where substitutional disorder is incorporated on a finite ensemble of microscopically distinct configurations. In the first part of this thesis, we cover the necessary fundamentals in order to properly introduce the TB model of our choice, the effective bond-orbital model (EBOM). In this model, one s- and three p-orbitals per spin direction are localized on the sites of the underlying Bravais lattice. The matrix elements between these orbitals are treated as free parameters in order to reproduce the properties of one conduction and three valence bands per spin direction and can then be used in supercell calculations in order to model mixed bulk materials or pure as well as mixed quantum dots. Part II of this thesis deals with unalloyed systems. Here, we use the EBOM in combination with configuration interaction calculations for the investigation of the electronic and optical properties of truncated pyramidal GaN quantum dots embedded in AlN with an underlying zincblende structure. Furthermore, we develop a parametrization of the EBOM for materials with a wurtzite structure, which allows for a fit of one conduction and three valence bands per spin direction throughout the whole Brillouin zone of the hexagonal system. In Part III, we focus on the influence of alloying on the electronic and

  4. Integrated Materials Design of Organic Semiconductors for Field-Effect Transistors

    KAUST Repository

    Mei, Jianguo

    2013-05-08

    The past couple of years have witnessed a remarkable burst in the development of organic field-effect transistors (OFETs), with a number of organic semiconductors surpassing the benchmark mobility of 10 cm2/(V s). In this perspective, we highlight some of the major milestones along the way to provide a historical view of OFET development, introduce the integrated molecular design concepts and process engineering approaches that lead to the current success, and identify the challenges ahead to make OFETs applicable in real applications. © 2013 American Chemical Society.

  5. Principle and application of low energy inverse photoemission spectroscopy: A new method for measuring unoccupied states of organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Hiroyuki, E-mail: hyoshida@chiba-u.jp

    2015-10-01

    Highlights: • Principle of low energy inverse photoemission spectroscopy is described. • Instruments including electron sources and photon detectors are shown. • Recent results about organic devices and fundamental studies are reviewed. • Electron affinities of typical organic semiconductors are compiled. - Abstract: Information about the unoccupied states is crucial to both fundamental and applied physics of organic semiconductors. However, there were no available experimental methods that meet the requirement of such research. In this review, we describe a new experimental method to examine the unoccupied states, called low-energy inverse photoemission spectroscopy (LEIPS). An electron having the kinetic energy lower than the damage threshold of organic molecules is introduced to a sample film, and an emitted photon in the near-ultraviolet range is detected with high resolution and sensitivity. Unlike the previous inverse photoemission spectroscopy, the sample damage is negligible and the overall resolution is a factor of two improved to 0.25 eV. Using LEIPS, electron affinity of organic semiconductor can be determined with the same precision as photoemission spectroscopy for ionization energy. The instruments including an electron source and photon detectors as well as application to organic semiconductors are presented.

  6. Principle and application of low energy inverse photoemission spectroscopy: A new method for measuring unoccupied states of organic semiconductors

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki

    2015-01-01

    Highlights: • Principle of low energy inverse photoemission spectroscopy is described. • Instruments including electron sources and photon detectors are shown. • Recent results about organic devices and fundamental studies are reviewed. • Electron affinities of typical organic semiconductors are compiled. - Abstract: Information about the unoccupied states is crucial to both fundamental and applied physics of organic semiconductors. However, there were no available experimental methods that meet the requirement of such research. In this review, we describe a new experimental method to examine the unoccupied states, called low-energy inverse photoemission spectroscopy (LEIPS). An electron having the kinetic energy lower than the damage threshold of organic molecules is introduced to a sample film, and an emitted photon in the near-ultraviolet range is detected with high resolution and sensitivity. Unlike the previous inverse photoemission spectroscopy, the sample damage is negligible and the overall resolution is a factor of two improved to 0.25 eV. Using LEIPS, electron affinity of organic semiconductor can be determined with the same precision as photoemission spectroscopy for ionization energy. The instruments including an electron source and photon detectors as well as application to organic semiconductors are presented.

  7. Reactivity of group IV (100) semiconductor surfaces towards organic compounds

    Science.gov (United States)

    Wang, George T.

    The reactions of simple and multifunctional organic compounds with the clean silicon, germanium, and diamond (100)-2 x 1 semiconductor surfaces have been investigated using a combination of multiple internal reflection infrared spectroscopy and quantum chemistry density functional theory calculations. From these studies, an improved understanding of the atomic level reactivity of these semiconductor surfaces has been obtained, along with insights into how to achieve their selective coupling with organics of desired and varied functionality. In addition to the Si(100) and Ge(100) surfaces, our results show that cycloaddition chemistry can also be extended to the diamond (100) surface. At room temperature, 1,3-butadiene was found to form a Diels-Alder product with the diamond (100) surface, as evidenced by isotopic substitution experiments and comparison of the surface adduct with its direct molecular analogue, cyclohexene. The reactions of other classes of molecules in addition to alkenes on the Si(100) and Ge(100) surfaces, including a series of five-membered cyclic amines, were also examined. For tertiary aliphatic amines on Si(100) and both secondary and tertiary aliphatic amines on Ge(100), a majority of the molecules were observed to become stably trapped in dative-bonded precursor states rather than form energetically favorable dissociation products. For pyrrole, aromaticity was found to play a defining role in its reactivity, and a comparison of its molecular and surface reactivity reveals interesting similarities. To probe the factors controlling the selectivity of organic reactions on clean semiconductor surfaces, the adsorption of acetone and a series of unsaturated ketones was also investigated. The reaction of acetone on Ge(100) was found to be under thermodynamic control at room temperature, resulting in the formation of an "ene" product rather than the kinetically favored [2+2] C=O cycloaddition product previously observed on the Si(100) surface. In

  8. Rational design of organic semiconductors for texture control and self-patterning on halogenated surfaces

    KAUST Repository

    Ward, Jeremy W.

    2014-05-15

    Understanding the interactions at interfaces between the materials constituting consecutive layers within organic thin-film transistors (OTFTs) is vital for optimizing charge injection and transport, tuning thin-film microstructure, and designing new materials. Here, the influence of the interactions at the interface between a halogenated organic semiconductor (OSC) thin film and a halogenated self-assembled monolayer on the formation of the crystalline texture directly affecting the performance of OTFTs is explored. By correlating the results from microbeam grazing incidence wide angle X-ray scattering (μGIWAXS) measurements of structure and texture with OTFT characteristics, two or more interaction paths between the terminating atoms of the semiconductor and the halogenated surface are found to be vital to templating a highly ordered morphology in the first layer. These interactions are effective when the separating distance is lower than 2.5 dw, where dw represents the van der Waals distance. The ability to modulate charge carrier transport by several orders of magnitude by promoting "edge-on" versus "face-on" molecular orientation and crystallographic textures in OSCs is demonstrated. It is found that the "edge-on" self-assembly of molecules forms uniform, (001) lamellar-textured crystallites which promote high charge carrier mobility, and that charge transport suffers as the fraction of the "face-on" oriented crystallites increases. The role of interfacial halogenation in mediating texture formation and the self-patterning of organic semiconductor films, as well as the resulting effects on charge transport in organic thin-film transistors, are explored. The presence of two or more anchoring sites between a halogenated semiconductor and a halogenated self-assembled monolayer, closer than about twice the corresponding van der Waals distance, alter the microstructure and improve electrical properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Digital Inverter Amine Sensing via Synergistic Responses by n and p Organic Semiconductors.

    Science.gov (United States)

    Tremblay, Noah J; Jung, Byung Jun; Breysse, Patrick; Katz, Howard E

    2011-11-22

    Chemiresistors and sensitive OFETs have been substantially developed as cheap, scalable, and versatile sensing platforms. While new materials are expanding OFET sensing capabilities, the device architectures have changed little. Here we report higher order logic circuits utilizing OFETs sensitive to amine vapors. The circuits depend on the synergistic responses of paired p- and n-channel organic semiconductors, including an unprecedented analyte-induced current increase by the n-channel semiconductor. This represents the first step towards 'intelligent sensors' that utilize analog signal changes in sensitive OFETs to produce direct digital readouts suitable for further logic operations.

  10. Synthesis, structural, thermal and optical studies of inorganic-organic hybrid semiconductors, R-PbI4

    Science.gov (United States)

    Pradeesh, K.; Nageswara Rao, K.; Vijaya Prakash, G.

    2013-02-01

    Wide varieties of naturally self-assembled two-dimensional inorganic-organic (IO) hybrid semiconductors, (4-ClC6H4NH3)2PbI4, (C6H9C2H4NH3)2PbI4, (CnH2n+1NH3)2PbI4 (where n = 12, 16, 18), (CnH2n-1NH3)2PbI4 (where n = 3, 4, 5), (C6H5C2H4NH3)2PbI4, NH3(CH2)12NH3PbI4, and (C4H3SC2H4NH3)2PbI4, were fabricated by intercalating structurally diverse organic guest moieties into lead iodide perovskite structure. The crystal packing of all these fabricated IO-hybrids comprises of well-ordered organic and inorganic layers, stacked-up alternately along c-axis. Almost all these hybrids are thermally stable upto 200 °C and show strong room-temperature exciton absorption and photoluminescence features. These strongly confined optical excitons are highly influenced by structural deformation of PbI matrix due to the conformation of organic moiety. A systematic correlation of optical exciton behavior of IO-hybrids with the organic/inorganic layer thicknesses, intercalating organic moieties, and various structural disorders were discussed. This systematic study clearly suggests that the PbI layer crumpling is directly responsible for the tunability of optical exciton energy.

  11. Reduction of Charge Traps and Stability Enhancement in Solution-Processed Organic Field-Effect Transistors Based on a Blended n-Type Semiconductor.

    Science.gov (United States)

    Campos, Antonio; Riera-Galindo, Sergi; Puigdollers, Joaquim; Mas-Torrent, Marta

    2018-05-09

    Solution-processed n-type organic field-effect transistors (OFETs) are essential elements for developing large-area, low-cost, and all organic logic/complementary circuits. Nonetheless, the development of air-stable n-type organic semiconductors (OSCs) lags behind their p-type counterparts. The trapping of electrons at the semiconductor-dielectric interface leads to a lower performance and operational stability. Herein, we report printed small-molecule n-type OFETs based on a blend with a binder polymer, which enhances the device stability due to the improvement of the semiconductor-dielectric interface quality and a self-encapsulation. Both combined effects prevent the fast deterioration of the OSC. Additionally, a complementary metal-oxide semiconductor-like inverter is fabricated depositing p-type and n-type OSCs simultaneously.

  12. Distribution of volatile organic compounds over a semiconductor Industrial Park in Taiwan.

    Science.gov (United States)

    Chiu, Kong-Hwa; Wu, Ben-Zen; Chang, Chih-Chung; Sree, Usha; Lo, Jiunn-Guang

    2005-02-15

    This study examined volatile organic compounds (VOC) concentration in ambient air collected during the years 2000--2003 at several different locations of Hsinchu Science-based Industrial Park (HSIP) in Taiwan. A canister automated GC-MS system analyzed the volatile organics in ambient air grasp samples according to T0-15 method. Oxygenated volatiles were the most abundant VOC detected in HSIP followed by aromatics that are commonly used as solvents in the semiconductor industries. The major components measured in the ambient air are 2-propanol (29-135 ppbv), acetone (12-164 ppbv), benzene (0.7-1.7 ppbv), and toluene (13-20 ppbv). At some of the sampling locations, odorous compounds such as carbon disulfide and dimethyl sulfide levels exceed threshold values. The estimated toluene/benzene ratio is very high at most of the sites. However, the total amount of VOC is reduced over the years from 2000 to 2003 due to strict implementation on use and discharge of solvents in industries. There exists no definite seasonal pattern for sporadic occurrence of high levels of some of the volatile organics. Stagnant weather conditions with low wind speeds aid accumulation of toxic species at ground level. The results entail that hi-tech semiconductor industries are still a potential source for harmful organic substances to surrounding microenvironment.

  13. New Organic Semiconductor Materials Applied in Organic Photovoltaic and Optical Devices

    Directory of Open Access Journals (Sweden)

    Andre F. S. Guedes

    2015-04-01

    Full Text Available The development of flexible organic photovoltaic solar cells, using an optically transparent substrate material and organic semiconductor materials, has been widely utilized by the electronic industry when producing new technological products. The flexible organic photovoltaic solar cells are the base Poly (3,4-ethylenedioxythiophene, PEDOT, Poly(3-hexyl thiophene, P3HT, Phenyl-C61-butyric acid methyl ester, PCBM and Polyaniline, PANI, were deposited in Indium Tin Oxide, ITO, and characterized by Electrical Measurements and Scanning Electron Microscopy (SEM. In addition, the thin film obtained by the deposition of PANI, prepared in perchloric acid solution, was identified through PANI-X1. The result obtained by electrical Measurements has demonstrated that the PET/ITO/PEDOT/P3HT:PCBM Blend/PANI-X1 layer presents the characteristic curve of standard solar cell after spin-coating and electrodeposition. The Thin film obtained by electrodeposition of PANI-X1 on P3HT/PCBM Blend was prepared in perchloric acid solution. These flexible organic photovoltaic solar cells presented power conversion efficiency of 12%. The inclusion of the PANI-X1 layer reduced the effects of degradation these organic photovoltaic panels induced for solar irradiation. In Scanning Electron Microscopy (SEM these studies reveal that the surface of PANI-X1 layers is strongly conditioned by the surface morphology of the dielectric.

  14. Modeling space-charge-limited currents in organic semiconductors: Extracting trap density and mobility

    KAUST Repository

    Dacuñ a, Javier; Salleo, Alberto

    2011-01-01

    We have developed and have applied a mobility edge model that takes drift and diffusion currents to characterize the space-charge-limited current in organic semiconductors into account. The numerical solution of the drift-diffusion equation allows

  15. Charge transport in electrically doped amorphous organic semiconductors.

    Science.gov (United States)

    Yoo, Seung-Jun; Kim, Jang-Joo

    2015-06-01

    This article reviews recent progress on charge generation by doping and its influence on the carrier mobility in organic semiconductors (OSs). The doping induced charge generation efficiency is generally low in OSs which was explained by the integer charge transfer model and the hybrid charge transfer model. The ionized dopants formed by charge transfer between hosts and dopants can act as Coulomb traps for mobile charges, and the presence of Coulomb traps in OSs broadens the density of states (DOS) in doped organic films. The Coulomb traps strongly reduce the carrier hopping rate and thereby change the carrier mobility, which was confirmed by experiments in recent years. In order to fully understand the doping mechanism in OSs, further quantitative and systematic analyses of charge transport characteristics must be accomplished. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Energy resolved electrochemical impedance spectroscopy for electronic structure mapping in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Nádaždy, V., E-mail: nadazdy@savba.sk; Gmucová, K. [Institute of Physics SAS, Dúbravská cesta 9, 845 11 Bratislava (Slovakia); Schauer, F. [Faculty of Education, Trnava University in Trnava, 918 43 Trnava (Slovakia); Faculty of Applied Informatics, Tomas Bata University in Zlin, 760 05 Zlin (Czech Republic)

    2014-10-06

    We introduce an energy resolved electrochemical impedance spectroscopy method to map the electronic density of states (DOS) in organic semiconductor materials. The method consists in measurement of the charge transfer resistance of a semiconductor/electrolyte interface at a frequency where the redox reactions determine the real component of the impedance. The charge transfer resistance value provides direct information about the electronic DOS at the energy given by the electrochemical potential of the electrolyte, which can be adjusted using an external voltage. A simple theory for experimental data evaluation is proposed, along with an explanation of the corresponding experimental conditions. The method allows mapping over unprecedentedly wide energy and DOS ranges. Also, important DOS parameters can be determined directly from the raw experimental data without the lengthy analysis required in other techniques. The potential of the proposed method is illustrated by tracing weak bond defect states induced by ultraviolet treatment above the highest occupied molecular orbital in a prototypical σ-conjugated polymer, poly[methyl(phenyl)silylene]. The results agree well with those of our previous DOS reconstruction by post-transient space-charge-limited-current spectroscopy, which was, however, limited to a narrow energy range. In addition, good agreement of the DOS values measured on two common π-conjugated organic polymer semiconductors, polyphenylene vinylene and poly(3-hexylthiophene), with the rather rare previously published data demonstrate the accuracy of the proposed method.

  17. Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang [Columbia Univ., New York, NY (United States); Frisbie, Daniel [Univ. of Minnesota, Minneapolis, MN (United States)

    2017-03-31

    The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering.

  18. Full quantum treatment of charge dynamics in amorphous molecular semiconductors

    Science.gov (United States)

    de Vries, Xander; Friederich, Pascal; Wenzel, Wolfgang; Coehoorn, Reinder; Bobbert, Peter A.

    2018-02-01

    We present a treatment of charge dynamics in amorphous molecular semiconductors that accounts for the coupling of charges to all intramolecular phonon modes in a fully quantum mechanical way. Based on ab initio calculations, we derive charge transfer rates that improve on the widely used semiclassical Marcus rate and obtain benchmark results for the mobility and energetic relaxation of electrons and holes in three semiconductors commonly applied in organic light-emitting diodes. Surprisingly, we find very similar results when using the simple Miller-Abrahams rate. We conclude that extracting the disorder strength from temperature-dependent charge transport studies is very possible but extracting the reorganization energy is not.

  19. Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers.

    Science.gov (United States)

    Vannahme, Christoph; Klinkhammer, Sönke; Lemmer, Uli; Mappes, Timo

    2011-04-25

    Laser light excitation of fluorescent markers offers highly sensitive and specific analysis for bio-medical or chemical analysis. To profit from these advantages for applications in the field or at the point-of-care, a plastic lab-on-a-chip with integrated organic semiconductor lasers is presented here. First order distributed feedback lasers based on the organic semiconductor tris(8-hydroxyquinoline) aluminum (Alq3) doped with the laser dye 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyril)-4H-pyrane (DCM), deep ultraviolet induced waveguides, and a nanostructured microfluidic channel are integrated into a poly(methyl methacrylate) (PMMA) substrate. A simple and parallel fabrication process is used comprising thermal imprint, DUV exposure, evaporation of the laser material, and sealing by thermal bonding. The excitation of two fluorescent marker model systems including labeled antibodies with light emitted by integrated lasers is demonstrated.

  20. Anion-induced N-doping of naphthalenediimide polymer semiconductor in organic thin-film transistors

    KAUST Repository

    Han, Yang

    2018-03-13

    Molecular doping is an important strategy to improve the charge transport properties of organic semiconductors in various electronic devices. Compared to p-type dopants, the development of n-type dopants is especially challenging due to poor dopant stability against atmospheric conditions. In this article, we report the n-doping of the milestone naphthalenediimide-based conjugated polymer P(NDI2OD-T2) in organic thin film transistor devices by soluble anion dopants. The addition of the dopants resulted in the formation of stable radical anions in thin films, as confirmed by EPR spectroscopy. By tuning the dopant concentration via simple solution mixing, the transistor parameters could be readily controlled. Hence the contact resistance between the electrodes and the semiconducting polymer could be significantly reduced, which resulted in the transistor behaviour approaching the desirable gate voltage-independent model. Reduced hysteresis was also observed, thanks to the trap filling by the dopant. Under optimal doping concentrations the channel on-current was increased several fold whilst the on/off ratio was simultaneously increased by around one order of magnitude. Hence doping with soluble organic salts appears to be a promising route to improve the charge transport properties of n-type organic semiconductors.

  1. Anion-induced N-doping of naphthalenediimide polymer semiconductor in organic thin-film transistors

    KAUST Repository

    Han, Yang; Fei, Zhuping; Lin, Yen-Hung; Martin, Jaime; Tuna, Floriana; Anthopoulos, Thomas D.; Heeney, Martin

    2018-01-01

    Molecular doping is an important strategy to improve the charge transport properties of organic semiconductors in various electronic devices. Compared to p-type dopants, the development of n-type dopants is especially challenging due to poor dopant stability against atmospheric conditions. In this article, we report the n-doping of the milestone naphthalenediimide-based conjugated polymer P(NDI2OD-T2) in organic thin film transistor devices by soluble anion dopants. The addition of the dopants resulted in the formation of stable radical anions in thin films, as confirmed by EPR spectroscopy. By tuning the dopant concentration via simple solution mixing, the transistor parameters could be readily controlled. Hence the contact resistance between the electrodes and the semiconducting polymer could be significantly reduced, which resulted in the transistor behaviour approaching the desirable gate voltage-independent model. Reduced hysteresis was also observed, thanks to the trap filling by the dopant. Under optimal doping concentrations the channel on-current was increased several fold whilst the on/off ratio was simultaneously increased by around one order of magnitude. Hence doping with soluble organic salts appears to be a promising route to improve the charge transport properties of n-type organic semiconductors.

  2. Organic Semiconductors based on Dyes and Color Pigments.

    Science.gov (United States)

    Gsänger, Marcel; Bialas, David; Huang, Lizhen; Stolte, Matthias; Würthner, Frank

    2016-05-01

    Organic dyes and pigments constitute a large class of industrial products. The utilization of these compounds in the field of organic electronics is reviewed with particular emphasis on organic field-effect transistors. It is shown that for most major classes of industrial dyes and pigments, i.e., phthalocyanines, perylene and naphthalene diimides, diketopyrrolopyrroles, indigos and isoindigos, squaraines, and merocyanines, charge-carrier mobilities exceeding 1 cm(2) V(-1) s(-1) have been achieved. The most widely investigated molecules due to their n-channel operation are perylene and naphthalene diimides, for which even values close to 10 cm(2) V(-1) s(-1) have been demonstrated. The fact that all of these π-conjugated colorants contain polar substituents leading to strongly quadrupolar or even dipolar molecules suggests that indeed a much larger structural space shows promise for the design of organic semiconductor molecules than was considered in this field traditionally. In particular, because many of these dye and pigment chromophores demonstrate excellent thermal and (photo-)chemical stability in their original applications in dyeing and printing, and are accessible by straightforward synthetic protocols, they bear a particularly high potential for commercial applications in the area of organic electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Room temperature triplet state spectroscopy of organic semiconductors.

    Science.gov (United States)

    Reineke, Sebastian; Baldo, Marc A

    2014-01-21

    Organic light-emitting devices and solar cells are devices that create, manipulate, and convert excited states in organic semiconductors. It is crucial to characterize these excited states, or excitons, to optimize device performance in applications like displays and solar energy harvesting. This is complicated if the excited state is a triplet because the electronic transition is 'dark' with a vanishing oscillator strength. As a consequence, triplet state spectroscopy must usually be performed at cryogenic temperatures to reduce competition from non-radiative rates. Here, we control non-radiative rates by engineering a solid-state host matrix containing the target molecule, allowing the observation of phosphorescence at room temperature and alleviating constraints of cryogenic experiments. We test these techniques on a wide range of materials with functionalities spanning multi-exciton generation (singlet exciton fission), organic light emitting device host materials, and thermally activated delayed fluorescence type emitters. Control of non-radiative modes in the matrix surrounding a target molecule may also have broader applications in light-emitting and photovoltaic devices.

  4. Vacuum-and-solvent-free fabrication of organic semiconductor layers for field-effect transistors

    Science.gov (United States)

    Matsushima, Toshinori; Sandanayaka, Atula S. D.; Esaki, Yu; Adachi, Chihaya

    2015-09-01

    We demonstrate that cold and hot isostatic pressing (CIP and HIP) is a novel, alternative method for organic semiconductor layer fabrication, where organic powder is compressed into a layer shape directly on a substrate with 200 MPa pressure. Spatial gaps between powder particles and the other particles, substrates, or electrodes are crushed after CIP and HIP, making it possible to operate organic field-effect transistors (OFETs) containing the compressed powder as the semiconductor. The CIP-compressed powder of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) had a hole mobility of (1.6 ± 0.4) × 10-2 cm2/Vs. HIP of C8-BTBT powder increased the hole mobility to an amorphous silicon-like value (0.22 ± 0.07 cm2/Vs) because of the growth of the C8-BTBT crystallites and the improved continuity between the powder particles. The vacuum and solution processes are not involved in our CIP and HIP techniques, offering a possibility of manufacturing OFETs at low cost.

  5. Charge carrier mobility in thin films of organic semiconductors by the gated van der Pauw method

    Science.gov (United States)

    Rolin, Cedric; Kang, Enpu; Lee, Jeong-Hwan; Borghs, Gustaaf; Heremans, Paul; Genoe, Jan

    2017-01-01

    Thin film transistors based on high-mobility organic semiconductors are prone to contact problems that complicate the interpretation of their electrical characteristics and the extraction of important material parameters such as the charge carrier mobility. Here we report on the gated van der Pauw method for the simple and accurate determination of the electrical characteristics of thin semiconducting films, independently from contact effects. We test our method on thin films of seven high-mobility organic semiconductors of both polarities: device fabrication is fully compatible with common transistor process flows and device measurements deliver consistent and precise values for the charge carrier mobility and threshold voltage in the high-charge carrier density regime that is representative of transistor operation. The gated van der Pauw method is broadly applicable to thin films of semiconductors and enables a simple and clean parameter extraction independent from contact effects. PMID:28397852

  6. 2,6-Bis(benzo[b]thiophen-2-yl-3,7-dipentadecyltetrathienoacene (DBT-TTAR2 as an Alternative of Highly Soluble p-type Organic Semiconductor for Organic Thin Film Transistor (OTFT Application

    Directory of Open Access Journals (Sweden)

    Mery B. Supriadi

    2013-03-01

    Full Text Available A new compound of organic semiconductor based on tetrathienoacene (TTA derivatives, DBT-TTAR2 was synthesized and characterized. The corporation of dibenzo[b,d]thiophene (DBT group and alkyl substituent in both ends of TTA core have a significant effect on their π-π molecular conjugation length, energy gaps value and solubility properties. DBT-TTAR2 is fabricated as p-type organic semiconductor of organic thin film transistor (OTFT by solution process at Industrial Technology Research Institute, Taiwan. A good optical, electrochemical, and thermal properties of DBT-TTAR2 showed that its exhibits a better performance as highly soluble p-type organic semiconductor.

  7. Design strategy for air-stable organic semiconductors applicable to high-performance field-effect transistors

    Directory of Open Access Journals (Sweden)

    Kazuo Takimiya et al

    2007-01-01

    Full Text Available Electronic structure of air-stable, high-performance organic field-effect transistor (OFET material, 2,7-dipheneyl[1]benzothieno[3,2-b]benzothiophene (DPh-BTBT, was discussed based on the molecular orbital calculations. It was suggested that the stability is originated from relatively low-lying HOMO level, despite the fact that the molecule contains highly π-extended aromatic core ([1]benzothieno[3,2-b]benzothiophene, BTBT with four fused aromatic rings like naphthacene. This is rationalized by the consideration that the BTBT core is not isoelectronic with naphthacene but with chrysene, a cata-condensed phene with four benzene rings. It is well known that the acene-type compound is unstable among its structural isomers with the same number of benzene rings. Therefore, polycyclic aromatic compounds possessing the phene-substructure will be good candidates for stable organic semiconductors. Considering synthetic easiness, we suggest that the BTBT-substructure is the molecular structure of choice for developing air-stable organic semiconductors.

  8. Carrier diffusion in low-dimensional semiconductors. a comparison of quantum wells, disordered quantum wells, and quantum dots

    NARCIS (Netherlands)

    Fiore, A.; Rossetti, M.; Alloing, B.; Paranthoën, C.; Chen, J.X.; Geelhaar, L.; Riechert, H.

    2004-01-01

    We present a comparative study of carrier diffusion in semiconductor heterostructures with different dimensionality [InGaAs quantum wells (QWs), InAs quantum dots (QDs), and disordered InGaNAs QWs (DQWs)]. In order to evaluate the diffusion length in the active region of device structures, we

  9. Late stage crystallization and healing during spin-coating enhance carrier transport in small-molecule organic semiconductors

    KAUST Repository

    Chou, Kang Wei; Khan, Hadayat Ullah; Niazi, Muhammad Rizwan; Yan, Buyi; Li, Ruipeng; Payne, Marcia M.; Anthony, John Edward; Smilgies, Detlef Matthias; Amassian, Aram

    2014-01-01

    Spin-coating is currently the most widely used solution processing method in organic electronics. Here, we report, for the first time, a direct investigation of the formation process of the small-molecule organic semiconductor (OSC) 6,13-bis

  10. Rational design of organic semiconductors for texture control and self-patterning on halogenated surfaces

    KAUST Repository

    Ward, Jeremy W.; Li, Ruipeng; Obaid, Abdulmalik; Payne, Marcia M.; Smilgies, Detlef Matthias; Anthony, John Edward; Amassian, Aram; Jurchescu, Oana D.

    2014-01-01

    new materials. Here, the influence of the interactions at the interface between a halogenated organic semiconductor (OSC) thin film and a halogenated self-assembled monolayer on the formation of the crystalline texture directly affecting

  11. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains

    KAUST Repository

    Diao, Ying; Tee, Benjamin C-K.; Giri, Gaurav; Xu, Jie; Kim, Do Hwan; Becerril, Hector A.; Stoltenberg, Randall M.; Lee, Tae Hoon; Xue, Gi; Mannsfeld, Stefan C. B.; Bao, Zhenan

    2013-01-01

    Solution coating of organic semiconductors offers great potential for achieving low-cost manufacturing of large-area and flexible electronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control

  12. Quantum dynamics of nuclear spins and spin relaxation in organic semiconductors

    Science.gov (United States)

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2017-06-01

    We investigate the role of the nuclear-spin quantum dynamics in hyperfine-induced spin relaxation of hopping carriers in organic semiconductors. The fast-hopping regime, when the carrier spin does not rotate much between subsequent hops, is typical for organic semiconductors possessing long spin coherence times. We consider this regime and focus on a carrier random-walk diffusion in one dimension, where the effect of the nuclear-spin dynamics is expected to be the strongest. Exact numerical simulations of spin systems with up to 25 nuclear spins are performed using the Suzuki-Trotter decomposition of the evolution operator. Larger nuclear-spin systems are modeled utilizing the spin-coherent state P -representation approach developed earlier. We find that the nuclear-spin dynamics strongly influences the carrier spin relaxation at long times. If the random walk is restricted to a small area, it leads to the quenching of carrier spin polarization at a nonzero value at long times. If the random walk is unrestricted, the carrier spin polarization acquires a long-time tail, decaying as 1 /√{t } . Based on the numerical results, we devise a simple formula describing the effect quantitatively.

  13. Stability of polarization in organic ferroelectric metal-insulator-semiconductor (MIS) structures

    Energy Technology Data Exchange (ETDEWEB)

    Kalbitz, Rene; Fruebing, Peter; Gerhard, Reimund [Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam (Germany); Taylor, Martin [School of Electronic Engineering, Bangor University, Dean Street, Bangor Gwynedd, LL57 1UT (United Kingdom)

    2011-07-01

    Ferroelectric field effect transistors (FeFETs) offer the prospect of an organic-based memory device. Since the charge transport in such devices is confined to the interface between the insulator and the semiconductor, the focus of the present study was on the investigation of this region. Capacitance-voltage (C-V) measurements of all-organic MIS devices with poly(vinylidenefluoride- trifluoroethylene) (P(VDF-TrFE)) as gate insulator and poly(3-hexylthiophene)(P3HT) as semiconductor were carried out. When the structure was driven into depletion, a positive flat-band voltage shift was observed arising from the change in polarization state of the ferroelectric insulator. When driven into accumulation, the polarization was reversed. It is shown that both polarization states are stable. However, negative charge trapped at the interface during the depletion cycle masks the negative shift in flat-band voltage expected during the sweep to accumulation voltages. Measurements on P(VDF-TrFE)/P3HT based FeFETs yield further evidence for fixed charges at the interface. Output characteristics suggest the injection of negative charges into the interface region when a depletion voltage is applied between source and gate contact.

  14. On the Effect of Confinement on the Structure and Properties of Small-Molecular Organic Semiconductors

    KAUST Repository

    Martin, Jaime; Dyson, Matthew; Reid, Obadiah G.; Li, Ruipeng; Nogales, Aurora; Smilgies, Detlef-M.; Silva, Carlos; Rumbles, Garry; Amassian, Aram; Stingelin, Natalie

    2017-01-01

    Many typical organic optoelectronic devices, such as light-emitting diodes, field-effect transistors, and photovoltaic cells, use an ultrathin active layer where the organic semiconductor is confined within nanoscale dimensions. However, the question of how this spatial constraint impacts the active material is rarely addressed, although it may have a drastic influence on the phase behavior and microstructure of the active layer and hence the final performance. Here, the small-molecule semiconductor p-DTS(FBTTh) is used as a model system to illustrate how sensitive this class of material can be to spatial confinement on device-relevant length scales. It is also shown that this effect can be exploited; it is demonstrated, for instance, that spatial confinement is an efficient tool to direct the crystal orientation and overall texture of p-DTS(FBTTh) structures in a controlled manner, allowing for the manipulation of properties including photoluminescence and charge transport characteristics. This insight should be widely applicable as the temperature/confinement phase diagrams established via differential scanning calorimetry and grazing-incidence X-ray diffraction are used to identify specific processing routes that can be directly extrapolated to other functional organic materials, such as polymeric semiconductors, ferroelectrics or high-refractive-index polymers, to induce desired crystal textures or specific (potentially new) polymorphs.

  15. On the Effect of Confinement on the Structure and Properties of Small-Molecular Organic Semiconductors

    KAUST Repository

    Martín, Jaime

    2017-12-11

    Many typical organic optoelectronic devices, such as light-emitting diodes, field-effect transistors, and photovoltaic cells, use an ultrathin active layer where the organic semiconductor is confined within nanoscale dimensions. However, the question of how this spatial constraint impacts the active material is rarely addressed, although it may have a drastic influence on the phase behavior and microstructure of the active layer and hence the final performance. Here, the small-molecule semiconductor p-DTS(FBTTh) is used as a model system to illustrate how sensitive this class of material can be to spatial confinement on device-relevant length scales. It is also shown that this effect can be exploited; it is demonstrated, for instance, that spatial confinement is an efficient tool to direct the crystal orientation and overall texture of p-DTS(FBTTh) structures in a controlled manner, allowing for the manipulation of properties including photoluminescence and charge transport characteristics. This insight should be widely applicable as the temperature/confinement phase diagrams established via differential scanning calorimetry and grazing-incidence X-ray diffraction are used to identify specific processing routes that can be directly extrapolated to other functional organic materials, such as polymeric semiconductors, ferroelectrics or high-refractive-index polymers, to induce desired crystal textures or specific (potentially new) polymorphs.

  16. On the impact of isoelectric impurities on band bowing and disorder of compound semiconductors; Ueber den Einfluss von isoelektronischen Stoerstellen auf Bandbiegung und Unordnung in Verbindungshalbleitern

    Energy Technology Data Exchange (ETDEWEB)

    Karcher, Christian

    2012-03-16

    Isolectronic impurities and their impact on the properties of compound semiconductors is discussed in two systems: Nitrogen in Ga(As,P) quantum wells on the one hand and Sulfur and Selenium in bulk ZnTe. The properties are reduced to two experimentally observable aspects: Band Bowing, i.e. the non-linearity of the band gap of the compound semiconductor and disorder, i.e. in particular the formation of a strongly localized density of states beneath the fundamental band gap. Apart of the pure experimental studies an insight into the theoretical model of disorder-induced temperature dependent luminescence properties of the compound semiconductors by means of Monte Carlo Simulations is given.

  17. Quantifying resistances across nanoscale low- and high-angle interspherulite boundaries in solution-processed organic semiconductor thin films.

    Science.gov (United States)

    Lee, Stephanie S; Mativetsky, Jeffrey M; Loth, Marsha A; Anthony, John E; Loo, Yueh-Lin

    2012-11-27

    The nanoscale boundaries formed when neighboring spherulites impinge in polycrystalline, solution-processed organic semiconductor thin films act as bottlenecks to charge transport, significantly reducing organic thin-film transistor mobility in devices comprising spherulitic thin films as the active layers. These interspherulite boundaries (ISBs) are structurally complex, with varying angles of molecular orientation mismatch along their lengths. We have successfully engineered exclusively low- and exclusively high-angle ISBs to elucidate how the angle of molecular orientation mismatch at ISBs affects their resistivities in triethylsilylethynyl anthradithiophene thin films. Conductive AFM and four-probe measurements reveal that current flow is unaffected by the presence of low-angle ISBs, whereas current flow is significantly disrupted across high-angle ISBs. In the latter case, we estimate the resistivity to be 22 MΩμm(2)/width of the ISB, only less than a quarter of the resistivity measured across low-angle grain boundaries in thermally evaporated sexithiophene thin films. This discrepancy in resistivities across ISBs in solution-processed organic semiconductor thin films and grain boundaries in thermally evaporated organic semiconductor thin films likely arises from inherent differences in the nature of film formation in the respective systems.

  18. Dark Current And Voltage Measurements Of Metal-Organic-Semiconductor (M-Or-S) Diode

    International Nuclear Information System (INIS)

    Adianto

    1996-01-01

    . Some Metal-Organic-Semiconductor (M-Or-S) thin film diodes, constructed with an organic polymer (polymerized toluene) as an active component has been successfully fabricated. The thin film M-Or-S diodes were fabricated on an n-type silicon with resistivity of 250-500 Ocm and p type silicon with resistivity of 10-20 Ocm as a substrate with polymerized toluene used as insulator. When deposited on silicon wafers with electrode of evaporated Ni on the n-type silicon and evaporated Au as the electrode on the polymerized toluene film, the electronic devices of Metal-Organic- Semiconductor (M-Or-S) type can be produced with one of its characteristics is that their light sensitivity. A plasma ion deposition system was constructed and used to deposit organic monomeric substance (toluene) that functioned as an isolator between semiconductor and the evaporated metal electrodes. The current-voltage measurements for different configurations of M-Or-S devices were carried out to determine the current-voltage (1-V) characteristics for M-Or-S devices with different materials and thicknesses. In addition to the 1-V measurement mentioned before, 1-V measurements of the devices were also carried out by using a curve tracer oscilloscope, and the picture of the effective parameters of each of the device could be taken by using a polaroid camera. Since the devices are very sensitive to light, the devices were all tested in a black-box which was covered by a black cloth to make sure that there was no light coming through. The experimental results for p- and n-type silicon substrates showed that an M-Or-S diode with n-type gave a higher breakdown voltage than that p- type silicon. In addition, the reverse bias breakdown voltage increased as the thickness of the thin film increased in the range of 50 -2500 V/μm

  19. Theoretical proposal for a magnetic resonance study of charge transport in organic semiconductors

    Science.gov (United States)

    Mkhitaryan, Vagharsh

    Charge transport in disordered organic semiconductors occurs via carrier incoherent hops in a band of localized states. In the framework of continuous-time random walk the carrier on-site waiting time distribution (WTD) is one of the basic characteristics of diffusion. Besides, WTD is fundamentally related to the density of states (DOS) of localized states, which is a key feature of a material determining the optoelectric properties. However, reliable first-principle calculations of DOS in organic materials are not yet available and experimental characterization of DOS and WTD is desirable. We theoretically study the spin dynamics of hopping carriers and propose measurement schemes directly probing WTD, based on the zero-field spin relaxation and the primary (Hahn) spin echo. The proposed schemes are possible because, as we demonstrate, the long-time behavior of the zero-field relaxation and the primary echo is determined by WTD, both for the hyperfine coupling dominated and the spin-orbit coupling dominated spin dynamics. We also examine the dispersive charge transport, which is a non-Markovian sub-diffusive process characterized by non-stationarity. We show that the proposed schemes unambiguously capture the effects of non-stationarity, e.g., the aging behavior of random walks. This work was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

  20. Solvent-free directed patterning of a highly ordered liquid crystalline organic semiconductor via template-assisted self-assembly for organic transistors.

    Science.gov (United States)

    Kim, Aryeon; Jang, Kwang-Suk; Kim, Jinsoo; Won, Jong Chan; Yi, Mi Hye; Kim, Hanim; Yoon, Dong Ki; Shin, Tae Joo; Lee, Myong-Hoon; Ka, Jae-Won; Kim, Yun Ho

    2013-11-20

    Highly ordered organic semiconductor micropatterns of the liquid-crystalline small molecule 2,7-didecylbenzothienobenzothiophene (C10 -BTBT) are fabricated using a simple method based on template-assisted self-assembly (TASA). The liquid crystallinity of C10 -BTBT allows solvent-free fabrication of high-performance printed organic field-effect transistors (OFETs). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The Effects of Different Electron-Phonon Couplings on the Spectral and Transport Properties of Small Molecule Single-Crystal Organic Semiconductors

    Directory of Open Access Journals (Sweden)

    Carmine Antonio Perroni

    2014-03-01

    Full Text Available Spectral and transport properties of small molecule single-crystal organic semiconductors have been theoretically analyzed focusing on oligoacenes, in particular on the series from naphthalene to rubrene and pentacene, aiming to show that the inclusion of different electron-phonon couplings is of paramount importance to interpret accurately the properties of prototype organic semiconductors. While in the case of rubrene, the coupling between charge carriers and low frequency inter-molecular modes is sufficient for a satisfactory description of spectral and transport properties, the inclusion of electron coupling to both low-frequency inter-molecular and high-frequency intra-molecular vibrational modes is needed to account for the temperature dependence of transport properties in smaller oligoacenes. For rubrene, a very accurate analysis in the relevant experimental configuration has allowed for the clarification of the origin of the temperature-dependent mobility observed in these organic semiconductors. With increasing temperature, the chemical potential moves into the tail of the density of states corresponding to localized states, but this is not enough to drive the system into an insulating state. The mobility along different crystallographic directions has been calculated, including vertex corrections that give rise to a transport lifetime one order of magnitude smaller than the spectral lifetime of the states involved in the transport mechanism. The mobility always exhibits a power-law behavior as a function of temperature, in agreement with experiments in rubrene. In systems gated with polarizable dielectrics, the electron coupling to interface vibrational modes of the gate has to be included in addition to the intrinsic electron-phonon interaction. While the intrinsic bulk electron-phonon interaction affects the behavior of mobility in the coherent regime below room temperature, the coupling with interface modes is dominant for the

  2. Rotator side chains trigger cooperative transition for shape and function memory effect in organic semiconductors.

    Science.gov (United States)

    Chung, Hyunjoong; Dudenko, Dmytro; Zhang, Fengjiao; D'Avino, Gabriele; Ruzié, Christian; Richard, Audrey; Schweicher, Guillaume; Cornil, Jérôme; Beljonne, David; Geerts, Yves; Diao, Ying

    2018-01-18

    Martensitic transition is a solid-state phase transition involving cooperative movement of atoms, mostly studied in metallurgy. The main characteristics are low transition barrier, ultrafast kinetics, and structural reversibility. They are rarely observed in molecular crystals, and hence the origin and mechanism are largely unexplored. Here we report the discovery of martensitic transition in single crystals of two different organic semiconductors. In situ microscopy, single-crystal X-ray diffraction, Raman and nuclear magnetic resonance spectroscopy, and molecular simulations combined indicate that the rotating bulky side chains trigger cooperative transition. Cooperativity enables shape memory effect in single crystals and function memory effect in thin film transistors. We establish a molecular design rule to trigger martensitic transition in organic semiconductors, showing promise for designing next-generation smart multifunctional materials.

  3. Spin Coulomb Dragging Inhibition of Spin-Polarized Electric Current Injecting into Organic Semiconductors

    International Nuclear Information System (INIS)

    Jun-Qing, Zhao; Shi-Zhu, Qiao; Zhen-Feng, Jia; Ning-Yu, Zhang; Yan-Ju, Ji; Yan-Tao, Pang; Ying, Chen; Gang, Fu

    2008-01-01

    We introduce a one-dimensional spin injection structure comprising a ferromagnetic metal and a nondegenerate organic semiconductor to model electric current polarizations. With this model we analyse spin Coulomb dragging (SCD) effects on the polarization under various electric fields, interface and conductivity conditions. The results show that the SCD inhibits the current polarization. Thus the SCD inhibition should be well considered for accurate evaluation of current polarization in the design of organic spin devices

  4. Preparation and dielectric investigation of organic metal insulator semiconductor (MIS) structures with a ferroelectric polymer

    Energy Technology Data Exchange (ETDEWEB)

    Kalbitz, Rene; Fruebing, Peter; Gerhard, Reimund [Department of Physics and Astronomy, University of Potsdam (Germany); Taylor, Martin [School of Electronic Engineering, Bangor University (United Kingdom)

    2010-07-01

    Ferroelectric field effect transistors (FeFETs) offer the prospect of an organic-based memory device. Since the charge transport in the semiconductor is confined to the interface region between the insulator and the semiconductor, the focus of the present study was on the investigation of this region in metal-insulator-semiconductor (MIS) capacitors using dielectric spectroscopy. Capacitance-Voltage (C-V) measurements at different frequencies as well as capacitance-frequency (C-f) measurements after applying different poling voltages were carried out. The C-V measurements yielded information about the frequency dependence of the depletion layer width as well as the number of charges stored at the semiconductor/ insulator interface. The results are compared to numerical calculations based on a model introduced by S. L. Miller (JAP, 72(12), 1992). The C-f measurements revealed three main relaxation processes. An equivalent circuit has been developed to model the frequency response of the MIS capacitor. With this model the origin of the three relaxations may be deduced.

  5. Vacuum-and-solvent-free fabrication of organic semiconductor layers for field-effect transistors

    Science.gov (United States)

    Matsushima, Toshinori; Sandanayaka, Atula S. D.; Esaki, Yu; Adachi, Chihaya

    2015-01-01

    We demonstrate that cold and hot isostatic pressing (CIP and HIP) is a novel, alternative method for organic semiconductor layer fabrication, where organic powder is compressed into a layer shape directly on a substrate with 200 MPa pressure. Spatial gaps between powder particles and the other particles, substrates, or electrodes are crushed after CIP and HIP, making it possible to operate organic field-effect transistors (OFETs) containing the compressed powder as the semiconductor. The CIP-compressed powder of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) had a hole mobility of (1.6 ± 0.4) × 10–2 cm2/Vs. HIP of C8-BTBT powder increased the hole mobility to an amorphous silicon-like value (0.22 ± 0.07 cm2/Vs) because of the growth of the C8-BTBT crystallites and the improved continuity between the powder particles. The vacuum and solution processes are not involved in our CIP and HIP techniques, offering a possibility of manufacturing OFETs at low cost. PMID:26416434

  6. Tunable Injection Barrier in Organic Resistive Switches Based on Phase-Separated Ferroelectric-Semiconductor Blends

    NARCIS (Netherlands)

    Asadi, Kamal; de Boer, Tom G.; Blom, Paul W. M.; de Leeuw, Dago M.

    2009-01-01

    Organic non-volatile resistive bistable diodes based on phase-separated blends of ferroelectric and semiconducting polymers are fabricated. The polarization field of the ferroelectric modulates the injection barrier at the semiconductor-electrode contact and, hence, the resistance of the comprising

  7. Tunable injection barrier in organic resistive switches based on phase-separated ferroelectric-semiconductor blends

    NARCIS (Netherlands)

    Asadi, K.; Boer, T.G. de; Blom, P.W.M.; Leeuw, D.M. de

    2009-01-01

    Organic non-volatile resistive bistable diodes based on phase-separated blends of ferroelectric and semiconducting polymers are fabricated. The polarization field of the ferroelectric modulates the injection barrier at the semiconductor-electrode contact and, hence, the resistance of the comprising

  8. Quantitative analysis and optimization of gravure printed metal ink, dielectric, and organic semiconductor films.

    Science.gov (United States)

    Higgins, Stuart G; Boughey, Francesca L; Hills, Russell; Steinke, Joachim H G; Muir, Beinn V O; Campbell, Alasdair J

    2015-03-11

    Here we demonstrate the optimization of gravure printed metal ink, dielectric, and semiconductor formulations. We present a technique for nondestructively imaging printed films using a commercially available flatbed scanner, combined with image analysis to quantify print behavior. Print speed, cliché screen density, nip pressure, the orientation of print structures, and doctor blade extension were found to have a significant impact on the quality of printed films, as characterized by the spreading of printed structures and variation in print homogeneity. Organic semiconductor prints were observed to exhibit multiple periodic modulations, which are correlated to the underlying cell structure.

  9. Influences of semiconductor morphology on the mechanical fatigue behavior of flexible organic electronics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Joo; Yeon, Han-Wool; Shin, Hae-A-Seul; Joo, Young-Chang, E-mail: ycjoo@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, 151-744 Seoul (Korea, Republic of); Uk Lee, Yong; Evans, Louise A. [Center for Process Innovation Limited, Thomas Wright Way, NETPark, Sedgefield, TS21 3FG County Durham (United Kingdom)

    2013-12-09

    The influence of crystalline morphology on the mechanical fatigue of organic semiconductors (OSCs) was investigated using 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) as a crystalline OSC and poly(triarylamine) (PTAA) as an amorphous OSC. During cyclic bending, resistances of the OSCs were monitored using the transmission-line method on a metal-semiconductor-metal structure. The resistance of the TIPS-pentacene increased under fatigue damage in tensile-stress mode, but no such degradation was observed in the PTAA. Both OSCs were stable under compressive bending fatigue. The formation of intergranular cracks at the domain boundaries of the TIPS-pentacene was responsible for the degradation of its electrical properties under tensile bending fatigue.

  10. Carrier concentration induced ferromagnetism in semiconductors

    International Nuclear Information System (INIS)

    Story, T.

    2007-01-01

    mechanisms and variety of new proposals aiming at proper theoretical description of such features of diluted magnetic semiconductors as magnetic (site) disorder, electronic disorder due to doping, and competition between ferromagnetic and antiferromagnetic exchange interactions. (author)

  11. Hybrid organic-inorganic porous semiconductor transducer for multi-parameters sensing.

    Science.gov (United States)

    Caliò, Alessandro; Cassinese, Antonio; Casalino, Maurizio; Rea, Ilaria; Barra, Mario; Chiarella, Fabio; De Stefano, Luca

    2015-07-06

    Porous silicon (PSi) non-symmetric multi-layers are modified by organic molecular beam deposition of an organic semiconductor, namely the N,N'-1H,1H-perfluorobutyldicyanoperylene-carboxydi-imide (PDIF-CN2). Joule evaporation of PDIF-CN2 into the PSi sponge-like matrix not only improves but also adds transducing skills, making this solid-state device a dual signal sensor for chemical monitoring. PDIF-CN2 modified PSi optical microcavities show an increase of about five orders of magnitude in electric current with respect to the same bare device. This feature can be used to sense volatile substances. PDIF-CN2 also improves chemical resistance of PSi against alkaline and acid corrosion. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. White organic light-emitting devices incorporating nanoparticles of II-VI semiconductors

    International Nuclear Information System (INIS)

    Ahn, Jin H; Bertoni, Cristina; Dunn, Steve; Wang, Changsheng; Talapin, Dmitri V; Gaponik, Nikolai; Eychmueller, Alexander; Hua Yulin; Bryce, Martin R; Petty, Michael C

    2007-01-01

    A blue-green fluorescent organic dye and red-emitting nanoparticles, based on II-VI semiconductors, have been used together in the fabrication of white organic light-emitting devices. In this work, the materials were combined in two different ways: in the form of a blend, and as separate layers deposited on the opposite sides of the substrate. The blended-layer structure provided purer white emission. However, this device also exhibited a number of disadvantages, namely a high drive voltage, a low efficiency and some colour instability. These problems could be avoided by using a device structure that was fabricated using separate dye and nanoparticle layers

  13. Metal complexation and monolayer self-assembly of the bio-organic semiconductor Alizarin

    Energy Technology Data Exchange (ETDEWEB)

    Uppal, Neeti [Dept. Earth and Environmental Sciences, Ludwig-Maximilians-Universitaet Muenchen (LMU) and Center for NanoSciences (CeNS), Muenchen (Germany); Institut fuer Physik, Universitaet Augsburg (Germany); Gast, Norbert [Dept. Earth and Environmental Sciences, Ludwig-Maximilians-Universitaet Muenchen (LMU) and Center for NanoSciences (CeNS), Muenchen (Germany); Zentrum Neue Technologien, Deutsches Museum, Muenchen (Germany); Bueno, Martin [Fakultaet Feinwerk- und Mikrotechnik, Physikalische Technik, Hochschule Muenchen (Germany); Heckl, Wolfgang M. [Dept. of Physics, Technische Universitaet Muenchen (TUM), Garching (Germany); Zentrum Neue Technologien, Deutsches Museum, Muenchen (Germany); Trixler, Frank [Dept. Earth and Environmental Sciences, Ludwig-Maximilians-Universitaet Muenchen (LMU) and Center for NanoSciences (CeNS), Muenchen (Germany); Dept. of Physics, Technische Universitaet Muenchen (TUM), Garching (Germany); Zentrum Neue Technologien, Deutsches Museum, Muenchen (Germany)

    2010-07-01

    Organic Solid/Solid Wetting Deposition (OSWD) (Trixler et al.: Chem.Eur.J. 13 (2007), 7785) enables to deposit insoluble molecules such as organic pigments and semiconductors on substrate surfaces under ambient conditions. We explore the potential of OSWD to grow and manipulate monolayers of biomolecules and their chelates on graphite and use Alizarin as a model system - a natural organic compound which occurs mainly as an anthraquinone glycoside in plants. Our investigations via Scanning Tunneling Microscopy (STM), Tunneling Spectroscopy (TS) and Molecular Modelling reveal that OSWD works also with bio-organic molecules and chelate complexes and show that the advantages of OSWD (self-assembly under ambient conditions in a non-solvent environment, nanomanipulation via molecular extraction) can all be tapped.

  14. The analysis of Rutherford scattering-channelling measurements of disorder production and annealing in ion irradiated semiconductors

    International Nuclear Information System (INIS)

    Carter, G.; Elliman, R.G.

    1983-01-01

    Rutherford scattering and channelling of light probe ions (e.g. He + ) has been extensively used for studies of disorder production in ion implanted semiconductors. Various authors have analysed models of amorphousness accumulation and Carter and Webb have indicated the general difficulties in assessing disorder production models from RBS/channelling studies if the production modes are complex and the manner in which the technique responds to different defect structures is unspecified. For less complex disorder production modes and by making reasonable assumptions about the technique response however, some insight into the form of backscattering yield - ion implant fluence functions can be obtained as is discussed in the present communication. It thus becomes possible to infer the importance of different disorder generation processes from RBS/channelling - ion influence studies. It will also be shown how simple annealing processes modify disorder accumulation and thus again how the operation of such processes may be inferred from RBS/channelling - ion fluence measurements. (author)

  15. Growth Of Organic Semiconductor Thin Films with Multi-Micron Domain Size and Fabrication of Organic Transistors Using a Stencil Nanosieve.

    Science.gov (United States)

    Fesenko, Pavlo; Flauraud, Valentin; Xie, Shenqi; Kang, Enpu; Uemura, Takafumi; Brugger, Jürgen; Genoe, Jan; Heremans, Paul; Rolin, Cédric

    2017-07-19

    To grow small molecule semiconductor thin films with domain size larger than modern-day device sizes, we evaporate the material through a dense array of small apertures, called a stencil nanosieve. The aperture size of 0.5 μm results in low nucleation density, whereas the aperture-to-aperture distance of 0.5 μm provides sufficient crosstalk between neighboring apertures through the diffusion of adsorbed molecules. By integrating the nanosieve in the channel area of a thin-film transistor mask, we show a route for patterning both the organic semiconductor and the metal contacts of thin-film transistors using one mask only and without mask realignment.

  16. In situ X-ray synchrotron study of organic semiconductor ultra-thin films growth

    International Nuclear Information System (INIS)

    Moulin, J.-F.; Dinelli, F.; Massi, M.; Albonetti, C.; Kshirsagar, R.; Biscarini, F.

    2006-01-01

    In this work we present an X-ray diffraction study of the early stages of growth of an organic semiconductor (sexithiophene, T 6 ) thin film prepared by high vacuum sublimation. Specular reflectometry and grazing incidence X-ray diffraction were used to monitor the formation of T 6 films on silicon oxide. Our results show that T 6 grows as a crystalline layer from the beginning of the evaporation. The reflectometry analysis suggests that, in the range of rates and temperatures studied, the growth is never layer by layer but rather 3D in nature. In-plane GIXD has allowed us to observe for the first time a thin film phase of T 6 formed of molecules standing normal to the substrate and arranged in a compressed unit cell with respect to the bulk, i.e. the unit cell parameters b and c are relatively smaller. We have followed the dynamics of formation of this new phase and identified the threshold of appearance of the bulk phase, which occurs above ∼5-6 monolayers. These results are relevant to the problem of organic thin film transistors, for which we have previously demonstrated experimentally that only the first two monolayers of T 6 films are involved in the electrical transport. The layers above the second one do not effectively contribute to charge mobility, either because they are more 'disordered' or because of a screening of the gate field

  17. Mechanism for efficient photoinduced charge separation at disordered organic heterointerfaces

    Energy Technology Data Exchange (ETDEWEB)

    Eersel, Harm van; Janssen, Rene A.J.; Kemerink, Martijn [Eindhoven University of Technology, Department of Applied Physics, Eindhoven (Netherlands)

    2012-07-10

    Despite the poor screening of the Coulomb potential in organic semiconductors, excitons can dissociate efficiently into free charges at a donor-acceptor heterojunction, leading to application in organic solar cells. A kinetic Monte Carlo model that explains this high efficiency as a two-step process is presented. Driven by the band offset between donor and acceptor, one of the carriers first hops across the interface, forming a charge transfer (CT) complex. Since the electron and hole forming the CT complex have typically not relaxed within the disorder-broadened density of states (DOS), their remaining binding energy can be overcome by further relaxation in the DOS. The model only contains parameters that are determined from independent measurements and predicts dissociation yields in excess of 90% for a prototypical heterojunction. Field, temperature, and band offset dependencies are investigated and found to be in agreement with earlier experiments. Whereas the investigated heterojunctions have substantial energy losses associated with the dissociation process, these results suggest that it is possible to reach high dissociation yields at low energy loss. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Bio-recognitive photonics of a DNA-guided organic semiconductor

    Science.gov (United States)

    Back, Seung Hyuk; Park, Jin Hyuk; Cui, Chunzhi; Ahn, Dong June

    2016-01-01

    Incorporation of duplex DNA with higher molecular weights has attracted attention for a new opportunity towards a better organic light-emitting diode (OLED) capability. However, biological recognition by OLED materials is yet to be addressed. In this study, specific oligomeric DNA-DNA recognition is successfully achieved by tri (8-hydroxyquinoline) aluminium (Alq3), an organic semiconductor. Alq3 rods crystallized with guidance from single-strand DNA molecules show, strikingly, a unique distribution of the DNA molecules with a shape of an `inverted' hourglass. The crystal's luminescent intensity is enhanced by 1.6-fold upon recognition of the perfect-matched target DNA sequence, but not in the case of a single-base mismatched one. The DNA-DNA recognition forming double-helix structure is identified to occur only in the rod's outer periphery. This study opens up new opportunities of Alq3, one of the most widely used OLED materials, enabling biological recognition.

  19. Bio-recognitive photonics of a DNA-guided organic semiconductor.

    Science.gov (United States)

    Back, Seung Hyuk; Park, Jin Hyuk; Cui, Chunzhi; Ahn, Dong June

    2016-01-04

    Incorporation of duplex DNA with higher molecular weights has attracted attention for a new opportunity towards a better organic light-emitting diode (OLED) capability. However, biological recognition by OLED materials is yet to be addressed. In this study, specific oligomeric DNA-DNA recognition is successfully achieved by tri (8-hydroxyquinoline) aluminium (Alq3), an organic semiconductor. Alq3 rods crystallized with guidance from single-strand DNA molecules show, strikingly, a unique distribution of the DNA molecules with a shape of an 'inverted' hourglass. The crystal's luminescent intensity is enhanced by 1.6-fold upon recognition of the perfect-matched target DNA sequence, but not in the case of a single-base mismatched one. The DNA-DNA recognition forming double-helix structure is identified to occur only in the rod's outer periphery. This study opens up new opportunities of Alq3, one of the most widely used OLED materials, enabling biological recognition.

  20. Ballistic superconductivity in semiconductor nanowires

    Science.gov (United States)

    Zhang, Hao; Gül, Önder; Conesa-Boj, Sonia; Nowak, Michał P.; Wimmer, Michael; Zuo, Kun; Mourik, Vincent; de Vries, Folkert K.; van Veen, Jasper; de Moor, Michiel W. A.; Bommer, Jouri D. S.; van Woerkom, David J.; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P.A.M.; Quintero-Pérez, Marina; Cassidy, Maja C.; Koelling, Sebastian; Goswami, Srijit; Watanabe, Kenji; Taniguchi, Takashi; Kouwenhoven, Leo P.

    2017-01-01

    Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices. PMID:28681843

  1. Toward quantitative prediction of charge mobility in organic semiconductors: tunneling enabled hopping model.

    Science.gov (United States)

    Geng, Hua; Peng, Qian; Wang, Linjun; Li, Haijiao; Liao, Yi; Ma, Zhiying; Shuai, Zhigang

    2012-07-10

    A tunneling-enabled hopping mechanism is proposed, providing a pratical tool to quantitatively assess charge mobility in organic semiconductors. The paradoxical phenomena in TIPS-pentacene is well explained in that the optical probe indicates localized charges while transport measurements show bands of charge. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Organic-Inorganic Composites of Semiconductor Nanocrystals for Efficient Excitonics.

    Science.gov (United States)

    Guzelturk, Burak; Demir, Hilmi Volkan

    2015-06-18

    Nanocomposites of colloidal semiconductor nanocrystals integrated into conjugated polymers are the key to soft-material hybrid optoelectronics, combining advantages of both plastics and particles. Synergic combination of the favorable properties in the hybrids of colloidal nanocrystals and conjugated polymers offers enhanced performance and new functionalities in light-generation and light-harvesting applications, where controlling and mastering the excitonic interactions at the nanoscale are essential. In this Perspective, we highlight and critically consider the excitonic interactions in the organic-inorganic nanocomposites to achieve highly efficient exciton transfer through rational design of the nanocomposites. The use of strong excitonic interactions in optoelectronic devices can trigger efficiency breakthroughs in hybrid optoelectronics.

  3. Transient photoconductivity in amorphous semiconductors

    International Nuclear Information System (INIS)

    Mpawenayo, P.

    1997-07-01

    Localized states in amorphous semiconductors are divided in disorder induced shallow trap levels and dangling bonds deep states. Dangling bonds are assumed here to be either neutral or charged and their energy distribution is a single gaussian. Here, it is shown analytically that transient photocurrent in amorphous semiconductors is fully controlled by charge carriers transitions between localized states for one part and tunneling hopping carriers on the other. Localized dangling bonds deep states act as non radiative recombination centres, while hopping tunnelling is assisted by the Coulomb interaction between defects sites. The half-width of defects distribution is the disorder parameter that determines the carrier hopping time between defects sites. The macroscopic time that explains the long decay response times observed will all types of amorphous semiconductors is duly thought to be temperature dependent. Basic equations developed by Longeaud and Kleider are solved for the general case of a semiconductor after photo-generation. It turns out that the transient photoconductivity decay has two components; one with short response times from carriers trap-release transitions between shallow levels and extended states and a hopping component made of inter-dependent exponentials whose time constants span in larger ranges depending on disorder. The photoconductivity hopping component appears as an additional term to be added to photocurrents derived from existing models. The results of the present study explain and complete the power law decay derived in the multiple trapping models developed 20 years ago only in the approximation of the short response time regime. The long response time regime is described by the hopping macroscopic time. The present model is verified for all samples of amorphous semiconductors known so far. Finally, it is proposed to improved the modulated photoconductivity calculation techniques by including the long-lasting hopping dark documents

  4. Compact semiconductor lasers

    CERN Document Server

    Yu, Siyuan; Lourtioz, Jean-Michel

    2014-01-01

    This book brings together in a single volume a unique contribution by the top experts around the world in the field of compact semiconductor lasers to provide a comprehensive description and analysis of the current status as well as future directions in the field of micro- and nano-scale semiconductor lasers. It is organized according to the various forms of micro- or nano-laser cavity configurations with each chapter discussing key technical issues, including semiconductor carrier recombination processes and optical gain dynamics, photonic confinement behavior and output coupling mechanisms, carrier transport considerations relevant to the injection process, and emission mode control. Required reading for those working in and researching the area of semiconductors lasers and micro-electronics.

  5. High-Performance Nonvolatile Organic Field-Effect Transistor Memory Based on Organic Semiconductor Heterostructures of Pentacene/P13/Pentacene as Both Charge Transport and Trapping Layers.

    Science.gov (United States)

    Li, Wen; Guo, Fengning; Ling, Haifeng; Zhang, Peng; Yi, Mingdong; Wang, Laiyuan; Wu, Dequn; Xie, Linghai; Huang, Wei

    2017-08-01

    Nonvolatile organic field-effect transistor (OFET) memory devices based on pentacene/ N , N '-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13)/pentacene trilayer organic heterostructures have been proposed. The discontinuous n-type P13 embedded in p-type pentacene layers can not only provide electrons in the semiconductor layer that facilitates electron trapping process; it also works as charge trapping sites, which is attributed to the quantum well-like pentacene/P13/pentacene organic heterostructures. The synergistic effects of charge trapping in the discontinuous P13 and the charge-trapping property of the poly(4-vinylphenol) (PVP) layer remarkably improve the memory performance. In addition, the trilayer organic heterostructures have also been successfully applied to multilevel and flexible nonvolatile memory devices. The results provide a novel design strategy to achieve high-performance nonvolatile OFET memory devices and allow potential applications for different combinations of various organic semiconductor materials in OFET memory.

  6. High‐Performance Nonvolatile Organic Field‐Effect Transistor Memory Based on Organic Semiconductor Heterostructures of Pentacene/P13/Pentacene as Both Charge Transport and Trapping Layers

    Science.gov (United States)

    Li, Wen; Guo, Fengning; Ling, Haifeng; Zhang, Peng; Wang, Laiyuan; Wu, Dequn

    2017-01-01

    Nonvolatile organic field‐effect transistor (OFET) memory devices based on pentacene/N,N′‐ditridecylperylene‐3,4,9,10‐tetracarboxylic diimide (P13)/pentacene trilayer organic heterostructures have been proposed. The discontinuous n‐type P13 embedded in p‐type pentacene layers can not only provide electrons in the semiconductor layer that facilitates electron trapping process; it also works as charge trapping sites, which is attributed to the quantum well‐like pentacene/P13/pentacene organic heterostructures. The synergistic effects of charge trapping in the discontinuous P13 and the charge‐trapping property of the poly(4‐vinylphenol) (PVP) layer remarkably improve the memory performance. In addition, the trilayer organic heterostructures have also been successfully applied to multilevel and flexible nonvolatile memory devices. The results provide a novel design strategy to achieve high‐performance nonvolatile OFET memory devices and allow potential applications for different combinations of various organic semiconductor materials in OFET memory. PMID:28852619

  7. Surface-segregated monolayers: a new type of ordered monolayer for surface modification of organic semiconductors.

    Science.gov (United States)

    Wei, Qingshuo; Tajima, Keisuke; Tong, Yujin; Ye, Shen; Hashimoto, Kazuhito

    2009-12-09

    We report a new type of ordered monolayer for the surface modification of organic semiconductors. Fullerene derivatives with fluorocarbon chains ([6,6]-phenyl-C(61)-buryric acid 1H,1H-perfluoro-1-alkyl ester or FC(n)) spontaneously segregated as a monolayer on the surface of a [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) film during a spin-coating process from the mixture solutions, as confirmed by X-ray photoelectron spectroscopy (XPS). Ultraviolet photoelectron spectroscopy (UPS) showed the shift of ionization potentials (IPs) depending on the fluorocarbon chain length, indicating the formation of surface dipole moments. Surface-sensitive vibrational spectroscopy, sum frequency generation (SFG) revealed the ordered molecular orientations of the C(60) moiety in the surface FC(n) layers. The intensity of the SFG signals from FC(n) on the surface showed a clear odd-even effect when the length of the fluorocarbon chain was changed. This new concept of the surface-segregated monolayer provides a facile and versatile approach to modifying the surface of organic semiconductors and is applicable to various organic optoelectronic devices.

  8. Directional Charge Separation in Isolated Organic Semiconductor Crystalline Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Michael; Labastide, Joelle; Bond-Thompson, Hilary; Briseno, Alejandro; Collela, Nicolas

    2017-03-01

    In the conventional view of organic photovoltaics (OPV), localized electronic excitations (excitons) formed in the active layer are transported by random 3D diffusion to an interface where charge separation and extraction take place. Because radiative de-excitation is usually strongly allowed in organic semiconductors, efficient charge separation requires high exciton mobility, with much of the diffusive motion ‘wasted’ in directions that don’t result in an interface encounter. Our research efforts are focused on ways to enforce a preferred directionality in energy and/or charge transport using ordered crystalline nanowires in which the intermolecular interactions that facilitate transport along, for example, the pi-stacking axis, can be made several orders of magnitude stronger than those in a transverse direction. The results presented in our recent work (Nature Communications) is a first step towards realizing the goal of directional control of both energy transport and charge separation, where excitons shared between adjacent molecules dissociate exclusively along the pi-stacking direction.

  9. Disorder phenomena in covalent semiconductors

    International Nuclear Information System (INIS)

    Popescu, M.A.

    1975-01-01

    The structure of the amorphous semiconductors has been investigated by means of X-ray diffraction and by computer simulation of random network models. Amorphous germanium contains mainly five and six-membered rings of atoms. In glassy state, the ternary compounds A 2 B 4 C 2 5 , such as CdGeAs 2 contain only even rings of atoms (six-membered and eight-membered rings). In the memory glasses of the type A 2 B 4 C 2 5 , such as GeAs 2 Te 7 , the valency state of every element is that from the crystal and important van der Waals forces are effective in the network. No Ge-Ge, Ge-As and As-As bonds are formed. The high pressure forms of the germanium have been simulated by computer. The force constants of the covalent bonds in Ge III and Ge IV differ from those in Ge I. The bond bending force constant decreases rapidly when the density of the crystal increases, a fact which has been imparted to a reduction of the sp 3 hybridization. The compressibility curve of the Ge I has been explained. The effect of the radial and uniaxial deformation on the non-crystalline networks has been studied. The compressibility of the amorphous germanium is by 1.5 per cent greater than that of crystalline germanium. The Poisson coefficient for a-Ge network is 0.233. The structure of the As 2 S 3 glass doped with different amounts of germanium (up to 40 at. per cent) and silver (up to 12 at. per cent) has been investigated. The As 2 S 3 Gesub(x) compositions are constituted from a disordered packing of structural units whose chemical composition and relative proportion in the glass essentially depends on the germanium content. (author)

  10. Band-engineering of TiO2 as a wide-band gap semiconductor using organic chromophore dyes

    Science.gov (United States)

    Wahyuningsih, S.; Kartini, I.; Ramelan, A. H.; Saputri, L. N. M. Z.; Munawaroh, H.

    2017-07-01

    Bond-engineering as applied to semiconductor materials refers to the manipulation of the energy bands in order to control charge transfer processes in a device. When the device in question is a photoelectrochemical cell, the charges affected by drift become the focus of the study. The ideal band gap of semiconductors for enhancement of photocatalyst activity can be lowered to match with visible light absorption and the location of conduction Band (CB) should be raised to meet the reducing capacity. Otherwise, by the addition of the chromofor organic dyes, the wide-band gab can be influences by interacation resulting between TiO2 surface and the dyes. We have done the impruvisation wide-band gap of TiO2 by the addition of organic chromophore dye, and the addition of transition metal dopand. The TiO2 morphology influence the light absorption as well as the surface modification. The organic chromophore dye was syntesized by formation complexes compound of Co(PAR)(SiPA)(PAR)= 4-(2-piridylazoresorcinol), SiPA = Silyl propil amine). The result showed that the chromophore groups adsorbed onto TiO2 surface can increase the visible light absorption of wide-band gab semiconductor. Initial absorption of a chromophore will affect light penetration into the material surfaces. The use of photonic material as a solar cell shows this phenomenon clearly from the IPCE (incident photon to current conversion efficiency) measurement data. Organic chromophore dyes of Co(PAR)(SiPA) exhibited the long wavelength absorption character compared to the N719 dye (from Dyesol).

  11. Exploring the energy landscape of the charge transport levels in organic semiconductors at the molecular scale.

    Science.gov (United States)

    Cornil, J; Verlaak, S; Martinelli, N; Mityashin, A; Olivier, Y; Van Regemorter, T; D'Avino, G; Muccioli, L; Zannoni, C; Castet, F; Beljonne, D; Heremans, P

    2013-02-19

    The extraordinary semiconducting properties of conjugated organic materials continue to attract attention across disciplines including materials science, engineering, chemistry, and physics, particularly with application to organic electronics. Such materials are used as active components in light-emitting diodes, field-effect transistors, or photovoltaic cells, as a substitute for (mostly Si-based) inorganic semiconducting materials. Many strategies developed for inorganic semiconductor device building (doping, p-n junctions, etc.) have been attempted, often successfully, with organics, even though the key electronic and photophysical properties of organic thin films are fundamentally different from those of their bulk inorganic counterparts. In particular, organic materials consist of individual units (molecules or conjugated segments) that are coupled by weak intermolecular forces. The flexibility of organic synthesis has allowed the development of more efficient opto-electronic devices including impressive improvements in quantum yields for charge generation in organic solar cells and in light emission in electroluminescent displays. Nonetheless, a number of fundamental questions regarding the working principles of these devices remain that preclude their full optimization. For example, the role of intermolecular interactions in driving the geometric and electronic structures of solid-state conjugated materials, though ubiquitous in organic electronic devices, has long been overlooked, especially when it comes to these interfaces with other (in)organic materials or metals. Because they are soft and in most cases disordered, conjugated organic materials support localized electrons or holes associated with local geometric distortions, also known as polarons, as primary charge carriers. The spatial localization of excess charges in organics together with low dielectric constant (ε) entails very large electrostatic effects. It is therefore not obvious how these

  12. Photoinduced electron transfer from organic semiconductors onto redox mediators for CO2

    International Nuclear Information System (INIS)

    Portenkirchner, E.

    2014-01-01

    In this work the photoinduced electron transfer from organic semiconductors onto redox mediator catalysts for CO 2 reduction has been investigated. In the beginning, the work focuses on the identication, characterization and test of suitable catalyst materials. For this purpose, rhenium compounds with 2,2'-bipyridine bis(arylimino) acenaphthene ligands and pyridinium were tested for molecular homogenous catalysis. Infrared, ultraviolet-visible (UV-Vis) and nuclear magnetic resonance (NMR) spectroscopy were used for initial characterization of the catalyst substances. Since the interpretation of infrared spectra was difficult for large molecules based on measured data only, additionally infrared absorption spectra obtained by quantum mechanical density functional theory(DFT) calculations were successfully used to correlate characteristic features in the measured spectra to their molecular origin. It was found that experimentally observed data and quantum chemical predictions for the infrared spectra of the novel compounds are in good agreement. Additionally, quantum mechanical calculations were carried out for the determination of molecular orbital frontier energy levels and correlated to UV-Vis absorption and cyclic voltammetry measurements. Extensive cyclic voltammetry measurements and bulk controlled-potential electrolysis experiments were performed using a N 2 - and CO 2 -saturated electrolyte solution. Together with a detailed product analysis via infrared spectroscopy, gas and ion chromatography the results allowed electrochemical characterizations of the novel catalysts regarding their suitability for electrochemical CO 2 reduction. Once suitable catalysts were identied, the materials were immobilized on the electrode surface by electro-polymerization of the catalyst (5,5'bisphenylethynyl-2,2'-bipyridyl)Re(CO) 3 Cl itself or by incorporation of (2,2'-bipyridyl)Re(CO) 3 Cl into a polypyrrole matrix, thereby changing from homogeneous to

  13. Effect of temperature and magnetic field on disorder in semiconductor structures

    Energy Technology Data Exchange (ETDEWEB)

    Agrinskaya, N. V., E-mail: nina.agrins@mail.ioffe.ru; Kozub, V. I. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2017-02-15

    We present the results of consistent theoretical analysis of various factors that may lead to influence of temperature and external magnetic field on disorder in semiconductor structures. Main attention is paid to quantum well (QW) structures in which only QWs or both QW and barriers are doped (the doping level is assumed to be close to the value corresponding to the metal–insulator transition). The above factors include (i) ionization of localized states to the region of delocalized states above the mobility edge, which is presumed to exist in the impurity band; (ii) the coexistence in the upper and lower Hubbard bands (upon doping of QWs as well as barriers); in this case, in particular, the external magnetic field determines the relative contribution of the upper Hubbard band due to spin correlations at doubly filled sites; and (iii) the contribution of the exchange interaction at pairs of sites, in which the external magnetic field can affect the relation between ferromagnetic and antiferromagnetic configurations. All these factors, which affect the structure and degree of disorder, lead to specific features in the temperature dependence of resistivity and determine specific features of the magnetoresistance. Our conclusions are compared with available experimental data.

  14. Thermal and Optical Modulation of the Carrier Mobility in OTFTs Based on an Azo-anthracene Liquid Crystal Organic Semiconductor.

    Science.gov (United States)

    Chen, Yantong; Li, Chao; Xu, Xiuru; Liu, Ming; He, Yaowu; Murtaza, Imran; Zhang, Dongwei; Yao, Chao; Wang, Yongfeng; Meng, Hong

    2017-03-01

    One of the most striking features of organic semiconductors compared with their corresponding inorganic counterparts is their molecular diversity. The major challenge in organic semiconductor material technology is creating molecular structural motifs to develop multifunctional materials in order to achieve the desired functionalities yet to optimize the specific device performance. Azo-compounds, because of their special photoresponsive property, have attracted extensive interest in photonic and optoelectronic applications; if incorporated wisely in the organic semiconductor groups, they can be innovatively utilized in advanced smart electronic applications, where thermal and photo modulation is applied to tune the electronic properties. On the basis of this aspiration, a novel azo-functionalized liquid crystal semiconductor material, (E)-1-(4-(anthracen-2-yl)phenyl)-2-(4-(decyloxy)phenyl)diazene (APDPD), is designed and synthesized for application in organic thin-film transistors (OTFTs). The UV-vis spectra of APDPD exhibit reversible photoisomerizaton upon photoexcitation, and the thin films of APDPD show a long-range orientational order based on its liquid crystal phase. The performance of OTFTs based on this material as well as the effects of thermal treatment and UV-irradiation on mobility are investigated. The molecular structure, stability of the material, and morphology of the thin films are characterized by thermal gravimetric analysis (TGA), polarizing optical microscopy (POM), (differential scanning calorimetry (DSC), UV-vis spectroscopy, atomic force microscopy (AFM), and scanning tunneling microscopy (STM). This study reveals that our new material has the potential to be applied in optical sensors, memories, logic circuits, and functional switches.

  15. Lead Halide Perovskites as Charge Generation Layers for Electron Mobility Measurement in Organic Semiconductors.

    Science.gov (United States)

    Love, John A; Feuerstein, Markus; Wolff, Christian M; Facchetti, Antonio; Neher, Dieter

    2017-12-06

    Hybrid lead halide perovskites are introduced as charge generation layers (CGLs) for the accurate determination of electron mobilities in thin organic semiconductors. Such hybrid perovskites have become a widely studied photovoltaic material in their own right, for their high efficiencies, ease of processing from solution, strong absorption, and efficient photogeneration of charge. Time-of-flight (ToF) measurements on bilayer samples consisting of the perovskite CGL and an organic semiconductor layer of different thickness are shown to be determined by the carrier motion through the organic material, consistent with the much higher charge carrier mobility in the perovskite. Together with the efficient photon-to-electron conversion in the perovskite, this high mobility imbalance enables electron-only mobility measurement on relatively thin application-relevant organic films, which would not be possible with traditional ToF measurements. This architecture enables electron-selective mobility measurements in single components as well as bulk-heterojunction films as demonstrated in the prototypical polymer/fullerene blends. To further demonstrate the potential of this approach, electron mobilities were measured as a function of electric field and temperature in an only 127 nm thick layer of a prototypical electron-transporting perylene diimide-based polymer, and found to be consistent with an exponential trap distribution of ca. 60 meV. Our study furthermore highlights the importance of high mobility charge transporting layers when designing perovskite solar cells.

  16. Material degradation of liquid organic semiconductors analyzed by nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Tatsuya; Yamamoto, Junichi; Fukuchi, Masashi; Kaji, Hironori, E-mail: kaji@scl.kyoto-u.ac.jp [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Hirata, Shuzo; Jung, Heo Hyo; Adachi, Chihaya [Center for Organic Photonics and Electronics Research (OPERA), Kyusyu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Hirata, Osamu; Shibano, Yuki [Nissan Chemical Industries, LTD, 722-1 Tsuboi, Funabashi 274-8507 (Japan)

    2015-08-15

    Liquid organic light-emitting diodes (liquid OLEDs) are unique devices consisting only of liquid organic semiconductors in the active layer, and the device performances have been investigated recently. However, the device degradation, especially, the origin has been unknown. In this study, we show that material degradation occurs in liquid OLEDs, whose active layer is composed of carbazole with an ethylene glycol chain. Nuclear magnetic resonance (NMR) experiments clearly exhibit that the dimerization reaction of carbazole moiety occurs in the liquid OLEDs during driving the devices. In contrast, cleavages of the ethylene glycol chain are not detected within experimental error. The dimerization reaction is considered to be related to the device degradation.

  17. Scalable fabrication of strongly textured organic semiconductor micropatterns by capillary force lithography.

    Science.gov (United States)

    Jo, Pil Sung; Vailionis, Arturas; Park, Young Min; Salleo, Alberto

    2012-06-26

    Strongly textured organic semiconductor micropatterns made of the small molecule dioctylbenzothienobenzothiophene (C(8)-BTBT) are fabricated by using a method based on capillary force lithography (CFL). This technique provides the C(8)-BTBT solution with nucleation sites for directional growth, and can be used as a scalable way to produce high quality crystalline arrays in desired regions of a substrate for OFET applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Determining a hopping polaron's bandwidth from its Seebeck coefficient: Measuring the disorder energy of a non-crystalline semiconductor

    International Nuclear Information System (INIS)

    Emin, David

    2016-01-01

    Charge carriers that execute multi-phonon hopping generally interact strongly enough with phonons to form polarons. A polaron's sluggish motion is linked to slowly shifting atomic displacements that severely reduce the intrinsic width of its transport band. Here a means to estimate hopping polarons' bandwidths from Seebeck-coefficient measurements is described. The magnitudes of semiconductors' Seebeck coefficients are usually quite large (>k/|q| = 86 μV/K) near room temperature. However, in accord with the third law of thermodynamics, Seebeck coefficients must vanish at absolute zero. Here, the transition of the Seebeck coefficient of hopping polarons to its low-temperature regime is investigated. The temperature and sharpness of this transition depend on the concentration of carriers and on the width of their transport band. This feature provides a means of estimating the width of a polaron's transport band. Since the intrinsic broadening of polaron bands is very small, less than the characteristic phonon energy, the net widths of polaron transport bands in disordered semiconductors approach the energetic disorder experienced by their hopping carriers, their disorder energy

  19. Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor

    Science.gov (United States)

    Jia, Yufei; Kerner, Ross A.; Grede, Alex J.; Rand, Barry P.; Giebink, Noel C.

    2017-12-01

    Hybrid organic-inorganic perovskites have emerged as promising gain media for tunable, solution-processed semiconductor lasers. However, continuous-wave operation has not been achieved so far1-3. Here, we demonstrate that optically pumped continuous-wave lasing can be sustained above threshold excitation intensities of 17 kW cm-2 for over an hour in methylammonium lead iodide (MAPbI3) distributed feedback lasers that are maintained below the MAPbI3 tetragonal-to-orthorhombic phase transition temperature of T ≈ 160 K. In contrast with the lasing death phenomenon that occurs for pure tetragonal-phase MAPbI3 at T > 160 K (ref. 4), we find that continuous-wave gain becomes possible at T ≈ 100 K from tetragonal-phase inclusions that are photogenerated by the pump within the normally existing, larger-bandgap orthorhombic host matrix. In this mixed-phase system, the tetragonal inclusions function as carrier recombination sinks that reduce the transparency threshold, in loose analogy to inorganic semiconductor quantum wells, and may serve as a model for engineering improved perovskite gain media.

  20. High Photoluminescence Quantum Yields in Organic Semiconductor-Perovskite Composite Thin Films.

    Science.gov (United States)

    Longo, Giulia; La-Placa, Maria-Grazia; Sessolo, Michele; Bolink, Henk J

    2017-10-09

    One of the obstacles towards efficient radiative recombination in hybrid perovskites is a low exciton binding energy, typically in the orders of tens of meV. It has been shown that the use of electron-donor additives can lead to a substantial reduction of the non-radiative recombination in perovskite films. Herein, the approach using small molecules with semiconducting properties, which are candidates to be implemented in future optoelectronic devices, is presented. In particular, highly luminescent perovskite-organic semiconductor composite thin films have been developed, which can be processed from solution in a simple coating step. By tuning the relative concentration of methylammonium lead bromide (MAPbBr 3 ) and 9,9spirobifluoren-2-yl-diphenyl-phosphine oxide (SPPO1), it is possible to achieve photoluminescent quantum yields (PLQYs) as high as 85 %. This is attributed to the dual functions of SPPO1 that limit the grain growth while passivating the perovskite surface. The electroluminescence of these materials was investigated by fabricating multilayer LEDs, where charge injection and transport was found to be severely hindered for the perovskite/SPPO1 material. This was alleviated by partially substituting SPPO1 with a hole-transporting material, 1,3-bis(N-carbazolyl)benzene (mCP), leading to bright electroluminescence. The potential of combining perovskite and organic semiconductors to prepare materials with improved properties opens new avenues for the preparation of simple lightemitting devices using perovskites as the emitter. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. High-resolution charge carrier mobility mapping of heterogeneous organic semiconductors

    Science.gov (United States)

    Button, Steven W.; Mativetsky, Jeffrey M.

    2017-08-01

    Organic electronic device performance is contingent on charge transport across a heterogeneous landscape of structural features. Methods are therefore needed to unravel the effects of local structure on overall electrical performance. Using conductive atomic force microscopy, we construct high-resolution out-of-plane hole mobility maps from arrays of 5000 to 16 000 current-voltage curves. To demonstrate the efficacy of this non-invasive approach for quantifying and mapping local differences in electrical performance due to structural heterogeneities, we investigate two thin film test systems, one bearing a heterogeneous crystal structure [solvent vapor annealed 5,11-Bis(triethylsilylethynyl)anthradithiophene (TES-ADT)—a small molecule organic semiconductor] and one bearing a heterogeneous chemical composition [p-DTS(FBTTh2)2:PC71BM—a high-performance organic photovoltaic active layer]. TES-ADT shows nearly an order of magnitude difference in hole mobility between semicrystalline and crystalline areas, along with a distinct boundary between the two regions, while p-DTS(FBTTh2)2:PC71BM exhibits subtle local variations in hole mobility and a nanoscale domain structure with features below 10 nm in size. We also demonstrate mapping of the built-in potential, which plays a significant role in organic light emitting diode and organic solar cell operation.

  2. Blending crystalline/liquid crystalline small molecule semiconductors: A strategy towards high performance organic thin film transistors

    Science.gov (United States)

    He, Chao; He, Yaowu; Li, Aiyuan; Zhang, Dongwei; Meng, Hong

    2016-10-01

    Solution processed small molecule polycrystalline thin films often suffer from the problems of inhomogeneity and discontinuity. Here, we describe a strategy to solve these problems through deposition of the active layer from a blended solution of crystalline (2-phenyl[1]benzothieno[3,2-b][1]benzothiophene, Ph-BTBT) and liquid crystalline (2-(4-dodecylphenyl) [1]benzothieno[3,2-b]benzothiophene, C12-Ph-BTBT) small molecule semiconductors with the hot spin-coating method. Organic thin film transistors with average hole mobility approaching 1 cm2/V s, much higher than that of single component devices, have been demonstrated, mainly due to the improved uniformity, continuity, crystallinity, and stronger intermolecular π-π stacking in blend thin films. Our results indicate that the crystalline/liquid crystalline semiconductor blend method is an effective way to enhance the performance of organic transistors.

  3. Unipolar resistive switching in metal oxide/organic semiconductor non-volatile memories as a critical phenomenon

    International Nuclear Information System (INIS)

    Bory, Benjamin F.; Meskers, Stefan C. J.; Rocha, Paulo R. F.; Gomes, Henrique L.; Leeuw, Dago M. de

    2015-01-01

    Diodes incorporating a bilayer of an organic semiconductor and a wide bandgap metal oxide can show unipolar, non-volatile memory behavior after electroforming. The prolonged bias voltage stress induces defects in the metal oxide with an areal density exceeding 10 17  m −2 . We explain the electrical bistability by the coexistence of two thermodynamically stable phases at the interface between an organic semiconductor and metal oxide. One phase contains mainly ionized defects and has a low work function, while the other phase has mainly neutral defects and a high work function. In the diodes, domains of the phase with a low work function constitute current filaments. The phase composition and critical temperature are derived from a 2D Ising model as a function of chemical potential. The model predicts filamentary conduction exhibiting a negative differential resistance and nonvolatile memory behavior. The model is expected to be generally applicable to any bilayer system that shows unipolar resistive switching

  4. An Imide-Based Pentacyclic Building Block for n-Type Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Fu-Peng [Soochow Univ., Suzhou (China). Inst. of Functional Nano & Soft Materials (FUNSOM); Un, Hio-Ieng [Peking Univ., Beijing (China). Beijing National Lab. for Molecular Sciences, Key Lab. of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Key Lab. of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering; Li, Yongxi [Soochow Univ., Suzhou (China). Inst. of Functional Nano & Soft Materials (FUNSOM); Hu, Hailiang [Soochow Univ., Suzhou (China). Inst. of Functional Nano & Soft Materials (FUNSOM); Yuan, Yi [Soochow Univ., Suzhou (China). Inst. of Functional Nano & Soft Materials (FUNSOM); Yang, Bin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Xiao, Kai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Chen, Wei [Argonne National Lab. (ANL), Lemont, IL (United States). Science Div.; Wang, Jie-Yu [Peking Univ., Beijing (China). Beijing National Lab. for Molecular Sciences, Key Lab. of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Key Lab. of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering; Jiang, Zuo-Quan [Soochow Univ., Suzhou (China). Inst. of Functional Nano & Soft Materials (FUNSOM); Pei, Jian [Peking Univ., Beijing (China). Beijing National Lab. for Molecular Sciences, Key Lab. of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Key Lab. of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering; Liao, Liang-Sheng [Soochow Univ., Suzhou (China). Inst. of Functional Nano & Soft Materials (FUNSOM)

    2017-10-09

    A new electron-deficient unit with fused 5-heterocyclic ring was developed by replacing a cyclopenta-1,3-diene from electron-rich donor indacenodithiophene (IDT) with cyclohepta- 4,6-diene-1,3-diimde unit. The imide bridging endows BBI with fixed planar configuration and both low the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbit (LUMO) energy levels. Organic field-effect transistors (OFETs) based on BBI polymers exhibit electron mobility up to 0.34 cm2 V-1 s-1, which indicates that the BBI is a promising ntype semiconductor for optoelectronics.

  5. Contorted Organic Semiconductors for Molecular Electronics

    Science.gov (United States)

    Zhong, Yu

    Chapter 4, I discuss helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometers in diameter for efficient exciton separation and charge transport. This study describes a new motif for designing highly efficient acceptors for organic solar cells. In Chapter 5, I compare analogous cyclic and acyclic pi-conjugated molecules as n-type electronic materials and find that the cyclic molecules have numerous benefits in organic photovoltaics. We designed two conjugated cycles for this study. Each comprises four subunits; one combines four electron-accepting, redox-active, diphenyl-perylenediimide subunits, and the other alternates two electron-donating bithiophene units with two diphenyl-perylenediimide units. We compare the macrocycles to acyclic versions of these molecules and find that, relative to the acyclic analogs, the conjugated macrocycles have bathochromically shifted UV-vis absorbances and are more easily reduced. In blended films, macrocycle-based devices show higher electron mobility and good morphology. All of these factors contribute to the more than doubling of the power conversion efficiency observed in organic photovoltaic devices with these macrocycles as the n-type, electron transporting material. This study highlights the importance of geometric design in creating new molecular semiconductors. In Chapter 6, I describe a new molecular design that enables high performance organic photodetectors. We use a rigid, conjugated macrocycle as the electron acceptor in devices to obtain high photocurrent and low dark current. We directly compare the

  6. Material degradation of liquid organic semiconductors analyzed by nuclear magnetic resonance spectroscopy

    Directory of Open Access Journals (Sweden)

    Tatsuya Fukushima

    2015-08-01

    Full Text Available Liquid organic light-emitting diodes (liquid OLEDs are unique devices consisting only of liquid organic semiconductors in the active layer, and the device performances have been investigated recently. However, the device degradation, especially, the origin has been unknown. In this study, we show that material degradation occurs in liquid OLEDs, whose active layer is composed of carbazole with an ethylene glycol chain. Nuclear magnetic resonance (NMR experiments clearly exhibit that the dimerization reaction of carbazole moiety occurs in the liquid OLEDs during driving the devices. In contrast, cleavages of the ethylene glycol chain are not detected within experimental error. The dimerization reaction is considered to be related to the device degradation.

  7. Organic Semiconductor-Containing Supramolecules: Effect of Small Molecule Crystallization and Molecular Packing

    KAUST Repository

    Rancatore, Benjamin J.

    2016-01-21

    © 2016 American Chemical Society. Small molecules (SMs) with unique optical or electronic properties provide an opportunity to incorporate functionality into block copolymer (BCP)-based supramolecules. However, the assembly of supramolecules based on these highly crystalline molecules differs from their less crystalline counterparts. Here, two families of organic semiconductor SMs are investigated, where the composition of the crystalline core, the location (side- vs end-functionalization) of the alkyl solubilizing groups, and the constitution (branched vs linear) of the alkyl groups are varied. With these SMs, we present a systematic study of how the phase behavior of the SMs affects the overall assembly of these organic semiconductor-based supramolecules. The incorporation of SMs has a large effect on the interfacial curvature, the supramolecular periodicity, and the overall supramolecular morphology. The crystal packing of the SM within the supramolecule does not necessarily lead to the assembly of the comb block within the BCP microdomains, as is normally observed for alkyl-containing supramolecules. An unusual lamellar morphology with a wavy interface between the microdomains is observed due to changes in the packing structure of the small molecule within BCP microdomains. Since the supramolecular approach is modular and small molecules can be readily switched out, present studies provide useful guidance toward access supramolecular assemblies over several length scales using optically active and semiconducting small molecules.

  8. Accumulation capacitance frequency dispersion of III-V metal-insulator-semiconductor devices due to disorder induced gap states

    International Nuclear Information System (INIS)

    Galatage, R. V.; Zhernokletov, D. M.; Dong, H.; Brennan, B.; Hinkle, C. L.; Wallace, R. M.; Vogel, E. M.

    2014-01-01

    The origin of the anomalous frequency dispersion in accumulation capacitance of metal-insulator-semiconductor devices on InGaAs and InP substrates is investigated using modeling, electrical characterization, and chemical characterization. A comparison of the border trap model and the disorder induced gap state model for frequency dispersion is performed. The fitting of both models to experimental data indicate that the defects responsible for the measured dispersion are within approximately 0.8 nm of the surface of the crystalline semiconductor. The correlation between the spectroscopically detected bonding states at the dielectric/III-V interface, the interfacial defect density determined using capacitance-voltage, and modeled capacitance-voltage response strongly suggests that these defects are associated with the disruption of the III-V atomic bonding and not border traps associated with bonding defects within the high-k dielectric.

  9. Photooxidation of organic wastes using semiconductor nanoclusters. 1998 annual progress report

    International Nuclear Information System (INIS)

    Wilcoxon, J.P.

    1998-01-01

    'This report summarizes work after 1.5 years of a 3-year project. The authors efforts have focused on demonstration of photocatalysis of organic pollutants using nanosize MoS 2 . They investigated the effects of (1) bandgap, valence and conduction band energies; (2) surface modification of MoS 2 by deposition of metal and metal oxide islands to enhance electron transfer; and (3) use of semi-conductor semi-conductor composites to achieve improved charge separation and thus photooxidation of pollutants. They synthesized and studied nanosize MoS 2 of three different sizes and associated bandgaps and studied photoredox reactions of nanosize MoS 2 dispersed in solution and supported on a macroscopic powder. The latter would be the method of choice for use as a practical photocatalyst for water purification. As they emphasized in the original proposal, MoS 2 in nanosize form can be tuned to absorb various amounts of the solar spectrum. They discovered there is an optimal choice of absorbance characteristics and valence and conduction band levels which allow the rapid photo-oxidation of a chosen organic molecule. The advantages of having a photostable material with a tunable bandgap were demonstrated in an experiment where phenol destruction with visible (> 450 nm) light occurred at a dramatically faster rate with nanoscale MoS 2 catalysts compared to the best available previous material TiO 2 . This was the first demonstration of rapid photooxidation of an organic molecule using a completely photostable catalyst and only visible light. The possibility of transferring electrons or holes between nanoscale MoS 2 and other semiconductor materials in order to increase electron/hole lifetimes were explored. It was shown that small amounts ( 2 deposited on to TiO 2 can lead to significant (∼2) enhancements of phenol destruction rates. A number of different chemicals were photocatalyzed sucessfully to CO 2 , but most of the work centered on the destruction of phenol. This

  10. Organic conductive films for semiconductor electrodes

    Science.gov (United States)

    Frank, Arthur J.

    1984-01-01

    According to the present invention, improved electrodes overcoated with conductive polymer films and preselected catalysts are provided. The electrodes typically comprise an inorganic semiconductor overcoated with a charge conductive polymer film comprising a charge conductive polymer in or on which is a catalyst or charge-relaying agent.

  11. Diaryl fluorene-Based Shape-Persistent Organic Nano molecular Frameworks via Iterative Friedel-Crafts Protocol toward Multicomponent Organic Semiconductors

    International Nuclear Information System (INIS)

    Zhang, G.W.; Wang, L.; Xie, L.H.; Hou, X.Y.; Liu, Z.D.; Huang, W.; Huang, W.

    2013-01-01

    We describe bottom-up fluorenol approach to create soluble covalent organic nano molecular architectures (ONAs) as potential multicomponent organic semiconductors (MOSs). BPyFBFFA as a typical model of ONAs and MOSs exhibits a persistent chair-shaped geometric structure that consists of hole-transporting tri phenylamine (TPA), high-efficiency ter fluorene, and high-mobility pyrenes. BPyFBFFA was synthesized via the intermediates PyFA and BPyFA with iterative Friedel-Crafts reactions and Suzuki cross-coupling reactions. BPyFBFFA behaves as an efficient blue light-emitter without the low-energy green emission band. Complex diaryl fluorenes (CDAFs) are promising candidates for nano scale covalent organic frameworks and MOSs. Friedel-Crafts protocols offer versatile toolboxes for molecular architects to frame chemistry and materials, nano science, and molecular nano technology as well as molecular manufactures

  12. Collection-limited theory interprets the extraordinary response of single semiconductor organic solar cells

    Science.gov (United States)

    Ray, Biswajit; Baradwaj, Aditya G.; Khan, Mohammad Ryyan; Boudouris, Bryan W.; Alam, Muhammad Ashraful

    2015-01-01

    The bulk heterojunction (BHJ) organic photovoltaic (OPV) architecture has dominated the literature due to its ability to be implemented in devices with relatively high efficiency values. However, a simpler device architecture based on a single organic semiconductor (SS-OPV) offers several advantages: it obviates the need to control the highly system-dependent nanoscale BHJ morphology, and therefore, would allow the use of broader range of organic semiconductors. Unfortunately, the photocurrent in standard SS-OPV devices is typically very low, which generally is attributed to inefficient charge separation of the photogenerated excitons. Here we show that the short-circuit current density from SS-OPV devices can be enhanced significantly (∼100-fold) through the use of inverted device configurations, relative to a standard OPV device architecture. This result suggests that charge generation may not be the performance bottleneck in OPV device operation. Instead, poor charge collection, caused by defect-induced electric field screening, is most likely the primary performance bottleneck in regular-geometry SS-OPV cells. We justify this hypothesis by: (i) detailed numerical simulations, (ii) electrical characterization experiments of functional SS-OPV devices using multiple polymers as active layer materials, and (iii) impedance spectroscopy measurements. Furthermore, we show that the collection-limited photocurrent theory consistently interprets typical characteristics of regular SS-OPV devices. These insights should encourage the design and OPV implementation of high-purity, high-mobility polymers, and other soft materials that have shown promise in organic field-effect transistor applications, but have not performed well in BHJ OPV devices, wherein they adopt less-than-ideal nanostructures when blended with electron-accepting materials. PMID:26290582

  13. Visualizing excitations at buried heterojunctions in organic semiconductor blends.

    Science.gov (United States)

    Jakowetz, Andreas C; Böhm, Marcus L; Sadhanala, Aditya; Huettner, Sven; Rao, Akshay; Friend, Richard H

    2017-05-01

    Interfaces play a crucial role in semiconductor devices, but in many device architectures they are nanostructured, disordered and buried away from the surface of the sample. Conventional optical, X-ray and photoelectron probes often fail to provide interface-specific information in such systems. Here we develop an all-optical time-resolved method to probe the local energetic landscape and electronic dynamics at such interfaces, based on the Stark effect caused by electron-hole pairs photo-generated across the interface. Using this method, we found that the electronically active sites at the polymer/fullerene interfaces in model bulk-heterojunction blends fall within the low-energy tail of the absorption spectrum. This suggests that these sites are highly ordered compared with the bulk of the polymer film, leading to large wavefunction delocalization and low site energies. We also detected a 100 fs migration of holes from higher- to lower-energy sites, consistent with these charges moving ballistically into more ordered polymer regions. This ultrafast charge motion may be key to separating electron-hole pairs into free charges against the Coulomb interaction.

  14. Intrinsic spin and momentum relaxation in organic single-crystalline semiconductors probed by ESR and Hall measurements

    Science.gov (United States)

    Tsurumi, Junto; Häusermann, Roger; Watanabe, Shun; Mitsui, Chikahiko; Okamoto, Toshihiro; Matsui, Hiroyuki; Takeya, Jun

    Spin and charge momentum relaxation mechanism has been argued among organic semiconductors with various methods, devices, and materials. However, little is known in organic single-crystalline semiconductors because it has been hard to obtain an ideal organic crystal with an excellent crystallinity and controllability required for accurate measurements. By using more than 1-inch sized single crystals which are fabricated via contentious edge-casting method developed by our group, we have successfully demonstrated a simultaneous determination of spin and momentum relaxation time for gate-induced charges of 3,11-didecyldinaphtho[2,3- d:2',3'- d']benzo[1,2- b:4,5- b']dithiophene, by combining electron spin resonance (ESR) and Hall effect measurements. The obtained temperature dependences of spin and momentum relaxation times are in good agreement in terms of power law with a factor of approximately -2. It is concluded that Elliott-Yafet spin relaxation mechanism can be dominant at room temperature regime (200 - 300 K). Probing characteristic time scales such as spin-lattice, spin-spin, and momentum relaxation times, demonstrated in the present work, would be a powerful tool to elucidate fundamental spin and charge transport mechanisms. We acknowledge the New Energy and Industrial Technology Developing Organization (NEDO) for financial support.

  15. An improved synthesis of pentacene: rapid access to a benchmark organic semiconductor.

    Science.gov (United States)

    Pramanik, Chandrani; Miller, Glen P

    2012-04-20

    Pentacene is an organic semiconductor used in a variety of thin-film organic electronic devices. Although at least six separate syntheses of pentacene are known (two from dihydropentacenes, two from 6,13-pentacenedione and two from 6,13-dihydro-6,13-dihydroxypentacene), none is ideal and several utilize elevated temperatures that may facilitate the oxidation of pentacene as it is produced. Here, we present a fast (-2 min of reaction time), simple, high-yielding (≥ 90%), low temperature synthesis of pentacene from readily available 6,13-dihydro-6,13-dihydroxypentacene. Further, we discuss the mechanism of this highly efficient reaction. With this improved synthesis, researchers gain rapid, affordable access to high purity pentacene in excellent yield and without the need for a time consuming sublimation.

  16. Light Scattering Studies of Organic Field Effect Transistors

    Science.gov (United States)

    Adil, Danish

    fabrication methods. The work continues with a combined electro-optical study of the metal-semiconductor interface in OFETs. It is highly desirable that a method that can be used to understand the mechanisms of device performance degradation be developed. We demonstrate that the surface enhanced Raman (SERS) effect (at the metal-semiconductor interface) can serve as such a method. We first show how the Raman spectrum of a pristine pentacene (a common organic semiconductor) film is dramatically different from the spectrum collected when the film is probed through a metal contact. The spectrum collected from the contact region exhibits a change in peak intensities, peak positions, and an overall enhancement of signal intensity, all of which are direct evidence of the SERS effect. The SERS spectrum is then modeled by first principles density functional theory (DFT). The DFT calculations demonstrate that the SERS effect shows an extreme sensitivity to disorder in these semiconductor films. We further show how the SERS spectrum evolves after the device has been subjected to a bias-stress (i.e. applying both gate and drain voltages for an extended period of time). Devices that exhibit a strong degradation in performance also feature a concurrent change of the SERS spectrum. On the other hand, we see no change in the SERS spectrum of devices that exhibit stable operating characteristics. Thus, we confirm that the SERS spectrum can be used as a diagnostic tool for correlating transport properties to structural changes, if any, in organic semiconductor films. In conclusion, we develop a non-invasive opto-electronic visualization tool that can be used as an in-situ probe to characterize charge transport in organic semiconductor devices.

  17. Molecular semiconductors photoelectrical properties and solar cells

    CERN Document Server

    Rees, Ch

    1985-01-01

    During the past thirty years considerable efforts have been made to design the synthesis and the study of molecular semiconductors. Molecular semiconductors - and more generally molecular materials - involve interactions between individual subunits which can be separately synthesized. Organic and metallo-organic derivatives are the basis of most of the molecular materials. A survey of the literature on molecular semiconductors leaves one rather confused. It does seem to be very difficult to correlate the molecular structure of these semiconductors with their experimental electrical properties. For inorganic materials a simple definition delimits a fairly homogeneous family. If an inorganic material has a conductivity intermediate between that of an 12 1 1 3 1 1 insulator « 10- n- cm- ) and that of a metal (> 10 n- cm- ), then it is a semiconductor and will exhibit the characteristic properties of this family, such as junction formation, photoconductivity, and the photovoltaic effect. For molecular compounds,...

  18. Investigations on Substrate Temperature-Induced Growth Modes of Organic Semiconductors at Dielectric/semiconductor Interface and Their Correlation with Threshold Voltage Stability in Organic Field-Effect Transistors.

    Science.gov (United States)

    Padma, Narayanan; Maheshwari, Priya; Bhattacharya, Debarati; Tokas, Raj B; Sen, Shashwati; Honda, Yoshihide; Basu, Saibal; Pujari, Pradeep Kumar; Rao, T V Chandrasekhar

    2016-02-10

    Influence of substrate temperature on growth modes of copper phthalocyanine (CuPc) thin films at the dielectric/semiconductor interface in organic field effect transistors (OFETs) is investigated. Atomic force microscopy (AFM) imaging at the interface reveals a change from 'layer+island' to "island" growth mode with increasing substrate temperatures, further confirmed by probing the buried interfaces using X-ray reflectivity (XRR) and positron annihilation spectroscopic (PAS) techniques. PAS depth profiling provides insight into the details of molecular ordering while positron lifetime measurements reveal the difference in packing modes of CuPc molecules at the interface. XRR measurements show systematic increase in interface width and electron density correlating well with the change from layer + island to coalesced huge 3D islands at higher substrate temperatures. Study demonstrates the usefulness of XRR and PAS techniques to study growth modes at buried interfaces and reveals the influence of growth modes of semiconductor at the interface on hole and electron trap concentrations individually, thereby affecting hysteresis and threshold voltage stability. Minimum hole trapping is correlated to near layer by layer formation close to the interface at 100 °C and maximum to the island formation with large voids between the grains at 225 °C.

  19. Semiconductors: A 21st Century Social Studies Topic.

    Science.gov (United States)

    Sunal, Cynthia

    2000-01-01

    Addresses the reasons for exploring semiconductor technology and organic semiconductors in schools for either middle school or secondary students in an interdisciplinary social studies and science environment. Provides background information on transistors and semiconductors. Offers three social studies lessons and related science lessons if an…

  20. Molecular dynamics simulations of graphoepitaxy of organic semiconductors, sexithiophene, and pentacene: Molecular-scale mechanisms of organic graphoepitaxy

    Science.gov (United States)

    Ikeda, Susumu

    2018-03-01

    Molecular dynamics (MD) simulations of the organic semiconductors α-sexithiophene (6T) and pentacene were carried out to clarify the mechanism of organic graphoepitaxy at the molecular level. First, the models of the grooved substrates were made and the surfaces of the inside of the grooves were modified with -OH or -OSi(CH3)3, making the surfaces hydrophilic or hydrophobic. By the MD simulations of 6T, it was found that three stable azimuthal directions exist (0, ˜45, and 90° the angle that the c-axis makes with the groove), being consistent with experimental results. MD simulations of deposition processes of 6T and pentacene were also carried out, and pentacene molecules showed the spontaneous formation of herringbone packing during deposition. Some pentacene molecules stood on the surface and formed a cluster whose a-axis was parallel to the groove. It is expected that a deep understanding of the molecular-scale mechanisms will lead graphoepitaxy to practical applications, improving the performance of organic devices.

  1. Defect-driven interfacial electronic structures at an organic/metal-oxide semiconductor heterojunction.

    Science.gov (United States)

    Winget, Paul; Schirra, Laura K; Cornil, David; Li, Hong; Coropceanu, Veaceslav; Ndione, Paul F; Sigdel, Ajaya K; Ginley, David S; Berry, Joseph J; Shim, Jaewon; Kim, Hyungchui; Kippelen, Bernard; Brédas, Jean-Luc; Monti, Oliver L A

    2014-07-16

    The electronic structure of the hybrid interface between ZnO and the prototypical organic semiconductor PTCDI is investigated via a combination of ultraviolet and X-ray photoelectron spectroscopy (UPS/XPS) and density functional theory (DFT) calculations. The interfacial electronic interactions lead to a large interface dipole due to substantial charge transfer from ZnO to 3,4,9,10-perylenetetracarboxylicdiimide (PTCDI), which can be properly described only when accounting for surface defects that confer ZnO its n-type properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Dithienocoronenediimide-based copolymers as novel ambipolar semiconductors for organic thin-film transistors.

    Science.gov (United States)

    Usta, Hakan; Newman, Christopher; Chen, Zhihua; Facchetti, Antonio

    2012-07-17

    A new class of ambipolar donor-acceptor π-conjugated polymers based on a dithienocoronenediimide core is presented. Solution-processed top-gate/bottom-contact thin film transistors (TFTs) exhibit electron and hole mobilities of up to 0.30 cm(2)/V·s and 0.04 cm(2)/V·s, respectively, which are the highest reported to date for an ambipolar polymer in ambient conditions. The polymers presented here are the first examples of coronenediimide-based semiconductors showing high organic TFT performances. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Two-photon Photoemission of Organic Semiconductor Molecules on Ag(111)

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Aram [Univ. of California, Berkeley, CA (United States)

    2008-05-01

    Angle- and time-resolved two-photon photoemission (2PPE) was used to study systems of organic semiconductors on Ag(111). The 2PPE studies focused on electronic behavior specific to interfaces and ultrathin films. Electron time dynamics and band dispersions were characterized for ultrathin films of a prototypical n-type planar aromatic hydrocarbon, PTCDA, and representatives from a family of p-type oligothiophenes.In PTCDA, electronic behavior was correlated with film morphology and growth modes. Within a fewmonolayers of the interface, image potential states and a LUMO+1 state were detected. The degree to which the LUMO+1 state exhibited a band mass less than a free electron mass depended on the crystallinity of the layer. Similarly, image potential states were measured to have free electron-like effective masses on ordered surfaces, and the effective masses increased with disorder within the thin film. Electron lifetimes were correlated with film growth modes, such that the lifetimes of electrons excited into systems created by layer-by-layer, amorphous film growth increased by orders of magnitude by only a few monolayers from the surface. Conversely, the decay dynamics of electrons in Stranski-Krastanov systems were limited by interaction with the exposed wetting layer, which limited the barrier to decay back into the metal.Oligothiophenes including monothiophene, quaterthiophene, and sexithiophene were deposited on Ag(111), and their electronic energy levels and effective masses were studied as a function of oligothiophene length. The energy gap between HOMO and LUMO decreased with increasing chain length, but effective mass was found to depend on domains from high- or low-temperature growth conditions rather than chain length. In addition, the geometry of the molecule on the surface, e.g., tilted or planar, substantially affected the electronic structure.

  4. Strong Coupling between Plasmons and Organic Semiconductors

    Directory of Open Access Journals (Sweden)

    Joel Bellessa

    2014-05-01

    Full Text Available In this paper we describe the properties of organic material in strong coupling with plasmon, mainly based on our work in this field of research. The strong coupling modifies the optical transitions of the structure, and occurs when the interaction between molecules and plasmon prevails on the damping of the system. We describe the dispersion relation of different plasmonic systems, delocalized and localized plasmon, coupled to aggregated dyes and the typical properties of these systems in strong coupling. The modification of the dye emission is also studied. In the second part, the effect of the microscopic structure of the organics, which can be seen as a disordered film, is described. As the different molecules couple to the same plasmon mode, an extended coherent state on several microns is observed.

  5. Luminescence in colloidal Mn2+-doped semiconductor nanocrystals

    International Nuclear Information System (INIS)

    Beaulac, Remi; Archer, Paul I.; Gamelin, Daniel R.

    2008-01-01

    Recent advances in nanocrystal doping chemistries have substantially broadened the variety of photophysical properties that can be observed in colloidal Mn 2+ -doped semiconductor nanocrystals. A brief overview is provided, focusing on Mn 2+ -doped II-VI semiconductor nanocrystals prepared by direct chemical synthesis and capped with coordinating surface ligands. These Mn 2+ -doped semiconductor nanocrystals are organized into three major groups according to the location of various Mn 2+ -related excited states relative to the energy gap of the host semiconductor nanocrystals. The positioning of these excited states gives rise to three distinct relaxation scenarios following photoexcitation. A brief outlook on future research directions is provided. - Graphical abstract: Mn 2+ -doped semiconductor nanocrystals are organized into three major groups according to the location of various Mn 2+ -related excited states relative to the energy gap of the host semiconductor nanocrystals. The positioning of these excited states gives rise to three distinct relaxation scenarios following photoexcitation

  6. Hydrogen-Bonded Organic Semiconductor Micro- And Nanocrystals: From Colloidal Syntheses to (Opto-)Electronic Devices

    Science.gov (United States)

    2014-01-01

    Organic pigments such as indigos, quinacridones, and phthalocyanines are widely produced industrially as colorants for everyday products as various as cosmetics and printing inks. Herein we introduce a general procedure to transform commercially available insoluble microcrystalline pigment powders into colloidal solutions of variously sized and shaped semiconductor micro- and nanocrystals. The synthesis is based on the transformation of the pigments into soluble dyes by introducing transient protecting groups on the secondary amine moieties, followed by controlled deprotection in solution. Three deprotection methods are demonstrated: thermal cleavage, acid-catalyzed deprotection, and amine-induced deprotection. During these processes, ligands are introduced to afford colloidal stability and to provide dedicated surface functionality and for size and shape control. The resulting micro- and nanocrystals exhibit a wide range of optical absorption and photoluminescence over spectral regions from the visible to the near-infrared. Due to excellent colloidal solubility offered by the ligands, the achieved organic nanocrystals are suitable for solution processing of (opto)electronic devices. As examples, phthalocyanine nanowire transistors as well as quinacridone nanocrystal photodetectors, with photoresponsivity values by far outperforming those of vacuum deposited reference samples, are demonstrated. The high responsivity is enabled by photoinduced charge transfer between the nanocrystals and the directly attached electron-accepting vitamin B2 ligands. The semiconducting nanocrystals described here offer a cheap, nontoxic, and environmentally friendly alternative to inorganic nanocrystals as well as a new paradigm for obtaining organic semiconductor materials from commercial colorants. PMID:25253644

  7. An Improved Synthesis of Pentacene: Rapid Access to a Benchmark Organic Semiconductor

    Directory of Open Access Journals (Sweden)

    Glen P. Miller

    2012-04-01

    Full Text Available Pentacene is an organic semiconductor used in a variety of thin-film organic electronic devices. Although at least six separate syntheses of pentacene are known (two from dihydropentacenes, two from 6,13-pentacenedione and two from 6,13-dihydro-6,13-dihydroxypentacene, none is ideal and several utilize elevated temperatures that may facilitate the oxidation of pentacene as it is produced. Here, we present a fast (~2 min of reaction time, simple, high-yielding (≥90%, low temperature synthesis of pentacene from readily available 6,13-dihydro-6,13-dihydroxypentacene. Further, we discuss the mechanism of this highly efficient reaction. With this improved synthesis, researchers gain rapid, affordable access to high purity pentacene in excellent yield and without the need for a time consuming sublimation.

  8. Amphoteric oxide semiconductors for energy conversion devices: a tutorial review.

    Science.gov (United States)

    Singh, Kalpana; Nowotny, Janusz; Thangadurai, Venkataraman

    2013-03-07

    In this tutorial review, we discuss the defect chemistry of selected amphoteric oxide semiconductors in conjunction with their significant impact on the development of renewable and sustainable solid state energy conversion devices. The effect of electronic defect disorders in semiconductors appears to control the overall performance of several solid-state ionic devices that include oxide ion conducting solid oxide fuel cells (O-SOFCs), proton conducting solid oxide fuel cells (H-SOFCs), batteries, solar cells, and chemical (gas) sensors. Thus, the present study aims to assess the advances made in typical n- and p-type metal oxide semiconductors with respect to their use in ionic devices. The present paper briefly outlines the key challenges in the development of n- and p-type materials for various applications and also tries to present the state-of-the-art of defect disorders in technologically related semiconductors such as TiO(2), and perovskite-like and fluorite-type structure metal oxides.

  9. Hydrogen-bonding versus .pi.-.pi. stacking in the design of organic semiconductors: from dyes to oligomers

    Czech Academy of Sciences Publication Activity Database

    Gospodinova, Natalia; Tomšík, Elena

    2015-01-01

    Roč. 43, April (2015), s. 33-47 ISSN 0079-6700 R&D Projects: GA ČR(CZ) GA13-00270S; GA ČR GPP108/11/P763 Institutional support: RVO:61389013 Keywords : organic semiconductors * hydrogen bonds * nematic liquid crystals Subject RIV: CD - Macromolecular Chemistry Impact factor: 27.184, year: 2015

  10. Interface properties of Fe/MgO/Cu-phthalocyanine metal-insulator-organic semiconductor structures

    International Nuclear Information System (INIS)

    Lee, Nyunjong; Bae, Yujeong; Kim, Taehee; Ito, Eisuke; Hara, Masahiko

    2014-01-01

    Hybrid interface structures consisting of organic copper-phthalocyanine (CuPc) and ferromagnetic metal Fe(001) with and without a MgO(001) cover were investigated by using surface sensitive techniques of X-ray photoemission spectroscopy and ultraviolet photoemission spectroscopy. A systematic study of the energy level alignment at the interfaces was carried out. For the hybrid interfaces considered here, our results indicate that the insertion of an artificially-grown ultra-thin oxide layer MgO(001) can prevent Femi level pinning and induce a rather large interface dipole, thereby resulting in remarkable CuPc Fermi level shifts when the thickness of the CuPc film is less than 3 nm. This study provides a better understanding of spin filtering in MgO-based organic spin devices and a new way to alter the interface electronic structure of metal/organic semiconductor hybrid systems.

  11. Semiclassical theory of magnetoresistance in positionally disordered organic semiconductors

    Science.gov (United States)

    Harmon, N. J.; Flatté, M. E.

    2012-02-01

    A recently introduced percolative theory of unipolar organic magnetoresistance is generalized by treating the hyperfine interaction semiclassically for an arbitrary hopping rate. Compact analytic results for the magnetoresistance are achievable when carrier hopping occurs much more frequently than the hyperfine field precession period. In other regimes the magnetoresistance can be straightforwardly evaluated numerically. Slow and fast hopping magnetoresistance are found to be uniquely characterized by their line shapes. We find that the threshold hopping distance is analogous a phenomenological two-site model's branching parameter, and that the distinction between slow and fast hopping is contingent on the threshold hopping distance.

  12. Optical and spectroscopic studies on tannery wastes as a possible source of organic semiconductors

    Science.gov (United States)

    Nashy, El-Shahat H. A.; Al-Ashkar, Emad; Abdel Moez, A.

    2012-02-01

    Tanning industry produces a large quantity of solid wastes which contain hide proteins in the form of protein shavings containing chromium salts. The chromium wastes are the main concern from an environmental stand point of view, because chrome wastes posses a significant disposal problem. The present work is devoted to investigate the possibility of utilizing these wastes as a source of organic semi-conductors as an alternative method instead of the conventional ones. The chemical characterization of these wastes was determined. In addition, the Horizontal Attenuated Total Reflection (HATR) FT-IR spectroscopic analysis and optical parameters were also carried out for chromated samples. The study showed that the chromated samples had suitable absorbance and transmittance in the wavelength range (500-850 nm). Presence of chromium salt in the collagen samples increases the absorbance which improves the optical properties of the studied samples and leads to decrease the optical energy gap. The obtained optical energy gap gives an impression that the environmentally hazardous chrome shavings wastes can be utilized as a possible source of natural organic semiconductors with direct and indirect energy gap. This work opens the door to use some hazardous wastes in the manufacture of electronic devices such as IR-detectors, solar cells and also as solar cell windows.

  13. Electrical conductivity, optical properties and mechanical stability of 3, 4, 9, 10-perylenetetracarboxylic dianhidride based organic semiconductor

    Science.gov (United States)

    Pandey, Mayank; Joshi, Girish M.; Deshmukh, Kalim; Nath Ghosh, Narendra; Nambi Raj, N. Arunai

    2015-05-01

    The 3, 4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA) doped polymer films were prepared with Polypyrrole (PPy) and Polyvinyl alcohol (PVA) polymers by solution-casting. The change in structure and chemical composition of samples was identified by XRD and FTIR respectively. The UV-visible spectroscopy demonstrates the optical characteristics and band gap properties of sample. The homogeneous morphology of sample for higher wt% of PTCDA was examined by atomic force microscopy (AFM). The differential scanning calorimetry (DSC) results demonstrate the decrease in melting temperature (Tm) and degree of crystallinity (χc%) of polymeric organic semiconductor. The mechanical property demonstrates the high tensile strength and improved plasticity nature. Impedance spectroscopy was evaluated to determine the conductivity response of polymeric organic semiconductor. The highest DC conductivity (2.08×10-3 S/m) was obtained for 10 wt% of PTCDA at 140 °C. The decrease in activation energy (Ea) represents the non-Debye process and was evaluated from the slope of ln σdc vs. 103/T plot.

  14. Dry lithography of large-area, thin-film organic semiconductors using frozen CO(2) resists.

    Science.gov (United States)

    Bahlke, Matthias E; Mendoza, Hiroshi A; Ashall, Daniel T; Yin, Allen S; Baldo, Marc A

    2012-12-04

    To address the incompatibility of organic semiconductors with traditional photolithography, an inert, frozen CO(2) resist is demonstrated that forms an in situ shadow mask. Contact with a room-temperature micro-featured stamp is used to pattern the resist. After thin film deposition, the remaining CO(2) is sublimed to lift off unwanted material. Pixel densities of 325 pixels-per-inch are shown. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Phototreatment of Water by Organic Photosensitizers and Comparison with Inorganic Semiconductors

    Directory of Open Access Journals (Sweden)

    Merlyn Thandu

    2015-01-01

    Full Text Available Phototreatment of water is drawing the attention of many as a promising alternative to replace methods like chlorination, ozonization, and other oxidation processes, used in current disinfection methods limiting harmful side-products and by-products that can cause damage to the fauna and flora. Porphyrins, phthalocyanines, and other related organic dyes are well known for their use in photodynamic therapy (PDT. These photosensitizers cause cell death by generating reactive oxygen species (ROS especially singlet oxygen in the presence of light. Such molecules are also being explored for photodynamically treating microbial infections, killing of unwanted pathogens in the environment, and oxidation of chemical pollutants. The process of photosensitisation (phototreatment can be applied for obtaining clean, microbe-free water, thus exploiting the versatile properties of photosensitizers. This review collects the various attempts carried out for phototreatment of water using organic photosensitizers. For comparison, some reports of semiconductors (especially TiO2 used in photocatalytic treatment of water are also mentioned.

  16. On the relation between orbital-localization and self-interaction errors in the density functional theory treatment of organic semiconductors.

    Science.gov (United States)

    Körzdörfer, T

    2011-03-07

    It is commonly argued that the self-interaction error (SIE) inherent in semilocal density functionals is related to the degree of the electronic localization. Yet at the same time there exists a latent ambiguity in the definitions of the terms "localization" and "self-interaction," which ultimately prevents a clear and readily accessible quantification of this relationship. This problem is particularly pressing for organic semiconductor molecules, in which delocalized molecular orbitals typically alternate with localized ones, thus leading to major distortions in the eigenvalue spectra. This paper discusses the relation between localization and SIEs in organic semiconductors in detail. Its findings provide further insights into the SIE in the orbital energies and yield a new perspective on the failure of self-interaction corrections that identify delocalized orbital densities with electrons. © 2011 American Institute of Physics.

  17. Ionic behavior of organic-inorganic metal halide perovskite based metal-oxide-semiconductor capacitors.

    Science.gov (United States)

    Wang, Yucheng; Zhang, Yuming; Pang, Tiqiang; Xu, Jie; Hu, Ziyang; Zhu, Yuejin; Tang, Xiaoyan; Luan, Suzhen; Jia, Renxu

    2017-05-24

    Organic-inorganic metal halide perovskites are promising semiconductors for optoelectronic applications. Despite the achievements in device performance, the electrical properties of perovskites have stagnated. Ion migration is speculated to be the main contributing factor for the many unusual electrical phenomena in perovskite-based devices. Here, to understand the intrinsic electrical behavior of perovskites, we constructed metal-oxide-semiconductor (MOS) capacitors based on perovskite films and performed capacitance-voltage (C-V) and current-voltage (I-V) measurements of the capacitors. The results provide direct evidence for the mixed ionic-electronic transport behavior within perovskite films. In the dark, there is electrical hysteresis in both the C-V and I-V curves because the mobile negative ions take part in charge transport despite frequency modulation. However, under illumination, the large amount of photoexcited free carriers screens the influence of the mobile ions with a low concentration, which is responsible for the normal C-V properties. Validation of ion migration for the gate-control ability of MOS capacitors is also helpful for the investigation of perovskite MOS transistors and other gate-control photovoltaic devices.

  18. X-ray absorption spectroscopy of semiconductors

    CERN Document Server

    Ridgway, Mark

    2015-01-01

    X-ray Absorption Spectroscopy (XAS) is a powerful technique with which to probe the properties of matter, equally applicable to the solid, liquid and gas phases. Semiconductors are arguably our most technologically-relevant group of materials given they form the basis of the electronic and photonic devices that now so widely permeate almost every aspect of our society. The most effective utilisation of these materials today and tomorrow necessitates a detailed knowledge of their structural and vibrational properties. Through a series of comprehensive reviews, this book demonstrates the versatility of XAS for semiconductor materials analysis and presents important research activities in this ever growing field. A short introduction of the technique, aimed primarily at XAS newcomers, is followed by twenty independent chapters dedicated to distinct groups of materials. Topics span dopants in crystalline semiconductors and disorder in amorphous semiconductors to alloys and nanometric material as well as in-sit...

  19. Semi-conducting plastics for disposable electronic devices - What are the organic semi-conductors arriving on the market?; Des plastiques semi-conducteurs pour l'electronique jetable. Qui sont les semi-conducteurs organiques qui arrivent sur le marche?

    Energy Technology Data Exchange (ETDEWEB)

    Nueesch, F. A. [EMPA, Duebendorf (Switzerland)

    2010-07-01

    This is a popularization article that describes basic properties of semi-conductors and reports on the status of research and development of organic semi-conductors. In a first part, fundamentals of semi-conductors are recalled. Comparisons are made between inorganic and organic (i.e. based on carbon polymers) compounds. Indications are given on how semi-conducting polymers are obtained. Potential applications are listed: flexible organic solar cells, light emitting diodes, flexible organic displays, intelligent cards for ticketing, etc. Research on organic semi-conductors is of great interest for industry, worldwide, and several companies are widely investing in this area.

  20. Optical and spectroscopic studies on tannery wastes as a possible source of organic semiconductors.

    Science.gov (United States)

    Nashy, El-Shahat H A; Al-Ashkar, Emad; Moez, A Abdel

    2012-02-01

    Tanning industry produces a large quantity of solid wastes which contain hide proteins in the form of protein shavings containing chromium salts. The chromium wastes are the main concern from an environmental stand point of view, because chrome wastes posses a significant disposal problem. The present work is devoted to investigate the possibility of utilizing these wastes as a source of organic semi-conductors as an alternative method instead of the conventional ones. The chemical characterization of these wastes was determined. In addition, the Horizontal Attenuated Total Reflection (HATR) FT-IR spectroscopic analysis and optical parameters were also carried out for chromated samples. The study showed that the chromated samples had suitable absorbance and transmittance in the wavelength range (500-850 nm). Presence of chromium salt in the collagen samples increases the absorbance which improves the optical properties of the studied samples and leads to decrease the optical energy gap. The obtained optical energy gap gives an impression that the environmentally hazardous chrome shavings wastes can be utilized as a possible source of natural organic semiconductors with direct and indirect energy gap. This work opens the door to use some hazardous wastes in the manufacture of electronic devices such as IR-detectors, solar cells and also as solar cell windows. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Rethinking the theoretical description of photoluminescence in compound semiconductors

    Science.gov (United States)

    Valkovskii, V.; Jandieri, K.; Gebhard, F.; Baranovskii, S. D.

    2018-02-01

    Semiconductor compounds, such as Ga(NAsP)/GaP or GaAsBi/GaAs, are in the focus of intensive research due to their unique features for optoelectronic devices. The optical spectra of compound semiconductors are strongly influenced by the random scattering potentials caused by compositional and structural disorder. The disorder potential is responsible for the red-shift (Stokes shift) of the photoluminescence (PL) peak and for the inhomogeneous broadening of the PL spectra. So far, the anomalous broadening of the PL spectra in Ga(NAsP)/GaP has been explained assuming two coexisting length scales of disorder. However, this interpretation appears in contradiction to the recently observed dependence of the PL linewidth on the excitation intensity. We suggest an alternative approach that describes the PL characteristics in the framework of a model with a single length scale of disorder. The price is the assumption of two types of localized states with different, temperature-dependent non-radiative recombination rates.

  2. Role of band states and trap states in the electrical properties of organic semiconductors: Hopping versus mobility edge model

    KAUST Repository

    Mehraeen, Shafigh; Coropceanu, Veaceslav; Bré das, Jean-Luc

    2013-01-01

    We compare the merits of a hopping model and a mobility edge model in the description of the effect of charge-carrier concentration on the electrical conductivity, carrier mobility, and Fermi energy of organic semiconductors. We consider the case

  3. Impact of Molecular Orientation and Packing Density on Electronic Polarization in the Bulk and at Surfaces of Organic Semiconductors

    KAUST Repository

    Ryno, Sean

    2016-05-16

    The polarizable environment surrounding charge carriers in organic semiconductors impacts the efficiency of the charge transport process. Here, we consider two representative organic semiconductors, tetracene and rubrene, and evaluate their polarization energies in the bulk and at the organic-vacuum interface using a polarizable force field that accounts for induced-dipole and quadrupole interactions. Though both oligoacenes pack in a herringbone motif, the tetraphenyl substituents on the tetracene backbone of rubrene alter greatly the nature of the packing. The resulting change in relative orientations of neighboring molecules is found to reduce the bulk polarization energy of holes in rubrene by some 0.3 eV when compared to tetracene. The consideration of model organic-vacuum interfaces highlights the significant variation in the electrostatic environment for a charge carrier at a surface although the net change in polarization energy is small; interestingly, the environment of a charge even just one layer removed from the surface can be viewed already as representative of the bulk. Overall, it is found that in these herringbone-type layered crystals the polarization energy has a much stronger dependence on the intralayer packing density than interlayer packing density.

  4. Interface engineering of semiconductor/dielectric heterojunctions toward functional organic thin-film transistors.

    Science.gov (United States)

    Zhang, Hongtao; Guo, Xuefeng; Hui, Jingshu; Hu, Shuxin; Xu, Wei; Zhu, Daoben

    2011-11-09

    Interface modification is an effective and promising route for developing functional organic field-effect transistors (OFETs). In this context, however, researchers have not created a reliable method of functionalizing the interfaces existing in OFETs, although this has been crucial for the technological development of high-performance CMOS circuits. Here, we demonstrate a novel approach that enables us to reversibly photocontrol the carrier density at the interface by using photochromic spiropyran (SP) self-assembled monolayers (SAMs) sandwiched between active semiconductors and gate insulators. Reversible changes in dipole moment of SPs in SAMs triggered by lights with different wavelengths produce two distinct built-in electric fields on the OFET that can modulate the channel conductance and consequently threshold voltage values, thus leading to a low-cost noninvasive memory device. This concept of interface functionalization offers attractive new prospects for the development of organic electronic devices with tailored electronic and other properties.

  5. Semiconductor Nanocrystals for Biological Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Aihua; Gu, Weiwei; Larabell, Carolyn; Alivisatos, A. Paul

    2005-06-28

    Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission feature. Semiconductor nanocrystals, on the other hand, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.

  6. Interfacial trap states in junctions of molecular semiconductors

    International Nuclear Information System (INIS)

    Schlettwein, D.; Oekermann, T.; Jaeger, N.; Armstrong, N.R.; Woehrle, D.

    2002-01-01

    Interfacial states that were established in contacts of molecular semiconductors with aqueous electrolytes or in contacts with another organic semiconductor as a solid film were analyzed by photoelectrochemical experiments and by photoelectron spectroscopy. A crucial role of such states was indicated in the interfacial charge transfer and recombination kinetics of light-induced charge carriers and also in the energetic alignment in the solid contacts. Unsubstituted zinc-phthalocyanine (PcZn) served as model compound. The role of chemical interactions in the establishment of these interfacial states was investigated by use of different reaction partners, i.e., different redox couples in the electrolyte contacts and molecular semiconductors of different ionization potential in the solid contacts. Implications of these results for the use of organic semiconductor thin films in devices of molecular electronics and of dye molecules in dye-sensitized solar cells were also discussed

  7. Assembly, Structure, and Functionality of Metal-Organic Networks and Organic Semiconductor Layers at Surfaces

    Science.gov (United States)

    Tempas, Christopher D.

    Self-assembled nanostructures at surfaces show promise for the development of next generation technologies including organic electronic devices and heterogeneous catalysis. In many cases, the functionality of these nanostructures is not well understood. This thesis presents strategies for the structural design of new on-surface metal-organic networks and probes their chemical reactivity. It is shown that creating uniform metal sites greatly increases selectivity when compared to ligand-free metal islands. When O2 reacts with single-site vanadium centers, in redox-active self-assembled coordination networks on the Au(100) surface, it forms one product. When O2 reacts with vanadium metal islands on the same surface, multiple products are formed. Other metal-organic networks described in this thesis include a mixed valence network containing Pt0 and PtII and a network where two Fe centers reside in close proximity. This structure is stable to temperatures >450 °C. These new on-surface assemblies may offer the ability to perform reactions of increasing complexity as future heterogeneous catalysts. The functionalization of organic semiconductor molecules is also shown. When a few molecular layers are grown on the surface, it is seen that the addition of functional groups changes both the film's structure and charge transport properties. This is due to changes in both first layer packing structure and the pi-electron distribution in the functionalized molecules compared to the original molecule. The systems described in this thesis were studied using high-resolution scanning tunneling microscopy, non-contact atomic force microscopy, and X-ray photoelectron spectroscopy. Overall, this work provides strategies for the creation of new, well-defined on-surface nanostructures and adds additional chemical insight into their properties.

  8. Bi-component semiconductor oxide photoanodes for the photoelectrocatalytic oxidation of organic solutes and vapours: a short review with emphasis to TiO2-WO3 photoanodes.

    Science.gov (United States)

    Georgieva, J; Valova, E; Armyanov, S; Philippidis, N; Poulios, I; Sotiropoulos, S

    2012-04-15

    The use of binary semiconductor oxide anodes for the photoelectrocatalytic oxidation of organic species (both in solution and gas phase) is reviewed. In the first part of the review, the principle of electrically assisted photocatalysis is presented, the preparation methods for the most common semiconductor oxide catalysts are briefly mentioned, while the advantages of appropriately chosen semiconductor combinations for efficient UV and visible (vis) light utilization are highlighted. The second part of the review focuses on the discussion of TiO(2)-WO(3) photoanodes (among the most studied bi-component semiconductor oxide systems) and in particular on coatings prepared by electrodeposition/electrosynthesis or powder mixtures (the focus of the authors' research during recent years). Studies concerning the microscopic, spectroscopic and photoelectrochemical characterization of the catalysts are presented and examples of photoanode activity towards typical dissolved organic contaminants as well as organic vapours are given. Particular emphasis is paid to: (a) The dependence of photoactivity on catalyst morphology and composition and (b) the possibility of carrying out photoelectrochemistry in all-solid cells, thus opening up the opportunity for photoelectrocatalytic air treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Drift of charge carriers in crystalline organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Jingjuan; Si, Wei [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Wu, Chang-Qin, E-mail: cqw@fudan.edu.cn [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China)

    2016-04-14

    We investigate the direct-current response of crystalline organic semiconductors in the presence of finite external electric fields by the quantum-classical Ehrenfest dynamics complemented with instantaneous decoherence corrections (IDC). The IDC is carried out in the real-space representation with the energy-dependent reweighing factors to account for both intermolecular decoherence and energy relaxation by which conduction occurs. In this way, both the diffusion and drift motion of charge carriers are described in a unified framework. Based on an off-diagonal electron-phonon coupling model for pentacene, we find that the drift velocity initially increases with the electric field and then decreases at higher fields due to the Wannier-Stark localization, and a negative electric-field dependence of mobility is observed. The Einstein relation, which is a manifestation of the fluctuation-dissipation theorem, is found to be restored in electric fields up to ∼10{sup 5} V/cm for a wide temperature region studied. Furthermore, we show that the incorporated decoherence and energy relaxation could explain the large discrepancy between the mobilities calculated by the Ehrenfest dynamics and the full quantum methods, which proves the effectiveness of our approach to take back these missing processes.

  10. Late stage crystallization and healing during spin-coating enhance carrier transport in small-molecule organic semiconductors

    KAUST Repository

    Chou, Kang Wei

    2014-01-01

    Spin-coating is currently the most widely used solution processing method in organic electronics. Here, we report, for the first time, a direct investigation of the formation process of the small-molecule organic semiconductor (OSC) 6,13-bis(triisopropylsilylethynyl) (TIPS)-pentacene during spin-coating in the context of an organic thin film transistor (OTFT) application. The solution thinning and thin film formation were monitored in situ by optical reflectometry and grazing incidence wide angle X-ray scattering, respectively, both of which were performed during spin-coating. We find that OSC thin film formation is akin to a quenching process, marked by a deposition rate of ∼100 nm s-1, nearly three orders of magnitude faster than drop-casting. This is then followed by a more gradual crystallization and healing step which depends upon the spinning speed. We associate this to further crystallization and healing of defects by residency of the residual solvent trapped inside the kinetically trapped film. The residency time of the trapped solvent is extended to several seconds by slowing the rotational speed of the substrate and is credited with improving the carrier mobility by nearly two orders of magnitude. Based on this insight, we deliberately slow down the solvent evaporation further and increase the carrier mobility by an additional order of magnitude. These results demonstrate how spin-coating conditions can be used as a handle over the crystallinity of organic semiconductors otherwise quenched during initial formation only to recrystallize and heal during extended interaction with the trapped solvent. This journal is © the Partner Organisations 2014.

  11. Semiconductor

    International Nuclear Information System (INIS)

    2000-01-01

    This book deals with process and measurement of semiconductor. It contains 20 chapters, which goes as follows; semiconductor industry, introduction of semiconductor manufacturing, yield of semiconductor process, materials, crystal growth and a wafer forming, PN, control pollution, oxidation, photomasking photoresist chemistry, photomasking technologies, diffusion and ion injection, chemical vapor deposition, metallization, wafer test and way of evaluation, semiconductor elements, integrated circuit and semiconductor circuit technology.

  12. Effect of disorder on the magnetic and electronic structure of a prospective spin-gapless semiconductor MnCrVAl

    Directory of Open Access Journals (Sweden)

    P. Kharel

    2017-05-01

    Full Text Available Recent discovery of a new class of materials, spin-gapless semiconductors (SGS, has attracted considerable attention in the last few years, primarily due to potential applications in the emerging field of spin-based electronics (spintronics. Here, we investigate structural, electronic, and magnetic properties of one potential SGS compound, MnCrVAl, using various experimental and theoretical techniques. Our calculations show that this material exhibits ≈ 0.5 eV band gap for the majority-spin states, while for the minority-spin it is nearly gapless. The calculated magnetic moment for the completely ordered structure is 2.9 μB/f.u., which is different from our experimentally measured value of almost zero. This discrepancy is explained by the structural disorder. In particular, A2 type disorder, where Mn or Cr atoms exchange their positions with Al atoms, results in induced antiferromagnetic exchange coupling, which, at a certain level of disorder, effectively reduces the total magnetic moment to zero. This is consistent with our x-ray diffraction measurements which indicate the presence of A2 disorder in all of our samples. In addition, we also show that B2 disorder does not result in antiferromagnetic exchange coupling and therefore does not significantly reduce the total magnetic moment.

  13. A Furan-Thiophene-Based Quinoidal Compound: A New Class of Solution-Processable High-Performance n-Type Organic Semiconductor.

    Science.gov (United States)

    Xiong, Yu; Tao, Jingwei; Wang, Ruihao; Qiao, Xiaolan; Yang, Xiaodi; Wang, Deliang; Wu, Hongzhuo; Li, Hongxiang

    2016-07-01

    The furan-thiophene-based quinoidal organic semiconductor, TFT-CN, is designed and synthesized. TFT-CN displays a high electron mobility of 7.7 cm(2) V(-1) s(-1) , two orders of magnitude higher than the corresponding thiophene-based derivative. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Insight into doping efficiency of organic semiconductors from the analysis of the density of states in n-doped C60 and ZnPc

    Science.gov (United States)

    Gaul, Christopher; Hutsch, Sebastian; Schwarze, Martin; Schellhammer, Karl Sebastian; Bussolotti, Fabio; Kera, Satoshi; Cuniberti, Gianaurelio; Leo, Karl; Ortmann, Frank

    2018-05-01

    Doping plays a crucial role in semiconductor physics, with n-doping being controlled by the ionization energy of the impurity relative to the conduction band edge. In organic semiconductors, efficient doping is dominated by various effects that are currently not well understood. Here, we simulate and experimentally measure, with direct and inverse photoemission spectroscopy, the density of states and the Fermi level position of the prototypical materials C60 and zinc phthalocyanine n-doped with highly efficient benzimidazoline radicals (2-Cyc-DMBI). We study the role of doping-induced gap states, and, in particular, of the difference Δ1 between the electron affinity of the undoped material and the ionization potential of its doped counterpart. We show that this parameter is critical for the generation of free carriers and influences the conductivity of the doped films. Tuning of Δ1 may provide alternative strategies to optimize the electronic properties of organic semiconductors.

  15. Pump spot size dependent lasing threshold in organic semiconductor DFB lasers fabricated via nanograting transfer.

    Science.gov (United States)

    Liu, Xin; Klinkhammer, Sönke; Wang, Ziyao; Wienhold, Tobias; Vannahme, Christoph; Jakobs, Peter-Jürgen; Bacher, Andreas; Muslija, Alban; Mappes, Timo; Lemmer, Uli

    2013-11-18

    Optically excited organic semiconductor distributed feedback (DFB) lasers enable efficient lasing in the visible spectrum. Here, we report on the rapid and parallel fabrication of DFB lasers via transferring a nanograting structure from a flexible mold onto an unstructured film of the organic gain material. This geometrically well-defined structure allows for a systematic investigation of the laser threshold behavior. The laser thresholds for these devices show a strong dependence on the pump spot diameter. This experimental finding is in good qualitative agreement with calculations based on coupled-wave theory. With further investigations on various DFB laser geometries prepared by different routes and based on different organic gain materials, we found that these findings are quite general. This is important for the comparison of threshold values of various devices characterized under different excitation areas.

  16. Pump spot size dependent lasing threshold in organic semiconductor DFB lasers fabricated via nanograting transfer

    DEFF Research Database (Denmark)

    Liu, Xin; Klinkhammer, Sönke; Wang, Ziyao

    2013-01-01

    material. This geometrically well-defined structure allows for a systematic investigation of the laser threshold behavior. The laser thresholds for these devices show a strong dependence on the pump spot diameter. This experimental finding is in good qualitative agreement with calculations based on coupled......Optically excited organic semiconductor distributed feedback (DFB) lasers enable efficient lasing in the visible spectrum. Here, we report on the rapid and parallel fabrication of DFB lasers via transferring a nanograting structure from a flexible mold onto an unstructured film of the organic gain......-wave theory. With further investigations on various DFB laser geometries prepared by different routes and based on different organic gain materials, we found that these findings are quite general. This is important for the comparison of threshold values of various devices characterized under different...

  17. Paramagnetic resonance and electronic conduction in organic semiconductors; Resonance paramagnetique et conduction electroniques dans les semi-conducteurs organiques

    Energy Technology Data Exchange (ETDEWEB)

    Nechtschein, M. [Commissariat a l' energie atomique et aux energies alternatives - CEA, Laboratoire de Resonance Magnetique (France)

    1963-07-01

    As some organic bodies simultaneously display semi-conducting properties and a paramagnetism, this report addresses the study of conduction in organic bodies. The author first briefly recalls how relationships between conductibility and Electron Paramagnetic Resonance (EPR) can be noticed in a specific case (mineral and metallic semiconductors). He discusses published results related to paramagnetism and conductibility in organic bodies. He reviews various categories of organic bodies in which both properties are simultaneously present. He notably addresses radical molecular crystals, non-radical molecular crystals, charge transfer complexes, pyrolyzed coals, and pseudo-ferromagnetic organic structures. He discusses the issue of relationships between conduction (charge transfer by electrons) and ERP (which reveals the existence of non-paired electrons which provide free spins)

  18. Effects of Bimolecular Recombination on Impedance Spectra in Organic Semiconductors: Analytical Approach.

    Science.gov (United States)

    Takata, Masashi; Takagi, Kenichiro; Nagase, Takashi; Kobayashi, Takashi; Naito, Hiroyoshi

    2016-04-01

    An analytical expression for impedance spectra in the case of double injection (both electrons and holes are injected into an organic semiconductor thin film) has been derived from the basic transport equations (the current density equation, the continuity equation and the Possion's equation). Capacitance-frequency characteristics calculated from the analytical expression have been examined at different recombination constants and different values of mobility balance defined by a ratio of electron mobility to hole mobility. Negative capacitance appears when the recombination constant is lower than the Langevin recombination constant and when the value of the mobility balance approaches unity. These results are consistent with the numerical results obtained by a device simulator (Atlas, Silvaco).

  19. The effect of spin-orbit coupling on magnetoresistance in nonmagnetic organic semiconductors

    International Nuclear Information System (INIS)

    Zhao Jun-Qing; Ding Meng; Zhang Tian-You; Zhang Ning-Yu; Pang Yan-Tao; Ji Yan-Ju; Chen Ying; Wang Feng-Xiang; Fu Gang

    2012-01-01

    We investigated the effect of spin-orbit coupling on magnetoresistance in nonmagnetic organic semiconductors. A Lorentz-type magnetoresistance is obtained from spin-orbit coupling-dependent spin precession under the condition of a space-charge-limited current. The magnetoresistance depends on the initial spin orientation of the electron with respect to the hole in electron—hole pairs, and the increasing spin-orbit coupling slows down the change in magnetoresistance with magnetic field. The field dependence, the sign and the saturation value of the magnetoresistance are composite effects of recombination and dissociation rate constants of singlet and triplet electron—hole pairs. The simulated magnetoresistance shows good consistency with the experimental results. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. Photoelectrochemical processes in organic semiconductor: Ambipolar perylene diimide thin film

    Science.gov (United States)

    Kim, Jung Yong; Chung, In Jae

    2018-03-01

    A thin film of N,N‧-dioctadecyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C18) is spin-coated on indium tin oxide (ITO) glass. Using the PTCDI-C18/ITO electrode, we fabricate a photoelectrochemical cell with the ITO/PTCDI-C18/Redox Electrolyte/Pt configuration. The electrochemical properties of this device are investigated as a function of hydroquinone (HQ) concentration, bias voltage, and wavelength of light. Anodic photocurrent is observed at V ≥ -0.2 V vs. Ag/AgCl, indicating that the PTCDI-C18 film acts as an n-type semiconductor as usual. However, when benzoquinone (BQ) is inserted into the electrolyte system instead of HQ, cathodic photocurrent is observed at V ≤ 0.0 V, displaying that PTCDI-C18 abnormally serves as a p-type semiconductor. Hence the overall results reveal that the PTCDI-C18 film can be an ambipolar functional semiconductor depending on the redox couple in the appropriate voltage.

  1. Foreword: Focus on Superconductivity in Semiconductors

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2008-01-01

    Full Text Available Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm−3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors.This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008, which was held at the National Institute for Materials Science (NIMS, Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1.The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al are discussed, and In2O3 (Makise et al is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high

  2. Heteroepitaxial growth of 3-5 semiconductor compounds by metal-organic chemical vapor deposition for device applications

    Science.gov (United States)

    Collis, Ward J.; Abul-Fadl, Ali

    1988-01-01

    The purpose of this research is to design, install and operate a metal-organic chemical vapor deposition system which is to be used for the epitaxial growth of 3-5 semiconductor binary compounds, and ternary and quaternary alloys. The long-term goal is to utilize this vapor phase deposition in conjunction with existing current controlled liquid phase epitaxy facilities to perform hybrid growth sequences for fabricating integrated optoelectronic devices.

  3. The rates of charge separation and energy destructive charge recombination processes within an organic dyad in presence of metal-semiconductor core shell nanocomposites.

    Science.gov (United States)

    Mandal, Gopa; Bhattacharya, Sudeshna; Das, Subrata; Ganguly, Tapan

    2012-01-01

    Steady state and time resolved spectroscopic measurements were made at the ambient temperature on an organic dyad, 1-(4-Chloro-phenyl)-3-(4-methoxy-naphthalen-1-yl)-propenone (MNCA), where the donor 1-methoxynaphthalene (1 MNT) is connected with the acceptor p-chloroacetophenone (PCA) by an unsaturated olefinic bond, in presence of Ag@TiO2 nanoparticles. Time resolved fluorescence and absorption measurements reveal that the rate parameters associated with charge separation, k(CS), within the dyad increases whereas charge recombination rate k(CR) reduces significantly when the surrounding medium is changed from only chloroform to mixture of chloroform and Ag@TiO2 (noble metal-semiconductor) nanocomposites. The observed results indicate that the dyad being combined with core-shell nanocomposites may form organic-inorganic nanocomposite system useful for developing light energy conversion devices. Use of metal-semiconductor nanoparticles may provide thus new ways to modulate charge recombination processes in light energy conversion devices. From comparison with the results obtained in our earlier investigations with only TiO2 nanoparticles, it is inferred that much improved version of light energy conversion device, where charge-separated species could be protected for longer period of time of the order of millisecond, could be designed by using metal-semiconductor core-shell nanocomposites rather than semiconductor nanoparticles only.

  4. Organic Determinants of Learning and Behavioral Disorders.

    Science.gov (United States)

    Philpott, William H.; And Others

    Theories regarding organic determinants of learning and behavior disorders are reviewed historically. Cases illustrating how a bio-ecologic examination can isolate the substances to which a person reacts and some of the reasons for those reactions are presented; and the role of various disorders in relation to the central nervous system is…

  5. Tracing Single Electrons in a Disordered Polymer Film at Room Temperature.

    Science.gov (United States)

    Wilma, Kevin; Issac, Abey; Chen, Zhijian; Würthner, Frank; Hildner, Richard; Köhler, Jürgen

    2016-04-21

    The transport of charges lies at the heart of essentially all modern (opto-) electronic devices. Although inorganic semiconductors built the basis for current technologies, organic materials have become increasingly important in recent years. However, organic matter is often highly disordered, which directly impacts the charge carrier dynamics. To understand and optimize device performance, detailed knowledge of the transport mechanisms of charge carriers in disordered matter is therefore of crucial importance. Here we report on the observation of the motion of single electrons within a disordered polymer film at room temperature, using single organic chromophores as probe molecules. The migration of a single electron gives rise to a varying electric field in its vicinity, which is registered via a shift of the emission spectra (Stark shift) of a chromophore. The spectral shifts allow us to determine the electron mobility and reveal for each nanoenvironment a distinct number of different possible electron-transfer pathways within the rugged energy landscape of the disordered polymer matrix.

  6. Semiconductors and semimetals epitaxial microstructures

    CERN Document Server

    Willardson, Robert K; Beer, Albert C; Gossard, Arthur C

    1994-01-01

    Newly developed semiconductor microstructures can now guide light and electrons resulting in important consequences for state-of-the-art electronic and photonic devices. This volume introduces a new generation of epitaxial microstructures. Special emphasis has been given to atomic control during growth and the interrelationship between the atomic arrangements and the properties of the structures.Key Features* Atomic-level control of semiconductor microstructures* Molecular beam epitaxy, metal-organic chemical vapor deposition* Quantum wells and quantum wires* Lasers, photon(IR)detectors, heterostructure transistors

  7. A comprehensive study of charge trapping in organic field-effect devices with promising semiconductors and different contact metals by displacement current measurements

    International Nuclear Information System (INIS)

    Bisoyi, Sibani; Tiwari, Shree Prakash; Rödel, Reinhold; Zschieschang, Ute; Klauk, Hagen; Kang, Myeong Jin; Takimiya, Kazuo

    2016-01-01

    A systematic and comprehensive study on the charge-carrier injection and trapping behavior was performed using displacement current measurements in long-channel capacitors based on four promising small-molecule organic semiconductors (pentacene, DNTT, C 10 -DNTT and DPh-DNTT). In thin-film transistors, these semiconductors showed charge-carrier mobilities ranging from 1.0 to 7.8 cm 2 V −1 s −1 . The number of charges injected into and extracted from the semiconductor and the density of charges trapped in the device during each measurement were calculated from the displacement current characteristics and it was found that the density of trapped charges is very similar in all devices and of the order 10 12 cm −2 , despite the fact that the four semiconductors show significantly different charge-carrier mobilities. The choice of the contact metal (Au, Ag, Cu, Pd) was also found to have no significant effect on the trapping behavior. (paper)

  8. Study of various n-type organic semiconductors on ultraviolet detective and electroluminescent properties of optoelectronic integrated device

    Science.gov (United States)

    Deng, Chaoxu; Shao, Bingyao; Zhao, Dan; Zhou, Dianli; Yu, Junsheng

    2017-11-01

    Organic optoelectronic integrated device (OID) with both ultraviolet (UV) detective and electroluminescent (EL) properties was fabricated by using a thermally activated delayed fluorescence (TADF) semiconductor of (4s, 6s)-2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) as an emitter. The effect of five kinds of n-type organic semiconductors (OSCs) on the enhancement of UV detective and EL properties of OID was systematically studied. The result shows that two orders of magnitude in UV detectivity from 109 to 1011 Jones and 3.3 folds of luminance from 2499 to 8233 cd m-2 could be achieved. The result shows that not only the difference of lowest unoccupied molecular orbital (LUMO) between active layer and OSC but also the variety of electron mobility have a significant effect on the UV detective and EL performance through adjusting electron injection/transport. Additionally, the optimized OSC thickness is beneficial to confine the leaking of holes from the active layer to cathode, leading to the decrease of dark current for high detective performance. This work provides a useful method on broadening OSC material selection and device architecture construction for the realization of high performance OID.

  9. A photoemission study of interfaces between organic semiconductors and Co as well as Al2O3/Co contacts

    NARCIS (Netherlands)

    Grobosch, M.; Schmidt, C.; Naber, W.J.M.; van der Wiel, Wilfred Gerard; Knupfer, M.

    We have studied the energy-level alignment of ex situ, acetone cleaned Co and Al2O3/Co contacts to the organic semiconductors pentacene and rubrene by combined X-ray and ultraviolet photoemission spectroscopy. Our results demonstrate that the work function under these conditions is smaller than in

  10. Liquid Crystalline Semiconductors Materials, properties and applications

    CERN Document Server

    Kelly, Stephen; O'Neill, Mary

    2013-01-01

    This is an exciting stage in the development of organic electronics. It is no longer an area of purely academic interest as increasingly real applications are being developed, some of which are beginning to come on-stream. Areas that have already been commercially developed or which are under intensive development include organic light emitting diodes (for flat panel displays and solid state lighting), organic photovoltaic cells, organic thin film transistors (for smart tags and flat panel displays) and sensors. Within the family of organic electronic materials, liquid crystals are relative newcomers. The first electronically conducting liquid crystals were reported in 1988 but already a substantial literature has developed. The advantage of liquid crystalline semiconductors is that they have the easy processability of amorphous and polymeric semiconductors but they usually have higher charge carrier mobilities. Their mobilities do not reach the levels seen in crystalline organics but they circumvent all of t...

  11. Flexible Electronics: Integration Processes for Organic and Inorganic Semiconductor-Based Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Fábio F. Vidor

    2015-07-01

    Full Text Available Flexible and transparent electronics have been studied intensively during the last few decades. The technique establishes the possibility of fabricating innovative products, from flexible displays to radio-frequency identification tags. Typically, large-area polymeric substrates such as polypropylene (PP or polyethylene terephthalate (PET are used, which produces new requirements for the integration processes. A key element for flexible and transparent electronics is the thin-film transistor (TFT, as it is responsible for the driving current in memory cells, digital circuits or organic light-emitting devices (OLEDs. In this paper, we discuss some fundamental concepts of TFT technology. Additionally, we present a comparison between the use of the semiconducting organic small-molecule pentacene and inorganic nanoparticle semiconductors in order to integrate TFTs suitable for flexible electronics. Moreover, a technique for integration with a submicron resolution suitable for glass and foil substrates is presented.

  12. A High-Performance Optical Memory Array Based on Inhomogeneity of Organic Semiconductors.

    Science.gov (United States)

    Pei, Ke; Ren, Xiaochen; Zhou, Zhiwen; Zhang, Zhichao; Ji, Xudong; Chan, Paddy Kwok Leung

    2018-03-01

    Organic optical memory devices keep attracting intensive interests for diverse optoelectronic applications including optical sensors and memories. Here, flexible nonvolatile optical memory devices are developed based on the bis[1]benzothieno[2,3-d;2',3'-d']naphtho[2,3-b;6,7-b']dithiophene (BBTNDT) organic field-effect transistors with charge trapping centers induced by the inhomogeneity (nanosprouts) of the organic thin film. The devices exhibit average mobility as high as 7.7 cm 2 V -1 s -1 , photoresponsivity of 433 A W -1 , and long retention time for more than 6 h with a current ratio larger than 10 6 . Compared with the standard floating gate memory transistors, the BBTNDT devices can reduce the fabrication complexity, cost, and time. Based on the reasonable performance of the single device on a rigid substrate, the optical memory transistor is further scaled up to a 16 × 16 active matrix array on a flexible substrate with operating voltage less than 3 V, and it is used to map out 2D optical images. The findings reveal the potentials of utilizing [1]benzothieno[3,2-b][1]benzothiophene (BTBT) derivatives as organic semiconductors for high-performance optical memory transistors with a facile structure. A detailed study on the charge trapping mechanism in the derivatives of BTBT materials is also provided, which is closely related to the nanosprouts formed inside the organic active layer. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effect of Thermal and Structural Disorder on the Electronic Structure of Hybrid Perovskite Semiconductor CH3NH3PbI3.

    Science.gov (United States)

    Singh, Shivam; Li, Cheng; Panzer, Fabian; Narasimhan, K L; Graeser, Anna; Gujar, Tanaji P; Köhler, Anna; Thelakkat, Mukundan; Huettner, Sven; Kabra, Dinesh

    2016-08-04

    In this Letter, we investigate the temperature dependence of the optical properties of methylammonium lead iodide (MAPbI3 = CH3NH3PbI3) from room temperature to 6 K. In both the tetragonal (T > 163 K) and the orthorhombic (T photoluminescence (PL) measurements) decreases with decrease in temperature, in contrast to what is normally seen for many inorganic semiconductors, such as Si, GaAs, GaN, etc. We show that in the perovskites reported here, the temperature coefficient of thermal expansion is large and accounts for the positive temperature coefficient of the band gap. A detailed analysis of the exciton line width allows us to distinguish between static and dynamic disorder. The low-energy tail of the exciton absorption is reminiscent of Urbach absorption. The Urbach energy is a measure of the disorder, which is modeled using thermal and static disorder for both the phases separately. The static disorder component, manifested in the exciton line width at low temperature, is small. Above 60 K, thermal disorder increases the line width. Both these features are a measure of the high crystal quality and low disorder of the perovskite films even though they are produced from solution.

  14. Diketopyrrolopyrrole polymers as organic semiconductors and optical materials

    NARCIS (Netherlands)

    2008-01-01

    The present invention relates to polymers comprising diketopyrrolopyrrole repeating units and their use as org. semiconductor in org. devices, esp. a diode, an org. field effect transistor and/or a solar cell, or a device contg. a diode and/or an org. field effect transistor, and/or a solar cell.

  15. Functionalized organic semiconductor molecules to enhance charge carrier injection in electroluminescent cell

    Science.gov (United States)

    Yalcin, Eyyup; Kara, Duygu Akin; Karakaya, Caner; Yigit, Mesude Zeliha; Havare, Ali Kemal; Can, Mustafa; Tozlu, Cem; Demic, Serafettin; Kus, Mahmut; Aboulouard, Abdelkhalk

    2017-07-01

    Organic semiconductor (OSC) materials as a charge carrier interface play an important role to improve the device performance of organic electroluminescent cells. In this study, 4,4″-bis(diphenyl amino)-1,1':3‧,1″-terphenyl-5'-carboxylic acid (TPA) and 4,4″-di-9H-carbazol-9-yl-1,1':3‧,1″-terphenyl-5'-carboxylic acid (CAR) has been designed and synthesized to modify indium tin oxide (ITO) layer as interface. Bare ITO and PEDOT:PSS coated on ITO was used as reference anode electrodes for comparison. Furthermore, PEDOT:PSS coated over CAR/ITO and TPA/ITO to observe stability of OSC molecules and to completely cover the ITO surface. Electrical, optical and surface characterizations were performed for each device. Almost all modified devices showed around 36% decrease at the turn on voltage with respect to bare ITO. The current density of bare ITO, ITO/CAR and ITO/TPA were measured as 288, 1525 and 1869 A/m2, respectively. By increasing current density, luminance of modified devices showed much better performance with respect to unmodified devices.

  16. High performance organic field-effect transistors with ultra-thin HfO2 gate insulator deposited directly onto the organic semiconductor

    International Nuclear Information System (INIS)

    Ono, S.; Häusermann, R.; Chiba, D.; Shimamura, K.; Ono, T.; Batlogg, B.

    2014-01-01

    We have produced stable organic field-effect transistors (OFETs) with an ultra-thin HfO 2 gate insulator deposited directly on top of rubrene single crystals by atomic layer deposition (ALD). We find that ALD is a gentle deposition process to grow thin films without damaging rubrene single crystals, as results these devices have a negligibly small threshold voltage and are very stable against gate-bias-stress, and the mobility exceeds 1 cm 2 /V s. Moreover, the devices show very little degradation even when kept in air for more than 2 months. These results demonstrate thin HfO 2 layers deposited by ALD to be well suited as high capacitance gate dielectrics in OFETs operating at small gate voltage. In addition, the dielectric layer acts as an effective passivation layer to protect the organic semiconductor

  17. EDITORIAL The 23rd Nordic Semiconductor Meeting The 23rd Nordic Semiconductor Meeting

    Science.gov (United States)

    Ólafsson, Sveinn; Sveinbjörnsson, Einar

    2010-12-01

    on Icelandic National Day In connection with the conference, a summer school for 40 research students was organized by the Nordic LENS network. The summer school took place in Reykjavik on 11-14 June. For more information on the school please visit the website. The next Nordic Semiconductor meeting, NSM 2011, is scheduled to take place in Aarhus, Denmark, 19-22 June 2011. A full participant list is available in the PDF of this article.

  18. Designing solution-processable air-stable liquid crystalline crosslinkable semiconductors

    DEFF Research Database (Denmark)

    McCulloch, I.; Bailey, C.; Genevicius, K.

    2006-01-01

    organic light emitting diode displays, low frequency radio frequency identification tag and other low performance electronics. Organic semiconductors that offer both electrical performance and stability with respect to storage and operation under ambient conditions are required. This work describes...... the development of reactive mesogen semiconductors, which form large crosslinked LC domains on polymerization within mesophases. These crosslinked domains offer mechanical stability and are inert to solvent exposure in further processing steps. Reactive mesogens containing conjugated aromatic cores, designed...

  19. Differential pattern of semantic memory organization between bipolar I and II disorders.

    Science.gov (United States)

    Chang, Jae Seung; Choi, Sungwon; Ha, Kyooseob; Ha, Tae Hyon; Cho, Hyun Sang; Choi, Jung Eun; Cha, Boseok; Moon, Eunsoo

    2011-06-01

    Semantic cognition is one of the key factors in psychosocial functioning. The aim of this study was to explore the differences in pattern of semantic memory organization between euthymic patients with bipolar I and II disorders using the category fluency task. Study participants included 23 euthymic subjects with bipolar I disorder, 23 matched euthymic subjects with bipolar II disorder and 23 matched control subjects. All participants were assessed for verbal learning, recall, learning strategies, and fluency. The combined methods of hierarchical clustering and multidimensional scaling were used to compare the pattern of semantic memory organization among the three groups. Quantitative measures of verbal learning, recall, learning strategies, and fluency did not differ between the three groups. A two-cluster structure of semantic memory organization was identified for the three groups. Semantic structure was more disorganized in the bipolar I disorder group compared to the bipolar II disorder. In addition, patients with bipolar II disorder used less elaborate strategies of semantic memory organization than those of controls. Compared to healthy controls, strategies for categorization in semantic memory appear to be less knowledge-based in patients with bipolar disorders. A differential pattern of semantic memory organization between bipolar I and II disorders indicates a higher risk of cognitive abnormalities in patients with bipolar I disorder compared to patients with bipolar II disorder. Exploring qualitative nature of neuropsychological domains may provide an explanatory insight into the characteristic behaviors of patients with bipolar disorders. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Psychiatric emergencies (part II): psychiatric disorders coexisting with organic diseases.

    Science.gov (United States)

    Testa, A; Giannuzzi, R; Sollazzo, F; Petrongolo, L; Bernardini, L; Dain, S

    2013-02-01

    In this Part II psychiatric disorders coexisting with organic diseases are discussed. "Comorbidity phenomenon" defines the not univocal interrelation between medical illnesses and psychiatric disorders, each other negatively influencing morbidity and mortality. Most severe psychiatric disorders, such as schizophrenia, bipolar disorder and depression, show increased prevalence of cardiovascular disease, related to poverty, use of psychotropic medication, and higher rate of preventable risk factors such as smoking, addiction, poor diet and lack of exercise. Moreover, psychiatric and organic disorders can develop together in different conditions of toxic substance and prescription drug use or abuse, especially in the emergency setting population. Different combinations with mutual interaction of psychiatric disorders and substance use disorders are defined by the so called "dual diagnosis". The hypotheses that attempt to explain the psychiatric disorders and substance abuse relationship are examined: (1) common risk factors; (2) psychiatric disorders precipitated by substance use; (3) psychiatric disorders precipitating substance use (self-medication hypothesis); and (4) synergistic interaction. Diagnostic and therapeutic difficulty concerning the problem of dual diagnosis, and legal implications, are also discussed. Substance induced psychiatric and organic symptoms can occur both in the intoxication and withdrawal state. Since ancient history, humans selected indigene psychotropic plants for recreational, medicinal, doping or spiritual purpose. After the isolation of active principles or their chemical synthesis, higher blood concentrations reached predispose to substance use, abuse and dependence. Abuse substances have specific molecular targets and very different acute mechanisms of action, mainly involving dopaminergic and serotoninergic systems, but finally converging on the brain's reward pathways, increasing dopamine in nucleus accumbens. The most common

  1. Hydrogen in disordered and amorphous solids

    International Nuclear Information System (INIS)

    Bambakidis, G; Bowman, R.C.

    1986-01-01

    This book presents information on the following topoics: elements of the theory of amorphous semiconductors; electronic structure of alpha-SiH; fluctuation induced gap states in amorphous hydrogenated silicon; hydrogen on semiconductor surfaces; the influence of hydrogen on the defects and instabilities in hydrogenated amorphous silicon; deuteron magnetic resonance in some amorphous semiconductors; formation of amorphous metals by solid state reactions of hydrogen with an intermetallic compound; NMR studies of the hydrides of disordered and amorphous alloys; neutron vibrational spectroscopy of disordered metal-hydrogen system; dynamical disorder of hydrogen in LaNi /SUB 5-y/ M /SUB y/ hydrides studied by quasi-elastic neutron scattering; recent studies of intermetallic hydrides; tritium in Pd and Pd /SUB 0.80/ Sg /SUB 0.20/ ; and determination of hydrogen concentration in thin films of absorbing materials

  2. Bipolar magnetic semiconductor in silicene nanoribbons

    International Nuclear Information System (INIS)

    Farghadan, Rouhollah

    2017-01-01

    Highlights: • A new electronic phase for silicene nanoribbon in the presence of electric and magnetic fields. • Bipolar magnetic semiconductor with controllable spin-flip and spin-conserved gaps in silicene. • Robust bipolar magnetic semiconductor features in a rough silicene. • Perfect and reversible spin polarization in silicene nanoribbon junctions. - Abstract: A theoretical study was presented on generation of spin polarization in silicene nanoribbons using the single-band tight-binding approximation and the non-equilibrium Green’s function formalism. We focused on the effect of electric and exchange magnetic fields on the spin-filter capabilities of zigzag-edge silicene nanoribbons in the presence of the intrinsic spin-orbit interaction. The results show that a robust bipolar magnetic semiconductor with controllable spin-flip and spin-conserved gaps can be obtained when exchange magnetic and electric field strengths are both larger than the intrinsic spin-orbit interaction. Therefore, zigzag silicene nanoribbons could act as bipolar and perfect spin filter devices with a large spin-polarized current and a reversible spin polarization in the vicinity of the Fermi energy. We also investigated the effect of edge roughness and found that the bipolar magnetic semiconductor features are robust against edge disorder in silicene nanoribbon junctions. These results may be useful in multifunctional spin devices based on silicene nanoribbons.

  3. Bipolar magnetic semiconductor in silicene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Farghadan, Rouhollah, E-mail: rfarghadan@kashanu.ac.ir

    2017-08-01

    Highlights: • A new electronic phase for silicene nanoribbon in the presence of electric and magnetic fields. • Bipolar magnetic semiconductor with controllable spin-flip and spin-conserved gaps in silicene. • Robust bipolar magnetic semiconductor features in a rough silicene. • Perfect and reversible spin polarization in silicene nanoribbon junctions. - Abstract: A theoretical study was presented on generation of spin polarization in silicene nanoribbons using the single-band tight-binding approximation and the non-equilibrium Green’s function formalism. We focused on the effect of electric and exchange magnetic fields on the spin-filter capabilities of zigzag-edge silicene nanoribbons in the presence of the intrinsic spin-orbit interaction. The results show that a robust bipolar magnetic semiconductor with controllable spin-flip and spin-conserved gaps can be obtained when exchange magnetic and electric field strengths are both larger than the intrinsic spin-orbit interaction. Therefore, zigzag silicene nanoribbons could act as bipolar and perfect spin filter devices with a large spin-polarized current and a reversible spin polarization in the vicinity of the Fermi energy. We also investigated the effect of edge roughness and found that the bipolar magnetic semiconductor features are robust against edge disorder in silicene nanoribbon junctions. These results may be useful in multifunctional spin devices based on silicene nanoribbons.

  4. Centimetre-scale electron diffusion in photoactive organic heterostructures

    Science.gov (United States)

    Burlingame, Quinn; Coburn, Caleb; Che, Xiaozhou; Panda, Anurag; Qu, Yue; Forrest, Stephen R.

    2018-02-01

    The unique properties of organic semiconductors, such as flexibility and lightness, are increasingly important for information displays, lighting and energy generation. But organics suffer from both static and dynamic disorder, and this can lead to variable-range carrier hopping, which results in notoriously poor electrical properties, with low electron and hole mobilities and correspondingly short charge-diffusion lengths of less than a micrometre. Here we demonstrate a photoactive (light-responsive) organic heterostructure comprising a thin fullerene channel sandwiched between an electron-blocking layer and a blended donor:C70 fullerene heterojunction that generates charges by dissociating excitons. Centimetre-scale diffusion of electrons is observed in the fullerene channel, and this can be fitted with a simple electron diffusion model. Our experiments enable the direct measurement of charge diffusivity in organic semiconductors, which is as high as 0.83 ± 0.07 square centimetres per second in a C60 channel at room temperature. The high diffusivity of the fullerene combined with the extraordinarily long charge-recombination time yields diffusion lengths of more than 3.5 centimetres, orders of magnitude larger than expected for an organic system.

  5. Interface Engineering for Organic Electronics; Manufacturing of Hybrid Inorganic-Organic Molecular Crystal Devices

    NARCIS (Netherlands)

    de Veen, P.J.

    2011-01-01

    Organic semiconductors are at the basis of Organic Electronics. Objective of this dissertation is “to fabricate high-quality organic molecular single-crystal devices”, to explore the intrinsic properties of organic semiconductors. To achieve this, the in situ fabrication of complete field-effect

  6. Extrinsic photoresponse enhancement under additional intrinsic photoexcitation in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kounavis, P., E-mail: pkounavis@upatras.gr [Department of Electrical and Computer Engineering, School of Engineering, University of Patras, 26504 Patras (Greece)

    2016-06-28

    Dual light beam photoresponse experiments are employed to explore the photoresponse under simultaneous extrinsic and intrinsic photoexcitation of organic semiconductors. The photoresponse of a red modulated light extrinsic photoexcitation is found that can be significantly enhanced under an additional blue bias-light intrinsic photoexcitation in two terminal pentacene films on glass substrates. From the frequency resolved photoresponse, it is deduced that the phenomenon of photoresponse enhancement can be attributed to an increase in the extrinsic photogeneration rate of the red modulated light and/or an improvement of the drift velocity of carriers under an additional blue light intrinsic photoexcitation. The possible predominant extrinsic photogeneration mechanism, which can be compatible with the observed dependence of the photoresponse enhancement on the frequency and on the light intensities of the red and blue light excitation, is the singlet exciton dissociation through electron transfer to acceptor-like traps. Moreover, an improvement in the drift velocity of carriers traversing grain boundaries with potential energy barriers, which may be reduced by trapping of minority carriers created from the intrinsic photoexcitation, may partly contribute to the photoresponse enhancement.

  7. Extrinsic photoresponse enhancement under additional intrinsic photoexcitation in organic semiconductors

    International Nuclear Information System (INIS)

    Kounavis, P.

    2016-01-01

    Dual light beam photoresponse experiments are employed to explore the photoresponse under simultaneous extrinsic and intrinsic photoexcitation of organic semiconductors. The photoresponse of a red modulated light extrinsic photoexcitation is found that can be significantly enhanced under an additional blue bias-light intrinsic photoexcitation in two terminal pentacene films on glass substrates. From the frequency resolved photoresponse, it is deduced that the phenomenon of photoresponse enhancement can be attributed to an increase in the extrinsic photogeneration rate of the red modulated light and/or an improvement of the drift velocity of carriers under an additional blue light intrinsic photoexcitation. The possible predominant extrinsic photogeneration mechanism, which can be compatible with the observed dependence of the photoresponse enhancement on the frequency and on the light intensities of the red and blue light excitation, is the singlet exciton dissociation through electron transfer to acceptor-like traps. Moreover, an improvement in the drift velocity of carriers traversing grain boundaries with potential energy barriers, which may be reduced by trapping of minority carriers created from the intrinsic photoexcitation, may partly contribute to the photoresponse enhancement.

  8. Transistor electronics use of semiconductor components in switching operations

    CERN Document Server

    Rumpf, Karl-Heinz

    2014-01-01

    Transistor Electronics: Use of Semiconductor Components in Switching Operations presents the semiconductor components as well as their elementary circuits. This book discusses the scope of application of electronic devices to increase productivity. Organized into eight chapters, this book begins with an overview of the general equation for the representation of integer positive numbers. This text then examines the properties and characteristics of basic electronic components, which relates to an understanding of the operation of semiconductors. Other chapters consider the electronic circuit ar

  9. Cases Series of Malignant Lymphohematopoietic Disorder in Korean Semiconductor Industry

    Directory of Open Access Journals (Sweden)

    Eun-A Kim

    2011-06-01

    Conclusion: Considering the possibility of exposure to carcinogenic agents, we could not find any convincing evidence for occupational exposure in all investigated cases. However, further study is needed because the semiconductor industry is a newly developing one.

  10. Electrical Interfaces for Organic Nanodevices

    DEFF Research Database (Denmark)

    Henrichsen, Henrik Hartmann

    Optoelectronic applications of organic semiconductor materials is a research field, which recently came to the large scale consumer market in display technologies. Organic semiconductors are mainly applied in amorphous form offering fabrication control on a large scale. Crystalline organic...... semiconductors, where the molecular packing is more crucial, have not yet had a major impact in commercial products. This thesis describes development of new ways to electrically contact organic semiconductors. In particular, crystalline organic para-hexaphenylene (p6P) nanofibers have been used...... approaches. Creating the separator by partly oxidizing an Al cathode anodically is considered the most promising implementation, however further development would be necessary. During the project a group of collaborators managed to obtain electrically stimulated light emission in organic p6P nanofibers...

  11. Recombination in disordered regions at semiconductors

    International Nuclear Information System (INIS)

    Artem'ev, V.A.; Mikhnovich, V.V.

    1987-01-01

    Theoretical estimates indicate the need to allow for the heating of carriers by the electrostatic field in disordered regions when studies are made of recombination properties. An analysis is made of the experiments in which the influence of heating on the properties of disordered regions may be manifested and experimentally verifiable effects of this influence are considered

  12. Organic tunnel field effect transistors

    KAUST Repository

    Tietze, Max Lutz

    2017-06-29

    Various examples are provided for organic tunnel field effect transistors (OTFET), and methods thereof. In one example, an OTFET includes a first intrinsic layer (i-layer) of organic semiconductor material disposed over a gate insulating layer; source (or drain) contact stacks disposed on portions of the first i-layer; a second i-layer of organic semiconductor material disposed on the first i-layer surrounding the source (or drain) contact stacks; an n-doped organic semiconductor layer disposed on the second i-layer; and a drain (or source) contact layer disposed on the n-doped organic semiconductor layer. The source (or drain) contact stacks can include a p-doped injection layer, a source (or drain) contact layer, and a contact insulating layer. In another example, a method includes disposing a first i-layer over a gate insulating layer; forming source or drain contact stacks; and disposing a second i-layer, an n-doped organic semiconductor layer, and a drain or source contact.

  13. Self-Aligned Growth of Organic Semiconductor Single Crystals by Electric Field.

    Science.gov (United States)

    Kotsuki, Kenji; Obata, Seiji; Saiki, Koichiro

    2016-01-19

    We proposed a novel but facile method for growing organic semiconductor single-crystals via solvent vapor annealing (SVA) under electric field. In the conventional SVA growth process, nuclei of crystals appeared anywhere on the substrate and their crystallographic axes were randomly distributed. We applied electric field during the SVA growth of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) on the SiO2/Si substrate on which a pair of electrodes had been deposited beforehand. Real-time observation of the SVA process revealed that rodlike single crystals grew with their long axes parallel to the electric field and bridged the prepatterned electrodes. As a result, C8-BTBT crystals automatically formed a field effect transistor (FET) structure and the mobility reached 1.9 cm(2)/(V s). Electric-field-assisted SVA proved a promising method for constructing high-mobility single-crystal FETs at the desired position by a low-cost solution process.

  14. Chemical engineering in the electronics industry: progress towards the rational design of organic semiconductor heterojunctions

    KAUST Repository

    Clancy, Paulette

    2012-05-01

    We review the current status of heterojunction design for combinations of organic semiconductor materials, given its central role in affecting the device performance for electronic devices and solar cell applications. We provide an emphasis on recent progress towards the rational design of heterojunctions that may lead to higher performance of charge separation and mobility. We also play particular attention to the role played by computational approaches and its potential to help define the best choice of materials for solar cell development in the future. We report the current status of the field with respect to such goals. © 2012 Elsevier Ltd.

  15. Chemical engineering in the electronics industry: progress towards the rational design of organic semiconductor heterojunctions

    KAUST Repository

    Clancy, Paulette

    2012-01-01

    We review the current status of heterojunction design for combinations of organic semiconductor materials, given its central role in affecting the device performance for electronic devices and solar cell applications. We provide an emphasis on recent progress towards the rational design of heterojunctions that may lead to higher performance of charge separation and mobility. We also play particular attention to the role played by computational approaches and its potential to help define the best choice of materials for solar cell development in the future. We report the current status of the field with respect to such goals. © 2012 Elsevier Ltd.

  16. Modeling charge transfer at organic donor-acceptor semiconductor interfaces

    NARCIS (Netherlands)

    Cakir, Deniz; Bokdam, Menno; de Jong, Machiel Pieter; Fahlman, M.; Brocks, G.

    2012-01-01

    We develop an integer charge transfer model for the potential steps observed at interfaces between donor and acceptor molecular semiconductors. The potential step can be expressed as the difference between the Fermi energy pinning levels of electrons on the acceptor material and holes on the donor

  17. Empirical tight-binding modeling of ordered and disordered semiconductor structures; Empirische Tight-Binding-Modellierung geordneter und ungeordneter Halbleiterstrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Mourad, Daniel

    2010-11-30

    In this thesis, we investigate the electronic and optical properties of pure as well as of substitutionally alloyed II-VI and III-V bulk semiconductors and corresponding semiconductor quantum dots by means of an empirical tight-binding (TB) model. In the case of the alloyed systems of the type A{sub x}B{sub 1-x}, where A and B are the pure compound semiconductor materials, we study the influence of the disorder by means of several extensions of the TB model with different levels of sophistication. Our methods range from rather simple mean-field approaches (virtual crystal approximation, VCA) over a dynamical mean-field approach (coherent potential approximation, CPA) up to calculations where substitutional disorder is incorporated on a finite ensemble of microscopically distinct configurations. In the first part of this thesis, we cover the necessary fundamentals in order to properly introduce the TB model of our choice, the effective bond-orbital model (EBOM). In this model, one s- and three p-orbitals per spin direction are localized on the sites of the underlying Bravais lattice. The matrix elements between these orbitals are treated as free parameters in order to reproduce the properties of one conduction and three valence bands per spin direction and can then be used in supercell calculations in order to model mixed bulk materials or pure as well as mixed quantum dots. Part II of this thesis deals with unalloyed systems. Here, we use the EBOM in combination with configuration interaction calculations for the investigation of the electronic and optical properties of truncated pyramidal GaN quantum dots embedded in AlN with an underlying zincblende structure. Furthermore, we develop a parametrization of the EBOM for materials with a wurtzite structure, which allows for a fit of one conduction and three valence bands per spin direction throughout the whole Brillouin zone of the hexagonal system. In Part III, we focus on the influence of alloying on the electronic

  18. Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics.

    Science.gov (United States)

    Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Jaung, Jae Yun; Kim, Yong-Hoon; Park, Sung Kyu

    2015-09-28

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.

  19. One-dimensional self-confinement promotes polymorph selection in large-area organic semiconductor thin films

    KAUST Repository

    Giri, Gaurav; Li, Ruipeng; Smilgies, Detlef Matthias; Li, Erqiang; Diao, Ying; Lenn, Kristina M.; Chiu, Melanie; Lin, Debora W.; Allen, Ranulfo A.; Reinspach, Julia A.; Mannsfeld, Stefan C B; Thoroddsen, Sigurdur T; Clancy, Paulette; Bao, Zhenan; Amassian, Aram

    2014-01-01

    A crystal's structure has significant impact on its resulting biological, physical, optical and electronic properties. In organic electronics, 6,13(bis-triisopropylsilylethynyl)pentacene (TIPS-pentacene), a small-molecule organic semiconductor, adopts metastable polymorphs possessing significantly faster charge transport than the equilibrium crystal when deposited using the solution-shearing method. Here, we use a combination of high-speed polarized optical microscopy, in situ microbeam grazing incidence wide-angle X-ray-scattering and molecular simulations to understand the mechanism behind formation of metastable TIPS-pentacene polymorphs. We observe that thin-film crystallization occurs first at the air-solution interface, and nanoscale vertical spatial confinement of the solution results in formation of metastable polymorphs, a one-dimensional and large-area analogy to crystallization of polymorphs in nanoporous matrices. We demonstrate that metastable polymorphism can be tuned with unprecedented control and produced over large areas by either varying physical confinement conditions or by tuning energetic conditions during crystallization through use of solvent molecules of various sizes. © 2014 Macmillan Publishers Limited.

  20. One-dimensional self-confinement promotes polymorph selection in large-area organic semiconductor thin films.

    Science.gov (United States)

    Giri, Gaurav; Li, Ruipeng; Smilgies, Detlef-M; Li, Er Qiang; Diao, Ying; Lenn, Kristina M; Chiu, Melanie; Lin, Debora W; Allen, Ranulfo; Reinspach, Julia; Mannsfeld, Stefan C B; Thoroddsen, Sigurdur T; Clancy, Paulette; Bao, Zhenan; Amassian, Aram

    2014-04-16

    A crystal's structure has significant impact on its resulting biological, physical, optical and electronic properties. In organic electronics, 6,13(bis-triisopropylsilylethynyl)pentacene (TIPS-pentacene), a small-molecule organic semiconductor, adopts metastable polymorphs possessing significantly faster charge transport than the equilibrium crystal when deposited using the solution-shearing method. Here, we use a combination of high-speed polarized optical microscopy, in situ microbeam grazing incidence wide-angle X-ray-scattering and molecular simulations to understand the mechanism behind formation of metastable TIPS-pentacene polymorphs. We observe that thin-film crystallization occurs first at the air-solution interface, and nanoscale vertical spatial confinement of the solution results in formation of metastable polymorphs, a one-dimensional and large-area analogy to crystallization of polymorphs in nanoporous matrices. We demonstrate that metastable polymorphism can be tuned with unprecedented control and produced over large areas by either varying physical confinement conditions or by tuning energetic conditions during crystallization through use of solvent molecules of various sizes.

  1. Synchrotron-based measurements of the electronic structure of the organic semiconductor copper phthalocyanine

    International Nuclear Information System (INIS)

    Downes, J.E.

    2004-01-01

    Full text: Copper phthalocyanine (CuPc) is a prototypical molecular organic semiconductor that is currently used in the construction of many organic electronic devices such as organic light emitting diodes (OLEDs). Although the material is currently being used, and despite many experimental and theoretical studies, it's detailed electronic structure is still not completely understood. This is likely due to two key factors. Firstly, the interaction of the Cu 3d and phthalocyanine ligand 2p electrons leads to the formation of a complex arrangement of localized and delocalized states near the Fermi level. Secondly, thin films of the material are subject to damage by the photon beam used to make measurements of their electronic structure. Using the synchrotron-based techniques of soft x-ray emission spectroscopy (XES) and x-ray photoemission spectroscopy (XPS), we have measured the detailed electronic structure of in-situ grown thin film samples of CuPc. Beam damage was minimized by continuous translation of the sample during data acquisition. The results obtained differ significantly from previous XES and ultraviolet photoemission measurements, but are in excellent agreement with recent density functional calculations. The reasons for these discrepancies will be explained, and their implications for future measurements on similar materials will be explored

  2. Facile synthesis of light harvesting semiconductor bismuth oxychloride nano photo-catalysts for efficient removal of hazardous organic pollutants.

    Directory of Open Access Journals (Sweden)

    Zaki S Seddigi

    Full Text Available In the present work, bismuth oxychloride nanoparticles-a light harvesting semiconductor photocatalyst-were synthesized by a facile hydrolysis route, with sodium bismuthate and hydroxylammonium chloride as the precursor materials. The as-synthesized semiconductor photocatalysts were characterized using X-ray diffraction analysis, Fourier transform infra-red spectroscopy, Raman spectroscopy, Field emission scanning electron microscopy, X-ray photoelectron spectroscopy and Photoluminescence spectroscopy techniques. The crystal structure, morphology, composition, and optical properties of these facile synthesized bismuth oxychloride nanoparticles (BiOCl NPs were compared to those of traditional bismuth oxychloride. In addition, the photocatalytic performance of facile-synthesized BiOCl NPs and traditional BiOCl, as applied to the removal of hazardous organic dyes under visible light illumination, is thoroughly investigated. Our results reveal that facile-synthesized BiOCl NPs display strong UV-Vis light adsorption, improved charge carrier mobility and an inhibited rate of charge carrier recombination, when compared to traditional BiOCl. These enhancements result in an improved photocatalytic degradation rate of hazardous organic dyes under UV-Vis irradiance. For instance, the facile-synthesized BiOCl NPs attained 100% degradation of methylene blue and methyl orange dyes in approximately 30 mins under UV-Vis irradiation, against 55% degradation for traditional BiOCl under similar experimental conditions.

  3. Facile synthesis of light harvesting semiconductor bismuth oxychloride nano photo-catalysts for efficient removal of hazardous organic pollutants.

    Science.gov (United States)

    Seddigi, Zaki S; Gondal, Mohammed A; Baig, Umair; Ahmed, Saleh A; Abdulaziz, M A; Danish, Ekram Y; Khaled, Mazen M; Lais, Abul

    2017-01-01

    In the present work, bismuth oxychloride nanoparticles-a light harvesting semiconductor photocatalyst-were synthesized by a facile hydrolysis route, with sodium bismuthate and hydroxylammonium chloride as the precursor materials. The as-synthesized semiconductor photocatalysts were characterized using X-ray diffraction analysis, Fourier transform infra-red spectroscopy, Raman spectroscopy, Field emission scanning electron microscopy, X-ray photoelectron spectroscopy and Photoluminescence spectroscopy techniques. The crystal structure, morphology, composition, and optical properties of these facile synthesized bismuth oxychloride nanoparticles (BiOCl NPs) were compared to those of traditional bismuth oxychloride. In addition, the photocatalytic performance of facile-synthesized BiOCl NPs and traditional BiOCl, as applied to the removal of hazardous organic dyes under visible light illumination, is thoroughly investigated. Our results reveal that facile-synthesized BiOCl NPs display strong UV-Vis light adsorption, improved charge carrier mobility and an inhibited rate of charge carrier recombination, when compared to traditional BiOCl. These enhancements result in an improved photocatalytic degradation rate of hazardous organic dyes under UV-Vis irradiance. For instance, the facile-synthesized BiOCl NPs attained 100% degradation of methylene blue and methyl orange dyes in approximately 30 mins under UV-Vis irradiation, against 55% degradation for traditional BiOCl under similar experimental conditions.

  4. Carrier scattering in metals and semiconductors

    CERN Document Server

    Gantmakher, VF

    1987-01-01

    The transport properties of solids, as well as the many optical phenomena in them are determined by the scattering of current carriers. ``Carrier Scattering in Metals and Semiconductors'' elucidates the state of the art in the research on the scattering mechanisms for current carriers in metals and semiconductors and describes experiments in which these mechanisms are most dramatically manifested.The selection and organization of the material is in a form to prepare the reader to reason independently and to deal just as independently with available theoretical results and experimental

  5. Semiconductor apparatus and method of fabrication for a semiconductor apparatus

    NARCIS (Netherlands)

    2010-01-01

    The invention relates to a semiconductor apparatus (1) and a method of fabrication for a semiconductor apparatus (1), wherein the semiconductor apparatus (1) comprises a semiconductor layer (2) and a passivation layer (3), arranged on a surface of the semiconductor layer (2), for passivating the

  6. Photocatalytic oxidation of organic compounds in a hybrid system composed of a molecular catalyst and visible light-absorbing semiconductor.

    Science.gov (United States)

    Zhou, Xu; Li, Fei; Li, Xiaona; Li, Hua; Wang, Yong; Sun, Licheng

    2015-01-14

    Photocatalytic oxidation of organic compounds proceeded efficiently in a hybrid system with ruthenium aqua complexes as catalysts, BiVO4 as a light absorber, [Co(NH3)5Cl](2+) as a sacrificial electron acceptor and water as an oxygen source. The photogenerated holes in the semiconductor are used to oxidize molecular catalysts into the high-valent Ru(IV)=O intermediates for 2e(-) oxidation.

  7. Charge transport in organic molecular semiconductors from first principles: The bandlike hole mobility in a naphthalene crystal

    Science.gov (United States)

    Lee, Nien-En; Zhou, Jin-Jian; Agapito, Luis A.; Bernardi, Marco

    2018-03-01

    Predicting charge transport in organic molecular crystals is notoriously challenging. Carrier mobility calculations in organic semiconductors are dominated by quantum chemistry methods based on charge hopping, which are laborious and only moderately accurate. We compute from first principles the electron-phonon scattering and the phonon-limited hole mobility of naphthalene crystal in the framework of ab initio band theory. Our calculations combine GW electronic bandstructures, ab initio electron-phonon scattering, and the Boltzmann transport equation. The calculated hole mobility is in very good agreement with experiment between 100 -300 K , and we can predict its temperature dependence with high accuracy. We show that scattering between intermolecular phonons and holes regulates the mobility, though intramolecular phonons possess the strongest coupling with holes. We revisit the common belief that only rigid molecular motions affect carrier dynamics in organic molecular crystals. Our paper provides a quantitative and rigorous framework to compute charge transport in organic crystals and is a first step toward reconciling band theory and carrier hopping computational methods.

  8. Organic 'Plastic' Optoelectronic Devices

    International Nuclear Information System (INIS)

    Sariciftci, N.S.

    2006-01-01

    Recent developments on conjugated polymer based photovoltaic diodes and photoactive organic field effect transistors (photOFETs) are discussed. The photophysics of such devices is based on the photoinduced charge transfer from donor type semiconducting conjugated polymers onto acceptor type conjugated polymers or acceptor molecules such as Buckminsterfullerene, C 6 0. Potentially interesting applications include sensitization of the photoconductivity and photovoltaic phenomena as well as photoresponsive organic field effect transistors (photOFETs). Furthermore, organic polymeric/inorganic nanoparticle based 'hybrid' solar cells will be discussed. This talk gives an overview of materials' aspect, charge-transport, and device physics of organic diodes and field-effect transistors. Furthermore, due to the compatibility of carbon/hydrogen based organic semiconductors with organic biomolecules and living cells there can be a great opportunity to integrate such organic semiconductor devices (biOFETs) with the living organisms. In general the largely independent bio/lifesciences and information technology of today, can be thus bridged in an advanced cybernetic approach using organic semiconductor devices embedded in bio-lifesciences. This field of bio-organic electronic devices is proposed to be an important mission of organic semiconductor devices

  9. Ag-based semiconductor photocatalysts in environmental purification

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiade; Fang, Wen [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province (China); Yu, Changlin, E-mail: yuchanglinjx@163.com [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province (China); School of Environment Engineering and biology Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000 Guangdong Province (China); Zhou, Wanqin [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province (China); State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002 (China); Zhu, Lihua [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province (China); Xie, Yu, E-mail: xieyu_121@163.com [College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, Jiangxi (China)

    2015-12-15

    Graphical abstract: Ag-based semiconductors as promising visible light-driven photocatalysts have aroused much interesting due to their strong visible light responsibility. Formation of heterojunction could largely promote the electron/hole pair separation, resulting in highly photocatalytic activity and stability. - Highlights: • Recent research progress in the fabrication and application of Ag-based semiconductor photocatalyts. • The advantages and disadvantages of Ag-based semiconductor as photocatalysts. • Strategies in design Ag-based semiconductor photocatalysts with high performance. - Abstract: Over the past decades, with the fast development of global industrial development, various organic pollutants discharged in water have become a major source of environmental pollution in waste fields. Photocatalysis, as green and environmentally friendly technology, has attracted much attention in pollutants degradation due to its efficient degradation rate. However, the practical application of traditional semiconductor photocatalysts, e.g. TiO{sub 2}, ZnO, is limited by their weak visible light adsorption due to their wide band gaps. Nowadays, the study in photocatalysts focuses on new and narrow band gap semiconductors. Among them, Ag-based semiconductors as promising visible light-driven photocatalysts have aroused much interesting due to their strong visible light responsibility. Most of Ag-based semiconductors could exhibit high initial photocatalytic activity. But they easy suffer from poor stability because of photochemical corrosion. Design heterojunction, increasing specific surface area, enriching pore structure, regulating morphology, controlling crystal facets, and producing plasmonic effects were considered as the effective strategies to improve the photocatalytic performance of Ag-based photocatalyts. Moreover, combining the superior properties of carbon materials (e.g. carbon quantum dots, carbon nano-tube, carbon nanofibers, graphene) with Ag

  10. Ag-based semiconductor photocatalysts in environmental purification

    International Nuclear Information System (INIS)

    Li, Jiade; Fang, Wen; Yu, Changlin; Zhou, Wanqin; Zhu, Lihua; Xie, Yu

    2015-01-01

    Graphical abstract: Ag-based semiconductors as promising visible light-driven photocatalysts have aroused much interesting due to their strong visible light responsibility. Formation of heterojunction could largely promote the electron/hole pair separation, resulting in highly photocatalytic activity and stability. - Highlights: • Recent research progress in the fabrication and application of Ag-based semiconductor photocatalyts. • The advantages and disadvantages of Ag-based semiconductor as photocatalysts. • Strategies in design Ag-based semiconductor photocatalysts with high performance. - Abstract: Over the past decades, with the fast development of global industrial development, various organic pollutants discharged in water have become a major source of environmental pollution in waste fields. Photocatalysis, as green and environmentally friendly technology, has attracted much attention in pollutants degradation due to its efficient degradation rate. However, the practical application of traditional semiconductor photocatalysts, e.g. TiO 2 , ZnO, is limited by their weak visible light adsorption due to their wide band gaps. Nowadays, the study in photocatalysts focuses on new and narrow band gap semiconductors. Among them, Ag-based semiconductors as promising visible light-driven photocatalysts have aroused much interesting due to their strong visible light responsibility. Most of Ag-based semiconductors could exhibit high initial photocatalytic activity. But they easy suffer from poor stability because of photochemical corrosion. Design heterojunction, increasing specific surface area, enriching pore structure, regulating morphology, controlling crystal facets, and producing plasmonic effects were considered as the effective strategies to improve the photocatalytic performance of Ag-based photocatalyts. Moreover, combining the superior properties of carbon materials (e.g. carbon quantum dots, carbon nano-tube, carbon nanofibers, graphene) with Ag

  11. Molecular-scale shear response of the organic semiconductor β -DBDCS (100) surface

    Science.gov (United States)

    Álvarez-Asencio, Rubén; Moreno-Ramírez, Jorge S.; Pimentel, Carlos; Casado, Santiago; Matta, Micaela; Gierschner, Johannes; Muccioli, Luca; Yoon, Seong-Jun; Varghese, Shinto; Park, Soo Young; Gnecco, Enrico; Pina, Carlos M.

    2017-09-01

    In this work we present friction-force microscopy (FFM) lattice-resolved images acquired on the (100) facet of the semiconductor organic oligomer (2 Z ,2'Z )-3 , 3' -(1,4-phenylene)bis(2-(4-butoxyphenyl)acrylonitrile) (β -DBDCS) crystal in water at room temperature. Stick-slip contrast, lateral contact stiffness, and friction forces are found to depend strongly on the sliding direction due to the anisotropic packing of the molecular chains forming the crystal surface along the [010] and [001] directions. The anisotropy also causes the maximum value of the normal force applicable before wearing to increase by a factor of 3 when the scan is performed along the [001] direction on the (100) face. Altogether, our results contribute to achieving a better understanding of the molecular origin of friction anisotropy on soft crystalline surfaces, which has been often hypothesized but rarely investigated in the literature.

  12. [Forensic Psychiatric Assessment for Organic Personality Disorders after Craniocerebral Trauma].

    Science.gov (United States)

    Li, C H; Huang, L N; Zhang, M C; He, M

    2017-04-01

    To explore the occurrence and the differences of clinical manifestations of organic personality disorder with varying degrees of craniocerebral trauma. According to the International Classification of Diseases-10, 396 subjects with craniocerebral trauma caused by traffic accidents were diagnosed, and the degrees of craniocerebral trauma were graded. The personality characteristics of all patients were evaluated using the simplified Neuroticism Extraversion Openness Five-Factor Inventory (NEO-FFI). The occurrence rate of organic personality disorder was 34.6% while it was 34.9% and 49.5% in the patients with moderate and severe craniocerebral trauma, respectively, which significantly higher than that in the patients (18.7%) of mild craniocerebral trauma ( P personality disorder, the neuroticism, extraversion and agreeableness scores all showed significantly differences ( P personality disorder; the neuroticism, extraversion, agreeableness and conscientiousness scores showed significantly differences ( P >0.05) in the patients of moderate and severe craniocerebral trauma with personality disorder. The agreeableness and conscientiousness scores in the patients of moderate and severe craniocerebral trauma with personality disorder were significantly lower than that of mild craniocerebral trauma, and the patients of severe craniocerebral trauma had a lower score in extraversion than in the patients of mild craniocerebral trauma. The severity of craniocerebral trauma is closely related to the incidence of organic personality disorder, and it also affects the clinical features of the latter, which provides a certain significance and help for forensic psychiatric assessment. Copyright© by the Editorial Department of Journal of Forensic Medicine

  13. The optical constants of the organic thin films in the case of xanthats adsorption at the surface of semiconductors minerals

    International Nuclear Information System (INIS)

    Todoran, Radu; Todoran, Daniela

    2008-01-01

    The paper present the determinations of some kinetic parameters that characterize the kinetics of the adsorption phenomenon of some organic xanthate molecule on the surface of some natural semiconductor mineral (galena, sphalerite) in order to understand the inward mechanism of this phenomenon. Among the methods of inquiry that allow kinetics determination in situ the optical ones were chosen relying on the change of the liquid-mineral semiconductor interface, and permitting continuous inquires without disturbing the inward development of the processes. Into the computation, we took into the consideration the physical values which feature the roughness of the solid surface, the diffusion into liquid media and the energetic non-homogeneities of the surface. The R s /R p =f(θ) characteristic helps us to establish the thickness of the adsorbed layer, as well as to determine the optical parameters of the thin film. the experimental results allow us to get some information on the mineral and mineral-solution of xanthate, as well allow us to get some information on the parameters which, in correlation with other proportions experimentally determined - could had as to estimations of the dynamic of the surface of a semiconductor solid body. (Author)

  14. Organic and Non-Organic Language Disorders after Awake Brain Surgery

    Directory of Open Access Journals (Sweden)

    Elke De Witte

    2014-04-01

    Full Text Available INTRODUCTION: Awake surgery with Direct Electrical Stimulation (DES is considered the ‘gold standard’ to resect brain tumours in the language dominant hemisphere (De Witte & Mariën, 2013. Although transient language impairments are common in the immediate postoperative phase, permanent postoperative language deficits seem to be rare (Duffau, 2007. Milian et al. (2014 stated that most patients tolerate the awake procedure well and would undergo a similar procedure again. However, postoperative psychological symptoms including recurrent distressing dreams and persistent avoidance of stimuli have been recorded following awake surgery (Goebel, Nabavi, Schubert, & Mehdorn, 2010; Milian et al., 2014. To the best of our knowledge, psychogenic language disturbances have never been described after awake surgery. In general, only a handful of non-organic, psychogenic language disorders have been reported in the literature (De Letter et al., 2012. We report three patients with left brain tumours (see table 1 who presented linguistic symptoms after awake surgery that were incompatible with the lesion location, suggesting a psychogenic origin. METHODS: Neurocognitive (language, memory, executive functions investigations were carried out before, during and after awake surgery (6 weeks, 6 months postsurgery on the basis of standardised tests. Pre- and postoperative (fMRI images, DTI results and intraoperative DES findings were analysed. A selection of tasks was used to map language intraoperatively (De Witte et al., 2013. In the postoperative phase spontaneous speech and behavioural phenomena to errors were video-recorded. RESULTS: Preoperative language tests did not reveal any speech or language problems. Intraoperatively, eloquent sites were mapped and preserved enabling good language skills at the end of the awake procedure. However, assessments in the first weeks postsurgery disclosed language and behavioural symptoms that support the hypothesis of a

  15. Surface and Interface Engineering of Organometallic and Two Dimensional Semiconductor

    Science.gov (United States)

    Park, Jun Hong

    For over half a century, inorganic Si and III-V materials have led the modern semiconductor industry, expanding to logic transistor and optoelectronic applications. However, these inorganic materials have faced two different fundamental limitations, flexibility for wearable applications and scaling limitation as logic transistors. As a result, the organic and two dimensional have been studied intentionally for various fields. In the present dissertation, three different studies will be presented with followed order; (1) the chemical response of organic semiconductor in NO2 exposure. (2) The surface and stability of WSe2 in ambient air. (3) Deposition of dielectric on two dimensional materials using organometallic seeding layer. The organic molecules rely on the van der Waals interaction during growth of thin films, contrast to covalent bond inorganic semiconductors. Therefore, the morphology and electronic property at surface of organic semiconductor in micro scale is more sensitive to change in gaseous conditions. In addition, metal phthalocyanine, which is one of organic semiconductor materials, change their electronic property as reaction with gaseous analytes, suggesting as potential chemical sensing platforms. In the present part, the growth behavior of metal phthalocyanine and surface response to gaseous condition will be elucidated using scanning tunneling microscopy (STM). In second part, the surface of layered transition metal dichalcogenides and their chemical response to exposure ambient air will be investigated, using STM. Layered transition metal dichalcogenides (TMDs) have attracted widespread attention in the scientific community for electronic device applications because improved electrostatic gate control and suppression of short channel leakage resulted from their atomic thin body. To fabricate the transistor based on TMDs, TMDs should be exposed to ambient conditions, while the effect of air exposure has not been understood fully. In this part

  16. Overlap between functional abdominal pain disorders and organic diseases in children.

    Science.gov (United States)

    Langshaw, A H; Rosen, J M; Pensabene, L; Borrelli, O; Salvatore, S; Thapar, N; Concolino, D; Saps, M

    2018-04-02

    Functional abdominal pain disorders are highly prevalent in children. These disorders can be present in isolation or combined with organic diseases, such as celiac disease and inflammatory bowel diseases. Intestinal inflammation (infectious and non-infectious) predisposes children to the development of visceral hypersensitivity that can manifest as functional abdominal pain disorders, including irritable bowel syndrome. The new onset of irritable bowel syndrome symptoms in a patient with an underlying organic disease, such as inflammatory bowel disease, is clinically challenging, given that the same symptomatology may represent a flare-up of the inflammatory bowel disease or an overlapping functional abdominal pain disorder. Similarly, irritable bowel syndrome symptoms in a child previously diagnosed with celiac disease may occur due to poorly controlled celiac disease or the overlap with a functional abdominal pain disorder. There is little research on the overlap of functional abdominal disorders with organic diseases in children. Studies suggest that the overlap between functional abdominal pain disorders and inflammatory bowel disease is more common in adults than in children. The causes for these differences in prevalence are unknown. Only a handful of studies have been published on the overlap between celiac disease and functional abdominal pain disorders in children. The present article provides a review of the literature on the overlap between celiac disease, inflammatory bowel disease, and functional abdominal pain disorders in children and establish comparisons with studies conducted on adults. Copyright © 2018 Asociación Mexicana de Gastroenterología. Publicado por Masson Doyma México S.A. All rights reserved.

  17. Semiconductor Manufacturing equipment introduction

    International Nuclear Information System (INIS)

    Im, Jong Sun

    2001-02-01

    This book deals with semiconductor manufacturing equipment. It is comprised of nine chapters, which are manufacturing process of semiconductor device, history of semiconductor manufacturing equipment, kinds and role of semiconductor manufacturing equipment, construction and method of semiconductor manufacturing equipment, introduction of various semiconductor manufacturing equipment, spots of semiconductor manufacturing, technical elements of semiconductor manufacturing equipment, road map of technology of semiconductor manufacturing equipment and semiconductor manufacturing equipment in the 21st century.

  18. α-particle shielding of semiconductor device

    International Nuclear Information System (INIS)

    McKeown, P.J.A.; Perry, J.P.; Waddell, J.M.; Barker, K.D.

    1981-01-01

    Soft errors in semiconductor devices, e.g. random access memories, arising from the bombardment of the device by alpha particles produced by the disintegration of minute traces of uranium or thorium in the packaging materials are prevented by coating the active surface of the semiconductor chip with a thin layer, e.g. 20 to 100 microns of an organic polymeric material, this layer being of sufficient thickness to absorb the particles. Typically, the polymer is a poly-imide formed by u.v. electron-beam or thermal curing of liquid monomer applied to the chip surface. (author)

  19. Exciton Formation in Disordered Semiconductors

    DEFF Research Database (Denmark)

    Klochikhin, A.; Reznitsky, A.; Permogorov, S.

    1999-01-01

    Stationary luminescence spectra of disordered solid solutions can be accounted by the model of localized excitons. Detailed analysis of the long time decay kinetics of luminescence shows that exciton formation in these systems is in great extent due to the bimolecular reaction of separated carrie...

  20. Deposit heterogeneity and the dynamics of the organic semiconductors P3HT and PCBM solution under evaporation

    Science.gov (United States)

    Yu, H. P.; Luo, H.; Liu, T. T.; Jing, G. Y.

    2015-04-01

    The formation of organic semiconductor layer is the key procedure in the manufacture of organic photovoltaic solar cell, in which the natural evaporation of the solvent from the polymer solution plays the essential role for the conversion efficiency. Here, poly(3-hexylthiophene) (P3HT) and fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), as two types of semiconductor polymers, were selected as the active layer to form the deposit by drying the blend solution drops on the substrate. We explored the influences of droplet size and solute concentration on the homogeneity of the deposit. Additionally, the spatial distribution of molecular chains and grains and the instability of the droplet morphology during the drying were investigated. The results showed that the "coffee-ring" phenomenon occurred forming an annular deposit at the outermost edge and the width of the annular ring increased linearly with the concentration of the P3HT solution, until a saturation plateau is approached. On the other hand, the PCBM deposition presented a circular disk at low concentration, but displayed a sudden instability for an irregular perimeter at a critical concentration and there existed a second critical concentration above which the deposit exhibited the return of the stable circular shape. The results have an instructive impact on the performance of the device and the formation of fine structures during the process of printing, film preparation and painting.

  1. Organic-inorganic Au/PVP/ZnO/Si/Al semiconductor heterojunction characteristics

    Science.gov (United States)

    Mokhtari, H.; Benhaliliba, M.

    2017-11-01

    The paper reports the fabrication and characterization of a novel Au/PVP/ZnO/Si/Al semiconductor heterojunction (HJ) diode. Both inorganic n type ZnO and organic polyvinyl pyrrolidone (PVP) layers have grown by sol-gel spin-coating route at 2000 rpm. The front and back metallic contacts are thermally evaporated in a vacuum at pressure of 10-6 Torr having a diameter of 1.5 mm and a thickness of 250 nm. The detailed analysis of the forward and reverse bias current-voltage characteristics has been provided. Consequently, many electronic parameters, such as ideality factor, rectification coefficient, carrier concentration, series resistance, are then extracted. Based upon our results a non-ideal diode behavior is revealed and ideality factor exceeds the unity (n > 4). A high rectifying (~4.6 × 10 4) device is demonstrated. According to Cheung-Cheung and Norde calculation models, the barrier height and series resitance are respectively of 0.57 eV and 30 kΩ. Ohmic and space charge limited current (SCLC) conduction mechanisms are demonstrated. Such devices will find applications as solar cell, photodiode and photoconductor.

  2. Experimental and theoretical evidence of a supercritical-like transition in an organic semiconductor presenting colossal uniaxial negative thermal expansion.

    Science.gov (United States)

    van der Lee, Arie; Roche, Gilles H; Wantz, Guillaume; Moreau, Joël J E; Dautel, Olivier J; Filhol, Jean-Sébastien

    2018-04-28

    Thermal expansion coefficients of most materials are usually small, typically up to 50 parts per million per kelvin, and positive, i.e. materials expand when heated. Some materials show an atypical shrinking behavior in one or more crystallographic directions when heated. Here we show that a high mobility thiophene-based organic semiconductor, BHH-BTBT , has an exceptionally large negative expansion between 95 and 295 K (-216 BTBT , a much studied organic semiconductor with a closely related molecular formula and 3D crystallographic structure. Complete theoretical characterization of BHH-BTBT using ab initio molecular dynamics shows that below ∼200 K two different α and β domains exist of which one is dominant but which dynamically exchange around and above 210 K. A supercritical-like transition from an α dominated phase to a β dominated phase is observed using DSC measurements, UV-VIS spectroscopy, and X-ray diffraction. The origin of the extreme negative and positive thermal expansion is related to steric hindrance between adjacent tilted thiophene units and strongly enhanced by attractive S···S and S···C interactions within the highly anharmonic mixed-domain phase. This material could trigger the tailoring of optoelectronic devices highly sensitive to strain and temperature.

  3. Tris(2-(1 H -pyrazol-1-yl)pyridine)cobalt(III) as p-Type Dopant for Organic Semiconductors and Its Application in Highly Efficient Solid-State Dye-Sensitized Solar Cells

    KAUST Repository

    Burschka, Julian; Dualeh, Amalie; Kessler, Florian; Baranoff, Etienne; Cevey-Ha, Ngoc-Lê ; Yi, Chenyi; Nazeeruddin, Mohammad K.; Grä tzel, Michael

    2011-01-01

    Chemical doping is an important strategy to alter the charge-transport properties of both molecular and polymeric organic semiconductors that find widespread application in organic electronic devices. We report on the use of a new class of Co

  4. Correlation of Disorder and Charge Transport in a Range of Indacenodithiophene-Based Semiconducting Polymers

    KAUST Repository

    Nikolka, Mark

    2017-12-13

    Over the past 25 years, various design motifs have emerged for the development of organic semiconductors for demanding applications in flexible organic light emitting diode display backplanes or even printed organic logic. Due to their large area uniformity paired with high charge carrier mobilities, conjugated polymers have attracted increasing attention in this respect. However, the performances delivered by current generation conjugated polymers still fall short of many industrial requirements demanding devices with ideal transistor characteristics and higher mobilities. The discovery of conjugated polymers with low energetic disorder, such as the indacenodithiophene-based polymer indacenodithiophene-co-benzothiadiazole, represent an exciting opportunity to breach this chasm if these materials can be further optimized while maintaining their low disorder. Here, it is shown how both the charge transport properties as well as the energetic disorder are affected by tuning the molecular structure of a large range of indacenodithiophene-based semiconducting polymer derivatives. This study allows to understand better the interplay between molecular design and structure of the polymer backbone and the degree of energetic disorder that governs the charge transport properties in thin polymer films.

  5. Organic Field-Effect Transistors Based on a Liquid-Crystalline Polymeric Semiconductor using SU-8 Gate Dielectrics onFlexible Substrates.

    Science.gov (United States)

    Tetzner, Kornelius; Bose, Indranil R; Bock, Karlheinz

    2014-10-29

    In this work, the insulating properties of poly(4-vinylphenol) (PVP) and SU-8 (MicroChem, Westborough, MA, USA) dielectrics are analyzed and compared with each other. We further investigate the performance behavior of organic field-effect transistors based on a semiconducting liquid-crystal polymer (LCP) using both dielectric materials and evaluate the results regarding the processability. Due to the lower process temperature needed for the SU-8 deposition, the realization of organic transistors on flexible substrates is demonstrated showing comparable charge carrier mobilities to devices using PVP on glass. In addition, a µ-dispensing procedure of the LCP on SU-8 is presented, improving the switching behavior of the organic transistors, and the promising stability data of the SU-8/LCP stack are verified after storing the structures for 60 days in ambient air showing negligible irreversible degradation of the organic semiconductor.

  6. Effect of mesoscale ordering on the density of States of polymeric semiconductors.

    Science.gov (United States)

    Gemünden, Patrick; Poelking, Carl; Kremer, Kurt; Daoulas, Kostas; Andrienko, Denis

    2015-06-01

    A multiscale simulation scheme, which incorporates both long-range conformational disorder and local molecular ordering, is proposed for predicting large-scale morphologies and charge transport properties of polymeric semiconductors. Using poly(3-hexylthiophene) as an example, it is illustrated how the energy landscape and its spatial correlations evolve with increasing degree of structural order in mesophases with amorphous, uniaxial, and biaxial nematic ordering. It is shown that the formation of low-lying energy states in more ordered systems is mostly due to larger (on average) conjugation lengths and not due to electrostatic interactions. The proposed scheme is general and can be applied to a wide range of polymeric organic materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Madelung and Hubbard interactions in polaron band model of doped organic semiconductors

    Science.gov (United States)

    Png, Rui-Qi; Ang, Mervin C.Y.; Teo, Meng-How; Choo, Kim-Kian; Tang, Cindy Guanyu; Belaineh, Dagmawi; Chua, Lay-Lay; Ho, Peter K.H.

    2016-01-01

    The standard polaron band model of doped organic semiconductors predicts that density-of-states shift into the π–π* gap to give a partially filled polaron band that pins the Fermi level. This picture neglects both Madelung and Hubbard interactions. Here we show using ultrahigh workfunction hole-doped model triarylamine–fluorene copolymers that Hubbard interaction strongly splits the singly-occupied molecular orbital from its empty counterpart, while Madelung (Coulomb) interactions with counter-anions and other carriers markedly shift energies of the frontier orbitals. These interactions lower the singly-occupied molecular orbital band below the valence band edge and give rise to an empty low-lying counterpart band. The Fermi level, and hence workfunction, is determined by conjunction of the bottom edge of this empty band and the top edge of the valence band. Calculations are consistent with the observed Fermi-level downshift with counter-anion size and the observed dependence of workfunction on doping level in the strongly doped regime. PMID:27582355

  8. Materials for n-type organic electronics: synthesis and properties of fluoroarene-thiophene semiconductors

    Science.gov (United States)

    Facchetti, Antonio; Yoon, Myung-Han; Katz, Howard E.; Marks, Tobin J.

    2003-11-01

    Recent progress in the field of organic electronics is due to a fruitful combination of both innovative molecular design and promising low-cost material/device assembly. Targeting the first strategy, we present here the general synthesis of fluoroarene-containing thiophene-based semiconductors and the study of their properties with respect to the corresponding fluorine-free hole-transporting analogues. The new compounds have been characterized by elemental analysis, mass spectrometry, and 1H- and 19F NMR. The dramatic influence of fluorine substitution and molecular architecture has been investigated by solution/film optical absorption, fluorescence emission, and cyclic voltammetry. Single crystal data for all of the oligomers have been obtained and will be presented. Film microstructure and morphology of this new class of materials have been studied by XRD and SEM. Particular emphasis will be posed on the solution-processable oligomers and polymers.

  9. Keep calm and carry on: Mental disorder is not more "organic" than any other medical condition.

    Science.gov (United States)

    Micoulaud-Franchi, J A; Quiles, C; Masson, M

    2017-10-01

    Psychiatry as a discipline should no longer be grounded in the dualistic opposition between organic and mental disorders. This non-dualistic position refusing the partition along functional versus organic lines is in line with Jean Delay, and with Robert Spitzer who wanted to include in the definition of mental disorder discussed by the DSM-III task force the statement that "mental disorders are a subset of medical disorders". However, it is interesting to note that Spitzer and colleagues ingeniously introduced the definition of "mental disorder" in the DSM-III in the following statement: "there is no satisfactory definition that specifies precise boundaries for the concept "mental disorder" (also true for such concepts as physical disorder and mental and physical health)". Indeed, as for "mental disorders", it is as difficult to define what they are as it is to define what constitutes a "physical disorder". The problem is not the words "mental" or "organic" but the word "disorder". In this line, Wakefield has proposed a useful "harmful dysfunction" analysis of mental disorder. They raise the issue of the dualistic opposition between organic and mental disorders, and situate the debate rather between the biological/physiological and the social. The paper provides a brief analysis of this shift on the question of what is a mental disorder, and demonstrates that a mental disorder is not more "organic" than any other medical condition. While establishing a dichotomy between organic and psychiatry is no longer intellectually tenable, the solution is not to reduce psychiatric and non-psychiatric disorders to the level of "organic disorders" but rather to continue to adopt both a critical and clinically pertinent approach to what constitutes a "disorder" in medicine. Copyright © 2017 L'Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.

  10. [The efficacy and tolerability of pericyazine in the treatment of patients with schizotypal disorder, organic personality disorders and pathocharacterological changes within personality disorders].

    Science.gov (United States)

    Danilov, D S

    To assess the efficacy and tolerability of pericyazine in the treatment of patients with mental disorders manifesting with psychopathic-like symptoms and correction of pathocharacterological disorders in patients with personality disorders during the short-term admission to the hospital or the long-term outpatient treatment. Sixty-three patients with schizotypal personality disorder and organic personality disorder with psychopathic-like symptoms and pathocharacterological changes within the diagnosis of dissocial personality disorder and borderline personality disorder were examined. Patients received pericyazine during the short-term admission to the hospital (6 weeks) or the long-term outpatient treatment (6 month). Efficacy, tolerability and compliance were assessed in the study. Treatment with pricyazine was effective in all patients. The improvement was seen in patients with organic personality disorders and patients with personality disorders (psychopathy). The maximal effect was observed in inpatients and this effect remained during outpatient treatment. The improvement of mental state of patients with schizotypal personality disorder achieved during inpatient treatment with pericyazine continued during the long-term outpatient treatment. Side-effects were restricted to extrapyramidal symptoms, the frequency of metabolic syndrome was low. During outpatient treatment, the compliance was higher if the patient was managed by the same psychiatrist during inpatient- and outpatient treatment.

  11. Semiconductor materials for solar photovoltaic cells

    CERN Document Server

    Wong-Ng, Winnie; Bhattacharya, Raghu

    2016-01-01

    This book reviews the current status of semiconductor materials for conversion of sunlight to electricity, and highlights advances in both basic science and manufacturing.  Photovoltaic (PV) solar electric technology will be a significant contributor to world energy supplies when reliable, efficient PV power products are manufactured in large volumes at low cost.  Expert chapters cover the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally friendly copper zinc tin sulfide selenides. The latest methods for synthesis and characterization of solar cell materials are described, together with techniques for measuring solar cell efficiency. Semiconductor Materials for Solar Photovoltaic Cells presents the current state of the art as well as key details about future strategies to increase the efficiency and reduce ...

  12. One-dimensional self-confinement promotes polymorph selection in large-area organic semiconductor thin films

    KAUST Repository

    Giri, Gaurav

    2014-04-16

    A crystal\\'s structure has significant impact on its resulting biological, physical, optical and electronic properties. In organic electronics, 6,13(bis-triisopropylsilylethynyl)pentacene (TIPS-pentacene), a small-molecule organic semiconductor, adopts metastable polymorphs possessing significantly faster charge transport than the equilibrium crystal when deposited using the solution-shearing method. Here, we use a combination of high-speed polarized optical microscopy, in situ microbeam grazing incidence wide-angle X-ray-scattering and molecular simulations to understand the mechanism behind formation of metastable TIPS-pentacene polymorphs. We observe that thin-film crystallization occurs first at the air-solution interface, and nanoscale vertical spatial confinement of the solution results in formation of metastable polymorphs, a one-dimensional and large-area analogy to crystallization of polymorphs in nanoporous matrices. We demonstrate that metastable polymorphism can be tuned with unprecedented control and produced over large areas by either varying physical confinement conditions or by tuning energetic conditions during crystallization through use of solvent molecules of various sizes. © 2014 Macmillan Publishers Limited.

  13. Stoichiometric and Oxygen-Deficient VO2 as Versatile Hole Injection Electrode for Organic Semiconductors.

    Science.gov (United States)

    Fu, Keke; Wang, Rongbin; Katase, Takayoshi; Ohta, Hiromichi; Koch, Norbert; Duhm, Steffen

    2018-03-28

    Using photoemission spectroscopy, we show that the surface electronic structure of VO 2 is determined by the temperature-dependent metal-insulator phase transition and the density of oxygen vacancies, which depends on the temperature and ultrahigh vacuum (UHV) conditions. The atomically clean and stoichiometric VO 2 surface is insulating at room temperature and features an ultrahigh work function of up to 6.7 eV. Heating in UHV just above the phase transition temperature induces the expected metallic phase, which goes in hand with the formation of oxygen defects (up to 6% in this study), but a high work function >6 eV is maintained. To demonstrate the suitability of VO 2 as hole injection contact for organic semiconductors, we investigated the energy-level alignment with the prototypical organic hole transport material N, N'-di(1-naphthyl)- N, N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (NPB). Evidence for strong Fermi-level pinning and the associated energy-level bending in NPB is found, rendering an Ohmic contact for holes.

  14. Spiers memorial lecture. Organic electronics: an organic materials perspective.

    Science.gov (United States)

    Wudl, Fred

    2014-01-01

    This Introductory Lecture is intended to provide a background to Faraday Discussion 174: "Organic Photonics and Electronics" and will consist of a chronological, subjective review of organic electronics. Starting with "ancient history" (1888) and history (1950-present), the article will take us to the present. The principal developments involved the processes of charge carrier generation and charge transport in molecular solids, starting with insulators (photoconductors) and moving to metals, to semiconductors and ending with the most popular semiconductor devices, such as organic light-emitting diodes (OLEDs), organic field effect transistors (OFETs) and organic photovoltaics (OPVs). The presentation will be from an organic chemistry/materials point of view.

  15. Temperature Dependence of Charge Localization in High-Mobility, Solution-Crystallized Small Molecule Semiconductors Studied by Charge Modulation Spectroscopy

    DEFF Research Database (Denmark)

    Meneau, Aurélie Y. B.; Olivier, Yoann; Backlund, Tomas

    2016-01-01

    In solution-processable small molecule semiconductors, the extent of charge carrier wavefunction localization induced by dynamic disorder can be probed spectroscopically as a function of temperature using charge modulation spectroscopy (CMS). Here, it is shown based on combined fi eld-effect tran......In solution-processable small molecule semiconductors, the extent of charge carrier wavefunction localization induced by dynamic disorder can be probed spectroscopically as a function of temperature using charge modulation spectroscopy (CMS). Here, it is shown based on combined fi eld......-effect transistor and CMS measurements as a function of temperature that in certain molecular semiconductors, such as solution-processible pentacene, charge carriers become trapped at low temperatures in environments in which the charges become highly localized on individual molecules, while in some other molecules...

  16. Doping kinetics of organic semiconductors investigated by field-effect transistors

    NARCIS (Netherlands)

    Maddalena, F.; Meijer, E.J.; Asadi, K.; Leeuw, D.M. de; Blom, P.W.M.

    2010-01-01

    The kinetics of acid doping of the semiconductor regioregular poly-3-hexylthiophene with vaporized chlorosilane have been investigated using field-effect transistors. The dopant density has been derived as a function of temperature and exposure time from the shift in the pinch-off voltage, being the

  17. Toward designing semiconductor-semiconductor heterojunctions for photocatalytic applications

    Science.gov (United States)

    Zhang, Liping; Jaroniec, Mietek

    2018-02-01

    Semiconductor photocatalysts show a great potential for environmental and energy-related applications, however one of the major disadvantages is their relatively low photocatalytic performance due to the recombination of electron-hole pairs. Therefore, intensive research is being conducted toward design of heterojunctions, which have been shown to be effective for improving the charge-transfer properties and efficiency of photocatalysts. According to the type of band alignment and direction of internal electric field, heterojunctions are categorized into five different types, each of which is associated with its own charge transfer characteristics. Since the design of heterojunctions requires the knowledge of band edge positions of component semiconductors, the commonly used techniques for the assessment of band edge positions are reviewed. Among them the electronegativity-based calculation method is applied for a large number of popular visible-light-active semiconductors, including some widely investigated bismuth-containing semiconductors. On basis of the calculated band edge positions and the type of component semiconductors reported, heterojunctions composed of the selected bismuth-containing semiconductors are proposed. Finally, the most popular synthetic techniques for the fabrication of heterojunctions are briefly discussed.

  18. Nucleation and strain-stabilization during organic semiconductor thin film deposition.

    Science.gov (United States)

    Li, Yang; Wan, Jing; Smilgies, Detlef-M; Bouffard, Nicole; Sun, Richard; Headrick, Randall L

    2016-09-07

    The nucleation mechanisms during solution deposition of organic semiconductor thin films determine the grain morphology and may influence the crystalline packing in some cases. Here, in-situ optical spectromicroscopy in reflection mode is used to study the growth mechanisms and thermal stability of 6,13-bis(trisopropylsilylethynyl)-pentacene thin films. The results show that the films form in a supersaturated state before transforming to a solid film. Molecular aggregates corresponding to subcritical nuclei in the crystallization process are inferred from optical spectroscopy measurements of the supersaturated region. Strain-free solid films exhibit a temperature-dependent blue shift of optical absorption peaks due to a continuous thermally driven change of the crystalline packing. As crystalline films are cooled to ambient temperature they become strained although cracking of thicker films is observed, which allows the strain to partially relax. Below a critical thickness, cracking is not observed and grazing incidence X-ray diffraction measurements confirm that the thinnest films are constrained to the lattice constants corresponding to the temperature at which they were deposited. Optical spectroscopy results show that the transition temperature between Form I (room temperature phase) and Form II (high temperature phase) depends on the film thickness, and that Form I can also be strain-stabilized up to 135 °C.

  19. High-performance n-type organic semiconductors: incorporating specific electron-withdrawing motifs to achieve tight molecular stacking and optimized energy levels.

    Science.gov (United States)

    Yun, Sun Woo; Kim, Jong H; Shin, Seunghoon; Yang, Hoichang; An, Byeong-Kwan; Yang, Lin; Park, Soo Young

    2012-02-14

    Novel π–conjugated cyanostilbene-based semiconductors (Hex-3,5-TFPTA and Hex-4-TFPTA) with tight molecular stacking and optimized energy levels are synthesized. Hex-4-TFPTA exhibits high-performance n-type organic field-effect transistor (OFET) properties with electron mobilities as high as 2.14 cm2 V−1s−1 and on-off current ratios Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Organic Field-Effect Transistors Based on a Liquid-Crystalline Polymeric Semiconductor using SU-8 Gate Dielectrics onFlexible Substrates

    Directory of Open Access Journals (Sweden)

    Kornelius Tetzner

    2014-10-01

    Full Text Available In this work, the insulating properties of poly(4-vinylphenol (PVP and SU-8 (MicroChem, Westborough, MA, USA dielectrics are analyzed and compared with each other. We further investigate the performance behavior of organic field-effect transistors based on a semiconducting liquid-crystal polymer (LCP using both dielectric materials and evaluate the results regarding the processability. Due to the lower process temperature needed for the SU-8 deposition, the realization of organic transistors on flexible substrates is demonstrated showing comparable charge carrier mobilities to devices using PVP on glass. In addition, a µ-dispensing procedure of the LCP on SU-8 is presented, improving the switching behavior of the organic transistors, and the promising stability data of the SU-8/LCP stack are verified after storing the structures for 60 days in ambient air showing negligible irreversible degradation of the organic semiconductor.

  1. Organic Field-Effect Transistors Based on a Liquid-Crystalline Polymeric Semiconductor using SU-8 Gate Dielectrics on Flexible Substrates

    Science.gov (United States)

    Tetzner, Kornelius; Bose, Indranil R.; Bock, Karlheinz

    2014-01-01

    In this work, the insulating properties of poly(4-vinylphenol) (PVP) and SU-8 (MicroChem, Westborough, MA, USA) dielectrics are analyzed and compared with each other. We further investigate the performance behavior of organic field-effect transistors based on a semiconducting liquid-crystal polymer (LCP) using both dielectric materials and evaluate the results regarding the processability. Due to the lower process temperature needed for the SU-8 deposition, the realization of organic transistors on flexible substrates is demonstrated showing comparable charge carrier mobilities to devices using PVP on glass. In addition, a µ-dispensing procedure of the LCP on SU-8 is presented, improving the switching behavior of the organic transistors, and the promising stability data of the SU-8/LCP stack are verified after storing the structures for 60 days in ambient air showing negligible irreversible degradation of the organic semiconductor. PMID:28788243

  2. Improvement in semiconductor laser printing using a sacrificial protecting layer for organic thin-film transistors fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Ludovic, E-mail: rapp@lp3.univ-mrs.fr [Laboratoire LP3 (Lasers, Plasma et Procedes Photoniques) - UMR 6182 CNRS - Universite de la Mediterranee - Campus de Luminy C917, 13288 Marseille Cedex 09 (France); Cibert, Christophe [Laboratoire LP3 (Lasers, Plasma et Procedes Photoniques) - UMR 6182 CNRS - Universite de la Mediterranee - Campus de Luminy C917, 13288 Marseille Cedex 09 (France); Nenon, Sebastien [CINaM (Centre Interdisciplinaire de Nanoscience de Marseille) - UPR 3118 CNRS - Universite Aix Marseille, Case 913, Campus de Luminy, 13288 Marseille Cedex 09 (France); Alloncle, Anne Patricia [Laboratoire LP3 (Lasers, Plasma et Procedes Photoniques) - UMR 6182 CNRS - Universite de la Mediterranee - Campus de Luminy C917, 13288 Marseille Cedex 09 (France); Nagel, Matthias [Empa, Swiss Federal Laboratories for Materials Testing and Reasearch, Laboratory for Functional Polymers, Uberlandstrasse 129, 8600 Duebendorf (Switzerland); Lippert, Thomas [Paul Scherrer Institut, General Energy Research Department, 5232 Villigen PSI (Switzerland); Videlot-Ackermann, Christine; Fages, Frederic [CINaM (Centre Interdisciplinaire de Nanoscience de Marseille) - UPR 3118 CNRS - Universite Aix Marseille, Case 913, Campus de Luminy, 13288 Marseille Cedex 09 (France); Delaporte, Philippe [Laboratoire LP3 (Lasers, Plasma et Procedes Photoniques) - UMR 6182 CNRS - Universite de la Mediterranee - Campus de Luminy C917, 13288 Marseille Cedex 09 (France)

    2011-04-01

    Laser-induced forward transfer (LIFT) has been used to deposit pixels of an organic semiconductor, distyryl-quaterthiophenes (DS4T). The dynamics of the process have been investigated by shadowgraphic imaging for the nanosecond (ns) and picosecond (ps) regime on a time-scale from the laser iradiation to 1.5 {mu}s. The morphology of the deposit has been studied for different conditions. Intermediate sacrificial layer of gold or triazene polymer has been used to trap the incident radiation. Its role is to protect the layer to be transferred from direct irradiation and to provide a mechanical impulse strong enough to eject the material.

  3. Intrinsically Disordered Proteins and the Origins of Multicellular Organisms

    Science.gov (United States)

    Dunker, A. Keith

    In simple multicellular organisms all of the cells are in direct contact with the surrounding milieu, whereas in complex multicellular organisms some cells are completely surrounded by other cells. Current phylogenetic trees indicate that complex multicellular organisms evolved independently from unicellular ancestors about 10 times, and only among the eukaryotes, including once for animals, twice each for green, red, and brown algae, and thrice for fungi. Given these multiple independent evolutionary lineages, we asked two questions: 1. Which molecular functions underpinned the evolution of multicellular organisms?; and, 2. Which of these molecular functions depend on intrinsically disordered proteins (IDPs)? Compared to unicellularity, multicellularity requires the advent of molecules for cellular adhesion, for cell-cell communication and for developmental programs. In addition, the developmental programs need to be regulated over space and time. Finally, each multicellular organism has cell-specific biochemistry and physiology. Thus, the evolution of complex multicellular organisms from unicellular ancestors required five new classes of functions. To answer the second question we used Key-words in Swiss Protein ranked for associations with predictions of protein structure or disorder. With a Z-score of 18.8 compared to random-function proteins, à differentiation was the biological process most strongly associated with IDPs. As expected from this result, large numbers of individual proteins associated with differentiation exhibit substantial regions of predicted disorder. For the animals for which there is the most readily available data all five of the underpinning molecular functions for multicellularity were found to depend critically on IDP-based mechanisms and other evidence supports these ideas. While the data are more sparse, IDPs seem to similarly underlie the five new classes of functions for plants and fungi as well, suggesting that IDPs were indeed

  4. Crossover from Super- to Subdiffusive Motion and Memory Effects in Crystalline Organic Semiconductors

    Science.gov (United States)

    De Filippis, G.; Cataudella, V.; Mishchenko, A. S.; Nagaosa, N.; Fierro, A.; de Candia, A.

    2015-02-01

    The transport properties at finite temperature of crystalline organic semiconductors are investigated, within the Su-Schrieffer-Heeger model, by combining an exact diagonalization technique, Monte Carlo approaches, and a maximum entropy method. The temperature-dependent mobility data measured in single crystals of rubrene are successfully reproduced: a crossover from super- to subdiffusive motion occurs in the range 150 ≤T ≤200 K , where the mean free path becomes of the order of the lattice parameter and strong memory effects start to appear. We provide an effective model, which can successfully explain features of the absorption spectra at low frequencies. The observed response to slowly varying electric field is interpreted by means of a simple model where the interaction between the charge carrier and lattice polarization modes is simulated by a harmonic interaction between a fictitious particle and an electron embedded in a viscous fluid.

  5. 33rd International Conference on the Physics of Semiconductors

    International Nuclear Information System (INIS)

    2017-01-01

    Preface to the Proceedings of the 33rd International Conference on the Physics of Semiconductors, Beijing, 2016 Shaoyun Huang 1 , Yingjie Xing 1 , Yang Ji 2 , Dapeng Yu 3 , and Hongqi Xu 1 1 Beijing Key Laboratory of Quantum Devices, Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China 2 SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China 3 State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, China From July 31 st to August 5 th , 2016, the 33rd International Conference on the Physics of Semiconductors (ICPS 2016) was held in Beijing, China, with a great success. The International Conference on the Physics of Semiconductors began in the 1950’s and is a premier biennial meeting for reporting all aspects of semiconductor physics including electronic, structural, optical, magnetic and transport properties. Reflecting the state of the art developments in semiconductor physics, ICPS 2016 served as an international forum for scholars, researchers, and specialists across the globe to discuss future research directions and technological advancements. The main topics of ICPS 2016 included: • Material growth, structural properties and characterization, phonons • Wide-bandgap semiconductors • Narrow-bandgap semiconductors • Carbon: nanotubes and graphene • 2D Materials beyond graphene • Organic semiconductors • Topological states of matter, topological Insulators and Weyl semimetals • Transport in heterostructures • Quantum Hall effects • Spintronics and spin phenomena • Electron devices and applications • Optical properties, optoelectronics, solar cells • Quantum optics, nanophotonics • Quantum information • Other topics in semiconductor physics and devices • Special topic: Majorana fermions in solid state (paper)

  6. Organic photosensitive cells grown on rough electrode with nano-scale morphology control

    Science.gov (United States)

    Yang, Fan [Piscataway, NJ; Forrest, Stephen R [Ann Arbor, MI

    2011-06-07

    An optoelectronic device and a method for fabricating the optoelectronic device includes a first electrode disposed on a substrate, an exposed surface of the first electrode having a root mean square roughness of at least 30 nm and a height variation of at least 200 nm, the first electrode being transparent. A conformal layer of a first organic semiconductor material is deposited onto the first electrode by organic vapor phase deposition, the first organic semiconductor material being a small molecule material. A layer of a second organic semiconductor material is deposited over the conformal layer. At least some of the layer of the second organic semiconductor material directly contacts the conformal layer. A second electrode is deposited over the layer of the second organic semiconductor material. The first organic semiconductor material is of a donor-type or an acceptor-type relative to the second organic semiconductor material, which is of the other material type.

  7. Density Functional Theory Simulations of Semiconductors for Photovoltaic Applications: Hybrid Organic-Inorganic Perovskites and III/V Heterostructures

    Directory of Open Access Journals (Sweden)

    Jacky Even

    2014-01-01

    Full Text Available Potentialities of density functional theory (DFT based methodologies are explored for photovoltaic materials through the modeling of the structural and optoelectronic properties of semiconductor hybrid organic-inorganic perovskites and GaAs/GaP heterostructures. They show how the properties of these bulk materials, as well as atomistic relaxations, interfaces, and electronic band-lineups in small heterostructures, can be thoroughly investigated. Some limitations of available standard DFT codes are discussed. Recent improvements able to treat many-body effects or based on density-functional perturbation theory are also reviewed in the context of issues relevant to photovoltaic technologies.

  8. Light sensors based on organic phototransistors with absorption-enhancing nanoparticles

    DEFF Research Database (Denmark)

    Runge Walther, Anders; Linnet, Jes; Albrektsen, Ole

    Organic semiconductors (OSCs) exhibit promising electronic and optical properties applicable in photo-sensing devices. Previous studies have found that thiophene-based semiconductors are suitable as the active layer in organic optoelectronic devices such as light-sensing transistors [1]. The abil......Organic semiconductors (OSCs) exhibit promising electronic and optical properties applicable in photo-sensing devices. Previous studies have found that thiophene-based semiconductors are suitable as the active layer in organic optoelectronic devices such as light-sensing transistors [1...

  9. Basic processes and scintillator and semiconductor detectors

    International Nuclear Information System (INIS)

    Bourgeois, C.

    1994-01-01

    In the following course, the interaction of heavy charged particles, electrons and Γ with matter is represented. Two types of detectors are studied, organic and inorganic scintillators and semiconductors. The signal formation is analysed. (author). 13 refs., 48 figs., 5 tabs

  10. Semiconductor physics

    CERN Document Server

    Böer, Karl W

    2018-01-01

    This handbook gives a complete survey of the important topics and results in semiconductor physics. It addresses every fundamental principle and most research topics and areas of application in the field of semiconductor physics. Comprehensive information is provided on crystalline bulk and low-dimensional as well as amporphous semiconductors, including optical, transport, and dynamic properties.

  11. High-performance semiconductors based on oligocarbazole–thiophene derivatives for solution-fabricated organic field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Gung-Pei; Hsieh, Kuo-Huang, E-mail: khhsieh@ntu.edu.tw

    2013-01-01

    A series of oligocarbazole–thiophenes based on a constant conjugate backbone (carbazole–bithiophene–carbazole) with various n-alkyl chain lengths was prepared for application to organic field-effect transistors (OFETs). The lengths of the n-alkyl substitutions attached on 9-position of carbazole moieties were methyl (CCzT2), hexyl (C6CzT2), dodecyl (C12CzT2), and octadecyl (C18CzT2), called CxCzT2. Variations of n-alkyl chain lengths are proposed to figure out the optimization of OFET performance via solution fabrication of the active layer. Before fabricating OFET devices, the thermal, optical, and electrochemical properties of CxCzT2 were fully characterized with thermogravimetric analysis, differential scanning calorimetry, ultraviolet–visible spectroscopy, and cyclic voltammetry to realize the relationships of the structure to the properties. After fabricating CxCzT2 on Si/SiO{sub 2} substrates via solution casting, the thin film morphologies were also studied with polarizing optical microscopy, atomic force microscopy, and X-ray diffraction to investigate the structural relationship to OFET performance. A higher hole mobility was observed with C12CzT2 (3.6 × 10{sup −2} cm{sup 2} V{sup −1} s{sup −1}) due to its liquid crystal properties, and the hole mobility could be further improved to 1.2 × 10{sup −1} cm{sup 2} V{sup −1} s{sup −1} by the introduction of a phenyl-self-assembled monolayer on the Si/SiO{sub 2} substrates. The excellent OFET performances of C12CzT2 by solution–fabrication could be considered as a promising candidate for high-end OFET application. - Highlights: ► These oligomeric semiconductors were synthesized rapidly. ► The thermal, optical, and electrochemical properties were fully investigated. ► The liquid crystal properties can be obtained via alkyl chain length adjustment. ► These oligomeric semiconductors can be solution-fabricated. ► One of these oligomeric semiconductors yields high field-effect hole

  12. Simultaneous monitoring of singlet and triplet exciton variations in solid organic semiconductors driven by an external static magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Baofu, E-mail: b.ding@ecu.edu.au; Alameh, Kamal, E-mail: k.alameh@ecu.edu.au [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027 (Australia)

    2014-07-07

    The research field of organic spintronics has remarkably and rapidly become a promising research area for delivering a range of high-performance devices, such as magnetic-field sensors, spin valves, and magnetically modulated organic light emitting devices (OLEDs). Plenty of microscopic physical and chemical models based on exciton or charge interactions have been proposed to explain organic magneto-optoelectronic phenomena. However, the simultaneous observation of singlet- and triplet-exciton variations in an external magnetic field is still unfeasible, preventing a thorough theoretical description of the spin dynamics in organic semiconductors. Here, we show that we can simultaneously observe variations of singlet excitons and triplet excitons in an external magnetic field, by designing an OLED structure employing a singlet-exciton filtering and detection layer in conjunction with a separate triplet-exciton detection layer. This OLED structure enables the observation of a Lorentzian and a non-Lorentzian line-shape magnetoresponse for singlet excitons and triplet excitons, respectively.

  13. Simultaneous monitoring of singlet and triplet exciton variations in solid organic semiconductors driven by an external static magnetic field

    International Nuclear Information System (INIS)

    Ding, Baofu; Alameh, Kamal

    2014-01-01

    The research field of organic spintronics has remarkably and rapidly become a promising research area for delivering a range of high-performance devices, such as magnetic-field sensors, spin valves, and magnetically modulated organic light emitting devices (OLEDs). Plenty of microscopic physical and chemical models based on exciton or charge interactions have been proposed to explain organic magneto-optoelectronic phenomena. However, the simultaneous observation of singlet- and triplet-exciton variations in an external magnetic field is still unfeasible, preventing a thorough theoretical description of the spin dynamics in organic semiconductors. Here, we show that we can simultaneously observe variations of singlet excitons and triplet excitons in an external magnetic field, by designing an OLED structure employing a singlet-exciton filtering and detection layer in conjunction with a separate triplet-exciton detection layer. This OLED structure enables the observation of a Lorentzian and a non-Lorentzian line-shape magnetoresponse for singlet excitons and triplet excitons, respectively.

  14. Large-area formation of self-aligned crystalline domains of organic semiconductors on transistor channels using CONNECT

    Science.gov (United States)

    Park, Steve; Giri, Gaurav; Shaw, Leo; Pitner, Gregory; Ha, Jewook; Koo, Ja Hoon; Gu, Xiaodan; Park, Joonsuk; Lee, Tae Hoon; Nam, Ji Hyun; Hong, Yongtaek; Bao, Zhenan

    2015-01-01

    The electronic properties of solution-processable small-molecule organic semiconductors (OSCs) have rapidly improved in recent years, rendering them highly promising for various low-cost large-area electronic applications. However, practical applications of organic electronics require patterned and precisely registered OSC films within the transistor channel region with uniform electrical properties over a large area, a task that remains a significant challenge. Here, we present a technique termed “controlled OSC nucleation and extension for circuits” (CONNECT), which uses differential surface energy and solution shearing to simultaneously generate patterned and precisely registered OSC thin films within the channel region and with aligned crystalline domains, resulting in low device-to-device variability. We have fabricated transistor density as high as 840 dpi, with a yield of 99%. We have successfully built various logic gates and a 2-bit half-adder circuit, demonstrating the practical applicability of our technique for large-scale circuit fabrication. PMID:25902502

  15. Theoretical study of substitution effects on molecular reorganization energy in organic semiconductors.

    Science.gov (United States)

    Geng, Hua; Niu, Yingli; Peng, Qian; Shuai, Zhigang; Coropceanu, Veaceslav; Brédas, Jean-Luc

    2011-09-14

    Chemical substitutions are powerful molecular design tools to enhance the performance of organic semiconductors, for instance, to improve solubility, intermolecular stacking, or film quality. However, at the microscopic level, substitutions in general tend to increase the molecular reorganization energy and thus decrease the intrinsic charge-carrier mobility. Through density functional theory calculations, we elucidate strategies that could be followed to reduce the reorganization energy upon chemical substitution. Specific examples are given here for hole-transport materials including indolo-carbazoles and several triarylamine derivatives. Through decomposition of the total reorganization energy into the internal coordinate space, we are able to identify the molecular segment that provides the most important contributions to the reorganization energy. It is found that when substitution reduces (enhances) the amplitude of the relevant frontier molecular orbital in that segment, the total reorganization energy decreases (increases). In particular, chlorination at appropriate positions can significantly reduce the reorganization energy. Several other substituents are shown to play a similar role, to a greater or lesser extent. © 2011 American Institute of Physics

  16. Associations between the social organization of communities and psychiatric disorders in rural Asia.

    Science.gov (United States)

    Axinn, William G; Ghimire, Dirgha J; Williams, Nathalie E; Scott, Kate M

    2015-10-01

    We provide rare evidence of factors producing psychiatric variation in a general population sample from rural South Asia. The setting is particularly useful for demonstrating that variations in the social organization of communities, often difficult to observe in rich countries, are associated with important variations in mental health. Clinically validated survey measures are used to document variation in psychiatric disorders among 401 adults. This sample is chosen from a systematic sample of the general population of rural Nepal, in a community-level-controlled comparison design. Multilevel logistic regression is used to estimate multivariate models of the association between community-level nonfamily social organization and individual-level psychiatric disorders. Schools, markets, health services and social support groups each substantially reduce the odds of depression, post-traumatic stress disorder (PTSD), intermittent explosive disorder and anxiety disorders. Associations between schools, health services and social support groups and depression are statistically significant and independent of each other. The association between access to markets and PTSD is statistically significant and independent of other social organization and support groups. Community integration of some nonfamily social organizations promotes mental health in ways that may go unobserved in settings with many such organizations. More research on the mechanisms producing these associations is likely to reveal potential avenues for public policy and programs to improve mental health in the general population.

  17. Self-organization in irradiated materials

    International Nuclear Information System (INIS)

    Gerasimenko, N.N.; Dzhamanbalin, K.K.; Medetov, N.A.

    2003-01-01

    Full text: By the present time a great deal of experimental material concerning self-organization in irradiated materials is stored. It means that in different materials (single crystal and amorphous semiconductor, metals, polymers) during one process of irradiation with accelerated particles or energetic quanta the structure previously disordered can be reordered to the previous or different order. These processes are considered separately from the processes of radiation-stimulated ordering when the renewal of the structure occurs as the result of extra irradiation, sometimes accompanied with another influence (heating, lighting, application of mechanical tensions). The processes of reordering are divided into two basic classes: the reconstruction of crystalline structure (1) and the formation of space-ordered system (2). The processes of ordering are considered with the use of synergetic approach and are analyzed conformably to the concrete conditions of new order appearance process realization in order to reveal the self-organization factor's role. The concrete experimental results of investigating of the radiation ordering processes are analyzed for different materials: semiconductor, metals, inorganic dielectrics, polymers. The ordering processes are examined from the point of their possible use in the technology of creating nano-dimensional structures general and quantum-dimensional ones in particular

  18. Tuning polymorphism and orientation in organic semiconductor thin films via post-deposition processing.

    Science.gov (United States)

    Hiszpanski, Anna M; Baur, Robin M; Kim, Bumjung; Tremblay, Noah J; Nuckolls, Colin; Woll, Arthur R; Loo, Yueh-Lin

    2014-11-05

    Though both the crystal structure and molecular orientation of organic semiconductors are known to impact charge transport in thin-film devices, separately accessing different polymorphs and varying the out-of-plane molecular orientation is challenging, typically requiring stringent control over film deposition conditions, film thickness, and substrate chemistry. Here we demonstrate independent tuning of the crystalline polymorph and molecular orientation in thin films of contorted hexabenzocoronene, c-HBC, during post-deposition processing without the need to adjust deposition conditions. Three polymorphs are observed, two of which have not been previously reported. Using our ability to independently tune the crystal structure and out-of-plane molecular orientation in thin films of c-HBC, we have decoupled and evaluated the effects that molecular packing and orientation have on device performance in thin-film transistors (TFTs). In the case of TFTs comprising c-HBC, polymorphism and molecular orientation are equally important; independently changing either one affects the field-effect mobility by an order of magnitude.

  19. Semiconductor@metal-organic framework core-shell heterostructures: a case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response.

    Science.gov (United States)

    Zhan, Wen-wen; Kuang, Qin; Zhou, Jian-zhang; Kong, Xiang-jian; Xie, Zhao-xiong; Zheng, Lan-sun

    2013-02-06

    Metal-organic frameworks (MOFs) and related material classes are attracting considerable attention for their applications in gas storage/separation as well as catalysis. In contrast, research concerning potential uses in electronic devices (such as sensors) is in its infancy, which might be due to a great challenge in the fabrication of MOFs and semiconductor composites with well-designed structures. In this paper, we proposed a simple self-template strategy to fabricate metal oxide semiconductor@MOF core-shell heterostructures, and successfully obtained freestanding ZnO@ZIF-8 nanorods as well as vertically standing arrays (including nanorod arrays and nanotube arrays). In this synthetic process, ZnO nanorods not only act as the template but also provide Zn(2+) ions for the formation of ZIF-8. In addition, we have demonstrated that solvent composition and reaction temperature are two crucial factors for successfully fabricating well-defined ZnO@ZIF-8 heterostructures. As we expect, the as-prepared ZnO@ZIF-8 nanorod arrays display distinct photoelectrochemical response to hole scavengers with different molecule sizes (e.g., H(2)O(2) and ascorbic acid) owing to the limitation of the aperture of the ZIF-8 shell. Excitingly, such ZnO@ZIF-8 nanorod arrays were successfully applied to the detection of H(2)O(2) in the presence of serous buffer solution. Therefore, it is reasonable to believe that the semiconductor@MOFs heterostructure potentially has promising applications in many electronic devices including sensors.

  20. Double-digest RAD sequencing using Ion Proton semiconductor platform (ddRADseq-ion) with nonmodel organisms.

    Science.gov (United States)

    Recknagel, Hans; Jacobs, Arne; Herzyk, Pawel; Elmer, Kathryn R

    2015-11-01

    Research in evolutionary biology involving nonmodel organisms is rapidly shifting from using traditional molecular markers such as mtDNA and microsatellites to higher throughput SNP genotyping methodologies to address questions in population genetics, phylogenetics and genetic mapping. Restriction site associated DNA sequencing (RAD sequencing or RADseq) has become an established method for SNP genotyping on Illumina sequencing platforms. Here, we developed a protocol and adapters for double-digest RAD sequencing for Ion Torrent (Life Technologies; Ion Proton, Ion PGM) semiconductor sequencing. We sequenced thirteen genomic libraries of three different nonmodel vertebrate species on Ion Proton with PI chips: Arctic charr Salvelinus alpinus, European whitefish Coregonus lavaretus and common lizard Zootoca vivipara. This resulted in ~962 million single-end reads overall and a mean of ~74 million reads per library. We filtered the genomic data using Stacks, a bioinformatic tool to process RAD sequencing data. On average, we obtained ~11,000 polymorphic loci per library of 6-30 individuals. We validate our new method by technical and biological replication, by reconstructing phylogenetic relationships, and using a hybrid genetic cross to track genomic variants. Finally, we discuss the differences between using the different sequencing platforms in the context of RAD sequencing, assessing possible advantages and disadvantages. We show that our protocol can be used for Ion semiconductor sequencing platforms for the rapid and cost-effective generation of variable and reproducible genetic markers. © 2015 John Wiley & Sons Ltd.

  1. 2012 Gordon Research Conference on Defects in Semiconductors - Formal Schedule and Speaker/Poster Program

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Evan [Naval Research Lab. (NRL), Washington, DC (United States)

    2012-08-17

    The meeting shall strive to develop and further the fundamental understanding of defects and their roles in the structural, electronic, optical, and magnetic properties of bulk, thin film, and nanoscale semiconductors and device structures. Point and extended defects will be addressed in a broad range of electronic materials of particular current interest, including wide bandgap semiconductors, metal-oxides, carbon-based semiconductors (e.g., diamond, graphene, etc.), organic semiconductors, photovoltaic/solar cell materials, and others of similar interest. This interest includes novel defect detection/imaging techniques and advanced defect computational methods.

  2. Emission and Dynamics of Charge Carriers in Uncoated and Organic/Metal Coated Semiconductor Nanowires

    Science.gov (United States)

    Kaveh Baghbadorani, Masoud

    In this dissertation, the dynamics of excitons in hybrid metal/organic/nanowire structures possessing nanometer thick deposited molecular and metal films on top of InP and GaAs nanowire (NW) surfaces were investigated. Optical characterizations were carried out as a function of the semiconductor NW material, design, NW size and the type and thickness of the organic material and metal used. Hybrid organic and plasmonic semiconductor nanowire heterostructures were fabricated using organic molecular beam deposition technique. I investigated the photon emission of excitons in 150 nm diameter polytype wurtzite/zincblende InP NWs and the influence of a few ten nanometer thick organic and metal films on the emission using intensity- and temperature-dependent time-integrated and time resolved (TR) photoluminescence (PL). The plasmonic NWs were coated with an Aluminum quinoline (Alq3) interlayer and magnesium-silver (Mg0.9:Ag0.1) top layer. In addition, the nonlinear optical technique of heterodyne four-wave mixing was used (in collaboration with Prof. Wolfgang Langbein, University of Cardiff) to study incoherent and coherent carrier relaxation processes on bare nanowires on a 100 femtosecond time-scale. Alq3 covered NWs reveal a stronger emission and a longer decay time of exciton transitions indicating surface state passivation at the Alq3/NW interface. Alq3/Mg:Ag NWs reveal a strong quenching of the exciton emission which is predominantly attributed to Forster energy-transfer from excitons to plasmon oscillations in the metal cluster film. Changing the Mg:Ag to gold and the organic Alq3 spacer layer to PTCDA leads to a similar behavior, but the PL quenching is strongly increased. The observed behavior is attributed to a more continuous gold deposition leading to an increased Forster energy transfer and to a metal induced band-bending. I also investigated ensembles of bare and gold/Alq3 coated GaAs-AlGaAs-GaAs core shell NWs of 130 nm diameter. Plasmonic NWs with Au

  3. Quantum theory of the electronic and optical properties of low-dimensional semiconductor systems

    Science.gov (United States)

    Lau, Wayne Heung

    This thesis examines the electronic and optical properties of low-dimensional semiconductor systems. A theory is developed to study the electron-hole generation-recombination process of type-II semimetallic semiconductor heterojunctions based on a 3 x 3 k·p matrix Hamiltonian (three-band model) and an 8 x 8 k·p matrix Hamiltonian (eight-band model). A novel electron-hole generation and recombination process, which is called activationless generation-recombination process, is predicted. It is demonstrated that the current through the type-II semimetallic semiconductor heterojunctions is governed by the activationless electron-hole generation-recombination process at the heterointerfaces, and that the current-voltage characteristics are essentially linear. A qualitative agreement between theory and experiments is observed. The numerical results of the eight-band model are compared with those of the threeband model. Based on a lattice gas model, a theory is developed to study the influence of a random potential on the ionization equilibrium conditions for bound electron-hole pairs (excitons) in III--V semiconductor heterostructures. It is demonstrated that ionization equilibrium conditions for bound electron-hole pairs change drastically in the presence of strong disorder. It is predicted that strong disorder promotes dissociation of excitons in III--V semiconductor heterostructures. A theory of polariton (photon dressed by phonon) spontaneous emission in a III--V semiconductor doped with semiconductor quantum dots (QDs) or quantum wells (QWs) is developed. For the first time, superradiant and subradiant polariton spontaneous emission phenomena in a polariton-QD (QW) coupled system are predicted when the resonance energies of the two identical QDs (QWs) lie outside the polaritonic energy gap. It is also predicted that when the resonance energies of the two identical QDs (QWs) lie inside the polaritonic energy gap, spontaneous emission of polariton in the polariton

  4. Crafting semiconductor organic-inorganic nanocomposites via placing conjugated polymers in intimate contact with nanocrystals for hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lei; Lin, Zhiqun [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    2012-08-22

    Semiconductor organic-inorganic hybrid solar cells incorporating conjugated polymers (CPs) and nanocrystals (NCs) offer the potential to deliver efficient energy conversion with low-cost fabrication. The CP-based photovoltaic devices are complimented by an extensive set of advantageous characteristics from CPs and NCs, such as lightweight, flexibility, and solution-processability of CPs, combined with high electron mobility and size-dependent optical properties of NCs. Recent research has witnessed rapid advances in an emerging field of directly tethering CPs on the NC surface to yield an intimately contacted CP-NC nanocomposite possessing a well-defined interface that markedly promotes the dispersion of NCs within the CP matrix, facilitates the photoinduced charge transfer between these two semiconductor components, and provides an effective platform for studying the interfacial charge separation and transport. In this Review, we aim to highlight the recent developments in CP-NC nanocomposite materials, critically examine the viable preparative strategies geared to craft intimate CP-NC nanocomposites and their photovoltaic performance in hybrid solar cells, and finally provide an outlook for future directions of this extraordinarily rich field. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Semiconductor Physical Electronics

    CERN Document Server

    Li, Sheng

    2006-01-01

    Semiconductor Physical Electronics, Second Edition, provides comprehensive coverage of fundamental semiconductor physics that is essential to an understanding of the physical and operational principles of a wide variety of semiconductor electronic and optoelectronic devices. This text presents a unified and balanced treatment of the physics, characterization, and applications of semiconductor materials and devices for physicists and material scientists who need further exposure to semiconductor and photonic devices, and for device engineers who need additional background on the underlying physical principles. This updated and revised second edition reflects advances in semicondutor technologies over the past decade, including many new semiconductor devices that have emerged and entered into the marketplace. It is suitable for graduate students in electrical engineering, materials science, physics, and chemical engineering, and as a general reference for processing and device engineers working in the semicondi...

  6. Identification of an organic semiconductor superlattice structure of pentacene and perfluoro-pentacene through resonant and non-resonant X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kowarik, S.; Weber, C. [Humboldt-Universität zu Berlin, Institut für Physik, Newtonstr. 15, 12489 Berlin (Germany); Hinderhofer, A.; Gerlach, A.; Schreiber, F. [Universität Tübingen, Institut für Angewandte Physik, Auf der Morgenstelle 10, 72076 Tübingen (Germany); Wang, C.; Hexemer, A. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Leone, S. R. [Departments of Chemistry and Physics, University of California, and Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2015-11-15

    Highly crystalline and stable molecular superlattices are grown with the smallest possible stacking period using monolayers (MLs) of the organic semiconductors pentacene (PEN) and perfluoro-pentacene (PFP). Superlattice reflections in X-ray reflectivity and their energy dependence in resonant soft X-ray reflectivity measurements show that PFP and PEN MLs indeed alternate even though the coherent ordering is lost after ∼ 4 ML. The observed lattice spacing of 15.9 Å in the superlattice is larger than in pure PEN and PFP films, presumably because of more upright standing molecules and lack of interdigitation between the incommensurate crystalline PEN and PFP layers. The findings are important for the development of novel organic quantum optoelectronic devices.

  7. Identification of an organic semiconductor superlattice structure of pentacene and perfluoro-pentacene through resonant and non-resonant X-ray scattering

    Directory of Open Access Journals (Sweden)

    S. Kowarik

    2015-11-01

    Full Text Available Highly crystalline and stable molecular superlattices are grown with the smallest possible stacking period using monolayers (MLs of the organic semiconductors pentacene (PEN and perfluoro-pentacene (PFP. Superlattice reflections in X-ray reflectivity and their energy dependence in resonant soft X-ray reflectivity measurements show that PFP and PEN MLs indeed alternate even though the coherent ordering is lost after ∼ 4 ML. The observed lattice spacing of 15.9 Å in the superlattice is larger than in pure PEN and PFP films, presumably because of more upright standing molecules and lack of interdigitation between the incommensurate crystalline PEN and PFP layers. The findings are important for the development of novel organic quantum optoelectronic devices.

  8. Programmable and coherent crystallization of semiconductors

    KAUST Repository

    Yu, Liyang

    2017-03-04

    The functional properties and technological utility of polycrystalline materials are largely determined by the structure, geometry, and spatial distribution of their multitude of crystals. However, crystallization is seeded through stochastic and incoherent nucleation events, limiting the ability to control or pattern the microstructure, texture, and functional properties of polycrystalline materials. We present a universal approach that can program the microstructure of materials through the coherent seeding of otherwise stochastic homogeneous nucleation events. The method relies on creating topographic variations to seed nucleation and growth at designated locations while delaying nucleation elsewhere. Each seed can thus produce a coherent growth front of crystallization with a geometry designated by the shape and arrangement of seeds. Periodic and aperiodic crystalline arrays of functional materials, such as semiconductors, can thus be created on demand and with unprecedented sophistication and ease by patterning the location and shape of the seeds. This approach is used to demonstrate printed arrays of organic thin-film transistors with remarkable performance and reproducibility owing to their demonstrated spatial control over the microstructure of organic and inorganic polycrystalline semiconductors.

  9. Fundamentals of semiconductor devices

    CERN Document Server

    Lindmayer, Joseph

    1965-01-01

    Semiconductor properties ; semiconductor junctions or diodes ; transistor fundamentals ; inhomogeneous impurity distributions, drift or graded-base transistors ; high-frequency properties of transistors ; band structure of semiconductors ; high current densities and mechanisms of carrier transport ; transistor transient response and recombination processes ; surfaces, field-effect transistors, and composite junctions ; additional semiconductor characteristics ; additional semiconductor devices and microcircuits ; more metal, insulator, and semiconductor combinations for devices ; four-pole parameters and configuration rotation ; four-poles of combined networks and devices ; equivalent circuits ; the error function and its properties ; Fermi-Dirac statistics ; useful physical constants.

  10. EDITORIAL: Semiconductor lasers: the first fifty years Semiconductor lasers: the first fifty years

    Science.gov (United States)

    Calvez, S.; Adams, M. J.

    2012-09-01

    achievements in the June 1987 Special Issue of IEEE Journal of Quantum Electronics. The Millennium Issue of IEEE Journal of Selected Topics in Quantum Electronics presented a further set of articles on historical aspects of the subject as well as a 'snapshot' of current research in June 2000. It is not the intention here to duplicate any of this historical material that is already available, but rather to complement it with personal recollections from researchers who were involved in laser development in the USA, France, Russia and the UK. Hence, in addition to fascinating accounts of the discovery of the theoretical condition for stimulated emission from semiconductors and of the pioneering work at IBM, there are two complementary views of the laser research at the Lebedev Institute, and personal insights into the developments at STL and at Bell Laboratories. These are followed by an account of the scientific and technological connections between the early pioneering breakthroughs and the commercialisation of semiconductor laser products. Turning to the papers from today's researchers, there is coverage of many of the current 'hot' topics including quantum cascade lasers, mid-infrared lasers, high-power lasers, the exciting developments in understanding and exploiting the nonlinear dynamics of lasers, and photonic integrated circuits with extremely high communication data capacity, as well as reports of recent progress on laser materials such as dilute nitrides and bismides, photonic crystals, quantum dots and organic semiconductors. Thanks are due to Jarlath McKenna for sterling support from IOP Publishing and to Peter Blood for instigating this Special Issue and inviting us to serve as Guest Editors.

  11. Interlayer excitons in a bulk van der Waals semiconductor

    DEFF Research Database (Denmark)

    Arora, Ashish; Drueppel, Matthias; Schmidt, Robert

    2017-01-01

    Bound electron-hole pairs called excitons govern the electronic and optical response of many organic and inorganic semiconductors. Excitons with spatially displaced wave functions of electrons and holes (interlayer excitons) are important for Bose-Einstein condensation, superfluidity......, dissipationless current flow, and the light-induced exciton spin Hall effect. Here we report on the discovery of interlayer excitons in a bulk van der Waals semiconductor. They form due to strong localization and spin-valley coupling of charge carriers. By combining high-field magneto-reflectance experiments...

  12. Energy-level alignment at metal-organic and organic-organic interfaces

    NARCIS (Netherlands)

    Veenstra, Sjoerd; Jonkman, H.T.

    2003-01-01

    This article reports on the electronic structure at interfaces found in organic semiconductor devices. The studied organic materials are C-60 and poly (para-phenylenevinylene) (PPV)-like oligomers, and the metals are polycrystalline Au and Ag. To measure the energy levels at these interfaces,

  13. Photoelectron spectroscopy on doped organic semiconductors and related interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Olthof, Selina Sandra

    2010-06-08

    Using photoelectron spectroscopy, we show measurements of energy level alignment of organic semiconducting layers. The main focus is on the properties and the influence of doped layers. The investigations on the p-doping process in organic semiconductors show typical charge carrier concentrations up to 2.10{sup 20} cm{sup -3}. By a variation of the doping concentration, an over proportional influence on the position of the Fermi energy is observed. Comparing the number of charge carriers with the amount of dopants present in the layer, it is found that only 5% of the dopants undergo a full charge transfer. Furthermore, a detailed investigation of the density of states beyond the HOMO onset reveals that an exponentially decaying density of states reaches further into the band gap than commonly assumed. For an increasing amount of doping, the Fermi energy gets pinned on these states which suggests that a significant amount of charge carriers is present there. The investigation of metal top and bottom contacts aims at understanding the asymmetric current-voltage characteristics found for some symmetrically built device stacks. It can be shown that a reaction between the atoms from the top contact with the molecules of the layer leads to a change in energy level alignment that produces a 1.16 eV lower electron injection barrier from the top. Further detailed investigations on such contacts show that the formation of a silver top contact is dominated by diffusion processes, leading to a broadened interface. However, upon insertion of a thin aluminum interlayer this diffusion can be stopped and an abrupt interface is achieved. Furthermore, in the case of a thick silver top contact, a monolayer of molecules is found to oat on top of the metal layer, almost independent on the metal layer thickness. Finally, several device stacks are investigated, regarding interface dipoles, formation of depletion regions, energy alignment in mixed layers, and the influence of the built

  14. Organic optoelectronic materials

    CERN Document Server

    Li, Yongfang

    2015-01-01

    This volume reviews the latest trends in organic optoelectronic materials. Each comprehensive chapter allows graduate students and newcomers to the field to grasp the basics, whilst also ensuring that they have the most up-to-date overview of the latest research. Topics include: organic conductors and semiconductors; conducting polymers and conjugated polymer semiconductors, as well as their applications in organic field-effect-transistors; organic light-emitting diodes; and organic photovoltaics and transparent conducting electrodes. The molecular structures, synthesis methods, physicochemical and optoelectronic properties of the organic optoelectronic materials are also introduced and described in detail. The authors also elucidate the structures and working mechanisms of organic optoelectronic devices and outline fundamental scientific problems and future research directions. This volume is invaluable to all those interested in organic optoelectronic materials.

  15. Synthesis of Conjugated Small Molecules and Polymers by a Palladium Catalyzed Cyclopentannulation Strategy: Towards New Organic Semiconductors

    Science.gov (United States)

    Bheemireddy, Sambasiva Reddy

    The utility of conjugated small molecules and polymers as organic semiconductors have seen a tremendous growth in research and development in academia as well as industry because of their processability and flexibility advantages in comparison to inorganic semiconductors. The extensive research over the years has produced a large number of p-type (hole conducting) and n-type (electron conducting) semiconductors that can be used to construct organic electronic devices. Of these materials, p-type semiconductors are more established and extensively studied because of the ease of preparation as well as their better general stability in comparison to n-type materials. Despite recent research into the development of n-type materials, fullerene (C60 and C 70) and its derivatives are still the predominant materials used as electron acceptors for OPV applications. By taking advantage of the electron accepting behavior of cyclopenta[hi]aceanthrylene fragment of C70, we have designed and synthesized new materials based on cyclopenta-fused polycyclic aromatic hydrocarbons (CP-PAHs). By using a newly developed palladium catalyzed cyclopentannulation methodology, 1,2,6,7- tetraarylcyclopenta[hi]aceanthrylenes were prepared by treating diarylethynylenes with 9,10-dibromoanthracene. Scholl cyclodehydrogenation was used to close the externally fused aryl groups to provide access to contorted 2,7,13,18- tetraalkoxytetrabenzo[f,h,r,t]rubicenes. The contortion provides access to more soluble materials than their planar counterparts but still ii allows significant pi-pi stacking between molecules. Using a modified palladium catalyzed cyclopentannulation polymerization followed by a cyclodehydrogenation reaction, a nonconventional synthesis of CP-PAH embedded ladder polymers was also achieved. These ladder polymers possess broad UV-Vis absorptions and narrow optical gaps of 1.17-1.29 eV. The synthesis of new donor-acceptor copolymers incorporating electron accepting 1,2,6,7- tetra(4

  16. Quantum wells, wires and dots theoretical and computational physics of semiconductor nanostructures

    CERN Document Server

    Harrison, Paul

    2016-01-01

    Quantum Wells, Wires and Dots provides all the essential information, both theoretical and computational, to develop an understanding of the electronic, optical and transport properties of these semiconductor nanostructures. The book will lead the reader through comprehensive explanations and mathematical derivations to the point where they can design semiconductor nanostructures with the required electronic and optical properties for exploitation in these technologies. This fully revised and updated 4th edition features new sections that incorporate modern techniques and extensive new material including: - Properties of non-parabolic energy bands - Matrix solutions of the Poisson and Schrodinger equations - Critical thickness of strained materials - Carrier scattering by interface roughness, alloy disorder and impurities - Density matrix transport modelling -Thermal modelling Written by well-known authors in the field of semiconductor nanostructures and quantum optoelectronics, this user-friendly guide is pr...

  17. Compound Semiconductor Radiation Detector

    International Nuclear Information System (INIS)

    Kim, Y. K.; Park, S. H.; Lee, W. G.; Ha, J. H.

    2005-01-01

    In 1945, Van Heerden measured α, β and γ radiations with the cooled AgCl crystal. It was the first radiation measurement using the compound semiconductor detector. Since then the compound semiconductor has been extensively studied as radiation detector. Generally the radiation detector can be divided into the gas detector, the scintillator and the semiconductor detector. The semiconductor detector has good points comparing to other radiation detectors. Since the density of the semiconductor detector is higher than that of the gas detector, the semiconductor detector can be made with the compact size to measure the high energy radiation. In the scintillator, the radiation is measured with the two-step process. That is, the radiation is converted into the photons, which are changed into electrons by a photo-detector, inside the scintillator. However in the semiconductor radiation detector, the radiation is measured only with the one-step process. The electron-hole pairs are generated from the radiation interaction inside the semiconductor detector, and these electrons and charged ions are directly collected to get the signal. The energy resolution of the semiconductor detector is generally better than that of the scintillator. At present, the commonly used semiconductors as the radiation detector are Si and Ge. However, these semiconductor detectors have weak points. That is, one needs thick material to measure the high energy radiation because of the relatively low atomic number of the composite material. In Ge case, the dark current of the detector is large at room temperature because of the small band-gap energy. Recently the compound semiconductor detectors have been extensively studied to overcome these problems. In this paper, we will briefly summarize the recent research topics about the compound semiconductor detector. We will introduce the research activities of our group, too

  18. Solid spectroscopy: semiconductors

    International Nuclear Information System (INIS)

    Silva, C.E.T.G. da

    1983-01-01

    Photoemission as technique of study of the semiconductor electronic structure is shortly discussed. Homogeneous and heterogeneous semiconductors, where volume and surface electronic structure, core levels and O and H chemisorption in GaAs, Schottky barrier are treated, respectively. Amorphous semiconductors are also discussed. (L.C.) [pt

  19. Set shifting and visuospatial organization deficits in body dysmorphic disorder.

    Science.gov (United States)

    Greenberg, Jennifer L; Weingarden, Hilary; Reuman, Lillian; Abrams, Dylan; Mothi, Suraj S; Wilhelm, Sabine

    2017-11-24

    Individuals with body dysmorphic disorder (BDD) over-attend to perceived defect(s) in their physical appearance, often becoming "stuck" obsessing about perceived flaws and engaging in rituals to hide flaws. These symptoms suggest that individuals with BDD may experience deficits in underlying neurocognitive functions, such as set-shifting and visuospatial organization. These deficits have been implicated as risk and maintenance factors in disorders with similarities to BDD but have been minimally investigated in BDD. The present study examined differences in neurocognitive functions among BDD participants (n = 20) compared to healthy controls (HCs; n = 20). Participants completed neuropsychological assessments measuring set-shifting (Cambridge Neuropsychological Test Automated Battery Intra-Extra Dimensional Set Shift [IED] task) and visuospatial organization and memory (Rey-Osterrieth Complex Figure Test [ROCF]). Results revealed a set-shifting deficit among BDD participants compared to HCs on the IED. On the ROCF, BDD participants exhibited deficits in visuospatial organization compared to HCs, but they did not differ in visuospatial memory compared to HCs. Results did not change when accounting for depression severity. Findings highlight neurocognitive deficits as potential endophenotype markers of clinical features (i.e., delusionality). Understanding neuropsychological deficits may clarify similarities and differences between BDD and related disorders and may guide targets for BDD treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Method of manufacturing a semiconductor device and semiconductor device obtained with such a method

    NARCIS (Netherlands)

    2008-01-01

    The invention relates to a method of manufacturing a semiconductor device (10) with a semiconductor body (1) which is provided with at least one semiconductor element, wherein on the surface of the semiconductor body (1) a mesa- shaped semiconductor region (2) is formed, a masking layer (3) is

  1. Problems of linear electron (polaron) transport theory in semiconductors

    CERN Document Server

    Klinger, M I

    1979-01-01

    Problems of Linear Electron (Polaron) Transport Theory in Semiconductors summarizes and discusses the development of areas in electron transport theory in semiconductors, with emphasis on the fundamental aspects of the theory and the essential physical nature of the transport processes. The book is organized into three parts. Part I focuses on some general topics in the theory of transport phenomena: the general dynamical theory of linear transport in dissipative systems (Kubo formulae) and the phenomenological theory. Part II deals with the theory of polaron transport in a crystalline semicon

  2. Where science fiction meets reality? With oxide semiconductors.

    Energy Technology Data Exchange (ETDEWEB)

    Fortunato, E.; Martins, R. [CENIMAT/I3N, Departamento de Ciencia dos Materiais, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa, CEMOP-UNINOVA, 2829-516 Caparica (Portugal)

    2011-09-15

    Transparent electronics is today one of the most advanced topics for a wide range of device applications, where the key components are wide band gap semiconductors, where oxides of different origin play an important role, not only as passive components but also as active components similar to what we observe in conventional semiconductors. As passive components they include the use of these materials as dielectrics for a wide range of electronic devices and also as transparent electrical conductors for use in several optoelectronic applications, such as liquid crystal displays, organic light emitting diodes, solar cells, optical sensors etc. As active materials, they exploit the use of truly electronic semiconductors where the main emphasis is being put on transparent thin film transistors, light emitting diodes, lasers, ultraviolet sensors and integrated circuits among others. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors

    Science.gov (United States)

    Schöll, Eckehard

    2005-08-01

    Nonlinear transport phenomena are an increasingly important aspect of modern semiconductor research. This volume deals with complex nonlinear dynamics, pattern formation, and chaotic behavior in such systems. It bridges the gap between two well-established fields: the theory of dynamic systems and nonlinear charge transport in semiconductors. This unified approach helps reveal important electronic transport instabilities. The initial chapters lay a general framework for the theoretical description of nonlinear self-organized spatio-temporal patterns, such as current filaments, field domains, fronts, and analysis of their stability. Later chapters consider important model systems in detail: impact ionization induced impurity breakdown, Hall instabilities, superlattices, and low-dimensional structures. State-of-the-art results include chaos control, spatio-temporal chaos, multistability, pattern selection, activator-inhibitor kinetics, and global coupling, linking fundamental issues to electronic device applications. This book will be of great value to semiconductor physicists and nonlinear scientists alike.

  4. Bio Organic-Semiconductor Field-Effect Transistor (BioFET) Based on Deoxyribonucleic Acid (DNA) Gate Dielectric

    Science.gov (United States)

    2010-03-31

    floating gate devices and metal-insulator-oxide-semiconductor (MIOS) devices. First attempts to use polarizable gate insulators in combination with...bulk of the semiconductor (ii) Due to the polarizable gate dielectric (iii) dipole polarization and (iv)electret effect due to mobile ions in the...characterization was carried out under an argon environment inside the glove box. An Agilent model E5273A with a two source-measurement unit instrument was

  5. Contacts to semiconductors

    International Nuclear Information System (INIS)

    Tove, P.A.

    1975-08-01

    Contacts to semiconductors play an important role in most semiconductor devices. These devices range from microelectronics to power components, from high-sensitivity light or radiation detectors to light-emitting of microwave-generating components. Silicon is the dominating material but compound semiconductors are increasing in importance. The following survey is an attempt to classify contact properties and the physical mechanisms involved, as well as fabrication methods and methods of investigation. The main interest is in metal-semiconductor type contacts where a few basic concepts are dealt with in some detail. (Auth.)

  6. Organic semiconductor rubrene thin films deposited by pulsed laser evaporation of solidified solutions

    Science.gov (United States)

    Majewska, N.; Gazda, M.; Jendrzejewski, R.; Majumdar, S.; Sawczak, M.; Śliwiński, G.

    2017-08-01

    Organic semiconductor rubrene (C42H28) belongs to most preferred spintronic materials because of the high charge carrier mobility up to 40 cm2(V·s)-1. However, the fabrication of a defect-free, polycrystalline rubrene for spintronic applications represents a difficult task. We report preparation and properties of rubrene thin films deposited by pulsed laser evaporation of solidified solutions. Samples of rubrene dissolved in aromatic solvents toluene, xylene, dichloromethane and 1,1-dichloroethane (0.23-1% wt) were cooled to temperatures in the range of 16.5-163 K and served as targets. The target ablation was provided by a pulsed 1064 nm or 266 nm laser. For films of thickness up to 100 nm deposited on Si, glass and ITO glass substrates, the Raman and AFM data show presence of the mixed crystalline and amorphous rubrene phases. Agglomerates of rubrene crystals are revealed by SEM observation too, and presence of oxide/peroxide (C42H28O2) in the films is concluded from matrix-assisted laser desorption/ionization time-of-flight spectroscopic analysis.

  7. Semiconductor spintronics

    International Nuclear Information System (INIS)

    Fabian, J.; Abiague, A.M.; Ertler, Ch.; Stano, P.; Zutic, I.

    2007-01-01

    Spintronics refers commonly to phenomena in which the spin of electrons in a solid state environment plays the determining role. In a more narrow sense spintronics is an emerging research field of electronics: spintronics devices are based on a spin control of electronics, or on an electrical and optical control of spin of magnetism. While metal spintronics has already found its niche in the computer industry - giant magnetoresistance systems are used as hard disk read heads - semiconductor spintronics is vet demonstrate its full potential. This review presents selected themes of semiconductor spintronics, introducing important concepts in spin transport, spin transport, spin injection. Silsbee-Johnson spin-charge coupling, and spin-dependent tunneling, as well as spin relaxation and spin dynamics. The most fundamental spin-dependent interaction in nonmagnetic semiconductors is spin-orbit coupling. Depending on the crystal symmetries of the material, as well as on the structural properties of semiconductor based heterostructures, the spin-orbit coupling takes on different functional forms, giving a nice playground of effective spin-orbit Hamiltonians. The effective Hamiltonians for the most relevant classes of materials and heterostructures are derived here from realistic electronic band structure descriptions. Most semiconductor device systems are still theoretical concepts, waiting for experimental demonstrations. A review of selected proposed, and a few demonstrated devices is presented, with detailed description of two important classes: magnetic resonant tunnel structures and bipolar magnetic diodes and transistors. In view of the importance of ferromagnetic semiconductor material, a brief discussion of diluted magnetic semiconductors is included. In most cases the presentation is of tutorial style, introducing the essential theoretical formalism at an accessible level, with case-study-like illustrations of actual experimental results, as well as with brief

  8. Method of manufacturing a semiconductor sensor device and semiconductor sensor device

    NARCIS (Netherlands)

    2009-01-01

    The invention relates to a method of manufacturing a semiconductor sensor device (10) for sensing a substance comprising a plurality of mutually parallel mesa-shaped semiconductor regions (1) which are formed on a surface of a semiconductor body (11) and which are connected at a first end to a first

  9. Studies on applications of functional organic-thin-films for lithography on semiconductor device production

    International Nuclear Information System (INIS)

    Ogawa, Kazufumi

    1988-12-01

    This report describes some experimental results of studies in an attempt to contribute to the development of ultra-fine lithography which is used for the manufacture of semiconductor devices with design rule below 0.5 μm, and contains (1) manufacture of the exposure apparatus, (2) establishment of the resist process technology, and (3) preparation of the resist materials. The author designed and manufactured the KrF excimer laser stepper which is supposed to be most promising for practical uses. In the resist processing technology, the water-soluble contrast enhanced lithography (CEL) process was developed and this process has advantages is that high pattern contrast and large focus depth latitude were easily obtained. Finally, for resist materials, use of Langmuir-Blodgett (LB) films was investigated since the LB technique provides the method to prepare extremely thin organic films which are uniform in molecular level, and the reaction mechanism of the LB films of unsaturated compounds under irradiation with high energy beams was elucidated. (author)

  10. Semiconductor statistics

    CERN Document Server

    Blakemore, J S

    1987-01-01

    In-depth exploration of the implications of carrier populations and Fermi energies examines distribution of electrons in energy bands and impurity levels of semiconductors. Also: kinetics of semiconductors containing excess carriers, particularly in terms of trapping, excitation, and recombination.

  11. Semiconductor laser shearing interferometer

    International Nuclear Information System (INIS)

    Ming Hai; Li Ming; Chen Nong; Xie Jiaping

    1988-03-01

    The application of semiconductor laser on grating shearing interferometry is studied experimentally in the present paper. The method measuring the coherence of semiconductor laser beam by ion etching double frequency grating is proposed. The experimental result of lens aberration with semiconductor laser shearing interferometer is given. Talbot shearing interferometry of semiconductor laser is also described. (author). 2 refs, 9 figs

  12. Measuring the lateral charge-carrier mobility in metal-insulator-semiconductor capacitors via Kelvin-probe.

    Science.gov (United States)

    Milotti, Valeria; Pietsch, Manuel; Strunk, Karl-Philipp; Melzer, Christian

    2018-01-01

    We report a Kelvin-probe method to investigate the lateral charge-transport properties of semiconductors, most notably the charge-carrier mobility. The method is based on successive charging and discharging of a pre-biased metal-insulator-semiconductor stack by an alternating voltage applied to one edge of a laterally confined semiconductor layer. The charge carriers spreading along the insulator-semiconductor interface are directly measured by a Kelvin-probe, following the time evolution of the surface potential. A model is presented, describing the device response for arbitrary applied biases allowing the extraction of the lateral charge-carrier mobility from experimentally measured surface potentials. The method is tested using the organic semiconductor poly(3-hexylthiophene), and the extracted mobilities are validated through current voltage measurements on respective field-effect transistors. Our widely applicable approach enables robust measurements of the lateral charge-carrier mobility in semiconductors with weak impact from the utilized contact materials.

  13. Measuring the lateral charge-carrier mobility in metal-insulator-semiconductor capacitors via Kelvin-probe

    Science.gov (United States)

    Milotti, Valeria; Pietsch, Manuel; Strunk, Karl-Philipp; Melzer, Christian

    2018-01-01

    We report a Kelvin-probe method to investigate the lateral charge-transport properties of semiconductors, most notably the charge-carrier mobility. The method is based on successive charging and discharging of a pre-biased metal-insulator-semiconductor stack by an alternating voltage applied to one edge of a laterally confined semiconductor layer. The charge carriers spreading along the insulator-semiconductor interface are directly measured by a Kelvin-probe, following the time evolution of the surface potential. A model is presented, describing the device response for arbitrary applied biases allowing the extraction of the lateral charge-carrier mobility from experimentally measured surface potentials. The method is tested using the organic semiconductor poly(3-hexylthiophene), and the extracted mobilities are validated through current voltage measurements on respective field-effect transistors. Our widely applicable approach enables robust measurements of the lateral charge-carrier mobility in semiconductors with weak impact from the utilized contact materials.

  14. Materials and devices with applications in high-end organic transistors

    International Nuclear Information System (INIS)

    Takeya, J.; Uemura, T.; Sakai, K.; Okada, Y.

    2014-01-01

    The development of functional materials typically benefits from an understanding of the microscopic mechanisms by which those materials operate. To accelerate the development of organic semiconductor devices with industrial applications in flexible and printed electronics, it is essential to elucidate the mechanisms of charge transport associated with molecular-scale charge transfer. In this study, we employed Hall effect measurements to differentiate coherent band transport from site-to-site hopping. The results of tests using several different molecular systems as the active semiconductor layers demonstrate that high-mobility charge transport in recently-developed solution-crystallized organic transistors is the result of a band-like mechanism. These materials, which have the potential to be organic transistors exhibiting the highest speeds ever obtained, are significantly different from the conventional lower-mobility organic semiconductors with incoherent hopping-like transport mechanisms which were studied in the previous century. They may be categorized as “high-end” organic semiconductors, characterized by their coherent electronic states and high values of mobility which are close to or greater than 10 cm 2 /Vs. - Highlights: • Transport in high-mobility solution-crystallized organic transistors is band-like. • High-end organic semiconductors carry coherent electrons with mobility > 10 cm 2 /Vs. • Hall-effect measurement differentiates coherent band transport from hopping. • We found an anomalous pressure effect in organic semiconductors

  15. Experimental and modeling study of the capacitance-voltage characteristics of metal-insulator-semiconductor capacitor based on pentacene/parylene

    KAUST Repository

    Wondmagegn, Wudyalew T.; Satyala, Nikhil T.; Mejia, Israel I.; Mao, Duo; Gowrisanker, Srinivas; Alshareef, Husam N.; Stiegler, Harvey J.; Quevedo-Ló pez, Manuel Angel Quevedo; Pieper, Ron J.; Gnade, Bruce E.

    2011-01-01

    The capacitance-voltage (C-V) characteristics of metal-insulator- semiconductor (MIS) capacitors consisting of pentacene as an organic semiconductor and parylene as the dielectric have been investigated by experimental, analytical, and numerical

  16. Quantum Electrodynamics with Semiconductor Quantum Dots Coupled to Anderson‐localized Random Cavities

    DEFF Research Database (Denmark)

    Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren

    2011-01-01

    of the spontaneous emission decay rate by up to a factor 15 and an efficiency of channeling single photons into Anderson-localized modes reaching values as high as 94%. These results prove that disordered photonic media provide an efficient platform for quantum electrodynamics, offering a novel route to quantum......We demonstrate that the spontaneous emission decay rate of semiconductor quantum dots can be strongly modified by the coupling to disorder-induced Anderson-localized photonic modes. We experimentally measure, by means of time-resolved photoluminescence spectroscopy, the enhancement...

  17. Organic field-effect transistors using single crystals

    International Nuclear Information System (INIS)

    Hasegawa, Tatsuo; Takeya, Jun

    2009-01-01

    Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20-40 cm 2 Vs -1 , achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps. (topical review)

  18. Interplay between hopping and band transport in high-mobility disordered semiconductors at large carrier concentrations: The case of the amorphous oxide InGaZnO

    Science.gov (United States)

    Fishchuk, I. I.; Kadashchuk, A.; Bhoolokam, A.; de Jamblinne de Meux, A.; Pourtois, G.; Gavrilyuk, M. M.; Köhler, A.; Bässler, H.; Heremans, P.; Genoe, J.

    2016-05-01

    We suggest an analytic theory based on the effective medium approximation (EMA) which is able to describe charge-carrier transport in a disordered semiconductor with a significant degree of degeneration realized at high carrier concentrations, especially relevant in some thin-film transistors (TFTs), when the Fermi level is very close to the conduction-band edge. The EMA model is based on special averaging of the Fermi-Dirac carrier distributions using a suitably normalized cumulative density-of-state distribution that includes both delocalized states and the localized states. The principal advantage of the present model is its ability to describe universally effective drift and Hall mobility in heterogeneous materials as a function of disorder, temperature, and carrier concentration within the same theoretical formalism. It also bridges a gap between hopping and bandlike transport in an energetically heterogeneous system. The key assumption of the model is that the charge carriers move through delocalized states and that, in addition to the tail of the localized states, the disorder can give rise to spatial energy variation of the transport-band edge being described by a Gaussian distribution. It can explain a puzzling observation of activated and carrier-concentration-dependent Hall mobility in a disordered system featuring an ideal Hall effect. The present model has been successfully applied to describe experimental results on the charge transport measured in an amorphous oxide semiconductor, In-Ga-Zn-O (a-IGZO). In particular, the model reproduces well both the conventional Meyer-Neldel (MN) compensation behavior for the charge-carrier mobility and inverse-MN effect for the conductivity observed in the same a-IGZO TFT. The model was further supported by ab initio calculations revealing that the amorphization of IGZO gives rise to variation of the conduction-band edge rather than to the creation of localized states. The obtained changes agree with the one we

  19. Electronic Properties of Metallic Nanoclusters on Semiconductor Surfaces: Implications for Nanoelectronic Device Applications

    International Nuclear Information System (INIS)

    Lee, Takhee; Liu Jia; Chen, N.-P.; Andres, R.P.; Janes, D.B.; Reifenberger, R.

    2000-01-01

    We review current research on the electronic properties of nanoscale metallic islands and clusters deposited on semiconductor substrates. Reported results for a number of nanoscale metal-semiconductor systems are summarized in terms of their fabrication and characterization. In addition to the issues faced in large-area metal-semiconductor systems, nano-systems present unique challenges in both the realization of well-controlled interfaces at the nanoscale and the ability to adequately characterize their electrical properties. Imaging by scanning tunneling microscopy as well as electrical characterization by current-voltage spectroscopy enable the study of the electrical properties of nanoclusters/semiconductor systems at the nanoscale. As an example of the low-resistance interfaces that can be realized, low-resistance nanocontacts consisting of metal nanoclusters deposited on specially designed ohmic contact structures are described. To illustrate a possible path to employing metal/semiconductor nanostructures in nanoelectronic applications, we also describe the fabrication and performance of uniform 2-D arrays of such metallic clusters on semiconductor substrates. Using self-assembly techniques involving conjugated organic tether molecules, arrays of nanoclusters have been formed in both unpatterned and patterned regions on semiconductor surfaces. Imaging and electrical characterization via scanning tunneling microscopy/spectroscopy indicate that high quality local ordering has been achieved within the arrays and that the clusters are electronically coupled to the semiconductor substrate via the low-resistance metal/semiconductor interface

  20. Electronic properties of semiconductor heterostructures

    International Nuclear Information System (INIS)

    Einevoll, G.T.

    1991-02-01

    Ten papers on the electronic properties of semiconductors and semiconductor heterostructures constitute the backbone of this thesis. Four papers address the form and validity of the single-band effective mass approximation for semiconductor heterostructures. In four other papers properties of acceptor states in bulk semiconductors and semiconductor heterostructures are studied using the novel effective bond-orbital model. The last two papers deal with localized excitions. 122 refs

  1. Effect of disorder and defects in ion-implanted semiconductors optical and photothermal characterization

    CERN Document Server

    Willardson, R K; Christofides, Constantinos; Ghibaudo, Gerard

    1997-01-01

    Defects in ion-implanted semiconductors are important and will likely gain increased importance as annealing temperatures are reduced with successive IC generations. Novel implant approaches, such as MdV implantation, create new types of defects whose origin and annealing characteristics will need to be addressed. Publications in this field mainly focus on the effects of ion implantation on the material and the modification in the implanted layer after high temperature annealing. The editors of this volume and Volume 45 focus on the physics of the annealing kinetics of the damaged layer. An overview of characterization tehniques and a critical comparison of the information on annealing kinetics is also presented. Key Features * Provides basic knowledge of ion implantation-induced defects * Focuses on physical mechanisms of defect annealing * Utilizes electrical, physical, and optical characterization tools for processed semiconductors * Provides the basis for understanding the problems caused by the defects g...

  2. Nanostructured pyronin Y thin films as a new organic semiconductor: Linear/nonlinear optics, band gap and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Zahran, H.Y. [Metallurgical Lab.1, Nanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA), Semiconductor Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt); Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Yahia, I.S., E-mail: dr_isyahia@yahoo.com [Metallurgical Lab.1, Nanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA), Semiconductor Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt); Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Alamri, F.H. [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia)

    2017-05-15

    Pyronin Y dye (PY) is a kind of xanthene derivatives. Thin films of pyronin Y were deposited onto highly cleaned glass substrates using low-cost/spin coating technique. The structure properties of pyronin Y thin films with different thicknesses were investigated by using X-ray diffraction (XRD) and atomic force microscope (AFM). PY thin films for all the studied thicknesses have an amorphous structure supporting the short range order of the grain size. AFM supports the nanostructure with spherical/clusters morphologies of the investigated thin films. The optical constants of pyronin Y thin films for various thicknesses were studied by using UV–vis–NIR spectrophotometer in the wavelength range 350–2500 nm. The transmittance T(λ), reflectance R(λ) spectral and absorbance (abs(λ)) were obtained for all film thicknesses at room temperature and the normal light incident. These films showed a high transmittance in the wide scale wavelengths. For different thicknesses of the studied thin films, the optical band gaps were determined and their values around 2 eV. Real and imaginary dielectric constants, dissipation factor and the nonlinear optical parameters were calculated in the wavelengths to the range 300–2500 nm. The pyronin Y is a new organic semiconductor with a good optical absorption in UV–vis regions and it is suitable for nonlinear optical applications. - Highlights: • Pyronin Y (PY) nanostructured thin films were deposited by using spin coating technique. • XRD/AFM were used to study the structure of PY films. • The optical band gap was calculated on the basis of Tauc's model. • Linear/nonlinear optical parameters are calculated and interpreted via the applied optical theories. • PY thin films is a new organic semiconductor for its application in optoelectronic devices.

  3. the organizing principle at the interface of biological (dis)order

    Indian Academy of Sciences (India)

    Complexity: the organizing principle at the interface of biological (dis)order ... in a quantifiable fashion, as the amount of information, an informatic template ... We propose that the complexity of living systems can be understood through two ...

  4. High-resolution photoluminescence studies of single semiconductor quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Østergaard, John Erland; Jensen, Jacob Riis

    2000-01-01

    Semiconductor quantum dots, especially those formed by self-organized growth, are considered a promising material system for future optical devices [1] and the optical properties of quantum dot ensembles have been investigated in detail over the past years. Recently, considerable interest has...

  5. Direct observation of triplet energy transfer from semiconductor nanocrystals.

    Science.gov (United States)

    Mongin, Cédric; Garakyaraghi, Sofia; Razgoniaeva, Natalia; Zamkov, Mikhail; Castellano, Felix N

    2016-01-22

    Triplet excitons are pervasive in both organic and inorganic semiconductors but generally remain confined to the material in which they originate. We demonstrated by transient absorption spectroscopy that cadmium selenide semiconductor nanoparticles, selectively excited by green light, engage in interfacial Dexter-like triplet-triplet energy transfer with surface-anchored polyaromatic carboxylic acid acceptors, extending the excited-state lifetime by six orders of magnitude. Net triplet energy transfer also occurs from surface acceptors to freely diffusing molecular solutes, further extending the lifetime while sensitizing singlet oxygen in an aerated solution. The successful translation of triplet excitons from semiconductor nanoparticles to the bulk solution implies that such materials are generally effective surrogates for molecular triplets. The nanoparticles could thereby potentially sensitize a range of chemical transformations that are relevant for fields as diverse as optoelectronics, solar energy conversion, and photobiology. Copyright © 2016, American Association for the Advancement of Science.

  6. Fermi level dependent native defect formation: Consequences for metal-semiconductor and semiconductor-semiconductor interfaces

    International Nuclear Information System (INIS)

    Walukiewicz, W.

    1988-02-01

    The amphoteric native defect model of the Schottky barrier formation is used to analyze the Fermi level pinning at metal/semiconductor interfaces for submonolayer metal coverages. It is assumed that the energy required for defect generation is released in the process of surface back-relaxation. Model calculations for metal/GaAs interfaces show a weak dependence of the Fermi level pinning on the thickness of metal deposited at room temperature. This weak dependence indicates a strong dependence of the defect formation energy on the Fermi level, a unique feature of amphoteric native defects. This result is in very good agreement with experimental data. It is shown that a very distinct asymmetry in the Fermi level pinning on p- and n-type GaAs observed at liquid nitrogen temperatures can be understood in terms of much different recombination rates for amphoteric native defects in those two types of materials. Also, it is demonstrated that the Fermi level stabilization energy, a central concept of the amphoteric defect system, plays a fundamental role in other phenomena in semiconductors such as semiconductor/semiconductor heterointerface intermixing and saturation of free carrier concentration. 33 refs., 6 figs

  7. Semiconductor spintronics

    CERN Document Server

    Xia, Jianbai; Chang, Kai

    2012-01-01

    Semiconductor Spintronics, as an emerging research discipline and an important advanced field in physics, has developed quickly and obtained fruitful results in recent decades. This volume is the first monograph summarizing the physical foundation and the experimental results obtained in this field. With the culmination of the authors' extensive working experiences, this book presents the developing history of semiconductor spintronics, its basic concepts and theories, experimental results, and the prospected future development. This unique book intends to provide a systematic and modern foundation for semiconductor spintronics aimed at researchers, professors, post-doctorates, and graduate students, and to help them master the overall knowledge of spintronics.

  8. Neutron detection using boron gallium nitride semiconductor material

    Directory of Open Access Journals (Sweden)

    Katsuhiro Atsumi

    2014-03-01

    Full Text Available In this study, we developed a new neutron-detection device using a boron gallium nitride (BGaN semiconductor in which the B atom acts as a neutron converter. BGaN and gallium nitride (GaN samples were grown by metal organic vapor phase epitaxy, and their radiation detection properties were evaluated. GaN exhibited good sensitivity to α-rays but poor sensitivity to γ-rays. Moreover, we confirmed that electrons were generated in the depletion layer under neutron irradiation. This resulted in a neutron-detection signal after α-rays were generated by the capture of neutrons by the B atoms. These results prove that BGaN is useful as a neutron-detecting semiconductor material.

  9. Method of doping a semiconductor

    International Nuclear Information System (INIS)

    Yang, C.Y.; Rapp, R.A.

    1983-01-01

    A method is disclosed for doping semiconductor material. An interface is established between a solid electrolyte and a semiconductor to be doped. The electrolyte is chosen to be an ionic conductor of the selected impurity and the semiconductor material and electrolyte are jointly chosen so that any compound formed from the impurity and the semiconductor will have a free energy no lower than the electrolyte. A potential is then established across the interface so as to allow the impurity ions to diffuse into the semiconductor. In one embodiment the semiconductor and electrolyte may be heated so as to increase the diffusion coefficient

  10. Low dielectric constant-based organic field-effect transistors and metal-insulator-semiconductor capacitors

    Science.gov (United States)

    Ukah, Ndubuisi Benjamin

    This thesis describes a study of PFB and pentacene-based organic field-effect transistors (OFET) and metal-insulator-semiconductor (MIS) capacitors with low dielectric constant (k) poly(methyl methacrylate) (PMMA), poly(4-vinyl phenol) (PVP) and cross-linked PVP (c-PVP) gate dielectrics. A physical method -- matrix assisted pulsed laser evaporation (MAPLE) -- of fabricating all-polymer field-effect transistors and MIS capacitors that circumvents inherent polymer dissolution and solvent-selectivity problems, is demonstrated. Pentacene-based OFETs incorporating PMMA and PVP gate dielectrics usually have high operating voltages related to the thickness of the dielectric layer. Reduced PMMA layer thickness (≤ 70 nm) was obtained by dissolving the PMMA in propylene carbonate (PC). The resulting pentacene-based transistors exhibited very low operating voltage (below -3 V), minimal hysteresis in their transfer characteristics, and decent electrical performance. Also low voltage (within -2 V) operation using thin (≤ 80 nm) low-k and hydrophilic PVP and c-PVP dielectric layers obtained via dissolution in high dipole moment and high-k solvents -- PC and dimethyl sulfoxide (DMSO), is demonstrated to be a robust means of achieving improved electrical characteristics and high operational stability in OFETs incorporating PVP and c-PVP dielectrics.

  11. Quantum interference measurement of spin interactions in a bio-organic/semiconductor device structure

    Science.gov (United States)

    Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; Heremans, Jean J.

    2015-03-01

    Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biological functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.

  12. Substrate effects on the formation of flat Ag films on (110) surfaces of III-V compound semiconductors

    International Nuclear Information System (INIS)

    Chao, K.; Zhang, Z.; Ebert, P.; Shih, C.K.

    1999-01-01

    Ag films grown at 135 K on (110) surfaces of III-V compound semiconductors and annealed at room temperature are investigated by scanning tunneling microscopy and low-energy electron diffraction. Ag films on Ga-V semiconductors are well ordered, atomically flat, and exhibit a specific critical thickness, which is a function of the substrate material. Films grown on In-V semiconductors are still rather flat, but significantly more disordered. The (111) oriented Ag films on III-arsenides and III-phosphides exhibit a clear twofold superstructure. Films on III-antimonides exhibit threefold low-energy electron diffraction images. The morphology of the Ag films can be explained on the basis of the electronic growth mechanism. copyright 1999 The American Physical Society

  13. In situ UV-visible absorption during spin-coating of organic semiconductors: A new probe for organic electronics and photovoltaics

    KAUST Repository

    Abdelsamie, Maged

    2014-01-01

    Spin-coating is the most commonly used technique for the lab-scale production of solution processed organic electronic, optoelectronic and photovoltaic devices. Spin-coating produces the most efficient solution-processed organic solar cells and has been the preferred approach for rapid screening and optimization of new organic semiconductors and formulations for electronic and optoelectronic applications, both in academia and in industrial research facilities. In this article we demonstrate, for the first time, a spin-coating experiment monitored in situ by time resolved UV-visible absorption, the most commonly used, simplest, most direct and robust optical diagnostic tool used in organic electronics. In the first part, we successfully monitor the solution-to-solid phase transformation and thin film formation of poly(3-hexylthiophene) (P3HT), the de facto reference conjugated polymer in organic electronics and photovoltaics. We do so in two scenarios which differ by the degree of polymer aggregation in solution, prior to spin-coating. We find that a higher degree of aggregation in the starting solution results in small but measurable differences in the solid state, which translate into significant improvements in the charge carrier mobility of organic field-effect transistors (OFET). In the second part, we monitor the formation of a bulk heterojunction photoactive layer based on a P3HT-fullerene blend. We find that the spin-coating conditions that lead to slower kinetics of thin film formation favour a higher degree of polymer aggregation in the solid state and increased conjugation length along the polymer backbone. Using this insight, we devise an experiment in which the spin-coating process is interrupted prematurely, i.e., after liquid ejection is completed and before the film has started to form, so as to dramatically slow the thin film formation kinetics, while maintaining the same thickness and uniformity. These changes yield substantial improvements to the

  14. Preparative semiconductor photoredox catalysis: An emerging theme in organic synthesis

    Directory of Open Access Journals (Sweden)

    David W. Manley

    2015-09-01

    Full Text Available Heterogeneous semiconductor photoredox catalysis (SCPC, particularly with TiO2, is evolving to provide radically new synthetic applications. In this review we describe how photoactivated SCPCs can either (i interact with a precursor that donates an electron to the semiconductor thus generating a radical cation; or (ii interact with an acceptor precursor that picks up an electron with production of a radical anion. The radical cations of appropriate donors convert to neutral radicals usually by loss of a proton. The most efficient donors for synthetic purposes contain adjacent functional groups such that the neutral radicals are resonance stabilized. Thus, ET from allylic alkenes and enol ethers generated allyl type radicals that reacted with 1,2-diazine or imine co-reactants to yield functionalized hydrazones or benzylanilines. SCPC with tertiary amines enabled electron-deficient alkenes to be alkylated and furoquinolinones to be accessed. Primary amines on their own led to self-reactions involving C–N coupling and, with terminal diamines, cyclic amines were produced. Carboxylic acids were particularly fruitful affording C-centered radicals that alkylated alkenes and took part in tandem addition cyclizations producing chromenopyrroles; decarboxylative homo-dimerizations were also observed. Acceptors initially yielding radical anions included nitroaromatics and aromatic iodides. The latter led to hydrodehalogenations and cyclizations with suitable precursors. Reductive SCPC also enabled electron-deficient alkenes and aromatic aldehydes to be hydrogenated without the need for hydrogen gas.

  15. Real space renormalization tecniques for disordered systems

    International Nuclear Information System (INIS)

    Anda, E.V.

    1984-01-01

    Real space renormalization techniques are applied to study different disordered systems, with an emphasis on the understanding of the electronic properties of amorphous matter, mainly semiconductors. (Authors) [pt

  16. Ordering-induced changes in the optical spectra of semiconductor alloys

    International Nuclear Information System (INIS)

    Bernard, J.E.; Wei, S.; Wood, D.M.; Zunger, A.

    1988-01-01

    It is shown how the recently predicted and subsequently observed spontaneous long-range ordering of pseudobinary A/sub 0.5/B/sub 0.5/C isovalent semiconductor alloys into the (AC) 1 (BC) 1 superlattice structure (a CuAuI-type crystal) gives rise to characteristic changes in the optical and photoemission spectra. We predict new direct transitions and substantial splittings of transitions absent in the disordered alloy

  17. Hybrid-organic photodetectors for radiography. Final report

    International Nuclear Information System (INIS)

    Schmidt, Oliver; Bonrad, Klaus; Adam, Jens; Kraus, Tobias; Gimmler, Christoph

    2016-02-01

    HOP-X aimed to combine the advantages of nanotechnology and organic electronics for application in medical X-ray imaging in order to enable more cost-effective imaging at lower dose. Solution-processing of organic semiconductors enables easy hybridization with X-ray absorbers and processing on large areas. In this project, nano-sized scintillators and quantum dots have been synthesized and characterized as X-ray absorbers. Organic semiconductor materials have been identified which allow charge carrier extraction from layers with a thickness of up to 200 μm. Hybrid-organic photodiodes have been processed and the ideal mixture of organic semiconductor and inorganic X-ray absorber was determined. This mixture provide a high X-ray absorption and an efficient charge carrier extraction at the same time. Photodiodes have been integrated on TFT-matrix backplanes in order to demonstrate the concept in X-ray imagers.

  18. Semiconductor industry wafer fab exhaust management

    CERN Document Server

    Sherer, Michael J

    2005-01-01

    Given the myriad exhaust compounds and the corresponding problems that they can pose in an exhaust management system, the proper choice of such systems is a complex task. Presenting the fundamentals, technical details, and general solutions to real-world problems, Semiconductor Industry: Wafer Fab Exhaust Management offers practical guidance on selecting an appropriate system for a given application. Using examples that provide a clear understanding of the concepts discussed, Sherer covers facility layout, support facilities operations, and semiconductor process equipment, followed by exhaust types and challenges. He reviews exhaust point-of-use devices and exhaust line requirements needed between process equipment and the centralized exhaust system. The book includes information on wet scrubbers for a centralized acid exhaust system and a centralized ammonia exhaust system and on centralized equipment to control volatile organic compounds. It concludes with a chapter devoted to emergency releases and a separ...

  19. Elucidation of the structure-property relationship of p-type organic semiconductors through rapid library construction via a one-pot, Suzuki-Miyaura coupling reaction.

    Science.gov (United States)

    Fuse, Shinichiro; Matsumura, Keisuke; Wakamiya, Atsushi; Masui, Hisashi; Tanaka, Hiroshi; Yoshikawa, Susumu; Takahashi, Takashi

    2014-09-08

    The elucidation of the structure-property relationship is an important issue in the development of organic electronics. Combinatorial synthesis and the evaluation of systematically modified compounds is a powerful tool in the work of elucidating structure-property relationships. In this manuscript, D-π-A structure, 32 p-type organic semiconductors were rapidly synthesized via a one-pot, Suzuki-Miyaura coupling with subsequent Knoevenagel condensation. Evaluation of the solubility and photovoltaic properties of the prepared compounds revealed that the measured solubility was strongly correlated with the solubility parameter (SP), as reported by Fedors. In addition, the SPs were correlated with the Jsc of thin-film organic solar cells prepared using synthesized compounds. Among the evaluated photovoltaic properties of the solar cells, Jsc and Voc had strong correlations with the photoconversion efficiency (PCE).

  20. Thermal stability and molecular ordering of organic semiconductor monolayers: effect of an anchor group.

    Science.gov (United States)

    Jones, Andrew O F; Knauer, Philipp; Resel, Roland; Ringk, Andreas; Strohriegl, Peter; Werzer, Oliver; Sferrazza, Michele

    2015-06-08

    The thermal stability and molecular order in monolayers of two organic semiconductors, PBI-PA and PBI-alkyl, based on perylene derivatives with an identical molecular structure except for an anchor group for attachment to the substrate in PBI-PA, are reported. In situ X-ray reflectivity measurements are used to follow the stability of these monolayers in terms of order and thickness as temperature is increased. Films have thicknesses corresponding approximately to the length of one molecule; molecules stand upright on the substrate with a defined structure. PBI-PA monolayers have a high degree of order at room temperature and a stable film exists up to 250 °C, but decomposes rapidly above 300 °C. In contrast, stable physisorbed PBI-alkyl monolayers only exist up to 100 °C. Above the bulk melting point at 200 °C no more order exists. The results encourage using anchor groups in monolayers for various applications as it allows enhanced stability at the interface with the substrate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.