WorldWideScience

Sample records for dislocation climb mechanism

  1. Dislocation climb models from atomistic scheme to dislocation dynamics

    OpenAIRE

    Niu, Xiaohua; Luo, Tao; Lu, Jianfeng; Xiang, Yang

    2016-01-01

    We develop a mesoscopic dislocation dynamics model for vacancy-assisted dislocation climb by upscalings from a stochastic model on the atomistic scale. Our models incorporate microscopic mechanisms of (i) bulk diffusion of vacancies, (ii) vacancy exchange dynamics between bulk and dislocation core, (iii) vacancy pipe diffusion along the dislocation core, and (iv) vacancy attachment-detachment kinetics at jogs leading to the motion of jogs. Our mesoscopic model consists of the vacancy bulk dif...

  2. Irradiation creep by climb-enables glide of dislocations resulting from preferred absorption of point defects

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, L K [Oak Ridge National Lab., TN (USA)

    1979-04-01

    A mechanism of irradiation creep arising from the climb-enabled glide of dislocations due to stress-induced preferred absorption of radiation-produced point defects is proposed. This creep component is here termed preferred absorption glide, PAG. PAG-creep operates in addition to the previously studied components of creep from climb by stress-induced preferred absorption, (SI) PA-creep, and the climb-enabled glide due to excess absorption of interstitials on dislocations during swelling, I-creep. A formulation of the various climb and climb-enabled glide processes which includes earlier results is presented. PAG-creep is comparable in magnitude to PA-creep in the parameter range of applications. While the PSA-creep rate and the I-creep rate are linear in stress, the PAG-creep rate is quadratic in stress and thus dominates at high stresses.

  3. Dislocation climb and interstitial loop growth under cascade damage irradiation

    International Nuclear Information System (INIS)

    Woo, C.H.; Semenov, A.A.

    1993-01-01

    The effects of intracascade clustering and recombination in radiation damage have been considered previously in semiquantitative calculations involving vacancy accumulation at voids, within the concept of production bias. To model void swelling and microstructural evolution quantitatively, similar effects on dislocation climb and interstitial loop growth have to be considered. In this regard, at elevated temperatures (such as in the peak-swelling temperature regime), the concentration of freely migrating vacancies is much higher than that of the interstitials, owing to the evaporation from the primary vacancy clusters (i.e. those produced by intracascade clustering). It is not immediately obvious how the dislocations can be net interstitials sinks, and hence that the observed nucleation and growth of the interstitial loops at elevated temperatures can be correctly predicted as in the conventional theory. To address these basic questions, a rate theory model is formulated in this paper, which describes the dislocation climb and loop growth in the presence of intracascade primary clusters. Within this model, conservation equations for the concentrations and average radii of the two kinds of primary cluster are derived, and the corresponding steady-state concentrations and average radii are calculated. From this, the dislocation climb velocity and interstitial loop growth rate are calculated. On the basis of the results of this calculation, some of the basic questions of production bias are discussed. (Author)

  4. Rate controlling mechanisms during hot deformation of Mg–3Gd–1Zn magnesium alloy: Dislocation glide and climb, dynamic recrystallization, and mechanical twinning

    International Nuclear Information System (INIS)

    Mirzadeh, H.; Roostaei, M.; Parsa, M.H.; Mahmudi, R.

    2015-01-01

    Highlights: • Hot deformation behavior and dynamic recrystallization of GZ31 magnesium alloy. • Deducing the operative deformation mechanisms by constitutive analysis. • Viscous glide as the rate controlling step during hot working of GZ31 alloy. • Characterization of the effect of mechanical twinning on constitutive relations. - Abstract: The flow behavior of the Mg–3Gd–1Zn (GZ31) magnesium alloy during hot working was critically analyzed and dislocation glide in the form of a viscous drag process (viscous glide) was identified as the rate controlling mechanism due to interaction of rare earth Gd atoms with the moving dislocations. Mechanical twinning was shown to significantly affect the level of flow stress at high Zener–Hollomon parameters, i.e. low forming temperatures and high strain rates. Moreover, dynamic recrystallization (DRX) was found to be another responsible phenomenon for deviation of constitutive equations from the theoretical ones, namely the deformation activation energy based on diffusivity and the pre-defined Garofalo’s type hyperbolic sine power, during high-temperature thermomechanical processing of this creep resistant light alloy

  5. The climb of dissociated dislocations in a quenched Cu-13.43 at.% Al alloy

    International Nuclear Information System (INIS)

    Decamps, B.; Cherns, D.; Condat, M.

    1983-01-01

    The weak-beam electron microscopy technique has been used to study the climb of dissociated dislocations in a Cu-13.43 at.% Al alloy under conditions of supersaturation of vacancies introduced by quenching. The results are similar to those obtained under electron irradiation (interstitial climb) in the same alloy (Cherns, Hirsch and Saka 1980) in that climb may proceed by the nucleation of prismatic loops on the individual partials. The nature of the loops is such as to minimize the total energy of the configuration (partial plus loop) and to maximize their edge component. Interaction with the other partial has been observed, causing the entire dislocation to climb. Additional features observed suggest that climb under quenching is initiated by the nucleation of Frank loops. The detailed configurations also enable climb by absorption of vacancies and interstitials to be distinguished. (author)

  6. Dislocation Climb Sources Activated by 1 MeV Electron Irradiation of Copper-Nickel Alloys

    DEFF Research Database (Denmark)

    Barlow, P.; Leffers, Torben

    1977-01-01

    Climb sources emitting dislocation loops are observed in Cu-Ni alloys during irradiation with 1 MeV electrons in a high voltage electron microscope. High source densities are found in alloys containing 5, 10 and 20% Ni, but sources are also observed in alloys containing 1 and 2% Ni. The range of ...

  7. Riemann–Cartan Geometry of Nonlinear Dislocation Mechanics

    KAUST Repository

    Yavari, Arash; Goriely, Alain

    2012-01-01

    but vanishing non-metricity. Torsion of the material manifold is identified with the dislocation density tensor of nonlinear dislocation mechanics. Using Cartan's moving frames we construct the material manifold for several examples of bodies with distributed

  8. A Wheel-based Stair-climbing Robot with a Hopping Mechanism

    OpenAIRE

    Kikuchi, Koki; Bushida, Naoki; Sakaguchi, Keisuke; Chiba, Yasuhiro; Otsuka, Hiroshi; Saito, Yusuke; Hirano, Masamitsu; Kobayashi, Shunya

    2010-01-01

    We introduced a wheel-based stair-climbing robot with a hopping mechanism for stairclimbing. The robot, consisting of two body parts connected by springs, climbed stairs quickly, softly, and economically by using the vibration of a two-degrees-of-freedom system. In the future, we intend to shorten the required tread length by controlling the wire tension and minimizing the body length to realize a practical stair-climbing robot.

  9. Mechanical Design and Dynamcis of an Autonomous Climbing Robot for Elliptic Half-shell Cleaning

    Directory of Open Access Journals (Sweden)

    Houxiang Zhang

    2007-12-01

    Full Text Available This paper presents an auto-climbing robot for cleaning the elliptic half-shell of National Grand Theatre in China. The robot consists of a climbing mechanism, a moving mechanism, two cleaning brushes and supporting mechanisms. The mechanism and unique aspects are presented in detail. A distributed control system based on CAN bus is designed to meet the requirements of controlling the robot. After that the emphasis for discussion is on the motion realization which includes climbing and cleaning movements. The robot independently climbs and descends in the vertical direction and cleans in the horizontal direction. It takes the circling tracks as supports for climbing up and down between strips and moving horizontally along one strip around the ellipsoid. For system design and control purposes, the dynamic models of the climbing and cleaning processes are given applying of the Lagrange equation. Furthermore the force distribution of the front and rear supporting mechanisms is computed in a way that ensures the safety of the climbing process. In the end, the successful on-site tests confirm the principles described above and the robot's ability.

  10. Mechanical Design and Dynamcis of an Autonomous Climbing Robot for Elliptic Half-shell Cleaning

    Directory of Open Access Journals (Sweden)

    Houxiang Zhang

    2008-11-01

    Full Text Available This paper presents an auto-climbing robot for cleaning the elliptic half-shell of National Grand Theatre in China. The robot consists of a climbing mechanism, a moving mechanism, two cleaning brushes and supporting mechanisms. The mechanism and unique aspects are presented in detail. A distributed control system based on CAN bus is designed to meet the requirements of controlling the robot. After that the emphasis for discussion is on the motion realization which includes climbing and cleaning movements. The robot independently climbs and descends in the vertical direction and cleans in the horizontal direction. It takes the circling tracks as supports for climbing up and down between strips and moving horizontally along one strip around the ellipsoid. For system design and control purposes, the dynamic models of the climbing and cleaning processes are given applying of the Lagrange equation. Furthermore the force distribution of the front and rear supporting mechanisms is computed in a way that ensures the safety of the climbing process. In the end, the successful on-site tests confirm the principles described above and the robot's ability.

  11. Mechanism of Strain Rate Effect Based on Dislocation Theory

    International Nuclear Information System (INIS)

    Kun, Qin; Shi-Sheng, Hu; Li-Ming, Yang

    2009-01-01

    Based on dislocation theory, we investigate the mechanism of strain rate effect. Strain rate effect and dislocation motion are bridged by Orowan's relationship, and the stress dependence of dislocation velocity is considered as the dynamics relationship of dislocation motion. The mechanism of strain rate effect is then investigated qualitatively by using these two relationships although the kinematics relationship of dislocation motion is absent due to complicated styles of dislocation motion. The process of strain rate effect is interpreted and some details of strain rate effect are adequately discussed. The present analyses agree with the existing experimental results. Based on the analyses, we propose that strain rate criteria rather than stress criteria should be satisfied when a metal is fully yielded at a given strain rate. (condensed matter: structure, mechanical and thermal properties)

  12. The Mechanical Properties of a Wall-Climbing Caterpillar Robot: Analysis and Experiment

    Directory of Open Access Journals (Sweden)

    Kun Wang

    2013-01-01

    Full Text Available This paper builds the kinematic model of a wall-climbing caterpillar robot to reveal the validity and the benefits of the closed-chain kinematics of the four-linkage mechanism to a crawling gait. The caterpillar robot can climb on a vertical wall by coordinating the rotations of one active joint and three passive joints. The mechanical property of the closed-chain kinematics of the four-linkage model is analysed. Furthermore, the relation between the driving joint torque and joint angle in the wall-climbing process is deduced based on the coplanar arbitrary force system. Afterwards, the joint control method is discussed in order to coordinate the rotation of the four joints so as to realize a reasonable wall climbing gait. To testify to the availability of the closed-chain four-linkage model, a wall-climbing caterpillar robot is developed with three different adhesion modules based on the vibrating suction method. A successful wall-climbing test confirms both the practicality of the four-linkage model and the validity of the adhesion modules based on the vibrating suction method. The results also show the reasonableness of the driving joint selection rule for ensuring a safe and reliable wall-climbing procedure.

  13. Riemann–Cartan Geometry of Nonlinear Dislocation Mechanics

    KAUST Repository

    Yavari, Arash

    2012-03-09

    We present a geometric theory of nonlinear solids with distributed dislocations. In this theory the material manifold-where the body is stress free-is a Weitzenböck manifold, that is, a manifold with a flat affine connection with torsion but vanishing non-metricity. Torsion of the material manifold is identified with the dislocation density tensor of nonlinear dislocation mechanics. Using Cartan\\'s moving frames we construct the material manifold for several examples of bodies with distributed dislocations. We also present non-trivial examples of zero-stress dislocation distributions. More importantly, in this geometric framework we are able to calculate the residual stress fields, assuming that the nonlinear elastic body is incompressible. We derive the governing equations of nonlinear dislocation mechanics covariantly using balance of energy and its covariance. © 2012 Springer-Verlag.

  14. Dislocations

    Science.gov (United States)

    ... Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español First Aid: ... bones become separated. Dislocations are caused by falls and hard impacts, such as in sports injuries, and are more common in teens than ...

  15. Strengthening mechanisms and dislocation processes in <111> textured nanotwinned copper

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xing [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083 (China); Lu, Cheng, E-mail: chenglu@uow.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Tieu, Anh Kiet; Pei, Linqing; Zhang, Liang; Cheng, Kuiyu [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Huang, Minghui [State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083 (China)

    2016-10-31

    We use molecular dynamics simulations to elucidate the deformation mechanisms of <111> textured nanotwinned materials under tensile loading parallel to the twin boundary (TB). Our simulations reveal that the tensile strength of nanotwinned Cu increases monotonically as the twin spacing decreases. The strengthening effect mainly results from TB restricting the transmission of dislocations across the TB. Throughout the simulations the transmissions of dislocations across the TBs dominate the plastic deformation. Both direct and indirect transmissions are identified at atomic level. Direct transmission involves either successive transmission of the leading and trailing partials as in the Fleischer cross-slip model or absorption and desorption of the extended dislocation as in the Friedel-Escaig cross-slip mechanism. In contrast, indirect transmission involves the formation of special superjogs. The persistent slip transfer leaves zigzag slip traces on the cross-sectional view and the inhomogeneous deformation leads to the formation of intersecting slip bands on the plane view.

  16. On the development a pneumatic four-legged mechanism autonomous vertical wall climbing robot

    International Nuclear Information System (INIS)

    Mohamad Shukri Zainal Abidin; Shamsudin H.M. Amin . shukri@suria.fke.utm.my

    1999-01-01

    The paper describes the design of a prototype legged mechanism together with suction mechanism, the mechanical design, on-board controller and an initial performance test. The design is implemented in the form of a pneumatically powered multi-legged robot equipped with suction pads at the sole of the feet for wall climbing purpose. The whole mechanism and suction system is controlled by controller which is housed on-board the robot. The gait of the motion depended on the logic control patterns as dictated by the controller. The robot is equipped with sensors both at the front and rear ends that function as an obstacle avoidance facility. Once objects are detected, signals are sent to the controller to start an evasive action that is to move in the opposite direction. The mechanism has been tested and initial results have shown promising potential for an autonomous mobile. (Author)

  17. Dislocation/hydrogen interaction mechanisms in hydrided nanocrystalline palladium films

    International Nuclear Information System (INIS)

    Amin-Ahmadi, Behnam; Connétable, Damien; Fivel, Marc; Tanguy, Döme; Delmelle, Renaud; Turner, Stuart; Malet, Loic; Godet, Stephane; Pardoen, Thomas; Proost, Joris; Schryvers, Dominique

    2016-01-01

    The nanoscale plasticity mechanisms activated during hydriding cycles in sputtered nanocrystalline Pd films have been investigated ex-situ using advanced transmission electron microscopy techniques. The internal stress developing within the films during hydriding has been monitored in-situ. Results showed that in Pd films hydrided to β-phase, local plasticity was mainly controlled by dislocation activity in spite of the small grain size. Changes of the grain size distribution and the crystallographic texture have not been observed. In contrast, significant microstructural changes were not observed in Pd films hydrided to α-phase. Moreover, the effect of hydrogen loading on the nature and density of dislocations has been investigated using aberration-corrected TEM. Surprisingly, a high density of shear type stacking faults has been observed after dehydriding, indicating a significant effect of hydrogen on the nucleation energy barriers of Shockley partial dislocations. Ab-initio calculations of the effect of hydrogen on the intrinsic stable and unstable stacking fault energies of palladium confirm the experimental observations.

  18. Mechanisms for decoration of dislocations by small dislocation loops under cascade damage conditions

    DEFF Research Database (Denmark)

    Trinkaus, H.; Singh, B.N.; Foreman, A.J.E.

    1997-01-01

    . This effect may arise as a result of either (a) migration and enhanced agglomeration of single SIAs in the form of loops in the strain field of the dislocation or (b) glide and trapping of SIA loops (produced directly in the cascades) in the strain field of the dislocation, In the present paper, both...... of these possibilities are examined. It is shown that the strain field of the dislocation causes a SIA depletion in the compressive as well as in the dilatational region resulting in a reduced rather than enhanced agglomeration of SIAs. (SIA depletion may, however, induce enhanced vacancy agglomeration near dislocations...

  19. A complete absorption mechanism of stacking fault tetrahedron by screw dislocation in copper

    International Nuclear Information System (INIS)

    Fan, Haidong; Wang, Qingyuan

    2013-01-01

    It was frequently observed in experiments that stacking fault tetrahedron (SFT) can be completely absorbed by dislocation and generate defect-free channels in irradiated materials, but the mechanism is still open. In this paper, molecular dynamics (MD) was used to explore the dislocation mechanism of reaction between SFT and screw dislocation in copper. Our computational results reveal that, at high temperature, the SFT is completely absorbed by screw dislocation with the help of Lomer–Cottrell (LC) lock transforming into Lomer dislocation. This complete absorption mechanism is very helpful to understand the defect-free channels in irradiated materials

  20. Dislocation-defect interactions and mechanical properties of crystals

    International Nuclear Information System (INIS)

    Granato, A.V.

    1975-01-01

    The influence of dislocation-defect interactions on mechanical properties of crystals is reviewed. Interactions are separated into those producing pinning and those producing viscous drag. Deformation behavior is classified according to the strength of the drag. For small drag, inertial effects become important. For intermediate drag, traditional theories resting on rate theory treatments become applicable. For large drag, viscoelastic behavior is obtained. Measurements are examined for information concerning the basic nature of different sources of short and long range pinning and of drag

  1. A study on a wheel-based stair-climbing robot with a hopping mechanism

    Science.gov (United States)

    Kikuchi, Koki; Sakaguchi, Keisuke; Sudo, Takayuki; Bushida, Naoki; Chiba, Yasuhiro; Asai, Yuji

    2008-08-01

    In this study, we propose a simple hopping mechanism using the vibration of a two-degree-of-freedom system for a wheel-based stair-climbing robot. The robot, consisting of two bodies connected by springs and a wire, hops by releasing energy stored in the springs and quickly travels using wheels mounted in its lower body. The trajectories of the bodies during hopping change in accordance with the design parameters, such as the reduced mass of the two bodies, the mass ratio between the upper and lower bodies, the spring constant, the control parameters such as the initial contraction of the spring and the wire tension. This property allows the robot to quickly and economically climb up and down stairs, leap over obstacles, and landing softly without complex control. In this paper, the characteristics of hopping motion for the design and control parameters are clarified by both numerical simulations and experiments. Furthermore, using the robot design based on the results the abilities to hop up and down a step, leap over a cable, and land softly are demonstrated.

  2. Positron-trapping mechanism at dislocations in Zn

    DEFF Research Database (Denmark)

    Hidalgo, Carlos; Linderoth, Søren; Diego, Nieves de

    1987-01-01

    the average lifetime and the intensity of the long component decrease with increasing temperature. The experimental results are very well described in terms of a generalized trapping model where it is assumed that positrons become trapped in deep traps (jogs) via shallow traps (dislocation lines......). The temperature dependence of the positron-lifetime spectra below 120 K is attributed to the temperature dependence of the trapping rate to the dislocation line. The experimental results have demonstrated that detrapping processes from the dislocation line take place above 120 K. The positron binding energy...

  3. Development of stair-climbing mechanism with passive crawlers. Analysis of limitation for crawler rotation angle and test vehicle performance

    International Nuclear Information System (INIS)

    Hirasawa, Junji; Kimura, Tetsuya

    2016-01-01

    This paper describes a novel mechanism with passive crawlers that will realize a stair-climbing rescue robot with simple system. The proposed mechanism is called 'SMART-III', it is named after 'Simple Mechanism Adaptive for Rough Terrain'. Some quasi-static dynamic analysis were implemented and effectiveness of limitation for crawler rotation angle were verified. A prototype robot with the SMART-III mechanism had been improved. Experimental results show the effectiveness and performance of the proposed mechanism against a step and continuous stairs. (author)

  4. Acoustic emission generated by dislocation mechanisms during the deformation of metals

    Energy Technology Data Exchange (ETDEWEB)

    Heiple, C.R.

    1978-01-01

    Acoustic emission is a transient elastic wave generated by the rapid release of energy within a material. A wide variety of mechanisms have been proposed as possible sources of acoustic emission. Proposed mechanisms have included crack propagation, precipitate fracture, twin formation, martensite formation, dislocation motion and/or multiplication. This paper is concerned with acoustic emission generated by dislocation mechanisms operating during plastic deformation. Twinning and martensitic phase transformations are excluded even though dislocation motion is involved in the nucleation and growth of twins and the growth of martensite.

  5. Acoustic emission generated by dislocation mechanisms during the deformation of metals

    International Nuclear Information System (INIS)

    Heiple, C.R.

    1978-01-01

    Acoustic emission is a transient elastic wave generated by the rapid release of energy within a material. A wide variety of mechanisms have been proposed as possible sources of acoustic emission. Proposed mechanisms have included crack propagation, precipitate fracture, twin formation, martensite formation, dislocation motion and/or multiplication. This paper is concerned with acoustic emission generated by dislocation mechanisms operating during plastic deformation. Twinning and martensitic phase transformations are excluded even though dislocation motion is involved in the nucleation and growth of twins and the growth of martensite

  6. Uncovering the inertia of dislocation motion and negative mechanical response in crystals.

    Science.gov (United States)

    Tang, Yizhe

    2018-01-09

    Dislocations are linear defects in crystals and their motion controls crystals' mechanical behavior. The dissipative nature of dislocation propagation is generally accepted although the specific mechanisms are still not fully understood. The inertia, which is undoubtedly the nature of motion for particles with mass, seems much less convincing for configuration propagation. We utilize atomistic simulations in conditions that minimize dissipative effects to enable uncovering of the hidden nature of dislocation motion, in three typical model metals Mg, Cu and Ta. We find that, with less/no dissipation, dislocation motion is under-damped and explicitly inertial at both low and high velocities. The inertia of dislocation motion is intrinsic, and more fundamental than the dissipative nature. The inertia originates from the kinetic energy imparted from strain energy and stored in the moving core. Peculiar negative mechanical response associated with the inertia is also discovered. These findings shed light on the fundamental nature of dislocation motion, reveal the underlying physics, and provide a new physical explanation for phenomena relevant to high-velocity dislocations.

  7. Deformation induced dislocation boundaries: Alignment and effect on mechanical properties

    DEFF Research Database (Denmark)

    Winther, G.; Juul Jensen, D.

    1997-01-01

    The dislocation boundaries formed during cold-rolling of FCC metals have been reported to have a preferred macroscopic direction with respect to the sample axes. However, boundaries have also been reported to form on crystallographic slip planes. The directions of the boundaries formed on crystal...

  8. Effect of dislocations of forest on relaxation of mechanical stresses in irradiated zinc crystals

    International Nuclear Information System (INIS)

    Troitskij, O.A.; Kalymbetov, P.U.; Kusainov, S.G.; Shambulov, N.B.

    1988-01-01

    Effect of forest dislocations on the value of electron-plastic effect (EPE) in zinc crystals during their irradiation by accelerated electron packets is investigated. The following mechanical parameters are determined experimentally: total relaxation of voltages Δσ for 180s; change in reforming voltage Δσpl in single pulses of irradiation on the slope and bottom of relaxation curves. The results obtained testify to the effectiveness of forest dislocations as surmountable obstacles for the dislocations shiding in the basis plane

  9. Dislocation mechanism of void growth at twin boundary of nanotwinned nickel based on molecular dynamics simulation

    International Nuclear Information System (INIS)

    Zhang, Yanqiu; Jiang, Shuyong; Zhu, Xiaoming; Zhao, Yanan

    2016-01-01

    Molecular dynamics simulation was performed to investigate dislocation mechanism of void growth at twin boundary (TB) of nanotwinned nickel. Simulation results show that the deformation of nanotwinned nickel containing a void at TB is dominated by the slip involving both leading and trailing partials, where the trailing partials are the dissociation products of stair-rod dislocations formed by the leading partials. The growth of a void at TB is attributed to the successive emission of the leading partials followed by trailing partials as well as the escape of these partial dislocations from the void surface. - Highlights: • Dislocation mechanism of void growth at TB of nanotwinned nickel is investigated. • Deformation of the nanotwinned nickel is dominated by leading and trailing partials. • Growth of void at TB is caused by successive emission and escape of these partials.

  10. Design and Optimal Research of a Non-Contact Adjustable Magnetic Adhesion Mechanism for a Wall-Climbing Welding Robot

    Directory of Open Access Journals (Sweden)

    Minghui Wu

    2013-01-01

    Full Text Available Wall-climbing welding robots (WCWRs can replace workers in manufacturing and maintaining large unstructured equipment, such as ships. The adhesion mechanism is the key component of WCWRs. As it is directly related to the robot's ability in relation to adsorbing, moving flexibly and obstacle-passing. In this paper, a novel non-contact adjustably magnetic adhesion mechanism is proposed. The magnet suckers are mounted under the robot's axils and the sucker and wall are in non-contact. In order to pass obstacles, the sucker and the wheel unit can be pulled up and pushed down by a lifting mechanism. The magnetic adhesion force can be adjusted by changing the height of the gap between the sucker and the wall by the lifting mechanism. In order to increase the adhesion force, the value of the sucker's magnetic energy density (MED is maximized by optimizing the magnet sucker's structure parameters with a finite element method. Experiments prove that the magnetic adhesion mechanism has enough adhesion force and that the WCWR can complete wall-climbing work within a large unstructured environment.

  11. Dislocation analysis of die-cast Mg-Al-Ca alloy after creep deformation

    International Nuclear Information System (INIS)

    Terada, Yoshihiro; Itoh, Daigo; Sato, Tatsuo

    2009-01-01

    Tensile creep tests were combined with detailed transmission electron microscopy in order to characterize the dislocation movements during creep and to explain the creep properties of the Mg-Al-Ca AX52 die-cast alloy at 473 K and stresses from 15 to 70 MPa. TEM observations indicate that dislocations are generated within the primary α-Mg grain in the die-casting process, which consist of both the basal and non-basal segments. The basal segments of dislocations are able to bow out and glide on the basal planes under the influence of a stress, and the jogs follow the basal segments with the help of climb during creep. The creep mechanism for the alloy is deduced as dislocation climb due to the formation of sub-boundaries during creep, while the easy glide of the basal segments of dislocations is controlling the creep rates immediately after the stress application of creep tests.

  12. Dislocation density and mechanical threshold stress in OFHC copper subjected to SHPB loading and plate impact

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qiushi [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, 621900 (China); Zhao, Feng, E-mail: ifpzfeng@163.com [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, 621900 (China); Fu, Hua; Li, Kewu [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, 621900 (China); Liu, Fusheng [Key Laboratory of Advanced Technologies of Materials, Southwest Jiaotong University, Chengdu, Sichuan, 610031 (China)

    2017-05-17

    The dislocation density and mechanical threshold stress (MTS) of oxygen-free high-thermal-conductivity (OFHC) copper loaded at strain rates in the range of 10{sup 2} to 10{sup 6} s{sup −1} were measured. Moderate-strain-rate (10{sup 2} to 10{sup 4} s{sup −1}) experiments were performed using a Split Hopkinson Pressure Bar (SHPB). A steel collar was placed around each specimen to control the maximum loading strain. High-strain-rate (10{sup 5} to 10{sup 6} s{sup −1}) experiments were carried out using a 57-mm-bore single-stage gas gun. The radial release effect was eliminated using the momentum trapping technique. The loaded samples were recovered, and the dislocation characteristics and dislocation density were determined by X-ray diffraction profile analysis. The fraction of the screw dislocation was found to decrease with increasing loading strain and strain rate. The dislocation density was found to lie between 1.8×10{sup 14} and 2.2×10{sup 15} m{sup −2}. Quasi-static reload compression tests were performed on the recovered samples at room temperature. The mechanical threshold stress (or the flow stress at 0 K) was obtained by fitting the reload stress–strain data to the MTS model. The results of analysis of the equivalent strain, mechanical threshold stress, and dislocation density measurements suggest that the relation between the mechanical threshold stress and the dislocation density can be described well by the Taylor relationship.

  13. Subtalar dislocation

    International Nuclear Information System (INIS)

    El-Khoury, G.Y.; Yousefzadeh, D.K.; Mulligan, G.M.; Moore, T.E.

    1982-01-01

    Over a period of three years we have seen nine patients with subtalar dislocation, all of whom sustained violent trauma to the region of the ankle and hind foot. All but one patient were males. Clinically a subtalar dislocation resembles a complicated fracture dislocation of the ankle but a definitive diagnosis can only be made radiographically. The mechanism of injury and radiographic features of this injury are discussed. (orig.)

  14. Dislocation dipole annihilation in diamond and silicon

    Energy Technology Data Exchange (ETDEWEB)

    Rabier, J; Pizzagalli, L, E-mail: jacques.rabier@univ-poitiers.fr [Institut PPRIMME, Departement de Physique et Mecanique des Materiaux - UPR 3346 CNRS, Universite de Poitiers, ENSMA - SP2MI, BP 30179, F-86962 Chasseneuil Futuroscope Cedex (France)

    2011-02-01

    The mechanism of dislocation dipole annihilation has been investigated in C and Si using atomistic calculations with the aim of studying their annihilation by-products. It is shown, in C as well as in Si, that dipole annihilation yields debris that can be depicted as a cluster of vacancies, or alternately by two internal free surfaces. These defects have no strain field and can hardly be seen using usual TEM techniques. This suggests that the brown colouration of diamond could be due to microstructures resulting from deformation mechanisms associated with dipole formation and their annihilation rather than to a climb mechanism and vacancy aggregation. In silicon where a number of dipoles have been evidenced by TEM when dislocation trails are found, such debris could be the missing link responsible for the observation of strong chemical reactivity and electrical activity in the wake of moving dislocations.

  15. Athermal mechanisms of size-dependent crystal flow gleaned from three-dimensional discrete dislocation simulations

    International Nuclear Information System (INIS)

    Rao, S.I.; Dimiduk, D.M.; Parthasarathy, T.A.; Uchic, M.D.; Tang, M.; Woodward, C.

    2008-01-01

    Recent experimental studies have revealed that micrometer-scale face-centered cubic (fcc) crystals show strong strengthening effects, even at high initial dislocation densities. We use large-scale three-dimensional discrete dislocation simulations (DDS) to explicitly model the deformation behavior of fcc Ni microcrystals in the size range of 0.5-20 μm. This study shows that two size-sensitive athermal hardening processes, beyond forest hardening, are sufficient to develop the dimensional scaling of the flow stress, stochastic stress variation, flow intermittency and high initial strain-hardening rates, similar to experimental observations for various materials. One mechanism, source-truncation hardening, is especially potent in micrometer-scale volumes. A second mechanism, termed exhaustion hardening, results from a breakdown of the mean-field conditions for forest hardening in small volumes, thus biasing the statistics of ordinary dislocation processes

  16. Dynamic mechanical behaviour and dislocation substructure evolution of Inconel 718 over wide temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woei-Shyan, E-mail: wslee@mail.ncku.edu.tw [Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Lin, Chi-Feng [National Center for High-Performance Computing, Hsin-Shi Tainan County 744, Taiwan (China); Chen, Tao-Hsing [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan (China); Chen, Hong-Wei [Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2011-07-25

    A compressive split-Hopkinson pressure bar and transmission electron microscope (TEM) are used to investigate the mechanical behaviour and microstructural evolution of Inconel 718 at strain rates ranging from 1000 to 5000 s{sup -1} and temperatures between -150 and 550 deg. C. The results show that the flow stress increases with an increasing strain rate or a reducing temperature. The strain rate effect is particularly pronounced at strain rates greater than 3000 s{sup -1} and a deformation temperature of -150 deg. C. A significant thermal softening effect occurs at temperatures between -150 and 25 deg. C. The microstructural observations reveal that the strengthening effect in deformed Inconel 718 alloy is a result primarily of dislocation multiplication. The dislocation density increases with increasing strain rate, but decreases with increasing temperature. By contrast, the dislocation cell size decreases with increasing strain rate, but increases with increasing temperature. It is shown that the correlation between the flow stress, the dislocation density and the dislocation cell size is well described by the Bailey-Hirsch constitutive equations.

  17. Computer simulation of migration atomic mechanism and substitutional impurity interaction with screw dislocation core in bcc lattice

    International Nuclear Information System (INIS)

    Klyavin, O.V.; Likhodedov, N.P.; Orlov, A.N.

    1986-01-01

    Distribution and migration of substitutional impurity atoms (He and C) in the screw dislocation core of the 1/2 type is studied in α-Fe. The atomic mechanism of impurity atom diffusion over screw dislocation core, consisting in the fact that impurity migration proceeds in a screw trajectory, is discovered and analyzed. It is shown that tubular He diffusion over screw dislocation may proceed at T <= 300 K

  18. Dislocation-mediated strain hardening in tungsten: Thermo-mechanical plasticity theory and experimental validation

    Science.gov (United States)

    Terentyev, Dmitry; Xiao, Xiazi; Dubinko, A.; Bakaeva, A.; Duan, Huiling

    2015-12-01

    A self-consistent thermo-mechanical model to study the strain-hardening behavior of polycrystalline tungsten was developed and validated by a dedicated experimental route. Dislocation-dislocation multiplication and storage, as well dislocation-grain boundary (GB) pinning were the major mechanisms underlying the evolution of plastic deformation, thus providing a link between the strain hardening behavior and material's microstructure. The microstructure of the polycrystalline tungsten samples has been thoroughly investigated by scanning and electron microscopy. The model was applied to compute stress-strain loading curves of commercial tungsten grades, in the as-received and as-annealed states, in the temperature range of 500-1000 °C. Fitting the model to the independent experimental results obtained using a single crystal and as-received polycrystalline tungsten, the model demonstrated its capability to predict the deformation behavior of as-annealed samples in a wide temperature range and applied strain. The relevance of the dislocation-mediated plasticity mechanisms used in the model have been validated using transmission electron microscopy examination of the samples deformed up to different amounts of strain. On the basis of the experimental validation, the limitations of the model are determined and discussed.

  19. Climbing performance of Harris' hawks (Parabuteo unicinctus) with added load: Implications for muscle mechanics and for radiotracking

    Science.gov (United States)

    Pennycuick, C.J.; Fuller, M.R.; McAllister, L.

    1989-01-01

    Two Harris' hawks were trained to fly along horizontal and climbing flight paths, while carrying loads of various masses, to provide data for estimating available muscle power during short flights. The body mass of both hawks was about 920 g, and they were able to carry loads up to 630 g in horizontal flight. The rate of climb decreased with increasing all-up mass, as also did the climbing power (product of weight and rate of climb). Various assumptions about the aerodynamic power in low-speed climbs led to estimates of the maximum power output of the flight muscles ranging from 41 to 46 W. This, in turn, would imply a stress during shortening of around 210 kPa. The effects of a radio package on a bird that is raising young should be considered in relation to the food load that the forager can normally carry, rather than in relation to its body mass.

  20. Dislocation mechanisms for plastic flow of nickel in the temperature range 4.2-1200K

    International Nuclear Information System (INIS)

    Sastry, D.H.; Tangri, K.

    1975-01-01

    The temperature ranges of thermal and athermal deformation behaviour of nickel are identified by employing the temperature-dependence of flow-stress and strain-rate cycling data. The results are used to present a unified view of dislocation mechanisms of glide encompassing the two thermally activated and the intermediate athermal regimes of plastic flow. In the low-temperature thermally activated region (<250K) the strain rate is found to be controlled by the repulsive intersection of glide and forest dislocations, in accordance with current ideas. The athermal stress in this region can be attributed mainly to the presence of strong attractive junctions which are overcome by means of Orowan bowing, a small contribution also coming from the elastic interactions between dislocations. The values of activation area and activation energy obtained in the high-temperature region (<750K) negate the operation of a diffusion-controlled mechanism. Instead, the data support a thermal activation model involving unzipping of the attractive junctions. The internal (long-range) stress contribution here results solely from the elastic interactions between dislocations. This view concerning the high-temperature plastic flow is further supported by the observation that the Cottrell-Stokes law is obeyed over large strains in the range 750-1200K. (author)

  1. The evolution mechanism of the dislocation loops in irradiated lanthanum doped cerium oxide

    International Nuclear Information System (INIS)

    Miao, Yinbin; Aidhy, Dilpuneet; Chen, Wei-Ying; Mo, Kun; Oaks, Aaron; Wolf, Dieter; Stubbins, James F.

    2014-01-01

    Cerium dioxide, a non-radioactive surrogate of uranium dioxide, is useful for simulating the radiation responses of uranium dioxide and mixed oxide fuel (MOX). Controlled additions of lanthanum can also be used to form various levels of lattice oxide or anion vacancies. In previous transmission electron microscopy (TEM) experimental studies, the growth rate of dislocation loops in irradiated lanthanum doped ceria was reported to vary with lanthanum concentration. This work reports findings of the evolution mechanisms of the dislocation loops in cerium oxide with and without lanthanum dopants based on a combination of molecular statics and molecular dynamics simulations. These dislocation loops are found to be b=1/3〈111〉 interstitial type Frank loops. Calculations of the defect energy profiles of the dislocation loops with different structural configurations and radii reveal the basis for preference of nucleation as well as the driving force of growth. Frenkel pair evolution simulations and displacement cascade overlaps simulations were conducted for a variety of lanthanum doping conditions. The nucleation and growth processes of the Frank loop were found to be controlled by the mobility of cation interstitials, which is significantly influenced by the lanthanum doping concentration. Competition mechanisms coupled with the mobility of cation point defects were discovered, and can be used to explain the lanthanum effects observed in experiments

  2. Two-dimensional discrete dislocation models of deformation in polycrystalline thin metal films on substrates

    International Nuclear Information System (INIS)

    Hartmaier, Alexander; Buehler, Markus J.; Gao, Huajian

    2005-01-01

    The time-dependent irreversible deformation of polycrystalline thin metal films on substrates is investigated using two-dimensional discrete dislocation dynamics models incorporating essential parameters determined from atomistic studies. The work is focused on the mechanical properties of uncapped films, where diffusive processes play an important role. The simulations incorporate dislocation climb along the grain boundary as well as conservative glide. Despite of severe limitations of the two-dimensional dislocation models, the simulation results are found to largely corroborate experimental findings on different dominant deformation mechanisms at different film thicknesses

  3. Significance of dislocations in the mechanism of Hadfield cast steel strengthening

    International Nuclear Information System (INIS)

    Stradomski, Z.; Morgiel, J.; Olszewski, J.

    1999-01-01

    The paper presents the results of microstructural examination of the adfield cast steel (L120G13 according to Polish Standards) strengthened by explosion method, which is an attractive alternative of the surface treatment of metal materials regarding its technological, economical and organizational aspects. The presented results have been obtained by means of qualitative and quantitative analysis of thin foils taken at different distances from the material surface being strengthened by single, double or triple detonation of 3 mm thick charges of explosive. The high pressure, order of 18 GPa, causes significant changes in dislocation structure of the austenite matrix. The strengthening of Hadfield cast steel during explosion is based on the increase of the dislocation density by several times as related to the supersaturated state and on the creation of dislocation bands consisting of short, densely tangled dislocations. Plastic deformation mechanisms i. e., slip lines and micro-twins, are definitively of minor importance. It has been also proved by means of the nuclear resonance method that the explosion do not cause changes in distribution of carbon atoms in the nearest neighbourhood of Fe atoms and that austenite is not transformed into the α-martensite or the hexagonal ε-phase. (author)

  4. High-temperature discrete dislocation plasticity

    Science.gov (United States)

    Keralavarma, S. M.; Benzerga, A. A.

    2015-09-01

    A framework for solving problems of dislocation-mediated plasticity coupled with point-defect diffusion is presented. The dislocations are modeled as line singularities embedded in a linear elastic medium while the point defects are represented by a concentration field as in continuum diffusion theory. Plastic flow arises due to the collective motion of a large number of dislocations. Both conservative (glide) and nonconservative (diffusion-mediated climb) motions are accounted for. Time scale separation is contingent upon the existence of quasi-equilibrium dislocation configurations. A variational principle is used to derive the coupled governing equations for point-defect diffusion and dislocation climb. Superposition is used to obtain the mechanical fields in terms of the infinite-medium discrete dislocation fields and an image field that enforces the boundary conditions while the point-defect concentration is obtained by solving the stress-dependent diffusion equations on the same finite-element grid. Core-level boundary conditions for the concentration field are avoided by invoking an approximate, yet robust kinetic law. Aspects of the formulation are general but its implementation in a simple plane strain model enables the modeling of high-temperature phenomena such as creep, recovery and relaxation in crystalline materials. With emphasis laid on lattice vacancies, the creep response of planar single crystals in simple tension emerges as a natural outcome in the simulations. A large number of boundary-value problem solutions are obtained which depict transitions from diffusional to power-law creep, in keeping with long-standing phenomenological theories of creep. In addition, some unique experimental aspects of creep in small scale specimens are also reproduced in the simulations.

  5. Mechanism and energetics of dislocation cross-slip in hcp metals

    Science.gov (United States)

    Wu, Zhaoxuan; Curtin, W. A.

    2016-10-01

    Hexagonal close-packed (hcp) metals such as Mg, Ti, and Zr are lightweight and/or durable metals with critical structural applications in the automotive (Mg), aerospace (Ti), and nuclear (Zr) industries. The hcp structure, however, brings significant complications in the mechanisms of plastic deformation, strengthening, and ductility, and these complications pose significant challenges in advancing the science and engineering of these metals. In hcp metals, generalized plasticity requires the activation of slip on pyramidal planes, but the structure, motion, and cross-slip of the associated dislocations are not well established even though they determine ductility and influence strengthening. Here, atomistic simulations in Mg reveal the unusual mechanism of dislocation cross-slip between pyramidal I and II planes, which occurs by cross-slip of the individual partial dislocations. The energy barrier is controlled by a fundamental step/jog energy and the near-core energy difference between pyramidal dislocations. The near-core energy difference can be changed by nonglide stresses, leading to tension-compression asymmetry and even a switch in absolute stability from one glide plane to the other, both features observed experimentally in Mg, Ti, and their alloys. The unique cross-slip mechanism is governed by common features of the generalized stacking fault energy surfaces of hcp pyramidal planes and is thus expected to be generic to all hcp metals. An analytical model is developed to predict the cross-slip barrier as a function of the near-core energy difference and applied stresses and quantifies the controlling features of cross-slip and pyramidal I/II stability across the family of hcp metals.

  6. Voltage from mechanical stress in type-II superconductors: Depinning of the magnetic flux by moving dislocations

    OpenAIRE

    Albert, Jaroslav; Chudnovsky, Eugene M.

    2008-01-01

    Mechanical stress causes motion of defects in solids. We show that in a type-II superconductor a moving dislocation generates a pattern of current that exerts the depinning force on the surrounding vortex lattice. Concentration of dislocations and the mechanical stress needed to produce critical depinning currents are shown to be within practical range. When external magnetic field and transport current are present this effect generates voltage across the superconductor. Thus a superconductor...

  7. Stress-dislocation interaction mechanism in low-temperature thermo-compression sintering of Ag NPs

    Science.gov (United States)

    Wang, Fuliang; Tang, Zikai; He, Hu

    2018-04-01

    The sintering of metal nanoparticles (NPs) has been widely studied in the field of nanotechnology, and low-temperature sintering has become the industry standard. In this study, a molecular dynamics (MD) model was established to study the sintering behaviour of silver NPs during low-temperature thermo-compression. Primarily, we studied the sintering process, in which the ratio of neck radius to particle radius (x/r) changes. Under a uniaxial pressure, the maximum ratio in the temperature range 420-425 K was 1. According to the change of x/r, the process can be broken down into three stages: the neck-formation stage, neck-growth stage, and neck-stability stage. In addition, the relationship between potential energy, internal stress, and dislocation density during sintering is discussed. The results showed that cycling internal stress played an important role in sintering. Under the uniaxial pressure, the stress-dislocation interaction was found to be the major mechanism for thermo-compression sintering because the plastic deformation product dislocation intensified the diffusion of atoms. Also, the displacement vector, the mean square displacement, and the changing crystal structure during sintering were studied.

  8. Mechanical properties of nano and bulk Fe pillars using molecular dynamics and dislocation dynamics simulation

    Directory of Open Access Journals (Sweden)

    S. K. Deb Nath

    2017-10-01

    Full Text Available Using molecular dynamics simulation, tension and bending tests of a Fe nanopillar are carried out to obtain its Young’s modulus and yield strength. Then the comparative study of Young’s modulus and yield strength of a Fe nanopillar under bending and tension are carried out varying its diameter in the range of diameter 1-15nm. We find out the reasons why bending Young’s modulus and yield strength of a Fe nanopillar are higher than those of tension Young’s modulus and yield strength of a Fe nanopillar. Using the mobility parameters of bulk Fe from the experimental study [N. Urabe and J. Weertman, Materials Science and Engineering 18, 41 (1975], its temperature dependent stress-strain relationship, yield strength and strain hardening modulus are obtained from the dislocation dynamics simulations. Strain rate dependent yield strength and strain hardening modulus of bulk Fe pillars under tension are studied. Temperature dependent creep behaviors of bulk Fe pillars under tension are also studied. To verify the soundness of the present dislocation dynamics studies of the mechanical properties of bulk Fe pillars under tension, the stress vs. strain relationship and dislocation density vs. strain of bulk Fe pillars obtained by us are compared with the published results obtained by S. Queyreau, G. Monnet, and B. Devincre, International Journal of Plasticity 25, 361 (2009.

  9. Low-temperature embrittlement and fracture of metals with different crystal lattices – Dislocation mechanisms

    Directory of Open Access Journals (Sweden)

    V.M. Chernov

    2016-12-01

    Full Text Available The state of a low-temperature embrittlement (cold brittleness and dislocation mechanisms for formation of the temperature of a ductile-brittle transition and brittle fracture of metals (mono- and polycrystals with various crystal lattices (BCC, FCC, HCP are considered. The conditions for their formation connected with a stress-deformed state and strength (low temperature yield strength as well as the fracture breaking stress and mobility of dislocations in the top of a crack of the fractured metal are determined. These conditions can be met for BCC and some HCP metals in the initial state (without irradiation and after a low-temperature damaging (neutron irradiation. These conditions are not met for FCC and many HCP metals. In the process of the damaging (neutron irradiation such conditions are not met also and the state of low-temperature embrittlement of metals is absent (suppressed due to arising various radiation dynamic processes, which increase the mobility of dislocations and worsen the strength characteristics.

  10. Stress-dislocation interaction mechanism in low-temperature thermo-compression sintering of Ag NPs

    Directory of Open Access Journals (Sweden)

    Fuliang Wang

    2018-04-01

    Full Text Available The sintering of metal nanoparticles (NPs has been widely studied in the field of nanotechnology, and low-temperature sintering has become the industry standard. In this study, a molecular dynamics (MD model was established to study the sintering behaviour of silver NPs during low-temperature thermo-compression. Primarily, we studied the sintering process, in which the ratio of neck radius to particle radius (x/r changes. Under a uniaxial pressure, the maximum ratio in the temperature range 420–425 K was 1. According to the change of x/r, the process can be broken down into three stages: the neck-formation stage, neck-growth stage, and neck-stability stage. In addition, the relationship between potential energy, internal stress, and dislocation density during sintering is discussed. The results showed that cycling internal stress played an important role in sintering. Under the uniaxial pressure, the stress-dislocation interaction was found to be the major mechanism for thermo-compression sintering because the plastic deformation product dislocation intensified the diffusion of atoms. Also, the displacement vector, the mean square displacement, and the changing crystal structure during sintering were studied.

  11. Effect of collision cascades on dislocations in tungsten: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Fu, B.Q., E-mail: bqfu@scu.edu.cn [Key Laboratory for Radiation Physics and Technology, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610065 (China); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Fitzgerald, S.P. [Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Hou, Q.; Wang, J.; Li, M. [Key Laboratory for Radiation Physics and Technology, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610065 (China)

    2017-02-15

    Highlights: • A cascde near a dislocation promotes climb motion. • Kinks induced by cascade facilitate the dipoles motion toward the cascade. • Shearing of dipole is dependent on PKA energy, position, direction, and dipole width. - Abstract: Tungsten (W) is the prime candidate material for the divertor and other plasma-facing components in DEMO. The point defects (i.e. vacancies and self-interstitials) produced in collision cascades caused by incident neutrons aggregate into dislocation loops (and voids), which strongly affect the mechanical properties. The point defects also interact with existing microstructural features, and understanding these processes is crucial for modelling the long term microstructural evolution of the material under fusion conditions. In this work, we performed molecular dynamics simulations of cascades interacting with initially straight edge dislocation dipoles. It was found that the residual vacancy number usually exceeds the residual interstitial number for cascades interacting with vacancy type dipoles, but for interstitial type dipoles these are close. We observed that a cascade near a dislocation promotes climb, i.e. it facilitates the movement of point defects along the climb direction. We also observed that the dislocations move easily along the glide direction, and that kinks are formed near the centre of the cascade, which then facilitate the movement of the dipoles. Some dipoles are sheared off by the cascade, and this is dependent on PKA energy, position, direction, and the width of dipole.

  12. Influence of competition between intragranular dislocation nucleation and intergranular slip transfer on mechanical properties of ultrafine-grained metals

    International Nuclear Information System (INIS)

    Tsuru, Tomohito; Kaji, Yoshiyuki; Aoyagi, Yoshiteru; Shimokawa, Tomotsugu

    2013-01-01

    Huge-scale atomistic simulations of shear deformation tests to the aluminum polycrystalline thin film containing the Frank-Read source are performed to elucidate the relationship between the inter- and intragranular plastic deformation processes and the mechanical properties of ultrafine-grained metals. Two-types of polycrystalline models, which consist of several grain boundaries reproducing easy and hard slip transfer, respectively, are prepared to investigate the effect of grain boundary on flow stress. While the first plastic deformation occurs by the dislocation bow-out motion within the grain region for both models, the subsequent plastic deformation is strongly influenced by the resistance of the slip transfer by dislocation transmission through grain boundaries. The influence of the competition between the intragranular dislocation nucleation and intergranular slip transfer on the material strength is considered. The nanostructured material's strength depending on local defect structures associated with grain size and dislocation source length is assessed quantitatively. (author)

  13. Perilunate Dislocation

    Directory of Open Access Journals (Sweden)

    John Jiao

    2016-09-01

    Full Text Available History of present illness: A 25-year-old female presented to the emergency department with left wrist pain following a fall off a skateboard. The patient fell on her outstretched left wrist with the wrist dorsiflexed and reported immediate sharp pain to her left wrist that was worse with movement. She denied other trauma. Significant findings: In the left lateral wrist x-ray, the lunate (outlined in blue is dislocated from the rest of the wrist bones (yellow line but still articulates with the radius (red line. The capitate (yellow line does not sit within the distal articulation of the lunate and is displaced dorsally. Additionally, a line drawn through the radius and lunate (green line fails to intersect with the capitate. This is consistent with a perilunate dislocation. This is compared to a lunate dislocation, where the lunate itself is displaced and turned ventrally (spilled teacup and the proximal aspect does not articulate with the radius. Discussion: A perilunate dislocation is a significant closed wrist injury that is easily missed on standard anterior-posterior imaging. These dislocations are relatively rare, involving only 7% of all carpal injuries and are associated with high-energy trauma onto a hyperextended wrist, such as falls from a height, motor vehicle accidents, and sports injuries.1 An untreated perilunate dislocation is associated with high risk of chronic carpal instability and post-traumatic arthritis. If the mechanism of injury is sufficient to suspect perilunate dislocation, multiple radiographic views of the wrist should be ordered. Patients should receive prompt orthopedic consultation for open reduction and ligamentous repair. Even after successful identification and subsequent surgical repair, median nerve neuropathy and post-traumatic arthritis are frequent.2-3

  14. Tailoring dislocation structures and mechanical properties of nanostructured metals produced by plastic deformation

    DEFF Research Database (Denmark)

    Huang, Xiaoxu

    2009-01-01

    The presence of a dislocation structure associated with low-angle dislocation boundaries and interior dislocations is a common and characteristic feature in nanostructured metals produced by plastic deformation, and plays an important role in determining both the strength and ductility...

  15. Molecular dynamics study on the evolution of interfacial dislocation network and mechanical properties of Ni-based single crystal superalloys

    Science.gov (United States)

    Li, Nan-Lin; Wu, Wen-Ping; Nie, Kai

    2018-05-01

    The evolution of misfit dislocation network at γ /γ‧ phase interface and tensile mechanical properties of Ni-based single crystal superalloys at various temperatures and strain rates are studied by using molecular dynamics (MD) simulations. From the simulations, it is found that with the increase of loading, the dislocation network effectively inhibits dislocations emitted in the γ matrix cutting into the γ‧ phase and absorbs the matrix dislocations to strengthen itself which increases the stability of structure. Under the influence of the temperature, the initial mosaic structure of dislocation network gradually becomes irregular, and the initial misfit stress and the elastic modulus slowly decline as temperature increasing. On the other hand, with the increase of the strain rate, it almost has no effect on the elastic modulus and the way of evolution of dislocation network, but contributes to the increases of the yield stress and tensile strength. Moreover, tension-compression asymmetry of Ni-based single crystal superalloys is also presented based on MD simulations.

  16. Kinetics exoelectron emission phenomena confirmed mechanism of vacancy diffusion through dislocation

    International Nuclear Information System (INIS)

    Dus-Sitek, M.; Szymura, S.; Pisarek, J.

    1998-01-01

    On the basis on the data obtained during experiments regarding the kinetics of exoelectron emission phenomenon in deformed metal, a hypothesis concerning the dislocation mechanism of vacancies transport was confirmed. The nature and character of the exoelectron emission phenomenon accompanying a plastic deformation of thermally or mechanically prepared metals showed distinct relations between the exoelectron emission phenomenon and the defects of a crystalline structure produced during processing. On the basic of the result obtained for the Ni and stainless steels has been concluded that exoelectron emission intensity accompanying an uniaxial deformation appears at the yield strain ε 0 on the stress-strain curve, and that the sharp 'destruction' emission peak is associated with the sample failure strain ε f

  17. Complex Interaction Mechanisms between Dislocations and Point Defects Studied in Pure Aluminium by a Two-Wave Acoustic Coupling Technique

    Science.gov (United States)

    Bremnes, O.; Progin, O.; Gremaud, G.; Benoit, W.

    1997-04-01

    Ultrasonic experiments using a two-wave coupling technique were performed on 99.999% pure Al in order to study the interaction mechanisms occurring between dislocations and point defects. The coupling technique consists in measuring the attenuation of ultrasonic waves during low-frequency stress cycles (t). One obtains closed curves () called signatures whose shape and evolution are characteristic of the interaction mechanism controlling the low-frequency dislocation motion. The signatures observed were attributed to the interaction of the dislocations with extrinsic point defects. A new interpretation of the evolution of the signatures measured below 200 K with respect to temperature and stress frequency had to be established: they are linked to depinning of immobile point defects, whereas a thermally activated depinning mechanism does not fit the observations. The signatures measured between 200 and 370 K were interpreted as dragging and depinning of extrinsic point defects which are increasingly mobile with temperature.

  18. Principal physical mechanisms of material creep resistance and rupture at elevated temperatures

    International Nuclear Information System (INIS)

    Krishtal, M.A.

    1977-01-01

    Mechanisms of creep and long-term failure of refractory materials at different temperatures and stress levels are considered. At high temperatures and low stresses the diffusion (vacancial) mechanism is observed. Temperatures being low and stresses sufficiently high, dislocation mechanism involving avalanche dislocation break-off is manifested. Intermediate conditions provide other mechanisms, i.e. dislocation glide, dislocation climbing, grain-boundary and sub-grain-boundary mechanisms. Quantitative relationships between creep rate and some structural and kinetic parameters are discussed. Account of the creep mechanism is necessary when selecting methods for strengthening of alloys

  19. Mechanism and patterns of cervical spine fractures-dislocations in vertebral artery injury

    Directory of Open Access Journals (Sweden)

    Pankaj Gupta

    2012-01-01

    Full Text Available Purpose: To identify the fracture patterns and mechanism of injury, based on subaxial cervical spine injury classification system (SLIC, on non-contrast computed tomography (NCCT of cervical spine predictive of vertebral artery injury (VAI. Patients and Methods: We retrospectively analyzed cervical spine magnetic resonance imaging (MRI of 320 patients who were admitted with cervical spine injury in our level I regional trauma center over a period of two years (April 2010 to April 2012. Diagnosis of VAI was based on hyperintensity replacing the flow void on a T2-weighted axial image. NCCT images of the selected 43 patients with MRI diagnosis of VAI were then assessed for the pattern of injury. The cervical spinal injuries were classified into those involving the C1 and C2 and subaxial spine. For the latter, SLIC was used. Results: A total of 47 VAI were analyzed in 43 patients. Only one patient with VAI on MRI had no detectable abnormality on NCCT. C1 and C2 injuries were found in one and six patients respectively. In subaxial injuries, the most common mechanism of injury was distraction (37.5% with facet dislocation with or without fracture representing the most common pattern of injury (55%. C5 was the single most common affected vertebral level. Extension to foramen transversarium was present in 20 (42.5% cases. Conclusion: CT represents a robust screening tool for patients with VAI. VAI should be suspected in patients with facet dislocation with or without fractures, foramina transversarium fractures and C1-C3 fractures, especially type III odontoid fractures and distraction mechanism of injury.

  20. Dislocation following total knee arthroplasty: A report of six cases

    Directory of Open Access Journals (Sweden)

    Villanueva Manuel

    2010-01-01

    Full Text Available Background: Dislocation following total knee arthroplasty (TKA is the worst form of instability. The incidence is from 0.15 to 0.5%. We report six cases of TKA dislocation and analyze the patterns of dislocation and the factors related to each of them. Materials and Methods: Six patients with dislocation of knee following TKA are reported. The causes for the dislocations were an imbalance of the flexion gap (n=4, an inadequate selection of implants (n=1, malrotation of components (n=1 leading to incompetence of the extensor mechanism, or rupture of the medial collateral ligament (MCC. The patients presented complained of pain, giving way episodes, joint effusion and difficulty in climbing stairs. Five patients suffered posterior dislocation while one anterior dislocation. An urgent closed reduction of dislocation was performed under general anaesthesia in all patients. All patients were operated for residual instability by revision arthroplasty after a period of conservative treatment. Results: One patient had deep infection and knee was arthrodesed. Two patients have a minimal residual lag for active extension, including a patient with a previous patellectomy. Result was considered excellent or good in four cases and fair in one, without residual instability. Five out of six patients in our series had a cruciate retaining (CR TKA designs: four were revised to a posterior stabilized (PS TKA and one to a rotating hinge design because of the presence of a ruptured MCL. Conclusion: Further episodes of dislocation or instability will be prevented by identifying and treating major causes of instability. The increase in the level of constraint and correction of previous technical mistakes is mandatory.

  1. Computational issues in the simulation of two-dimensional discrete dislocation mechanics

    Science.gov (United States)

    Segurado, J.; LLorca, J.; Romero, I.

    2007-06-01

    The effect of the integration time step and the introduction of a cut-off velocity for the dislocation motion was analysed in discrete dislocation dynamics (DD) simulations of a single crystal microbeam. Two loading modes, bending and uniaxial tension, were examined. It was found that a longer integration time step led to a progressive increment of the oscillations in the numerical solution, which would eventually diverge. This problem could be corrected in the simulations carried out in bending by introducing a cut-off velocity for the dislocation motion. This strategy (long integration times and a cut-off velocity for the dislocation motion) did not recover, however, the solution computed with very short time steps in uniaxial tension: the dislocation density was overestimated and the dislocation patterns modified. The different response to the same numerical algorithm was explained in terms of the nature of the dislocations generated in each case: geometrically necessary in bending and statistically stored in tension. The evolution of the dislocation density in the former was controlled by the plastic curvature of the beam and was independent of the details of the simulations. On the contrary, the steady-state dislocation density in tension was determined by the balance between nucleation of dislocations and those which are annihilated or which exit the beam. Changes in the DD imposed by the cut-off velocity altered this equilibrium and the solution. These results point to the need for detailed analyses of the accuracy and stability of the dislocation dynamic simulations to ensure that the results obtained are not fundamentally affected by the numerical strategies used to solve this complex problem.

  2. Lifting as You Climb

    Science.gov (United States)

    Sullivan, Debra R.

    2009-01-01

    This article addresses leadership themes and answers leadership questions presented to "Exchange" by the Panel members who attended the "Exchange" Panel of 300 Reception in Dallas, Texas, last November. There is an old proverb that encourages people to lift as they climb: "While you climb a mountain, you must not forget others along the way." With…

  3. A dissociation mechanism for the [a+c] dislocation in GaN

    International Nuclear Information System (INIS)

    Nellist, P D; Hirsch, P B; Lozano, J G; Rhode, S; Zhang, S; Kappers, M J; Humphreys, C J; Horton, M K; Moram, M A; Yasuhara, A; Okunishi, E; Sahonta, S-L

    2014-01-01

    Mixed-type [a+c] dislocations can be identified in atomic-resolution high-angle annular dark-field scanning transmission electron microscope images of GaN viewed along [0001] by use of a Burgers loop analysis and by observation of the depth-dependent displacements associated with the Eshelby twist. These dislocations are found to be able to dissociate resulting in a fault that lies perpendicular to the dislocation glide plane. Consideration of the bonding that occurs in such a fault allows the dissociation reaction to be proposed, and the proposed fault agrees with the experimental images when kinks are incorporated into the model

  4. Dislocation structures and mechanical behaviour of Ge single crystals deformed by compression

    International Nuclear Information System (INIS)

    Nyilas, K.; Dupas, C.; Kruml, T.; Zsoldos, L.; Ungar, T.; Martin, J.L.

    2004-01-01

    Stress-strain curves of germanium interrupted by dip tests reveal that the internal stresses ascend parallel to the applied stress in a strain-rate dependent way. To understand this peculiar behaviour, the dislocation microstructure has been characterized. Transmission electron microscopy images show that regions of high dislocation activity along the primary slip system are separated by dislocation-free zones. X-ray microdiffraction reveals that the dislocation density is fluctuating on a 100 μm scale. X-ray reciprocal-space mapping, together with scanning microdiffraction, shows that misoriented mosaic blocks are forming owing to the boundary conditions in the compression test. These preliminary results reveal deformation heterogeneity both at macroscopic and mesoscopic scales

  5. Mechanisms operating during plastic deformation of metals under concurrent production of cascades and dislocations

    Energy Technology Data Exchange (ETDEWEB)

    Trinkaus, H. [Institut fuer Festkoerperforschung, Forschungszentrum Juelich (Germany); Singh, B.N. [Technical Univ. of Denmark, Risoe National Laboratory for Sustainable Energy, Materials Research Dept., Roskilde (Denmark)

    2008-04-15

    Recent in-reactor tensile tests (IRTs) on pure copper have revealed a deformation behaviour which is significantly different from that observed in post-irradiation tensile tests (PITs). In IRTs, the material deforms uniformly and homogeneously without yield drop and plastic instability as commonly observed in PITs. An increase in the pre-yield dose results in an increase in the level of hardening over the whole test periods and a decrease in the uniform elongation suggesting that the materials 'remember' the impact of the pre-yield damage level. These features are modelled in terms of the decoration of dislocations with glissile dislocation loops. During pre-yield irradiation, dislocation decoration is due to the one-dimensional (1D) diffusion of cascade induced self-interstitial (SIA) clusters and their trapping in the stress field of the static grown-in dislocations. During post-yield irradiation and deformation, moving dislocations are decorated by the sweeping of matrix loops. The interaction of dislocations with loops and between loops is discussed as a function of the relevant parameters. On this basis, the kinetics of decoration is treated in terms of fluxes of loops to and reactions with each other in a conceived 2D space of decoration. In this space, loop coalescence, alignment and mutual blocking reactions are characterised by appropriate reaction cross sections. In the kinetic equations for 'dynamic decoration' under deformation, the evolution of the dislocation density is taken into account. Simple solutions of the kinetic equations are discussed. The apparent memory of the system for the pre-yield dose is identified as the result of simultaneous and closely parallel transient evolutions of the cascade damage and the dislocations up to the end of the IRTs. The contributions of dislocation decoration to yield and flow stresses are attributed to the interaction of dislocations with aligned loops temporarily or permanently immobilized

  6. Mechanisms operating during plastic deformation of metals under concurrent production of cascades and dislocations

    International Nuclear Information System (INIS)

    Trinkaus, H.; Singh, B.N.

    2008-04-01

    Recent in-reactor tensile tests (IRTs) on pure copper have revealed a deformation behaviour which is significantly different from that observed in post-irradiation tensile tests (PITs). In IRTs, the material deforms uniformly and homogeneously without yield drop and plastic instability as commonly observed in PITs. An increase in the pre-yield dose results in an increase in the level of hardening over the whole test periods and a decrease in the uniform elongation suggesting that the materials 'remember' the impact of the pre-yield damage level. These features are modelled in terms of the decoration of dislocations with glissile dislocation loops. During pre-yield irradiation, dislocation decoration is due to the one-dimensional (1D) diffusion of cascade induced self-interstitial (SIA) clusters and their trapping in the stress field of the static grown-in dislocations. During post-yield irradiation and deformation, moving dislocations are decorated by the sweeping of matrix loops. The interaction of dislocations with loops and between loops is discussed as a function of the relevant parameters. On this basis, the kinetics of decoration is treated in terms of fluxes of loops to and reactions with each other in a conceived 2D space of decoration. In this space, loop coalescence, alignment and mutual blocking reactions are characterised by appropriate reaction cross sections. In the kinetic equations for 'dynamic decoration' under deformation, the evolution of the dislocation density is taken into account. Simple solutions of the kinetic equations are discussed. The apparent memory of the system for the pre-yield dose is identified as the result of simultaneous and closely parallel transient evolutions of the cascade damage and the dislocations up to the end of the IRTs. The contributions of dislocation decoration to yield and flow stresses are attributed to the interaction of dislocations with aligned loops temporarily or permanently immobilized by other loops or

  7. Towards a quantification of stress corrosion mechanisms: numerical simulations of hydrogen-dislocations at the very crack tip

    International Nuclear Information System (INIS)

    Chateau, J.P.

    1999-01-01

    We discuss the respective roles played by anodic dissolution and hydrogen in SCC mechanisms of f.c.c. materials, by studying the fracture of copper in nitrite for which we compare the results with that previously obtained in 316L steel in hot chloride. It is surprising to note that even the crystallographies at the scale of the micron are different, the macroscopic inclination of the fracture surfaces are the same. In the case of 316L steel, the formation of strong pile-ups in the presence of hydrogen leads to a zigzag fracture along alternated slip planes in the most general case. In the absence of hydrogen, as in copper, this mechanism effectively disappears. Furthermore, numerical simulations of crack shielding by dislocations emitted on one plane predict the macroscopic inclination. It shows that it is due to the mere dissolution which confines slip activity at the very crack tip in f.c.c. materials. In order to quantify the mechanism involved in 316L steel, we developed simulations which numerically solve the coupled diffusion and elasticity equations for hydrogen in the presence of a crack and shielding dislocations. They reproduce the mechanisms of hydrogen segregation on edge dislocations and of a localised softening effect by decreasing pair interactions. These mechanisms lead to i) a localisation of hydrogen embrittlement along the activated slip planes, ii) an increase of the dislocation density in pile-ups, and iii) a decrease of the cross slip probability. These three factors enhance micro-fracture at the head of a pile-up, which is responsible of the zigzag fracture. Introducing the free surface effects for hydrogen, we point out a new mechanism: the inhibition of dislocation sources at the crack tip, which is relevant with the brittle fracture surfaces observed in some cases in 316L steel. The quantification of these different mechanisms allows to give a relation between the local fracture possibility and the macroscopic parameters. A general law for

  8. Evaluation of the mechanism and principles of management of temporomandibular joint dislocation. Systematic review of literature and a proposed new classification of temporomandibular joint dislocation.

    Science.gov (United States)

    Akinbami, Babatunde O

    2011-06-15

    Virtually all the articles in literature addressed only a specific type of dislocation. The aim of this review was to project a comprehensive understanding of the pathologic processes and management of all types of dislodgement of the head of the mandibular condyle from its normal position in the glenoid fossa. In addition, a new classification of temporomandibular joint dislocation was also proposed. A thorough computer literature search was done using the Medline, Cochrane library and Embase database. Key words like temporo-mandibular joint dislocation were used for the search. Additional manual search was done by going through published home-based and foreign articles. Case reports/series, and original articles that documented the type of dislocation, number of cases treated in the series and original articles. Treatment done and outcome of treatment were included in the study. A total of 128 articles were reviewed out which 79 were found relevant. Of these, 26 were case reports, 17 were case series and 36 were original articles. 79 cases were acute dislocations, 35 cases were chronic protracted TMJ dislocations and 311 cases were chronic recurrent TMJ dislocations. Etiology was predominantly trauma in 60% of cases and other causes contributed about 40%. Of all the cases reviewed, only 4 were unilateral dislocation. Various treatment modalities are outlined in this report as indicated for each type of dislocation. The more complex and invasive method of treatment may not necessarily offer the best option and outcome of treatment, therefore conservative approaches should be exhausted and utilized appropriately before adopting the more invasive surgical techniques.

  9. Evaluation of the mechanism and principles of management of temporomandibular joint dislocation. Systematic review of literature and a proposed new classification of temporomandibular joint dislocation

    Directory of Open Access Journals (Sweden)

    Akinbami Babatunde O

    2011-06-01

    Full Text Available Abstract Background Virtually all the articles in literature addressed only a specific type of dislocation. The aim of this review was to project a comprehensive understanding of the pathologic processes and management of all types of dislodgement of the head of the mandibular condyle from its normal position in the glenoid fossa. In addition, a new classification of temporomandibular joint dislocation was also proposed. Method and materials A thorough computer literature search was done using the Medline, Cochrane library and Embase database. Key words like temporo-mandibular joint dislocation were used for the search. Additional manual search was done by going through published home-based and foreign articles. Case reports/series, and original articles that documented the type of dislocation, number of cases treated in the series and original articles. Treatment done and outcome of treatment were included in the study. Result A total of 128 articles were reviewed out which 79 were found relevant. Of these, 26 were case reports, 17 were case series and 36 were original articles. 79 cases were acute dislocations, 35 cases were chronic protracted TMJ dislocations and 311 cases were chronic recurrent TMJ dislocations. Etiology was predominantly trauma in 60% of cases and other causes contributed about 40%. Of all the cases reviewed, only 4 were unilateral dislocation. Various treatment modalities are outlined in this report as indicated for each type of dislocation. Conclusion The more complex and invasive method of treatment may not necessarily offer the best option and outcome of treatment, therefore conservative approaches should be exhausted and utilized appropriately before adopting the more invasive surgical techniques.

  10. A Star-Wheel Stair-Climbing Wheelchair

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; WU Bo; JIN Ai-min; JIANG Shi-hong; ZHENG Yu-fei; ZHANG Shuai

    2014-01-01

    In order to achieve a wheelchair climb stairs function, this paper designs a star-wheel stair-climbing mechanism. Through the effect of the lock coupling, the star-wheel stair-climbing mechanism is formed to be fixed axis gear train or planetary gear train achieving flat-walking and stair-climbing functions. Crossing obstacle analysis obtains the maximum height and minimum width of obstacle which the wheelchair can cross. Stress-strain analysis in Solidworks simulation is performed to verify material strength.

  11. Research on Dynamics and Stability in the Stairs-Climbing of a Tracked Mobile Robot

    Directory of Open Access Journals (Sweden)

    Weijun Tao

    2012-10-01

    Full Text Available Aiming at the functional requirement of climbing up the stairs, the dynamics and stability during a tracked mobile robot's climbing of stairs is studied. First, from the analysis of its cross-country performance, the mechanical structure of the tracked mobile robot is designed and the hardware composition of its control system is given. Second, based on the analysis to its stairs-climbing process, the dynamical model of stairs-climbing is established by using the classical mechanics method. Next, the stability conditions for its stairs-climbing are determined and an evaluation method of its stairs-climbing stability is proposed, based on a mechanics analysis on the robot's backwards tumbling during the stairs-climbing process. Through simulation and experiments, the effectiveness of the dynamical model and the stability evaluation method of the tracked mobile robot in stairs-climbing is verified, which can provide design and analysis foundations for the tracked mobile robots' stairs-climbing.

  12. Dislocation-based plasticity and strengthening mechanisms in sub-20 nm lamellar structures in pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Hansen, Niels; Godfrey, Andrew

    2016-01-01

    The tensile properties and the deformation microstructure of pearlitic steel (0.8 wt % C) have been quantified in wires drawn to strains in the range from 3.7 to 5.4, having a flow stress in the range from 3.5 to 4.5 GPa. With increasing strain the interlamellar spacing (ILS) decreases from about...... mechanism in the wire and three strengthening mechanisms are applied: boundary strengthening, dislocation strengthening and solid solution hardening with their relative contributions to the total flow stress which change as the strain is increased. Based on linear additivity good correspondence between...

  13. Mechanisms operating during plastic deformation of metals under concurrent production of cascades and dislocations

    DEFF Research Database (Denmark)

    Trinkaus, H.; Singh, Bachu Narain

    Recent in-reactor tensile tests (IRTs) on pure copper have revealed a deformation behaviour which is significantly different from that observed in post-irradiation tensile tests (PITs). In IRTs, the material deforms uniformly and homogeneously without yield drop and plastic instability as commonly...... observed in PITs. An increase in the pre-yield dose results in an increase in the level of hardening over the whole test periods and a decrease in the uniform elongation suggesting that the materials “remember” the impact of the pre-yield damage level. These features are modelled in terms of the decoration...... and deformation, moving dislocations are decorated by the sweeping of matrix loops. The interaction of dislocations with loops and between loops is discussed as a function of the relevant parameters. On this basis, the kinetics of decoration is treated in terms of fluxes of loops to and reactions with each other...

  14. [Elbow dislocation].

    Science.gov (United States)

    de Pablo Márquez, B; Castillón Bernal, P; Bernaus Johnson, M C; Ibañez Aparicio, N M

    Elbow dislocation is the most frequent dislocation in the upper limb after shoulder dislocation. Closed reduction is feasible in outpatient care when there is no associated fracture. A review is presented of the different reduction procedures. Copyright © 2017 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Microscopically derived free energy of dislocations

    NARCIS (Netherlands)

    Kooiman, M.; Hütter, M.; Geers, M.G.D.

    2015-01-01

    The dynamics of large amounts of dislocations is the governing mechanism in metal plasticity. The free energy of a continuous dislocation density profile plays a crucial role in the description of the dynamics of dislocations, as free energy derivatives act as the driving forces of dislocation

  16. Research on Dynamics and Stability in the Stairs-climbing of a Tracked Mobile Robot

    OpenAIRE

    Tao, Weijun; Ou, Yi; Feng, Hutian

    2012-01-01

    Aiming at the functional requirement of climbing up the stairs, the dynamics and stability during a tracked mobile robot's climbing of stairs is studied. First, from the analysis of its cross-country performance, the mechanical structure of the tracked mobile robot is designed and the hardware composition of its control system is given. Second, based on the analysis to its stairs-climbing process, the dynamical model of stairs-climbing is established by using the classical mechanics method. N...

  17. Fibrillar Adhesive for Climbing Robots

    Science.gov (United States)

    Pamess, Aaron; White, Victor E.

    2013-01-01

    A climbing robot needs to use its adhesive patches over and over again as it scales a slope. Replacing the adhesive at each step is generally impractical. If the adhesive or attachment mechanism cannot be used repeatedly, then the robot must carry an extra load of this adhesive to apply a fresh layer with each move. Common failure modes include tearing, contamination by dirt, plastic deformation of fibers, and damage from loading/ unloading. A gecko-like fibrillar adhesive has been developed that has been shown useful for climbing robots, and may later prove useful for grasping, anchoring, and medical applications. The material consists of a hierarchical fibrillar structure that currently contains two levels, but may be extended to three or four levels in continuing work. The contacting level has tens of thousands of microscopic fibers made from a rubberlike material that bend over and create intimate contact with a surface to achieve maximum van der Waals forces. By maximizing the real area of contact that these fibers make and minimizing the bending energy necessary to achieve that contact, the net amount of adhesion has been improved dramatically.

  18. Electronic properties of dislocations introduced mechanically at room temperature on a single crystal silicon surface

    International Nuclear Information System (INIS)

    Ogawa, Masatoshi; Kamiya, Shoji; Izumi, Hayato; Tokuda, Yutaka

    2012-01-01

    This paper focuses on the effects of temperature and environment on the electronic properties of dislocations in n-type single crystal silicon near the surface. Deep level transient spectroscopy (DLTS) analyses were carried out with Schottky electrodes and p + -n junctions. The trap level, originally found at E C -0.50 eV (as commonly reported), shifted to a shallower level at E C -0.23 eV after a heat treatment at 350 K in an inert environment. The same heat treatment in lab air, however, did not cause any shift. The trap level shifted by the heat treatment in an inert environment was found to revert back to the original level when the specimens were exposed to lab air again. Therefore, the intrinsic trap level is expected to occur at E C -0.23 eV and shift sensitively with gas adsorption in air.

  19. Towards a quantification of stress corrosion mechanisms: numerical simulations of hydrogen-dislocations at the very crack tip; Vers une quantification des mecanismes de corrosion sous contrainte: simulations numeriques des interactions hydrogene-dislocations en pointe de fissure

    Energy Technology Data Exchange (ETDEWEB)

    Chateau, J.P

    1999-01-05

    We discuss the respective roles played by anodic dissolution and hydrogen in SCC mechanisms of f.c.c. materials, by studying the fracture of copper in nitrite for which we compare the results with that previously obtained in 316L steel in hot chloride. It is surprising to note that even the crystallographies at the scale of the micron are different, the macroscopic inclination of the fracture surfaces are the same. In the case of 316L steel, the formation of strong pile-ups in the presence of hydrogen leads to a zigzag fracture along alternated slip planes in the most general case. In the absence of hydrogen, as in copper, this mechanism effectively disappears. Furthermore, numerical simulations of crack shielding by dislocations emitted on one plane predict the macroscopic inclination. It shows that it is due to the mere dissolution which confines slip activity at the very crack tip in f.c.c. materials. In order to quantify the mechanism involved in 316L steel, we developed simulations which numerically solve the coupled diffusion and elasticity equations for hydrogen in the presence of a crack and shielding dislocations. They reproduce the mechanisms of hydrogen segregation on edge dislocations and of a localised softening effect by decreasing pair interactions. These mechanisms lead to i) a localisation of hydrogen embrittlement along the activated slip planes, ii) an increase of the dislocation density in pile-ups, and iii) a decrease of the cross slip probability. These three factors enhance micro-fracture at the head of a pile-up, which is responsible of thezigzag fracture. Introducing the free surface effects for hydrogen, we point out a new mechanism: the inhibition of dislocation sources at the crack tip, which is relevant with the brittle fracture surfaces observed in some cases in 316L steel. The quantification of these different mechanisms allows to give a relation between the local fracture possibility and the macroscopic parameters. A general law for

  20. Role of quaternary additions on dislocated martensite, retain austenite and mechanical properties of Fe/Cr/C structural steels

    International Nuclear Information System (INIS)

    Rao, B.V.N.

    1978-02-01

    The influence of quaternary alloy additions of Mn and Ni to Fe/Cr/C steels which have been designed to provide superior mechanical properties has been investigated. Transmission electron microscopy and x-ray analysis revealed increasing amounts of retained austenite with Mn up to 2 w/o and with 5 w/o Ni additions after quenching from 1100 0 C. This is accompanied by a corresponding improvement in toughness properties of the quaternary alloys. In addition, the generally attractive combinations of strength and toughness in these quaternary alloys is attributed to the production of dislocated lath martensite from a homogeneous austenite phase free from undissolved alloy carbides. Grain-refining resulted in a further increase in the amount of retained austenite

  1. Tailoring Superconductivity with Quantum Dislocations.

    Science.gov (United States)

    Li, Mingda; Song, Qichen; Liu, Te-Huan; Meroueh, Laureen; Mahan, Gerald D; Dresselhaus, Mildred S; Chen, Gang

    2017-08-09

    Despite the established knowledge that crystal dislocations can affect a material's superconducting properties, the exact mechanism of the electron-dislocation interaction in a dislocated superconductor has long been missing. Being a type of defect, dislocations are expected to decrease a material's superconducting transition temperature (T c ) by breaking the coherence. Yet experimentally, even in isotropic type I superconductors, dislocations can either decrease, increase, or have little influence on T c . These experimental findings have yet to be understood. Although the anisotropic pairing in dirty superconductors has explained impurity-induced T c reduction, no quantitative agreement has been reached in the case a dislocation given its complexity. In this study, by generalizing the one-dimensional quantized dislocation field to three dimensions, we reveal that there are indeed two distinct types of electron-dislocation interactions. Besides the usual electron-dislocation potential scattering, there is another interaction driving an effective attraction between electrons that is caused by dislons, which are quantized modes of a dislocation. The role of dislocations to superconductivity is thus clarified as the competition between the classical and quantum effects, showing excellent agreement with existing experimental data. In particular, the existence of both classical and quantum effects provides a plausible explanation for the illusive origin of dislocation-induced superconductivity in semiconducting PbS/PbTe superlattice nanostructures. A quantitative criterion has been derived, in which a dislocated superconductor with low elastic moduli and small electron effective mass and in a confined environment is inclined to enhance T c . This provides a new pathway for engineering a material's superconducting properties by using dislocations as an additional degree of freedom.

  2. Dislocation Structures in Creep-deformed Polycrystalline MgO

    DEFF Research Database (Denmark)

    Bilde-Sørensen, Jørgen

    1972-01-01

    dislocation segments lie in their slip or climb planes. On the basis of this structure, a model is proposed in which glide is the principal cause of deformation but the rate-limiting process, i.e. annealing of the network, is diffusion-controlled. Theoretical estimates and experimental results agree within 1...... energy of 76 ± 12 kcal/mol. The creep rate is independent of grain size. The dislocation structure was investigated by transmission electron microscopy. The total dislocation density follows the relation, σ=bG√ρ, commonly found for metals. The dislocations form a 3-dimensional network in which many...

  3. Formation of disorientations in dislocation structures during plastic deformation

    DEFF Research Database (Denmark)

    Pantleon, W.

    2002-01-01

    Disorientations developing during plastic deformation in dislocation structures are investigated. Based on expected mechanisms for the formation of different types of dislocation boundaries (statistical trapping of dislocations or differently activated slip systems) the formation of the disorient...

  4. Preparticipation Evaluation for Climbing Sports.

    Science.gov (United States)

    Campbell, Aaron D; Davis, Christopher; Paterson, Ryan; Cushing, Tracy A; Ng, Pearlly; Peterson, Charles S; Sedgwick, Peter E; McIntosh, Scott E

    2015-12-01

    Climbing is a popular wilderness sport among a wide variety of professional athletes and amateur enthusiasts, and many styles are performed across many environments. Potential risks confront climbers, including personal health or exacerbation of a chronic condition, in addition to climbing-specific risks or injuries. Although it is not common to perform a preparticipation evaluation (PPE) for climbing, a climber or a guide agency may request such an evaluation before participation. Formats from traditional sports PPEs can be drawn upon, but often do not directly apply. The purpose of this article was to incorporate findings from expert opinion from professional societies in wilderness medicine and in sports medicine, with findings from the literature of both climbing epidemiology and traditional sports PPEs, into a general PPE that would be sufficient for the broad sport of climbing. The emphasis is on low altitude climbing, and an overview of different climbing styles is included. Knowledge of climbing morbidity and mortality, and a standardized approach to the PPE that involves adequate history taking and counseling have the potential for achieving risk reduction and will facilitate further study on the evaluation of the efficacy of PPEs. Copyright © 2015. Published by Elsevier Inc.

  5. Preparticipation Evaluation for Climbing Sports.

    Science.gov (United States)

    Campbell, Aaron D; Davis, Christopher; Paterson, Ryan; Cushing, Tracy A; Ng, Pearlly; Peterson, Charles S; Sedgwick, Peter E; McIntosh, Scott E

    2015-09-01

    Climbing is a popular wilderness sport among a wide variety of professional athletes and amateur enthusiasts, and many styles are performed across many environments. Potential risks confront climbers, including personal health or exacerbation of a chronic condition, in addition to climbing-specific risks or injuries. Although it is not common to perform a preparticipation evaluation (PPE) for climbing, a climber or a guide agency may request such an evaluation before participation. Formats from traditional sports PPEs can be drawn upon, but often do not directly apply. The purpose of this article was to incorporate findings from expert opinion from professional societies in wilderness medicine and in sports medicine, with findings from the literature of both climbing epidemiology and traditional sports PPEs, into a general PPE that would be sufficient for the broad sport of climbing. The emphasis is on low altitude climbing, and an overview of different climbing styles is included. Knowledge of climbing morbidity and mortality, and a standardized approach to the PPE that involves adequate history taking and counseling have the potential for achieving risk reduction and will facilitate further study on the evaluation of the efficacy of PPEs.

  6. Microstructure evolution and its influence on deformation mechanisms during high temperature creep of a nickel base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Safari, Javad [Materials Science and Engineering Department, Shahid Chamran University, Ahwaz (Iran, Islamic Republic of)], E-mail: javadsafari@yahoo.com; Nategh, Saeed [Materials Science and Engineering Department, Sharif University of Technology, P.O. Box 11365-9466, Tehran (Iran, Islamic Republic of)], E-mail: nategh@sharif.edu

    2009-01-15

    The interaction of dislocation with strengthening particles, including primary and secondary {gamma}', during different stages of creep of Rene-80 was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). During creep of the alloy at 871 deg. C under stress of 290 MPa, the dislocation network was formed during the early stages of creep, and the dislocation glide and climb process were the predominant mechanism of deformation. The density of dislocation network became more populated during the later stages of the creep, and at the latest stage of the creep, primary particles shearing were observed alongside with the dislocation glide and climb. Shearing of {gamma}' particles in creep at 871 deg. C under stress of 475 MPa was commenced at the earlier creep times and governed the creep deformation mechanism. In two levels of examined stresses, as far as the creep deformation was controlled by glide and climb, creep curves were found to be at the second stage of creep and commence of the tertiary creep, with increasing creep rate, were found to be in coincidence with the particles shearing. Microstructure evolution, with regard to {gamma}' strengthening particles, led to particles growth and promoted activation of other deformation mechanisms such as dislocation bypassing by orowan loop formation. Dislocation-secondary {gamma}' particles interaction was detected to be the glide and climb at the early stages of creep, while at the later stages, the dislocation bypassed the secondary precipitation by means of orowan loops formation, as the secondary particle were grown and the mean inter-particle distance increased.

  7. Climbing the Needs Pyramids

    Directory of Open Access Journals (Sweden)

    J. C. Lomas

    2013-08-01

    Full Text Available Abraham Maslow’s theory of human adult motivation is often represented by a pyramid image showing two proposals: First, the five needs stages in emergent order of hierarchical ascension and second, a percentage of the adult population suggested to occupy each needs tier. Specifically, Maslow proposed that adults would be motivated to satisfy their unfilled needs until they reached the hierarchy’s apex and achieved self-transcendence. Yet how adults can purposefully ascend Maslow’s pyramid through satisfying unfilled needs remains elusive. This brief article challenges this on the theory’s 70th anniversary by presenting a new image of the needs hierarchy, based on ecological design principles to support adults’ purposeful endeavors to climb the needs pyramid.

  8. Dislocation of jaws

    International Nuclear Information System (INIS)

    Katzberg, R.W.; Hayakawa, K.; Anderson, Q.N.; Manzione, J.V.; Helms, C.A.; Tallents, R.

    1984-01-01

    Pluri-directional tomographic and arthrotomographic findings are described in six patients with dislocation of the jaw severe enough to require medical assistance. A grooved defect along the posterior aspect of the condylar head was noted in two of the six patients. The arthrotomographic findings that were obtained in one patient that was dislocated at the time of the arthrogram did not suggest a meniscocondyle incoordination as a mechanism. However, arthrotomographic findings in the six reported cases suggest that significant intra-articular soft tissue damage may result. (orig.)

  9. Bouldering: an alternative strategy to long-vertical climbing in root-climbing hortensias.

    Science.gov (United States)

    Granados Mendoza, Carolina; Isnard, Sandrine; Charles-Dominique, Tristan; Van den Bulcke, Jan; Rowe, Nick P; Van Acker, Joris; Goetghebeur, Paul; Samain, Marie-Stéphanie

    2014-10-06

    In the Neotropics, the genus Hydrangea of the popular ornamental hortensia family is represented by climbing species that strongly cling to their support surface by means of adhesive roots closely positioned along specialized anchoring stems. These root-climbing hortensia species belong to the nearly exclusive American Hydrangea section Cornidia and generally are long lianescent climbers that mostly flower and fructify high in the host tree canopy. The Mexican species Hydrangea seemannii, however, encompasses not only long lianescent climbers of large vertical rock walls and coniferous trees, but also short 'shrub-like' climbers on small rounded boulders. To investigate growth form plasticity in root-climbing hortensia species, we tested the hypothesis that support variability (e.g. differences in size and shape) promotes plastic responses observable at the mechanical, structural and anatomical level. Stem bending properties, architectural axis categorization, tissue organization and wood density were compared between boulder and long-vertical tree-climbers of H. seemannii. For comparison, the mechanical patterns of a closely related, strictly long-vertical tree-climbing species were investigated. Hydrangea seemannii has fine-tuned morphological, mechanical and anatomical responses to support variability suggesting the presence of two alternative root-climbing strategies that are optimized for their particular environmental conditions. Our results suggest that variation of some stem anatomical traits provides a buffering effect that regulates the mechanical and hydraulic demands of two distinct plant architectures. The adaptive value of observed plastic responses and the importance of considering growth form plasticity in evolutionary and conservation studies are discussed. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  10. Study of the dislocation mechanism responsible for the Bordoni relaxation in aluminum by the two-wave acoustic coupling method

    Science.gov (United States)

    Bujard, M.; Gremaud, G.; Benoit, W.

    1987-10-01

    The most realistic model for the interpretation of the Bordoni relaxation observed by internal friction experiments is the mechanism of kink pair formation (KPF) on the dislocations. However, according to this model, high values of the critical resolved shear stress should also be measured at low temperature in face-centered-cubic (fcc) metals, but this has never been observed. Using the newly developed two-wave acoustic coupling method, we have studied the reality of the KPF model as an explanation for the Bordoni relaxation in aluminum. The results are in very good agreement with the predictions of the KPF model and thus confirm this model. On the other hand, experimental evidence that the kink mobility is very high in aluminum have been found. Therefore, the diffusion time of the kinks is negligibly small for the KPF process in fcc metals. Values of the internal stress field in cold-worked samples have also been obtained using the two-wave acoustic coupling approach. A description of the experimental method and the theoretical approach for the interpretation of the results will also be given in this paper.

  11. Surface stress mediated image force and torque on an edge dislocation

    Science.gov (United States)

    Raghavendra, R. M.; Divya, Iyer, Ganesh; Kumar, Arun; Subramaniam, Anandh

    2018-07-01

    The proximity of interfaces gives prominence to image forces experienced by dislocations. The presence of surface stress alters the traction-free boundary conditions existing on free-surfaces and hence is expected to alter the magnitude of the image force. In the current work, using a combined simulation of surface stress and an edge dislocation in a semi-infinite body, we evaluate the configurational effects on the system. We demonstrate that if the extra half-plane of the edge dislocation is parallel to the surface, the image force (glide) is not altered due to surface stress; however, the dislocation experiences a torque. The surface stress breaks the 'climb image force' symmetry, thus leading to non-equivalence between positive and negative climb. We discover an equilibrium position for the edge dislocation in the positive 'climb geometry', arising due to a competition between the interaction of the dislocation stress fields with the surface stress and the image dislocation. Torque in the climb configuration is not affected by surface stress (remains zero). Surface stress is computed using a recently developed two-scale model based on Shuttleworth's idea and image forces using a finite element model developed earlier. The effect of surface stress on the image force and torque experienced by the dislocation monopole is analysed using illustrative 3D models.

  12. Evolutionary novelty versus exaptation: oral kinematics in feeding versus climbing in the waterfall-climbing Hawaiian Goby Sicyopterus stimpsoni.

    Directory of Open Access Journals (Sweden)

    Joshua A Cullen

    Full Text Available Species exposed to extreme environments often exhibit distinctive traits that help meet the demands of such habitats. Such traits could evolve independently, but under intense selective pressures of extreme environments some existing structures or behaviors might be coopted to meet specialized demands, evolving via the process of exaptation. We evaluated the potential for exaptation to have operated in the evolution of novel behaviors of the waterfall-climbing gobiid fish genus Sicyopterus. These fish use an "inching" behavior to climb waterfalls, in which an oral sucker is cyclically protruded and attached to the climbing surface. They also exhibit a distinctive feeding behavior, in which the premaxilla is cyclically protruded to scrape diatoms from the substrate. Given the similarity of these patterns, we hypothesized that one might have been coopted from the other. To evaluate this, we filmed climbing and feeding in Sicyopterus stimpsoni from Hawai'i, and measured oral kinematics for two comparisons. First, we compared feeding kinematics of S. stimpsoni with those for two suction feeding gobiids (Awaous guamensis and Lentipes concolor, assessing what novel jaw movements were required for algal grazing. Second, we quantified the similarity of oral kinematics between feeding and climbing in S. stimpsoni, evaluating the potential for either to represent an exaptation from the other. Premaxillary movements showed the greatest differences between scraping and suction feeding taxa. Between feeding and climbing, overall profiles of oral kinematics matched closely for most variables in S. stimpsoni, with only a few showing significant differences in maximum values. Although current data cannot resolve whether oral movements for climbing were coopted from feeding, or feeding movements coopted from climbing, similarities between feeding and climbing kinematics in S. stimpsoni are consistent with evidence of exaptation, with modifications, between these

  13. Evolutionary novelty versus exaptation: oral kinematics in feeding versus climbing in the waterfall-climbing Hawaiian Goby Sicyopterus stimpsoni.

    Science.gov (United States)

    Cullen, Joshua A; Maie, Takashi; Schoenfuss, Heiko L; Blob, Richard W

    2013-01-01

    Species exposed to extreme environments often exhibit distinctive traits that help meet the demands of such habitats. Such traits could evolve independently, but under intense selective pressures of extreme environments some existing structures or behaviors might be coopted to meet specialized demands, evolving via the process of exaptation. We evaluated the potential for exaptation to have operated in the evolution of novel behaviors of the waterfall-climbing gobiid fish genus Sicyopterus. These fish use an "inching" behavior to climb waterfalls, in which an oral sucker is cyclically protruded and attached to the climbing surface. They also exhibit a distinctive feeding behavior, in which the premaxilla is cyclically protruded to scrape diatoms from the substrate. Given the similarity of these patterns, we hypothesized that one might have been coopted from the other. To evaluate this, we filmed climbing and feeding in Sicyopterus stimpsoni from Hawai'i, and measured oral kinematics for two comparisons. First, we compared feeding kinematics of S. stimpsoni with those for two suction feeding gobiids (Awaous guamensis and Lentipes concolor), assessing what novel jaw movements were required for algal grazing. Second, we quantified the similarity of oral kinematics between feeding and climbing in S. stimpsoni, evaluating the potential for either to represent an exaptation from the other. Premaxillary movements showed the greatest differences between scraping and suction feeding taxa. Between feeding and climbing, overall profiles of oral kinematics matched closely for most variables in S. stimpsoni, with only a few showing significant differences in maximum values. Although current data cannot resolve whether oral movements for climbing were coopted from feeding, or feeding movements coopted from climbing, similarities between feeding and climbing kinematics in S. stimpsoni are consistent with evidence of exaptation, with modifications, between these behaviors. Such

  14. Dislocational Rock Mechanisms As a Basis for Seismic Methods in the Search for Hydrocarbons La géomécanique de dislocation en tant que base des méthodes sismiques de la recherche des hydrocarbures

    Directory of Open Access Journals (Sweden)

    Pissetski V. B.

    2006-11-01

    Full Text Available The analysis of the geological and geophysical data points out the inadequacy of the classical concept of a stratified continuous sedimentary medium on one hand. In the second hand it helps to introduce a serie of key physical concepts. The general formulation of the proposed concept can be presented as follows :(a The discrete character clearly observed during the sedimentation process ensures that changes of sedimentary cycles (hiatuses are marked by fine layers or surfaces which correspond to regular structures of strength defects later. (b The changes in gravity or tectonic load induce a destruction mechanism which regular growth changes a stratified continuous medium with defects into a dicrete medium. This destruction mechanism is a final process : each discrete element is limited in space by horizontal and vertical surfaces of disruption (dislocations. The final medium is a critical piling of elements which reacts easily to any change of the mechanical stress field. From this point of view, if we analyse outcrops and well data one notices a strong correspondance between the actual cracks and the main sedimentary limits. The main feature of the destruction mechanism is well reproduced in the laboratory by physical models built layer by layer with cristallisation pauses between layers. The theoretical analysis of the stress field of discrete media shows the predominance of vertical displacements and consequently the block aspect of the stress distribution within a compensation scheme. Thus, the key element in such a discrete medium model is the dislocation structure and the associated stress or pressure distribution. It becomes obvious that the main parameters of the fluid behaviour are determined by the density of dislocations and the value of the general pressure over the volume of the formation. The general pressure is defined as the sum of geostatic pressure and the anornafic pressure linked to the characteristic variability of the

  15. Dislocations et propriétés mécaniques des matériaux céramiques: Quelques problèmes

    Science.gov (United States)

    Castaing, J.; Dominguez Rodriguez, A.

    1995-11-01

    The study of plastic deformation of ceramic materials raised new problems on low temperature dislocation glide and high temperature dislocation climb. Mechanical behaviour can be explained. In this paper, we review some examples related to oxides which are linked to the activity of J. Philibert. L'étude de la déformation plastique de matériaux céramiques monocristallins a donné l'occasion de poser des nouveaux problèmes sur le glissement des dislocations à basse température et sur leur montée à haute température. Le comportement mécanique peut ainsi être expliqué. Nous passons en revue des cas concernant les oxydes dans lesquels J. Philibert a joué un rôle important.

  16. Relaxation strain measurements in cellular dislocation structures

    International Nuclear Information System (INIS)

    Tsai, C.Y.; Quesnel, D.J.

    1984-01-01

    The conventional picture of what happens during a stress relaxation usually involves imagining the response of a single dislocation to a steadily decreasing stress. The velocity of this dislocation decreases with decreasing stress in such a way that we can measure the stress dependence of the dislocation velocity. Analysis of the data from a different viewpoint enables us to calculate the apparent activation volume for the motion of the dislocation under the assumption of thermally activated glie. Conventional thinking about stress relaxation, however, does not consider the eventual fate of this dislocation. If the stress relaxes to a low enough level, it is clear that the dislocation must stop. This is consistent with the idea that we can determine the stress dependence of the dislocation velocity from relaxation data only for those cases where the dislocation's velocity is allowed to approach zero asymptotically, in short, for those cases where the dislocation never stops. This conflict poses a dilemma for the experimentalist. In real crystals, however, obstacles impede the dislocation's progress so that those dislocations which are stopped at a given stress will probably never resume motion under the influence of the steadily declining stress present during relaxation. Thus one could envision stress relaxation as a process of exhaustion of mobile dislocations, rather than a process of decreasing dislocation velocity. Clearly both points of view have merit and in reality both mechanisms contribute to the phenomena

  17. Disclinations, dislocations, and continuous defects: A reappraisal

    Science.gov (United States)

    Kleman, M.; Friedel, J.

    2008-01-01

    Disclinations were first observed in mesomorphic phases. They were later found relevant to a number of ill-ordered condensed-matter media involving continuous symmetries or frustrated order. Disclinations also appear in polycrystals at the edges of grain boundaries; but they are of limited interest in solid single crystals, where they can move only by diffusion climb and, owing to their large elastic stresses, mostly appear in close pairs of opposite signs. The relaxation mechanisms associated with a disclination in its creation, motion, and change of shape involve an interplay with continuous or quantized dislocations and/or continuous disclinations. These are attached to the disclinations or are akin to Nye’s dislocation densities, which are particularly well suited for consideration here. The notion of an extended Volterra process is introduced, which takes these relaxation processes into account and covers different situations where this interplay takes place. These concepts are illustrated by a variety of applications in amorphous solids, mesomorphic phases, and frustrated media in their curved habit space. These often involve disclination networks with specific node conditions. The powerful topological theory of line defects considers only defects stable against any change of boundary conditions or relaxation processes compatible with the structure considered. It can be seen as a simplified case of the approach considered here, particularly suited for media of high plasticity or/and complex structures. It cannot analyze the dynamical properties of defects nor the elastic constants involved in their static properties; topological stability cannot guarantee energetic stability, and sometimes cannot distinguish finer details of the structure of defects.

  18. {311} Defects in ion-implanted silicon: The cause of transient diffusion, and a mechanism for dislocation formation

    International Nuclear Information System (INIS)

    Eaglesham, D.J.; Stolk, P.A.; Cheng, J.Y.; Gossmann, H.J.; Poate, J.M.; Haynes, T.E.

    1995-04-01

    Ion implantation is used at several critical stages of Si integrated circuit manufacturing. The authors show how {311} defects arising after implantation are responsible for both enhanced dopant diffusion during annealing, and stable dislocations post-anneal. They observe {311} defects in the earliest stages of an anneal. They subsequently undergo rapid Ostwald ripening and evaporation. At low implant doses evaporation dominates, and they can quantitatively relate the interstitials emitted from these defects to the transient enhancement in diffusivity of dopants such as B and P. At higher doses Ostwald ripening is significant, and they observe the defects to undergo a series of unfaulting reactions to form both Frank loops and perfect dislocations. They demonstrate the ability to control both diffusion and dislocations by the addition of small amounts of carbon impurities

  19. Burgers Vector Analysis of Vertical Dislocations in Ge Crystals by Large-Angle Convergent Beam Electron Diffraction.

    Science.gov (United States)

    Groiss, Heiko; Glaser, Martin; Marzegalli, Anna; Isa, Fabio; Isella, Giovanni; Miglio, Leo; Schäffler, Friedrich

    2015-06-01

    By transmission electron microscopy with extended Burgers vector analyses, we demonstrate the edge and screw character of vertical dislocations (VDs) in novel SiGe heterostructures. The investigated pillar-shaped Ge epilayers on prepatterned Si(001) substrates are an attempt to avoid the high defect densities of lattice mismatched heteroepitaxy. The Ge pillars are almost completely strain-relaxed and essentially defect-free, except for the rather unexpected VDs. We investigated both pillar-shaped and unstructured Ge epilayers grown either by molecular beam epitaxy or by chemical vapor deposition to derive a general picture of the underlying dislocation mechanisms. For the Burgers vector analysis we used a combination of dark field imaging and large-angle convergent beam electron diffraction (LACBED). With LACBED simulations we identify ideally suited zeroth and second order Laue zone Bragg lines for an unambiguous determination of the three-dimensional Burgers vectors. By analyzing dislocation reactions we confirm the origin of the observed types of VDs, which can be efficiently distinguished by LACBED. The screw type VDs are formed by a reaction of perfect 60° dislocations, whereas the edge types are sessile dislocations that can be formed by cross-slips and climbing processes. The understanding of these origins allows us to suggest strategies to avoid VDs.

  20. Convoluted dislocation loops induced by helium irradiation in reduced-activation martensitic steel and their impact on mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fengfeng [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Yao, Z. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, Canada K7L 3N6 (Canada); Guo, Liping, E-mail: guolp@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Suo, Jinping [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Wen, Yongming [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2014-06-01

    Helium irradiation induced dislocation loops in reduced-activation martensitic steels were investigated using transmission electron microscopy. The specimens were irradiated with 100 keV helium ions to 0.8 dpa at 350 °C. Unexpectedly, very large dislocation loops were found, significantly larger than that induced by other types of irradiations under the same dose. Moreover, the large loops were convoluted and formed interesting flower-like shape. The large loops were determined as interstitial type. Loops with the Burgers vectors of b=〈100〉 were only observed. Furthermore, irradiation induced hardening caused by these large loops was observed using the nano-indentation technique.

  1. Theory of superplastic flow in two-phase materials: roles of interphase-boundary dislocations, ledges, and diffusion

    International Nuclear Information System (INIS)

    Gittus, J.H.

    1977-01-01

    A new theory is developed to explain superplastic flow in two-phase materials. It is postulated that boundary-dislocations, piled up in dislocation-Interphase-Boundaries (IPBs) climb away into disordered regions of the IPB. Sliding then occurs at an IPB as dislocations glide toward the head of the pile up to replace those which have climbed into disordered regions of the boundary. An energy barrier which would otherwise render sliding virtually impossible on dislocation-IPBs can, it is shown, be largely eliminated if the dislocations glide in pairs. The disorder (actually an antiphase domain boundary) which is created by the passage of the leading dislocation is then repaired by passage of its successor. The threshold stress for superplastic flow is provisionally identified with the stress which pins IPB dislocations to boundary ledges. The activation energy is theoretically that for IPB diffusion. Good agreement is obtained between the theoretical equation for superplastic flow and the results of published experiments

  2. Dislocation dynamics modelling of radiation damage in thin films

    International Nuclear Information System (INIS)

    Ferroni, Francesco; Tarleton, Edmund; Fitzgerald, Steven

    2014-01-01

    Transmission electron microscopy is a key tool for the extraction of information on radiation damage, the understanding of which is critical for materials development for nuclear fusion and fission reactors. Dislocations in TEM samples are subject to strong image forces, owing to the nanometric sample thicknesses, which may introduce artifacts in the damage analysis. Using dislocation dynamics, we elucidate the roles played by dislocation–surface interactions, dislocation–dislocation interactions and self-interactions due to climb for loop types observed in TEM. Comparisons with analytic solutions for a dislocation loop and an edge dislocation in a half-space are included, and the relationship between glide force and loop tilt examined. The parameters for convergence of the zero-traction boundary conditions are obtained, after which the evolution of dislocation structures in a thin film is studied. It is found that three main length scales govern the physical processes: the image force is governed by the distance of the loop from the surface and scales with the film thickness; the glide force is governed by the image stress as well as the loop–loop interaction stress which is in turn governed by the loop spacing L∼1/√ρ, where ρ is the loop density; finally, the climb force depends on the loop size. The three forces compete and their relative magnitudes define the evolution pathway of the dislocation structure. (paper)

  3. Prediction of intragranular strains in metallic polycrystals with a two-level homogenisation approach: Influence of dislocation microstructure on the mechanical behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Gloaguen, D. [GeM, Institut de Recherche en Genie Civil et Mecanique, Universite de Nantes, Ecole Centrale de Nantes, CNRS UMR 6183, 37 Boulevard de l' Universite, BP 406, 44 602 Saint-Nazaire (France); Francois, M. [Laboratoire des Systemes Mecaniques et d' Ingenierie Simultanee (LASMIS FRE CNRS 2719), Universite de Technologie de Troyes, 12 Rue Marie Curie, BP 2060, 10010 Troyes cedex (France)

    2006-06-15

    A two-level homogenisation approach is applied to the micro-mechanical modelling of the elasto-plasticity of polycrystalline materials during various strain-path changes. The model is tested by simulating the development of intragranular strains during different complex loads. Mechanical tests measurements are used as a reference in order to validate the model. The anisotropy of plastic deformation in relation to the evolution of the dislocation structure is analysed. The results demonstrate the relevance of this approach for FCC polycrystals. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Creep mechanisms of U720Li disc superalloy at intermediate temperature

    International Nuclear Information System (INIS)

    Yuan, Y.; Gu, Y.F.; Cui, C.Y.; Osada, T.; Tetsui, T.; Yokokawa, T.; Harada, H.

    2011-01-01

    Highlights: → Crept microstructures of U720Li at 725 deg. C/630 MPa have been investigated by TEM. → Orowan looping process combining dislocation slip and climb and partial dislocations shearing precipitates were the main creep mechanisms. → Grain boundary sliding occurred at last creep stage. → Three methods were suggested to improve the creep property at relatively high temperature. - Abstract: The microstructures of U720Li disc superalloy have been investigated by transmission electron microscopy (TEM) before and after creep test at 725 deg. C/630 MPa. The evolution of the crept microstructures was marked as three different stages (I, II and III) corresponding to gradually increased strain 0.1%, 5% and 27%, respectively. At stage I, dislocations bypassed secondary γ' via Orowan loops. At stage II, partial dislocations started to shear secondary γ', leaving stacking fault (SF) behind and microtwins formed in part of grains. At stage III, grain boundary sliding occurred due to very large strain and increased effective stress. The results indicated that the creep mechanisms of U720Li at 725 deg. C/630 MPa evolved with gradually increased strain. Orowan looping process combining dislocation slip and climb and partial dislocations shearing precipitates were the main creep mechanisms. It is suggested that decreasing the interparticle spacing of secondary γ', strengthening secondary γ' and decreasing stacking fault energy (SFE) of γ matrix may be effective methods to improve the creep property at relatively higher temperatures.

  5. Theory of interacting dislocations on cylinders.

    Science.gov (United States)

    Amir, Ariel; Paulose, Jayson; Nelson, David R

    2013-04-01

    We study the mechanics and statistical physics of dislocations interacting on cylinders, motivated by the elongation of rod-shaped bacterial cell walls and cylindrical assemblies of colloidal particles subject to external stresses. The interaction energy and forces between dislocations are solved analytically, and analyzed asymptotically. The results of continuum elastic theory agree well with numerical simulations on finite lattices even for relatively small systems. Isolated dislocations on a cylinder act like grain boundaries. With colloidal crystals in mind, we show that saddle points are created by a Peach-Koehler force on the dislocations in the circumferential direction, causing dislocation pairs to unbind. The thermal nucleation rate of dislocation unbinding is calculated, for an arbitrary mobility tensor and external stress, including the case of a twist-induced Peach-Koehler force along the cylinder axis. Surprisingly rich phenomena arise for dislocations on cylinders, despite their vanishing Gaussian curvature.

  6. A Survey of Wall Climbing Robots: Recent Advances and Challenges

    Directory of Open Access Journals (Sweden)

    Shunsuke Nansai

    2016-07-01

    Full Text Available In recent decades, skyscrapers, as represented by the Burj Khalifa in Dubai and Shanghai Tower in Shanghai, have been built due to the improvements of construction technologies. Even in such newfangled skyscrapers, the façades are generally cleaned by humans. Wall climbing robots, which are capable of climbing up vertical surfaces, ceilings and roofs, are expected to replace the manual workforce in façade cleaning works, which is both hazardous and laborious work. Such tasks require these robotic platforms to possess high levels of adaptability and flexibility. This paper presents a detailed review of wall climbing robots categorizing them into six distinct classes based on the adhesive mechanism that they use. This paper concludes by expanding beyond adhesive mechanisms by discussing a set of desirable design attributes of an ideal glass façade cleaning robot towards facilitating targeted future research with clear technical goals and well-defined design trade-off boundaries.

  7. Atraumatic Anterior Dislocation of the Hip Joint

    Directory of Open Access Journals (Sweden)

    Tadahiko Ohtsuru

    2015-01-01

    Full Text Available Dislocation of the hip joint in adults is usually caused by high-energy trauma such as road traffic accidents or falls from heights. Posterior dislocation is observed in most cases. However, atraumatic anterior dislocation of the hip joint is extremely rare. We present a case of atraumatic anterior dislocation of the hip joint that was induced by an activity of daily living. The possible causes of this dislocation were anterior capsule insufficiency due to developmental dysplasia of the hip, posterior pelvic tilt following thoracolumbar kyphosis due to vertebral fracture, and acetabular anterior coverage changes by postural factor. Acetabular anterior coverage changes in the sagittal plane were measured using a tomosynthesis imaging system. This system was useful for elucidation of the dislocation mechanism in the present case.

  8. Epidemiology of Isolated Acromioclavicular Joint Dislocation

    Directory of Open Access Journals (Sweden)

    Claudio Chillemi

    2013-01-01

    Full Text Available Background. Acromioclavicular (AC joint dislocation is a common shoulder problem. However, information about the basic epidemiological features of this condition is scarce. The aim of this study is to analyze the epidemiology of isolated AC dislocation in an urban population. Materials and Methods. A retrospective database search was performed to identify all patients with an AC dislocation over a 5-year period. Gender, age, affected side and traumatic mechanism were taken into account. X-rays were reviewed by two of the authors and dislocations were classified according to the Rockwood’s criteria. Results. A total of 108 patients, with a mean age of 37.5 years were diagnosed with AC dislocation. 105 (97.2% had an isolated AC dislocation, and 3 (2.8% were associated with a clavicle fracture. The estimated incidence was 1.8 per 10000 inhabitants per year and the male-female ratio was 8.5 : 1. 50.5% of all dislocations occurred in individuals between the ages of 20 and 39 years. The most common traumatic mechanism was sport injury and the most common type of dislocation was Rockwood type III. Conclusions. Age between 20 and 39 years and male sex represent significant demographic risk factors for AC dislocation.

  9. Diagnosis of climbing related overuse injuries

    International Nuclear Information System (INIS)

    Klauser, A.; Frauscher, F.; Helweg, G.; Nedden, D. zur; Hochholzer, T.; Kramer, J.

    2002-01-01

    Sport climbing shows an enormous increase in participation, evolving to more popularity, including even school sport activity on high standards. Therefore the number of climbing related injuries is increasing and becomes a more frequently encountered medical problem. Typical climbing associated injuries involve predominantly the upper limb. Overuse injuries are the most common climbing related injuries.The clinical examination is the first line investigation, which is often limited especially in the acute phase. However, an exact diagnosis is desireable for therapeutic management. Imaging modalities have shown to be capable for detection of climbing related injuries. An overview about the current use of x-ray, ultrasound and magnetic resonance imaging in different climbing related overuse injuries is presented. (orig.) [de

  10. Canonical Quantization of Crystal Dislocation and Electron-Dislocation Scattering in an Isotropic Media

    Science.gov (United States)

    Li, Mingda; Cui, Wenping; Dresselhaus, M. S.; Chen, Gang; MIT Team; Boston College Team

    Crystal dislocations govern the plastic mechanical properties of materials but also affect the electrical and optical properties. However, a fundamental and decent quantum-mechanical theory of dislocation remains undiscovered for decades. Here we present an exact and manageable Hamiltonian theory for both edge and screw dislocation line in an isotropic media, where the effective Hamiltonian of a single dislocation line can be written in a harmonic-oscillator-like form, with closed-form quantized 1D phonon-like excitation. Moreover a closed-form, position dependent electron-dislocation coupling strength is obtained, from which we obtained good agreement of relaxation time when comparing with classical results. This Hamiltonian provides a platform to study the effect of dislocation to materials' non-mechanical properties from a fundamental Hamiltonian level.

  11. Estimation of dislocations density and distribution of dislocations during ECAP-Conform process

    Science.gov (United States)

    Derakhshan, Jaber Fakhimi; Parsa, Mohammad Habibi; Ayati, Vahid; Jafarian, Hamidreza

    2018-01-01

    Dislocation density of coarse grain aluminum AA1100 alloy (140 µm) that was severely deformed by Equal Channel Angular Pressing-Conform (ECAP-Conform) are studied at various stages of the process by electron backscattering diffraction (EBSD) method. The geometrically necessary dislocations (GNDs) density and statistically stored dislocations (SSDs) densities were estimate. Then the total dislocations densities are calculated and the dislocation distributions are presented as the contour maps. Estimated average dislocations density for annealed of about 2×1012 m-2 increases to 4×1013 m-2 at the middle of the groove (135° from the entrance), and they reach to 6.4×1013 m-2 at the end of groove just before ECAP region. Calculated average dislocations density for one pass severely deformed Al sample reached to 6.2×1014 m-2. At micrometer scale the behavior of metals especially mechanical properties largely depend on the dislocation density and dislocation distribution. So, yield stresses at different conditions were estimated based on the calculated dislocation densities. Then estimated yield stresses were compared with experimental results and good agreements were found. Although grain size of material did not clearly change, yield stress shown intensive increase due to the development of cell structure. A considerable increase in dislocations density in this process is a good justification for forming subgrains and cell structures during process which it can be reason of increasing in yield stress.

  12. Dislocation morphology in deformed and irradiated niobium

    International Nuclear Information System (INIS)

    Chang, C.P.

    1977-06-01

    Niobium foils of moderate purity were examined for the morphology of dislocations or defect clusters in the deformed or neutron-irradiated state by transmission electron microscopy. New evidence has been found for the dissociation of screw dislocations into partials on the (211) slip plane according to the Crussard mechanism: (a/2) [111] → (a/3) [111] + (a/6) [111

  13. Climbing Mont Blanc and Scalability

    OpenAIRE

    Chavez, Christian

    2016-01-01

    This thesis details a proposed system implementation upgrade for the CMB system, accessible at \\url{climb.idi.ntnu.no}, which profiles C/C++ code for its energy efficiency on an Odroid-XU3 board, which utilises a Samsung Exynos 5 Octa CPU, and has an ARM Mali-T628 GPU. Our proposed system implementation improves the robustness of the code base and its execution, in addition to permitting an increased throughput of submissions profiled by the system with the implementation's dispatcher whic...

  14. Hill climbing algorithms and trivium

    DEFF Research Database (Denmark)

    Borghoff, Julia; Knudsen, Lars Ramkilde; Matusiewicz, Krystian

    2011-01-01

    This paper proposes a new method to solve certain classes of systems of multivariate equations over the binary field and its cryptanalytical applications. We show how heuristic optimization methods such as hill climbing algorithms can be relevant to solving systems of multivariate equations....... A characteristic of equation systems that may be efficiently solvable by the means of such algorithms is provided. As an example, we investigate equation systems induced by the problem of recovering the internal state of the stream cipher Trivium. We propose an improved variant of the simulated annealing method...

  15. Study of elementary mechanisms of creep in uranium as a function of temperature (150 deg. to 760 deg. C) by activation energy measurements

    International Nuclear Information System (INIS)

    Grenier, P.

    1966-06-01

    Creep tests were carried out on single crystals and polycrystalline specimens of uranium in both the α and β phases over the temperature range 150 - 760 deg. C. The determination of the activation energy for creep and the study of its variation with temperature made it possible to distinguish various temperature ranges in which one or more elementary mechanisms govern deformation. Micrographic observations after creep and the study of the variation of creep-rate with load support the conclusions. The creep behavior of single crystals is identical with that of polycrystalline material below 325 deg. C. From 325 deg. C to one upper limiting temperature whose value depends on the purity and previous history of the metal, the creep deformation of uranium is controlled by cross-slip. From this limiting temperature up to 520 deg. C, the creep of uranium involves two independent mechanisms operating simultaneously, the movement of screw dislocation by cross-slip and the climbing of edge dislocations out of their slip plane. Between 520 deg. C and the α - β transformation temperature creep in polycrystals is governed by the climb of edge dislocations out of their slip planes, by a pile up mechanism in the case of primary creep and by dipole annihilation in the case of secondary creep. In single crystals creep is dependent on the climb of edge dislocations into pre-existent sub-boundaries and their subsequent rearrangement within these boundaries. In the β phase the creep of polycrystals is governed by the diffusional climb of edge dislocations. Between 450 and 630 deg. C small alloy additions of molybdenum modify the creep characteristics of uranium although the deformation mechanisms involved are analogous to those in the pure metal. (author) [fr

  16. Efficacy of pre-ascent climbing route visual inspection in indoor sport climbing

    NARCIS (Netherlands)

    Sanchez, X.; Lambert, Ph; Jones, G.; Llewellyn, D. J.

    Pre-ascent climbing route visual inspection (route preview) has been suggested as a key climbing performance parameter although its role has never been verified experimentally. We examined the efficacy of this perceptual-cognitive skill on indoor sport climbing performance. Twenty-nine male

  17. HVEM in-situ observation of formation of helical dislocations in Ag-10at.%Al

    International Nuclear Information System (INIS)

    Saka, H.; Kondo, T.

    1982-01-01

    Dissociated near-screw dislocations in Ag-10at.%Al were irradiated with 1 MeV electrons at 473K in a HVEM and the transformation of the dissociated screws into helices as a result of the interaction of point defects introduced was observed in situ using the 'weak-beam' electron microscopy. Results of observations have been analysed in terms of the 'loop-jog' model of climb of dissociated dislocations proposed by Cherns, Hirsch and Saka. (author)

  18. Mechanisms of radiation induced creep and growth

    International Nuclear Information System (INIS)

    Bullough, R.; Wood, M.H.

    1980-01-01

    Irradiation creep occurs primarily because the applied stress causes the evolving microstructure to respond in an anisotropic fashion to the interstitial and vacancy fluxes. On the other hand, irradiation growth requires the response to be naturally anisotropic in the absence of applied stress. Four fundamental mechanisms of irradiation creep have been conjectured: stress induced preferred absorption (SIPA) of the point defects on the dislocations, stress induced preferred nucleation (SIPN) of point defects in planar aggregates (edge dislocation loops), stress induced climb and glide (SICG) of the dislocation network and stress induced gas driven interstitial deposition (SIGD). These mechanisms will be briefly outlined and commented upon. The contributions made by these mechanisms to the total strain are not, in general, mutually separable and also depend on the prevailing (and changing) microstructure during irradiation. The fundamental mechanism of irradiation growth will be discussed: it is believed to arise by the preferred condensation of point defects and climb of dislocation loops and network on certain crystallographic planes. The preferred absorption and nucleation is thus a consequence of natural crystallographic anisotropy and not due to any external stresses. Again the effectiveness of this mechanism depends on the prevailing microstructure in the material. In this connection will be particularly drawn to the significance of solute trapping, segregation at grain boundaries, dislocation bias for interstitials and transport parameters for an understanding of irradiation growth in materials like zirconium and its alloys; the relevance of recent simulation studies of growth in such materials using electrons to the growth under neutron irradiation will be discussed in detail and a consistent model of growth in these materials will be presented. (orig.)

  19. TEM study of β′ precipitate interaction mechanisms with dislocations and β′ interfaces with the aluminium matrix in Al–Mg–Si alloys

    International Nuclear Information System (INIS)

    Teichmann, Katharina; Marioara, Calin D.; Andersen, Sigmund J.; Marthinsen, Knut

    2013-01-01

    The interaction mechanisms between dislocations and semi-coherent, needle-shaped β′ precipitates in Al–Mg–Si alloys have been studied by High Resolution Transmission Electron Microscopy (HRTEM). Dislocation loops appearing as broad contrast rings around the precipitate cross-sections were identified in the Al matrix. A size dependency of the interaction mechanism was observed; the precipitates were sheared when the longest dimension of their cross-section was shorter than approximately 15 nm, and looped otherwise. A more narrow ring located between the Al matrix and bulk β′ indicates the presence of a transition interface layer. Together with the bulk β′ structure, this was further investigated by High Angle Annular Dark Field Scanning TEM (HAADF-STEM). In the bulk β′ a higher intensity could be correlated with a third of the Si-columns, as predicted from the published structure. The transition layer incorporates Si columns in the same arrangement as in bulk β′, although it is structurally distinct from it. The Z-contrast information and arrangement of these Si-columns demonstrate that they are an extension of the Si-network known to structurally connect all the precipitate phases in the Al–Mg–Si(–Cu) system. The width of the interface layer was estimated to about 1 nm. - Highlights: ► β′ is found to be looped at sizes larger than 15 nm (cross section diameter). ► β′ is found to be sheared at sizes smaller than 15 nm (cross section diameter). ► The recently determined crystal structure of β′ is confirmed by HAADF-STEM. ► Between β′ and the Al-matrix a transition layer of about 1 nm is existent. ► The β′/matrix layer is structurally distinct from bulk β′ and the aluminium matrix.

  20. Dislocation processes in quasicrystals-Kink-pair formation control or jog-pair formation control

    International Nuclear Information System (INIS)

    Takeuchi, Shin

    2005-01-01

    A computer simulation of dislocation in a model quasiperiodic lattice indicates that the dislocation feels a large Peierls potential when oriented in particular directions. For a dislocation with a high Peierls potential, the glide velocity and the climb velocity of the dislocation can be described almost in parallel in terms of the kink-pair formation followed by kink motion and the jog-pair formation followed by jog motion, respectively. The activation enthalpy of the kink-pair formation is the sum of the kink-pair formation enthalpy and the atomic jump activation enthalpy, while the activation enthalpy of the jog-pair formation involves the jog-pair enthalpy and the self-diffusion enthalpy. Since the kink-pair energy can be considerably larger than the jog-pair energy, the climb velocity can be faster than the glide velocity, so that the plastic deformation of quasicrystals can be brought not by dislocation glide but by dislocation climb at high temperatures

  1. Permanent Magnetic System Design for the Wall-Climbing Robot

    Directory of Open Access Journals (Sweden)

    W. Shen

    2006-01-01

    Full Text Available This paper presents the design and analysis of the permanent magnetic system for a wall-climbing robot with permanent magnetic tracks. Based on the behaviour of gecko lizards, the architecture of the robot was designed and built, including the structure of the adhesion mechanism, the mechanical architecture and the anti-toppling mechanism. The permanent magnetic adhesion mechanism and the tracked locomotion mechanism were employed in this kind of wall-climbing robot. Through static and dynamic force analysis of the robot under different situations, design requirements for the adhesion mechanism were derived. Two different types of structures were put forward for the permanent magnetic units and are further discussed in this paper. These two types of structures are also analysed in detail. In addition, a finite-element method was used to verify the results of magnetic units. Finally, two wall-climbing robots, equipped with different magnetic systems described previously, are explained and their applications are discussed in this paper.

  2. CLIMB grammars: three projects using metagrammar engineering

    NARCIS (Netherlands)

    Fokkens, A.S.; Avgustinova, T.; Zhang, Yi

    2012-01-01

    This paper introduces the CLIMB (Comparative Libraries of Implementations with Matrix Basis) methodology and grammars. The basic idea behind CLIMB is to use code generation as a general methodology for grammar development in order to create a more systematic approach to grammar development. The

  3. Tracked robot controllers for climbing obstacles autonomously

    Science.gov (United States)

    Vincent, Isabelle

    2009-05-01

    Research in mobile robot navigation has demonstrated some success in navigating flat indoor environments while avoiding obstacles. However, the challenge of analyzing complex environments to climb obstacles autonomously has had very little success due to the complexity of the task. Unmanned ground vehicles currently exhibit simple autonomous behaviours compared to the human ability to move in the world. This paper presents the control algorithms designed for a tracked mobile robot to autonomously climb obstacles by varying its tracks configuration. Two control algorithms are proposed to solve the autonomous locomotion problem for climbing obstacles. First, a reactive controller evaluates the appropriate geometric configuration based on terrain and vehicle geometric considerations. Then, a reinforcement learning algorithm finds alternative solutions when the reactive controller gets stuck while climbing an obstacle. The methodology combines reactivity to learning. The controllers have been demonstrated in box and stair climbing simulations. The experiments illustrate the effectiveness of the proposed approach for crossing obstacles.

  4. Internal stresses, dislocation mobility and ductility

    Science.gov (United States)

    Saada, G.

    1991-06-01

    The description of plastic deformation must take into account individual mechanisms and heterogeneity of plastic strain. Influence of dislocation interaction with forest dislocations and of cross slip are connected with the organization of dipole walls. The latter are described and their development is explained as a consequence of edge effects. Applications are discussed. La description de la déformation plastique doit prendre en compte les interactions individuelles des dislocations et l'hétérogénéité à grande échelle de la déformation plastique. Les interactions des dislocations mobiles avec la forêt de dislocations, le glissement dévié, ont pour effet la création de parois dipolaires. Celles-ci sont décrites et leur développement est appliqué à partir des effets de bord.

  5. Statistics of dislocation pinning at localized obstacles

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, A. [S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700098 (India); Bhattacharya, M., E-mail: mishreyee@vecc.gov.in; Barat, P. [Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata 700064 (India)

    2014-10-14

    Pinning of dislocations at nanosized obstacles like precipitates, voids, and bubbles is a crucial mechanism in the context of phenomena like hardening and creep. The interaction between such an obstacle and a dislocation is often studied at fundamental level by means of analytical tools, atomistic simulations, and finite element methods. Nevertheless, the information extracted from such studies cannot be utilized to its maximum extent on account of insufficient information about the underlying statistics of this process comprising a large number of dislocations and obstacles in a system. Here, we propose a new statistical approach, where the statistics of pinning of dislocations by idealized spherical obstacles is explored by taking into account the generalized size-distribution of the obstacles along with the dislocation density within a three-dimensional framework. Starting with a minimal set of material parameters, the framework employs the method of geometrical statistics with a few simple assumptions compatible with the real physical scenario. The application of this approach, in combination with the knowledge of fundamental dislocation-obstacle interactions, has successfully been demonstrated for dislocation pinning at nanovoids in neutron irradiated type 316-stainless steel in regard to the non-conservative motion of dislocations. An interesting phenomenon of transition from rare pinning to multiple pinning regimes with increasing irradiation temperature is revealed.

  6. The evolution of vertical climbing in primates: evidence from reaction forces.

    Science.gov (United States)

    Hanna, Jandy B; Granatosky, Michael C; Rana, Pooja; Schmitt, Daniel

    2017-09-01

    Vertical climbing is an essential behavior for arboreal animals, yet limb mechanics during climbing are poorly understood and rarely compared with those observed during horizontal walking. Primates commonly engage in both arboreal walking and vertical climbing, and this makes them an ideal taxa in which to compare these locomotor forms. Additionally, primates exhibit unusual limb mechanics compared with most other quadrupeds, with weight distribution biased towards the hindlimbs, a pattern that is argued to have evolved in response to the challenges of arboreal walking. Here we test an alternative hypothesis that functional differentiation between the limbs evolved initially as a response to climbing. Eight primate species were recorded locomoting on instrumented vertical and horizontal simulated arboreal runways. Forces along the axis of, and normal to, the support were recorded. During walking, all primates displayed forelimbs that were net braking, and hindlimbs that were net propulsive. In contrast, both limbs served a propulsive role during climbing. In all species, except the lorisids, the hindlimbs produced greater propulsive forces than the forelimbs during climbing. During climbing, the hindlimbs tends to support compressive loads, while the forelimb forces tend to be primarily tensile. This functional disparity appears to be body-size dependent. The tensile loading of the forelimbs versus the compressive loading of the hindlimbs observed during climbing may have important evolutionary implications for primates, and it may be the case that hindlimb-biased weight support exhibited during quadrupedal walking in primates may be derived from their basal condition of climbing thin branches. © 2017. Published by The Company of Biologists Ltd.

  7. Effects of Sport Climbing on Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Julia Steimer

    2017-12-01

    Full Text Available Multiple sclerosis (MS is an autoimmune and neurodegenerative disease of the central nervous system (CNS with different types of disease courses (relapsing-remitting, secondary-progressive, primary progressive that leads to physical as well as mental disability. The symptoms comprise paresis or/and paralysis, ataxia, bladder dysfunction, visual problems as well as effects on cognition. There is limited data regarding the possible effects of sport climbing respectively therapeutic climbing on patients with MS. Sport climbing offers many potentially beneficial effects for patients with MS since there are effects on coordination, muscular strength, and cognition to name the most relevant ones. Also, disease models in rodents point toward such positive outcomes of climbing. Therefore, we assessed the currently available research literature on general effects of physical exercise, impact of climbing on body and mind and therapeutic climbing for prevention or therapy for the treatment of MS. The sparse published controlled trials that investigated this sport activity on different groups of patients with neurological or geriatric diseases grossly differ in study design and outcome parameters. Nevertheless, it appears that climbing offers the opportunity to improve some of the symptoms of patients with MS and can contribute to an enhanced quality of life.

  8. Indoor rock climbing: who gets injured?

    Science.gov (United States)

    Wright, D M; Royle, T J; Marshall, T

    2001-06-01

    To determine the frequency of overuse injury in indoor climbers, the common sites of such injury, and the factors that influence the probability that a climber will have sustained an overuse injury while climbing indoors. A semisupervised questionnaire was used to survey overuse injury in 295 spectators and competitors at the Entre-Prises World Climbing Championships held in Birmingham 3-5 December 1999. Statistical analysis included simple cross tabulations, calculation of odds ratios, and multiple logistic regression to explore the effect of several factors simultaneously. Some 44% of respondents had sustained an overuse injury, 19% at more than one site. The most common site of injury was the fingers. Univariate analysis showed that the probability of having sustained a climbing injury is higher in men (p = 0.009), those who have climbed for more than 10 years (p = 0.006), those who climb harder routes (p<0.0005), and those who boulder or lead more than they top rope (p<0.0005). The relation between lead grade and climbing injury is linear. Multivariate analysis removed the effect of sex as an independent predictor. Many climbers sustain overuse injury. The most at risk are those with the most ability and dedication to climbing. Climbers should be aware of the risk factors that influence injury and be able to spot the signs and symptoms of injury once they occur.

  9. Irradiation creep induced anisotropy in a/2 dislocation populations

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1984-05-01

    The contribution of anisotropy in Burgers vector distribution to irradiation creep behavior has been largely ignored in irradiation creep models. However, findings on Frank loops suggest that it may be very important. Procedures are defined to identify the orientations of a/2 Burgers vectors for dislocations in face-centered cubic crystals. By means of these procedures the anisotropy in Burgers vector populations was determined for three Nimonic PE16 pressurized tube specimens irradiated under stress. Considerable anisotropy in Burgers vector population develops during irradiation creep. It is inferred that dislocation motion during irradiation creep is restricted primarily to a climb of a/2 dislocations on 100 planes. Effect of these results on irradiation creep modeling and deformation induced irradiation growth is considered

  10. Dislocation-dynamics method

    International Nuclear Information System (INIS)

    Van Brutzel, L.

    2015-01-01

    Dislocation-Dynamics (DD) technique is identified as the method able to model the evolution of material plastic properties as a function of the microstructural transformation predicted at the atomic scale. Indeed, it is the only simulation method capable of taking into account the collective behaviour of a large number of dislocations inside a realistic microstructure. DD simulations are based on the elastic dislocation theory following rules inherent to the dislocation core structure often call 'local rules'. All the data necessary to establish the local rules for DD have to come directly from experiment or alternatively from simulations carried out at the atomic scale such as molecular dynamics or ab initio calculations. However, no precise information on the interaction between two dislocations or between dislocations and defects induced by irradiation are available for nuclear fuels. Therefore, in this article the DD technique will be presented and some examples are given of what can be achieved with it. (author)

  11. Primary traumatic patellar dislocation

    Directory of Open Access Journals (Sweden)

    Tsai Chun-Hao

    2012-06-01

    Full Text Available Abstract Acute traumatic patellar dislocation is a common injury in the active and young adult populations. MRI of the knee is recommended in all patients who present with acute patellar dislocation. Numerous operative and non-operative methods have been described to treat the injuries; however, the ideal management of the acute traumatic patellar dislocation in young adults is still in debate. This article is intended to review the studies to the subjects of epidemiology, initial examination and management.

  12. Scattering of phonons by dislocations

    International Nuclear Information System (INIS)

    Anderson, A.C.

    1979-01-01

    By 1950, an explicit effort had been launched to use lattice thermal conductivity measurements in the investigation of defect structures in solids. This technique has been highly successful, especially when combined with the measurements of other properties such as optical absorption. One exception has been the study of dislocations. Although dislocations have a profound effect on the phonon thermal conductivity, the mechanisms of the phonon-dislocation interaction are poorly understood. The most basic questions are still debated in the literature. It therefore is pointless to attempt a quantitative comparison between an extensive accumulation of experimental data on the one hand, and the numerous theoretical models on the other. Instead, this chapter will attempt to glean a few qualitative conclusions from the existing experimental data. These results will then be compared with two general models which incorporate, in a qualitative manner, most of the proposed theories of the phonon-dislocation interaction. Until very recently, measurement of thermal conductivity was the only means available to probe the interaction between phonons and defects at phonon frequencies above the standard ultrasonic range of approx. = 10 9 Hz. The introductory paragraphs provide a brief review of the thermal-conductivity technique and the problems which are encountered in practice. There is also a brief presentation of the theoretical models and the complications that may occur in more realistic situations

  13. Coarse-grained elastodynamics of fast moving dislocations

    International Nuclear Information System (INIS)

    Xiong, Liming; Rigelesaiyin, Ji; Chen, Xiang; Xu, Shuozhi; McDowell, David L.; Chen, Youping

    2016-01-01

    The fundamental mechanism of dynamic plasticity in metallic materials subjected to shock loading remains unclear because it is difficult to obtain the precise information of individual fast moving dislocations in metals from the state-of-the-art experiments. In this work, the dynamics of sonic dislocations in anisotropic crystalline materials is explored through a concurrent atomistic-continuum modeling method. We make a first attempt to characterize the complexity of nonuniformly moving dislocations in anisotropic crystals from atomistic to microscale, including the energy intensities as well as the wavelengths of acoustic phonons emitted from sonic dislocations, and the velocity-dependent stress fluctuations around the core of nonuniformly moving dislocations. Instantaneous dislocation velocities and phonon drag effects on the dislocation motions are quantified and analyzed. Mach cones in a V-shaped pattern of the phonon wave-fronts are observed in the wake of the sonic dislocations. Analysis of simulation results based on a wavelet transform show that the faster a dislocation is moving, the longer the emitted phonon wavelength. The dislocation velocity drops dramatically with the occurrence of the interactions between dislocations and phonon waves reflected from the boundaries of specimens. The concurrent atomistic-continuum modeling framework is demonstrated to be the first multiscale method that explicitly treats the strong coupling between the long-range elastic fields away from the dislocation core, the highly nonlinear time-dependent stress field within the core, and the evolutions of the atomic-scale dislocation core structures. As such, it is shown that this method is capable in predicting elastodynamics of dislocations in the presence of inertia effects associated with sonic dislocations in micron-sized anisotropic crystalline materials from the atomic level, which is not directly accessible to the recent elastodynamic discrete dislocation model.

  14. Amooty, a stair climbing intelligent maintenance robot

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Toshiba Corporation and a team from Tokyo University have jointly developed a prototype of a mobile, stair climbing intelligent robot, named Amooty, for inspection and maintenance tasks in nuclear power plants. (author)

  15. Amooty, a stair climbing intelligent maintenance robot

    Energy Technology Data Exchange (ETDEWEB)

    1985-04-01

    Toshiba Corporation and a team from Tokyo University have jointly developed a prototype of a mobile, stair climbing intelligent robot, named Amooty, for inspection and maintenance tasks in nuclear power plants.

  16. Thermodynamic theory of dislocation-enabled plasticity

    International Nuclear Information System (INIS)

    Langer, J. S.

    2017-01-01

    The thermodynamic theory of dislocation-enabled plasticity is based on two unconventional hypotheses. The first of these is that a system of dislocations, driven by external forces and irreversibly exchanging heat with its environment, must be characterized by a thermodynamically defined effective temperature that is not the same as the ordinary temperature. The second hypothesis is that the overwhelmingly dominant mechanism controlling plastic deformation is thermally activated depinning of entangled pairs of dislocations. This paper consists of a systematic reformulation of this theory followed by examples of its use in analyses of experimentally observed phenomena including strain hardening, grain-size (Hall-Petch) effects, yielding transitions, and adiabatic shear banding.

  17. Energetics of dislocation transformations in hcp metals

    International Nuclear Information System (INIS)

    Wu, Zhaoxuan; Yin, Binglun; Curtin, W.A.

    2016-01-01

    Dislocation core structures of hcp metals are highly complex and differ significantly among the hcp family. Some dislocations undergo unconventional transformations that have significant effects on the material plastic flow. Here, the energetics of dislocation dissociations are analyzed in a general anisotropic linear elastic theory framework for transformations in which changes in the partial Burgers vectors are small. Quantitative analyses on various transformations are made using DFT-computed stacking fault energies and partial Burgers vectors. Specifically, possible transformations of the mixed, edge, and screw 〈c+a〉 and screw 〈a〉 dislocations in 6 hcp metals (Mg, Ti, Zr, Re, Zn, Cd) are studied. Climb dissociation of mixed or edge 〈c+a〉 dislocations to the Basal plane is energetically favorable in all 6 metals and thus only limited by thermal activation. The 〈c+a〉 screw dislocation is energetically preferable on Pyramidal I for Ti, Zr, and Re, and on Pyramidal II for Zn and Cd. In Mg, the energy difference between screw 〈c+a〉 on Pyramidal I and II planes is small, suggesting relatively easy cross-slip. For the screw 〈a〉, Basal dissociation is energetically favorable in Mg, Re, Zn and Cd, while Prism dissociation is strongly favorable in Ti and Zr. Only Ti, Zr and Re show a metastable state for dissociation on the Prism plane, and the energy difference between screw 〈a〉 on the Prism and Pyramidal I planes is relatively small in all systems, suggesting relatively easy cross-slip of 〈a〉 in Ti and Zr. The elastic analysis thus provides a single framework able to capture the controlling energetics for different dissociations and slip systems in hcp metals. When the calculated energy differences are very small, the results point to the need for detailed modeling of the atomistic core structure. Moreover, the analyses rationalize broad experimental observations on dominant slip systems and dislocation behaviours, and provide

  18. Transscaphoid, transcapitate, perilunate fracture dislocation (Scaphocapitate syndrome)

    International Nuclear Information System (INIS)

    Resnik, C.S.; Resnick, D.; Gelberman, R.H.

    1983-01-01

    Five cases of transscaphoid, transcapitate, perilunate fracture dislocation have been presented with a discussion of the radiologic findings, mechanism of injury, and the method of treatment. Although a total of only 23 cases have now been reported in the literature, this type of injury is probably not rare as we have seen two cases within a span of six months. It is important to recognize the radiologic features of this fracture dislocation so appropriate therapy may be instituted. (orig.)

  19. Ultrasonic Study of Dislocation Dynamics in Lithium -

    Science.gov (United States)

    Han, Myeong-Deok

    1987-09-01

    Experimental studies of dislocation dynamics in LiF single crystals, using ultrasonic techniques combined with dynamic loading, were performed to investigate the time evolution of the plastic deformation process under a short stress pulse at room temperature, and the temperature dependence of the dislocation damping mechanism in the temperature range 25 - 300(DEGREES)K. From the former, the time dependence of the ultrasonic attenuation was understood as resulting from dislocation multiplication followed by the evolution of mobile dislocations to immobile ones under large stress. From the latter, the temperature dependence of the ultrasonic attenuation was interpreted as due to the motion of the dislocation loops overcoming the periodic Peierls potential barrier in a manner analogous to the motion of a thermalized sine-Gordon chain under a small stress. The Peierls stress obtained from the experimental results by application of Seeger's relaxation model with exponential dislocation length distribution was 4.26MPa, which is consistent with the lowest stress for the linear relation between the dislocation velocity and stress observed by Flinn and Tinder.

  20. Onset of vertical threading dislocations in Si1−xGex/Si (001 at a critical Ge concentration

    Directory of Open Access Journals (Sweden)

    Fabio Isa

    2013-11-01

    Full Text Available We show that the Ge concentration in Si1−xGex alloys grown under strong out-of-equilibrium conditions determines the character of the population of threading dislocations (TDs. Above a critical value x ∼ 0.25 vertical TDs dominate over the common slanted ones. This is demonstrated by exploiting a statistically relevant analysis of TD orientation in micrometer-sized Si1−xGex crystals, deposited on deeply patterned Si(001 substrates. Experiments involving an abrupt change of composition in the middle of the crystals clarify the role of misfit-strain versus chemical composition in favoring the vertical orientation of TDs. A scheme invoking vacancy-mediated climb mechanism is proposed to rationalize the observed behavior.

  1. On damping of screw dislocation bending vibrations in dissipative crystal: limiting cases

    Science.gov (United States)

    Dezhin, V. V.

    2018-03-01

    The expression for the generalized susceptibility of the dislocation obtained earlier was used. The electronic drag mechanism of dislocations is considered. The study of small dislocation oscillations was limited. The contribution of the attenuation of low-frequency bending screw dislocation vibrations to the overall coefficient of dynamic dislocation drag in the long-wave and short-wave limits is calculated. The damping of short-wave bending screw dislocation vibrations caused by an external action of an arbitrary frequency has been investigated. The contribution of long-wave bending screw dislocation vibrations damping in the total drag coefficient at an arbitrary frequency is found.

  2. Quasicontinuum analysis of dislocation-coherent twin boundary interaction to provide local rules to discrete dislocation dynamics

    Science.gov (United States)

    Tran, H.-S.; Tummala, H.; Duchene, L.; Pardoen, T.; Fivel, M.; Habraken, A. M.

    2017-10-01

    The interaction of a pure screw dislocation with a Coherent Twin Boundary Σ3 in copper was studied using the Quasicontinuum method. Coherent Twin Boundary behaves as a strong barrier to dislocation glide and prohibits slip transmission across the boundary. Dislocation pileup modifies the stress field at its intersection with the Grain Boundary (GB). A methodology to estimate the strength of the barrier for a dislocation to slip across CTB is proposed. A screw dislocation approaching the boundary from one side either propagates into the adjacent twin grain by cutting through the twin boundary or is stopped and increases the dislocation pileup amplitude at the GB. Quantitative estimation of the critical stress for transmission was performed using the virial stress computed by Quasicontinuum method. The transmission mechanism and critical stress are in line with the literature. Such information can be used as input for dislocation dynamic simulations for a better modeling of grain boundaries.

  3. The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep

    International Nuclear Information System (INIS)

    Zhang, J.X.; Wang, J.C.; Harada, H.; Koizumi, Y.

    2005-01-01

    The development of dislocation configurations in two single-crystal superalloys during high-temperature low-stress creep (1100 deg C, 137 MPa) was investigated with the use of transmission electron microscopy. Detailed analysis showed that the lattice misfit has an important influence on the dislocation movement. For an alloy with a large negative lattice misfit, the dislocations are able to move smoothly by cross-slip in the horizontal γ channels. During subsequent formation of γ/γ' rafted structure, the dislocations on the surface of γ' cuboids rapidly re-orientate themselves from to direction and form a complete network. For an alloy with a small lattice misfit, the dislocations move by the combination of climbing and gliding processes, and the resultant γ/γ' interfacial dislocation network is incomplete. A good explanation of the creep curves is obtained from these differences in the microstructures

  4. Interaction of 〈1 0 0〉 dislocation loops with dislocations studied by dislocation dynamics in α-iron

    Energy Technology Data Exchange (ETDEWEB)

    Shi, X.J.; Dupuy, L. [CEA, DEN, SRMA, F-91191 Gif-sur-Yvette (France); Devincre, B. [Laboratoire d’Etude des Microstructures, CNRS-ONERA, 29 av. de la Division Leclerc, 92322 Châtillon Cedex (France); Terentyev, D. [SCK–CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium); Vincent, L. [CEA, DEN, SRMA, F-91191 Gif-sur-Yvette (France)

    2015-05-15

    Highlights: • Interactions between edge dislocations and radiation-induced loops were studied by dislocation dynamics. • Dislocation dynamics results are directly compared to molecular dynamics results. • The complex elementary reactions are successfully reproduced. • The critical shear stress to overcome individual loops if reproduced quantitatively. - Abstract: Interstitial dislocation loops with Burgers vector of 〈1 0 0〉 type are formed in α-iron under neutron or heavy ion irradiation. As the density and size of these loops increase with radiation dose and temperature, these defects are thought to play a key role in hardening and subsequent embrittlement of iron-based steels. The aim of the present work is to study the pinning strength of the loops on mobile dislocations. Prior to run massive Dislocation Dynamics (DD) simulations involving experimentally representative array of radiation defects and dislocations, the DD code and its parameterization are validated by comparing the individual loop–dislocation reactions with those obtained from direct atomistic Molecular Dynamics (MD) simulations. Several loop–dislocation reaction mechanisms are successfully reproduced as well as the values of the unpinning stress to detach mobile dislocations from the defects.

  5. Creep Deformation by Dislocation Movement in Waspaloy.

    Science.gov (United States)

    Whittaker, Mark; Harrison, Will; Deen, Christopher; Rae, Cathie; Williams, Steve

    2017-01-12

    Creep tests of the polycrystalline nickel alloy Waspaloy have been conducted at Swansea University, for varying stress conditions at 700 °C. Investigation through use of Transmission Electron Microscopy at Cambridge University has examined the dislocation networks formed under these conditions, with particular attention paid to comparing tests performed above and below the yield stress. This paper highlights how the dislocation structures vary throughout creep and proposes a dislocation mechanism theory for creep in Waspaloy. Activation energies are calculated through approaches developed in the use of the recently formulated Wilshire Equations, and are found to differ above and below the yield stress. Low activation energies are found to be related to dislocation interaction with γ' precipitates below the yield stress. However, significantly increased dislocation densities at stresses above yield cause an increase in the activation energy values as forest hardening becomes the primary mechanism controlling dislocation movement. It is proposed that the activation energy change is related to the stress increment provided by work hardening, as can be observed from Ti, Ni and steel results.

  6. Dislocation: First Aid

    Science.gov (United States)

    ... or a collision during contact or high-speed sports. Dislocation usually involves the body's larger joints. In adults, the most common site of the injury is the shoulder. In children, it's the elbow. ...

  7. Broken or dislocated jaw

    Science.gov (United States)

    ... broken or dislocated jaw requires prompt medical attention. Emergency symptoms include difficulty breathing or heavy bleeding. ... safety equipment, such as a helmet when playing football, or using ... can prevent or minimize some injuries to the face or jaw.

  8. Contribution to the study of screw dislocations; Contribution a l'etude des dislocations helicoidales

    Energy Technology Data Exchange (ETDEWEB)

    Grilhe, J [Commissariat a l' Energie Atomique, Fontenay aux Roses (France). Centre d' Etudes Nucleaires

    1965-03-01

    The aim of this work is to study the germination, growth and properties of screw dislocations. In the introduction (first chapter), we describe briefly the main experimental results obtained by various authors (observations of screws by Amelinckx and Bontinck in ionic crystals, by Dash in silicon crystals and by Thomas and Whelan in aluminium based alloys). We then make a few considerations concerning characteristic geometry of screws and the various methods used for calculating the energy of a dislocation. In the second chapter we study the problems involving only slip of the screw around its cylinder. We calculate the equilibrium step as a function of the forces acting on the extremities. We determine the critical stress required to disrupt the screw and study the interactions between the screw and other dislocations of the lattice. In the third chapter we consider the problem of the stability when the dislocation can climb by absorption or emission of vacancies. We study separately the stability of the size which only involves volume diffusion and the stability of the shape which depends only on the rearrangement of the vacancies along the dislocation. In chapter four we put forward a germination model for the screws: since the vacancies are not absorbed by the screw dislocations, they form clusters which take up a spiral form. The formation of these spirals is studied from the geometrical point of view in face-centered cubic systems. In chapter five we make use of the results obtained in chapters two and three for studying the growth of the spirals. (author) [French] Le but de ce travail est d'etudier la germination, la croissance et les proprietes des dislocations helico ales. Dans l'introduction (premier chapitre), nous exposons brievement les principaux resultats experimentaux obtenus par differents auteurs (observations d'helice par Amelinckx et Bontinck dans les cristaux ioniques, par Dash dans des cristaux de silicium et par Thomas et Whelan dans des

  9. Biomechanics and functional morphology of a climbing monocot

    Science.gov (United States)

    Hesse, Linnea; Wagner, Sarah T.; Neinhuis, Christoph

    2016-01-01

    Plants with a climbing growth habit possess unique biomechanical properties arising from adaptations to changing loading conditions connected with close attachment to mechanical supports. In monocot climbers, mechanical adaptation is restricted by the absence of a bifacial vascular cambium. Flagellaria indica was used to investigate the mechanical properties and adaptations of a monocot climber that, uniquely, attaches to the surrounding vegetation via leaf tendrils. Biomechanical methods such as three-point bending and torsion tests were used together with anatomical studies on tissue development, modification and distribution. In general, the torsional modulus was lower than the bending modulus; hence, torsional stiffness was less than flexural stiffness. Basal parts of mature stems showed the greatest stiffness while that of more apical stem segments levelled off. Mechanical properties were modulated via tissue maturation processes mainly affecting the peripheral region of the stem. Peripheral vascular bundles showed a reduction in the amount of conducting tissue while the proportion and density of the bundle sheath increased. Furthermore, adjacent bundle sheaths merged resulting in a dense ring of fibrous tissue. Although F. indica lacks secondary cambial growth, the climbing habit is facilitated by a complex interaction of tissue maturation and attachment. PMID:26819259

  10. Climbing plants: attachment adaptations and bioinspired innovations.

    Science.gov (United States)

    Burris, Jason N; Lenaghan, Scott C; Stewart, C Neal

    2018-04-01

    Climbing plants have unique adaptations to enable them to compete for sunlight, for which they invest minimal resources for vertical growth. Indeed, their stems bear relatively little weight, as they traverse their host substrates skyward. Climbers possess high tensile strength and flexibility, which allows them to utilize natural and manmade structures for support and growth. The climbing strategies of plants have intrigued scientists for centuries, yet our understanding about biochemical adaptations and their molecular undergirding is still in the early stages of research. Nonetheless, recent discoveries are promising, not only from a basic knowledge perspective, but also for bioinspired product development. Several adaptations, including nanoparticle and adhesive production will be reviewed, as well as practical translation of these adaptations to commercial applications. We will review the botanical literature on the modes of adaptation to climb, as well as specialized organs-and cellular innovations. Finally, recent molecular and biochemical data will be reviewed to assess the future needs and new directions for potential practical products that may be bioinspired by climbing plants.

  11. Fabrication of mesoscopic floating Si wires by introducing dislocations

    International Nuclear Information System (INIS)

    Motohashi, Mitsuya; Shimizu, Kazuya; Niwa, Masaaki; Suzuki, Toshiaki

    2014-01-01

    We fabricated a mesoscopic Si wire by introducing dislocations in a silicon wafer before HF anodization. The dislocations formed along the (111) crystal plane. The outline of the dislocation line was an inverted triangle. The resulting wire floated on a bridge girder and had a hybrid structure consisting of a porous layer and crystalline Si. The cross section of the wire had an inverted triangle shape. The wire formation mechanism is discussed in terms of carrier transport, crystal structure, and dislocation formation during anodization. (paper)

  12. Fabrication of mesoscopic floating Si wires by introducing dislocations

    Science.gov (United States)

    Motohashi, Mitsuya; Shimizu, Kazuya; Suzuki, Toshiaki; Niwa, Masaaki

    2014-12-01

    We fabricated a mesoscopic Si wire by introducing dislocations in a silicon wafer before HF anodization. The dislocations formed along the (111) crystal plane. The outline of the dislocation line was an inverted triangle. The resulting wire floated on a bridge girder and had a hybrid structure consisting of a porous layer and crystalline Si. The cross section of the wire had an inverted triangle shape. The wire formation mechanism is discussed in terms of carrier transport, crystal structure, and dislocation formation during anodization.

  13. Transition pathways in the unfaulting of dislocation loops

    International Nuclear Information System (INIS)

    Kubota, Alison; Wolfer, W.G.

    2005-01-01

    In order to study the dynamic mechanism of loop unfaulting, we performed large-scale classical molecular dynamics simulations involving computational cells with several millions of atoms. To induce dislocation loop unfaulting, we launched 1 ps duration traction stress pulses at a free surface of the computational box. In many cases, we observe unfaulting to involve both intuitive and complex dislocation processes with multiple Shockley partial dislocations. However, in some instances, we observe unfaulting to occur by a sudden instability of the stacking fault without clear traces of dislocation reactions

  14. Irradiation creep mechanism: an experimental perspective

    International Nuclear Information System (INIS)

    Garner, F.A.; Gelles, D.S.

    1988-01-01

    The object of this effort is to determine the mechanisms involved in radiation-induced deformation of structural materials and to apply these insights for extrapolation of available fast reactor data to fusion-relevant conditions. An extensive review was conducted of a variety of radiation-induced microstructural data, searching for microstructural records of various irradiation creep mechanisms. It was found that the stress-affected evolution of dislocation microstructure during irradiation is considerably more complex than envisioned in most theoretical modeling studies, particularly in the types of interactive feedback mechanisms operating. Reasonably conclusive evidence was found for a SIPA-type mechanism (stress-induced preferential absorption) operating on both Frank loops and network dislocations. Stress-induced preferential loop nucleation (SIPN) processes may also participate but are thought to be overshadowed by the stronger action of the SIPA-type processes operating on Frank interstitial loops. It was not possible to discern from microstructural evidence between second-order SIPA and first-order SIPA mechanisms, the latter arising from anisotropic diffusion. Evidence was presented, however, that validates the operation of stress-induced preferential unfaulting of Frank loops and stress-induced growth of previously stressed material following removal of applied stress. Dislocation glide mechanisms are also participating but the rate appears to be controlled by SIPA-type climb processes. Applied stresses were shown to generate very anisotropic distributions of Burgers vector in the irradiation-induced microstructure. 108 references, 15 figures, 1 table

  15. Dislocation Dynamics During Plastic Deformation

    CERN Document Server

    Messerschmidt, Ulrich

    2010-01-01

    The book gives an overview of the dynamic behavior of dislocations and its relation to plastic deformation. It introduces the general properties of dislocations and treats the dislocation dynamics in some detail. Finally, examples are described of the processes in different classes of materials, i.e. semiconductors, ceramics, metals, intermetallic materials, and quasicrystals. The processes are illustrated by many electron micrographs of dislocations under stress and by video clips taken during in situ straining experiments in a high-voltage electron microscope showing moving dislocations. Thus, the users of the book also obtain an immediate impression and understanding of dislocation dynamics.

  16. Development of Vmax III. Magnetic wall climbing robot with holonomic and omni-directional mobility

    International Nuclear Information System (INIS)

    Tsuru, Kiyoshi; Hirose, Shigeo

    2012-01-01

    Wall-climbing robots having holonomic and omni-directional mobility would enhance the manipulation performance of the mounted arm and enable it to execute various tasks on the surface of large structures. This study focuses on the wall-climbing robots having permanent magnet attractive units to stick to the surface of iron structure such as atomic reactors and discuss the development of a specific holonomic and omni-directional wall-climbing mechanisms. Basic driving mechanism of the wall-climbing robot is based on our former invention named Omni Disk which consists of multiple rollers attached to one side of a rotating disk and having a mechanism to direct the rollers to the same direction. We firstly discuss about the mechanical improvements of the Omni Disk to make it lightweight and low cost. We next discusses about four types of methods to attach permanent magnets to the wall-climbing robot and generates attractive force on the iron wall and select the best type based on the motion experiments about the constructed models. As the result of these considerations, we developed a holonomic and omni-directional wall-climbing robot named Vmax III which consists of three Omni Disks having permanent magnet at their center having the function to change the magnetic attractive force. By using the Vmax III, we studied about the relation among the magnetic attractive force of three Omni Disks, posture of the Vmax III and inclination angle of the iron wall and clarified the optimized distribution of the magnetic attractive force of the Omni Disks in different inclination of the iron wall. (author)

  17. Growth and instability of charged dislocation loops under irradiation in ceramic materials

    CERN Document Server

    Ryazanov, A I; Kinoshita, C; Klaptsov, A V

    2002-01-01

    We have investigated the physical mechanisms of the growth and stability of charged dislocation loops in ceramic materials with very strong different mass of atoms (stabilized cubic zirconia) under different energies and types of irradiation conditions: 100-1000 keV electrons, 100 keV He sup + and 300 keV O sup + ions. The anomalous formation of extended defect clusters (charged dislocation loops) has been observed by TEM under electron irradiation subsequent to ion irradiation. It is demonstrated that very strong strain field (contrast) near charged dislocation loops is formed. The dislocation loops grow up to a critical size and after then become unstable. The instability of the charged dislocation loop leads to the multiplication of dislocation loops and the formation of dislocation network near the charged dislocation loops. A theoretical model is suggested for the explanation of the growth and stability of the charged dislocation loop, taking the charge state of point defects. The calculated distribution...

  18. Transmission electron microscopy study of dislocation motion in icosahedral Al-Pd-Mn

    International Nuclear Information System (INIS)

    Mompiou, F.; Caillard, D.

    2005-01-01

    Perfect and imperfect dislocations trailing phason faults in quasi-crystals are introduced using a simplified two-dimensional aperiodic structure. Then, on the basis of observations of deformed specimens as well as in situ experiments in a transmission electron microscope, the motion of dislocations in icosahedral Al-Pd-Mn is shown to take place exclusively by climb. Under such conditions, the very high brittleness of Al-Pd-Mn at low and medium temperatures is proposed to be a consequence of the difficulty of glide, which itself appears to be an intrinsic property of the quasi-crystalline structure

  19. Proximal tibiofibular dislocation: a case report and review of literature

    NARCIS (Netherlands)

    Nieuwe Weme, R. A.; Somford, M. P.; Schepers, T.

    2014-01-01

    An isolated dislocation of the proximal tibiofibular joint is uncommon. The mechanism of this injury is usually sports related. We present a case where initial X-rays did not show the tibiofibular joint dislocation conclusively. It was diagnosed after comparative bilateral AP X-rays of the knees

  20. Dislocation dynamics in Al-Li alloys: mean jump distance and activation length of moving dislocations

    International Nuclear Information System (INIS)

    De Hosson, J.Th.M.; Huis Int Veld, A.

    1984-01-01

    It is pointed out that aluminum-lithium based alloys offer considerable promise for structural applications, especially in the aerospace industry. This promise is related to the potential for high strength in combination with a density which is lower than that found in conventional aluminum alloys. In addition, the modulus of elasticity is higher than corresponding values in conventional aluminum alloys. A nuclear magnetic resonance study of the mechanism of dislocation motion in Al-2.2 wt pct Li is reported. Information about the effective mean jump distance of mobile dislocations is provided by in situ nuclear spin relaxation measurements. The activation length of mobile dislocations has been obtained from strain-rate change experiments on Al-2.2 wt pct Li. The considered study shows that pulsed nuclear magnetic resonance is a complementary new technique for the study of moving dislocations in Al-Li alloys. 28 references

  1. Dislocation-cavity interaction in Fe: a comparison between molecular dynamics and dislocation dynamics

    International Nuclear Information System (INIS)

    Hafez Haghighat, S.M.; Schaeublin, R.; Fivel, M.C.

    2007-01-01

    Full text of publication follows: multi-scale modeling, including molecular dynamics (MD) and discrete dislocation dynamics (DDD) methods, appears as a significant tool for the description of plasticity and mechanical properties of materials. This research is on the investigation of the subsequence effects of irradiation on the plasticity of pure Fe and focuses on the interaction of a single dislocation and a spherical cavity, as void or He bubble. Extensive MD simulations of the interaction under imposed strain rate [1, 2] have shown that various temperatures and cavity sizes result in different release stresses depending on dislocation bow out. It appears that a temperature increase and cavity size decrease reduce the cavity strength. MD simulation shows that the elastic field around the cavity is largely anisotropic. This anisotropy may influence the way the dislocation unpins from the cavity. Following the MD simulations, the interaction of a single dislocation and a spherical cavity is now simulated using a DDD discrete dislocation dynamics model. The simulation accounts for the non-Schmidt effect induced by the bcc structure of Fe through local rules derived from MD simulations [3]. The cavity is introduced in the simulation by computing the image forces using a finite element technique. The effective stress applied on the dislocation is then obtained as the superimposition of the applied stress field, the image stress field and the internal stresses. Note that such a model only uses elasticity theory and no core effect of dislocations is taken into account. One of the objectives of this work is to check whether elasticity is responsible of the behaviour observed by MD. Several cases are tested. First an edge dislocation in a (110) plane is pushed against the cavity under a pure shear loading. The local reaction of the dislocations and the cavity are compared to the MD simulations. Then, the case of a screw dislocation is studied. Finally, other loading

  2. Kinematic and Dynamic Analysis of a Cable-Climbing Robot

    Directory of Open Access Journals (Sweden)

    Xu Fengyu

    2015-07-01

    Full Text Available To inspect broken cables or a cracked protective layer on cable-stayed bridges, a cable-climbing robot has been proposed and designed. In this paper, the complex 3D obstacles that may be encountered on cables are theoretically described, in order to investigate the obstacle-climbing capability of the cable-climbing robot. A climbing model is then proposed and used to design the robot. In the climbing model, two driven wheels are independently supported with a spring. Kinematics and dynamics models are further derived for the obstacle-climbing capabilities of the driving and driven wheels of the robot. In addition, the robot's obstacle-climbing tracks and its obstacle-climbing performance are simulated. Payload and obstacle-climbing experiments were conducted on the climbing robot in the laboratory. Based on the results of the simulation and the experiments, we obtained the variation of the driving torque in obstacle climbing. The contribution of this paper is intended to provide a basis for the precise motion control of the robot.

  3. Dislocated Worker Project.

    Science.gov (United States)

    1988

    Due to the severe economic decline in the automobile manufacturing industry in southeastern Michigan, a Dislocated Workers Program has been developed through the partnership of the Flint Area Chamber of Commerce, three community colleges, the National Center for Research in Vocational Education, the Michigan State Department of Education, the…

  4. Smectic meniscus and dislocations

    International Nuclear Information System (INIS)

    Geminard, J.C.; Oswald, P.; Holyst, R.

    1998-01-01

    In ordinary liquids the size of a meniscus and its shape is set by a competition between surface tension and gravity. The thermodynamical process of its creation can be reversible. On the contrary, in smectic liquid crystals the formation of the meniscus is always an irreversible thermodynamic process since it involves the creation of dislocations (therefore it involves friction). Also the meniscus is usually small in experiments with smectics in comparison to the capillary length and therefore the gravity does not play any role in determining the meniscus shape. Here we discuss the relation between dislocations and meniscus in smectics. The theoretical predictions are supported by a recent experiment performed on freely suspended films of smectic liquid crystals. In this experiment the measurement of the meniscus radius of curvature gives the pressure difference, Δp, according to the Laplace law. From the measurements of the growth dynamics of a dislocation loop (governed by Δp) we find the line tension (∼8 x 10 -8 dyn) and the mobility of an elementary edge dislocation (∼4 x 10 - 7 cm 2 s/g). (author)

  5. Stair Climbing in a Quadruped Robot

    OpenAIRE

    Shen-Chiang Chen; Chih-Chung Ko; Cheng-Hsin Li; Pei-Chun Lin

    2012-01-01

    This paper reports the algorithm of trajectory planning and the strategy of four-leg coordination for quasi-static stair climbing in a quadruped robot. This development is based on the geometrical interactions between robot legs and the stair, starting from single-leg analysis, followed by two-leg collaboration, and then four-leg coordination. In addition, a brief study on the robot’s locomotion stability is also included. Finally, simulation and experimental testing were executed to evaluate...

  6. Dislocated Shoulder: Symptoms and Causes

    Science.gov (United States)

    ... caused by: Sports injuries. Shoulder dislocation is a common injury in contact sports, such as football and hockey, and in sports that may involve falls, such as downhill skiing, gymnastics and volleyball. ... is a common source of dislocation. Falls. You may dislocate your ...

  7. An Omni-Directional Wall-Climbing Microrobot with Magnetic Wheels Directly Integrated with Electromagnetic Micromotors

    Directory of Open Access Journals (Sweden)

    Xiaoning Tang

    2012-04-01

    Full Text Available This paper presents an omni-directional wall-climbing microrobot with magnetic wheels. The integral design with an actuator and adhesive is realized by integrating stators and rotors of an MEMS-based electromagnetic micromotor with a magnetic wheel. The omni-directional wall-climbing mechanism is designed by a set of steering gears and three standard magnetic wheels. The required torque and magnetic force for microrobot movement are derived by its static analysis. The size of the magnetic wheel is optimized, with consideration of its own design constraints, by ANSOFT and Pro/Engineer simulation so as to reduce unnecessary torque consumption under the same designed load. Related experiments demonstrate that the microrobot (diameter: 26mm; height: 16.4; mass: 7.2g; load capacity: 3g we have developed has a good wall-climbing ability and flexible mobility, and it can perform visual detection in a ferromagnetic environment.

  8. Dynamic analysis of a bio-inspired climbing robot using ADAMS-Simulink co-simulation

    Science.gov (United States)

    Chattopadhyay, P.; Dikshit, H.; Majumder, A.; Ghoshal, S.; Maity, A.

    2018-04-01

    Climbing robot has been an area of interest since the demand of inspection of pipeline, nuclear power plant, and various big structure is growing up rapidly. This paper represents the development of a bio-inspired modular robot which mimics inchworm locomotion during climbing. In the present paper, the climbing motion is achieved only on a flat vertical plane by magnetic adhesion principle. The robot is modelled as a 4-link planar mechanism with three revolute joints actuated by DC servo motors. Sinusoidal gait pattern is used to approximate the motion of an inchworm. The dynamics of the robot is presented by using ADAMS/MATLAB co-simulation methodology. The simulation result gives the maximum value of joint torque during one complete cycle of motion. This torque value is used for the selection of servo motor specifications required to build the prototype.

  9. Femoral head fracture without hip dislocation

    Directory of Open Access Journals (Sweden)

    Aggarwal Aditya K

    2013-10-01

    Full Text Available 【Abstract】Femoral head fractures without dislocation or subluxation are extremely rare injuries. We report a neglected case of isolated comminuted fracture of femoral head without hip dislocation or subluxation of one year duration in a 36-year-old patient who sustained a high en- ergy trauma due to road traffic accident. He presented with painful right hip and inability to bear full weight on right lower limb with Harris hip score of 39. He received cementless total hip replacement. At latest follow-up of 2.3 years, functional outcome was excellent with Harris hip score of 95. Such isolated injuries have been described only once in the literature and have not been classified till now. The purpose of this report is to highlight the extreme rarity, possible mechanism involved and a novel classification system to classify such injuries. Key words: Femur head; Hip dislocation; Classification; Arthroplasty, replacement, hip

  10. [New varieties of lateral metatarsophalangeal dislocations of the great toe].

    Science.gov (United States)

    Bousselmame, N; Rachid, K; Lazrak, K; Galuia, F; Taobane, H; Moulay, I

    2001-04-01

    We report seven cases of traumatic dislocation of the great toe, detailing the anatomy, the mechanism of injury and the radiographic diagnosis. We propose an additional classification based on three hereto unreported cases. Between october 1994 and october 1997, we treated seven patients with traumatic dislocation of the first metatarso-phalangeal joint of the great toe. There were six men and one woman, mean age 35 years (range 24 - 44 years). Dislocation was caused by motor vehicle accidents in four cases and by falls in three. Diagnosis was made on anteroposterior, lateral and medial oblique radiographs. According to Jahss' classification, there was one type I and three type IIB dislocations. There was also one open lateral dislocation and two dorsomedial dislocations. Only these dorsomedial dislocations required open reduction, done via a dorsal approach. Mean follow-up was 17.5 months (range 9 - 24 months) in six cases. One patient was lost to follow-up. The outcome was good in six cases and poor in one (dorsomedial dislocation). Dislocation of the first metatarso-phalangeal joint of the great toe is an uncommon injury. In 1980, Jahss reported two cases and reviewed three others described in the literature. He proposed three types of dislocation based on the feasibility of closed reduction (type I, II and IIB). In 1991, Copeland and Kanat reported a unique case in which there was an association of IIA and IIB lesions. They proposed an addition to the classification (type IIC). In 1994, Garcia Mata et al. reported another case which had not been described by Jahss and proposed another addition. All dislocations reported to date have been sagittal dislocations. Pathological alteration of the collateral ligaments has not been previously reported. In our experience, we have seen one case of open lateral dislocation due, at surgical exploration, to medial ligament rupture and two cases of dorsomedial dislocation due, at surgical exploration, to lateral ligament

  11. Step-Climbing Power Wheelchairs: A Literature Review

    Science.gov (United States)

    Sundaram, S. Andrea; Wang, Hongwu; Ding, Dan

    2017-01-01

    Background: Power wheelchairs capable of overcoming environmental barriers, such as uneven terrain, curbs, or stairs, have been under development for more than a decade. Method: We conducted a systematic review of the scientific and engineering literature to identify these devices, and we provide brief descriptions of the mechanism and method of operation for each. We also present data comparing their capabilities in terms of step climbing and standard wheelchair functions. Results: We found that all the devices presented allow for traversal of obstacles that cannot be accomplished with traditional power wheelchairs, but the slow speeds and small wheel diameters of some designs make them only moderately effective in the basic area of efficient transport over level ground and the size and configuration of some others limit maneuverability in tight spaces. Conclusion: We propose that safety and performance test methods more comprehensive than the International Organization for Standards (ISO) testing protocols be developed for measuring the capabilities of advanced wheelchairs with step-climbing and other environment-negotiating features to allow comparison of their clinical effectiveness. PMID:29339886

  12. Kinetic Interaction of Uranium Vacancies and Dislocations in UO2

    Energy Technology Data Exchange (ETDEWEB)

    Uberuaga, Blas P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goyal, Anuj [Univ. of Florida, Gainesville, FL (United States); Subramanian, Gopinath [Univ. of South Mississippi, Hattiesburg, MS (United States); Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-25

    Understanding how point defects and defect clusters interact with dislocations in urania is important for a number of phenomena. For example, dislocations are one (of many) trap sites in the fuel where fission gases may accumulate and ultimately nucleate fission gas bubbles. Further, some creep mechanisms are governed by the flow of point defects to dislocations. Thus, for a variety of reasons, it is important to examine how dislocations attract and accelerate the kinetics of point defects.

  13. Atomic-scale dislocation dynamics in radiation damage environment

    International Nuclear Information System (INIS)

    Osetsky, Y.; Stoller, R.; Bacon, D.J.

    2007-01-01

    Full text of publication follows: The dynamics behavior of dislocations determines mechanical properties of crystalline materials. Long-range interactions between a moving dislocation and other defects can be treated within a continuum approach via interaction of their stress and strain fields. However, a vast contribution to mechanical properties depends on the direct interaction between dislocations and other defects and depends very much on the particular atomic scale structure of the both moving dislocation core and the obstacle. In this work we review recent progress in large-scale modeling of dislocation dynamics in metals at the atomic level by molecular dynamics and statics. We review the modem techniques used to simulate dynamics of dislocations in different lattice structures, the dependence on temperature, strain rate and obstacle size. Examples are given for bcc, fcc and hcp metals where edge and screw dislocations interact with vacancy (loops, voids, stacking fault tetrahedra, etc), self-interstitial clusters and secondary phase precipitates. Attention is paid to interpretation of atomistic results from the point of view of parameterization of continuum models. The latter is vitally necessary for further application in 3-dimensional dislocation dynamics within the multi-scale materials modeling approach. Research sponsored by the Division of Materials Sciences and Engineering and the Office of Fusion Energy Sciences, U.S. Department of Energy, under contract DE-AC0S-00OR22725 with UT-Battelle, LLC. (authors)

  14. Neglected isolated scaphoid dislocation

    Directory of Open Access Journals (Sweden)

    Jong-Ryoon Baek

    2016-01-01

    Full Text Available The authors present a case of isolated scaphoid dislocation in a 40-year-old male that was undiagnosed for 2 months. The patient was treated by open reduction, Kirschner wire fixation, interosseous ligament repair using a suture anchor and Blatt's dorsal capsulodesis. At 6 years followup, his radiographs of wrist showed a normal carpal alignment with a scapholunate gap of 3 mm and no evidence of avascular necrosis (AVN of the scaphoid.

  15. Dechanneling by dislocation loops

    International Nuclear Information System (INIS)

    Chalant, Gerard.

    1976-09-01

    Ion implantation always induces the creation of dislocation loops. When the damage profile is determined by a backscattering technique, the dechanneling by these loops is implicitely at the origin of these measurements. The dechanneling of alpha particles by dislocation loops produced by the coalescence of quenched-in vacancies in aluminium is studied. The dechanneling and the concentration of loops were determined simultaneously. The dechanneling width around dislocation was found equal to lambda=6A, both for perfect and imperfect loops having a mean diameter d=250A. In the latter case, a dechanneling probability chi=0.34 was determined for the stacking fault, in good agreement with previous determination in gold. A general formula is proposed which takes into account the variation of lambda with the curvature (or the diameter d) of the loops. Finally, by a series of isothermal anneals, the self-diffusion energy ΔH of aluminium was measured. The value obtained ΔH=1.32+-0.10eV is in good agreement with the values obtained by other methods [fr

  16. Influence of strain on dislocation core in silicon

    Science.gov (United States)

    Pizzagalli, L.; Godet, J.; Brochard, S.

    2018-05-01

    First principles, density functional-based tight binding and semi-empirical interatomic potentials calculations are performed to analyse the influence of large strains on the structure and stability of a 60? dislocation in silicon. Such strains typically arise during the mechanical testing of nanostructures like nanopillars or nanoparticles. We focus on bi-axial strains in the plane normal to the dislocation line. Our calculations surprisingly reveal that the dislocation core structure largely depends on the applied strain, for strain levels of about 5%. In the particular case of bi-axial compression, the transformation of the dislocation to a locally disordered configuration occurs for similar strain magnitudes. The formation of an opening, however, requires larger strains, of about 7.5%. Furthermore, our results suggest that electronic structure methods should be favoured to model dislocation cores in case of large strains whenever possible.

  17. Dislocation of primary total hip arthroplasty and the risk of redislocation.

    LENUS (Irish Health Repository)

    Brennan, Stephen A

    2012-09-01

    6554 primary total hip arthroplasties were reviewed. Risk factors for dislocation were analysed to assess which were important in terms of predicting recurrent instability. The patients risk of having a second dislocation was independently associated with the surgical approach adopted (p = 0.03) and the time to first dislocation from the primary hip replacement (p = 0.002). Early dislocators whose surgery was performed through an anterolateral approach had less recurrence than late dislocators through a posterior or transtrochanteric approach. None of the other risk factors including head size (p = 0.59), modularity (p = 0.54), mechanism of dislocation (p = 0.23), leg length discrepancy (p = 0.69) and acetabular inclination (p = 0.31) were influential. The use of an abduction brace was not useful in preventing a further dislocation with 69.2% of those braced re-dislocating compared to 68.5% who were not braced (p = 0.96).

  18. Misfit dislocations of anisotropic magnetoresistant Nd0.45Sr0.55MnO3 thin films grown on SrTiO3 (1 1 0) substrates

    International Nuclear Information System (INIS)

    Tang, Y.L.; Zhu, Y.L.; Meng, H.; Zhang, Y.Q.; Ma, X.L.

    2012-01-01

    Nd 0.45 Sr 0.55 MnO 3 is an A-type antiferromagnetic manganite showing obvious angular-dependent magnetoresistance, which can be tuned by misfit strain. The misfit strain relaxation of Nd 0.45 Sr 0.55 MnO 3 thin films is of both fundamental and technical importance. In this paper, microstructures of epitaxial Nd 0.45 Sr 0.55 MnO 3 thin films grown on SrTiO 3 (1 1 0) substrates by pulsed laser deposition were investigated by means of (scanning) transmission electron microscopy. The Nd 0.45 Sr 0.55 MnO 3 thin films exhibit a two-layered structure: a continuous perovskite layer epitaxial grown on the substrate followed by epitaxially grown columnar nanostructures. An approximately periodic array of misfit dislocations is found along the interface with line directions of both 〈1 1 1〉 and [0 0 1]. High-resolution (scanning) transmission electron microscopy reveals that all the misfit dislocations possess a〈1 1 0〉-type Burgers vectors. A formation mechanism based on gliding or climbing of the dislocations is proposed to elucidate this novel misfit dislocation configuration. These misfit dislocations have complex effects on the strain relaxation and microstructure of the films, and thus their influence needs further consideration for heteroepitaxial perovskite thin film systems, especially for films grown on substrates with low-symmetry surfaces such as SrTiO 3 (1 1 0) and (1 1 1), which are attracting attention for their potentially new functions.

  19. Affordance Realization in Climbing: Learning and Transfer.

    Science.gov (United States)

    Seifert, Ludovic; Orth, Dominic; Mantel, Bruno; Boulanger, Jérémie; Hérault, Romain; Dicks, Matt

    2018-01-01

    The aim of this study was to investigate how the affordances of an indoor climbing wall changed for intermediate climbers following a period of practice during which hold orientation was manipulated within a learning and transfer protocol. The learning protocol consisted of four sessions, in which eight climbers randomly ascended three different routes of fixed absolute difficulty (5c on the French scale), as fluently as possible. All three routes were 10.3 m in height and composed of 20 hand-holds at the same locations on an artificial climbing wall; only hold orientations were altered: (i) a horizontal-edge route (H) was designed to afford horizontal hold grasping, (ii) a vertical-edge route (V) afforded vertical hold grasping, and (iii), a double-edge route (D) was designed to afford both horizontal and vertical hold grasping. Five inertial measurement units (IMU) (3D accelerometer, 3D gyroscope, 3D magnetometer) were attached to the hip, feet and forearms to analyze the vertical acceleration and direction (3D unitary vector) of each limb and hip in ambient space during the entire ascent. Segmentation and classification processes supported detection of movement and stationary phases for each IMU. Depending on whether limbs and/or hip were moving, a decision tree distinguished four states of behavior: stationary (absence of limb and hip motion), hold exploration (absence of hip motion but at least one limb in motion), hip movement (hip in motion but absence of limb motion) and global motion (hip in motion and at least one limb in motion). Results showed that with practice, the learners decreased the relative duration of hold exploration, suggesting that they improved affordance perception of hold grasp-ability. The number of performatory movements also decreased as performance increased during learning sessions, confirming that participants' climbing efficacy improved as a function of practice. Last, the results were more marked for the H route, while the D route

  20. Affordance Realization in Climbing: Learning and Transfer

    Directory of Open Access Journals (Sweden)

    Ludovic Seifert

    2018-05-01

    Full Text Available The aim of this study was to investigate how the affordances of an indoor climbing wall changed for intermediate climbers following a period of practice during which hold orientation was manipulated within a learning and transfer protocol. The learning protocol consisted of four sessions, in which eight climbers randomly ascended three different routes of fixed absolute difficulty (5c on the French scale, as fluently as possible. All three routes were 10.3 m in height and composed of 20 hand-holds at the same locations on an artificial climbing wall; only hold orientations were altered: (i a horizontal-edge route (H was designed to afford horizontal hold grasping, (ii a vertical-edge route (V afforded vertical hold grasping, and (iii, a double-edge route (D was designed to afford both horizontal and vertical hold grasping. Five inertial measurement units (IMU (3D accelerometer, 3D gyroscope, 3D magnetometer were attached to the hip, feet and forearms to analyze the vertical acceleration and direction (3D unitary vector of each limb and hip in ambient space during the entire ascent. Segmentation and classification processes supported detection of movement and stationary phases for each IMU. Depending on whether limbs and/or hip were moving, a decision tree distinguished four states of behavior: stationary (absence of limb and hip motion, hold exploration (absence of hip motion but at least one limb in motion, hip movement (hip in motion but absence of limb motion and global motion (hip in motion and at least one limb in motion. Results showed that with practice, the learners decreased the relative duration of hold exploration, suggesting that they improved affordance perception of hold grasp-ability. The number of performatory movements also decreased as performance increased during learning sessions, confirming that participants' climbing efficacy improved as a function of practice. Last, the results were more marked for the H route, while the D

  1. Dislocation evolution and properties enhancement of GH2036 by laser shock processing: Dislocation dynamics simulation and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ren, X.D., E-mail: renxd@mail.ujs.edu.cn [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhou, W.F.; Ren, Y.P.; Xu, S.D.; Liu, F.F. [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Yuan, S.Q. [Research Center of Fluid Machinery Engineering and Technical, Jiangsu University, Zhenjiang 212013 (China); Ren, N.F.; Huang, J.J. [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2016-01-27

    This paper systematically investigated the effect of laser shock processing (LSP) on dislocation evolution and microstructure configuration of GH2036 alloy. Surface topography and roughness were tested by Axio CSM 700 microscope. The dislocation configurations were characterized by transmission electron microscope (TEM) and simulated by multi-scale discrete dislocation dynamics (DD) method. The results have confirmed that LSP had a beneficial effect on micro-hardness, which could be increased by 16%, and the surface topography exhibited excellent stability even after thermal cycle. The dislocation density and stress–strain response have strong dependence on laser power intensity. Reasonable agreement between DD simulation and experiments is achieved. The results showed that complex random microstructures can be observed in the shocked surface. The grain refinement mechanism of LSP GH2036 involves dislocation segmentation and twin intersections.

  2. Tree Climbing Robot Design, Kinematics and Motion Planning

    CERN Document Server

    Lam, Tin Lun

    2012-01-01

    Climbing robot is a challenging research topic that has gained much attention from researchers. Most of the robots reported in the literature are designed to climb on manmade structures, but seldom robots are designed for climbing natural environment such as trees. Trees and manmade structures are very different in nature. It brings different aspects of technical challenges to the robot design. In this book, you can find a collection of the cutting edge technologies in the field of tree-climbing robot and the ways that animals climb. It provides a valuable reference for robot designers to select appropriate climbing methods in designing tree-climbing robots for specific purposes. Based on the study, a novel bio-inspired tree-climbing robot with several breakthrough performances has been developed and presents in this book. It is capable of performing various actions that is impossible in the state-of-the-art tree-climbing robots, such as moving between trunk and branches. This book also proposes several appro...

  3. Efficacy of Blunt Force Trauma, a Novel Mechanical Cervical Dislocation Device, and a Non-Penetrating Captive Bolt Device for On-Farm Euthanasia of Pre-Weaned Kits, Growers, and Adult Commercial Meat Rabbits.

    Science.gov (United States)

    Walsh, Jessica L; Percival, Aaron; Turner, Patricia V

    2017-12-15

    The commercial meat rabbit industry is without validated on-farm euthanasia methods, potentially resulting in inadequate euthanasia protocols. We evaluated blunt force trauma (BFT), a mechanical cervical dislocation device (MCD), and a non-penetrating captive bolt device (NPCB) for euthanasia of pre-weaned kits, growers, and adult rabbits. Trials were conducted on three commercial meat rabbit farms using 170 cull rabbits. Insensibility was assessed by evaluating absence of brainstem and spinal reflexes, rhythmic breathing, and vocalizations. Survey radiographs on a subsample of rabbits ( n = 12) confirmed tissue damage prior to gross dissection and microscopic evaluation. All 63 rabbits euthanized by the NPCB device were rendered immediately and irreversibly insensible. The MCD device was effective in 46 of 49 (94%) rabbits. Method failure was highest for BFT with euthanasia failures in 13 of 58 (22%) rabbits. Microscopically, brain sections from rabbits killed with the NPCB device had significantly more damage than those from rabbits killed with BFT ( p = 0.001). We conclude that BFT is neither consistently humane nor effective as a euthanasia method. MCD is an accurate and reliable euthanasia method generally causing clean dislocation and immediate and irreversible insensibility, and the NPCB device was 100% effective and reliable in rabbits >150 g.

  4. Efficacy of Blunt Force Trauma, a Novel Mechanical Cervical Dislocation Device, and a Non-Penetrating Captive Bolt Device for On-Farm Euthanasia of Pre-Weaned Kits, Growers, and Adult Commercial Meat Rabbits

    Directory of Open Access Journals (Sweden)

    Jessica L. Walsh

    2017-12-01

    Full Text Available The commercial meat rabbit industry is without validated on-farm euthanasia methods, potentially resulting in inadequate euthanasia protocols. We evaluated blunt force trauma (BFT, a mechanical cervical dislocation device (MCD, and a non-penetrating captive bolt device (NPCB for euthanasia of pre-weaned kits, growers, and adult rabbits. Trials were conducted on three commercial meat rabbit farms using 170 cull rabbits. Insensibility was assessed by evaluating absence of brainstem and spinal reflexes, rhythmic breathing, and vocalizations. Survey radiographs on a subsample of rabbits (n = 12 confirmed tissue damage prior to gross dissection and microscopic evaluation. All 63 rabbits euthanized by the NPCB device were rendered immediately and irreversibly insensible. The MCD device was effective in 46 of 49 (94% rabbits. Method failure was highest for BFT with euthanasia failures in 13 of 58 (22% rabbits. Microscopically, brain sections from rabbits killed with the NPCB device had significantly more damage than those from rabbits killed with BFT (p = 0.001. We conclude that BFT is neither consistently humane nor effective as a euthanasia method. MCD is an accurate and reliable euthanasia method generally causing clean dislocation and immediate and irreversible insensibility, and the NPCB device was 100% effective and reliable in rabbits >150 g.

  5. Footwear in rock climbing: Current practice.

    Science.gov (United States)

    McHenry, R D; Arnold, G P; Wang, W; Abboud, R J

    2015-09-01

    Many rock climbers wear ill-fitting and excessively tight footwear during activity. However, there is insufficient evidence of the extent or harms of this practice. To investigate footwear use in rock climbers with a focus on issues surrounding fit. A cross-sectional study with active rock climbers of over one year of experience completing a survey on their activity and footwear. Additionally, the authors quantified foot and shoe lengths and sizes alongside demographic data. Ill-fitting and excessively tight footwear was found in 55 out of 56 rock climbers. Foot pain during activity was also commonplace in 91% of the climbers. A mean size reduction of almost 4 UK shoe sizes was found between the climbers' street shoe size and that of their climbing footwear using a calibrated foot/shoe ruler. There is an unfortunate association of climbers of higher abilities seeking a tighter shoe fit (pfootwear use amongst rock climbers, further investigation may aim to quantify its impact and seek a solution balancing climbing performance while mitigating foot injury. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Dislocation defect interaction in irradiated Cu

    International Nuclear Information System (INIS)

    Schaeublin, R.; Yao, Z.; Spaetig, P.; Victoria, M.

    2005-01-01

    Pure Cu single crystals irradiated at room temperature to low doses with 590 MeV protons have been deformed in situ in a transmission electron microscope in order to identify the basic mechanisms at the origin of hardening. Cu irradiated to 10 -4 dpa shows at room temperature a yield shear stress of 13.7 MPa to be compared to the 8.8 MPa of the unirradiated Cu. Irradiation induced damage consists at 90% of 2 nm stacking fault tetrahedra, the remaining being dislocation loops and unidentified defects. In-situ deformation reveals that dislocation-defect interaction can take several forms. Usually, dislocations pinned by defects bow out under the applied stress and escape without leaving any visible defect. From the escape angles obtained at 183 K, an average critical stress of 100 MPa is deduced. In some cases, the pinning of dislocations leads to debris that are about 20 nm long, which formation could be recorded during the in situ experiment

  7. Dislocation Interactions in Olivine Revealed by HR-EBSD

    Science.gov (United States)

    Wallis, David; Hansen, Lars N.; Britton, T. Ben; Wilkinson, Angus J.

    2017-10-01

    Interactions between dislocations potentially provide a control on strain rates produced by dislocation motion during creep of rocks at high temperatures. However, it has been difficult to establish the dominant types of interactions and their influence on the rheological properties of creeping rocks due to a lack of suitable observational techniques. We apply high-angular resolution electron backscatter diffraction to map geometrically necessary dislocation (GND) density, elastic strain, and residual stress in experimentally deformed single crystals of olivine. Short-range interactions are revealed by cross correlation of GND density maps. Spatial correlations between dislocation types indicate that noncollinear interactions may impede motion of proximal dislocations at temperatures of 1000°C and 1200°C. Long-range interactions are revealed by autocorrelation of GND density maps. These analyses reveal periodic variations in GND density and sign, with characteristic length scales on the order of 1-10 μm. These structures are spatially associated with variations in elastic strain and residual stress on the order of 10-3 and 100 MPa, respectively. Therefore, short-range interactions generate local accumulations of dislocations, leading to heterogeneous internal stress fields that influence dislocation motion over longer length scales. The impacts of these short- and/or long-range interactions on dislocation velocities may therefore influence the strain rate of the bulk material and are an important consideration for future models of dislocation-mediated deformation mechanisms in olivine. Establishing the types and impacts of dislocation interactions that occur across a range of laboratory and natural deformation conditions will help to establish the reliability of extrapolating laboratory-derived flow laws to real Earth conditions.

  8. Wall Climbing Robot Using Electrostatic Adhesion Force Generated by Flexible Interdigital Electrodes

    Directory of Open Access Journals (Sweden)

    Rong Liu

    2013-01-01

    Full Text Available Electrostatic adhesion technology has broad application prospects on wall climbing robots because of its unique characteristics compared with other types of adhesion technologies. A double tracked wall climbing robot based on electrostatic adhesion technology is presented including electrode panel design, mechanical structure design, power supply system design and control system design. A theoretical adhesion model was established and the electrostatic potential and field were expressed by series expansions in terms of solutions of the Laplace function. Based on this model, the electrostatic adhesion force was calculated using the Maxwell stress tensor formulation. Several important factors which may influence the electrostatic adhesion force were analysed and discussed by both FEM simulation and theoretical calculation. In addition, experiments on the adhesion performance of the electrode panel and the climbing performance of the robot on various wall materials were carried out. Both the simulation and experiment results verify the feasibility of electrostatic adhesion technology being applied on wall climbing robots. The theoretical model and calculation method for the electrostatic adhesion force proposed in this paper are also justified.

  9. Slip systems, dislocation boundaries and lattice rotations in deformed metals

    DEFF Research Database (Denmark)

    Winther, Grethe

    2009-01-01

    Metals are polycrystals and consist of grains, which are subdivided on a finer scale upon plastic deformation due to formation of dislocation boundaries. The crystallographic alignment of planar dislocation boundaries in face centred cubic metals, like aluminium and copper, deformed to moderate...... of the mechanical anisotropy of rolled sheets. The rotation of the crystallographic lattice in each grain during deformation also exhibits grain orientation dependence, originating from the slip systems. A combined analysis of dislocation boundaries and lattice rotations concludes that the two phenomena are coupled...

  10. Reliable Stair Climbing in the Simple Hexapod 'RHex'

    National Research Council Canada - National Science Library

    Moore, E. Z; Campbell, D; Grimminger, F; Buehler, M

    2002-01-01

    .... In this paper, we describe an open loop controller that enables our small robot (Length: 51 cm, Width: 20 cm, Height: 12.7 cm. Leg length: 16 cm), to reliably climb a wide range of regular, full-size stairs with no operator input during stair climbing...

  11. Forest climbing plants of West Africa: diversity, ecology and management

    NARCIS (Netherlands)

    Bongers, F.J.J.M.; Parren, M.P.E.; Traoré, D.

    2005-01-01

    Climbing plants, including lianas, represent a fascinating component of the ecology of tropical forests. This book focuses on the climbing plants of West African forests. Based on original research, it presents information on the flora (including a checklist), diversity (with overviews at several

  12. On Climbing Scalars in String Theory

    CERN Document Server

    Dudas, E; Sagnotti, A

    2010-01-01

    In string models with "brane supersymmetry breaking" exponential potentials emerge at (closed-string) tree level but are not accompanied by tachyons. Potentials of this type have long been a source of embarrassment in flat space, but can have interesting implications for Cosmology. For instance, in ten dimensions the logarithmic slope |V'/V| lies precisely at a "critical" value where the Lucchin--Matarrese attractor disappears while the scalar field is \\emph{forced} to climb up the potential when it emerges from the Big Bang. This type of behavior is in principle perturbative in the string coupling, persists after compactification, could have trapped scalar fields inside potential wells as a result of the cosmological evolution and could have also injected the inflationary phase of our Universe.

  13. Nature of Dislocations in Silicon

    DEFF Research Database (Denmark)

    Hansen, Lars Bruno; Stokbro, Kurt; Lundqvist, Bengt

    1995-01-01

    Interaction between two partial 90 degrees edge dislocations is studied with atomic-scale simulations using the effective-medium tight-binding method. A large separation between the two dislocations (up to 30 Angstrom), comparable to experimental values, is achieved with a solution of the tight-b...

  14. Traumatic hip dislocations in children

    International Nuclear Information System (INIS)

    Minhas, M.S.

    2010-01-01

    Objectives: To evaluate clinical features, treatment and relationship to the time period between dislocation, reduction and early complications of traumatic dislocation of hip in children. Methods: Case series conducted at Jinnah Post Graduate Medical Centre Karachi from July 2005 to August 2009. Children with traumatic hip dislocation up to fifteen years of age who presented in last four years were included in this study. Their clinical information, etiology, associated injuries, duration, method of reduction and early complications are evaluated through emergency room proforma and indoor record. Follow up of patient was updated in outpatient department. Results: We had eight patients, six boys and two girls. Youngest 2.4 years and eldest was 12 years with mean age of 6.2 +- 3.8 years. All presented with posterior hip dislocation. Etiology was road traffic accident in two and history of fall in remaining six patients. Average duration of time between dislocation and reduction was 19 hours range 3-72 hours. Dislocated hips were reduced under General Anaesthesia in two patients and under sedation analgesia in six patients. No complications were noted in eight cases with mean 18.75 +- 13.23 months follows up. Conclusion: Traumatic hip dislocation in children is not rare. Slight trauma causes dislocation in younger age and immediate closed reduction and Immobilization reduces complications. (author

  15. Irreducible lateral dislocation of the elbow.

    Directory of Open Access Journals (Sweden)

    Chhaparwal M

    1997-01-01

    Full Text Available A rare case of an irreducible post-traumatic lateral dislocation of elbow is presented. The mechanism of injury was fall on a flexed elbow with trauma on its medial aspect resulting in pronation of the forearm. At open reduction, the brachialis muscle was in the form of a tight band which prevented reduction. The ulnar nerve was entrapped in the joint.

  16. Dislocation Concepts in Friction and Wear.

    Science.gov (United States)

    1980-12-01

    geometrica considerations, and other basic facts concerning plastic Drover ties of crystalline materials, a numiber of qualitative and quanI titative... correct but, in connection with cell walls, it is generally erroneous as indicated. Fig. 27 demonstrates this clearly: The dislocation cells make the...is certainly promising. If it is then assumed that it is basically correct , one may be impressed with the underlying simplicity of the mechanisms

  17. Transmission electron microscopy in situ investigation of dislocation mobility in semiconductors

    CERN Document Server

    Vanderschaeve, G; Insa, P D T; Caillard, D

    2000-01-01

    TEM in situ straining experiments provide a unique way to investigate in real time the behaviour of individual dislocations under applied stress. The results obtained on a variety of semiconductors are presented: numerous dislocation sources are observed which makes it possible to measure the dislocation velocity as a function of different physical parameters (local shear stress, temperature, dislocation character, length of the moving dislocation, ...). The experimental results are consistent with a dislocation glide governed by the Peierls mechanism, even for II-VI compounds which have a significant degree of ionic character. For compounds, a linear dependence of the dislocation velocity on the length of the moving segment is noticed, whereas for elemental semiconductors a transition between a length-dependent and a length-independent velocity regime is observed. Analysed in the framework of the kink diffusion model (Hirth and Lothe theory), these results allow an estimation of the kink formation and migrat...

  18. Modeling of dislocation generation and interaction during high-speed deformation of metals

    DEFF Research Database (Denmark)

    Schiøtz, J.; Leffers, T.; Singh, B.N.

    2002-01-01

    Recent experiments by Kiritani et al. [1] have revealed a surprisingly high rate of vacancy production during highspeed deformation of thin foils of fcc metals. Virtually no dislocations are seen after the deformation. This is interpreted as evidence for a dislocation-free deformation mechanism...... at very high strain rates. We have used molecular-dynamics simulations to investigate high-speed deformation of copper crystals. Even though no pre-existing dislocation sources are present in the initial system, dislocations are quickly nucleated and a very high dislocation density is reached during...... the deformation. Due to the high density of dislocations, many inelastic interactions occur between dislocations, resulting in the generation of vacancies. After the deformation, a very high density of vacancies is observed, in agreement with the experimental observations. The processes responsible...

  19. Flexible Structural Design for Side-Sliding Force Reduction for a Caterpillar Climbing Robot

    Directory of Open Access Journals (Sweden)

    Weina Cui

    2012-11-01

    Full Text Available Due to sliding force arising from the closed chain mechanism among the adhering points of a climbing caterpillar robot (CCR, a sliding phenomenon will happen at the adhering points, e.g., the vacuum pads or claws holding the surface. This sliding force makes the attachment of the climbing robot unsteady and reducesthe motion efficiency. According to the new bionic research on the soft-body structure of caterpillars, some flexible structures made of natural rubber bars are applied in CCRs correspondingly as an improvement to the old rigid mechanical design of the robotic structure. This paper firstly establishes the static model of the sliding forces, the distortion of flexible bars and the driving torques of joints. Then, a method to reduce the sliding force by exerting a compensating angle to an active joint of the CCR is presented. The analyses and experimental results indicate that the flexible structure and the compensating angle method can reduce the sliding forces remarkably.

  20. Promoting workplace stair climbing: sometimes, not interfering is the best.

    Science.gov (United States)

    Åvitsland, Andreas; Solbraa, Ane Kristiansen; Riiser, Amund

    2017-01-01

    Stair climbing is a vigorous activity and can lead to several health benefits. Studies seeking to increase stair climbing in various public locations have shown positive effects, while results from similar studies conducted in the workplace are inconclusive. This study examined stair climbing in the workplace, and monitored effects from a single- and a combined intervention. Interventions were inspired by nudging, the libertarian method of influencing behavior. By quasi-experimental design, stair- and elevator traffic in two office buildings was monitored preceding-, during- and following interventions with stair leading footprints alone, and combined with stair-riser banners. Chi square tests were applied to determine differences between baseline and the subsequent periods. Web-based questionnaires were distributed after follow-up period. Elevators and stairs were used 45 237 times, of which 89.6% was stair use. Intervention site stair climbing at baseline (79.0%) was significantly reduced with footprints (-5.1%, p   0.027). Stair climbing was significantly reduced during the intervention periods. Use of stair leading footprints alone, or combined with stair-riser banners in an attempt to influence stair climbing may be ineffective, or cause a negative reaction, when applied in a workplace with a pre-existing high amount of stair climbing.

  1. Bio-inspired step-climbing in a hexapod robot

    International Nuclear Information System (INIS)

    Chou, Ya-Cheng; Yu, Wei-Shun; Huang, Ke-Jung; Lin, Pei-Chun

    2012-01-01

    Inspired by the observation that the cockroach changes from a tripod gait to a different gait for climbing high steps, we report on the design and implementation of a novel, fully autonomous step-climbing maneuver, which enables a RHex-style hexapod robot to reliably climb a step up to 230% higher than the length of its leg. Similar to the climbing strategy most used by cockroaches, the proposed maneuver is composed of two stages. The first stage is the ‘rearing stage,’ inclining the body so the front side of the body is raised and it is easier for the front legs to catch the top of the step, followed by the ‘rising stage,’ maneuvering the body's center of mass to the top of the step. Two infrared range sensors are installed on the front of the robot to detect the presence of the step and its orientation relative to the robot's heading, so that the robot can perform automatic gait transition, from walking to step-climbing, as well as correct its initial tilt approaching posture. An inclinometer is utilized to measure body inclination and to compute step height, thus enabling the robot to adjust its gait automatically, in real time, and to climb steps of different heights and depths successfully. The algorithm is applicable for the robot to climb various rectangular obstacles, including a narrow bar, a bar and a step (i.e. a bar of infinite width). The performance of the algorithm is evaluated experimentally, and the comparison of climbing strategies and climbing behaviors in biological and robotic systems is discussed. (paper)

  2. Competing Grain Boundary and Interior Deformation Mechanisms with Varying Sizes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei [University of Tennessee (UT); Gao, Yanfei [ORNL; Nieh, T. G. [University of Tennessee, Knoxville (UTK)

    2018-01-01

    In typical coarse-grained alloys, the dominant plastic deformations are dislocation gliding or climbing, and material strengths can be tuned by dislocation interactions with grain boundaries, precipitates, solid solutions, and other defects. With the reduction of grain size, the increase of material strengths follows the classic Hall-Petch relationship up to nano-grained materials. Even at room temperatures, nano-grained materials exhibit strength softening, or called the inverse Hall-Petch effect, as grain boundary processes take over as the dominant deformation mechanisms. On the other hand, at elevated temperatures, grain boundary processes compete with grain interior deformation mechanisms over a wide range of the applied stress and grain sizes. This book chapter reviews and compares the rate equation model and the microstructure-based finite element simulations. The latter explicitly accounts for the grain boundary sliding, grain boundary diffusion and migration, as well as the grain interior dislocation creep. Therefore the explicit finite element method has clear advantages in problems where microstructural heterogeneities play a critical role, such as in the gradient microstructure in shot peening or weldment. Furthermore, combined with the Hall-Petch effect and its breakdown, the above competing processes help construct deformation mechanism maps by extending from the classic Frost-Ashby type to the ones with the dependence of grain size.

  3. Deformation mechanism study of a hot rolled Zr-2.5Nb alloy by transmission electron microscopy. I. Dislocation microstructures in as-received state and at different plastic strains

    Energy Technology Data Exchange (ETDEWEB)

    Long, Fei; Daymond, Mark R., E-mail: mark.daymond@queensu.ca; Yao, Zhongwen [Department of Mechanical and Materials Engineering, Queen' s University Kingston, Ontario K7L 3N6 (Canada)

    2015-03-07

    Thin foil dog bone samples prepared from a hot rolled Zr-2.5Nb alloy have been deformed by tensile deformation to different plastic strains. The development of slip traces during loading was observed in situ through SEM, revealing that deformation starts preferentially in certain sets of grains during the elastic-plastic transition region. TEM characterization showed that sub-grain boundaries formed during hot rolling consisted of screw 〈a〉 dislocations or screw 〈c〉 and 〈a〉 dislocations. Prismatic 〈a〉 dislocations with large screw or edge components have been identified from the sample with 0.5% plastic strain. Basal 〈a〉 and pyramidal 〈c + a〉 dislocations were found in the sample that had been deformed with 1.5% plastic strain, implying that these dislocations require larger stresses to be activated.

  4. Contribution of dislocation creep to the radiational creep of materials

    International Nuclear Information System (INIS)

    Borodin, V.A.; Ryazanov, A.I.

    1986-01-01

    The authors propose a model of the orientational dependences of the preferences of discrete linear dislocations in which the influence of the external load on the step concentration at the dislocations is taken into account. The use of this model, taking into account the mechanism of stress-induced anisotropy of the elastic interaction between point defects and dislocations, not only permits a correct qualitative explanation of the dependence of the rate of radiational creep on the basic irradiation parameters (dose, stress, temperature) but also allows approximate quantitative agreement with experimental results to be obtained. At sufficiently high stress, the theory predicts conditions of the formation of an ensemble of dislocational loops with a specific direction of the Burgers vector

  5. Irradiation deformation due to SIPA induced dislocation anisotropy

    International Nuclear Information System (INIS)

    Woo, CH.

    1980-02-01

    A contribution to irradiation deformation resulting from the stress-induced preferred adsorption (SIPA) effect is considered. SIPA causes a variation of the growth rates of irradiation-generated dislocation loops, according to the alignment of their Burgers vectors with respect to the applied stress. A prolinged period under an applied stress then creates an anisotropic dislocation structure in which the majority of dislocations have their Burgers vectors in alignment with the stress. In the presence of 'neutral' sinks, the resulting anisotropic dislocation structure causes plastic deformation similar to the way in which irradiation growth occurs in zirconium. This mechanism is called SIPA-induced growth (SIG). We have shown that SIG is very significant in comparison to SIPA, except when little or no loop growth has occurred during the period the stress is applied. This report contains the detailed formulation and derivation of the formulae for the evaluation of the contribution due to SIG. (auth)

  6. Dislocation Starvation and Exhaustion Hardening in Mo-alloy Nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, Claire [University of California, Berkeley & LBNL; Bei, Hongbin [ORNL; Lowry, M. B. [University of California, Berkeley; Oh, Jason [Hysitron, Inc., MN; Asif, S.A. Syed [Hysitron, Inc., MN; Warren, O. [Hysitron, Inc., MN; Shan, Zhiwei [Xi' an Jiaotong University, China & Hysitron, Inc., MN; George, Easo P [ORNL; Minor, Andrew [University of California, Berkeley & LBNL

    2012-01-01

    The evolution of defects in Mo alloy nanofibers with initial dislocation densities ranging from 0 to 1.6 1014 m2 were studied using an in situ push-to-pull device in conjunction with a nanoindenter in a transmission electron microscope. Digital image correlation was used to determine stress and strain in local areas of deformation. When they had no initial dislocations the Mo alloy nanofibers suffered sudden catastrophic elongation following elastic deformation to ultrahigh stresses. At the other extreme fibers with a high dislocation density underwent sustained homogeneous deformation after yielding at much lower stresses. Between these two extremes nanofibers with intermediate dislocation densities demonstrated a clear exhaustion hardening behavior, where the progressive exhaustion of dislocations and dislocation sources increases the stress required to drive plasticity. This is consistent with the idea that mechanical size effects ( smaller is stronger ) are due to the fact that nanostructures usually have fewer defects that can operate at lower stresses. By monitoring the evolution of stress locally we find that exhaustion hardening causes the stress in the nanofibers to surpass the critical stress predicted for self-multiplication, supporting a plasticity mechanism that has been hypothesized to account for the rapid strain softening observed in nanoscale bcc materials at high stresses.

  7. A discrete dislocation dynamics model of creeping single crystals

    Science.gov (United States)

    Rajaguru, M.; Keralavarma, S. M.

    2018-04-01

    Failure by creep is a design limiting issue for metallic materials used in several high temperature applications. Current theoretical models of creep are phenomenological with little connection to the underlying microscopic mechanisms. In this paper, a bottom-up simulation framework based on the discrete dislocation dynamics method is presented for dislocation creep aided by the diffusion of vacancies, known to be the rate controlling mechanism at high temperature and stress levels. The time evolution of the creep strain and the dislocation microstructure in a periodic unit cell of a nominally infinite single crystal is simulated using the kinetic Monte Carlo method, together with approximate constitutive laws formulated for the rates of thermal activation of dislocations over local pinning obstacles. The deformation of the crystal due to dislocation glide between individual thermal activation events is simulated using a standard dislocation dynamics algorithm, extended to account for constant stress periodic boundary conditions. Steady state creep conditions are obtained in the simulations with the predicted creep rates as a function of stress and temperature in good agreement with experimentally reported values. Arrhenius scaling of the creep rates as a function of temperature and power-law scaling with the applied stress are also reproduced, with the values of the power-law exponents in the high stress regime in good agreement with experiments.

  8. A three dimensional discrete dislocation dynamics modelling of the early cycles of fatigue in an austenitic stainless steel 316L: dislocation microstructure and damage analysis

    International Nuclear Information System (INIS)

    Depres, Ch.

    2005-01-01

    A numerical code modelling the collective behaviour of dislocations at a mesoscopic scale (Discrete Dislocation Dynamics code) is used to analyse the cyclic plasticity that occurs in surface grains of an AISI 316L stainless steel, in order to understand the plastic mechanism involved in crack initiation in fatigue. Firstly, the analyses of both the formation and the evolution of the dislocation microstructures show the crucial role of cross-slip played in the strain localization in the form of slip bands. As the cycling proceeds, the slip bands exhibit well-organized dislocation arrangements that substitute to dislocation tangles, involving specific interaction mechanisms between primary and deviate systems. Secondly, both the surface displacements generated by plastic slip and the distortion energy induced by the dislocation microstructure have been analysed. We find that an irreversible surface relief in the form of extrusion/intrusion can be induced by cyclic slip of dislocations. The number of cycles for the crack initiation follows a Manson-Coffin type law. The analyses of the concentration of the distortion energy and its repartition in the slip bands show that beneficial energetic zones may be present at the very beginning of the cycling, and that mode-II crack propagation in the surface grains results from a succession of micro-crack initiations along primary slip plane, which is facilitated by various effects (stress concentration due to surface relief, environment effects...). Finally, a dislocation-based model for cyclic plasticity is proposed from Discrete Dislocation Dynamics results. (author)

  9. Modeling of dislocation channel width evolution in irradiated metals

    Science.gov (United States)

    Doyle, Peter J.; Benensky, Kelsa M.; Zinkle, Steven J.

    2018-02-01

    Defect-free dislocation channel formation has been reported to promote plastic instability during tensile testing via localized plastic flow, leading to a distinct loss of ductility and strain hardening in many low-temperature irradiated materials. In order to study the underlying mechanisms governing dislocation channel width and formation, the channel formation process is modeled via a simple stochastic dislocation-jog process dependent upon grain size, defect cluster density, and defect size. Dislocations traverse a field of defect clusters and jog stochastically upon defect interaction, forming channels of low defect-density. Based upon prior molecular dynamics (MD) simulations and in-situ experimental transmission electron microscopy (TEM) observations, each dislocation encounter with a dislocation loop or stacking fault tetrahedron (SFT) is assumed to cause complete absorption of the defect cluster, prompting the dislocation to jog up or down by a distance equal to half the defect cluster diameter. Channels are predicted to form rapidly and are comparable to reported TEM measurements for many materials. Predicted channel widths are found to be most strongly dependent on mean defect size and correlated well with a power law dependence on defect diameter and density, and distance from the dislocation source. Due to the dependence of modeled channel width on defect diameter and density, maximum channel width is predicted to slowly increase as accumulated dose increases. The relatively weak predicted dependence of channel formation width with distance, in accordance with a diffusion analogy, implies that after only a few microns from the source, most channels observed via TEM analyses may not appear to vary with distance because of limitations in the field-of-view to a few microns. Further, examinations of the effect of the so-called "source-broadening" mechanism of channel formation showed that its effect is simply to add a minimum thickness to the channel

  10. Study of the dislocation contribution to the internal friction background of gold

    Science.gov (United States)

    Baur, J.; Benoit, W.

    1987-04-01

    The dislocation contribution to the internal friction (IF) background is studied in annealed gold samples containing various dilute concentrations of platinum impurities. The measurements are performed in the kHz frequency range in order to determine the loss mechanism responsible for the high IF background observed at these low frequencies. To this end, the IF background was systematically measured as a function of frequency, vibration amplitude, temperature, and impurity concentration. The experimental results show that the high dislocation contribution observed in annealed samples is strain-amplitude independent for amplitudes in the range 10-7 to 2×10-6, but rapidly decreases for amplitudes smaller than 10-7. In particular, the dislocation contribution tends to zero when the strain amplitude tends to zero. Furthermore, this contribution is frequency independent. These observations demonstrate that the dislocation contribution cannot be explained by relaxations. In particular, this contribution cannot be attributed to a viscous damping of the dislocation motion. On the contrary, the experiments show that the IF background due to dislocations must be explained by hysteretic and athermal motions of dislocations interacting with point defects. However, these hysteretic motions are not due to breakaway of dislocations from pinning points distributed along their length. The experimental results can be explained by the presence of point defects close to the dislocations, but not on them. The mechanical energy loss is attributed to hysteretic motions of dislocations between potential minima created by point defects.

  11. Effect of ion irradiation-produced defects on the mobility of dislocations in 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Briceno, M.; Fenske, J. [Department of Materials Science and Engineering, University of Illinois, Urbana, IL 61801 (United States); Dadfarnia, M.; Sofronis, P. [Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL 61801 (United States); Robertson, I.M., E-mail: ian.robertson@tcd.ie [Department of Materials Science and Engineering, University of Illinois, Urbana, IL 61801 (United States)

    2011-02-01

    The impact of heavy-ion produced defects on the mobility of dislocations, dislocation sources and newly generated dislocations in 304 stainless steel are discovered by performing irradiation and deformation experiments in real time in the transmission electron microscope. Dislocations mobile prior to the irradiation are effectively locked in position by the irradiation, but the irradiation has no discernible impact on the ability of a source to generate dislocations. The motion and mobility of a dislocation is altered by the irradiation. It becomes irregular and jerky and the mobility increases slowly with time as the radiation-produced defects are annihilated locally. Channels created by dislocations ejected from grain boundary dislocation sources were found to have a natural width, as the emission sites within the boundary were spaced close together. Finally, the distribution of dislocations, basically, an inverse dislocation pile-up, within a cleared channel suggests a new mechanism for generating high local levels of stress at grain boundaries. The impact of these observations on the mechanical properties of irradiated materials is discussed briefly.

  12. Effect of ion irradiation-produced defects on the mobility of dislocations in 304 stainless steel

    International Nuclear Information System (INIS)

    Briceno, M.; Fenske, J.; Dadfarnia, M.; Sofronis, P.; Robertson, I.M.

    2011-01-01

    The impact of heavy-ion produced defects on the mobility of dislocations, dislocation sources and newly generated dislocations in 304 stainless steel are discovered by performing irradiation and deformation experiments in real time in the transmission electron microscope. Dislocations mobile prior to the irradiation are effectively locked in position by the irradiation, but the irradiation has no discernible impact on the ability of a source to generate dislocations. The motion and mobility of a dislocation is altered by the irradiation. It becomes irregular and jerky and the mobility increases slowly with time as the radiation-produced defects are annihilated locally. Channels created by dislocations ejected from grain boundary dislocation sources were found to have a natural width, as the emission sites within the boundary were spaced close together. Finally, the distribution of dislocations, basically, an inverse dislocation pile-up, within a cleared channel suggests a new mechanism for generating high local levels of stress at grain boundaries. The impact of these observations on the mechanical properties of irradiated materials is discussed briefly.

  13. Discrete dislocation modelling of submicron indentation

    NARCIS (Netherlands)

    Widjaja, A; Van der Giessen, E; Needleman, A

    2005-01-01

    Indentation of a planar single crystal by a circular rigid indenter is analyzed using discrete dislocation plasticity. The crystal has three slip systems and is initially dislocation-free, but edge dislocations can nucleate from point sources inside the crystal. The lattice resistance to dislocation

  14. Improving patient safety: lessons from rock climbing.

    Science.gov (United States)

    Robertson, Nic

    2012-02-01

    How to improve patient safety remains an intractable problem, despite large investment and some successes. Academics have argued that the root of the problem is a lack of a comprehensive 'safety culture' in hospitals. Other safety-critical industries such as commercial aviation invest heavily in staff training to develop such a culture, but comparable programmes are almost entirely absent from the health care sector. In rock climbing and many other dangerous activities, the 'buddy system' is used to ensure that safety systems are adhered to despite adverse circumstances. This system involves two or more people using simple checks and clear communication to prevent problems causing harm. Using this system as an example could provide a simple, original and entertaining way of introducing medical students to the idea that human factors are central to ensuring patient safety. Teaching the buddy system may improve understanding and acceptance of other patient safety initiatives, and could also be used by junior doctors as a tool to improve the safety of their practice. © Blackwell Publishing Ltd 2012.

  15. Human climbing with efficiently scaled gecko-inspired dry adhesives.

    Science.gov (United States)

    Hawkes, Elliot W; Eason, Eric V; Christensen, David L; Cutkosky, Mark R

    2015-01-06

    Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little loss in adhesion as area grows). Just as natural gecko adhesives have been used as a benchmark for synthetic materials, so can gecko adhesion systems provide a baseline for scaling efficiency. In the tokay gecko (Gekko gecko), a scaling power law has been reported relating the maximum shear stress σmax to the area A: σmax ∝ A(-1/4). We present a mechanical concept which improves upon the gecko's non-uniform load-sharing and results in a nearly even load distribution over multiple patches of gecko-inspired adhesive. We created a synthetic adhesion system incorporating this concept which shows efficient scaling across four orders of magnitude of area, yielding an improved scaling power law: σmax ∝ A(-1/50). Furthermore, we found that the synthetic adhesion system does not fail catastrophically when a simulated failure is induced on a portion of the adhesive. In a practical demonstration, the synthetic adhesion system enabled a 70 kg human to climb vertical glass with 140 cm(2) of adhesive per hand. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. Neglected locked vertical patellar dislocation

    Science.gov (United States)

    Gupta, Rakesh Kumar; Gupta, Vinay; Sangwan, Sukhbir Singh; Kamboj, Pradeep

    2012-01-01

    Patellar dislocations occurring about the vertical and horizontal axis are rare and irreducible. The neglected patellar dislocation is still rarer. We describe the clinical presentation and management of a case of neglected vertical patellar dislocation in a 6 year-old boy who sustained an external rotational strain with a laterally directed force to his knee. Initially the diagnosis was missed and 2 months later open reduction was done. The increased tension generated by the rotation of the lateral extensor retinaculum kept the patella locked in the lateral gutter even with the knee in full extension. Traumatic patellar dislocation with rotation around a vertical axis has been described earlier, but no such neglected case has been reported to the best of our knowledge. PMID:23162154

  17. Neglected locked vertical patellar dislocation

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Gupta

    2012-01-01

    Full Text Available Patellar dislocations occurring about the vertical and horizontal axis are rare and irreducible. The neglected patellar dislocation is still rarer. We describe the clinical presentation and management of a case of neglected vertical patellar dislocation in a 6 year-old boy who sustained an external rotational strain with a laterally directed force to his knee. Initially the diagnosis was missed and 2 months later open reduction was done. The increased tension generated by the rotation of the lateral extensor retinaculum kept the patella locked in the lateral gutter even with the knee in full extension. Traumatic patellar dislocation with rotation around a vertical axis has been described earlier, but no such neglected case has been reported to the best of our knowledge.

  18. Self-organization of voids, gas bubbles and dislocation patterns under irradiation

    International Nuclear Information System (INIS)

    Dubinko, V.I.; Turkin, A.A.

    1993-01-01

    In the present paper three examples of self-organization in solids under irradiation are considered on the basis of original mechanisms, namely, the ordering of voids in void lattices under high temperature irradiation, the alignment of gas bubbles in bubble lattices under low-temperature gas atom implantation, and the formation of superdislocations (one-dimensional pile-ups of dislocation loops) and other dislocation patterns in the regimes of medium and high temperature irradiation. The ordering of cavities (i.e.voids or gas bubbles) is shown to arise due to a dissipative interaction between cavities induced by the interstitial dislocation loop absorption and punching, respectively, which represent anisotropic mechanisms of atomic transport. The dislocation patterning is shown to be driven by the dependence of dislocation bias for absorption of self-interstitial atoms on the dislocation arrangement. (author). 57 refs., 1 tab., 12 figs

  19. Climbing ripple structure and associated storm-lamination from a ...

    Indian Academy of Sciences (India)

    Pranhita–Godavari Valley, south India, displays well developed climbing ripple lamination and ... sedimentary environments, such as river flood .... Sediment, sequence and facies ..... tic Archaean Witwatersrand Supergroup, South Africa;.

  20. Stable Stair Climbing in a Simple Hexapod Robot

    National Research Council Canada - National Science Library

    Moore, E. Z; Buehler, M

    2001-01-01

    .... Its ability to traverse highly fractured and unstable terrain has already been documented. In this paper, we describe open loop controllers for our small robot to climb and descend regular stairs...

  1. Climbing the health learning curve together | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-01-25

    Jan 25, 2011 ... Climbing the health learning curve together ... Many of the projects are creating master's programs at their host universities ... Formerly based in the high Arctic, Atlantis is described by Dr Martin Forde of St George's University ...

  2. Optimal Design of a New Wheeled Mobile Robot by Kinetic Analysis for the Stair-Climbing States

    OpenAIRE

    Woo, Chun-Kyu; Choi, Hyun Do; Kim, Mun Sang; Kim, Soo Hyun; Kwak, Yoon Keun

    2007-01-01

    In order to be utilized in building inspection, building security, and military reconnaissance, a new type of WMR was designed with a passive linkage-type locomotive mechanism for improved adaptability to rough terrain and stair-climbing without the active control techniques. Two designed concepts, `adaptability' and `passivity', were considered for the design of the linkage-type locomotive mechanism of the WMR. The proposed mechanism, composed of a simple 4-bar linkage mechanism and a limite...

  3. Comparative multibody dynamics analysis of falls from playground climbing frames

    OpenAIRE

    Forero Rueda, Manuel A.; Gilchrist, M. D.

    2009-01-01

    This paper shows the utility of multibody dynamics in evaluating changes in injury related parameters of the head and lower limbs of children following falls from playground climbing frames. A particular fall case was used as a starting point to analyze the influence of surface properties, posture of the body at impact, and intermediate collisions against the climbing frame before impacting the ground. Simulations were made using the 6-year-old pedestrian MADYMO rigid body model and scaled he...

  4. Modeling and analysis of a meso-hydraulic climbing robot with artificial muscle actuation.

    Science.gov (United States)

    Chapman, Edward M; Jenkins, Tyler E; Bryant, Matthew

    2017-07-10

    This paper presents a fully coupled electro-hydraulic model of a bio-inspired climbing robot actuated by fluidic artificial muscles (FAMs). This analysis expands upon previous FAM literature by considering not only the force and contraction characteristics of the actuator, but the complete hydraulic and electromechanical circuits as well as the dynamics of the climbing robot. This analysis allows modeling of the time-varying applied pressure, electrical current, and actuator contraction for accurate prediction of the robot motion, energy consumption, and mechanical work output. The developed model is first validated against mechanical and electrical data collected from a proof-of-concept prototype robot. The model is then employed to study the system-level sensitivities of the robot locomotion efficiency and average climbing speed to several design and operating parameters. The results of this analysis demonstrate that considering only the transduction efficiency of the FAM actuators is insufficient to maximize the efficiency of the complete robot, and that a holistic approach can lead to significant improvements in performance. © 2017 IOP Publishing Ltd.

  5. Trans-triquetral Perilunate fracture dislocation

    OpenAIRE

    John-Henry Rhind; Abhinav Gulihar; Andrew Smith

    2018-01-01

    Perilunate dislocations and perilunate fracture dislocations are rare and serious injuries. Perilunate dislocations represent less than 10% of all carpal injuries of which 61% represent transcaphoid fractures. Because of their rarity, up to 25% of perilunate dislocations are initially missed on first assessment. We present the case of a 66-year-old-gentleman who sustained an isolated trans-triquetral perilunate fracture dislocation while walking his dog. This was diagnosed in the emergency de...

  6. HRTEM studies of dislocations in cubic BN

    International Nuclear Information System (INIS)

    Nistor, L.C.; Tendeloo, G. van; Dinca, G.

    2004-01-01

    The atomic structure of dislocations in cubic boron nitride has been investigated by high resolution transmission electron microscopy. Most of the perfect dislocations, screw and 60 edge, are dissociated. A 60 dislocation which was undissociated has been analysed. Computer simulation is performed in an attempt to characterise the core structure. Twinning dislocations and dislocations resulting from the intersection of stacking faults are also revealed. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. HRTEM studies of dislocations in cubic BN

    Energy Technology Data Exchange (ETDEWEB)

    Nistor, L.C. [National Institute for Materials Physics, P.O. Box MG-7 Magurele, 077125 Bucharest (Romania); Tendeloo, G. van [University of Antwerp, EMAT, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Dinca, G. [Dacia Synthetic Diamond Factory, Timisoara av. 5, P.O. Box 58-52, 077350 Bucharest (Romania)

    2004-09-01

    The atomic structure of dislocations in cubic boron nitride has been investigated by high resolution transmission electron microscopy. Most of the perfect dislocations, screw and 60 edge, are dissociated. A 60 dislocation which was undissociated has been analysed. Computer simulation is performed in an attempt to characterise the core structure. Twinning dislocations and dislocations resulting from the intersection of stacking faults are also revealed. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Cyclic deformation mechanisms in a cast gamma titanium aluminide alloy

    International Nuclear Information System (INIS)

    Jouiad, Mustapha; Gloanec, Anne-Lise; Grange, Marjolaine; Henaff, Gilbert

    2005-01-01

    The present study tackles the issue of the identification of the deformation mechanisms governing the cyclic stress-strain behaviour of a cast Ti-48Al-2Cr-2Nb (numbers indicate at.%) with a nearly fully lamellar microstructure. At room temperature, this behaviour and the corresponding deformation mechanisms are shown to be strongly dependent on the applied strain range. Indeed, at low strain range, where almost no hardening is noticed, deformation occurs by motion of long and straight ordinary dislocations. The moderate hardening observed at intermediate values of the strain range is associated with the formation of a vein-like structure due to the progressive tangling of ordinary dislocations. Finally, at higher strain-range values, twinning, by delaying the formation of this vein-like structure, induces a more pronounced cyclic strain hardening. At high temperature (750 deg. C), the material exhibits a rapid saturation of the stress amplitude, regardless of the applied strain range. Transmission electron microscopy indicates that twinning is no longer operative at this temperature, but that dislocation climb is activated

  9. Interstitial impurity interactions and dislocation microdynamics in Mo crystals

    International Nuclear Information System (INIS)

    Kwok, D.N.

    1975-05-01

    The effects of interstitial impurities on the mechanical properties of molybdenum are explored by comparing results obtained for crystals of various interstitial contents controlled by ultra-high vacuum outgassing. Results show a modulus reduction for as-grown samples and for outgassed specimens at low applied stresses. As a function of plastic microstrain, the values of modulus defect for both as-grown and outgassed specimens saturate at the same value. Interstitial impurities act as pinning agents to dislocation bowing, but when all the easy dislocation loops have broken away from local interstitial pins, the modulus defect reaches a constant saturation value. Etch pitting techniques were used to correlate microstrain observations with dislocation generation and motion. It has been found that edge dislocation generation and movement are active in the microstrain region while screw dislocations are relatively inactive until the macrostrain region is reached. Dislocation velocities range from 10 -6 to 10 -3 cm/s and the average distance between interstitial impurity pinning points is found to be approximately 8 x 10 -4 cm. (U.S.)

  10. Creep mechanisms and constitutive relations in pure metals

    International Nuclear Information System (INIS)

    Nix, W.D.

    1979-01-01

    The mechanisms of creep of pure metals is briefly reviewed and divided into two parts: steady state flow mechanisms, and non-steady state flow mechanisms and constitutive relations. Creep by diffusional flow is now reasonably well understood, with theory and experiment in good agreement. The closely related phenomenon of Harper--Dorn creep can also be understood in terms of diffusion between dislocations. Power law creep involves the climb of edge disloctions controlled by lattice self diffusion. Theoretical treatments of this process invariably give a power law exponent of 3. This natural creep law is compared with the data for FCC and BCC metals. It is suggested that diffusion controlled climb is the controlling process in BCC metals at very high temperatures. Stacking fault energy effects may preclude the possibility that creep is controlled entirely by lattice self diffusion in some FCC metals. The subject of power law breakdown is presented as a natural consequence of the transition to low temperature flow phenomena. The role of core diffusion in this transition is briefly discussed. The mechanisms are presented by which pure metals creep at elevated temperatures. While most of this review deals with the mechanisms of steady state flow, some discussion is devoted to creep flow under non-steady state conditions. This topic is discussed in connection with the development of constitutive equations for describing plastic flow in metals

  11. Dislocation structure evolution and characterization in the compression deformed Mn-Cu alloy

    International Nuclear Information System (INIS)

    Zhong, Y.; Yin, F.; Sakaguchi, T.; Nagai, K.; Yang, K.

    2007-01-01

    Dislocation densities and dislocation structure arrangements in cold compressed polycrystalline commercial M2052 (Mn-20Cu-5Ni-2Fe) high damping alloy with various strains were determined in scanning mode by X-ray peak profile analysis and electron backscatter diffraction (EBSD). The results indicate that the Mn-Cu-Ni-Fe alloy has an evolution behavior quite similar to the dislocation structure in copper. The dislocation arrangement parameter shows a local minimum in the transition range between stages III and IV that can be related to the transformation of the dislocation arrangement in the cell walls from a polarized dipole wall (PDW) into a polarized tile wall (PTW) structure. This evolution is further confirmed by the results of local misorientation determined by EBSD. In addition, during deformation, the multiplication of dislocation densities in the MnCu alloy is significantly slower than that in copper, and the transition of the dislocation structure is strongly retarded in the MnCu alloy compared with copper. These results can be explained by the mechanism of elastic anisotropy on the dislocation dynamics, as the elastic anisotropy in the MnCu alloy is larger than that in copper, which can strongly retard the multiplication of the dislocation population and the transformation of the dislocation structure. These results are important for research into the plastic working behavior of Mn-Cu-Ni-Fe high damping alloy

  12. Study of elementary mechanisms of creep in uranium as a function of temperature (150 deg. to 760 deg. C) by activation energy measurements; Etude des mecanismes elementaires de deformation par fluage de l'uranium en fonction de la temperature (de 150 deg. a 760 deg. C) par la mesure des energies d'activation

    Energy Technology Data Exchange (ETDEWEB)

    Grenier, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    Creep tests were carried out on single crystals and polycrystalline specimens of uranium in both the {alpha} and {beta} phases over the temperature range 150 - 760 deg. C. The determination of the activation energy for creep and the study of its variation with temperature made it possible to distinguish various temperature ranges in which one or more elementary mechanisms govern deformation. Micrographic observations after creep and the study of the variation of creep-rate with load support the conclusions. The creep behavior of single crystals is identical with that of polycrystalline material below 325 deg. C. From 325 deg. C to one upper limiting temperature whose value depends on the purity and previous history of the metal, the creep deformation of uranium is controlled by cross-slip. From this limiting temperature up to 520 deg. C, the creep of uranium involves two independent mechanisms operating simultaneously, the movement of screw dislocation by cross-slip and the climbing of edge dislocations out of their slip plane. Between 520 deg. C and the {alpha} - {beta} transformation temperature creep in polycrystals is governed by the climb of edge dislocations out of their slip planes, by a pile up mechanism in the case of primary creep and by dipole annihilation in the case of secondary creep. In single crystals creep is dependent on the climb of edge dislocations into pre-existent sub-boundaries and their subsequent rearrangement within these boundaries. In the {beta} phase the creep of polycrystals is governed by the diffusional climb of edge dislocations. Between 450 and 630 deg. C small alloy additions of molybdenum modify the creep characteristics of uranium although the deformation mechanisms involved are analogous to those in the pure metal. (author) [French] Des essais de fluage a diverses temperatures comprises entre 150 et 760 deg. C ont ete effectues sur des polycristaux et des monocristaux d'uranium, en phase {alpha} et en phase {beta}. La

  13. Atomic-scale investigation of point defects and hydrogen-solute atmospheres on the edge dislocation mobility in alpha iron

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, M. A.; Solanki, K. N., E-mail: kiran.solanki@asu.edu [School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287 (United States); Groh, S. [Institute of Mechanics and Fluid Dynamics, TU Bergakademie Freiberg, Freiberg 09556 (Germany)

    2014-08-14

    In this study, we present atomistic mechanisms of 1/2 [111](11{sup ¯}0) edge dislocation interactions with point defects (hydrogen and vacancies) and hydrogen solute atmospheres in body centered cubic (bcc) iron. In metals such as iron, increases in hydrogen concentration can increase dislocation mobility and/or cleavage-type decohesion. Here, we first investigate the dislocation mobility in the presence of various point defects, i.e., change in the frictional stress as the edge dislocation interacts with (a) vacancy, (b) substitutional hydrogen, (c) one substitutional and one interstitial hydrogen, (d) interstitial hydrogen, (e) vacancy and interstitial hydrogen, and (f) two interstitial hydrogen. Second, we examine the role of a hydrogen-solute atmosphere on the rate of local dislocation velocity. The edge dislocation simulation with a vacancy in the compression side of the dislocation and an interstitial hydrogen atom at the tension side exhibit the strongest mechanical response, suggesting a higher potential barrier and hence, the higher frictional stress (i.e., ∼83% higher than the pure iron Peierls stress). In the case of a dislocation interacting with a vacancy on the compressive side, the vacancy binds with the edge dislocation, resulting in an increase in the friction stress of about 28% when compared with the Peierls stress of an edge dislocation in pure iron. Furthermore, as the applied strain increases, the vacancy migrates through a dislocation transportation mechanism by attaining a velocity of the same order as the dislocation velocity. For the case of the edge dislocation interacting with interstitial hydrogen on the tension side, the hydrogen atom jumps through one layer perpendicular to the glide plane during the pinning-unpinning process. Finally, our simulation of dislocation interactions with hydrogen show first an increase in the local dislocation velocity followed by a pinning of the dislocation core in the atmosphere, resulting in

  14. Inhomogenous Dislocation Nucleation Based on Atom Potential in Hexagonal Noncentrosymmetric Crystal Sheet

    International Nuclear Information System (INIS)

    Xue-Chuan, Zhao; Xiao-Ming, Liu; Zhuo, Zhuang; Zhan-Li, Liu; Yuan, Gao

    2010-01-01

    By introducing internal degree, the deformation of hexagonal noncentrosymmetric crystal sheet can be described by the revised Cauchy–Born rule based on atomic potential. The instability criterion is deduced to investigate the inhomogeneous dislocation nucleation behavior of the crystal sheet under simple loading. The anisotropic characters of dislocation nucleation under uniaxial tension are studied by using the continuum method associated with the instability criterion. The results show a strong relationship between yield stress and crystal sheet chirality. The results also indicate that the instability criterion has sufficient ability to capture the dislocation nucleation site and expansion. To observe the internal dislocation phenomenon, the prediction of the dislocation nucleation site and expansion domain is illustrated by MD simulations. The developed method is another way to explain the dislocation nucleation phenomenon. (condensed matter: structure, mechanical and thermal properties)

  15. Biomechanical Analyses of Stair-climbing while Dual-tasking

    Science.gov (United States)

    Vallabhajosula, Srikant; Tan, Chi Wei; Mukherjee, Mukul; Davidson, Austin J.; Stergiou, Nicholas

    2015-01-01

    Stair-climbing while doing a concurrent task like talking or holding an object is a common activity of daily living which poses high risk for falls. While biomechanical analyses of overground walking during dual-tasking have been studied extensively, little is known on the biomechanics of stair-climbing while dual-tasking. We sought to determine the impact of performing a concurrent cognitive or motor task during stair-climbing. We hypothesized that a concurrent cognitive task will have a greater impact on stair climbing performance compared to a concurrent motor task and that this impact will be greater on a higher-level step. Ten healthy young adults performed 10 trials of stair-climbing each under four conditions: stair ascending only, stair ascending and performing subtraction of serial sevens from a three-digit number, stair ascending and carrying an empty opaque box and stair ascending, performing subtraction of serial sevens from a random three-digit number and carrying an empty opaque box. Kinematics (lower extremity joint angles and minimum toe clearance) and kinetics (ground reaction forces and joint moments and powers) data were collected. We found that a concurrent cognitive task impacted kinetics but not kinematics of stair-climbing. The effect of dual-tasking during stair ascent also seemed to vary based on the different phases of stair ascent stance and seem to have greater impact as one climbs higher. Overall, the results of the current study suggest that the association between the executive functioning and motor task (like gait) becomes stronger as the level of complexity of the motor task increases. PMID:25773590

  16. Structures of glide-set 90 deg. partial dislocation cores in diamond cubic semiconductors

    International Nuclear Information System (INIS)

    Beckman, S.P.; Chrzan, D.C.

    2003-01-01

    Two core reconstructions of the 90 deg. partial dislocations in diamond cubic semiconductors, the so-called single- and double-period structures, are often found to be nearly degenerate in energy. This near degeneracy suggests the possibility that both core reconstructions may be present simultaneously along the same dislocation core, with the domain sizes of the competing reconstructions dependent on temperature and the local stress state. To explore this dependence, a simple statistical mechanics-based model of the dislocation core reconstructions is developed and analyzed. Predictions for the temperature-dependent structure of the dislocation core are presented

  17. Hill-Climbing search and diversification within an evolutionary approach to protein structure prediction.

    Science.gov (United States)

    Chira, Camelia; Horvath, Dragos; Dumitrescu, D

    2011-07-30

    Proteins are complex structures made of amino acids having a fundamental role in the correct functioning of living cells. The structure of a protein is the result of the protein folding process. However, the general principles that govern the folding of natural proteins into a native structure are unknown. The problem of predicting a protein structure with minimum-energy starting from the unfolded amino acid sequence is a highly complex and important task in molecular and computational biology. Protein structure prediction has important applications in fields such as drug design and disease prediction. The protein structure prediction problem is NP-hard even in simplified lattice protein models. An evolutionary model based on hill-climbing genetic operators is proposed for protein structure prediction in the hydrophobic - polar (HP) model. Problem-specific search operators are implemented and applied using a steepest-ascent hill-climbing approach. Furthermore, the proposed model enforces an explicit diversification stage during the evolution in order to avoid local optimum. The main features of the resulting evolutionary algorithm - hill-climbing mechanism and diversification strategy - are evaluated in a set of numerical experiments for the protein structure prediction problem to assess their impact to the efficiency of the search process. Furthermore, the emerging consolidated model is compared to relevant algorithms from the literature for a set of difficult bidimensional instances from lattice protein models. The results obtained by the proposed algorithm are promising and competitive with those of related methods.

  18. Hill-Climbing search and diversification within an evolutionary approach to protein structure prediction

    Directory of Open Access Journals (Sweden)

    Chira Camelia

    2011-07-01

    Full Text Available Abstract Proteins are complex structures made of amino acids having a fundamental role in the correct functioning of living cells. The structure of a protein is the result of the protein folding process. However, the general principles that govern the folding of natural proteins into a native structure are unknown. The problem of predicting a protein structure with minimum-energy starting from the unfolded amino acid sequence is a highly complex and important task in molecular and computational biology. Protein structure prediction has important applications in fields such as drug design and disease prediction. The protein structure prediction problem is NP-hard even in simplified lattice protein models. An evolutionary model based on hill-climbing genetic operators is proposed for protein structure prediction in the hydrophobic - polar (HP model. Problem-specific search operators are implemented and applied using a steepest-ascent hill-climbing approach. Furthermore, the proposed model enforces an explicit diversification stage during the evolution in order to avoid local optimum. The main features of the resulting evolutionary algorithm - hill-climbing mechanism and diversification strategy - are evaluated in a set of numerical experiments for the protein structure prediction problem to assess their impact to the efficiency of the search process. Furthermore, the emerging consolidated model is compared to relevant algorithms from the literature for a set of difficult bidimensional instances from lattice protein models. The results obtained by the proposed algorithm are promising and competitive with those of related methods.

  19. Dislocations and other topological oddities

    Science.gov (United States)

    Pieranski, Pawel

    2016-03-01

    We will show that the book Dislocations by Jacques Friedel, published half a century ago, can still be recommended, in agreement with the author's intention, as a textbook ;for research students at University and for students at engineering schools as well as for research engineers;. Indeed, today dislocations are known to occur not only in solid crystals but also in many other systems discovered more recently such as colloidal crystals or liquid crystals having periodic structures. Moreover, the concept of dislocations is an excellent starting point for lectures on topological defects occurring in systems equipped with order parameters resulting from broken symmetries: disclinations in nematic or hexatic liquid crystals, dispirations in chiral smectics or disorientations in lyotropic liquid crystals. The discussion of dislocations in Blue Phases will give us an opportunity to call on mind Sir Charles Frank, friend of Jacques Friedel since his Bristol years, who called these ephemeral mesophases ;topological oddities;. Being made of networks of disclinations, Blue Phases are similar to Twist Grain Boundary (TGB) smectic phases, which are made of networks of screw dislocations and whose existence was predicted by de Gennes in 1972 on the basis of the analogy between smectics and superconductors. We will stress that the book by Jacques Friedel contains seeds of this analogy.

  20. Toward interplay between substructure evolution, dislocation configuration, and yield strength in a microalloyed steel

    International Nuclear Information System (INIS)

    Venkatsurya, P.K.C.; Misra, R.D.K.; Mulholland, M.D.; Manohar, M.; Hartmann, J.E.

    2014-01-01

    We focus our attention here on the directional dependence of yield strength in high strength microalloyed steel using transmission electron microscopy and x-ray diffraction. The primary objective is to study the interplay between substructural evolution, notably cell size, dense dislocation walls (DDWs), dislocation tangle zones (DTZs), lamellar boundaries, crystallographic texture, and yield strength. The study elucidates for the first time the strong impact of thermo-mechanical deformation-induced dislocation and lamellar structures, which are likely to modify the slip pattern, leading to directional dependence of yield strength. Majority of the dislocations tend to pile along the {110} slip planes as dense dislocation walls. At low strains, grains are first divided into cell blocks that are nearly dislocation-free. At higher strains and with progress in thermo-mechanical processing dislocation tangled zones and lamellar boundaries develop. It is hypothesized that the differences in dislocation configurations, dislocations cells and cell blocks, and lamellar boundaries synergistically contribute to directional dependence of the yield strength in the high strength ferrous alloy. The presumption is envisaged on the basis of observations that the microstructural constituents were similar in the entire plane of the hot rolled strip and the crystallographic texture was weak

  1. A continuum theory of edge dislocations

    Science.gov (United States)

    Berdichevsky, V. L.

    2017-09-01

    Continuum theory of dislocation aims to describe the behavior of large ensembles of dislocations. This task is far from completion, and, most likely, does not have a "universal solution", which is applicable to any dislocation ensemble. In this regards it is important to have guiding lines set by benchmark cases, where the transition from a discrete set of dislocations to a continuum description is made rigorously. Two such cases have been considered recently: equilibrium of dislocation walls and screw dislocations in beams. In this paper one more case is studied, equilibrium of a large set of 2D edge dislocations placed randomly in a 2D bounded region. The major characteristic of interest is energy of dislocation ensemble, because it determines the structure of continuum equations. The homogenized energy functional is obtained for the periodic dislocation ensembles with a random contents of the periodic cell. Parameters of the periodic structure can change slowly on distances of order of the size of periodic cells. The energy functional is obtained by the variational-asymptotic method. Equilibrium positions are local minima of energy. It is confirmed the earlier assertion that energy density of the system is the sum of elastic energy of averaged elastic strains and microstructure energy, which is elastic energy of the neutralized dislocation system, i.e. the dislocation system placed in a constant dislocation density field making the averaged dislocation density zero. The computation of energy is reduced to solution of a variational cell problem. This problem is solved analytically. The solution is used to investigate stability of simple dislocation arrays, i.e. arrays with one dislocation in the periodic cell. The relations obtained yield two outcomes: First, there is a state parameter of the system, dislocation polarization; averaged stresses affect only dislocation polarization and cannot change other characteristics of the system. Second, the structure of

  2. Prediction of dislocation boundary characteristics

    DEFF Research Database (Denmark)

    Winther, Grethe

    Plastic deformation of both fcc and bcc metals of medium to high stacking fault energy is known to result in dislocation patterning in the form of cells and extended planar dislocation boundaries. The latter align with specific crystallographic planes, which depend on the crystallographic......) and it is found that to a large extent the dislocations screen each other’s elastic stress fields [3]. The present contribution aims at advancing the previous theoretical analysis of a boundary on a known crystallographic plane to actual prediction of this plane as well as other boundary characteristics....... Crystal plasticity calculations combined with the hypothesis that these boundaries separate domains with local differences in the slip system activity are introduced to address precise prediction of the experimentally observed boundaries. The presentation will focus on two cases from fcc metals...

  3. The acute toxicity of the metaldehyde on the climbing perch

    Science.gov (United States)

    Wahida Mohamad Ismail, Syamimi; Aini Dahalan, Farrah; Zakaria, Ammar; Mad Shakaff, Ali Yeon; Aqlima Ahmad, Siti; Shukor, Mohd Yunus Abd; Khalizan Sabullah, Mohd; Khalil, Khalilah Abdul; Jalil, Mohd Faizal Ab

    2018-03-01

    In Asia, Climbing perch (Anabas testudineus) is commonly found in paddy fields and irrigation systems. Due to its habitat, Climbing perch is exposed to toxic pesticides used in paddy fields such as metaldehyde which is one of the most widely used molluscicide. This study aims to determine the acute toxicity Lethal Concentration50 (LC50) of metaldehyde and its effect on the behaviour and physical changes of the Climbing perch. The fish mortality responses to six different metaldehyde concentrations ranging from 180 to 330 mg/L were investigated. The 96-h LC50 values were determined and analysed using three different analysis methods which is arithmetic, logarithmic and probit graphic. The LC50 values obtained in this study were 239, 234 and 232 mg/L, respectively. After 96-h of exposure to metaldehyde, the fish showed a series of abnormal behavioural response in all cases: imbalance position, and restlessness of movement. The LC50 values show that metaldehyde is moderately toxic to the Climbing perch indicating that metaldehyde is not destructive to Climbing perch. However, long term exposure of aquatic organisms to the metaldehyde means a continuous health risk for the fish population as they are more vulnerable and it is on high risk for human to consume this toxicated fishes.

  4. Therapeutic use of sport climbing for patients with multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Ana Ožura

    2009-05-01

    Full Text Available Sport climbing is a form of exercise that requires complex and variable movement. Because of the use of the so-called "top-rope system", this is a safe activity appropriate for individuals with physical disabilities. Therefore, climbing might prove to be an effective form of therapy for patients with multiple sclerosis. Multiple sclerosis is a chronic neurological disease that may include motor and cognitive deficits as well as affective disturbances. The illness is characterized by multifocal areas of brain damage (plaques, as consequence of autoimmune inflammation. Sport climbing might be a potentially useful activity for treating spasticity, improving a person's self image and certain aspects of cognition, such as attention and executive functions, as well as for managing emotional disturbances. All of the above are areas where patients with multiple sclerosis might be in need of assistance. The article also describes the experience of a patient with multiple sclerosis who was enrolled in our climbing program. Future research is needed to evaluate the effect of climbing therapy for patients with multiple sclerosis.

  5. Hip dislocations after 2,734 elective unilateral fast-track total hip arthroplasties

    DEFF Research Database (Denmark)

    Jørgensen, Christoffer Calov; Kjærsgaard-Andersen, Per; Kehlet, Henrik

    2014-01-01

    STUDY DESIGN: Retrospective review of prospectively collected data. OBJECTIVE: To investigate the incidence of hip dislocation 90 days after total hip arthroplasty in relation to time after surgery, mechanism of dislocation and predisposing factors. METHODS: Prospective data on preoperative patient.......31-3.40)] but not hospital stay of hip...

  6. Determination of the extinction factor in function of the density of dislocations

    International Nuclear Information System (INIS)

    Macias B, L.R.

    1991-12-01

    There are exist three basic types of crystalline lattice defects: point, line (or dislocations) and surface defects. Such defects may be incorporated intentionally to produce desired mechanical and physical properties. This report presents a FORTRAN language program to calculate the extinction factor in samples of polycrystalline copper as function of the dislocations density. (Author)

  7. On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys

    Czech Academy of Sciences Publication Activity Database

    Simon, T.; Kröger, A.; Somsen, Ch.; Dlouhý, Antonín; Eggeler, G.

    2010-01-01

    Roč. 58, č. 5 (2010), s. 1850-1860 ISSN 1359-6454 R&D Projects: GA ČR GA106/09/1913 Institutional research plan: CEZ:AV0Z20410507 Keywords : NiTi * Martensitic transformations * Dislocation multiplication mechanism * Martensite variants * Dislocations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.781, year: 2010

  8. Video Analysis of Primary Shoulder Dislocations in Rugby Tackles.

    Science.gov (United States)

    Maki, Nobukazu; Kawasaki, Takayuki; Mochizuki, Tomoyuki; Ota, Chihiro; Yoneda, Takeshi; Urayama, Shingo; Kaneko, Kazuo

    2017-06-01

    Characteristics of rugby tackles that lead to primary anterior shoulder dislocation remain unclear. To clarify the characteristics of tackling that lead to shoulder dislocation and to assess the correlation between the mechanism of injury and morphological damage of the glenoid. Case series; Level of evidence, 4. Eleven elite rugby players who sustained primary anterior shoulder dislocation due to one-on-one tackling between 2001 and 2014 were included. Using an assessment system, the tackler's movement, posture, and shoulder and head position were evaluated in each phase of tackling. Based on 3-dimensional computed tomography, the glenoid of the affected shoulder was classified into 3 types: intact, erosion, and bone defect. Orientation of the glenoid defect and presence of Hill-Sachs lesion were also evaluated. Eleven tackles that led to primary shoulder dislocation were divided into hand, arm, and shoulder tackle types based on the site at which the tackler contacted the ball carrier initially. In hand and arm tackles, the tackler's shoulder joint was forcibly moved to horizontal abduction by the impact of his upper limb, which appeared to result from an inappropriate approach to the ball carrier. In shoulder tackles, the tackler's head was lowered and was in front of the ball carrier at impact. There was no significant correlation between tackle types and the characteristics of bony lesions of the shoulder. Although the precise mechanism of primary anterior shoulder dislocation could not be estimated from this single-view analysis, failure of individual tackling leading to injury is not uniform and can be caused by 2 main factors: failure of approach followed by an extended arm position or inappropriate posture of the tackler at impact, such as a lowered head in front of the opponent. These findings indicate that injury mechanisms should be assessed for each type of tackle, as it is unknown whether external force to the glenoid is different in each mechanism

  9. Irreducible Traumatic Posterior Shoulder Dislocation

    Directory of Open Access Journals (Sweden)

    Blake Collier

    2017-01-01

    Full Text Available History of present illness: A 22-year-old male presented to the Emergency Department complaining of right shoulder pain after a motocross accident. He was traveling at approximately 10 mph around a turn when he lost control and was thrown over the handlebars, landing directly on his right shoulder. On arrival, he was holding his arm in adduction and internal rotation. An area of swelling was noted over his anterior shoulder. He was unable to abduct his shoulder. No humeral gapping was noted. He had normal neuro-vascular status distal to the injury. Significant findings: Radiographs demonstrated posterior displacement of the humeral head on the “Y” view (see white arrow and widening of the glenohumeral joint space on anterior-posterior view (see red arrow. The findings were consistent with posterior dislocation and a Hill-Sachs type deformity. Sedation was performed and reduction was attempted using external rotation, traction counter-traction. An immediate “pop” was felt during the procedure. Post-procedure radiographs revealed a persistent posterior subluxation with interlocking at posterior glenoid. CT revealed posterior dislocation with acute depressed impaction deformity medial to the biceps groove with the humeral head perched on the posterior glenoid, interlocked at reverse Hill-Sachs deformity (see blue arrow. Discussion: Posterior shoulder dislocations are rare and represent only 2% of all shoulder dislocations. Posterior shoulder dislocations are missed on initial diagnosis in more than 60% of cases.1 Posterior shoulder dislocations result from axial loading of the adducted and internally rotated shoulder, violent muscle contractions (resulting from seizures or electrocution, a direct posterior force applied to the anterior shoulder.1 Physical findings include decreased anterior prominence of the humeral head, increased palpable posterior prominence of the humeral head below the acromion, increased palpable prominence of the

  10. Bipolar dislocation of the clavicle

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2012-01-01

    Full Text Available Bipolar dislocation of the clavicle at acromioclavicular and sternoclavicular joint is an uncommon traumatic injury. The conservative treatments adopted in the past is associated with redislocation dysfunction and deformity. A 41 years old lady with bipolar dislocation of right shoulder is treated surgically by open reduction and internal fixation by oblique T-plate at sternoclavicular joint and Kirschner wire stabilization at acromioclavicular joint. The patient showed satisfactory recovery with full range of motion of the right shoulder and normal muscular strength. The case reported in view of rarity and at 2 years followup.

  11. High temperature dislocation processes in precipitation hardened crystals investigated by a 3D discrete dislocation dynamics

    Czech Academy of Sciences Publication Activity Database

    Záležák, Tomáš; Svoboda, Jiří; Dlouhý, Antonín

    2017-01-01

    Roč. 97, OCT (2017), s. 1-23 ISSN 0749-6419 R&D Projects: GA ČR(CZ) GA14-22834S; GA ČR(CZ) GA202/09/2073; GA ČR(CZ) GD106/09/H035; GA MŠk(CZ) EE2.3.20.0214; GA MŠk OC 162 EU Projects: European Commission(XE) 309916 - Z-ULTRA Institutional support: RVO:68081723 Keywords : 3D discrete dislocation dynamics * Dislocations * Strengthening mechanisms * Low angle grain boundaries * Particulate reinforced material Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 5.702, year: 2016

  12. The movement of screw dislocations in tungsten

    International Nuclear Information System (INIS)

    Tian Xiaogeng; Woo Chungho

    2004-01-01

    Using Acland potential for tungsten, the movement of 1/2a screw dislocation under shear stress was investigated by molecular dynamics simulation. Equilibrated core structure was obtained by relaxation of screw dislocation with proper boundary conditions. We found that the equilibrium dislocation core has three-fold symmetry and spread out in three direction on {1 1 0} planes. The screw dislocation core could not keep the original shape when the shear stress applied. The dislocation could not move until the shear stress became large enough. The dislocation moved in zigzag when the shear stress neared the Peierls stress. When the shear stress became larger, the dislocation moved in zigzag at the beginning and than moved almost in straight line in [2-bar11] direction. The large shear stress applied, the long distance moved before the dislocation stilled in z-direction and the large velocity in y-direction

  13. Research on a Micro Flip Robot That Can Climb Stairs

    Directory of Open Access Journals (Sweden)

    Jianzhong Wang

    2016-03-01

    Full Text Available Micro mobile robots (MMRs can operate in rugged, narrow or dangerous regions; thus, they are widely used in numerous areas including surveillance, rescue and exploration. In urban environments, stairs are common obstacles, ones that such robots find difficult to manoeuvre over. The authors analysed the research status of MMRs, particularly in terms of difficulties when performing stair climbing and present a novel type of MMR called the micro flip robot (MFRobot. A support arm subassembly was added to the centre of a wheeled chassis; using this structure, the MFRobot can climb stairs when a flipping mode is utilized. Based on this structure, the authors established a kinematic model of the stair-climbing process and analysed the force conditions for the key status, contributing to the existing knowledge of robot design. An MFRobot prototype was produced and the stair-climbing experiments, as well as experiments on manoeuvring through rubble regions and slope surfaces, were conducted. The results show that the MFRobot can rapidly climb common stairs and can easily manoeuvre through a rubble region. The maximum slope angle the robot can climb was shown to be about 35° for concrete and wooden slope surfaces. In the case where the robot needed to be equipped with sensors, particularly a camera, the camera was equipped on the support arm of robot. The MFRobot prototype weighs 2.5 kg and is easily transportable. This structure can resolve contradictions between portability and performance in terms of overcoming obstacles; in addition, operational effectiveness can be improved using this structure.

  14. The RiSE climbing robot: body and leg design

    Science.gov (United States)

    Saunders, A.; Goldman, D. I.; Full, R. J.; Buehler, M.

    2006-05-01

    The RiSE robot is a biologically inspired, six legged climbing robot, designed for general mobility in scansorial (vertical walls, horizontal ledges, ground level) environments. It exhibits ground reaction forces that are similar to animal climbers and does not rely on suction, magnets or other surface-dependent specializations to achieve adhesion and shear force. We describe RiSE's body and leg design as well as its electromechanical, communications and computational infrastructure. We review design iterations that enable RiSE to climb 90° carpeted, cork covered and (a growing range of) stucco surfaces in the quasi-static regime.

  15. A Fuzzy Control Based Stair-Climbing Service Robot

    OpenAIRE

    Wang, Ming-Shyan

    2010-01-01

    In the chapter, we have developed a stair-climbing robot to provide service for the elders and completed two walking experiments of moving up and down stairs with the rise/depth of 120/400 mm and 175/280 mm. The third experiment of object tracking, capturing, and loading by the arm have been shown in the taped pictures from videos to verify the proposed design. In fact, we will show the arm may capture the specific object during climbing up and down in the future. In addition, the robot will ...

  16. Design and Development of a Step Climbing Wheeled Robot

    Directory of Open Access Journals (Sweden)

    Srijan BHATTACHARYA

    2009-08-01

    Full Text Available This paper presents a design of Step Climbing Robot that can move in uneven environment and traverse a slope or staircase. The condition imposed on this new system of robot is that it will move only in linear fashion, which will reduce the demands on the physical complexity of the robot unit. A summary of the current state of research in the field of mobile robots as it relates to robot stair climbing and moving in uneven surfaces. The architecture of the robot is developed and compared with the previous design.

  17. Posterior Dislocation of the Hip

    African Journals Online (AJOL)

    than 24 hours, and 13 more than 48 hours after injury. (Table II). TABLE If. RESULTS PLOITED AGAINST DELAY IN. REDUCTION OF THE DISLOCATION. Time from injury. (h). Excellent. Poor and fair. Total. 48. 7. 6. 13. Reduction, as a rule, was effected under general anaes-.

  18. Atomistically determined phase-field modeling of dislocation dissociation, stacking fault formation, dislocation slip, and reactions in fcc systems

    Science.gov (United States)

    Rezaei Mianroodi, Jaber; Svendsen, Bob

    2015-04-01

    The purpose of the current work is the development of a phase field model for dislocation dissociation, slip and stacking fault formation in single crystals amenable to determination via atomistic or ab initio methods in the spirit of computational material design. The current approach is based in particular on periodic microelasticity (Wang and Jin, 2001; Bulatov and Cai, 2006; Wang and Li, 2010) to model the strongly non-local elastic interaction of dislocation lines via their (residual) strain fields. These strain fields depend in turn on phase fields which are used to parameterize the energy stored in dislocation lines and stacking faults. This energy storage is modeled here with the help of the "interface" energy concept and model of Cahn and Hilliard (1958) (see also Allen and Cahn, 1979; Wang and Li, 2010). In particular, the "homogeneous" part of this energy is related to the "rigid" (i.e., purely translational) part of the displacement of atoms across the slip plane, while the "gradient" part accounts for energy storage in those regions near the slip plane where atomic displacements deviate from being rigid, e.g., in the dislocation core. Via the attendant global energy scaling, the interface energy model facilitates an atomistic determination of the entire phase field energy as an optimal approximation of the (exact) atomistic energy; no adjustable parameters remain. For simplicity, an interatomic potential and molecular statics are employed for this purpose here; alternatively, ab initio (i.e., DFT-based) methods can be used. To illustrate the current approach, it is applied to determine the phase field free energy for fcc aluminum and copper. The identified models are then applied to modeling of dislocation dissociation, stacking fault formation, glide and dislocation reactions in these materials. As well, the tensile loading of a dislocation loop is considered. In the process, the current thermodynamic picture is compared with the classical mechanical

  19. Formation of dislocation dipoles in irradiated graphite

    International Nuclear Information System (INIS)

    Niwase, Keisuke

    2005-01-01

    Recently, we have proposed a dislocation dipole accumulation model to explain the irradiation-induced amorphization of graphite. However, the structure of dislocation dipole in the hexagonal networks is still an open question at the atomic-level. In this paper, we propose a possible formation process of the dislocation dipole

  20. Medial subtalar dislocation: Case report

    Directory of Open Access Journals (Sweden)

    Manojlović Radovan

    2010-01-01

    Full Text Available Introduction. Subtalar dislocation (SI is a term that refers to an injury in which there is dislocation of the talonavicular and talocalcanear joint, although the tibiotalar joint is intact. Case Outline. A case of medial subtalar dislocation as a result of basketball injury, so-called 'basketball foot', is presented. Closed reposition in i.v. anaesthesia was performed with the patient in supine position and a knee flexed at 90 degrees. Longitudinal manual traction in line of deformity was carried out in plantar flexion. The reposition continued with abduction and eversion simultaneously increasing dorsiflexion. It was made in the first attempt and completed instantly. Rehabilitation was initiated after 5 weeks of immobilization. One year after the injury, the functional outcome was excellent with full range of motion and the patient was symptom-free. For better interpretation of roentgenogram, bone model of subtalar dislocation was made using the cadaver bone. Conclusion. Although the treatment of such injury is usually successful, diagnosis can be difficult because it is a rare injury, and moreover, X-ray of the injury can be confusing due to superposition of bones. Radiograms revealed superposition of the calcaneus, tarsal and metatarsal bones which was radiographically visualized in the anterior-posterior projection as one osseous block inward from the talus, and on the lateral view as in an osteal block below the tibial bone. Prompt recognition of these injuries followed by proper, delicately closed reduction under anaesthesia is crucial for achieving a good functional result in case of medial subtalar dislocation.

  1. [Classification and Treatment of Sacroiliac Joint Dislocation].

    Science.gov (United States)

    Tan, Zhen; Huang, Zhong; Li, Liang; Meng, Wei-Kun; Liu, Lei; Zhang, Hui; Wang, Guang-Lin; Huang, Fu-Guo

    2017-09-01

    To develop a renewed classification and treatment regimen for sacroiliac joint dislocation. According to the direction of dislocation of sacroiliac joint,combined iliac,sacral fractures,and fracture morphology,sacroiliac joint dislocation was classified into 4 types. Type Ⅰ (sacroiliac anterior dislocation): main fracture fragments of posterior iliac wing dislocated in front of sacroiliac joint. Type Ⅱ (sacroiliac posterior dislocation): main fracture fragments of posterior iliac wing dislocated in posterior of sacroiliac joint. Type Ⅲ (Crescent fracturedislocation of the sacroiliac joint): upward dislocation of posterior iliac wing with oblique fracture through posterior iliac wing. Type ⅢA: a large crescent fragment and dislocation comprises no more than onethird of sacroiliac joint,which is typically inferior. Type ⅢB: intermediatesize crescent fragment and dislocation comprises between one and twothirds of joint. Type ⅢC: a small crescent fragment where dislocation comprises most,but not the entire joint. Different treatment regimens were selected for different types of fractures. Treatment for type Ⅰ sacroiliac joint dislocation: anterior iliac fossa approach pry stripping reset; sacroiliac joint fixed with sacroiliac screw through percutaneous. Treatment for type Ⅱ sacroiliac joint dislocation: posterior sacroiliac joint posterior approach; sacroiliac joint fixed with sacroiliac screw under computer guidance. Treatment for type ⅢA and ⅢB sacroiliac joint dislocation: posterior sacroiliac joint approach; sacroiliac joint fixed with reconstruction plate. Treatment for type ⅢC sacroiliac joint dislocation: sacroiliac joint closed reduction; sacroiliac joint fixed with sacroiliac screw through percutaneous. Treatment for type Ⅳ sacroiliac joint dislocation: posterior approach; sacroiliac joint fixed with spinal pelvic fixation. Results of 24 to 72 months patient follow-up (mean 34.5 months): 100% survival,100% wound healing,and 100

  2. Dislocation mediated alignment during metal nanoparticle coalescence

    International Nuclear Information System (INIS)

    Lange, A.P.; Samanta, A.; Majidi, H.; Mahajan, S.; Ging, J.; Olson, T.Y.; Benthem, K. van; Elhadj, S.

    2016-01-01

    Dislocation mediated alignment processes during gold nanoparticle coalescence were studied at low and high temperatures using molecular dynamics simulations and transmission electron microscopy. Particles underwent rigid body rotations immediately following attachment in both low temperature (500 K) simulated coalescence events and low temperature (∼315 K) transmission electron microscopy beam heating experiments. In many low temperature simulations, some degree of misorientation between particles remained after rigid body rotations, which was accommodated by grain boundary dislocation nodes. These dislocations were either sessile and remained at the interface for the duration of the simulation or dissociated and cross-slipped through the adjacent particles, leading to improved co-alignment. Minimal rigid body rotations were observed during or immediately following attachment in high temperature (1100 K) simulations, which is attributed to enhanced diffusion at the particles' interface. However, rotation was eventually induced by {111} slip on planes parallel to the neck groove. These deformation modes led to the formation of single and multi-fold twins whose structures depended on the initial orientation of the particles. The driving force for {111} slip is attributed to high surface stresses near the intersection of low energy {111} facets in the neck region. The details of this twinning process were examined in detail using simulated trajectories, and the results reveal possible mechanisms for the nucleation and propagation of Shockley partials on consecutive planes. Deformation twinning was also observed in-situ using transmission electron microscopy, which resulted in the co-alignment of a set of the particles' {111} planes across their grain boundary and an increase in their dihedral angle. This constitutes the first detailed experimental observation of deformation twinning during nanoparticle coalescence, validating simulation results presented here and

  3. Epitaxial strain relaxation by provoking edge dislocation dipoles

    Science.gov (United States)

    Soufi, A.; El-Hami, K.

    2018-02-01

    Thin solid films have been used in various devices and engineering systems such as rapid development of highly integrated electronic circuits, the use of surface coatings to protect structural materials in high temperature environments, and thin films are integral parts of many micro-electro-mechanical systems designed to serve as sensors, actuators. Among techniques of ultra-thin films deposition, the heteroepitaxial method becomes the most useful at nanoscale level to obtain performed materials in various applications areas. On the other hand, stresses that appeared during the elaboration of thin films could rise deformations and fractures in materials. The key solution to solve this problem at the nanoscale level is the nucleation of interface dislocations from free surfaces. By provoking edge dislocation dipoles we obtained a strain relaxation in thin films. Moreover, the dynamic of nucleation in edge dislocations from free lateral surfaces was also studied.

  4. Medial peritalar fracture dislocation of the talar body

    Directory of Open Access Journals (Sweden)

    Jacob B. Stirton

    2015-04-01

    Full Text Available Peritalar fracture dislocations typically involve the talar neck and are classified according to Hawkins. To our knowledge, peritalar fracture dislocation involving the talar body has not been formally reported. In this article, we describe a case of peritalar fracture dislocation of the talar body. Keywords: Peritalar dislocation, Talus fracture, Talar body fracture dislocation, Medial subtalar dislocation

  5. Growth kinetics of dislocation loops in irradiated ceramic materials

    International Nuclear Information System (INIS)

    Ryazanov, A.I.; Kinoshita, C.

    2002-01-01

    Ceramic materials are expected to be applied in the future fusion reactor as radio frequency (RF) windows, toroidal insulating breaks and diagnostic probes. The radiation resistance of ceramic materials, degradation of the electrical properties and radiation induced conductivity of these materials under neutron irradiation are determined by the kinetics of the accumulation of point defects in the matrix and point defect cluster formation (dislocation loops, voids, etc.). Under irradiation, due to the ionization process, excitation of electronic subsystem and covalent type of interaction between atoms the point defects in ceramic materials are characterized by the charge state (e.g. an F + center, an oxygen vacancy with a single trapped electron) and the effective charge. For the investigation of radiation resistance of ceramic materials for future fusion applications it is very important to understand the physical mechanisms of formation and growth of dislocation loops and voids under irradiation taking into account in this system the effective charge of point defects. In the present paper the physical mechanisms of dislocation loop growth in ceramic material are investigated. For this aim a theoretical model is suggested for the description of the kinetics of point defect accumulation in the matrix taking into account the charge state of the point defects and the effect of an electric field on diffusion migration process of charged point defects. A self-consistent system of kinetic equations describing the generation of electrical fields near dislocation loops and diffusion migration of charged point defects in elastic and electrical fields is formulated. The solution of the kinetic equations allows to find the growth rate of dislocation loops in ceramic materials under irradiation taking into account the charge state of the point defects and the effect of electric and elastic stress fields near dislocation loop on the diffusion processes

  6. Atomistic simulations of dislocation processes in copper

    DEFF Research Database (Denmark)

    Vegge, T.; Jacobsen, K.W.

    2002-01-01

    We discuss atomistic simulations of dislocation processes in copper based on effective medium theory interatomic potentials. Results on screw dislocation structures and processes are reviewed with particular focus on point defect mobilities and processes involving cross slip. For example......, the stability of screw dislocation dipoles is discussed. We show that the presence of jogs will strongly influence cross slip barriers and dipole stability. We furthermore present some new results on jogged edge dislocations and edge dislocation dipoles. The jogs are found to be extended, and simulations...

  7. An experimental study of dislocation loop nucleation

    International Nuclear Information System (INIS)

    Bounaud, J.Y.; Leteurtre, J.

    1975-01-01

    The nucleation of dislocation loops is experimentally studied by observing the demixion of the Burgers vectors of dislocation loops nucleated in copper whiskers irradiated in flexion by fission fragments at room temperature. The demixion of Burgers vectors is observed by the dimensional effects of dislocation loops: after irradiation, the applied stress is removed; the whisker shows a residual strain that is due to loops because, after an annealing treatment to evaporate dislocation loops, each whisker recovers its initial straight shape. Everywhere along the whisker, the radius of curvature is measured and plotted vs the max. applied stress. Estimations of the interstitial and vacancy dislocation loop nuclei are derived [fr

  8. Dislocations and vacancies in two-dimensional mixed crystals of spheres and dimers

    KAUST Repository

    Gerbode, Sharon J.; Ong, Desmond C.; Liddell, Chekesha M.; Cohen, Itai

    2010-01-01

    In colloidal crystals of spheres, dislocation motion is unrestricted. On the other hand, recent studies of relaxation in crystals of colloidal dimer particles have demonstrated that the dislocation dynamics in such crystals are reminiscent of glassy systems. The observed glassy dynamics arise as a result of dislocation cages formed by certain dimer orientations. In the current study, we use experiments and simulations to investigate the transition that arises when a pure sphere crystal is doped with an increasing concentration of dimers. Specifically, we focus on both dislocation caging and vacancy motion. Interestingly, we find that any nonzero fraction of dimers introduces finite dislocation cages, suggesting that glassy dynamics are present for any mixed crystal. However, we have also identified a vacancy-mediated uncaging mechanism for releasing dislocations from their cages. This mechanism is dependent on vacancy diffusion, which slows by orders of magnitude as the dimer concentration is increased. We propose that in mixed crystals with low dimer concentrations vacancy diffusion is fast enough to uncage dislocations and delay the onset of glassy dislocation dynamics. © 2010 The American Physical Society.

  9. Dislocations and vacancies in two-dimensional mixed crystals of spheres and dimers

    KAUST Repository

    Gerbode, Sharon J.

    2010-10-15

    In colloidal crystals of spheres, dislocation motion is unrestricted. On the other hand, recent studies of relaxation in crystals of colloidal dimer particles have demonstrated that the dislocation dynamics in such crystals are reminiscent of glassy systems. The observed glassy dynamics arise as a result of dislocation cages formed by certain dimer orientations. In the current study, we use experiments and simulations to investigate the transition that arises when a pure sphere crystal is doped with an increasing concentration of dimers. Specifically, we focus on both dislocation caging and vacancy motion. Interestingly, we find that any nonzero fraction of dimers introduces finite dislocation cages, suggesting that glassy dynamics are present for any mixed crystal. However, we have also identified a vacancy-mediated uncaging mechanism for releasing dislocations from their cages. This mechanism is dependent on vacancy diffusion, which slows by orders of magnitude as the dimer concentration is increased. We propose that in mixed crystals with low dimer concentrations vacancy diffusion is fast enough to uncage dislocations and delay the onset of glassy dislocation dynamics. © 2010 The American Physical Society.

  10. Motion of 1/3<111> dislocations on Σ3 (112) twin boundaries in nanotwinned copper

    Energy Technology Data Exchange (ETDEWEB)

    Lu, N.; Du, K., E-mail: kuidu@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Beijing National Center for Electron Microscopy, Tsinghua University, Beijing 100084 (China); Lu, L.; Ye, H. Q. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2014-01-14

    The atomic structure of Σ3 (112) ITBs in nanotwinned Cu is investigated by using aberration-corrected high resolution transmission electron microscopy (HRTEM) and in situ HRTEM observations. The Σ3 (112) ITBs are consisted of periodically repeated three partial dislocations. The in situ HRTEM results show that 1/3[111] partial dislocation moves on the Σ3 (112) incoherent twin boundary (ITB), which was accompanied by a migration of the ITB. A dislocation reaction mechanism is proposed for the motion of 1/3[111] Frank partial dislocation, in which the 1/3[111] partial dislocation exchanges its position with twin boundary dislocations in sequence. In this way, the 1/3[111] dislocation can move on the incoherent twin boundary in metals with low stacking fault energy. Meanwhile, the ITB will migrate in its normal direction accordingly. These results provide insight into the reaction mechanism of 1/3[111] dislocations and ITBs and the associated migration of ITBs.

  11. Influence of temperature upon dislocation mobility and elastic limit of single crystal HgI2

    International Nuclear Information System (INIS)

    Milstein, F.; Farber, B.; Kim, K.; van den Berg, L.; Schnepple, W.

    1982-01-01

    The practical importance of studying mechanical properties and dislocation structure of HgI 2 is reviewed briefly. Specifically, the performance of single crystal HgI 2 radiation detectors is evidently sensitive to crystalline imperfections; the dislocation structure, in turn, can be altered during detector fabrication, depending upon the mechanical properties of the crystal and the stresses to which the crystal is subjected. The influence of temperature upon dislocation mobility and plasticity in vapor-grown crystals of mercuric iodide is examined. Dislocation mobiity is determined by measuring the lengths of the longest arms of dislocation etch pit rosettes on (001) surfaces following microhardness indentation and chemical etch. Measurements were made in the range from room temperature to the phase transition temperature of 127 0 C. Dislocation mobility was found to be an increasing function of temperature, with the effect accelerating as the phase transition is approached. Increasing temperature was also found to lower the critical resolved shear stress for plastic deformation on slip on (001) planes. In these contexts, the vapor-grown crystals are clearly softer at their elevated growth temperatures. The results are discussed in terms of a dislocation model involving soft and hard glide dislocations

  12. Dislocation motion in tungsten: Atomistic input to discrete dislocation simulations

    Czech Academy of Sciences Publication Activity Database

    Srivastava, K.; Gröger, Roman; Weygand, D.; Gumbsch, P.

    2013-01-01

    Roč. 47, AUG (2013), s. 126-142 ISSN 0749-6419 R&D Projects: GA ČR GAP204/10/0255; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : body -centered cubic * non-Schmid effects * anomalous slip * discrete dislocation dynamics Subject RIV: BM - Solid Matter Physics ; Magnetism; BM - Solid Matter Physics ; Magnetism (UFM-A) Impact factor: 5.971, year: 2013

  13. Nutrient composition of climbing and prostrate vegetable cowpea ...

    African Journals Online (AJOL)

    The study evaluated the nutrient content of different accessions of two vegetable cowpea genotypes. The mineral content of the vegetable cowpea accessions were high. Potassium content of the accessions of the climbing genotype “Akidi enu” ranged from 1.25 to 1.52% with a mean value of 1.43 ± 0.13% while in the ...

  14. relative performance of staking techniques on yield of climbing bean

    African Journals Online (AJOL)

    ACSS

    Common bean (Phaseolus vulgaris L.) is an important staple grain legume in the Great Lakes Region of Africa. In addition, it is a major source of proteins, energy and micro-nutrients (e.g. Fe and Zn), especially for smallholder farmers. The climbing bean is particularly more productive, an efficient land user and tolerant to ...

  15. Piper (Piperaceae) in the Solomon Islands: the climbing species

    NARCIS (Netherlands)

    Gardner, R.O.

    2010-01-01

    Eleven climbing species of Piper in the Solomon Islands are recognized: P. abbreviatum, P. betle, P. bosnicanum, P. caninum, P. celtidiforme, P. fragile, P. insectifugum (syn. P. austrocaledonicum), P. interruptum, P. macropiper, P. majusculum, and, as the only endemic, P. sclerophloeum, for which a

  16. Comparative multibody dynamics analysis of falls from playground climbing frames.

    Science.gov (United States)

    Forero Rueda, M A; Gilchrist, M D

    2009-10-30

    This paper shows the utility of multibody dynamics in evaluating changes in injury related parameters of the head and lower limbs of children following falls from playground climbing frames. A particular fall case was used as a starting point to analyze the influence of surface properties, posture of the body at impact, and intermediate collisions against the climbing frame before impacting the ground. Simulations were made using the 6-year-old pedestrian MADYMO rigid body model and scaled head contact characteristics. Energy absorbing surfaces were shown to reduce injury severity parameters by up to 30-80% of those of rigid surfaces, depending on impact posture and surface. Collisions against components of a climbing frame during a fall can increase injury severity of the final impact of the head with the ground by more than 90%. Negligible changes are associated with lower limb injury risks when different surfacing materials are used. Computer reconstructions of actual falls that are intended to quantify the severity of physical injuries rely on accurate knowledge of initial conditions prior to falling, intermediate kinematics of the fall and the orientation of the body when it impacts against the ground. Multibody modelling proved to be a valuable tool to analyze the quality of eyewitness information and analyze the relative injury risk associated with changes in components influencing fall injuries from playground climbing frames. Such simulations can also support forensic investigations by evaluating alternative hypotheses for the sequence of kinematic motion of falls which result in known injuries.

  17. Hold design supports learning and transfer of climbing fluency

    NARCIS (Netherlands)

    Orth, Dominic; Davids, Keith; Seifert, Ludovic

    2014-01-01

    Being a discipline with a broad range of genres, rock climbing is an activity where participants seek to generalize the skills they learn in different performance contexts. A training strategy for achieving skill transfer was explored in a group of experienced climbers. Specifically, we tested the

  18. Agronomic description of new improved climbing bean varieties

    African Journals Online (AJOL)

    . 21. David, S and Hoogendijk,M. 1997. Bean production systems in MbaJe district, Uganda with emphasis on varietal diversity and the adoption of new climbing beans. Network on bean research in Africa. CIA T. CIA T, occasional publication ...

  19. Piper (Piperaceae) in New Guinea: the climbing species

    NARCIS (Netherlands)

    Gardner, R.O.

    2012-01-01

    Sixteen climbing Piper species are accepted for New Guinea. The three endemics, P. arfakianum, P. subcanirameum and P. versteegii, are fully described. Eight taxa of unclear circumscription are noted. A new variety of P. macropiper, endemic to Morobe Province of Papua New Guinea, is described. The

  20. Piper (Piperaceae) in the Philippine Islands: the climbing species

    NARCIS (Netherlands)

    Gardner, R.O.

    2006-01-01

    Piper in the Philippine Islands is reviewed. Fifteen climbing species are recognized (many fewer than in previous treatments) and distinguished in a key. Most are widely distributed through Malesia, with ranges that end eastwards in the Solomon Islands or Australia. Piper myrmecophilum, the only

  1. Leading Organizational Change Is Like Climbing a Mountain

    Science.gov (United States)

    Zimmerman, Judith

    2004-01-01

    Leading organizational change is like climbing a mountain. Transformational leaders must prepare to lead change, understand the process and nature of change, and provide the essential gear so that those involved can be successful. The author draws on the literature and personal experiences as a hiker and change leader to provide a guide for…

  2. Comparative Effect of Forward and Backward Stair Climbing on ...

    African Journals Online (AJOL)

    olagbegi

    The groups were not significantly different (p> 0.05) in their cardiovascular parameters at weeks 0, 4, and 8. The FSC group had ... KEY WORDS: Stair climbing, blood pressure, cardiovascular endurance ... significantly greater metabolic responses compared to ... This was taken with the subject in sitting position, with the.

  3. Energetics of dislocation nucleation under a nanoindenter

    International Nuclear Information System (INIS)

    Zhang Chuanli; Xu Guanshui

    2005-01-01

    We present an analysis of dislocation nucleation under an idealized nanoindenter based on the variational boundary integral formulation of the Peierls-Nabarro dislocation model. By solving the embryonic dislocation profiles, corresponding to the relative displacements between the two adjacent atomic layers along the slip plane, we have determined the critical conditions for athermal dislocation nucleation as well as the activation energies required to thermally activate embryonic dislocations from their stable to unstable saddle point configurations. The effect of the size of the indenter on the energetics of dislocation nucleation is quantitatively characterized. The result is compared with a simplified analysis based on the application of the Rice model for dislocation nucleation at a crack tip

  4. Energetics of dislocation nucleation under a nanoindenter

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Chuanli [College of Mechanical Engineering, Yangtze University, Jingzhou, Hubei 434023 (China); Department of Mechanical Engineering, University of California, Riverside, CA 92521 (United States); Xu Guanshui [Department of Mechanical Engineering, University of California, Riverside, CA 92521 (United States)]. E-mail: guanshui.xu@ucr.edu

    2005-07-25

    We present an analysis of dislocation nucleation under an idealized nanoindenter based on the variational boundary integral formulation of the Peierls-Nabarro dislocation model. By solving the embryonic dislocation profiles, corresponding to the relative displacements between the two adjacent atomic layers along the slip plane, we have determined the critical conditions for athermal dislocation nucleation as well as the activation energies required to thermally activate embryonic dislocations from their stable to unstable saddle point configurations. The effect of the size of the indenter on the energetics of dislocation nucleation is quantitatively characterized. The result is compared with a simplified analysis based on the application of the Rice model for dislocation nucleation at a crack tip.

  5. Wall Climbing Micro Ground Vehicle (MGV)

    Science.gov (United States)

    2013-09-01

    Teheran, Iran, 2004. 4. Hill, P.; Peterson, C. The Centrifugal Compressor . In Mechanics and Thermodynamics of Propulsion, 2 nd ed.; Addison-Wesley...impeller one may choose from an axial or centrifugal impeller. Impellers are designed so that they are used for a specific application. If used for other...purposes, severe mechanical damage may be inflicted upon the impeller. In this situation, a centrifugal impeller is chosen due to its ability to

  6. Changes in handgrip force and blood lactate as response to simulated climbing competition

    Directory of Open Access Journals (Sweden)

    J Gajewski

    2009-07-01

    Full Text Available The aim of the study was to estimate post-competition changes in handgrip strength and blood lactate in climbers and relationships of the studied variables with declared climbing ability of the tested athletes. Twenty one male climbers volunteered to take part in the experiment. Each subject took part in simulated lead climbing competition on the artificial wall – (difficulty 7a in French scale. The blood lactate concentration was measured pre-climbing and then 3 min and 30 min post-climbing. Grip force of both hands (dominant and non-dominant was measured twice – pre-climbing and 1 min post-climbing (semi-final. Maximum heart rate during climbing reached 181.4±7.7 beats per minute. Lactate concentration amounted to 6.35±1.50 mmol/l and 2.28±0.66 mmol/l 3 min and 30 min post-climbing, respectively. Handgrip force related to body mass (averaged for both hands decreased significantly from 7.39±1.30 N/kg pre-climbing to 6.57±1.05 N/kg 1 min post-climbing. Self reported climbing ability was correlated with lactate concentration and handgrip force, as well. It was demonstrated that athletes reporting higher climbing ability showed better lactate recovery.

  7. Arthroscopic treatment of acromioclavicular dislocation

    Directory of Open Access Journals (Sweden)

    Mihai T. Gavrilă

    2017-11-01

    Full Text Available A thorough understanding of biomechanical function of both acromioclavicular (AC and coracoclavicular (CC ligaments, stimulated surgeons to repair high-grade AC dislocation using arthroscopic technique. This technique necessitates a clear understanding of shoulder anatomy, especially of the structures in proximity to the clavicle and coracoid process and experiences in arthroscopic surgery. The follow case describes an arthroscopic technique used to treat AC dislocation in young man 30 years old, who suffered an injury at right shoulder. Results were similar to those obtained using open surgery and this encouraged us to continue utilization of this method. As a conclusion, arthroscopic treatment of AC separation is one of the best options as surgical treatment. Early results suggested that immediate anatomic reduction of an acute AC separation usually provides satisfactory clinical results at intermediate-term follow-up.

  8. Dislocation Strengthening without Ductility Trade-off in Metastable Austenitic Steels

    Science.gov (United States)

    Liu, Jiabin; Jin, Yongbin; Fang, Xiaoyang; Chen, Chenxu; Feng, Qiong; Liu, Xiaowei; Chen, Yuzeng; Suo, Tao; Zhao, Feng; Huang, Tianlin; Wang, Hongtao; Wang, Xi; Fang, Youtong; Wei, Yujie; Meng, Liang; Lu, Jian; Yang, Wei

    2016-10-01

    Strength and ductility are mutually exclusive if they are manifested as consequence of the coupling between strengthening and toughening mechanisms. One notable example is dislocation strengthening in metals, which invariably leads to reduced ductility. However, this trend is averted in metastable austenitic steels. A one-step thermal mechanical treatment (TMT), i.e. hot rolling, can effectively enhance the yielding strength of the metastable austenitic steel from 322 ± 18 MPa to 675 ± 15 MPa, while retaining both the formability and hardenability. It is noted that no boundaries are introduced in the optimized TMT process and all strengthening effect originates from dislocations with inherited thermal stability. The success of this method relies on the decoupled strengthening and toughening mechanisms in metastable austenitic steels, in which yield strength is controlled by initial dislocation density while ductility is retained by the capability to nucleate new dislocations to carry plastic deformation. Especially, the simplicity in processing enables scaling and industrial applications to meet the challenging requirements of emissions reduction. On the other hand, the complexity in the underlying mechanism of dislocation strengthening in this case may shed light on a different route of material strengthening by stimulating dislocation activities, rather than impeding motion of dislocations.

  9. Dislocation confinement in the growth of Na flux GaN on metalorganic chemical vapor deposition-GaN

    International Nuclear Information System (INIS)

    Takeuchi, S.; Asazu, H.; Nakamura, Y.; Sakai, A.; Imanishi, M.; Imade, M.; Mori, Y.

    2015-01-01

    We have demonstrated a GaN growth technique in the Na flux method to confine c-, (a+c)-, and a-type dislocations around the interface between a Na flux GaN crystal and a GaN layer grown by metalorganic chemical vapor deposition (MOCVD) on a (0001) sapphire substrate. Transmission electron microscopy (TEM) clearly revealed detailed interface structures and dislocation behaviors that reduced the density of vertically aligned dislocations threading to the Na flux GaN surface. Submicron-scale voids were formed at the interface above the dislocations with a c component in MOCVD-GaN, while no such voids were formed above the a-type dislocations. The penetration of the dislocations with a c component into Na flux GaN was, in most cases, effectively blocked by the presence of the voids. Although some dislocations with a c component in the MOCVD-GaN penetrated into the Na flux GaN, their propagation direction changed laterally through the voids. On the other hand, the a-type dislocations propagated laterally and collectively near the interface, when these dislocations in the MOCVD-GaN penetrated into the Na flux GaN. These results indicated that the dislocation propagation behavior was highly sensitive to the type of dislocation, but all types of dislocations were confined to within several micrometers region of the Na flux GaN from the interface. The cause of void formation, the role of voids in controlling the dislocation behavior, and the mechanism of lateral and collective dislocation propagation are discussed on the basis of TEM results

  10. X-ray microbeam measurements of individual dislocation cell elastic strains in deformed single-crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Lyle E. [National Institute of Standards and Technology (NIST); Larson, Ben C [ORNL; Yang, Wenge [Carnegie Institution of Washington; Kassner, Michael E. [University of Southern California; Tischler, Jonathan Zachary [ORNL; Delos-Reyes, Michael A. [University of Southern California; Fields, Richard J. [National Institute of Standards and Technology (NIST); Liu, Wenjun [Argonne National Laboratory (ANL)

    2006-01-01

    The distribution of elastic strains (and thus stresses) at the sub-micrometer length scale within deformed metal single crystals has surprisingly broad implications for our understanding of important physical phenomena. These include the evolution of the complex dislocation structures that govern mechanical behavior within individual grains [1-4], the transport of dislocations through such structures [5-7], changes in mechanical properties that occur during reverse loading [8-10] (e.g. sheet metal forming), and the analyses of diffraction line profiles for microstructural studies of these phenomena [11-17]. We present the first direct, spatially-resolved measurements of the elastic strains within individual dislocation cells in copper single crystals deformed in tension and compression along <100> axes. Broad distributions of elastic strains are found, with profound implications for theories of dislocation structure evolution [4,18], dislocation transport [5-7], and the extraction of dislocation parameters from X-ray line profiles [11-17,19].

  11. Damage buildup and edge dislocation mobility in equiatomic multicomponent alloys

    Energy Technology Data Exchange (ETDEWEB)

    Granberg, F., E-mail: fredric.granberg@helsinki.fi [Department of Physics, P.O. Box 43, FIN-00014 University of Helsinki (Finland); Djurabekova, F. [Department of Physics, P.O. Box 43, FIN-00014 University of Helsinki (Finland); Helsinki Institute of Physics, P.O. Box 43, FIN-00014 University of Helsinki (Finland); Levo, E.; Nordlund, K. [Department of Physics, P.O. Box 43, FIN-00014 University of Helsinki (Finland)

    2017-02-15

    Highlights: • We studied the damage buildup in equiatomic multicomponent alloys by MD simulations. • Edge dislocation mobility was lower in the studied alloys compared to elemental Ni. • Damage buildup in alloys saturated at lower levels than in elemental Ni. • Initial damage buildup is faster in alloys compared to elemental Ni. - Abstract: A new class of single phase metal alloys of equal atomic concentrations has shown very promising mechanical properties and good corrosion resistance. Moreover, a significant reduction in damage accumulation during prolonged irradiation has also been observed in these equiatomic multicomponent alloys. A comparison of elemental Ni with the two component NiFe- and the three component NiCoCr-alloy showed a substantial reduction in damage in both alloys, and an even larger difference was seen if only larger clusters were considered. One of the factors limiting the damage build-up in the alloys compared to the elemental material was seen to be dislocation mobility (Granberg et al., 2016). In this Article, we focus on a more thorough investigation of the mobility of edge dislocations in different cases of the Ni-, NiFe- and NiCoCr-samples. We find that even though the saturated amount of defects in the alloys is lower than in elemental Ni, the defect buildup in the early stages is faster in the alloys. We also find that the dislocation mobility in NiFe is lower than in Ni, at low stresses, and that the onset stress in NiFe is higher than in Ni. The same phenomenon was seen in comparison between NiFe and NiCoCr, since the three component alloy had lower dislocation mobility and higher onset stress. The dislocation velocity in elemental Ni plateaued out just under the forbidden velocity, whereas the alloys showed a more complex behaviour.

  12. Femoral neuropathy due to patellar dislocation in a theatrical and jazz dancer: a case report.

    Science.gov (United States)

    Shin, Chris S; Davis, Brian A

    2005-06-01

    This case report describes a teenage female, high-level modern dancer who suffered multiple left patellar dislocations. Her history is atypical in that after her fifth dislocation, her recovery was hindered secondary to persistent weakness and atrophy of her quadriceps out of proportion to disuse alone. Electrodiagnostic studies and magnetic resonance imaging showed evidence of a subacute femoral neuropathy correlating chronologically with her most recent patellar dislocation. This case suggests that further diagnostic study may be warranted in patients with persistent quadriceps weakness or atrophy after a patellar dislocation, because this may suggest the presence of a femoral neuropathy. This is important because the strength training goals and precautions differ in disuse atrophy and a neuropathy. We believe this is the first reported case of a femoral neuropathy associated with the mechanism of a patellar dislocation.

  13. Unusual inferior dislocation of shoulder: reduction by two-step maneuver: a case report

    Directory of Open Access Journals (Sweden)

    Patro Dilip K

    2009-11-01

    Full Text Available Abstract Dislocation of the shoulder is the commonest of all large joint dislocations. Inferior dislocation constitutes 0.5% of all shoulder dislocations. It characteristically presents with overhead abduction of the arm, the humerus being parallel to the spine of scapula. We present an unusual case of recurrent luxatio erecta in which the arm transformed later into an adducted position resembling the more common anterior shoulder dislocation. Such a case has not been described before in English literature. Closed reduction by the two-step maneuver was successful with a single attempt. MRI revealed posterior labral tear and a Hill-Sachs variant lesion on the superolateral aspect of humeral head. Immobilisation in a chest-arm bandage followed by physiotherapy yielded excellent results. The case is first of its kind; the unusual mechanism, unique radiological findings and alternate method of treatment are discussed.

  14. Determination of dislocation densities in InN

    Energy Technology Data Exchange (ETDEWEB)

    Ardali, Sukru; Tiras, Engin [Department of Physics, Faculty of Science, Anadolu University, Yunus Emre Campus, Eskisehir 26470 (Turkey); Gunes, Mustafa; Balkan, Naci [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Ajagunna, Adebowale Olufunso; Iliopoulos, Eleftherios; Georgakilas, Alexandros [Microelectronics Research Group, IESL, FORTH and Physics Department, University of Crete, P.O. Box 1385, 71110 Heraklion-Crete (Greece)

    2012-03-15

    The magneto-transport measurements, carried out at magnetic fields up to 11 T and in the temperature range between 1.8 K and 300 K, are used to investigate the scattering mechanisms in GaN/InN/AlN double heterojunctions. Theoretical modeling is based on a variational approach to solving Boltzmann transport equation. It is found that dislocation scattering is the dominant scattering mechanisms at low temperatures because of the large lattice mismatch with the substrate and hence the high density of dislocations in these material systems. Nevertheless, InN epilayers are characterized by a high background carrier density, probably associated with unwanted impurities. Therefore, we also included in our calculations the ionized impurity scattering. However, the effect of ionized impurity scattering as well as the acoustic phonon scattering, remote- background-ionized impurity scattering, and interface roughness scattering on electron mobility are much smaller than that of dislocation scattering. The dislocation densities, in samples with InN thicknesses of 0.4, 0.6 and 0.8 {mu}m, are then determined from the best fit to the experimental data for the low-temperature transport mobility (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Plastic deformation of tubular crystals by dislocation glide.

    Science.gov (United States)

    Beller, Daniel A; Nelson, David R

    2016-09-01

    Tubular crystals, two-dimensional lattices wrapped into cylindrical topologies, arise in many contexts, including botany and biofilaments, and in physical systems such as carbon nanotubes. The geometrical principles of botanical phyllotaxis, describing the spiral packings on cylinders commonly found in nature, have found application in all these systems. Several recent studies have examined defects in tubular crystals associated with crystalline packings that must accommodate a fixed tube radius. Here we study the mechanics of tubular crystals with variable tube radius, with dislocations interposed between regions of different phyllotactic packings. Unbinding and separation of dislocation pairs with equal and opposite Burgers vectors allow the growth of one phyllotactic domain at the expense of another. In particular, glide separation of dislocations offers a low-energy mode for plastic deformations of solid tubes in response to external stresses, reconfiguring the lattice step by step. Through theory and simulation, we examine how the tube's radius and helicity affects, and is in turn altered by, the mechanics of dislocation glide. We also discuss how a sufficiently strong bending rigidity can alter or arrest the deformations of tubes with small radii.

  16. Activity of southeastern bats along sandstone cliffs used for rock climbing

    Science.gov (United States)

    Loeb, Susan C.; Jodice, Patrick G. R.

    2018-01-01

    Bats in the eastern U.S. are facing numerous threats and many species are in decline. Although several species of bats commonly roost in cliffs, little is known about use of cliffs for foraging and roosting. Because rock climbing is a rapidly growing sport and may cause disturbance to bats, our objectives were to examine use of cliff habitats by bats and to assess the effects of climbing on their activity. We used radio-telemetry to track small-footed bats (Myotis leibii) to day roosts, and Anabat SD2 detectors to compare bat activity between climbed and unclimbed areas of regularly climbed cliff faces, and between climbed and unclimbed cliffs. Four adult male small-footed bats were tracked to nine day roosts, all of which were in various types of crevices including five cliff face roosts (three on climbed and two on unclimbed faces). Bat activity was high along climbed cliffs and did not differ between climbed and unclimbed areas of climbed cliffs. In contrast, overall bat activity was significantly higher along climbed cliffs than unclimbed cliffs; species richness did not differ between climbed and unclimbed cliffs or areas. Lower activity along unclimbed cliffs may have been related to lower cliff heights and more clutter along these cliff faces. Due to limited access to unclimbed cliffs of comparable size to climbed cliffs, we could not thoroughly test the effects of climbing on bat foraging and roosting activity. However, the high overall use of climbed and unclimbed cliff faces for foraging and commuting that we observed suggests that cliffs may be important habitat for a number of bat species. Additional research on bats' use of cliff faces will improve our understanding of the factors that affect their use of this habitat including the impacts of climbing.

  17. A coupled atomistics and discrete dislocation plasticity simulation of nanoindentation into single crystal thin films

    International Nuclear Information System (INIS)

    Miller, Ronald E.; Shilkrot, L.E.; Curtin, William A.

    2004-01-01

    The phenomenon of 2D nanoindentation of circular 'Brinell' indenter into a single crystal metal thin film bonded to a rigid substrate is investigated. The simulation method is the coupled atomistics and discrete dislocation (CADD) model recently developed by the authors. The CADD model couples a continuum region containing any number of discrete dislocations to an atomistic region, and permits accurate, automatic detection and passing of dislocations between the atomistic and continuum regions. The CADD model allows for a detailed study of nanoindentation to large penetration depths (up to 60 A here) using only a small region of atoms just underneath the indenter where dislocation nucleation, cross-slip, and annihilation occur. Indentation of a model hexagonal aluminum crystal shows: (i) the onset of homogeneous dislocation nucleation at points away from the points of maximum resolved shear stress; (ii) size-dependence of the material hardness, (iii) the role of dislocation dissociation on deformation; (iv) reverse plasticity, including nucleation of dislocations on unloading and annihilation; (v) permanent deformation, including surface uplift, after full unloading; (vi) the effects of film thickness on the load-displacement response; and (vii) the differences between displacement and force controlled loading. This application demonstrates the power of the CADD method in capturing both long-range dislocation plasticity and short-range atomistic phenomena. The use of CADD permits for a clear study of the physical and mechanical influence of both complex plastic flow and non-continuum atomistic-level processes on the macroscopic response of material under indentation loading

  18. Minimum energy path for the nucleation of misfit dislocations in Ge/Si(0 0 1) heteroepitaxy

    International Nuclear Information System (INIS)

    Trushin, O; Maras, E; Jónsson, H; Ala-Nissila, T; Stukowski, A; Granato, E; Ying, S C

    2016-01-01

    A possible mechanism for the formation of a 90° misfit dislocation at the Ge/Si(0 0 1) interface through homogeneous nucleation is identified from atomic scale calculations where a minimum energy path connecting the coherent epitaxial state and a final state with a 90° misfit dislocation is found using the nudged elastic band method. The initial path is generated using a repulsive bias activation procedure in a model system including 75 000 atoms. The energy along the path exhibits two maxima in the energy. The first maximum occurs as a 60° dislocation nucleates. The intermediate minimum corresponds to an extended 60° dislocation. The subsequent energy maximum occurs as a second 60° dislocation nucleates in a complementary, mirror glide plane, simultaneously starting from the surface and from the first 60° dislocation. The activation energy of the nucleation of the second dislocation is 30% lower than that of the first one showing that the formation of the second 60° dislocation is aided by the presence of the first one. The simulations represent a step towards unraveling the formation mechanism of 90° dislocations, an important issue in the design of growth procedures for strain released Ge overlayers on Si(1 0 0) surfaces, and more generally illustrate an approach that can be used to gain insight into the mechanism of complex nucleation paths of extended defects in solids. (paper)

  19. Effectiveness and cost of two stair-climbing interventions-less is more.

    Science.gov (United States)

    Olander, Ellinor K; Eves, Frank F

    2011-01-01

    The current study compared two interventions for promotion of stair climbing in the workplace, an information-based intervention at a health information day and an environmental intervention (point-of-choice prompts), for their effectiveness in changing stair climbing and cost per employee. Interrupted time-series design. Four buildings on a university campus. Employees at a university in the United Kingdom. Two stair-climbing interventions were compared: (1) a stand providing information on stair climbing at a health information day and (2) point-of-choice prompts (posters). Observers recorded employees' gender and method of ascent (n = 4279). The cost of the two interventions was calculated. Logistic regression. There was no significant difference between baseline (47.9% stair climbing) and the Workplace Wellbeing Day (48.8% stair climbing), whereas the prompts increased stair climbing (52.6% stair climbing). The health information day and point-of-choice prompts cost $773.96 and $31.38, respectively. The stand at the health information day was more expensive than the point-of-choice prompts and was inferior in promoting stair climbing. It is likely that the stand was unable to encourage stair climbing because only 3.2% of targeted employees visited the stand. In contrast, the point-of-choice prompts were potentially visible to all employees using the buildings and hence better for disseminating the stair climbing message to the target audience.

  20. Traumatic hip dislocation: early MRI findings

    International Nuclear Information System (INIS)

    Laorr, A.; Greenspan, A.; Anderson, M.W.; Moehring, H.D.; McKinley, T.

    1995-01-01

    Objective of this study was to present the spectrum of early magnetic resonance imaging (MRI) findings following traumatic dislocation of the femoral head, and to identify any associated injuries. Prospective MRI of both hips was performed on 18 patients within 5 weeks of a traumatic femoral head dislocation. The interval between the time of injury and the imaging studies ranged from 2 to 35 days. Posterior dislocation was present in 14 patients and anterior dislocation in 4 patients. In the majority of cases, we performed axial T1, coronal T1, and coronal T2 * (MPGR) sequences. MRI can effectively identify and quantify the muscle injury and joint effusion that invariably accompany traumatic hip dislocations. It is also useful for demonstrating trabecular bone contusion (trabecular injury) and iliofemoral ligament injury, which occur commonly with acute hip dislocation. (orig./VHE)

  1. Effects of dislocations on electron channeling

    International Nuclear Information System (INIS)

    George, Juby; Pathak, A P

    2009-01-01

    The phenomenon of electron channeling in a crystal affected by dislocations is considered. Earlier we had considered the quantum aspects of the positron channeling in a crystal bent by dislocations where the effects of longitudinal motion of the particle were also considered along with the transverse motion. In this paper, the effective potential for the electron case is found for the two regions of dislocation-affected channel. There is considerable shift in the potential minima due to dislocations. The frequency and the corresponding spectrum of the channeling radiation due to electrons channeling through the perfect channel and the two regions of dislocation-affected channels are calculated. The spectral distribution of radiation intensity changes with the parameters of dislocation. The continuity of wavefunctions and their derivatives is used at the three boundaries and the reflection and transmission coefficients are found using these boundary conditions in the same way as in the positron case.

  2. Microstructure, quantification and control of dislocations in bast-type plant fibres

    DEFF Research Database (Denmark)

    Madsen, Bo; Lester, Catherine L.; Mortensen, Ulrich Andreas

    2016-01-01

    Bast-type plant fibres are increasingly being used for structural composite applications where high quality fibres with good mechanical properties are required. A central aspect for this application is the existence of dislocations in the cell wall of plant fibres, i.e. regions of misaligned...... cellulose microfibrils, which are believed to form weak points leading to reduced mechanical properties. In the present study, microstructural observations of dislocations are made using high-magnification scanning electron microscopy. An experimental protocol using polarized optical microscopy and image...... that this leads to a reduction in the content of dislocations. This is indicating that dislocations in the cell wall of plant fibres are changeable structures. Preliminary work is presented where plant fibres are exposed to physical treatments involving moisture and mechanical straining in order to change...

  3. Rare Inferior Shoulder Dislocation (Luxatio Erecta)

    OpenAIRE

    Cift, Hakan; Soylemez, Salih; Demiroglu, Murat; Ozkan, Korhan; Ozden, Vahit Emre; Ozkut, Afsar T.

    2015-01-01

    Although shoulder dislocations have been seen very frequently, inferior dislocation of shoulder constitutes only 0.5% of all shoulder dislocations. We share our 4 patients with luxatio erecta and present their last clinical control. 2 male and 2 female Caucasian patients were diagnosed as luxatio erecta. Patients’ ages were 78, 62, 65, and 76. All patients’ reduction was done by traction-abduction and contour traction maneuver in the operating room. The patients had no symptoms and no limitat...

  4. Dislocation density changes in nickel under creep

    International Nuclear Information System (INIS)

    Moiseeva, I.V.; Okrainets, P.N.; Pishchak, V.K.

    1984-01-01

    Variation in dislocation density was studied in the process of nickel creep p at t=900 deg c and σ=2 kgf/mm 2 . The dislocation structure was studied independently by the X-ray technique and transmission electron-microscopy. The e two methods show good conformity of results by comparison. It is concluded that independent determination of dislocation density under creep is possible us sing the X-ray technique

  5. Piles of dislocation loops in real crystals

    International Nuclear Information System (INIS)

    Dubinko, V.I.; Turkin, A.A.; Yanovskij, V.V.

    1985-01-01

    Behaviour of piles of dislocation loops in crystals was studied in order to define metal swelling under irradiation. Energy of pile interaction with point defects and intrinsic pile energy are studied in the framework of the linear elasticity theory. Preference of dislocation pile calculated in the paper decreases with radiation dose hence, material swelling rate also decreases. Creation of conditions, which assume an existence of piles of dislocation loops being stable under irradiation, is of particular interest

  6. Imaging findings of anterior hip dislocations

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Kyle [Mallinckrodt Institute of Radiology, Department of Radiology, St. Louis, MO (United States); Leslie, Michael [Yale School of Medicine, Department of Orthopedics and Rehabilitation, New Haven, CT (United States); Menn, Kirsten; Haims, Andrew [Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, CT (United States)

    2017-06-15

    Anterior hip dislocations are rare orthopedic emergencies resulting from high-energy trauma and have unique imaging characteristics on radiography, computed tomography (CT), and magnetic resonance imaging (MRI). Imaging findings on CT and MRI allow for the prompt recognition and classification of anterior hip dislocations, which guides patient management and reduces complications. The purpose of this article is to review imaging findings of anterior hip dislocations, specifically focusing on CT and MRI. (orig.)

  7. Physiological responses to indoor rock-climbing and their relationship to maximal cycle ergometry.

    Science.gov (United States)

    Sheel, A William; Seddon, Nicholas; Knight, Andrew; McKenzie, Donald C; R Warburton, Darren E

    2003-07-01

    To quantify the cardiorespiratory responses to indoor climbing during two increasingly difficult climbs and relate them to whole-body dynamic exercise. It was hypothesized that as climbing difficulty increased, oxygen consumption ([V02] and heart rate would increase, and that climbing would require utilization of a significant fraction of maximal cycling values. Elite competitive sport rock climbers (6 male, 3 female) completed two data collection sessions. The first session was completed at an indoor climbing facility, and the second session was an incremental cycle test to exhaustion. During indoor climbing subjects were randomly assigned to climb two routes designated as "harder" or "easier" based on their previous best climb. Subjects wore a portable metabolic system, which allowed measurement of oxygen consumption [V02], minute ventilation ([V02]E), respiratory exchange ratio (RER), and heart rate. During the second session, maximal values for [V02], [V02]E, RER, and heart rate were determined during an incremental cycle test to exhaustion. Heart rate and [VO2], expressed as percent of cycling maximum, were significantly higher during harder climbing compared with easier climbing. During harder climbing, %HR(max) was significantly higher than %[V02] (2max) (89.6% vs 51.2%), and during easier climbing, %HR(max) was significantly higher than %[V02] (2max) (66.9% vs 45.3%). With increasing levels of climbing difficulty, there is a rise in both heart rate and [V02]. However, there is a disproportional rise in heart rate compared with [V02], which we attribute to the fact that climbing requires the use of intermittent isometric contractions of the arm musculature and the reliance of both anaerobic and aerobic metabolism.

  8. CLIMBING.CREACIÓN DE UNA MRCA DEPORTIVA

    OpenAIRE

    MESEGUER SANCHEZ, RAQUEL

    2017-01-01

    El presente TFG plantea el desarrollo de la imagen de marca de una empresa de ropa deportiva y la adaptación a sus productos, esta imagen plantea las connotaciones de fuerza y juventud y adaptable a cualquier tipo de deporte. Se estudian todos los valores implícitos en el branding y el proceso de elaboración. Meseguer Sanchez, R. (2017). CLIMBING.CREACIÓN DE UNA MRCA DEPORTIVA. http://hdl.handle.net/10251/92805 TFGM

  9. Energy flow around a moving dislocation

    International Nuclear Information System (INIS)

    Koizumi, H; Kirchner, H O K

    2009-01-01

    A dislocation moving in a lattice emits lattice waves. We study the energy flow accompanying the lattice wave emission in a molecular dynamics situation. About two thirds of the static free energy are emitted as lattice waves from the moving dislocation. Work done by the region around the dislocation helps to initiate the motion from the unstable equilibrium state under a small applied stress, or to compensate the energy emitted as lattice waves when the dislocation makes a long distance motion under a larger stress.

  10. Structure of the Dislocation in Sapphire

    DEFF Research Database (Denmark)

    Bilde-Sørensen, Jørgen; Thölen, A. R.; Gooch, D. J.

    1976-01-01

    Experimental evidence of the existence of 01 0 dislocations in the {2 0} prism planes in sapphire has been obtained by transmission electron microscopy. By the weak-beam technique it has been shown that the 01 0 dislocations may dissociate into three partials. The partials all have a Burgers vector...... of ⅓ 01 0 and are separated by two identical faults. The distance between two partials is in the range 75-135 Å, corresponding to a fault energy of 320±60 mJ/m2. Perfect 01 0 dislocations have also been observed. These dislocations exhibited either one or two peaks when imaged in the (03 0) reflection...

  11. Molecular dynamics simulation of mode-I-crack propagation and dislocation generation processes in α-Fe

    International Nuclear Information System (INIS)

    Wang Jianwei; Lu Guocai; Shang Xinchun

    2011-01-01

    The process of I-mode crack propagations in α-Fe for uniaxial tension experiments are simulated by molecular dynamics (MD) methods. The formation process of dislocation and fracture mechanisms in the crack growing under various temperatures were studied. The results show that the crack propagation is a process of successive emission of dislocation. The dislocation-free zone and the stacking faults were initially formed at crack tip. When the stress K I increased into 0. 566 MPam 1/2 , one layer of atoms near crack tip would be separated into two layers which produced a dislocation. The first dislocation was emitted when stress K I reached 0.669 MPam 1/2 . With the temperature increasing, the critical stress intensity factor decreased gradually and the dislocation emission correspondingly became faster as well. (authors)

  12. The influence of anisotropy on the core structure of Shockley partial dislocations within FCC materials

    Science.gov (United States)

    Szajewski, B. A.; Hunter, A.; Luscher, D. J.; Beyerlein, I. J.

    2018-01-01

    two disparate dislocation length scales which describe the core structure; (i) the equilibrium stacking fault width between two Shockley partial dislocations, R eq and (ii) the maximum slip gradient, χ, of each Shockley partial dislocation. We demonstrate excellent agreement between our own analytic predictions, numerical calculations, and R eq computed directly by both ab-initio and molecular statics methods found elsewhere within the literature. The results suggest that understanding of various plastic mechanisms, e.g., cross-slip and nucleation may be augmented with the inclusion of elastic anisotropy.

  13. On the static structural design of climbing robots: part 1.

    Science.gov (United States)

    Ahmed, Ausama Hadi; Menon, Carlo

    This manuscript is the first of two parts of a work investigating optimal configurations of legged climbing robots while loitering on vertical surfaces. In this part 1, a mathematical model of a climbing robot based on the finite element method (FEM), specifically the stiffness method, is generated. A number of parameters, namely the height of the robot, the length of its body and the position of its legs, are investigated to assess their effect on the adhesion requirements needed for the robot to stay attached to a wall. Predictions of the developed mathematical model are validated using FEM commercial software. The body and the legs are assumed to be perpendicular to each other in this part 1. The effect of their inclination is investigated in the subsequent part 2 of our work. In part 2, the model is also used to predict postures that ants have while standing on vertical surfaces. The model is validated by comparing the predicted results to images of loitering ants. The parameters investigated provide guidelines to design legged climbing robots.

  14. Dislocation-limited electron transport in InSb grown on GaAs(0 0 1)

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T. [Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)]. E-mail: taku-s@jaist.ac.jp; Suzuki, T. [Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Tomiya, S. [Materials Analysis Laboratory, Sony Corporation, 4-16-1 Okata, Atugi, Kanagawa 243-0021 (Japan); Yamada, S. [Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2006-04-01

    We investigated dislocations and electrical properties in InSb thin films with various thickness grown on GaAs(0 0 1). It is found that both the threading dislocation density and the local donor concentration decrease in proportion to the inverse of the distance from the InSb/GaAs interface, which indicates that the former is the origin of the latter. This behavior is well explained by pair annihilation mechanism of the threading dislocations. The electron mobility is limited by ionized donor scattering, i.e. charged dislocation scattering.

  15. Luxación facetaria unilateral lumbosacra postraumática. [ Post-traumatic lumbosacral unilateral facet dislocation].

    Directory of Open Access Journals (Sweden)

    Manuel González Murillo

    2016-08-01

    Full Text Available In the literature have been reported around fifty cases of lumbosacral dislocations; treated most bilateral facet dislocations. We report the case of a female 42 year old with unilateral lumbosacral facet dislocation of one month duration after accident. Circumferential instrumented fusion L5-S1 with interbody cage and pedicle screws L5-S1 was performed.   The lumbosacral dislocation is a rare injury that occurs due to the combination of a high-energy mechanism predisposing anatomical factors. Recent publications advocate the surgical reduction and stabilization with instrumentation as standard treatment.

  16. Metal working and dislocation structures

    DEFF Research Database (Denmark)

    Hansen, Niels

    2007-01-01

    Microstructural observations are presented for different metals deformed from low to high strain by both traditional and new metal working processes. It is shown that deformation induced dislocation structures can be interpreted and analyzed within a common framework of grain subdivision on a finer...... and finer scale down to the nanometer dimension, which can be reached at ultrahigh strains. It is demonstrated that classical materials science and engineering principles apply from the largest to the smallest structural scale but also that new and unexpected structures and properties characterize metals...

  17. Modified technique of the treatment for proximal tibiofibular joint dislocation

    Directory of Open Access Journals (Sweden)

    Gvozdenović Nemanja

    2017-01-01

    Full Text Available Introduction. Dislocation of the proximal tibiofibular joint (PTFJ is a rare injury. The diagnosis requires an accurate history of the mechanism and symptoms of the injury, and adequate clinical and radiographic evaluation of both knees. In the literature there is no larger series, only several cases of PTFJ dislocation treated by different methods have been published so far. The aim of the study was to present a modified technique for the treatment of the unstable PTFJ that results in faster recovery of the patient. Case report. A 24-year-old football player was injured at the beginning of training; when tackling the ball he felt a sharp pain in his right knee. He was immediately brought to the Emergency Center of Vojvodina and diagnosed with anterolateral dislocation of the PTFJ. Close reduction in general anesthesia was tried but we failed and then open reduction and internal fixation (ORIF were performed with a single three cortical screw. We preferred not to immobilise the knee after the procedure and immediately employed passive and active exercises in the knee, without bearing weight to the injured leg. After 6 weeks we removed the screw and gave full weight support to the leg and continued physical treatment. Conclusion. In case of acute PTFJ dislocation, the first method of choice is closed reduction in sedation or general anesthesia. If closed reduction fails, ORIF must be performed. ORIF without immobilization and early start of physical therapy lead to the rapid return to sports activities

  18. Dislocations in single hemp fibres-investigations into the relationship of structural distortions and tensile properties at the cell wall level

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Eder, M.; Burgert, I.

    2007-01-01

    The relationship between dislocations and mechanical properties of single hemp fibres (Cannabis sativa L. var. Felina) was studied using a microtensile testing setup in a 2-fold approach. In a first investigation the percentage of dislocations was quantified using polarized light microscopy (PLM......) prior to microtensile testing of the fibres. In a second approach PLM was used to monitor the dislocations while straining single fibres. The first part of the study comprised 53 hemp fibres with up to 20% of their cell wall consisting of dislocations. For this data set the percentage of dislocations...

  19. An MD simulation of interactions between self-interstitial atoms and edge dislocation in bcc transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Kamiyama, H. (Aomori Public College, 153-4 Yamazaki, Goushi-zawa, Aomori 030-01 (Japan)); Rafii-Tabar, H. (Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980 (Japan)); Kawazoe, Y. (Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980 (Japan)); Matsui, H. (Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980 (Japan))

    1994-09-01

    According to our model on the mechanism of dislocation bias reduction based on the interaction of dumbbell self-interstitial atoms (SIAs) with dislocation, the bias is significantly different depending on the dumbbell configuration in the dislocation strain field. A large-scale molecular dynamics (MD) simulation is performed to reveal the stability and the mechanism of diffusion of dumbbell SIAs near the edge dislocation core in bcc iron. Most SIAs take the crowdion configuration parallel to the Burgers vector in the expansion side of the dislocation. Such crowdions are stable in the temperature range of this simulation, i.e. between 373 and 473 K, making one-dimensional random to-and-fro motion parallel to the dislocation Burgers vector staying at several atomic layers below'' the dislocation core. This means that the SIA does not approach the dislocation core. These results suggest that the stable configuration of SIAs is seriously affected by the dislocation resulting in a reduction of bias factor. ((orig.))

  20. An MD simulation of interactions between self-interstitial atoms and edge dislocation in bcc transition metals

    International Nuclear Information System (INIS)

    Kamiyama, H.; Rafii-Tabar, H.; Kawazoe, Y.; Matsui, H.

    1994-01-01

    According to our model on the mechanism of dislocation bias reduction based on the interaction of dumbbell self-interstitial atoms (SIAs) with dislocation, the bias is significantly different depending on the dumbbell configuration in the dislocation strain field. A large-scale molecular dynamics (MD) simulation is performed to reveal the stability and the mechanism of diffusion of dumbbell SIAs near the edge dislocation core in bcc iron. Most SIAs take the crowdion configuration parallel to the Burgers vector in the expansion side of the dislocation. Such crowdions are stable in the temperature range of this simulation, i.e. between 373 and 473 K, making one-dimensional random to-and-fro motion parallel to the dislocation Burgers vector staying at several atomic layers ''below'' the dislocation core. This means that the SIA does not approach the dislocation core. These results suggest that the stable configuration of SIAs is seriously affected by the dislocation resulting in a reduction of bias factor. ((orig.))

  1. Cyclic softening in annealed Zircaloy-2: Role of edge dislocation dipoles and vacancies

    Science.gov (United States)

    Sudhakar Rao, G.; Singh, S. R.; Krsjak, Vladimir; Singh, Vakil

    2018-04-01

    The mechanism of cyclic softening in annealed Zircaloy-2 at low strain amplitudes under strain controlled fatigue at room temperature is rationalized. The unusual softening due to continuous decrease in the phenomenological friction stress is found to be associated with decrease in the resistance against movement of dislocations because of the formation and easy glide of pure edge dislocation dipoles and consequent decrease in friction stress from reduction in the shear modulus. Positron annihilation spectroscopy data strongly support the increase in edge dislocation density containing jogs, from increased positron trapping and increase in annihilation lifetime.

  2. Annihilation of interstitial-type dislocation loops in α-Fe during He irradiation

    International Nuclear Information System (INIS)

    Xu, Q.; Wang, Y.X.; Katakabe, Y.; Iwakiri, H.; Yoshida, N.; Sato, K.; Yoshiie, T.

    2011-01-01

    Interstitial-type dislocation loops were formed in Fe-9Cr alloys on irradiation with 1-MeV He ions at 673 K. However, with increasing irradiation dose, the dislocation loops shrunk. A molecular dynamics simulation was used to elucidate the mechanism of this unexpected phenomenon. The simulation shows that, although the binding energy of a self-interstitial atom to a dislocation loop is normally greater than that of a vacancy, the energy hierarchy is reversed when He atoms decorate the loop. This may indicates preferential absorption of vacancies, causing loop shrinkage at high doses, consistent with experimental observation.

  3. Annihilation of interstitial-type dislocation loops in {alpha}-Fe during He irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Q., E-mail: xu@rri.kyoto-u.ac.jp [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan); Wang, Y.X. [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Katakabe, Y. [Research Institute for Applied Mechanics, Kyushu University, Fukuoka 816-8580 (Japan); Iwakiri, H. [Faculty of Education, University of the Ryukyus, Okinawa 903-0213 (Japan); Yoshida, N. [Research Institute for Applied Mechanics, Kyushu University, Fukuoka 816-8580 (Japan); Sato, K.; Yoshiie, T. [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan)

    2011-10-01

    Interstitial-type dislocation loops were formed in Fe-9Cr alloys on irradiation with 1-MeV He ions at 673 K. However, with increasing irradiation dose, the dislocation loops shrunk. A molecular dynamics simulation was used to elucidate the mechanism of this unexpected phenomenon. The simulation shows that, although the binding energy of a self-interstitial atom to a dislocation loop is normally greater than that of a vacancy, the energy hierarchy is reversed when He atoms decorate the loop. This may indicates preferential absorption of vacancies, causing loop shrinkage at high doses, consistent with experimental observation.

  4. Evolutionary Novelty versus Exaptation: Oral Kinematics in Feeding versus Climbing in the Waterfall-Climbing Hawaiian Goby Sicyopterus stimpsoni

    OpenAIRE

    Cullen, Joshua A.; Maie, Takashi; Schoenfuss, Heiko L.; Blob, Richard W.

    2013-01-01

    Species exposed to extreme environments often exhibit distinctive traits that help meet the demands of such habitats. Such traits could evolve independently, but under intense selective pressures of extreme environments some existing structures or behaviors might be coopted to meet specialized demands, evolving via the process of exaptation. We evaluated the potential for exaptation to have operated in the evolution of novel behaviors of the waterfall-climbing gobiid fish genus Sicyopterus. T...

  5. Atomistic simulation of hydrogen dynamics near dislocations in vanadium hydrides

    International Nuclear Information System (INIS)

    Ogawa, Hiroshi

    2015-01-01

    Highlights: • Hydrogen–dislocation interaction was simulated by molecular dynamics method. • Different distribution of H atoms were observed at edge and screw dislocation. • Planner distribution of hydrogen may be caused by partialized edge dislocation. • Hydrogen diffusivity was reduced in both edge and screw dislocation models. • Pipe diffusion was observed for edge dislocation but not for screw dislocation. - Abstract: Kinetics of interstitial hydrogen atoms near dislocation cores were analyzed by atomistic simulation. Classical molecular dynamics method was applied to model structures of edge and screw dislocations in α-phase vanadium hydride. Simulation showed that hydrogen atoms aggregate near dislocation cores. The spatial distribution of hydrogen has a planner shape at edge dislocation due to dislocation partialization, and a cylindrical shape at screw dislocation. Simulated self-diffusion coefficients of hydrogen atoms in dislocation models were a half- to one-order lower than that of dislocation-free model. Arrhenius plot of self-diffusivity showed slightly different activation energies for edge and screw dislocations. Directional dependency of hydrogen diffusion near dislocation showed high and low diffusivity along edge and screw dislocation lines, respectively, hence so called ‘pipe diffusion’ possibly occur at edge dislocation but does not at screw dislocation

  6. Global diversification of a tropical plant growth form: environmental correlates and historical contingencies in climbing palms.

    Science.gov (United States)

    Couvreur, Thomas L P; Kissling, W Daniel; Condamine, Fabien L; Svenning, Jens-Christian; Rowe, Nick P; Baker, William J

    2014-01-01

    Tropical rain forests (TRF) are the most diverse terrestrial biome on Earth, but the diversification dynamics of their constituent growth forms remain largely unexplored. Climbing plants contribute significantly to species diversity and ecosystem processes in TRF. We investigate the broad-scale patterns and drivers of species richness as well as the diversification history of climbing and non-climbing palms (Arecaceae). We quantify to what extent macroecological diversity patterns are related to contemporary climate, forest canopy height, and paleoclimatic changes. We test whether diversification rates are higher for climbing than non-climbing palms and estimate the origin of the climbing habit. Climbers account for 22% of global palm species diversity, mostly concentrated in Southeast Asia. Global variation in climbing palm species richness can be partly explained by past and present-day climate and rain forest canopy height, but regional differences in residual species richness after accounting for current and past differences in environment suggest a strong role of historical contingencies in climbing palm diversification. Climbing palms show a higher net diversification rate than non-climbers. Diversification analyses of palms detected a diversification rate increase along the branches leading to the most species-rich clade of climbers. Ancestral character reconstructions revealed that the climbing habit originated between early Eocene and Miocene. These results imply that changes from non-climbing to climbing habits may have played an important role in palm diversification, resulting in the origin of one fifth of all palm species. We suggest that, in addition to current climate and paleoclimatic changes after the late Neogene, present-day diversity of climbing palms can be explained by morpho-anatomical innovations, the biogeographic history of Southeast Asia, and/or ecological opportunities due to the diversification of high-stature dipterocarps in Asian TRFs.

  7. Finding paradise: cues directing the migration of the waterfall climbing Hawaiian gobioid Sicyopterus stimpsoni.

    Science.gov (United States)

    Leonard, G; Maie, T; Moody, K N; Schrank, G D; Blob, R W; Schoenfuss, H L

    2012-07-01

    A series of waterfall-climbing trials were conducted to identify cues that direct the climbing of juvenile Sicyopterus stimpsoni. In the first experiment, whether climbing juveniles preferentially ascend water sources with conspecifics or whether the presence of just stream water is sufficient to attract fish to ascend a climbing path were assessed. In the second experiment, whether climbing juveniles create a trail of mucus that facilitates the ability of conspecifics to follow their lead was determined. The results indicate that juvenile S. stimpsoni are less likely to climb in waters devoid of organic cues but are strongly attracted to stream water with or without the odour of conspecifics. Once climbing, performance did not differ for juveniles climbing in differing water choices, suggesting an all-or-nothing commitment once climbing commences. Climbing S. stimpsoni did produce a mucous trail while climbing that was associated with a mucous gland that dramatically increases in size just prior to juveniles gaining the ability to climb. The trail was not followed closely by subsequent juveniles traversing the same channel, however, suggesting only weak trail-following in waterfall climbing S. stimpsoni. Previous genetic studies suggest that juvenile S. stimpsoni do not home to natal streams in the face of strong near-shore oceanic currents. Instead, these fish appear primarily to rely on cues that suggest the presence of organic growth in streams, a factor that may indicate suitable habitat in an ever-changing stream environment but which may also be vulnerable to interference through human activity. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  8. Hybrid dislocated control and general hybrid projective dislocated synchronization for the modified Lue chaotic system

    International Nuclear Information System (INIS)

    Xu Yuhua; Zhou Wuneng; Fang Jianan

    2009-01-01

    This paper introduces a modified Lue chaotic system, and some basic dynamical properties are studied. Based on these properties, we present hybrid dislocated control method for stabilizing chaos to unstable equilibrium and limit cycle. In addition, based on the Lyapunov stability theorem, general hybrid projective dislocated synchronization (GHPDS) is proposed, which includes complete dislocated synchronization, dislocated anti-synchronization and projective dislocated synchronization as its special item. The drive and response systems discussed in this paper can be strictly different dynamical systems (including different dimensional systems). As examples, the modified Lue chaotic system, Chen chaotic system and hyperchaotic Chen system are discussed. Numerical simulations are given to show the effectiveness of these methods.

  9. Hybrid dislocated control and general hybrid projective dislocated synchronization for the modified Lue chaotic system

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yuhua [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Maths, Yunyang Teacher' s College, Hubei 442000 (China)], E-mail: yuhuaxu2004@163.com; Zhou Wuneng [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)], E-mail: wnzhou@163.com; Fang Jianan [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)

    2009-11-15

    This paper introduces a modified Lue chaotic system, and some basic dynamical properties are studied. Based on these properties, we present hybrid dislocated control method for stabilizing chaos to unstable equilibrium and limit cycle. In addition, based on the Lyapunov stability theorem, general hybrid projective dislocated synchronization (GHPDS) is proposed, which includes complete dislocated synchronization, dislocated anti-synchronization and projective dislocated synchronization as its special item. The drive and response systems discussed in this paper can be strictly different dynamical systems (including different dimensional systems). As examples, the modified Lue chaotic system, Chen chaotic system and hyperchaotic Chen system are discussed. Numerical simulations are given to show the effectiveness of these methods.

  10. Damage buildup and edge dislocation mobility in equiatomic multicomponent alloys

    Science.gov (United States)

    Granberg, F.; Djurabekova, F.; Levo, E.; Nordlund, K.

    2017-02-01

    A new class of single phase metal alloys of equal atomic concentrations has shown very promising mechanical properties and good corrosion resistance. Moreover, a significant reduction in damage accumulation during prolonged irradiation has also been observed in these equiatomic multicomponent alloys. A comparison of elemental Ni with the two component NiFe- and the three component NiCoCr-alloy showed a substantial reduction in damage in both alloys, and an even larger difference was seen if only larger clusters were considered. One of the factors limiting the damage build-up in the alloys compared to the elemental material was seen to be dislocation mobility (Granberg et al., 2016). In this Article, we focus on a more thorough investigation of the mobility of edge dislocations in different cases of the Ni-, NiFe- and NiCoCr-samples. We find that even though the saturated amount of defects in the alloys is lower than in elemental Ni, the defect buildup in the early stages is faster in the alloys. We also find that the dislocation mobility in NiFe is lower than in Ni, at low stresses, and that the onset stress in NiFe is higher than in Ni. The same phenomenon was seen in comparison between NiFe and NiCoCr, since the three component alloy had lower dislocation mobility and higher onset stress. The dislocation velocity in elemental Ni plateaued out just under the forbidden velocity, whereas the alloys showed a more complex behaviour.

  11. Dislocation-free zone model of fracture comparison with experiments

    International Nuclear Information System (INIS)

    Ohr, S.M.; Chang, S.

    1982-01-01

    The dislocation-free zone (DFZ) model of fracture has been extended to study the relationship between the stress intensity factor, extent of plastic deformation, and crack tip geometry of an elastic-plastic crack as a function of applied stress. The results show that the stress intensity factor K decreases from the elastic value at first slowly, then goes rapidly to zero as the number of dislocations in the plastic zone increases. The crack with a zero stress intensity factor has its crack tip stress field completely relaxed by plastic deformation and hence is called a plastic crack. Between the elastic and plastic cracks, a wide range of elastic-plastic cracks having both a stress singularity and a plastic zone are possible. These elastic-plastic cracks with a DFZ are predicted if there is a critical stress intensity factor K/sub g/ required for the generation of dislocations at the crack tip. The expression for K/sub g/ is obtained from the crack tip dislocation nucleation model of Rice and Thomson. In most metals, the magnitude of K/sub g/ is less than the critical stress intensity factor for brittle fracture K/sub c/. The values of K are determined from electron microscope fracture experiments for various metals and they are found to be in good agreement with the K/sub g/ predicted from the model. It is concluded that for most ductile and semibrittle metals, the mechanism of dislocation generation is more important than the fracture surface energy in determining the stress intensity factor at the crack tip

  12. Palmar dislocation of scaphoid and lunate

    Directory of Open Access Journals (Sweden)

    Khalid Koulali Idrissi

    2011-11-01

    Full Text Available A palmar dislocation of scaphoid and lunate is uncommon. We have found only 19 reported cases in the literature. We reported a simultaneous, divergent dislocation. The closed reduction followed by percutaneous pinning has given a good result without avascular necrosis of any carpal bone.

  13. Interactions between Dislocations and Grain Boundaries

    NARCIS (Netherlands)

    Soer, Wouter Anthon

    2006-01-01

    Dislocations (line defects) and grain boundaries (planar defects) are two types of lattice defects that are crucial to the deformation behavior of metals. Permanent deformation of a crystalline material is microscopically associated with the nucleation and propagation of dislocations, and extensive

  14. Dislocations in materials with mixed covalent and metallic bonding

    International Nuclear Information System (INIS)

    Nguyen-Manh, D.; Cawkwell, M.J.; Groeger, R.; Mrovec, M.; Porizek, R.; Pettifor, D.G.; Vitek, V.

    2005-01-01

    Environment-dependent bond-order potentials have been developed for L1 0 TiAl, bcc Mo and fcc Ir. They comprise both the angular character of bonding and the screening effect of nearly free electrons. These potentials have been employed in atomistic studies of screw dislocations that revealed the non-planar character of their cores. It is argued that both covalent as well as metallic character of bonding govern these structures, which in turn control the mechanical behaviour

  15. Effects of dislocations on polycrystal anelasticity

    Science.gov (United States)

    Sasaki, Y.; Takei, Y.; McCarthy, C.; Suzuki, A.

    2017-12-01

    Effects of dislocations on the seismic velocity and attenuation have been poorly understood, because only a few experimental studies have been performed [Guéguen et al., 1989; Farla et al., 2012]. By using organic borneol as a rock analogue, we measured dislocation-induced anelasticity accurately over a broad frequency range. We first measured the flow law of borneol aggregates by uniaxial compression tests under a confining pressure of 0.8 MPa. A transition from diffusion creep (n = 1) to dislocation creep (n = 5) was captured at about σ = 1 MPa (40°C-50°C). After deforming in the dislocation creep regime, sample microstructure showed irregular grain shape consistent with grain boundary migration. Next, we conducted three creep tests at σ = 0.27 MPa (diffusion creep regime), σ = 1.3 MPa and σ = 1.9 MPa (dislocation creep regime) on the same sample in increasing order, and measured Young's modulus E and attenuation Q-1 after each creep test by forced oscillation tests. The results show that as σ increased, E decreased and Q-1 increased. These changes induced by dislocations, however, almost fully recovered during the forced oscillation tests performed for about two weeks under a small stress (σ = 0.27 MPa) due to the dislocation recovery (annihilation). In order to constrain the time scale of the dislocation-induced anelastic relaxation, we further measured Young's modulus E at ultrasonic frequency before and after the dislocation creep and found that E at 106 Hz is not influenced by dislocations. Because E at 100 Hz is reduced by dislocations by 10%, the dislocation-induced anelastic relaxation occurs mostly between 102-106 Hz which is at a higher frequency than grain-boundary-induced anelasticity. To avoid dislocation recovery during the anelasticity measurement, we are now trying to perform an in-situ measurement of anelasticity while simultaneously deforming under a high stress associated with dislocation creep. The combination of persistent creep

  16. Dissociated dislocations in Ni: a computational study

    International Nuclear Information System (INIS)

    Szelestey, P.; Patriarca, M.; Kaski, K.

    2005-01-01

    A systematic computational study of the behavior of a (1/2) dissociated screw dislocation in fcc nickel is presented, in which atomic interactions are described through an embedded-atom potential. A suitable external stress is applied on the system, both for modifying the equilibrium separation distance d and moving the dislocation complex. The structure of the dislocation and its corresponding changes during the motion are studied in the framework of the two-dimensional Peierls model, for different values of the ratio d/a', where a' is the period of the Peierls potential. The distance between the edge and screw components of the partials, as well as their widths, undergo a modulation with period a', as the dislocation moves, and the amplitudes of such oscillations are shown to depend on d/a'. The stress profile acting on the dislocation complex is analyzed and the effective Peierls stress is estimated for different values of d/a'

  17. Dynamic aspects of dislocation motion: atomistic simulations

    International Nuclear Information System (INIS)

    Bitzek, Erik; Gumbsch, Peter

    2005-01-01

    Atomistic simulations of accelerating edge and screw dislocations were carried out to study the dynamics of dislocations in a face centered cubic metal. Using two different embedded atom potentials for nickel and a simple slab geometry, the Peierls stress, the effective mass, the line tension and the drag coefficient were determined. A dislocation intersecting an array of voids is used to study dynamic effects in dislocation-obstacle interactions. A pronounced effect caused by inertial overshooting is found. A dynamic line tension model is developed which reproduces the simulation results. The model can be used to easily estimate the magnitude of inertial effects in the interaction of dislocations with localized obstacles for different obstacle strengths, -spacings and temperatures

  18. Rules for Forest Interactions between Dislocations

    International Nuclear Information System (INIS)

    Wickham, L. K.; Schwarz, K. W.; Stoelken, J. S.

    1999-01-01

    The dynamical interactions of dislocations existing on intersecting glide planes have been investigated using numerical simulations based on isotropic linear elastic theory. It is found that such dislocations either repel, attract and form growing junctions, or attract and form bound crossed states. Which of these occurs can be predicted from a surprisingly simple analysis of the initial configurations. The outcome is determined primarily by the angles which the dislocations initially make with the glide-plane intersection edge, and is largely independent of the initial distance between the dislocations, their initial curvature, or ambient applied stresses. The results provide a rule for dealing with forest interactions within the context of large multiple-dislocation computations. (c) 1999 The American Physical Society

  19. Molecular dynamics simulation of edge dislocation piled at cuboidal precipitate in Ni-based superalloy

    International Nuclear Information System (INIS)

    Yashiro, Kisaragi; Naito, Masato; Tomita, Yoshihiro

    2003-01-01

    In order to clarify the fundamental mechanism of dislocations in the γ/γ' microstructure of Ni-based superalloy, three molecular dynamics simulations are conducted on the behavior of edge dislocations nucleated from a free surface and proceeding in the pure Ni matrix (γ) toward cuboidal Ni 3 Al precipitates (γ') under shear force. One involves dislocations near the apices of two precipitates adjoining each other with the distance of 0.04 μm, as large as the width of the γ channel in real superalloys. Others simulate dislocations piled at the precipitates as well, however, the scale of the microstructure is smaller than that in real superalloys by one order of magnitude, and one of them have precipitates with atomistically sharp edge. Dislocations are pinned at precipitates and bowed-out in the γ channel, then they begin to penetrate into the precipitate at the edge in both the real-scale and smaller microstructures when the precipitates have blunt edges. On the other hand, an edge dislocation splits into a superpartial in the γ' precipitate and a misfit screw dislocation bridging between two adjacent precipitates at the atomistically sharp edge of γ' precipitates. It is also observed that two superpartials glide in the precipitate as a superdislocation with anti-phase boundary (APB), of which the width is evaluated to be about 4 nm. (author)

  20. Accumulation of dislocation loops in the α phase of Zr Excel alloy under heavy ion irradiation

    Science.gov (United States)

    Yu, Hongbing; Yao, Zhongwen; Idrees, Yasir; Zhang, He K.; Kirk, Mark A.; Daymond, Mark R.

    2017-08-01

    In-situ heavy ion irradiations were performed on the high Sn content Zr alloy 'Excel', measuring type dislocation loop accumulation up to irradiation damage doses of 10 dpa at a range of temperatures. The high content of Sn, which diffuses slowly, and the thin foil geometry of the sample provide a unique opportunity to study an extreme case where displacement cascades dominate the loop formation and evolution. The dynamic observation of dislocation loop evolution under irradiation at 200 °C reveals that type dislocation loops can form at very low dose (0.0025 dpa). The size of the dislocation loops increases slightly with irradiation damage dose. The mechanism controlling loop growth in this study is different from that in neutron irradiation; in this study, larger dislocation loops can condense directly from the interaction of displacement cascades and the high concentration of point defects in the matrix. The size of the dislocation loop is dependent on the point defect concentration in the matrix. A negative correlation between the irradiation temperature and the dislocation loop size was observed. A comparison between cascade dominated loop evolution (this study), diffusion dominated loop evolution (electron irradiation) and neutron irradiation suggests that heavy ion irradiation alone may not be enough to accurately reproduce neutron irradiation induced loop structures. An alternative method is proposed in this paper. The effects of Sn on the displacement cascades, defect yield, and the diffusion behavior of point defects are established.

  1. Investigation of dislocations in 8° off-axis 4H-SiC epilayer

    International Nuclear Information System (INIS)

    Rui-Xia, Miao; Yu-Ming, Zhang; Yi-Men, Zhang; Xiao-Yan, Tang; Qing-Feng, Gai

    2010-01-01

    This paper reports that the etching morphology of dislocations in 8° off-axis 4H-SiC epilayer is observed by using a scanning electronic microscope. It is found that different types of dislocations correspond with different densities and basal plane dislcation (BPD) array and threading edge dislocation (TED) pileup group lie along some certain crystal directions in the epilayer. It is concluded that the elastic energy of threading screw dislocations (TSDs) is highest and TEDs is lowest among these dislocations, so the density of TSDs is lower than TEDs. The BPDs can convert to TEDs but TSDs can only propagate into the epilyer in spite of the higher elastic energy than TEDs. The reason of the form of BPDs array in epilayer is that the big step along the basal plane caused by face defects blocked the upstream atoms, and TEDs pileup group is that the dislocations slide is blocked by dislocation groups in epilayer. (condensed matter: structure, thermal and mechanical properties)

  2. Influence of mobile dislocations on phase separation in binary alloys

    International Nuclear Information System (INIS)

    Haataja, Mikko; Leonard, Francois

    2004-01-01

    We introduce a continuum model to describe the phase separation of a binary alloy in the presence of mobile dislocations. The kinetics of the local composition and dislocation density are coupled through their elastic fields. We show both analytically and numerically that mobile dislocations modify the standard spinodal decomposition process, and lead to several regimes of growth. Depending on the dislocation mobility and observation time, the phase separation may be accelerated, decelerated, or unaffected by mobile dislocations. For any finite dislocation mobility, we show that the domain growth rate asymptotically becomes independent of the dislocation mobility, and is faster than the dislocation-free growth rate

  3. The relative stability of dislocations embedded in the β phase matrix and in martensite phases in copper based alloys

    International Nuclear Information System (INIS)

    Lovey, Francisco; Hazarabedian, Alfredo; Garces, Jorge

    1988-01-01

    Dislocations are formed during martensitic transformations in shape memory alloys. The number of dislocations (with Burgers vector →b β = a o and line direction in the β phase) increases when the material is subjected to thermoelastic or pseudoelastic cycles. The dislocations are accumulated in the sample and are incorporated in the corresponding growing phase. The relative energy of the dislocations when embedded in the parent phase (with respect to b) one or another variant of martensite is evaluated in this work. The crystallographic changes of the dislocations provide a primary selection rule for those martensite variants in which the dislocations have the lowest energy. In order to proceed more quantitatively a full calculation of the dislocation energies has to be performed using the anisotropic theory. In this work these calculations have been made on the basis of measured elastic constants of the β and 2H phases of a Cu-Al-Ni alloy. It is concluded that those martensite variants are favored energetically whose basal plane contains the Burgers vector and line direction of the dislocations (Splitting into Shockley partials is suggested to occur). The importance of this result for the two-way shape memory (TWSM) effect is discussed and a mechanism is proposed which can account for the multiplication of dislocations during the transformation. (Author)

  4. Empirical potential and elasticity theory modelling of interstitial dislocation loops in UO2 for cluster dynamics application

    International Nuclear Information System (INIS)

    Le-Prioux, Arno

    2017-01-01

    During irradiation in reactor, the microstructure of UO 2 changes and deteriorates, causing modifications of its physical and mechanical properties. The kinetic models used to describe these changes such as cluster dynamics (CRESCENDO calculation code) consider the main microstructural elements that are cavities and interstitial dislocation loops, and provide a rather rough description of the loop thermodynamics. In order to tackle this issue, this work has led to the development of a thermodynamic model of interstitial dislocation loops based on empirical potential calculations. The model considers two types of interstitial dislocation loops on two different size domains: Type 1: Dislocation loops similar to Frank partials in F.C.C. materials which are stable in the smaller size domain. Type 2: Perfect dislocation loops of Burgers vector (a/2)(110) stable in the larger size domain. The analytical formula used to compute the interstitial dislocation loop formation energies is the one for circular loops which has been modified in order to take into account the effects of the dislocation core, which are significant at smaller sizes. The parameters have been determined by empirical potential calculations of the formation energies of prismatic pure edge dislocation loops. The effect of the habit plane reorientation on the formation energies of perfect dislocation loops has been taken into account by a simple interpolation method. All the different types of loops seen during TEM observations are thus accounted for by the model. (author) [fr

  5. Possible origin of the discrepancy in Peierls stresses of fcc metals: First-principles simulations of dislocation mobility in aluminum

    Science.gov (United States)

    Shin, Ilgyou; Carter, Emily A.

    2013-08-01

    Dislocation motion governs the strength and ductility of metals, and the Peierls stress (σp) quantifies dislocation mobility. σp measurements carry substantial uncertainty in face-centered cubic (fcc) metals, and σp values can differ by up to two orders of magnitude. We perform first-principles simulations based on orbital-free density functional theory (OFDFT) to calculate the most accurate currently possible σp for the motion of (1)/(2)111 dislocations in fcc Al. We predict the σps of screw and edge dislocations (dissociated in their equilibrium state) to be 1.9×10-4G and 4.9×10-5G, respectively (G is the shear modulus). These values fall within the range of measurements from mechanical deformation tests (10-4-10-5G). OFDFT also finds a new metastable structure for a screw dislocation not seen in earlier simulations, in which a dislocation core on the glide plane does not dissociate into partials. The corresponding σp for this undissociated dislocation is predicted to be 1.1×10-2G, which agrees with typical Bordoni peak measurements (10-2-10-3G). The calculated σps for dissociated and undissociated screw dislocations differ by two orders of magnitude. The presence of undissociated, as well as dissociated, screw dislocations may resolve the decades-long mystery in fcc metals regarding the two orders of magnitude discrepancy in σp measurements.

  6. Magnesium Vacancy Segregation and Fast Pipe Diffusion for the ½{110} Edge Dislocation in MgO

    Science.gov (United States)

    Walker, A. M.; Zhang, F.; Wright, K.; Gale, J. D.

    2009-12-01

    The movement of point defects in minerals plays a key role in determining their rheological properties, both by permitting diffusional creep and by allowing recovery by dislocation climb. Point defect diffusion can also control the kinetics of phase transitions and grain growth, and can determine the rate of chemical equilibration between phases. Because of this, and the difficulties associated with experimental studies of diffusion, the simulation of point defect formation and migration has been a subject of considerable interest in computational mineral physics. So far, studies have concentrated on point defects moving through otherwise perfect crystals. In this work we examine the behavior of magnesium vacancies close to the core of an edge dislocation in MgO and find that the dislocation dramatically changes the behavior of the point defect. An atomic scale model of the ½{110} edge dislocation in MgO was constructed by applying the anisotropic linear elastic displacement field to the crystal structure and subsequently minimizing the energy of the crystal close to the dislocation core using a parameterized potential model. This process yielded the structure of an isolated edge dislocation in an otherwise perfect crystal. The energy cost associated with introducing magnesium vacancies around the dislocation was then mapped and compared to the formation energy of an isolated magnesium vacancy in bulk MgO. We find that the formation energy of magnesium vacancies around the dislocation mirrors the elastic strain field. Above the dislocation line σxx and σyy are negative and the strain field is compressional. Atoms are squeezed together to make room for the extra half plane effectively increasing the pressure in this region. Below the dislocation line σxx and σyy are positive and the strain field is dilatational. Planes of atoms are pulled apart to avoid a discontinuity across the glide plane and the effective pressure is decreased. In the region with a

  7. Amount of balance necessary for the independence of transfer and stair-climbing in stroke inpatients.

    Science.gov (United States)

    Fujita, Takaaki; Sato, Atsushi; Ohashi, Yuji; Nishiyama, Kazutaka; Ohashi, Takuro; Yamane, Kazuhiro; Yamamoto, Yuichi; Tsuchiya, Kenji; Otsuki, Koji; Tozato, Fusae

    2018-05-01

    The purpose of this study was to clarify the amount of balance necessary for the independence of transfer and stair-climbing in stroke patients. This study included 111 stroke inpatients. Simple and multiple regression analyses were conducted to establish the association between the FIM ® instrument scores for transfer or stair-climbing and Berg Balance Scale. Furthermore, receiver operating characteristic curves were used to elucidate the amount of balance necessary for the independence of transfer and stair-climbing. Simple and multiple regression analyses showed that the FIM ® instrument scores for transfer and stair-climbing were strongly associated with Berg Balance Scale. On comparison of the independent and supervision-dependent groups, Berg Balance Scale cut-off values for transfer and stair-climbing were 41/40 and 54/53 points, respectively. On comparison of the independent-supervision and dependent groups, the cut-off values for transfer and stair-climbing were 30/29 and 41/40 points, respectively. The calculated cut-off values indicated the amount of balance necessary for the independence of transfer and stair-climbing, with and without supervision, in stroke patients. Berg Balance Scale has a good discriminatory ability and cut-off values are clinically useful to determine the appropriate independence levels of transfer and stair-climbing in hospital wards. Implications for rehabilitation The Berg Balance Scale's (BBS) strong association with transfer and stair-climbing independence and performance indicates that establishing cut-off values is vitally important for the established use of the BBS clinically. The cut-off values calculated herein accurately demonstrate the level of balance necessary for transfer and stair-climbing independence, with and without supervision, in stroke patients. These criteria should be employed clinically for determining the level of independence for transfer and stair-climbing as well as for setting balance training

  8. The effectiveness of chocolate milk as a post-climbing recovery aid.

    Science.gov (United States)

    Potter, J; Fuller, B

    2015-12-01

    Recovery is essential to effective performance in climbing competitions which often involve repeated bouts, and sport climbing where climbers may work a route over a number of days prior to a complete ascent. This study employed a cross-over design to compare water with chocolate milk as recovery aids following an exhaustive bout of high intensity endurance climbing. Ten male climbers (age: 22±1 years; height: 178.5±7.9 cm; mass: 74.7±11.3 kg) climbed a Tredwall (Brewer Ledge M6) until volitional exhaustion. The participants consumed either water or chocolate milk 20 minutes after the climb and then again with their evening meal. The exercise protocol was repeated 24 hours after the original climb. The second condition was completed 7 days later. Workload indicators of heart rate, rate of perceived exertion (RPE), blood lactate and muscle soreness scores were recorded alongside climbing performance measures of duration and distance of the climb. A improved performance was found after the consumption of chocolate milk, with both a greater distance climbed (F(1,9)=11.704, P=0.008) and duration (F(1,9) =10.922, P=0.009), there were no differences in end of climb heart rate or RPE. Muscle soreness scores were lower three days after exercise following chocolate milk (t(8)=3.773, P=0.005). Chocolate milk as a recovery drink resulted in further sustained climbing, a decrease in muscle soreness, compared to water. It may be pertinent for climbers to consider its use as a recovery aid during repeated climbing bouts. Chocolate milk is a relatively unexplored recovery aid and warrants further attention.

  9. A Kinect-sensor-based Tracked Robot for Exploring and Climbing Stairs

    OpenAIRE

    I-Hsum Li; Wei-Yen Wang; Chien-Kai Tseng

    2014-01-01

    This paper focuses on the stair-climbing problem for a tracked robot. The tracked robot designed in this paper has the ability to explore stairs in an unknown indoor environment, climbing up and down the stairs, keeping balance while climbing, and successfully landing on the stair platform. Intelligent algorithms are proposed to explore and align stairs, and a fuzzy controller is introduced to stabilize the tracked robot's movement during the exploration. An inexpensive Kinect depth sensor is...

  10. Distributed mechatronics controller for modular wall climbing robot

    CSIR Research Space (South Africa)

    Tlale, NS

    2006-07-01

    Full Text Available - climbing robot for inspection in nuclear power plants.”, Proc. IEEE Int. Conf. on Robotics and Automation, pp. 409-1414. (Chen 2001) Chen, D-. J., 2001, “Architecture for Systematic Development of Mechatronics Software Systems”, Licentiate Thesis... provide a more cost effective solution to the problem (Luk et al 1991). Such robots are termed service robots by the International Service Robot Association (ISRA) (Pransky 1996). They are defined as machines that sense, think, and act to benefit (or...

  11. Engineers find climbing techniques work well for dam inspections

    Energy Technology Data Exchange (ETDEWEB)

    O`Shea, M.; Graves, A. [Bureau of Reclamation, Denver, CO (United States)

    1996-10-01

    Climbing techniques adopted by the Bureau of Reclamation to inspect previously inaccessible or difficult to reach features at dams are described. Following the failure of the steel radial-arm gate at Folsom Dam, engineers mounted an effort to reach and inspect the dam`s seven other spillway gates. This close-up examination was performed to: (1) determine the condition of these gates; and (2) gather clues about the failure of the one gate. The access techniques described involved mountaineering techniques, as opposed to high scaling techniques, performed with dynamic and static nylon kermantle ropes.

  12. Simulations of dislocations dynamics at a mesoscopic scale: a study of plastic flow

    International Nuclear Information System (INIS)

    Devincre, Benoit

    1993-01-01

    This work is concerned with the numerical modelling of the plastic flow of crystalline materials. A new simulation technique is proposed to simulate dislocation dynamics in two and three dimensions, in an isotropic elastic continuum. The space and time scales used (≅10 -6 m and 10 -9 s) allow to take into account the elementary properties of dislocations, their short and long range interactions, their collective properties as well as the slip geometry. This original method is able to reproduce the inherent heterogeneity of plastic flow, the self-organization properties of the dislocation microstructures and the corresponding mechanical properties. In two dimensions, the simulations of cyclic deformation lead to the formation of periodic arrays of dipolar dislocation walls. These configurations are examined and discussed. A phenomenological model is proposed which predicts their characteristic wavelength as a function of the applied stress and dislocation density. A striking resemblance between the simulated behaviour and experimental data is emphasized. In three dimensions, the simulations are more realistic and can directly be compared with the experimental data. They are, however, restricted to small plastic strains, of the order of 10 -3 . The properties examined and discussed are concerned with the forest model, the internal stress, which is shown to contribute to about 20 pc of the flow stress and the mechanisms of strain hardening in relation with the models of Friedel-Saada and Kocks. The investigation of the dislocation microstructures focusses on two essential ingredients for the occurrence of self-organization, the internal stress and the intersections of non coplanar dislocations. These results suggest that, to understand the strain hardening properties as well as the formation of dislocation cells during multiple slip, one must take into account the influence of local internal stresses and cross-slip on the mechanisms of areal glide. (author) [fr

  13. A Kinect-sensor-based Tracked Robot for Exploring and Climbing Stairs

    Directory of Open Access Journals (Sweden)

    I-Hsum Li

    2014-05-01

    Full Text Available This paper focuses on the stair-climbing problem for a tracked robot. The tracked robot designed in this paper has the ability to explore stairs in an unknown indoor environment, climbing up and down the stairs, keeping balance while climbing, and successfully landing on the stair platform. Intelligent algorithms are proposed to explore and align stairs, and a fuzzy controller is introduced to stabilize the tracked robot's movement during the exploration. An inexpensive Kinect depth sensor is the only equipment needed for all the control modes. Finally, experiments illustrate the effectiveness of the proposed approach for climbing stairs.

  14. Dislocation-induced stress in polycrystalline materials: mesoscopic simulations in the dislocation density formalism

    Science.gov (United States)

    Berkov, D. V.; Gorn, N. L.

    2018-06-01

    In this paper we present a simple and effective numerical method which allows a fast Fourier transformation-based evaluation of stress generated by dislocations with arbitrary directions and Burgers vectors if the (site-dependent) dislocation density is known. Our method allows the evaluation of the dislocation stress using a rectangular grid with shape-anisotropic discretization cells without employing higher multipole moments of the dislocation interaction coefficients. Using the proposed method, we first simulate the stress created by relatively simple non-homogeneous distributions of vertical edge and so-called ‘mixed’ dislocations in a disk-shaped sample, which is necessary to understand the dislocation behavior in more complicated systems. The main part of our research is devoted to the stress distribution in polycrystalline layers with the dislocation density rapidly varying with the distance to the layer bottom. Considering GaN as a typical example of such systems, we investigate dislocation-induced stress for edge and mixed dislocations, having random orientations of Burgers vectors among crystal grains. We show that the rapid decay of the dislocation density leads to many highly non-trivial features of the stress distributions in such layers and study in detail the dependence of these features on the average grain size. Finally we develop an analytical approach which allows us to predict the evolution of the stress variance with the grain size and compare analytical predictions with numerical results.

  15. Frenkel defect absorption on dislocations and dislocation discharge rate. Modeling determination of the absorption zone

    International Nuclear Information System (INIS)

    Mikhlin, Eh.Ya.

    1988-01-01

    A situation connected with the fact that evaluations of dislocation discharge strength which somehow or other are based on the elasticity theory in the dislocation nucleus or near it, do not lead to results complying with experimental data, is discussed. Bases of the alternative approach to this problem consisting in direct investigation into the process of Frenkel defect absorption on dislocation by its computerized simulation at the microscopic level are also presented. Methods of investigation and results are described using α dislocation in iron-alpha as an example. The concept of zones of vacancy and interstitial atom absorption on dislocation is discussed. It is shown that a spontaneous transition, performed by any of these defects near a dislocation is not always identical to absorption and usually appears to be only a part of a multistage process leading to the defect disappearance. Potential relief characteristics for vacancy movement near the dislocation are found. An area wide enough in a transverse direction is found around the dislocation. Vacncies reaching this area can be easily transported to places of their disappearance. Therefore the vacancy entry to this area is equivalent to the absorption. the procedure of simulating the atomic structure of a crystallite containing a dislocation with a step is described. Positions from which these defects perform spontaneous transitions, reaching the disappearance places are found on the dislocation near the step

  16. Quantum effect on thermally activated glide of dislocations

    International Nuclear Information System (INIS)

    Proville, Laurent; Maricina, Mihai-Cosmin; Rodney, David

    2012-01-01

    Crystal plasticity involves the motion of dislocations under stress. So far, atomistic simulations of this process have predicted Peierls stresses, the stress needed to overcome the crystal resistance in the absence of thermal fluctuations, of more than twice the experimental values, a discrepancy best-known in body-centred cubic crystals. Here we show that a large contribution arises from the crystal zero-point vibrations, which ease dislocation motion below typically half the Debye temperature. Using Wigner's quantum transition state theory in atomistic models of crystals, we found a large decrease of the kink-pair formation enthalpy due to the quantization of the crystal vibrational modes. Consequently, the flow stress predicted by Orowan's law is strongly reduced when compared with its classical approximation and in much closer agreement with experiments. This work advocates that quantum mechanics should be accounted for in simulations of materials and not only at very low temperatures or in light-atom systems. (authors)

  17. Stress-induced formation mechanism of stacking fault tetrahedra in nano-cutting of single crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Quanlong [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Bai, Qingshun [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Chen, Jiaxuan, E-mail: wangquanlong0@hit.edu.cn [Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Guo, Yongbo [Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xie, Wenkun [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-11-15

    Graphical abstract: In this paper, molecular dynamics simulation is performed to study the distribution of dislocation defects and local atomic crystal structure of single crystal copper. The stress distribution is investigated which is calculated by virial stress and analyzed by static pressure. The results are shown in (a)–(d). It is indicated that the compressive stress mainly spreads over the shear-slip zone, and the tensile stress is consisted in flank friction zone, shown in (a). The high tensile stress in subsurface is the source of stress, shown in (b). By the driven action of the stress source, the initial stair-rod dislocation nucleates. Then the dislocation climbs along four {1 1 1} planes under the stress driven action, shown in (d). Finally, the SFT is formed by the interaction of the compressive stress and the tensile stress which come from the shear-slip zone and friction zone, respectively. Besides, stair-rod dislocation, stacking faults and dislocation loop are also nucleated in the subsurface, shown in (c). Dislocation distribution, local atomic crystal structure state and stress-induced formation process of SFT by atomic. - Highlights: • A novel defect structure “stress-induced stacking fault tetrahedra” is revealed. • Atomic structural evolution and stress state distribution of the SFT are studied. • The stress-induced formation mechanism of the SFT is proposed. - Abstract: Stacking fault tetrahedra commonly existed in subsurface of deformed face center cubic metals, has great influence on machining precision and surface roughness in nano-cutting. Here we report, a stacking fault tetrahedra is formed in subsurface of workpiece during nano-cutting. The variation of cutting force and subsurface defects distribution are studied by using molecular dynamics simulation. The stress distribution is investigated which is calculated by virial stress and analyzed by static compression. The result shows that the cutting force has a rapidly

  18. Stress-induced formation mechanism of stacking fault tetrahedra in nano-cutting of single crystal copper

    International Nuclear Information System (INIS)

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Guo, Yongbo; Xie, Wenkun

    2015-01-01

    Graphical abstract: In this paper, molecular dynamics simulation is performed to study the distribution of dislocation defects and local atomic crystal structure of single crystal copper. The stress distribution is investigated which is calculated by virial stress and analyzed by static pressure. The results are shown in (a)–(d). It is indicated that the compressive stress mainly spreads over the shear-slip zone, and the tensile stress is consisted in flank friction zone, shown in (a). The high tensile stress in subsurface is the source of stress, shown in (b). By the driven action of the stress source, the initial stair-rod dislocation nucleates. Then the dislocation climbs along four {1 1 1} planes under the stress driven action, shown in (d). Finally, the SFT is formed by the interaction of the compressive stress and the tensile stress which come from the shear-slip zone and friction zone, respectively. Besides, stair-rod dislocation, stacking faults and dislocation loop are also nucleated in the subsurface, shown in (c). Dislocation distribution, local atomic crystal structure state and stress-induced formation process of SFT by atomic. - Highlights: • A novel defect structure “stress-induced stacking fault tetrahedra” is revealed. • Atomic structural evolution and stress state distribution of the SFT are studied. • The stress-induced formation mechanism of the SFT is proposed. - Abstract: Stacking fault tetrahedra commonly existed in subsurface of deformed face center cubic metals, has great influence on machining precision and surface roughness in nano-cutting. Here we report, a stacking fault tetrahedra is formed in subsurface of workpiece during nano-cutting. The variation of cutting force and subsurface defects distribution are studied by using molecular dynamics simulation. The stress distribution is investigated which is calculated by virial stress and analyzed by static compression. The result shows that the cutting force has a rapidly

  19. MRI findings in posterior disc prolapse associated with cervical fracture dislocation

    International Nuclear Information System (INIS)

    Maeda, Go; Shiba, Keiichiro; Ueta, Takayoshi; Shirasawa, Kenzo; Ohta, Hideki; Mori, Eiji; Rikimaru, Shunichi; Hida, Shinichi; Tokunaga, Masami

    1994-01-01

    Although disc injury is common in cervical spinal fractures the mechanism of disc herniation in cervical fracture dislocations is not known. This study evaluated the pathogenesis of disc hernia in cervical fracture dislocations. Twenty-two patients who underwent anterior and posterior spinal fixation were studied. Findings of preoperative magnetic resonance imaging (MRI) were compared with surgical findings. During surgery, cervical disk hernia were found in six patients (27 %), and the MRI finding of these patients were evaluated in detail. We concluded that the characteristic MRI findings of cervical disc hernia are as follows: 1) discontinuity of injured disc, 2) anterior indentation of spinal cord at the site of dislocated vertebral body, and 3) signal irregularity at the site of interspace between dislocated vertebral body and spinal cord. (author)

  20. MRI findings in posterior disc prolapse associated with cervical fracture dislocation

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Go; Shiba, Keiichiro; Ueta, Takayoshi; Shirasawa, Kenzo; Ohta, Hideki; Mori, Eiji; Rikimaru, Shunichi; Hida, Shinichi; Tokunaga, Masami (Spinal Injuries Center, Fukuoka (Japan))

    1994-03-01

    Although disc injury is common in cervical spinal fractures the mechanism of disc herniation in cervical fracture dislocations is not known. This study evaluated the pathogenesis of disc hernia in cervical fracture dislocations. Twenty-two patients who underwent anterior and posterior spinal fixation were studied. Findings of preoperative magnetic resonance imaging (MRI) were compared with surgical findings. During surgery, cervical disk hernia were found in six patients (27 %), and the MRI finding of these patients were evaluated in detail. We concluded that the characteristic MRI findings of cervical disc hernia are as follows: (1) discontinuity of injured disc, (2) anterior indentation of spinal cord at the site of dislocated vertebral body, and (3) signal irregularity at the site of interspace between dislocated vertebral body and spinal cord. (author).

  1. New vacancy source in ultrahigh-purity aluminium single crystals with a low dislocation density

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Kaoru; Yamamoto, Satoshi [Shimane Univ., Faculty of Science and Engineering, Matsue, Shimane (Japan); Morikawa, Kimihiko [Hokkaido Univ., Institute for Low Temperature Science, Sapporo, Hokkaido (Japan); Kuga, Masanori [Kanazawa Univ., Faculty of Science, Kanazawa, Ishikawa (Japan); Okamoto, Hiroyuki [Kanazawa Univ., Faculty of Medicine, Kanazawa, Ishikawa (Japan); Hashimoto, Eiji [Hiroshima Univ., Hiroshima Synchrotron Radiation Center, Higashi-Hiroshima, Hiroshima (Japan)

    2004-05-01

    The vacancy generation process in ultrahigh-purity aluminum single crystals with a low dislocation density was investigated by synchrotron radiation topography using a white X-ray beam. Some straight lines were observed in the topographys taken after temperature rose to 300degC from room temperature, and they were confirmed to be rows of successive small interstitial-type dislocation loops grown as vacancy sources. It was concluded that the thermal generation mechanism of vacancies in ultrahigh-purity aluminum single crystals with a low dislocation density consists of the following two steps. First, small interstitial loops are heterogeneously formed in the crystal lattice; second, these convert to lengthened loops with the development of screw components and finally grow into rows of dislocation loops emitting vacancies into the lattice. (author)

  2. New vacancy source in ultrahigh-purity aluminium single crystals with a low dislocation density

    International Nuclear Information System (INIS)

    Mizuno, Kaoru; Yamamoto, Satoshi; Morikawa, Kimihiko; Kuga, Masanori; Okamoto, Hiroyuki; Hashimoto, Eiji

    2004-01-01

    The vacancy generation process in ultrahigh-purity aluminum single crystals with a low dislocation density was investigated by synchrotron radiation topography using a white X-ray beam. Some straight lines were observed in the topographys taken after temperature rose to 300degC from room temperature, and they were confirmed to be rows of successive small interstitial-type dislocation loops grown as vacancy sources. It was concluded that the thermal generation mechanism of vacancies in ultrahigh-purity aluminum single crystals with a low dislocation density consists of the following two steps. First, small interstitial loops are heterogeneously formed in the crystal lattice; second, these convert to lengthened loops with the development of screw components and finally grow into rows of dislocation loops emitting vacancies into the lattice. (author)

  3. Nucleation of dislocations from [0 0 1] bicrystal interfaces in aluminum

    International Nuclear Information System (INIS)

    Spearot, Douglas E.; Jacob, Karl I.; McDowell, David L.

    2005-01-01

    It is well established from molecular dynamics simulations that grain boundaries in nanocrystalline samples serve as sources of dislocations. In this work, we use molecular dynamics simulations to study the mechanisms associated with dislocation nucleation from bicrystal [0 0 1] interfaces in aluminum. Three interface misorientations are studied, including the Σ5 (3 1 0) boundary, which has a high density of coincident atomic sites. Molecular dynamics simulations show that full dislocation loops are nucleated from each interface during uniaxial tension. After the second partial dislocation is emitted, a ledge remains within the interface at the intersection of the slip plane and the bicrystal boundary. A disclination dipole model is proposed for the structure of the distorted interface accounting for local lattice rotations and the ledge at the nucleation site

  4. Automatic stair-climbing algorithm of the planetary wheel type mobile robot in nuclear facilities

    International Nuclear Information System (INIS)

    Kim, Byung Soo; Kim, Seung Ho; Lee, Jong Min

    1995-01-01

    A mobile robot, named KAEROT, has been developed for inspection and maintenance operations in nuclear facilities. The main feature of locomotion system is the planetary wheel assembly with small wheels. This mechanism has been designed to be able to go over the stairs and obstacles with stability. This paper presents the inverse kinematic solution that is to be operated by remote control. The automatic stair climbing algorithm is also proposed. The proposed algorithms the moving paths of small wheels and calculates the angular velocity of 3 actuation wheels. The results of simulations and experiments are given for KAEROT performed on the irregular stairs in laboratory. It is shown that the proposed algorithm provides the lower inclination angle of the robot body and increases its stability during navigation. 14 figs., 16 refs. (Author)

  5. Automatic stair-climbing algorithm of the planetary wheel type mobile robot in nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung Soo; Kim, Seung Ho; Lee, Jong Min [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-10-01

    A mobile robot, named KAEROT, has been developed for inspection and maintenance operations in nuclear facilities. The main feature of locomotion system is the planetary wheel assembly with small wheels. This mechanism has been designed to be able to go over the stairs and obstacles with stability. This paper presents the inverse kinematic solution that is to be operated by remote control. The automatic stair climbing algorithm is also proposed. The proposed algorithms the moving paths of small wheels and calculates the angular velocity of 3 actuation wheels. The results of simulations and experiments are given for KAEROT performed on the irregular stairs in laboratory. It is shown that the proposed algorithm provides the lower inclination angle of the robot body and increases its stability during navigation. 14 figs., 16 refs. (Author).

  6. Motion of 1/3⟨111⟩ dislocations on Σ3 {112} twin boundaries in nanotwinned copper

    Science.gov (United States)

    Lu, N.; Du, K.; Lu, L.; Ye, H. Q.

    2014-01-01

    The atomic structure of Σ3 {112} ITBs in nanotwinned Cu is investigated by using aberration-corrected high resolution transmission electron microscopy (HRTEM) and in situ HRTEM observations. The Σ3 {112} ITBs are consisted of periodically repeated three partial dislocations. The in situ HRTEM results show that 1/3[111] partial dislocation moves on the Σ3 {112} incoherent twin boundary (ITB), which was accompanied by a migration of the ITB. A dislocation reaction mechanism is proposed for the motion of 1/3[111] Frank partial dislocation, in which the 1/3[111] partial dislocation exchanges its position with twin boundary dislocations in sequence. In this way, the 1/3[111] dislocation can move on the incoherent twin boundary in metals with low stacking fault energy. Meanwhile, the ITB will migrate in its normal direction accordingly. These results provide insight into the reaction mechanism of 1/3[111] dislocations and ITBs and the associated migration of ITBs.

  7. Distribution of distances between dislocations in different types of dislocation substructures in deformed Cu-Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Trishkina, L., E-mail: trishkina.53@mail.ru; Zboykova, N.; Koneva, N., E-mail: koneva@tsuab.ru; Kozlov, E. [Tomsk State University of Architecture and Building, 2 Solyanaya St., Tomsk, 634003 (Russian Federation); Cherkasova, T. [Tomsk State University of Architecture and Building, 2 Solyanaya St., Tomsk, 634003 (Russian Federation); National Research Tomsk Polytechnic University, 50 Lenin Ave., Tomsk, 634050 (Russian Federation)

    2016-01-15

    The aim of the investigation was the determination of the statistic description of dislocation distribution in each dislocation substructures component forming after different deformation degrees in the Cu-Al alloys. The dislocation structures were investigated by the transmission diffraction electron microscopy method. In the work the statistic description of distance distribution between the dislocations, dislocation barriers and dislocation tangles in the deformed Cu-Al alloys with different concentration of Al and test temperature at the grain size of 100 µm was carried out. It was established that the above parameters influence the dislocation distribution in different types of the dislocation substructures (DSS): dislocation chaos, dislocation networks without disorientation, nondisoriented and disoriented cells, in the walls and inside the cells. The distributions of the distances between dislocations in the investigated alloys for each DSS type formed at certain deformation degrees and various test temperatures were plotted.

  8. Distribution of distances between dislocations in different types of dislocation substructures in deformed Cu-Al alloys

    Science.gov (United States)

    Trishkina, L.; Cherkasova, T.; Zboykova, N.; Koneva, N.; Kozlov, E.

    2016-01-01

    The aim of the investigation was the determination of the statistic description of dislocation distribution in each dislocation substructures component forming after different deformation degrees in the Cu-Al alloys. The dislocation structures were investigated by the transmission diffraction electron microscopy method. In the work the statistic description of distance distribution between the dislocations, dislocation barriers and dislocation tangles in the deformed Cu-Al alloys with different concentration of Al and test temperature at the grain size of 100 µm was carried out. It was established that the above parameters influence the dislocation distribution in different types of the dislocation substructures (DSS): dislocation chaos, dislocation networks without disorientation, nondisoriented and disoriented cells, in the walls and inside the cells. The distributions of the distances between dislocations in the investigated alloys for each DSS type formed at certain deformation degrees and various test temperatures were plotted.

  9. Complete Spinal Accessory Nerve Palsy From Carrying Climbing Gear.

    Science.gov (United States)

    Coulter, Jess M; Warme, Winston J

    2015-09-01

    We report an unusual case of spinal accessory nerve palsy sustained while transporting climbing gear. Spinal accessory nerve injury is commonly a result of iatrogenic surgical trauma during lymph node excision. This particular nerve is less frequently injured by blunt trauma. The case reported here results from compression of the spinal accessory nerve for a sustained period-that is, carrying a load over the shoulder using a single nylon rope for 2.5 hours. This highlights the importance of using proper load-carrying equipment to distribute weight over a greater surface area to avoid nerve compression in the posterior triangle of the neck. The signs and symptoms of spinal accessory nerve palsy and its etiology are discussed. This report is particularly relevant to individuals involved in mountaineering and rock climbing but can be extended to anyone carrying a load with a strap over one shoulder and across the body. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  10. Electro-optical properties of dislocations in silicon and their possible application for light emitters

    Energy Technology Data Exchange (ETDEWEB)

    Arguirov, Tzanimir Vladimirov

    2007-10-14

    This thesis addresses the electro-optical properties of silicon, containing dislocations. The work demonstrates that dislocation specific radiation may provide a means for optical diagnostics of solar cell grade silicon. It provides insight into the mechanisms governing the dislocation recombination activity, their radiation, and how are they influenced by other defects present in silicon. We demonstrate that photoluminescence mapping is useful for monitoring the recombination activity in solar cell grade silicon and can be applied for identification of contaminants, based on their photoluminescence signatures. It is shown that the recombination at dislocations is strongly influenced by the presence of metals at the dislocation sites. The dislocation radiation activity correlates with their electrical activity. It is shown that the dislocation and band-to-band luminescence are essentially anti-correlated. {beta}FeSi{sub 2} precipitates, with a luminescence at 0.8 eV, were detected within the grains of block cast materials. They exhibit a characteristic feature of quantum dots, namely blinking. The second aspect of the thesis concerns the topic of silicon based light emitters for on-chip optical interconnects. The goal is an enhancement of sub-band-gap or band-to-band radiation by controlled formation of dislocation-rich areas in microelectronics-grade silicon as well as understanding of the processes governing such enhancement. For light emitters based on band-to-band emission it is shown, that internal quantum efficiency of nearly 2 % can be achieved, but the emission is essentially generated in the bulk of the wafer. On the other hand, light emitters utilizing the emission from dislocation-rich areas of a well localized wafer depth were explored. Three different methods for reproducible formation of a dislocation-rich region beneath the wafer surface were investigated and evaluated in view of their room temperature sub-band-gap radiation: (1) silicon implantation

  11. "Conjugate channeling" effect in dislocation core diffusion: carbon transport in dislocated BCC iron.

    Science.gov (United States)

    Ishii, Akio; Li, Ju; Ogata, Shigenobu

    2013-01-01

    Dislocation pipe diffusion seems to be a well-established phenomenon. Here we demonstrate an unexpected effect, that the migration of interstitials such as carbon in iron may be accelerated not in the dislocation line direction ξ, but in a conjugate diffusion direction. This accelerated random walk arises from a simple crystallographic channeling effect. c is a function of the Burgers vector b, but not ξ, thus a dislocation loop possesses the same everywhere. Using molecular dynamics and accelerated dynamics simulations, we further show that such dislocation-core-coupled carbon diffusion in iron has temperature-dependent activation enthalpy like a fragile glass. The 71° mixed dislocation is the only case in which we see straightforward pipe diffusion that does not depend on dislocation mobility.

  12. Pregnant Women in Sport Climbing - Is there a Higher Risk for Preterm Birth?

    Science.gov (United States)

    Drastig, Jan; Hillebrandt, David; Rath, Werner; Küpper, Thomas

    2017-02-01

    Sport climbing is a popular recreational sport with an increasing proportion of female athletes. International recommendations emphasize the physical and mental benefits of regular sport activity during any uncomplicated pregnancy. In this context, sport climbing is associated with a high risk potential.The aim of this study was to examine if there is a higher risk for preterm birth in active climbing athletes.Original manuscript.A retrospective self-report online survey in the German language collected data between September 2012 and November 2013. In addition to anthropometric and demographic data, data on climbing experience, preferred climbing discipline, skill level and changes of climbing habits during pregnancy, known risk factors for preterm birth and information on delivery and the newborn were requested. The rate of preterm birth of the survey was tested with Fisher's exact test with information from the German Federal Statistical Office.Sample size was 32. 72% had a university degree, 81% were primiparous, all were singleton pregnancies. A 33 rd questionnaire was excluded because of described preeclampsia. Age ranged between 21 and 39 years, climbing experience before pregnancy between 2 and 24 years, and skill level before pregnancy between 4 and 7 on the UIAA scale (International Climbing and Mountaineering Federation). Half of the women climbed until the 36 th week and 90% adjusted their climbing habits mostly by reducing climbing difficulty and doing more top roping. 2 preterm births in the 36 th week of gestation were found (2 from 15, p=0.36). According to the data from the German Federal Statistical Office, 8.9% births in the year 2013 in Germany were preterm.This is the first study investigating the risk of preterm birth in recreational sport climbing athletes. No significantly higher proportion of preterm birth could be found. Limitations are small sample size and high social status of participants. What is known about the subject: Sport

  13. Motion of Defect Clusters and Dislocations at a Crack Tip of Irradiated Material

    International Nuclear Information System (INIS)

    Moon, Won Jin; Kwon, Sang Chul; Kim, Whung Whoe

    2007-01-01

    Effects of defect clusters on mechanical properties of irradiated materials have not been clarified until now. Two radiation hardening models have been proposed. One is a dispersed barrier hardening mechanism based on the Orowan hardening model. This explains defect clusters as barriers to a dislocation motion. Generally the dislocation would rather shear or remove the defect clusters than make so-called Orowan loops. And the other is a cascade induced source hardening mechanism, which explains defect clusters as a Cottrell atmosphere for dislocation motions. However, the above mechanisms can not explain the microstructure of deformed material after irradiation and the phenomenon of yield softening. These mechanisms are based on an immobility of clusters. But we observed defect clusters could move into a specific crystallographic direction easily. Through 3 times of High Voltage Electron Microscope analysis, defect clusters have been observed to make one dimensional motion without applied external stress. If very small defect clusters could move under a stress gradient due to interactions between clusters, we can suggest that the clusters will move more actively when a stress gradient is applied externally. In-situ tensile test at TEM, we confirmed that kind of motion. We suggest defect clusters can move into crack tip, a stress-concentrated area due to tensile stress gradient and dislocations move out from the area by shear stress. Therefore radiation hardening can be explained agglomeration of defect clusters at stress concentrated area prohibits a generation of dislocation and make an increase of yield point

  14. coccygectomy for chronic, symptomatic coccygeal dislocation

    African Journals Online (AJOL)

    evidence revealed anterior dislocation of terminal two coccygeal vertebrae ... a prominent terminal coccygeal curvature. The patient presented during her first visit with. CT SCAN .... physiotherapy, modified wedge-shaped coccygeal foam pads ...

  15. Posterior dislocation of the sternoclavicular joint leading to mediastinal compression.

    Science.gov (United States)

    Jougon, J B; Lepront, D J; Dromer, C E

    1996-02-01

    Dislocations of the sternoclavicular joint are uncommon, and the posterior variety have a potential for considerable morbidity. We report a case with compression of the vital structures within the superior mediastinum. It was a rugby player getting run over by the scrum. The mechanism was an indirect force exerted forward and laterally against the shoulder. The patient complained of pain and dysphagia. A systolic right cervical murmur was heard. Angiography was normal and esophagography showed extrinsic esophageal compression. Surgical reduction was performed because there was a slight pneumomediastinum on the computed tomography. This case report demonstrates the mechanism, complications, and treatment of such a lesion.

  16. Mechanism of Dynamic Recrystallization and Evolution of Texture in the Hot Working Domains of the Processing Map for Mg-4Al-2Ba-2Ca Alloy

    Directory of Open Access Journals (Sweden)

    Kalidass Suresh

    2017-12-01

    Full Text Available The occurrence of dynamic recrystallization (DRX and its effect on the evolution of texture during uniaxial compression of a creep-resistant cast Mg-4Al-2Ba-2Ca alloy in the temperature range of 260–500 °C and strain rate range of 0.0003–10 s−1 has been studied using transmission electron microscopy and electron backscatter diffraction techniques with a view to understand its mechanism. For this purpose, a processing map has been developed for this alloy, which revealed two domains of DRX in the temperature and strain rate ranges of: (1 300–390 °C/0.0003–0.001 s−1 and (2 400–500 °C/0.0003–0.5 s−1. In Domain 1, DRX occurs by basal slip and recovery by dislocation climb, as indicated by the presence of planar slip bands and high dislocation density leading to tilt boundary formation and a low-intensity basal texture. On the other hand, DRX in Domain 2 occurs by second order pyramidal slip and recovery by cross-slip since the microstructure revealed tangled dislocation structure with twist boundaries and randomized texture. The high volume content of intermetallic phases Mg21Al3Ba2 and (Al,Mg2Ca eutectic phase is considered to be responsible for the observed hot deformation behavior.

  17. Posterior atlantoaxial dislocation without odontoid fracture

    International Nuclear Information System (INIS)

    Chaudhary, Reema; Raut, Abhijit; Chaudhary, Kshitij; Metkar, Umesh; Rathod, Ashok; Sanghvi, Darshana

    2008-01-01

    We report a case of posterior atlantoaxial dislocation without a fracture of the odontoid in a 35-year-old woman. There have been nine reported cases of similar injury in the English literature. The integrity of the transverse ligament following posterior atlantoaxial dislocations has not been well documented in these reports. In the present case, MRI revealed an intact transverse ligament, which probably contributed to the stability of the C1-C2 complex following closed reduction. (orig.)

  18. Hip dysplasia and congenital hip dislocation

    Energy Technology Data Exchange (ETDEWEB)

    Lingg, G.; Nebel, G.; von Torklus, D.

    1981-11-01

    In human genetics and orthopedics quite different answers have been given to the question of hereditary transmission and frequency of hip dysplasia in families of children with congenital hip dislocation. We therefore have made roentgenometric measurements of 110 parents of children with congenital hip dislocation. In 25% we found abnormal flat acetabulae, whereas 12% had pathologic deep hips. This may propose a new concept of morphology of congenital hip dysplasia.

  19. Isolated Proximal Tibiofibular Dislocation during Soccer

    Directory of Open Access Journals (Sweden)

    Casey Chiu

    2015-01-01

    Full Text Available Proximal tibiofibular dislocations are rarely encountered in the Emergency Department (ED. We present a case involving a man presenting to the ED with left knee pain after making a sharp left turn on the soccer field. His physical exam was only remarkable for tenderness over the lateral fibular head. His X-rays showed subtle abnormalities of the tibiofibular joint. The dislocation was reduced and the patient was discharged from the ED with orthopedic follow-up.

  20. Posterior sternoclavicular dislocation: an American football injury

    DEFF Research Database (Denmark)

    Marker, L B; Klareskov, B

    1996-01-01

    Posterior dislocation of the sternoclavicular joint is uncommon, accounting for less than 0.1% of all dislocations. Since 1824 a little more than 100 cases have been reported, and the majority in the past 20 years. A review of published reports suggests that this injury is seen particularly in co...... in connection with American football. A typical case is described. The importance of this injury is that there is often a delay in diagnosis with potentially serious complications....

  1. Steps and dislocations in cubic lyotropic crystals

    International Nuclear Information System (INIS)

    Leroy, S; Pieranski, P

    2006-01-01

    It has been shown recently that lyotropic systems are convenient for studies of faceting, growth or anisotropic surface melting of crystals. All these phenomena imply the active contribution of surface steps and bulk dislocations. We show here that steps can be observed in situ and in real time by means of a new method combining hygroscopy with phase contrast. First results raise interesting issues about the consequences of bicontinuous topology on the structure and dynamical behaviour of steps and dislocations

  2. Compound transstyloid, transscaphoid, perilunate fracture dislocation

    Directory of Open Access Journals (Sweden)

    Nadeem Ali

    2013-01-01

    Full Text Available Compound fracture dislocations of proximal carpal bones are very rare. We report a 26-year-old male, Defense personnel by profession, who sustained a compound Gustilo Anderson type IIIA transstyloid, transscaphoid, perilunate dislocation. The patient underwent primary proximal row carpectomy and stabilization with uni-planar, uni-lateral external fixator, and K-Wires. On follow-up after a year, the patient had almost negligible range of motion around wrist without any significant discomfort.

  3. Dislocation dynamics of web type silicon ribbon

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, Jr, O W; Tsai, C T; DeAngelis, R J

    1987-03-01

    Silicon ribbon grown by the dendritic web process passes through a rapidly changing thermal profile in the growth direction. This rapidly changing profile induces stresses which produce changes in the dislocation density in the ribbon. A viscoplastic material response function (Haasen-Sumino model) is used herein to calculate the stresses and the dislocation density at each point in the silicon ribbon. The residual stresses are also calculated.

  4. Evolution of dislocation structures following a change in loading conditions studied by in situ high resolution reciprocal space mapping

    DEFF Research Database (Denmark)

    Wejdemann, Christian

    or to a strain of 7% at a temperature of -196 ○C, and the samples were characterized by electron microscopy and mechanical tests. Transmission electron microscopy showed that the pre-deformation produced a characteristic dislocation cell structure consisting of regions with relatively high dislocation density...... the pre-deformation axis. In the X-ray diffraction experiments a technique was employed with which it is possible to obtain high-resolution reciprocal space maps from individual bulk grains. The high-resolution reciprocal space maps contain features related to the dislocation structure in the grains......: A spread-out ‘cloud’ of low intensity caused by diffraction from the dislocation walls and a number of sharp peaks of high intensity caused by diffraction from the individual subgrains. By acquiring reciprocal space maps at a number of different strain levels the evolution of the dislocation structures can...

  5. Reliability and Validity of Finger Strength and Endurance Measurements in Rock Climbing

    Science.gov (United States)

    Michailov, Michail Lubomirov; Baláš, Jirí; Tanev, Stoyan Kolev; Andonov, Hristo Stoyanov; Kodejška, Jan; Brown, Lee

    2018-01-01

    Purpose: An advanced system for the assessment of climbing-specific performance was developed and used to: (a) investigate the effect of arm fixation (AF) on construct validity evidence and reliability of climbing-specific finger-strength measurement; (b) assess reliability of finger-strength and endurance measurements; and (c) evaluate the…

  6. Does a video displaying a stair climbing model increase stair use in a worksite setting?

    Science.gov (United States)

    Van Calster, L; Van Hoecke, A-S; Octaef, A; Boen, F

    2017-08-01

    This study evaluated the effects of improving the visibility of the stairwell and of displaying a video with a stair climbing model on climbing and descending stair use in a worksite setting. Intervention study. Three consecutive one-week intervention phases were implemented: (1) the visibility of the stairs was improved by the attachment of pictograms that indicated the stairwell; (2) a video showing a stair climbing model was sent to the employees by email; and (3) the same video was displayed on a television screen at the point-of-choice (POC) between the stairs and the elevator. The interventions took place in two buildings. The implementation of the interventions varied between these buildings and the sequence was reversed. Improving the visibility of the stairs increased both stair climbing (+6%) and descending stair use (+7%) compared with baseline. Sending the video by email yielded no additional effect on stair use. By contrast, displaying the video at the POC increased stair climbing in both buildings by 12.5% on average. One week after the intervention, the positive effects on stair climbing remained in one of the buildings, but not in the other. These findings suggest that improving the visibility of the stairwell and displaying a stair climbing model on a screen at the POC can result in a short-term increase in both climbing and descending stair use. Copyright © 2017 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  7. Effects of sports climbing on muscle performance and balance for patients with multiple sclerosis

    DEFF Research Database (Denmark)

    Jolk, Christoph; Dalgas, Ulrik; Osada, Nani

    2015-01-01

    Background/Aims: The potential benefits of sports climbing for many diseases have not been investigated. The aim of this case series was to examine whether sports climbing is feasible and whether it can influence isometric muscle performance and balance in people with multiple sclerosis (MS). Met...

  8. Stair climbing is more detrimental to the cement in hip replacement than walking

    NARCIS (Netherlands)

    Stolk, J.; Verdonschot, N.J.J.; Huiskes, H.W.J.

    2002-01-01

    Stair climbing may be detrimental to cemented total hip arthroplasties, because it subjects the reconstruction to high torsional loads. The current study investigated how stair climbing contributes to damage accumulation in the cement around a femoral stem compared with walking, taking into account

  9. Muscle fiber type distribution in climbing Hawaiian gobioid fishes: ontogeny and correlations with locomotor performance.

    Science.gov (United States)

    Cediel, Roberto A; Blob, Richard W; Schrank, Gordon D; Plourde, Robert C; Schoenfuss, Heiko L

    2008-01-01

    Three species of Hawaiian amphidromous gobioid fishes are remarkable in their ability to climb waterfalls up to several hundred meters tall. Juvenile Lentipes concolor and Awaous guamensis climb using rapid bursts of axial undulation, whereas juvenile Sicyopterus stimpsoni climb using much slower movements, alternately attaching oral and pelvic sucking disks to the substrate during prolonged bouts of several cycles. Based on these differing climbing styles, we hypothesized that propulsive musculature in juvenile L. concolor and A. guamensis would be dominated by white muscle fibers, whereas S. stimpsoni would exhibit a greater proportion of red muscle fibers than other climbing species. We further predicted that, because adults of these species shift from climbing to burst swimming as their main locomotor behavior, muscle from adult fish of all three species would be dominated by white fibers. To test these hypotheses, we used ATPase assays to evaluate muscle fiber type distribution in Hawaiian climbing gobies for three anatomical regions (midbody, anal, and tail). Axial musculature was dominated by white muscle fibers in juveniles of all three species, but juvenile S. stimpsoni had a significantly greater proportion of red fibers than the other two species. Fiber type proportions of adult fishes did not differ significantly from those of juveniles. Thus, muscle fiber type proportions in juveniles appear to help accommodate differences in locomotor demands among these species, indicating that they overcome the common challenge of waterfall climbing through both diverse behaviors and physiological specializations.

  10. The epidemiology of shoulder dislocations in Oslo.

    Science.gov (United States)

    Liavaag, S; Svenningsen, S; Reikerås, O; Enger, M; Fjalestad, T; Pripp, A H; Brox, J I

    2011-12-01

    There are few previous studies on the incidence of shoulder dislocation in the general population. The aim of the study was to report the incidence of acute shoulder dislocations in the capital of Norway (Oslo) in 2009. Patients of all ages living in Oslo, sustaining a dislocation of the glenohumeral joint, were identified using electronic diagnosis registers, patient protocols, radiological registers of the hospitals, and the Norwegian Patient Register (NPR). The overall incidence rate was 56.3 [95% confidence interval (CI) 50.2-62.4] per 100,000 person-years, with rates of 82.2 (95% CI 71.7-92.8) and 30.9 (95% CI 24.5-37.3) in men and women, respectively. The incidence of primary dislocations was 26.2 (95% CI 22.1-30.4). The overall incidence of shoulder dislocations in Oslo was higher than previously reported incidences. The incidence of primary dislocations was also higher than that in previously reported studies for the general population but it was close to the incidence reported in Malmø, Sweden. © 2011 John Wiley & Sons A/S.

  11. Generalized dynamics of moving dislocations in quasicrystals

    International Nuclear Information System (INIS)

    Agiasofitou, Eleni; Lazar, Markus; Kirchner, Helmut

    2010-01-01

    A theoretical framework for dislocation dynamics in quasicrystals is provided according to the continuum theory of dislocations. Firstly, we present the fundamental theory for moving dislocations in quasicrystals giving the dislocation density tensors and introducing the dislocation current tensors for the phonon and phason fields, including the Bianchi identities. Next, we give the equations of motion for the incompatible elastodynamics as well as for the incompatible elasto-hydrodynamics of quasicrystals. We continue with the derivation of the balance law of pseudomomentum thereby obtaining the generalized forms of the Eshelby stress tensor, the pseudomomentum vector, the dynamical Peach-Koehler force density and the Cherepanov force density for quasicrystals. The form of the dynamical Peach-Koehler force for a straight dislocation is obtained as well. Moreover, we deduce the balance law of energy that gives rise to the generalized forms of the field intensity vector and the elastic power density of quasicrystals. The above balance laws are produced for both models. The differences between the two models and their consequences are revealed. The influences of the phason fields as well as of the dynamical terms are also discussed.

  12. Small-scale dislocation plasticity in strontium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Stukowski, Alexander; Javaid, Farhan; Durst, Karsten; Albe, Karsten [Technische Universitaet Darmstadt (Germany)

    2016-07-01

    Strontium titanate (STO) is an optically transparent perovskite oxide ceramic material. In contrast to other ceramics, single crystal STO plastically deforms under ambient condition, without showing a phase transition or early fracture. This remarkable ductility makes it a prime candidate for different technological applications. However, while the mechanical behavior of bulk STO has been studied extensively using uniaxial compression testing techniques, little is known about the local, small-scale behavior and the details of dislocation-based nanoplasticity in this perovskite material. In this contribution we compare results obtained from new nanoindentation experiments and corresponding large-scale molecular dynamics simulations. The evolution of the plastic zone and dislocation structures that form underneath the indenter is investigated using etch-pit methods in experiments and a novel three-dimensional defect identification technique in atomistic computer models. The latter allows tracing the evolution of the complete dislocation line network as function of indentation depth, quantifying the activity of different slip systems, and correlating this information with the recorded load-displacement curves and hardness data.

  13. The dislocation-internal friction peak γ in tantalum

    International Nuclear Information System (INIS)

    Baur, J.; Benoit, W.; Schultz, H.

    1989-01-01

    Torsion-pendulum measurements were carried out on high-purity single crystal specimens of tantalum, having extremely low oxygen contents ( 2 peak, which appears close to γ is small traces of oxygen are presents. The γ 2 peak was formerly explained as a ''dislocation-enhanced Snoek peak''. The γ peak recovers at the peak temperature, whereas the γ 2 peak is more stable. On the basis of their results, and making use of earlier investigations of Rodrian and Schultz, the authors suggest that γ 2 is modified γ relaxation, related to screw-dislocation segments, stabilized by oxygen-decorated kinks. The stability of the γ 2 peak allows an accurate determination of the activation energy, found to be 1.00 +- 0.03 eV. This value is distinctly lower than the activation energy of the oxygen Snoek effect (1.10 eV) and is related here to the mechanism of ''kink-pair formation'' in screw dislocations, as the original γ peak. The numerical value is compatible with recent values derived from flow-stress measurements. The peak γ 2 shows increasing stability with increasing oxygen content. This is explained by single- and multi-decorated kinks

  14. Unreduced elbow dislocation treated by Ilizarov method: A case report

    Directory of Open Access Journals (Sweden)

    Jovanović Vesna

    2010-01-01

    Full Text Available Introduction. Unreduced elbow dislocation is every elbow dislocation older than one week. It may be treated non-operatively (with prereduction traction or surgically. The treatment goals are: to reduce pain, to establish joint stability and movements. There are a lot of techniques described in literature, series are relatively small, mostly case reports. Multicentric studies have not been done. That is why there are no precisely defined therapeutic protocols. Every contribution in the field is valuable. Case Outline. A 43-year-old patient was admitted for the treatment of a three-month old unreduced elbow dislocation. Treatment has been done by Ilizarov method, using the reduction mechanism. The reduction process lasted two weeks. The Ilizarov device was removed two months after the operation, then physical therapy was started. Normal anatomical and functional findings were established five months following the operation. Conclusion. The presented method of treatment has been found as very useful, having in mind that it may solve two problems: difficult reduction and redislocation. Reduction may be done without the joint opening, step by step; retention of the reduced joint may be easily done. Physical therapy may be started without Ilizarov device removal, movements of flexion and extension may be improved without any lateral instability. There is no iatrogenic intraarticular damage, so there are no secondary joint degeneration, pains and invalidity.

  15. Climbing fibers predict movement kinematics and performance errors.

    Science.gov (United States)

    Streng, Martha L; Popa, Laurentiu S; Ebner, Timothy J

    2017-09-01

    Requisite for understanding cerebellar function is a complete characterization of the signals provided by complex spike (CS) discharge of Purkinje cells, the output neurons of the cerebellar cortex. Numerous studies have provided insights into CS function, with the most predominant view being that they are evoked by error events. However, several reports suggest that CSs encode other aspects of movements and do not always respond to errors or unexpected perturbations. Here, we evaluated CS firing during a pseudo-random manual tracking task in the monkey ( Macaca mulatta ). This task provides extensive coverage of the work space and relative independence of movement parameters, delivering a robust data set to assess the signals that activate climbing fibers. Using reverse correlation, we determined feedforward and feedback CSs firing probability maps with position, velocity, and acceleration, as well as position error, a measure of tracking performance. The direction and magnitude of the CS modulation were quantified using linear regression analysis. The major findings are that CSs significantly encode all three kinematic parameters and position error, with acceleration modulation particularly common. The modulation is not related to "events," either for position error or kinematics. Instead, CSs are spatially tuned and provide a linear representation of each parameter evaluated. The CS modulation is largely predictive. Similar analyses show that the simple spike firing is modulated by the same parameters as the CSs. Therefore, CSs carry a broader array of signals than previously described and argue for climbing fiber input having a prominent role in online motor control. NEW & NOTEWORTHY This article demonstrates that complex spike (CS) discharge of cerebellar Purkinje cells encodes multiple parameters of movement, including motor errors and kinematics. The CS firing is not driven by error or kinematic events; instead it provides a linear representation of each

  16. Representation of dislocation cores using Nye tensor distributions

    International Nuclear Information System (INIS)

    Hartley, Craig S.; Mishin, Y.

    2005-01-01

    This paper demonstrates how the cores of atomistically simulated dislocations in Cu and Al can be represented by a distribution of infinitesimal dislocations described by appropriate components of the Nye tensor. Components calculated from atomic positions in the dislocated crystal are displayed as contour plots on the plane normal to the dislocation line. The method provides an accurate and instructive means for characterizing dislocation core structures and calculating the total Burgers vector

  17. Non-synaptic signaling from cerebellar climbing fibers modulates Golgi cell activity.

    Science.gov (United States)

    Nietz, Angela K; Vaden, Jada H; Coddington, Luke T; Overstreet-Wadiche, Linda; Wadiche, Jacques I

    2017-10-13

    Golgi cells are the principal inhibitory neurons at the input stage of the cerebellum, providing feedforward and feedback inhibition through mossy fiber and parallel fiber synapses. In vivo studies have shown that Golgi cell activity is regulated by climbing fiber stimulation, yet there is little functional or anatomical evidence for synapses between climbing fibers and Golgi cells. Here, we show that glutamate released from climbing fibers activates ionotropic and metabotropic receptors on Golgi cells through spillover-mediated transmission. The interplay of excitatory and inhibitory conductances provides flexible control over Golgi cell spiking, allowing either excitation or a biphasic sequence of excitation and inhibition following single climbing fiber stimulation. Together with prior studies of spillover transmission to molecular layer interneurons, these results reveal that climbing fibers exert control over inhibition at both the input and output layers of the cerebellar cortex.

  18. Penyelesaian Masalah 8-Puzzle dengan Algoritma Steepest-Ascent Hill Climbing

    Directory of Open Access Journals (Sweden)

    David Abraham

    2016-03-01

    Full Text Available 8 puzzle merupakan salah satu implementasi dari Artificial Intelegence. Dalam proses penyelesaiannya banyak terdapat algoritma-algoritma pencarian yang dapat diterapkan. Solusi 8 puzzle akan lebih cepat diperoleh jika digunakan prinsip array dengan variasi algoritma Steepest-Ascent Hill Climbing (Hill Climbing dengan memilih kemiringan yang paling tajam / curam dengan parameter heuristik posisi yang benar dan heuristik jarak serta dikombinasikan dengan LogList sebagai penyimpanan state state yang pernah dilalui untuk menanggulangi permasalah pada algoritma hill climbing itu sendiri dan terhindar dari looping state yang pernah dilalui. Metode-metode yang termasuk ke dalam teknik pencarian yang berdasarkan pada fungsi heuristik salah satu diantaranya adalah Hill Climbing, Best First Search, A* (A Bintang. Loglist merupakan tempat penyimpanan setiap kunjungan dari state-state puzzle yang telah dilakukan untuk menghindari looping atau pengulangan terhadap state yang pernah dilalui. Untuk menanggulangi permasalahan pada SteepestAscent Hill Climbing.

  19. Ab initio modeling of interactions between screw dislocations and interstitial solutes in body-centered cubic transition metals

    International Nuclear Information System (INIS)

    Luthi, Berengere

    2017-01-01

    In order to improve our understanding of alloy plasticity, it is important to describe at the atomic scale the dislocation-solute interactions and their effect on the dislocation mobility. This work focuses on the body-centered cubic (BCC) transition metals in presence of interstitial solute atoms, in particular the Fe-C system. Using Density Functional Theory (DFT) calculations, the core structure of the screw dislocation of Burgers vector b=1/2<111> was investigated in iron in presence of boron, carbon, nitrogen and oxygen solute atoms, and in BCC metals from group 5 (V, Nb, Ta) and 6 (Mo, W) in presence of carbon solutes. A core reconstruction is evidenced in iron and group 6 metals, along with a strong attractive dislocation-solute interaction energy: the dislocation goes from easy to hard configuration where the solute atoms are at the center of trigonal prisms along the dislocation line. A different behavior is observed in group 5 metals, for which the most stable configuration for the carbon atom is an octahedral site in the vicinity of the dislocation, without any core reconstruction. This group tendency is linked to the structure of mono-carbides. Consequences of the strongly attractive dislocation-solute interactions in Fe(C) were then investigated. First the equilibrium segregation close to the dislocation core was studied using a mean-field model and Monte Carlo simulations. Over a wide temperature range, from 200 to 700 K, a strong segregation is predicted with every other prismatic site occupied by a carbon atom. Then, the mobility of the dislocation in presence of carbon atoms was investigated by modeling the double-kink mechanism with DFT, in relation with experimental data obtained with transmission electron microscopy. The activation energy obtained for this atomic scale mechanism is in good agreement with experimental values for the dynamic strain aging. (author) [fr

  20. The Peierls stress of the moving [Formula: see text] screw dislocation in Ta.

    Science.gov (United States)

    Liu, Ruiping; Wang, Shaofeng; Wu, Xiaozhi

    2009-08-26

    The Peierls stress of the moving [Formula: see text] screw dislocation with a planar and non-dissociated core structure in Ta has been calculated. The elastic strain energy which is associated with the discrete effect of the lattice and ignored in classical Peierls-Nabarro (P-N) theory has been taken into account in calculating the Peierls stress, and it can make the Peierls stress become smaller. The Peierls stress we obtain is very close to the experimental data. As shown in the numerical calculations and atomistic simulations, the core structure of the screw dislocation undergoes significant changes under the explicit stress before the screw dislocation moves. Moreover, the mechanism of the screw dislocation is revealed by our results and the experimental data that the screw dislocation retracts its extension in three {110} planes and transforms its dissociated core structure into a planar configuration. Therefore, the core structure of the moving [Formula: see text] screw dislocation in Ta is proposed to be planar.

  1. The Peierls stress of the moving 1/2{110} screw dislocation in Ta

    International Nuclear Information System (INIS)

    Liu Ruiping; Wang Shaofeng; Wu Xiaozhi

    2009-01-01

    The Peierls stress of the moving 1/2 {110} screw dislocation with a planar and non-dissociated core structure in Ta has been calculated. The elastic strain energy which is associated with the discrete effect of the lattice and ignored in classical Peierls-Nabarro (P-N) theory has been taken into account in calculating the Peierls stress, and it can make the Peierls stress become smaller. The Peierls stress we obtain is very close to the experimental data. As shown in the numerical calculations and atomistic simulations, the core structure of the screw dislocation undergoes significant changes under the explicit stress before the screw dislocation moves. Moreover, the mechanism of the screw dislocation is revealed by our results and the experimental data that the screw dislocation retracts its extension in three {110} planes and transforms its dissociated core structure into a planar configuration. Therefore, the core structure of the moving 1/2 {110} screw dislocation in Ta is proposed to be planar.

  2. Dislocation creation and void nucleation in FCC ductile metals under tensile loading: a general microscopic picture.

    Science.gov (United States)

    Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng

    2014-11-10

    Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies.

  3. Dislocations and elementary processes of plasticity in FCC metals: atomic scale simulations

    International Nuclear Information System (INIS)

    Rodney, D.

    2000-01-01

    We present atomic-scale simulations of two elementary processes of FCC crystal plasticity. The first study consists in the simulation by molecular dynamics, in a nickel crystal, of the interactions between an edge dislocation and glissile interstitial loops of the type that form under irradiation in displacement cascades. The simulations show various atomic-scale interaction processes leading to the absorption and drag of the loops by the dislocation. These reactions certainly contribute to the formation of the 'clear bands' observed in deformed irradiated materials. The simulations also allow to study quantitatively the role of the glissile loops in irradiation hardening. In particular, dislocation unpinning stresses for certain pinning mechanisms are evaluated from the simulations. The second study consists first in the generalization in three dimensions of the quasi-continuum method (QCM), a multi-scale simulation method which couples atomistic techniques and the finite element method. In the QCM, regions close to dislocation cores are simulated at the atomic-scale while the rest of the crystal is simulated with a lower resolution by means of a discretization of the displacement fields using the finite element method. The QCM is then tested on the simulation of the formation and breaking of dislocation junctions in an aluminum crystal. Comparison of the simulations with an elastic model of dislocation junctions shows that the structure and strength of the junctions are dominated by elastic line tension effects, as is assumed in classical theories. (author)

  4. X-Ray Microbeam Measurements of Individual Dislocation Cell Elastic Strains in Deformed Single-Crystal Copper

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Lyle E. [National Institute of Standards and Technology (NIST); Larson, Ben C [ORNL; Yang, Wenge [ORNL; Kassner, Michael E. [University of Southern California; Tischler, Jonathan Zachary [ORNL; Delos-Reyes, Michael A. [University of Southern California; Fields, Richard J. [National Institute of Standards and Technology (NIST); Liu, Wenjun [ORNL

    2006-01-01

    The distribution of elastic strains at the submicrometre length scale within deformed metal single crystals has remarkably broad implications for our understanding of important physical phenomena. These include the evolution of the complex dislocation structures that govern mechanical behaviour within individual grains, the transport of dislocations through such structures, changes in mechanical properties that occur during reverse loading (for example, sheet-metal forming and fatigue), and the analyses of diffraction line profiles for microstructural studies of these phenomena.

  5. Formation of stacking faults and the screw dislocation-driven growth: a case study of aluminum nitride nanowires.

    Science.gov (United States)

    Meng, Fei; Estruga, Marc; Forticaux, Audrey; Morin, Stephen A; Wu, Qiang; Hu, Zheng; Jin, Song

    2013-12-23

    Stacking faults are an important class of crystal defects commonly observed in nanostructures of close packed crystal structures. They can bridge the transition between hexagonal wurtzite (WZ) and cubic zinc blende (ZB) phases, with the most known example represented by the "nanowire (NW) twinning superlattice". Understanding the formation mechanisms of stacking faults is crucial to better control them and thus enhance the capability of tailoring physical properties of nanomaterials through defect engineering. Here we provide a different perspective to the formation of stacking faults associated with the screw dislocation-driven growth mechanism of nanomaterials. With the use of NWs of WZ aluminum nitride (AlN) grown by a high-temperature nitridation method as the model system, dislocation-driven growth was first confirmed by transmission electron microscopy (TEM). Meanwhile numerous stacking faults and associated partial dislocations were also observed and identified to be the Type I stacking faults and the Frank partial dislocations, respectively, using high-resolution TEM. In contrast, AlN NWs obtained by rapid quenching after growth displayed no stacking faults or partial dislocations; instead many of them had voids that were associated with the dislocation-driven growth. On the basis of these observations, we suggest a formation mechanism of stacking faults that originate from dislocation voids during the cooling process in the syntheses. Similar stacking fault features were also observed in other NWs with WZ structure, such as cadmium sulfide (CdS) and zinc oxide (ZnO).

  6. On the static structural design of climbing robots: part 2.

    Science.gov (United States)

    Ahmed, Ausama Hadi; Menon, Carlo

    This manuscript is the second of two parts of a work investigating optimal configurations of legged climbing robots while loitering on vertical surfaces. In this Part 2, a structural analysis based on the finite element method, specifically the stiffness method, is performed to address the problem. Parameters that are investigated in this Part 2 include the inclination of both the body and the legs of the robot. Outcomes of the performed study are validated by analyzing the posture of 150 ants when loitering on vertical surfaces. The obtained validation ensures the predictions of the developed structural model are correct and can be used to identify optimal configurations of legged robots when loitering on vertical surfaces.

  7. Performance and scaling of a novel locomotor structure: adhesive capacity of climbing gobiid fishes.

    Science.gov (United States)

    Maie, Takashi; Schoenfuss, Heiko L; Blob, Richard W

    2012-11-15

    Many species of gobiid fishes adhere to surfaces using a sucker formed from fusion of the pelvic fins. Juveniles of many amphidromous species use this pelvic sucker to scale waterfalls during migrations to upstream habitats after an oceanic larval phase. However, adults may still use suckers to re-scale waterfalls if displaced. If attachment force is proportional to sucker area and if growth of the sucker is isometric, then increases in the forces that climbing fish must resist might outpace adhesive capacity, causing climbing performance to decline through ontogeny. To test for such trends, we measured pressure differentials and adhesive suction forces generated by the pelvic sucker across wide size ranges in six goby species, including climbing and non-climbing taxa. Suction was achieved via two distinct growth strategies: (1) small suckers with isometric (or negatively allometric) scaling among climbing gobies and (2) large suckers with positively allometric growth in non-climbing gobies. Species using the first strategy show a high baseline of adhesive capacity that may aid climbing performance throughout ontogeny, with pressure differentials and suction forces much greater than expected if adhesion were a passive function of sucker area. In contrast, large suckers possessed by non-climbing species may help compensate for reduced pressure differentials, thereby producing suction sufficient to support body weight. Climbing Sicyopterus species also use oral suckers during climbing waterfalls, and these exhibited scaling patterns similar to those for pelvic suckers. However, oral suction force was considerably lower than that for pelvic suckers, reducing the ability for these fish to attach to substrates by the oral sucker alone.

  8. Dislocations and Plastic Deformation in MgO Crystals: A Review

    Directory of Open Access Journals (Sweden)

    Jonathan Amodeo

    2018-05-01

    Full Text Available This review paper focuses on dislocations and plastic deformation in magnesium oxide crystals. MgO is an archetype ionic ceramic with refractory properties which is of interest in several fields of applications such as ceramic materials fabrication, nano-scale engineering and Earth sciences. In its bulk single crystal shape, MgO can deform up to few percent plastic strain due to dislocation plasticity processes that strongly depend on external parameters such as pressure, temperature, strain rate, or crystal size. This review describes how a combined approach of macro-mechanical tests, multi-scale modeling, nano-mechanical tests, and high pressure experiments and simulations have progressively helped to improve our understanding of MgO mechanical behavior and elementary dislocation-based processes under stress.

  9. Direct observation of gliding dislocations interactions with defects in irradiated niobium single crystals by means of the high voltage electronic microscopy (HVEM)

    International Nuclear Information System (INIS)

    Otero, M.P.

    1985-01-01

    The interactions of gliding dislocations with defects in irradiated niobium that result in the formation of dislocations channels. The effects in the mechanical behaviour of [941]- and [441]- oriented Nb single crystals due to oxygen addition, neutron and electron irradiation was observed either by macroscopic deformation in a Instron machine or 'in-situ' deformation in the HVEM-High Voltage Electron Microscope. Some specimens were irradiated at IPNS-Intense Pulsed Neutron Source, at 325 K, with 5 x 10 17 n/cm 2 , others were irradiated with electrons in the HVEM. The interactions between gliding dislocations with clusters point defects and dislocations were observed. The primary mechanism for removal of the clusters by the gliding dislocations was the 'sweeping' of the clusters along with the gliding dislocations. As to the point defects, they were 'swept' by the gliding dislocations and left as aligned loops close to the intersections of the gliding dislocations with the upper and lower specimen surfaces. For the illustration of this phenomena, a schematic drawing was made. The mechanism of 'bowing-out' interaction of dislocations with defect clusters was also observed. The reported anomalous slip observed to operate in the [941]- oriented Nb was also directly observed and a qualitive explanation along with a schematic drawing was proposed. This would explain the softenig observed after the yield stress in the [941]- oriented Nb deformed in the Instron machine. (Author) [pt

  10. WITHIN-POPULATION GENETIC DIVERSITY OF CLIMBING PLANTS AND TREES IN A TEMPERATE FOREST IN CENTRAL CHILE

    OpenAIRE

    Torres-Díaz, Cristian; Ruiz, Eduardo; Salgado-Luarte, Cristian; Molina-Montenegro, Marco A; Gianoli, Ernesto

    2013-01-01

    The climbing habit is a key innovation in angiosperm evolution: climbing plant taxa have greater species richness than their non-climbing sister groups. It is considered that highly diversified clades should show increased among-population genetic differentiation. Less clear is the expected pattern regarding within-population genetic diversity in speciose lineages. We tested the hypothesis of greater within-population genetic diversity in climbing plants compared to trees in a temperate fores...

  11. Mechanical behavior and related microstructural aspects of a nano-lamellar TiAl alloy at elevated temperatures

    International Nuclear Information System (INIS)

    Klein, T.; Usategui, L.; Rashkova, B.; Nó, M.L.; San Juan, J.; Clemens, H.; Mayer, S.

    2017-01-01

    Advanced intermetallic γ-TiAl based alloys, which solidify via the disordered β phase, such as the TNM"+ alloy, are considered as most promising candidates for structural applications at high temperatures in aero and automotive industries, where they are applied increasingly. Particularly creep resistant microstructures required for high-temperature application, i.e. fine fully lamellar microstructures, can be attained via two-step heat-treatments. Thereby, an increasing creep resistance is observed with decreasing lamellar interface spacing. Once lamellar structures reach nano-scaled dimensions, deformation mechanisms are altered dramatically. Hence, this study deals with a detailed characterization of the elevated temperature deformation phenomena prevailing in nano-lamellar TiAl alloys by the use of tensile creep experiments and mechanical spectroscopy. Upon creep exposure, microstructural changes occur in the lamellar structure, which are analyzed by the comparative utilization of X-ray diffraction, scanning and transmission electron microscopy as well as atom probe tomography. Creep activation parameters determined by mechanical characterization suggest the dominance of dislocation climb by a jog-pair formation process. The dislocations involved in deformation are, in nano-lamellar TiAl alloys, situated at the lamellar interfaces. During creep exposure the precipitation of β_o phase and ζ-silicide particles is observed emanating from the α_2 phase, which is due to the accumulation of Mo and Si at lamellar interfaces.

  12. Dislocation Dynamics in Al-Li Alloys. Mean Jump Distance and Activation Length of Moving Dislocations

    NARCIS (Netherlands)

    Hosson, J.Th.M. De; Huis in 't Veld, A.; Tamler, H.; Kanert, O.

    1984-01-01

    Pulsed nuclear magnetic resonance proved to be a complementary new technique for the study of moving dislocations in Al-Li alloys. The NMR technique, in combination with transmission electron microscopy and strain-rate change experiments have been applied to study dislocation motion in Al-2.2 wt% Li

  13. Interface Mediated Nucleation and Growth of Dislocations in fcc-bcc nanocomposite

    Science.gov (United States)

    Zhang, Ruifeng; Wang, Jian; Beyerlein, Irene J.; Germann, Timothy C.

    2011-03-01

    Heterophase interfaces play a crucial role in determining material strength for nanostructured materials because they can block, store, nucleate, and remove dislocations, the essential defects that enable plastic deformation. Much recent theoretical and experimental effort has been conducted on nanostructured Cu-Nb multilayer composites that exhibited extraordinarily high strength, ductility, and resistance to radiation and mechanical loading. In decreasing layer thicknesses to the order of a few tens of nanometers or less, the deformation behavior of such composites is mainly controlled by the Cu/Nb interface. In this work, we focus on the cooperative mechanisms of dislocation nucleation and growth from Cu/Nb interfaces, and their interaction with interface. Two types of experimentally observed Cu/Nb incoherent interfaces are comparatively studied. We found that the preferred dislocation nucleation sites are closely related to atomic interface structure, which in turn, depend on the orientation relationship. The activation stress and energies for an isolated Shockley dislocation loop of different sizes from specific interface sites depend strongly on dislocation size, atomic interface pattern, and loading conditions. Such findings provide important insight into the mechanical response of a wide range of fcc/bcc metallic nanocomposites via atomic interface design.

  14. Rock climbing and acute emotion regulation in patients with major depressive disorder in the context of a psychological inpatient treatment: a controlled pilot trial

    Directory of Open Access Journals (Sweden)

    Kleinstäuber M

    2017-08-01

    Full Text Available Maria Kleinstäuber,1,2 Merle Reuter,3 Norbert Doll,4 Andreas J Fallgatter4 1Division of Clinical Psychology and Psychotherapy, Faculty of Psychology, Philipps University, Marburg, Germany; 2Department of Psychological Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; 3Department of Educational Psychology, Faculty of Psychology, Eberhard Karls University, Tübingen, Germany, 4Department of General Psychiatry and Psychotherapy, University Hospital for Psychiatry and Psychotherapy, Eberhard Karls University, Tübingen, Germany Background: Major depressive disorder is characterized by deficits in emotion regulation. This study examined associations between rock climbing and acute emotion regulating effects in patients with major depression. Patients and methods: In a nonrandomized, controlled study, 40 major depressive disorder inpatients were assigned to either a climbing session (n=20 or a relaxation session (n=20. Positive and negative affect, depressiveness, and coping emotions were assessed immediately before and after the session. Results: Mixed analyses of variance and covariance revealed significant time × group interaction effects for all assessed outcomes (p≤0.012: positive affect and coping emotions significantly increased and negative affect and depressiveness significantly decreased after the climbing session (1.04≤ Cohen’s d ≤1.30, in contrast to a relaxation session (0.16≤ Cohen’s d ≤0.36. Conclusion: The results show that rock climbing is associated with acute emotion regulatory effects. These findings have to be replicated with a randomized design, and future research should pay attention to possible mechanisms of rock climbing in regard to emotion regulation. Keywords: physical activity, controlled trial, relaxation, inpatient treatment

  15. Modeling of the mechanical behavior of austenitic stainless steels under pure fatigue and fatigue relaxation loadings

    International Nuclear Information System (INIS)

    Hajjaji-Rachdi, Fatima

    2015-01-01

    Austenitic stainless steels are potential candidates for structural components of sodium-cooled fast neutron reactors. Many of these components will be subjected to cyclic loadings including long hold times (1 month) under creep or relaxation at high temperature. These hold times are unattainable experimentally. The aim of the present study is to propose mechanical models which take into account the involved mechanisms and their interactions during such complex loadings. First, an experimental study of the pure fatigue and fatigue-relaxation behavior of 316L(N) at 500 C has been carried out with very long hold times (10 h and 50 h) compared with the ones studied in literature. Tensile tests at 600 C with different applied strain rates have been undertaken in order to study the dynamic strain ageing phenomenon. Before focusing on more complex loadings, the mean field homogenization approach has been used to predict the mechanical behavior of different FCC metals and alloys under low cycle fatigue at room temperature. Both Hill-Hutchinson and Kroener models have been used. Next, a physically-based model based on dislocation densities has been developed and its parameters measured. The model allows predictions in a qualitative agreement with experimental data for tensile loadings. Finally, this model has been enriched to take into account visco-plasticity, dislocation climb and interaction between dislocations and solute atoms, which are influent during creep-fatigue or fatigue relaxation at high temperature. The proposed model uses three adjustable parameters only and allows rather accurate prediction of the behavior of 316L(N) steel under tensile loading and relaxation. (author) [fr

  16. Molecular dynamics simulation of dislocation intersections in aluminum

    International Nuclear Information System (INIS)

    Li, M.; Chu, W.Y.; Qian, C.F.; Gao, K.W.; Qiao, L.J.

    2003-01-01

    The molecular dynamics method is used to simulate dislocation intersection in aluminum containing 1.6x10 6 atoms using embedded atom method (EAM) potential. The results show that after intersection between two right-hand screw dislocations of opposite sign there are an extended jog corresponding to a row of 1/3 vacancies in the intersected dislocation, and a trail of vacancies behind the moving dislocation. After intersection between screw dislocations of same sign, there are an extended jog corresponding to a row of 1/3 interstitials in the intersected dislocation, and a trail of interstitials behind the moving dislocation. After intersection between screw and edge dislocations with different Burgers vector, there are a constriction corresponding to one 1/3 vacancy in the edge dislocation, and no point-defects behind the screw dislocation. When a moving screw dislocation intersects an edge dislocation with the same Burgers vector, the point of intersection will split into two constrictions corresponding to one 1/3 vacancy and 1/3 interstitial, respectively. The moving screw dislocation can pass the edge dislocation only after the two constrictions, which can move along the line of intersection of the two slip planes, meet and annihilate

  17. On the relative importance of bending and compression in cervical spine bilateral facet dislocation.

    Science.gov (United States)

    Nightingale, Roger W; Bass, Cameron R; Myers, Barry S

    2018-03-08

    Cervical bilateral facet dislocations are among the most devastating spine injuries in terms of likelihood of severe neurological sequelae. More than half of patients with tetraparesis had sustained some form of bilateral facet fracture dislocation. They can occur at any level of the sub-axial cervical spine, but predominate between C5 and C7. The mechanism of these injuries has long been thought to be forceful flexion of the chin towards the chest. This "hyperflexion" hypothesis comports well with intuition and it has become dogma in the clinical literature. However, biomechanical studies of the human cervical spine have had little success in producing this clinically common and devastating injury in a flexion mode of loading. The purpose of this manuscript is to review the clinical and engineering literature on the biomechanics of bilateral facet dislocations and to describe the mechanical reasons for the causal role of compression, and the limited role of head flexion, in producing bilateral facet dislocations. Bilateral facet dislocations have only been produced in experiments where compression is the primary loading mode. To date, no biomechanical study has produced bilateral facet dislocations in a whole spine by bending. Yet the notion that it is primarily a hyper-flexion injury persists in the clinical literature. Compression and compressive buckling are the primary causes of bilateral facet dislocations. It is important to stop using the hyper-flexion nomenclature to describe this class of cervical spines injuries because it may have a detrimental effect on designs for injury prevention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Incidence of and risk factors for traumatic anterior shoulder dislocation: an epidemiologic study in high-school rugby players.

    Science.gov (United States)

    Kawasaki, Takayuki; Ota, Chihiro; Urayama, Shingo; Maki, Nobukazu; Nagayama, Masataka; Kaketa, Takefumi; Takazawa, Yuji; Kaneko, Kazuo

    2014-11-01

    The incidence of reinjuries due to glenohumeral instability and the major risk factors for primary anterior shoulder dislocation in youth rugby players have been unclear. The purpose of this study was to investigate the incidence, mechanisms, and intrinsic risk factors of shoulder dislocation in elite high-school rugby union teams during the 2012 season. A total of 378 male rugby players from 7 high-school teams were investigated by use of self-administered preseason and postseason questionnaires. The prevalence of a history of shoulder dislocation was 14.8%, and there were 21 events of primary shoulder dislocation of the 74 overall shoulder injuries that were sustained during the season (3.2 events per 1000 player-hours of match exposure). During the season, 54.3% of the shoulders with at least one episode of shoulder dislocation had reinjury. This study also indicated that the persistence of glenohumeral instability might affect the player's self-assessed condition, regardless of the incidence during the current season. By a multivariate logistic regression method, a history of shoulder dislocation on the opposite side before the season was found to be a risk factor for contralateral primary shoulder dislocation (odds ratio, 3.56; 95% confidence interval, 1.27-9.97; P = .02). High-school rugby players with a history of shoulder dislocation are not playing at full capacity and also have a significant rate of reinjury as well as a high risk of dislocating the other shoulder. These findings may be helpful in deciding on the proper treatment of primary anterior shoulder dislocation in young rugby players. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  19. The peculiar effect of forest dislocations on single twin layer development in zinc and beryllium single crystals

    International Nuclear Information System (INIS)

    Lavrentev, F.F.; Bosin, M.E.

    1978-01-01

    This is an investigation of the effect of different types of forest dislocation on the rate of twin layer broadening, Vsub(n), in zinc and beryllium crystals, and on the velocity of the twinning dislocation movement, Vsub(t), in zinc crystals under the action of a constant external shear stress. Increasing the forest basal dislocation density, rhosub(b), was found to result in increasing Vsub(n) and reducing Vsub(t), while increasing the forest pyramidal dislocation density, rhosub(p), causes Vsub(n) to decrease. An analysis in terms of crystal geometry shows that the dualism of the influence of the basal dislocations stems from the fact that they behave as twinning dislocation sources whose density, increasing with rhosub(b) leads to higher Vsub(n). The decrease in the effective stress, tausup(*), with increasing rhosub(b) is estimated. An analysis of the experimental data yielded the relation Vsub(t)(tausup(*)) and an estimate of the activation volume, which amounted to 6 x 10 -21 cm 3 . The close coincidence of the activation volumes as obtained from Vsub(t)(tausup(*)) and Vsub(n)(tau) suggests that the rate-controlling mechanism of the twin layer development in zinc crystals with large forest basal dislocation density is the twinning dislocation inhibition. In Be crystals, the increasing Vsub(n) effect is observed during untwinning. In Be twinned crystals, electron microscopy revealed twinning dislocations with a density of about 10 5 cm -1 at the twin boundaries and a large forest basal dislocation density inside the twin (ca. 10 8 cm -2 ). (Auth.)

  20. Valgus-varus motion of the knee in normal level walking and stair climbing.

    Science.gov (United States)

    Yu, B; Stuart, M J; Kienbacher, T; Growney, E S; An, K-N

    1997-07-01

    OBJECTIVE: The knee valgus-varus moment and the knee angles were compared between normal level walking and stair climbing. DESIGN: Ten healthy subjects were tested for ascent, descent, and level walking. BACKGROUND: An understanding of the normal valgus-varus motion of the knee during stair climbing is needed to apply biomechanical analysis of stair climbing as a evaluation tool for knee osteoarthritis patients. METHODS: A motion analysis system, three force plates, and a flight of stairs were used to collect kinematic and kinetic data. The knee angles and moments were calculated from the collected kinematic and kinetic data. RESULTS: The knee varus angle for the maximum knee valgus moments in stair climbing was significantly greater than that in level walking. The knee valgus moment was significantly correlated to ground reaction forces and knee valgus-varus angle during stair climbing and level walking. CONCLUSIONS: There is a coupling between the knee valgus-varus motion and flexion-extension motion. Ground reaction forces are the major contributors to the within-subject variation in the knee valgus-varus moment during stair climbing and level walking. The knee valgus-varus angle is a major contributor to the between-subject variation in the knee valgus moment during stair climbing and level walking.

  1. Fabrics and deformational mechanisms in the high-pressure granulite of the Bacariza Formation (Cabo Ortegal Complex, NW Spain); Fabricas y mecanismos deformacionales en las granulitas de alta presion de la Formacion Bacariza (Complejo de Cabo Ortegal, NO de Espana)

    Energy Technology Data Exchange (ETDEWEB)

    Puelles, P.

    2009-07-01

    In the Cabo Ortegal Complex, mylonitic high-pressure granulites occur at the contacts between the HP granulitic Bacariza Formation and the adjacent units. This mylonitic stage is associated with the initial exhumation of the complex. The petrographic, microstructural and crystallographic analysis of the main constituent minerals in these rocks might provide valuable information on the deformation mechanisms operative at depth. Garnet accommodated part of the deformation by dislocation creep and rigid rotation, augite underwent dislocation creep accompanied by mass transfer and anisotropic growth while plagioclase, in turn, suffered dynamic subgrain rotation-recrystallization and climb-accommodated dislocation creep. Quartz fabrics developed under at least amphibolite-facies conditions. The shear sense criteria are consistent with a top-to-the-NE displacement of the hanging wall blocks. During their ascent to the surface, a static amphibolite-facies retrogressive stage was followed by plastic deformation accommodation under green schist- to lower amphibolite facies conditions. Deformation during the latest stages of exhumation was characterized by micro fracturing and seismic activity in conditions of high differential stresses and strain rates. (Author) 52 refs.

  2. Dislocations, the elastic energy momentum tensor and crack propagation

    International Nuclear Information System (INIS)

    Lung, Chi-wei

    1979-07-01

    Based upon dislocation theory, some stress intensity factors can be calculated for practical cases. The results obtained by this method have been found to agree fairly well with the results obtained by the conventional fracture mechanics. The elastic energy momentum tensor has been used to calculate the force acting on the crack tip. A discussion on the kinetics of migration of impurities to the crack tip was given. It seems that the crack tip sometimes may be considered as a singularity in an elastic field and the fundamental law of classical field theory is applicable on the problem in fracture of materials. (author)

  3. High dislocation density of tin induced by electric current

    International Nuclear Information System (INIS)

    Liao, Yi-Han; Liang, Chien-Lung; Lin, Kwang-Lung; Wu, Albert T.

    2015-01-01

    A dislocation density of as high as 10 17 /m 2 in a tin strip, as revealed by high resolution transmission electron microscope, was induced by current stressing at 6.5 x 10 3 A/ cm 2 . The dislocations exist in terms of dislocation line, dislocation loop, and dislocation aggregates. Electron Backscattered Diffraction images reflect that the high dislocation density induced the formation of low deflection angle subgrains, high deflection angle Widmanstätten grains, and recrystallization. The recrystallization gave rise to grain refining

  4. Local Variability of the Peierls Barrier of Screw Dislocations in Ta-10W.

    Energy Technology Data Exchange (ETDEWEB)

    Foiles, Stephen M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    It is well know that the addition of substitutional elements changes the mechanical behavior of metals, a effect referred to solid solution hardening. For body-centered-cubic (BCC) metals, screw dislocation play a key role in the mechanical properties. Here the detailed modification of the Peierls barrier for screw dislocation motion in Ta with W substitutional atoms is computing using density functional theory (DFT). A reduced order model (ROM) of the influence of W substitution on the Peierls barrier is developed. The mean field change in the Peierls barrier for a Ta10W alloy is determined and shown to be larger than anticipated based on simple elasticity considerations. The ROM could be used in future calculations to determine the local variability of the Peierls barrier and the resultant influence on the motion of screw dislocation in this alloy.

  5. Void growth suppression by dislocation impurity atmospheres

    International Nuclear Information System (INIS)

    Weertman, J.; Green, W.V.

    1976-01-01

    A detailed calculation is given of the effect of an impurity atmosphere on void growth under irradiation damage conditions. Norris has proposed that such an atmosphere can suppress void growth. The hydrostatic stress field of a dislocation that is surrounded by an impurity atmosphere was found and used to calculate the change in the effective radius of a dislocation line as a sink for interstitials and vacancies. The calculation of the impurity concentration in a Cottrell cloud takes into account the change in hydrostatic pressure produced by the presence of the cloud itself. It is found that void growth is eliminated whenever dislocations are surrounded by a condensed atmosphere of either oversized substitutional impurity atoms or interstitial impurity atoms. A condensed atmosphere will form whenever the average impurity concentration is larger than a critical concentration

  6. Rare Inferior Shoulder Dislocation (Luxatio Erecta

    Directory of Open Access Journals (Sweden)

    Hakan Cift

    2015-01-01

    Full Text Available Although shoulder dislocations have been seen very frequently, inferior dislocation of shoulder constitutes only 0.5% of all shoulder dislocations. We share our 4 patients with luxatio erecta and present their last clinical control. 2 male and 2 female Caucasian patients were diagnosed as luxatio erecta. Patients’ ages were 78, 62, 65, and 76. All patients’ reduction was done by traction-abduction and contour traction maneuver in the operating room. The patients had no symptoms and no limitation of range of motion of their shoulder at their last control. Luxatio erecta is seen rarely, and these patients may have neurovascular injury. These patients should be carefully examined and treated by the orthopaedic and traumatology surgeons.

  7. Rare Inferior Shoulder Dislocation (Luxatio Erecta)

    Science.gov (United States)

    Cift, Hakan; Soylemez, Salih; Demiroglu, Murat; Ozkan, Korhan; Ozden, Vahit Emre; Ozkut, Afsar T.

    2015-01-01

    Although shoulder dislocations have been seen very frequently, inferior dislocation of shoulder constitutes only 0.5% of all shoulder dislocations. We share our 4 patients with luxatio erecta and present their last clinical control. 2 male and 2 female Caucasian patients were diagnosed as luxatio erecta. Patients' ages were 78, 62, 65, and 76. All patients' reduction was done by traction-abduction and contour traction maneuver in the operating room. The patients had no symptoms and no limitation of range of motion of their shoulder at their last control. Luxatio erecta is seen rarely, and these patients may have neurovascular injury. These patients should be carefully examined and treated by the orthopaedic and traumatology surgeons. PMID:25883820

  8. FEEDING ECOLOGY OF TREE-CLIMBING MANGROVE SESARMID CRABS FROM LUZON, PHILIPPINES

    Directory of Open Access Journals (Sweden)

    JIMMY TEVAR MASAGCA

    2009-01-01

    Full Text Available Despite the large ecological study of tree-climbing mangrove sesarmid crabs in other countries, the Philippine representatives appear to have not been investigated extensively. This paper presents the feeding ecology as to dependence on mangrove trees of sesarmids in different mangrove areas of southern Luzon. This is biased on the nature of the crab habitats, arboreal climbing skills and burrowing behavior of the sesarmids: Selatium elongatum and Episesarma versicolor − exclusive mangrove tree climbers (EMTC; Sarmatium germaini − occasional mangrove tree climber (OMTC; and the non-mangrove tree-climbing (NMTC sesarmids- Neosarmatium smithii, Perisesarma bidens and Perisesarma eumolpe

  9. The effects of therapeutic climbing in patients with chronic low back pain: a randomized controlled study.

    Science.gov (United States)

    Engbert, Kai; Weber, Michaela

    2011-05-15

    A randomized controlled study investigated the effects of therapeutic climbing in patients with chronic low back pain. Before and after 4 weeks of training, physical and mental well-being were measured by two questionnaires (36-Item Short Form Health Survey [SF-36]; Hannover Functional Ability Questionnaire for measuring back pain-related disability [FFbH-R]). Therapeutic climbing has been suggested to increase muscular strength and perceived physical and mental well-being. This study focused on the psychological effects of therapeutic climbing and compared it with standard exercise therapy. Therapeutic climbing has become increasingly popular in rehabilitation and its effects on muscular strengthening have been shown. Therapeutic climbing has also been suggested to yield psychological effects such as changes in attentional focus from pain to physical capabilities. To date, no controlled clinical trial has investigated these psychological effects and it is unclear whether therapeutic climbing is comparable or superior to other forms of exercise. Twenty-eight patients with chronic low back pain conducted either a therapeutic climbing or a standard exercise regime. Each program took 4 weeks, including four guided training sessions per week. Before and after the program, patients answered two questionnaires assessing their physical and mental well-being. For the Hannover Functional Ability Questionnaire for measuring back pain-related disability, there was no difference before versus after or between the treatments. For the SF-36, both treatments showed significant improvements in 3/8 subscales of the SF-36. In 2/8 subscales, only the participants of the therapeutic climbing improved and in 1/8 subscales the converse was true. Comparing both groups, significantly larger improvements were found after therapeutic climbing in two subscales of the SF-36: physical functioning and general health perception. The benefits of therapeutic climbing were comparable with those of

  10. Characteristics of the scientific researches in sport climbing (review of the articles, theses, programs, methodical works.

    Directory of Open Access Journals (Sweden)

    Sedliar Yu.V.

    2011-04-01

    Full Text Available The general estimation of the condition of the scientific developments will presented in sport climbing and on this base is specified the most perspective ways of scientific searching for in this area. Analysis publication reflecting different questions of preparation sport climbing athletes was organized. On base of the analysis of the special literature and coming from generally accepted in home science structure of the knowledge, was ascertained degree of the development different theoretical and practical aspect in this sphere. Discovered increase amount of the experimental studies in sport climbing.

  11. Interactions between Lattice Dislocations and Grain Boundaries in Ni3Al Investigated by Means of In Situ TEM and Computer Modelling Experiments

    NARCIS (Netherlands)

    Pestman, B.J.; Hosson, J.Th.M. De

    1992-01-01

    The interaction between lattice dislocations and grain boundaries in Ni3Al has been investigated by means of in situ TEM deformation experiments. The interaction between screw dislocations and a coherent twin boundary could be analyzed in detail. The interaction mechanism found experimentally was

  12. Determination of the extinction factor in function of the density of dislocations; Determinacion del factor de extincion en funcion de la densidad de dislocaciones

    Energy Technology Data Exchange (ETDEWEB)

    Macias B, L.R

    1991-12-15

    There are exist three basic types of crystalline lattice defects: point, line (or dislocations) and surface defects. Such defects may be incorporated intentionally to produce desired mechanical and physical properties. This report presents a FORTRAN language program to calculate the extinction factor in samples of polycrystalline copper as function of the dislocations density. (Author)

  13. Effect of foil orientation on damage accumulation during irradiation in magnesium and annealing response of dislocation loops

    International Nuclear Information System (INIS)

    Khan, A.K.; Yao, Z.; Daymond, M.R.; Holt, R.A.

    2012-01-01

    Highlights: ► Effect of foil orientation on electron irradiation damage in Mg is analyzed. ► Prism plane defects increases in prism foils as compared to basal foils. ► Basal faults were interstitial and prism plane defects were mixed in character. ► Shrinkage of interstitial dislocations takes place by the self diffusion mechanism. - Abstract: The effect of foil orientation on damage accumulation behavior in commercial purity magnesium is investigated by in situ electron and ion irradiation. Transmission electron microscope has been used to study the dislocation loops formed by the agglomeration of point defects during irradiation. It has been observed that the ratio of prism plane to basal plane defects increases as the foil orientation is changed from basal to the prism foil. The ratio of vacancy to interstitial defects also increases in prism foils as compared to the basal foils. This point defect accumulation behavior is reversed when magnesium is irradiated with 1 MeV Kr 2+ ions and the formation of basal plane dislocation loops were only observed in prism foils and did not take place in the basal foils. Analysis showed that all the basal plane dislocation loops have Burgers vector of the type 1/(6〈202 ¯ 3〉) and are interstitial in nature whereas prism plane dislocation loops have Burgers vector of the type 1/(3〈112 ¯ 0〉) and are of mixed interstitial/vacancy in character. In situ annealing experiments at different temperatures performed on electron irradiated magnesium foils suggest that those dislocation loops that become thermodynamically unstable anneal out in a matter of few seconds whereas other stable dislocation loops continue to shrink by absorbing surrounding vacancy clusters. The activation energy for the shrinkage of the interstitial dislocation loops has been derived and the results show that the shrinkage of interstitial dislocation loops takes place by the mechanism of vacancy assisted self diffusion.

  14. Ipsilateral open anterior hip dislocation and open posterior elbow dislocation in an adult

    Directory of Open Access Journals (Sweden)

    Kumar Sunil

    2014-02-01

    Full Text Available 【Abstract】Open anterior dislocation of the hip is a very rare injury, especially in adults. It is a hyperabduction, external rotation and extension injury. Its combination with open posterior dislocation of the elbow has not been described in English language-based medical literature. Primary resuscitation, debridement, urgent reduction of dislocation, and adequate antibiotic support resulted in good clinical outcome in our patient. At 18 months follow-up, no signs of avascular necrosis of the femoral head or infection were observed.

  15. The fastest drop climbing on a wet conical fibre

    KAUST Repository

    Li, Erqiang; Thoroddsen, Sigurdur T

    2013-01-01

    We use high-speed video imaging to study the capillary-driven motion of a micro-droplet along the outside of a pre-wetted conical fiber. The cones are fabricated on a glass-puller with tip diameters as small as 1 μm, an order of magnitude smaller than in previous studies. The liquid is fed through the hollow fiber accumulating at the fiber tip to form droplets. The droplets are initially attached to the opening as they grow in size before detaching and traveling up the cone. This detachment can produce a transient oscillation of high frequency. The spatial variation of the capillary pressure drives the droplets towards the wider side of the cone. Various liquids were used to change the surface tension by a factor of 3.5 and viscosity by a factor of 1500. Within each droplet size and viscous-dissipation regime, the data for climbing speeds collapse on a single curve. Droplets traveling with and against gravity allow us to pinpoint the absolute strength of the driving capillary pressure and viscous stresses and thereby determine the prefactors in the dimensionless relationships. The motions are consistent with earlier results obtained from much larger cones. Translation velocities up to 270 mm/s were observed and overall the velocities follow capillary-viscous scaling, whereas the speed of the fastest droplets is limited by inertia following their emergence at the cone tip.

  16. The fastest drop climbing on a wet conical fibre

    KAUST Repository

    Li, Erqiang

    2013-05-21

    We use high-speed video imaging to study the capillary-driven motion of a micro-droplet along the outside of a pre-wetted conical fiber. The cones are fabricated on a glass-puller with tip diameters as small as 1 μm, an order of magnitude smaller than in previous studies. The liquid is fed through the hollow fiber accumulating at the fiber tip to form droplets. The droplets are initially attached to the opening as they grow in size before detaching and traveling up the cone. This detachment can produce a transient oscillation of high frequency. The spatial variation of the capillary pressure drives the droplets towards the wider side of the cone. Various liquids were used to change the surface tension by a factor of 3.5 and viscosity by a factor of 1500. Within each droplet size and viscous-dissipation regime, the data for climbing speeds collapse on a single curve. Droplets traveling with and against gravity allow us to pinpoint the absolute strength of the driving capillary pressure and viscous stresses and thereby determine the prefactors in the dimensionless relationships. The motions are consistent with earlier results obtained from much larger cones. Translation velocities up to 270 mm/s were observed and overall the velocities follow capillary-viscous scaling, whereas the speed of the fastest droplets is limited by inertia following their emergence at the cone tip.

  17. Autonomous stair-climbing with miniature jumping robots.

    Science.gov (United States)

    Stoeter, Sascha A; Papanikolopoulos, Nikolaos

    2005-04-01

    The problem of vision-guided control of miniature mobile robots is investigated. Untethered mobile robots with small physical dimensions of around 10 cm or less do not permit powerful onboard computers because of size and power constraints. These challenges have, in the past, reduced the functionality of such devices to that of a complex remote control vehicle with fancy sensors. With the help of a computationally more powerful entity such as a larger companion robot, the control loop can be closed. Using the miniature robot's video transmission or that of an observer to localize it in the world, control commands can be computed and relayed to the inept robot. The result is a system that exhibits autonomous capabilities. The framework presented here solves the problem of climbing stairs with the miniature Scout robot. The robot's unique locomotion mode, the jump, is employed to hop one step at a time. Methods for externally tracking the Scout are developed. A large number of real-world experiments are conducted and the results discussed.

  18. Dislocation unpinning model of acoustic emission from alkali halide ...

    Indian Academy of Sciences (India)

    The present paper reports the dislocation unpinning model of acoustic emis- sion (AE) from ... Acoustic emission; dislocation; alkali halide crystals; plastic deformation. ..... [5] T Nishimura, A Tahara and T Kolama, Jpn. Metal Inst. 64, 339 (2000).

  19. Molecular insights into the m-AAA protease-mediated dislocation of transmembrane helices in the mitochondrial inner membrane.

    Science.gov (United States)

    Lee, Seoeun; Lee, Hunsang; Yoo, Suji; Kim, Hyun

    2017-12-08

    Protein complexes involved in respiration, ATP synthesis, and protein import reside in the mitochondrial inner membrane; thus, proper regulation of these proteins is essential for cell viability. The m -AAA protease, a conserved hetero-hexameric AAA (ATPase associated with diverse cellular activities) protease, composed of the Yta10 and Yta12 proteins, regulates mitochondrial proteostasis by mediating protein maturation and degradation. It also recognizes and mediates the dislocation of membrane-embedded substrates, including foreign transmembrane (TM) segments, but the molecular mechanism involved in these processes remains elusive. This study investigated the role of the TM domains in the m -AAA protease by systematic replacement of one TM domain at a time in yeast. Our data indicated that replacement of the Yta10 TM2 domain abolishes membrane dislocation for only a subset of substrates, whereas replacement of the Yta12 TM2 domain impairs membrane dislocation for all tested substrates, suggesting different roles of the TM domains in each m -AAA protease subunit. Furthermore, m -AAA protease-mediated membrane dislocation was impaired in the presence of a large downstream hydrophilic moiety in a membrane substrate. This finding suggested that the m -AAA protease cannot dislocate large hydrophilic domains across the membrane, indicating that the membrane dislocation probably occurs in a lipid environment. In summary, this study highlights previously underappreciated biological roles of TM domains of the m -AAA proteases in mediating the recognition and dislocation of membrane-embedded substrates. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Effect of sunflower climbing bean intercroping system on insect pest incidence and crop productivity

    International Nuclear Information System (INIS)

    Tuey, R.K.; Koros, I.; Wanyonyi, W.

    2001-01-01

    Intercropping of sunflower and climping beans were evaluated for pest incidence and yield advantages during the main season of 2000/2001 at KARI-NPBRC, Njoro. Three sunflower varieties, Fedha, Record, PAN-7553 and three climbing beans varieties, Puebla, Omukingi and Flora were laid out in a complete randomised block design with four replications. Sunflower was spaced at 75 x 30 cm while the climbing beans were spaced at 50 x 37.5 cm. Assessment of pest damage on various treatments commenced 17 days after planting. Results showed that low plant germination was mainly a result of dry weather and taht cutworm damage was insignificant. There was a sunflower x climbing bean variety interaction, which regulated the aphid infestation of the climbing beans. Sunflower variety PAN-7553 recorded significantly (P<0.01) more pecked heads than the other two varieties. (author)

  1. Grain-size distribution of surface sediments of climbing and falling ...

    Indian Academy of Sciences (India)

    45

    The climbing and falling dunes distributing in the wide valleys of China's Yarlung. 64. Zangbo River ...... Food and Agriculture Organization (FAO). 2006. The state of ... Global land use change, economic globalization, and. 450 the looming ...

  2. 3D DD modelling of the prismatic loops and dislocations interaction in pure iron

    International Nuclear Information System (INIS)

    Novokshanov, R.; Roberts, S.

    2007-01-01

    Full text of publication follows: Neutron irradiation can increase the yield stress and reduce the ductility of metals. These effects are mainly caused by the interaction of dislocations with damage produced during irradiation. In iron irradiated with fast neutrons the damage takes the form of 1/2 and 1/2 prismatic dislocation loops (the size of the loops varies from 2 nm to 20 nm depending on the dose of irradiation). The interaction between such loops and dislocations is the subject of this research. 3D dislocation dynamics simulations have been carried out to model the interaction between prismatic loops and dis- locations in pure iron subject to uniaxial loading conditions. The primary goal was to understand the mechanism of interaction of a a/2 loop and a mobile dislocation. The simulations have shown a complicated 3D interaction resulting in either bowing around an obstacle (prismatic loop, Orowan mechanism) or cutting it through, carrying part of the loop away and leaving the other part behind. Cross-slip can be important, in a manner depending on the type of mobile dislocation, size, type and orientation of prismatic loop. The secondary goal was to investigate the dependence of the critical stress needed for dislocations to overcome the obstacles as a function of: size of loops, initial separation between loops, the direction of motion of the mobile dislocation and its type (pure edge or screw), and type of a loop (interstitial or vacancy). Many different configurations have been simulated. The size of the loops was varied from 10 nm to 100 nm; the separation between the loops in a row was varied from one to four loop diameters; the distance between the glide plane and the loop plane was varied from 0 to 20 nm. The glide plane of the mobile dislocation was either perpendicular to and or inclined to the loop plane. The results show a strong dependence of the critical stress on the size of the loops and the initial configuration. (authors)

  3. Effect of pretreatments and processing conditions on anti-nutritional factors in climbing bean flours

    Directory of Open Access Journals (Sweden)

    Emmanuel Mugabo

    2017-04-01

    Full Text Available It is difficult for many Rwandans to utilize climbing bean seeds (Phaseolus vulgaris. L mainly because of longer cooking time (2 hours and the high consumption of basic fuel. Climbing beans also contain anti-nutritional factors such tannins, phytates, trypsin inhibitors and phytohemagglutinins that limit nutrient absorption. One way to solve this problem is to utilize the flour of climbing beans made from different treatments and processing methods. In this study, climbing beans were pre-treated by soaking them in water for 24 hours, soaking in 2% sodium bicarbonate solution and steam blanching for 10 minutes. After that, pre-treated climbing beans were processed into flours by processing methods such as roasting, cooking and germination where anti-nutritional factors were reduced. The pretreatments did not significantly (p>0.05 affect phytates in climbing bean flours but processing conditions significantly (p<0.05 reduced it. Pretreatments and processing conditions significantly (p<0.05 reduced tannin content. The pretreatments followed by different processing conditions significantly (p<0.05 decreased trypsin inhibitors content. The great significant decrease in phytohemagglutinins content was observed in pretreatment followed by different processing methods. All pretreatments and processing conditions effectively decreased anti-nutritional factors at low level. However, pretreatments or untreated followed by germination and roasting were found to be the most and the least effective respectively.  Making flour from germinated climbing bean seeds is a good option for sustainable food processing as it reduces anti-nutritional factors. It is an inexpensive method in terms of time, energy and fuel for Rwandan households, restaurants and industries where climbing bean seeds are integral part of daily meal.

  4. Design and Implementation of Autonomous Stair Climbing with Nao Humanoid Robot

    OpenAIRE

    Lu, Wei

    2015-01-01

    With the development of humanoid robots, autonomous stair climbing is an important capability. Humanoid robots will play an important role in helping people tackle some basic problems in the future. The main contribution of this thesis is that the NAO humanoid robot can climb the spiral staircase autonomously. In the vision module, the algorithm of image filtering and detecting the contours of the stair contributes to calculating the location of the stairs accurately. Additionally, the st...

  5. Dislocation Microstructures in Fatiqued Copper Polycrystals

    DEFF Research Database (Denmark)

    Winter, A.T.; Pedersen, Ole Bøcker; Rasmussen, K.V.

    1981-01-01

    Dislocation structures characteristic of persistent slip bands were observed in the interior of polycrystalline copper after fatigue. At low strain amplitudes, within the plateau on the cyclic stress-strain curve, only structures identical to those seen in single crystals were observed. This allows...

  6. Completion of a Dislocated Metric Space

    Directory of Open Access Journals (Sweden)

    P. Sumati Kumari

    2015-01-01

    Full Text Available We provide a construction for the completion of a dislocated metric space (abbreviated d-metric space; we also prove that the completion of the metric associated with a d-metric coincides with the metric associated with the completion of the d-metric.

  7. Frozen shoulder or missed posterior dislocation?

    African Journals Online (AJOL)

    initial diagnosis and management. ... D Leijnen,1,2 MD, MMed (Sports Med); J T Viljoen,1 BSc (Physio), MPhil (Exercise Sci); J H Kirby,1 MB ChB, MSc (Sports Med); ... diagnosis of posterior shoulder dislocation at the time of injury could.

  8. Missed isolated volar dislocation of the scaphoid

    DEFF Research Database (Denmark)

    Kolby, Lise; Larsen, Søren; Jørring, Stig

    2007-01-01

    A patient presented with volar dislocation of the scaphoid, the diagnosis of which had been missed for two weeks. He was treated with open reduction through a combined volar and dorsal approach with decompression of the median nerve, internal fixation, and a cast for eight weeks. One year postope...... postoperatively the functional result was good. A radiograph showed no sign of avascular necrosis....

  9. Tailoring surgical management of dislocated clavicle fractures

    NARCIS (Netherlands)

    Wijdicks, F.J.G.

    2013-01-01

    In this thesis literature research and clinical studies are presented to assist physicians in the decision making process for surgical treatment of dislocated midshaft clavicle fractures (DMCF). In Chapter 1 an introduction is given regarding the background, aim and outline of this thesis. Chapter 2

  10. Screening for congenital dislocation of the hip

    International Nuclear Information System (INIS)

    Fendel, H.

    1987-01-01

    Although the prevalence of (idiopathic) congenital dislocation of the hip (CDH) within the Member States of the European Community is not exactly known, it must be considered as a major problem of public health care and protection. By assessment of available data one can assume that between 1 and 2% of all newborns have dislocation or instability of one or both hips. There is a female predominance of 4:1 and some risk factors are known. The reasons of a higher prevalence in some areas are not yet well understood. Most of instable hips will spontaneously become stable within the first days or weeks of life. However, a considerable number of infants (less than 1%) will remain with instable hips which may dislocate. Dislocation either present at birth or as a result of persistent instability leads to subsequent hip deformation. This is a serious event for each affected individual, and is a heavy load on health care and social costs for the public. Treatment of CDH is easy and usually effective when started early, i.e. before the fourth month of life. The earlier treatment is started the easier, shorter, safer and less expensive it is and its impairment on child development and mother-child interaction can be held to a minimum. Screening for CDH is therefore the most important part of health protection in early infancy. However, this paper concludes that neither sonography nor X-ray examinations are appropriate for CDH screening

  11. Dislocation Processes and Frictional Stability of Faults

    Science.gov (United States)

    Toy, V. G.; Mitchell, T. M.; Druiventak, A.

    2011-12-01

    The rate dependence of frictional processes in faults in quartzofeldspathic crust is proposed to change at c. 300°C, because above this temperature asperity deformation can be accommodated by crystal plastic processes. As a consequence, the real fault contact area increases and the fault velocity strengthens. Conversely, faults at lower temperatures are velocity weakening and therefore prone to earthquake slip. We have investigated whether dislocation processes are important around faults in quartzites on seismic timescales, by inducing fault slip on a saw cut surface in novaculite blocks. Deformation was carried out at 450°C and 600°C in a Griggs apparatus. Slip rates of 8.3 x 10-7s-1 allowed total slip, u, of 0.5mm to be achieved in c. 10 minutes. Failure occurred at peak differential stresses of ~1.7 GPa and 1.4 GPa respectively, followed by significant weakening. Structures of the novaculite within and surrounding the fault surface were examined using EBSD, FIB-SEM and TEM to elucidate changes to their dislocation substructure. In the sample deformed at 450°C, a ~50μm thick layer of amorphous / non-crystalline silica was developed on the saw-cut surface during deformation. Rare clasts of the wall rock are preserved within this material. The surrounding sample is mostly composed of equant quartz grains of 5-10μm diameter that lack a preferred orientation, contain very few intercrystalline dislocations, and are divided by organised high angle grain boundaries. After deformation, most quartz grains within the sample retain their starting microstructure. However, within ~10μm of the sliding surface, dislocations are more common, and these are arranged into elongated, tangled zones (subgrain boundaries?). Microfractures are also observed. These microstructures are characteristic of deformation accommodated by low temperature plasticity. Our preliminary observations suggest that dislocation processes may be able to accommodate some deformation around fault

  12. Hydrogen diffusion in the elastic fields of dislocations in iron

    Energy Technology Data Exchange (ETDEWEB)

    Sivak, A. B., E-mail: Sivak-AB@nrcki.ru; Sivak, P. A. [National Research Centre Kurchatov Institute (Russian Federation); Romanov, V. A.; Chernov, V. M. [National Research Tomsk State University (Russian Federation)

    2016-12-15

    The effect of dislocation stress fields on the sink efficiency thereof is studied for hydrogen interstitial atoms at temperatures of 293 and 600 K and at a dislocation density of 3 × 10{sup 14} m{sup –2} in bcc iron crystal. Rectilinear full screw and edge dislocations in basic slip systems 〈111〉(110), 〈111〉(112), 〈100〉(100), and 〈100〉(110) are considered. Diffusion of defects is simulated by means of the object kinetic Monte Carlo method. The energy of interaction between defects and dislocations is calculated using the anisotropic theory of elasticity. The elastic fields of dislocations result in a less than 25% change of the sink efficiency as compared to the noninteracting linear sink efficiency at a room temperature. The elastic fields of edge dislocations increase the dislocation sink efficiency, whereas the elastic fields of screw dislocations either decrease this parameter (in the case of dislocations with the Burgers vector being 1/2〈111〉) or do not affect it (in the case of dislocations with the Burgers vector being 〈100〉). At temperatures above 600 K, the dislocations affect the behavior of hydrogen in bcc iron mainly owing to a high binding energy between the hydrogen atom and dislocation cores.

  13. Nanoscale dislocation shear loops at static equilibrium and finite temperature

    Science.gov (United States)

    Dang, Khanh; Capolungo, Laurent; Spearot, Douglas E.

    2017-12-01

    Atomistic simulations are used to determine the resolved shear stress necessary for equilibrium and the resulting geometry of nanoscale dislocation shear loops in Al. Dislocation loops with different sizes and shapes are created via superposition of elemental triangular dislocation displacement fields in the presence of an externally imposed shear stress. First, a bisection algorithm is developed to determine systematically the resolved shear stress necessary for equilibrium at 0 K. This approach allows for the identification of dislocation core structure and a correlation between dislocation loop size, shape and the computed shear stress for equilibrium. It is found, in agreement with predictions made by Scattergood and Bacon, that the equilibrium shape of a dislocation loop becomes more circular with increasing loop size. Second, the bisection algorithm is extended to study the influence of temperature on the resolved shear stress necessary for stability. An approach is presented to compute the effective lattice friction stress, including temperature dependence, for dislocation loops in Al. The temperature dependence of the effective lattice friction stress can be reliably computed for dislocation loops larger than 16.2 nm. However, for dislocation loops smaller than this threshold, the effective lattice friction stress shows a dislocation loop size dependence caused by significant overlap of the stress fields on the interior of the dislocation loops. Combined, static and finite temperature atomistic simulations provide essential data to parameterize discrete dislocation dynamics simulations.

  14. Electron-dislocation interaction at low temperatures. Progress report

    International Nuclear Information System (INIS)

    1978-01-01

    The interaction of mobile dislocations with electrons in copper and copper alloys has shown that dislocation motion in copper, at low temperature, can be treated as an analog of an underdamped oscillator. We have also shown that the viscous drag on mobile dislocations in type II superconductors can be treated as an acoustic attenuation of an elastic wave

  15. Effect of dislocations on superconductivity. O vliyanii dislokatsiy na sverkhrpovodimost'

    Energy Technology Data Exchange (ETDEWEB)

    Agap' ev, B D; Bytsenko, A A; Sukhanov, S A

    1976-01-01

    Electron-dislocation interaction is analyzed here. The effect of dislocations on the superconductor characteristics is determined according to the Ginzburg-Landau method. Appreciable changes in the stability of the superconductive state are found to occur in the vicinity of dislocations.

  16. An irreducible ankle fracture dislocation: the Bosworth injury

    NARCIS (Netherlands)

    Schepers, Tim; Hagenaars, Tjebbe; den Hartog, Dennis

    2012-01-01

    Irreducible fracture dislocations of the ankle are rare and represent true orthopedic emergencies. We present a case of a fracture dislocation that was irreducible owing to a fixed dislocation of the proximal fibular fragment posterior to the lateral ridge of the tibia. This particular type of

  17. Temporomandibular joint dislocation in an epileptic and mentally ...

    African Journals Online (AJOL)

    Theories regarding the pathogenesis of TMJ dislocation propose laxity of TMJ ligaments or capsule, excessive activity of the lateral pterygoid muscle (LPM)and erosion of the eminence'. TMJ dislocation can occur in an anterior, posterior, lateral and superior direction'. Clinical presentation of dislocated TMJ includes inability ...

  18. Lack of experience is a significant factor in the missed diagnosis of perilunate fracture dislocation or isolated dislocation

    Directory of Open Access Journals (Sweden)

    Ilker Çolak

    2018-01-01

    Conclusion: The results of this study indicated that lack of experience was the most important factor in the misdiagnosis of perilunate fracture dislocation or isolated dislocation. Level of Evidence: Level IV, diagnostic study.

  19. Beneficial aerodynamic effect of wing scales on the climbing flight of butterflies.

    Science.gov (United States)

    Slegers, Nathan; Heilman, Michael; Cranford, Jacob; Lang, Amy; Yoder, John; Habegger, Maria Laura

    2017-01-30

    It is hypothesized that butterfly wing scale geometry and surface patterning may function to improve aerodynamic efficiency. In order to investigate this hypothesis, a method to measure butterfly flapping kinematics optically over long uninhibited flapping sequences was developed. Statistical results for the climbing flight flapping kinematics of 11 butterflies, based on a total of 236 individual flights, both with and without their wing scales, are presented. Results show, that for each of the 11 butterflies, the mean climbing efficiency decreased after scales were removed. Data was reduced to a single set of differences of climbing efficiency using are paired t-test. Results show a mean decrease in climbing efficiency of 32.2% occurred with a 95% confidence interval of 45.6%-18.8%. Similar analysis showed that the flapping amplitude decreased by 7% while the flapping frequency did not show a significant difference. Results provide strong evidence that butterfly wing scale geometry and surface patterning improve butterfly climbing efficiency. The authors hypothesize that the wing scale's effect in measured climbing efficiency may be due to an improved aerodynamic efficiency of the butterfly and could similarly be used on flapping wing micro air vehicles to potentially achieve similar gains in efficiency.

  20. Unified theory of dislocation motion including thermal activation and inertial effects

    International Nuclear Information System (INIS)

    Isaac, R.D.; Granato, A.V.

    1979-01-01

    Transition-state rate theory has generally been used to explain the temperature dependence of the flow stress of a crystal. However, the existence of a change in the flow stress during the superconducting transition indicates the presence of inertial effects in which dislocations overcome obstacles mechanically rather than thermally. It is shown here that the thermally activated and the inertial overcoming of obstacles are not unrelated but can both be derived from principles of stochastic motion. This leads to a theory of dislocation motion that includes both thermal activation and inertial effects. It is also shown that a distribution of activation energies must be considered to account for the experimental data

  1. Atomistic simulations of dislocation-precipitate interactions emphasize importance of cross-slip

    International Nuclear Information System (INIS)

    Singh, C.V.; Mateos, A.J.; Warner, D.H.

    2011-01-01

    This work examines the interaction of screw dislocations with Guinier-Preston (GP) zones using atomistic simulations. Both Orowan looping and cross-slip mechanisms are found to control the interactions. Cross-slip, occurring both at zero and finite temperatures, is found to either significantly reduce or enhance precipitate strengthening, depending upon the orientation of the dislocation-GP zone interaction. The orientation dependence, and its dependence on temperature, provides a micromechanical explanation for the experiments of Muraishi et al. (Philos. Mag. A 82 (2002) 2755).

  2. An isolated dorso-medial dislocation of navicular bone: A case report.

    Science.gov (United States)

    Singh, Varun Kumar; Kashyap, Abhishek; Vargaonkar, Gauresh; Kumar, Ramesh

    2015-03-01

    An isolated dislocation of tarsal navicular is extremely rare injury. Usually it is associated with fracture of navicular itself or other tarsal bones of foot along with disruption of medial or lateral column of foot. Mechanism of injury is complex but usually a severe abduction force is required to produce such injury in a planter flexed foot. A 30 year old male presented with isolated navicular dislocation. Management required open reduction and fixation with k-wires. These injuries have specific complications including avascular necrosis of navicular and post-traumatic arthritis.

  3. Dislocation structures of Σ3 {112} twin boundaries in face centered cubic metals

    Science.gov (United States)

    Wang, J.; Anderoglu, O.; Hirth, J. P.; Misra, A.; Zhang, X.

    2009-07-01

    High resolution transmission electron microscopy of nanotwinned Cu films revealed Σ3 {112} incoherent twin boundaries (ITBs), with a repeatable pattern involving units of three {111} atomic planes. Topological analysis shows that Σ3 {112} ITBs adopt two types of atomic structure with differing arrangements of Shockley partial dislocations. Atomistic simulations were performed for Cu and Al. These studies revealed the structure of the two types of ITBs, the formation mechanism and stability of the associated 9R phase, and the influence of stacking fault energies on them. The results suggest that Σ3 {112} ITBs may migrate through the collective glide of partial dislocations.

  4. Influence of dislocation glide on the spinodal decomposition of fatigued duplex stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Herenu, S., E-mail: herenu@ifir-conicet.gov.ar [Instituto de Fisica Rosario, Bv. 27 de Febrero 210 bis, (2000) Rosario, Santa Fe (Argentina); Sennour, M. [MINES ParisTech, Centre des Materiaux - UMR CNRS 7633 - 91003, Evry Cedex (France); Balbi, M.; Alvarez-Armas, I. [Instituto de Fisica Rosario, Bv. 27 de Febrero 210 bis, (2000) Rosario, Santa Fe (Argentina); Thorel, A. [MINES ParisTech, Centre des Materiaux - UMR CNRS 7633 - 91003, Evry Cedex (France); Armas, A.F. [Instituto de Fisica Rosario, Bv. 27 de Febrero 210 bis, (2000) Rosario, Santa Fe (Argentina)

    2011-09-25

    Highlights: {center_dot} Dislocations bands and microbands are developed in {alpha} phase of fatigued aged DSS. {center_dot} Inside these structures, demodulation of spinodal decomposition (SD) were found. {center_dot} This fact could take part in the cyclic softening displayed by DSS S32750. {center_dot} Cyclic tests at 475 deg. C show a saturation stage at the end of fatigue life. {center_dot} This could be explained by the effect of demodulation and creation of SD. - Abstract: The present work is focused on assessing the influence of dislocation movement on spinodal decomposition through scanning transmission electron microscopy (STEM) in combination with energy dispersive X-ray spectroscopy (EDS) analysis in aged duplex stainless steel (DSS) S32750. Dislocation bands and microbands are the prominent dislocation arrangements observed in fatigue tested aged samples. By EDS measurements it was found that the spinodal decomposition was dissolved inside these dislocations structures. Therefore, the mechanism of microband formation developed in the ferritic phase during cycling seems to be responsible for the demodulation of the spinodal decomposition and cyclic softening of the aged DSS.

  5. Atomistic study of the hardening of ferritic iron by Ni-Cr decorated dislocation loops

    Science.gov (United States)

    Bonny, G.; Bakaev, A.; Terentyev, D.; Zhurkin, E.; Posselt, M.

    2018-01-01

    The exact nature of the radiation defects causing hardening in reactor structural steels consists of several components that are not yet clearly determined. While generally, the hardening is attributed to dislocation loops, voids and secondary phases (radiation-induced precipitates), recent advanced experimental and computational studies point to the importance of solute-rich clusters (SRCs). Depending on the exact composition of the steel, SRCs may contain Mn, Ni and Cu (e.g. in reactor pressure vessel steels) or Ni, Cr, Si, Mn (e.g. in high-chromium steels for generation IV and fusion applications). One of the hypotheses currently implied to explain their formation is the process of radiation-induced diffusion and segregation of these elements to small dislocation loops (heterogeneous nucleation), so that the distinction between SRCs and loops becomes somewhat blurred. In this work, we perform an atomistic study to investigate the enrichment of loops by Ni and Cr solutes and their interaction with an edge dislocation. The dislocation loops decorated with Ni and Cr solutes are obtained by Monte Carlo simulations, while the effect of solute segregation on the loop's strength and interaction mechanism is then addressed by large scale molecular dynamics simulations. The synergy of the Cr-Ni interaction and their competition to occupy positions in the dislocation loop core are specifically clarified.

  6. Interface effects on elastic behavior of a screw dislocation around double nanowires

    International Nuclear Information System (INIS)

    Li, Jia; Fang, Qihong; Liu, Youwen

    2014-01-01

    The elastic behavior of a screw dislocation around double nanowires (NWs) is addressed with taking into account the interface stress effect in controlling mechanical response of nanoscale structures. The stress boundary conditions at the interface of the NWs are modified by incorporating surface/interface stress. The analytic solution of complex functions of the right NW, the infinite matrix and the left NW are obtained by applying the complex variable method. The equilibrium positions and the image force acting on the dislocation of a screw dislocation near one of the NWs are discussed in detail and compared with those obtained within the classical theory of elasticity. It is shown that the NWs possess a significant local softening or hardening at the interface, which can change the nature of the equilibrium positions for the dislocation. The radius ratio between NWs has profound effects on the equilibrium position. Additionally, the soft NW with the positive interface stress inhibits the dislocation motion to enhance its own structural stability.

  7. Non-basal dislocations should be accounted for in simulating ice mass flow

    Science.gov (United States)

    Chauve, T.; Montagnat, M.; Piazolo, S.; Journaux, B.; Wheeler, J.; Barou, F.; Mainprice, D.; Tommasi, A.

    2017-09-01

    Prediction of ice mass flow and associated dynamics is pivotal at a time of climate change. Ice flow is dominantly accommodated by the motion of crystal defects - the dislocations. In the specific case of ice, their observation is not always accessible by means of the classical tools such as X-ray diffraction or transmission electron microscopy (TEM). Part of the dislocation population, the geometrically necessary dislocations (GNDs) can nevertheless be constrained using crystal orientation measurements via electron backscattering diffraction (EBSD) associated with appropriate analyses based on the Nye (1950) approach. The present study uses the Weighted Burgers Vectors, a reduced formulation of the Nye theory that enables the characterization of GNDs. Applied to ice, this method documents, for the first time, the presence of dislocations with non-basal [ c ] or Burgers vectors. These [ c ] or dislocations represent up to 35% of the GNDs observed in laboratory-deformed ice samples. Our findings offer a more complex and comprehensive picture of the key plasticity processes responsible for polycrystalline ice creep and provide better constraints on the constitutive mechanical laws implemented in ice sheet flow models used to predict the response of Earth ice masses to climate change.

  8. Radiation damage buildup and dislocation evolution in Ni and equiatomic multicomponent Ni-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Levo, E. [Department of Physics, P.O. Box 43, FIN-00014, University of Helsinki (Finland); Granberg, F., E-mail: fredric.granberg@helsinki.fi [Department of Physics, P.O. Box 43, FIN-00014, University of Helsinki (Finland); Fridlund, C.; Nordlund, K. [Department of Physics, P.O. Box 43, FIN-00014, University of Helsinki (Finland); Djurabekova, F. [Department of Physics, P.O. Box 43, FIN-00014, University of Helsinki (Finland); Helsinki Institute of Physics, P.O. Box 43, FIN-00014, University of Helsinki (Finland)

    2017-07-15

    Single-phase multicomponent alloys of equal atomic concentrations (“equiatomic”) have proven to exhibit promising mechanical and corrosion resistance properties, that are sought after in materials intended for use in hazardous environments like next-generation nuclear reactors. In this article, we investigate the damage production and dislocation mobility by simulating irradiation of elemental Ni and the alloys NiCo, NiCoCr, NiCoFe and NiFe, to assess the effect of elemental composition. We compare the defect production and the evolution of dislocation networks in the simulation cells of two different sizes, for all five studied materials. We find that the trends in defect evolution are in good agreement between the different cell sizes. The damage is generally reduced with increased alloy complexity, and the dislocation evolution is specific to each material, depending on its complexity. We show that increasing complexity of the alloys does not always lead to decreased susceptibility to damage accumulation under irradiation. We show that, for instance, the NiCo alloy behaves very similarly to Ni, while presence of Fe or Cr in the alloy even as a third component reduces the saturated level of damage substantially. Moreover, we linked the defect evolution with the dislocation transformations in the alloys. Sudden drops in defect number and large defect fluctuations from the continuous irradiation can be explained from the dislocation activity.

  9. Evaluation of dislocation density in copper and brass α deformed by XRD peak width analysis

    International Nuclear Information System (INIS)

    Sousa, Talita Gama de

    2014-01-01

    The determination of dislocation density in metallic materials has been available for many years in scientific environment. This is due to the fact that the dislocations are the main responsible for plastic deformation, which, thereafter, markedly influences the mechanical properties. In this work, the dislocation density was analyzed through peak broadening of Xray diffraction (XRD) using Convolutional Multiple Whole Profile (CMWP) program. The measurements obtained by XRD were compared with those obtained from images observed by transmission electronic microscopy (TEM). The materials used in this study were pure copper and brass α as alloy 268 (6 % Cu and 34 % Zn), deformed by rolling and ECA (equal channel angular extrusion) processes. The results indicate that the XRD is a powerful tool for the characterization of the microstructure in relation to the dislocation density, as they were consistent to the TEM measurements, and also showed good relationship with measurements of hardness. Furthermore, through the dislocation density it was possible to verify the influence of stacking fault energy (SFE) in the evolution of the copper samples deformation process and its alloy, and that the presence of texture in rolled samples did not impair the measurements obtained by XRD technique. (author)

  10. Dislocation structures, effective and internal stresses of cyclic stained ferritic stainless steel

    Czech Academy of Sciences Publication Activity Database

    Petrenec, Martin; Polák, Jaroslav

    2001-01-01

    Roč. 72, č. 279 (2001), s. 129-133 ISSN 1429-6055. [Medzynarodowe Sympozjum - Metody oceny struktury oraz wlasnosci materialów i wyrobów /16./. Komorní Lhotka, 11.12.2001-13.12.2001] Institutional research plan: CEZ:AV0Z2041904 Keywords : dislocation * cyclicling * stresses Subject RIV: JL - Materials Fatigue, Friction Mechanics

  11. Inflicted T12 fracture-dislocation: CT/MRI correlation and mechanistic implications

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Brandon [Brigham and Women' s Hospital, Section of Neuroradiology, Department of Radiology, Boston, MA (United States); Silvera, Michelle [Children' s Hospital Boston, Division of Neuroradiology, Department of Radiology, Boston, MA (United States); Newton, Alice [Children' s Hospital Boston, Division of General Pediatrics, Boston, MA (United States); Kleinman, Paul K. [Children' s Hospital Boston, Department of Radiology, Boston, MA (United States)

    2007-11-15

    We describe the CT and MRI findings of a thoracolumbar neurocentral synchondrosis fracture-dislocation in an abused infant. The morphologic features of this classically described fracture, and the associated cervical and sacral spine injuries displayed on cross-sectional imaging, provide compelling evidence for a mechanism of massive hyperflexion and axial spinal loading. (orig.)

  12. Acromioclavicular Dislocation Associated with Coracoid Process Fracture: Report of Two Cases and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Ozkan Kose

    2015-01-01

    Full Text Available Acromioclavicular dislocation associated with coracoid process fracture is a rare injury. Herein we reported two further cases with such combination of injuries and reviewed all previously published cases in current literature. In this review, we discussed the demographic characteristics, mechanism of injury, diagnosis, and treatment options extensively.

  13. A three dimensional discrete dislocation dynamics modelling of the early cycles of fatigue in an austenitic stainless steel 316L: dislocation microstructure and damage analysis; Modelisation physique des stades precurseurs de l'endommagement en fatigue dans l'acier inoxydable austenitique 316L

    Energy Technology Data Exchange (ETDEWEB)

    Depres, Ch

    2005-07-01

    A numerical code modelling the collective behaviour of dislocations at a mesoscopic scale (Discrete Dislocation Dynamics code) is used to analyse the cyclic plasticity that occurs in surface grains of an AISI 316L stainless steel, in order to understand the plastic mechanism involved in crack initiation in fatigue. Firstly, the analyses of both the formation and the evolution of the dislocation microstructures show the crucial role of cross-slip played in the strain localization in the form of slip bands. As the cycling proceeds, the slip bands exhibit well-organized dislocation arrangements that substitute to dislocation tangles, involving specific interaction mechanisms between primary and deviate systems. Secondly, both the surface displacements generated by plastic slip and the distortion energy induced by the dislocation microstructure have been analysed. We find that an irreversible surface relief in the form of extrusion/intrusion can be induced by cyclic slip of dislocations. The number of cycles for the crack initiation follows a Manson-Coffin type law. The analyses of the concentration of the distortion energy and its repartition in the slip bands show that beneficial energetic zones may be present at the very beginning of the cycling, and that mode-II crack propagation in the surface grains results from a succession of micro-crack initiations along primary slip plane, which is facilitated by various effects (stress concentration due to surface relief, environment effects...). Finally, a dislocation-based model for cyclic plasticity is proposed from Discrete Dislocation Dynamics results. (author)

  14. Internal friction and dislocation collective pinning in disordered quenched solid solutions

    Science.gov (United States)

    D'Anna, G.; Benoit, W.; Vinokur, V. M.

    1997-12-01

    We introduce the collective pinning of dislocations in disordered quenched solid solutions and calculate the macroscopic mechanical response to a small dc or ac applied stress. This work is a generalization of the Granato-Lücke string model, able to describe self-consistently short and long range dislocation motion. Under dc applied stress the long distance dislocation creep has at the microscopic level avalanche features, which result in a macroscopic nonlinear "glassy" velocity-stress characteristic. Under ac conditions the model predicts, in addition to the anelastic internal friction relaxation in the high frequency regime, a linear internal friction background which remains amplitude-independent down to a crossover frequency to a strongly nonlinear internal friction regime.

  15. Consideration of the oxide particle-dislocation interaction in 9Cr-ODS steel

    Science.gov (United States)

    Ijiri, Yuta; Oono, N.; Ukai, S.; Yu, Hao; Ohtsuka, S.; Abe, Y.; Matsukawa, Y.

    2017-05-01

    The interaction between oxide particles and dislocations in a 9Cr-ODS ferritic steel is investigated by both static and in situ TEM observation under dynamic straining conditions and room temperature. The measured obstacle strength (?) of the oxide particles was no greater than 0.80 and the average was 0.63. The dislocation loops around some coarsened particles were also observed. The calculated obstacle strength by a stress formula of the Orowan interaction is nearly equaled to the average experimental value. Not only cross-slip system but also the Orowan interaction should be considered as the main interaction mechanism between oxide particles and dislocation in 9CrODS ferritic steel.

  16. Dislocation motion in InSb crystals under a magnetic field

    CERN Document Server

    Darinskaya, E V; Erofeeva, S A

    2002-01-01

    Dislocation displacements under the action of a permanent magnetic field without mechanical loading in differently doped InSb crystals are investigated. The dependences of the mean dislocation path length and the relative number of divergence and tightening half-loops on the magnetic induction and preliminary load are obtained. Experiments on n-InSb crystals with Te impurities and on p-InSb crystals with Ge impurities have shown a sensitivity of the magnetoplasticity to the conductivity type and the dopant content. Study of the magnetoplastic effect in the initial deformed InSb crystals shows that internal stresses decrease the lengths of divergence dislocation paths and simultaneously increase the threshold magnetic field above which the magnetoplastic effect exists. Possible reasons for the observed phenomena are discussed.

  17. Indentation plasticity of barium titanate single crystals: Dislocation influence on ferroelectric domain walls

    Energy Technology Data Exchange (ETDEWEB)

    Liu, D. [Department of Mechanical Engineering, University of Houston, 4800 Calhoun Road, Houston, TX 77204 (United States)]. E-mail: duo.liu@mail.uh.edu; Chelf, M. [Department of Mechanical Engineering, University of Houston, 4800 Calhoun Road, Houston, TX 77204 (United States); White, K.W. [Department of Mechanical Engineering, University of Houston, 4800 Calhoun Road, Houston, TX 77204 (United States)

    2006-10-15

    The plastic behaviors of barium titanate (001) and (110) single crystals are studied with atomic force microscopy and piezoresponse force microscopy (PFM) following nanoindendation damage. Plastic deformation mechanisms of ferroelectric barium titanate single crystals are discussed with a focus on the interaction between PFM response and dislocation activities. Nanoindentation tests indicate that the theoretical strength is approached prior to the first pop-in event, consistent with the creation of dislocation nucleation sites required for the onset of plasticity. Surface topographic and piezoelectric analyses indicate that pile-ups around indents result from dislocation activities on the primary slip system, {l_brace}110{r_brace}{sub pc}<11-bar 0>{sub pc}. The more complex indentation-induced domain patterns observed on (110) barium titanate are also discussed.

  18. Indentation plasticity of barium titanate single crystals: Dislocation influence on ferroelectric domain walls

    International Nuclear Information System (INIS)

    Liu, D.; Chelf, M.; White, K.W.

    2006-01-01

    The plastic behaviors of barium titanate (001) and (110) single crystals are studied with atomic force microscopy and piezoresponse force microscopy (PFM) following nanoindendation damage. Plastic deformation mechanisms of ferroelectric barium titanate single crystals are discussed with a focus on the interaction between PFM response and dislocation activities. Nanoindentation tests indicate that the theoretical strength is approached prior to the first pop-in event, consistent with the creation of dislocation nucleation sites required for the onset of plasticity. Surface topographic and piezoelectric analyses indicate that pile-ups around indents result from dislocation activities on the primary slip system, {110} pc pc . The more complex indentation-induced domain patterns observed on (110) barium titanate are also discussed

  19. Morphological selection and the evaluation of potential tradeoffs between escape from predators and the climbing of waterfalls in the Hawaiian stream goby Sicyopterus stimpsoni.

    Science.gov (United States)

    Blob, Richard W; Kawano, Sandy M; Moody, Kristine N; Bridges, William C; Maie, Takashi; Ptacek, Margaret B; Julius, Matthew L; Schoenfuss, Heiko L

    2010-12-01

    lower fineness ratios than did control fish (i.e., greater body depth for a given length), whereas successful climbers had higher fineness ratios (reducing drag) than did fish that failed. However, most morphological variables showed significant selection in only one treatment rather than opposing selection across both. Thus, functional tradeoffs between evasion of predators and minimizing drag during climbing might influence divergence in body shape across subpopulations, but even when selection is an important contributing mechanism, directly opposite patterns of selection across environmental demands are not required to generate morphological divergence.

  20. Stress-free states of continuum dislocation fields : Rotations, grain boundaries, and the Nye dislocation density tensor

    NARCIS (Netherlands)

    Limkumnerd, Surachate; Sethna, James P.

    We derive general relations between grain boundaries, rotational deformations, and stress-free states for the mesoscale continuum Nye dislocation density tensor. Dislocations generally are associated with long-range stress fields. We provide the general form for dislocation density fields whose

  1. Work softening in nanocrystalline materials induced by dislocation annihilation

    DEFF Research Database (Denmark)

    Ungar, Tamas; Li, Li; Tichy, Geza

    2011-01-01

    Cold rolling reduces the quantity of dislocation densities in Ni–18% Fe alloys prepared by electrochemical deposition. The dislocation density evolution proposed earlier for the linearly decreasing work-hardening rate during stage III is revisited. The solution of the differential equation predicts...... that when the initial dislocation density is smaller or larger than the saturation value, then the dislocation density will increase or decrease during further plastic deformation. The predictions are verified by experimental values of dislocation densities determined by X-ray line-profile analysis....

  2. Electron-dislocation interaction at low temperatures. Progress report

    International Nuclear Information System (INIS)

    1976-01-01

    Studies of the interaction of mobile dislocations with electrons have shown that dislocation motion can be, in part, described by treating the dislocation as an underdamped oscillator. In particular, studies in lead alloys have shown tht dislocation motion can be considered as the motion of string, slightly damped by electrons, without regard for any other lattice friction. In addition we have shown that silver solutes, in lead crystals, occupy, partially, interstitial sites. Finally, we have shown that dislocations in copper interact, unexpectedly, with electrons. This is shown by measuring the influence of a magnetic field on the flow stress of copper crystals at 4.2 0 K

  3. Interaction between infinitely many dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal

    International Nuclear Information System (INIS)

    Liu Guan-Ting; Yang Li-Ying

    2017-01-01

    By means of analytic function theory, the problems of interaction between infinitely many parallel dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal are studied. The analytic solutions of stress fields of the interaction between infinitely many parallel dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal are obtained. They indicate that the stress concentration occurs at the dislocation source and the tip of the crack, and the value of the stress increases with the number of the dislocations increasing. These results are the development of interaction among the finitely many defects of quasicrystals, which possesses an important reference value for studying the interaction problems of infinitely many defects in fracture mechanics of quasicrystal. (paper)

  4. Climbing Robot for Ferromagnetic Surfaces with Dynamic Adjustment of the Adhesion System

    Directory of Open Access Journals (Sweden)

    Manuel F. Silva

    2012-01-01

    Full Text Available This paper presents a climbing robot with wheeled locomotion and adhesion through permanent magnets, developed with the intention of being used in the inspection of different types of man-made ferromagnetic structures, such as towers for wind turbines, fuel storage tanks, and ship hulls. In this paper are presented the main considerations thought for its project, as well as several constructive aspects, among which are detailed its mechanical and electrical construction, the implemented control architecture, and the human-machine interface developed for the manual and automatic control of the vehicle while in operation. Although it can be manually controlled, the vehicle is designed to have a semiautonomous behavior, allowing a remote inspection process controlled by a technician, this way reducing the risks associated with the human inspection of tall structures and ATEX places. The distinguishing characteristic of this robot is its dynamic adjustment system of the permanent magnets in order to assure the machine adhesion to the surfaces, even when crossing slightly irregular and curved surfaces with a large radius.

  5. Atomic level simulations of interaction between edge dislocations and irradiation induced ellipsoidal voids in alpha-iron

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Bida [Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074 (China); Huang, Minsheng, E-mail: mshuang@hust.edu.cn [Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074 (China); Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment, Luoyu Road 1037, Wuhan 430074 (China); Li, Zhenhuan [Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074 (China); Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment, Luoyu Road 1037, Wuhan 430074 (China)

    2017-04-15

    High concentrations of vacancies tend to be formed inside the metal materials under irradiation, and then accumulate and cluster together gradually to promote the formation of nanovoids. Generally, these voids act as obstacles for dislocation glide and thereby change/degrade the mechanical behavior of irradiated materials. In this work, the interaction between ellipsoidal nanovoids with edge dislocations in alpha-iron has been studied by atomic simulations. The results illuminate that the ellipsoidal void’s semi-major axis on the slip plane and parallel to the dislocation line is the dominant factor controlling the obstacle strength of ellipsoidal nanovoids. Two other semi-major axes, which are perpendicular to the glide plane and parallel to the Burgers vector, respectively, can also influence the critical resolved shear stress (CRSS) for dislocation shearing the ellipsoidal void. The intrinsic atomic mechanisms controlling above phenomena, such as nanovoid-geometry spatial constraint and nanovoid-surface curvature on dislocation evolution, have been discussed carefully. The classical continuum model has been amended to describe the dislocation-ellipsoidal nanovoid interaction base on current results. In addition, the influence of temperature on the CRSS of ellipsoidal nanovoids has also been investigated.

  6. BILATERAL PATHOLOGICAL HIP DISLOCATION IN CHILDREN

    Directory of Open Access Journals (Sweden)

    Yuriy E. Garkavenko

    2017-03-01

    Full Text Available Introduction. Pathological dislocation of the hip is one of the most severe complications of acute hematogenous osteomyelitis. The program of treatment for children with pathological hip dislocation is complex, but it has been sufficiently developed and implemented very successfully. At the same time, the available literature provides no cases of treating children with bilateral pathological hip dislocations after hematogenous osteomyelitis. There is no information on the incidence of such cases or in regards to remote functional results. Materials and methods. The results of the treatment of 18 children with bilateral pathological dislocation of the hip after hematogenous osteomyelitis are presented, which constituted 23.1% of the total number of patients (78 who underwent surgery in 2000–2016 for the diagnosis of pathological hip dislocation. Both hip joints were surgically operated on in 12 patients, while one hip joint was operated on in 6 patients. To assess the anatomical and functional state of hip joints, the clinical and roentgenological diagnostic techniques were used. Results and discussion. To stabilize and restore the function of the hip joints, 18 children underwent 30 surgical interventions: simple open hip reduction (19 and open hip reduction with hip arthroplasty with one (6 or two (5 demineralized osteochondral allogeneic grafts. The decision regarding the possibility of performing surgical intervention on the second hip joint was made only after a child's check-up examination was complete and after positive information about the anatomical and functional state of the operated hip joint was obtained. According to these criteria, 14 (77.8% children underwent surgical treatment of the second hip joint 1–1.5 years after the course of conservative measures to restore the range of motion in the previously operated hip joint. Over a period of 1–12 years, 17 patients were examined, 10 of which underwent an operation on both

  7. Recombination properties of dislocations in GaN

    Science.gov (United States)

    Yakimov, Eugene B.; Polyakov, Alexander Y.; Lee, In-Hwan; Pearton, Stephen J.

    2018-04-01

    The recombination activity of threading dislocations in n-GaN with different dislocation densities and different doping levels was studied using electron beam induced current (EBIC). The recombination velocity on a dislocation, also known as the dislocation recombination strength, was calculated. The results suggest that dislocations in n-GaN giving contrast in EBIC are charged and surrounded by a space charge region, as evidenced by the observed dependence of dislocation recombination strength on dopant concentration. For moderate (below ˜108 cm-2) dislocation densities, these defects do not primarily determine the average diffusion length of nonequilibrium charge carriers, although locally, dislocations are efficient recombination sites. In general, it is observed that the effect of the growth method [standard metalorganic chemical vapor deposition (MOCVD), epitaxial lateral overgrowth versions of MOCVD, and hydride vapor phase epitaxy] on the recombination activity of dislocations is not very pronounced, although the average diffusion lengths can widely differ for various samples. The glide of basal plane dislocations at room temperature promoted by low energy electron irradiation does not significantly change the recombination properties of dislocations.

  8. Modelling dislocation-obstacle interactions in metals exposed to an irradiation environment

    International Nuclear Information System (INIS)

    Bacon, D.J.; Osetsky, Yu.N.

    2005-01-01

    Irradiation of metals with high-energy atomic particles creates obstacles to glide, such as voids, dislocation loops, stacking-fault tetrahedra and irradiation-induced precipitates through which dislocations have to move during plastic flow. Approximations based on the elasticity theory of defects offer the simplest treatment of strengthening, but are deficient in many respects. It is now widely recognised that a multiscale modelling approach should be used, wherein the mechanisms and strength parameters of interaction are derived by simulation of the atomic level to feed higher-level treatments based on continuum mechanics. Atomic-scale simulation has been developed to provide quantitative information on the influence of stress, strain rate and temperature. Recent results of modelling dislocations gliding under stress against obstacles in a variety of metals across a range of temperature are considered. The effects observed include cutting, absorbing and dragging obstacles. Simulations of 0 K provide for direct comparison with results from continuum mechanics, and although some processes can be represented within the continuum treatment of dislocations, others cannot

  9. Thermally activated dislocation motion including inertial effects in solid solutions

    International Nuclear Information System (INIS)

    Isaac, R.D.

    1977-01-01

    Dislocation motion through an array of obstacles is considered in terms of the potential energy of the dislocation as it moves through the array. The obstacles form a series of potential wells and barriers which can trap the dislocations. The effect of thermal fluctuations and of a viscous drag on the motion of the dislocation is investigated by analogy with Brownian motion in a field of force. The rate of escape of a trapped dislocation is found to depend on the damping coefficient only for a large viscous drag. The probability that a dislocation will be trapped by a well or barrier is found to depend on the damping coefficient for a small viscous drag. This inertial effect determines how far a dislocation will travel after breaking away from an obstacle

  10. Ultrasound as a probe of dislocation density in aluminum

    International Nuclear Information System (INIS)

    Mujica, Nicolás; Cerda, Maria Teresa; Espinoza, Rodrigo; Lisoni, Judit; Lund, Fernando

    2012-01-01

    Graphical abstract: Display Omitted - Abstract: Dislocations are at the heart of the plastic behavior of crystalline materials yet it is notoriously difficult to perform quantitative, non-intrusive measurements of their single or collective properties. Dislocation density is a critical variable that determines dislocation mobility, strength and ductility. On the one hand, individual dislocations can be probed in detail with transmission electron microscopy. On the other hand, their collective properties must be simulated numerically. Here we show that ultrasound technology can be used to measure dislocation density. This development rests on theory—a generalization of the Granato–Lücke theory for the interaction of elastic waves with dislocations—and resonant ultrasound spectroscopy (RUS) measurements. The chosen material is aluminum, to which different dislocation contents were induced through annealing and cold-rolling processes. The dislocation densities obtained with RUS compare favorably with those inferred from X-ray diffraction, using the modified Williamson–Hall method.

  11. Electrical conduction along dislocations in plastically deformed GaN

    Energy Technology Data Exchange (ETDEWEB)

    Kamimura, Y; Yokoyama, T; Oiwa, H; Edagawa, K [Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Yonenaga, I, E-mail: yasushi@iis.u-tokyo.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577 (Japan)

    2009-07-15

    Electrical conduction along dislocations in plastically deformed n-GaN single crystals has been investigated by scanning spread resistance microscopy (SSRM). In the SSRM images, many conductive spots have been observed, which correspond to electrical conduction along the dislocations introduced by deformation. Here, the introduced dislocations are b=(a/3)<1overline 210> edge dislocations parallel to the [0001] direction. The current values at the spots normalized to the background current value are larger than 100. Previous works have shown that grown-in edge dislocations in GaN are nonconductive. The high conductivity of the deformation-introduced edge dislocations in the present work suggests that the conductivity depends sensitively on the dislocation core structure.

  12. Determining dislocation densities from the extinction effect (review)

    International Nuclear Information System (INIS)

    Ivanov, A.N.; Polyakov, A.M.; Skakov, Yu.A.

    1987-01-01

    Much attention is being given to dynamic x-ray scattering in crystals containing defects. As general diffraction theory for crystals with defects does not at present extend beyond formal expressions and there is no rigorous theory of diffraction by crystals containing dislocations, one describes extinction in a nonideal crystal via phenomenological theories. In this paper, the authors review the various methods of analyzing the dislocation structure from the integral intensities which are based on three extinction models: Darwin's extinction theory; mosaic-crystal scattering theory; and the transport equations method proposed by Stephan for Bragg geometry and Laue geometry. The most rigorous method in a theoretical respect of those covered in this review is based on Kato's extinction theory. The authors consider it necessary to devise a general theory of x-ray scattering for crystals with any type of long-range order in the displacement pattern, although this paper has dealt with some of the applications of quantum mechanics and statistical physics in describing diffraction

  13. A spectral approach for discrete dislocation dynamics simulations of nanoindentation

    Science.gov (United States)

    Bertin, Nicolas; Glavas, Vedran; Datta, Dibakar; Cai, Wei

    2018-07-01

    We present a spectral approach to perform nanoindentation simulations using three-dimensional nodal discrete dislocation dynamics. The method relies on a two step approach. First, the contact problem between an indenter of arbitrary shape and an isotropic elastic half-space is solved using a spectral iterative algorithm, and the contact pressure is fully determined on the half-space surface. The contact pressure is then used as a boundary condition of the spectral solver to determine the resulting stress field produced in the simulation volume. In both stages, the mechanical fields are decomposed into Fourier modes and are efficiently computed using fast Fourier transforms. To further improve the computational efficiency, the method is coupled with a subcycling integrator and a special approach is devised to approximate the displacement field associated with surface steps. As a benchmark, the method is used to compute the response of an elastic half-space using different types of indenter. An example of a dislocation dynamics nanoindentation simulation with complex initial microstructure is presented.

  14. Motion of dislocation kinks in a simple model crystal

    International Nuclear Information System (INIS)

    Koizumi, H.; Suzuki, T.

    2005-01-01

    To investigate the effects of lattice periodicity on kink motion, a molecular-dynamic simulation for a kink in a screw dislocation has been performed in a simple model lattice of diamond type. The Stillinger-Weber potential is assumed to act between atoms. Under applied stresses larger than 0.0027G, a long distance motion of a kink is possible, where G is the shear modulus. A moving kink emits lattice waves and loses its kinetic energy, which is compensated by the applied stress. The kink attains a terminal velocity after moving a few atomic distances. The kink velocity is not proportional to the applied stress, and exceeds the shear wave velocity when the applied stress is larger than 0.026G. The energy loss of the moving kink is one order of magnitude smaller than that of a moving straight dislocation and is about the same order of magnitude as the theoretical value of phonon-scattering mechanisms at room temperature

  15. Multi-scale approach of plasticity mechanisms in irradiated austenitic steels

    International Nuclear Information System (INIS)

    Nogaret, Th.

    2007-12-01

    The plasticity in irradiated metals is characterized by the localization of the deformation in clear bands, defect free, formed by the dislocation passage. We investigated the clear band formation thanks to a multi-scale approach. Molecular dynamics simulations show that screw dislocations mainly un-fault and absorb the defects as helical turns, are strongly pinned by the helical turns and are remitted in new glide planes when they unpin whereas edge dislocations mainly shear the defects for moderate stresses and can drag the helical turns. The interaction mechanisms were implemented into the discrete dislocation dynamics code in order to study the clear band formation at the micron scale. As dislocations are issued from grain boundaries, we consider a dislocation source located on a box border that emits dislocations when the dislocation nucleation stress is reached. The hardening was seen mainly due to the screw dislocations that are strongly pinned by helical turns. Edge dislocations are less pinned and glide on long distances, letting long screw dislocation segments. As more dislocations are emitted, screw dislocation pile-ups form and this permits the unpinning of screw dislocations. They unpin by activating dislocation segments in new glide planes, which broadens the clear band. When the segments activate, they create edge parts that sweep the screw dislocation lines by dragging away the super-jogs towards the box borders where they accumulate, which clears the band. (author)

  16. A multistage controlled intervention to increase stair climbing at work: effectiveness and process evaluation.

    Science.gov (United States)

    Bellicha, Alice; Kieusseian, Aurélie; Fontvieille, Anne-Marie; Tataranni, Antonio; Copin, Nane; Charreire, Hélène; Oppert, Jean-Michel

    2016-04-11

    Stair climbing helps to accumulate short bouts of physical activity throughout the day as a strategy for attaining recommended physical activity levels. There exists a need for effective long-term stair-climbing interventions that can be transferred to various worksite settings. The aims of this study were: 1) to evaluate short- and long-term effectiveness of a worksite stair-climbing intervention using an objective measurement of stair climbing and a controlled design; and 2) to perform a process evaluation of the intervention. We performed a controlled before-and-after study. The study was conducted in two corporate buildings of the same company located in Paris (France), between September, 2013 and September, 2014. The status of either "intervention site" or "control site" was assigned by the investigators. Participants were on-site employees (intervention site: n = 783; control site: n = 545 at baseline). Two one-month intervention phases using signs (intervention phase 1) and enhancement of stairwell aesthetics (intervention phase 2) were performed. The main outcome was the change in stair climbing, measured with automatic counters and expressed in absolute counts/day/100 employees and percent change compared to baseline. Qualitative outcomes were used to describe the intervention process. Stair climbing significantly increased at the intervention site (+18.7%) but decreased at the control site (-13.3%) during the second intervention phase (difference between sites: +4.6 counts/day/100 employees, p levels at the intervention site, but a significant difference between sites was found (intervention site vs. control site: +2.9 counts/day/100 employees, p level after the end of the study. This study shows a successful stair-climbing intervention at the worksite. The main barriers to adoption and implementation were related to location and visibility of posters. Process evaluation was useful in identifying these barriers throughout the study, and in

  17. How do Continuous Climb Operations affect the capacity of a Terminal Manoeuvre Area?

    Energy Technology Data Exchange (ETDEWEB)

    Perez Casan, J.A.

    2016-07-01

    Continuous climb operations are the following step to optimise departure trajectories with the goals of minimizing fuel consumption and pollutants and noise emissions in the airports neighbourhood, although due to intrinsic nature of these procedures, the integration of these procedures need to develop a new framework for airline operators and air traffic control. Based on the BADA model developed by EUROCONTROL, three activities have been carried out: simulation of several continuous climbs for three aircraft types (Light, Medium and Heavy), analysation of different applied separations throughout the climb from the runway up to cruise level and, as third activity, definition of new separation minima to ensure that the minimum separations are not violated with this new procedures along the climb. In this work are presented the results of modelling three continuous climb type (constant true airspeed, constant climb angle and constant vertical speed) and new time-based separations for most used models in Palma TMA, which will be the case-study scenario. Finally, this theoretical analysis has been applied to a real scenario in Palma de Mallorca TMA in order to compare how the capacity deals with the introduction of this new procedure to standard departures, standard departures are understood as a departure with a level-off at a determined altitude and with the possibility to be affected by any ATC action. First outcomes are promising because capacity, theoretically, would not be grossly diminished, which could initially be expected based on previous studies on continuous descent approaches, although these results should be considered cautiously due to the fact that the model lacks several factors of associated uncertainty for a real climb. (Author)

  18. Chirality-controlled crystallization via screw dislocations.

    Science.gov (United States)

    Sung, Baeckkyoung; de la Cotte, Alexis; Grelet, Eric

    2018-04-11

    Chirality plays an important role in science from enantiomeric separation in chemistry to chiral plasmonics in nanotechnology. However, the understanding of chirality amplification from chiral building blocks to ordered helical superstructures remains a challenge. Here, we demonstrate that topological defects, such as screw dislocations, can drive the chirality transfer from particle to supramolecular structure level during the crystallization process. By using a model system of chiral particles, which enables direct imaging of single particle incorporation into growing crystals, we show that the crystallization kinetic pathway is the key parameter for monitoring, via the defects, the chirality amplification of the crystalline structures from racemic to predominantly homohelical. We provide an explanation based on the interplay between geometrical frustration, racemization induced by thermal fluctuations, and particle chirality. Our results demonstrate that screw dislocations not only promote the growth, but also control the chiral morphology and therefore the functionality of crystalline states.

  19. Configuration and local elastic interaction of ferroelectric domains and misfit dislocation in PbTiO3/SrTiO3 epitaxial thin films

    Directory of Open Access Journals (Sweden)

    Takanori Kiguchi, Kenta Aoyagi, Yoshitaka Ehara, Hiroshi Funakubo, Tomoaki Yamada, Noritaka Usami and Toyohiko J Konno

    2011-01-01

    Full Text Available We have studied the strain field around the 90° domains and misfit dislocations in PbTiO3/SrTiO3 (001 epitaxial thin films, at the nanoscale, using the geometric phase analysis (GPA combined with high-resolution transmission electron microscopy (HRTEM and high-angle annular dark field––scanning transmission electron microscopy (HAADF-STEM. The films typically contain a combination of a/c-mixed domains and misfit dislocations. The PbTiO3 layer was composed from the two types of the a-domain (90° domain: a typical a/c-mixed domain configuration where a-domains are 20–30 nm wide and nano sized domains with a width of about 3 nm. In the latter case, the nano sized a-domain does not contact the film/substrate interface; it remains far from the interface and stems from the misfit dislocation. Strain maps obtained from the GPA of HRTEM images show the elastic interaction between the a-domain and the dislocations. The normal strain field and lattice rotation match each other between them. Strain maps reveal that the a-domain nucleation takes place at the misfit dislocation. The lattice rotation around the misfit dislocation triggers the nucleation of the a-domain; the normal strains around the misfit dislocation relax the residual strain in a-domain; then, the a-domain growth takes place, accompanying the introduction of the additional dislocation perpendicular to the misfit dislocation and the dissociation of the dislocations into two pairs of partial dislocations with an APB, which is the bottom boundary of the a-domain. The novel mechanism of the nucleation and growth of 90° domain in PbTiO3/SrTiO3 epitaxial system has been proposed based on above the results.

  20. Traumatic atlantooccipital dislocation injury in children.

    Science.gov (United States)

    Nichols, J; West, J S

    1994-10-01

    The tragedy of trauma turns into triumph when the surgery team members' efforts result in victory for the patient. Nowhere is this more true than in successful pediatric trauma care. Giving a child a second chance at life and the family an opportunity for a new beginning is the highest reward for the trauma team's years of professional training and practice. Traumatic atlantoocipital dislocation injury usually results in death, but recent neurosurgery trauma advances are increasing pediatric survival rates.