WorldWideScience

Sample records for disk galaxies collisionless

  1. Collisionless relaxation in spiral galaxy models

    Science.gov (United States)

    Hohl, F.

    1974-01-01

    The increase in random kinetic energy of stars by rapidly fluctuating gravitational fields (collisionless or violent relaxation) in disk galaxy models is investigated for three interaction potentials of the stars corresponding to (1) point stars, (2) rod stars of length 2 kpc, and (3) uniform density spherical stars of radius 2 kpc. To stabilize the galaxy against the large scale bar forming instability, a fixed field corresponding to a central core or halo component of stars was added with the stars containing at most 20 percent of the total mass of the galaxy. Considerable heating occurred for both the point stars and the rod stars, whereas the use of spherical stars resulted in a very low heating rate. The use of spherical stars with the resulting low heating rate will be desirable for the study of large scale galactic stability or density wave propagation, since collective heating effects will no longer mask the phenomena under study.

  2. Stratified Simulations of Collisionless Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Hirabayashi, Kota; Hoshino, Masahiro, E-mail: hirabayashi-k@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, The University of Tokyo, Tokyo, 113-0033 (Japan)

    2017-06-10

    This paper presents a series of stratified-shearing-box simulations of collisionless accretion disks in the recently developed framework of kinetic magnetohydrodynamics (MHD), which can handle finite non-gyrotropy of a pressure tensor. Although a fully kinetic simulation predicted a more efficient angular-momentum transport in collisionless disks than in the standard MHD regime, the enhanced transport has not been observed in past kinetic-MHD approaches to gyrotropic pressure anisotropy. For the purpose of investigating this missing link between the fully kinetic and MHD treatments, this paper explores the role of non-gyrotropic pressure and makes the first attempt to incorporate certain collisionless effects into disk-scale, stratified disk simulations. When the timescale of gyrotropization was longer than, or comparable to, the disk-rotation frequency of the orbit, we found that the finite non-gyrotropy selectively remaining in the vicinity of current sheets contributes to suppressing magnetic reconnection in the shearing-box system. This leads to increases both in the saturated amplitude of the MHD turbulence driven by magnetorotational instabilities and in the resultant efficiency of angular-momentum transport. Our results seem to favor the fast advection of magnetic fields toward the rotation axis of a central object, which is required to launch an ultra-relativistic jet from a black hole accretion system in, for example, a magnetically arrested disk state.

  3. Mass distributions in disk galaxies

    NARCIS (Netherlands)

    Martinsson, Thomas; Verheijen, Marc; Bershady, Matthew; Westfall, Kyle; Andersen, David; Swaters, Rob

    We present results on luminous and dark matter mass distributions in disk galaxies from the DiskMass Survey. As expected for normal disk galaxies, stars dominate the baryonic mass budget in the inner region of the disk; however, at about four optical scale lengths (hR ) the atomic gas starts to

  4. The Stability of Galaxy Disks

    NARCIS (Netherlands)

    Westfall, K. B.; Andersen, D. R.; Bershady, M. A.; Martinsson, T. P. K.; Swaters, R. A.; Verheijen, M. A. W.; Seigar, M.S.; Treuthardt, P.

    2014-01-01

    We calculate the stellar surface mass density (Σ*) and two-component (gas+stars) disk stability (QRW) for 25 late-type galaxies from the DiskMass Survey. These calculations are based on fits of a dynamical model to our ionized-gas and stellar kinematic data performed using a Markov Chain Monte Carlo

  5. Secular Evolution in Disk Galaxies

    Science.gov (United States)

    Kormendy, John

    2013-10-01

    Self-gravitating systems evolve toward the most tightly bound configuration that is reachable via the evolution processes that are available to them. They do this by spreading -- the inner parts shrink while the outer parts expand -- provided that some physical process efficiently transports energy or angular momentum outward. The reason is that self-gravitating systems have negative specific heats. As a result, the evolution of stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks are fundamentally similar. How evolution proceeds then depends on the evolution processes that are available to each kind of self-gravitating system. These processes and their consequences for galaxy disks are the subjects of my lectures and of this Canary Islands Winter School. I begin with a review of the formation, growth and death of bars. Then I review the slow (`secular') rearrangement of energy, angular momentum, and mass that results from interactions between stars or gas clouds and collective phenomena such as bars, oval disks, spiral structure and triaxial dark haloes. The `existence-proof' phase of this work is largely over: we have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the centre. The results of simulations correspond closely to the morphology of barred and oval galaxies. Gas that is transported to small radii reaches high densities. Observations confirm that many barred and oval galaxies have dense central concentrations of gas and star formation. The result is to grow, on timescales of a few Gyr, dense central components that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). The resulting picture of secular galaxy evolution accounts for the richness observed in galaxy structure. We can distinguish between classical and pseudo

  6. Disk Galaxies : Building Blocks of the Universe?

    OpenAIRE

    Bower, Richard

    2016-01-01

    In my talk I look at the origin of disk galaxies from the theoretical perspective. In particular I look at simple ways to use the properties of disk galaxies, and their evolution, to test our current paradigm for galaxy formation within the CDM scenario.

  7. The Stability of Galaxy Disks

    Science.gov (United States)

    Westfall, K. B.; Andersen, D. R.; Bershady, M. A.; Martinsson, T. P. K.; Swaters, R. A.; Verheijen, M. A. W.

    2014-03-01

    We calculate the stellar surface mass density (Σ*) and two-component (gas+stars) disk stability (QRW) for 25 late-type galaxies from the DiskMass Survey. These calculations are based on fits of a dynamical model to our ionized-gas and stellar kinematic data performed using a Markov Chain Monte Carlo sampling of the Bayesian posterior. Marginalizing over all galaxies, we find a median value of QRW = 2.0±0.9 at 1.5 scale lengths. We also find that QRW is anti-correlated with the star-formation rate surface density (Σ*), which can be predicted using a closed set of empirical scaling relations. Finally, we find that the star-formation efficiency (Σ*/Σg) is correlated with Σ* and weakly anti-correlated with QRW. The former is consistent with an equilibrium prediction of Σ*/Σg ∝ Σ*1/2. Despite its order-of-magnitude range, we find no correlation of Σ*/ΣgΣ*1/2 with any other physical quantity derived by our study.

  8. Theory of axially symmetric probes in a collisionless magnetoplasma: Aligned spheroids, finite cylinders, and disks

    International Nuclear Information System (INIS)

    Rubinstein, J.; Laframboise, J.G.

    1983-01-01

    A theory is presented for current collection by electrostatic probes in a collisionless, Maxwellian plasma containing a uniform magnetic field B, where the probes are spheroids or finite cylinders whose axis of symmetry is aligned with B, or disks perpendicular to B. The theory yields upper-bound and adiabatic-limit currents for the attracted particle species. For the repelled species, it yields upper and lower bounds. This work is an extension of existing theory for spherical probes by Rubinstein and Laframboise

  9. Diffuse interstellar gas in disk galaxies

    International Nuclear Information System (INIS)

    Vladilo, G.

    1989-01-01

    The physical properties of the diffuse gas in our Galaxy are reviewed and considered as a starting point for interstellar (IS) studies of disk galaxies. Attention is focussed on the atomic and ionic component, detected through radio, optical, ultraviolet (UV) and X-ray observations. The cooling and heating processes in the IS gas are briefly recalled in order to introduce current models of disk and halo gas. Observations of nearby galaxies critical to test IS models are considered, including 21-cm surveys, optical and UV absorptions of bright, extragalactic sources, and X-ray emission from hot halos. Finally, further steps necessary to develop a global model for the structure and evolution of the interstellar medium are indicated. (author)

  10. Evolution of disk galaxies and the origin of SO galaxies

    International Nuclear Information System (INIS)

    Larson, R.B.; Tinsley, B.M.; Caldwell, C.N.

    1980-01-01

    We reconsider the relation between spiral and SO galaxies in the light of recent data on the colors and morphology of disk systems, and on the content of clusters at different redshifts. Star formation will strongly deplete the gas in most spirals in a fraction of the Hubble time, so we suggest that the gas in spirals has been replenished by infall from residual envelopes, probably including gas-rich companions and tidal debris. SO's may then be disk systems that lost their gas-rich envelopes at an early stage and consumed their remaining gas by star formation. This picture is consistent with the color of SO's if most of their star formation stopped at least a few gigayears ago, and it is consistent with their small disk-to-bulge ratios relative to spirals, since this is a direct result of the early truncation of star formation. Numerical simulations show that the gas envelopes of disk galaxies in clusters are largely stripped away when the clusters collapse, but star formation can continue in the spirals for several gigayears while their remaining disk gas is consumed. These results can explain the blue galaxies observed by Butcher and Oemler in two condensed clusters at zapprox.0.4: these clusters are seen just before most of their galaxies run out of gas, so that star formation is still occurring in them but will soon die out, causing the spirals to evolve into SO's with normal present colors. A rapid evolution of the galaxy content of condensed clusters is predicted at moderate redshifts, ranging from a large fraction of blue galaxies at zapprox.0.4 to very few at zapprox.0

  11. Island universes structure and evolution of disk galaxies

    CERN Document Server

    DE JONG, R. S

    2007-01-01

    This book contains an up-to-date review of the structure and evolution of disk galaxies from both the observational and theoretical point of view. The book is the proceedings of the "Island Universes" conference held at the island of Terschelling, The Netherlands in July 2005, which attracted about 130 experts and students in the field. The conference was organized as a tribute to Dr. Piet C. van der Kruit for receiving the honorary Jacobus C. Kapteyn Professorship in Astronomy. The eight topical themes discussed at the meeting are reflected in these proceedings: 1) Properties of Stellar Disks, 2) Kinematics and Dynamics of Disk Galaxies, 3) Bars, Spiral Structure, and Secular Evolution in Disk Galaxies, 4) The Outskirts and Environment of Disk Galaxies, 5) Interstellar Matter, 6) (Evolution of) Star Formation in Galactic Disks, 7) Disk Galaxies through Cosmic Time, and 8) Formation Models of Disk Galaxies. These proceedings are concluded with a conference summary reflecting on the most significant recent pro...

  12. Theoretical parameters of powerful radio galaxies. II. Generation of MHD turbulence by collisionless shock waves

    International Nuclear Information System (INIS)

    Baryshev, Yu.V.; Morozov, V.N.

    1988-01-01

    It is shown that MHD turbulence can be generated by collisionless shock waves due to anisotropy of the pressure behind the front of the reverse sock at the hot spot of a powerful radio galaxy. The energy density of the MHD turbulence generated behind the shock front is estimated. Analysis of the theoretical studies and experimental data on collisionless shock waves in the solar wind indicates that an important part is played by streams of ions reflected by the shock fronts, the streams generating plasma and MHD turbulence in the region ahead of the front. The extension of these ideas to shock waves in powerful radio galaxies must be made with care because of the great difference between the parameters of the shock waves in the two cases

  13. Kinetic description of quasi-stationary axisymmetric collisionless accretion disk plasmas with arbitrary magnetic field configurations

    International Nuclear Information System (INIS)

    Cremaschini, Claudio; Miller, John C.; Tessarotto, Massimo

    2011-01-01

    A kinetic treatment is developed for collisionless magnetized plasmas occurring in high-temperature, low-density astrophysical accretion disks, such as are thought to be present in some radiatively inefficient accretion flows onto black holes. Quasi-stationary configurations are investigated, within the framework of a Vlasov-Maxwell description. The plasma is taken to be axisymmetric and subject to the action of slowly time-varying gravitational and electromagnetic fields. The magnetic field is assumed to be characterized by a family of locally nested but open magnetic surfaces. The slow collisionless dynamics of these plasmas is investigated, yielding a reduced gyrokinetic Vlasov equation for the kinetic distribution function. For doing this, an asymptotic quasi-stationary solution is first determined, represented by a generalized bi-Maxwellian distribution expressed in terms of the relevant adiabatic invariants. The existence of the solution is shown to depend on having suitable kinetic constraints and conditions leading to particle trapping phenomena. With this solution, one can treat temperature anisotropy, toroidal and poloidal flow velocities, and finite Larmor-radius effects. An asymptotic expansion for the distribution function permits analytic evaluation of all the relevant fluid fields. Basic theoretical features of the solution and their astrophysical implications are discussed. As an application, the possibility of describing the dynamics of slowly time-varying accretion flows and the self-generation of magnetic field by means of a ''kinetic dynamo effect'' are discussed. Both effects are shown to be related to intrinsically kinetic physical mechanisms.

  14. Star formation rates and abundance gradients in disk galaxies

    International Nuclear Information System (INIS)

    Wyse, R.F.G.; Silk, J.

    1989-01-01

    Analytic models for the evolution of disk galaxies are presented, placing special emphasis on the radial properties. These models are straightforward extensions of the original Schmidt (1959, 1963) models, with a dependence of star formation rate on gas density. The models provide successful descriptions of several measures of galactic disk evolution, including solar neighborhood chemical evolution, the presence and amplitude of metallicity and color gradients in disk galaxies, and the global rates of star formation in disk galaxies, and aid in the understanding of the apparent connection between young and old stellar populations in spiral galaxies. 67 refs

  15. A Fundamental Plane of Spiral Structure in Disk Galaxies

    NARCIS (Netherlands)

    Davis, Benjamin L.; Kennefick, Daniel; Kennefick, Julia; Westfall, Kyle B.; Shields, Douglas W.; Flatman, Russell; Hartley, Matthew T.; Berrier, Joel C.; Martinsson, Thomas P. K.; Swaters, Rob A.

    Spiral structure is the most distinctive feature of disk galaxies and yet debate persists about which theory of spiral structure is correct. Many versions of the density wave theory demand that the pitch angle be uniquely determined by the distribution of mass in the bulge and disk of the galaxy. We

  16. STELLAR POPULATIONS AND RADIAL MIGRATIONS IN VIRGO DISK GALAXIES

    International Nuclear Information System (INIS)

    Roediger, Joel C.; Courteau, Stéphane; Sánchez-Blázquez, Patricia; McDonald, Michael

    2012-01-01

    We present new stellar age profiles, derived from well-resolved optical and near-infrared images of 64 Virgo cluster disk galaxies, whose analysis poses a challenge for current disk galaxy formation models. Our ability to break the age-metallicity degeneracy and the significant size of our sample represent key improvements over complementary studies of field disk galaxies. Our results can be summarized as follows: first, and contrary to observations of disk galaxies in the field, these cluster galaxies are distributed almost equally amongst the three main types of disk galaxy luminosity profiles (I/II/III), indicating that the formation and/or survival of Type II breaks is suppressed within the cluster environment. Second, we find examples of statistically significant inversions ( U -shapes ) in the age profiles of all three disk galaxy types, reminiscent of predictions from high-resolution simulations of classically truncated Type II disks in the field. These features characterize the age profiles for only about a third (≤36%) of each disk galaxy type in our sample. An even smaller fraction of cluster disks (∼11% of the total sample) exhibit age profiles that decrease outward (i.e., negative age gradients). Instead, flat and/or positive age gradients prevail (≥50%) within our Type I, II, and III subsamples. These observations thus suggest that while stellar migrations and inside-out growth can play a significant role in the evolution of all disk galaxy types, other factors contributing to the evolution of galaxies can overwhelm the predicted signatures of these processes. We interpret our observations through a scenario whereby Virgo cluster disk galaxies formed initially like their brethren in the field but which, upon falling into the cluster, were transformed into their present state through external processes linked to the environment (e.g., ram-pressure stripping and harassment). Current disk galaxy formation models, which have largely focused on field

  17. A FUNDAMENTAL PLANE OF SPIRAL STRUCTURE IN DISK GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Benjamin L.; Kennefick, Daniel; Kennefick, Julia; Shields, Douglas W. [Arkansas Center for Space and Planetary Sciences, University of Arkansas, 346 1/2 North Arkansas Avenue, Fayetteville, AR 72701 (United States); Westfall, Kyle B. [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, NL-9700 AV Groningen (Netherlands); Flatman, Russell [School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332 (United States); Hartley, Matthew T. [Department of Physics, University of Arkansas, 226 Physics Building, 835 West Dickson Street, Fayetteville, AR 72701 (United States); Berrier, Joel C. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States); Martinsson, Thomas P. K. [Leiden Observatory, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Swaters, Rob A., E-mail: bld002@email.uark.edu [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2015-03-20

    Spiral structure is the most distinctive feature of disk galaxies and yet debate persists about which theory of spiral structure is correct. Many versions of the density wave theory demand that the pitch angle be uniquely determined by the distribution of mass in the bulge and disk of the galaxy. We present evidence that the tangent of the pitch angle of logarithmic spiral arms in disk galaxies correlates strongly with the density of neutral atomic hydrogen in the disk and with the central stellar bulge mass of the galaxy. These three quantities, when plotted against each other, form a planar relationship that we argue should be fundamental to our understanding of spiral structure in disk galaxies. We further argue that any successful theory of spiral structure must be able to explain this relationship.

  18. Stochastic 2-D galaxy disk evolution models. Resolved stellar populations in the galaxy M33

    Science.gov (United States)

    Mineikis, T.; Vansevičius, V.

    We improved the stochastic 2-D galaxy disk models (Mineikis & Vansevičius 2014a) by introducing enriched gas outflows from galaxies and synthetic color-magnitude diagrams of stellar populations. To test the models, we use the HST/ACS stellar photometry data in four fields located along the major axis of the galaxy M33 (Williams et al. 2009) and demonstrate the potential of the models to derive 2-D star formation histories in the resolved disk galaxies.

  19. MOLECULAR DISK PROPERTIES IN EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Xu, X.; Walker, C.; Narayanan, D.

    2010-01-01

    We study the simulated CO emission from elliptical galaxies formed in the mergers of gas-rich disk galaxies. The cold gas not consumed in the merger-driven starburst quickly resettles into a disk-like configuration. By analyzing a variety of arbitrary merger orbits that produce a range of fast- to slow-rotating remnants, we find that molecular disk formation is a fairly common consequence of gas-rich galaxy mergers. Hence, if a molecular disk is observed in an early-type merger remnant, it is likely the result of a 'wet merger' rather than a 'dry merger'. We compare the physical properties from our simulated disks (e.g., size and mass) and find reasonably good agreement with recent observations. Finally, we discuss the detectability of these disks as an aid to future observations.

  20. Wobbling The Galactic Disk with Bombardment of Satellite Galaxies

    Science.gov (United States)

    D'Onghia, Elena

    We propose to assess the effect of impacts of large visible satellite galaxies on a disk, as well as the relevance of the continuing bombardment of the Galactic disk by dark matter clumps as predicted by the current cosmological framework that can wobble the disk, heating it and eventually exciting ragged spiral structures. In particular, we make detailed predictions for observable features such as spiral arms, rings and their associated stars in galactic disks and relate them to the physical processes that drive their formation and evolution in our Milky Way galaxy and nearby spirals. To do this, we will combine analytic methods and numerical simulations that allow us to calculate observables, which we will compare to present and forthcoming observations. Our methodology utilizes a combination of state of the art hydrodynamic simulations of galaxy evolution and multi- wavelength radiative transfer simulations. Our primary goals are: (1) To identify the physical processes that are responsible for spiral structure formation observed in our Milky Way and nearby disk galaxies, from the flocculent to grand- designed spiral galaxies and to provide observable signatures to be compared with data on nearby galaxies combining maps of 24 micron emission (Spitzer) and cold gas, CO (Heracles) and HI (THINGS). (2) To explore different morphologies of spiral galaxies: from the multi-armed galaxies to the Milky Way sized galaxies with few arms. (3) For a Milky Way disk we will assess the effect of impacts of substructures passing through the disk to origin the asymmetry in the number density of stars recently discovered from SDSS and SEGUE data and confirmed from RAVE data. We will also investigate the disk heating in the vertical plane due to the formation of vertical oscillations that are produced by the impact and migration of stars in the disk as consequence of the heating as compared to the classical stellar migration mechanism. (4) We will measure the spiral pattern speed

  1. Disk Model with Central Bulge for Galaxy M94

    International Nuclear Information System (INIS)

    Jalocha, J.; Bratek, L.; Kutschera, M.

    2010-01-01

    A global disk model for spiral galaxies is modified by adding a spherical component to the galactic center to account for the presence of a central spherical bulge. It is verified whether such modification could be substantial for predictions of total mass and of its distribution in spiral galaxy M94. (authors)

  2. The outer disks of early-type galaxies. I. Surface-brightness profiles of barred galaxies

    NARCIS (Netherlands)

    Erwin, Peter; Pohlen, Michael; Beckman, John E.

    We present a study of 66 barred, early-type (S0-Sb) disk galaxies, focused on the disk surface brightness profile outside the bar region, with the aim of throwing light on the nature of Freeman type I and II profiles, their origins, and their possible relation to disk truncations. This paper

  3. The Growth of the Disk Galaxy UGC8802

    Science.gov (United States)

    Chang, R. X.; Shen, S. Y.; Hou, J. L.

    2012-07-01

    The disk galaxy UGC8802 has high neutral gas content and a flat profile of star formation rate compared to other disk galaxies with similar stellar mass. It also shows a steep metallicity gradient. We construct a chemical evolution model to explore its growth history by assuming its disk grows gradually from continuous gas infall, which is shaped by a free parameter—the infall-peak time. By adopting the recently observed molecular surface density related star formation law, we show that a late infall-peak time can naturally explain the observed high neutral gas content, while an inside-out disk formation scenario can fairly reproduce the steep oxygen abundance gradient. Our results show that most of the observed features of UGC8802 can be well reproduced by simply "turning the knob" on gas inflow with one single parameter, which implies that the observed properties of gas-rich galaxies could also be modeled in a similar way.

  4. An Optimal Strategy for Accurate Bulge-to-disk Decomposition of Disk Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Gao Hua [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China)

    2017-08-20

    The development of two-dimensional (2D) bulge-to-disk decomposition techniques has shown their advantages over traditional one-dimensional (1D) techniques, especially for galaxies with non-axisymmetric features. However, the full potential of 2D techniques has yet to be fully exploited. Secondary morphological features in nearby disk galaxies, such as bars, lenses, rings, disk breaks, and spiral arms, are seldom accounted for in 2D image decompositions, even though some image-fitting codes, such as GALFIT, are capable of handling them. We present detailed, 2D multi-model and multi-component decomposition of high-quality R -band images of a representative sample of nearby disk galaxies selected from the Carnegie-Irvine Galaxy Survey, using the latest version of GALFIT. The sample consists of five barred and five unbarred galaxies, spanning Hubble types from S0 to Sc. Traditional 1D decomposition is also presented for comparison. In detailed case studies of the 10 galaxies, we successfully model the secondary morphological features. Through a comparison of best-fit parameters obtained from different input surface brightness models, we identify morphological features that significantly impact bulge measurements. We show that nuclear and inner lenses/rings and disk breaks must be properly taken into account to obtain accurate bulge parameters, whereas outer lenses/rings and spiral arms have a negligible effect. We provide an optimal strategy to measure bulge parameters of typical disk galaxies, as well as prescriptions to estimate realistic uncertainties of them, which will benefit subsequent decomposition of a larger galaxy sample.

  5. An Optimal Strategy for Accurate Bulge-to-disk Decomposition of Disk Galaxies

    Science.gov (United States)

    Gao, Hua; Ho, Luis C.

    2017-08-01

    The development of two-dimensional (2D) bulge-to-disk decomposition techniques has shown their advantages over traditional one-dimensional (1D) techniques, especially for galaxies with non-axisymmetric features. However, the full potential of 2D techniques has yet to be fully exploited. Secondary morphological features in nearby disk galaxies, such as bars, lenses, rings, disk breaks, and spiral arms, are seldom accounted for in 2D image decompositions, even though some image-fitting codes, such as GALFIT, are capable of handling them. We present detailed, 2D multi-model and multi-component decomposition of high-quality R-band images of a representative sample of nearby disk galaxies selected from the Carnegie-Irvine Galaxy Survey, using the latest version of GALFIT. The sample consists of five barred and five unbarred galaxies, spanning Hubble types from S0 to Sc. Traditional 1D decomposition is also presented for comparison. In detailed case studies of the 10 galaxies, we successfully model the secondary morphological features. Through a comparison of best-fit parameters obtained from different input surface brightness models, we identify morphological features that significantly impact bulge measurements. We show that nuclear and inner lenses/rings and disk breaks must be properly taken into account to obtain accurate bulge parameters, whereas outer lenses/rings and spiral arms have a negligible effect. We provide an optimal strategy to measure bulge parameters of typical disk galaxies, as well as prescriptions to estimate realistic uncertainties of them, which will benefit subsequent decomposition of a larger galaxy sample.

  6. An Optimal Strategy for Accurate Bulge-to-disk Decomposition of Disk Galaxies

    International Nuclear Information System (INIS)

    Gao Hua; Ho, Luis C.

    2017-01-01

    The development of two-dimensional (2D) bulge-to-disk decomposition techniques has shown their advantages over traditional one-dimensional (1D) techniques, especially for galaxies with non-axisymmetric features. However, the full potential of 2D techniques has yet to be fully exploited. Secondary morphological features in nearby disk galaxies, such as bars, lenses, rings, disk breaks, and spiral arms, are seldom accounted for in 2D image decompositions, even though some image-fitting codes, such as GALFIT, are capable of handling them. We present detailed, 2D multi-model and multi-component decomposition of high-quality R -band images of a representative sample of nearby disk galaxies selected from the Carnegie-Irvine Galaxy Survey, using the latest version of GALFIT. The sample consists of five barred and five unbarred galaxies, spanning Hubble types from S0 to Sc. Traditional 1D decomposition is also presented for comparison. In detailed case studies of the 10 galaxies, we successfully model the secondary morphological features. Through a comparison of best-fit parameters obtained from different input surface brightness models, we identify morphological features that significantly impact bulge measurements. We show that nuclear and inner lenses/rings and disk breaks must be properly taken into account to obtain accurate bulge parameters, whereas outer lenses/rings and spiral arms have a negligible effect. We provide an optimal strategy to measure bulge parameters of typical disk galaxies, as well as prescriptions to estimate realistic uncertainties of them, which will benefit subsequent decomposition of a larger galaxy sample.

  7. Population Synthesis Models for Normal Galaxies with Dusty Disks

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    2003-09-01

    Full Text Available To investigate the SEDs of galaxies considering the dust extinction processes in the galactic disks, we present the population synthesis models for normal galaxies with dusty disks. We use PEGASE (Fioc & Rocca-Volmerange 1997 to model them with standard input parameters for stars and new dust parameters. We find that the model results are strongly dependent on the dust parameters as well as other parameters (e.g. star formation history. We compare the model results with the observations and discuss about the possible explanations. We find that the dust opacity functions derived from studies of asymptotic giant branch stars are useful for modeling a galaxy with a dusty disk.

  8. A massive, dead disk galaxy in the early Universe.

    Science.gov (United States)

    Toft, Sune; Zabl, Johannes; Richard, Johan; Gallazzi, Anna; Zibetti, Stefano; Prescott, Moire; Grillo, Claudio; Man, Allison W S; Lee, Nicholas Y; Gómez-Guijarro, Carlos; Stockmann, Mikkel; Magdis, Georgios; Steinhardt, Charles L

    2017-06-21

    At redshift z = 2, when the Universe was just three billion years old, half of the most massive galaxies were extremely compact and had already exhausted their fuel for star formation. It is believed that they were formed in intense nuclear starbursts and that they ultimately grew into the most massive local elliptical galaxies seen today, through mergers with minor companions, but validating this picture requires higher-resolution observations of their centres than is currently possible. Magnification from gravitational lensing offers an opportunity to resolve the inner regions of galaxies. Here we report an analysis of the stellar populations and kinematics of a lensed z = 2.1478 compact galaxy, which-surprisingly-turns out to be a fast-spinning, rotationally supported disk galaxy. Its stars must have formed in a disk, rather than in a merger-driven nuclear starburst. The galaxy was probably fed by streams of cold gas, which were able to penetrate the hot halo gas until they were cut off by shock heating from the dark matter halo. This result confirms previous indirect indications that the first galaxies to cease star formation must have gone through major changes not just in their structure, but also in their kinematics, to evolve into present-day elliptical galaxies.

  9. Theory of bending waves with applications to disk galaxies

    International Nuclear Information System (INIS)

    Mark, J.W.K.

    1982-01-01

    A theory of bending waves is surveyed which provides an explanation for the required amplification of the warp in the Milky Way. It also provides for self-generated warps in isolated external galaxies. The shape of observed warps and partly their existence in isolated galaxies are indicative of substantial spheroidal components. The theory also provides a plausible explanation for the bending of the inner disk (<2 kpc) of the Milky Way

  10. Collisionless Boltzmann equation approach for the study of stellar discs within barred galaxies

    Science.gov (United States)

    Bienaymé, Olivier

    2018-04-01

    We have studied the kinematics of stellar disc populations within the solar neighbourhood in order to find the imprints of the Galactic bar. We carried out the analysis by developing a numerical resolution of the 2D2V (two-dimensional in the physical space, 2D, and two-dimensional in the velocity motion, 2V) collisionless Boltzmann equation and modelling the stellar motions within the plane of the Galaxy within the solar neighbourhood. We recover similar results to those obtained by other authors using N-body simulations, but we are also able to numerically identify faint structures thanks to the cancelling of the Poisson noise. We find that the ratio of the bar pattern speed to the local circular frequency is in the range ΩB/Ω = 1.77 to 1.91. If the Galactic bar angle orientation is within the range from 24 to 45 degrees, the bar pattern speed is between 46 and 49 km s-1 kpc-1.

  11. Evolution of disk galaxies and the SO problem, revisited

    International Nuclear Information System (INIS)

    Bothun, G.D.

    1982-01-01

    We begin by summerizing the relevant properties of clusters of galaxies in relation to their ability to alter the course of galaxy evolution. Previous work on the effect of environment on the evolution of disk galaxies is also summerized and critiqued. The extensive data base of Bothun is then used to reexamine the issue of the role of the environment in motivating the evolution of disk galaxies. This data base consists of radio and optical observations of approx.350 galaxies in the clusters Peg I, Cancer, Pices, Coma, A1367, Z74--23, Hercules, A539, and A400. The data are portrayed in the color-gas content plane [log M/sub H//L/sub B/ vs. (B--V)/sup T/ 0 ], and theoretical evolutionary tracks have been constructed in that plane to serve as an adjunct to data interpretation. All analysis is done solely on the basis of the measurable quantities themselves, as opposed to morphological considerations. We find that spiral galaxies exhibit such a wide range in their integrated properties that attempting to force then into ''narrow'' morphological bins is neither practical or physically meaningful. With respect to the question of environmental modification of disk galaxies in clusters, we find the great majority of the data to mitigate strongly against any global environmental processes as having been important in determining the particular evolutionary history of cluster galaxies. Our basic conclusion is that initial conditions of formation and variations in star formation histories have been more important than environmental influences in determining the present-day character of spiral galaxies in clusters. The key parameter may well be the amount of neutral hydrogen remaining after star formation in the bulge component has ceased

  12. RED FRACTION AMONG SATELLITE GALAXIES WITH DISK-LIKE LIGHT PROFILES: EVIDENCE FOR INFLOW IN THE H I DISK

    International Nuclear Information System (INIS)

    Hester, J. A.

    2010-01-01

    The relationships between color, characterized with respect to the g - r red sequence; stellar structure, as determined using the i-band Sersic index; and group membership are explored using the Sloan Digital Sky Survey (SDSS). The new results place novel constraints on theories of galaxy evolution, despite the strong correlation between color and stellar structure. Observed correlations are of three independent types-those based on stellar structure, on the color of disk-like galaxies, and on the color of elliptical galaxies. Of particular note, the fraction of galaxies residing on the red sequence measured among galaxies with disk-like light profiles is enhanced for satellite galaxies compared to central galaxies. This fraction increases with group mass. When these new results are considered, theoretical treatments of galaxy evolution that adopt a gas accretion model centered on the hot galactic halo cannot consistently account for all observations of disk galaxies. The hypothesis is advanced that inflow within the extended H I disk prolongs star formation in satellite galaxies. When combined with partial ram pressure stripping (RPS) of this disk, this new scenario is consistent with the observations. This is demonstrated by applying an analytical model of RPS of the extended H I disk to the SDSS groups. These results motivate incorporating more complex modes of gas accretion into models of galaxy evolution, including cold mode accretion, an improved treatment of gas dynamics within disks, and disk stripping.

  13. Dynamical behaviour of gaseous halo in a disk galaxy

    International Nuclear Information System (INIS)

    Ikeuchi, S.; Habe, A.

    1981-01-01

    Assuming that the gas in the halo of a disk galaxy is supplied from the disk as a hot gas, the authors have studied its dynamical and thermal behaviour by means of a time dependent, two-dimensional hydrodynamic code. They suppose the following boundary conditions at the disk. (i) The hot gas with the temperature Tsub(d) and the density nsub(d) is uniform at r=4-12 kpc in the disk and it is time independent. (ii) This hot gas rotates with the stellar disk in the same velocity. (iii) This hot gas can escape freely from the disk to the halo. These conditions will be verified if the filling factor of hot gas is so large as f=0.5-0.8, as proposed by McKee and Ostriker (1977). The gas motion in the halo has been studied for wider ranges of gas temperature and its density at the disk than previously studied. At the same time, the authors have clarified the observability of various types of gaseous haloes and discuss the roles of gaseous halo on the evolution of galaxies. (Auth.)

  14. The Inner Regions of Disk Galaxies: A Constant Baryonic Fraction?

    NARCIS (Netherlands)

    Lelli, Federico

    For disk galaxies (spirals and irregulars), the inner circular-velocity gradient (inner steepness of the rotation curve) correlates with the central surface brightness with a slope of ~0.5. This implies that the central dynamical mass density scales almost linearly with the central baryonic density.

  15. Tilted-ring modelling of disk galaxies : Anomalous gas

    NARCIS (Netherlands)

    Jozsa, G. I. G.; Niemczyk, C.; Klein, U.; Oosterloo, T. A.

    We report our ongoing work on kinematical modelling of HI in disk galaxies. We employ our new software TiRiFiC (Tilted-Ring-Fitting-Code) in order to derive tilted-ring models by fitting artificial HI data cubes to observed ones in an automated process. With this technique we derive very reliable

  16. Star formation in the outskirts of disk galaxies

    NARCIS (Netherlands)

    Ferguson, AMN

    2002-01-01

    The far outer regions of galactic disks allow an important probe of both star formation and galaxy formation. I discuss how observations of HII regions in these low gas density, low metallicity environments can shed light on the physical processes which drive galactic star formation. The history of

  17. "Observing" the Circumnuclear Stars and Gas in Disk Galaxy Simulations

    Science.gov (United States)

    Cook, Angela; Hicks, Erin K. S.

    2018-06-01

    We present simulations based on theoretical models of common disk processes designed to represent potential inflow observed within the central 500 pc of local Seyfert galaxies. Mock observations of these n-body plus smoothed particle hydrodynamical simulations provide the conceptual framework in which to identify the driving inflow mechanism, for example nuclear bars, and to quantify to the inflow based on observable properties. From these mock observations the azimuthal average of the flux distribution, velocity dispersion, and velocity of both the stars and interstellar medium on scales of 50pc have been measured at a range of inclinations angles. A comparison of the simulated disk galaxies with these observed azimuthal averages in 40 Seyfert galaxies measured as part of the KONA (Keck OSIRIS Nearby AGN) survey will be presented.

  18. The catalog of edge-on disk galaxies from SDSS. I. The catalog and the structural parameters of stellar disks

    Energy Technology Data Exchange (ETDEWEB)

    Bizyaev, D. V. [Apache Point Observatory and New Mexico State University, Sunspot, NM, 88349 (United States); Kautsch, S. J. [Nova Southeastern University, Fort Lauderdale, FL 33314 (United States); Mosenkov, A. V. [Central Astronomical Observatory of RAS (Russian Federation); Reshetnikov, V. P.; Sotnikova, N. Ya.; Yablokova, N. V. [St. Petersburg State University (Russian Federation); Hillyer, R. W. [Christopher Newport University, Newport News, VA 23606 (United States)

    2014-05-20

    We present a catalog of true edge-on disk galaxies automatically selected from the Seventh Data Release of the Sloan Digital Sky Survey (SDSS). A visual inspection of the g, r, and i images of about 15,000 galaxies allowed us to split the initial sample of edge-on galaxy candidates into 4768 (31.8% of the initial sample) genuine edge-on galaxies, 8350 (55.7%) non-edge-on galaxies, and 1865 (12.5%) edge-on galaxies not suitable for simple automatic analysis because these objects either show signs of interaction and warps, or nearby bright stars project on it. We added more candidate galaxies from RFGC, EFIGI, RC3, and Galaxy Zoo catalogs found in the SDSS footprints. Our final sample consists of 5747 genuine edge-on galaxies. We estimate the structural parameters of the stellar disks (the stellar disk thickness, radial scale length, and central surface brightness) in the galaxies by analyzing photometric profiles in each of the g, r, and i images. We also perform simplified three-dimensional modeling of the light distribution in the stellar disks of edge-on galaxies from our sample. Our large sample is intended to be used for studying scaling relations in the stellar disks and bulges and for estimating parameters of the thick disks in different types of galaxies via the image stacking. In this paper, we present the sample selection procedure and general description of the sample.

  19. Internal and environmental secular evolution of disk galaxies

    Science.gov (United States)

    Kormendy, John

    2015-03-01

    This Special Session is devoted to the secular evolution of disk galaxies. Here `secular' means `slow' i.e., evolution on time scales that are generally much longer than the galaxy crossing or rotation time. Internal and environmentally driven evolution both are covered. I am indebted to Albert Bosma for reminding me at the 2011 Canary Islands Winter School on Secular Evolution that our subject first appeared in print in a comment made by Ivan King (1977) in his introductory talk at the Yale University meeting on The Evolution of Galaxies and Stellar Populations: `John Kormendy would like us to consider the possibility that a galaxy can interact with itself.. . . I'm not at all convinced, but John can show you some interesting pictures.' Two of the earliest papers that followed were Kormendy (1979a, b); the first discusses the interaction of galaxy components with each other, and the second studies these phenomena in the context of a morphological survey of barred galaxies. The earliest modeling paper that we still use regularly is Combes & Sanders (1981), which introduces the now well known idea that box-shaped bulges in edge-on galaxies are side-on, vertically thickened bars. It is gratifying to see how this subject has grown since that time. Hundreds of papers have been written, and the topic features prominently at many meetings (e.g., Block et al. 2004; Falcoń-Barroso & Knapen 2012, and this Special Session). My talk here introduces both internal and environmental secular evolution; a brief abstract follows. My Canary Islands Winter School review covers both subjects in more detail (Kormendy 2012). Kormendy & Kennicutt (2004) is a comprehensive review of internal secular evolution, and Kormendy & Bender (2012) covers environmental evolution. Both of these subject make significant progress at this meeting. Secular evolution happens because self-gravitating systems evolve toward the most tightly bound configuration that is reachable by the evolution processes

  20. The opacity of spiral galaxy disks. IV. Radial extinction profiles from counts of distant galaxies seen through foreground disks

    NARCIS (Netherlands)

    Holwerda, BW; Gonzalez, RA; Allen, RJ; van der Kruit, PC

    Dust extinction can be determined from the number of distant field galaxies seen through a spiral disk. To calibrate this number for the crowding and confusion introduced by the foreground image, Gonzalez et al. and Holwerda et al. developed the Synthetic Field Method (SFM), which analyzes synthetic

  1. Mass models for disk and halo components in spiral galaxies

    International Nuclear Information System (INIS)

    Athanassoula, E.; Bosma, A.

    1987-01-01

    The mass distribution in spiral galaxies is investigated by means of numerical simulations, summarizing the results reported by Athanassoula et al. (1986). Details of the modeling technique employed are given, including bulge-disk decomposition; computation of bulge and disk rotation curves (assuming constant mass/light ratios for each); and determination (for spherical symmetry) of the total halo mass out to the optical radius, the concentration indices, the halo-density power law, the core radius, the central density, and the velocity dispersion. Also discussed are the procedures for incorporating galactic gas and checking the spiral structure extent. It is found that structural constraints limit disk mass/light ratios to a range of 0.3 dex, and that the most likely models are maximum-disk models with m = 1 disturbances inhibited. 19 references

  2. STELLAR NUCLEI AND INNER POLAR DISKS IN LENTICULAR GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Sil’chenko, Olga K., E-mail: olga@sai.msu.su [Sternberg Astronomical Institute, M.V. Lomonosov Moscow State University, Moscow, 119992 (Russian Federation); Isaac Newton Institute, Chile, Moscow Branch (Chile)

    2016-09-01

    I analyze statistics of the stellar population properties for stellar nuclei and bulges of nearby lenticular galaxies in different environments by using panoramic spectral data of the integral-field spectrograph SAURON retrieved from the open archive of the Isaac Newton Group. I also estimate the fraction of nearby lenticular galaxies having inner polar gaseous disks by exploring the volume-limited sample of early-type galaxies of the ATLAS-3D survey. By inspecting the two-dimensional velocity fields of the stellar and gaseous components with the running tilted-ring technique, I have found seven new cases of inner polar disks. Together with those, the frequency of inner polar disks in nearby S0 galaxies reaches 10%, which is much higher than the frequency of large-scale polar rings. Interestingly, the properties of the nuclear stellar populations in the inner polar ring hosts are statistically the same as those in the whole S0 sample, implying similar histories of multiple gas-accretion events from various directions.

  3. STELLAR NUCLEI AND INNER POLAR DISKS IN LENTICULAR GALAXIES

    International Nuclear Information System (INIS)

    Sil’chenko, Olga K.

    2016-01-01

    I analyze statistics of the stellar population properties for stellar nuclei and bulges of nearby lenticular galaxies in different environments by using panoramic spectral data of the integral-field spectrograph SAURON retrieved from the open archive of the Isaac Newton Group. I also estimate the fraction of nearby lenticular galaxies having inner polar gaseous disks by exploring the volume-limited sample of early-type galaxies of the ATLAS-3D survey. By inspecting the two-dimensional velocity fields of the stellar and gaseous components with the running tilted-ring technique, I have found seven new cases of inner polar disks. Together with those, the frequency of inner polar disks in nearby S0 galaxies reaches 10%, which is much higher than the frequency of large-scale polar rings. Interestingly, the properties of the nuclear stellar populations in the inner polar ring hosts are statistically the same as those in the whole S0 sample, implying similar histories of multiple gas-accretion events from various directions.

  4. SIGNIFICANT ENHANCEMENT OF H{sub 2} FORMATION IN DISK GALAXIES UNDER STRONG RAM PRESSURE

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Benjamin; Bekki, Kenji [ICRAR, M468, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)

    2016-05-10

    We show for the first time that H{sub 2} formation on dust grains can be enhanced in disk galaxies under strong ram pressure (RP). We numerically investigate how the time evolution of H i and H{sub 2} components in disk galaxies orbiting a group/cluster of galaxies can be influenced by the hydrodynamical interaction between the gaseous components of the galaxies and the hot intracluster medium. We find that compression of H i caused by RP increases H{sub 2} formation in disk galaxies before RP rapidly strips H i, cutting off the fuel supply and causing a drop in H{sub 2} density. We also find that the level of this H{sub 2} formation enhancement in a disk galaxy under RP depends on the mass of its host cluster dark matter halo, the initial positions and velocities of the disk galaxy, and the disk inclination angle with respect to the orbital plane. We demonstrate that dust growth is a key factor in the evolution of the H i and H{sub 2} mass in disk galaxies under strong RP. We discuss how the correlation between H{sub 2} fractions and surface gas densities of disk galaxies evolves with time in the galaxies under RP. We also discuss whether galaxy-wide star formation rates (SFRs) in cluster disk galaxies can be enhanced by RP if the SFRs depend on H{sub 2} densities.

  5. MISALIGNED DISKS AS OBSCURERS IN ACTIVE GALAXIES

    International Nuclear Information System (INIS)

    Lawrence, Andy; Elvis, Martin

    2010-01-01

    We critically review the evidence concerning the fraction of active galactic nuclei (AGNs) that appear as Type 2 AGNs, carefully distinguishing strict Type 2 AGNs from both more lightly reddened Type 1 AGNs, and from low excitation narrow line AGNs, which may represent a different mode of activity. Low-excitation AGNs occur predominantly at low luminosities; after removing these, true Type 2 AGNs represent 58% ± 5% of all AGNs, and lightly reddened Type 1 AGNs a further ∼15%. Radio, IR, and volume-limited samples all agree in showing no change of Type 2 fraction with luminosity. X-ray samples do show a change with luminosity; we discuss possible reasons for this discrepancy. We test a very simple picture which produces this Type 2 fraction with minimal assumptions. In this picture, infall from large scales occurs in random directions, but must eventually align with the inner accretion flow, producing a severely warped disk on parsec scales. If the re-alignment is dominated by tilt, with minimal twist, a wide range of covering factors is predicted in individual objects, but with an expected mean fraction of Type 2 AGNs of exactly 50%. This 'tilted disk' picture predicts reasonable alignment of observed nuclear structures on average, but with distinct misalignments in individual cases. Initial case studies of the few well-resolved objects show that such misalignments are indeed present.

  6. Star Formation of Merging Disk Galaxies with AGN Feedback Effects

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jongwon; Smith, Rory; Yi, Sukyoung K., E-mail: jw.park@yonsei.ac.kr [Department of Astronomy and Yonsei University Observatory, Yonsei University, Seoul 03722 (Korea, Republic of)

    2017-08-20

    Using a numerical hydrodynamics code, we perform various idealized galaxy merger simulations to study the star formation (SF) of two merging disk galaxies. Our simulations include gas accretion onto supermassive black holes and active galactic nucleus (AGN) feedback. By comparing AGN simulations with those without AGNs, we attempt to understand when the AGN feedback effect is significant. Using ∼70 simulations, we investigate SF with the AGN effect in mergers with a variety of mass ratios, inclinations, orbits, galaxy structures, and morphologies. Using these merger simulations with AGN feedback, we measure merger-driven SF using the burst efficiency parameter introduced by Cox et al. We confirm previous studies which demonstrated that, in galaxy mergers, AGN suppresses SF more efficiently than in isolated galaxies. However, we also find that the effect of AGNs on SF is larger in major than in minor mergers. In minor merger simulations with different primary bulge-to-total ratios, the effect of bulge fraction on the merger-driven SF decreases due to AGN feedback. We create models of Sa-, Sb-, and Sc-type galaxies and compare their SF properties while undergoing mergers. With the current AGN prescriptions, the difference in merger-driven SF is not as pronounced as in the recent observational study of Kaviraj. We discuss the implications of this discrepancy.

  7. Star Formation of Merging Disk Galaxies with AGN Feedback Effects

    International Nuclear Information System (INIS)

    Park, Jongwon; Smith, Rory; Yi, Sukyoung K.

    2017-01-01

    Using a numerical hydrodynamics code, we perform various idealized galaxy merger simulations to study the star formation (SF) of two merging disk galaxies. Our simulations include gas accretion onto supermassive black holes and active galactic nucleus (AGN) feedback. By comparing AGN simulations with those without AGNs, we attempt to understand when the AGN feedback effect is significant. Using ∼70 simulations, we investigate SF with the AGN effect in mergers with a variety of mass ratios, inclinations, orbits, galaxy structures, and morphologies. Using these merger simulations with AGN feedback, we measure merger-driven SF using the burst efficiency parameter introduced by Cox et al. We confirm previous studies which demonstrated that, in galaxy mergers, AGN suppresses SF more efficiently than in isolated galaxies. However, we also find that the effect of AGNs on SF is larger in major than in minor mergers. In minor merger simulations with different primary bulge-to-total ratios, the effect of bulge fraction on the merger-driven SF decreases due to AGN feedback. We create models of Sa-, Sb-, and Sc-type galaxies and compare their SF properties while undergoing mergers. With the current AGN prescriptions, the difference in merger-driven SF is not as pronounced as in the recent observational study of Kaviraj. We discuss the implications of this discrepancy.

  8. Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago.

    Science.gov (United States)

    Genzel, R; Schreiber, N M Förster; Übler, H; Lang, P; Naab, T; Bender, R; Tacconi, L J; Wisnioski, E; Wuyts, S; Alexander, T; Beifiori, A; Belli, S; Brammer, G; Burkert, A; Carollo, C M; Chan, J; Davies, R; Fossati, M; Galametz, A; Genel, S; Gerhard, O; Lutz, D; Mendel, J T; Momcheva, I; Nelson, E J; Renzini, A; Saglia, R; Sternberg, A; Tacchella, S; Tadaki, K; Wilman, D

    2017-03-15

    In the cold dark matter cosmology, the baryonic components of galaxies-stars and gas-are thought to be mixed with and embedded in non-baryonic and non-relativistic dark matter, which dominates the total mass of the galaxy and its dark-matter halo. In the local (low-redshift) Universe, the mass of dark matter within a galactic disk increases with disk radius, becoming appreciable and then dominant in the outer, baryonic regions of the disks of star-forming galaxies. This results in rotation velocities of the visible matter within the disk that are constant or increasing with disk radius-a hallmark of the dark-matter model. Comparisons between the dynamical mass, inferred from these velocities in rotational equilibrium, and the sum of the stellar and cold-gas mass at the peak epoch of galaxy formation ten billion years ago, inferred from ancillary data, suggest high baryon fractions in the inner, star-forming regions of the disks. Although this implied baryon fraction may be larger than in the local Universe, the systematic uncertainties (owing to the chosen stellar initial-mass function and the calibration of gas masses) render such comparisons inconclusive in terms of the mass of dark matter. Here we report rotation curves (showing rotation velocity as a function of disk radius) for the outer disks of six massive star-forming galaxies, and find that the rotation velocities are not constant, but decrease with radius. We propose that this trend arises because of a combination of two main factors: first, a large fraction of the massive high-redshift galaxy population was strongly baryon-dominated, with dark matter playing a smaller part than in the local Universe; and second, the large velocity dispersion in high-redshift disks introduces a substantial pressure term that leads to a decrease in rotation velocity with increasing radius. The effect of both factors appears to increase with redshift. Qualitatively, the observations suggest that baryons in the early (high

  9. Possible relationship between metal abundance and luminosity for disk galaxies

    International Nuclear Information System (INIS)

    Bothun, G.D.; Romanishin, W.; Strom, S.E.; Strom, K.M.

    1984-01-01

    Near-infrared colors have been measured for a sample of 31 late-type galaxies in the Pegasus I and Pisces clusters; system luminosities in the sample cover the range -19< M/sub H/<-23.5. The color index (J-K) correlates strongly with the absolute H magnitude; lower-luminosity systems have bluer colors. These observations are consistent with the assumption that the mean metal abundance of the old disk population decreases systematically with luminosity. The systematic variation of (B-H) with absolute H magnitude reported recently by Tully et al. derives in part from this proposed systematic change of metallicity with luminosity. However, one must still posit a relative increase in the number of newly formed stars and/or a systematic smaller age for lower-luminosity disks in order to fully explain the observed (B-H), H relation

  10. Transport of gas from disk to halo in starforming galaxies

    Directory of Open Access Journals (Sweden)

    Shevchenko Mikhail G.

    2017-12-01

    Full Text Available Using 3-D gas dynamic simulations, we study the supernova (SNe driven transport of gas from the galactic disk. We assume that SNe are distributed randomly and uniformly in the galactic plane and we consider sufficiently high volume SNe rates that are typical for starforming galaxies: νSN = (0.3 − 3 × 10−11 pc−3 yr−1. We found that under such conditions, a major part of gas locked initially in the galactic disk is transported up to ∼ 1 − 5 stellar scale heights within several millions years. As expected gas transport is more efficient in the case of a thinner stellar disk. An decrease/increase of SN rate in the galactic disk with the same stellar scale height leads to an enlarging/shortening of time scale for gas transport. Independent of SN rate, the major fraction of the swept up gas is in the cold phase (T 106 K is elevated to larger heights than cold gas.

  11. Precision Scaling Relations for Disk Galaxies in the Local Universe

    Science.gov (United States)

    Lapi, A.; Salucci, P.; Danese, L.

    2018-05-01

    We build templates of rotation curves as a function of the I-band luminosity via the mass modeling (by the sum of a thin exponential disk and a cored halo profile) of suitably normalized, stacked data from wide samples of local spiral galaxies. We then exploit such templates to determine fundamental stellar and halo properties for a sample of about 550 local disk-dominated galaxies with high-quality measurements of the optical radius R opt and of the corresponding rotation velocity V opt. Specifically, we determine the stellar M ⋆ and halo M H masses, the halo size R H and velocity scale V H, and the specific angular momenta of the stellar j ⋆ and dark matter j H components. We derive global scaling relationships involving such stellar and halo properties both for the individual galaxies in our sample and for their mean within bins; the latter are found to be in pleasing agreement with previous determinations by independent methods (e.g., abundance matching techniques, weak-lensing observations, and individual rotation curve modeling). Remarkably, the size of our sample and the robustness of our statistical approach allow us to attain an unprecedented level of precision over an extended range of mass and velocity scales, with 1σ dispersion around the mean relationships of less than 0.1 dex. We thus set new standard local relationships that must be reproduced by detailed physical models, which offer a basis for improving the subgrid recipes in numerical simulations, that provide a benchmark to gauge independent observations and check for systematics, and that constitute a basic step toward the future exploitation of the spiral galaxy population as a cosmological probe.

  12. FORMATION OF MASSIVE GALAXIES AT HIGH REDSHIFT: COLD STREAMS, CLUMPY DISKS, AND COMPACT SPHEROIDS

    International Nuclear Information System (INIS)

    Dekel, Avishai; Sari, Re'em; Ceverino, Daniel

    2009-01-01

    We present a simple theoretical framework for massive galaxies at high redshift, where the main assembly and star formation occurred, and report on the first cosmological simulations that reveal clumpy disks consistent with our analysis. The evolution is governed by the interplay between smooth and clumpy cold streams, disk instability, and bulge formation. Intense, relatively smooth streams maintain an unstable dense gas-rich disk. Instability with high turbulence and giant clumps, each a few percent of the disk mass, is self-regulated by gravitational interactions within the disk. The clumps migrate into a bulge in ∼ sun yr -1 , and each clump converts into stars in ∼0.5 Gyr. While the clumps coalesce dissipatively to a compact bulge, the star-forming disk is extended because the incoming streams keep the outer disk dense and susceptible to instability and because of angular momentum transport. Passive spheroid-dominated galaxies form when the streams are more clumpy: the external clumps merge into a massive bulge and stir up disk turbulence that stabilize the disk and suppress in situ clump and star formation. We predict a bimodality in galaxy type by z ∼ 3, involving giant-clump star-forming disks and spheroid-dominated galaxies of suppressed star formation. After z ∼ 1, the disks tend to be stabilized by the dominant stellar disks and bulges. Most of the high-z massive disks are likely to end up as today's early-type galaxies.

  13. Gravitational potential energy of a disk-sphere pair of galaxies

    International Nuclear Information System (INIS)

    Ballabh, G.M.

    1975-01-01

    Algebraic expressions are obtained for the interaction potential energy of a pair of galaxies in which one is disk shaped and the other spherical. The density distribution in the disk galaxy is represented by a polynomial in ascending powers of the distance from the centre of the disk while the density distribution in the spherical galaxy is represented by the superposition of spherical polytropes of integral indices. The basic functions required for obtaining the interaction potential energy of a coplanar disk-sphere pair of galaxies are tabulated. The forces of attraction between a coplanar disk-sphere pair of galaxies are shown graphically for two density models of disk and spherical galaxies. An overlapping coplanar disk-sphere pair of galaxies attract just like two mass-points at a certain separation, rsub(c), of their centres. The force of attraction is less than that of two mass-points having masses equal to the masses of the two galaxies, if the separation of the centres is less than rsub(c), and greater if the separation is greater than rsub(c). For a typical coplanar disk-sphere pair of galaxies (the density of the disk is represented by Model II and of the sphere by a polytropic index n=4) of equal radii, the following is noted. At a separation of 0.79 R, R being the common radius of the two galaxies, the force of attraction between the pair is the same as if the entire mass of each galaxy is concentrated at its centre. The mass-point model for the two galaxies will overestimate the force of attraction by more than a factor of 10 if the separation is less than 0.36 R. For separation greater than the radii of the galaxies the mass-point model will underestimate the force but the departure in this case is less than 33%. (Auth.)

  14. General solution of Poisson equation in three dimensions for disk-like galaxies

    International Nuclear Information System (INIS)

    Tong, Y.; Zheng, X.; Peng, O.

    1982-01-01

    The general solution of the Poisson equation is solved by means of integral transformations for Vertical BarkVertical Barr>>1 provided that the perturbed density of disk-like galaxies distributes along the radial direction according to the Hankel function. This solution can more accurately represent the outer spiral arms of disk-like galaxies

  15. MOLECULAR GAS AND STAR FORMATION IN NEARBY DISK GALAXIES

    International Nuclear Information System (INIS)

    Leroy, Adam K.; Munoz-Mateos, Juan-Carlos; Walter, Fabian; Sandstrom, Karin; Meidt, Sharon; Rix, Hans-Walter; Schinnerer, Eva; Schruba, Andreas; Bigiel, Frank; Bolatto, Alberto; Brinks, Elias; De Blok, W. J. G.; Rosolowsky, Erik; Schuster, Karl-Friedrich; Usero, Antonio

    2013-01-01

    We compare molecular gas traced by 12 CO (2-1) maps from the HERACLES survey, with tracers of the recent star formation rate (SFR) across 30 nearby disk galaxies. We demonstrate a first-order linear correspondence between Σ mol and Σ SFR but also find important second-order systematic variations in the apparent molecular gas depletion time, τ dep mol =Σ mol /Σ SFR . At the 1 kpc common resolution of HERACLES, CO emission correlates closely with many tracers of the recent SFR. Weighting each line of sight equally, using a fixed α CO equivalent to the Milky Way value, our data yield a molecular gas depletion time, τ dep mol =Σ mol /Σ SFR ∼2.2 Gyr with 0.3 dex 1σ scatter, in very good agreement with recent literature data. We apply a forward-modeling approach to constrain the power-law index, N, that relates the SFR surface density and the molecular gas surface density, Σ SFR ∝Σ mol N . We find N = 1 ± 0.15 for our full data set with some scatter from galaxy to galaxy. This also agrees with recent work, but we caution that a power-law treatment oversimplifies the topic given that we observe correlations between τ dep mol and other local and global quantities. The strongest of these are a decreased τ dep mol in low-mass, low-metallicity galaxies and a correlation of the kpc-scale τ dep mol with dust-to-gas ratio, D/G. These correlations can be explained by a CO-to-H 2 conversion factor (α CO ) that depends on dust shielding, and thus D/G, in the theoretically expected way. This is not a unique interpretation, but external evidence of conversion factor variations makes this the most conservative explanation of the strongest observed τ dep mol trends. After applying a D/G-dependent α CO , some weak correlations between τ dep mol and local conditions persist. In particular, we observe lower τ dep mol and enhanced CO excitation associated with nuclear gas concentrations in a subset of our targets. These appear to reflect real enhancements in the

  16. The Inner Regions of Disk Galaxies: A Constant Baryonic Fraction?

    Directory of Open Access Journals (Sweden)

    Federico Lelli

    2014-07-01

    Full Text Available For disk galaxies (spirals and irregulars, the inner circular-velocity gradient dRV0 (inner steepness of the rotation curve correlates with the central surface brightness ∑*,0 with a slope of ~0.5. This implies that the central dynamical mass density scales almost linearly with the central baryonic density. Here I show that this empirical relation is consistent with a simple model where the central baryonic fraction ƒbar,0 is fixed to 1 (no dark matter and the observed scatter is due to differences in the baryonic mass-to-light ratio Mbar / LR (ranging from 1 to 3 in the R-band and in the characteristic thickness of the central stellar component Δz (ranging from 100 to 500 pc. Models with lower baryonic fractions are possible, although they require some fine-tuning in the values of Mbar/LR and Δz. Regardless of the actual value of ƒbar,0, the fact that different types of galaxies do not show strong variations in ƒbar,0 is surprising, and may represent a challenge for models of galaxy formation in a Λ Cold Dark Matter (ΛCDM cosmology.

  17. Asymmetric mass models of disk galaxies. I. Messier 99

    Science.gov (United States)

    Chemin, Laurent; Huré, Jean-Marc; Soubiran, Caroline; Zibetti, Stefano; Charlot, Stéphane; Kawata, Daisuke

    2016-04-01

    Mass models of galactic disks traditionally rely on axisymmetric density and rotation curves, paradoxically acting as if their most remarkable asymmetric features, such as lopsidedness or spiral arms, were not important. In this article, we relax the axisymmetry approximation and introduce a methodology that derives 3D gravitational potentials of disk-like objects and robustly estimates the impacts of asymmetries on circular velocities in the disk midplane. Mass distribution models can then be directly fitted to asymmetric line-of-sight velocity fields. Applied to the grand-design spiral M 99, the new strategy shows that circular velocities are highly nonuniform, particularly in the inner disk of the galaxy, as a natural response to the perturbed gravitational potential of luminous matter. A cuspy inner density profile of dark matter is found in M 99, in the usual case where luminous and dark matter share the same center. The impact of the velocity nonuniformity is to make the inner profile less steep, although the density remains cuspy. On another hand, a model where the halo is core dominated and shifted by 2.2-2.5 kpc from the luminous mass center is more appropriate to explain most of the kinematical lopsidedness evidenced in the velocity field of M 99. However, the gravitational potential of luminous baryons is not asymmetric enough to explain the kinematical lopsidedness of the innermost regions, irrespective of the density shape of dark matter. This discrepancy points out the necessity of an additional dynamical process in these regions: possibly a lopsided distribution of dark matter.

  18. A combined N-body and hydrodynamic code for modeling disk galaxies

    International Nuclear Information System (INIS)

    Schroeder, M.C.

    1989-01-01

    A combined N-body and hydrodynamic computer code for the modeling of two dimensional galaxies is described. The N-body portion of the code is used to calculate the motion of the particle component of a galaxy, while the hydrodynamics portion of the code is used to follow the motion and evolution of the fluid component. A complete description of the numerical methods used for each portion of the code is given. Additionally, the proof tests of the separate and combined portions of the code are presented and discussed. Finally, a discussion of the topics researched with the code and results obtained is presented. These include: the measurement of stellar relaxation times in disk galaxy simulations; the effects of two-armed spiral perturbations on stable axisymmetric disks; the effects of the inclusion of an instellar medium (ISM) on the stability of disk galaxies; and the effect of the inclusion of stellar evolution on disk galaxy simulations

  19. MOLECULAR GAS AND STAR FORMATION IN NEARBY DISK GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Leroy, Adam K.; Munoz-Mateos, Juan-Carlos [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Walter, Fabian; Sandstrom, Karin; Meidt, Sharon; Rix, Hans-Walter; Schinnerer, Eva [Max Planck Institute fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Schruba, Andreas [California Institute for Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Bigiel, Frank [Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Bolatto, Alberto [Department of Astronomy, University of Maryland, College Park, MD (United States); Brinks, Elias [Centre for Astrophysics Research, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); De Blok, W. J. G. [Astrophysics, Cosmology and Gravity Centre, Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Rosolowsky, Erik [University of British Columbia, Okanagan Campus, Kelowna, BC (Canada); Schuster, Karl-Friedrich [IRAM, 300 rue de la Piscine, F-38406 St. Martin d' Heres (France); Usero, Antonio [Observatorio Astronomico Nacional, C/ Alfonso XII, 3, E-28014 Madrid (Spain)

    2013-08-01

    We compare molecular gas traced by {sup 12}CO (2-1) maps from the HERACLES survey, with tracers of the recent star formation rate (SFR) across 30 nearby disk galaxies. We demonstrate a first-order linear correspondence between {Sigma}{sub mol} and {Sigma}{sub SFR} but also find important second-order systematic variations in the apparent molecular gas depletion time, {tau}{sub dep}{sup mol}={Sigma}{sub mol}/{Sigma}{sub SFR}. At the 1 kpc common resolution of HERACLES, CO emission correlates closely with many tracers of the recent SFR. Weighting each line of sight equally, using a fixed {alpha}{sub CO} equivalent to the Milky Way value, our data yield a molecular gas depletion time, {tau}{sub dep}{sup mol}={Sigma}{sub mol}/{Sigma}{sub SFR}{approx}2.2 Gyr with 0.3 dex 1{sigma} scatter, in very good agreement with recent literature data. We apply a forward-modeling approach to constrain the power-law index, N, that relates the SFR surface density and the molecular gas surface density, {Sigma}{sub SFR}{proportional_to}{Sigma}{sub mol}{sup N}. We find N = 1 {+-} 0.15 for our full data set with some scatter from galaxy to galaxy. This also agrees with recent work, but we caution that a power-law treatment oversimplifies the topic given that we observe correlations between {tau}{sub dep}{sup mol} and other local and global quantities. The strongest of these are a decreased {tau}{sub dep}{sup mol} in low-mass, low-metallicity galaxies and a correlation of the kpc-scale {tau}{sub dep}{sup mol} with dust-to-gas ratio, D/G. These correlations can be explained by a CO-to-H{sub 2} conversion factor ({alpha}{sub CO}) that depends on dust shielding, and thus D/G, in the theoretically expected way. This is not a unique interpretation, but external evidence of conversion factor variations makes this the most conservative explanation of the strongest observed {tau}{sub dep}{sup mol} trends. After applying a D/G-dependent {alpha}{sub CO}, some weak correlations between {tau}{sub dep

  20. Supermassive black holes do not correlate with galaxy disks or pseudobulges.

    Science.gov (United States)

    Kormendy, John; Bender, R; Cornell, M E

    2011-01-20

    The masses of supermassive black holes are known to correlate with the properties of the bulge components of their host galaxies. In contrast, they seem not to correlate with galaxy disks. Disk-grown 'pseudobulges' are intermediate in properties between bulges and disks; it has been unclear whether they do or do not correlate with black holes in the same way that bulges do. At stake in this issue are conclusions about which parts of galaxies coevolve with black holes, possibly by being regulated by energy feedback from black holes. Here we report pseudobulge classifications for galaxies with dynamically detected black holes and combine them with recent measurements of velocity dispersions in the biggest bulgeless galaxies. These data confirm that black holes do not correlate with disks and show that they correlate little or not at all with pseudobulges. We suggest that there are two different modes of black-hole feeding. Black holes in bulges grow rapidly to high masses when mergers drive gas infall that feeds quasar-like events. In contrast, small black holes in bulgeless galaxies and in galaxies with pseudobulges grow as low-level Seyfert galaxies. Growth of the former is driven by global processes, so the biggest black holes coevolve with bulges, but growth of the latter is driven locally and stochastically, and they do not coevolve with disks and pseudobulges.

  1. Extragalactic SETI: The Tully-Fisher Relation as a Probe of Dysonian Astroengineering in Disk Galaxies

    Science.gov (United States)

    Zackrisson, Erik; Calissendorff, Per; Asadi, Saghar; Nyholm, Anders

    2015-09-01

    If advanced extraterrestrial civilizations choose to construct vast numbers of Dyson spheres to harvest radiation energy, this could affect the characteristics of their host galaxies. Potential signatures of such astroengineering projects include reduced optical luminosity, boosted infrared luminosity, and morphological anomalies. Here, we apply a technique pioneered by Annis to search for Kardashev type III civilizations in disk galaxies, based on the predicted offset of these galaxies from the optical Tully-Fisher (TF) relation. By analyzing a sample of 1359 disk galaxies, we are able to set a conservative upper limit of ≲ 3% on the fraction of local disks subject to Dysonian astroengineering on galaxy-wide scales. However, the available data suggests that a small subset of disk galaxies actually may be underluminous with respect to the TF relation in the way expected for Kardashev type III objects. Based on the optical morphologies and infrared-to-optical luminosity ratios of such galaxies in our sample, we conclude that none of them stand out as strong Kardashev type III candidates and that their inferred properties likely have mundane explanations. This allows us to set a tentative upper limit at ≲ 0.3% on the fraction of Karashev type III disk galaxies in the local universe.

  2. Possible Imprints of Cold-mode Accretion on the Present-day Properties of Disk Galaxies

    Science.gov (United States)

    Noguchi, Masafumi

    2018-01-01

    Recent theoretical studies suggest that a significant part of the primordial gas accretes onto forming galaxies as narrow filaments of cold gas without building a shock and experiencing heating. Using a simple model of disk galaxy evolution that combines the growth of dark matter halos predicted by cosmological simulations with a hypothetical form of cold-mode accretion, we investigate how this cold-accretion mode affects the formation process of disk galaxies. It is found that the shock-heating and cold-accretion models produce compatible results for low-mass galaxies owing to the short cooling timescale in such galaxies. However, cold accretion significantly alters the evolution of disk galaxies more massive than the Milky Way and puts observable fingerprints on their present properties. For a galaxy with a virial mass {M}{vir}=2.5× {10}12 {M}ȯ , the scale length of the stellar disk is larger by 41% in the cold-accretion model than in the shock-heating model, with the former model reproducing the steep rise in the size–mass relation observed at the high-mass end. Furthermore, the stellar component of massive galaxies becomes significantly redder (0.66 in u ‑ r at {M}{vir}=2.5× {10}12 {M}ȯ ), and the observed color–mass relation in nearby galaxies is qualitatively reproduced. These results suggest that large disk galaxies with red optical colors may be the product of cold-mode accretion. The essential role of cold accretion is to promote disk formation in the intermediate-evolution phase (0.5< z< 1.5) by providing the primordial gas having large angular momentum and to terminate late-epoch accretion, quenching star formation and making massive galaxies red.

  3. Collisionless analogs of Riemann S ellipsoids with halo

    International Nuclear Information System (INIS)

    Abramyan, M.G.

    1987-01-01

    A spheroidal halo ensures equilibrium of the collisionless analogs of the Riemann S ellipsoids with oscillations of the particles along the direction of their rotation. Sequences of collisionless triaxial ellipsoids begin and end with dynamically stable members of collisionless embedded spheroids. Both liquid and collisionless Riemann S ellipsoids with weak halo have properties that resemble those of bars of SB galaxies

  4. The DiskMass Survey. VII. The distribution of luminous and dark matter in spiral galaxies

    NARCIS (Netherlands)

    Martinsson, T.P.K.; Verheijen, M.; Westfall, K.; Bershady, M.; Andersen, D.; Swaters, R.

    2013-01-01

    We present dynamically-determined rotation-curve mass decompositions of 30 spiral galaxies, which were carried out to test the maximum-disk hypothesis and to quantify properties of their dark-matter halos. We used measured vertical velocity dispersions of the disk stars to calculate dynamical mass

  5. The DiskMass Survey. VII. The distribution of luminous and dark matter in spiral galaxies

    NARCIS (Netherlands)

    Martinsson, Thomas P. K.; Verheijen, Marc A. W.; Westfall, Kyle B.; Bershady, Matthew A.; Andersen, David R.; Swaters, Rob A.

    We present dynamically-determined rotation-curve mass decompositions of 30 spiral galaxies, which were carried out to test the maximum-disk hypothesis and to quantify properties of their dark-matter halos. We used measured vertical velocity dispersions of the disk stars to calculate dynamical mass

  6. The DiskMass Survey : VII. The distribution of luminous and dark matter in spiral galaxies

    NARCIS (Netherlands)

    Martinsson, Thomas P. K.; Verheijen, Marc A. W.; Westfall, Kyle B.; Bershady, Matthew A.; Andersen, David R.; Swaters, Rob A.

    We present dynamically- determined rotation- curve mass decompositions of 30 spiral galaxies, which were carried out to test the maximum- disk hypothesis and to quantify properties of their dark- matter halos. We used measured vertical velocity dispersions of the disk stars to calculate dynamical

  7. The opacity of spiral galaxy disks. VIII. Structure of the cold ISM

    NARCIS (Netherlands)

    Holwerda, B. W.; Draine, B.; Gordon, K. D.; Gonzalez, R. A.; Calzetti, D.; Thornley, M.; Buckalew, B.; Allen, Ronald J.; van der Kruit, P. C.

    2007-01-01

    The quantity of dust in a spiral disk can be estimated using the dust's typical emission or the extinction of a known source. In this paper we compare two techniques, one based on emission and one on absorption, applied to sections of 14 disk galaxies. The two measurements reflect, respectively, the

  8. Why do disk galaxies present a common gas-phase metallicity gradient?

    Science.gov (United States)

    Chang, R.; Zhang, Shuhui; Shen, Shiyin; Yin, Jun; Hou, Jinliang

    2017-03-01

    CALIFA data show that isolated disk galaxies present a common gas-phase metallicity gradient, with a characteristic slope of -0.1dex/re between 0.3 and 2 disk effective radius re (Sanchez et al. 2014). Here we construct a simple model to investigate which processes regulate the formation and evolution.

  9. Ages of galaxy bulges and disks from optical and near-infrared colours

    NARCIS (Netherlands)

    Peletier, RF; Balcells, M; Bender, R; Davies, RL

    1996-01-01

    For a sample of bright nearby early-type galaxies we have obtained surface photometry in bands ranging from U to K. Since the galaxies have inclinations larger than 50 degrees it is easy to separate bulges and disks. By measuring the colours in special regions, we minimize the effects of extinction,

  10. A SEARCH FOR DISK-GALAXY LENSES IN THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Feron, Chloe; Hjorth, Jens; Samsing, Johan; McKean, John P.

    2009-01-01

    We present the first automated spectroscopic search for disk-galaxy lenses, using the Sloan Digital Sky Survey (SDSS) database. We follow up eight gravitational lens candidates, selected among a sample of ∼40,000 candidate massive disk galaxies, using a combination of ground-based imaging and long-slit spectroscopy. We confirm two gravitational lens systems: one probable disk galaxy and one probable S0 galaxy. The remaining systems are four promising disk-galaxy lens candidates, as well as two probable gravitational lenses whose lens galaxy might be an S0 galaxy. The redshifts of the lenses are z lens ∼ 0.1. The redshift range of the background sources is z source ∼ 0.3-0.7. The systems presented here are (confirmed or candidate) galaxy-galaxy lensing systems, that is, systems where the multiple images are faint and extended, allowing an accurate determination of the lens galaxy mass and light distributions without contamination from the background galaxy. Moreover, the low redshift of the (confirmed or candidates) lens galaxies is favorable for measuring rotation points to complement the lensing study. We estimate the rest-frame total mass-to-light ratio within the Einstein radius for the two confirmed lenses: we find M tot /L I = 5.4 ± 1.5 within 3.9 ± 0.9 kpc for SDSS J081230.30+543650.9 and M tot /L I = 1.5 ± 0.9 within 1.4 ± 0.8 kpc for SDSS J145543.55+530441.2 (all in solar units). Hubble Space Telescope or adaptive optics imaging is needed to further study the systems.

  11. EXTENDED NEUTRAL HYDROGEN IN THE ALIGNED SHELL GALAXIES Arp 230 AND MCG -5-7-1: FORMATION OF DISKS IN MERGING GALAXIES?

    Energy Technology Data Exchange (ETDEWEB)

    Schiminovich, David; Van Gorkom, J. H. [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Van der Hulst, J. M. [Kapteyn Astronomical Institute, 9700-AV Groningen (Netherlands)

    2013-02-01

    As part of an ongoing study of the neutral hydrogen (H I) morphology and kinematics of 'shell' elliptical galaxies, we present Very Large Array observations of two shell galaxies with aligned shells, Arp 230 and MCG -5-7-1. Our data provide the first H I images of Arp 230 and deeper images of MCG -5-7-1 than previously reported. Optical images of Arp 230 reveal a bright, aligned, interleaved shell system, making it an ideal candidate for 'phase-wrapped' shell formation following a radial encounter with a smaller companion. The fainter, non-interleaved shells of MCG -5-7-1 do not clearly favor a particular formation scenario. The H I we detect in both galaxies extends to nearly the same projected distance as the optical shells. In Arp 230 this gas appears to be anti-correlated with the aligned shells, consistent with our expectations for phase-wrapped shells produced in a radial encounter. In MCG -5-7-1, we observe gas associated with the shells making a 'spatial wrapping' or looping scenario more plausible. Although the extended gas component in both galaxies is unevenly distributed, the gas kinematics are surprisingly regular, looking almost like complete disks in rotation. We use the H I kinematics and optical data to determine mass-to-light ratios M/L{sub B} of 2.4{sup +3.0}{sub -0.5} (at 13.5 kpc, 4.5 R{sub e} ) for Arp 230 and M/L{sub B} of 30 {+-} 7 (at 40 kpc, 7 R{sub e} ) in MCG -5-7-1. In both systems we find that this ratio changes as a function of radius, indicating the presence of a dark halo. By comparing orbital and precession timescales, we conclude that the potentials are slightly flattened. We infer a 5%-10% flattening for Arp 230 and less flattening in the case of MCG -5-7-1. Finally, we present images of the H I associated with the inner disk or (polar) ring of each galaxy and discuss possible explanations for their different present-day star formation rates. We detect total H I masses of 1.1 Multiplication-Sign 10

  12. The Star Formation Histories of Disk Galaxies: The Live, the Dead, and the Undead

    Energy Technology Data Exchange (ETDEWEB)

    Oemler, Augustus Jr; Dressler, Alan [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101-1292 (United States); Abramson, Louis E. [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Los Angeles CA 90095-1547 (United States); Gladders, Michael D. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Poggianti, Bianca M. [INAF-Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Vulcani, Benedetta [School of Physics, The University of Melbourne, VIC 3010 (Australia)

    2017-07-20

    We reexamine the properties of local galaxy populations using published surveys of star formation, structure, and gas content. After recalibrating star formation measures, we are able to reliably measure specific star formation rates well below that of the so-called “main sequence” of star formation versus mass. We find an unexpectedly large population of quiescent galaxies with star formation rates intermediate between the main sequence and passive populations and with disproportionately high star formation rates. We demonstrate that a tight main sequence is a natural outcome of most histories of star formation and has little astrophysical significance but that the quiescent population requires additional astrophysics to explain its properties. Using a simple model for disk evolution based on the observed dependence of star formation on gas content in local galaxies, and assuming simple histories of cold gas inflow, we show that the evolution of galaxies away from the main sequence can be attributed to the depletion of gas due to star formation after a cutoff of gas inflow. The quiescent population is composed of galaxies in which the density of disk gas has fallen below a threshold for star formation probably set by disk stability. The evolution of galaxies beyond the quiescent state to gas exhaustion and the end of star formation requires another process, probably wind-driven mass loss. The environmental dependence of the three galaxy populations is consistent with recent numerical modeling, which indicates that cold gas inflows into galaxies are truncated at earlier epochs in denser environments.

  13. A Comparison of Galaxy Bulge+Disk Decomposition Between Pan-STARRS and SDSS

    Science.gov (United States)

    Lokken, Martine Elena; McPartland, Conor; Sanders, David B.

    2018-01-01

    Measurements of the size and shape of bulges in galaxies provide key constraints for models of galaxy evolution. A comprehensive catalog of bulge measurements for Sloan Digital Sky Survey (SDSS) DR7 galaxies is currently available to the public. However, the Pan-STARRS1 (PS1) 3π survey now covers the same region with ~1-2 mag deeper photometry, a ~10-30% smaller PSF, and additional coverage in y-band. To test how much improvement in galaxy parameter measurements (e.g. bulge + disk) can be achieved using the new PS1 data, we make use of ultra-deep imaging data from the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP). We fit bulge+disk models to images of 372 bright (mi SSP images shows a tighter correlation between PS1 and SSP measurements for both bulge and disk parameters. Bulge parameters, such as bulge-to-total fraction and bulge radius, show the strongest improvement. However, measurements of all parameters degrade for galaxies with total r-band magnitude below the SDSS spectroscopic limit, mr = 17.7. We plan to use the PS1 3π survey data to produce an updated catalog of bulge+disk decomposition measurements for the entire SDSS DR7 spectroscopic galaxy sample.

  14. A SEARCH FOR SPIRAL GALAXIES WITH EXTENDED HI DISKS

    NARCIS (Netherlands)

    BROEILS, AH; VANWOERDEN, H

    1994-01-01

    We present short 21-cm line observations of about 50 spiral galaxies, made with the Westerbork Synthesis Radio Telescope. They form the first stage of a two-stage project to study the relation between the shape of extended rotation curves and galaxy properties, such as luminosity and morphological

  15. MASS TRANSPORT AND TURBULENCE IN GRAVITATIONALLY UNSTABLE DISK GALAXIES. II. THE EFFECTS OF STAR FORMATION FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Goldbaum, Nathan J. [National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 1205 W. Clark St., Urbana, IL 61801 (United States); Krumholz, Mark R. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2601 (Australia); Forbes, John C., E-mail: ngoldbau@illinois.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-08-10

    Self-gravity and stellar feedback are capable of driving turbulence and transporting mass and angular momentum in disk galaxies, but the balance between them is not well understood. In the previous paper in this series, we showed that gravity alone can drive turbulence in galactic disks, regulate their Toomre Q parameters to ∼1, and transport mass inwards at a rate sufficient to fuel star formation in the centers of present-day galaxies. In this paper we extend our models to include the effects of star formation feedback. We show that feedback suppresses galaxies’ star formation rates by a factor of ∼5 and leads to the formation of a multi-phase atomic and molecular interstellar medium. Both the star formation rate and the phase balance produced in our simulations agree well with observations of nearby spirals. After our galaxies reach steady state, we find that the inclusion of feedback actually lowers the gas velocity dispersion slightly compared to the case of pure self-gravity, and also slightly reduces the rate of inward mass transport. Nevertheless, we find that, even with feedback included, our galactic disks self-regulate to Q ∼ 1, and transport mass inwards at a rate sufficient to supply a substantial fraction of the inner disk star formation. We argue that gravitational instability is therefore likely to be the dominant source of turbulence and transport in galactic disks, and that it is responsible for fueling star formation in the inner parts of galactic disks over cosmological times.

  16. HOT GAS HALOS AROUND DISK GALAXIES: CONFRONTING COSMOLOGICAL SIMULATIONS WITH OBSERVATIONS

    International Nuclear Information System (INIS)

    Rasmussen, Jesper; Sommer-Larsen, Jesper; Pedersen, Kristian; Toft, Sune; Grove, Lisbeth F.; Benson, Andrew; Bower, Richard G.

    2009-01-01

    Models of disk galaxy formation commonly predict the existence of an extended reservoir of accreted hot gas surrounding massive spirals at low redshift. As a test of these models, we use X-ray and Hα data of the two massive, quiescent edge-on spirals NGC 5746 and NGC 5170 to investigate the amount and origin of any hot gas in their halos. Contrary to our earlier claim, the Chandra analysis of NGC 5746, employing more recent calibration data, does not reveal any significant evidence for diffuse X-ray emission outside the optical disk, with a 3σ upper limit to the halo X-ray luminosity of 4 x 10 39 erg s -1 . An identical study of the less massive NGC 5170 also fails to detect any extraplanar X-ray emission. By extracting hot halo properties of disk galaxies formed in cosmological hydrodynamical simulations, we compare these results to expectations for cosmological accretion of hot gas by spirals. For Milky-Way-sized galaxies, these high-resolution simulations predict hot halo X-ray luminosities which are lower by a factor of ∼2 compared to our earlier results reported by Toft et al. We find the new simulation predictions to be consistent with our observational constraints for both NGC 5746 and NGC 5170, while also confirming that the hot gas detected so far around more actively star-forming spirals is in general probably associated with stellar activity in the disk. Observational results on quiescent disk galaxies at the high-mass end are nevertheless providing powerful constraints on theoretical predictions, and hence on the assumed input physics in numerical studies of disk galaxy formation and evolution.

  17. A self-consistent model of the three-phase interstellar medium in disk galaxies

    International Nuclear Information System (INIS)

    Wang, Z.

    1989-01-01

    In the present study the author analyzes a number of physical processes concerning velocity and spatial distributions, ionization structure, pressure variation, mass and energy balance, and equation of state of the diffuse interstellar gas in a three phase model. He also considers the effects of this model on the formation of molecular clouds and the evolution of disk galaxies. The primary purpose is to incorporate self-consistently the interstellar conditions in a typical late-type galaxy, and to relate these to various observed large-scale phenomena. He models idealized situations both analytically and numerically, and compares the results with observational data of the Milky Way Galaxy and other nearby disk galaxies. Several main conclusions of this study are: (1) the highly ionized gas found in the lower Galactic halo is shown to be consistent with a model in which the gas is photoionized by the diffuse ultraviolet radiation; (2) in a quasi-static and self-regulatory configuration, the photoelectric effects of interstellar grains are primarily responsible for heating the cold (T ≅ 100K) gas; the warm (T ≅ 8,000K) gas may be heated by supernova remnants and other mechanisms; (3) the large-scale atomic and molecular gas distributions in a sample of 15 disk galaxies can be well explained if molecular cloud formation and star formation follow a modified Schmidt Law; a scaling law for the radial gas profiles is proposed based on this model, and it is shown to be applicable to the nearby late-type galaxies where radio mapping data is available; for disk galaxies of earlier type, the effect of their massive central bulges may have to be taken into account

  18. The Stars and Gas in Outer Parts of Galaxy Disks : Extended or Truncated, Flat or Warped?

    NARCIS (Netherlands)

    van der Kruit, P. C.; Funes, JG; Corsini, EM

    2008-01-01

    I review observations of truncations of stellar disks and models for their origin, compare observations of truncations in moderately inclined galaxies to those in edge-on systems and discuss the relation between truncations and H I-warps and their systematics and origin. Truncations are a common

  19. Ages of galaxy bulges and disks from optical and near-infrared colors

    NARCIS (Netherlands)

    Peletier, RF; Balcells, M

    We compare optical and near-infrared colors of disks and bulges in a diameter-limited sample of inclined, bright, nearby, early-type spirals. Color profiles along wedge apertures at 15 degrees from the major axis and on the minor axis on the side of the galaxy opposite to the dust lane are used to

  20. CLUMPY DISKS AS A TESTBED FOR FEEDBACK-REGULATED GALAXY FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Lucio; Tamburello, Valentina [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Lupi, Alessandro; Madau, Piero [Institut d’Astrophysique de Paris, Sorbonne Universités, UPMC Univ Paris 6 et CNRS, UMR 7095, 98 bis bd Arago, F-75014 Paris (France); Keller, Ben; Wadsley, James [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada)

    2016-10-10

    We study the dependence of fragmentation in massive gas-rich galaxy disks at z >1 on stellar feedback schemes and hydrodynamical solvers, employing the GASOLINE2 SPH code and the lagrangian mesh-less code GIZMO in finite mass mode. Non-cosmological galaxy disk runs with the standard delayed-cooling blastwave feedback are compared with runs adopting a new superbubble feedback, which produces winds by modeling the detailed physics of supernova-driven bubbles and leads to efficient self-regulation of star formation. We find that, with blastwave feedback, massive star-forming clumps form in comparable number and with very similar masses in GASOLINE2 and GIZMO. Typical clump masses are in the range 10{sup 7}–10{sup 8} M {sub ⊙}, lower than in most previous works, while giant clumps with masses above 10{sup 9} M {sub ⊙} are exceedingly rare. By contrast, superbubble feedback does not produce massive star-forming bound clumps as galaxies never undergo a phase of violent disk instability. In this scheme, only sporadic, unbound star-forming overdensities lasting a few tens of Myr can arise, triggered by non-linear perturbations from massive satellite companions. We conclude that there is severe tension between explaining massive star-forming clumps observed at z >1 primarily as the result of disk fragmentation driven by gravitational instability and the prevailing view of feedback-regulated galaxy formation. The link between disk stability and star formation efficiency should thus be regarded as a key testing ground for galaxy formation theory.

  1. THE ACS NEARBY GALAXY SURVEY TREASURY. XI. THE REMARKABLY UNDISTURBED NGC 2403 DISK

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Benjamin F.; Dalcanton, Julianne J.; Stilp, Adrienne; Radburn-Smith, David [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Dolphin, Andrew [Raytheon, 1151 E. Hermans Road, Tucson, AZ 85706 (United States); Skillman, Evan D., E-mail: ben@astro.washington.edu, E-mail: jd@astro.washington.edu, E-mail: adrienne@astro.washington.edu, E-mail: dolphin@raytheon.com, E-mail: skillman@astro.umn.edu [Department of Astronomy, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States)

    2013-03-10

    We present detailed analysis of color-magnitude diagrams of NGC 2403, obtained from a deep (m {approx}< 28) Hubble Space Telescope (HST) Wide Field Planetary Camera 2 observation of the outer disk of NGC 2403, supplemented by several shallow (m {approx}< 26) HST Advanced Camera for Surveys fields. We derive the spatially resolved star formation history of NGC 2403 out to 11 disk scale lengths. In the inner portions of the galaxy, we compare the recent star formation rates (SFRs) we derive from the resolved stars with those measured using GALEX FUV + Spitzer 24{mu} fluxes, finding excellent agreement between the methods. Our measurements also show that the radial gradient in recent SFR mirrors the disk exponential profile to 11 scale lengths with no break, extending to SFR densities a factor of {approx}100 lower than those that can be measured with GALEX and Spitzer ({approx}2 Multiplication-Sign 10{sup -6} M{sub Sun} yr{sup -1} kpc{sup -2}). Furthermore, we find that the cumulative stellar mass of the disk was formed at similar times at all radii. We compare these characteristics of NGC 2403 to those of its ''morphological twins'', NGC 300 and M 33, showing that the structure and age distributions of the NGC 2403 disk are more similar to those of the relatively isolated system NGC 300 than to those of the Local Group analog M 33. We also discuss the environments and HI morphologies of these three nearby galaxies, comparing them to integrated light studies of larger samples of more distant galaxy disks. Taken together, the physical properties and evolutionary history of NGC 2403 suggest that the galaxy has had no close encounters with other M 81 group members and may be falling into the group for the first time.

  2. The Dynamical Properties of Virgo Cluster Disk Galaxies

    Science.gov (United States)

    Ouellette, N. N. Q.; Courteau, S.; Holtzman, J. A.; Dalcanton, J. J.; McDonald, M.; Zhu, Y.

    2014-03-01

    By virtue of its proximity, the Virgo Cluster is an ideal laboratory for testing our understanding of structure formation in the Universe. In this spirit, we present a dynamical study of Virgo galaxies as part of the Spectroscopic and H-band Imaging of Virgo (SHIVir) survey. Hα rotation curves (RC) for our gas-rich galaxies were modeled with a multi-parameter fit function from which various velocity measurements were inferred. Our study takes advantage of archival and our own new data as we aim to compile the largest Tully-Fisher relation (TFR) for a cluster to date. Extended velocity dispersion profiles (VDP) are integrated over varying aperture sizes to extract representative velocity dispersions (VDs) for gas-poor galaxies. Considering the lack of a common standard for the measurement of a fiducial galaxy VD in the literature, we rectify this situation by determining the radius at which the measured VD yields the tightest Fundamental Plane (FP). We found that radius to be at least 1 Re, which exceeds the extent of most dispersion profiles in other works.

  3. Unveiling the structure of barred galaxies at 3.6 μm with the Spitzer survey of stellar structure in galaxies (S4G). I. Disk breaks

    International Nuclear Information System (INIS)

    Kim, Taehyun; Lee, Myung Gyoon; Gadotti, Dimitri A.; Muñoz-Mateos, Juan-Carlos; Sheth, Kartik; Athanassoula, E.; Bosma, Albert; Madore, Barry F.; Ho, Luis C.; Elmegreen, Bruce; Knapen, Johan H.; Cisternas, Mauricio; Erroz-Ferrer, Santiago; Zaritsky, Dennis; Comerón, Sébastien; Laurikainen, Eija; Salo, Heikki; Holwerda, Benne; Hinz, Joannah L.; Buta, Ron

    2014-01-01

    We have performed two-dimensional multicomponent decomposition of 144 local barred spiral galaxies using 3.6 μm images from the Spitzer Survey of Stellar Structure in Galaxies. Our model fit includes up to four components (bulge, disk, bar, and a point source) and, most importantly, takes into account disk breaks. We find that ignoring the disk break and using a single disk scale length in the model fit for Type II (down-bending) disk galaxies can lead to differences of 40% in the disk scale length, 10% in bulge-to-total luminosity ratio (B/T), and 25% in bar-to-total luminosity ratios. We find that for galaxies with B/T ≥ 0.1, the break radius to bar radius, r br /R bar , varies between 1 and 3, but as a function of B/T the ratio remains roughly constant. This suggests that in bulge-dominated galaxies the disk break is likely related to the outer Lindblad resonance of the bar and thus moves outward as the bar grows. For galaxies with small bulges, B/T < 0.1, r br /R bar spans a wide range from 1 to 6. This suggests that the mechanism that produces the break in these galaxies may be different from that in galaxies with more massive bulges. Consistent with previous studies, we conclude that disk breaks in galaxies with small bulges may originate from bar resonances that may be also coupled with the spiral arms, or be related to star formation thresholds.

  4. PROPERTIES OF BULGELESS DISK GALAXIES. II. STAR FORMATION AS A FUNCTION OF CIRCULAR VELOCITY

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Linda C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Martini, Paul; Wong, Man-Hong [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Lisenfeld, Ute [Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, 18071 Granada (Spain); Boeker, Torsten [European Space Agency, Keplerlaan 1, 2200 AG Noordwijk (Netherlands); Schinnerer, Eva, E-mail: lwatson@cfa.harvard.edu [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2012-06-01

    We study the relation between the surface density of gas and star formation rate in 20 moderately inclined, bulgeless disk galaxies (Sd-Sdm Hubble types) using CO(1-0) data from the IRAM 30 m telescope, H I emission line data from the VLA/EVLA, H{alpha} data from the MDM Observatory, and polycyclic aromatic hydrocarbon emission data derived from Spitzer IRAC observations. We specifically investigate the efficiency of star formation as a function of circular velocity (v{sub circ}). Previous work found that the vertical dust structure and disk stability of edge-on, bulgeless disk galaxies transition from diffuse dust lanes with large scale heights and gravitationally stable disks at v{sub circ} < 120 km s{sup -1} (M{sub *} {approx}< 10{sup 10} M{sub Sun }) to narrow dust lanes with small scale heights and gravitationally unstable disks at v{sub circ} > 120 km s{sup -1}. We find no transition in star formation efficiency ({Sigma}{sub SFR}/{Sigma}{sub Hi+H{sub 2}}) at v{sub circ} = 120 km s{sup -1} or at any other circular velocity probed by our sample (v{sub circ} = 46-190 km s{sup -1}). Contrary to previous work, we find no transition in disk stability at any circular velocity in our sample. Assuming our sample has the same dust structure transition as the edge-on sample, our results demonstrate that scale height differences in the cold interstellar medium of bulgeless disk galaxies do not significantly affect the molecular fraction or star formation efficiency. This may indicate that star formation is primarily affected by physical processes that act on smaller scales than the dust scale height, which lends support to local star formation models.

  5. The rapid formation of a large rotating disk galaxy three billion years after the Big Bang.

    Science.gov (United States)

    Genzel, R; Tacconi, L J; Eisenhauer, F; Schreiber, N M Förster; Cimatti, A; Daddi, E; Bouché, N; Davies, R; Lehnert, M D; Lutz, D; Nesvadba, N; Verma, A; Abuter, R; Shapiro, K; Sternberg, A; Renzini, A; Kong, X; Arimoto, N; Mignoli, M

    2006-08-17

    Observations and theoretical simulations have established a framework for galaxy formation and evolution in the young Universe. Galaxies formed as baryonic gas cooled at the centres of collapsing dark-matter haloes; mergers of haloes and galaxies then led to the hierarchical build-up of galaxy mass. It remains unclear, however, over what timescales galaxies were assembled and when and how bulges and disks--the primary components of present-day galaxies--were formed. It is also puzzling that the most massive galaxies were more abundant and were forming stars more rapidly at early epochs than expected from models. Here we report high-angular-resolution observations of a representative luminous star-forming galaxy when the Universe was only 20% of its current age. A large and massive rotating protodisk is channelling gas towards a growing central stellar bulge hosting an accreting massive black hole. The high surface densities of gas, the high rate of star formation and the moderately young stellar ages suggest rapid assembly, fragmentation and conversion to stars of an initially very gas-rich protodisk, with no obvious evidence for a major merger.

  6. KINEMATIC CLASSIFICATIONS OF LOCAL INTERACTING GALAXIES: IMPLICATIONS FOR THE MERGER/DISK CLASSIFICATIONS AT HIGH-z

    International Nuclear Information System (INIS)

    Hung, Chao-Ling; Larson, Kirsten L.; Sanders, D. B.; Rich, Jeffrey A.; Yuan, Tiantian; Kewley, Lisa J.; Casey, Caitlin M.; Smith, Howard A.; Hayward, Christopher C.

    2015-01-01

    The classification of galaxy mergers and isolated disks is key for understanding the relative importance of galaxy interactions and secular evolution during the assembly of galaxies. Galaxy kinematics as traced by emission lines have been used to suggest the existence of a significant population of high-z star-forming galaxies consistent with isolated rotating disks. However, recent studies have cautioned that post-coalescence mergers may also display disk-like kinematics. To further investigate the robustness of merger/disk classifications based on kinematic properties, we carry out a systematic classification of 24 local (U)LIRGs spanning a range of morphologies: from isolated spiral galaxies, ongoing interacting systems, to fully merged remnants. We artificially redshift the Wide Field Spectrograph observations of these local (U)LIRGs to z = 1.5 to make a realistic comparison with observations at high-z, and also to ensure that all galaxies have the same spatial sampling of ∼900 pc. Using both kinemetry-based and visual classifications, we find that the reliability of kinematic classification shows a strong trend with the interaction stage of galaxies. Mergers with two nuclei and tidal tails have the most distinct kinematics compared to isolated disks, whereas a significant population of the interacting disks and merger remnants are indistinguishable from isolated disks. The high fraction of mergers displaying disk-like kinematics reflects the complexity of the dynamics during galaxy interactions. Additional merger indicators such as morphological properties traced by stars or molecular gas are required to further constrain the merger/disk classifications at high-z

  7. Phase models of galaxies consisting of disk and halo

    International Nuclear Information System (INIS)

    Osipkov, L.P.; Kutuzov, S.A.

    1987-01-01

    A method of finding the phase density of a two-component model of mass distribution is developed. The equipotential surfaces and the potential law are given. The equipotentials are lenslike surfaces with a sharp edge in the equatorial plane, which provides the existence of an imbedded thin disk in halo. The equidensity surfaces of the halo coincide with the equipotentials. Phase models for the halo and the disk are constructed separately on the basis of spatial and surface mass densities by solving the corresponding integral equations. In particular the models for the halo with finite dimensions can be constructed. The even part of the phase density in respect to velocities is only found. For the halo it depends on the energy integral as a single argument

  8. Phase models of galaxies consisting of a disk and halo

    International Nuclear Information System (INIS)

    Osipkov, L.P.; Kutuzov, S.A.

    1988-01-01

    A method is developed for finding the phase density of a two-component model of a distribution of masses. The equipotential surfaces and potential law are given. The equipotentials are lenslike surfaces with a sharp edge in the equatorial plane, this ensuring the existence of a vanishingly thin embedded disk. The equidensity surfaces of the halo coincide with the equipotentials. Phase models are constructed separately for the halo and for the disk on the basis of the spatial and surface mass densities by the solution of the corresponding integral equations. In particular, models with a halo having finite dimensions can be constructed. For both components, the part of the phase density even with respect to the velocities is found. For the halo, it depends only on the energy integral. Two examples, for which exact solutions are found, are considered

  9. DISK GALAXY SCALING RELATIONS IN THE SFI++: INTRINSIC SCATTER AND APPLICATIONS

    International Nuclear Information System (INIS)

    Saintonge, Amelie; Spekkens, Kristine

    2011-01-01

    We study the scaling relations between the luminosities, sizes, and rotation velocities of disk galaxies in the SFI++, with a focus on the size-luminosity (RL) and size-rotation velocity (RV) relations. Using isophotal radii instead of disk scale lengths as a size indicator, we find relations that are significantly tighter than previously reported: the correlation coefficients of the template RL and RV relations are r = 0.97 and r= 0.85, respectively, which rival that of the more widely studied LV (Tully-Fisher) relation. The scatter in the SFI++ RL relation is 2.5-4 times smaller than previously reported for various samples, which we attribute to the reliability of isophotal radii relative to disk scale lengths. After carefully accounting for all measurement errors, our scaling relation error budgets are consistent with a constant intrinsic scatter in the LV and RV relations for velocity widths log W ∼> 2.4, with evidence for increasing intrinsic scatter below this threshold. The scatter in the RL relation is consistent with constant intrinsic scatter that is biased by incompleteness at the low-L end. Possible applications of the unprecedentedly tight SFI++ RV and RL relations are investigated. Just like the Tully-Fisher relation, the RV relation can be used as a distance indicator: we derive distances to galaxies with primary Cepheid distances that are accurate to 25%, and reverse the problem to measure a Hubble constant H 0 = 72 ± 7 km s -1 Mpc -1 . Combining the small intrinsic scatter of our RL relation (ε int = 0.034 ± 0.001log [h -1 kpc]) with a simple model for disk galaxy formation, we find an upper limit in the range of disk spin parameters that is a factor of ∼7 smaller than that of the halo spin parameters predicted by cosmological simulations. This likely implies that the halos hosting Sc galaxies have a much narrower distribution of spin parameters than previously thought.

  10. Self-consistent Bulge/Disk/Halo Galaxy Dynamical Modeling Using Integral Field Kinematics

    Science.gov (United States)

    Taranu, D. S.; Obreschkow, D.; Dubinski, J. J.; Fogarty, L. M. R.; van de Sande, J.; Catinella, B.; Cortese, L.; Moffett, A.; Robotham, A. S. G.; Allen, J. T.; Bland-Hawthorn, J.; Bryant, J. J.; Colless, M.; Croom, S. M.; D'Eugenio, F.; Davies, R. L.; Drinkwater, M. J.; Driver, S. P.; Goodwin, M.; Konstantopoulos, I. S.; Lawrence, J. S.; López-Sánchez, Á. R.; Lorente, N. P. F.; Medling, A. M.; Mould, J. R.; Owers, M. S.; Power, C.; Richards, S. N.; Tonini, C.

    2017-11-01

    We introduce a method for modeling disk galaxies designed to take full advantage of data from integral field spectroscopy (IFS). The method fits equilibrium models to simultaneously reproduce the surface brightness, rotation, and velocity dispersion profiles of a galaxy. The models are fully self-consistent 6D distribution functions for a galaxy with a Sérsic profile stellar bulge, exponential disk, and parametric dark-matter halo, generated by an updated version of GalactICS. By creating realistic flux-weighted maps of the kinematic moments (flux, mean velocity, and dispersion), we simultaneously fit photometric and spectroscopic data using both maximum-likelihood and Bayesian (MCMC) techniques. We apply the method to a GAMA spiral galaxy (G79635) with kinematics from the SAMI Galaxy Survey and deep g- and r-band photometry from the VST-KiDS survey, comparing parameter constraints with those from traditional 2D bulge-disk decomposition. Our method returns broadly consistent results for shared parameters while constraining the mass-to-light ratios of stellar components and reproducing the H I-inferred circular velocity well beyond the limits of the SAMI data. Although the method is tailored for fitting integral field kinematic data, it can use other dynamical constraints like central fiber dispersions and H I circular velocities, and is well-suited for modeling galaxies with a combination of deep imaging and H I and/or optical spectra (resolved or otherwise). Our implementation (MagRite) is computationally efficient and can generate well-resolved models and kinematic maps in under a minute on modern processors.

  11. EXTINCTION IN STAR-FORMING DISK GALAXIES FROM INCLINATION-DEPENDENT COMPOSITE SPECTRA

    International Nuclear Information System (INIS)

    Yip, Ching-Wa; Szalay, Alex S.; Wyse, Rosemary F. G.; Budavari, Tamas; Dobos, Laszlo; Csabai, Istvan

    2010-01-01

    Extinction in galaxies affects their observed properties. In scenarios describing the distribution of dust and stars in individual disk galaxies, the amplitude of the extinction can be modulated by the inclination of the galaxies. In this work, we investigate the inclination dependency in composite spectra of star-forming disk galaxies from the Sloan Digital Sky Survey Data Release 5. In a volume-limited sample within a redshift range 0.065-0.075 and a r-band Petrosian absolute magnitude range -19.5 to -22 mag which exhibits a flat distribution of inclination, the inclined relative to face-on extinction in the stellar continuum is found empirically to increase with inclination in the g, r, and i bands. Within the central 0.5 intrinsic half-light radius of the galaxies, the g-band relative extinction in the stellar continuum for the highly inclined objects (axis ratio b/a = 0.1) is 1.2 mag, agreeing with previous studies. The extinction curve of the disk galaxies is given in the rest-frame wavelengths 3700-8000 A, identified with major optical emission and absorption lines in diagnostics. The Balmer decrement, Hα/Hβ, remains constant with inclination, suggesting a different kind of dust configuration and/or reddening mechanism in the H II region from that in the stellar continuum. One factor is shown to be the presence of spatially non-uniform interstellar extinction, presumably caused by clumped dust in the vicinity of the H II region.

  12. THE RISE AND FALL OF PASSIVE DISK GALAXIES: MORPHOLOGICAL EVOLUTION ALONG THE RED SEQUENCE REVEALED BY COSMOS

    International Nuclear Information System (INIS)

    Bundy, Kevin; Hopkins, Philip; Ma, Chung-Pei; Scarlata, Claudia; Capak, Peter; Carollo, C. M.; Oesch, Pascal; Ellis, Richard S.; Salvato, Mara; Scoville, Nick; Drory, Niv; Leauthaud, Alexie; Koekemoer, Anton M.; Murray, Norman; Ilbert, Olivier; Pozzetti, Lucia

    2010-01-01

    The increasing abundance of passive 'red-sequence' galaxies since z ∼ 1-2 is mirrored by a coincident rise in the number of galaxies with spheroidal morphologies. In this paper, however, we show in detail, that, the correspondence between galaxy morphology and color is not perfect, providing insight into the physical origin of this evolution. Using the COSMOS survey, we study a significant population of red-sequence galaxies with disk-like morphologies. These passive disks typically have Sa-Sb morphological types with large bulges, but they are not confined to dense environments. They represent nearly one-half of all red-sequence galaxies and dominate at lower masses (∼ 10 M sun ) where they are increasingly disk-dominated. As a function of time, the abundance of passive disks with M * ∼ 11 M sun increases, but not as fast as red-sequence spheroidals in the same mass range. At higher mass, the passive disk population has declined since z ∼ 1, likely because they transform into spheroidals. Based on these trends, we estimate that as much as 60% of galaxies transitioning onto the red sequence evolve through a passive disk phase. The origin of passive disks therefore has broad implications for our understanding of how star formation shuts down. Because passive disks tend to be more bulge-dominated than their star-forming counterparts, a simple fading of blue disks does not fully explain their origin. We explore the strengths and weaknesses of several more sophisticated explanations, including environmental effects, internal stabilization, and disk regrowth during gas-rich mergers. While previous work has sought to explain color and morphological transformations with a single process, these observations open the way to new insight by highlighting the fact that galaxy evolution may actually proceed through several separate stages.

  13. THICK-DISK EVOLUTION INDUCED BY THE GROWTH OF AN EMBEDDED THIN DISK

    International Nuclear Information System (INIS)

    Villalobos, Alvaro; Helmi, Amina; Kazantzidis, Stelios

    2010-01-01

    We perform collisionless N-body simulations to investigate the evolution of the structural and kinematical properties of simulated thick disks induced by the growth of an embedded thin disk. The thick disks used in the present study originate from cosmologically common 5:1 encounters between initially thin primary disk galaxies and infalling satellites. The growing thin disks are modeled as static gravitational potentials and we explore a variety of growing-disk parameters that are likely to influence the response of thick disks. We find that the final thick-disk properties depend strongly on the total mass and radial scale length of the growing thin disk, and much less sensitively on its growth timescale and vertical scale height as well as the initial sense of thick-disk rotation. Overall, the growth of an embedded thin disk can cause a substantial contraction in both the radial and vertical direction, resulting in a significant decrease in the scale lengths and scale heights of thick disks. Kinematically, a growing thin disk can induce a notable increase in the mean rotation and velocity dispersions of thick-disk stars. We conclude that the reformation of a thin disk via gas accretion may play a significant role in setting the structure and kinematics of thick disks, and thus it is an important ingredient in models of thick-disk formation.

  14. Nuclear, disk-focused wind and the bipolar structure of the spiral galaxy NGC 3079

    International Nuclear Information System (INIS)

    Duric, N.; Seaquist, E.R.

    1988-01-01

    A high-resolution, radio continuum study of the spiral galaxy NGC 3079 is presented which reveals the presence of a figure eight morphology along the minor axis, centered on the nucleus. The nucleus itself dominates the emission from the galaxy. It has an inverted spectrum and is a possible VLBI source. The morphology is successfully modeled as the interaction between a nuclear wind and interstellar gas in the disk and halo. In this model, the wind plows up interstellar material as it propagates away from the nucleus. The disk focuses the wind along the minor axis, thereby creating the observed features. The restricted volume of space where the wind originates and the high energies associated with the wind point to a compact object such as a black hole or an unusually compact and massive star cluster as the source of the wind. 24 references

  15. SHAKEN, NOT STIRRED: THE DISRUPTED DISK OF THE STARBURST GALAXY NGC 253

    International Nuclear Information System (INIS)

    Davidge, T. J.

    2010-01-01

    Near-infrared images obtained with WIRCam on the Canada-France-Hawaii Telescope are used to investigate the recent history of the nearby Sculptor Group spiral NGC 253, which is one of the nearest starburst galaxies. Bright asymptotic giant branch (AGB) stars are traced out to projected distances of ∼22-26 kpc (∼13-15 disk scale lengths) along the major axis. The distribution of stars in the disk is lopsided, in the sense that the projected density of AGB stars in the northeast portion of the disk between 10 and 20 kpc from the galaxy center is ∼0.5 dex higher than on the opposite side of the galaxy. A large population of red supergiants is also found in the northeast portion of the disk and, with the exception of the central 2 kpc, this area appears to have been the site of the highest levels of star-forming activity in the galaxy during the past ∼0.1 Gyr. It is argued that such high levels of localized star formation may have produced a fountain that ejected material from the disk, and the extraplanar H I detected by Boomsma et al. may be one manifestation of such activity. Diffuse stellar structures are found in the periphery of the disk, and the most prominent of these is to the south and east of the galaxy. Bright AGB stars, including cool C stars that are identified based on their J - K colors, are detected out to 15 kpc above the disk plane, and these are part of a diffusely distributed, flattened extraplanar component. Comparisons between observed and model luminosity functions suggest that the extraplanar regions contain stars that formed throughout much of the age of the universe. Additional evidence of a diffuse, extraplanar stellar component that contains moderately young stars comes from archival Galaxy Evolution Explorer images. It is suggested that the disk of NGC 253 was disrupted by a tidal encounter with a now defunct companion. This encounter introduced asymmetries that remain to this day, and the projected distribution of stars in and

  16. THE FORMATION OF A MILKY WAY-SIZED DISK GALAXY. I. A COMPARISON OF NUMERICAL METHODS

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Qirong; Li, Yuexing, E-mail: qxz125@psu.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States)

    2016-11-01

    The long-standing challenge of creating a Milky Way- (MW-) like disk galaxy from cosmological simulations has motivated significant developments in both numerical methods and physical models. We investigate these two fundamental aspects in a new comparison project using a set of cosmological hydrodynamic simulations of an MW-sized galaxy. In this study, we focus on the comparison of two particle-based hydrodynamics methods: an improved smoothed particle hydrodynamics (SPH) code Gadget, and a Lagrangian Meshless Finite-Mass (MFM) code Gizmo. All the simulations in this paper use the same initial conditions and physical models, which include star formation, “energy-driven” outflows, metal-dependent cooling, stellar evolution, and metal enrichment. We find that both numerical schemes produce a late-type galaxy with extended gaseous and stellar disks. However, notable differences are present in a wide range of galaxy properties and their evolution, including star-formation history, gas content, disk structure, and kinematics. Compared to Gizmo, the Gadget simulation produced a larger fraction of cold, dense gas at high redshift which fuels rapid star formation and results in a higher stellar mass by 20% and a lower gas fraction by 10% at z = 0, and the resulting gas disk is smoother and more coherent in rotation due to damping of turbulent motion by the numerical viscosity in SPH, in contrast to the Gizmo simulation, which shows a more prominent spiral structure. Given its better convergence properties and lower computational cost, we argue that the MFM method is a promising alternative to SPH in cosmological hydrodynamic simulations.

  17. Disk and dwarf spheroidal galaxies kinematics from general relativity with infrared renormalization group effects

    International Nuclear Information System (INIS)

    Rodrigues, Davi C.; Oliveira, Paulo L.C. de; Fabris, Julio C.; Shapiro, Ilya L.

    2011-01-01

    Full text: The running of coupling constants is a well known phenomenon within Quantum Field Theory. It is also known that the renormalization group method can be extended to quantum field theory on curved space time. Nonetheless, although we know that the beta function of QED go to zero in the infrared limit fast enough to lead to constant charge at the classical level (in conformity with both the Appelquist-Carazzone theorem and experimental data), no analogous proof exists for General Relativity. Some authors have proposed that the infrared beta function of General Relativity is not trivial, and as such certain small running of the gravitational coupling might take place at astrophysical scales, leading in particular to changes on the role of dark matter in galaxies. We review and extend our contribution to infrared Renormalization Group (RG) effects to General Relativity in the context of galaxies, an approach we call RGGR. We extend our previous results by analyzing a larger sample of galaxies, now also including elliptical and dwarf spheroidal galaxies, besides disk galaxies (both LSB and HSB). We compare our RGGR results to both standard dark matter profiles (NFW, Isothermal, Burkert) and alternative models of gravity (MOND, MSTG), showing that the RGGR results are similar in quality to the best dark matter profiles (the cored ones, e.g., Isothermal and Burkert), while displaying a better fitting to the data than NFW, MOND or MSTG. To the latter, we evaluated both the shape of the rotation curve and the expected stellar mass-to-light ratios. Dwarf spheroidal (dSph) galaxies are small galaxies believed to be dominated by dark matter, with the highest fraction do dark matter per baryonic matter. These galaxies provide a strong test to any theory that mimics either all or part of the dark matter behavior. In particular, this is the only type of galaxy that MOND seems incapable of fitting the data. (author)

  18. Constraint on the infall of H I into big disk galaxies

    International Nuclear Information System (INIS)

    Bothun, G.D.

    1985-01-01

    Available 21-cm observations of late-type spirals from a variety of sources have been gathered together for purposes of constructing an H I luminosity function for spirals with M/sub B/ -1 ) has enabled increasingly larger volumes of space that surround the disk to become accessible to the Arecibo 21-cm beam. The data show absolutely no trend of increasing H I with redshift. There is likewise no tendency for an increase in observed H I mass over that predicted from the linear diameter of the galaxy, as the ratio of beam size to galaxy size increases. From these null results we can place an upper limit on the halo H I column density of N/sub H/ = 3 x 10 19 atoms cm -2 . In relative terms, the halo can contain no more than 1/3 the amount of H I already distributed in the disk. Based on these data, we argue that, if infall is still important at the present time in the evolution of big disk galaxies, then the reservoir should be detectable unless it is predominately in a form more exotic than atomic hydrogen

  19. {sup 13}CO/C{sup 18}O Gradients across the Disks of Nearby Spiral Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez-Donaire, María J.; Cormier, Diane; Bigiel, Frank [Institut für theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle Str. 2, D-69120 Heidelberg (Germany); Leroy, Adam K.; Gallagher, Molly [Department of Astronomy, The Ohio State University, 140 W 18th St, Columbus, OH 43210 (United States); Krumholz, Mark R. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Usero, Antonio [Observatorio Astronómico Nacional, Alfonso XII 3, E-28014, Madrid (Spain); Hughes, Annie [CNRS, IRAP, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France); Kramer, Carsten [Instituto de Astrofísica de Andalucía IAA-CSIC, Glorieta de la Astronomía s/n, E-18008, Granada (Spain); Meier, David [Department of Physics, New Mexico Institute of Mining and Technology, 801 Leroy Pl, Soccoro, NM 87801 (United States); Murphy, Eric [National Radio Astronomy Observatory, 520 Edgemont Rd, Charlottesville, VA 22903 (United States); Pety, Jérôme; Schuster, Karl [Institut de Radioastronomie Millimétrique (IRAM), 300 Rue de la Piscine, F-38406 Saint Martin d’Hères (France); Schinnerer, Eva; Sliwa, Kazimierz; Tomicic, Neven [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Schruba, Andreas, E-mail: m.jimenez@zah.uni-heidelberg.de [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany)

    2017-02-20

    We use the IRAM Large Program EMPIRE and new high-resolution ALMA data to measure {sup 13}CO(1-0)/C{sup 18}O(1-0) intensity ratios across nine nearby spiral galaxies. These isotopologues of {sup 12}CO are typically optically thin across most of the area in galaxy disks, and this ratio allows us to gauge their relative abundance due to chemistry or stellar nucleosynthesis effects. Resolved {sup 13}CO/C{sup 18}O gradients across normal galaxies have been rare due to the faintness of these lines. We find a mean {sup 13}CO/C{sup 18}O ratio of 6.0 ± 0.9 for the central regions of our galaxies. This agrees well with results in the Milky Way, but differs from results for starburst galaxies (3.4 ± 0.9) and ultraluminous infrared galaxies (1.1 ± 0.4). In our sample, the {sup 13}CO/C{sup 18}O ratio consistently increases with increasing galactocentric radius and decreases with increasing star formation rate surface density. These trends could be explained if the isotopic abundances are altered by fractionation; the sense of the trends also agrees with those expected for carbon and oxygen isotopic abundance variations due to selective enrichment by massive stars.

  20. Stellar metallicity variations across spiral arms in disk galaxies with multiple populations

    Science.gov (United States)

    Khoperskov, S.; Di Matteo, P.; Haywood, M.; Combes, F.

    2018-03-01

    This Letter studies the formation of azimuthal metallicity variations in the disks of spiral galaxies in the absence of initial radial metallicity gradients. Using high-resolution N-body simulations, we model composite stellar discs, made of kinematically cold and hot stellar populations, and study their response to spiral arm perturbations. We find that, as expected, disk populations with different kinematics respond differently to a spiral perturbation, with the tendency for dynamically cooler populations to show a larger fractional contribution to spiral arms than dynamically hotter populations. By assuming a relation between kinematics and metallicity, namely the hotter the population, the more metal-poor it is, this differential response to the spiral arm perturbations naturally leads to azimuthal variations in the mean metallicity of stars in the simulated disk. Thus, azimuthal variations in the mean metallicity of stars across a spiral galaxy are not necessarily a consequence of the reshaping, by radial migration, of an initial radial metallicity gradient. They indeed arise naturally also in stellar disks which have initially only a negative vertical metallicity gradient.

  1. The two young star disks in the central parsec of the Galaxy: properties, dynamics, and formation

    International Nuclear Information System (INIS)

    Paumard, T; Genzel, R; Martins, F; Nayakshin, S; Beloborodov, A M; Levin, Y; Trippe, S; Eisenhauer, F; Ott, T; Gillessen, S; Abuter, R; Cuadra, J; Alexander, T; Sternberg, A

    2006-01-01

    We report the definite spectroscopic identification of ≅ 40 OB supergiants, giants and main sequence stars in the central parsec of the Galaxy. Detection of their absorption lines have become possible with the high spatial and spectral resolution and sensitivity of the adaptive optics integral Held spectrometer SPIFFI/SINFONI on the ESO VLT. Several of these OB stars appear to be helium and nitrogen rich. Almost all of the ≅80 massive stars now known in the central parsec (central arcsecond excluded) reside in one of two somewhat thick ((|/R) ≅ 0.14) rotating disks. These stellar disks have fairly sharp inner edges (R ≅ 1'') and surface density profiles that scale as R -2 . We do not detect any OB stars outside the central 0.5 pc. The majority of the stars in the clockwise system appear to be on almost circular orbits, whereas most of those in the 'counter-clockwise' disk appear to be on eccentric orbits. Based on its stellar surface density distribution and dynamics we propose that IRS 13E is an extremely dense cluster (ρ core ∼> 3 x 10 8 M o-dot pc -3 ), which has formed in the counter-clockwise disk. The stellar contents of both systems are remarkably similar, indicating a common age of ≅ 6±2 Myr. The K-band luminosity function of the massive stars suggests a top-heavy mass function and limits the total stellar mass contained in both disks to ≅ 1.5 x 10 4 M o-dot . Our data strongly favor in situ star formation from dense gas accretion disks for the two stellar disks. This conclusion is very clear for the clockwise disk and highly plausible for the counter-clockwise system

  2. A new model for gravitational potential perturbations in disks of spiral galaxies. An application to our Galaxy

    Science.gov (United States)

    Junqueira, T. C.; Lépine, J. R. D.; Braga, C. A. S.; Barros, D. A.

    2013-02-01

    Aims: We propose a new, more realistic description of the perturbed gravitational potential of spiral galaxies, with spiral arms having Gaussian-shaped groove profiles. The aim is to reach a self-consistent description of the spiral structure, that is, one in which an initial potential perturbation generates, by means of the stellar orbits, spiral arms with a profile similar to that of the imposed perturbation. Self-consistency is a condition for having long-lived structures. Methods: Using the new perturbed potential, we investigate the stable stellar orbits in galactic disks for galaxies with no bar or with only a weak bar. The model is applied to our Galaxy by making use of the axisymmetric component of the potential computed from the Galactic rotation curve, in addition to other input parameters similar to those of our Galaxy. The influence of the bulge mass on the stellar orbits in the inner regions of a disk is also investigated. Results: The new description offers the advantage of easy control of the parameters of the Gaussian profile of its potential. We compute the density contrast between arm and inter-arm regions. We find a range of values for the perturbation amplitude from 400 to 800 km2 s-2 kpc-1, which implies an approximate maximum ratio of the tangential force to the axisymmetric force between 3% and 6%. Good self-consistency of arm shapes is obtained between the Inner Lindblad resonance (ILR) and the 4:1 resonance. Near the 4:1 resonance the response density starts to deviate from the imposed logarithmic spiral form. This creates bifurcations that appear as short arms. Therefore the deviation from a perfect logarithmic spiral in galaxies can be understood as a natural effect of the 4:1 resonance. Beyond the 4:1 resonance we find closed orbits that have similarities with the arms observed in our Galaxy. In regions near the center, elongated stellar orbits appear naturally, in the presence of a massive bulge, without imposing any bar

  3. The disk averaged star formation relation for Local Volume dwarf galaxies

    Science.gov (United States)

    López-Sánchez, Á. R.; Lagos, C. D. P.; Young, T.; Jerjen, H.

    2018-05-01

    Spatially resolved H I studies of dwarf galaxies have provided a wealth of precision data. However these high-quality, resolved observations are only possible for handful of dwarf galaxies in the Local Volume. Future H I surveys are unlikely to improve the current situation. We therefore explore a method for estimating the surface density of the atomic gas from global H I parameters, which are conversely widely available. We perform empirical tests using galaxies with resolved H I maps, and find that our approximation produces values for the surface density of atomic hydrogen within typically 0.5 dex of the true value. We apply this method to a sample of 147 galaxies drawn from modern near-infrared stellar photometric surveys. With this sample we confirm a strict correlation between the atomic gas surface density and the star formation rate surface density, that is vertically offset from the Kennicutt-Schmidt relation by a factor of 10 - 30, and significantly steeper than the classical N = 1.4 of Kennicutt (1998). We further infer the molecular fraction in the sample of low surface brightness, predominantly dwarf galaxies by assuming that the star formation relationship with molecular gas observed for spiral galaxies also holds in these galaxies, finding a molecular-to-atomic gas mass fraction within the range of 5-15%. Comparison of the data to available models shows that a model in which the thermal pressure balances the vertical gravitational field captures better the shape of the ΣSFR-Σgas relationship. However, such models fail to reproduce the data completely, suggesting that thermal pressure plays an important role in the disks of dwarf galaxies.

  4. Collisionless shock waves

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.; Kennel, C.F.

    1991-01-01

    Collisionless shocks cannot occur naturally on the earth, because nearly all matter here consists of electrically neutral atoms and molecules. In space, however, high temperatures and ultraviolet radiation from hot stars decompose atoms into their constituent nuclei and electrons, producing a soup of electrically charged particles known as a plasma. Plasma physicists proposed that the collective electrical and magnetic properties of plasmas could produce interactions that take the place of collisions and permit shocks to form. In 1964 the theoretical work found its first experimental confirmation. Norman F. Ness and his colleagues at the Goddard Space Flight Center, using data collected from the iMP-1 spacecraft, detected clear signs that a collisionless shock exists where the solar wind encounters the earth's magnetic field. More recent research has demonstrated that collisionless shocks appear in a dazzling array of astronomical settings. For example, shocks have been found in the solar wind upstream (sunward) of all the planet and comets that have been visited by spacecraft. Violent flares on the sun generate shocks that propagate to the far reaches of the solar system; tremendous galactic outbursts create disruptions in the intergalactic medium that are trillions of times larger. In addition, many astrophysicists think that shocks from supernova explosions in our galaxy accelerate cosmic rays, a class of extraordinarily energetic elementary particles and atomic nuclei that rain down on the earth from all directions

  5. Disk

    NARCIS (Netherlands)

    P.A. Boncz (Peter); L. Liu (Lei); M. Tamer Özsu

    2008-01-01

    htmlabstractIn disk storage, data is recorded on planar, round and rotating surfaces (disks, discs, or platters). A disk drive is a peripheral device of a computer system, connected by some communication medium to a disk controller. The disk controller is a chip, typically connected to the CPU of

  6. Gas-Rich Mergers in LCDM: Disk Survivability and the Baryonic Assembly of Galaxies

    International Nuclear Information System (INIS)

    Stewart, K.

    2009-01-01

    We use N-body simulations and observationally-normalized relations between dark matter halo mass, stellar mass, and cold gas mass to derive robust expectations about the baryonic content of major mergers out to redshift z ∼ 2. First, we find that the majority of major mergers (m/M > 0.3) experienced by Milky Way size dark matter halos should have been gas-rich, and that gas-rich mergers are increasingly common at high redshift. Though the frequency of major mergers into galaxy halos in our simulations greatly exceeds the observed late-type galaxy fraction, the frequency of gas-poor major mergers is consistent with the observed fraction of bulge-dominated galaxies across the halo mass range M DM ∼ 10 11 - 10 13 M · . These results lend support to the conjecture that mergers with high baryonic gas fractions play an important role in building and/or preserving disk galaxies in the universe. Secondly, we find that there is a transition mass below which a galaxy's past major mergers were primarily gas-rich and above which they were gas poor. The associated stellar mass scale corresponds closely to that marking the observed bimodal division between blue, star-forming, disk-dominated systems and red, bulge-dominated systems with old populations. Finally, we find that the overall fraction of a galaxy's cold baryons deposited directly via major mergers is substantial. Approximately 30% of the cold baryonic material in M star ∼ 10 10 M · (M DM ∼ 10 11.5 M · ) galaxies is accreted as cold gas in major mergers. For more massive galaxies with M star ∼ 10 11 M · (M DM ∼ 10 13 M · the fraction of baryons amassed in mergers is even higher, ∼ 50%, but most of these accreted baryons are delivered directly in the form of stars. This baryonic mass deposition is almost unavoidable, and provides a limit on the fraction of a galaxy's cold baryons that can originate in cold flows or from hot halo cooling

  7. Gas-Rich Mergers in LCDM: Disk Survivability and the Baryonic Assembly of Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kyle R.; Bullock, James S.; /UC, Irvine; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC; Maller, Ariyeh H.; /New York City Coll. Tech.

    2009-08-03

    We use N-body simulations and observationally-normalized relations between dark matter halo mass, stellar mass, and cold gas mass to derive robust expectations about the baryonic content of major mergers out to redshift z {approx} 2. First, we find that the majority of major mergers (m/M > 0.3) experienced by Milky Way size dark matter halos should have been gas-rich, and that gas-rich mergers are increasingly common at high redshift. Though the frequency of major mergers into galaxy halos in our simulations greatly exceeds the observed late-type galaxy fraction, the frequency of gas-poor major mergers is consistent with the observed fraction of bulge-dominated galaxies across the halo mass range M{sub DM} {approx} 10{sup 11} - 10{sup 13} M{sub {circle_dot}}. These results lend support to the conjecture that mergers with high baryonic gas fractions play an important role in building and/or preserving disk galaxies in the universe. Secondly, we find that there is a transition mass below which a galaxy's past major mergers were primarily gas-rich and above which they were gas poor. The associated stellar mass scale corresponds closely to that marking the observed bimodal division between blue, star-forming, disk-dominated systems and red, bulge-dominated systems with old populations. Finally, we find that the overall fraction of a galaxy's cold baryons deposited directly via major mergers is substantial. Approximately 30% of the cold baryonic material in M{sub star} {approx} 10{sup 10} M{sub {circle_dot}} (M{sub DM} {approx} 10{sup 11.5} M{sub {circle_dot}}) galaxies is accreted as cold gas in major mergers. For more massive galaxies with M{sub star} {approx} 10{sup 11} M{sub {circle_dot}} (M{sub DM} {approx} 10{sup 13} M{sub {circle_dot}} the fraction of baryons amassed in mergers is even higher, {approx} 50%, but most of these accreted baryons are delivered directly in the form of stars. This baryonic mass deposition is almost unavoidable, and provides a

  8. SPARC: MASS MODELS FOR 175 DISK GALAXIES WITH SPITZER PHOTOMETRY AND ACCURATE ROTATION CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Lelli, Federico; McGaugh, Stacy S. [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Schombert, James M., E-mail: federico.lelli@case.edu [Department of Physics, University of Oregon, Eugene, OR 97403 (United States)

    2016-12-01

    We introduce SPARC ( Spitzer Photometry and Accurate Rotation Curves): a sample of 175 nearby galaxies with new surface photometry at 3.6  μ m and high-quality rotation curves from previous H i/H α studies. SPARC spans a broad range of morphologies (S0 to Irr), luminosities (∼5 dex), and surface brightnesses (∼4 dex). We derive [3.6] surface photometry and study structural relations of stellar and gas disks. We find that both the stellar mass–H i mass relation and the stellar radius–H i radius relation have significant intrinsic scatter, while the H i   mass–radius relation is extremely tight. We build detailed mass models and quantify the ratio of baryonic to observed velocity ( V {sub bar}/ V {sub obs}) for different characteristic radii and values of the stellar mass-to-light ratio (ϒ{sub ⋆}) at [3.6]. Assuming ϒ{sub ⋆} ≃ 0.5 M {sub ⊙}/ L {sub ⊙} (as suggested by stellar population models), we find that (i) the gas fraction linearly correlates with total luminosity; (ii) the transition from star-dominated to gas-dominated galaxies roughly corresponds to the transition from spiral galaxies to dwarf irregulars, in line with density wave theory; and (iii)  V {sub bar}/ V {sub obs} varies with luminosity and surface brightness: high-mass, high-surface-brightness galaxies are nearly maximal, while low-mass, low-surface-brightness galaxies are submaximal. These basic properties are lost for low values of ϒ{sub ⋆} ≃ 0.2 M {sub ⊙}/ L {sub ⊙} as suggested by the DiskMass survey. The mean maximum-disk limit in bright galaxies is ϒ{sub ⋆} ≃ 0.7 M {sub ⊙}/ L {sub ⊙} at [3.6]. The SPARC data are publicly available and represent an ideal test bed for models of galaxy formation.

  9. Effect of increasing helium content and disk dwarfs evolution on the chemical enrichment of the galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Caimmi, R [Padua Univ. (Italy). Ist. di Astronomia

    1979-07-01

    The author deals with two main effects: First the empirical metal abundance distribution in Main Sequence disk dwarfs of the solar neighbourhood, and second, the theoretical possibility of (i) an increased helium content as the Galaxy evolves, and (ii) the presence of evolutionary effects in disk dwarfs (i.e., the age of some or all stars considered up to the subgiant phase is not necessarily longer than the age of the galactic disk). Account is taken of a linear increase of helium content with metal content, and some constraints are imposed relative to initial, solar and present-day observed values of Y and Z, and to observed relative helium to heavy element enrichment, ..delta..Y/..delta..Z. In this way, little influence is found on the empirical metal abundance distribution in the range 0<=..delta..Y/..delta..Z<=3, while larger values of ..delta..Y/..delta..Zwould lead to a more significant influence. 'Evolved' and 'unevolved' theoretical metal abundance distributions are derived by accounting for a two-phase model of chemical evolution of galaxies and for a linear mass dependence of star lifetimes in the spectral range G2V-G8V and are compared with the empirical distribution. All are in satisfactory agreement due to systematic shift data by different observations; several values of collapse time Tsub(c) and age of the Galaxy T are also considered. Finally, models of chemical evolution invoking homogeneous collapse without infall and inhomogeneous collapse with infall, are briefly discussed relative to the empirical metal abundance distribution in Main Sequence disk dwarfs of the solar neighbourhood.

  10. Mass Distribution in Rotating Thin-Disk Galaxies According to Newtonian Dynamics

    Directory of Open Access Journals (Sweden)

    James Q. Feng

    2014-04-01

    Full Text Available An accurate computational method is presented for determining the mass distribution in a mature spiral galaxy from a given rotation curve by applying Newtonian dynamics for an axisymmetrically rotating thin disk of finite size with or without a central spherical bulge. The governing integral equation for mass distribution is transformed via a boundary-element method into a linear algebra matrix equation that can be solved numerically for rotation curves with a wide range of shapes. To illustrate the effectiveness of this computational method, mass distributions in several mature spiral galaxies are determined from their measured rotation curves. All the surface mass density profiles predicted by our model exhibit approximately a common exponential law of decay, quantitatively consistent with the observed surface brightness distributions. When a central spherical bulge is present, the mass distribution in the galaxy is altered in such a way that the periphery mass density is reduced, while more mass appears toward the galactic center. By extending the computational domain beyond the galactic edge, we can determine the rotation velocity outside the cut-off radius, which appears to continuously decrease and to gradually approach the Keplerian rotation velocity out over twice the cut-off radius. An examination of circular orbit stability suggests that galaxies with flat or rising rotation velocities are more stable than those with declining rotation velocities especially in the region near the galactic edge. Our results demonstrate the fact that Newtonian dynamics can be adequate for describing the observed rotation behavior of mature spiral galaxies.

  11. Galactic Angular Momentum in Cosmological Zoom-in Simulations. I. Disk and Bulge Components and the Galaxy-Halo Connection

    Science.gov (United States)

    Sokołowska, Aleksandra; Capelo, Pedro R.; Fall, S. Michael; Mayer, Lucio; Shen, Sijing; Bonoli, Silvia

    2017-02-01

    We investigate the angular momentum evolution of four disk galaxies residing in Milky-Way-sized halos formed in cosmological zoom-in simulations with various sub-grid physics and merging histories. We decompose these galaxies, kinematically and photometrically, into their disk and bulge components. The simulated galaxies and their components lie on the observed sequences in the j *-M * diagram, relating the specific angular momentum and mass of the stellar component. We find that galaxies in low-density environments follow the relation {j}* \\propto {M}* α past major mergers, with α ˜ 0.6 in the case of strong feedback, when bulge-to-disk ratios are relatively constant, and α ˜ 1.4 in the other cases, when secular processes operate on shorter timescales. We compute the retention factors (I.e., the ratio of the specific angular momenta of stars and dark matter) for both disks and bulges and show that they vary relatively slowly after averaging over numerous but brief fluctuations. For disks, the retention factors are usually close to unity, while for bulges, they are a few times smaller. Our simulations therefore indicate that galaxies and their halos grow in a quasi-homologous way.

  12. THE AGORA HIGH-RESOLUTION GALAXY SIMULATIONS COMPARISON PROJECT. II. ISOLATED DISK TEST

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-hoon [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Agertz, Oscar [Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH (United Kingdom); Teyssier, Romain; Feldmann, Robert [Centre for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zurich, Zurich, 8057 (Switzerland); Butler, Michael J. [Max-Planck-Institut für Astronomie, D-69117 Heidelberg (Germany); Ceverino, Daniel [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, D-69120 Heidelberg (Germany); Choi, Jun-Hwan [Department of Astronomy, University of Texas, Austin, TX 78712 (United States); Keller, Ben W. [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada); Lupi, Alessandro [Institut d’Astrophysique de Paris, Sorbonne Universites, UPMC Univ Paris 6 et CNRS, F-75014 Paris (France); Quinn, Thomas; Wallace, Spencer [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Revaz, Yves [Institute of Physics, Laboratoire d’Astrophysique, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Gnedin, Nickolay Y. [Particle Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Leitner, Samuel N. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Shen, Sijing [Kavli Institute for Cosmology, University of Cambridge, Cambridge, CB3 0HA (United Kingdom); Smith, Britton D., E-mail: me@jihoonkim.org [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Collaboration: AGORA Collaboration; and others

    2016-12-20

    Using an isolated Milky Way-mass galaxy simulation, we compare results from nine state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, we find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt–Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly formed stellar clump mass functions show more significant variation (difference by up to a factor of ∼3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low-density region, and between more diffusive and less diffusive schemes in the high-density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.

  13. Sporadic mass loss, spin-down, and element redistribution in young disk galaxies

    International Nuclear Information System (INIS)

    Charlton, J.C.; Salpeter, E.E.

    1989-01-01

    Violent conditions in young spiral disks may be conducive to the high-velocity ejection of large blobs of material powered by the concerted action of supernovae. Using explicit numerical Monte Carlo models, treating ejected bobs as galactic cannonballs traveling with little interaction through the corona, several important consequences for galactic evolution are found. Preferential escape from the galaxy or objects with high specific angular momenta lead to a significant spin-down of the disk. In addition, this process may contribute to the production of an exponential column density distribution, and a metallicity gradient. The models predict a reversal in the sign of the metallicity gradient at large radii because the metal-rich objects that return to such a low column density region suffer relatively little dilution. 39 refs

  14. Computer experiments on the effect of retrograde stars in disk galaxies

    International Nuclear Information System (INIS)

    Zang, T.A.; Hohl, F.

    1978-01-01

    Using large-scale N-body calculations for flat disk galaxies, we examine the effect of reversing the angular momentum for various fractions of the stars upon the global bar-forming mode. The initial conditions for these simulations are based on stationary states of two classes of models: the isochrones studied recently by Kalnajs by means of linear theory, and a model resembling the Schmidt model of our own Galaxy. In both cases, as the fraction of retrograde stars is increased, the growth of the bar-forming mode is inhibited (although not eliminated). These N-body results for the isochrones agree with the predictions of linear theory, quantitatively as well as qualitatively

  15. HYDRODYNAMICS OF HIGH-REDSHIFT GALAXY COLLISIONS: FROM GAS-RICH DISKS TO DISPERSION-DOMINATED MERGERS AND COMPACT SPHEROIDS

    International Nuclear Information System (INIS)

    Bournaud, Frederic; Chapon, Damien; Teyssier, Romain; Powell, Leila C.; Duc, Pierre-Alain; Elmegreen, Bruce G.; Elmegreen, Debra Meloy; Contini, Thierry; Epinat, Benoit; Shapiro, Kristen L.

    2011-01-01

    Disk galaxies at high redshift (z ∼ 2) are characterized by high fractions of cold gas, strong turbulence, and giant star-forming clumps. Major mergers of disk galaxies at high redshift should then generally involve such turbulent clumpy disks. Merger simulations, however, model the interstellar medium as a stable, homogeneous, and thermally pressurized medium. We present the first merger simulations with high fractions of cold, turbulent, and clumpy gas. We discuss the major new features of these models compared to models where the gas is artificially stabilized and warmed. Gas turbulence, which is already strong in high-redshift disks, is further enhanced in mergers. Some phases are dispersion dominated, with most of the gas kinetic energy in the form of velocity dispersion and very chaotic velocity fields, unlike merger models using a thermally stabilized gas. These mergers can reach very high star formation rates, and have multi-component gas spectra consistent with SubMillimeter Galaxies. Major mergers with high fractions of cold turbulent gas are also characterized by highly dissipative gas collapse to the center of mass, with the stellar component following in a global contraction. The final galaxies are early type with relatively small radii and high Sersic indices, like high-redshift compact spheroids. The mass fraction in a disk component that survives or re-forms after a merger is severely reduced compared to models with stabilized gas, and the formation of a massive disk component would require significant accretion of external baryons afterwards. Mergers thus appear to destroy extended disks even when the gas fraction is high, and this lends further support to smooth infall as the main formation mechanism for massive disk galaxies.

  16. A fluid dynamical flow model for the central peak in the rotation curve of disk galaxies

    International Nuclear Information System (INIS)

    Bhattacharyya, T.; Basu, B.

    1980-01-01

    The rotation curve of the central region in some disk galaxies shows a linear rise, terminating at a peak (primary peak) which is then vollowed by a deep minimum. The curve then again rises to another peak at more or less half-way across the galactic radius. This latter peak is considered as the peak of the rotation curve in all large-scale analysis of galactic structure. The primary peak is usually ignored for the purpose. In this work an attempt has been made to look at the primary peak as the manifestation of the post-explosion flow pattern of gas in the deep central region of galaxies. Solving hydrodynamical equations of motion, a flow model has been derived which imitates very closely the actually observed linear rotational velocity, followed by the falling branch of the curve to minimum. The theoretical flow model has been compared with observed results for nine galaxies. The agreement obtained is extremely encouraging. The distance of the primary peak from the galactic centre has been shown to be correlated with the angular velocity in the linear part of the rotation curve. Here also, agreement is very good between theoretical and observed results. It is concluded that the distance of the primary peak from the centre not only speaks of the time that has elapsed since the explosion occurred in the nucleus, it also speaks of the potential capability of the nucleus of the galaxy for repeating explosions through some efficient process of mass replenishment at the core. (orig.)

  17. DETECTION OF OUTFLOWING AND EXTRAPLANAR GAS IN DISKS IN AN ASSEMBLING GALAXY CLUSTER AT z = 0.37

    International Nuclear Information System (INIS)

    Freeland, Emily; Tran, Kim-Vy H.; Irwin, Trevor; Giordano, Lea; Saintonge, Amélie; Gonzalez, Anthony H.; Zaritsky, Dennis; Just, Dennis

    2011-01-01

    We detect ionized gas characteristics indicative of winds in three disk-dominated galaxies that are members of a super-group at z = 0.37 that will merge to form a Coma-mass cluster. All three galaxies are IR luminous (L IR > 4 × 10 10 L ☉ , SFR > 8 M ☉ yr –1 ) and lie outside the X-ray cores of the galaxy groups. We find that the most IR-luminous galaxy has strong blueshifted and redshifted emission lines with velocities of ∼ ± 200 km s –1 and a third, blueshifted (∼900 km s –1 ) component. This galaxy's line widths (Hβ, [O III]λ5007, [N II], Hα) correspond to velocities of 100-1000 km s –1 . We detect extraplanar gas in two of the three galaxies with SFR >8 M ☉ yr –1 whose orientations are approximately edge-on and which have integral field unit (IFU) spaxels off the stellar disk. IFU maps reveal that the extraplanar gas extends to r h ∼ 10 kpc; [N II] and Hα line widths correspond to velocities of ∼200-400 km s –1 in the disk and decrease to ∼50-150 km s –1 above the disk. Multi-wavelength observations indicate that the emission is dominated by star formation. Including the most IR-luminous galaxy we find that 18% of supergroup members with SFR >8 M ☉ yr –1 show ionized gas characteristics indicative of outflows. This is a lower limit as showing that gas is outflowing in the remaining, moderately inclined, galaxies requires a non-trivial decoupling of contributions to the emission lines from rotational and turbulent motion. Ionized gas mass loss in these winds is ∼0.1 M ☉ yr –1 for each galaxy, although the winds are likely to entrain significantly larger amounts of mass in neutral and molecular gases.

  18. No more active galactic nuclei in clumpy disks than in smooth galaxies at z ∼ 2 in CANDELS/3D-HST

    Energy Technology Data Exchange (ETDEWEB)

    Trump, Jonathan R.; Luo, Bin; Brandt, W. N. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Barro, Guillermo; Guo, Yicheng; Koo, David C.; Faber, S. M. [University of California Observatories/Lick Observatory and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Juneau, Stéphanie [Irfu/Service d' Astrophysique, CEA-Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Weiner, Benjamin J. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Brammer, Gabriel B.; Ferguson, Henry C.; Grogin, Norman A.; Kartaltepe, Jeyhan; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Dekel, Avishai [Center for Astrophysics and Planetary Science, Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Hopkins, Philip F. [California Institute of Technology, MC 105-24, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Kocevski, Dale D. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States); McIntosh, Daniel H. [Department of Physics and Astronomy, University of Missouri-Kansas City, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Momcheva, Ivelina [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); and others

    2014-10-01

    We use CANDELS imaging, 3D-HST spectroscopy, and Chandra X-ray data to investigate if active galactic nuclei (AGNs) are preferentially fueled by violent disk instabilities funneling gas into galaxy centers at 1.3 < z < 2.4. We select galaxies undergoing gravitational instabilities using the number of clumps and degree of patchiness as proxies. The CANDELS visual classification system is used to identify 44 clumpy disk galaxies, along with mass-matched comparison samples of smooth and intermediate morphology galaxies. We note that despite being mass-matched and having similar star formation rates, the smoother galaxies tend to be smaller disks with more prominent bulges compared to the clumpy galaxies. The lack of smooth extended disks is probably a general feature of the z ∼ 2 galaxy population, and means we cannot directly compare with the clumpy and smooth extended disks observed at lower redshift. We find that z ∼ 2 clumpy galaxies have slightly enhanced AGN fractions selected by integrated line ratios (in the mass-excitation method), but the spatially resolved line ratios indicate this is likely due to extended phenomena rather than nuclear AGNs. Meanwhile, the X-ray data show that clumpy, smooth, and intermediate galaxies have nearly indistinguishable AGN fractions derived from both individual detections and stacked non-detections. The data demonstrate that AGN fueling modes at z ∼ 1.85—whether violent disk instabilities or secular processes—are as efficient in smooth galaxies as they are in clumpy galaxies.

  19. How does the Mass Transport in Disk Galaxy Models Influence the Character of Orbits?

    Directory of Open Access Journals (Sweden)

    Zotos Euaggelos E.

    2014-12-01

    Full Text Available We explore the regular or chaotic nature of orbits of stars moving in the meridional (R, z plane of an axially symmetric time-dependent disk galaxy model with a central, spherically symmetric nucleus. In particular, mass is linearly transported from the disk to the galactic nucleus, in order to mimic, in a way, the case of self-consistent interactions of an actual N-body simulation. We thus try to unveil the influence of this mass transportation on the different families of orbits of stars by monitoring how the percentage of chaotic orbits, as well as the percentages of orbits of the main regular resonant families, evolve as the galaxy develops a dense and massive nucleus in its core. The SALI method is applied to samples of orbits in order to distinguish safely between ordered and chaotic motion. In addition, a method based on the concept of spectral dynamics is used for identifying the various families of regular orbits and also for recognizing the secondary resonances that bifurcate from them. Our computations strongly suggest that the amount of the observed chaos is substantially increased as the nucleus becomes more massive. Furthermore, extensive numerical calculations indicate that there are orbits which change their nature from regular to chaotic and vice versa and also orbits which maintain their orbital character during the galactic evolution. The present outcomes are compared to earlier related work.

  20. Stochastic self-propagating star formation in three-dimensional disk galaxy simulations

    International Nuclear Information System (INIS)

    Statler, T.; Comins, N.; Smith, B.F.

    1983-01-01

    Stochastic self-propagating star formation (SSPSF) is a process of forming new stars through the compression of the interstellar medium by supernova shock waves. Coupling this activity with galactic differential rotation produces spiral structure in two-dimensional disk galaxy simulations. In this paper the first results of a three-dimensional SSPSF simulation of disk galaxies are reported. Our model generates less impressive spirals than do the two-dimensional simulations. Although some spirals do appear in equilibrium, more frequently we observe spirals as non-equilibrium states of the models: as the spiral arms evolve, they widen until the spiral structure is no longer discernible. The two free parameters that we vary in this study are the probability of star formation due to a recent, nearby explosion, and the relaxation time for the interstellar medium to return to a condition of maximum star formation after it has been cleared out by an explosion and subsequent star formation. We find that equilibrium spiral structure is formed over a much smaller range of these parameters in our three-dimensional SSPSF models than in similar two-dimensional models. We discuss possible reasons for these results as well as improvements on the model which are being explored

  1. CONNECTION BETWEEN THE ACCRETION DISK AND JET IN THE RADIO GALAXY 3C 111

    International Nuclear Information System (INIS)

    Chatterjee, Ritaban; Marscher, Alan P.; Jorstad, Svetlana G.; Harrison, Brandon; Agudo, Ivan; Taylor, Brian W.; Markowitz, Alex; Rivers, Elizabeth; Rothschild, Richard E.; McHardy, Ian M.; Aller, Margo F.; Aller, Hugh D.; Laehteenmaeki, Anne; Tornikoski, Merja; Gomez, Jose L.; Gurwell, Mark

    2011-01-01

    We present the results of extensive multi-frequency monitoring of the radio galaxy 3C 111 between 2004 and 2010 at X-ray (2.4-10 keV), optical (R band), and radio (14.5, 37, and 230 GHz) wave bands, as well as multi-epoch imaging with the Very Long Baseline Array (VLBA) at 43 GHz. Over the six years of observation, significant dips in the X-ray light curve are followed by ejections of bright superluminal knots in the VLBA images. This shows a clear connection between the radiative state near the black hole, where the X-rays are produced, and events in the jet. The X-ray continuum flux and Fe line intensity are strongly correlated, with a time lag shorter than 90 days and consistent with zero. This implies that the Fe line is generated within 90 lt-day of the source of the X-ray continuum. The power spectral density function of X-ray variations contains a break, with a steeper slope at shorter timescales. The break timescale of 13 +12 -6 days is commensurate with scaling according to the mass of the central black hole based on observations of Seyfert galaxies and black hole X-ray binaries (BHXRBs). The data are consistent with the standard paradigm, in which the X-rays are predominantly produced by inverse Compton scattering of thermal optical/UV seed photons from the accretion disk by a distribution of hot electrons-the corona-situated near the disk. Most of the optical emission is generated in the accretion disk due to reprocessing of the X-ray emission. The relationships that we have uncovered between the accretion disk and the jet in 3C 111, as well as in the Fanaroff-Riley class I radio galaxy 3C 120 in a previous paper, support the paradigm that active galactic nuclei and Galactic BHXRBs are fundamentally similar, with characteristic time and size scales proportional to the mass of the central black hole.

  2. Indications of M-Dwarf Deficits in the Halo and Thick Disk of the Galaxy

    Science.gov (United States)

    Konishi, Mihoko; Shibai, Hiroshi; Sumi, Takahiro; Fukagawa, Misato; Matsuo, Taro; Samland, Matthias S.; Yamamoto, Kodai; Sudo, Jun; Itoh, Yoichi; Arimoto, Nobuo; hide

    2014-01-01

    We compared the number of faint stars detected in deep survey fields with the current stellar distribution model of the Galaxy and found that the detected number in the H band is significantly smaller than the predicted number. This indicates that M-dwarfs, the major component, are fewer in the halo and the thick disk. We used archived data of several surveys in both the north and south field of GOODS (Great Observatories Origins Deep Survey), MODS in GOODS-N, and ERS and CANDELS in GOODS-S. The number density of M-dwarfs in the halo has to be 20+/-13% relative to that in the solar vicinity, in order for the detected number of stars fainter than 20.5 mag in the H band to match with the predicted value from the model. In the thick disk, the number density of M-dwarfs must be reduced (52+/-13%) or the scale height must be decreased ( approx. 600 pc). Alternatively, overall fractions of the halo and thick disks can be significantly reduced to achieve the same effect, because our sample mainly consists of faint M-dwarfs. Our results imply that the M-dwarf population in regions distant from the Galactic plane is significantly smaller than previously thought. We then discussed the implications this has on the suitability of the model predictions for the prediction of non-companion faint stars in direct imaging extrasolar planet surveys by using the best-fit number densities.

  3. METALLICITY AND AGE OF THE STELLAR STREAM AROUND THE DISK GALAXY NGC 5907

    Energy Technology Data Exchange (ETDEWEB)

    Laine, Seppo; Grillmair, Carl J.; Capak, Peter [Spitzer Science Center-Caltech, MS 314-6, Pasadena, CA 91125 (United States); Arendt, Richard G. [CRESST/UMBC/NASA GSFC, Code 665, Greenbelt, MD 20771 (United States); Romanowsky, Aaron J. [Department of Physics and Astronomy, San José State University, One Washington Square, San Jose, CA 95192 (United States); Martínez-Delgado, David [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Ashby, Matthew L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Davies, James E. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Majewski, Stephen R. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Brodie, Jean P.; Arnold, Jacob A. [University of California Observatories and Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); GaBany, R. Jay, E-mail: seppo@ipac.caltech.edu [Black Bird Observatory, 5660 Brionne Drive, San Jose, CA 95118 (United States)

    2016-09-01

    Stellar streams have become central to studies of the interaction histories of nearby galaxies. To characterize the most prominent parts of the stellar stream around the well-known nearby ( d  = 17 Mpc) edge-on disk galaxy NGC 5907, we have obtained and analyzed new, deep gri Subaru/Suprime-Cam and 3.6 μ m Spitzer /Infrared Array Camera observations. Combining the near-infrared 3.6 μ m data with visible-light images allows us to use a long wavelength baseline to estimate the metallicity and age of the stellar population along an ∼60 kpc long segment of the stream. We have fitted the stellar spectral energy distribution with a single-burst stellar population synthesis model and we use it to distinguish between the proposed satellite accretion and minor/major merger formation models of the stellar stream around this galaxy. We conclude that a massive minor merger (stellar mass ratio of at least 1:8) can best account for the metallicity of −0.3 inferred along the brightest parts of the stream.

  4. Ab Initio Simulations of a Supernova-driven Galactic Dynamo in an Isolated Disk Galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Butsky, Iryna [Astronomy Department, University of Washington, Seattle, WA 98195 (United States); Zrake, Jonathan; Kim, Ji-hoon; Yang, Hung-I; Abel, Tom [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Menlo Park, CA 94025 (United States)

    2017-07-10

    We study the magnetic field evolution of an isolated spiral galaxy, using isolated Milky Way–mass galaxy formation simulations and a novel prescription for magnetohydrodynamic (MHD) supernova feedback. Our main result is that a galactic dynamo can be seeded and driven by supernova explosions, resulting in magnetic fields whose strength and morphology are consistent with observations. In our model, supernovae supply thermal energy and a low-level magnetic field along with their ejecta. The thermal expansion drives turbulence, which serves a dual role by efficiently mixing the magnetic field into the interstellar medium and amplifying it by means of a turbulent dynamo. The computational prescription for MHD supernova feedback has been implemented within the publicly available ENZO code and is fully described in this paper. This improves upon ENZO 's existing modules for hydrodynamic feedback from stars and active galaxies. We find that the field attains microgauss levels over gigayear timescales throughout the disk. The field also develops a large-scale structure, which appears to be correlated with the disk’s spiral arm density structure. We find that seeding of the galactic dynamo by supernova ejecta predicts a persistent correlation between gas metallicity and magnetic field strength. We also generate all-sky maps of the Faraday rotation measure from the simulation-predicted magnetic field, and we present a direct comparison with observations.

  5. Hidden Imprints of Minor Merging in Early-Type Galaxies: Inner Polar Rings and Inclined Large-Scale Gaseous Disks In S0s

    Directory of Open Access Journals (Sweden)

    Olga Sil’chenko

    2015-12-01

    Full Text Available I discuss my latest observational data and ideas about decoupled gaseous subsystems in nearby lenticular galaxies. As an extreme case of inclined gaseous disks, I demonstrate a sample of inner polar disks, derive their incidence, about 10% among the volume-limited nearby S0 galaxies, and discuss their origin. However, large-scale decoupled gaseous disks at intermediate inclinations are also a rather common phenomenon among the field S0 galaxies. I suggest that the geometry of outer gas accretion and the final morphology of the galaxy may be tightly related: inclined gas infall may prevent star formation in the accreted disk and force the disk galaxy to be a lenticular.

  6. The Most Ancient Spiral Galaxy: A 2.6-Gyr-old Disk with a Tranquil Velocity Field

    Science.gov (United States)

    Yuan, Tiantian; Richard, Johan; Gupta, Anshu; Federrath, Christoph; Sharma, Soniya; Groves, Brent A.; Kewley, Lisa J.; Cen, Renyue; Birnboim, Yuval; Fisher, David B.

    2017-11-01

    We report an integral-field spectroscopic (IFS) observation of a gravitationally lensed spiral galaxy A1689B11 at redshift z = 2.54. It is the most ancient spiral galaxy discovered to date and the second kinematically confirmed spiral at z≳ 2. Thanks to gravitational lensing, this is also by far the deepest IFS observation with the highest spatial resolution (˜400 pc) on a spiral galaxy at a cosmic time when the Hubble sequence is about to emerge. After correcting for a lensing magnification of 7.2 ± 0.8, this primitive spiral disk has an intrinsic star formation rate of 22 ± 2 M ⊙ yr-1, a stellar mass of {10}9.8+/- 0.3 M ⊙, and a half-light radius of {r}1/2=2.6+/- 0.7 {kpc}, typical of a main-sequence star-forming galaxy at z˜ 2. However, the Hα kinematics show a surprisingly tranquil velocity field with an ordered rotation ({V}{{c}}=200+/- 12 km s-1) and uniformly small velocity dispersions ({V}σ ,{mean}=23 +/- 4 km s-1 and {V}σ ,{outer - {disk}}=15+/- 2 km s-1). The low gas velocity dispersion is similar to local spiral galaxies and is consistent with the classic density wave theory where spiral arms form in dynamically cold and thin disks. We speculate that A1689B11 belongs to a population of rare spiral galaxies at z≳ 2 that mark the formation epoch of thin disks. Future observations with the James Webb Space Telescope will greatly increase the sample of these rare galaxies and unveil the earliest onset of spiral arms.

  7. The Interaction of Hot and Cold Gas in the Disk and Halo of Galaxies

    Science.gov (United States)

    Slavin, Jonathan; Salamon, Michael (Technical Monitor)

    2004-01-01

    Most of the thermal energy in the Galaxy and perhaps most of the baryons in the Universe are found in hot (log T approximately 5.5 - 7) gas. Hot gas is detected in the local interstellar medium, in supernova remnants (SNR), the Galactic halo, galaxy clusters and the intergalactic medium (IGM). In our own Galaxy, hot gas exists in large superbubbles up to several hundred pc in diameter that locally dominate the interstellar medium (ISM) and determine its thermal and dynamic evolution. While X-ray observations using ROSAT, Chandra and XMM have allowed us to make dramatic progress in mapping out the morphology of the hot gas and in understanding some of its spectral characteristics, there remain fundamental questions that are unanswered. Chief among these questions is the way that hot gas interacts with cooler phase gas and the effects these interactions have on hot gas energetics. The theoretical investigations we proposed in this grant aim to explore these interactions and to develop observational diagnostics that will allow us to gain much improved information on the evolution of hot gas in the disk and halo of galaxies. The first of the series of investigations that we proposed was a thorough exploration of turbulent mixing layers and cloud evaporation. We proposed to employ a multi-dimensional hydrodynamical code that includes non-equilibrium ionization (NEI), radiative cooling and thermal conduction. These models are to be applied to high velocity clouds in our galactic halo that are seen to have O VI by FUSE (Sembach et ai. 2000) and other clouds for which sufficient constraining observations exist.

  8. A test of star formation laws in disk galaxies. II. Dependence on dynamical properties

    International Nuclear Information System (INIS)

    Suwannajak, Chutipong; Tan, Jonathan C.; Leroy, Adam K.

    2014-01-01

    We use the observed radial profiles of the mass surface densities of total, Σ g , and molecular, Σ H2 , gas, rotation velocity, and star formation rate (SFR) surface density, Σ sfr , of the molecular-rich (Σ H2 ≥ Σ HI /2) regions of 16 nearby disk galaxies to test several star formation (SF) laws: a 'Kennicutt-Schmidt (K-S)' law, Σ sfr =A g Σ g,2 1.5 ; a 'Constant Molecular' law, Σ sfr = A H2 Σ H2,2 ; the turbulence-regulated laws of Krumholz and McKee (KM05) and Krumholz, McKee, and Tumlinson (KMT09); a 'Gas-Ω' law, Σ sfr =B Ω Σ g Ω; and a shear-driven 'giant molecular cloud (GMC) Collision' law, Σ sfr = B CC Σ g Ω(1-0.7β), where β ≡ d ln v circ /d ln r. If allowed one free normalization parameter for each galaxy, these laws predict the SFR with rms errors of factors of 1.4-1.8. If a single normalization parameter is used by each law for the entire galaxy sample, then rms errors range from factors of 1.5-2.1. Although the Constant Molecular law gives the smallest rms errors, the improvement over the KMT, K-S, and GMC Collision laws is not especially significant, particularly given the different observational inputs that the laws utilize and the scope of included physics, which ranges from empirical relations to detailed treatment of interstellar medium processes. We next search for systematic variation of SF law parameters with local and global galactic dynamical properties of disk shear rate (related to β), rotation speed, and presence of a bar. We demonstrate with high significance that higher shear rates enhance SF efficiency per local orbital time. Such a trend is expected if GMC collisions play an important role in SF, while an opposite trend would be expected if the development of disk gravitational instabilities is the controlling physics.

  9. The origin of the mass, disk-to-halo mass ratio, and L-V relation of spiral galaxies

    International Nuclear Information System (INIS)

    Ashman, K.M.

    1990-01-01

    A model is presented in which spiral galaxies only form when t(c) is roughly equal to t(f) in a hot component of the protogalactic gas. This assumption, along with a disk stability criterion, predicts a range of spiral galaxy masses roughly consistent with observation. The nature of the cooling function for a primordial plasma implies that in less massive galaxies, more gas must fragment in the halo to preserve t(c) roughly equal to t(f). Consequently, less gas survives to form the disk, so that the disk-to-halo mass ratio increases with disk mass and hence galaxy luminosity. The canonical L proportional to V exp 4 relation can be reproduced by the model, and the apparent change in the slope of this relation also arises naturally. In the hierarchical clustering scenario, the model requires that all spirals formed at about the same epoch. These results support earlier claims that much of the dark matter observed in the universe is baryonic and probably formed during protogalactic collapse. 38 refs

  10. Photoionization of disk galaxies: An explanation of the sharp edges in the H I distribution

    Science.gov (United States)

    Dove, James B.; Shull, J. Michael

    1994-01-01

    We have reproduced the observed radial truncation of the H I distribution in isolated spiral galaxies with a model in which extragalactic radiation photoionizes the gaseous disk. For a galactic mass distribution model that reproduces the observed rotation curves, including dark matter in the disk and halo, the vertical structure of the gas is determined self-consistently. The ionization structure and column densities of H and He ions are computed by solving the radiation transfer equation for both continuum and lines. Our model is similar to that of Maloney, and the H I structure differs by less than 10%. The radial structure of the column density of H I is found to be more sensitive to the extragalactic radiation field than to the distribution of mass. For this reason, considerable progress can be made in determining the extragalactic flux of ionizing photons, phi(sub ex), with more 21 cm observations of isolated galaxies. However, owing to the uncertainty of the radial distribution of total hydrogen at large radii, inferring the extragalactic flux by comparing the observed edges to photoionization models is somewhat subjective. We find 1 x 10(exp 4)/sq cm/s is less than or approximately phi(sub ex) is less than or approximately 5 x 10(exp 4)/sq cm/s, corresponding to 2.1 is less than or approximately iota(sub 0) is less than or approximately 10.5 x 10(exp -23) ergs/sq cm/s/Hz/sr for a 1/nu spectrum. Although somewhat higher, our inferred range of iota(sub 0) is consistent with the large range of values obtained by Kulkarni & Fall from the 'proximity effect' toward Quasi-Stellar Objects (QSOs) at approximately 0.5.

  11. The Mass-dependent Star Formation Histories of Disk Galaxies: Infall Model Versus Observations

    Science.gov (United States)

    Chang, R. X.; Hou, J. L.; Shen, S. Y.; Shu, C. G.

    2010-10-01

    We introduce a simple model to explore the star formation histories of disk galaxies. We assume that the disk originate and grows by continuous gas infall. The gas infall rate is parameterized by the Gaussian formula with one free parameter: the infall-peak time tp . The Kennicutt star formation law is adopted to describe how much cold gas turns into stars. The gas outflow process is also considered in our model. We find that, at a given galactic stellar mass M *, the model adopting a late infall-peak time tp results in blue colors, low-metallicity, high specific star formation rate (SFR), and high gas fraction, while the gas outflow rate mainly influences the gas-phase metallicity and star formation efficiency mainly influences the gas fraction. Motivated by the local observed scaling relations, we "construct" a mass-dependent model by assuming that the low-mass galaxy has a later infall-peak time tp and a larger gas outflow rate than massive systems. It is shown that this model can be in agreement with not only the local observations, but also with the observed correlations between specific SFR and galactic stellar mass SFR/M * ~ M * at intermediate redshifts z < 1. Comparison between the Gaussian-infall model and the exponential-infall model is also presented. It shows that the exponential-infall model predicts a higher SFR at early stage and a lower SFR later than that of Gaussian infall. Our results suggest that the Gaussian infall rate may be more reasonable in describing the gas cooling process than the exponential infall rate, especially for low-mass systems.

  12. THE ADVANCED CAMERA FOR SURVEYS NEARBY GALAXY SURVEY TREASURY. VI. THE ANCIENT STAR-FORMING DISK OF NGC 404

    International Nuclear Information System (INIS)

    Williams, Benjamin F.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Stilp, Adrienne; Dolphin, Andrew; Seth, Anil C.; Weisz, Daniel; Skillman, Evan

    2010-01-01

    We present HST/WFPC2 observations across the disk of the nearby isolated dwarf S0 galaxy NGC 404, which hosts an extended gas disk. The locations of our fields contain a roughly equal mixture of bulge and disk stars. All of our resolved stellar photometry reaches m F814W = 26 (M F814W = -1.4), which covers 2.5 mag of the red giant branch and main-sequence stars with ages F814W = 27.2 (M F814W = -0.2), sufficient to resolve the red clump and main-sequence stars with ages 10 Gyr) population. Detailed modeling of the color-magnitude diagram suggests that ∼70% of the stellar mass in the NGC 404 disk formed by z ∼ 2 (10 Gyr ago) and at least ∼90% formed prior to z ∼ 1 (8 Gyr ago). These results indicate that the stellar populations of the NGC 404 disk are on average significantly older than those of other nearby disk galaxies, suggesting that early- and late-type disks may have different long-term evolutionary histories, not simply differences in their recent star formation rates. Comparisons of the spatial distribution of the young stellar mass and FUV emission in Galaxy Evolution Explorer images show that the brightest FUV regions contain the youngest stars, but that some young stars (<160 Myr) lie outside of these regions. FUV luminosity appears to be strongly affected by both age and stellar mass within individual regions. Finally, we use our measurements to infer the relationship between the star formation rate and the gas density of the disk at previous epochs. We find that most of the history of the NGC 404 disk is consistent with star formation that has decreased with the gas density according to the Schmidt law. However, ∼ 0.5-1 Gyr ago, the star formation rate was unusually low for the inferred gas density, consistent with the possibility that there was a gas accretion event that reignited star formation ∼0.5 Gyr ago. Such an event could explain why this S0 galaxy hosts an extended gas disk.

  13. NEBULAR AND STELLAR DUST EXTINCTION ACROSS THE DISK OF EMISSION-LINE GALAXIES ON KILOPARSEC SCALES

    Energy Technology Data Exchange (ETDEWEB)

    Hemmati, Shoubaneh; Mobasher, Bahram; Darvish, Behnam [University of California, Riverside, CA 92512 (United States); Nayyeri, Hooshang; Miller, Sarah [University of California, Irvine, CA 92697 (United States); Sobral, David, E-mail: shemm001@ucr.edu [Universidade de Lisboa, PT1349-018 Lisbon (Portugal)

    2015-11-20

    We investigate the resolved kiloparsec-scale stellar and nebular dust distribution in eight star-forming galaxies at z ∼ 0.4 in the Great Observatories Origins Deep Survey fields. This is to get a better understanding of the effect of dust attenuation on measurements of physical properties and its variation with redshift. Constructing the observed spectral energy distributions (SEDs) per pixel, based on seven bands of photometric data from Hubble Space Telescope/Advanced Camera for Surveys and WFC3, we performed pixel-by-pixel SED fits to population synthesis models and estimated the small-scale distribution of stellar dust extinction. We use Hα/Hβ nebular emission line ratios from Keck/DEIMOS high-resolution spectra at each spatial resolution element to measure the amount of attenuation faced by ionized gas at different radii from the centers of galaxies. We find a good agreement between the integrated and median of resolved color excess measurements in our galaxies. The ratio of integrated nebular to stellar dust extinction is always greater than unity, but does not show any trend with stellar mass or star formation rate (SFR). We find that inclination plays an important role in the variation of the nebular to stellar excess ratio. The stellar color excess profiles are found to have higher values at the center compared to outer parts of the disk. However, for lower mass galaxies, a similar trend is not found for the nebular color excess. We find that the nebular color excess increases with stellar mass surface density. This explains the absence of radial trend in the nebular color excess in lower mass galaxies which lack a large radial variation of stellar mass surface density. Using standard conversions of SFR surface density to gas mass surface density, and the relation between dust mass surface density and color excess, we find no significant variation in the dust-to-gas ratio in regions with high gas mass surface densities over the scales probed in this

  14. STAR FORMATION IN DISK GALAXIES. III. DOES STELLAR FEEDBACK RESULT IN CLOUD DEATH?

    Energy Technology Data Exchange (ETDEWEB)

    Tasker, Elizabeth J.; Wadsley, James; Pudritz, Ralph [Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada)

    2015-03-01

    Stellar feedback, star formation, and gravitational interactions are major controlling forces in the evolution of giant molecular clouds (GMCs). To explore their relative roles, we examine the properties and evolution of GMCs forming in an isolated galactic disk simulation that includes both localized thermal feedback and photoelectric heating. The results are compared with the three previous simulations in this series, which consists of a model with no star formation, star formation but no form of feedback, and star formation with photoelectric heating in a set with steadily increasing physical effects. We find that the addition of localized thermal feedback greatly suppresses star formation but does not destroy the surrounding GMC, giving cloud properties closely resembling the run in which no stellar physics is included. The outflows from the feedback reduce the mass of the cloud but do not destroy it, allowing the cloud to survive its stellar children. This suggests that weak thermal feedback such as the lower bound expected for a supernova may play a relatively minor role in the galactic structure of quiescent Milky-Way-type galaxies, compared to gravitational interactions and disk shear.

  15. STAR FORMATION IN DISK GALAXIES. III. DOES STELLAR FEEDBACK RESULT IN CLOUD DEATH?

    International Nuclear Information System (INIS)

    Tasker, Elizabeth J.; Wadsley, James; Pudritz, Ralph

    2015-01-01

    Stellar feedback, star formation, and gravitational interactions are major controlling forces in the evolution of giant molecular clouds (GMCs). To explore their relative roles, we examine the properties and evolution of GMCs forming in an isolated galactic disk simulation that includes both localized thermal feedback and photoelectric heating. The results are compared with the three previous simulations in this series, which consists of a model with no star formation, star formation but no form of feedback, and star formation with photoelectric heating in a set with steadily increasing physical effects. We find that the addition of localized thermal feedback greatly suppresses star formation but does not destroy the surrounding GMC, giving cloud properties closely resembling the run in which no stellar physics is included. The outflows from the feedback reduce the mass of the cloud but do not destroy it, allowing the cloud to survive its stellar children. This suggests that weak thermal feedback such as the lower bound expected for a supernova may play a relatively minor role in the galactic structure of quiescent Milky-Way-type galaxies, compared to gravitational interactions and disk shear

  16. THE MEGAMASER COSMOLOGY PROJECT. III. ACCURATE MASSES OF SEVEN SUPERMASSIVE BLACK HOLES IN ACTIVE GALAXIES WITH CIRCUMNUCLEAR MEGAMASER DISKS

    International Nuclear Information System (INIS)

    Kuo, C. Y.; Braatz, J. A.; Condon, J. J.; Impellizzeri, C. M. V.; Lo, K. Y.; Zaw, I.; Schenker, M.; Henkel, C.; Reid, M. J.; Greene, J. E.

    2011-01-01

    Observations of H 2 O masers from circumnuclear disks in active galaxies for the Megamaser Cosmology Project (MCP) allow accurate measurement of the mass of supermassive black holes (BH) in these galaxies. We present the Very Long Baseline Interferometry images and kinematics of water maser emission in six active galaxies: NGC 1194, NGC 2273, NGC 2960 (Mrk 1419), NGC 4388, NGC 6264 and NGC 6323. We use the Keplerian rotation curves of these six megamaser galaxies, plus a seventh previously published, to determine accurate enclosed masses within the central ∼0.3 pc of these galaxies, smaller than the radius of the sphere of influence of the central mass in all cases. We also set lower limits to the central mass densities of between 0.12 x 10 10 and 61 x 10 10 M sun pc -3 . For six of the seven disks, the high central densities rule out clusters of stars or stellar remnants as the central objects, and this result further supports our assumption that the enclosed mass can be attributed predominantly to a supermassive BH. The seven BHs have masses ranging between 0.75 x 10 7 and 6.5 x 10 7 M sun , with the mass errors dominated by the uncertainty of the Hubble constant. We compare the megamaser BH mass determination with BH mass measured from the virial estimation method. The virial estimation BH mass in four galaxies is consistent with the megamaser BH mass, but the virial mass uncertainty is much greater. Circumnuclear megamaser disks allow the best mass determination of the central BH mass in external galaxies and significantly improve the observational basis at the low-mass end of the M-σ * relation. The M-σ * relation may not be a single, low-scatter power law as originally proposed. MCP observations continue and we expect to obtain more maser BH masses in the future.

  17. Collisionless plasmas in astrophysics

    CERN Document Server

    Belmont, Gerard; Mottez, Fabrice; Pantellini, Filippo; Pelletier, Guy

    2013-01-01

    Collisionless Plasmas in Astrophysics examines the unique properties of media without collisions in plasma physics. Experts in this field, the authors present the first book to concentrate on collisionless conditions in plasmas, whether close or not to thermal equilibrium. Filling a void in scientific literature, Collisionless Plasmas in Astrophysics explains the possibilities of modeling such plasmas, using a fluid or a kinetic framework. It also addresses common misconceptions that even professionals may possess, on phenomena such as "collisionless (Landau) damping". Abundant illustrations

  18. The DiskMass Survey. II. Error Budget

    Science.gov (United States)

    Bershady, Matthew A.; Verheijen, Marc A. W.; Westfall, Kyle B.; Andersen, David R.; Swaters, Rob A.; Martinsson, Thomas

    2010-06-01

    We present a performance analysis of the DiskMass Survey. The survey uses collisionless tracers in the form of disk stars to measure the surface density of spiral disks, to provide an absolute calibration of the stellar mass-to-light ratio (Υ_{*}), and to yield robust estimates of the dark-matter halo density profile in the inner regions of galaxies. We find that a disk inclination range of 25°-35° is optimal for our measurements, consistent with our survey design to select nearly face-on galaxies. Uncertainties in disk scale heights are significant, but can be estimated from radial scale lengths to 25% now, and more precisely in the future. We detail the spectroscopic analysis used to derive line-of-sight velocity dispersions, precise at low surface-brightness, and accurate in the presence of composite stellar populations. Our methods take full advantage of large-grasp integral-field spectroscopy and an extensive library of observed stars. We show that the baryon-to-total mass fraction ({F}_bar) is not a well-defined observational quantity because it is coupled to the halo mass model. This remains true even when the disk mass is known and spatially extended rotation curves are available. In contrast, the fraction of the rotation speed supplied by the disk at 2.2 scale lengths (disk maximality) is a robust observational indicator of the baryonic disk contribution to the potential. We construct the error budget for the key quantities: dynamical disk mass surface density (Σdyn), disk stellar mass-to-light ratio (Υ^disk_{*}), and disk maximality ({F}_{*,max}^disk≡ V^disk_{*,max}/ V_c). Random and systematic errors in these quantities for individual galaxies will be ~25%, while survey precision for sample quartiles are reduced to 10%, largely devoid of systematic errors outside of distance uncertainties.

  19. RADIAL DISTRIBUTION OF STARS, GAS, AND DUST IN SINGS GALAXIES. III. MODELING THE EVOLUTION OF THE STELLAR COMPONENT IN GALAXY DISKS

    International Nuclear Information System (INIS)

    Munoz-Mateos, J. C.; Boissier, S.; Gil de Paz, A.; Zamorano, J.; Gallego, J.; Kennicutt, R. C. Jr; Moustakas, J.; Prantzos, N.

    2011-01-01

    We analyze the evolution of 42 spiral galaxies in the Spitzer Infrared Nearby Galaxies Survey. We make use of ultraviolet (UV), optical, and near-infrared radial profiles, corrected for internal extinction using the total-infrared to UV ratio, to probe the emission of stellar populations of different ages as a function of galactocentric distance. We fit these radial profiles with models that describe the chemical and spectro-photometric evolution of spiral disks within a self-consistent framework. These backward evolutionary models successfully reproduce the multi-wavelength profiles of our galaxies, except for the UV profiles of some early-type disks for which the models seem to retain too much gas. From the model fitting we infer the maximum circular velocity of the rotation curve V C and the dimensionless spin parameter λ. The values of V C are in good agreement with the velocities measured in H I rotation curves. Even though our sample is not volume limited, the resulting distribution of λ is close to the lognormal function obtained in cosmological N-body simulations, peaking at λ ∼ 0.03 regardless of the total halo mass. We do not find any evident trend between λ and Hubble type, besides an increase in the scatter for the latest types. According to the model, galaxies evolve along a roughly constant mass-size relation, increasing their scale lengths as they become more massive. The radial scale length of most disks in our sample seems to have increased at a rate of 0.05-0.06 kpc Gyr -1 , although the same cannot be said of a volume-limited sample. In relative terms, the scale length has grown by 20%-25% since z = 1 and, unlike the former figure, we argue that this relative growth rate can be indeed representative of a complete galaxy sample.

  20. Radial Distribution of Stars, Gas, and Dust in SINGS Galaxies. III. Modeling the Evolution of the Stellar Component in Galaxy Disks

    Science.gov (United States)

    Muñoz-Mateos, J. C.; Boissier, S.; Gil de Paz, A.; Zamorano, J.; Kennicutt, R. C., Jr.; Moustakas, J.; Prantzos, N.; Gallego, J.

    2011-04-01

    We analyze the evolution of 42 spiral galaxies in the Spitzer Infrared Nearby Galaxies Survey. We make use of ultraviolet (UV), optical, and near-infrared radial profiles, corrected for internal extinction using the total-infrared to UV ratio, to probe the emission of stellar populations of different ages as a function of galactocentric distance. We fit these radial profiles with models that describe the chemical and spectro-photometric evolution of spiral disks within a self-consistent framework. These backward evolutionary models successfully reproduce the multi-wavelength profiles of our galaxies, except for the UV profiles of some early-type disks for which the models seem to retain too much gas. From the model fitting we infer the maximum circular velocity of the rotation curve V C and the dimensionless spin parameter λ. The values of V C are in good agreement with the velocities measured in H I rotation curves. Even though our sample is not volume limited, the resulting distribution of λ is close to the lognormal function obtained in cosmological N-body simulations, peaking at λ ~ 0.03 regardless of the total halo mass. We do not find any evident trend between λ and Hubble type, besides an increase in the scatter for the latest types. According to the model, galaxies evolve along a roughly constant mass-size relation, increasing their scale lengths as they become more massive. The radial scale length of most disks in our sample seems to have increased at a rate of 0.05-0.06 kpc Gyr-1, although the same cannot be said of a volume-limited sample. In relative terms, the scale length has grown by 20%-25% since z = 1 and, unlike the former figure, we argue that this relative growth rate can be indeed representative of a complete galaxy sample.

  1. Evidence for an Ionized Accretion Disk in the Seyfert 2 Galaxy NGC 1068

    Science.gov (United States)

    Colbert, E. J. M.; Weaver, K. A.; Mulchaey, J. S.; Mushotzky, R. F.

    2000-10-01

    We present results from analyses of RXTE, ASCA and BeppoSAX X-ray spectral data from the archetypal Seyfert 2 galaxy NGC 1068. Simultaneous RXTE and ASCA data (spanning 4 - 100 keV) are best fit with a power-law continuum with photon index Γ ~ 1.7 (in agreement with the canonical value for type 1 Seyferts), plus reflection from ionized matter with ξ ~ 1000. Reflection from ionized matter is significantly preferred over reflection from cold matter (Δ χ2 ≈ 50 for 320 dof). When the Fe line complex is modelled with three narrow Gaussians at 6.4, 6.7 and 6.97 keV, we find that the 6.7 keV line flux increases by a factor of ≈ 2 in four months, between the RXTE/ASCA and BeppoSAX observations. Thus we argue that the 6.7 keV line emission comes to us directly from the accretion disk, and not from the electron scattering region further out from the nucleus. We find no evidence for variability in the line fluxes at 6.4 and 6.97 keV. Although ionized accretion disks are thought to be present in NLS1 nuclei, we are only now finding evidence for them in ``broad-line'' Seyfert nuclei (type 1: 1E 1615+061 and type 2: NGC 1068, this work). We shall discuss the implications of these results on the particular geometry required in NGC 1068.

  2. Why Are Some Galaxies Not Barred?

    Science.gov (United States)

    Saha, Kanak; Elmegreen, Bruce

    2018-05-01

    Although more than two-thirds of star-forming disk galaxies in the local universe are barred, some galaxies remain unbarred, occupying the upper half of the Hubble tuning fork diagram. Numerical simulations almost always produce bars spontaneously, so it remains a challenge to understand how galaxies sometimes prevent bars from forming. Using a set of collisionless simulations, we first reproduce the common result that cold stellar disks surrounding a classical bulge become strongly unstable to non-axisymmetric perturbations, leading to the rapid formation of spiral structure and bars. However, our analyses show that galaxy models with compact classical bulges (whose average density is greater than or comparable to the disk density calculated within bulge half-mass radii) are able to prevent bar formation for at least 4 Gyr even when the stellar disk is maximal and having low Toomre Q. Such bar prevention is the result of several factors such as (a) a small inner Lindblad resonance with a high angular rate, which contaminates an incipient bar with x 2 orbits, and (b) rapid loss of angular momentum accompanied by a rapid heating in the center from initially strong bar and spiral instabilities in a low-Q disk; in other words, a rapid initial rise to a value larger than ∼5 of the ratio of the random energy to the rotational energy in the central region of the galaxy.

  3. "1"3CO/C"1"8O Gradients across the Disks of Nearby Spiral Galaxies

    International Nuclear Information System (INIS)

    Jiménez-Donaire, María J.; Cormier, Diane; Bigiel, Frank; Leroy, Adam K.; Gallagher, Molly; Krumholz, Mark R.; Usero, Antonio; Hughes, Annie; Kramer, Carsten; Meier, David; Murphy, Eric; Pety, Jérôme; Schuster, Karl; Schinnerer, Eva; Sliwa, Kazimierz; Tomicic, Neven; Schruba, Andreas

    2017-01-01

    We use the IRAM Large Program EMPIRE and new high-resolution ALMA data to measure "1"3CO(1-0)/C"1"8O(1-0) intensity ratios across nine nearby spiral galaxies. These isotopologues of "1"2CO are typically optically thin across most of the area in galaxy disks, and this ratio allows us to gauge their relative abundance due to chemistry or stellar nucleosynthesis effects. Resolved "1"3CO/C"1"8O gradients across normal galaxies have been rare due to the faintness of these lines. We find a mean "1"3CO/C"1"8O ratio of 6.0 ± 0.9 for the central regions of our galaxies. This agrees well with results in the Milky Way, but differs from results for starburst galaxies (3.4 ± 0.9) and ultraluminous infrared galaxies (1.1 ± 0.4). In our sample, the "1"3CO/C"1"8O ratio consistently increases with increasing galactocentric radius and decreases with increasing star formation rate surface density. These trends could be explained if the isotopic abundances are altered by fractionation; the sense of the trends also agrees with those expected for carbon and oxygen isotopic abundance variations due to selective enrichment by massive stars.

  4. STAR FORMATION IN DISK GALAXIES. I. FORMATION AND EVOLUTION OF GIANT MOLECULAR CLOUDS VIA GRAVITATIONAL INSTABILITY AND CLOUD COLLISIONS

    International Nuclear Information System (INIS)

    Tasker, Elizabeth J.; Tan, Jonathan C.

    2009-01-01

    We investigate the formation and evolution of giant molecular clouds (GMCs) in a Milky-Way-like disk galaxy with a flat rotation curve. We perform a series of three-dimensional adaptive mesh refinement numerical simulations that follow both the global evolution on scales of ∼20 kpc and resolve down to scales ∼ H ≥ 100 cm -3 and track the evolution of individual clouds as they orbit through the galaxy from their birth to their eventual destruction via merger or via destructive collision with another cloud. After ∼140 Myr a large fraction of the gas in the disk has fragmented into clouds with masses ∼10 6 M sun and a mass spectrum similar to that of Galactic GMCs. The disk settles into a quasi-steady-state in which gravitational scattering of clouds keeps the disk near the threshold of global gravitational instability. The cloud collision time is found to be a small fraction, ∼1/5, of the orbital time, and this is an efficient mechanism to inject turbulence into the clouds. This helps to keep clouds only moderately gravitationally bound, with virial parameters of order unity. Many other observed GMC properties, such as mass surface density, angular momentum, velocity dispersion, and vertical distribution, can be accounted for in this simple model with no stellar feedback.

  5. Accretion Disk Spectra of the Ultra-Luminous X-Ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, T

    2003-12-11

    Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (> 300 M{sub solar}). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super-Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and that their X-ray emission is from the slim disk shining at super-Eddington luminosities.

  6. Simulating the Growth of a Disk Galaxy and its Supermassive Black Hole in a Cosmological Simulating the Growth of a Disk Galaxy and its Supermassive Black Hole in a Cosmological Context

    International Nuclear Information System (INIS)

    Levine, Robyn Deborah; JILA, Boulder

    2008-01-01

    Supermassive black holes (SMBHs) are ubiquitous in the centers of galaxies. Their formation and subsequent evolution is inextricably linked to that of their host galaxies, and the study of galaxy formation is incomplete without the inclusion of SMBHs. The present work seeks to understand the growth and evolution of SMBHs through their interaction with the host galaxy and its environment. In the first part of the thesis (Chap. 2 and 3), we combine a simple semi-analytic model of outflows from active galactic nuclei (AGN) with a simulated dark matter density distribution to study the impact of SMBH feedback on cosmological scales. We find that constraints can be placed on the kinetic efficiency of such feedback using observations of the filling fraction of the Lyα forest. We also find that AGN feedback is energetic enough to redistribute baryons over cosmological distances, having potentially significant effects on the interpretation of cosmological data which are sensitive to the total matter density distribution (e.g. weak lensing). However, truly assessing the impact of AGN feedback in the universe necessitates large-dynamic range simulations with extensive treatment of baryonic physics to first model the fueling of SMBHs. In the second part of the thesis (Chap. 4-6) we use a hydrodynamic adaptive mesh refinement simulation to follow the growth and evolution of a typical disk galaxy hosting a SMBH, in a cosmological context. The simulation covers a dynamical range of 10 million allowing us to study the transport of matter and angular momentum from super-galactic scales all the way down to the outer edge of the accretion disk around the SMBH. Focusing our attention on the central few hundred parsecs of the galaxy, we find the presence of a cold, self-gravitating, molecular gas disk which is globally unstable. The global instabilities drive super-sonic turbulence, which maintains local stability and allows gas to fuel a SMBH without first fragmenting completely

  7. Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback

    International Nuclear Information System (INIS)

    Butler, Michael J.; Tan, Jonathan C.; Teyssier, Romain; Nickerson, Sarah; Rosdahl, Joakim; Van Loo, Sven

    2017-01-01

    Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H 2 -dissociating feedback results in the largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H 2 -dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.

  8. Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Michael J. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Tan, Jonathan C. [Departments of Astronomy and Physics, University of Florida, Gainesville, FL 32611 (United States); Teyssier, Romain; Nickerson, Sarah [Institute for Computational Science, University of Zurich, 8049 Zurich (Switzerland); Rosdahl, Joakim [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Van Loo, Sven [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2017-06-01

    Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H{sub 2}-dissociating feedback results in the largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H{sub 2}-dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.

  9. Collisionless electrostatic shocks

    DEFF Research Database (Denmark)

    Andersen, H.K.; Andersen, S.A.; Jensen, Vagn Orla

    1970-01-01

    An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth......An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth...

  10. On Estimating the Mass of Keplerian Accretion Disks in H2O Maser Galaxies

    Science.gov (United States)

    Kuo, C. Y.; Reid, M. J.; Braatz, J. A.; Gao, F.; Impellizzeri, C. M. V.; Chien, W. T.

    2018-06-01

    H2O maser disks with Keplerian rotation in active galactic nuclei offer a clean way to determine accurate black hole mass and the Hubble constant. An important assumption made in using a Keplerian H2O maser disk for measuring black hole mass and the Hubble constant is that the disk mass is negligible compared to the black hole mass. A simple and useful model of Huré et al. can be used to test this assumption. In that work, the authors apply a linear disk model to a position–dynamical mass diagram and re-analyze position–velocity data from H2O maser disks associated with active galactic nuclei. They claim that a maser disk with nearly perfect Keplerian rotation could have a disk mass comparable to the black hole mass. This would imply that ignoring the effects of disk self-gravity can lead to large systematic errors in the measurement of black hole mass and the Hubble constant. We examine their methods and find that their large estimated disk masses of Keplerian disks are likely the result of their use of projected instead of three-dimensional position and velocity information. To place better constraints on the disk masses of Keplerian maser systems, we incorporate disk self-gravity into a three-dimensional Bayesian modeling program for maser disks and also evaluate constraints based on the physical conditions for disks that support water maser emission. We find that there is little evidence that disk masses are dynamically important at the ≲1% level compared to the black holes.

  11. Extraplanar H II Regions in Spiral Galaxies. I. Low-metallicity Gas Accreting through the Disk-halo Interface of NGC 4013

    Science.gov (United States)

    Howk, J. Christopher; Rueff, Katherine M.; Lehner, Nicolas; Wotta, Christopher B.; Croxall, Kevin; Savage, Blair D.

    2018-04-01

    The interstellar thick disks of galaxies serve as the interface between the thin star-forming disk, where feedback-driven outflows originate, and the distant halo, the repository for accreted gas. We present optical emission line spectroscopy of a luminous, thick disk H II region located at z = 860 pc above the plane of the spiral galaxy NGC 4013 taken with the Multi-Object Double Spectrograph on the Large Binocular Telescope. This nebula, with an Hα luminosity ∼4–7 times that of the Orion nebula, surrounds a luminous cluster of young, hot stars that ionize the surrounding interstellar gas of the thick disk, providing a measure of the properties of that gas. We demonstrate that strong emission line methods can provide accurate measures of relative abundances between pairs of H II regions. From our emission line spectroscopy, we show that the metal content of the thick disk H II region is a factor of ≈2 lower than gas in H II regions at the midplane of this galaxy (with the relative abundance of O in the thick disk lower by ‑0.32 ± 0.09 dex). This implies incomplete mixing of material in the thick disk on small scales (hundreds of parsecs) and that there is accretion of low-metallicity gas through the thick disks of spirals. The inclusion of low-metallicity gas this close to the plane of NGC 4013 is reminiscent of the recently proposed “fountain-driven” accretion models.

  12. The gravitational interaction between N-body (star clusters) and hydrodynamic (ISM) codes in disk galaxy simulations

    International Nuclear Information System (INIS)

    Schroeder, M.C.; Comins, N.F.

    1986-01-01

    During the past twenty years, three approaches to numerical simulations of the evolution of galaxies have been developed. The first approach, N-body programs, models the motion of clusters of stars as point particles which interact via their gravitational potentials to determine the system dynamics. Some N-body codes model molecular clouds as colliding, inelastic particles. The second approach, hydrodynamic models of galactic dynamics, simulates the activity of the interstellar medium as a compressible gas. These models presently do not include stars, the effect of gravitational fields, or allow for stellar evolution and exchange of mass or angular momentum between stars and the interstellar medium. The third approach, stochastic star formation simulations of disk galaxies, allows for the interaction between stars and interstellar gas, but does not allow the star particles to move under the influence of gravity

  13. ACCRETION-INHIBITED STAR FORMATION IN THE WARM MOLECULAR DISK OF THE GREEN-VALLEY ELLIPTICAL GALAXY NGC 3226?

    International Nuclear Information System (INIS)

    Appleton, P. N.; Bitsakis, T.; Alatalo, K.; Mundell, C.; Lacy, M.; Armus, L.; Charmandaris, V.; Duc, P.-A.; Lisenfeld, U.; Ogle, P.

    2014-01-01

    We present archival Spitzer photometry and spectroscopy and Herschel photometry of the peculiar ''Green Valley'' elliptical galaxy NGC 3226. The galaxy, which contains a low-luminosity active galactic nucleus (AGN), forms a pair with NGC 3227 and is shown to lie in a complex web of stellar and H I filaments. Imaging at 8 and 16 μm reveals a curved plume structure 3 kpc in extent, embedded within the core of the galaxy and coincident with the termination of a 30 kpc long H I tail. In situ star formation associated with the infrared (IR) plume is identified from narrowband Hubble Space Telescope (HST) imaging. The end of the IR plume coincides with a warm molecular hydrogen disk and dusty ring containing 0.7-1.1 × 10 7 M ☉ detected within the central kiloparsec. Sensitive upper limits to the detection of cold molecular gas may indicate that a large fraction of the H 2 is in a warm state. Photometry derived from the ultraviolet (UV) to the far-IR shows evidence for a low star-formation rate of ∼0.04 M ☉ yr –1 averaged over the last 100 Myr. A mid-IR component to the spectral energy distribution (SED) contributes ∼20% of the IR luminosity of the galaxy, and is consistent with emission associated with the AGN. The current measured star formation rate is insufficient to explain NGC 3226's global UV-optical ''green'' colors via the resurgence of star formation in a ''red and dead'' galaxy. This form of ''cold accretion'' from a tidal stream would appear to be an inefficient way to rejuvenate early-type galaxies and may actually inhibit star formation

  14. JET PROPERTIES OF GeV-SELECTED RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES AND POSSIBLE CONNECTION TO THEIR DISK AND CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiao-Na; Lin, Da-Bin; Liang, En-Wei [Department of Physics and GXU-NAOC Center for Astrophysics and Space Sciences, Guangxi University, Nanning 530004 (China); Zhang, Jin [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Xue, Zi-Wei; Zhang, Shuang-Nan, E-mail: zhang.jin@hotmail.com [Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650011 (China)

    2015-01-01

    The observed spectral energy distributions of five GeV-selected narrow-line Seyfert 1 (NLS1) galaxies are fitted with a model including the radiation ingredients from the relativistic jet, the accretion disk, and the corona. We compare the properties of these GeV NLS1 galaxies with flat spectrum radio quasars (FSRQs), BL Lacertae objects (BL Lacs), and radio-quiet (RQ) Seyfert galaxies, and explore possible hints for jet-disk/corona connection. Our results show that the radiation physics and the jet properties of the GeV NLS1 galaxies resemble that of FSRQs. The luminosity variations of PMN J0948+0022 and 1H 0323+342 at the GeV band is tightly correlated with the beaming factor (δ), similar to that observed in FSRQ 3C 279. The accretion disk luminosities and the jet powers of the GeV NLS1 galaxies cover both the ranges of FSRQs and BL Lacs. With the detection of bright corona emission in 1H 0323+342, we show that the ratio of the corona luminosity (L {sub corona}) to the accretion disk luminosity (L {sub d}) is marginally within the high end of this ratio distribution for an RQ Seyfert galaxy sample, and the variation of jet luminosity may connect with L {sub corona}. However, it is still unclear whether a system with a high L {sub corona}/L {sub d} ratio prefers to power a jet.

  15. Weakly Collisional and Collisionless Astrophysical Plasmas

    DEFF Research Database (Denmark)

    Berlok, Thomas

    are used to study weakly collisional, stratified atmospheres which offer a useful model of the intracluster medium of galaxy clusters. Using linear theory and computer simulations, we study instabilities that feed off thermal and compositional gradients. We find that these instabilities lead to vigorous...... investigate helium mixing in the weakly collisional intracluster medium of galaxy clusters using Braginskii MHD. Secondly, we present a newly developed Vlasov-fluid code which can be used for studying fully collisionless plasmas such as the solar wind and hot accretions flows. The equations of Braginskii MHD...... associated with the ions and is thus well suited for studying collisionless plasmas. We have developed a new 2D-3V Vlasov-fluid code which works by evolving the phase-space density distribution of the ions while treating the electrons as an inertialess fluid. The code uses the particle-incell (PIC) method...

  16. A UNIVERSAL, LOCAL STAR FORMATION LAW IN GALACTIC CLOUDS, NEARBY GALAXIES, HIGH-REDSHIFT DISKS, AND STARBURSTS

    International Nuclear Information System (INIS)

    Krumholz, Mark R.; Dekel, Avishai; McKee, Christopher F.

    2012-01-01

    Star formation laws are rules that relate the rate of star formation in a particular region, either an entire galaxy or some portion of it, to the properties of the gas, or other galactic properties, in that region. While observations of Local Group galaxies show a very simple, local star formation law in which the star formation rate per unit area in each patch of a galaxy scales linearly with the molecular gas surface density in that patch, recent observations of both Milky Way molecular clouds and high-redshift galaxies apparently show a more complicated relationship in which regions of equal molecular gas surface density can form stars at quite different rates. These data have been interpreted as implying either that different star formation laws may apply in different circumstances, that the star formation law is sensitive to large-scale galaxy properties rather than local properties, or that there are high-density thresholds for star formation. Here we collate observations of the relationship between gas and star formation rate from resolved observations of Milky Way molecular clouds, from kpc-scale observations of Local Group galaxies, and from unresolved observations of both disk and starburst galaxies in the local universe and at high redshift. We show that all of these data are in fact consistent with a simple, local, volumetric star formation law. The apparent variations stem from the fact that the observed objects have a wide variety of three-dimensional size scales and degrees of internal clumping, so even at fixed gas column density the regions being observed can have wildly varying volume densities. We provide a simple theoretical framework to remove this projection effect, and we use it to show that all the data, from small solar neighborhood clouds with masses ∼10 3 M ☉ to submillimeter galaxies with masses ∼10 11 M ☉ , fall on a single star formation law in which the star formation rate is simply ∼1% of the molecular gas mass per local

  17. Detection of Lyman/alpha emission from a DLA galaxy

    DEFF Research Database (Denmark)

    Moller, P.; Fynbo, Johan Peter Uldall; Fall, S.M

    2004-01-01

    HIGH-REDSHIFT; BREAK GALAXIES; STARFORMATION; DISK GALAXIES; METAL ENRICHMENT; HOST GALAXY; ABSORPTION; ABSORBER; SYSTEMS; SPECTROSCOPY......HIGH-REDSHIFT; BREAK GALAXIES; STARFORMATION; DISK GALAXIES; METAL ENRICHMENT; HOST GALAXY; ABSORPTION; ABSORBER; SYSTEMS; SPECTROSCOPY...

  18. Playing with Positive Feedback: External Pressure-triggering of a Star-forming Disk Galaxy

    Science.gov (United States)

    Bieri, Rebekka; Dubois, Yohan; Silk, Joseph; Mamon, Gary A.

    2015-10-01

    In massive galaxies, the currently favored method for quenching star formation is via active galactic nuclei (AGN) feedback, which ejects gas from the galaxy using a central supermassive black hole. At high redshifts however, explanation of the huge rates of star formation often found in galaxies containing AGNs may require a more vigorous mode of star formation than is attainable by simply enriching the gas content of galaxies in the usual gravitationally driven mode that is associated with the nearby universe. Using idealized hydrodynamical simulations, we show that AGN-pressure-driven star formation potentially provides the positive feedback that may be required to generate the accelerated star formation rates observed in the distant universe.

  19. Non-instantaneous gas recycling and chemical evolution in N-body disk galaxies

    Czech Academy of Sciences Publication Activity Database

    Jungwiert, Bruno; Carraro, G.; Dalla Vecchia, C.

    2004-01-01

    Roč. 289, 3-4 (2004), s. 441-444 ISSN 0004-640X. [From observations to self-consistent modelling of the ISM in galaxies. Porto, 03.09.2002-05.09.2002] R&D Projects: GA ČR GP202/01/D075 Institutional research plan: CEZ:AV0Z1003909 Keywords : N-body simulations * galaxy evolution * gas recycling Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.597, year: 2004

  20. THE STRUCTURE AND STELLAR CONTENT OF THE OUTER DISKS OF GALAXIES: A NEW VIEW FROM THE Pan-STARRS1 MEDIUM DEEP SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zheng; Thilker, David A.; Heckman, Timothy M. [Department of Physics and Astronomy, Johns Hopkins University, 3701 San Martin Drive, Baltimore, MD 21218 (United States); Meurer, Gerhardt R. [International Center for Radio Astronomy Research, The University of Western Australia, M468, 35 StirlingHighway, Crawley, WA 6009 (Australia); Burgett, W. S.; Huber, M. E.; Kaiser, N.; Magnier, E. A.; Tonry, J. L.; Wainscoat, R. J.; Waters, C. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Chambers, K. C.; Metcalfe, N. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Price, P. A. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2015-02-20

    We present the results of an analysis of Pan-STARRS1 Medium Deep Survey multi-band (grizy) images of a sample of 698 low-redshift disk galaxies that span broad ranges in stellar mass, star-formation rate, and bulge/disk ratio. We use population synthesis spectral energy distribution fitting techniques to explore the radial distribution of the light, color, surface mass density, mass/light ratio, and age of the stellar populations. We characterize the structure and stellar content of the galaxy disks out to radii of about twice Petrosian r {sub 90}, beyond which the halo light becomes significant. We measure normalized radial profiles for sub-samples of galaxies in three bins each of stellar mass and concentration. We also fit radial profiles to each galaxy. The majority of galaxies have down-bending radial surface brightness profiles in the bluer bands with a break radius at roughly r {sub 90}. However, they typically show single unbroken exponentials in the reddest bands and in the stellar surface mass density. We find that the mass/light ratio and stellar age radial profiles have a characteristic 'U' shape. There is a good correlation between the amplitude of the down-bend in the surface brightness profile and the rate of the increase in the M/L ratio in the outer disk. As we move from late- to early-type galaxies, the amplitude of the down-bend and the radial gradient in M/L both decrease. Our results imply a combination of stellar radial migration and suppression of recent star formation can account for the stellar populations of the outer disk.

  1. REMOVING BIASES IN RESOLVED STELLAR MASS MAPS OF GALAXY DISKS THROUGH SUCCESSIVE BAYESIAN MARGINALIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-García, Eric E. [Cerrada del Rey 40-A, Chimalcoyoc Tlalpan, Ciudad de México, C.P. 14630, México (Mexico); González-Lópezlira, Rosa A.; Bruzual A, Gustavo [Instituto de Radioastronomía y Astrofísica, UNAM, Campus Morelia, Michoacán, C.P. 58089, México (Mexico); Magris C, Gladis, E-mail: martinezgarciaeric@gmail.com [Centro de Investigaciones de Astronomía, Apartado Postal 264, Mérida 5101-A (Venezuela, Bolivarian Republic of)

    2017-01-20

    Stellar masses of galaxies are frequently obtained by fitting stellar population synthesis models to galaxy photometry or spectra. The state of the art method resolves spatial structures within a galaxy to assess the total stellar mass content. In comparison to unresolved studies, resolved methods yield, on average, higher fractions of stellar mass for galaxies. In this work we improve the current method in order to mitigate a bias related to the resolved spatial distribution derived for the mass. The bias consists in an apparent filamentary mass distribution and a spatial coincidence between mass structures and dust lanes near spiral arms. The improved method is based on iterative Bayesian marginalization, through a new algorithm we have named Bayesian Successive Priors (BSP). We have applied BSP to M51 and to a pilot sample of 90 spiral galaxies from the Ohio State University Bright Spiral Galaxy Survey. By quantitatively comparing both methods, we find that the average fraction of stellar mass missed by unresolved studies is only half what previously thought. In contrast with the previous method, the output BSP mass maps bear a better resemblance to near-infrared images.

  2. INSIDE OUT AND UPSIDE DOWN: TRACING THE ASSEMBLY OF A SIMULATED DISK GALAXY USING MONO-AGE STELLAR POPULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Bird, Jonathan C.; Kazantzidis, Stelios; Weinberg, David H. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Guedes, Javiera [Institute for Astronomy, ETH Zuerich, Wolgang-Pauli-Strasse 27, CH-8093 Zuerich (Switzerland); Callegari, Simone [Anthropology Institute and Museum, University of Zuerich, Winterthurerstrasse 190, CH-8057 Zuerich (Switzerland); Mayer, Lucio [Institute for Theoretical Physics, University of Zuerich, Winterthurerstrasse 190, CH-8057 Zuerich (Switzerland); Madau, Piero [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2013-08-10

    We analyze the present day structure and assembly history of a high-resolution hydrodynamic simulation of the formation of a Milky-Way-(MW)-like disk galaxy, from the ''Eris'' simulation suite, dissecting it into cohorts of stars formed at different epochs of cosmic history. At z = 0, stars with t{sub form} < 2 Gyr mainly occupy the stellar spheroid, with the oldest (earliest forming) stars having more centrally concentrated profiles. The younger age cohorts populate disks of progressively longer radial scale lengths and shorter vertical scale heights. At a given radius, the vertical density profiles and velocity dispersions of stars vary smoothly as a function of age, and the superposition of old, vertically extended and young, vertically compact cohorts gives rise to a double-exponential profile like that observed in the MW. Turning to formation history, we find that the trends of spatial structure and kinematics with stellar age are largely imprinted at birth, or immediately thereafter. Stars that form during the active merger phase at z > 3 are quickly scattered into rounded, kinematically hot configurations. The oldest disk cohorts form in structures that are radially compact and relatively thick, while subsequent cohorts form in progressively larger, thinner, colder configurations from gas with increasing levels of rotational support. The disk thus forms ''inside out'' in a radial sense and ''upside down'' in a vertical sense. Secular heating and radial migration influence the final state of each age cohort, but the changes they produce are small compared to the trends established at formation. The predicted correlations of stellar age with spatial and kinematic structure are in good qualitative agreement with the correlations observed for mono-abundance stellar populations in the MW.

  3. Galaxies

    International Nuclear Information System (INIS)

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented

  4. Star-forming galaxy models: Blending star formation into TREESPH

    Science.gov (United States)

    Mihos, J. Christopher; Hernquist, Lars

    1994-01-01

    We have incorporated star-formation algorithms into a hybrid N-body/smoothed particle hydrodynamics code (TREESPH) in order to describe the star forming properties of disk galaxies over timescales of a few billion years. The models employ a Schmidt law of index n approximately 1.5 to calculate star-formation rates, and explicitly include the energy and metallicity feedback into the Interstellar Medium (ISM). Modeling the newly formed stellar population is achieved through the use of hybrid SPH/young star particles which gradually convert from gaseous to collisionless particles, avoiding the computational difficulties involved in creating new particles. The models are shown to reproduce well the star-forming properties of disk galaxies, such as the morphology, rate of star formation, and evolution of the global star-formation rate and disk gas content. As an example of the technique, we model an encounter between a disk galaxy and a small companion which gives rise to a ring galaxy reminiscent of the Cartwheel (AM 0035-35). The primary galaxy in this encounter experiences two phases of star forming activity: an initial period during the expansion of the ring, and a delayed phase as shocked material in the ring falls back into the central regions.

  5. Unveiling the sources of disk heating in spiral galaxies with the CALIFA survey

    NARCIS (Netherlands)

    Pinna, F.; Falcón-Barroso, J.; Martig, M.; van de Ven, G.; Lyubenova, M.; Leaman, R.

    The stellar velocity ellipsoid (SVE) quantifies the amount of velocity dispersion in the vertical, radial and azimuthal directions. Since different disk heating mechanisms (e.g. spiral arms, giant molecular clouds, mergers, etc) affect these components differently, the SVE can constrain the sources

  6. Disk-galaxy density distribution from orbital speeds using Newton's law

    OpenAIRE

    Nicholson, Kenneth F.

    2000-01-01

    Given the dimensions (including thickness) of an axisymmetric galaxy, Newton's law is used in integral form to find the density distributions required to match a wide range of orbital speed profiles. Newton's law is not modified and no dark matter halos are required. The speed distributiions can have extreme shapes if they are reasonably smooth. Several examples are given.

  7. Disk-galaxy density distribution from orbital speeds using Newton's law, version 1.1

    OpenAIRE

    Nicholson, Kenneth F.

    2000-01-01

    Given the dimensions(including thickness) of an axisymmetric galaxy, Newton's law is used in integral form to find the density distributions required to match a wide range of orbital speed profiles. Newton's law is not modified and no dark-matter halos are required. The speed distributions can have extreme shapes if they are reasonably smooth. Several examples are given.

  8. The DiskMass Survey : IV. The Dark-matter-dominated Galaxy UGC 463

    NARCIS (Netherlands)

    Westfall, Kyle B.; Bershady, Matthew A.; Verheijen, Marc A. W.; Andersen, David R.; Martinsson, Thomas P. K.; Swaters, Robert A.; Schechtman-Rook, Andrew

    2011-01-01

    We present a detailed and unique mass budget for the high surface brightness galaxy UGC 463, showing it is dominated by dark matter (DM) at radii beyond one scale length (h(R)) and has a baryonic-to-DM mass ratio of approximately 1:3 within 4.2h(R). Assuming a constant scale height (h(z); calculated

  9. The DiskMass Survey. IV. The Dark-matter-dominated Galaxy UGC 463

    NARCIS (Netherlands)

    Westfall, Kyle B.; Bershady, Matthew A.; Verheijen, Marc A. W.; Andersen, David R.; Martinsson, Thomas P. K.; Swaters, Robert A.; Schechtman-Rook, Andrew

    We present a detailed and unique mass budget for the high surface brightness galaxy UGC 463, showing it is dominated by dark matter (DM) at radii beyond one scale length (hR ) and has a baryonic-to-DM mass ratio of approximately 1:3 within 4.2hR . Assuming a constant scale height (hz ; calculated

  10. EVOLUTION OF GASEOUS DISK VISCOSITY DRIVEN BY SUPERNOVA EXPLOSION. II. STRUCTURE AND EMISSIONS FROM STAR-FORMING GALAXIES AT HIGH REDSHIFT

    International Nuclear Information System (INIS)

    Yan Changshuo; Wang Jianmin

    2010-01-01

    High spatial resolution observations show that high-redshift galaxies are undergoing intensive evolution of dynamical structure and morphologies displayed by the Hα, Hβ, [O III], and [N II] images. It has been shown that supernova explosion (SNexp) of young massive stars during the star formation epoch, as kinetic feedback to host galaxies, can efficiently excite the turbulent viscosity. We incorporate the feedback into the dynamical equations through mass dropout and angular momentum transportation driven by the SNexp-excited turbulent viscosity. The empirical Kennicutt-Schmidt law is used for star formation rates (SFRs). We numerically solve the equations and show that there can be intensive evolution of structure of the gaseous disk. Secular evolution of the disk shows interesting characteristics: (1) high viscosity excited by SNexp can efficiently transport the gas from 10 kpc to ∼1 kpc forming a stellar disk whereas a stellar ring forms for the case with low viscosity; (2) starbursts trigger SMBH activity with a lag of ∼10 8 yr depending on SFRs, prompting the joint evolution of SMBHs and bulges; and (3) the velocity dispersion is as high as ∼100 km s -1 in the gaseous disk. These results are likely to vary with the initial mass function (IMF) that the SNexp rates rely on. Given the IMF, we use the GALAXEV code to compute the spectral evolution of stellar populations based on the dynamical structure. In order to compare the present models with the observed dynamical structure and images, we use the incident continuum from the simple stellar synthesis and CLOUDY to calculate emission line ratios of Hα, Hβ, [O III], and [N II], and Hα brightness of gas photoionized by young massive stars formed on the disks. The models can produce the main features of emission from star-forming galaxies. We apply the present model to two galaxies, BX 389 and BX 482 observed in the SINS high-z sample, which are bulge and disk-dominated, respectively. Two successive

  11. Consequences of Relativistic Neutron Outflow beyond the Accretion Disks of Active Galaxies

    Science.gov (United States)

    Ekejiuba, I. E.; Okeke, P. N.

    1993-05-01

    Three channels of relativistic electron injection in the jets of extragalactic radio sources (EGRSs) are discussed. With the assumption that an active galactic nucleus (AGN) is powered by a spinning supermassive black hole of mass ~ 10(8) M_⊙ which sits at the center of the nucleus and ingests matter and energy through an accretion disk, a model for extracting relativistic neutrons from the AGN is forged. In this model, the inelastic proton--proton and proton--photon interactions within the accretion disk, of relativistic protons with background thermal protons and photons, respectively, produce copious amounts of relativistic neutrons. These neutrons travel ballistically for ~ 10(3gamma_n ) seconds and escape from the disk before they decay. The secondary particles produced from the neutron decays then interact with the ambient magnetic field and/or other particles to produce the radio emissions observed in the jets of EGRSs. IEE acknowledges the support of the World Bank and the Federal University of Technology, Yola, Nigeria as well as the hospitality of Georgia State University.

  12. NO EVIDENCE FOR CLASSICAL CEPHEIDS AND A NEW DWARF GALAXY BEHIND THE GALACTIC DISK

    Energy Technology Data Exchange (ETDEWEB)

    Pietrukowicz, P.; Udalski, A.; Szymański, M. K.; Soszyński, I.; Pietrzyński, G.; Wyrzykowski, Ł.; Poleski, R.; Ulaczyk, K.; Skowron, J.; Mróz, P.; Pawlak, M.; Kozłowski, S. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland)

    2015-11-10

    Based on data from the ongoing OGLE Galaxy Variability Survey (OGLE GVS), we have verified observed properties of stars detected by the near-infrared VVV survey in a direction near the Galactic plane at longitude l ≈ −27° and recently tentatively classified as classical Cepheids belonging to, hence claimed, a dwarf galaxy at a distance of about 90 kpc from the Galactic Center. Three of four stars are detected in the OGLE GVS I-band images. We show that two of the objects are not variable at all, and the third one with a period of 5.695 days and a nearly sinusoidal light curve of an amplitude of 0.5 mag cannot be a classical Cepheid and is very likely a spotted object. These results together with a very unusual shape of the K{sub s}-band light curve of the fourth star indicate that it is very likely that none of them is a Cepheid and, thus there is no evidence for a background dwarf galaxy. Our observations show that great care must be taken when classifying objects by their low-amplitude close-to-sinusoidal near-infrared light curves, especially with a small number of measurements. We also provide a sample of high-amplitude spotted stars with periods of a few days that can mimic pulsations and even eclipses.

  13. A high spatial resolution X-ray and Hα study of hot gas in the halos of star-forming disk galaxies -- testing feedback models

    Science.gov (United States)

    Strickland, D. K.; Heckman, T. M.; Colbert, E. J. M.; Hoopes, C. G.; Weaver, K. A.

    2002-12-01

    We present arcsecond resolution Chandra X-ray and ground-based optical Hα imaging of a sample of ten edge-on star-forming disk galaxies (seven starburst and three ``normal'' spiral galaxies), a sample which covers the full range of star-formation intensity found in disk galaxies. The X-ray observations make use of the unprecented spatial resolution of the Chandra X-ray observatory to robustly remove X-ray emission from point sources, and hence obtain the X-ray properties of the diffuse thermal emission alone. This data has been combined with existing, comparable-resolution, ground-based Hα imaging. We compare these empirically-derived diffuse X-ray properties with various models for the generation of hot gas in the halos of star-forming galaxies: supernova feedback-based models (starburst-driven winds, galactic fountains), cosmologically-motivated accretion of the IGM and AGN-driven winds. SN feedback models best explain the observed diffuse X-ray emission. We then use the data to test basic, but fundamental, aspects of wind and fountain theories, e.g. the critical energy required for disk "break-out." DKS is supported by NASA through Chandra Postdoctoral Fellowship Award Number PF0-10012.

  14. A characteristic oxygen abundance gradient in galaxy disks unveiled with CALIFA

    Czech Academy of Sciences Publication Activity Database

    Sanchez, S.F.; Rosales-Ortega, F.F.; Iglesias-Paramo, J.; Molla, M.; Barrera-Ballesteros, J.; Marino, R.A.; Pérez, E.; Sanchez-Blazquez, P.; Gonzalez Delgado, R.; Jungwiert, Bruno

    2014-01-01

    Roč. 563, March (2014), A49/1-A49/25 ISSN 0004-6361 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100031241; Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100031201 Program:M Institutional support: RVO:67985815 Keywords : HII regions * galaxies * ISM: abundances Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  15. Spatially Resolved Hα Maps and Sizes of 57 Strongly Star-forming Galaxies at z ~ 1 from 3D-HST: Evidence for Rapid Inside-out Assembly of Disk Galaxies

    Science.gov (United States)

    Nelson, Erica June; van Dokkum, Pieter G.; Brammer, Gabriel; Förster Schreiber, Natascha; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Rix, Hans-Walter; Skelton, Rosalind E.; Bezanson, Rachel; Da Cunha, Elisabete; Kriek, Mariska; Labbe, Ivo; Lundgren, Britt; Quadri, Ryan; Schmidt, Kasper B.

    2012-03-01

    We investigate the buildup of galaxies at z ~ 1 using maps of Hα and stellar continuum emission for a sample of 57 galaxies with rest-frame Hα equivalent widths >100 Å in the 3D-HST grism survey. We find that the Hα emission broadly follows the rest-frame R-band light but that it is typically somewhat more extended and clumpy. We quantify the spatial distribution with the half-light radius. The median Hα effective radius re (Hα) is 4.2 ± 0.1 kpc but the sizes span a large range, from compact objects with re (Hα) ~ 1.0 kpc to extended disks with re (Hα) ~ 15 kpc. Comparing Hα sizes to continuum sizes, we find =1.3 ± 0.1 for the full sample. That is, star formation, as traced by Hα, typically occurs out to larger radii than the rest-frame R-band stellar continuum; galaxies are growing their radii and building up from the inside out. This effect appears to be somewhat more pronounced for the largest galaxies. Using the measured Hα sizes, we derive star formation rate surface densities, ΣSFR. We find that ΣSFR ranges from ~0.05 M ⊙ yr-1 kpc-2 for the largest galaxies to ~5 M ⊙ yr-1 kpc-2 for the smallest galaxies, implying a large range in physical conditions in rapidly star-forming z ~ 1 galaxies. Finally, we infer that all galaxies in the sample have very high gas mass fractions and stellar mass doubling times <500 Myr. Although other explanations are also possible, a straightforward interpretation is that we are simultaneously witnessing the rapid formation of compact bulges and large disks at z ~ 1.

  16. SPATIALLY RESOLVED Hα MAPS AND SIZES OF 57 STRONGLY STAR-FORMING GALAXIES AT z ∼ 1 FROM 3D-HST: EVIDENCE FOR RAPID INSIDE-OUT ASSEMBLY OF DISK GALAXIES

    International Nuclear Information System (INIS)

    Nelson, Erica June; Van Dokkum, Pieter G.; Skelton, Rosalind E.; Bezanson, Rachel; Lundgren, Britt; Brammer, Gabriel; Förster Schreiber, Natascha; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Labbe, Ivo; Rix, Hans-Walter; Da Cunha, Elisabete; Schmidt, Kasper B.; Kriek, Mariska; Quadri, Ryan

    2012-01-01

    We investigate the buildup of galaxies at z ∼ 1 using maps of Hα and stellar continuum emission for a sample of 57 galaxies with rest-frame Hα equivalent widths >100 Å in the 3D-HST grism survey. We find that the Hα emission broadly follows the rest-frame R-band light but that it is typically somewhat more extended and clumpy. We quantify the spatial distribution with the half-light radius. The median Hα effective radius r e (Hα) is 4.2 ± 0.1 kpc but the sizes span a large range, from compact objects with r e (Hα) ∼ 1.0 kpc to extended disks with r e (Hα) ∼ 15 kpc. Comparing Hα sizes to continuum sizes, we find e (Hα)/r e (R) > =1.3 ± 0.1 for the full sample. That is, star formation, as traced by Hα, typically occurs out to larger radii than the rest-frame R-band stellar continuum; galaxies are growing their radii and building up from the inside out. This effect appears to be somewhat more pronounced for the largest galaxies. Using the measured Hα sizes, we derive star formation rate surface densities, Σ SFR . We find that Σ SFR ranges from ∼0.05 M ☉ yr –1 kpc –2 for the largest galaxies to ∼5 M ☉ yr –1 kpc –2 for the smallest galaxies, implying a large range in physical conditions in rapidly star-forming z ∼ 1 galaxies. Finally, we infer that all galaxies in the sample have very high gas mass fractions and stellar mass doubling times <500 Myr. Although other explanations are also possible, a straightforward interpretation is that we are simultaneously witnessing the rapid formation of compact bulges and large disks at z ∼ 1.

  17. Three-dimensional simulations of supernovae dominated interstellar media in disk galaxies

    International Nuclear Information System (INIS)

    Cioffi, D.F.

    1985-01-01

    Evolution of the interstellar media of spiral galaxies was studied, assuming that their dynamical and thermal properties are dominated by supernova remnants (SNRs). To do this, a computer simulation was developed that uses standard SNR evolutionary solutions (Sedov-Taylor, pressure-modified snowplow) to redistribute mass and energy throughout a rectangular, three-level grid which models the interstellar medium (ISM). This comprehensive treatment includes bremsstrahlung or metal cooling, the creation and evaporation of clouds, mass injection and return from a galactic halo, multiple SNRs, and internally determined SNR lifetimes. The importance of spatially correlating supernovae sites, which can increase the global evolution rate of the (ISM), is confirmed. The simulations of primeval (zero metal abundance) galaxies revealed that the enhancement ability of bremsstrahlung-cooled SNR to transport mass can continually agitate the ISM, preventing the establishment of long-lived tunnel networks (i.e., hot rarefied volumes). This demonstrated the inadequacy of porosity theory for predicting the topology of the ISM, because it does not account for mass transport

  18. Galaxies

    International Nuclear Information System (INIS)

    1989-01-01

    In studies of the large scale structure of the universe there is a continuing need for extensive galaxy redshift determinations. Optically selected redshift surveys are of particular importance, since flux-limited samples record much higher space densities of galaxies than samples of similar size selected in other wavebands. A considerable amount of the South African Astronomical Observatory (SAAO) observing time is currently being devoted to carrying out a large southern galaxy redshift survey. A recently completed study, the Durham-SAAO redshift survey suggests that the mean density of matter is well below the critical limit for a closed universe and also that the universe may be homogenous at very large scales. Other research conducted by the SAAO include studies on: the distribution of galaxies; Seyfert galaxies; starburst and IRAS galaxies; interacting and compact galaxies; a re-evaluation of the Cepheid distance to NGC 300, and a search for quasars behind galaxies. 1 fig

  19. Galaxies

    International Nuclear Information System (INIS)

    1987-01-01

    The size and nature of any large-scale anisotropy in the three-dimensional distribution of galaxies is still little understood. Recent studies have indicated that large fluctuations in the matter distribution on a scale from tens up to several hundreds of megaparsecs may exist. Work at the South African Astronomical Observatory (SAAO) in recent years has made major contributions to studies of the large scale distribution of galaxies, as well as to solving the problems of the galactic and extragalactic distance scale. Other studies of galaxies undertaken at SAAO include: quasars in the fields of nearby galaxies; dwarf irregular galaxies; IRAS galaxies; Seyfert galaxies; 'hot spot' galaxies; supernovae in NGC 5128 and NGC 1559 and superclusters. 4 figs

  20. FRC collisionless resistivity

    International Nuclear Information System (INIS)

    Tajima, T.; Horton, W.

    1990-01-01

    Ions in the field reversed configuration (FRC) exhibit stochastic orbits due to the field null and the curvature of poloidal field lines. Velocity correlations of these particles decay in a power law fashion t -m where 1 ≤ m ≤ 2. This decay of the single particle correlation function is characteristic of the long tail correlations of strongly chaotic or nonlinear systems found in other problems of statistical physics. This decay of correlations gives rise to a collisionless resistivity that can far exceed the collisional resistivity in an FRC plasma. The finite correlation τ c of a single particle limits the acceleration in the electric field producing the finite resistivity. Maxwellian test particle distributions are integrated to find the measure of the set of stochastic ions that contribute to the collisionless resistivity. The computed conductivity is proportional to the square root of the characteristic ion gyroradius in both simulation and theory

  1. Collisionless current sheet equilibria

    Science.gov (United States)

    Neukirch, T.; Wilson, F.; Allanson, O.

    2018-01-01

    Current sheets are important for the structure and dynamics of many plasma systems. In space and astrophysical plasmas they play a crucial role in activity processes, for example by facilitating the release of magnetic energy via processes such as magnetic reconnection. In this contribution we will focus on collisionless plasma systems. A sensible first step in any investigation of physical processes involving current sheets is to find appropriate equilibrium solutions. The theory of collisionless plasma equilibria is well established, but over the past few years there has been a renewed interest in finding equilibrium distribution functions for collisionless current sheets with particular properties, for example for cases where the current density is parallel to the magnetic field (force-free current sheets). This interest is due to a combination of scientific curiosity and potential applications to space and astrophysical plasmas. In this paper we will give an overview of some of the recent developments, discuss their potential applications and address a number of open questions.

  2. GIANT MOLECULAR CLOUD FORMATION IN DISK GALAXIES: CHARACTERIZING SIMULATED VERSUS OBSERVED CLOUD CATALOGS

    Energy Technology Data Exchange (ETDEWEB)

    Benincasa, Samantha M.; Pudritz, Ralph E.; Wadsley, James [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada); Tasker, Elizabeth J. [Department of Physics, Faculty of Science, Hokkaido University, Kita-ku, Sapporo 060-0810 (Japan)

    2013-10-10

    We present the results of a study of simulated giant molecular clouds (GMCs) formed in a Milky Way-type galactic disk with a flat rotation curve. This simulation, which does not include star formation or feedback, produces clouds with masses ranging between 10{sup 4} M{sub ☉} and 10{sup 7} M{sub ☉}. We compare our simulated cloud population to two observational surveys: the Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey and the BIMA All-Disk Survey of M33. An analysis of the global cloud properties as well as a comparison of Larson's scaling relations is carried out. We find that simulated cloud properties agree well with the observed cloud properties, with the closest agreement occurring between the clouds at comparable resolution in M33. Our clouds are highly filamentary—a property that derives both from their formation due to gravitational instability in the sheared galactic environment, as well as to cloud-cloud gravitational encounters. We also find that the rate at which potentially star-forming gas accumulates within dense regions—wherein n{sub thresh} ≥ 10{sup 4} cm{sup –3}—is 3% per 10 Myr, in clouds of roughly 10{sup 6} M{sub ☉}. This suggests that star formation rates in observed clouds are related to the rates at which gas can be accumulated into dense subregions within GMCs via filamentary flows. The most internally well-resolved clouds are chosen for listing in a catalog of simulated GMCs—the first of its kind. The cataloged clouds are available as an extracted data set from the global simulation.

  3. GAS SURFACE DENSITY, STAR FORMATION RATE SURFACE DENSITY, AND THE MAXIMUM MASS OF YOUNG STAR CLUSTERS IN A DISK GALAXY. II. THE GRAND-DESIGN GALAXY M51

    International Nuclear Information System (INIS)

    González-Lópezlira, Rosa A.; Pflamm-Altenburg, Jan; Kroupa, Pavel

    2013-01-01

    We analyze the relationship between maximum cluster mass and surface densities of total gas (Σ gas ), molecular gas (Σ H 2 ), neutral gas (Σ H I ), and star formation rate (Σ SFR ) in the grand-design galaxy M51, using published gas data and a catalog of masses, ages, and reddenings of more than 1800 star clusters in its disk, of which 223 are above the cluster mass distribution function completeness limit. By comparing the two-dimensional distribution of cluster masses and gas surface densities, we find for clusters older than 25 Myr that M 3rd ∝Σ H I 0.4±0.2 , whereM 3rd is the median of the five most massive clusters. There is no correlation withΣ gas ,Σ H2 , orΣ SFR . For clusters younger than 10 Myr, M 3rd ∝Σ H I 0.6±0.1 and M 3rd ∝Σ gas 0.5±0.2 ; there is no correlation with either Σ H 2 orΣ SFR . The results could hardly be more different from those found for clusters younger than 25 Myr in M33. For the flocculent galaxy M33, there is no correlation between maximum cluster mass and neutral gas, but we have determined M 3rd ∝Σ gas 3.8±0.3 , M 3rd ∝Σ H 2 1.2±0.1 , and M 3rd ∝Σ SFR 0.9±0.1 . For the older sample in M51, the lack of tight correlations is probably due to the combination of strong azimuthal variations in the surface densities of gas and star formation rate, and the cluster ages. These two facts mean that neither the azimuthal average of the surface densities at a given radius nor the surface densities at the present-day location of a stellar cluster represent the true surface densities at the place and time of cluster formation. In the case of the younger sample, even if the clusters have not yet traveled too far from their birth sites, the poor resolution of the radio data compared to the physical sizes of the clusters results in measuredΣ that are likely quite diluted compared to the actual densities relevant for the formation of the clusters.

  4. Damped Lyman-alpha absorption by disk galaxies with large redshifts. III. Intermediate-resolution spectroscopy

    International Nuclear Information System (INIS)

    Turnshek, D.A.; Wolfe, A.M.; Lanzetta, K.M.; Briggs, F.H.; Cohen, R.D.

    1989-01-01

    New intermediate-resolution spectroscopy for six members of a sample of 68 moderate- to high-redshift QSOs is presented. Evidence is reported which indicates that seven strong absorption features in the QSO spectra are due to damped Ly-alpha absorption. A standard curve-of-growth analysis on five of the damped systems is performed, and relevant properties are tabulated and discussed. Six of the seven damped Ly-alpha systems have H I column densities of 2 x 10 to the 20th/sq cm or larger, while the remaining system has an H I column density of about 10 to the 20th/sq cm. It is suggested that damped Ly-alpha systems arise when a sight line intercepts a high-redshift protogalaxy disk containing a quiescent cloud component characterized by high column density and low effective velocity dispersion. At the same time, the sight line usually intercepts a broader turbulent component, which is identified as the halo, characterized by much lower column density and higher effective velocity dispersion. 42 refs

  5. Low redshift Lyman alpha absorption lines and the dark matter halos of disk galaxies

    Science.gov (United States)

    Maloney, Philip

    1993-01-01

    Recent observations using the Hubble Space Telescope of the z = 0.156 QSO 3C 273 have discovered a surprisingly large number of Ly-alpha absorption lines. In particular, Morris et al. found 9 certain and 7 possible Ly-alpha lines with equivalent widths above 25 mA. This is much larger (by a factor of 5-10) than the number expected from extrapolation of the high-redshift behavior of the Ly-alpha forest. Within the context of pressure-confined models for the Ly-alpha clouds, this behavior can be understood if the ionizing background declines sharply between z is approximately 2 and z is approximately 0. However, this requires that the ionizing photon flux drop as rapidly as the QSO volume emissivity; moreover, the absorbers must have a space density n(sub O) is approximately 2.6(N/10)h/((D/100 kpc)(sup 2)) Mpc(sup -3) where D is the present-day diameter of the absorbers. It is somewhat surprising that such necessarily fragile objects could have survived in such numbers to the present day. It is shown that it is plausible that the atomic hydrogen extents of spiral and irregular galaxies are large enough to produce the observed number of Ly-alpha absorption lines toward 3C 273, and that the neutral column densities and doppler b-values expected under these conditions fall in the range found by Morris et al. (1991).

  6. THE OPTICAL STRUCTURE OF THE STARBURST GALAXY M82. I. DYNAMICS OF THE DISK AND INNER-WIND

    International Nuclear Information System (INIS)

    Westmoquette, M. S.; Smith, L. J.; Konstantopoulos, I. S.; Gallagher, J. S.; Trancho, G.; Bastian, N.

    2009-01-01

    that the rotation axis of the ionized emission-line gas is offset from the stellar rotation axis and the photometric major axis by ∼12 deg. not only within the nuclear regions but over the whole inner 2 kpc of the disk. This attests to the perturbations introduced from M82's past interactions within the M81 group. Finally, finding a turn-over in the stellar and ionized gas rotation curves on both sides of the galaxy indicates that our sight line, in places, extends at least half way through disk, and conflicts with the high levels of obscuration usually associated with the nuclear regions of M82.

  7. Boundary layer circulation in disk-halo galaxies. III. The dispersion relation for local disturbances and large-scale spiral waves

    International Nuclear Information System (INIS)

    Waxman, A.M.

    1980-01-01

    This paper concerns the geometry and physical properties of waves which arise from a shear-flow (i.e. inflection point) instability of the galactic boundary layer circulation. This circulation was shown to exist in the meridional plane of a model galaxy containing a gaseous disk embedded in a rotating gaseous halo. Previously derived equations describe the local effects of Boussinesq perturbations, in the form of spiral waves with aribitrary pitch angle, on the model disk-halo system. The equations are solved asymptotically for large values of the local Reynolds number. In passing to the limit of inviscid waves, it is possible to derive a locally valid dispersion relation. A perturbation technique is developed whereby the inviscid wave eigenvalues can be corrected for the effects of small but finite viscosity. In this way the roles of the buoyancy force, Coriolis acceleration, viscous stresses, and their interactions can be studied. It is found that, locally, the most unstable inviscid waves are leading and open with large azimuthal wavenumbers. However, these waves display little or no coherence over the face of the disk and so would not emerge as modes in a global analysis.The geometry of the dominant inviscid waves is found to be leading, tightly wound spirals. Viscous corrections shift the dominant wave form to trailing, tightly wound spirals with small azimuthal wavenumbers. These waves grow on a time scale of about 10 7 years. It is suggested that these waves can initiate spiral structure in galaxies during disk formation and that a subsequent transition to a self-gravitating acoustical mode with the same spiral geometry may occur. This transition becomes possible once the contrast in gas densities between the disk and surrounding halo becomes sufficiently large

  8. Nearly collisionless spherical accretion

    International Nuclear Information System (INIS)

    Begelman, M.C.

    1977-01-01

    A fluid-like gas accretes much more efficiently than a collisionless gas. The ability of an accreting gas to behave like a fluid depends on the relationship of the mean free path of a gas particle at r → infinity lambdasub(infinity), to the typical length scales associated with the star-gas system. This relationship is examined in detail. For constant collision cross-section evidence is found for a rapid changeover from collisionless to fluid-like accretion flow when lambdasub(infinity) drops below a certain value, but for hard Coulomb collisions, the transition is more gradual, and is sensitive to the adiabatic index of the gas at r→ infinity. To these results must be added the effects of the substantial cusp of bound particles, which always develops in a system with arbitrarily small but non-zero cross-section. The density run in such a cusp depends on the collision properties of the particles. 'Loss-cone' accretion from the cusp may in some cases exceed the predicted accretion rate. (author)

  9. Galaxy collisions

    International Nuclear Information System (INIS)

    Combes, F.

    1987-01-01

    Galaxies are not isolated systems of stars and gas, ''independent universes'' as believed by astronomers about ten years ago, but galaxies are formed and evolve by interaction with their environment, and in particular with their nearest neighbors. Gravitational interactions produce enormous tides in the disk of spiral galaxies, generate spiral arms and trigger bursts of star formation. Around elliptical galaxies, the collision with a small companion produces a series of waves, or shells. A galaxy interaction leads, in most cases, to the coalescence of the two coliders; therefore all galaxies are not formed just after the Big-Bang, when matter recombines: second generation galaxies are still forming now by galaxy mergers, essentially elliptical galaxies, but also compact dwarfs. Collisions between galaxies could also trigger activity in nuclei for radiogalaxies and quasars [fr

  10. Collisionless sausage instability

    International Nuclear Information System (INIS)

    Coppins, M.

    1989-01-01

    The Chew--Goldberger--Low (CGL) double adiabatic model [Proc. R. Soc. London Ser. A 236, 112 (1956)] is used to study the linear m = 0 (sausage) mode in a Z pinch operating in the collisionless, small ion Larmor radius regime. The model is valid in this case since the parallel heat flow is identically zero. A necessary and sufficient condition for stability, applicable to arbitrary (anisotropic) Z-pinch equilibria, is derived and the eigenvalue equation is solved for two classes of isotropic equilibria. Growth rates are shown to be lower than those of ideal magnetohydrodynamics (MHD). It is found that, in contrast to ideal MHD, the CGL eigenfunctions are characterized by an unperturbed inner region

  11. Entropy in Collisionless Self-gravitating Systems

    Science.gov (United States)

    Barnes, Eric; Williams, L.

    2010-01-01

    Collisionless systems, like simulated dark matter halos or gas-less elliptical galaxies, often times have properties suggesting that a common physical principle controls their evolution. For example, N-body simulations of dark matter halos present nearly scale-free density/velocity-cubed profiles. In an attempt to understand the origins of such relationships, we adopt a thermodynamics approach. While it is well-known that self-gravitating systems do not have physically realizable thermal equilibrium configurations, we are interested in the behavior of entropy as mechanical equilibrium is acheived. We will discuss entropy production in these systems from a kinetic theory point of view. This material is based upon work supported by the National Aeronautics and Space Administration under grant NNX07AG86G issued through the Science Mission Directorate.

  12. Orbit elements and kinematics of the halo stars and the old disk population: evidence for active phases in the evolution of the Galaxy

    International Nuclear Information System (INIS)

    Marsakov, V.A.; Suchkov, A.A.

    1978-01-01

    The distributions of orbits eccentricities and of angular momenta for the halo stars and for the old disk population are considered. The distributions have gaps separating the halo from the disk and diving the halo population into three groups. From the point of view of star formation during the collapse at the earliy stages of evolution the gaps evidence that threre were in the Galaxy long periods of suppression of star formation. The kinematics and the orbit elements of the halo stars and of the old disk population allow to conclude that there was no significant relaxation in the halo; the halo subsystems are not stationary, they perform radial oscillations with respect to the galactic centre; the velocity dispersion in the galactic rotation direction for the halo stars having the same age does not exceed 20-40 km/s; the dispersion of the velocity component along the galactic radius is symmetrically higher for the subsystems with a greater eccentrically and reaches 215 km/s for the stars with the greatest eccentricaities; the sing of the angular momentum in the protogalactic gas cloud probably changed at some distance form the galactic centre

  13. Collisionless dissipation of Langmuir turbulence

    International Nuclear Information System (INIS)

    Erofeev, V.I.

    2002-01-01

    An analysis of two experimental observations of Langmuir wave collapse is performed. The corresponding experimental data are shown to give evidence against the collapse. The physical reason for preventing the collapses is found to be the nonresonant electron diffusion in momentums. In this process, plasma thermal electrons are efficiently heated at the expense of wave energy, and intense collisionless wave dissipation takes place. The basic reason of underestimation of this phenomenon in traditional theory is shown to be the substitution of real plasma by a plasma probabilistic ensemble. A theory of nonresonant electron diffusion in a single collisionless plasma is developed. It is shown that corresponding collisionless wave dissipation may arrest spectral energy transfer towards small wave numbers

  14. Evolution of velocity dispersion along cold collisionless flows

    International Nuclear Information System (INIS)

    Banik, Nilanjan; Sikivie, Pierre

    2016-01-01

    We found that the infall of cold dark matter onto a galaxy produces cold collisionless flows and caustics in its halo. If a signal is found in the cavity detector of dark matter axions, the flows will be readily apparent as peaks in the energy spectrum of photons from axion conversion, allowing the densities, velocity vectors and velocity dispersions of the flows to be determined. We also discuss the evolution of velocity dispersion along cold collisionless flows in one and two dimensions. A technique is presented for obtaining the leading behaviour of the velocity dispersion near caustics. The results are used to derive an upper limit on the energy dispersion of the Big Flow from the sharpness of its nearby caustic, and a prediction for the dispersions in its velocity components

  15. Origin, structure and evolution of galaxies

    International Nuclear Information System (INIS)

    Zhi, F.L.

    1988-01-01

    Recent developments of the origin, structure and evolution of galaxies have been reviewed. The contents of this book are: Inflationary Universe; Cosmic String; Active Galaxies; Intergalactic Medium; Waves in Disk Galaxies; Dark Matter; Gas Dynamics in Disk Galaxies; Equilibrium and Stability of Spiral Galaxies

  16. The Disk Mass Project

    NARCIS (Netherlands)

    Verheijen, Marc A. W.; Bershady, Matthew A.; Swaters, Rob A.; Andersen, David R.; Westfall, Kyle B.; de Jong, Roelof Sybe

    2007-01-01

    Little is known about the content and distribution of dark matter in spiral galaxies. To break the degeneracy in galaxy rotation curve decompositions, which allows a wide range of dark matter halo density profiles, an independent measure of the mass surface density of stellar disks is needed. Here,

  17. The Lyman alpha reference sample VI. Lyman alpha escape from the edge-on disk galaxy Mrk 1486

    Czech Academy of Sciences Publication Activity Database

    Duval, F.; Ostlin, G.; Hayes, M.; Zackrisson, E.; Verhamme, A.; Orlitová, Ivana; Adamo, A.; Guaita, L.; Melinder, J.; Cannon, J.M.; Laursen, P.; Rivera-Thorsen, T.; Herenz, E.Ch.; Gruyters, P.; Mas-Hesse, J. M.; Kunth, D.; Sandberg, A.; Schaerer, D.; Mansson, J.-E.

    2016-01-01

    Roč. 587, March (2016), A77/1-A77/24 ISSN 0004-6361 R&D Projects: GA ČR(CZ) GP14-20666P Institutional support: RVO:67985815 Keywords : galaxies * starburst * submillimeter Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  18. Quasar Feedback in the Ultraluminous Infrared Galaxy F11119+3257: Connecting the Accretion Disk Wind with the Large-scale Molecular Outflow

    Science.gov (United States)

    Veilleux, S.; Bolatto, A.; Tombesi, F.; Meléndez, M.; Sturm, E.; González-Alfonso, E.; Fischer, J.; Rupke, D. S. N.

    2017-07-01

    In Tombesi et al., we reported the first direct evidence for a quasar accretion disk wind driving a massive (>100 M ⊙ yr-1) molecular outflow. The target was F11119+3257, an ultraluminous infrared galaxy (ULIRG) with unambiguous type 1 quasar optical broad emission lines. The energetics of the accretion disk wind and molecular outflow were found to be consistent with the predictions of quasar feedback models where the molecular outflow is driven by a hot energy-conserving bubble inflated by the inner quasar accretion disk wind. However, this conclusion was uncertain because the mass outflow rate, momentum flux, and mechanical power of the outflowing molecular gas were estimated from the optically thick OH 119 μm transition profile observed with Herschel. Here, we independently confirm the presence of the molecular outflow in F11119+3257, based on the detection of ˜±1000 km s-1 blue- and redshifted wings in the CO(1-0) emission line profile derived from deep ALMA observations obtained in the compact array configuration (˜2.″8 resolution). The broad CO(1-0) line emission appears to be spatially extended on a scale of at least ˜7 kpc from the center. Mass outflow rate, momentum flux, and mechanical power of (80-200) {R}7-1 M ⊙ yr-1, (1.5-3.0) {R}7-1 L AGN/c, and (0.15-0.40)% {R}7-1 {L}{AGN}, respectively, are inferred from these data, assuming a CO-to-H2 conversion factor appropriate for a ULIRG (R 7 is the radius of the outflow normalized to 7 kpc, and L AGN is the AGN luminosity). These rates are time-averaged over a flow timescale of 7 × 106 yr. They are similar to the OH-based rates time-averaged over a flow timescale of 4 × 105 yr, but about a factor of 4 smaller than the local (“instantaneous” ≲105 yr) OH-based estimates cited in Tombesi et al. The implications of these new results are discussed in the context of time-variable quasar-mode feedback and galaxy evolution. The need for an energy-conserving bubble to explain the molecular outflow

  19. Spatially resolved chemistry in nearby galaxies. III. Dense molecular gas in the inner disk of the LIRG IRAS 04296+2923

    Energy Technology Data Exchange (ETDEWEB)

    Meier, David S. [Department of Physics, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801 (United States); Turner, Jean L. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547 (United States); Beck, Sara C., E-mail: dmeier@nmt.edu, E-mail: turner@astro.ucla.edu, E-mail: sara@wise.tau.ac.il [Department of Physics and Astronomy, Tel Aviv University, 69978 Ramat Aviv (Israel)

    2014-11-10

    We present a survey of 3 mm molecular lines in IRAS 04296+2923, one of the brightest known molecular-line emitting galaxies, and one of the closest luminous infrared galaxies (LIRGs). Data are from the Owens Valley and CARMA millimeter interferometers. Species detected at ≲ 4'' resolution include C{sup 18}O, HCN, HCO{sup +}, HNC, CN, CH{sub 3}OH, and, tentatively, HNCO. Along with existing CO, {sup 13}CO, and radio continuum data, these lines constrain the chemical properties of the inner disk. Dense molecular gas in the nucleus fuels a star formation rate ≳10 M {sub ☉} yr{sup –1} and is traced by lines of HCN, HCO{sup +}, HNC, and CN. A correlation between HCN and star formation rate is observed on sub-kiloparsec scales, consistent with global relations. Toward the nucleus, CN abundances are similar to those of HCN, indicating emission comes from a collection (∼40-50) of moderate visual extinction, photon-dominated-region clouds. The CO isotopic line ratios are unusual: CO(1-0)/{sup 13}CO(1-0) and CO(1-0)/C{sup 18}O(1-0) line ratios are large toward the starburst, as is commonly observed in LIRGs, but farther out in the disk these ratios are remarkably low (≲ 3). {sup 13}CO/C{sup 18}O abundance ratios are lower than in Galactic clouds, possibly because the C{sup 18}O is enriched by massive star ejecta from the starburst. {sup 13}CO is underabundant relative to CO. Extended emission from CH{sub 3}OH indicates that dynamical shocks pervade both the nucleus and the inner disk. The unusual CO isotopologue ratios, the CO/HCN intensity ratio versus L {sub IR}, the HCN/CN abundance ratio, and the gas consumption time versus inflow rate all indicate that the starburst in IRAS 04296+2923 is in an early stage of development.

  20. Instability, Turbulence, and Enhanced Transport in Collisionless Black-Hole Accretion Flows

    Science.gov (United States)

    Kunz, Matthew

    Many astrophysical plasmas are so hot and diffuse that the collisional mean free path is larger than the system size. Perhaps the best examples of such systems are lowluminosity accretion flows onto black holes such as Sgr A* at the center of our own Galaxy, or M87 in the Virgo cluster. To date, theoretical models of these accretion flows are based on magnetohydrodynamics (MHD), a collisional fluid theory, sometimes (but rarely) extended with non-MHD features such as anisotropic (i.e. magnetic-field-aligned) viscosity and thermal conduction. While these extensions have been recognized as crucial, they require ad hoc assumptions about the role of microscopic kinetic instabilities (namely, firehose and mirror) in regulating the transport properties. These assumptions strongly affect the outcome of the calculations, and yet they have never been tested using more fundamental (i.e. kinetic) models. This proposal outlines a comprehensive first-principles study of the plasma physics of collisionless accretion flows using both analytic and state-of-the-art numerical models. The latter will utilize a new hybrid-kinetic particle-in-cell code, Pegasus, developed by the PI and Co-I specifically to study this problem. A comprehensive kinetic study of the 3D saturation of the magnetorotational instability in a collisionless plasma will be performed, in order to understand the interplay between turbulence, transport, and Larmor-scale kinetic instabilities such as firehose and mirror. Whether such instabilities alter the macroscopic saturated state, for example by limiting the transport of angular momentum by anisotropic pressure, will be addressed. Using these results, an appropriate "fluid" closure will be developed that can capture the multi-scale effects of plasma kinetics on magnetorotational turbulence, for use by the astrophysics community in building evolutionary models of accretion disks. The PI has already successfully performed the first three-dimensional kinetic

  1. Study on the formation and dynamics of galaxies

    International Nuclear Information System (INIS)

    Fillmore, J.A.

    1985-01-01

    The first half of this thesis is a study on the growth of perturbations in the early universe that might lead to galaxies, clusters of galaxies, or regions void of galaxies. The growth of self-similar perturbations in an Einstein-deSitter universe with cold, collisionless particles is investigated. Three classes of solutions are obtained; one each with planar, cylindrical, and spherical symmetry. The solutions follow the development of structure in both the linear and nonlinear regimes. Self-similar spherical voids which develop from initially underdense regions are also investigated. The character of each solution depends upon the initial density deficit. The second half of this thesis details solutions of steady-state axisymmetric models of elliptical and disk galaxies, and considers which observable properties can be used as diagnostics of the kinematic configuration of the spheroidal component of these systems. Two component mass models are fitted to surface brightness measurements and used to fit kinematic models to the velocity data

  2. Study on the formation and dynamics of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Fillmore, J.A.

    1985-01-01

    The first half of this thesis is a study on the growth of perturbations in the early universe that might lead to galaxies, clusters of galaxies, or regions void of galaxies. The growth of self-similar perturbations in an Einstein-deSitter universe with cold, collisionless particles is investigated. Three classes of solutions are obtained; one each with planar, cylindrical, and spherical symmetry. The solutions follow the development of structure in both the linear and nonlinear regimes. Self-similar spherical voids which develop from initially underdense regions are also investigated. The character of each solution depends upon the initial density deficit. The second half of this thesis details solutions of steady-state axisymmetric models of elliptical and disk galaxies, and considers which observable properties can be used as diagnostics of the kinematic configuration of the spheroidal component of these systems. Two component mass models are fitted to surface brightness measurements and used to fit kinematic models to the velocity data.

  3. A study of the formation and dynamics of galaxies

    Science.gov (United States)

    Fillmore, J. A.

    The first half of this thesis is a study on the growth of perturbations in the early universe which might lead to galaxies, clusters of galaxies, or regions void of galaxies. The growth of self-similar perturbations in an Einstein-deSitter universe with cold, collisionless particles is investigated. Three classes of solutions are obtained; one each with planar, cylindrical, and spherical symmetry. The solutions follow the development of structure in both the linear and nonlinear regimes. Self-similar spherical voids which develop from initially underdense regions are also investigated. The character of each solution depends upon the initial density deficit. The second half of this thesis details solutions of steady-state axisymmetric models of elliptical and disk galaxies, and considers which observable properties can be used as diagnostics of the kinematic configuration of the spheroidal component of these systems. Two component mass models are fitted to surface brightness measurements and used to fit kinematic models to the velocity data.

  4. The Evolution of Spiral Disks

    Science.gov (United States)

    Bershady, Matthew A.; Andersen, David R.

    We report on aspects of an observational study to probe the mass assembly of large galaxy disks. In this contribution we focus on a new survey of integral-field Hα velocity-maps of nearby, face on disks. Preliminary results yield disk asymmetry amplitudes consistent with estimates based on the scatter in the local Tully-Fisher relation. We also show how the high quality of integral-field echelle spectroscopy enables determinations of kinematic inclinations to i ~20 °. This holds the promise that nearly-face-on galaxies can be included in the Tully-Fisher relation. Finally, we discuss the prospects for measuring dynamical asymmetries of distant galaxies.

  5. On Collisionless Damping of Ion Acoustic Waves

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla; Petersen, P.I.

    1973-01-01

    Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero.......Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero....

  6. Galaxy formation

    International Nuclear Information System (INIS)

    Silk, J.; Di Cintio, A.; Dvorkin, I.

    2014-01-01

    Galaxy formation is at the forefront of observation and theory in cosmology. An improved understanding is essential for improving our knowledge both of the cosmological parameters, of the contents of the universe, and of our origins. In these lectures intended for graduate students, galaxy formation theory is reviewed and confronted with recent observational issues. In lecture 1, the following topics are presented: star formation considerations, including IMF, star formation efficiency and star formation rate, the origin of the galaxy luminosity function, and feedback in dwarf galaxies. In lecture 2, we describe formation of disks and massive spheroids, including the growth of supermassive black holes, negative feedback in spheroids, the AGN-star formation connection, star formation rates at high redshift and the baryon fraction in galaxies.

  7. KILOPARSEC-SCALE SIMULATIONS OF STAR FORMATION IN DISK GALAXIES. I. THE UNMAGNETIZED AND ZERO-FEEDBACK LIMIT

    International Nuclear Information System (INIS)

    Van Loo, Sven; Butler, Michael J.; Tan, Jonathan C.

    2013-01-01

    We present hydrodynamic simulations of the evolution of self-gravitating dense gas on scales of 1 kpc down to ∼< parsec in a galactic disk, designed to study dense clump formation from giant molecular clouds (GMCs). These structures are expected to be the precursors to star clusters and this process may be the rate limiting step controlling star formation rates in galactic systems as described by the Kennicutt-Schmidt relation. We follow the thermal evolution of the gas down to ∼5 K using extinction-dependent heating and cooling functions. We do not yet include magnetic fields or localized stellar feedback, so the evolution of the GMCs and clumps is determined solely by self-gravity balanced by thermal and turbulent pressure support and the large-scale galactic shear. While cloud structures and densities change significantly during the simulation, GMC virial parameters remain mostly above unity for timescales exceeding the free-fall time of GMCs indicating that energy from galactic shear and large-scale cloud motions continuously cascades down to and within the GMCs. We implement star formation at a slow, inefficient rate of 2% per local free-fall time, but even this yields global star formation rates that are about two orders of magnitude larger than the observed Kennicutt-Schmidt relation due to overproduction of dense gas clumps. We expect a combination of magnetic support and localized stellar feedback is required to inhibit dense clump formation to ∼1% of the rate that results from the nonmagnetic, zero-feedback limit.

  8. GalMod: the last frontier of Galaxy population synthesis models

    Science.gov (United States)

    Pasetto, Stefano; Kollmeier, Juna; Grebel, Eva K.; chiosi, cesare

    2018-01-01

    We present a novel Galaxy population synthesis model: GalMod (Pasetto et al. 2016, 2017a,b) is the only star-count model featuring an asymmetric bar/bulge as well as spiral arms as directly obtained by applying linear perturbative theory to self-consistent distribution function of the Galaxy stellar populations. Compared to previous literature models (e.g., Besancon, Trilegal), GalMod allows to generate full-sky mock catalogue, M31 surveys and provides a better match to observed Milky Way (MW) stellar fields.The model can generate synthetic mock catalogs of visible portions of the MW, external galaxies like M31, or N-body simulation initial conditions. At any given time, e.g., a chosen age of the Galaxy, the model contains a sum of discrete stellar populations, namely bulge/bar, disk, halo. The disk population is itself the sum of subpopulations: spiral arms, thin disk, thick disk, and gas component, while the halo is modeled as the sum of a stellar component, a hot coronal gas, and a dark matter component. The Galactic potential is computed from these subpopulations' density profiles and used to generate detailed kinematics by considering the first few moments of the Boltzmann collisionless equation for all the stellar subpopulations. The same density profiles are then used to define the observed color-magnitude diagrams within an input field of view from an arbitrary solar location. Several photometric systems have been included and made available on-line, e.g., SDSS, Gaia, 2MASS, HST WFC3, and others. Finally, we model the extinction with advanced ray tracing solutions.The model's web page (and tutorial) can be accessed at www.GalMod.org.

  9. The Disk Mass Project: breaking the disk-halo degeneracy

    NARCIS (Netherlands)

    Verheijen, Marc A. W.; Bershady, Matthew A.; Swaters, Rob A.; Andersen, David R.; Westfall, Kyle B.; DE JONG, R. S.

    2007-01-01

    Little is known about the content and distribution of dark matter in spiral galaxies. To break the degeneracy in galaxy rotation curve decompositions, which allows a wide range of dark matter halo density profiles, an independent measure of the mass surface density of stellar disks is needed. Here,

  10. THE PHOTOMETRIC AND KINEMATIC STRUCTURE OF FACE-ON DISK GALAXIES. II. INTEGRATED LINE PROFILE CHARACTERIZATION AND THE ORIGIN OF LINE PROFILE ASYMMETRY

    International Nuclear Information System (INIS)

    Andersen, David R.; Bershady, Matthew A.

    2009-01-01

    We perform a moments analysis of H I and H II global line profiles for 33 nearly face-on disk galaxies for the threefold purpose of rationalizing and interpreting line profile indices in the literature, presenting robust moment definitions with analytic error functions calibrated against Monte Carlo simulation, and probing the physical origin of line profile asymmetries. The first four profile moments serve as viable surrogates for the recession velocity, line width, asymmetry, and profile shape, respectively. The first three moments are superior, by a factor of ∼2 in precision, to related quantities defined in the literature. First and third profile moments are related; skew can be used to calculate more accurate recession velocities from global profiles. Second and fourth profile moments are linked, corresponding to the known trend that narrow (but well resolved) line widths tend to be more Gaussian. Hα kurtosis also appears correlated with the spatially resolved line width of the ionized gas. No systematics appear between various measures of line width and true rotation speed other than the wide range of normalizations, which we calibrate. This conclusion and calibration, however, is highly sample dependent. The ratio of H II to H I widths is consistent with unity, even at low projected line width. There may be a trend toward a decrease in the ratio of H II to H I widths consistent with previous studies, but we also observe greater scatter. While there is good agreement between H I and H II first, second, and fourth moments, we find no positive correlation between skew measured from H I and H II profiles. Detailed analysis of the spatially resolved Hα distribution demonstrates that H II global profile asymmetries are dominated by differences in the gas distribution, not kinematic asymmetries.

  11. Universal collisionless transport of graphene

    Science.gov (United States)

    Link, Julia M.; Orth, Peter P.; Sheehy, Daniel E.; Schmalian, Jörg

    2016-06-01

    The impact of the electron-electron Coulomb interaction on the optical conductivity of graphene has led to a controversy that calls into question the universality of collisionless transport in this and other Dirac materials. Using a lattice calculation that avoids divergences present in previous nodal Dirac approaches, our work settles this controversy and obtains results in quantitative agreement with experiment over a wide frequency range. We also demonstrate that dimensional regularization methods agree, if the regularization of the theory in modified dimensions is correctly implemented. Tight-binding lattice and nodal Dirac theory calculations are shown to coincide at low energies even when the nonzero size of the atomic orbital wave function is included, conclusively demonstrating the universality of the optical conductivity of graphene.

  12. Chemical evolution of the galactic disk

    International Nuclear Information System (INIS)

    Wyse, R.F.G.; Gilmore, G.

    1987-01-01

    The distribution of enriched material in the stars and gas of their Galaxy contains information pertaining to the chemical evolution of the Milky Way from its formation epoch to the present day, and provides general constraints on theories of galaxy formation. The separate stellar components of the Galaxy cannot readily be understood if treated in isolation, but a reasonably self-consistent model for Galactic chemical evolution may be found if one considers together the chemical properties of the extreme spheroid, thick disk and thin disk populations of the Galaxy. The three major stellar components of the Galaxy are characterized by their distinct spatial distributions, metallicity structure, and kinematics, with the newly-identified thick disk being approximately three times more massive than the classical metal-poor, non-rotating extreme spheroid. Stellar evolution in the thick disk straightforwardly provides the desired pre-enrichment for resolution of the thin disk G dwarf problem

  13. The formation and evolution of galaxies in an expanding universe

    Science.gov (United States)

    Ceverino-Rodriguez, Daniel

    with few hundred km s -1 and occasionally 1000 - 2000 kms - 1 . The gas has high metallicity, which may exceed the solar metallicity. The temperature of the gas in the outflows and in chimneys can be very high: T = 10 7 - 10^8 K. The density profile of dark matter is still consistent with a cuspy profile. The simulations reproduce this picture only if the resolution is very high: better than 50 pc, which is 10 times better than the typical resolution in previous cosmological simulations. Our simulations of galaxy formation reach a resolution of 35 pc. At the time in which most of the mass is assembled into a galaxy, a big fraction of the gas in the galactic disk has already been converted into stars. Therefore, we can assume that the remaining gas does not affect the evolution of the stellar distribution. In this approximation, all gasdynamical processes are neglected and we treat a galaxy as a pure collisionless system. Then we use N-body-only models to study the long-term evolution of an already formed stellar disk. During this evolution, the disk develops a bar at the center through disk instabilities. We find dynamical resonances between the bar and disk or halo material. These resonances can capture stars near certain resonant orbits. As a result, resonances prevent the evolution of the stars trapped around these orbits.

  14. The formation of galaxies

    International Nuclear Information System (INIS)

    Gunn, J.E.

    1983-01-01

    The presently fashionable ideas for galaxy formation are reviewed briefly, and it is concluded that the standard isothermal heirarchy fits the available data best. A simple infall picture is presented which explains many of the observed properties of disk galaxies. (orig.)

  15. HERSCHEL's ''COLD DEBRIS DISKS'': BACKGROUND GALAXIES OR QUIESCENT RIMS OF PLANETARY SYSTEMS?

    Energy Technology Data Exchange (ETDEWEB)

    Krivov, A. V.; Loehne, T.; Mutschke, H.; Neuhaeuser, R. [Astrophysikalisches Institut und Universitaetssternwarte, Friedrich-Schiller-Universitaet Jena, Schillergaesschen 2-3, D-07745 Jena (Germany); Eiroa, C.; Marshall, J. P.; Mustill, A. J. [Departamento de Fisica Teorica, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Montesinos, B. [Departamento de Astrofisica, Centro de Astrobiologia (CAB, CSIC-INTA), ESAC Campus, P.O. Box 78, E-28691 Villanueva de la Canada, Madrid (Spain); Del Burgo, C. [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Apartado Postal 51 y 216, 72000 Puebla, Pue. (Mexico); Absil, O. [Institut d' Astrophysique et de Geophysique, Universite de Liege, Allee du 6 Aout 17, B-4000 Liege (Belgium); Ardila, D. [NASA Herschel Science Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Augereau, J.-C.; Ertel, S.; Lebreton, J. [UJF-Grenoble 1/CNRS-INSU, Institut de Planetologie et d' Astrophysique de Grenoble (IPAG), UMR 5274, F-38041 Grenoble (France); Bayo, A. [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago (Chile); Bryden, G. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Danchi, W. [NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics, Code 667, Greenbelt, MD 20771 (United States); Liseau, R. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-43992, Onsala (Sweden); Mora, A. [ESA-ESAC Gaia SOC, P.O. Box 78, E-28691 Villanueva de la Canada, Madrid (Spain); Pilbratt, G. L., E-mail: krivov@astro.uni-jena.de [ESA Astrophysics and Fundamental Physics Missions Division, ESTEC/SRE-SA, Keplerlaan 1, 2201 AZ Noordwijk (Netherlands); and others

    2013-07-20

    Infrared excesses associated with debris disk host stars detected so far peak at wavelengths around {approx}100 {mu}m or shorter. However, 6 out of 31 excess sources studied in the Herschel Open Time Key Programme, DUNES, have been seen to show significant-and in some cases extended-excess emission at 160 {mu}m, which is larger than the 100 {mu}m excess. This excess emission has been attributed to circumstellar dust and has been suggested to stem from debris disks colder than those known previously. Since the excess emission of the cold disk candidates is extremely weak, challenging even the unrivaled sensitivity of Herschel, it is prudent to carefully consider whether some or even all of them may represent unrelated galactic or extragalactic emission, or even instrumental noise. We re-address these issues using several distinct methods and conclude that it is highly unlikely that none of the candidates represents a true circumstellar disk. For true disks, both the dust temperatures inferred from the spectral energy distributions and the disk radii estimated from the images suggest that the dust is nearly as cold as a blackbody. This requires the grains to be larger than {approx}100 {mu}m, even if they are rich in ices or are composed of any other material with a low absorption in the visible. The dearth of small grains is puzzling, since collisional models of debris disks predict that grains of all sizes down to several times the radiation pressure blowout limit should be present. We explore several conceivable scenarios: transport-dominated disks, disks of low dynamical excitation, and disks of unstirred primordial macroscopic grains. Our qualitative analysis and collisional simulations rule out the first two of these scenarios, but show the feasibility of the third one. We show that such disks can indeed survive for gigayears, largely preserving the primordial size distribution. They should be composed of macroscopic solids larger than millimeters, but smaller

  16. Equilibrium distribution function in collisionless systems

    International Nuclear Information System (INIS)

    Pergamenshchik, V.M.

    1988-01-01

    Collisionless systems of a large number of N particles interacting by Coulomb forces are widely spread in cosmic and laboratory plasma. A statistical theory of equilibrium state of collisionless Coulomb systems which evolution obeys Vlasov equation is proposed. The developed formalism permits a sequential consideration of such distributed in one-particle six-dimensional phase space of a system and to obtain a simple result: equilibrium distribution function has the form of Fermi-Dirac distribution and doesn't depend on initial state factors

  17. The microphysics of collisionless shock waves

    DEFF Research Database (Denmark)

    Marcowith, Alexandre; Bret, Antoine; Bykov, Andrei

    2016-01-01

    Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active ga...

  18. Transition from Collisionless to Collisional MRI

    International Nuclear Information System (INIS)

    Sharma, Prateek; Hammett, Gregory W.; Quataert, Eliot

    2003-01-01

    Recent calculations by Quataert et al. (2002) found that the growth rates of the magnetorotational instability (MRI) in a collisionless plasma can differ significantly from those calculated using MHD. This can be important in hot accretion flows around compact objects. In this paper, we study the transition from the collisionless kinetic regime to the collisional MHD regime, mapping out the dependence of the MRI growth rate on collisionality. A kinetic closure scheme for a magnetized plasma is used that includes the effect of collisions via a BGK operator. The transition to MHD occurs as the mean free path becomes short compared to the parallel wavelength 2*/k(sub)||. In the weak magnetic field regime where the Alfven and MRI frequencies w are small compared to the sound wave frequency k(sub)||c(sub)0, the dynamics are still effectively collisionless even if omega << v, so long as the collision frequency v << k(sub)||c(sub)0; for an accretion flow this requires n less than or approximately equal to *(square root of b). The low collisionality regime not only modifies the MRI growth rate, but also introduces collisionless Landau or Barnes damping of long wavelength modes, which may be important for the nonlinear saturation of the MRI

  19. EVOLUTIONARY TRACKS OF TIDALLY STIRRED DISKY DWARF GALAXIES

    International Nuclear Information System (INIS)

    Lokas, Ewa L.; Kazantzidis, Stelios; Mayer, Lucio

    2011-01-01

    Using collisionless N-body simulations, we investigate the tidal evolution of late-type, rotationally supported dwarfs inside Milky Way sized host galaxies. Our study focuses on a wide variety of dwarf orbital configurations and initial structures. During the evolution, the disky dwarfs undergo strong mass loss, the stellar disks are transformed into spheroids, and rotation is replaced by random motions of the stars. Thus, the late-type progenitors are transformed into early-type dwarfs as envisioned by the tidal stirring model for the formation of dwarf spheroidal (dSph) galaxies in the Local Group. We determine the photometric properties of the dwarfs, including the total visual magnitude, the half-light radius, and the central surface brightness as they would be measured by an observer near the galactic center. Special emphasis is also placed on studying their kinematics and shapes. We demonstrate that the measured values are biased by a number of observational effects including the increasing angle of the observation cone near the orbital pericenter, the fact that away from the pericenter the tidal tails are typically oriented along the line of sight, and the fact that for most of the evolution the stellar components of the dwarfs are triaxial ellipsoids whose major axis tumbles with respect to the line of sight. Finally, we compare the measured properties of the simulated dwarfs to those of dwarf galaxies in the Local Group. The evolutionary tracks of the dwarfs in different parameter planes and the correlations between their different properties, especially the total magnitude and the surface brightness, strongly suggest that present-day dSph galaxies may have indeed formed from late-type progenitors as proposed by the tidal stirring scenario.

  20. z~2: An Epoch of Disk Assembly

    Science.gov (United States)

    Simons, Raymond C.; Kassin, Susan A.; Weiner, Benjamin; Heckman, Timothy M.; Trump, Jonathan; SIGMA, DEEP2

    2018-01-01

    At z = 0, the majority of massive star-forming galaxies contain thin, rotationally supported gas disks. It was once accepted that galaxies form thin disks early: collisional gas with high velocity dispersion should dissipate energy, conserve angular momentum, and develop strong rotational support in only a few galaxy crossing times (~few hundred Myr). However, this picture is complicated at high redshift, where the processes governing galaxy assembly tend to be violent and inhospitable to disk formation. We present results from our SIGMA survey of star-forming galaxy kinematics at z = 2. These results challenge the simple picture described above: galaxies at z = 2 are unlike local well-ordered disks. Their kinematics tend to be much more disordered, as quantified by their low ratios of rotational velocity to gas velocity dispersion (Vrot/σg): less than 35% of galaxies have Vrot/σg > 3. For comparison, nearly 100% of local star-forming galaxies meet this same threshold. We combine our high redshift sample with a similar low redshift sample from the DEEP2 survey. This combined sample covers a continuous redshift baseline over 0.1 < z < 2.5, spanning 10 Gyrs of cosmic time. Over this period, galaxies exhibit remarkably smooth kinematic evolution on average. All galaxies tend towards rotational support with time, and it is reached earlier in higher mass systems. This is due to both a significant decline in gas velocity dispersion and a mild rise in ordered rotational motions. These results indicate that z = 2 is a period of disk assembly, during which the strong rotational support present in today’s massive disk galaxies is only just beginning to emerge.

  1. Effect of massive disks on bulge isophotes

    International Nuclear Information System (INIS)

    Monet, D.G.; Richstone, D.O.; Schechter, P.L.

    1981-01-01

    Massive disks produce flattened equipotentials. Unless the stars in a galaxy bulge are preferentially hotter in the z direction than in the plane, the isophotes will be at least as flat as the equipotentials. The comparison of two galaxy models having flat rotation curves with the available surface photometry for five external galaxies does not restrict the mass fraction which might reside in the disk. However, star counts in our own Galaxy indicate that unless the disk terminates close to the solar circle, no more than half the mass within that circle lies in the disk. The remaining half must lie either in the bulge or, more probably, in a third dark, round, dynamically distinct component

  2. Hot Gas Halos in Galaxies

    Science.gov (United States)

    Mulchaey, John

    Most galaxy formation models predict that massive low-redshift disk galaxies are embedded in extended hot halos of externally accreted gas. Such gas appears necessary to maintain ongoing star formation in isolated spirals like the Milky Way. To explain the large population of red galaxies in rich groups and clusters, most galaxy evolution models assume that these hot gas halos are stripped completely when a galaxy enters a denser environment. This simple model has been remarkably successful at reproducing many observed properties of galaxies. Although theoretical arguments suggest hot gas halos are an important component in galaxies, we know very little about this gas from an observational standpoint. In fact, previous observations have failed to detect soft X-ray emission from such halos in disk galaxies. Furthermore, the assumption that hot gas halos are stripped completely when a galaxy enters a group or cluster has not been verified. We propose to combine proprietary and archival XMM-Newton observations of galaxies in the field, groups and clusters to study how hot gas halos are impacted by environment. Our proposed program has three components: 1) The deepest search to date for a hot gas halo in a quiescent spiral galaxy. A detection will confirm a basic tenet of disk galaxy formation models, whereas a non-detection will seriously challenge these models and impose new constraints on the growth mode and feedback history of disk galaxies. 2) A detailed study of the hot gas halos properties of field early-type galaxies. As environmental processes such as stripping are not expected to be important in the field, a study of hot gas halos in this environment will allow us to better understand how feedback and other internal processes impact hot gas halos. 3) A study of hot gas halos in the outskirts of groups and clusters. By comparing observations with our suite of simulations we can begin to understand what role the stripping of hot gas halos plays in galaxy

  3. Tidal interaction of galaxies

    International Nuclear Information System (INIS)

    Kozlov, N.N.; Syunyaev, R.A.; Ehneev, T.M.

    1974-01-01

    One of the hypotheses explaining the occurrence of anomalous details in interacting galaxies has been investigated. Pairs of galaxies with 'tails' oppositely directed or neighbouring galaxies with cofferdams 'bridges', as if connecting the galaxies, are called interacting galaxies. The hypothesis connects the origin of cofferdams and 'tails' of interacting galaxies with tidal effects ; the action of power gravitational forces in the intergalactic space. A source of such forces may be neighbouring stellar systems or invisible bodies, for instance, 'dead' quasars after a gravitational collapse. The effect of large masses of matter on the galaxy evolution has been investigated in the Institute of Applied Mathematics of the Academy of Sciences of the USSSR in 1971-1972 by numerical simulation of the process on a digital computer with the subsequent data transmission on a display. Different versions of a massive body flight relative to a galaxy disk are considered. Photographs of a display screen at different moments of time are presented. As a result of mathematical simulation of galaxies gravitational interactions effects are discovered which resemble real structures in photographs of galaxies. It seems to be premature to state that namely these mechanisms cause the formation of 'tails' and cofferdams between galaxies. However, even now it is clear that the gravitational interaction strongly affects the dynamics of the stellar system evolution. Further studies should ascertain a true scale of this effect and its genuine role in galaxy evolution

  4. Interactions between intergalactic medium and galaxies

    International Nuclear Information System (INIS)

    Einasto, J.; Saar, E.

    1977-01-01

    The interaction of galaxies with the environmental gas both in clusters and in small groups of galaxies is investigated. Interaction between galaxies and the ambient medium can be considered simply as final touches in the process of galaxy formation. Large relative velocities of galaxies in their clusters and of the intercluster gas result in a loss of the intergalactic gas, that in its turn affects the morphology of cluster galaxies. Interaction between the coronal clouds and the gas in the disk of spiral galaxies may result in regular patterns of star formation and in the bending of planes of galaxies

  5. Herschel/SPIRE observations of the dusty disk of NGC 4244

    NARCIS (Netherlands)

    Holwerda, B. W.; Bianchi, S.; Boker, T.; Radburn-Smith, D.; de Jong, R. S.; Baes, M.; van der Kruit, P. C.; Xilouris, M.; Gordon, K. D.; Dalcanton, J. J.

    We present Herschel/SPIRE images at 250, 350, and 500 mu m of NGC 4244, a typical low-mass, disk-only and edge-on spiral galaxy. The dust disk is clumpy and shows signs of truncation at the break radius of the stellar disk. This disk coincides with the densest part of the Hi disk. We compare the

  6. Low-Surface-Brightness Galaxies: Hidden Galaxies Revealed

    Science.gov (United States)

    Bothun, G.; Impey, C.; McGaugh, S.

    1997-07-01

    In twenty years, low surface brightness (LSB) galaxies have evolved from being an idiosyncratic notion to being one of the major baryonic repositories in the Universe. The story of their discovery and the characterization of their properties is told here. Their recovery from the noise of the night sky background is a strong testament to the severity of surface brightness selection effects. LSB galaxies have a number of remarkable properties which distinguish them from the more familiar Hubble Sequence of spirals. The two most important are 1) they evolve at a significantly slower rate and may well experience star formation outside of the molecular cloud environment, 2) they are embedded in dark matter halos which are of lower density and more extended than the halos around high surface brightness (HSB) disk galaxies. Compared to HSB disks, LSB disks are strongly dark matter dominated at all radii and show a systematic increase in $M/L$ with decreasing central surface brightness. In addition, the recognition that large numbers of LSB galaxies actually exist has changed the form of the galaxy luminosity function and has clearly increased the space density of galaxies at z =0. Recent CCD surveys have uncovered a population of red LSB disks that may be related to the excess of faint blue galaxies detected at moderate redshifts. LSB galaxies offer us a new window into galaxy evolution and formation which is every bit as important as those processes which have produced easy to detect galaxies. Indeed, the apparent youth of some LSB galaxies suggest that galaxy formation is a greatly extended process. While the discovery of LSB galaxies have lead to new insights, it remains unwise to presume that we now have a representative sample which encompasses all galaxy types and forms. (SECTION: Invited Review Paper)

  7. Astrophysical disks Collective and Stochastic Phenomena

    CERN Document Server

    Fridman, Alexei M; Kovalenko, Ilya G

    2006-01-01

    The book deals with collective and stochastic processes in astrophysical discs involving theory, observations, and the results of modelling. Among others, it examines the spiral-vortex structure in galactic and accretion disks , stochastic and ordered structures in the developed turbulence. It also describes sources of turbulence in the accretion disks, internal structure of disk in the vicinity of a black hole, numerical modelling of Be envelopes in binaries, gaseous disks in spiral galaxies with shock waves formation, observation of accretion disks in a binary system and mass distribution of luminous matter in disk galaxies. The editors adaptly brought together collective and stochastic phenomena in the modern field of astrophysical discs, their formation, structure, and evolution involving the methodology to deal with, the results of observation and modelling, thereby advancing the study in this important branch of astrophysics and benefiting Professional Researchers, Lecturers, and Graduate Students.

  8. Rotation of gas above the galactic disk

    International Nuclear Information System (INIS)

    Gvaramadze, V.V.; Lominadze, D.G.

    1988-01-01

    The galactic disk is modeled by an oblate spheroid with confocal spherodial isodensity surfaces. An explicit analytic expression is found for the angular velocity of the gas outside the disk. The parameters of a three-component model of a spiral galaxy (oblate spheroid with central hole, bulge, and massive corona) are chosen in such a way as to obtain in the disk a two-hump rotation curve (as in the Galaxy, M 31, and M 81). It is shown that at heights absolute value z ≤ 2 kpc the gas rotates in the same manner as the disk. However, at greater heights the rotation curve ceases to have two humps. Allowance for the pressure gradient of the gas slightly changes the rotation curve directly above the disk (r r/sub disk/)

  9. Lessons on collisionless reconnection from quantum fluids

    Directory of Open Access Journals (Sweden)

    Yasuhito eNarita

    2014-12-01

    Full Text Available Magnetic reconnection in space plasmas remains a challenge in physics in that the phenomenon is associated with the breakdown of frozen-in magnetic field in a collisionless medium. Such a topology change can also be found in superfluidity, known as the quantum vortex reconnection. We give a plasma physicists' view of superfluidity to obtain insights on essential processes in collisionless reconnection, including discussion of the kinetic and fluid pictures, wave dynamics, and time reversal asymmetry. The most important lesson from the quantum fluid is the scenario that reconnection is controlled by the physics of topological defects on the microscopic scale, and by the physics of turbulence on the macroscopic scale. Quantum vortex reconnection is accompanied by wave emission in the form of Kelvin waves and sound waves, which imprints the time reversal asymmetry.

  10. Preferential acceleration in collisionless supernova shocks

    International Nuclear Information System (INIS)

    Hainebach, K.; Eichler, D.; Schramm, D.

    1979-01-01

    The preferential acceleration and resulting cosmic ray abundance enhancements of heavy elements (relative to protons) are calculated in the collisionless supernova shock acceleration model described by Eichler in earlier work. Rapidly increasing enhancements up to several tens times solar ratios are obtained as a function of atomic weight over charge at the time of acceleration. For material typical of hot phase interstellar medium, good agreement is obtained with the observed abundance enhancements

  11. Pressure gradient turbulent transport and collisionless reconnection

    International Nuclear Information System (INIS)

    Connor, J.W.

    1993-01-01

    The scale invariance technique is employed to discuss pressure gradient driven turbulent transport when an Ohm's law with electron inertia, rather than resistivity, is relevant. An expression for thermal diffusivity which has many features appropriate to L-mode transport in tokamaks, is seen to have greater generality than indicated by their particular calculation. The results of applying the technique to a more appropriate collisionless Ohm's law are discussed. (Author)

  12. Interactions between massive dark halos and warped disks

    NARCIS (Netherlands)

    Kuijken, K; Persic, M; Salucci, P

    1997-01-01

    The normal mode theory for warping of galaxy disks, in which disks are assumed to be tilted with respect to the equator of a massive, flattened dark halo, assumes a rigid, fixed halo. However, consideration of the back-reaction by a misaligned disk on a massive particle halo shows there to be strong

  13. Dynamical processes in galaxy centers

    International Nuclear Information System (INIS)

    Combes, Francoise

    2012-01-01

    How does the gas get in nuclear regions to fuel black holes? How efficient is the feedback? The different processes to cause rapid gas inflow (or outflow) in galaxy centers are reviewed. Non axisymmetries can be created or maintained by internal disk instabilities, or galaxy interactions. Simulations and observations tell us that the fueling is a chaotic and intermittent process, with different scenarios and time-scales, according to the various radial scales across a galaxy.

  14. Rarefaction Shock Waves in Collisionless Plasma with Electronic Beam

    OpenAIRE

    Gurovich, Victor Ts.; Fel, Leonid G.

    2011-01-01

    We show that an electronic beam passing through the collisionless plasma of the "cold" ions and the "hot" Boltzmann electrons can give rise to the propagation of the supersonic ion-acoustic rarefaction shock waves. These waves are analogous to those predicted by Zeldovich [5] in gasodynamics and complementary to the ion-acoustic compression shock waves in collisionless plasma described by Sagdeev [3].

  15. Modeling Protoplanetary Disks

    Science.gov (United States)

    Holman, Megan; Tubbs, Drake; Keller, L. D.

    2018-01-01

    Using spectra models with known parameters and comparing them to spectra gathered from real systems is often the only ways to find out what is going on in those real systems. This project uses the modeling programs of RADMC-3D to generate model spectra for systems containing protoplanetary disks. The parameters can be changed to simulate protoplanetary disks in different stages of planet formation, with different sized gaps in different areas of the disks, as well as protoplanetary disks that contain different types of dust. We are working on producing a grid of models that all have different variations in the parameters in order to generate a miniature database to use for comparisons to gathered spectra. The spectra produced from these simulations will be compared to spectra that have been gathered from systems in the Small Magellanic cloud in order to find out the contents and stage of development of that system. This allows us to see if and how planets are forming in the Small Magellanic cloud, a region which has much less metallicity than our own galaxy. The data we gather from comparisons between the model spectra and the spectra of systems in the Small Magellanic Cloud can then be applied to how planets may have formed in the early universe.

  16. Landau fluid models of collisionless magnetohydrodynamics

    International Nuclear Information System (INIS)

    Snyder, P.B.; Hammett, G.W.; Dorland, W.

    1997-01-01

    A closed set of fluid moment equations including models of kinetic Landau damping is developed which describes the evolution of collisionless plasmas in the magnetohydrodynamic parameter regime. The model is fully electromagnetic and describes the dynamics of both compressional and shear Alfven waves, as well as ion acoustic waves. The model allows for separate parallel and perpendicular pressures p parallel and p perpendicular , and, unlike previous models such as Chew-Goldberger-Low theory, correctly predicts the instability threshold for the mirror instability. Both a simple 3 + 1 moment model and a more accurate 4 + 2 moment model are developed, and both could be useful for numerical simulations of astrophysical and fusion plasmas

  17. Anomalous particle pinch for collisionless plasma

    International Nuclear Information System (INIS)

    Terry, P.W.

    1989-01-01

    The particle transport arising from the convection of nonadiabatic electron density by ion temperature gradient driven turbulence is examined when trapped electrons collide less often than a bounce period. In the lower temperature end of this regime, trapped electrons are collisional and the particle flux is outward (in the direction of the gradients). When the trapped electrons are collisionless, there is a temperature threshold above which the electron temperature gradient driven particle flux changes sign and becomes inward. The magnitude of the nonadiabatic electron contribution to the growth rate is found to be potentially of the same order as the ion contribution. 11 refs

  18. Kinematic Modeling of Distant Galaxies

    Directory of Open Access Journals (Sweden)

    Kipper Rain

    2012-12-01

    Full Text Available Evolution of galaxies is one of the most actual topics in astrophysics. Among the most important factors determining the evolution are two galactic components which are difficult or even impossible to detect optically: the gaseous disks and the dark matter halo. We use deep Hubble Space Telescope images to construct a two-component (bulge + disk model for stellar matter distribution of galaxies. Properties of the galactic components are derived using a three-dimensional galaxy modeling software, which also estimates disk thickness and inclination angle. We add a gas disk and a dark matter halo and use hydrodynamical equations to calculate gas rotation and dispersion profiles in the resultant gravitational potential. We compare the kinematic profiles with the Team Keck Redshift Survey observations. In this pilot study, two galaxies are analyzed deriving parameters for their stellar components; both galaxies are found to be disk-dominated. Using the kinematical model, the gas mass and stellar mass ratio in the disk are estimated.

  19. STAR FORMATION IN DISK GALAXIES. II. THE EFFECT OF STAR FORMATION AND PHOTOELECTRIC HEATING ON THE FORMATION AND EVOLUTION OF GIANT MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Tasker, Elizabeth J.

    2011-01-01

    We investigate the effect of star formation and diffuse photoelectric heating on the properties of giant molecular clouds (GMCs) formed in high-resolution (∼ H,c >100 cm -3 are identified as GMCs. Between 1000 and 1500 clouds are created in the simulations with masses M>10 5 M sun and 180-240 with masses M>10 6 M sun in agreement with estimates of the Milky Way's population. We find that the effect of photoelectric heating is to suppress the fragmentation of the interstellar medium, resulting in a filamentary structure in the warm gas surrounding clouds. This environment suppresses the formation of a retrograde rotating cloud population, with 88% of the clouds rotating prograde with respect to the galaxy after 300 Myr. The diffuse heating also reduces the initial star formation rate (SFR), slowing the conversation of gas into stars. We therefore conclude that the interstellar environment plays an important role in the GMC evolution. Our clouds live between 0 and 20 Myr with a high infant mortality (t' < 3 Myr) due to cloud mergers and star formation. Other properties, including distributions of mass, size, and surface density, agree well with observations. Collisions between our clouds are common, occurring at a rate of ∼ 1/4 of the orbital period. It is not clear whether such collisions trigger or suppress star formation at our current resolution. Our SFR is a factor of 10 higher than observations in local galaxies. This is likely due to the absence of localized feedback in our models.

  20. ALMA view of RX J1131-1231: Sub-kpc CO (2-1) mapping of a molecular disk in a lensed star-forming quasar host galaxy

    Science.gov (United States)

    Paraficz, D.; Rybak, M.; McKean, J. P.; Vegetti, S.; Sluse, D.; Courbin, F.; Stacey, H. R.; Suyu, S. H.; Dessauges-Zavadsky, M.; Fassnacht, C. D.; Koopmans, L. V. E.

    2018-05-01

    We present ALMA 2-mm continuum and CO (2-1) spectral line imaging of the gravitationally lensed z = 0.654 star-forming/quasar composite RX J1131-1231 at 240-400 mas angular resolution. The continuum emission is found to be compact and coincident with the optical emission, whereas the molecular gas forms a complete Einstein ring, which shows strong differential magnification. The de-lensed source structure is determined on 400-parsec-scales resolution using a Bayesian pixelated visibility-fitting lens modelling technique. The reconstructed molecular gas velocity-field is consistent with a large rotating disk with a major-axis FWHM 9.4 kpc at an inclination angle of i = 54° and with a maximum rotational velocity of 280 km s-1. From dynamical model fitting we find an enclosed mass within 5 kpc of M(r conversion factor of α = 5.5 ± 2.0 M⊙ (K km s-1 pc2)-1. This suggests that the star-formation efficiency is dependent on the host galaxy morphology as opposed to the nature of the AGN. The far-infrared continuum spectral energy distribution shows evidence for heated dust, equivalent to an obscured star-formation rate of SFR = 69-25+41 × (7.3/μIR) M⊙ yr-1, which demonstrates the composite star-forming and AGN nature of this system.

  1. Simulations of galaxy mergers

    International Nuclear Information System (INIS)

    Villumsen, J.V.; Yale Univ., New Haven, CT

    1982-01-01

    A number of N-body simulations of mergers of equal and unequal galaxies are presented. A new code is presented which determines the potential from a mass distribution by a fourth-order expansion in Tesseral harmonics in three dimensions as an approximation to a collisionless system. The total number of particles in the system is 1200. Two galaxies, each a spherical non-rotating system with isothermal or Hubble density profile, are put in orbit around each other where tidal effects and dynamical friction lead to merging. The final system has a Hubble profile, and in some mergers an 'isothermal' halo forms as found in cD galaxies. Equal mass mergers are more flattened than unequal mass mergers. The central surface brightness decreases except in a merger of isothermal galaxies which shows a major redistribution of energy towards a Hubble profile. Mixing is severe in equal mass mergers, where radial gradients are weakened, while in unequal mass encounters gradients can build up due to less mixing and the formation of a halo. Oblate systems with strong rotation form in high angular momentum encounters while prolate systems with little rotation are formed in near head-on collisions. (author)

  2. Optical photometry of galaxies

    International Nuclear Information System (INIS)

    Comte, G.

    1981-01-01

    The present status of the optical and near-infrared photometry of galaxies is reviewed. Part I introduces to the goals and general methods of both photographic surface photometry and integrated multicolor aperture photoelectric photometry for extended stellar systems, with a summary of the necessary corrections to the observed magnitudes and colors. Part II (surface photometry) summarizes recent results on the empirical luminosity laws for spheroidal systems and the separation of components in disk-plus-bulge systems. Part III (color problems) discusses integrated color effects (color and gas content, color-absolute magnitude relation for early-type systems, colors of interacting galaxies) and color gradient across spheroidal and disk galaxies. In part IV are summarized some constraints on the luminosity function of the stellar population in spheroidal systems given by narrow-band photometry [fr

  3. Collisionless encounters and the origin of the lunar inclination.

    Science.gov (United States)

    Pahlevan, Kaveh; Morbidelli, Alessandro

    2015-11-26

    The Moon is generally thought to have formed from the debris ejected by the impact of a planet-sized object with the proto-Earth towards the end of planetary accretion. Models of the impact process predict that the lunar material was disaggregated into a circumplanetary disk and that lunar accretion subsequently placed the Moon in a near-equatorial orbit. Forward integration of the lunar orbit from this initial state predicts a modern inclination at least an order of magnitude smaller than the lunar value--a long-standing discrepancy known as the lunar inclination problem. Here we show that the modern lunar orbit provides a sensitive record of gravitational interactions with Earth-crossing planetesimals that were not yet accreted at the time of the Moon-forming event. The currently observed lunar orbit can naturally be reproduced via interaction with a small quantity of mass (corresponding to 0.0075-0.015 Earth masses eventually accreted to the Earth) carried by a few bodies, consistent with the constraints and models of late accretion. Although the encounter process has a stochastic element, the observed value of the lunar inclination is among the most likely outcomes for a wide range of parameters. The excitation of the lunar orbit is most readily reproduced via collisionless encounters of planetesimals with the Earth-Moon system with strong dissipation of tidal energy on the early Earth. This mechanism obviates the need for previously proposed (but idealized) excitation mechanisms, places the Moon-forming event in the context of the formation of Earth, and constrains the pristineness of the dynamical state of the Earth-Moon system.

  4. Giant Low Surface Brightness Galaxies

    Science.gov (United States)

    Mishra, Alka; Kantharia, Nimisha G.; Das, Mousumi

    2018-04-01

    In this paper, we present radio observations of the giant low surface brightness (LSB) galaxies made using the Giant Metrewave Radio Telescope (GMRT). LSB galaxies are generally large, dark matter dominated spirals that have low star formation efficiencies and large HI gas disks. Their properties suggest that they are less evolved compared to high surface brightness galaxies. We present GMRT emission maps of LSB galaxies with an optically-identified active nucleus. Using our radio data and archival near-infrared (2MASS) and near-ultraviolet (GALEX) data, we studied morphology and star formation efficiencies in these galaxies. All the galaxies show radio continuum emission mostly associated with the centre of the galaxy.

  5. The effect of anisotropy on galaxy formation

    International Nuclear Information System (INIS)

    Burkert, A.; Hensler, G.

    1987-01-01

    Two-dimensional calculations of galaxy formation are presented. Gas and stars are taken into account as two distinct components interacting by star formation and stellar mass loss. While the gas is described by means of the Eulerian equation, the authors allow for an anisotropic velocity distribution among the stars by applying the collisionless Boltzmann equation. In the first model, the authors succeed in developing totally different stellar populations forming a halo and a disc. (author)

  6. Lopsided spiral galaxies

    International Nuclear Information System (INIS)

    Jog, Chanda J.; Combes, Francoise

    2009-01-01

    The light distribution in the disks of many galaxies is 'lopsided' with a spatial extent much larger along one half of a galaxy than the other, as seen in M101. Recent observations show that the stellar disk in a typical spiral galaxy is significantly lopsided, indicating asymmetry in the disk mass distribution. The mean amplitude of lopsidedness is 0.1, measured as the Fourier amplitude of the m=1 component normalized to the average value. Thus, lopsidedness is common, and hence it is important to understand its origin and dynamics. This is a new and exciting area in galactic structure and dynamics, in contrast to the topic of bars and two-armed spirals (m=2) which has been extensively studied in the literature. Lopsidedness is ubiquitous and occurs in a variety of settings and tracers. It is seen in both stars and gas, in the outer disk and the central region, in the field and the group galaxies. The lopsided amplitude is higher by a factor of two for galaxies in a group. The lopsidedness has a strong impact on the dynamics of the galaxy, its evolution, the star formation in it, and on the growth of the central black hole and on the nuclear fuelling. We present here an overview of the observations that measure the lopsided distribution, as well as the theoretical progress made so far to understand its origin and properties. The physical mechanisms studied for its origin include tidal encounters, gas accretion and a global gravitational instability. The related open, challenging problems in this emerging area are discussed

  7. FAST MAGNETIC FIELD AMPLIFICATION IN THE EARLY UNIVERSE: GROWTH OF COLLISIONLESS PLASMA INSTABILITIES IN TURBULENT MEDIA

    Energy Technology Data Exchange (ETDEWEB)

    Falceta-Gonçalves, D. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Kowal, G. [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Bettio, 1000, São Paulo, SP 03828-000 (Brazil)

    2015-07-20

    In this work we report on a numerical study of the cosmic magnetic field amplification due to collisionless plasma instabilities. The collisionless magnetohydrodynamic equations derived account for the pressure anisotropy that leads, in specific conditions, to the firehose and mirror instabilities. We study the time evolution of seed fields in turbulence under the influence of such instabilities. An approximate analytical time evolution of the magnetic field is provided. The numerical simulations and the analytical predictions are compared. We found that (i) amplification of the magnetic field was efficient in firehose-unstable turbulent regimes, but not in the mirror-unstable models; (ii) the growth rate of the magnetic energy density is much faster than the turbulent dynamo; and (iii) the efficient amplification occurs at small scales. The analytical prediction for the correlation between the growth timescales and pressure anisotropy is confirmed by the numerical simulations. These results reinforce the idea that pressure anisotropies—driven naturally in a turbulent collisionless medium, e.g., the intergalactic medium, could efficiently amplify the magnetic field in the early universe (post-recombination era), previous to the collapse of the first large-scale gravitational structures. This mechanism, though fast for the small-scale fields (∼kpc scales), is unable to provide relatively strong magnetic fields at large scales. Other mechanisms that were not accounted for here (e.g., collisional turbulence once instabilities are quenched, velocity shear, or gravitationally induced inflows of gas into galaxies and clusters) could operate afterward to build up large-scale coherent field structures in the long time evolution.

  8. Galaxy formation: internal mechanisms and cosmological processes

    International Nuclear Information System (INIS)

    Martig, Marie

    2010-01-01

    This thesis is devoted to galaxy formation and evolution in a cosmological context. Cosmological simulations have unveiled two main modes of galaxy growth: hierarchical growth by mergers and accretion of cold gas from cosmic filaments. However, these simulations rarely take into account small scale mechanisms, that govern internal evolution and that are a key ingredient to understand galaxy formation and evolution. Thanks to a new simulation technique that I have developed, I first studied the colors of galaxies, and in particular the reddening of elliptical galaxies. I showed that the gas disk in an elliptical galaxy could be stabilized against star formation because of the galaxy's stellar component being within a spheroid instead of a disk. This mechanism can explain the red colors of some elliptical galaxies that contain a gas disk. I also studied the formation of spiral galaxies: most cosmological simulations cannot explain the formation of Milky Way-like galaxies, i.e. with a large disk and a small bulge. I showed that this issue could be partly solved by taking into account in the simulations the mass loss from evolved stars through stellar winds, planetary nebulae and supernovae explosions. (author) [fr

  9. X-RAY PROPERTIES OF INTERMEDIATE-MASS BLACK HOLES IN ACTIVE GALAXIES. II. X-RAY-BRIGHT ACCRETION AND POSSIBLE EVIDENCE FOR SLIM DISKS

    International Nuclear Information System (INIS)

    Desroches, Louis-Benoit; Greene, Jenny E.; Ho, Luis C.

    2009-01-01

    We present X-ray properties of optically selected intermediate-mass (∼10 5 -10 6 M sun ) black holes (BHs) in active galactic nuclei (AGNs), using data from the Chandra X-Ray Observatory. Our observations are a continuation of a pilot study by Greene and Ho. Of the eight objects observed, five are detected with X-ray luminosities in the range L 0.5-2keV = 10 41 -10 43 erg s -1 , consistent with the previously observed sample. Objects with enough counts to extract a spectrum are well fit by an absorbed power law. We continue to find a range of soft photon indices 1 s -Γ s , consistent with previous AGN studies, but generally flatter than other narrow-line Seyfert 1 active nuclei (NLS1s). The soft photon index correlates strongly with X-ray luminosity and Eddington ratio, but does not depend on BH mass. There is no justification for the inclusion of any additional components, such as a soft excess, although this may be a function of the relative inefficiency of detecting counts above 2 keV in these relatively shallow observations. As a whole, the X-ray-to-optical spectral slope α ox is flatter than in more massive systems, even other NLS1s. Only X-ray-selected NLS1s with very high Eddington ratios share a similar α ox . This is suggestive of a physical change in the accretion structure at low masses and at very high accretion rates, possibly due to the onset of slim disks. Although the detailed physical explanation for the X-ray loudness of these intermediate-mass BHs is not certain, it is very striking that targets selected on the basis of optical properties should be so distinctly offset in their broader spectral energy distributions.

  10. Computer simulations of collisionless shock waves

    International Nuclear Information System (INIS)

    Leroy, M.M.

    1984-01-01

    A review of the contributions of particle computer simulations to the understanding of the physics of magnetic shock waves in collisionless plasmas is presented. The emphasis is on the relation between the computer simulation results, spacecraft observations of shocks in space, and related theories, rather than on technical aspects of the numerics. It is shown that much has been learned from the comparison of ISEE spacecraft observations of the terrestrial bow shock and particle computer simulations concerning the quasi-perpendicular, supercritical shock (ion scale structure, ion reflection mechanism and ultimate dissipation processes). Particle computer simulations have also had an appreciable prospective role in the investigation of the physics of quasi-parallel shocks, about which still little is known observationally. Moreover, these numerical techniques have helped to clarify the process of suprathermal ion rejection by the shock into the foreshock, and the subsequent evolution of the ions in the foreshock. 95 references

  11. Collisionless plasma expansion into a vacuum

    International Nuclear Information System (INIS)

    Denavit, J.

    1979-01-01

    Particle simulations of the expansion of a collisionless plasma into vacuum are presented. The cases of a single-electron-temperature plasma and of a two-electron-temperature plasma are considered. The results confirm the existence of an ion front and verify the general features of self-similar solutions behind this front. A cold electron front is clearly observed in the two-electron-temperatures case. The computations also show that for a finite electron-to-ion mass ratio, m/sub e//m/sub i/, the electron thermal velocity in the expansion region is not constant, but decreases approximately linearly with xi 0 -(γ-1) xi/2, and comparison with computer simulation results show that the constant γ-1 is proportional to (Zm/sub e//m/sub i/)atsup 1/2at, where Z is the ion charge number

  12. Electrostatic effect for the collisionless tearing mode

    International Nuclear Information System (INIS)

    Hoshino, M.

    1987-01-01

    Electron dynamics has not been self-consistently considered in collisionless tearing mode theories to date because of the mathematical complexity of the Vlasov-Maxwell equations. We have found using computer simulations that electrostatic fields play an important role in the tearing mode. Vlasov theory, including the electrostatic field, is investigated for topologies with both antiparallel and nonantiparallel magnetic field lines. The electrostatic field influences the resonant current in the neutral sheet which is a non-MHD effect, and modifies the linear growth rate. At the magnetopause, where the field lines are not antiparallel, the electrostatic effect acts to raise the linear growth rate of the tearing mode. On the other hand, in the magnetotail, where magnetic field lines are antiparallel, the electrostatic effect reduces the tearing mode growth rate. copyright American Geophysical Union 1987

  13. Whistler dominated quasi-collisionless magnetic reconnection

    International Nuclear Information System (INIS)

    Biskamp, D.; Drake, J.F.

    1995-05-01

    A theory of fast quasi-collisionless reconnection is presented. For spatial scales smaller than the ion inertia length the electrons decouple from the ions and the dynamics is described by electron magnetohydrodynamics (EMHD). A qualitative analysis of the reconnection region is obtained, which is corroborated by numerical simulations. The main results are that in contrast to resistive reconnection no macroscopic current sheet is generated, and the reconnection rate is independent of the smallness parameters of the system, i.e. the electron inertia length and the dissipation coefficients. At larger scales the coupling to the ions is important, which, however, does not change the small-scale dynamics. The reconnection rate is only limited by ion inertia being independent of the electron inertia scale and the dissipation coefficients. Reconnection is much faster than in the absence of the whistler mode. (orig.)

  14. THE DARK DISK OF THE MILKY WAY

    International Nuclear Information System (INIS)

    Purcell, Chris W.; Bullock, James S.; Kaplinghat, Manoj

    2009-01-01

    Massive satellite accretions onto early galactic disks can lead to the deposition of dark matter in disk-like configurations that co-rotate with the galaxy. This phenomenon has potentially dramatic consequences for dark matter detection experiments. We utilize focused, high-resolution simulations of accretion events onto disks designed to be Galaxy analogues, and compare the resultant disks to the morphological and kinematic properties of the Milky Way's thick disk in order to bracket the range of co-rotating accreted dark matter. In agreement with previous results, we find that the Milky Way's merger history must have been unusually quiescent compared to median Λ cold dark matter expectations and, therefore, its dark disk must be relatively small: the fraction of accreted dark disk material near the Sun is about 20% of the host halo density or smaller and the co-rotating dark matter fraction near the Sun, defined as particles moving with a rotational velocity lag less than 50 km s -1 , is enhanced by about 30% or less compared to a standard halo model. Such a dark disk could contribute dominantly to the low energy (of order keV for a dark matter particle with mass 100 GeV) nuclear recoil event rate of direct detection experiments, but it will not change the likelihood of detection significantly. These dark disks provide testable predictions of weakly interacting massive particle dark matter models and should be considered in detailed comparisons to experimental data. Our findings suggest that the dark disk of the Milky Way may provide a detectable signal for indirect detection experiments, contributing up to about 25% of the dark matter self-annihilation signal in the direction of the center of the Galaxy, lending the signal a noticeably oblate morphology.

  15. Building CX peanut-shaped disk galaxy profiles. The relative importance of the 3D families of periodic orbits bifurcating at the vertical 2:1 resonance

    Science.gov (United States)

    Patsis, P. A.; Harsoula, M.

    2018-05-01

    Context. We present and discuss the orbital content of a rather unusual rotating barred galaxy model, in which the three-dimensional (3D) family, bifurcating from x1 at the 2:1 vertical resonance with the known "frown-smile" side-on morphology, is unstable. Aims: Our goal is to study the differences that occur in the phase space structure at the vertical 2:1 resonance region in this case, with respect to the known, well studied, standard case, in which the families with the frown-smile profiles are stable and support an X-shaped morphology. Methods: The potential used in the study originates in a frozen snapshot of an N-body simulation in which a fast bar has evolved. We follow the evolution of the vertical stability of the central family of periodic orbits as a function of the energy (Jacobi constant) and we investigate the phase space content by means of spaces of section. Results: The two bifurcating families at the vertical 2:1 resonance region of the new model change their stability with respect to that of most studied analytic potentials. The structure in the side-on view that is directly supported by the trapping of quasi-periodic orbits around 3D stable periodic orbits has now an infinity symbol (i.e. ∞-type) profile. However, the available sticky orbits can reinforce other types of side-on morphologies as well. Conclusions: In the new model, the dynamical mechanism of trapping quasi-periodic orbits around the 3D stable periodic orbits that build the peanut, supports the ∞-type profile. The same mechanism in the standard case supports the X shape with the frown-smile orbits. Nevertheless, in both cases (i.e. in the new and in the standard model) a combination of 3D quasi-periodic orbits around the stable x1 family with sticky orbits can support a profile reminiscent of the shape of the orbits of the 3D unstable family existing in each model.

  16. Bar quenching in gas-rich galaxies

    Science.gov (United States)

    Khoperskov, S.; Haywood, M.; Di Matteo, P.; Lehnert, M. D.; Combes, F.

    2018-01-01

    Galaxy surveys have suggested that rapid and sustained decrease in the star-formation rate (SFR), "quenching", in massive disk galaxies is frequently related to the presence of a bar. Optical and near-IR observations reveal that nearly 60% of disk galaxies in the local universe are barred, thus it is important to understand the relationship between bars and star formation in disk galaxies. Recent observational results imply that the Milky Way quenched about 9-10 Gyr ago, at the transition between the cessation of the growth of the kinematically hot, old, metal-poor thick disk and the kinematically colder, younger, and more metal-rich thin disk. Although perhaps coincidental, the quenching episode could also be related to the formation of the bar. Indeed the transfer of energy from the large-scale shear induced by the bar to increasing turbulent energy could stabilize the gaseous disk against wide-spread star formation and quench the galaxy. To explore the relation between bar formation and star formation in gas rich galaxies quantitatively, we simulated gas-rich disk isolated galaxies. Our simulations include prescriptions for star formation, stellar feedback, and for regulating the multi-phase interstellar medium. We find that the action of stellar bar efficiently quenches star formation, reducing the star-formation rate by a factor of ten in less than 1 Gyr. Analytical and self-consistent galaxy simulations with bars suggest that the action of the stellar bar increases the gas random motions within the co-rotation radius of the bar. Indeed, we detect an increase in the gas velocity dispersion up to 20-35 km s-1 at the end of the bar formation phase. The star-formation efficiency decreases rapidly, and in all of our models, the bar quenches the star formation in the galaxy. The star-formation efficiency is much lower in simulated barred compared to unbarred galaxies and more rapid bar formation implies more rapid quenching.

  17. Accretion disks in active galactic nuclei

    International Nuclear Information System (INIS)

    Shields, G.A.

    1989-01-01

    Active galactic nuclei (AGN) have taunted astrophysicists for a quarter century. How do these objects produce huge luminosities---in some cases, far outshining our galaxy---from a region perhaps no larger than the solar system? Accretion onto supermassive black holes has been widely considered the best buy in theories of AGN. Much work has gone into accretion disk theory, searches for black holes in galactic nuclei, and observational tests. These efforts have not proved the disk model, but there is progress. Evidence for black holes in the nuclei of nearby galaxies is provided by observations of stellar velocities, and radiation from the disk's hot surface may be observed in the ultraviolet (UV) and neighboring spectral bands. In the review, the author describe some of the recent work on accretion disks in AGN, with an emphasis on points of contact between theory and observation

  18. A Modern Picture of Barred Galaxy Dynamics

    Science.gov (United States)

    Petersen, Michael; Weinberg, Martin; Katz, Neal

    2018-01-01

    Observations of disk galaxies suggest that bars are responsible for altering global galaxy parameters (e.g. structures, gas fraction, star formation rate). The canonical understanding of the mechanisms underpinning bar-driven secular dynamics in disk galaxies has been largely built upon the analysis of linear theory, despite galactic bars being clearly demonstrated to be nonlinear phenomena in n-body simulations. We present simulations of barred Milky Way-like galaxy models designed to elucidate nonlinear barred galaxy dynamics. We have developed two new methodologies for analyzing n-body simulations that give the best of both powerful analytic linear theory and brute force simulation analysis: orbit family identification and multicomponent torque analysis. The software will be offered publicly to the community for their own simulation analysis.The orbit classifier reveals that the details of kinematic components in galactic disks (e.g. the bar, bulge, thin disk, and thick disk components) are powerful discriminators of evolutionary paradigms (i.e. violent instabilities and secular evolution) as well as the basic parameters of the dark matter halo (mass distribution, angular momentum distribution). Multicomponent torque analysis provides a thorough accounting of the transfer of angular momentum between orbits, global patterns, and distinct components in order to better explain the underlying physics which govern the secular evolution of barred disk galaxies.Using these methodologies, we are able to identify the successes and failures of linear theory and traditional n-body simulations en route to a detailed understanding of the control bars exhibit over secular evolution in galaxies. We present explanations for observed physical and velocity structures in observations of barred galaxies alongside predictions for how structures will vary with dynamical properties from galaxy to galaxy as well as over the lifetime of a galaxy, finding that the transfer of angular

  19. GREEN GALAXIES IN THE COSMOS FIELD

    International Nuclear Information System (INIS)

    Pan, Zhizheng; Kong, Xu; Fan, Lulu

    2013-01-01

    We present research on the morphologies, spectra, and environments of ≈2350 'green valley' galaxies at 0.2 + color is used to define 'green valley'; it removes dusty star-forming galaxies from galaxies that are truly transitioning between the blue cloud and the red sequence. Morphological parameters of green galaxies are intermediate between those of blue and red galaxy populations, both on the Gini-asymmetry and the Gini-M 20 planes. Approximately 60%-70% of green disk galaxies have intermediate or big bulges, and only 5%-10% are pure disk systems, based on morphological classification using the Zurich Estimator of Structural Types. The obtained average spectra of green galaxies are intermediate between blue and red ones in terms of [O II], Hα, and Hβ emission lines. Stellar population synthesis on the average spectra shows that green galaxies are on average older than blue galaxies but younger than red galaxies. Green galaxies and blue galaxies have similar projected galaxy density (Σ 10 ) distributions at z > 0.7. At z * 10.0 M ☉ green galaxies located in a dense environment are found to be significantly larger than those of blue galaxies. The morphological and spectral properties of green galaxies are consistent with the transitioning population between the blue cloud and the red sequence. The possible mechanisms for quenching star formation activities in green galaxies are discussed. The importance of active galactic nucleus feedback cannot be well constrained in our study. Finally, our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M * 10.0 M ☉ blue galaxies into red galaxies, especially at z < 0.5

  20. GREEN GALAXIES IN THE COSMOS FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Zhizheng; Kong, Xu; Fan, Lulu, E-mail: panzz@mail.ustc.edu.cn, E-mail: xkong@ustc.edu.cn [Center of Astrophysics, University of Science and Technology of China, Hefei 230026 (China)

    2013-10-10

    We present research on the morphologies, spectra, and environments of ≈2350 'green valley' galaxies at 0.2 < z < 1.0 in the COSMOS field. The bimodality of dust-corrected NUV–r {sup +} color is used to define 'green valley'; it removes dusty star-forming galaxies from galaxies that are truly transitioning between the blue cloud and the red sequence. Morphological parameters of green galaxies are intermediate between those of blue and red galaxy populations, both on the Gini-asymmetry and the Gini-M{sub 20} planes. Approximately 60%-70% of green disk galaxies have intermediate or big bulges, and only 5%-10% are pure disk systems, based on morphological classification using the Zurich Estimator of Structural Types. The obtained average spectra of green galaxies are intermediate between blue and red ones in terms of [O II], Hα, and Hβ emission lines. Stellar population synthesis on the average spectra shows that green galaxies are on average older than blue galaxies but younger than red galaxies. Green galaxies and blue galaxies have similar projected galaxy density (Σ{sub 10}) distributions at z > 0.7. At z < 0.7, the fractions of M{sub *} < 10{sup 10.0} M{sub ☉} green galaxies located in a dense environment are found to be significantly larger than those of blue galaxies. The morphological and spectral properties of green galaxies are consistent with the transitioning population between the blue cloud and the red sequence. The possible mechanisms for quenching star formation activities in green galaxies are discussed. The importance of active galactic nucleus feedback cannot be well constrained in our study. Finally, our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M{sub *} < 10{sup 10.0} M{sub ☉} blue galaxies into red galaxies, especially at z < 0.5.

  1. Phase space simulation of collisionless stellar systems on the massively parallel processor

    International Nuclear Information System (INIS)

    White, R.L.

    1987-01-01

    A numerical technique for solving the collisionless Boltzmann equation describing the time evolution of a self gravitating fluid in phase space was implemented on the Massively Parallel Processor (MPP). The code performs calculations for a two dimensional phase space grid (with one space and one velocity dimension). Some results from calculations are presented. The execution speed of the code is comparable to the speed of a single processor of a Cray-XMP. Advantages and disadvantages of the MPP architecture for this type of problem are discussed. The nearest neighbor connectivity of the MPP array does not pose a significant obstacle. Future MPP-like machines should have much more local memory and easier access to staging memory and disks in order to be effective for this type of problem

  2. Distribution of the angular momentum in the Galaxy and M31

    International Nuclear Information System (INIS)

    Einasto, J.; Traat, P.

    1977-01-01

    The angular momentum distribution of the Galaxy and of the Andromeda galaxy M31 has been calculated separately for the disk and halo population. The disk was approximated with a ring. The distribution of the angular momentum in the disk and the halo is different

  3. Dust in protoplanetary disks: observations*

    Directory of Open Access Journals (Sweden)

    Waters L.B.F.M.

    2015-01-01

    Full Text Available Solid particles, usually referred to as dust, are a crucial component of interstellar matter and of planet forming disks surrounding young stars. Despite the relatively small mass fraction of ≈1% (in the solar neighborhood of our galaxy; this number may differ substantially in other galaxies that interstellar grains represent of the total mass budget of interstellar matter, dust grains play an important role in the physics and chemistry of interstellar matter. This is because of the opacity dust grains at short (optical, UV wavelengths, and the surface they provide for chemical reactions. In addition, dust grains play a pivotal role in the planet formation process: in the core accretion model of planet formation, the growth of dust grains from the microscopic size range to large, cm-sized or larger grains is the first step in planet formation. Not only the grain size distribution is affected by planet formation. Chemical and physical processes alter the structure and chemical composition of dust grains as they enter the protoplanetary disk and move closer to the forming star. Therefore, a lot can be learned about the way stars and planets are formed by observations of dust in protoplanetary disks. Ideally, one would like to measure the dust mass, the grain size distribution, grain structure (porosity, fluffiness, the chemical composition, and all of these as a function of position in the disk. Fortunately, several observational diagnostics are available to derive constrains on these quantities. In combination with rapidly increasing quality of the data (spatial and spectral resolution, a lot of progress has been made in our understanding of dust evolution in protoplanetary disks. An excellent review of dust evolution in protoplanetary disks can be found in Testi et al. (2014.

  4. Superdiffusion revisited in view of collisionless reconnection

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2014-06-01

    Full Text Available The concept of diffusion in collisionless space plasmas like those near the magnetopause and in the geomagnetic tail during reconnection is reexamined making use of the division of particle orbits into waiting orbits and break-outs into ballistic motion lying at the bottom, for instance, of Lévy flights. The rms average displacement in this case increases with time, describing superdiffusion, though faster than classical, is still a weak process, being however strong enough to support fast reconnection. Referring to two kinds of numerical particle-in-cell simulations we determine the anomalous diffusion coefficient, the anomalous collision frequency on which the diffusion process is based, and construct a relation between the diffusion coefficients and the resistive scale. The anomalous collision frequency from electron pseudo-viscosity in reconnection turns out to be of the order of the lower-hybrid frequency with the latter providing a lower limit, thus making similar assumptions physically meaningful. Tentative though not completely justified use of the κ distribution yields κ ≈ 6 in the reconnection diffusion region and, for the anomalous diffusion coefficient, the order of several times Bohm diffusivity.

  5. Collisionless reconnection: magnetic field line interaction

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2012-10-01

    Full Text Available Magnetic field lines are quantum objects carrying one quantum Φ0 = 2πh/e of magnetic flux and have finite radius λm. Here we argue that they possess a very specific dynamical interaction. Parallel field lines reject each other. When confined to a certain area they form two-dimensional lattices of hexagonal structure. We estimate the filling factor of such an area. Anti-parallel field lines, on the other hand, attract each other. We identify the physical mechanism as being due to the action of the gauge potential field, which we determine quantum mechanically for two parallel and two anti-parallel field lines. The distortion of the quantum electrodynamic vacuum causes a cloud of virtual pairs. We calculate the virtual pair production rate from quantum electrodynamics and estimate the virtual pair cloud density, pair current and Lorentz force density acting on the field lines via the pair cloud. These properties of field line dynamics become important in collisionless reconnection, consistently explaining why and how reconnection can spontaneously set on in the field-free centre of a current sheet below the electron-inertial scale.

  6. On the Collisionless Asymmetric Magnetic Reconnection Rate

    Science.gov (United States)

    Liu, Yi-Hsin; Hesse, M.; Cassak, P. A.; Shay, M. A.; Wang, S.; Chen, L.-J.

    2018-04-01

    A prediction of the steady state reconnection electric field in asymmetric reconnection is obtained by maximizing the reconnection rate as a function of the opening angle made by the upstream magnetic field on the weak magnetic field (magnetosheath) side. The prediction is within a factor of 2 of the widely examined asymmetric reconnection model (Cassak & Shay, 2007, https://doi.org/10.1063/1.2795630) in the collisionless limit, and they scale the same over a wide parameter regime. The previous model had the effective aspect ratio of the diffusion region as a free parameter, which simulations and observations suggest is on the order of 0.1, but the present model has no free parameters. In conjunction with the symmetric case (Liu et al., 2017, https://doi.org/10.1103/PhysRevLett.118.085101), this work further suggests that this nearly universal number 0.1, essentially the normalized fast-reconnection rate, is a geometrical factor arising from maximizing the reconnection rate within magnetohydrodynamic-scale constraints.

  7. Nonlinear theory of collisionless trapped ion modes

    International Nuclear Information System (INIS)

    Hahm, T.S.; Tang, W.M.

    1996-01-01

    A simplified two field nonlinear model for collisionless trapped-ion-mode turbulence has been derived from nonlinear bounce-averaged drift kinetic equations. The renormalized thermal diffusivity obtained from this analysis exhibits a Bohm-like scaling. A new nonlinearity associated with the neoclassical polarization density is found to introduce an isotope-dependent modification to this Bohm-like diffusivity. The asymptotic balance between the equilibrium variation and the finite banana width induced reduction of the fluctuation potential leads to the result that the radial correlation length decreases with increasing plasma current. Other important conclusions from the present analysis include the predictions that (i) the relative density fluctuation level δn/n 0 is lower than the conventional mixing length estimate, Δr/L n (ii) the ion temperature fluctuation level δT i /T i significantly exceeds the density fluctuation level δn/n 0 ; and (iii) the parallel ion velocity fluctuation level δv iparallel /v Ti is expected to be negligible

  8. Collisionless microinstabilities in stellarators. II. Numerical simulations

    International Nuclear Information System (INIS)

    Proll, J. H. E.; Xanthopoulos, P.; Helander, P.

    2013-01-01

    Microinstabilities exhibit a rich variety of behavior in stellarators due to the many degrees of freedom in the magnetic geometry. It has recently been found that certain stellarators (quasi-isodynamic ones with maximum-J geometry) are partly resilient to trapped-particle instabilities, because fast-bouncing particles tend to extract energy from these modes near marginal stability. In reality, stellarators are never perfectly quasi-isodynamic, and the question thus arises whether they still benefit from enhanced stability. Here, the stability properties of Wendelstein 7-X and a more quasi-isodynamic configuration, QIPC, are investigated numerically and compared with the National Compact Stellarator Experiment and the DIII-D tokamak. In gyrokinetic simulations, performed with the gyrokinetic code GENE in the electrostatic and collisionless approximation, ion-temperature-gradient modes, trapped-electron modes, and mixed-type instabilities are studied. Wendelstein 7-X and QIPC exhibit significantly reduced growth rates for all simulations that include kinetic electrons, and the latter are indeed found to be stabilizing in the energy budget. These results suggest that imperfectly optimized stellarators can retain most of the stabilizing properties predicted for perfect maximum-J configurations

  9. Collisionless Reconnection in Magnetohydrodynamic and Kinetic Turbulence

    Science.gov (United States)

    Loureiro, Nuno F.; Boldyrev, Stanislav

    2017-12-01

    It has recently been proposed that the inertial interval in magnetohydrodynamic (MHD) turbulence is terminated at small scales not by a Kolmogorov-like dissipation region, but rather by a new sub-inertial interval mediated by tearing instability. However, many astrophysical plasmas are nearly collisionless so the MHD approximation is not applicable to turbulence at small scales. In this paper, we propose an extension of the theory of reconnection-mediated turbulence to plasmas which are so weakly collisional that the reconnection occurring in the turbulent eddies is caused by electron inertia rather than by resistivity. We find that the transition scale to reconnection-mediated turbulence depends on the plasma beta and on the assumptions of the plasma turbulence model. However, in all of the cases analyzed, the energy spectra in the reconnection-mediated interval range from E({k}\\perp ){{dk}}\\perp \\propto {k}\\perp -8/3{{dk}}\\perp to E({k}\\perp ){{dk}}\\perp \\propto {k}\\perp -3{{dk}}\\perp .

  10. Galaxy formation and physical bias

    Science.gov (United States)

    Cen, Renyue; Ostriker, Jeremiah P.

    1992-01-01

    We have supplemented our code, which computes the evolution of the physical state of a representative piece of the universe to include, not only the dynamics of dark matter (with a standard PM code), and the hydrodynamics of the gaseous component (including detailed collisional and radiative processes), but also galaxy formation on a heuristic but plausible basis. If, within a cell the gas is Jeans' unstable, collapsing, and cooling rapidly, it is transformed to galaxy subunits, which are then followed with a collisionless code. After grouping them into galaxies, we estimate the relative distributions of galaxies and dark matter and the relative velocities of galaxies and dark matter. In a large scale CDM run of 80/h Mpc size with 8 x 10 exp 6 cells and dark matter particles, we find that physical bias b is on the 8/h Mpc scale is about 1.6 and increases towards smaller scales, and that velocity bias is about 0.8 on the same scale. The comparable HDM simulation is highly biased with b = 2.7 on the 8/h Mpc scale. Implications of these results are discussed in the light of the COBE observations which provide an accurate normalization for the initial power spectrum. CDM can be ruled out on the basis of too large a predicted small scale velocity dispersion at greater than 95 percent confidence level.

  11. ULTRAVIOLET HALOS AROUND SPIRAL GALAXIES. I. MORPHOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Hodges-Kluck, Edmund; Cafmeyer, Julian; Bregman, Joel N., E-mail: hodgeskl@umich.edu [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States)

    2016-12-10

    We examine ultraviolet halos around a sample of highly inclined galaxies within 25 Mpc to measure their morphology and luminosity. Despite contamination from galactic light scattered into the wings of the point-spread function, we find that ultraviolet (UV) halos occur around each galaxy in our sample. Around most galaxies the halos form a thick, diffuse disk-like structure, but starburst galaxies with galactic superwinds have qualitatively different halos that are more extensive and have filamentary structure. The spatial coincidence of the UV halos above star-forming regions, the lack of consistent association with outflows or extraplanar ionized gas, and the strong correlation between the halo and galaxy UV luminosity suggest that the UV light is an extragalactic reflection nebula. UV halos may thus represent 10{sup 6}–10{sup 7} M {sub ⊙} of dust within 2–10 kpc of the disk, whose properties may change with height in starburst galaxies.

  12. Shearing Box Simulations of the MRI in a Collisionless Plasma

    International Nuclear Information System (INIS)

    Sharma, Prateek; Hammett, Gregory W.; Quataert, Eliot; Stone, James M.

    2005-01-01

    We describe local shearing box simulations of turbulence driven by the magnetorotational instability (MRI) in a collisionless plasma. Collisionless effects may be important in radiatively inefficient accretion flows, such as near the black hole in the Galactic Center. The MHD version of ZEUS is modified to evolve an anisotropic pressure tensor. A fluid closure approximation is used to calculate heat conduction along magnetic field lines. The anisotropic pressure tensor provides a qualitatively new mechanism for transporting angular momentum in accretion flows (in addition to the Maxwell and Reynolds stresses). We estimate limits on the pressure anisotropy due to pitch angle scattering by kinetic instabilities. Such instabilities provide an effective ''collision'' rate in a collisionless plasma and lead to more MHD-like dynamics. We find that the MRI leads to efficient growth of the magnetic field in a collisionless plasma, with saturation amplitudes comparable to those in MHD. In the saturated state, the anisotropic stress is comparable to the Maxwell stress, implying that the rate of angular momentum transport may be moderately enhanced in a collisionless plasma

  13. Chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Matteucci, F.; Consiglio Nazionale delle Ricerche, Frascati

    1989-01-01

    In principle, a good model of galactic chemical evolution should fulfil the majority of well established observational constraints. The goal of this paper is to review the observational data together with the existing chemical evolution models for the Milky Way (the disk), Blue Compact and Elliptical galaxies and to show how well the models can account for the observations. Some open problems and future prospects are also discussed. (author)

  14. Low surface brightness spiral galaxies

    International Nuclear Information System (INIS)

    Romanishin, W.

    1980-01-01

    This dissertation presents an observational overview of a sample of low surface brightness (LSB) spiral galaxies. The sample galaxies were chosen to have low surface brightness disks and indications of spiral structure visible on the Palomar Sky Survey. They are of sufficient angular size (diameter > 2.5 arcmin), to allow detailed surface photometry using Mayall 4-m prime focus plates. The major findings of this dissertation are: (1) The average disk central surface brightness of the LSB galaxies is 22.88 magnitude/arcsec 2 in the B passband. (2) From broadband color measurements of the old stellar population, we infer a low average stellar metallicity, on the order of 1/5 solar. (3) The spectra and optical colors of the HII regions in the LSB galaxies indicate a lack of hot ionizing stars compared to HII regions in other late-type galaxies. (4) The average surface mass density, measured within the radius containing half the total mass, is less than half that of a sample of normal late-type spirals. (5) The average LSB galaxy neutral hydrogen mass to blue luminosity ratio is about 0.6, significantly higher than in a sample of normal late-type galaxies. (6) We find no conclusive evidence of an abnormal mass-to-light ratio in the LSB galaxies. (7) Some of the LSB galaxies exhibit well-developed density wave patterns. (8) A very crude calculation shows the lower metallicity of the LSB galaxies compared with normal late-type spirals might be explained simply by the deficiency of massive stars in the LSB galaxies

  15. On order and chaos in the mergers of galaxies

    Science.gov (United States)

    Vandervoort, Peter O.

    2018-03-01

    This paper describes a low-dimensional model of the merger of two galaxies. The governing equations are the complete sets of moment equations of the first and second orders derived from the collisionless Boltzmann equations representing the galaxies. The moment equations reduce to an equation governing the relative motion of the galaxies, tensor virial equations, and equations governing the kinetic energy tensors. We represent the galaxies as heterogeneous ellipsoids with Gaussian stratifications of their densities, and we represent the mean stellar motions in terms of velocity fields that sustain those densities consistently with the equation of continuity. We reduce and solve the governing equations for a head-on encounter of a dwarf galaxy with a giant galaxy. That reduction includes the effect of dynamical friction on the relative motion of the galaxies. Our criterion for chaotic behaviour is sensitivity of the motion to small changes in the initial conditions. In a survey of encounters and mergers of a dwarf galaxy with a giant galaxy, chaotic behaviour arises mainly in non-linear oscillations of the dwarf galaxy. The encounter disrupts the dwarf, excites chaotic oscillations of the dwarf, or excites regular oscillations. Dynamical friction can drive a merger to completion within a Hubble time only if the dwarf is sufficiently massive. The survey of encounters and mergers is the basis for a simple model of the evolution of a `Local Group' consisting of a giant galaxy and a population of dwarf galaxies bound to the giant as satellites on radial orbits.

  16. Simulations of galaxy mergers

    International Nuclear Information System (INIS)

    Villumsen, J.V.

    1982-01-01

    This work is a theoretical investigation of the mechanisms and results of mergers of elliptical galaxies. An N-body code is developed to simulate the dynamics of centrally concentrated collisionless systems. It is used for N-body simulations of the mergers of galaxies with mass ratios of 1:1, 2:1 and 3:1 with a total of 1200 or 2400 particles. The initial galaxies are spherical and non-rotating with Hubble type profiles and isotropic velocity distributions. The remnants are flattened (up to E4) and are oblate, triaxial or prolate depending on the impact parameter. Equal mass mergers are more flattened than unequal mass mergers and have significant velocity anisotropies. The remnants have Hubble type profiles with decreased central surface brightness and increased core radii and tidal radii. In some unequal mass mergers ''isothermal'' haloes tend to form. The density profiles are inconsistent with De Vaucouleurs profiles even though the initial profiles were not. The central velocity dispersion increases in 1:1 and 2:1 mass mergers but decreases in 3:1 mass mergers. Near head-on mergers lead to prolate systems with little rotation while high angular momentum mergers lead to oblate systems with strong rotation. The rotation curves show solid body rotation out to the half mass radius followed by a slow decline. Radial mixing is strong in equal mass mergers where it will weaken radial gradients. In unequal mass mergers there is little radial mixing but matter from the smaller galaxy ends up in the outer parts of the system where it can give rise to colour gradient

  17. The Milky Way galaxy

    International Nuclear Information System (INIS)

    Woerden, H. van; Allen, R.J.; Burton, W.B.

    1985-01-01

    IAU Symposium 106, held at the Kapteyn Institute in Groningen, presents an overview of all major aspects of galactic astronomy. The vast subject is covered in 20 authoritative review papers and 22 invited papers, each with discussion, plus 81 shorter contributions. The book opens with 4 reviews by historians of science, outlining the history of galactic research. Part 2 deals with (i) galactic rotation, (ii) the large-scale distributions of matter, of both old and young stellar populations, and of the atomic, molecular and high-energy components of the interstellar medium, (iii) small-scale structure in the gas, (iv) the galactic nucleus, (v) the high-velocity clouds. Part 3 discusses the dynamics of the local group of Galaxies and of the Milky Way-Magellanic clouds system, the dynamical and chemical evolution of the Galaxy and of its disk and halo components and the formation of the Galaxy. The controversial subject of spiral structure and star formation is analyzed in several extensive reviews and lively discussions, featuring both observational and theoretical developments. Results of extragalactic research are blended with studies of our Galaxy throughout the book, and there is a separate comparison between Andromeda and Milky Way Galaxies. The Symposium featured the first maps produced by IRAS, and results from most major telescopes in a variety of wavebands. Many review papers present material not published elsewhere. The book closes with a lecture on life in the Galaxy and with an imaginative symposium summary. (orig.)

  18. The chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Chiosi, Cesare

    1986-01-01

    The chemical evolution of galaxies is reviewed with particular attention to the theoretical interpretation of the distribution and abundances of elements in stars and the interstellar medium. The paper was presented to the conference on ''The early universe and its evolution'', Erice, Italy, 1986. The metallicity distribution of the solar vicinity, age metallicity relationship, abundance gradients in the galaxy, external galaxies, star formation and evolution, major sites of nucleosynthesis, yields of chemical elements, chemical models, and the galactic disk, are all discussed. (U.K.)

  19. Dark matter in spiral galaxies

    International Nuclear Information System (INIS)

    Persic, M.; Salucci, P.

    1990-01-01

    The Tully-Fisher relation is used to probe dark matter (DM) in the optical regions of spiral galaxies. By establishing it at several different isophotal radii in an appropriate sample of 58 galaxies with good B-band photometry and rotation curves, it is shown that some of its attributes (such as scatter, residuals, nonlinearity, and bias) dramatically decrease moving from the disk edge inward. This behavior challenges any mass model which assumes no DM or a luminosity-independent DM mass fraction interior to the optical radius of spiral galaxies. 58 refs

  20. High-power laser experiments to study collisionless shock generation

    Directory of Open Access Journals (Sweden)

    Sakawa Y.

    2013-11-01

    Full Text Available A collisionless Weibel-instability mediated shock in a self-generated magnetic field is studied using two-dimensional particle-in-cell simulation [Kato and Takabe, Astophys. J. Lett. 681, L93 (2008]. It is predicted that the generation of the Weibel shock requires to use NIF-class high-power laser system. Collisionless electrostatic shocks are produced in counter-streaming plasmas using Gekko XII laser system [Kuramitsu et al., Phys. Rev. Lett. 106, 175002 (2011]. A NIF facility time proposal is approved to study the formation of the collisionless Weibel shock. OMEGA and OMEGA EP experiments have been started to study the plasma conditions of counter-streaming plasmas required for the NIF experiment using Thomson scattering and to develop proton radiography diagnostics.

  1. Collisionless Weibel shocks: Full formation mechanism and timing

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Stockem, A. [GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon (Portugal); Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Narayan, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51 Cambridge, Massachusetts 02138 (United States); Silva, L. O. [GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon (Portugal)

    2014-07-15

    Collisionless shocks in plasmas play an important role in space physics (Earth's bow shock) and astrophysics (supernova remnants, relativistic jets, gamma-ray bursts, high energy cosmic rays). While the formation of a fluid shock through the steepening of a large amplitude sound wave has been understood for long, there is currently no detailed picture of the mechanism responsible for the formation of a collisionless shock. We unravel the physical mechanism at work and show that an electromagnetic Weibel shock always forms when two relativistic collisionless, initially unmagnetized, plasma shells encounter. The predicted shock formation time is in good agreement with 2D and 3D particle-in-cell simulations of counterstreaming pair plasmas. By predicting the shock formation time, experimental setups aiming at producing such shocks can be optimised to favourable conditions.

  2. Collisionless emission of radiation by an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Mejerovich, B.Eh.

    1976-01-01

    Collisionless emission of radiation by an inhomogeneous plasma due to the finite motion of charges in the field of external forces and collective interaction forces is studied. The intensity of the radiation is inversely proportional to the square of the transverse dimensions of the plasma. It apparently makes the main contribution to the radiation from a vacuum spark and other relativitstic beams compressed to a small size by collective interaction forces. The intensity of the collisionless radiation is calculated by taking into account Fermi statistics of the electrons. The spectral radiance in the low frequency range increases with frequency, reaches a maximum at the frequency of the finite motion of the emitters and then decreases. Measurement of collisionless radiation emission by a plasma compressed to a small size by the pinch effect is a natural way of diagnosing the plasma

  3. A REVISED PARALLEL-SEQUENCE MORPHOLOGICAL CLASSIFICATION OF GALAXIES: STRUCTURE AND FORMATION OF S0 AND SPHEROIDAL GALAXIES

    International Nuclear Information System (INIS)

    Kormendy, John; Bender, Ralf

    2012-01-01

    We update van den Bergh's parallel-sequence galaxy classification in which S0 galaxies form a sequence S0a-S0b-S0c that parallels the sequence Sa-Sb-Sc of spiral galaxies. The ratio B/T of bulge-to-total light defines the position of a galaxy in this tuning-fork diagram. Our classification makes one major improvement. We extend the S0a-S0b-S0c sequence to spheroidal ('Sph') galaxies that are positioned in parallel to irregular galaxies in a similarly extended Sa-Sb-Sc-Im sequence. This provides a natural 'home' for spheroidals, which previously were omitted from galaxy classification schemes or inappropriately combined with ellipticals. To motivate our juxtaposition of Sph and Im galaxies, we present photometry and bulge-disk decompositions of four rare, late-type S0s that bridge the gap between the more common S0b and Sph galaxies. NGC 4762 is an edge-on SB0bc galaxy with a very small classical-bulge-to-total ratio of B/T = 0.13 ± 0.02. NGC 4452 is an edge-on SB0 galaxy with an even tinier pseudobulge-to-total ratio of PB/T = 0.017 ± 0.004. It is therefore an SB0c. VCC 2048, whose published classification is S0, contains an edge-on disk, but its 'bulge' plots in the structural parameter sequence of spheroidals. It is therefore a disky Sph. And NGC 4638 is similarly a 'missing link' between S0s and Sphs—it has a tiny bulge and an edge-on disk embedded in an Sph halo. In the Appendix, we present photometry and bulge-disk decompositions of all Hubble Space Telescope Advanced Camera for Surveys Virgo Cluster Survey S0s that do not have published decompositions. We use these data to update the structural parameter correlations of Sph, S+Im, and E galaxies. We show that Sph galaxies of increasing luminosity form a continuous sequence with the disks (but not bulges) of S0c-S0b-S0a galaxies. Remarkably, the Sph-S0-disk sequence is almost identical to that of Im galaxies and spiral galaxy disks. We review published observations for galaxy transformation processes

  4. A Revised Parallel-sequence Morphological Classification of Galaxies: Structure and Formation of S0 and Spheroidal Galaxies

    Science.gov (United States)

    Kormendy, John; Bender, Ralf

    2012-01-01

    We update van den Bergh's parallel-sequence galaxy classification in which S0 galaxies form a sequence S0a-S0b-S0c that parallels the sequence Sa-Sb-Sc of spiral galaxies. The ratio B/T of bulge-to-total light defines the position of a galaxy in this tuning-fork diagram. Our classification makes one major improvement. We extend the S0a-S0b-S0c sequence to spheroidal ("Sph") galaxies that are positioned in parallel to irregular galaxies in a similarly extended Sa-Sb-Sc-Im sequence. This provides a natural "home" for spheroidals, which previously were omitted from galaxy classification schemes or inappropriately combined with ellipticals. To motivate our juxtaposition of Sph and Im galaxies, we present photometry and bulge-disk decompositions of four rare, late-type S0s that bridge the gap between the more common S0b and Sph galaxies. NGC 4762 is an edge-on SB0bc galaxy with a very small classical-bulge-to-total ratio of B/T = 0.13 ± 0.02. NGC 4452 is an edge-on SB0 galaxy with an even tinier pseudobulge-to-total ratio of PB/T = 0.017 ± 0.004. It is therefore an SB0c. VCC 2048, whose published classification is S0, contains an edge-on disk, but its "bulge" plots in the structural parameter sequence of spheroidals. It is therefore a disky Sph. And NGC 4638 is similarly a "missing link" between S0s and Sphs—it has a tiny bulge and an edge-on disk embedded in an Sph halo. In the Appendix, we present photometry and bulge-disk decompositions of all Hubble Space Telescope Advanced Camera for Surveys Virgo Cluster Survey S0s that do not have published decompositions. We use these data to update the structural parameter correlations of Sph, S+Im, and E galaxies. We show that Sph galaxies of increasing luminosity form a continuous sequence with the disks (but not bulges) of S0c-S0b-S0a galaxies. Remarkably, the Sph-S0-disk sequence is almost identical to that of Im galaxies and spiral galaxy disks. We review published observations for galaxy transformation processes

  5. Modeling collisions in circumstellar debris disks

    Science.gov (United States)

    Nesvold, Erika

    2015-10-01

    Observations of resolved debris disks show a spectacular variety of features and asymmetries, including inner cavities and gaps, inclined secondary disks or warps, and eccentric, sharp-edged rings. Embedded exoplanets could create many of these features via gravitational perturbations, which sculpt the disk directly and by generating planetesimal collisions. In this thesis, I present the Superparticle Model/Algorithm for Collisions in Kuiper belts and debris disks (SMACK), a new method for simultaneously modeling, in 3-D, the collisional and dynamical evolution of planetesimals in a debris disk with planets. SMACK can simulate azimuthal asymmetries and how these asymmetries evolve over time. I show that SMACK is stable to numerical viscosity and numerical heating over 107 yr, and that it can reproduce analytic models of disk evolution. As an example of the algorithm's capabilities, I use SMACK to model the evolution of a debris ring containing a planet on an eccentric orbit and demonstrate that differential precession creates a spiral structure as the ring evolves, but collisions subsequently break up the spiral, leaving a narrower eccentric ring. To demonstrate SMACK's utility in studying debris disk physics, I apply SMACK to simulate a planet on a circular orbit near a ring of planetesimals that are experiencing destructive collisions. Previous simulations of a planet opening a gap in a collisionless debris disk have found that the width of the gap scales as the planet mass to the 2/7th power (alpha = 2/7). I find that gap sizes in a collisional disk still obey a power law scaling with planet mass, but that the index alpha of the power law depends on the age of the system t relative to the collisional timescale t coll of the disk by alpha = 0.32(t/ tcoll)-0.04, with inferred planet masses up to five times smaller than those predicted by the classical gap law. The increased gap sizes likely stem from the interaction between collisions and the mean motion

  6. An Introduction to the Physics of Collisionless Shocks

    International Nuclear Information System (INIS)

    Russell, C.T.

    2005-01-01

    Collisionless shocks are important in astrophysical, heliospheric and magnetospheric settings. They deflect flows around obstacles; they heat the plasma, and they alter the properties of the flow as it intersects those obstacles. The physical processes occurring at collisionless shocks depend on the Mach number (strength) and beta (magnetic to thermal pressure) of the shocks and the direction of the magnetic field relative to the shock normal. Herein we review how the shock has been modeled in numerical simulations, the basic physical processes at work, including dissipation and thermalization, the electric potential drop at the shock, and the formation of the electron and ion foreshocks

  7. Secular evolution of galaxies and galaxy clusters in decaying dark matter cosmology

    International Nuclear Information System (INIS)

    Ferrer, Francesc; Nipoti, Carlo; Ettori, Stefano

    2009-01-01

    If the dark matter sector in the Universe is composed by metastable particles, galaxies and galaxy clusters are expected to undergo significant secular evolution from high to low redshift. We show that the decay of dark matter, with a lifetime compatible with cosmological constraints, can be at the origin of the observed evolution of the Tully-Fisher relation of disk galaxies and alleviate the problem of the size evolution of elliptical galaxies, while being consistent with the current observational constraints on the gas fraction of clusters of galaxies.

  8. A MINUET OF GALAXIES

    Science.gov (United States)

    2002-01-01

    This troupe of four galaxies, known as Hickson Compact Group 87 (HCG 87), is performing an intricate dance orchestrated by the mutual gravitational forces acting between them. The dance is a slow, graceful minuet, occurring over a time span of hundreds of millions of years. The Wide Field and Planetary Camera 2 on NASA's Hubble Space Telescope (HST) provides a striking improvement in resolution over previous ground-based imaging. In particular, this image reveals complex details in the dust lanes of the group's largest galaxy member (HCG 87a), which is actually disk-shaped, but tilted so that we see it nearly edge-on. Both 87a and its elliptically shaped nearest neighbor (87b) have active galactic nuclei which are believed to harbor black holes that are consuming gas. A third group member, the nearby spiral galaxy 87c, may be undergoing a burst of active star formation. Gas flows within galaxies can be intensified by the gravitational tidal forces between interacting galaxies. So interactions can provide fresh fuel for both active nuclei and starburst phenomena. These three galaxies are so close to each other that gravitational forces disrupt their structure and alter their evolution. From the analysis of its spectra, the small spiral near the center of the group could either be a fourth member or perhaps an unrelated background object. The HST image was made by combining images taken in four different color filters in order to create a three-color picture. Regions of active star formation are blue (hot stars) and also pinkish if hot hydrogen gas is present. The complex dark bands across the large edge-on disk galaxy are due to interstellar dust silhouetted against the galaxy's background starlight. A faint tidal bridge of stars can be seen between the edge-on and elliptical galaxies. HCG 87 was selected for Hubble imaging by members of the public who visited the Hubble Heritage website (http://heritage.stsci.edu) during the month of May and registered their votes

  9. Galaxy Zoo: Observing secular evolution through bars

    International Nuclear Information System (INIS)

    Cheung, Edmond; Faber, S. M.; Koo, David C.; Athanassoula, E.; Bosma, A.; Masters, Karen L.; Nichol, Robert C.; Melvin, Thomas; Bell, Eric F.; Lintott, Chris; Schawinski, Kevin; Skibba, Ramin A.; Willett, Kyle W.

    2013-01-01

    In this paper, we use the Galaxy Zoo 2 data set to study the behavior of bars in disk galaxies as a function of specific star formation rate (SSFR) and bulge prominence. Our sample consists of 13,295 disk galaxies, with an overall (strong) bar fraction of 23.6% ± 0.4%, of which 1154 barred galaxies also have bar length (BL) measurements. These samples are the largest ever used to study the role of bars in galaxy evolution. We find that the likelihood of a galaxy hosting a bar is anticorrelated with SSFR, regardless of stellar mass or bulge prominence. We find that the trends of bar likelihood and BL with bulge prominence are bimodal with SSFR. We interpret these observations using state-of-the-art simulations of bar evolution that include live halos and the effects of gas and star formation. We suggest our observed trends of bar likelihood with SSFR are driven by the gas fraction of the disks, a factor demonstrated to significantly retard both bar formation and evolution in models. We interpret the bimodal relationship between bulge prominence and bar properties as being due to the complicated effects of classical bulges and central mass concentrations on bar evolution and also to the growth of disky pseudobulges by bar evolution. These results represent empirical evidence for secular evolution driven by bars in disk galaxies. This work suggests that bars are not stagnant structures within disk galaxies but are a critical evolutionary driver of their host galaxies in the local universe (z < 1).

  10. Hydrodynamics of ponderomotive interactions in a collisionless plasma

    International Nuclear Information System (INIS)

    Kono, M.; Skoric, M.M.; ter Haar, D.

    1987-01-01

    A hydrodynamic treatment of ponderomotive interactions in a collisionless plasma is presented and it is shown that consistent hydrodynamics leads to the correct expression for the solenoidal ponderomotive electron current density, a result previously thought to be derivable only in the framework of the warm-plasma kinetic theory

  11. Highly Supersonic Ion Pulses in a Collisionless Magnetized Plasma

    DEFF Research Database (Denmark)

    Juul Rasmussen, Jens; Schrittwieser, R.

    1982-01-01

    The initial transient response of a collisionless plasma to a high positive voltage step is investigated. Four different pulses are observed. An electron plasma wave pulse is followed by an ion burst. The latter is overtaken and absorbed by a highly supersonic ion pulse. Thereafter, an ion...

  12. Collisionless shocks and upstream waves and particles: Introductory remarks

    International Nuclear Information System (INIS)

    Kennel, C.F.

    1981-01-01

    We discuss more aspects of collisionless shock theory that might be pertinent to the problem of upstream waves and particles. It is hoped that our qualititive remarks may be a useful guide for the general reader as he goes through the detailed papers to come

  13. Isolated galaxies

    International Nuclear Information System (INIS)

    Einasto, Maret

    1990-01-01

    To test for the possible presence of really isolated galaxies, which form a randomly distributed population in voids, we compare the distribution of most isolated galaxies in an observed sample with distributions of the same number of random points using the nearest neighbour test. The results show that the random population of really isolated galaxies does not exist - even the most isolated galaxies are connected with systems of galaxies, forming their outlying parts. (author)

  14. Galaxy Zoo: A Catalog of Overlapping Galaxy Pairs for Dust Studies

    OpenAIRE

    Keel, William C.; Manning, Anna; Holwerda, Benne W.; Mezzoprete, Massimo; Lintott, Chris J.; Schawinski, Kevin; Gay, Pamela; Masters, Karen L.

    2012-01-01

    Analysis of galaxies with overlapping images offers a direct way to probe the distribution of dust extinction and its effects on the background light. We present a catalog of 1990 such galaxy pairs selected from the Sloan Digital Sky Survey (SDSS) by volunteers of the Galaxy Zoo project. We highlight subsamples which are particularly useful for retrieving such properties of the dust distribution as UV extinction, the extent perpendicular to the disk plane, and extinction in the inner parts of...

  15. Inclination effects on the recognition of Seyfert galaxies

    International Nuclear Information System (INIS)

    Keel, W.C.

    1980-01-01

    Axial ratios have been measured from images of 91 Seyfert galaxies thought to be disk systems, and their distribution as a function of axial ratio compared to that of field spirals similarly distributed in distance. There is a deficiency of nearly edge-on Seyfert 1 galaxies relative to the comparison sample. Examination of the visibility of nuclei in a sample of nearby spirals indicates that the effect is too large to be caused by absorption in the disks of normal spiral galaxies, while no absorption other than that expected from such disks is found in non-Seyfert Markarian spirals with bright, condensed nuclei

  16. Deconstructing Disk Velocity Distribution Functions in the Disk-Mass Survey

    NARCIS (Netherlands)

    Westfall, K. B.; Bershady, M. A.; Verheijen, M. A. W.; Andersen, D. R.; Swaters, R. A.

    2008-01-01

    We analyze integral-field ionized gas and stellar line-of-sight kinematics in the context of determining the stellar velocity ellipsoid for spiral galaxies observed by the Disk-Mass Survey. Our new methodology enables us to measure, for the first time, a radial gradient in the ellipsoid ratio

  17. The DiskMass Survey. VIII. On the Relationship between Disk Stability and Star Formation

    NARCIS (Netherlands)

    Westfall, Kyle B.; Andersen, David R.; Bershady, Matthew A.; Martinsson, Thomas P. K.; Swaters, Robert A.; Verheijen, Marc A. W.

    2014-01-01

    We study the relationship between the stability level of late-type galaxy disks and their star-formation activity using integral-field gaseous and stellar kinematic data. Specifically, we compare the two-component (gas+stars) stability parameter from Romeo & Wiegert (Q RW), incorporating stellar

  18. Dynamical simulations of the interacting galaxies in the NGC 520/UGC 957 system

    Science.gov (United States)

    Stanford, S. A.; Balcells, Marc

    1991-01-01

    Numerical simulations of the interacting galaxies in the NGC 520/UGC 957 system are presented. Two sets of models were produced to investigate the postulated three-galaxy system of two colliding disk galaxies within NGC 520 and the dwarf galaxy UGC 957. The first set of models simulated a dwarf perturbing one-disk galaxy, which tested the possibility that NGC 520 contains only one galaxy disturbed by the passage of UGC 957. The resulting morphology of the perturbed single disk in the simulation fails to reproduce the observed tidal tails and northwest mass condensation of NGC 520. A second set of models simulated two colliding disks, which tested the hypothesis that NGC 520 itself contains two galaxies in a strong collision and UGC 957 is unimportant to the interaction. These disk-disk models produced a good match to the morphology of the present NGC 520. It is concluded that (1) NGC 520 contains two colliding disk galaxies which have produced the brighter southern half of the long tidal tail and (2) UGC 957, which may originally have been a satellite of one of the disk galaxies, formed the diffuse northern tail as it orbited NGC 520.

  19. LEDA 074886: A REMARKABLE RECTANGULAR-LOOKING GALAXY

    International Nuclear Information System (INIS)

    Graham, Alister W.; Spitler, Lee R.; Forbes, Duncan A.; Lisker, Thorsten; Janz, Joachim; Moore, Ben

    2012-01-01

    We report the discovery of an interesting and rare rectangular-shaped galaxy. At a distance of 21 Mpc, the dwarf galaxy LEDA 074886 has an absolute R-band magnitude of –17.3 mag. Adding to this galaxy's intrigue is the presence of an embedded, edge-on stellar disk (of extent 2 R e,disk = 12'' = 1.2 kpc) for which Forbes et al. reported v rot /σ ≈ 1.4. We speculate that this galaxy may be the remnant of two (nearly edge-on) merged disk galaxies in which the initial gas was driven inward and subsequently formed the inner disk, while the stars at larger radii effectively experienced a dissipationless merger event resulting in this 'emerald cut galaxy' having very boxy isophotes with a 4 /a = –0.05 to –0.08 from 3 to 5 kpc. This galaxy suggests that knowledge from simulations of both 'wet' and 'dry' galaxy mergers may need to be combined to properly understand the various paths that galaxy evolution can take, with a particular relevance to blue elliptical galaxies.

  20. METALLICITY GRADIENTS OF THICK DISK DWARF STARS

    Energy Technology Data Exchange (ETDEWEB)

    Carrell, Kenneth; Chen Yuqin; Zhao Gang, E-mail: carrell@nao.cas.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2012-12-01

    We examine the metallicity distribution of the Galactic thick disk using F, G, and K dwarf stars selected from the Sloan Digital Sky Survey, Data Release 8. Using the large sample of dwarf stars with proper motions and spectroscopically determined stellar parameters, metallicity gradients in the radial direction for various heights above the Galactic plane and in the vertical direction for various radial distances from the Galaxy center have been found. In particular, we find a vertical metallicity gradient of -0.113 {+-} 0.010 (-0.125 {+-} 0.008) dex kpc{sup -1} using an isochrone (photometric) distance determination in the range 1 kpc <|Z| < 3 kpc, which is the vertical height range most consistent with the thick disk of our Galaxy. In the radial direction, we find metallicity gradients between +0.02 and +0.03 dex kpc{sup -1} for bins in the vertical direction between 1 kpc <|Z| < 3 kpc. Both of these results agree with similar values determined from other populations of stars, but this is the first time a radial metallicity gradient for the thick disk has been found at these vertical heights. We are also able to separate thin and thick disk stars based on kinematic and spatial probabilities in the vertical height range where there is significant overlap of these two populations. This should aid further studies of the metallicity gradients of the disk for vertical heights lower than those studied here but above the solar neighborhood. Metallicity gradients in the thin and thick disks are important probes into possible formation scenarios for our Galaxy and a consistent picture is beginning to emerge from results using large spectroscopic surveys, such as the ones presented here.

  1. Galaxy mergers

    International Nuclear Information System (INIS)

    Roos, N.

    1981-01-01

    This thesis contains a series of four papers dealing with the effects of interactions among galaxies during the epoch of cluster formation. Galaxy interactions are investigated and the results incorporated in numerical simulations of the formation of groups and clusters of galaxies. The role of galaxy interactions is analysed in the more general context of simulations of an expanding universe. The evolution of galaxies in rich clusters is discussed. The results of the investigations are presented and their relation to other work done in the field are briefly reviewed and an attempt is made to link galaxy mergers to the occurrence of activity in galactic nuclei. (Auth.)

  2. Stellar Disk Truncations: HI Density and Dynamics

    Science.gov (United States)

    Trujillo, Ignacio; Bakos, Judit

    2010-06-01

    Using HI Nearby Galaxy Survey (THINGS) 21-cm observations of a sample of nearby (nearly face-on) galaxies we explore whether the stellar disk truncation phenomenon produces any signature either in the HI gas density and/or in the gas dynamics. Recent cosmological simulations suggest that the origin of the break on the surface brightness distribution is produced by the appearance of a warp at the truncation position. This warp should produce a flaring on the gas distribution increasing the velocity dispersion of the HI component beyond the break. We do not find, however, any evidence of this increase in the gas velocity dispersion profile.

  3. Circumnuclear Structures in Megamaser Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Pjanka, Patryk; Greene, Jenny E. [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Seth, Anil C. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Braatz, James A.; Lo, Fred K. Y. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Henkel, Christian [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Läsker, Ronald, E-mail: ppjanka@princeton.edu [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, FI-21500 Kaarina (Finland)

    2017-08-01

    Using the Hubble Space Telescope , we identify circumnuclear (100–500 pc scale) structures in nine new H{sub 2}O megamaser host galaxies to understand the flow of matter from kpc-scale galactic structures down to the supermassive black holes (SMBHs) at galactic centers. We double the sample analyzed in a similar way by Greene et al. and consider the properties of the combined sample of 18 sources. We find that disk-like structure is virtually ubiquitous when we can resolve <200 pc scales, in support of the notion that non-axisymmetries on these scales are a necessary condition for SMBH fueling. We perform an analysis of the orientation of our identified nuclear regions and compare it with the orientation of megamaser disks and the kpc-scale disks of the hosts. We find marginal evidence that the disk-like nuclear structures show increasing misalignment from the kpc-scale host galaxy disk as the scale of the structure decreases. In turn, we find that the orientation of both the ∼100 pc scale nuclear structures and their host galaxy large-scale disks is consistent with random with respect to the orientation of their respective megamaser disks.

  4. Could a Collision Between a Ghost Galaxy and the Milky Way be the Origin of the VPOS or DoS?

    Science.gov (United States)

    Bohórquez, O. A.; Casas, A. R.

    2018-01-01

    At present within the area of astrophysics there are a number of unresolved problems, including the origin of the satellite galaxies of the Milky Way. Most of these galaxies are characterized as dwarf spheroidal galaxies. The large majority of them is distributed in a disk-like structure which is arranged almost perpendicular to the plane of the Galaxy, this structure is known as disk of satellites (DoS) or Vast Polar structure of Satellite galaxies (VPoS). So far there is not a model that fully reproduces the amount and spatial distribution of these galaxies. However there have been several proposed for the solutions, one of which suggests that these originated in the collision of two disk galaxies billions of years ago. Using the Gadget2 software, we have performed N-bodies numerical simulations of the collision between two disk galaxies that could give rise to disk of Milky Way satellites.

  5. Galaxy Formation

    DEFF Research Database (Denmark)

    Sparre, Martin

    Galaxy formation is an enormously complex discipline due to the many physical processes that play a role in shaping galaxies. The objective of this thesis is to study galaxy formation with two different approaches: First, numerical simulations are used to study the structure of dark matter and how...... galaxies form stars throughout the history of the Universe, and secondly it is shown that observations of gamma-ray bursts (GRBs) can be used to probe galaxies with active star formation in the early Universe. A conclusion from the hydrodynamical simulations is that the galaxies from the stateof...... is important, since it helps constraining chemical evolution models at high redshift. A new project studying how the population of galaxies hosting GRBs relate to other galaxy population is outlined in the conclusion of this thesis. The core of this project will be to quantify how the stellar mass function...

  6. Numerical simulations of energy transfer in two collisionless interpenetrating plasmas

    Directory of Open Access Journals (Sweden)

    Davis S.

    2013-11-01

    Full Text Available Ion stream instabilities are essential for collisionless shock formation as seen in astrophysics. Weakly relativistic shocks are considered as candidates for sources of high energy cosmic rays. Laboratory experiments may provide a better understanding of this phenomenon. High intensity short pulse laser systems are opening possibilities for efficient ion acceleration to high energies. Their collision with a secondary target could be used for collisionless shock formation. In this paper, using particle-in-cell simulations we are studying interaction of a sub-relativistic, laser created proton beam with a secondary gas target. We show that the ion bunch initiates strong electron heating accompanied by the Weibel-like filamentation and ion energy losses. The energy repartition between ions, electrons and magnetic fields are investigated. This yields insight on the processes occurring in the interstellar medium (ISM and gamma-ray burst afterglows.

  7. The generalized Ohm's law in collisionless magnetic reconnection

    International Nuclear Information System (INIS)

    Cai, H.J.; Lee, L.C.

    1997-01-01

    The generalized Ohm close-quote s law and the force balance near neutral lines in collisionless magnetic reconnection is studied based on two-dimensional full particle simulations in which the ion endash electron mass ratio is set to be 1836. The off-diagonal elements of a plasma pressure tensor are found to be responsible for the breakdown of the frozen-in condition in collisionless reconnection. While the off-diagonal elements of the electron pressure tensor are dominant terms in the generalized Ohm close-quote s law near neutral lines, the ion off-diagonal pressure terms are of significant importance when ions are main current carriers. The spatial scale of electron off-diagonal pressure term P xy (e) is also found to be proportional to the Dungey length scale, (m e E y /eβ 2 ) 1/3 , where β=∂B z /∂x. copyright 1997 American Institute of Physics

  8. Collisionless magnetic reconnection associated with coalescence of flux bundles

    International Nuclear Information System (INIS)

    Tanaka, Motohiko.

    1994-11-01

    The basic process of collisionless reconnection is studied in terms of coalescence of magnetized flux bundles using an implicit particle simulation of two-dimensions. The toroidal electric field that directly relates to magnetic reconnection is generated solenoidally in a region much broader than the current sheet whose width is a few electron skin depths. The reconnected flux increases linearly in time, but it is insensitive to finite Larmor radii of the ions in this Sweet-Parker regime. The toroidal electric field is controlled by a balance of transit acceleration of finite-mass electrons and their removal by sub-Alfvenic E x B drift outflow. The simulation results supports the collisionless Ohm's law E t ≅η eq J t with η eq the inertia resistivity. (author)

  9. Heating and generation of suprathermal particles at collisionless shocks

    International Nuclear Information System (INIS)

    Thomsen, M.F.

    1985-01-01

    Collisionless plasma shocks are different from ordinary collisional fluid shocks in several important respects. They do not in general heat the electrons and ions equally, nor do they produce Maxwellian velocity distributions downstream. Furthermore, they commonly generate suprathermal particles which propagate into the upstream region, giving advance warning of the presence of the shock and providing a ''seed'' population for further acceleration to high energies. Recent space observations and theory have revealed a great deal about the heating mechanisms which occur in collisionless shocks and about the origin of the various suprathermal particle populations which are found in association with them. An overview of the present understanding of these subjects is presented herein. 83 refs., 8 figs

  10. Enriched gas in clusters and the dynamics of galaxies and clusters: implications for theories of galaxy formation

    International Nuclear Information System (INIS)

    Binney, J.; Silk, J.

    1978-01-01

    Recent developments in relation to the origin of galaxies are cited: the discovery that the intergalactic medium which seems to pervade rich clusters of galaxies has an iron abundance that lies within an order of magnitude of the solar value; the discovery that elliptical galaxies rotate much more slowly than the models of these galaxies had predicted; and the results of studies of cosmological infall in the context of the formation of galaxies and galaxy clusters, which have shown that the resulting density profile is fairly insensitive to initial conditions. After discussing the implications of these recent observations of X-ray clusters and of the rotation of elliptical galaxies, an attempt is made to construct a picture of the formation of elliptical and spiral galaxies in which galaxies form continuously from redshift z approximately 100 onwards. It is suggested that at a redshift z of roughly 5, a fundamental change occurred in the manner in which the cosmic material fragmented into stellar objects. It seems possible that explanations of a variety of puzzling aspects of galactic evolution, including the formation of Population I disks, the origin of the hot intracluster gas, the mass-to-light ratio stratification of galaxies, and the nature of the galaxy luminosity function, should all be sought in the context of this change of regime. Some remarks are made about gas in poor groups of galaxies and the interaction of disk galaxies with their environments. (U.K.)

  11. GALAXY OUTFLOWS WITHOUT SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Sur, Sharanya [Indian Institute of Astrophysics, 2nd Block, Koramangala, Bangalore 560034 (India); Scannapieco, Evan [School of Earth and Space Exploration, Arizona State University, P.O. Box 876004, Tempe-85287 (United States); Ostriker, Eve C., E-mail: sharanya.sur@iiap.res.in, E-mail: sharanya.sur@asu.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2016-02-10

    High surface density, rapidly star-forming galaxies are observed to have ≈50–100 km s{sup −1} line of sight velocity dispersions, which are much higher than expected from supernova driving alone, but may arise from large-scale gravitational instabilities. Using three-dimensional simulations of local regions of the interstellar medium, we explore the impact of high velocity dispersions that arise from these disk instabilities. Parametrizing disks by their surface densities and epicyclic frequencies, we conduct a series of simulations that probe a broad range of conditions. Turbulence is driven purely horizontally and on large scales, neglecting any energy input from supernovae. We find that such motions lead to strong global outflows in the highly compact disks that were common at high redshifts, but weak or negligible mass loss in the more diffuse disks that are prevalent today. Substantial outflows are generated if the one-dimensional horizontal velocity dispersion exceeds ≈35 km s{sup −1}, as occurs in the dense disks that have star-formation rate (SFR) densities above ≈0.1 M{sub ⊙} yr{sup −1} kpc{sup −2}. These outflows are triggered by a thermal runaway, arising from the inefficient cooling of hot material coupled with successive heating from turbulent driving. Thus, even in the absence of stellar feedback, a critical value of the SFR density for outflow generation can arise due to a turbulent heating instability. This suggests that in strongly self-gravitating disks, outflows may be enhanced by, but need not caused by, energy input from supernovae.

  12. How to Patch Active Plasma and Collisionless Sheath: Practical Guide

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.

    2002-01-01

    Most plasmas have a very thin sheath compared with the plasma dimension. This necessitates separate calculations of the plasma and sheath. The Bohm criterion provides the boundary condition for calculation of plasma profiles. To calculate sheath properties, a value of electric field at the plasma-sheath interface has to be specified in addition to the Bohm criterion. The value of the boundary electric field and robust procedure to approximately patch plasma and collisionless sheath with a very good accuracy are reported

  13. Zonal flow generation in collisionless trapped electron mode turbulence

    International Nuclear Information System (INIS)

    Anderson, J; Nordman, H; Singh, R; Weiland, J

    2006-01-01

    In the present work the generation of zonal flows in collisionless trapped electron mode (TEM) turbulence is studied analytically. A reduced model for TEM turbulence is utilized based on an advanced fluid model for reactive drift waves. An analytical expression for the zonal flow growth rate is derived and compared with the linear TEM growth, and its scaling with plasma parameters is examined for typical tokamak parameter values

  14. A new fast reconnection model in a collisionless regime

    International Nuclear Information System (INIS)

    Tsiklauri, David

    2008-01-01

    Based on the first principles [i.e., (i) by balancing the magnetic field advection with the term containing electron pressure tensor nongyrotropic components in the generalized Ohm's law; (ii) using the conservation of mass; and (iii) assuming that the weak magnetic field region width, where electron meandering motion supports electron pressure tensor off-diagonal (nongyrotropic) components, is of the order of electron Larmor radius] a simple model of magnetic reconnection in a collisionless regime is formulated. The model is general, resembling its collisional Sweet-Parker analog in that it is not specific to any initial configuration, e.g., Harris-type tearing unstable current sheet, X-point collapse or otherwise. In addition to its importance from the fundamental point of view, the collisionless reconnection model offers a much faster reconnection rate [M c ' less =(c/ω pe ) 2 /(r L,e L)] than Sweet-Parker's classical one (M sp =S -1/2 ). The width of the diffusion region (current sheet) in the collisionless regime is found to be δ c ' less =(c/ω pe ) 2 /r L,e , which is independent of the global reconnection scale L and is only prescribed by microphysics (electron inertial length, c/ω pe , and electron Larmor radius, r L,e ). Amongst other issues, the fastness of the reconnection rate alleviates, e.g., the problem of interpretation of solar flares by means of reconnection, as for the typical solar coronal parameters the obtained collisionless reconnection time can be a few minutes, as opposed to Sweet-Parker's equivalent value of less than a day. The new theoretical reconnection rate is compared to the Magnetic Reconnection Experiment device experimental data by Yamada et al. [Phys. Plasmas 13, 052119 (2006)] and Ji et al. [Geophys. Res. Lett. 35, 13106 (2008)], and a good agreement is obtained.

  15. Unequilibrium kinetic of collisionless boundary layers in binary plasmas

    International Nuclear Information System (INIS)

    Kotelnikov, V.A.; Nikolaev, F.A.; Cherepanov, V.V.

    1985-01-01

    Relaxation processes of kinetic nonequilibrium collisionless boundary layers near spherical charged full absorbing surfaces in binary low-temperature plasmas are investigated. The effect of magnetic field on relaxation processes was neglected. The dynamics of components of the ionized gas was treated near the boundary layer. The potential distribution and the space dependence of concentration were calculated numerically. These results agree well with the experimental data. (D.Gy.)

  16. Numerical treatment of linearized equations describing inhomogeneous collisionless plasmas

    International Nuclear Information System (INIS)

    Lewis, H.R.

    1979-01-01

    The equations governing the small-signal response of spatially inhomogeneous collisionless plasmas have practical significance in physics, for example in controlled thermonuclear fusion research. Although the solutions are very complicated and the equations are different to solve numerically, effective methods for them are being developed which are applicable when the equilibrium involves only one nonignorable coordinate. The general theoretical framework probably will provide a basis for progress when there are two or three nonignorable coordinates

  17. The Galaxy's Eating Habits

    Science.gov (United States)

    Putman, M. E.; Thom, C.; Gibson, B. K.; Staveley-Smith, L.

    2004-06-01

    The possibility of a gaseous halo stream which was stripped from the Sagittarius dwarf galaxy is presented. The total mass of the neutral hydrogen along the orbit of the Sgr dwarf in the direction of the Galactic Anti-Center is 4 - 10 × 106 M⊙ (at 36 kpc, the distance to the stellar debris in this region). Both the stellar and gaseous components have negative velocities in this part of the sky, but the gaseous component extends to higher negative velocities. We suggest this gaseous stream was stripped from the main body of the dwarf 0.2 - 0.3 Gyr ago during its current orbit after a passage through a diffuse edge of the Galactic disk with a density > 10-4 cm-3. The gas would then represent the dwarf's last source of star formation fuel and explains how the galaxy was forming stars 0.5-2 Gyr ago.

  18. GEOMETRY OF STAR-FORMING GALAXIES FROM SDSS, 3D-HST, AND CANDELS

    International Nuclear Information System (INIS)

    Van der Wel, A.; Chang, Yu-Yen; Rix, H.-W.; Martig, M.; Bell, E. F.; Holden, B. P.; Koo, D. C.; Mozena, M.; Faber, S. M.; Ferguson, H. C.; Brammer, G.; Kassin, S. A.; Giavalisco, M.; Skelton, R.; Whitaker, K.; Momcheva, I.; Van Dokkum, P. G.; Dekel, A.; Ceverino, D.; Franx, M.

    2014-01-01

    We determine the intrinsic, three-dimensional shape distribution of star-forming galaxies at 0 < z < 2.5, as inferred from their observed projected axis ratios. In the present-day universe, star-forming galaxies of all masses 10 9 -10 11 M ☉ are predominantly thin, nearly oblate disks, in line with previous studies. We now extend this to higher redshifts, and find that among massive galaxies (M * > 10 10 M ☉ ) disks are the most common geometric shape at all z ≲ 2. Lower-mass galaxies at z > 1 possess a broad range of geometric shapes: the fraction of elongated (prolate) galaxies increases toward higher redshifts and lower masses. Galaxies with stellar mass 10 9 M ☉ (10 10 M ☉ ) are a mix of roughly equal numbers of elongated and disk galaxies at z ∼ 1 (z ∼ 2). This suggests that galaxies in this mass range do not yet have disks that are sustained over many orbital periods, implying that galaxies with present-day stellar mass comparable to that of the Milky Way typically first formed such sustained stellar disks at redshift z ∼ 1.5-2. Combined with constraints on the evolution of the star formation rate density and the distribution of star formation over galaxies with different masses, our findings imply that, averaged over cosmic time, the majority of stars formed in disks

  19. High-Mach number, laser-driven magnetized collisionless shocks

    International Nuclear Information System (INIS)

    Schaeffer, Derek B.; Fox, W.; Haberberger, D.; Fiksel, G.; Bhattacharjee, A.

    2017-01-01

    Collisionless shocks are ubiquitous in space and astrophysical systems, and the class of supercritical shocks is of particular importance due to their role in accelerating particles to high energies. While these shocks have been traditionally studied by spacecraft and remote sensing observations, laboratory experiments can provide reproducible and multi-dimensional datasets that provide complementary understanding of the underlying microphysics. We present experiments undertaken on the OMEGA and OMEGA EP laser facilities that show the formation and evolution of high-Mach number collisionless shocks created through the interaction of a laser-driven magnetic piston and magnetized ambient plasma. Through time-resolved, 2-D imaging we observe large density and magnetic compressions that propagate at super-Alfvenic speeds and that occur over ion kinetic length scales. Electron density and temperature of the initial ambient plasma are characterized using optical Thomson scattering. Measurements of the piston laser-plasma are modeled with 2-D radiation-hydrodynamic simulations, which are used to initialize 2-D particle-in-cell simulations of the interaction between the piston and ambient plasmas. The numerical results show the formation of collisionless shocks, including the separate dynamics of the carbon and hydrogen ions that constitute the ambient plasma and their effect on the shock structure. Furthermore, the simulations also show the shock separating from the piston, which we observe in the data at late experimental times.

  20. Outskirts of galaxies

    CERN Document Server

    Lee, Janice; Paz, Armando

    2017-01-01

    This book consists of invited reviews written by world-renowned experts on the subject of the outskirts of galaxies, an upcoming field which has been understudied so far. These regions are faint and hard to observe, yet hide a tremendous amount of information on the origin and early evolution of galaxies. They thus allow astronomers to address some of the most topical problems, such as gaseous and satellite accretion, radial migration, and merging. The book is published in conjunction with the celebration of the end of the four-year DAGAL project, an EU-funded initial training network, and with a major international conference on the topic held in March 2016 in Toledo. It thus reflects not only the views of the experts, but also the scientific discussions and progress achieved during the project and the meeting. The reviews in the book describe the most modern observations of the outer regions of our own Galaxy, and of galaxies in the local and high-redshift Universe. They tackle disks, haloes, streams, and a...

  1. A study of spiral galaxies

    International Nuclear Information System (INIS)

    Wevers, B.M.H.R.

    1984-01-01

    Attempts have been made to look for possible correlations between integral properties of spiral galaxies as a function of morphological type. To investigate this problem, one needs the detailed distribution of both the gaseous and the stellar components for a well-defined sample of spiral galaxies. A sample of about 20 spiral galaxies was therefore defined; these galaxies were observed in the 21 cm neutral hydrogen line with the Westerbork Synthesis Radio Telescope and in three broad-band optical colours with the 48-inch Palomar Smidt Telescope. First, an atlas of the combined radio and optical observations of 16 nearby northern-hemisphere spiral galaxies is presented. Luminosity profiles are discussed and the scale lengths of the exponential disks and extrapolated central surface brightnesses are derived, as well as radial color distributions; azimuthal surface brightness distributions and rotation curves. Possible correlations with optical features are investigated. It is found that 20 to 50 per cent of the total mass is in the disk. (Auth.)

  2. Plasma confinement in self-consistent, one-dimensional transport equilibria in the collisionless-ion regime of EBT operation

    International Nuclear Information System (INIS)

    Chang, C.S.; Miller, R.L.

    1983-01-01

    It has long been recognized that if an EBT-confined plasma could be maintained in the collisionless-ion regime, characterized by positive ambipolar potential and positive radial electric field, the particle loss rates could be reduced by a large factor. The extent to which the loss rate of energy could be reduced has not been as clearly determined, and has been investigated recently using a one-dimensional, time-dependent transport code developed for this purpose. We find that the energy confinement can be improved by roughly an order of magnitude by maintaining a positive radial electric field that increases monotonically with radius, giving a large ExB drift near the outer edge of the core plasma. The radial profiles of heat deposition required to sustain these equilibria will be presented, and scenarios for obtaining dynamical access to the equilibria will be discussed

  3. Broad line regions in Seyfert-1 galaxies

    International Nuclear Information System (INIS)

    Groningen, E. van.

    1984-01-01

    To reproduce observed emission profiles of Seyfert galaxies, rotation in an accretion disk has been proposed. In this thesis, the profiles emitted by such an accretion disk are investigated. Detailed comparison with the observed profiles yields that a considerable fraction can be fitted with a power-law function, as predicted by the model. The author analyzes a series of high quality spectra of Seyfert galaxies, obtained with the 2.5m telescope at Las Campanas. He presents detailed analyses of two objects: Mkn335 and Akn120. In both cases, strong evidence is presented for the presence of two separate broad line zones. These zones are identified with an accretion disk and an outflowing wind. The disk contains gas with very high densities and emits predominantly the lower ionization lines. He reports on the discovery of very broad wings beneath the strong forbidden line 5007. (Auth.)

  4. Barred spiral structure of galaxies

    International Nuclear Information System (INIS)

    Chen, Z.; Weng, s.; Xu, M.

    1982-01-01

    Observational data indicate the grand design of spiral or barred spiral structure in disk galaxies. The problem of spiral structure has been thoroughly investigated by C. C. Lin and his collaborators, but yet the problem of barred spiral structure has not been investigated systematically, although much work has been done, such as in Ref. 3--7. Using the gasdynamic model for galaxies and a method of integral transform presented in Ref. 1, we investigated the barred spiral structure and obtained an analytical solution. It gives the large-scale pattern of barred-spirals, which is in fairly good agreement with observational data

  5. The rotation of spiral galaxies.

    Science.gov (United States)

    Rubin, V C

    1983-06-24

    There is accumulating evidence that as much as 90 percent of the mass of the universe is nonluminous and is clumped, halo-like, around individual galaxies. The gravitational force of this dark matter is presumed to be responsible for the high rotational velocities of stars and gas in the disks of spiral galaxie. At present, the form of the dark matter is unknown. Possible candidates span a range in mass of 10(70), from non-zero-mass neutrinos to massive black holes.

  6. Oscillations of disks

    CERN Document Server

    Kato, Shoji

    2016-01-01

    This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...

  7. COMBINED EFFECTS OF GALAXY INTERACTIONS AND LARGE-SCALE ENVIRONMENT ON GALAXY PROPERTIES

    International Nuclear Information System (INIS)

    Park, Changbom; Choi, Yun-Young

    2009-01-01

    We inspect the coupled dependence of physical parameters of the Sloan Digital Sky Survey galaxies on the small-scale (distance to and morphology of the nearest neighbor galaxy) and the large-scale (background density smoothed over 20 nearby galaxies) environments. The impacts of interaction on galaxy properties are detected at least out to the neighbor separation corresponding to the virial radius of galaxies, which is typically between 200 and 400 h -1 kpc for the galaxies in our sample. To detect these long-range interaction effects, it is crucial to divide galaxy interactions into four cases dividing the morphology of target and neighbor galaxies into early and late types. We show that there are two characteristic neighbor-separation scales where the galaxy interactions cause abrupt changes in the properties of galaxies. The first scale is the virial radius of the nearest neighbor galaxy r vir,nei . Many physical parameters start to deviate from those of extremely isolated galaxies at the projected neighbor separation r p of about r vir,nei . The second scale is at r p ∼ 0.05r vir,nei = 10-20 h -1 kpc, and is the scale at which the galaxies in pairs start to merge. We find that late-type neighbors enhance the star formation activity of galaxies while early-type neighbors reduce it, and that these effects occur within r vir,nei . The hot halo gas and cold disk gas must be participating in the interactions at separations less than the virial radius of the galaxy plus dark halo system. Our results also show that the role of the large-scale density in determining galaxy properties is minimal once luminosity and morphology are fixed. We propose that the weak residual dependence of galaxy properties on the large-scale density is due to the dependence of the halo gas property on the large-scale density.

  8. Binary pulsars as probes of a Galactic dark matter disk

    Science.gov (United States)

    Caputo, Andrea; Zavala, Jesús; Blas, Diego

    2018-03-01

    As a binary pulsar moves through a wind of dark matter particles, the resulting dynamical friction modifies the binary's orbit. We study this effect for the double disk dark matter (DDDM) scenario, where a fraction of the dark matter is dissipative and settles into a thin disk. For binaries within the dark disk, this effect is enhanced due to the higher dark matter density and lower velocity dispersion of the dark disk, and due to its co-rotation with the baryonic disk. We estimate the effect and compare it with observations for two different limits in the Knudsen number (Kn). First, in the case where DDDM is effectively collisionless within the characteristic scale of the binary (Kn ≫ 1) and ignoring the possible interaction between the pair of dark matter wakes. Second, in the fully collisional case (Kn ≪ 1), where a fluid description can be adopted and the interaction of the pair of wakes is taken into account. We find that the change in the orbital period is of the same order of magnitude in both limits. A comparison with observations reveals good prospects to probe currently allowed DDDM models with timing data from binary pulsars in the near future. We finally comment on the possibility of extending the analysis to the intermediate (rarefied gas) case with Kn ∼ 1.

  9. GAP CLEARING BY PLANETS IN A COLLISIONAL DEBRIS DISK

    Energy Technology Data Exchange (ETDEWEB)

    Nesvold, Erika R. [Department of Physics, University of Maryland Baltimore County 1000 Hilltop Circle Baltimore, MD 21250 (United States); Kuchner, Marc J., E-mail: Erika.Nesvold@umbc.edu, E-mail: Marc.Kuchner@nasa.gov [NASA Goddard Space Flight Center Exoplanets and Stellar Astrophysics Laboratory, Code 667 Greenbelt, MD 21230 (United States)

    2015-01-10

    We apply our 3D debris disk model, SMACK, to simulate a planet on a circular orbit near a ring of planetesimals that are experiencing destructive collisions. Previous simulations of a planet opening a gap in a collisionless debris disk have found that the width of the gap scales as the planet mass to the 2/7th power (α = 2/7). We find that gap sizes in a collisional disk still obey a power law scaling with planet mass, but that the index α of the power law depends on the age of the system t relative to the collisional timescale t {sub coll} of the disk by α = 0.32(t/t {sub coll}){sup –0.04}, with inferred planet masses up to five times smaller than those predicted by the classical gap law. The increased gap sizes likely stem from the interaction between collisions and the mean motion resonances near the chaotic zone. We investigate the effects of the initial eccentricity distribution of the disk particles and find a negligible effect on the gap size at Jovian planet masses, since collisions tend to erase memory of the initial particle eccentricity distributions. Finally, we find that the presence of Trojan analogs is a potentially powerful diagnostic of planets in the mass range ∼1-10 M {sub Jup}. We apply our model to place new upper limits on planets around Fomalhaut, HR 4796 A, HD 202628, HD 181327, and β Pictoris.

  10. GAP CLEARING BY PLANETS IN A COLLISIONAL DEBRIS DISK

    International Nuclear Information System (INIS)

    Nesvold, Erika R.; Kuchner, Marc J.

    2015-01-01

    We apply our 3D debris disk model, SMACK, to simulate a planet on a circular orbit near a ring of planetesimals that are experiencing destructive collisions. Previous simulations of a planet opening a gap in a collisionless debris disk have found that the width of the gap scales as the planet mass to the 2/7th power (α = 2/7). We find that gap sizes in a collisional disk still obey a power law scaling with planet mass, but that the index α of the power law depends on the age of the system t relative to the collisional timescale t coll of the disk by α = 0.32(t/t coll ) –0.04 , with inferred planet masses up to five times smaller than those predicted by the classical gap law. The increased gap sizes likely stem from the interaction between collisions and the mean motion resonances near the chaotic zone. We investigate the effects of the initial eccentricity distribution of the disk particles and find a negligible effect on the gap size at Jovian planet masses, since collisions tend to erase memory of the initial particle eccentricity distributions. Finally, we find that the presence of Trojan analogs is a potentially powerful diagnostic of planets in the mass range ∼1-10 M Jup . We apply our model to place new upper limits on planets around Fomalhaut, HR 4796 A, HD 202628, HD 181327, and β Pictoris

  11. COSMIC EVOLUTION OF DUST IN GALAXIES: METHODS AND PRELIMINARY RESULTS

    International Nuclear Information System (INIS)

    Bekki, Kenji

    2015-01-01

    We investigate the redshift (z) evolution of dust mass and abundance, their dependences on initial conditions of galaxy formation, and physical correlations between dust, gas, and stellar contents at different z based on our original chemodynamical simulations of galaxy formation with dust growth and destruction. In this preliminary investigation, we first determine the reasonable ranges of the most important two parameters for dust evolution, i.e., the timescales of dust growth and destruction, by comparing the observed and simulated dust mass and abundances and molecular hydrogen (H 2 ) content of the Galaxy. We then investigate the z-evolution of dust-to-gas ratios (D), H 2 gas fraction (f H 2 ), and gas-phase chemical abundances (e.g., A O = 12 + log (O/H)) in the simulated disk and dwarf galaxies. The principal results are as follows. Both D and f H 2 can rapidly increase during the early dissipative formation of galactic disks (z ∼ 2-3), and the z-evolution of these depends on initial mass densities, spin parameters, and masses of galaxies. The observed A O -D relation can be qualitatively reproduced, but the simulated dispersion of D at a given A O is smaller. The simulated galaxies with larger total dust masses show larger H 2 and stellar masses and higher f H 2 . Disk galaxies show negative radial gradients of D and the gradients are steeper for more massive galaxies. The observed evolution of dust masses and dust-to-stellar-mass ratios between z = 0 and 0.4 cannot be reproduced so well by the simulated disks. Very extended dusty gaseous halos can be formed during hierarchical buildup of disk galaxies. Dust-to-metal ratios (i.e., dust-depletion levels) are different within a single galaxy and between different galaxies at different z

  12. COSMIC EVOLUTION OF DUST IN GALAXIES: METHODS AND PRELIMINARY RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Bekki, Kenji [ICRAR, M468, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 (Australia)

    2015-02-01

    We investigate the redshift (z) evolution of dust mass and abundance, their dependences on initial conditions of galaxy formation, and physical correlations between dust, gas, and stellar contents at different z based on our original chemodynamical simulations of galaxy formation with dust growth and destruction. In this preliminary investigation, we first determine the reasonable ranges of the most important two parameters for dust evolution, i.e., the timescales of dust growth and destruction, by comparing the observed and simulated dust mass and abundances and molecular hydrogen (H{sub 2}) content of the Galaxy. We then investigate the z-evolution of dust-to-gas ratios (D), H{sub 2} gas fraction (f{sub H{sub 2}}), and gas-phase chemical abundances (e.g., A {sub O} = 12 + log (O/H)) in the simulated disk and dwarf galaxies. The principal results are as follows. Both D and f{sub H{sub 2}} can rapidly increase during the early dissipative formation of galactic disks (z ∼ 2-3), and the z-evolution of these depends on initial mass densities, spin parameters, and masses of galaxies. The observed A {sub O}-D relation can be qualitatively reproduced, but the simulated dispersion of D at a given A {sub O} is smaller. The simulated galaxies with larger total dust masses show larger H{sub 2} and stellar masses and higher f{sub H{sub 2}}. Disk galaxies show negative radial gradients of D and the gradients are steeper for more massive galaxies. The observed evolution of dust masses and dust-to-stellar-mass ratios between z = 0 and 0.4 cannot be reproduced so well by the simulated disks. Very extended dusty gaseous halos can be formed during hierarchical buildup of disk galaxies. Dust-to-metal ratios (i.e., dust-depletion levels) are different within a single galaxy and between different galaxies at different z.

  13. The rotation of galaxies: clues to their formation

    International Nuclear Information System (INIS)

    Fall, S.M.

    1982-01-01

    The rotation of galaxies of different morphological types is closely linked with their structural features and therefore with the processes by which they formed. In this context, the most important distinction is between galaxies that are dominated by a spheroid or bulge component - the ellipticals and some lenticulars - and galaxies that are dominated by a disk component - some lenticulars, the spirals and some irregulars. As the result of improvements in spectroscopic techniques, we now have reliable kinematic data for galaxies of most types in a wide range of masses and sizes. The author discusses the observational results and their implications for several views of the origin and evolution of galaxies. (Auth.)

  14. Dynamics of Cosmic Neutrinos in Galaxies

    Directory of Open Access Journals (Sweden)

    Sapar A.

    2014-06-01

    Full Text Available The cosmic background of massive (about 1 eV rest-energy neutrinos can be cooled to extremely low temperatures, reaching almost completely degenerated state. The Fermi velocity of the neutrinos becomes less than 100 km/s. The equations of dynamics for the cosmic background neutrinos are derived for the spherical and axisymmetrical thin circular disk galaxies. The equations comprise the gravitational potential and gravity of the uniform baryonic disk galaxies. Then the equations are integrated analytically over the disk radius. The constant radial neutrino flux in spherical galaxies favors formation of the wide unipotential wells in them. The neutrino flux in the axisymmetrical galaxies suggests to favor the evolution in the direction of a spherically symmetrical potential. The generated unipotential wells are observed as plateaux in the velocity curves of circular stellar orbits. The constant neutrino density at galactic centers gives the linear part of the curves. The derived system of quasilinear differential equations for neutrinos in the axisymmetrical galaxies have been reduced to the system of the Lagrange-Charpit equations: the coupled differential equations, specifying the local neutrino velocities and dynamics of motion along trajectories, and an additional interconnected equation of the neutrino mass conservation, which can be applied for the determination of density of the neutrino component in galaxies.

  15. On the driver of relativistic effect strength in Seyfert galaxies

    Czech Academy of Sciences Publication Activity Database

    Guainazzi, M.; Bianchi, S.; de La Calle, I.; Dovčiak, Michal; Longinotti, A. L.

    2011-01-01

    Roč. 531, July (2011), A131/1-A131/13 ISSN 0004-6361 Institutional research plan: CEZ:AV0Z10030501 Keywords : accretion disks * relativistic processes * nuclei galaxies * Seyfert galaxy * X-rays Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.587, year: 2011

  16. Galaxy Formation by Cosmic Strings and Cooling of Baryonic Matter

    OpenAIRE

    Mizuo, IZAWA; Humitaka, SATO; Department of Physics, University of Tokyo; Department of Physics, Kyoto University

    1987-01-01

    Cooling and contraction of baryonic matter are investigated ina galaxy formation scenario by string loops. It is found that ~3% of virialized baryonic matter has cooled down and contracted. This virialized object may have a disk-halo structure and be considered a galaxy.

  17. Disk Storage Server

    CERN Multimedia

    This model was a disk storage server used in the Data Centre up until 2012. Each tray contains a hard disk drive (see the 5TB hard disk drive on the main disk display section - this actually fits into one of the trays). There are 16 trays in all per server. There are hundreds of these servers mounted on racks in the Data Centre, as can be seen.

  18. Two chemically similar stellar overdensities on opposite sides of the plane of the Galactic disk.

    Science.gov (United States)

    Bergemann, Maria; Sesar, Branimir; Cohen, Judith G; Serenelli, Aldo M; Sheffield, Allyson; Li, Ting S; Casagrande, Luca; Johnston, Kathryn V; Laporte, Chervin F P; Price-Whelan, Adrian M; Schönrich, Ralph; Gould, Andrew

    2018-03-15

    Our Galaxy is thought to have an active evolutionary history, dominated over the past ten billion years or so by star formation, the accretion of cold gas and, in particular, the merging of clumps of baryonic and dark matter. The stellar halo-the faint, roughly spherical component of the Galaxy-reveals rich 'fossil' evidence of these interactions, in the form of stellar streams, substructures and chemically distinct stellar components. The effects of interactions with dwarf galaxies on the content and morphology of the Galactic disk are still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups of stars in our Galaxy, which may have extragalactic origins. There is also mounting evidence that stellar overdensities (regions with greater-than-average stellar density) at the interface between the outer disk and the halo could have been caused by the interaction of a dwarf galaxy with the disk. Here we report a spectroscopic analysis of 14 stars from two stellar overdensities, each lying about five kiloparsecs above or below the Galactic plane-locations suggestive of an association with the stellar halo. We find that the chemical compositions of these two groups of stars are almost identical, both within and between these overdensities, and closely match the abundance patterns of stars in the Galactic disk. We conclude that these stars came from the disk, and that the overdensities that they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.

  19. Calibrated Tully-fisher Relations For Improved Photometric Estimates Of Disk Rotation Velocities

    Science.gov (United States)

    Reyes, Reinabelle; Mandelbaum, R.; Gunn, J. E.; Pizagno, J.

    2011-01-01

    We present calibrated scaling relations (also referred to as Tully-Fisher relations or TFRs) between rotation velocity and photometric quantities-- absolute magnitude, stellar mass, and synthetic magnitude (a linear combination of absolute magnitude and color)-- of disk galaxies at z 0.1. First, we selected a parent disk sample of 170,000 galaxies from SDSS DR7, with redshifts between 0.02 and 0.10 and r band absolute magnitudes between -18.0 and -22.5. Then, we constructed a child disk sample of 189 galaxies that span the parameter space-- in absolute magnitude, color, and disk size-- covered by the parent sample, and for which we have obtained kinematic data. Long-slit spectroscopy were obtained from the Dual Imaging Spectrograph (DIS) at the Apache Point Observatory 3.5 m for 99 galaxies, and from Pizagno et al. (2007) for 95 galaxies (five have repeat observations). We find the best photometric estimator of disk rotation velocity to be a synthetic magnitude with a color correction that is consistent with the Bell et al. (2003) color-based stellar mass ratio. The improved rotation velocity estimates have a wide range of scientific applications, and in particular, in combination with weak lensing measurements, they enable us to constrain the ratio of optical-to-virial velocity in disk galaxies.

  20. Abundances in galaxies

    International Nuclear Information System (INIS)

    Pagel, B.E.J.

    1991-01-01

    Standard (or mildly inhomogeneous) Big Bang nucleosynthesis theory is well confirmed by abundance measurements of light elements up to 7 Li and the resulting upper limit to the number of neutrino families confirmed in accelerator experiments. Extreme inhomogeneous models with a closure density in form of baryons seem to be ruled out and there is no evidence for a cosmic 'floor' to 9 Be or heavier elements predicted in some versions of those models. Galaxies show a correlation between luminous mass and abundance of carbon and heavier elements, usually attributed to escape of hot gas from shallow potential wells. Uncertainties include the role of dark matter and biparametric behaviour of ellipticals. Spirals have radial gradients which may arise from a variety of causes. In our own Galaxy one can distinguish three stellar populations - disk, halo and bulge - characterised by differing metallicity distribution functions. Differential abundance effects are found among different elements in stars as a function of metallicity and presumably age, notably in the ratio of oxygen and α-particle elements to iron. These may eventually be exploitable to set a time scale for the formation of the halo, bulge and disk. (orig.)

  1. Chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Pagel, B.E.J.

    1979-01-01

    The chemical evolution of disk galaxies is discussed with special reference to results obtained from studies of the oxygen abundance in H II regions. Normal spirals (including our own) display the by now well known radial abundance gradient, which is discussed on the basis of the simple enrichment model and other models. The Magellanic Clouds, on the other hand, and the barred spiral NGC 1365, have been found to have little or no abundance gradient, implying a very different sort of evolution that may involve large-scale mixing. Finally, the simple model is tested against a number of results in H II regions where the ratio of total mass to mass of residual gas can be estimated. It turns out to fit adequately the Magellanic Clouds and a number of H II regions in the outer parts of spiral galaxies, but in more inner parts it fails, as do more sophisticated models involving infall during the formation of galactic disks that have proved very successful in other respects. (Auth.)

  2. Galaxy formation

    International Nuclear Information System (INIS)

    Gribbin, J.

    1979-01-01

    The current debate on the origin and evolution of galaxies is reviewed and evidence to support the so-called 'isothermal' and 'adiabatic' fluctuation models considered. It is shown that new theories have to explain the formation of both spiral and elliptical galaxies and the reason for their differences. It is stated that of the most recent models the best indicates that rotating spiral galaxies are formed naturally when gas concentrates in the centre of a great halo and forms stars while ellipticals are explained by later interactions between spiral galaxies and merging, which can cancel out the rotation while producing an elliptical galaxy in which the stars, coming from two original galaxies, follow very elliptical, anisotropic orbits. (UK)

  3. Understanding Floppy Disks.

    Science.gov (United States)

    Valentine, Pamela

    1980-01-01

    The author describes the floppy disk with an analogy to the phonograph record, and discusses the advantages, disadvantages, and capabilities of hard-sectored and soft-sectored floppy disks. She concludes that, at present, the floppy disk will continue to be the primary choice of personal computer manufacturers and their customers. (KC)

  4. IRAC Imaging of LSB Galaxies

    Science.gov (United States)

    Schombert, James; McGaugh, Stacy; Lelli, Federico

    2017-04-01

    We propose a program to observe a large sample of Low Surface Brightness (LSB) galaxies. Large galaxy surveys conducted with Spitzer suffer from the unavoidable selection bias against LSB systems (e.g., the S4G survey). Even those programs thathave specifically targeted LSB galaxies have usually been restricted objects of intermediate surface brightness (between 22 and 23 B mag/ []). Our sample is selected to be of a more extreme LSB nature (with central surface brightness fainter than 23 Bmag/[]). Even warm, Spitzer is the ideal instrument to image these low contrast targets in the near infrared: our sample goes a considerable way towards remedying this hole in the Spitzer legacy archive, also increasing coverage in terms of stellar mass, gas mass, and SFR. The sample will be used to address the newly discovered radial acceleration relation (RAR) in disk galaxies. While issues involving the connection between baryons and dark matter have been known since the development of the global baryonic Tully-Fisher (bTF) relation, it is only in the last six months that the particle physics and theoretical communities have recognized and responded to the local coupling between dark and baryonic matter represented by the RAR. This important new correlation is effectively a new natural law for galaxies. Spitzer photometry has been at the forefront of resolving the stellar mass component in galaxies that make-up the RAR and is the primary reason for the discovery of this new kinematic law.

  5. Improved theory of collisionless particle motion in stellarators

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1983-01-01

    A theory of particle motion in stellarators is developed which, in contrast to previous work, is both realistic enough to account for collisionless detrapping, yet simple enough that most features of the orbits can be expressed in analytic, reasonably simple formulas. From the study of detrapping, a systematic, complete classification of possible orbit types emerges. The theory is valid for a class of stellarator configurations which contains the standard model traditionally envisaged, as well as somewhat more complex configurations recently found to have favorable transport properties. The reasons for the differences in transport between configurations are elucidated

  6. Neoclassical transport caused by collisionless scattering across an asymmetric separatrix.

    Science.gov (United States)

    Dubin, Daniel H E; Driscoll, C F; Tsidulko, Yu A

    2010-10-29

    Plasma loss due to apparatus asymmetries is a ubiquitous phenomenon in magnetic plasma confinement. When the plasma equilibrium has locally trapped particle populations partitioned by a separatrix from one another and from passing particles, the asymmetry transport is enhanced. The trapped and passing particle populations react differently to the asymmetries, leading to the standard 1/ν and sqrt[ν] transport regimes of superbanana orbit theory as particles collisionally scatter from one orbit type to another. However, when the separatrix is itself asymmetric, particles can collisionlessly transit from trapped to passing and back, leading to enhanced transport.

  7. Subcritical collisionless shock waves. [in earth space plasma

    Science.gov (United States)

    Mellott, M. M.

    1985-01-01

    The development history of theoretical accounts of low Mach number collisionless shock waves is related to recent observational advancements, with attention to weaker shocks in which shock steepening is limited by dispersion and/or anomalous resistivity and whose character is primarily determined by the dispersive properties of the ambient plasma. Attention has focused on nearly perpendicular shocks where dispersive scale lengths become small and the associated cross-field currents become strong enough to generate significant plasma wave turbulence. A number of oblique, low Mach number bow shocks have been studied on the basis of data from the ISEE dual spacecraft pair, allowing an accurate determination of shock scale lengths.

  8. New Measure of the Dissipation Region in Collisionless Magnetic Reconnection

    International Nuclear Information System (INIS)

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex; Kuznetsova, Masha

    2011-01-01

    A new measure to identify a small-scale dissipation region in collisionless magnetic reconnection is proposed. The energy transfer from the electromagnetic field to plasmas in the electron's rest frame is formulated as a Lorentz-invariant scalar quantity. The measure is tested by two-dimensional particle-in-cell simulations in typical configurations: symmetric and asymmetric reconnection, with and without the guide field. The innermost region surrounding the reconnection site is accurately located in all cases. We further discuss implications for nonideal MHD dissipation.

  9. New Measure of the Dissipation Region in Collisionless Magnetic Reconnection

    Science.gov (United States)

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex; Kuznetsova, Masha

    2012-01-01

    A new measure to identify a small-scale dissipation region in collisionless magnetic reconnection is proposed. The energy transfer from the electromagnetic field to plasmas in the electron s rest frame is formulated as a Lorentz-invariant scalar quantity. The measure is tested by two-dimensional particle-in-cell simulations in typical configurations: symmetric and asymmetric reconnection, with and without the guide field. The innermost region surrounding the reconnection site is accurately located in all cases. We further discuss implications for nonideal MHD dissipation.

  10. IRAS observations of starburst galaxies

    International Nuclear Information System (INIS)

    Sekiguchi, K.

    1987-01-01

    Far infrared properties of Starburst galaxies were analyzed using IRAS observations at 25, 60, and 100 micrometers. Seventy-nine of 102 Starburst galaxies from the list of Balzano were detected. These galaxies have high IR luminosities of up to a few 10 to the 12th power L sub 0 and concentrate in a small area of the IR color - color diagram. The IR power law spectral indices, alpha, lie within the ranges -2.5 < alpha(60,25)< -1.5 and -1.5 < alpha(100,60)< 0. These observed indices can be interpreted in terms of a cold disk component and a warm component. More than 80% of the 60 micrometer emission comes from the warm component. The fraction of the 60 micrometer emission attributable to the warm component can be used as an activity indicator

  11. HNC IN PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    Graninger, Dawn; Öberg, Karin I.; Qi, Chunhua; Kastner, Joel

    2015-01-01

    The distributions and abundances of small organics in protoplanetary disks are potentially powerful probes of disk physics and chemistry. HNC is a common probe of dense interstellar regions and the target of this study. We use the Submillimeter Array (SMA) to observe HNC 3–2 toward the protoplanetary disks around the T Tauri star TW Hya and the Herbig Ae star HD 163296. HNC is detected toward both disks, constituting the first spatially resolved observations of HNC in disks. We also present SMA observations of HCN 3–2 and IRAM 30 m observations of HCN and HNC 1–0 toward HD 163296. The disk-averaged HNC/HCN emission ratio is 0.1–0.2 toward both disks. Toward TW Hya, the HNC emission is confined to a ring. The varying HNC abundance in the TW Hya disk demonstrates that HNC chemistry is strongly linked to the disk physical structure. In particular, the inner rim of the HNC ring can be explained by efficient destruction of HNC at elevated temperatures, similar to what is observed in the ISM. However, to realize the full potential of HNC as a disk tracer requires a combination of high SNR spatially resolved observations of HNC and HCN and disk-specific HNC chemical modeling

  12. HNC IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Graninger, Dawn; Öberg, Karin I.; Qi, Chunhua [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kastner, Joel, E-mail: dgraninger@cfa.harvard.edu [Center for Imaging Science, School of Physics and Astronomy, and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2015-07-01

    The distributions and abundances of small organics in protoplanetary disks are potentially powerful probes of disk physics and chemistry. HNC is a common probe of dense interstellar regions and the target of this study. We use the Submillimeter Array (SMA) to observe HNC 3–2 toward the protoplanetary disks around the T Tauri star TW Hya and the Herbig Ae star HD 163296. HNC is detected toward both disks, constituting the first spatially resolved observations of HNC in disks. We also present SMA observations of HCN 3–2 and IRAM 30 m observations of HCN and HNC 1–0 toward HD 163296. The disk-averaged HNC/HCN emission ratio is 0.1–0.2 toward both disks. Toward TW Hya, the HNC emission is confined to a ring. The varying HNC abundance in the TW Hya disk demonstrates that HNC chemistry is strongly linked to the disk physical structure. In particular, the inner rim of the HNC ring can be explained by efficient destruction of HNC at elevated temperatures, similar to what is observed in the ISM. However, to realize the full potential of HNC as a disk tracer requires a combination of high SNR spatially resolved observations of HNC and HCN and disk-specific HNC chemical modeling.

  13. Disk Detective: Discovery of New Circumstellar Disk Candidates through Citizen Science

    OpenAIRE

    Kuchner, Marc J.; Silverberg, Steven M.; Bans, Alissa S.; Bhattacharjee, Shambo; Kenyon, Scott J.; Debes, John H.; Currie, Thayne; Garcia, Luciano; Jung, Dawoon; Lintott, Chris; McElwain, Michael; Padgett, Deborah L.; Rebull, Luisa M.; Wisniewski, John P.; Nesvold, Erika

    2016-01-01

    The Disk Detective citizen science project aims to find new stars with 22 μm excess emission from circumstellar dust using data from NASA's Wide-field Infrared Survey Explorer (WISE) mission. Initial cuts on the AllWISE catalog provide an input catalog of 277,686 sources. Volunteers then view images of each source online in 10 different bands to identify false positives (galaxies, interstellar matter, image artifacts, etc.). Sources that survive this online vetting are followed up with spectr...

  14. Sinuous oscillations and steady warps of polytropic disks

    International Nuclear Information System (INIS)

    Balmforth, N.J.; Spiegel, E.A.

    1995-05-01

    In an asymptotic development of the equations governing the equilibria and linear stability of rapidly rotating polytropes we employed the slender aspect of these objects to reduce the three-dimensional partial differential equations to a somewhat simpler, ordinary integro-differential form. The earlier calculations dealt with isolated objects that were in centrifugal balance, that is the centrifugal acceleration of the configuration was balanced largely by self gravity with small contributions from the pressure gradient. Another interesting situation is that in which the polytrope rotates subject to externally imposed gravitational fields. In astrophysics, this is common in the theory of galactic dynamics because disks are unlikely to be isolated objects. The dark halos associated with disks also provide one possible explanation of the apparent warping of many galaxies. If the axis of the highly flattened disk is not aligned with that of the much less flattened halo, then the resultant torque of the halo gravity on the disk might provide a nonaxisymmetric distortion or disk warp. Motivated by these possibilities we shall here build models of polytropic disks of small but finite thickness which are subjected to prescribed, external gravitational fields. First we estimate how a symmetrical potential distorts the structure of the disk, then we examine its sinuous oscillations to confirm that they freely decay, hence suggesting that a warp must be externally forced. Finally, we consider steady warps of the disk plane when the axis of the disk does not coincide with that of the halo

  15. THE CONTRIBUTION OF SPIRAL ARMS TO THE THICK DISK ALONG THE HUBBLE SEQUENCE

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Medina, L. A. [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, A.P. 14-740, 07000 México D.F. (Mexico); Pichardo, B.; Moreno, E. [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510, México D.F. (Mexico); Pérez-Villegas, A., E-mail: lmedina@fis.cinvestav.mx, E-mail: barbara@astro.unam.mx, E-mail: mperez@astro.unam.mx [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apartado Postal 3-72, 58090 Morelia, Michoacán (Mexico)

    2015-04-01

    The first mechanism invoked to explain the existence of the thick disk in the Milky Way Galaxy was the spiral arms. Up-to-date work summons several other possibilities that together seem to better explain this component of our Galaxy. All these processes must affect distinct types of galaxies differently, but the contribution of each one has not been straightforward to quantify. In this work, we present the first comprehensive study of the effect of the spiral arms on the formation of thick disks, looking at early- to late-type disk galaxies in an attempt to characterize and quantify this specific mechanism in galactic potentials. To this purpose, we perform test particle numerical simulations in a three-dimensional spiral galactic potential (for early- to late-types spiral galaxies). By varying the parameters of the spiral arms we found that the vertical heating of the stellar disk becomes very important in some cases and strongly depends on the galactic morphology, pitch angle, arm mass, and the arm pattern speed. The later the galaxy type, the larger is the effect on the disk heating. This study shows that the physical mechanism causing the vertical heating is different from simple resonant excitation. The spiral pattern induces chaotic behavior not linked necessarily to resonances but to direct scattering of disk stars, which leads to an increase of the velocity dispersion. We applied this study to the specific example of the Milky Way Galaxy, for which we have also added an experiment that includes the Galactic bar. From this study we deduce that the effect of spiral arms of a Milky-Way-like potential on the dynamical vertical heating of the disk is negligible, unlike later galactic potentials for disks.

  16. Opaque spiral disks - Some empirical facts and consequences

    NARCIS (Netherlands)

    Valentijn, Edwin A.

    1990-01-01

    Results for the Sb and Sc galaxies, as obtained from the analysis of the optical ESO-LV data, are reviewed, and the implied constraints for the properties of the absorbing components in spiral disks are discussed. An alternative interpretation of flat rotation curves and a revised extinction model

  17. THE EPOCH OF DISK SETTLING: z ∼ 1 TO NOW

    International Nuclear Information System (INIS)

    Kassin, Susan A.; Gardner, Jonathan P.; Weiner, Benjamin J.; Willmer, C. N. A.; Faber, S. M.; Guhathakurta, Puragra; Koo, David C.; Coil, Alison L.; Cooper, Michael C.; Devriendt, Julien; Dutton, Aaron A.; Metevier, A. J.; Noeske, Kai G.; Primack, Joel R.

    2012-01-01

    We present evidence from a sample of 544 galaxies from the DEEP2 Survey for evolution of the internal kinematics of blue galaxies with stellar masses ranging 8.0 * (M ☉ ) g ). It is unlike the typical pressure-supported velocity dispersion measured for early type galaxies and galaxy bulges. Because both seeing and the width of our spectral slits comprise a significant fraction of the galaxy sizes, σ g integrates over velocity gradients on large scales which can correspond to non-ordered gas kinematics. We compile measurements of galaxy kinematics from the literature over 1.2 < z < 3.8 and do not find any trends with redshift, likely for the most part, because these data sets are biased toward the most highly star-forming systems. In summary, over the last ∼8 billion years since z = 1.2, blue galaxies evolve from disordered to ordered systems as they settle to become the rotation-dominated disk galaxies observed in the universe today, with the most massive galaxies being the most evolved at any time.

  18. The age of the galactic disk

    International Nuclear Information System (INIS)

    Sandage, A.

    1988-07-01

    The galactic disk is a dissipative structure and must, therefore be younger than the halo if galaxy formation generally proceeds by collapse. Just how much younger the oldest stars in the galactic disk are than the oldest halo stars remains an open question. A fast collapse (on a time scale no longer than the rotation period of the extended protogalaxy) permits an age gap of the order of approximately 10 to the 9th power years. A slow collapse, governed by the cooling rate of the partially pressure supported falling gas that formed into what is now the thick stellar disk, permits a longer age gap, claimed by some to be as long as 6 Gyr. Early methods of age dating the oldest components of the disk contain implicit assumptions concerning the details of the age-metallicity relation for stars in the solar neighborhood. The discovery that this relation for open clusters outside the solar circle is different that in the solar neighborhood (Geisler 1987), complicates the earlier arguments. The oldest stars in the galactic disk are at least as old as NGC 188. The new data by Janes on NGC 6791, shown first at this conference, suggest a disk age of at least 12.5 Gyr, as do data near the main sequence termination point of metal rich, high proper motion stars of low orbital eccentricity. Hence, a case can still be made that the oldest part of the galactic thick disk is similar in age to the halo globular clusters, if their ages are the same as 47 Tuc

  19. Photographic surface photometry of NGC 2855 and NGC 6771 galaxies

    International Nuclear Information System (INIS)

    Schroeder, M. de F.S.

    1984-01-01

    Photographic surface photometry in the BV system was carried out two Southern SO's galaxies, NGC 2855 and NGC 6771. B and V isophote maps were obtained as well as geometric and integrated parameters as position angles, inclination, diameters, magnitudes and integrated colors. Each luminosity profile was decomposed into bulge and disk contributions, each component being fitted to convenient laws. For NGC 2855 de Vaucouleurs law described well the bulge whereas the disk showed an exponential distribution. For NGC 6771 the barred nuclear bulge as well as the disk was best fitted by exponential laws. Additional luminosity components due to an inner fragmented ring were identified in NGC 2855 and due to both a quite prominent lens and well defined ring in NGC 6771. In this galaxy the minor axis, oriented almost edge-on, present clues of another luminosity component besides the bulge and the thin disk. For both galaxies the disk central surface brightness was found to be fainter than the standard value observed by Freeman. The fitting parameters were used to determine the bulge-to-disk luminosity ratios as well as their contribution to total luminosity. The domination by the bulge light over the disk light was clear in both galaxies. From the B and V luminosity profile the color gradients were estimated. For both objects the local color indices decreased from inner to outer regions, this effect being relatively smooth in NGC 2855 and more prominent in NGC 6771 [pt

  20. Quasar Probing Galaxies: New Constraints on Cold Gas Accretion at Z=0.2

    Science.gov (United States)

    Ho, Stephanie H.

    2017-07-01

    Galactic disks grow by accreting cooling gas from the circumgalactic medium, and yet direct observations of inflowing gas remain sparse. We observed quasars behind star-forming galaxies and measured the kinematics of circumgalactic absorption. Near the galaxy plane, the Mg II Doppler shifts share the same sign as the galactic rotation, which implies the gas co-rotates with the galaxy disk. However, a rotating disk model fails to explain the observed broad velocity range. Gas spiraling inward near the disk plane offers a plausible explanation for the lower velocity gas. We will discuss the sizes of these circumgalactic disks, the properties of their host galaxies, and predictions for the spiral arms. Our results provide direct evidence for cold gas accretion at redshift z=0.2.

  1. DISK DETECTIVE: DISCOVERY OF NEW CIRCUMSTELLAR DISK CANDIDATES THROUGH CITIZEN SCIENCE

    Energy Technology Data Exchange (ETDEWEB)

    Kuchner, Marc J.; McElwain, Michael; Padgett, Deborah L. [NASA Goddard Space Flight Center Exoplanets and Stellar Astrophysics Laboratory, Code 667 Greenbelt, MD 21230 (United States); Silverberg, Steven M.; Wisniewski, John P. [Homer L. Dodge Department of Physics and Astronomy The University of Oklahoma 440 W. Brooks St. Norman, OK 73019 (United States); Bans, Alissa S. [Valparaiso University, Department of Physics and Astronomy, Neils Science Center, 1610 Campus Drive East, Valparaiso, IN 46383 (United States); Bhattacharjee, Shambo [International Space University 1 Rue Jean-Dominique Cassini F-67400 Illkirch-Graffenstaden (France); Kenyon, Scott J. [Smithsonian Astrophysical Observatory 60 Garden Street Cambridge, MA 02138 (United States); Debes, John H. [Space Telescope Science Institute 3700 San Martin Dr. Baltimore, MD 21218 (United States); Currie, Thayne [National Astronomical Observatory of Japan 650 N A’ohokhu Place Hilo, HI 96720 (United States); García, Luciano [Observatorio Astronómico de Córdoba Universidad Nacional de Córdoba Laprida 854, X5000BGR, Córdoba (Argentina); Jung, Dawoon [Korea Aerospace Research Institute Lunar Exploration Program Office 169-84 Gwahak-ro, Yuseong-gu, Daejeon 34133 (Korea, Republic of); Lintott, Chris [Denys Wilkinson Building Keble Road Oxford, OX1 3RH (United Kingdom); Rebull, Luisa M. [Infrared Processing and Analaysis Center Caltech M/S 314-6 1200 E. California Blvd. Pasadena, CA 91125 (United States); Nesvold, Erika, E-mail: Marc.Kuchner@nasa.gov, E-mail: michael.w.mcelwain@nasa.gov, E-mail: deborah.l.padgett@nasa.gov, E-mail: carol.a.grady@nasa.gov, E-mail: silverberg@ou.edu, E-mail: wisniewski@ou.edu [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015-1305 (United States); Collaboration: Disk Detective Collaboration; and others

    2016-10-20

    The Disk Detective citizen science project aims to find new stars with 22 μ m excess emission from circumstellar dust using data from NASA’s Wide-field Infrared Survey Explorer ( WISE ) mission. Initial cuts on the AllWISE catalog provide an input catalog of 277,686 sources. Volunteers then view images of each source online in 10 different bands to identify false positives (galaxies, interstellar matter, image artifacts, etc.). Sources that survive this online vetting are followed up with spectroscopy on the FLWO Tillinghast telescope. This approach should allow us to unleash the full potential of WISE for finding new debris disks and protoplanetary disks. We announce a first list of 37 new disk candidates discovered by the project, and we describe our vetting and follow-up process. One of these systems appears to contain the first debris disk discovered around a star with a white dwarf companion: HD 74389. We also report four newly discovered classical Be stars (HD 6612, HD 7406, HD 164137, and HD 218546) and a new detection of 22 μ m excess around the previously known debris disk host star HD 22128.

  2. DISK DETECTIVE: DISCOVERY OF NEW CIRCUMSTELLAR DISK CANDIDATES THROUGH CITIZEN SCIENCE

    International Nuclear Information System (INIS)

    Kuchner, Marc J.; McElwain, Michael; Padgett, Deborah L.; Silverberg, Steven M.; Wisniewski, John P.; Bans, Alissa S.; Bhattacharjee, Shambo; Kenyon, Scott J.; Debes, John H.; Currie, Thayne; García, Luciano; Jung, Dawoon; Lintott, Chris; Rebull, Luisa M.; Nesvold, Erika

    2016-01-01

    The Disk Detective citizen science project aims to find new stars with 22 μ m excess emission from circumstellar dust using data from NASA’s Wide-field Infrared Survey Explorer ( WISE ) mission. Initial cuts on the AllWISE catalog provide an input catalog of 277,686 sources. Volunteers then view images of each source online in 10 different bands to identify false positives (galaxies, interstellar matter, image artifacts, etc.). Sources that survive this online vetting are followed up with spectroscopy on the FLWO Tillinghast telescope. This approach should allow us to unleash the full potential of WISE for finding new debris disks and protoplanetary disks. We announce a first list of 37 new disk candidates discovered by the project, and we describe our vetting and follow-up process. One of these systems appears to contain the first debris disk discovered around a star with a white dwarf companion: HD 74389. We also report four newly discovered classical Be stars (HD 6612, HD 7406, HD 164137, and HD 218546) and a new detection of 22 μ m excess around the previously known debris disk host star HD 22128.

  3. Disk Detective: Discovery of New Circumstellar Disk Candidates Through Citizen Science

    Science.gov (United States)

    Kuchner, Marc J.; Silverberg, Steven M.; Bans, Alissa S.; Bhattacharjee, Shambo; Kenyon, Scott J.; Debes, John H.; Currie, Thayne; Garcia, Luciano; Jung, Dawoon; Lintott, Chris; hide

    2016-01-01

    The Disk Detective citizen science project aims to find new stars with 22 micron excess emission from circumstellar dust using data from NASAs Wide-field Infrared Survey Explorer (WISE) mission. Initial cuts on the AllWISE catalog provide an input catalog of 277,686 sources. Volunteers then view images of each source online in 10different bands to identify false positives (galaxies, interstellar matter, image artifacts, etc.). Sources that survive this online vetting are followed up with spectroscopy on the FLWO Tillinghast telescope. This approach should allow us to unleash the full potential of WISE for finding new debris disks and proto planetary disks. We announce a first list of 37 new disk candidates discovered by the project, and we describe our vetting and follow-up process. One of these systems appears to contain the first debris disk discovered around a star with a white dwarf companion: HD 74389. We also report four newly discovered classical Be stars (HD 6612, HD 7406, HD 164137,and HD 218546) and a new detection of 22 micron excess around the previously known debris disk host star HD 22128.

  4. Collisionless shock experiments with lasers and observation of Weibel instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.-S., E-mail: park1@llnl.gov; Huntington, C. M.; Fiuza, F.; Levy, M. C.; Pollock, B. B.; Remington, B. A.; Ross, J. S.; Ryutov, D. D.; Turnbull, D. P.; Weber, S. V. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Drake, R. P.; Kuranz, C. C. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Froula, D. H.; Rosenberg, M. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14636 (United States); Gregori, G.; Meinecke, J. [University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Koenig, M. [LULI, Ecole Polytechnique, Palaiseau (France); Kugland, N. L. [Lam Research Corporation, Fremont, California 94538 (United States); Lamb, D. Q.; Tzeferacos, P. [University of Chicago, Chicago, California 94538 (United States); and others

    2015-05-15

    Astrophysical collisionless shocks are common in the universe, occurring in supernova remnants, gamma ray bursts, and protostellar jets. They appear in colliding plasma flows when the mean free path for ion-ion collisions is much larger than the system size. It is believed that such shocks could be mediated via the electromagnetic Weibel instability in astrophysical environments without pre-existing magnetic fields. Here, we present laboratory experiments using high-power lasers and investigate the dynamics of high-Mach-number collisionless shock formation in two interpenetrating plasma streams. Our recent proton-probe experiments on Omega show the characteristic filamentary structures of the Weibel instability that are electromagnetic in nature with an inferred magnetization level as high as ∼1% [C. M. Huntington et al., “Observation of magnetic field generation via the weibel instability in interpenetrating plasma flows,” Nat. Phys. 11, 173–176 (2015)]. These results imply that electromagnetic instabilities are significant in the interaction of astrophysical conditions.

  5. Magnetic field amplification in interstellar collisionless shock waves

    International Nuclear Information System (INIS)

    Chevalier, R.A.

    1977-01-01

    It is stated that it is commonly assumed that a simple compression of the magnetic field occurs in interstellar shock waves. Recent space observations of the Earth's bow shock have shown that turbulent amplification of the magnetic field can occur in a collisionless shock. It is shown here that radio observations of Tycho's supernova remnant indicate the presence of a shock wave with such magnetic field amplification. There is at present no theory for the microinstabilities that give rise to turbulent amplification of the magnetic field. Despite the lack of theoretical understanding the possibility of field amplification in interstellar shock waves is here considered. In Tycho's supernova remnant there is evidence for the presence of a collisionless shock, and this is discussed. On the basis of observations of the Earth's bow shock, it is expected that turbulent magnetic field amplification occurs in the shock wave of this remnant, and this is supported by radio observations of the remnant. Consideration is given as to what extent the magnetic field is amplified in the shock wave on the basis of the non-thermal radio flux. (U.K.)

  6. Genesis of dwarf galaxies in interacting system

    International Nuclear Information System (INIS)

    Duc, Pierre-Alain

    1995-01-01

    This research thesis addresses the study of interacting and merging galaxies, and more particularly the associated stellar formation episodes. The author first reports an analysis of the central regions of these objects by studying a specific class among them, i.e. galaxies discovered by the IRAS satellite which are ultra-luminous in the far infrared. The author presents results obtained by optical and infrared imagery and spectroscopy of a complete sample of objects located in the southern hemisphere. In the second part, the author focusses on outside regions of interacting galaxies, discusses the observation of filaments formed under the influence of tidal forces acting during galactic collisions, and of condensations which are as luminous as dwarf galaxies. Then a multi-wavelength study of several neighbouring systems revealed the existence of a specific class of objects, the tidal dwarf galaxies, which are formed from stellar and gaseous material snatched from the disk of interacting galaxies. Gas-rich tidal dwarf galaxies contain, like dwarf irregular galaxies or blue compact galaxies, newly formed stars. But, in opposition with these ones, they are richer in heavy elements: this is one of the consequences of a specific mode of galactic formation based on a cosmic recycling [fr

  7. Galaxy Zoo: A Catalog of Overlapping Galaxy Pairs for Dust Studies

    Science.gov (United States)

    Keel, William C.; Manning, Anna M.; Holwerda, Benne W.; Mezzoprete, Massimo; Lintott, Chris J.; Schawinski, Kevin; Gay, Pamela; Masters, Karen L.

    2013-01-01

    Analysis of galaxies with overlapping images offers a direct way to probe the distribution of dust extinction and its effects on the background light. We present a catalog of 1990 such galaxy pairs selected from the Sloan Digital Sky Survey (SDSS) by volunteers of the Galaxy Zoo project. We highlight subsamples which are particularly useful for retrieving such properties of the dust distribution as UV extinction, the extent perpendicular to the disk plane, and extinction in the inner parts of disks. The sample spans wide ranges of morphology and surface brightness, opening up the possibility of using this technique to address systematic changes in dust extinction or distribution with galaxy type. This sample will form the basis for forthcoming work on the ranges of dust distributions in local disk galaxies, both for their astrophysical implications and as the low-redshift part of a study of the evolution of dust properties. Separate lists and figures show deep overlaps, where the inner regions of the foreground galaxy are backlit, and the relatively small number of previously-known overlapping pairs outside the SDSS DR7 sky coverage.

  8. Disk Heating, Galactoseismology, and the Formation of Stellar Halos

    Directory of Open Access Journals (Sweden)

    Kathryn V. Johnston

    2017-08-01

    Full Text Available Deep photometric surveys of the Milky Way have revealed diffuse structures encircling our Galaxy far beyond the “classical” limits of the stellar disk. This paper reviews results from our own and other observational programs, which together suggest that, despite their extreme positions, the stars in these structures were formed in our Galactic disk. Mounting evidence from recent observations and simulations implies kinematic connections between several of these distinct structures. This suggests the existence of collective disk oscillations that can plausibly be traced all the way to asymmetries seen in the stellar velocity distribution around the Sun. There are multiple interesting implications of these findings: they promise new perspectives on the process of disk heating; they provide direct evidence for a stellar halo formation mechanism in addition to the accretion and disruption of satellite galaxies; and, they motivate searches of current and near-future surveys to trace these oscillations across the Galaxy. Such maps could be used as dynamical diagnostics in the emerging field of “Galactoseismology”, which promises to model the history of interactions between the Milky Way and its entourage of satellites, as well examine the density of our dark matter halo. As sensitivity to very low surface brightness features around external galaxies increases, many more examples of such disk oscillations will likely be identified. Statistical samples of such features not only encode detailed information about interaction rates and mergers, but also about long sought-after dark matter halo densities and shapes. Models for the Milky Way’s own Galactoseismic history will therefore serve as a critical foundation for studying the weak dynamical interactions of galaxies across the universe.

  9. Two chemically similar stellar overdensities on opposite sides of the plane of the Galactic disk

    Science.gov (United States)

    Bergemann, Maria; Sesar, Branimir; Cohen, Judith G.; Serenelli, Aldo M.; Sheffield, Allyson; Li, Ting S.; Casagrande, Luca; Johnston, Kathryn V.; Laporte, Chervin F. P.; Price-Whelan, Adrian M.; Schönrich, Ralph; Gould, Andrew

    2018-03-01

    Our Galaxy is thought to have an active evolutionary history, dominated over the past ten billion years or so by star formation, the accretion of cold gas and, in particular, the merging of clumps of baryonic and dark matter. The stellar halo—the faint, roughly spherical component of the Galaxy—reveals rich ‘fossil’ evidence of these interactions, in the form of stellar streams, substructures and chemically distinct stellar components. The effects of interactions with dwarf galaxies on the content and morphology of the Galactic disk are still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups of stars in our Galaxy, which may have extragalactic origins. There is also mounting evidence that stellar overdensities (regions with greater-than-average stellar density) at the interface between the outer disk and the halo could have been caused by the interaction of a dwarf galaxy with the disk. Here we report a spectroscopic analysis of 14 stars from two stellar overdensities, each lying about five kiloparsecs above or below the Galactic plane—locations suggestive of an association with the stellar halo. We find that the chemical compositions of these two groups of stars are almost identical, both within and between these overdensities, and closely match the abundance patterns of stars in the Galactic disk. We conclude that these stars came from the disk, and that the overdensities that they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.

  10. Exploring Disks Around Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    Giant planets are thought to form in circumstellar disks surrounding young stars, but material may also accrete into a smaller disk around the planet. Weve never detected one of these circumplanetary disks before but thanks to new simulations, we now have a better idea of what to look for.Image from previous work simulating a Jupiter-mass planet forming inside a circumstellar disk. The planet has its own circumplanetary disk of accreted material. [Frdric Masset]Elusive DisksIn the formation of giant planets, we think the final phase consists of accretion onto the planet from a disk that surrounds it. This circumplanetary disk is important to understand, since it both regulates the late gas accretion and forms the birthplace of future satellites of the planet.Weve yet to detect a circumplanetary disk thus far, because the resolution needed to spot one has been out of reach. Now, however, were entering an era where the disk and its kinematics may be observable with high-powered telescopes (like the Atacama Large Millimeter Array).To prepare for such observations, we need models that predict the basic characteristics of these disks like the mass, temperature, and kinematic properties. Now a researcher at the ETH Zrich Institute for Astronomy in Switzerland, Judit Szulgyi, has worked toward this goal.Simulating CoolingSzulgyi performs a series of 3D global radiative hydrodynamic simulations of 1, 3, 5, and 10 Jupiter-mass (MJ) giant planets and their surrounding circumplanetary disks, embedded within the larger circumstellar disk around the central star.Density (left column), temperature (center), and normalized angular momentum (right) for a 1 MJ planet over temperatures cooling from 10,000 K (top) to 1,000 K (bottom). At high temperatures, a spherical circumplanetary envelope surrounds the planet, but as the planet cools, the envelope transitions around 64,000 K to a flattened disk. [Szulgyi 2017]This work explores the effects of different planet temperatures and

  11. A model of the formation of spiral galaxies

    International Nuclear Information System (INIS)

    Brown, W.K.; Gritzo, L.A.

    1980-01-01

    It has been verified that the analytical results in a previous article for elliptical galaxies may also be used to describe spiral galaxies. Exploration of the model for small values of the principal parameter THETA yields surface mass density distributions as functions of radius which, while always displaying the exponential disk, describe both of the subcategories of spiral galaxies. Within the constraints of the model, the two main questions concerning spirals posed some years ago by Freeman appear to be successfully addressed. An intrinsic model mechanism has been identified that could account for the extended state of elliptical galaxies, as opposed to the flat disks of spirals. In general, the model correctly describes the relative sizes of the various types of galaxies. (orig.)

  12. Density wave theory and the classification of spiral galaxies

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Roberts, M.S.; Shu, F.H.

    1975-01-01

    Axisymmetric models of disk galaxies taken together with the density wave theory allow us to distinguish and categorize spiral galaxies by means of two fundamental galactic parameters: the total mass of the galaxy, divided by a characteristic dimension; and the degree of concentration of mass toward the galactic center. These two parameters govern the strength of the galactic shocks in the interstellar gas and the geometry of the spiral wave pattern. In turn, the shock strength and the theoretical pitch angle of the spiral arms play a major role in determining the degree of development of spiral structure in a galaxy and its Hubble type. The application of these results to 24 external galaxies demonstrates that the categorization of galaxies according to this theoretical framework correlates well with the accepted classification of these galaxies within the observed sequences of luminosity class and Hubble type

  13. Hermite Polynomials and the Inverse Problem for Collisionless Equilibria

    Science.gov (United States)

    Allanson, O.; Neukirch, T.; Troscheit, S.; Wilson, F.

    2017-12-01

    It is long established that Hermite polynomial expansions in either velocity or momentum space can elegantly encode the non-Maxwellian velocity-space structure of a collisionless plasma distribution function (DF). In particular, Hermite polynomials in the canonical momenta naturally arise in the consideration of the 'inverse problem in collisionless equilibria' (IPCE): "for a given macroscopic/fluid equilibrium, what are the self-consistent Vlasov-Maxwell equilibrium DFs?". This question is of particular interest for the equilibrium and stability properties of a given macroscopic configuration, e.g. a current sheet. It can be relatively straightforward to construct a formal solution to IPCE by a Hermite expansion method, but several important questions remain regarding the use of this method. We present recent work that considers the necessary conditions of non-negativity, convergence, and the existence of all moments of an equilibrium DF solution found for IPCE. We also establish meaningful analogies between the equations that link the microscopic and macrosopic descriptions of the Vlasov-Maxwell equilibrium, and those that solve the initial value problem for the heat equation. In the language of the heat equation, IPCE poses the pressure tensor as the 'present' heat distribution over an infinite domain, and the non-Maxwellian features of the DF as the 'past' distribution. We find sufficient conditions for the convergence of the Hermite series representation of the DF, and prove that the non-negativity of the DF can be dependent on the magnetisation of the plasma. For DFs that decay at least as quickly as exp(-v^2/4), we show non-negativity is guaranteed for at least a finite range of magnetisation values, as parameterised by the ratio of the Larmor radius to the gradient length scale. 1. O. Allanson, T. Neukirch, S. Troscheit & F. Wilson: From one-dimensional fields to Vlasov equilibria: theory and application of Hermite polynomials, Journal of Plasma Physics, 82

  14. Dark-ages Reionization and Galaxy Formation Simulation - XIV. Gas accretion, cooling, and star formation in dwarf galaxies at high redshift

    Science.gov (United States)

    Qin, Yuxiang; Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Geil, Paul M.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2018-06-01

    We study dwarf galaxy formation at high redshift (z ≥ 5) using a suite of high-resolution, cosmological hydrodynamic simulations and a semi-analytic model (SAM). We focus on gas accretion, cooling, and star formation in this work by isolating the relevant process from reionization and supernova feedback, which will be further discussed in a companion paper. We apply the SAM to halo merger trees constructed from a collisionless N-body simulation sharing identical initial conditions to the hydrodynamic suite, and calibrate the free parameters against the stellar mass function predicted by the hydrodynamic simulations at z = 5. By making comparisons of the star formation history and gas components calculated by the two modelling techniques, we find that semi-analytic prescriptions that are commonly adopted in the literature of low-redshift galaxy formation do not accurately represent dwarf galaxy properties in the hydrodynamic simulation at earlier times. We propose three modifications to SAMs that will provide more accurate high-redshift simulations. These include (1) the halo mass and baryon fraction which are overestimated by collisionless N-body simulations; (2) the star formation efficiency which follows a different cosmic evolutionary path from the hydrodynamic simulation; and (3) the cooling rate which is not well defined for dwarf galaxies at high redshift. Accurate semi-analytic modelling of dwarf galaxy formation informed by detailed hydrodynamical modelling will facilitate reliable semi-analytic predictions over the large volumes needed for the study of reionization.

  15. Dark-ages Reionization and Galaxy Formation Simulation - XIV. Gas accretion, cooling and star formation in dwarf galaxies at high redshift

    Science.gov (United States)

    Qin, Yuxiang; Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Geil, Paul M.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2018-03-01

    We study dwarf galaxy formation at high redshift (z ≥ 5) using a suite of high-resolution, cosmological hydrodynamic simulations and a semi-analytic model (SAM). We focus on gas accretion, cooling and star formation in this work by isolating the relevant process from reionization and supernova feedback, which will be further discussed in a companion paper. We apply the SAM to halo merger trees constructed from a collisionless N-body simulation sharing identical initial conditions to the hydrodynamic suite, and calibrate the free parameters against the stellar mass function predicted by the hydrodynamic simulations at z = 5. By making comparisons of the star formation history and gas components calculated by the two modelling techniques, we find that semi-analytic prescriptions that are commonly adopted in the literature of low-redshift galaxy formation do not accurately represent dwarf galaxy properties in the hydrodynamic simulation at earlier times. We propose 3 modifications to SAMs that will provide more accurate high-redshift simulations. These include 1) the halo mass and baryon fraction which are overestimated by collisionless N-body simulations; 2) the star formation efficiency which follows a different cosmic evolutionary path from the hydrodynamic simulation; and 3) the cooling rate which is not well defined for dwarf galaxies at high redshift. Accurate semi-analytic modelling of dwarf galaxy formation informed by detailed hydrodynamical modelling will facilitate reliable semi-analytic predictions over the large volumes needed for the study of reionization.

  16. Estimating the tumble rates of galaxy halos

    International Nuclear Information System (INIS)

    Simonson, G.F.; Tohline, J.E.

    1983-01-01

    It has previously been demonstrated that cold gas in a static spheroidal galaxy will damp to a preferred plane, in which the angular momentum vector of the gas is aligned with the symmetry axis of the potential, through dissipative processes. We show now that, if the same galaxy rigidly tumbles about a nonsymmetry axis, the preferred orientation of the gas can become a permanently and smoothly warped sheet, in which rings of gas at large radii may be fully orthogonal to those near the galaxy's core. Detailed numerical orbit calculations closely match an analytic prediction made previously for the structure of the warp. This structure depends primarily on the eccentricity, density profile, and tumble rate of the spheroid. We show that the tumble rate can now be determined for a galaxy containing a significantly warped disk. Ordinary observations used in conjunction with graphs such as those we present, yield at least firm lower limits to the tumble periods of these objects. We have applied this method to the two peculiar systems NGC 5128 and NGC 2685 and found that, if they are prolate systems supporting permanently warped gaseous disks, they must tumble with periods near 5 x 10 9 yr and 2 x 10 9 yr respectively. In a preliminary investigation, we also find that the massive, unseen halos surrounding spiral galaxies must tumble with periods longer than or on the same order as those of the elliptical galaxies

  17. Deficiency of normal galaxies among Markaryan galaxies

    International Nuclear Information System (INIS)

    Iyeveer, M.M.

    1986-01-01

    Comparison of the morphological types of Markaryan galaxies and other galaxies in the Uppsala catalog indicates a strong deficiency of normal ellipticals among the Markaryan galaxies, for which the fraction of type E galaxies is ≤ 1% against 10% among the remaining galaxies. Among the Markaryan galaxies, an excess of barred galaxies is observed - among the Markaryan galaxies with types Sa-Scd, approximately half or more have bars, whereas among the remaining galaxies of the same types bars are found in about 1/3

  18. Galaxy Formation

    CERN Document Server

    Longair, Malcolm S

    2008-01-01

    This second edition of Galaxy Formation is an up-to-date text on astrophysical cosmology, expounding the structure of the classical cosmological models from a contemporary viewpoint. This forms the background to a detailed study of the origin of structure and galaxies in the Universe. The derivations of many of the most important results are derived by simple physical arguments which illuminate the results of more advanced treatments. A very wide range of observational data is brought to bear upon these problems, including the most recent results from WMAP, the Hubble Space Telescope, galaxy surveys like the Sloan Digital Sky Survey and the 2dF Galaxy Redshift Survey, studies of Type 1a supernovae, and many other observations.

  19. Transport scaling in the collisionless-detrapping regime in stellarators

    International Nuclear Information System (INIS)

    Crume, E.C. Jr.; Shaing, K.C.; Hirshman, S.P.; van Rij, W.I.

    1987-09-01

    Stellarator transport scalings with electric field, geometry, and collision frequency in the reactor-relevant collisionless-detrapping regime are determined from numerical solutions of the drift kinetic equation. A new geometrical scaling, proportional to ε/sub t/sup 3/2/ rather than ε/sub t/ε/sub h/sup 1/2/, is found, where ε/sub t/ is the inverse aspect ratio and ε/sub h/ is the helical ripple. With the new scaling, no reduction in energy confinement time is associated with large helical ripple, which provides design flexibility. Integral expressions for the particle and heat fluxes that are useful for transport simulations are given. 11 refs

  20. Collisionless shocks in space plasmas structure and accelerated particles

    CERN Document Server

    Burgess, David

    2015-01-01

    Shock waves are an important feature of solar system plasmas, from the solar corona out to the edge of the heliosphere. This engaging introduction to collisionless shocks in space plasmas presents a comprehensive review of the physics governing different types of shocks and processes of particle acceleration, from fundamental principles to current research. Motivated by observations of planetary bow shocks, interplanetary shocks and the solar wind termination shock, it emphasises the physical theory underlying these shock waves. Readers will develop an understanding of the complex interplay between particle dynamics and the electric and magnetic fields that explains the observations of in situ spacecraft. Written by renowned experts in the field, this up-to-date text is the ideal companion for both graduate students new to heliospheric physics and researchers in astrophysics who wish to apply the lessons of solar system shocks to different astrophysical environments.

  1. Nonlinear Weibel Instability and Turbulence in Strong Collisionless Shocks

    International Nuclear Information System (INIS)

    Medvedev, Mikhail M.

    2008-01-01

    This research project was devoted to studies of collisionless shocks, their properties, microphysics and plasma physics of underlying phenomena, such as Weibel instability and generation of small-scale fields at shocks, particle acceleration and transport in the generated random fields, radiation mechanisms from these fields in application to astrophysical phenomena and laboratory experiments (e.g., laser-plasma and beam-plasma interactions, the fast ignition and inertial confinement, etc.). Thus, this study is highly relevant to astrophysical sciences, the inertial confinement program and, in particular, the Fast Ignition concept, etc. It makes valuable contributions to the shock physics, nonlinear plasma theory, as well as to the basic plasma science, in general

  2. Effects of electron inertia in collisionless magnetic reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Andrés, Nahuel, E-mail: nandres@iafe.uba.ar; Gómez, Daniel [Instituto de Astronomía y Física del Espacio, CC. 67, suc. 28, 1428, Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Univrsidad de Buenos Aires, Pabellón I, 1428, Buenos Aires (Argentina); Martin, Luis; Dmitruk, Pablo [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Univrsidad de Buenos Aires, Pabellón I, 1428, Buenos Aires (Argentina)

    2014-07-15

    We present a study of collisionless magnetic reconnection within the framework of full two-fluid MHD for a completely ionized hydrogen plasma, retaining the effects of the Hall current, electron pressure and electron inertia. We performed 2.5D simulations using a pseudo-spectral code with no dissipative effects. We check that the ideal invariants of the problem are conserved down to round-off errors. Our numerical results confirm that the change in the topology of the magnetic field lines is exclusively due to the presence of electron inertia. The computed reconnection rates remain a fair fraction of the Alfvén velocity, which therefore qualifies as fast reconnection.

  3. Collisionless ion drag force on a spherical grain

    International Nuclear Information System (INIS)

    Hutchinson, I H

    2006-01-01

    The ion drag force on a spherical grain situated in a flowing collisionless plasma is obtained from the specialized coordinate electrostatic particle and thermals in cell simulation code (SCEPTIC) (Hutchinson 2002 Plasma Phys. Control. Fusion 44 1953, Hutchinson 2003 Plasma Phys. Control. Fusion 45 1477, Hutchinson 2005 Plasma Phys. Control. Fusion 47 71) and compared with recent analytic approximate treatments in the interesting and relevant case when the Debye length is only moderately larger than the sphere radius. There is a substantial complex structure in the results for transonic flows, which is explained in terms of the details of ion orbits. Naturally the prior analytic approximations miss this structure, and as a result they seriously underestimate the drag for speeds near the sound speed. An easy-to-evaluate expression for force is provided that fits the comprehensive results of the code. This expression, with minor modification, also fits the results even for Debye length much smaller than the sphere radius

  4. Physics of Collisionless Shocks Space Plasma Shock Waves

    CERN Document Server

    Balogh, André

    2013-01-01

    The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats both subcritical shocks, which dissipate flow energy by generating anomalous resistance or viscosity, and supercritical shocks. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecti...

  5. Collisional damping of Langmuir waves in the collisionless limit

    International Nuclear Information System (INIS)

    Auerbach, S.P.

    1977-01-01

    Linear Langmuir wave damping by collisions is studied in the limit of collision frequency ν approaching zero. In this limit, collisions are negligible, except in a region in velocity space, the boundary layer, centered about the phase velocity. If kappa, the ratio of the collisional equilibration time in the boundary layer to the Landau damping time, is small, the boundary layer width scales as ν/sup 1/3/, and the perturbed distribution function scales as ν/sup -1/3/. The damping rate is thus independent of ν, although essentially all the damping occurs in the collision-dominated boundary layer. Solution of the Fokker--Planck equation shows that the damping rate is precisely the Landau (collisionless) rate. The damping rate is independent of kappa, although the boundary layer thickness is not

  6. Plasma heating in collisionless plasma at low plasma density

    International Nuclear Information System (INIS)

    Wulf, H.O.

    1977-01-01

    The high frequency heating of a collisionless, fully ionized low density plasma is investigated in the range: 2ωc 2 2 under pumping frequencies. A pulsed 1 MHz transmitter excites a fast standing, magneto-acoustical wave in the plasma, via the high frequency magnetic field of a Stix solenoid. The available modulation degrees are between 0.7 and 7.0%. As power consumption measurements show, there appears at all investigated pumping frequencies an effective energy transfer to the plasma that cannot be explained with the classical MHD models. Measurements with electrostatic probes and further with a miniature counter-field spectrometer yield an electron and ion temperature gain of two to three factors and 15-18, compared to the corresponding values in the initial plasma. (orig./HT) [de

  7. Numerical simulation of the structure of collisionless supercritical shocks

    International Nuclear Information System (INIS)

    Lipatov, A.S.

    1990-01-01

    Research on the structure of a collisionless shock wave and on acceleration of charged particles is important for analyzing the processes accompanying solar flares, and also for studying the shock waves which are excited in the interaction of the solar wind with planets, comets and interstellar gas, the mechanisms for the acceleration of cosmic rays, the processes accompanying magnetic field reconnection, explosion of Supernova. The study of the shock is also important for studying the processes in the active experiments in space. In the present report only supercritical shocks are considered, when partial ion reflection plays a controlling roll in shock formation. One- and two-dimensional simulations of the perpendicular shocks are presented. (R.P.) 33 refs.; 4 figs

  8. Exact Turbulence Law in Collisionless Plasmas: Hybrid Simulations

    Science.gov (United States)

    Hellinger, P.; Verdini, A.; Landi, S.; Franci, L.; Matteini, L.

    2017-12-01

    An exact vectorial law for turbulence in homogeneous incompressible Hall-MHD is derived and tested in two-dimensional hybrid simulations of plasma turbulence. The simulations confirm the validity of the MHD exact law in the kinetic regime, the simulated turbulence exhibits a clear inertial range on large scales where the MHD cascade flux dominates. The simulation results also indicate that in the sub-ion range the cascade continues via the Hall term and that the total cascade rate tends to decrease at around the ion scales, especially in high-beta plasmas. This decrease is like owing to formation of non-thermal features, such as collisionless ion energization, that can not be retained in the Hall MHD approximation.

  9. Accretion disks in active galactic nuclei

    International Nuclear Information System (INIS)

    Begelman, M.C.

    1985-01-01

    The innermost regions of the central engines in active galactic nuclei are examined, and it is shown how different modes of accretion with angular momentum may account for the diverse manifestations of activity in the nuclei of galaxies. These modes are subsequently compared with the observed properties of quasars, Type I Seyferts, and radio galaxies. It was found that the qualitative features of an accretion flow orbiting a massive black hole depend principally on the ratio of the actual accretion rate to the Eddington accretion rate. For a value of this ratio much less than one, the flow may become an ion torus supported by gas pressure; for a value much greater than one, the flow traps its radiative output and becomes an inefficient radiation torus. At intermediate values, the flow may settle into a thin accretion disk. 62 references

  10. Is the Milky Way an interacting galaxy?

    International Nuclear Information System (INIS)

    Verschuur, G.L.

    1988-01-01

    The Milky Way Galaxy is an interacting galaxy, according to radio astronomers. The disk of stars we live in is linked to the Magellanic Clouds, our Galaxy's satellites, by an enormous arc of neutral hydrogen called the Magellanic Stream. These startling facts have recently been established by piecing together many seemingly unrelated bits of evidence into a new picture of our Milky Way Galaxy. The discoveries that led up to this grand picture of the Milky Way's interaction data back over fifty years to create one of the best detective stories in modern astronomy. The realization that ours is an interacting galaxy is only the latest result of an intensive effort to map the Milky Way. Since the 1930s, astronomers have tried to discover just how our Galaxy is built. Charting the Milky Way hasn't been easy, because we are inside it and our view of the Milky Way is obscured by cosmic dust. This dust creates a region called the zone of avoidance, a band centered along the galactic plane that blocks visible light from objects beyond nearby objects in the Galaxy. Thus radio astronomers have become the Milky Way mappers because cosmic radio waves penetrate the dust and reveal the grand scheme of our Galaxy

  11. STAR FORMATION IN PARTIALLY GAS-DEPLETED SPIRAL GALAXIES

    International Nuclear Information System (INIS)

    Rose, James A.; Miner, Jesse; Levy, Lorenza; Robertson, Paul

    2010-01-01

    Broadband B and R and Hα images have been obtained with the 4.1 m SOAR telescope atop Cerro Pachon, Chile, for 29 spiral galaxies in the Pegasus I galaxy cluster and for 18 spirals in non-cluster environments. Pegasus I is a spiral-rich cluster with a low-density intracluster medium and a low galaxy velocity dispersion. When combined with neutral hydrogen (H I) data obtained with the Arecibo 305 m radio telescope, acquired by Levy et al. (2007) and by Springob et al. (2005b), we study the star formation rates in disk galaxies as a function of their H I deficiency. To quantify H I deficiency, we use the usual logarithmic deficiency parameter, DEF. The specific star formation rate (SSFR) is quantified by the logarithmic flux ratio of Hα flux to R-band flux, and thus roughly characterizes the logarithmic SFR per unit stellar mass. We find a clear correlation between the global SFR per unit stellar mass and DEF, such that the SFR is lower in more H I-deficient galaxies. This correlation appears to extend from the most gas-rich to the most gas-poor galaxies. We also find a correlation between the central SFR per unit mass relative to the global values, in the sense that the more H I-deficient galaxies have a higher central SFR per unit mass relative to their global SFR values than do gas-rich galaxies. In fact, approximately half of the H I-depleted galaxies have highly elevated SSFRs in their central regions, indicative of a transient evolutionary state. In addition, we find a correlation between gas depletion and the size of the Hα disk (relative to the R-band disk); H I-poor galaxies have truncated disks. Moreover, aside from the elevated central SSFR in many gas-poor spirals, the SSFR is otherwise lower in the Hα disks of gas-poor galaxies than in gas-rich spirals. Thus, both disk truncation and lowered SSFR levels within the star-forming part of the disks (aside from the enhanced nuclear SSFR) correlate with H I deficiency, and both phenomena are found to

  12. Hamiltonian derivation of a gyrofluid model for collisionless magnetic reconnection

    International Nuclear Information System (INIS)

    Tassi, E

    2014-01-01

    We consider a simple electromagnetic gyrokinetic model for collisionless plasmas and show that it possesses a Hamiltonian structure. Subsequently, from this model we derive a two-moment gyrofluid model by means of a procedure which guarantees that the resulting gyrofluid model is also Hamiltonian. The first step in the derivation consists of imposing a generic fluid closure in the Poisson bracket of the gyrokinetic model, after expressing such bracket in terms of the gyrofluid moments. The constraint of the Jacobi identity, which every Poisson bracket has to satisfy, selects then what closures can lead to a Hamiltonian gyrofluid system. For the case at hand, it turns out that the only closures (not involving integro/differential operators or an explicit dependence on the spatial coordinates) that lead to a valid Poisson bracket are those for which the second order parallel moment, independently for each species, is proportional to the zero order moment. In particular, if one chooses an isothermal closure based on the equilibrium temperatures and derives accordingly the Hamiltonian of the system from the Hamiltonian of the parent gyrokinetic model, one recovers a known Hamiltonian gyrofluid model for collisionless reconnection. The proposed procedure, in addition to yield a gyrofluid model which automatically conserves the total energy, provides also, through the resulting Poisson bracket, a way to derive further conservation laws of the gyrofluid model, associated with the so called Casimir invariants. We show that a relation exists between Casimir invariants of the gyrofluid model and those of the gyrokinetic parent model. The application of such Hamiltonian derivation procedure to this two-moment gyrofluid model is a first step toward its application to more realistic, higher-order fluid or gyrofluid models for tokamaks. It also extends to the electromagnetic gyrokinetic case, recent applications of the same procedure to Vlasov and drift- kinetic systems

  13. Ion acoustic eigenmodes in a collisionless bounded plasma:

    International Nuclear Information System (INIS)

    Kuhn, S.; Schupfer, N.; Santiago, M.A.M.; Assis, A.S. de

    1990-01-01

    This paper is based on an integral-equation method developed for solving the general linearized perturbation problem for a one-dimensional, uniform collisionless plasma with thin sheats, bounded by two planar electrodes. The underlying system of equations consists of a) the Vlasov equations for all particle species involved; b) Poisson's equation; c) the equation of total-current conservation; d) the particle boundary conditions at the left and right hand electrodes and e) the external-circuit equation. The method allows for very general equilibrium, boundary and external-circuit conditions. Using Laplace transformations in both time and space, it is set up to handle the complete initial value problem but also yields, as a by-product, the solution to the eigenmode problem. The only application to date of this method was to the Pierce Diode with a non-trivial external circuit, in which case the equation determining the complex eigenfrequencies ω n was found in analytic form. The said method is applied to ion-acoustic eigenmodes in a one-dimensional, collisionless bounded plasma consisting of non-drifting thermal electrons and a cold ion beam propagating through them. In this case, which is of relevance in the context of both Q- and DP-machines, the eigenfrequencies can no longer be obtained as solutions of an analytically explicit homogeneous system of linear integral equations. Via appropriate basis- set expansions of all perturbation functions involved, this system is transformed into a system of linear algebraic equations for the ω-dependent expansion coefficients, from which the eigenfrequencies can be obtained as the zeros of the'system determinant'. The results include studies on how the eigenfrequencies depend on plasma, boundary, as well as a comparison between these bounded-system ion-acoustic eigenmodes and their infinite-plasma counter-parts. (Author)

  14. The dynamical fingerprint of core scouring in massive elliptical galaxies

    International Nuclear Information System (INIS)

    Thomas, J.; Saglia, R. P.; Bender, R.; Erwin, P.; Fabricius, M.

    2014-01-01

    The most massive elliptical galaxies have low-density centers or cores that differ dramatically from the high-density centers of less massive ellipticals and bulges of disk galaxies. These cores have been interpreted as the result of mergers of supermassive black hole binaries, which depopulate galaxy centers by gravitationally slingshotting central stars toward large radii. Such binaries naturally form in mergers of luminous galaxies. Here, we analyze the population of central stellar orbits in 11 massive elliptical galaxies that we observed with the integral field spectrograph SINFONI at the European Southern Observatory Very Large Telescope. Our dynamical analysis is orbit-based and includes the effects of a central black hole, the mass distribution of the stars, and a dark matter halo. We show that the use of integral field kinematics and the inclusion of dark matter is important to conclude on the distribution of stellar orbits in galaxy centers. Six of our galaxies are core galaxies. In these six galaxies, but not in the galaxies without cores, we detect a coherent lack of stars on radial orbits in the core region and a uniform excess of radial orbits outside of it: when scaled by the core radius r b , the radial profiles of the classical anisotropy parameter β(r) are nearly identical in core galaxies. Moreover, they quantitatively match the predictions of black hole binary simulations, providing the first convincing dynamical evidence for core scouring in the most massive elliptical galaxies.

  15. Magnetohydrodynamics of accretion disks

    International Nuclear Information System (INIS)

    Torkelsson, U.

    1994-04-01

    The thesis consists of an introduction and summary, and five research papers. The introduction and summary provides the background in accretion disk physics and magnetohydrodynamics. The research papers describe numerical studies of magnetohydrodynamical processes in accretion disks. Paper 1 is a one-dimensional study of the effect of magnetic buoyancy on a flux tube in an accretion disk. The stabilizing influence of an accretion disk corona on the flux tube is demonstrated. Paper 2-4 present numerical simulations of mean-field dynamos in accretion disks. Paper 11 verifies the correctness of the numerical code by comparing linear models to previous work by other groups. The results are also extended to somewhat modified disk models. A transition from an oscillatory mode of negative parity for thick disks to a steady mode of even parity for thin disks is found. Preliminary results for nonlinear dynamos at very high dynamo numbers are also presented. Paper 3 describes the bifurcation behaviour of the nonlinear dynamos. For positive dynamo numbers it is found that the initial steady solution is replaced by an oscillatory solution of odd parity. For negative dynamo numbers the solution becomes chaotic at sufficiently high dynamo numbers. Paper 4 continues the studies of nonlinear dynamos, and it is demonstrated that a chaotic solution appears even for positive dynamo numbers, but that it returns to a steady solution of mixed parity at very high dynamo numbers. Paper 5 describes a first attempt at simulating the small-scale turbulence of an accretion disk in three dimensions. There is only find cases of decaying turbulence, but this is rather due to limitations of the simulations than that turbulence is really absent in accretion disks

  16. Colliding and merging galaxies. II. S0 galaxies with polar rings

    International Nuclear Information System (INIS)

    Schweizer, F.; Whitmore, B.D.; Rubin, V.C.

    1983-01-01

    We first present a detailed optical study of A0136-0801, a 16 1/2 -mag ''spindle'' galaxy girdled by a ring of gas, dust, and young stars. The spindle is a normal S0 disk seen nearly edge-on, as shown by its photometric profile and fast rotation (v/sub rot//sigma/sub v/ = 2.2); a prolate structure seems to be ruled out. The surrounding ring runs over the poles of this S0 disk and serves as a probe of the vertical potential. The ring motions suggest that a massive halo extends far beyond the S0 disk (out to 3R 25 ) and that this halo is more nearly spherical than flat. We then list 22 related galaxies and derive that a few percent of all field S0's possess near-polar rings or disks. We suggest that these structures are due to a second event, most likely the transfer of mass from a companion galaxy during a close encounter and occasionally also the merger of a companion. Although accretion occurs presumably at random angles, polar rings are favored statistically because of their slow differential precession and consequent longevity. Alternate evolutionary schemes are also discussed. Finally, we suggest that M82 may be forming a polar ring from former M81 material, and predict that the ''tilted bulge'' of UGC 7576 is an S0 disk seen nearly edge-on

  17. Bar-spheroid interaction in galaxies

    Science.gov (United States)

    Hernquist, Lars; Weinberg, Martin D.

    1992-01-01

    N-body simulation and linear analysis is employed to investigate the secular evolution of barred galaxies, with emphasis on the interaction between bars and spheroidal components of galaxies. This interaction is argued to drive secular transfer of angular momentum from bars to spheroids, primarily through resonant coupling. A moderately strong bar, having mass within corotation about 0.3 times the enclosed spheroid mass, is predicted to shed all its angular momentum typically in less than about 10 exp 9 yr. Even shorter depletion time scales are found for relatively more massive bars. It is suggested either that spheroids around barred galaxies are structured so as to inhibit strong coupling with bars, or that bars can form by unknown processes long after disks are established. The present models reinforce the notion that bars can drive secular evolution in galaxies.

  18. Ejection of massive black holes from galaxies

    International Nuclear Information System (INIS)

    Kapoor, R.C.

    1976-01-01

    Gravitational recoil of a gigantic black hole (M approximately 10 8-9 M) formed in the nonspherical collapse of the nuclear part of a typical galaxy can take place with an appreciable speed as a consequence of the anisotropic emission of gravitational radiation. Accretion of gaseous matter during its flight through the galaxy results in the formation of a flowing shock front. The accompanying stellar captures can lead to the formation of an accretion disk-star system about the hole. Consequently, the hole can become 'luminous' enough to be observable after it emerges out of the galaxy. The phenomenon seems to have an importance in relation to the observations of quasar-galaxy association in a number of cases. (author)

  19. THE STABILITY OF LOW SURFACE BRIGHTNESS DISKS BASED ON MULTI-WAVELENGTH MODELING

    International Nuclear Information System (INIS)

    MacLachlan, J. M.; Wood, K.; Matthews, L. D.; Gallagher, J. S.

    2011-01-01

    To investigate the structure and composition of the dusty interstellar medium (ISM) of low surface brightness (LSB) disk galaxies, we have used multi-wavelength photometry to construct spectral energy distributions for three low-mass, edge-on LSB galaxies (V rot = 88-105 km s -1 ). We use Monte Carlo radiation transfer codes that include the effects of transiently heated small grains and polycyclic aromatic hydrocarbon molecules to model and interpret the data. We find that, unlike the high surface brightness galaxies previously modeled, the dust disks appear to have scale heights equal to or exceeding their stellar scale heights. This result supports the findings of previous studies that low-mass disk galaxies have dust scale heights comparable to their stellar scale heights and suggests that the cold ISM of low-mass, LSB disk galaxies may be stable against fragmentation and gravitational collapse. This may help to explain the lack of observed dust lanes in edge-on LSB galaxies and their low current star formation rates. Dust masses are found in the range (1.16-2.38) x 10 6 M sun , corresponding to face-on (edge-on), V-band, optical depths 0.034 ∼ face ∼ eq ∼< 1.99).

  20. THE EVOLUTION OF PROTOPLANETARY DISKS IN THE ARCHES CLUSTER

    International Nuclear Information System (INIS)

    Olczak, C.; Kaczmarek, T.; Pfalzner, S.; Harfst, S.; Portegies Zwart, S.

    2012-01-01

    Most stars form in a cluster environment. These stars are initially surrounded by disks from which potentially planetary systems form. Of all cluster environments, starburst clusters are probably the most hostile for planetary systems in our Galaxy. The intense stellar radiation and extreme density favor rapid destruction of circumstellar disks via photoevaporation and stellar encounters. Evolving a virialized model of the Arches cluster in the Galactic tidal field, we investigate the effect of stellar encounters on circumstellar disks in a prototypical starburst cluster. Despite its proximity to the deep gravitational potential of the Galactic center, only a moderate fraction of members escapes to form an extended pair of tidal tails. Our simulations show that encounters destroy one-third of the circumstellar disks in the cluster core within the first 2.5 Myr of evolution, preferentially affecting the least and most massive stars. A small fraction of these events causes rapid ejection and the formation of a weaker second pair of tidal tails that is overpopulated by disk-poor stars. Two predictions arise from our study. (1) If not destroyed by photoevaporation protoplanetary disks of massive late B- and early O-type stars represent the most likely hosts of planet formation in starburst clusters. (2) Multi-epoch K- and L-band photometry of the Arches cluster would provide the kinematically selected membership sample required to detect the additional pair of disk-poor tidal tails.

  1. BULGELESS GIANT GALAXIES CHALLENGE OUR PICTURE OF GALAXY FORMATION BY HIERARCHICAL CLUSTERING ,

    International Nuclear Information System (INIS)

    Kormendy, John; Cornell, Mark E.; Drory, Niv; Bender, Ralf

    2010-01-01

    To better understand the prevalence of bulgeless galaxies in the nearby field, we dissect giant Sc-Scd galaxies with Hubble Space Telescope (HST) photometry and Hobby-Eberly Telescope (HET) spectroscopy. We use the HET High Resolution Spectrograph (resolution R ≡ λ/FWHM ≅ 15, 000) to measure stellar velocity dispersions in the nuclear star clusters and (pseudo)bulges of the pure-disk galaxies M 33, M 101, NGC 3338, NGC 3810, NGC 6503, and NGC 6946. The dispersions range from 20 ± 1 km s -1 in the nucleus of M 33 to 78 ± 2 km s -1 in the pseudobulge of NGC 3338. We use HST archive images to measure the brightness profiles of the nuclei and (pseudo)bulges in M 101, NGC 6503, and NGC 6946 and hence to estimate their masses. The results imply small mass-to-light ratios consistent with young stellar populations. These observations lead to two conclusions. (1) Upper limits on the masses of any supermassive black holes are M . ∼ 6 M sun in M 101 and M . ∼ 6 M sun in NGC 6503. (2) We show that the above galaxies contain only tiny pseudobulges that make up ∼ circ > 150 km s -1 , including M 101, NGC 6946, IC 342, and our Galaxy, show no evidence for a classical bulge. Four may contain small classical bulges that contribute 5%-12% of the light of the galaxy. Only four of the 19 giant galaxies are ellipticals or have classical bulges that contribute ∼1/3 of the galaxy light. We conclude that pure-disk galaxies are far from rare. It is hard to understand how bulgeless galaxies could form as the quiescent tail of a distribution of merger histories. Recognition of pseudobulges makes the biggest problem with cold dark matter galaxy formation more acute: How can hierarchical clustering make so many giant, pure-disk galaxies with no evidence for merger-built bulges? Finally, we emphasize that this problem is a strong function of environment: the Virgo cluster is not a puzzle, because more than 2/3 of its stellar mass is in merger remnants.

  2. Kinetic instabilities in plasmas: from electromagnetic fluctuations to collisionless shocks

    International Nuclear Information System (INIS)

    Ruyer, Charles

    2014-01-01

    Collisionless shocks play a major role in powerful astrophysical objects (e.g., gamma-ray bursts, supernova remnants, pulsar winds, etc.), where they are thought to be responsible for non-thermal particle acceleration and radiation. Numerical simulations have shown that, in the absence of an external magnetic field, these self-organizing structures originate from electromagnetic instabilities triggered by high-velocity colliding flows. These Weibel-like instabilities are indeed capable of producing the magnetic turbulence required for both efficient scattering and Fermi-type acceleration. Along with rapid advances in their theoretical understanding, intense effort is now underway to generate collisionless shocks in the laboratory using energetic lasers. In a first part we study the (w,k)-resolved electromagnetic thermal spectrum sustained by a drifting relativistic plasma. In particular, we obtain analytical formulae for the fluctuation spectra, the latter serving as seeds for growing magnetic modes in counterstreaming plasmas. Distinguishing between sub-luminal and supra-luminal thermal fluctuations, we derived analytical formulae of their respective spectral contributions. Comparisons with particle-in-cell (PIC) simulations are made, showing close agreement in the sub-luminal regime along with some discrepancy in the supra-luminal regime. Our formulae are then used to estimate the saturation time of the Weibel instability of relativistic pair plasmas. Our predictions are shown to match 2-D particle-in-cell (PIC) simulations over a three-decade range in flow energy. We then develop a predictive kinetic model of the nonlinear phase of the Weibel instability induced by two counter-streaming, symmetric and non-relativistic ion beams. This self consistent, fully analytical model allows us to follow the evolution of the beams' properties up to a stage close to complete isotropization and thus to shock formation. Its predictions are supported by 2D and 3D particle

  3. Superclusters and galaxy formation

    International Nuclear Information System (INIS)

    Einasto, J.; Joeveer, M.; Saar, E.

    1979-01-01

    The spatial distribution of Galaxies and Galaxy congestions in the southern galactic hemisphere is studied. The rich galaxy congestions, containing many elliptic Galaxies and radiogalaxies, are linked with each other by chains of scanty congestions with moderate content of elliptic Galaxies and radiogalaxies. The flat formation, linking the density pikes and the intermediate chains, can reasonably be called supercongestion. In the central region of supercongestions there is a thin layer of Galaxies consisting of only spiral Galaxies. The neighbouring supercongestions touch each other, while the intersupercongestion space contains no Galaxy congestions and almost no Galaxies. It is shown that such a structure was, apparently, formed before the formation of Galaxies

  4. Is the Comma cluster a zel'dovich disk

    International Nuclear Information System (INIS)

    Thompson, L.A.; Gregory, S.A.

    1978-01-01

    The two-dimensional structure of the Coma cluster is analyzed with the use of galaxies from a wide-area redshift survey. Since redshift observations allow us to sort cluster galaxies from foreground and background galaxies, we can accurately trace the cluster structure to large radii. The following results have been obtained: (1) The center of mass of the Coma cluster is coincident with NGC 4874, the brightest S0 (or cD) galaxy. (2) The cluster has an elliptical shape with axis ratio-0.55 and position angle 67 0 . (3) There is a sharp falloff in the distribution of bright galaxies at a radius ab)/sup 1/2/=rapprox. =3.1. (4) The radial distribution of galaxies contains a slight secondary maximum at a radius (ab) 12 =rapprox. =1 0 .4. The observations are used to show that the cluster may be composed of two components, a central spherical core plus a more widely idspersed flattened disk. We suggest that the observed structure of Coma can be consistently explained using the model of Doroshkevich, Sunyaev, and Zel'kovich which involves the formation of massive protoclusters prior to the epoch of galaxy formation

  5. Quasars Probing Galaxies. I. Signatures of Gas Accretion at Redshift z ≈ 0.2

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Stephanie H.; Martin, Crystal L. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Kacprzak, Glenn G. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Churchill, Christopher W., E-mail: shho@physics.ucsb.edu, E-mail: cmartin@physics.ucsb.edu [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States)

    2017-02-01

    We describe the kinematics of circumgalactic gas near the galactic plane, combining new measurements of galaxy rotation curves and spectroscopy of background quasars. The sightlines pass within 19–93 kpc of the target galaxy and generally detect Mg ii absorption. The Mg ii Doppler shifts have the same sign as the galactic rotation, so the cold gas co-rotates with the galaxy. Because the absorption spans a broader velocity range than disk rotation can explain, we explore simple models for the circumgalactic kinematics. Gas spiraling inwards (near the disk plane) offers a successful description of the observations. An appendix describes the addition of tangential and radial gas flows and illustrates how the sign of the disk inclination produces testable differences in the projected line-of-sight velocity range. This inflow interpretation implies that cold flow disks remain common down to redshift z ≈ 0.2 and prolong star formation by supplying gas to the disk.

  6. Very Luminous X-ray Point Sources in Starburst Galaxies

    Science.gov (United States)

    Colbert, E.; Heckman, T.; Ptak, A.; Weaver, K. A.; Strickland, D.

    Extranuclear X-ray point sources in external galaxies with luminosities above 1039.0 erg/s are quite common in elliptical, disk and dwarf galaxies, with an average of ~ 0.5 and dwarf galaxies, with an average of ~0.5 sources per galaxy. These objects may be a new class of object, perhaps accreting intermediate-mass black holes, or beamed stellar mass black hole binaries. Starburst galaxies tend to have a larger number of these intermediate-luminosity X-ray objects (IXOs), as well as a large number of lower-luminosity (1037 - 1039 erg/s) point sources. These point sources dominate the total hard X-ray emission in starburst galaxies. We present a review of both types of objects and discuss possible schemes for their formation.

  7. Galactoseismology: From The Milky Way To XUV Disks

    Science.gov (United States)

    Chakrabarti, Sukanya

    The variety of discrepancies between observations and simulations on galactic scales, from the anisotropic distribution of dwarf galaxies to the "too big to fail" problem (where massive satellites in simulations are too dense relative to observations), suggests that we may not yet fully understand galaxy formation. If these satellites exist, they would leave traces of their passage in extended HI disks. Extended HI disks of galaxies reach to several times the optical radius, presenting the largest possible cross-section for interaction with sub-halos at large distances (where theoretical models expect them to be). We will provide definitive constraints on the distribution of dark matter in spiral galaxies by building on our ongoing work in characterizing galactic satellites from analysis of disturbances in extended HI disks with respect to hydrodynamical simulations. Spiral galaxies in the Local Volume (from the Milky Way to the XUV disks discovered by GALEX) exhibit a wealth of unexplained morphology, but these morphological signatures have not yet been used to place constraints on the evolution of HI disks and the dark matter distribution. We are now poised to make significant progress in Galactoseismology, i.e. connect morphological disturbances with the mass distribution. By using the FIRE model for explicit star formation and feedback, we will also develop a better understanding for the star formation history of our Galaxy and XUV Disks. Our Milky Way models will be informed by the HST proper motions, and will match the observed planar disturbances, the warp, and vertical waves recently discovered by the RAVE and LAMOST surveys. We are also carrying high resolution simulations with the Gizmo code that incorporates the FIRE model to develop a comprehensive understanding of the star formation history and star formation rate (that matches Spitzer observations) of the Milky Way. These models will provide a much needed interpretative framework for JWST and WFIRST

  8. S0 galaxies in Formax

    DEFF Research Database (Denmark)

    Bedregal...[], A. G.; Aragón-Salamanca, A.; Merrifield, M. R.

    2006-01-01

    Galaxies: elliptical and lenticular, cD: galaxies: kinematics and dynamics Udgivelsesdato: Oct.1......Galaxies: elliptical and lenticular, cD: galaxies: kinematics and dynamics Udgivelsesdato: Oct.1...

  9. ON THE CLASSIFICATION OF UGC 1382 AS A GIANT LOW SURFACE BRIGHTNESS GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Lea M. Z.; Hagen, Alex [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Seibert, Mark; Rich, Jeffrey A.; Madore, Barry F. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Nyland, Kristina; Young, Lisa M. [Physics Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801 (United States); Neill, James D. [California Institute of Technology, Pasadena, CA 91125 (United States); Treyer, Marie [Aix Marseille Université, CNRS, Laboratoire d’Astrophysique de Marseille, UMR 7326, 38 rue F. Joliot-Curie, F-13388 Marseille (France)

    2016-08-01

    We provide evidence that UGC 1382, long believed to be a passive elliptical galaxy, is actually a giant low surface brightness (GLSB) galaxy that rivals the archetypical GLSB Malin 1 in size. Like other GLSB galaxies, it has two components: a high surface brightness disk galaxy surrounded by an extended low surface brightness (LSB) disk. For UGC 1382, the central component is a lenticular system with an effective radius of 6 kpc. Beyond this, the LSB disk has an effective radius of ∼38 kpc and an extrapolated central surface brightness of ∼26 mag arcsec{sup 2}. Both components have a combined stellar mass of ∼8 × 10{sup 10} M {sub ⊙}, and are embedded in a massive (10{sup 10} M {sub ⊙}) low-density (<3 M {sub ⊙} pc{sup 2}) HI disk with a radius of 110 kpc, making this one of the largest isolated disk galaxies known. The system resides in a massive dark matter halo of at least 2 × 10{sup 12} M {sub ⊙}. Although possibly part of a small group, its low-density environment likely plays a role in the formation and retention of the giant LSB and HI disks. We model the spectral energy distributions and find that the LSB disk is likely older than the lenticular component. UGC 1382 has UV–optical colors typical of galaxies transitioning through the green valley. Within the LSB disk are spiral arms forming stars at extremely low efficiencies. The gas depletion timescale of ∼10{sup 11} years suggests that UGC 1382 may be a very-long-term resident of the green valley. We find that the formation and evolution of the LSB disk in UGC 1382 is best explained by the accretion of gas-rich LSB dwarf galaxies.

  10. STRUCTURES OF LOCAL GALAXIES COMPARED TO HIGH-REDSHIFT STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Petty, Sara M.; De Mello, DuIlia F.; Gallagher, John S.; Gardner, Jonathan P.; Lotz, Jennifer M.; Matt Mountain, C.; Smith, Linda J.

    2009-01-01

    The rest-frame far-ultraviolet morphologies of eight nearby interacting and starburst galaxies (Arp 269, M 82, Mrk 8, NGC 520, NGC 1068, NGC 3079, NGC 3310, and NGC 7673) are compared with 54 galaxies at z ∼ 1.5 and 46 galaxies at z ∼ 4 observed in the Great Observatories Origins Deep Survey (GOODS) taken with the Advanced Camera for Surveys onboard the Hubble Space Telescope. The nearby sample is artificially redshifted to z ∼ 1.5 and 4 by applying luminosity and size scaling. We compare the simulated galaxy morphologies to real z ∼ 1.5 and 4 UV-bright galaxy morphologies. We calculate the Gini coefficient (G), the second-order moment of the brightest 20% of the galaxy's flux (M 20 ), and the Sersic index (n). We explore the use of nonparametric methods with two-dimensional profile fitting and find the combination of M 20 with n an efficient method to classify galaxies as having merger, exponential disk, or bulge-like morphologies. When classified according to G and M 20 20/30% of real/simulated galaxies at z ∼ 1.5 and 37/12% at z ∼ 4 have bulge-like morphologies. The rest have merger-like or intermediate distributions. Alternatively, when classified according to the Sersic index, 70% of the z ∼ 1.5 and z ∼ 4 real galaxies are exponential disks or bulge-like with n>0.8, and ∼ 30% of the real galaxies are classified as mergers. The artificially redshifted galaxies have n values with ∼ 35% bulge or exponential at z ∼ 1.5 and 4. Therefore, ∼ 20%-30% of Lyman-break galaxies have structures similar to local starburst mergers, and may be driven by similar processes. We assume merger-like or clumpy star-forming galaxies in the GOODS field have morphological structure with values n 20 > - 1.7. We conclude that Mrk 8, NGC 3079, and NGC 7673 have structures similar to those of merger-like and clumpy star-forming galaxies observed at z ∼ 1.5 and 4.

  11. Disk Defect Data

    Data.gov (United States)

    National Aeronautics and Space Administration — How Data Was Acquired: The data presented is from a physical simulator that simulated engine disks. Sample Rates and Parameter Description: All parameters are...

  12. Verbatim Floppy Disk

    CERN Multimedia

    1976-01-01

    Introduced under the name "Verbatim", Latin for "literally", these disks that sized more than 5¼ inches have become almost universal on dedicated word processing systems and personal computers. This format was replaced more slowly by the 3½-inch format, introduced for the first time in 1982. Compared to today, these large format disks stored very little data. In reality, they could only contain a few pages of text.

  13. Dusty Dwarfs Galaxies Occulting A Bright Background Spiral

    Science.gov (United States)

    Holwerda, Benne

    2017-08-01

    The role of dust in shaping the spectral energy distributions of low mass disk galaxies remains poorly understood. Recent results from the Herschel Space Observatory imply that dwarf galaxies contain large amounts of cool (T 20K) dust, coupled with very modest optical extinctions. These seemingly contradictory conclusions may be resolved if dwarfs harbor a variety of dust geometries, e.g., dust at larger galactocentric radii or in quiescent dark clumps. We propose HST observations of six truly occulting dwarf galaxies drawn from the Galaxy Zoo catalog of silhouetted galaxy pairs. Confirmed, true occulting dwarfs are rare as most low-mass disks in overlap are either close satellites or do not have a confirmed redshift. Dwarf occulters are the key to determining the spatial extent of dust, the small scale structure introduced by turbulence, and the prevailing dust attenuation law. The recent spectroscopic confirmation of bona-fide low mass occulting dwarfs offers an opportunity to map dust in these with HST. What is the role of dust in the SED of these dwarf disk galaxies? With shorter feedback scales, how does star-formation affect their morphology and dust composition, as revealed from their attenuation curve? The resolution of HST allows us to map the dust disks down to the fine scale structure of molecular clouds and multi-wavelength imaging maps the attenuation curve and hence dust composition in these disks. We therefore ask for 2 orbits on each of 6 dwarf galaxies in F275W, F475W, F606W, F814W and F125W to map dust from UV to NIR to constrain the attenuation curve.

  14. Modelling the IRAS colors of galaxies

    International Nuclear Information System (INIS)

    Helou, G.

    1987-01-01

    A physical interpretation is proposed for the color-color diagram of galaxies which are powered only by star formation. The colors of each galaxy result from the combination of two components: cirrus-like emission from the neutral disk, and warmer emission from regions directly involved in on-going star formation. This approach to modelling the emission is based on dust properties, but independent evidence for it is found in the relation between the color sequence and the luminosity sequence. Implications of data and interpretations are discussed and possible tests mentioned for the model

  15. Dusty disks around young stars

    NARCIS (Netherlands)

    Verhoeff, A.

    2009-01-01

    Stars are formed through the collapse of giant molecular clouds. During this contraction the matter spins up and naturally forms a circumstellar disk. Once accretion comes to a halt, these disks are relatively stable. Some disks are known to last up to 10 Myrs. Most disks however, dissipate on

  16. Galaxy evolution in extreme environments: Molecular gas content star formation and AGN in isolated void galaxies

    Science.gov (United States)

    Das, Mousumi; Iono, Daisuke; Saito, Toshiki; Subramanian, Smitha

    Since the early redshift surveys of the large scale structure of our universe, it has become clear that galaxies cluster along walls, sheet and filaments leaving large, empty regions called voids between them. Although voids represent the most under dense parts of our universe, they do contain a sparse but significant population of isolated galaxies that are generally low luminosity, late type disk galaxies. Recent studies show that most void galaxies have ongoing star formation and are in an early stage of evolution. We present radio, optical studies of the molecular gas content and star formation in a sample of void galaxies. Using SDSS data, we find that AGN are rare in these systems and are found only in the Bootes void; their black hole masses and radio properties are similar to bright spirals galaxies. Our studies suggest that close galaxy interactions and gas accretion are the main drivers of galaxy evolution in these systems despite their location in the underdense environment of the voids.

  17. GALAXIES IN X-RAY GROUPS. III. SATELLITE COLOR AND MORPHOLOGY TRANSFORMATIONS

    Energy Technology Data Exchange (ETDEWEB)

    George, Matthew R.; Ma, Chung-Pei [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Bundy, Kevin; Leauthaud, Alexie; Vulcani, Benedetta [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa 277-8583 (Japan); Tinker, Jeremy [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Wechsler, Risa H. [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Finoguenov, Alexis, E-mail: mgeorge@astro.berkeley.edu [Department of Physics, University of Helsinki, Gustaf Haellstroemin katu 2a, FI-00014 Helsinki (Finland)

    2013-06-20

    While the star formation rates and morphologies of galaxies have long been known to correlate with their local environment, the process by which these correlations are generated is not well understood. Galaxy groups are thought to play an important role in shaping the physical properties of galaxies before entering massive clusters at low redshift, and transformations of satellite galaxies likely dominate the buildup of local environmental correlations. To illuminate the physical processes that shape galaxy evolution in dense environments, we study a sample of 116 X-ray selected galaxy groups at z = 0.2-1 with halo masses of 10{sup 13}-10{sup 14} M{sub Sun} and centroids determined with weak lensing. We analyze morphologies based on Hubble Space Telescope imaging and colors determined from 31 photometric bands for a stellar mass-limited population of 923 satellite galaxies and a comparison sample of 16,644 field galaxies. Controlling for variations in stellar mass across environments, we find significant trends in the colors and morphologies of satellite galaxies with group-centric distance and across cosmic time. Specifically at low stellar mass (log (M{sub *}/M{sub Sun }) = 9.8-10.3), the fraction of disk-dominated star-forming galaxies declines from >50% among field galaxies to <20% among satellites near the centers of groups. This decline is accompanied by a rise in quenched galaxies with intermediate bulge+disk morphologies, and only a weak increase in red bulge-dominated systems. These results show that both color and morphology are influenced by a galaxy's location within a group halo. We suggest that strangulation and disk fading alone are insufficient to explain the observed morphological dependence on environment, and that galaxy mergers or close tidal encounters must play a role in building up the population of quenched galaxies with bulges seen in dense environments at low redshift.

  18. GALAXIES IN X-RAY GROUPS. III. SATELLITE COLOR AND MORPHOLOGY TRANSFORMATIONS

    International Nuclear Information System (INIS)

    George, Matthew R.; Ma, Chung-Pei; Bundy, Kevin; Leauthaud, Alexie; Vulcani, Benedetta; Tinker, Jeremy; Wechsler, Risa H.; Finoguenov, Alexis

    2013-01-01

    While the star formation rates and morphologies of galaxies have long been known to correlate with their local environment, the process by which these correlations are generated is not well understood. Galaxy groups are thought to play an important role in shaping the physical properties of galaxies before entering massive clusters at low redshift, and transformations of satellite galaxies likely dominate the buildup of local environmental correlations. To illuminate the physical processes that shape galaxy evolution in dense environments, we study a sample of 116 X-ray selected galaxy groups at z = 0.2-1 with halo masses of 10 13 -10 14 M ☉ and centroids determined with weak lensing. We analyze morphologies based on Hubble Space Telescope imaging and colors determined from 31 photometric bands for a stellar mass-limited population of 923 satellite galaxies and a comparison sample of 16,644 field galaxies. Controlling for variations in stellar mass across environments, we find significant trends in the colors and morphologies of satellite galaxies with group-centric distance and across cosmic time. Specifically at low stellar mass (log (M * /M ☉ ) = 9.8-10.3), the fraction of disk-dominated star-forming galaxies declines from >50% among field galaxies to <20% among satellites near the centers of groups. This decline is accompanied by a rise in quenched galaxies with intermediate bulge+disk morphologies, and only a weak increase in red bulge-dominated systems. These results show that both color and morphology are influenced by a galaxy's location within a group halo. We suggest that strangulation and disk fading alone are insufficient to explain the observed morphological dependence on environment, and that galaxy mergers or close tidal encounters must play a role in building up the population of quenched galaxies with bulges seen in dense environments at low redshift.

  19. DYNAMICAL EVOLUTION OF AGN HOST GALAXIES-GAS IN/OUT-FLOW RATES IN SEVEN NUGA GALAXIES

    International Nuclear Information System (INIS)

    Haan, Sebastian; Schinnerer, Eva; Rix, Hans-Walter; Emsellem, Eric; GarcIa-Burillo, Santiago; Combes, Francoise; Mundell, Carole G.

    2009-01-01

    To examine the role of the host galaxy structure in fueling nuclear activity, we estimated gas flow rates from several kpc down to the inner few 10 pc for seven nearby spiral galaxies, selected from the NUclei of GAlaxies sample. We calculated gravitational torques from near-infrared images and determined gas in/out-flow rates as a function of radius and location within the galactic disks, based on high angular resolution interferometric observations of molecular (CO using Plateau de Bure interferometer) and atomic (H I using the Very Large Array) gas. The results are compared with kinematic evidence for radial gas flows and the dynamical state of the galaxies (via resonances) derived from several different methods. We show that gravitational torques are very efficient at transporting gas from the outer disk all the way into the galaxies centers at ∼100 pc; previously assumed dynamical barriers to gas transport, such as the corotation resonance of stellar bars, seem to be overcome by gravitational torque induced gas flows from other nonaxisymmetric structures. The resulting rates of gas mass inflow range from 0.01 to 50 M sun yr -1 and are larger for the galaxy center than for the outer disk. Our gas flow maps show the action of nested bars within larger bars for three galaxies. Noncircular streaming motions found in the kinematic maps are larger in the center than in the outer disk and appear to correlate only loosely with the in/out-flow rates as a function of radius. We demonstrate that spiral gas disks are very dynamic systems that undergo strong radial evolution on timescales of a few rotation periods (e.g., 5 x 10 8 yrs at a radius of 5 kpc), due to the effectiveness of gravitational torques in redistributing the cold galactic gas.

  20. 2TB hard disk drive

    CERN Multimedia

    This particular object was used up until 2012 in the Data Centre. It slots into one of the Disk Server trays. Hard disks were invented in the 1950s. They started as large disks up to 20 inches in diameter holding just a few megabytes (link is external). They were originally called "fixed disks" or "Winchesters" (a code name used for a popular IBM product). They later became known as "hard disks" to distinguish them from "floppy disks (link is external)." Hard disks have a hard platter that holds the magnetic medium, as opposed to the flexible plastic film found in tapes and floppies.

  1. Influence of a guide field on collisionless driven reconnection

    International Nuclear Information System (INIS)

    Horiuchi, Ritoku; Usami, Shunsuke; Ohtani, Hiroaki

    2014-01-01

    The influence of a guide field on collisionless driven reconnection is investigated by means of two-dimensional electromagnetic particle simulation in an open system. In a quasi-steady state when reconnection electric field evolves fully, a current layer evolves locally in a narrow kinetic region and its scale decreases in proportion to an electron meandering scale as the guide field is intensified. Here, the meandering scale stands for an average spatial scale of nongyrotropic motions in the vicinity of the reconnection point. Force terms associated with off-diagonal components of electron and ion pressure tensors, which are originating from nongyrotropic motions of charged particles, becomes dominant at the reconnection point and sustain the reconnection electric field even when the guide field is strong. It is also found that thermalization of both ions and electrons is suppressed by the guide field. For the weak guide field, an electron nonthermal component is significantly created through a fast outburst from the kinetic region, while for the strong guide field, an ion nonthermal component is generated through the acceleration by an in-plane electric field near the magnetic separatrix. (author)

  2. Hydromagnetic waves, turbulence, and collisionless processes in the interplanetary medium

    International Nuclear Information System (INIS)

    Barnes, A.

    1983-01-01

    The solar wind does not flow quietly. It seethes and undulates, fluctuating on time scales that range from the solar rotation period down to fractions of milliseconds. Most of the power in interplanetary waves and turbulence lies at hydromagnetic scales. These fluctuations are normally of large amplitude, containing enough energy to affect solar and galactic cosmic rays, and may be the remnants of a coronal turbulence field powerful enough to play a major role in accelerating the solar wind itself. The origin and evolution of interplanetary hydromagnetic waves and turbulence, and their influence on the large-scale dynamics of the solar wind are among the most fundamental questions of solar-terrestrial physics. First hydrodynamic waves and turbulences in the interplanetary medium are discussed in two sections, respectively. Because the length and time scales for hydromagnetic fluctuations are very much smaller than the corresponding Coulomb collision scales of the plasma ions and electrons, the interplanetary variations are modelled as fluctuations in a magnetohydrodynamic fluid. In the last section, collisionless phenomena are discussed. They are of qualitative significance. (Auth.)

  3. First results of transcritical magnetized collisionless shock studies on MSX

    Science.gov (United States)

    Weber, T. E.; Smith, R. J.; Hutchinson, T. M.; Taylor, S. F.; Hsu, S. C.

    2014-10-01

    Magnetized collisionless shocks exhibit transitional length and time scales much shorter than can be created through collisional processes. They are common throughout the cosmos, but have historically proven difficult to create in the laboratory. The Magnetized Shock Experiment (MSX) at LANL produces super-Alfvénic shocks through the acceleration and subsequent stagnation of Field Reversed Configuration (FRC) plasmoids against a strong magnetic mirror and flux-conserving vacuum boundary. Plasma flows have been produced with sonic and Alfvén Mach numbers up to ~10 over a wide range of plasma beta with embedded perpendicular, oblique, and parallel magnetic field. Macroscopic ion skin-depth and long ion-gyroperiod enable diagnostic access to relevant shock physics using common methods. Variable plasmoid velocity, density, temperature, and magnetic field provide access to a wide range of shock conditions, and a campaign to study the physics of transcritical and supercritical shocks within the FRC plasmoid is currently underway. An overview of the experimental design, diagnostics suite, physics objectives, and recent results will be presented. Supported by DOE Office of Fusion Energy Sciences under DOE Contract DE-AC52-06NA25369.

  4. Longitudinal sound waves in a collisionless, quasineutral plasma

    Science.gov (United States)

    Ramos, J. J.

    2017-12-01

    The time evolution of slow sound waves in a homogeneous, collisionless and quasineutral plasma, in particular their Landau damping, is investigated using the kinetic-magnetohydrodynamics formulation of Ramos (J. Plasma Phys. vol. 81, 2015 p. 905810325; vol. 82, 2016 p. 905820607). In this approach, the electric field is eliminated from a closed, hybrid fluid-kinetic system that ensures automatically the fulfilment of the charge neutrality condition. Considering the time dependence of a spatial-Fourier-mode linear perturbation with wavevector parallel to the equilibrium magnetic field, this can be cast as a second-order self-adjoint problem with a continuum spectrum of real and positive squared frequencies. Therefore, a conventional resolution of the identity with a continuum basis of singular normal modes is guaranteed, which simplifies significantly a Van Kampen-like treatment of the Landau damping. The explicit form of such singular normal modes is obtained, along with their orthogonality relations. These are used to derive the damped time evolution of the fluid moments of solutions of initial-value problems, for the most general kinds of initial conditions. The non-zero parallel electric field is not used explicitly in this analysis, but it is calculated from any given solution after the later has been obtained.

  5. The Impact of Geometrical Constraints on Collisionless Magnetic Reconnection

    Science.gov (United States)

    Hesse, Michael; Aunai, Nico; Kuznetsova, Masha; Frolov, Rebekah; Black, Carrrie

    2012-01-01

    One of the most often cited features associated with collisionless magnetic reconnection is a Hall-type magnetic field, which leads, in antiparallel geometries, to a quadrupolar magnetic field signature. The combination of this out of plane magnetic field with the reconnection in-plane magnetic field leads to angling of magnetic flux tubes out of the plane defined by the incoming magnetic flux. Because it is propagated by Whistler waves, the quadrupolar field can extend over large distances in relatively short amounts of time - in fact, it will extend to the boundary of any modeling domain. In reality, however, the surrounding plasma and magnetic field geometry, defined, for example, by the overall solar wind flow, will in practice limit the extend over which a flux tube can be angled out of the main plain. This poses the question to what extent geometric constraints limit or control the reconnection process and this is the question investigated in this presentation. The investigation will involve a comparison of calculations, where open boundary conditions are set up to mimic either free or constrained geometries. We will compare momentum transport, the geometry of the reconnection regions, and the acceleration if ions and electrons to provide the current sheet in the outflow jet.

  6. Dynamical efficiency of collisionless magnetized shocks in relativistic jets

    Science.gov (United States)

    Aloy, Miguel A.; Mimica, Petar

    2011-09-01

    The so-called internal shock model aims to explain the light-curves and spectra produced by non-thermal processes originated in the flow of blazars and gamma-ray bursts. A long standing question is whether the tenuous collisionless shocks, driven inside a relativistic flow, are efficient enough to explain the amount of energy observed as compared with the expected kinetic power of the outflow. In this work we study the dynamic efficiency of conversion of kinetic-to-thermal/magnetic energy of internal shocks in relativistic magnetized outflows. We find that the collision between shells with a non-zero relative velocity can yield either two oppositely moving shocks (in the frame where the contact surface is at rest), or a reverse shock and a forward rarefaction. For moderately magnetized shocks (magnetization σ ~= 0.1), the dynamic efficiency in a single two-shell interaction can be as large as 40%. Hence, the dynamic efficiency of moderately magnetized shocks is larger than in the corresponding unmagnetized two-shell interaction. We find that the efficiency is only weakly dependent on the Lorentz factor of the shells and, thus internal shocks in the magnetized flow of blazars and gamma-ray bursts are approximately equally efficient.

  7. Investigations of electrostatic ion waves in a collisionless plasma

    International Nuclear Information System (INIS)

    Michelsen, P.

    1980-06-01

    The author reviews a series of publications concerning theoretical and experimental investigations of electrostatic ion waves in a collisionless plasma. The experimental work was performed in the Risoe Q-machine under various operational conditions. Besides a description of this machine and the diagnostic techniques used for the measurements, two kinds of electrostatic waves are treated, namely, ion-acoustic waves and ion-cyclotron waves. Due to the relative simplicity of the ion-acoustic waves, these were treated in detail in order to get a more general understanding of the behaviour of the propagation properties of electrostatic waves. The problem concerning the difficulties in describing waves excited at a certain position and propagating in space by a proper mathematical model was especially considered in depth. Furthermore, ion-acoustic waves were investigated which propagated in a plasma with a density gradient, and afterwards in a plasma with an ion beam. Finally, a study of the electrostatic ion-cyclotron waves was undertaken, and it was shown that these waves were unstable in a plasma traversed by an ion beam. (Auth.)

  8. Particle injection and cosmic ray acceleration at collisionless parallel shocks

    International Nuclear Information System (INIS)

    Quest, K.B.

    1987-01-01

    The structure of collisionless parallel shocks is studied using one-dimensional hybrid simulations, with emphasis on particle injection into the first-order Fermi acceleration process. It is argued that for sufficiently high Mach number shocks, and in the absence of wave turbulence, the fluid firehose marginal stability condition will be exceeded at the interface between the upstream, unshocked, plasma and the heated plasma downstream. As a consequence, nonlinear, low-frequency, electromagnetic waves are generated and act to slow the plasma and provide dissipation for the shock. It is shown that large amplitude waves at the shock ramp scatter a small fraction of the upstream ions back into the upstream medium. These ions, in turn, resonantly generate the electromagnetic waves that are swept back into the shock. As these waves propagate through the shock they are compressed and amplified, allowing them to non-resonantly scatter the bulk of the plasma. Moreover, the compressed waves back-scatter a small fraction of the upstream ions, maintaining the shock structure in a quasi-steady state. The back-scattered ions are accelerated during the wave generation process to 2 to 4 times the ram energy and provide a likely seed population for cosmic rays. 49 refs., 7 figs

  9. Beyond the Borders of a Galaxy

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Side-by-Side Comparison Click on image for larger view The outlying regions around the Southern Pinwheel galaxy, or M83, are highlighted in this composite image from NASA's Galaxy Evolution Explorer and the National Science Foundation's Very Large Array in New Mexico. The blue and pink pinwheel in the center is the galaxy's main stellar disk, while the flapping, ribbon-like structures are its extended arms. The Galaxy Evolution Explorer is an ultraviolet survey telescope. Its observations, shown here in blue and green, highlight the galaxy's farthest-flung clusters of young stars up to 140,000 light-years from its center. The Very Large Array observations show the radio emission in red. They highlight gaseous hydrogen atoms, or raw ingredients for stars, which make up the lengthy, extended arms. Astronomers are excited that the clusters of baby stars match up with the extended arms, because this helps them better understand how stars can be created out in the 'backwoods' of a galaxy. In this image, far-ultraviolet light is blue, near-ultraviolet light is green and radio emission at a wavelength of 21 centimeters is red. What Lies Beyond the Edge of a Galaxy The side-by-side comparison shows the Southern Pinwheel galaxy, or M83, as seen in ultraviolet light (right) and at both ultraviolet and radio wavelengths (left). While the radio data highlight the galaxy's long, octopus-like arms stretching far beyond its main spiral disk (red), the ultraviolet data reveal clusters of baby stars (blue) within the extended arms. The ultraviolet image was taken by NASA's Galaxy Evolution Explorer between March 15 and May 20, 2007, at scheduled intervals. Back in 2005, the telescope first photographed M83 over a shorter period of time. That picture was the first to reveal far-flung baby stars forming up to 63,000 light-years from the edge of the main spiral disk. This came as a surprise to astronomers because a galaxy's outer

  10. Formation of a superhigh energy electron spectrum in the Galaxy

    International Nuclear Information System (INIS)

    Agaronyan, F.A.; Ambartsumyan, A.S.

    1985-01-01

    The formation of superhigh energy electron spectrum in the disk of the galaxy and halo is considered. A different behaviour of the electron spectrum within the framework of capture models in disk or halo, in the energy region E> or approximately 10 5 GeV is revealed due to the account of relativistic corrections ir the energy losses of electrons during the inverse Compton scattering. A comparison with the existing experimental data is carried out

  11. Debris Disks: Probing Planet Formation

    OpenAIRE

    Wyatt, Mark C.

    2018-01-01

    Debris disks are the dust disks found around ~20% of nearby main sequence stars in far-IR surveys. They can be considered as descendants of protoplanetary disks or components of planetary systems, providing valuable information on circumstellar disk evolution and the outcome of planet formation. The debris disk population can be explained by the steady collisional erosion of planetesimal belts; population models constrain where (10-100au) and in what quantity (>1Mearth) planetesimals (>10km i...

  12. Fast, Capacious Disk Memory Device

    Science.gov (United States)

    Muller, Ronald M.

    1990-01-01

    Device for recording digital data on, and playing back data from, memory disks has high recording or playback rate and utilizes available recording area more fully. Two disks, each with own reading/writing head, used to record data at same time. Head on disk A operates on one of tracks numbered from outside in; head on disk B operates on track of same number in sequence from inside out. Underlying concept of device applicable to magnetic or optical disks.

  13. Source to Accretion Disk Tilt

    OpenAIRE

    Montgomery, M. M.; Martin, E. L.

    2010-01-01

    Many different system types retrogradely precess, and retrograde precession could be from a tidal torque by the secondary on a misaligned accretion disk. However, a source to cause and maintain disk tilt is unknown. In this work, we show that accretion disks can tilt due to a force called lift. Lift results from differing gas stream supersonic speeds over and under an accretion disk. Because lift acts at the disk's center of pressure, a torque is applied around a rotation axis passing through...

  14. Dark Galaxies and Lost Baryons (IAU S244)

    Science.gov (United States)

    Davies, Jonathan I.; Disney, Michael J.

    2008-05-01

    ; Numerical simulation of the dwarf companions of giant galaxies A. Nelson and P. Williams; Delayed galaxies C. Struck, M. Hancock, B. Smith, P. Appleton, V. Charmandaris and M. Giroux; Probe of dark galaxies via disturbed/lopsided isolated galaxies I. Karachentsev, V. Karachentseva, W. Huchtmeier, D. Makarov and S. Kaisin; Star formation thresholds J. Schaye; Scaling relations of dwarf galaxies without supernova-driven winds K. Tassis, A. Kravtsov and N. Gnedin; Star formation in massive low surface brightness galaxies K. O'Neil; Linking clustering properties and the evolution of low surface brightness galaxies D. Bomans and S. Rosenbaum; Too small to form a galaxy: how the UV background determines the baryon fraction M. Hoeft, G. Yepes and S. Gottlober; Star formation in damped Lyman selected galaxies L. Christensen; Dark-matter content of early-type galaxies with planetary nebulae N. Napolitano et al.; Hunting for ghosts: low surface brightnesses from pixels R. Scaramella and S. Sabatini; Baryonic properties of the darkest galaxies E. Grebel; The dwarf low surface brightness population in different environments of the local universe S. Sabatini, J. Davies, S. Roberts and R. Scaramella; Mass modelling of dwarf spheroidal galaxies J. Klimentowski et al.; Evolution of dwarf galaxies in the Centaurus A Group L. Makarova and D. Makarov; A flat faint end of the Fornax cluster galaxy luminosity function S. Mieske, M. Hilker, L. Infante and C. Mendes de Oliveira; Can massive dark halos destroy the discs of dwarf galaxies? B. Fuchs and O. Esquivel; 'Dark galaxies' and local very metal-poor gas-rich galaxies: possible interrelations S. Pustilnik; Morphology and environment of dwarf galaxies in the local universe H. Ann; Arecibo survey of HI emission from disk galaxies at redshift z 0.2 B. Catinella, M. Haynes, J. Gardner, A. Connolly and R. Giovanelli; AGES observations of

  15. Optical polarization position angle versus radio structure axis in Seyfert galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Antonucci, R R.J. [National Radio Astronomy Observatory, Charlottesville, VA (USA)

    1983-05-12

    The hypothesis that there are two polarization classes of Seyfert galaxies, analogous to the perpendicular and parallel radio galaxy groups, is investigated by examining optical polarimetry data. In the sample considered it is shown that all the Seyfert 1 galaxies have roughly parallel polarization while all the Seyfert 2 galaxies have roughly perpendicular polarizations. These alignment effects can be interpreted as being due to thin and thick scattering disks, respectively, surrounding the continuum sources. This would represent a fundamental difference between the two types of Seyfert galaxies.

  16. Untangling Galaxy Components - The Angular Momentum Parameter

    Science.gov (United States)

    Tabor, Martha; Merrifield, Michael; Aragon-Salamanca, Alfonso

    2017-06-01

    We have developed a new technique to decompose Integral Field spectral data cubes into separate bulge and disk components, allowing us to study the kinematic and stellar population properties of the individual components and how they vary with position. We present here the application of this method to a sample of fast rotator early type galaxies from the MaNGA integral field survey, and demonstrate how it can be used to explore key properties of the individual components. By extracting ages, metallicities and the angular momentum parameter lambda of the bulges and disks, we show how this method can give us new insights into the underlying structure of the galaxies and discuss what this can tell us about their evolution history.

  17. Crashing galaxies, cosmic fireworks

    International Nuclear Information System (INIS)

    Keel, W.C.

    1989-01-01

    The study of binary systems is reviewed. The history of the study of interacting galaxies, the behavior of gas in binary systems, studies to identify the processes that occur when galaxies interact, and the relationship of Seyfert galaxies and quasars to binary systems are discussed. The development of an atlas of peculiar galaxies (Arp, 1966) and methods for modeling galaxy interactions are examined

  18. High-resolution molecular line observations of active galaxies

    Science.gov (United States)

    García-Burillo, S.; Combes, F.; Usero, A.; Graciá-Carpio, J.

    2008-10-01

    The study of the content, distribution and kinematics of interstellar gas is a key to understand the origin and maintenance of both starburst and nuclear (AGN) activity in galaxies. The processes involved in AGN fueling encompass a wide range of scales, both spatial and temporal, which have to be studied. Probing the gas flow from the outer disk down to the central engine of an AGN host, requires the use of specific tracers of the interstellar medium adapted to follow the change of phase of the gas as a function of radius. Current mm-interferometers can provide a sharp view of the distribution and kinematics of molecular gas in the circumnuclear disks of galaxies through extensive CO line mapping. As such, CO maps are an essential tool to study AGN feeding mechanisms in the local universe. This is the scientific driver of the NUclei of GAlaxies (NUGA) survey, whose latest results are here reviewed. On the other hand, the use of specific molecular tracers of the dense gas phase can probe the feedback influence of activity on the chemistry and energy balance/redistribution in the interstellar medium of nearby galaxies. Millimeter interferometers are able to unveil the strong chemical differentiation present in the molecular gas disks of nearby starbursts and AGNs. Nearby active galaxies can be used as local templates to address the study of more distant galaxies where both star formation and AGN activity are deeply embedded.

  19. GMRT Low Radio Frequency Study of the Wolf Rayet Galaxy NGC ...

    Indian Academy of Sciences (India)

    In this paper, we present the first low frequency (< 1.4 GHz) radio continuum study of a Wolf Rayet galaxy NGC 4214 using the Giant Meterwave Radio Telescope (GMRT). We detect diffuse extended emission from the galaxy disk at 325 MHz and find that the radio emission closely follows the ultraviolet emission mapped by ...

  20. GMRT Low Radio Frequency Study of the Wolf Rayet Galaxy NGC ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, we present the first low frequency (< 1.4 GHz) radio continuum study of a Wolf Rayet galaxy NGC 4214 using the. Giant Meterwave Radio Telescope (GMRT). We detect diffuse extended emission from the galaxy disk at 325 MHz and find that the radio emis- sion closely follows the ultraviolet emission ...

  1. The line-of-sight warp of the spiral galaxy ESO 123-G23

    NARCIS (Netherlands)

    Gentile, G; Fraternali, F; Klein, U; Salucci, P

    We present 3-D modelling of the distribution and kinematics of the neutral hydrogen in the spiral galaxy ESO 123- G23. The optical appearance of this galaxy is an almost perfectly edge-on disk, while the neutral hydrogen is found to extend vertically out to about 15 kpc on either side of the

  2. Powerful warm infrared sources in early-type galaxies

    International Nuclear Information System (INIS)

    Dressel, L.L.

    1988-01-01

    IRAS far-infrared sources have been identified with 129 S0, Sa, Sb, and Sc galaxies in a statistically complete sample of 738 galaxies brighter than 14.5 mag and smaller than 4.0 arcmin. In most cases, the far-IR colors and the ratios of far-IR flux to radio flux density are those of normal galactic disks and/or starbursts. The most powerful far-IR sources in S0 and Sa galaxies are just as powerful as the strongest far-IR sources in Sb and Sc galaxies. Bright-IR sources in S0 and Sa galaxies are warm; those in Sc galaxies are cool. Sb galaxies have both warm and cool IR sources. Bright warm IR sources occur much more frequently in barred galaxies than in galaxies without bars for types S0, Sa, and Sb. Bright, cool IR sources are found with increasing frequency along the Hubble sequence, regardless of the presence or absence of a bar. At least some S0 galaxies with warm, bright IR sources have peculiar morphologies and ambiguous classifications. 22 references

  3. TURBULENCE AND STAR FORMATION IN A SAMPLE OF SPIRAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Erin; Chien, Li-Hsin [Department of Physics and Astronomy, Northern Arizona University 527 S Beaver Street, Flagstaff, AZ 86011 (United States); Hunter, Deidre A., E-mail: erin-maier@uiowa.edu, E-mail: Lisa.Chien@nau.edu, E-mail: dah@lowell.edu [Lowell Observatory 1400 W Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2016-11-01

    We investigate turbulent gas motions in spiral galaxies and their importance to star formation in far outer disks, where the column density is typically far below the critical value for spontaneous gravitational collapse. Following the methods of Burkhart et al. on the Small Magellanic Cloud, we use the third and fourth statistical moments, as indicators of structures caused by turbulence, to examine the neutral hydrogen (H i) column density of a sample of spiral galaxies selected from The H i Nearby Galaxy Survey. We apply the statistical moments in three different methods—the galaxy as a whole, divided into a function of radii and then into grids. We create individual grid maps of kurtosis for each galaxy. To investigate the relation between these moments and star formation, we compare these maps with their far-ultraviolet images taken by the Galaxy Evolution Explorer satellite.We find that the moments are largely uniform across the galaxies, in which the variation does not appear to trace any star-forming regions. This may, however, be due to the spatial resolution of our analysis, which could potentially limit the scale of turbulent motions that we are sensitive to greater than ∼700 pc. From comparison between the moments themselves, we find that the gas motions in our sampled galaxies are largely supersonic. This analysis also shows that the Burkhart et al. methods may be applied not just to dwarf galaxies but also to normal spiral galaxies.

  4. PLANETESIMAL DISK MICROLENSING

    International Nuclear Information System (INIS)

    Heng, Kevin; Keeton, Charles R.

    2009-01-01

    Motivated by debris disk studies, we investigate the gravitational microlensing of background starlight by a planetesimal disk around a foreground star. We use dynamical survival models to construct a plausible example of a planetesimal disk and study its microlensing properties using established ideas of microlensing by small bodies. When a solar-type source star passes behind a planetesimal disk, the microlensing light curve may exhibit short-term, low-amplitude residuals caused by planetesimals several orders of magnitude below Earth mass. The minimum planetesimal mass probed depends on the photometric sensitivity and the size of the source star, and is lower when the planetesimal lens is located closer to us. Planetesimal lenses may be found more nearby than stellar lenses because the steepness of the planetesimal mass distribution changes how the microlensing signal depends on the lens/source distance ratio. Microlensing searches for planetesimals require essentially continuous monitoring programs that are already feasible and can potentially set constraints on models of debris disks, the progeny of the supposed extrasolar analogues of Kuiper Belts.

  5. DISCOVERY OF CANDIDATE H2O DISK MASERS IN ACTIVE GALACTIC NUCLEI AND ESTIMATIONS OF CENTRIPETAL ACCELERATIONS

    International Nuclear Information System (INIS)

    Greenhill, Lincoln J.; Moran, James M.; Tilak, Avanti; Kondratko, Paul T.

    2009-01-01

    Based on spectroscopic signatures, about one-third of known H 2 O maser sources in active galactic nuclei (AGNs) are believed to arise in highly inclined accretion disks around central engines. These 'disk maser candidates' are of interest primarily because angular structure and rotation curves can be resolved with interferometers, enabling dynamical study. We identify five new disk maser candidates in studies with the Green Bank Telescope, bringing the total number published to 30. We discovered two (NGC 1320, NGC 17) in a survey of 40 inclined active galaxies (v sys -1 ). The remaining three disk maser candidates were identified in monitoring of known sources: NGC 449, NGC 2979, and NGC 3735. We also confirm a previously marginal case in UGC 4203. For the disk maser candidates reported here, inferred rotation speeds are 130-500 km s -1 . Monitoring of three more rapidly rotating candidate disks (CG 211, NGC 6264, VV 340A) has enabled measurement of likely orbital centripetal acceleration, and estimation of central masses ((2-7) x10 7 M sun ) and mean disk radii (0.2-0.4 pc). Accelerations may ultimately permit estimation of distances when combined with interferometer data. This is notable because the three AGNs are relatively distant (10,000 km s -1 sys -1 ), and fractional error in a derived Hubble constant, due to peculiar motion of the galaxies, would be small. As signposts of highly inclined geometries at galactocentric radii of ∼0.1-1 pc, disk masers also provide robust orientation references that allow analysis of (mis)alignment between AGNs and surrounding galactic stellar disks, even without extensive interferometric mapping. We find no preference among published disk maser candidates to lie in high-inclination galaxies. This provides independent support for conclusions that in late-type galaxies, central engine accretion disks and galactic plane orientations are not correlated.

  6. Thick Disks in the Hubble Space Telescope Frontier Fields

    Energy Technology Data Exchange (ETDEWEB)

    Elmegreen, Bruce G. [IBM Research Division, T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States); Elmegreen, Debra Meloy; Tompkins, Brittany; Jenks, Leah G., E-mail: bge@us.ibm.com, E-mail: elmegreen@vassar.edu [Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604 (United States)

    2017-09-20

    Thick disk evolution is studied using edge-on galaxies in two Hubble Space Telescope Frontier Field Parallels. The galaxies were separated into 72 clumpy types and 35 spiral types with bulges. Perpendicular light profiles in F435W, F606W, and F814W ( B , V , and I ) passbands were measured at 1 pixel intervals along the major axes and fitted to sech{sup 2} functions convolved with the instrument line spread function (LSF). The LSF was determined from the average point spread function of ∼20 stars in each passband and field, convolved with a line of uniform brightness to simulate disk blurring. A spread function for a clumpy disk was also used for comparison. The resulting scale heights were found to be proportional to galactic mass, with the average height for a 10{sup 10±0.5} M {sub ⊙} galaxy at z = 2 ± 0.5 equal to 0.63 ± 0.24 kpc. This value is probably the result of a blend between thin and thick disk components that cannot be resolved. Evidence for such two-component structure is present in an inverse correlation between height and midplane surface brightness. Models suggest that the thick disk is observed best between the clumps, and there the average scale height is 1.06 ± 0.43 kpc for the same mass and redshift. A 0.63 ± 0.68 mag V − I color differential with height is also evidence for a mixture of thin and thick components.

  7. Molecular Abundances in the Disk of AN Active Galactic Nucleus

    Science.gov (United States)

    Harada, N.; Thompson, T. A.; Herbst, E.

    2011-06-01

    There are galactic nuclei that emit high luminosities L˜1044-46 erg S-1 including luminosity produced by X-rays from high mass accretion onto the central black holes. These nuclei are called active galactic nuclei (AGNs), and they are accompanied by molecular disks. Observations show high abundances of CN and HCN in the disks; the molecules are proposed to be probes of X-ray dominated regions (XDRs) created by the X-rays from AGNs. We have constructed a spatially-dependent chemical-abundance model of the molecular disk in NGC 1068, a typical AGN-dominated galaxy. Recently, new observations of CN and HCN have been made at much higher spatial resolution, and there are also detections of polyatomic molecules such as HC3N, c-C3H2, and C2H. We discuss how these observations and our simulations can help us to better understand the physical conditions, the disk structure, and conditions for star formation within molecular disks, which are still uncertain. We also include a comparison with other types of galaxies such as (ultra-) luminous infrared galaxies. Usero et al.Astronomy and Astrophysics. 419 (897), 2004. Initial results were presented at the International Symposium on Molecular Spectroscopy 2010, RF05 Garcia-Burillo et al. Astronomy and Astrophysics. 519 (2), 2010. Garcia-Burillo et al. Journal of Physics Conference Series, 131 (12031), 2008. Costagliola et al. ArXiv e-print arXiv:1101.2122, 2011. Nakajima et al. Astrophysical Journal Letters 728 (L38), 2008.

  8. Older Galaxy Pair Has Surprisingly Youthful Glow

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] Poster Version A pair of interacting galaxies might be experiencing the galactic equivalent of a mid-life crisis. For some reason, the pair, called Arp 82, didn't make their stars early on as is typical of most galaxies. Instead, they got a second wind later in life -- about 2 billion years ago -- and started pumping out waves of new stars as if they were young again. Arp 82 is an interacting pair of galaxies with a strong bridge and a long tail. NGC 2535 is the big galaxy and NGC 2536 is its smaller companion. The disk of the main galaxy looks like an eye, with a bright 'pupil' in the center and oval-shaped 'eyelids.' Dramatic 'beads on a string' features are visible as chains of evenly spaced star-formation complexes along the eyelids. These are presumably the result of large-scale gaseous shocks from a grazing encounter. The colors of this galaxy indicate that the observed stars are young to intermediate in age, around 2 million to 2 billion years old, much less than the age of the universe (13.7 billion years). The puzzle is: why didn't Arp 82 form many stars earlier, like most galaxies of that mass range? Scientifically, it is an oddball and provides a relatively nearby lab for studying the age of intermediate-mass galaxies. This picture is a composite captured by Spitzer's infrared array camera with light at wavelength 8 microns shown in red, NASA's Galaxy Evolution Explorer combined 1530 and 2310 Angstroms shown in blue, and the Southeastern Association for Research in Astronomy Observatory light at 6940 Angstroms shown in green.

  9. Globular Clusters for Faint Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    .The most striking feature of these galaxies, however, is that they are surrounded by a large number of compact objects that appear to be globular clusters. From the observations, Van Dokkum and collaborators estimate that Dragonfly 44 and DFX1 have approximately 74 and 62 globulars, respectively significantly more than the low numbers expected for galaxies of this luminosity.Armed with this knowledge, the authors went back and looked at archival observations of 14 other UDGs also located in the Coma cluster. They found that these smaller and fainter galaxies dont host quite as many globular clusters as Dragonfly 44 and DFX1, but more than half also show significant overdensities of globulars.Main panel: relation between the number of globular clusters and total absolute magnitude for Coma UDGs (solid symbols) compared to normal galaxies (open symbols). Top panel: relation between effective radius and absolute magnitude. The UDGs are significantly larger and have more globular clusters than normal galaxies of the same luminosity. [van Dokkum et al. 2017]Evidence of FailureIn general, UDGs appear to have more globular clusters than other galaxies of the same total luminosity, by a factor of nearly 7. These results are consistent with the scenario in which UDGs are failed galaxies: they likely have the halo mass to have formed a large number of globular clusters, but they were quenched before they formed a disk and bulge. Because star formation never got going in UDGs, they are now much dimmer than other galaxies of the same size.The authors suggest that the next step is to obtain dynamical measurements of the UDGs to determine whether these faint galaxies really do have the halo mass suggested by their large numbers of globulars. Future observations will continue to help us pin down the origin of these dim giants.CitationPieter van Dokkum et al 2017 ApJL 844 L11. doi:10.3847/2041-8213/aa7ca2

  10. Spherical galaxies.

    Science.gov (United States)

    Telles, J. E.; de Souza, R. E.; Penereiro, J. C.

    1990-11-01

    RESUMEN. Presentamos fotometria fotografica de 8 objetos y espectrosco- pla para 3 galaxias, las cuales son buenos candidatos para galaxias esfericas. Los resultados fotometricos se presentan en la forma de iso- fotas y de perfiles radiales promedlo, de los cuales se derivan para- metros estructurales. Estas observaciones combinadas con parametros di- namicos obtenidos de observaciones espectrosc6picas, son consistentes con el plano fundamental derivado por Djorgovski y Davis (1987). ABSTRACT. We present photographic surface photometry for 8 objects and spectroscopy for 3 galaxies which are good candidates for spherical galaxies. Photometric results are presented in the form of isophotes and mean radial profiles from which we derived structural parameters. These observations combined with dynamical parameters obtained from spectroscopic observations are consistent with the fundamental plane derived by Djorgovski and Davis (1987). Keq wo : CALAXIES-ELLIPTICAL

  11. Atomic hydrogen properties of active galactic nuclei host galaxies: H I in 16 nuclei of galaxies (NUGA) sources

    International Nuclear Information System (INIS)

    Haan, Sebastian; Schinnerer, Eva; Mundell, Carole G.; García-Burillo, Santiago; Combes, Francoise

    2008-01-01

    We present a comprehensive spectroscopic imaging survey of the distribution and kinematics of atomic hydrogen (H I) in 16 nearby spiral galaxies hosting low luminosity active galactic nuclei (AGN), observed with high spectral and spatial resolution (resolution: ∼20'', ∼5 km s –1 ) using the NRAO Very Large Array (VLA). The sample contains a range of nuclear types ranging from Seyfert to star-forming nuclei, and was originally selected for the NUclei of GAlaxies project (NUGA)—a spectrally and spatially resolved interferometric survey of gas dynamics in nearby galaxies designed to identify the fueling mechanisms of AGN and the relation to host galaxy evolution. Here we investigate the relationship between the H I properties of these galaxies, their environment, their stellar distribution, and their AGN type. The large-scale H I morphology of each galaxy is classified as ringed, spiral, or centrally concentrated; comparison of the resulting morphological classification with the AGN type reveals that ring structures are significantly more common in low-ionization narrow emission-line regions (LINER) than in Seyfert host galaxies, suggesting a time evolution of the AGN activity together with the redistribution of the neutral gas. Dynamically disturbed H I disks are also more prevalent in LINER host galaxies than in Seyfert host galaxies. While several galaxies are surrounded by companions (some with associated H I emission), there is no correlation between the presence of companions and the AGN type (Seyfert/LINER).

  12. Premixed direct injection disk

    Science.gov (United States)

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  13. Herniated lumbar intervertebral disk

    International Nuclear Information System (INIS)

    Hochhauser, L.; Cacayorin, E.D.; Karcnik, T.J.; McGowan, D.P.; Clark, K.G.; Storrs, D.; Kieffer, S.A.

    1988-01-01

    From a series of 25 patients with low-back pain and sciatica who subsequently underwent surgical exploration, 24 lumbar herniated disks and one asymmetrically bulging disk were correctly diagnosed with use of a 0.5-T MR imaging unit. The radiologic findings on saggital images included a polypoid protrusion beyond the posterior margin of the vertebral bodies more clearly displayed with T1-weighted than with T-2 weighted sequences and a focal extension into the extradural space on axial views. In most, the signal intensity of HNP was isointense to the disk of origin. The study suggests that MR imaging is currently capable of accurately predicting an HNP. The diagnosis is based primarily on morphologic characteristics rather than signal intensity alterations

  14. Relativistic, accreting disks

    International Nuclear Information System (INIS)

    Abramowicz, M.A; Jaroszynski, M.; Sikora, M.

    1978-01-01

    An analytic theory of the hydrodynamical structure of accreting disks (without self-gravitation but with pressure) orbiting around and axially symmetric, stationary, compact body (e.g. black hole) is presented. The inner edge of the marginally stable accreting disk (i.e. disk with constant angular momentum density) has a sharp cusp located on the equatorial plane between rsub(ms) and rsub(mb). The existence of the cusp is also typical for any angular momentum distribution. The physical importance of the cusp follows from the close analogy with the case of a close binary system (L 1 Lagrange point on the Roche lobe). The existence of the cusp is thus a crucial phenomenon in such problems as boundary condition for the viscous stresses, accretion rate etc. (orig.) [de

  15. Relativistic, accreting disks

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, M A; Jaroszynski, M; Sikora, M [Polska Akademia Nauk, Warsaw

    1978-02-01

    An analytic theory of the hydrodynamical structure of accreting disks (without self-gravitation but with pressure) orbiting around an axially symmetric, stationary, compact body (e.g. black hole) is presented. The inner edge of the marginally stable accreting disk (i.e. disk with constant angular momentum density) has a sharp cusp located on the equatorial plane between r/sub ms/ and r/sub mb/. The existence of the cusp is also typical for any angular momentum distribution. The physical importance of the cusp follows from the close analogy with the case of a close binary system (L/sub 1/ Lagrange point on the Roche lobe). The existence of the cusp is thus a crucial phenomenon in such problems as boundary condition for the viscous stresses, accretion rate, etc.

  16. Chemistry in protoplanetary disks

    Science.gov (United States)

    Semenov, D. A.

    2012-01-01

    In this lecture I discuss recent progress in the understanding of the chemical evolution of protoplanetary disks that resemble our Solar system during the first ten million years. At the verge of planet formation, strong variations of temperature, density, and radiation intensities in these disks lead to a layered chemical structure. In hot, dilute and heavily irradiated atmosphere only simple radicals, atoms, and atomic ions can survive, formed and destroyed by gas-phase processes. Beneath the atmosphere a partly UV-shielded, warm molecular layer is located, where high-energy radiation drives rich chemistry, both in the gas phase and on dust surfaces. In a cold, dense, dark disk midplane many molecules are frozen out, forming thick icy mantles where surface chemistry is active and where complex (organic) species are synthesized.

  17. Bar Formation in Milky Way type Galaxies

    Directory of Open Access Journals (Sweden)

    Polyachenko E. V.

    2016-12-01

    Full Text Available Many barred galaxies, possibly including the Milky Way, have cusps in their centers. There is a widespread belief, however, that the usual bar instability, which occurs in bulgeless galaxy models, is impossible for cuspy models because of the presence of the inner Lindblad resonance for any pattern speed. At the same time, there is numerical evidence that the bar instability can form a bar. We analyze this discrepancy by performing accurate and diverse N-body simulations and calculating the normal modes. We show that bar formation in cuspy galaxies can be explained by taking into account the disk thickness. The exponential growth time is moderate (about 250 Myr for typical current disk masses, but it increases considerably (by a factor of two or more if the live halo and bulge are substituted by a rigid halo/bulge potential; the pattern speeds remain almost the same. Normal mode analysis with different disk mass favors a young bar hypothesis, according to which the bar instability has saturated only recently.

  18. Galaxies and Saturn's rings: Gravitational analogues of nonneutral plasmas

    International Nuclear Information System (INIS)

    Mark, J.W.K.

    1985-01-01

    Orbit and collective dynamics in disk galaxies and in Saturn's rings are gravitational analogues of those occurring in nonneutral plasmas. The interesting problems for such ''gravitational plasmas'' are analogous to single-disk studies of transverse dynamics in particle beams. Of particular interest are various orbit-resonances with spiral density and bending waves in these disks which are analogous to electrostatic waves in nonneutral beam plasmas. The background physics, terminology and results of astrophysical investigations in these fields are surveyed in this paper. 53 refs., 19 figs., 1 tab

  19. Dwarf spheroidal galaxies: Keystones of galaxy evolution

    Science.gov (United States)

    Gallagher, John S., III; Wyse, Rosemary F. G.

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  20. Circumstellar and circumplanetary disks

    Science.gov (United States)

    Chiang, Eugene

    2000-11-01

    This thesis studies disks in three astrophysical contexts: (1)protoplanetary disks; (2)the Edgeworth-Kuiper Belt; and (3)planetary rings. We derive hydrostatic, radiative equilibrium models of passive protoplanetary disks surrounding T Tauri and Herbig Ae/Be stars. Each disk is encased by an optically thin layer of superheated dust grains. This layer is responsible for up to ~70% of the disk luminosity at wavelengths between ~5 and 60 μm. The heated disk flares and absorbs more stellar radiation at a given stellocentric distance than a flat disk would. Spectral energy distributions are computed and found to compare favorably with the observed flattish infrared excesses of several young stellar objects. Spectral features from dust grains in the superheated layer appear in emission if the disk is viewed nearly face-on. We present the results of a pencil-beam survey of the Kuiper Belt using the Keck 10-m telescope. Two new objects are discovered. Data from all surveys are pooled to construct the luminosity function from mR = 20 to 27. The cumulative number of objects per square degree, Σ(surface area but the largest bodies contain most of the mass. To order-of-magnitude, 0.2 M⊕ and 1 × 1010 comet progenitors lie between 30 and 50 AU. The classical Kuiper Belt appears truncated at a distance of 50 AU. We propose that rigid precession of narrow eccentric planetary rings surrounding Uranus and Saturn is maintained by a balance of forces due to ring self- gravity, planetary oblateness, and interparticle collisions. Collisional impulses play an especially dramatic role near ring edges. Pressure-induced accelerations are maximal near edges because there (1)velocity dispersions are enhanced by resonant satellite perturbations, and (2)the surface density declines steeply. Remarkably, collisional forces felt by material in the last ~100 m of a ~10 km wide ring can increase equilibrium masses up to a factor of ~100. New ring surface densities are derived which accord with

  1. Projection Of The Stellar To Halo Mass Relation Into The Scaling Relations Of A Disc Galaxy Population

    Science.gov (United States)

    Mancillas, Brisa; Ávila-Reese, Vladimir; Rodríguez-Puebla, Aldo; Valls-Gabaud, David

    2017-06-01

    Several pieces of evidence suggest that disk formation is the generic process of assembly of galaxies, while the spheroidal component arises from the merging/interactions of disks as well as from their secular evolution. To understand galaxy formation and evolution, a cosmological framework is required. The current cosmological paradigm is summarized in the so-called Λ-cold dark matter model (ΛCDM). The statistical connection between the masses of the observed galaxies and those of the simulated CDM halos in large volumes leads us to the galaxy-halo mass relation, which summarizes the main astrophysical processes of galaxy formation and evolution (gas heating and cooling, SF, SN- and AGN-driven feedback, etc.). An important question is how this relation constrained by semi-empirical methods (e.g., Rodriguez-Puebla et al. 2014) is "projected" into the disk galaxy scaling relations and other galaxy correlations. To explore this question, we generate a synthetic catalog of thousands of disk/halo systems by means of an extended Mo, Mao & White (1998) model, and by using as input the baryonic-to-halo mass relation, fbar(Mh), of local disk galaxy as recently constrained by Calette et al. (2015).

  2. MORPHOLOGICAL QUENCHING OF STAR FORMATION: MAKING EARLY-TYPE GALAXIES RED

    International Nuclear Information System (INIS)

    Martig, Marie; Bournaud, Frederic; Teyssier, Romain; Dekel, Avishai

    2009-01-01

    We point out a natural mechanism for quenching of star formation in early-type galaxies (ETGs). It automatically links the color of a galaxy with its morphology and does not require gas consumption, removal or termination of gas supply. Given that star formation takes place in gravitationally unstable gas disks, it can be quenched when a disk becomes stable against fragmentation to bound clumps. This can result from the growth of a stellar spheroid, for instance by mergers. We present the concept of morphological quenching (MQ) using standard disk instability analysis, and demonstrate its natural occurrence in a cosmological simulation using an efficient zoom-in technique. We show that the transition from a stellar disk to a spheroid can be sufficient to stabilize the gas disk, quench star formation, and turn an ETG red and dead while gas accretion continues. The turbulence necessary for disk stability can be stirred up by sheared perturbations within the disk in the absence of bound star-forming clumps. While other quenching mechanisms, such as gas stripping, active galactic nucleus feedback, virial shock heating, and gravitational heating are limited to massive halos, MQ can explain the appearance of red ETGs also in halos less massive than ∼10 12 M sun . The dense gas disks observed in some of today's red ellipticals may be the relics of this mechanism, whereas red galaxies with quenched gas disks could be more frequent at high redshift.

  3. The Growth of Central Black Hole and the Ionization Instability of Quasar Disk

    Science.gov (United States)

    Lu, Ye; Cheng, K. S.; Zhang, S. N.

    2003-01-01

    A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole harbored in the host galaxy. The evolution of quasars in cosmic time is assumed to change from a highly active state to a quiescent state triggered by the S-shaped ionization instability of the quasar accretion disk. For a given external mass transfer rate supplied by the quasar host galaxy, ionization instability can modify accretion rate in the disk and separates the accretion flows of the disk into three different phases, like a S-shape. We suggest that the bright quasars observed today are those quasars with disks in the upper branch of S-shaped instability, and the faint or 'dormant' quasars are simply the system in the lower branch. The middle branch is the transition state which is unstable. We assume the quasar disk evolves according to the advection-dominated inflow-outflow solutions (ADIOS) configuration in the stable lower branch of S-shaped instability, and Eddington accretion rate is used to constrain the accretion rate in each phase. The mass ratio between black hole and its host galactic bulge is a nature consequence of ADIOS. Our model also demonstrates that a seed black hole (BH) similar to those found in spiral galaxies today is needed to produce a BH with a final mass 2 x 10(exp 8) solar mases.

  4. Smooth-arm spiral galaxies: their properties and significance to cluster-galaxy evolution

    International Nuclear Information System (INIS)

    Wilkerson, M.S.

    1979-01-01

    In this dissertation a number of galaxies with optical appearances between those of normal, actively-star-forming spirals and SO galaxies have been examined. These so-called smooth-arm spiral galaxies exhibit spiral arms without any of the spiral tracers - H II regions, O-B star associations, dust - indicative of current star formation. Tests were made to find if, perhaps, these smooth-arm spirals could have, at one time, been normal, actively-star-forming spirals whose gas had been somehow removed; and that are currently transforming into SO galaxies. This scenario proceeds as (1) removal of gas, (2) gradual dying of disk density wave, (3) emergence of SO galaxy. If the dominant method of gas removal is ram-pressure stripping by a hot, intracluster medium, then smooth-arm spirals should occur primarily in x-ray clusters. Some major findings of this dissertation are as follows: (1) Smooth-arm spirals are redder than normal spirals of the same morphological type. Most smooth-arm spirals cannot be distinguished by color from SO galaxies. (2) A weak trend exists for smooth-arm spirals with stronger arms to be bluer than those with weaker arms; thus implying that the interval since gas removal has been shorter for the galaxies with stronger arms. (3) Smooth-arm spirals are deficient in neutral hydrogen - sometimes by an order of magnitude or, possibly, more

  5. Chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Vigroux, Laurent

    1979-01-01

    This research thesis addresses theories on the chemical evolution of galaxies which aim at explaining abundances of different elements in galaxies, and more particularly aims at improving the model by modifying hypotheses. After a description of the simple model and of its uncertainties, the author shows how it is possible to understand the evolution of the main elements. Predictions obtained with this model are then compared with the present knowledge on galaxies by considering them according to an increasing complexity: Sun's neighbourhood, our galaxy, other spiral galaxies, elliptical galaxies, and finally galaxy clusters. A specific attention is given to irregular galaxies which are the simplest systems [fr

  6. Line profile variations in selected Seyfert galaxies

    International Nuclear Information System (INIS)

    Kollatschny, W; Zetzl, M; Ulbrich, K

    2010-01-01

    Continua as well as the broad emission lines in Seyfert 1 galaxies vary in different galaxies with different amplitudes on typical timescales of days to years. We present the results of two independent variability campaigns taken with the Hobby-Eberly Telescope. We studied in detail the integrated line and continuum variations in the optical spectra of the narrow-line Seyfert galaxy Mrk 110 and the very broad-line Seyfert galaxy Mrk 926. The broad-line emitting region in Mrk 110 has radii of four to 33 light-days as a function of the ionization degree of the emission lines. The line-profile variations are matched by Keplerian disk models with some accretion disk wind. The broad-line region in Mrk 926 is very small showing an extension of two to three light-days only. We could detect a structure in the rms line-profiles as well as in the response of the line profile segments of Mrk 926 indicating the BLR is structured.

  7. A SCALING RELATION BETWEEN MEGAMASER DISK RADIUS AND BLACK HOLE MASS IN ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Wardle, Mark; Yusef-Zadeh, Farhad

    2012-01-01

    Several thin, Keplerian, sub-parsec megamaser disks have been discovered in the nuclei of active galaxies and used to precisely determine the mass of their host black holes. We show that there is an empirical linear correlation between the disk radius and the black hole mass. We demonstrate that such disks are naturally formed by the partial capture of molecular clouds passing through the galactic nucleus and temporarily engulfing the central supermassive black hole. Imperfect cancellation of the angular momenta of the cloud material colliding after passing on opposite sides of the hole leads to the formation of a compact disk. The radial extent of the disk is determined by the efficiency of this process and the Bondi-Hoyle capture radius of the black hole, and naturally produces the empirical linear correlation of the radial extent of the maser distribution with black hole mass. The disk has sufficient column density to allow X-ray irradiation from the central source to generate physical and chemical conditions conducive to the formation of 22 GHz H 2 O masers. For initial cloud column densities ∼ 23.5 cm –2 the disk is non-self-gravitating, consistent with the ordered kinematics of the edge-on megamaser disks; for higher cloud columns the disk would fragment and produce a compact stellar disk similar to that observed around Sgr A* at the galactic center.

  8. STELLAR, GAS, AND DARK MATTER CONTENT OF BARRED GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes Sodi, Bernardo, E-mail: b.cervantes@crya.unam.mx [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Campus Morelia, A.P. 3-72, C.P. 58089 Michoacán, México (Mexico)

    2017-01-20

    We select a sample of galaxies from the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7) where galaxies are classified, through visual inspection, as hosting strong bars, weak bars, or as unbarred galaxies, and make use of H i mass and kinematic information from the Arecibo Legacy Fast ALFA survey catalog, to study the stellar, atomic gas, and dark matter content of barred disk galaxies. We find, in agreement with previous studies, that the bar fraction increases with increasing stellar mass. A similar trend is found with total baryonic mass, although the dependence is not as strong as with stellar mass, due to the contribution of gas. The bar fraction shows a decrease with increasing gas mass fraction. This anticorrelation between the likelihood of a galaxy hosting a bar with the gas richness of the galaxy results from the inhibiting effect the gas has in the formation of bars. We also find that for massive galaxies with stellar masses larger than 10{sup 10} M {sub ⊙}, at fixed stellar mass, the bar fraction decreases with increasing global halo mass (i.e., halo mass measured up to a radius of the order of the H i disk extent).

  9. Distortions of the distribution function of collisionless particles by high-frequency gravitational waves

    International Nuclear Information System (INIS)

    Vainer, B.V.; Nasel'skii, P.D.

    1983-01-01

    Equations for the correlation functions of fluctuations in the spectra of relativistic collisionless particles are obtained from the combined system of Einstein's equations and the Vlasov equation. It is shown that the interaction of high-frequency gravitational waves with collisionless particles leads to diffusion of their spectrum in the momentum space. The distortions in the spectrum of the microwave background radiation in a cosmological model with high-frequency gravitational waves are discussed. Bounds are obtained on the spectral characteristics of background gravitational waves

  10. Collisionless damping of nonlinear dust ion acoustic wave due to dust charge fluctuation

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Chaudhuri, Tushar K.; Sarkar, Susmita; Khan, Manoranjan; Gupta, M.R.

    2002-01-01

    A dissipation mechanism for the damping of the nonlinear dust ion acoustic wave in a collisionless dusty plasma consisting of nonthermal electrons, ions, and variable charge dust grains has been investigated. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust ion acoustic wave propagation to be described by the damped Korteweg-de Vries equation. Due to the presence of nonthermal electrons, the dust ion acoustic wave admits both positive and negative potential and it suffers less damping than the dust acoustic wave, which admits only negative potential

  11. Optical Observations of X-ray Bright, Optically Normal Galaxies

    Science.gov (United States)

    Sadun, Alberto C.; Aryan, N. S.; Ghosh, K. K.

    2007-05-01

    X-ray bright, optically normal galaxies (XBONGs) are galaxies that seem to have normal spectra and morphology, but are relatively bright x-ray sources. The large ratio of the x-ray to optical emission suggests that some activity, similar to that of active galactic nuclei (AGN), is occurring. Since the galaxies do not show any obvious sign of nuclear activity in their optical spectra, one possible explanation is that these galaxies do not have an optically thick accretion disk at small radii, as previously assumed. Previous data for NGC 7626 classifies it as an XBONG, and so we are studying optical features of this galaxy in order to determine better its features. After confirming an x-ray jet, we are now comparing this to optical features that we have found, including warped dust lanes and a possible optical jet.

  12. CHEMODYNAMIC EVOLUTION OF DWARF GALAXIES IN TIDAL FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, David; Martel, Hugo [Département de physique, de génie physique et d’optique, Université Laval, Québec, QC, G1V 0A6 (Canada); Romeo, Alessandro B., E-mail: david-john.williamson.1@ulaval.ca [Department of Earth and Space Sciences, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2016-11-01

    The mass–metallicity relation shows that the galaxies with the lowest mass have the lowest metallicities. As most dwarf galaxies are in group environments, interaction effects such as tides could contribute to this trend. We perform a series of smoothed particle hydrodynamics simulations of dwarf galaxies in external tidal fields to examine the effects of tides on their metallicities and metallicity gradients. In our simulated galaxies, gravitational instabilities drive gas inwards and produce centralized star formation and a significant metallicity gradient. Strong tides can contribute to these instabilities, but their primary effect is to strip the outer low-metallicity gas, producing a truncated gas disk with a large metallicity. This suggests that the effect of tides on the mass–metallicity relation is to move dwarf galaxies to higher metallicities.

  13. Gradients of stellar population properties and evolution clues in a nearby galaxy M101

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Lin; Kong, Xu; Lin, Xuanbin; Mao, Yewei; Cheng, Fuzhen [Center for Astrophysics, University of Science and Technology of China, Hefei 230026 (China); Zou, Hu; Jiang, Zhaoji; Zhou, Xu, E-mail: linlin@mail.ustc.edu.cn, E-mail: xkong@ustc.edu.cn, E-mail: zouhu@nao.cas.cn [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2013-06-01

    Multiband photometric images from ultraviolet and optical to infrared are collected to derive spatially resolved properties of the nearby Scd-type galaxy M101. With evolutionary stellar population synthesis models, two-dimensional distributions and radial profiles of age, metallicity, dust attenuation, and star formation timescale in the form of the Sandage star formation history are obtained. When fitting with the models, we use the IRX-A {sub FUV} relation, found to depend on a second parameter of birth rate b (ratio of present- and past-averaged star formation rates), to constrain the dust attenuation. There are obvious parameter gradients in the disk of M101, which supports the theory of an 'inside-out' disk growth scenario. Two distinct disk regions with different gradients of age and color are discovered, similar to another late-type galaxy, NGC 628. The metallicity gradient of the stellar content is flatter than that of H II regions. The stellar disk is optically thicker inside than outside and the global dust attenuation of this galaxy is lower compared with galaxies of similar and earlier morphological type. We note that a variational star formation timescale describes the real star formation history of a galaxy. The timescale increases steadily from the center to the outskirt. We also confirm that the bulge in this galaxy is a disk-like pseudobulge, whose evolution is likely to be induced by some secular processes of the small bar which is relatively young, metal-rich, and contains much dust.

  14. A drop in the pond: the effect of rapid mass-loss on the dynamics and interaction rate of collisionless particles

    Science.gov (United States)

    Penoyre, Zephyr; Haiman, Zoltán

    2018-01-01

    In symmetric gravitating systems experiencing rapid mass-loss, particle orbits change almost instantaneously, which can lead to the development of a sharply contoured density profile, including singular caustics for collisionless systems. This framework can be used to model a variety of dynamical systems, such as accretion discs following a massive black hole merger and dwarf galaxies following violent early star formation feedback. Particle interactions in the high-density peaks seem a promising source of observable signatures of these mass-loss events (i.e. a possible EM counterpart for black hole mergers or strong gamma-ray emission from dark matter annihilation around young galaxies), because the interaction rate depends on the square of the density. We study post-mass-loss density profiles, both analytic and numerical, in idealized cases and present arguments and methods to extend to any general system. An analytic derivation is presented for particles on Keplerian orbits responding to a drop in the central mass. We argue that this case, with initially circular orbits, gives the most sharply contoured profile possible. We find that despite the presence of a set of singular caustics, the total particle interaction rate is reduced compared to the unperturbed system; this is a result of the overall expansion of the system dominating over the steep caustics. Finally, we argue that this result holds more generally, and the loss of central mass decreases the particle interaction rate in any physical system.

  15. Tilted-ring models of the prolate spiral galaxies NGC 5033 and 5055

    Science.gov (United States)

    Christodoulou, Dimitris M.; Tohline, Joel E.; Steiman-Cameron, Thomas Y.

    1988-01-01

    Observations of the kinematics of H I in the disks of spiral galaxies have shown that isovelocity contours often exhibit a twisted pattern. The shape of a galaxy's gravitational potential well (whether due to luminous matter or dark matter) can be determined from the direction of the twist. If this twist is a manifestation of the precession of a nonsteady-state disk, it is shown that the twists of NGC 5033 and 5055 imply an overall prolate shape, with the major axis of the potential well aligned along the rotation axis of the disk. Therefore, the luminous disks of these galaxies must be embedded in dark halos that are prolate spheroids or prolatelike triaxial figures.

  16. Radio emission in the Virgo cluster and in SO galaxies

    International Nuclear Information System (INIS)

    Kotanyi, C.

    1981-01-01

    A survey of the radio continuum emission from the galaxies in the Virgo Cluster is presented. The sample of 274 galaxies in total contains a subsample of 188 galaxies complete down to magntiude msub(p) = 14. The observations consisted mostly of short (10 minutes) observations providing one-dimensional (East-West) strip distributions of the radio brightness at 1.4 GHz, with an East-West resolution of 23'' allowing separation of central sources from extended emission, and an r.m.s. noise level of 2 mJy. The radio emission of SO galaxies is examined. A sample of 145 SO galaxies is obtained by combining the Virgo cluster SO's with the nearby non-cluster SO's. The radio data, mainly from short observations, are used to derive the RLF. The radio emission in SO galaxies is at least three times weaker than that in ellipticals and spirals. Flat-spectrum compact nuclear sources are found in SO galaxies but they are at least 10 times weaker than in elliptical galaxies, which is attributed to the small mass of the bulges in SO's as compared to the mass of elliptical galaxies. The absence of steep-spectrum, extended central sources and of disk radio emission in SO's is attributed to their low neutral hydrogen content. (Auth.)

  17. Nonlocal collisionless and collisional electron transport in low temperature plasmas

    Science.gov (United States)

    Kaganovich, Igor

    2009-10-01

    The purpose of the talk is to describe recent advances in nonlocal electron kinetics in low-pressure plasmas. A distinctive property of partially ionized plasmas is that such plasmas are always in a non-equilibrium state: the electrons are not in thermal equilibrium with the neutral species and ions, and the electrons are also not in thermodynamic equilibrium within their own ensemble, which results in a significant departure of the electron velocity distribution function from a Maxwellian. These non-equilibrium conditions provide considerable freedom to choose optimal plasma parameters for applications, which make gas discharge plasmas remarkable tools for a variety of plasma applications, including plasma processing, discharge lighting, plasma propulsion, particle beam sources, and nanotechnology. Typical phenomena in such discharges include nonlocal electron kinetics, nonlocal electrodynamics with collisionless electron heating, and nonlinear processes in the sheaths and in the bounded plasmas. Significant progress in understanding the interaction of electromagnetic fields with real bounded plasma created by this field and the resulting changes in the structure of the applied electromagnetic field has been one of the major achievements of the last decade in this area of research [1-3]. We show on specific examples that this progress was made possible by synergy between full scale particle-in-cell simulations, analytical models, and experiments. In collaboration with Y. Raitses, A.V. Khrabrov, Princeton Plasma Physics Laboratory, Princeton, NJ, USA; V.I. Demidov, UES, Inc., 4401 Dayton-Xenia Rd., Beavercreek, OH 45322, USA and AFRL, Wright-Patterson AFB, OH 45433, USA; and D. Sydorenko, University of Alberta, Edmonton, Canada. [4pt] [1] D. Sydorenko, A. Smolyakov, I. Kaganovich, and Y. Raitses, IEEE Trans. Plasma Science 34, 895 (2006); Phys. Plasmas 13, 014501 (2006); 14 013508 (2007); 15, 053506 (2008). [0pt] [2] I. D. Kaganovich, Y. Raitses, D. Sydorenko, and

  18. Turbulent transport in 2D collisionless guide field reconnection

    Science.gov (United States)

    Muñoz, P. A.; Büchner, J.; Kilian, P.

    2017-02-01

    Transport in hot and dilute, i.e., collisionless, astrophysical and space, plasmas is called "anomalous." This transport is due to the interaction between the particles and the self-generated turbulence by their collective interactions. The anomalous transport has very different and not well known properties compared to the transport due to binary collisions, dominant in colder and denser plasmas. Because of its relevance for astrophysical and space plasmas, we explore the excitation of turbulence in current sheets prone to component- or guide-field reconnection, a process not well understood yet. This configuration is typical for stellar coronae, and it is created in the laboratory for which a 2.5D geometry applies. In our analysis, in addition to the immediate vicinity of the X-line, we also include regions outside and near the separatrices. We analyze the anomalous transport properties by using 2.5D Particle-in-Cell code simulations. We split off the mean slow variation (in contrast to the fast turbulent fluctuations) of the macroscopic observables and determine the main transport terms of the generalized Ohm's law. We verify our findings by comparing with the independently determined slowing-down rate of the macroscopic currents (due to a net momentum transfer from particles to waves) and with the transport terms obtained by the first order correlations of the turbulent fluctuations. We find that the turbulence is most intense in the "low density" separatrix region of guide-field reconnection. It is excited by streaming instabilities, is mainly electrostatic and "patchy" in space, and so is the associated anomalous transport. Parts of the energy exchange between turbulence and particles are reversible and quasi-periodic. The remaining irreversible anomalous resistivity can be parametrized by an effective collision rate ranging from the local ion-cyclotron to the lower-hybrid frequency. The contributions to the parallel and the perpendicular (to the magnetic

  19. Smooth H I Low Column Density Outskirts in Nearby Galaxies

    Science.gov (United States)

    Ianjamasimanana, R.; Walter, Fabian; de Blok, W. J. G.; Heald, George H.; Brinks, Elias

    2018-06-01

    The low column density gas at the outskirts of galaxies as traced by the 21 cm hydrogen line emission (H I) represents the interface between galaxies and the intergalactic medium, i.e., where galaxies are believed to get their supply of gas to fuel future episodes of star formation. Photoionization models predict a break in the radial profiles of H I at a column density of ∼5 × 1019 cm‑2 due to the lack of self-shielding against extragalactic ionizing photons. To investigate the prevalence of such breaks in galactic disks and to characterize what determines the potential edge of the H I disks, we study the azimuthally averaged H I column density profiles of 17 nearby galaxies from the H I Nearby Galaxy Survey and supplemented in two cases with published Hydrogen Accretion in LOcal GAlaxieS data. To detect potential faint H I emission that would otherwise be undetected using conventional moment map analysis, we line up individual profiles to the same reference velocity and average them azimuthally to derive stacked radial profiles. To do so, we use model velocity fields created from a simple extrapolation of the rotation curves to align the profiles in velocity at radii beyond the extent probed with the sensitivity of traditional integrated H I maps. With this method, we improve our sensitivity to outer-disk H I emission by up to an order of magnitude. Except for a few disturbed galaxies, none show evidence of a sudden change in the slope of the H I radial profiles: the alleged signature of ionization by the extragalactic background.

  20. On a simple model for self-regulating star formation in the galactic disk

    International Nuclear Information System (INIS)

    Meusinger, H.

    1989-01-01

    Star formation in galaxies is a process with feedback to the interstellar medium (ISM) and possibly it is part of a self-regulating cycle. Dopita (1985) proposed a model in which star formation in spiral and irregular galaxies is self-regulated by the pressure in the ISM. In the present paper it is shown that available data for radial distributions of gas, total mass and the flux of Lyman continuum photons in the disk of our galaxy do not support such a simple model. Several possible causes are discussed. (author)

  1. Identifying Likely Disk-hosting M dwarfs with Disk Detective

    Science.gov (United States)

    Silverberg, Steven; Wisniewski, John; Kuchner, Marc J.; Disk Detective Collaboration

    2018-01-01

    M dwarfs are critical targets for exoplanet searches. Debris disks often provide key information as to the formation and evolution of planetary systems around higher-mass stars, alongside the planet themselves. However, less than 300 M dwarf debris disks are known, despite M dwarfs making up 70% of the local neighborhood. The Disk Detective citizen science project has identified over 6000 new potential disk host stars from the AllWISE catalog over the past three years. Here, we present preliminary results of our search for new disk-hosting M dwarfs in the survey. Based on near-infrared color cuts and fitting stellar models to photometry, we have identified over 500 potential new M dwarf disk hosts, nearly doubling the known number of such systems. In this talk, we present our methodology, and outline our ongoing work to confirm systems as M dwarf disks.

  2. Galaxy Zoo: Comparing the visual morphology of synthetic galaxies from the Illustris simulation with those in the real Universe.

    Science.gov (United States)

    Dickinson, Hugh; Lintott, Chris; Scarlata, Claudia; Fortson, Lucy; Bamford, Steven; Cardamone, Carolin; Keel, William C.; Kruk, Sandor; Masters, Karen; Simmons, Brooke D.; Vogelsberger, Mark; Torrey, Paul; Snyder, Gregory; Galaxy Zoo Science Team

    2018-01-01

    We present a comparision between the Illustris simulations and classifications from Galaxy Zoo, aiming to test the ability of modern large-scale cosmological simulations to accurately reproduce the local galaxy population. This comparison is enabled by the increasingly high spatial and temporal resolution obtained by such surveys.Using classifications that were accumulated via the Galaxy Zoo citizen science interface, we compare the visual morphologies for simulated images of Illustris galaxies with a compatible sample of images drawn from the Sloan Digital Sky Survey (SDSS) Legacy Survey.For simulated galaxies with stellar masses less than 1011 M⊙, significant differences are identified, which are most likely due to the limited resolution of the simulation, but could be revealing real differences in the dynamical evolution of populations of galaxies in the real and model universes. Above 1011 M⊙, Illustris galaxy morphologies correspond better with those of their SDSS counterparts, although even in this mass range the simulation appears to underproduce obviously disk-like galaxies. Morphologies of Illustris galaxies less massive than 1011 M⊙ should be treated with care.

  3. The stellar orbit distribution in present-day galaxies inferred from the CALIFA survey

    Science.gov (United States)

    Zhu, Ling; van de Ven, Glenn; Bosch, Remco van den; Rix, Hans-Walter; Lyubenova, Mariya; Falcón-Barroso, Jesús; Martig, Marie; Mao, Shude; Xu, Dandan; Jin, Yunpeng; Obreja, Aura; Grand, Robert J. J.; Dutton, Aaron A.; Macciò, Andrea V.; Gómez, Facundo A.; Walcher, Jakob C.; García-Benito, Rubén; Zibetti, Stefano; Sánchez, Sebastian F.

    2018-03-01

    Galaxy formation entails the hierarchical assembly of mass, along with the condensation of baryons and the ensuing, self-regulating star formation1,2. The stars form a collisionless system whose orbit distribution retains dynamical memory that can constrain a galaxy's formation history3. The orbits dominated by ordered rotation, with near-maximum circularity λz ≈ 1, are called kinematically cold, and the orbits dominated by random motion, with low circularity λz ≈ 0, are kinematically hot. The fraction of stars on `cold' orbits, compared with the fraction on `hot' orbits, speaks directly to the quiescence or violence of the galaxies' formation histories4,5. Here we present such orbit distributions, derived from stellar kinematic maps through orbit-based modelling for a well-defined, large sample of 300 nearby galaxies. The sample, drawn from the CALIFA survey6, includes the main morphological galaxy types and spans a total stellar mass range from 108.7 to 1011.9 solar masses. Our analysis derives the orbit-circularity distribution as a function of galaxy mass and its volume-averaged total distribution. We find that across most of the considered mass range and across morphological types, there are more stars on `warm' orbits defined as 0.25 ≤ λz ≤ 0.8 than on either `cold' or `hot' orbits. This orbit-based `Hubble diagram' provides a benchmark for galaxy formation simulations in a cosmological context.

  4. A model for intergalactic filaments and galaxy formation during the first gigayear

    Science.gov (United States)

    Harford, A. Gayler; Hamilton, Andrew J. S.

    2017-11-01

    We propose a physically based, analytic model for intergalactic filaments during the first gigayear of the universe. The structure of a filament is based upon a gravitationally bound, isothermal cylinder of gas. The model successfully predicts for a cosmological simulation the total mass per unit length of a filament (dark matter plus gas) based solely upon the sound speed of the gas component, contrary to the expectation for collisionless dark matter aggregation. In the model, the gas, through its hydrodynamic properties, plays a key role in filament structure rather than being a passive passenger in a preformed dark matter potential. The dark matter of a galaxy follows the classic equation of collapse of a spherically symmetric overdensity in an expanding universe. In contrast, the gas usually collapses more slowly. The relative rates of collapse of these two components for individual galaxies can explain the varying baryon deficits of the galaxies under the assumption that matter moves along a single filament passing through the galaxy centre, rather than by spherical accretion. The difference in behaviour of the dark matter and gas can be simply and plausibly related to the model. The range of galaxies studied includes that of the so-called too big to fail galaxies, which are thought to be problematic for the standard Λ cold dark matter model of the universe. The isothermal-cylinder model suggests a simple explanation for why these galaxies are, unaccountably, missing from the night sky.

  5. Disentangling Accretion Disk and Dust Emissions in the Infrared Spectrum of Type 1 AGN

    Energy Technology Data Exchange (ETDEWEB)

    Hernán-Caballero, Antonio [Departamento de Astrofísica y CC. de la Atmósfera, Facultad de CC. Físicas, Universidad Complutense de Madrid, Madrid (Spain); European Southern Observatory, Garching bei München (Germany); Hatziminaoglou, Evanthia [European Southern Observatory, Garching bei München (Germany); Alonso-Herrero, Almudena [Centro de Astrobiología (CSIC-INTA), Madrid (Spain); Mateos, Silvia, E-mail: a.hernan@ucm.es [Instituto de Física de Cantabria (CSIC-UC), Santander (Spain)

    2017-10-31

    We use a semi-empirical model to reproduce the 0.1–10 μm spectral energy distribution (SED) of a sample of 85 luminous quasars. In the model, the continuum emission from the accretion disk as well as the nebular lines are represented by a single empirical template (disk), where differences in the optical spectral index are reproduced by varying the amount of extinction. The near- and mid-infrared emission of the AGN-heated dust is modeled as the combination of two black-bodies (dust). The model fitting shows that the disk and dust components are remarkably uniform among individual quasars, with differences in the observed SED largely accounted for by varying levels of obscuration in the disk as well as differences in the relative luminosity of the disk and dust components. By combining the disk-subtracted SEDs of the 85 quasars, we generate a template for the 1–10 μm emission of the AGN-heated dust. Additionally, we use a sample of local Seyfert 1 galaxies with full spectroscopic coverage in the 0.37–39 μm range to demonstrate a method for stitching together spectral segments obtained with different PSF and extraction apertures. We show that the disk and dust templates obtained from luminous quasars also reproduce the optical-to-mid-infrared spectra of local Seyfert 1s when the contribution from the host galaxy is properly subtracted.

  6. Disentangling Accretion Disk and Dust Emissions in the Infrared Spectrum of Type 1 AGN

    Directory of Open Access Journals (Sweden)

    Antonio Hernán-Caballero

    2017-10-01

    Full Text Available We use a semi-empirical model to reproduce the 0.1–10 μm spectral energy distribution (SED of a sample of 85 luminous quasars. In the model, the continuum emission from the accretion disk as well as the nebular lines are represented by a single empirical template (disk, where differences in the optical spectral index are reproduced by varying the amount of extinction. The near- and mid-infrared emission of the AGN-heated dust is modeled as the combination of two black-bodies (dust. The model fitting shows that the disk and dust components are remarkably uniform among individual quasars, with differences in the observed SED largely accounted for by varying levels of obscuration in the disk as well as differences in the relative luminosity of the disk and dust components. By combining the disk-subtracted SEDs of the 85 quasars, we generate a template for the 1–10 μm emission of the AGN-heated dust. Additionally, we use a sample of local Seyfert 1 galaxies with full spectroscopic coverage in the 0.37–39 μm range to demonstrate a method for stitching together spectral segments obtained with different PSF and extraction apertures. We show that the disk and dust templates obtained from luminous quasars also reproduce the optical-to-mid-infrared spectra of local Seyfert 1s when the contribution from the host galaxy is properly subtracted.

  7. PRECISE BLACK HOLE MASSES FROM MEGAMASER DISKS: BLACK HOLE-BULGE RELATIONS AT LOW MASS

    International Nuclear Information System (INIS)

    Greene, Jenny E.; Peng, Chien Y.; Kim, Minjin; Kuo, Cheng-Yu; Braatz, James A.; Impellizzeri, C. M. Violette; Condon, James J.; Lo, K. Y.; Henkel, Christian; Reid, Mark J.

    2010-01-01

    The b