WorldWideScience

Sample records for disease-causing dominant mutation

  1. Genes and Mutations Causing Autosomal Dominant Retinitis Pigmentosa

    Science.gov (United States)

    Daiger, Stephen P.; Bowne, Sara J.; Sullivan, Lori S.

    2015-01-01

    Retinitis pigmentosa (RP) has a prevalence of approximately one in 4000; 25%–30% of these cases are autosomal dominant retinitis pigmentosa (adRP). Like other forms of inherited retinal disease, adRP is exceptionally heterogeneous. Mutations in more than 25 genes are known to cause adRP, more than 1000 mutations have been reported in these genes, clinical findings are highly variable, and there is considerable overlap with other types of inherited disease. Currently, it is possible to detect disease-causing mutations in 50%–75% of adRP families in select populations. Genetic diagnosis of adRP has advantages over other forms of RP because segregation of disease in families is a useful tool for identifying and confirming potentially pathogenic variants, but there are disadvantages too. In addition to identifying the cause of disease in the remaining 25% of adRP families, a central challenge is reconciling clinical diagnosis, family history, and molecular findings in patients and families. PMID:25304133

  2. Autosomal dominant tubulointerstitial kidney disease caused by uromodulin mutations: seek and you will find.

    Science.gov (United States)

    Raffler, Gabriele; Zitt, Emanuel; Sprenger-Mähr, Hannelore; Nagel, Mato; Lhotta, Karl

    2016-04-01

    Uromodulin (UMOD)-associated kidney disease belongs to the group of autosomal dominant interstitial kidney diseases and is caused by mutations in the UMOD gene. Affected patients present with hyperuricemia, gout, and progressive renal failure. The disease is thought to be very rare but is probably underdiagnosed. Two index patients from two families with tubulointerstitial nephropathy and hyperuricemia were examined, including blood and urine chemistry, ultrasound, and mutation analysis of the UMOD gene. In addition, other available family members were studied. In a 46-year-old female patient with a fractional excretion of uric acid of 3 %, analysis of the UMOD gene revealed a p.W202S missense mutation. The same mutation was found in her 72-year-old father, who suffers from gout and end-stage renal disease. The second index patient was a 47-year-old female with chronic kidney disease and gout for more than 10 years. Her fractional uric acid excretion was 3.5 %. Genetic analysis identified a novel p.H250Q UMOD mutation that was also present in her 12-year-old son, who had normal renal function and uric acid levels. In patients suffering from chronic tubulointerstitial nephropathy, hyperuricemia, and a low fractional excretion of uric acid mutation, analysis of the UMOD gene should be performed to diagnose UMOD-associated kidney disease.

  3. Gamma-ray-induced dominant mutations that cause skeletal abnormalities in mice

    International Nuclear Information System (INIS)

    Selby, P.B.; Selby, P.R.

    1977-01-01

    Male mice were exposed to 100 R + 500 R γ-rays (60 R/min) with a 24-h fractionation interval. Skeletons of F 1 sons were examined for abnormalities, and, if any were found, the skeletons of their descendants were also examined. Of 2646 sons from treated spermatogonia, 37, or 1.4%, were diagnosed as carriers of autosomal dominant mutations affecting the skeleton, 31 by breeding tests, and six by other criteria for identifying mutations in F 1 's having no progeny. Many mutations caused a large number of anomalies in different regions of the skeleton. Most regions of the skeleton were affected by at least one mutation, and the mutations had incomplete penetrance for some or all of their effects. Three of the mutations affected skeletal size only. If certain assumptions are made, these skeletal data can be used to derive an estimate of induced genetic damage from dominant mutations affecting all parts of the body. When applied to man, the resultant risk estimate is not inconsistent with that made for dominant and irregularly inherited diseases by the BEIR Committee, by use of the doubling-dose method. Since most of the mutations can be characterized as models of irregularly inherited conditions in man, the data directly relate to the controversy over the relative importance of mutation pressure and balanced selection in maintaining man's large burden of irregularly inherited disease. Contrary to a recent hypothesis by H.B. Newcombe that man's large burden of irregularly inherited disease is maintained almost exclusively by balanced selection, these results suggest that at least an important fraction of the irregularly inherited conditions are maintained by mutation pressure. Therefore, this finding does not support the major changes in the estimate of genetic hazard to man that would be required on the basis of Newcombe's hypothesis

  4. Mutations in POGLUT1, Encoding Protein O-Glucosyltransferase 1, Cause Autosomal-Dominant Dowling-Degos Disease

    DEFF Research Database (Denmark)

    Basmanav, F Buket; Oprisoreanu, Ana-Maria; Pasternack, Sandra M

    2014-01-01

    Dowling-Degos disease (DDD) is an autosomal-dominant genodermatosis characterized by progressive and disfiguring reticulate hyperpigmentation. We previously identified loss-of-function mutations in KRT5 but were only able to detect pathogenic mutations in fewer than half of our subjects. To ident...

  5. Mutations in POGLUT1, Encoding Protein O-Glucosyltransferase 1, Cause Autosomal-Dominant Dowling-Degos Disease

    Science.gov (United States)

    Basmanav, F. Buket; Oprisoreanu, Ana-Maria; Pasternack, Sandra M.; Thiele, Holger; Fritz, Günter; Wenzel, Jörg; Größer, Leopold; Wehner, Maria; Wolf, Sabrina; Fagerberg, Christina; Bygum, Anette; Altmüller, Janine; Rütten, Arno; Parmentier, Laurent; El Shabrawi-Caelen, Laila; Hafner, Christian; Nürnberg, Peter; Kruse, Roland; Schoch, Susanne; Hanneken, Sandra; Betz, Regina C.

    2014-01-01

    Dowling-Degos disease (DDD) is an autosomal-dominant genodermatosis characterized by progressive and disfiguring reticulate hyperpigmentation. We previously identified loss-of-function mutations in KRT5 but were only able to detect pathogenic mutations in fewer than half of our subjects. To identify additional causes of DDD, we performed exome sequencing in five unrelated affected individuals without mutations in KRT5. Data analysis identified three heterozygous mutations from these individuals, all within the same gene. These mutations, namely c.11G>A (p.Trp4∗), c.652C>T (p.Arg218∗), and c.798-2A>C, are within POGLUT1, which encodes protein O-glucosyltransferase 1. Further screening of unexplained cases for POGLUT1 identified six additional mutations, as well as two of the above described mutations. Immunohistochemistry of skin biopsies of affected individuals with POGLUT1 mutations showed significantly weaker POGLUT1 staining in comparison to healthy controls with strong localization of POGLUT1 in the upper parts of the epidermis. Immunoblot analysis revealed that translation of either wild-type (WT) POGLUT1 or of the protein carrying the p.Arg279Trp substitution led to the expected size of about 50 kDa, whereas the c.652C>T (p.Arg218∗) mutation led to translation of a truncated protein of about 30 kDa. Immunofluorescence analysis identified a colocalization of the WT protein with the endoplasmic reticulum and a notable aggregating pattern for the truncated protein. Recently, mutations in POFUT1, which encodes protein O-fucosyltransferase 1, were also reported to be responsible for DDD. Interestingly, both POGLUT1 and POFUT1 are essential regulators of Notch activity. Our results furthermore emphasize the important role of the Notch pathway in pigmentation and keratinocyte morphology. PMID:24387993

  6. ENPP1 Mutation Causes Recessive Cole Disease by Altering Melanogenesis.

    Science.gov (United States)

    Chourabi, Marwa; Liew, Mei Shan; Lim, Shawn; H'mida-Ben Brahim, Dorra; Boussofara, Lobna; Dai, Liang; Wong, Pui Mun; Foo, Jia Nee; Sriha, Badreddine; Robinson, Kim Samirah; Denil, Simon; Common, John Ea; Mamaï, Ons; Ben Khalifa, Youcef; Bollen, Mathieu; Liu, Jianjun; Denguezli, Mohamed; Bonnard, Carine; Saad, Ali; Reversade, Bruno

    2018-02-01

    Cole disease is a genodermatosis of pigmentation following a strict dominant mode of inheritance. In this study, we investigated eight patients affected with an overlapping genodermatosis after recessive inheritance. The patients presented with hypo- and hyperpigmented macules over the body, resembling dyschromatosis universalis hereditaria in addition to punctuate palmoplantar keratosis. By homozygosity mapping and whole-exome sequencing, a biallelic p.Cys120Arg mutation in ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) was identified in all patients. We found that this mutation, like those causing dominant Cole disease, impairs homodimerization of the ENPP1 enzyme that is mediated by its two somatomedin-B-like domains. Histological analysis revealed structural and molecular changes in affected skin that were likely to originate from defective melanocytes because keratinocytes do not express ENPP1. Consistently, RNA-sequencing analysis of patient-derived primary melanocytes revealed alterations in melanocyte development and in pigmentation signaling pathways. We therefore conclude that germline ENPP1 cysteine-specific mutations, primarily affecting the melanocyte lineage, cause a clinical spectrum of dyschromatosis, in which the p.Cys120Arg allele represents a recessive and more severe form of Cole disease. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. [Hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P) is caused by a mutation in TFG].

    Science.gov (United States)

    Ishiura, Hiroyuki; Tsuji, Shoji

    2013-01-01

    Hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P) is an autosomal dominant neurodegenerative disease characterized by proximal predominant weakness and muscle atrophy accompanied by distal sensory disturbance. Linkage analysis using 4 families identified a region on chromosome 3 showing a LOD score exceeding 4. Further refinement of candidate region was performed by haplotype analysis using high-density SNP data, resulting in a minimum candidate region spanning 3.3 Mb. Exome analysis of an HMSN-P patient revealed a mutation (c.854C>T, p.Pro285Leu) in TRK-fused gene (TFG). The identical mutation was found in the four families, which cosegregated with the disease. The mutation was neither found in Japanese control subjects nor public databases. Detailed haplotype analysis suggested two independent origins of the mutation. These findings indicate that the mutation in TFG causes HMSN-P.

  8. Novel autosomal dominant TNNT1 mutation causing nemaline myopathy.

    Science.gov (United States)

    Konersman, Chamindra G; Freyermuth, Fernande; Winder, Thomas L; Lawlor, Michael W; Lagier-Tourenne, Clotilde; Patel, Shailendra B

    2017-11-01

    Nemaline myopathy (NEM) is one of the three major forms of congenital myopathy and is characterized by diffuse muscle weakness, hypotonia, respiratory insufficiency, and the presence of nemaline rod structures on muscle biopsy. Mutations in troponin T1 (TNNT1) is 1 of 10 genes known to cause NEM. To date, only homozygous nonsense mutations or compound heterozygous truncating or internal deletion mutations in TNNT1 gene have been identified in NEM. This extended family is of historical importance as some members were reported in the 1960s as initial evidence that NEM is a hereditary disorder. Proband and extended family underwent Sanger sequencing for TNNT1. We performed RT-PCR and immunoblot on muscle to assess TNNT1 RNA expression and protein levels in proband and father. We report a novel heterozygous missense mutation of TNNT1 c.311A>T (p.E104V) that segregated in an autosomal dominant fashion in a large family residing in the United States. Extensive sequencing of the other known genes for NEM failed to identify any other mutant alleles. Muscle biopsies revealed a characteristic pattern of nemaline rods and severe myofiber hypotrophy that was almost entirely restricted to the type 1 fiber population. This novel mutation alters a residue that is highly conserved among vertebrates. This report highlights not only a family with autosomal dominant inheritance of NEM, but that this novel mutation likely acts via a dominant negative mechanism. © 2017 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  9. A novel GJA8 mutation (p.V44A causing autosomal dominant congenital cataract.

    Directory of Open Access Journals (Sweden)

    Yanan Zhu

    Full Text Available To examine the mechanism by which a novel connexin 50 (Cx50 mutation, Cx50 V44A, in a Chinese family causes suture-sparing autosomal dominant congenital nuclear cataracts.Family history and clinical data were recorded and direct gene sequencing was used to identify the disease-causing mutation. The Cx50 gene was cloned from a human lens cDNA library. Connexin protein distributions were assessed by fluorescence microscopy. Hemichannel functions were analyzed by dye uptake assay. Formation of functional channels was assessed by dye transfer experiments.Direct sequencing of the candidate GJA8 gene revealed a novel c.131T>C transition in exon 2, which cosegregated with the disease in the family and resulted in the substitution of a valine residue with alanine at codon 44 (p. V44A in the extracellular loop 1 of the Cx50 protein. Both Cx50 and Cx50V44A formed functional gap junctions, as shown by the neurobiotin transfer assay. However, unlike wild-type Cx50, Cx50V44A was unable to form open hemichannels in dye uptake experiments.This work identified a unique congenital cataract in the Chinese population, caused by the novel mutation Cx50V44A, and it showed that the V44A mutation specifically impairs the gating of the hemichannels but not the gap junction channels. The dysfunctional hemichannels resulted in the development of human congenital cataracts.

  10. Dominant de novo DSP mutations cause erythrokeratodermia-cardiomyopathy syndrome.

    Science.gov (United States)

    Boyden, Lynn M; Kam, Chen Y; Hernández-Martín, Angela; Zhou, Jing; Craiglow, Brittany G; Sidbury, Robert; Mathes, Erin F; Maguiness, Sheilagh M; Crumrine, Debra A; Williams, Mary L; Hu, Ronghua; Lifton, Richard P; Elias, Peter M; Green, Kathleen J; Choate, Keith A

    2016-01-15

    Disorders of keratinization (DOK) show marked genotypic and phenotypic heterogeneity. In most cases, disease is primarily cutaneous, and further clinical evaluation is therefore rarely pursued. We have identified subjects with a novel DOK featuring erythrokeratodermia and initially-asymptomatic, progressive, potentially fatal cardiomyopathy, a finding not previously associated with erythrokeratodermia. We show that de novo missense mutations clustered tightly within a single spectrin repeat of DSP cause this novel cardio-cutaneous disorder, which we term erythrokeratodermia-cardiomyopathy (EKC) syndrome. We demonstrate that DSP mutations in our EKC syndrome subjects affect localization of desmosomal proteins and connexin 43 in the skin, and result in desmosome aggregation, widening of intercellular spaces, and lipid secretory defects. DSP encodes desmoplakin, a primary component of desmosomes, intercellular adhesion junctions most abundant in the epidermis and heart. Though mutations in DSP are known to cause other disorders, our cohort features the unique clinical finding of severe whole-body erythrokeratodermia, with distinct effects on localization of desmosomal proteins and connexin 43. These findings add a severe, previously undescribed syndrome featuring erythrokeratodermia and cardiomyopathy to the spectrum of disease caused by mutation in DSP, and identify a specific region of the protein critical to the pathobiology of EKC syndrome and to DSP function in the heart and skin. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Dominant KCNA2 mutation causes episodic ataxia and pharmacoresponsive epilepsy.

    Science.gov (United States)

    Corbett, Mark A; Bellows, Susannah T; Li, Melody; Carroll, Renée; Micallef, Silvana; Carvill, Gemma L; Myers, Candace T; Howell, Katherine B; Maljevic, Snezana; Lerche, Holger; Gazina, Elena V; Mefford, Heather C; Bahlo, Melanie; Berkovic, Samuel F; Petrou, Steven; Scheffer, Ingrid E; Gecz, Jozef

    2016-11-08

    To identify the genetic basis of a family segregating episodic ataxia, infantile seizures, and heterogeneous epilepsies and to study the phenotypic spectrum of KCNA2 mutations. A family with 7 affected individuals over 3 generations underwent detailed phenotyping. Whole genome sequencing was performed on a mildly affected grandmother and her grandson with epileptic encephalopathy (EE). Segregating variants were filtered and prioritized based on functional annotations. The effects of the mutation on channel function were analyzed in vitro by voltage clamp assay and in silico by molecular modeling. KCNA2 was sequenced in 35 probands with heterogeneous phenotypes. The 7 family members had episodic ataxia (5), self-limited infantile seizures (5), evolving to genetic generalized epilepsy (4), focal seizures (2), and EE (1). They had a segregating novel mutation in the shaker type voltage-gated potassium channel KCNA2 (CCDS_827.1: c.765_773del; p.255_257del). A rare missense SCN2A (rs200884216) variant was also found in 2 affected siblings and their unaffected mother. The p.255_257del mutation caused dominant negative loss of channel function. Molecular modeling predicted repositioning of critical arginine residues in the voltage-sensing domain. KCNA2 sequencing revealed 1 de novo mutation (CCDS_827.1: c.890G>A; p.Arg297Gln) in a girl with EE, ataxia, and tremor. A KCNA2 mutation caused dominantly inherited episodic ataxia, mild infantile-onset seizures, and later generalized and focal epilepsies in the setting of normal intellect. This observation expands the KCNA2 phenotypic spectrum from EE often associated with chronic ataxia, reflecting the marked variation in severity observed in many ion channel disorders. © 2016 American Academy of Neurology.

  12. Autosomal dominant hypoparathyroidism caused by germline mutation in GNA11: phenotypic and molecular characterization.

    Science.gov (United States)

    Li, Dong; Opas, Evan E; Tuluc, Florin; Metzger, Daniel L; Hou, Cuiping; Hakonarson, Hakon; Levine, Michael A

    2014-09-01

    Most cases of autosomal dominant hypoparathyroidism (ADH) are caused by gain-of-function mutations in CASR or dominant inhibitor mutations in GCM2 or PTH. Our objectives were to identify the genetic basis for ADH in a multigenerational family and define the underlying disease mechanism. Here we evaluated a multigenerational family with ADH in which affected subjects had normal sequences in these genes and were shorter than unaffected family members. We collected clinical and biochemical data from 6 of 11 affected subjects and performed whole-exome sequence analysis on DNA from two affected sisters and their affected father. Functional studies were performed after expression of wild-type and mutant Gα11 proteins in human embryonic kidney-293-CaR cells that stably express calcium-sensing receptors. Whole-exome-sequencing followed by Sanger sequencing revealed a heterozygous mutation, c.179G>T; p.R60L, in GNA11, which encodes the α-subunit of G11, the principal heterotrimeric G protein that couples calcium-sensing receptors to signal activation in parathyroid cells. Functional studies of Gα11 R60L showed increased accumulation of intracellular concentration of free calcium in response to extracellular concentration of free calcium with a significantly decreased EC50 compared with wild-type Gα11. By contrast, R60L was significantly less effective than the oncogenic Q209L form of Gα11 as an activator of the MAPK pathway. Compared to subjects with CASR mutations, patients with GNA11 mutations lacked hypercalciuria and had normal serum magnesium levels. Our findings indicate that the germline gain-of-function mutation of GNA11 is a cause of ADH and implicate a novel role for GNA11 in skeletal growth.

  13. Recurring dominant-negative mutations in the AVP-NPII gene cause neurohypophyseal diabetes insipidus

    Energy Technology Data Exchange (ETDEWEB)

    Repaske, D.R. [Children`s Hospital Medical Center, Cincinnati, OH (United States); Phillips, J.A.; Krishnamani, M.R.S. [Vanderbilt Univ. School of Medicine, Nashville, TN (United States)] [and others

    1994-09-01

    Autosomal dominant neurohypophyseal diabetes insipidus (ADNDI) is a familial form of arginine vasopressin (or antidiuretic hormone) deficiency that is usually manifest in early childhood with polyuria, polydipsia and an antidiuretic response to exogenous vasopressin or its analogs. The phenotype is postulated to arise from gliosis and depletion of the magnocellular neurons that produce vasopressin in the supraoptic and paraventricular nuclei of the hypothalamus. ADNDI is caused by heterozygosity for a variety of mutations in the AVP-NPII gene which encodes vasopressin, its carrier protein (NPII) and a glycoprotein (copeptin) of unknown function. These mutations include: (1) Ala 19{r_arrow}Thr (G279A) in AVP`s signal peptide, (2) Gly 17{r_arrow}Val (G1740T), (3) Pro 24{r_arrow}Leu (C1761T), (4) Gly 57{r_arrow}Ser (G1859A) and (5) del Glu 47({delta}AGG 1824-26), all of which occur in NPII. In characterizing the AVP-NPII mutations in five non-related ADNDI kindreds, we have detected two kindreds having mutation 1 (G279A), two having mutation 3 (C1761T) and one having mutation 4 (G1859A) without any other allelic changes being detected. Two of these recurring mutations (G279A and G1859A) are transitions that occur at CpG dinucleotides while the third (C1761T) does not. Interestingly, families with the same mutations differed in their ethnicity or in their affected AVP-NPII allele`s associated haplotype of closely linked DNA polymorphisms. Our data indicated that at least three of five known AVP-NPII mutations causing ADNDI tend to recur but the mechanisms by which these dominant-negative mutations cause variable or progressive expression of the ADNDI phenotype remain unclear.

  14. Whole-exome sequencing, without prior linkage, identifies a mutation in LAMB3 as a cause of dominant hypoplastic amelogenesis imperfecta.

    Science.gov (United States)

    Poulter, James A; El-Sayed, Walid; Shore, Roger C; Kirkham, Jennifer; Inglehearn, Chris F; Mighell, Alan J

    2014-01-01

    The conventional approach to identifying the defective gene in a family with an inherited disease is to find the disease locus through family studies. However, the rapid development and decreasing cost of next generation sequencing facilitates a more direct approach. Here, we report the identification of a frameshift mutation in LAMB3 as a cause of dominant hypoplastic amelogenesis imperfecta (AI). Whole-exome sequencing of three affected family members and subsequent filtering of shared variants, without prior genetic linkage, sufficed to identify the pathogenic variant. Simultaneous analysis of multiple family members confirms segregation, enhancing the power to filter the genetic variation found and leading to rapid identification of the pathogenic variant. LAMB3 encodes a subunit of Laminin-5, one of a family of basement membrane proteins with essential functions in cell growth, movement and adhesion. Homozygous LAMB3 mutations cause junctional epidermolysis bullosa (JEB) and enamel defects are seen in JEB cases. However, to our knowledge, this is the first report of dominant AI due to a LAMB3 mutation in the absence of JEB.

  15. Dominant missense mutations in ABCC9 cause Cantu syndrome

    NARCIS (Netherlands)

    Harakalova, M.; van Harssel, J.J.; Terhal, P.A.; van Lieshout, S.; Duran, K.; Renkens, I.; Amor, D.J.; Wilson, L.C.; Kirk, E.P.; Turner, C.L.; Shears, D.; Garcia-Minaur, S.; Lees, M.M.; Ross, A.; Venselaar, H.; Vriend, G.; Takanari, H.; Rook, M.B.; van der Heyden, M.A.; Asselbergs, F.W.; Breur, H.M.; Swinkels, M.E.; Scurr, I.J.; Smithson, S.F.; Knoers, N.V.; van der Smagt, J.J.; Nijman, I.J.; Kloosterman, W.P.; van Haelst, M.M.; van Haaften, G.; Cuppen, E.

    2012-01-01

    Cantu syndrome is characterized by congenital hypertrichosis, distinctive facial features, osteochondrodysplasia and cardiac defects. By using family-based exome sequencing, we identified a de novo mutation in ABCC9. Subsequently, we discovered novel dominant missense mutations in ABCC9 in 14 of the

  16. Dominant missense mutations in ABCC9 cause Cantu syndrome.

    NARCIS (Netherlands)

    Harakalova, M.; Harssel, J.J. van; Terhal, P.A.; Lieshout, S. van; Duran, K.; Renkens, I.; Amor, D.J.; Wilson, L.C.; Kirk, E.P.; Turner, C.L.; Shears, D.; Garcia-Minaur, S.; Lees, M.M.; Ross, A.; Venselaar, H.; Vriend, G.; Takanari, H.; Rook, M.B.; Heyden, M.A. van der; Asselbergs, F.W.; Breur, H.M.; Swinkels, M.E.; Scurr, I.J.; Smithson, S.F.; Knoers, N.V.A.M.; Smagt, J.J. van der; Nijman, IJ; Kloosterman, W.P.; Haelst, M.M. van; Haaften, G. van; Cuppen, E.

    2012-01-01

    Cantu syndrome is characterized by congenital hypertrichosis, distinctive facial features, osteochondrodysplasia and cardiac defects. By using family-based exome sequencing, we identified a de novo mutation in ABCC9. Subsequently, we discovered novel dominant missense mutations in ABCC9 in 14 of the

  17. Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy

    DEFF Research Database (Denmark)

    Winkelmann, Juliane; Lin, Ling; Schormair, Barbara

    2012-01-01

    to HDAC2. It is also highly expressed in immune cells and required for the differentiation of CD4+ into T regulatory cells. Mutations in exon 20 of this gene were recently reported to cause hereditary sensory neuropathy with dementia and hearing loss (HSAN1). Our mutations are all located in exon 21......Autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADCA-DN) is characterized by late onset (30-40 years old) cerebellar ataxia, sensory neuronal deafness, narcolepsy-cataplexy and dementia. We performed exome sequencing in five individuals from three ADCA-DN kindreds and identified DNMT...

  18. Autosomal dominant polycystic kidney disease caused by somatic and germline mosaicism.

    Science.gov (United States)

    Tan, A Y; Blumenfeld, J; Michaeel, A; Donahue, S; Bobb, W; Parker, T; Levine, D; Rennert, H

    2015-04-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a heterogeneous genetic disorder caused by loss of function mutations of PKD1 or PKD2 genes. Although PKD1 is highly polymorphic and the new mutation rate is relatively high, the role of mosaicism is incompletely defined. Herein, we describe the molecular analysis of ADPKD in a 19-year-old female proband and her father. The proband had a PKD1 truncation mutation c.10745dupC (p.Val3584ArgfsX43), which was absent in paternal peripheral blood lymphocytes (PBL). However, very low quantities of this mutation were detected in the father's sperm DNA, but not in DNA from his buccal cells or urine sediment. Next generation sequencing (NGS) analysis determined the level of this mutation in the father's PBL, buccal cells and sperm to be ∼3%, 4.5% and 10%, respectively, consistent with somatic and germline mosaicism. The PKD1 mutation in ∼10% of her father's sperm indicates that it probably occurred early in embryogenesis. In ADPKD cases where a de novo mutation is suspected because of negative PKD gene testing of PBL, additional evaluation with more sensitive methods (e.g. NGS) of the proband PBL and paternal sperm can enhance detection of mosaicism and facilitate genetic counseling. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. KMeyeDB: a graphical database of mutations in genes that cause eye diseases.

    Science.gov (United States)

    Kawamura, Takashi; Ohtsubo, Masafumi; Mitsuyama, Susumu; Ohno-Nakamura, Saho; Shimizu, Nobuyoshi; Minoshima, Shinsei

    2010-06-01

    KMeyeDB (http://mutview.dmb.med.keio.ac.jp/) is a database of human gene mutations that cause eye diseases. We have substantially enriched the amount of data in the database, which now contains information about the mutations of 167 human genes causing eye-related diseases including retinitis pigmentosa, cone-rod dystrophy, night blindness, Oguchi disease, Stargardt disease, macular degeneration, Leber congenital amaurosis, corneal dystrophy, cataract, glaucoma, retinoblastoma, Bardet-Biedl syndrome, and Usher syndrome. KMeyeDB is operated using the database software MutationView, which deals with various characters of mutations, gene structure, protein functional domains, and polymerase chain reaction (PCR) primers, as well as clinical data for each case. Users can access the database using an ordinary Internet browser with smooth user-interface, without user registration. The results are displayed on the graphical windows together with statistical calculations. All mutations and associated data have been collected from published articles. Careful data analysis with KMeyeDB revealed many interesting features regarding the mutations in 167 genes that cause 326 different types of eye diseases. Some genes are involved in multiple types of eye diseases, whereas several eye diseases are caused by different mutations in one gene.

  20. Impaired growth and intracranial calcifications in autosomal dominant hypocalcemia caused by a GNA11 mutation.

    Science.gov (United States)

    Tenhola, Sirpa; Voutilainen, Raimo; Reyes, Monica; Toiviainen-Salo, Sanna; Jüppner, Harald; Mäkitie, Outi

    2016-09-01

    Autosomal dominant hypocalcemia (ADH) is characterized by hypocalcemia and inappropriately low PTH concentrations. ADH type 1 is caused by activating mutations in the calcium-sensing receptor (CASR), a G-protein-coupled receptor signaling through α11 (Gα11) and αq (Gαq) subunits. Heterozygous activating mutations in GNA11, the gene encoding Gα11, underlie ADH type 2. This study describes disease characteristics in a family with ADH caused by a gain-of-function mutation in GNA11. A three-generation family with seven members (3 adults, 4 children) presenting with ADH. Biochemical parameters of calcium metabolism, clinical, genetic and brain imaging findings were analyzed. Sanger sequencing revealed a heterozygous GNA11 missense mutation (c.1018G>A, p.V340M) in all seven hypocalcemic subjects, but not in the healthy family members (n=4). The adult patients showed clinical symptoms of hypocalcemia, while the children were asymptomatic. Plasma ionized calcium ranged from 0.95 to 1.14mmol/L, yet plasma PTH was inappropriately low for the degree of hypocalcemia. Serum 25OHD was normal. Despite hypocalcemia 1,25(OH)2D and urinary calcium excretion were inappropriately in the reference range. None of the patients had nephrocalcinosis. Two adults and one child (of the two MRI scanned children) had distinct intracranial calcifications. All affected subjects had short stature (height s.d. scores ranging from -3.4 to -2.3 vs -0.5 in the unaffected children). The identified GNA11 mutation results in biochemical abnormalities typical for ADH. Additional features, including short stature and early intracranial calcifications, cosegregated with the mutation. These findings may indicate a wider role for Gα11 signaling besides calcium regulation. © 2016 European Society of Endocrinology.

  1. Three novel and the common Arg677Ter RP1 protein truncating mutations causing autosomal dominant retinitis pigmentosa in a Spanish population

    Directory of Open Access Journals (Sweden)

    Antiñolo Guillermo

    2006-04-01

    Full Text Available Abstract Background Retinitis pigmentosa (RP, a clinically and genetically heterogeneous group of retinal degeneration disorders affecting the photoreceptor cells, is one of the leading causes of genetic blindness. Mutations in the photoreceptor-specific gene RP1 account for 3–10% of cases of autosomal dominant RP (adRP. Most of these mutations are clustered in a 500 bp region of exon 4 of RP1. Methods Denaturing gradient gel electrophoresis (DGGE analysis and direct genomic sequencing were used to evaluate the 5' coding region of exon 4 of the RP1 gene for mutations in 150 unrelated index adRP patients. Ophthalmic and electrophysiological examination of RP patients and relatives according to pre-existing protocols were carried out. Results Three novel disease-causing mutations in RP1 were detected: Q686X, K705fsX712 and K722fsX737, predicting truncated proteins. One novel missense mutation, Thr752Met, was detected in one family but the mutation does not co-segregate in the family, thereby excluding this amino acid variation in the protein as a cause of the disease. We found the Arg677Ter mutation, previously reported in other populations, in two independent families, confirming that this mutation is also present in a Spanish population. Conclusion Most of the mutations reported in the RP1 gene associated with adRP are expected to encode mutant truncated proteins that are approximately one third or half of the size of wild type protein. Patients with mutations in RP1 showed mild RP with variability in phenotype severity. We also observed several cases of non-penetrant mutations.

  2. Characterization of two second-site mutations preventing wild type protein aggregation caused by a dominant negative PMA1 mutant.

    Directory of Open Access Journals (Sweden)

    Pilar Eraso

    Full Text Available The correct biogenesis and localization of Pma1 at the plasma membrane is essential for yeast growth. A subset of PMA1 mutations behave as dominant negative because they produce aberrantly folded proteins that form protein aggregates, which in turn provoke the aggregation of the wild type protein. One approach to understand this dominant negative effect is to identify second-site mutations able to suppress the dominant lethal phenotype caused by those mutant alleles. We isolated and characterized two intragenic second-site suppressors of the PMA1-D378T dominant negative mutation. We present here the analysis of these new mutations that are located along the amino-terminal half of the protein and include a missense mutation, L151F, and an in-frame 12bp deletion that eliminates four residues from Cys409 to Ala412. The results show that the suppressor mutations disrupt the interaction between the mutant and wild type enzymes, and this enables the wild type Pma1 to reach the plasma membrane.

  3. Autosomal-dominant Leber Congenital Amaurosis Caused by a Heterozygous CRX Mutation in a Father and Son.

    Science.gov (United States)

    Arcot Sadagopan, Karthikeyan; Battista, Robert; Keep, Rosanne B; Capasso, Jenina E; Levin, Alex V

    2015-06-01

    Leber congenital amaurosis (LCA) is most often an autosomal recessive disorder. We report a father and son with autosomal dominant LCA due to a mutation in the CRX gene. DNA screening using an allele specific assay of 90 of the most common LCA-causing variations in the coding sequences of AIPL1, CEP290, CRB1, CRX, GUCY2D, RDH12 and RPE65 was performed on the father. Automated DNA sequencing of his son examining exon 3 of the CRX gene was subsequently performed. Both father and son have a heterozygous single base pair deletion of an adenine at codon 153 in the coding sequence of the CRX gene resulting in a frameshift mutation. Mutations involving the CRX gene may demonstrate an autosomal dominant inheritance pattern for LCA.

  4. Identification of novel mutations in Chinese Hans with autosomal dominant polycystic kidney disease

    Directory of Open Access Journals (Sweden)

    Yu Chaowen

    2011-12-01

    Full Text Available Abstract Background Autosomal dominant polycystic kidney disease (ADPKD is the most common inherited renal disease with an incidence of 1 in 400 to 1000. The disease is genetically heterogeneous, with two genes identified: PKD1 (16p13.3 and PKD2 (4q21. Molecular diagnosis of the disease in at-risk individuals is complicated due to the structural complexity of PKD1 gene and the high diversity of the mutations. This study is the first systematic ADPKD mutation analysis of both PKD1 and PKD2 genes in Chinese patients using denaturing high-performance liquid chromatography (DHPLC. Methods Both PKD1 and PKD2 genes were mutation screened in each proband from 65 families using DHPLC followed by DNA sequencing. Novel variations found in the probands were checked in their family members available and 100 unrelated normal controls. Then the pathogenic potential of the variations of unknown significance was examined by evolutionary comparison, effects of amino acid substitutions on protein structure, and effects of splice site alterations using online mutation prediction resources. Results A total of 92 variations were identified, including 27 reported previously. Definitely pathogenic mutations (ten frameshift, ten nonsense, two splicing defects and one duplication were identified in 28 families, and probably pathogenic mutations were found in an additional six families, giving a total detection level of 52.3% (34/65. About 69% (20/29 of the mutations are first reported with a recurrent mutation rate of 31%. Conclusions Mutation study of PKD1 and PKD2 genes in Chinese Hans with ADPKD may contribute to a better understanding of the genetic diversity between different ethnic groups and enrich the mutation database. Besides, evaluating the pathogenic potential of novel variations should also facilitate the clinical diagnosis and genetic counseling of the disease.

  5. Radiation-induced dominant skeletal mutations in mice

    International Nuclear Information System (INIS)

    Selby, P.B.

    1979-01-01

    Skeletons were chosen for the attempt to determine the overall damage by radiation to one body system largely bacause they can be prepared readily for detailed study. Dominant mutations were of special interest because they are the type of mutations that would account for almost all damage induced in the early generations. The male offsprings derived from spermatogonial irradiation were used in the mutation-rate experiment, and the mutation frequency of 1.4% per gamete was found. The general dominant skeletal mutations are 1) the fusions of bones or other changes in individual bones, 2) the gross changes in bone shapes, usually caused by incomplete or too extensive bone growth, or 3) the shifts in the relative positions of bones. The recessive lethality in the period between implantation and birth can be recognized by the expected high death rate of implants in approximately 1/4 of the crosses that are between heterozygotes for a given mutation. The recessive lethal mutations may account for an important fraction of human genetic disorders owing to their dominant deleterious effects which represent only a small fraction, but because of their easy detection, they have been studied more than other dominants. At least 45, or 27%, of 164 dominant visibles in mice, ignoring those concerned with enzyme polymorphisms and immunological traits, appear to be recessive lethals. (Yamashita, S.)

  6. Proximal dominant hereditary motor and sensory neuropathy with proximal dominance association with mutation in the TRK-fused gene.

    Science.gov (United States)

    Lee, Sang-Soo; Lee, Hye Jin; Park, Jin-Mo; Hong, Young Bin; Park, Kee-Duk; Yoo, Jeong Hyun; Koo, Heasoo; Jung, Sung-Chul; Park, Hyung Soon; Lee, Ji Hyun; Lee, Min Goo; Hyun, Young Se; Nakhro, Khriezhanou; Chung, Ki Wha; Choi, Byung-Ok

    2013-05-01

    Hereditary motor and sensory neuropathy with proximal dominance (HMSN-P) has been reported as a rare type of autosomal dominant adult-onset Charcot-Marie-Tooth disease. HMSN-P has been described only in Japanese descendants since 1997, and the causative gene has not been found. To identify the genetic cause of HMSN-P in a Korean family and determine the pathogenic mechanism. Genetic and observational analysis. Translational research center for rare neurologic disease. Twenty-eight individuals (12 men and 16 women) from a Korean family with HMSN-P. Whole-exome sequencing, linkage analysis, and magnetic resonance imaging. Through whole-exome sequencing, we revealed that HMSN-P is caused by a mutation in the TRK-fused gene (TFG). Clinical heterogeneities were revealed in HMSN-P between Korean and Japanese patients. The patients in the present report showed faster progression of the disease compared with the Japanese patients, and sensory nerve action potentials of the sural nerve were lost in the early stages of the disease. Moreover, tremor and hyperlipidemia were frequently found. Magnetic resonance imaging of the lower extremity revealed a distinct proximal dominant and sequential pattern of muscular involvement with a clearly different pattern than patients with Charcot-Marie-Tooth disease type 1A. Particularly, endoneural blood vessels revealed marked narrowing of the lumen with swollen vesicular endothelial cells. The underlying cause of HMSN-P proves to be a mutation in TFG that lies on chromosome 3q13.2. This disease is not limited to Japanese descendants, and marked narrowing of endoneural blood vessels was noted in the present study. We believe that TFG can affect the peripheral nerve tissue.

  7. Dominant versus recessive traits conveyed by allelic mutations - to what extent is nonsense-mediated decay involved?

    NARCIS (Netherlands)

    Ben-Shachar, S.; Khajavi, M.; Withers, M.A.; Shaw, C.A.; Bokhoven, J.H.L.M. van; Brunner, H.G.; Lupski, J.R.

    2009-01-01

    Mutations in ROR2, encoding a receptor tyrosine kinase, can cause autosomal recessive Robinow syndrome (RRS), a severe skeletal dysplasia with limb shortening, brachydactyly, and a dysmorphic facial appearance. Other mutations in ROR2 result in the autosomal dominant disease, brachydactyly type B

  8. Missense mutations in ITPR1 cause autosomal dominant congenital nonprogressive spinocerebellar ataxia

    Directory of Open Access Journals (Sweden)

    Huang Lijia

    2012-09-01

    Full Text Available Abstract Background Congenital nonprogressive spinocerebellar ataxia is characterized by early gross motor delay, hypotonia, gait ataxia, mild dysarthria and dysmetria. The clinical presentation remains fairly stable and may be associated with cerebellar atrophy. To date, only a few families with autosomal dominant congenital nonprogressive spinocerebellar ataxia have been reported. Linkage to 3pter was demonstrated in one large Australian family and this locus was designated spinocerebellar ataxia type 29. The objective of this study is to describe an unreported Canadian family with autosomal dominant congenital nonprogressive spinocerebellar ataxia and to identify the underlying genetic causes in this family and the original Australian family. Methods and Results Exome sequencing was performed for the Australian family, resulting in the identification of a heterozygous mutation in the ITPR1 gene. For the Canadian family, genotyping with microsatellite markers and Sanger sequencing of ITPR1 gene were performed; a heterozygous missense mutation in ITPR1 was identified. Conclusions ITPR1 encodes inositol 1,4,5-trisphosphate receptor, type 1, a ligand-gated ion channel that mediates calcium release from the endoplasmic reticulum. Deletions of ITPR1 are known to cause spinocerebellar ataxia type 15, a distinct and very slowly progressive form of cerebellar ataxia with onset in adulthood. Our study demonstrates for the first time that, in addition to spinocerebellar ataxia type 15, alteration of ITPR1 function can cause a distinct congenital nonprogressive ataxia; highlighting important clinical heterogeneity associated with the ITPR1 gene and a significant role of the ITPR1-related pathway in the development and maintenance of the normal functions of the cerebellum.

  9. A de novo SOX10 mutation causing severe type 4 Waardenburg syndrome without Hirschsprung disease.

    Science.gov (United States)

    Sznajer, Yves; Coldéa, Cristina; Meire, Françoise; Delpierre, Isabelle; Sekhara, Tayeb; Touraine, Renaud L

    2008-04-15

    Type 4 Waardenburg syndrome represents a well define entity caused by neural crest derivatives anomalies (melanocytes, intrinsic ganglion cells, central, autonomous and peripheral nervous systems) leading, with variable expressivity, to pigmentary anomalies, deafness, mental retardation, peripheral neuropathy, and Hirschsprung disease. Autosomal dominant mode of inheritance is prevalent when Sox10 gene mutation is identified. We report the natural history of a child who presented with synophrys, vivid blue eye, deafness, bilateral complete semicircular canals agenesis with mental retardation, subtle signs for peripheral neuropathy and lack of Hirschsprung disease. SOX10 gene sequencing identified "de novo" splice site mutation (c.698-2A > C). The present phenotype and the genotype findings underline the wide spectrum of SOX10 gene implication in unusual type 4 Waardenburg syndrome patient. Copyright 2008 Wiley-Liss, Inc.

  10. PRKAR1A mutation causing pituitary-dependent Cushing disease in a patient with Carney complex.

    Science.gov (United States)

    Kiefer, Florian W; Winhofer, Yvonne; Iacovazzo, Donato; Korbonits, Márta; Wolfsberger, Stefan; Knosp, Engelbert; Trautinger, Franz; Höftberger, Romana; Krebs, Michael; Luger, Anton; Gessl, Alois

    2017-08-01

    Carney complex (CNC) is an autosomal dominant condition caused, in most cases, by an inactivating mutation of the PRKAR1A gene, which encodes for the type 1 alpha regulatory subunit of protein kinase A. CNC is characterized by the occurrence of endocrine overactivity, myxomas and typical skin manifestations. Cushing syndrome due to primary pigmented nodular adrenocortical disease (PPNAD) is the most frequent endocrine disease observed in CNC. Here, we describe the first case of a patient with CNC and adrenocorticotropic hormone (ACTH)-dependent Cushing disease due to a pituitary corticotroph adenoma. Loss-of-heterozygosity analysis of the pituitary tumour revealed loss of the wild-type copy of PRKAR1A , suggesting a role of this gene in the pituitary adenoma development. PRKAR1A loss-of-function mutations can rarely lead to ACTH-secreting pituitary adenomas in CNC patients. Pituitary-dependent disease should be considered in the differential diagnosis of Cushing syndrome in CNC patients. © 2017 European Society of Endocrinology.

  11. Mutational analysis in patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD): Identification of five mutations in the PKD1 gene.

    Science.gov (United States)

    Abdelwahed, Mayssa; Hilbert, Pascale; Ahmed, Asma; Mahfoudh, Hichem; Bouomrani, Salem; Dey, Mouna; Hachicha, Jamil; Kamoun, Hassen; Keskes-Ammar, Leila; Belguith, Neïla

    2018-05-31

    Autosomal Dominant Polycystic Kidney Disease (ADPKD), the most frequent genetic disorder of the kidneys, is characterized by a typical presenting symptoms include cysts development in different organs and a non-cysts manifestations. ADPKD is caused by mutations in PKD1 or PKD2 genes. In this study, we aimed to search for molecular causative defects among PKD1 and PKD2 genes. Eighteen patients were diagnosed based on renal ultrasonography and renal/extra-renal manifestations. Then, Sanger sequencing was performed for PKD1 and PKD2 genes. Multiplex Ligation dependent Probe Amplification method (MLPA) methods was performed for both PKD genes. Mutational analysis of the PKD2 gene revealed the absence of variants and no deletions or duplications of both PKD genes were detected. But three novels mutations i.e. p.S463C exon 7; c. c.11156+2T>C IVS38 and c.8161-1G>A IVS22 and two previously reported c.1522T>C exon 7 and c.412C>T exon 4 mutations in the PKD1 gene were detected. Bioinformatics tools predicted that the novel variants have a pathogenic effects on splicing machinery, pre-mRNA secondary structure and stability and protein stability. Our results highlighted molecular features of Tunisian patients with ADPKD and revealed novel variations that can be utilized in clinical diagnosis and in the evaluation of living kidney donor. To the best of our knowledge, this is the first report of Autosomal Polycystic Kidney Disease in Tunisia. Copyright © 2017. Published by Elsevier B.V.

  12. In-frame mutations in exon 1 of SKI cause dominant Shprintzen-Goldberg syndrome.

    Science.gov (United States)

    Carmignac, Virginie; Thevenon, Julien; Adès, Lesley; Callewaert, Bert; Julia, Sophie; Thauvin-Robinet, Christel; Gueneau, Lucie; Courcet, Jean-Benoit; Lopez, Estelle; Holman, Katherine; Renard, Marjolijn; Plauchu, Henri; Plessis, Ghislaine; De Backer, Julie; Child, Anne; Arno, Gavin; Duplomb, Laurence; Callier, Patrick; Aral, Bernard; Vabres, Pierre; Gigot, Nadège; Arbustini, Eloisa; Grasso, Maurizia; Robinson, Peter N; Goizet, Cyril; Baumann, Clarisse; Di Rocco, Maja; Sanchez Del Pozo, Jaime; Huet, Frédéric; Jondeau, Guillaume; Collod-Beroud, Gwenaëlle; Beroud, Christophe; Amiel, Jeanne; Cormier-Daire, Valérie; Rivière, Jean-Baptiste; Boileau, Catherine; De Paepe, Anne; Faivre, Laurence

    2012-11-02

    Shprintzen-Goldberg syndrome (SGS) is characterized by severe marfanoid habitus, intellectual disability, camptodactyly, typical facial dysmorphism, and craniosynostosis. Using family-based exome sequencing, we identified a dominantly inherited heterozygous in-frame deletion in exon 1 of SKI. Direct sequencing of SKI further identified one overlapping heterozygous in-frame deletion and ten heterozygous missense mutations affecting recurrent residues in 18 of the 19 individuals screened for SGS; these individuals included one family affected by somatic mosaicism. All mutations were located in a restricted area of exon 1, within the R-SMAD binding domain of SKI. No mutation was found in a cohort of 11 individuals with other marfanoid-craniosynostosis phenotypes. The interaction between SKI and Smad2/3 and Smad 4 regulates TGF-β signaling, and the pattern of anomalies in Ski-deficient mice corresponds to the clinical manifestations of SGS. These findings define SGS as a member of the family of diseases associated with the TGF-β-signaling pathway. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  13. CtIP Mutations Cause Seckel and Jawad Syndromes.

    Directory of Open Access Journals (Sweden)

    Per Qvist

    2011-10-01

    Full Text Available Seckel syndrome is a recessively inherited dwarfism disorder characterized by microcephaly and a unique head profile. Genetically, it constitutes a heterogeneous condition, with several loci mapped (SCKL1-5 but only three disease genes identified: the ATR, CENPJ, and CEP152 genes that control cellular responses to DNA damage. We previously mapped a Seckel syndrome locus to chromosome 18p11.31-q11.2 (SCKL2. Here, we report two mutations in the CtIP (RBBP8 gene within this locus that result in expression of C-terminally truncated forms of CtIP. We propose that these mutations are the molecular cause of the disease observed in the previously described SCKL2 family and in an additional unrelated family diagnosed with a similar form of congenital microcephaly termed Jawad syndrome. While an exonic frameshift mutation was found in the Jawad family, the SCKL2 family carries a splicing mutation that yields a dominant-negative form of CtIP. Further characterization of cell lines derived from the SCKL2 family revealed defective DNA damage induced formation of single-stranded DNA, a critical co-factor for ATR activation. Accordingly, SCKL2 cells present a lowered apoptopic threshold and hypersensitivity to DNA damage. Notably, over-expression of a comparable truncated CtIP variant in non-Seckel cells recapitulates SCKL2 cellular phenotypes in a dose-dependent manner. This work thus identifies CtIP as a disease gene for Seckel and Jawad syndromes and defines a new type of genetic disease mechanism in which a dominant negative mutation yields a recessively inherited disorder.

  14. Hyperinsulinaemic hypoglycaemia and diabetes mellitus due to dominant ABCC8/KCNJ11 mutations.

    LENUS (Irish Health Repository)

    Kapoor, R R

    2011-10-01

    Dominantly acting loss-of-function mutations in the ABCC8\\/KCNJ11 genes can cause mild medically responsive hyperinsulinaemic hypoglycaemia (HH). As controversy exists over whether these mutations predispose to diabetes in adulthood we investigated the prevalence of diabetes in families with dominantly inherited ATP-sensitive potassium (K(ATP)) channel mutations causing HH in the proband.

  15. De Novo GMNN Mutations Cause Autosomal-Dominant Primordial Dwarfism Associated with Meier-Gorlin Syndrome.

    Science.gov (United States)

    Burrage, Lindsay C; Charng, Wu-Lin; Eldomery, Mohammad K; Willer, Jason R; Davis, Erica E; Lugtenberg, Dorien; Zhu, Wenmiao; Leduc, Magalie S; Akdemir, Zeynep C; Azamian, Mahshid; Zapata, Gladys; Hernandez, Patricia P; Schoots, Jeroen; de Munnik, Sonja A; Roepman, Ronald; Pearring, Jillian N; Jhangiani, Shalini; Katsanis, Nicholas; Vissers, Lisenka E L M; Brunner, Han G; Beaudet, Arthur L; Rosenfeld, Jill A; Muzny, Donna M; Gibbs, Richard A; Eng, Christine M; Xia, Fan; Lalani, Seema R; Lupski, James R; Bongers, Ernie M H F; Yang, Yaping

    2015-12-03

    Meier-Gorlin syndrome (MGS) is a genetically heterogeneous primordial dwarfism syndrome known to be caused by biallelic loss-of-function mutations in one of five genes encoding pre-replication complex proteins: ORC1, ORC4, ORC6, CDT1, and CDC6. Mutations in these genes cause disruption of the origin of DNA replication initiation. To date, only an autosomal-recessive inheritance pattern has been described in individuals with this disorder, with a molecular etiology established in about three-fourths of cases. Here, we report three subjects with MGS and de novo heterozygous mutations in the 5' end of GMNN, encoding the DNA replication inhibitor geminin. We identified two truncating mutations in exon 2 (the 1(st) coding exon), c.16A>T (p.Lys6(∗)) and c.35_38delTCAA (p.Ile12Lysfs(∗)4), and one missense mutation, c.50A>G (p.Lys17Arg), affecting the second-to-last nucleotide of exon 2 and possibly RNA splicing. Geminin is present during the S, G2, and M phases of the cell cycle and is degraded during the metaphase-anaphase transition by the anaphase-promoting complex (APC), which recognizes the destruction box sequence near the 5' end of the geminin protein. All three GMNN mutations identified alter sites 5' to residue Met28 of the protein, which is located within the destruction box. We present data supporting a gain-of-function mechanism, in which the GMNN mutations result in proteins lacking the destruction box and hence increased protein stability and prolonged inhibition of replication leading to autosomal-dominant MGS. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  16. Atypical early-onset Alzheimer's disease caused by the Iranian APP mutation

    DEFF Research Database (Denmark)

    Lindquist, S.G.; Nielsen, J.E.; Stokholm, J.

    2008-01-01

    BACKGROUND: Approximately 1% of all cases of Alzheimer's disease are inherited autosomal dominantly, and to date, three causative genes have been found, the Presenilin 1 (PSEN1) gene, the Presenilin 2 (PSEN2) gene and the Amyloid precursor protein (APP) gene. We describe atypical phenotypic...... features in a family with a pathogenic APP gene mutation and discuss possible explanations for these atypical features. METHODS AND RESULTS: We report a family with a history of dementia compatible with autosomal dominant transmission. The disease course in the proband was not typical for Alzheimer......'s disease as the diagnosis was preceded by 8 years of an isolated amnesia. Further, the proband had epilepsy with complex partial seizures and central degenerative autonomic failure as determined by clinical physiology. Sequencing the three known causative Alzheimer genes revealed a pathogenic missense...

  17. Hereditary 1,25-dihydroxyvitamin D-resistant rickets (HVDRR) caused by a VDR mutation: A novel mechanism of dominant inheritance.

    Science.gov (United States)

    Isojima, Tsuyoshi; Ishizawa, Michiyasu; Yoshimura, Kazuko; Tamura, Mayuko; Hirose, Shinichi; Makishima, Makoto; Kitanaka, Sachiko

    2015-06-01

    Hereditary 1,25-dihydroxyvitamin D-resistant rickets (HVDRR) is caused by mutations in the VDR gene, and its inheritance is autosomal recessive. In this report, we aimed to confirm whether HVDRR is occasionally inherited as a dominant trait. An 18-month-old Japanese boy was evaluated for short stature and bowlegs. His father had been treated for rickets during childhood, and his paternal grandfather had bowlegs. We diagnosed him with HVDRR based on laboratory data and radiographic evidence of rickets. Sequence analyses of VDR were performed, and the functional consequences of the detected mutations were analyzed for transcriptional activity, ligand binding, and interaction with the retinoid X receptor, cofactors, and the vitamin D response element (VDRE). A novel mutation (Q400LfsX7) and a reported variant (R370H) were identified in the patient. Heterozygous Q400LfsX7 was detected in his father, and heterozygous R370H was detected in his healthy mother. Functional studies revealed that the transcriptional activity of Q400LfsX7-VDR was markedly disturbed. The mutant had a dominant-negative effect on wild-type-VDR, and the ligand binding affinity of Q400LfsX7-VDR was completely impaired. Interestingly, Q400LfsX7-VDR had a strong interaction with corepressor NCoR and could interact with VDRE without the ligand. R370H-VDR was functionally similar to wild-type-VDR. In conclusion, we found a dominant-negative mutant of VDR causing dominantly inherited HVDRR through a constitutive corepressor interaction, a mechanism similar to that in dominantly inherited thyroid hormone receptor mutations. Our report together with a reported pedigree suggested a distinct inheritance of HVDRR and enriched our understanding of VDR abnormalities.

  18. Hereditary 1,25-dihydroxyvitamin D-resistant rickets (HVDRR caused by a VDR mutation: A novel mechanism of dominant inheritance

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Isojima

    2015-06-01

    Full Text Available Hereditary 1,25-dihydroxyvitamin D-resistant rickets (HVDRR is caused by mutations in the VDR gene, and its inheritance is autosomal recessive. In this report, we aimed to confirm whether HVDRR is occasionally inherited as a dominant trait. An 18-month-old Japanese boy was evaluated for short stature and bowlegs. His father had been treated for rickets during childhood, and his paternal grandfather had bowlegs. We diagnosed him with HVDRR based on laboratory data and radiographic evidence of rickets. Sequence analyses of VDR were performed, and the functional consequences of the detected mutations were analyzed for transcriptional activity, ligand binding, and interaction with the retinoid X receptor, cofactors, and the vitamin D response element (VDRE. A novel mutation (Q400LfsX7 and a reported variant (R370H were identified in the patient. Heterozygous Q400LfsX7 was detected in his father, and heterozygous R370H was detected in his healthy mother. Functional studies revealed that the transcriptional activity of Q400LfsX7-VDR was markedly disturbed. The mutant had a dominant-negative effect on wild-type-VDR, and the ligand binding affinity of Q400LfsX7-VDR was completely impaired. Interestingly, Q400LfsX7-VDR had a strong interaction with corepressor NCoR and could interact with VDRE without the ligand. R370H-VDR was functionally similar to wild-type-VDR. In conclusion, we found a dominant-negative mutant of VDR causing dominantly inherited HVDRR through a constitutive corepressor interaction, a mechanism similar to that in dominantly inherited thyroid hormone receptor mutations. Our report together with a reported pedigree suggested a distinct inheritance of HVDRR and enriched our understanding of VDR abnormalities.

  19. Splicing Analysis of Exonic OCRL Mutations Causing Lowe Syndrome or Dent-2 Disease

    Directory of Open Access Journals (Sweden)

    Lorena Suarez-Artiles

    2018-01-01

    Full Text Available Mutations in the OCRL gene are associated with both Lowe syndrome and Dent-2 disease. Patients with Lowe syndrome present congenital cataracts, mental disabilities and a renal proximal tubulopathy, whereas patients with Dent-2 disease exhibit similar proximal tubule dysfunction but only mild, or no additional clinical defects. It is not yet understood why some OCRL mutations cause the phenotype of Lowe syndrome, while others develop the milder phenotype of Dent-2 disease. Our goal was to gain new insights into the consequences of OCRL exonic mutations on pre-mRNA splicing. Using predictive bioinformatics tools, we selected thirteen missense mutations and one synonymous mutation based on their potential effects on splicing regulatory elements or splice sites. These mutations were analyzed in a minigene splicing assay. Results of the RNA analysis showed that three presumed missense mutations caused alterations in pre-mRNA splicing. Mutation c.741G>T; p.(Trp247Cys generated splicing silencer sequences and disrupted splicing enhancer motifs that resulted in skipping of exon 9, while mutations c.2581G>A; p.(Ala861Thr and c.2581G>C; p.(Ala861Pro abolished a 5′ splice site leading to skipping of exon 23. Mutation c.741G>T represents the first OCRL exonic variant outside the conserved splice site dinucleotides that results in alteration of pre-mRNA splicing. Our results highlight the importance of evaluating the effects of OCRL exonic mutations at the mRNA level.

  20. High frequency of potentially pathogenic SORL1 mutations in autosomal dominant early-onset Alzheimer disease.

    Science.gov (United States)

    Pottier, C; Hannequin, D; Coutant, S; Rovelet-Lecrux, A; Wallon, D; Rousseau, S; Legallic, S; Paquet, C; Bombois, S; Pariente, J; Thomas-Anterion, C; Michon, A; Croisile, B; Etcharry-Bouyx, F; Berr, C; Dartigues, J-F; Amouyel, P; Dauchel, H; Boutoleau-Bretonnière, C; Thauvin, C; Frebourg, T; Lambert, J-C; Campion, D

    2012-09-01

    Performing exome sequencing in 14 autosomal dominant early-onset Alzheimer disease (ADEOAD) index cases without mutation on known genes (amyloid precursor protein (APP), presenilin1 (PSEN1) and presenilin2 (PSEN2)), we found that in five patients, the SORL1 gene harbored unknown nonsense (n=1) or missense (n=4) mutations. These mutations were not retrieved in 1500 controls of same ethnic origin. In a replication sample, including 15 ADEOAD cases, 2 unknown non-synonymous mutations (1 missense, 1 nonsense) were retrieved, thus yielding to a total of 7/29 unknown mutations in the combined sample. Using in silico predictions, we conclude that these seven private mutations are likely to have a pathogenic effect. SORL1 encodes the Sortilin-related receptor LR11/SorLA, a protein involved in the control of amyloid beta peptide production. Our results suggest that besides the involvement of the APP and PSEN genes, further genetic heterogeneity, involving another gene of the same pathway is present in ADEOAD.

  1. High prevalence of mutations affecting the splicing process in a Spanish cohort with autosomal dominant retinitis pigmentosa

    Science.gov (United States)

    Ezquerra-Inchausti, Maitane; Barandika, Olatz; Anasagasti, Ander; Irigoyen, Cristina; López de Munain, Adolfo; Ruiz-Ederra, Javier

    2017-01-01

    Retinitis pigmentosa is the most frequent group of inherited retinal dystrophies. It is highly heterogeneous, with more than 80 disease-causing genes 27 of which are known to cause autosomal dominant RP (adRP), having been identified. In this study a total of 29 index cases were ascertained based on a family tree compatible with adRP. A custom panel of 31 adRP genes was analysed by targeted next-generation sequencing using the Ion PGM platform in combination with Sanger sequencing. This allowed us to detect putative disease-causing mutations in 14 out of the 29 (48.28%) families analysed. Remarkably, around 38% of all adRP cases analysed showed mutations affecting the splicing process, mainly due to mutations in genes coding for spliceosome factors (SNRNP200 and PRPF8) but also due to splice-site mutations in RHO. Twelve of the 14 mutations found had been reported previously and two were novel mutations found in PRPF8 in two unrelated patients. In conclusion, our results will lead to more accurate genetic counselling and will contribute to a better characterisation of the disease. In addition, they may have a therapeutic impact in the future given the large number of studies currently underway based on targeted RNA splicing for therapeutic purposes. PMID:28045043

  2. Autosomal recessive retinitis pigmentosa caused by mutations in the MAK gene.

    Science.gov (United States)

    Stone, Edwin M; Luo, Xunda; Héon, Elise; Lam, Byron L; Weleber, Richard G; Halder, Jennifer A; Affatigato, Louisa M; Goldberg, Jacqueline B; Sumaroka, Alexander; Schwartz, Sharon B; Cideciyan, Artur V; Jacobson, Samuel G

    2011-12-28

    To determine the disease expression in autosomal recessive (ar) retinitis pigmentosa (RP) caused by mutations in the MAK (male germ cell-associated kinase) gene. Patients with RP and MAK gene mutations (n = 24; age, 32-77 years at first visit) were studied by ocular examination, perimetry, and optical coherence tomography (OCT). All but one MAK patient were homozygous for an identical truncating mutation in exon 9 and had Ashkenazi Jewish heritage. The carrier frequency of this mutation among 1207 unrelated Ashkenazi control subjects was 1 in 55, making it the most common cause of heritable retinal disease in this population and MAK-associated RP the sixth most common Mendelian disease overall in this group. Visual acuities could be normal into the eighth decade of life. Kinetic fields showed early loss in the superior-temporal quadrant. With more advanced disease, superior and midperipheral function was lost, but the nasal field remained. Only a central island was present at late stages. Pigmentary retinopathy was less prominent in the superior nasal quadrant. Rod-mediated vision was abnormal but detectable in the residual field; all patients had rod>cone dysfunction. Photoreceptor layer thickness was normal centrally but decreased with eccentricity. At the stages studied, there was no evidence of photoreceptor ciliary elongation. The patterns of disease expression in the MAK form of arRP showed some resemblance to patterns described in autosomal dominant RP, especially the form caused by RP1 mutations. The similarity in phenotypes is of interest, considering that there is experimental evidence of interaction between Mak and RP1 in the photoreceptor cilium.

  3. Mutations in LOXHD1, a Recessive-Deafness Locus, Cause Dominant Late-Onset Fuchs Corneal Dystrophy

    Science.gov (United States)

    Riazuddin, S. Amer; Parker, David S.; McGlumphy, Elyse J.; Oh, Edwin C.; Iliff, Benjamin W.; Schmedt, Thore; Jurkunas, Ula; Schleif, Robert; Katsanis, Nicholas; Gottsch, John D.

    2012-01-01

    Fuchs corneal dystrophy (FCD) is a genetic disorder of the corneal endothelium and is the most common cause of corneal transplantation in the United States. Previously, we mapped a late-onset FCD locus, FCD2, on chromosome 18q. Here, we present next-generation sequencing of all coding exons in the FCD2 critical interval in a multigenerational pedigree in which FCD segregates as an autosomal-dominant trait. We identified a missense change in LOXHD1, a gene causing progressive hearing loss in humans, as the sole variant capable of explaining the phenotype in this pedigree. We observed LOXHD1 mRNA in cultured human corneal endothelial cells, whereas antibody staining of both human and mouse corneas showed staining in the corneal epithelium and endothelium. Corneal sections of the original proband were stained for LOXHD1 and demonstrated a distinct increase in antibody punctate staining in the endothelium and Descemet membrane; punctate staining was absent from both normal corneas and FCD corneas negative for causal LOXHD1 mutations. Subsequent interrogation of a cohort of >200 sporadic affected individuals identified another 15 heterozygous missense mutations that were absent from >800 control chromosomes. Furthermore, in silico analyses predicted that these mutations reside on the surface of the protein and are likely to affect the protein's interface and protein-protein interactions. Finally, expression of the familial LOXHD1 mutant allele as well as two sporadic mutations in cells revealed prominent cytoplasmic aggregates reminiscent of the corneal phenotype. All together, our data implicate rare alleles in LOXHD1 in the pathogenesis of FCD and highlight how different mutations in the same locus can potentially produce diverse phenotypes. PMID:22341973

  4. Unstable mutations: cause of some neurological hereditary diseases

    International Nuclear Information System (INIS)

    Cuenca Berger, P.; Morales Montero, F.

    1999-01-01

    Unstable mutations or amplification of triplets constitute a kind of genetic alteration discovered during the last decade. They had been found inside or near genes important for the normal neurological function of the human being. In some cases, the presence of the amplification causes the inactivation of the gene or the synthesis of a new product which functions different from the original protein. Some common characteristics of diseases caused by the amplification of triplets are that it affects the nervous system and are degenerative in nature. The expression of the manifestations varies according to age. Most of them show genetic anticipation in which the severity of the manifestations increases with each generation and appear at an earlier age. In most cases, the severity of the symptoms is correlated positively to the size of the amplification. The diagnosis of an affected individual in a family may indicate the presence of an altered gene in other relatives. These relatives may not present evident signs of the illness either because it is of late onset or because they carry premutations. The molecular diagnosis of these mutations is important to estimate the risk of developing the disease and/or of transmitting the illness to the descendants and to eliminate the fears of healthy relatives who have inherited normal copies of the gene. (Author) [es

  5. Alzheimer disease-like clinical phenotype in a family with FTDP-17 caused by a MAPT R406W mutation

    DEFF Research Database (Denmark)

    Lindquist, S.G.; Holm, I.E.; Schwartz, M.

    2008-01-01

    We report clinical, molecular, neuroimaging and neuropathological features of a Danish family with autosomal dominant inherited dementia, a clinical phenotype resembling Alzheimer's disease and a pathogenic mutation (R406W) in the microtubule associated protein tau (MAPT) gene. Pre-symptomatic an......We report clinical, molecular, neuroimaging and neuropathological features of a Danish family with autosomal dominant inherited dementia, a clinical phenotype resembling Alzheimer's disease and a pathogenic mutation (R406W) in the microtubule associated protein tau (MAPT) gene. Pre...

  6. Danon’s disease as a cause of hypertrophic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    I. V. Leontyeva

    2015-01-01

    Full Text Available Hypertrophic cardiomyopathy is the most common inherited disease of the myocardium. The causes of the disease are heterogeneous; its primary form results from mutations in the genes encoding cardiac sarcomeric proteins; its secondary (metabolic and syndromic forms develop due to mutations in the genes encoding non-sarcomeric proteins. Glycogenosis is the most common cause of the metabolic ones of hypertrophic cardiomyopathy. Danon’s disease (lysosome-associated membrane protein 2 (LAMP2-cardiomyopathy is a form of glycogenosis and it is characterized by a typical triad: hypertrophic cardiomyopathy, mental retardation, and skeletal myopathy. The disease occurs with mutations in the LAMP2 gene; X-linked dominant inheritance. LAMP2-cardiomyopathy does not virtually differ in its clinical manifestations from the severe form of hypertrophic cardiomyopathy, which results from mutations in the sarcomeric protein genes. The disease is characterized by a poor progressive course with the high probability of causing sudden death or with the progression of severe heart failure. Implantation of a cardioverter defibrillator is a main method to prevent sudden cardiac death. 

  7. Novel ENU-Induced Mutation in Tbx6 Causes Dominant Spondylocostal Dysostosis-Like Vertebral Malformations in the Rat.

    Science.gov (United States)

    Abe, Koichiro; Takamatsu, Nobuhiko; Ishikawa, Kumiko; Tsurumi, Toshiko; Tanimoto, Sho; Sakurai, Yukina; Lisse, Thomas S; Lisse, Thomas; Imai, Kenji; Serikawa, Tadao; Mashimo, Tomoji

    2015-01-01

    Congenital vertebral malformations caused by embryonic segmentation defects are relatively common in humans and domestic animals. Although reverse genetics approaches in mice have provided information on the molecular mechanisms of embryonic somite segmentation, hypothesis-driven approaches cannot adequately reflect human dysmorphology within the population. In a N-ethyl-N-nitrosourea (ENU) mutagenesis project in Kyoto, the Oune mutant rat strain was isolated due to a short and kinked caudal vertebra phenotype. Skeletal staining of heterozygous rats showed partial loss of the cervical vertebrae as well as hemivertebrae and fused vertebral blocks in lumbar and sacral vertebrae. In homozygous embryos, severe displacement of the whole vertebrae was observed. The Oune locus was genetically mapped to rat chromosome 1 using 202 backcross animals and 50 genome-wide microsatellite markers. Subsequently, a miss-sense mutation in the Tbx6 gene was identified in the critical region. Although the mutation is located within the T-box domain near a predicted dimmer-interface, in vitro experiments revealed that the Tbx6 variant retains normal DNA binding ability and translational efficiency. However, the variant has decreased transcriptional activation potential in response to Notch-mediated signaling. Recently, it was reported that a dominant type of familial spondylocostal dysostosis is caused by a stoploss mutation in TBX6. Thus, we propose that partial dysfunction of Tbx6 leads to similar congenital vertebral malformations in both humans and rats. The Oune strain could be a unique animal model for dominant spondylocostal dysostosis and is useful for molecular dissection of the pathology of congenital vertebral malformations in humans.

  8. Novel ENU-Induced Mutation in Tbx6 Causes Dominant Spondylocostal Dysostosis-Like Vertebral Malformations in the Rat.

    Directory of Open Access Journals (Sweden)

    Koichiro Abe

    Full Text Available Congenital vertebral malformations caused by embryonic segmentation defects are relatively common in humans and domestic animals. Although reverse genetics approaches in mice have provided information on the molecular mechanisms of embryonic somite segmentation, hypothesis-driven approaches cannot adequately reflect human dysmorphology within the population. In a N-ethyl-N-nitrosourea (ENU mutagenesis project in Kyoto, the Oune mutant rat strain was isolated due to a short and kinked caudal vertebra phenotype. Skeletal staining of heterozygous rats showed partial loss of the cervical vertebrae as well as hemivertebrae and fused vertebral blocks in lumbar and sacral vertebrae. In homozygous embryos, severe displacement of the whole vertebrae was observed. The Oune locus was genetically mapped to rat chromosome 1 using 202 backcross animals and 50 genome-wide microsatellite markers. Subsequently, a miss-sense mutation in the Tbx6 gene was identified in the critical region. Although the mutation is located within the T-box domain near a predicted dimmer-interface, in vitro experiments revealed that the Tbx6 variant retains normal DNA binding ability and translational efficiency. However, the variant has decreased transcriptional activation potential in response to Notch-mediated signaling. Recently, it was reported that a dominant type of familial spondylocostal dysostosis is caused by a stoploss mutation in TBX6. Thus, we propose that partial dysfunction of Tbx6 leads to similar congenital vertebral malformations in both humans and rats. The Oune strain could be a unique animal model for dominant spondylocostal dysostosis and is useful for molecular dissection of the pathology of congenital vertebral malformations in humans.

  9. A R54L mutation of CRYAA associated with autosomal dominant nuclear cataracts in a Chinese family.

    Science.gov (United States)

    Yang, Zhenfei; Su, Dongmei; Li, Qian; Ma, Zicheng; Yang, Fan; Zhu, Siquan; Ma, Xu

    2013-12-01

    To identify the genetic defect in a three-generation Chinese family with congenital cataracts. The phenotype of a three-generation Chinese family with congenital cataract was recruited. Detailed family history and clinical data of the family were recorded. Candidate genes sequencing was performed to screen out the disease-causing mutation. Bioinformatics analysis was performed to predict the function of mutant gene. The phenotype of the family was identified as nuclear cataract. Direct sequencing revealed a c.161 G > T transversion in exon 1 of crystallin alpha-A (CRYAA). This mutation co-segregated with all affected individuals in the family and was not found in unaffected family members nor in the 100 unrelated controls. Bioinformatics analysis indicated that the 54th amino acid position was highly conserved and the mutation R54L caused an increase of local hydrophobicity around the substitution site. This study identified a novel disease-causing mutation c.161 G > T (p.R54L) in CRYAA in a Chinese family with autosomal dominant nuclear cataracts, this is the first report relating a G > T mutation in CRYAA leading to congenital nuclear cataract.

  10. Mutation in CPT1C Associated With Pure Autosomal Dominant Spastic Paraplegia.

    Science.gov (United States)

    Rinaldi, Carlo; Schmidt, Thomas; Situ, Alan J; Johnson, Janel O; Lee, Philip R; Chen, Ke-Lian; Bott, Laura C; Fadó, Rut; Harmison, George H; Parodi, Sara; Grunseich, Christopher; Renvoisé, Benoît; Biesecker, Leslie G; De Michele, Giuseppe; Santorelli, Filippo M; Filla, Alessandro; Stevanin, Giovanni; Dürr, Alexandra; Brice, Alexis; Casals, Núria; Traynor, Bryan J; Blackstone, Craig; Ulmer, Tobias S; Fischbeck, Kenneth H

    2015-05-01

    The family of genes implicated in hereditary spastic paraplegias (HSPs) is quickly expanding, mostly owing to the widespread availability of next-generation DNA sequencing methods. Nevertheless, a genetic diagnosis remains unavailable for many patients. To identify the genetic cause for a novel form of pure autosomal dominant HSP. We examined and followed up with a family presenting to a tertiary referral center for evaluation of HSP for a decade until August 2014. Whole-exome sequencing was performed in 4 patients from the same family and was integrated with linkage analysis. Sanger sequencing was used to confirm the presence of the candidate variant in the remaining affected and unaffected members of the family and screen the additional patients with HSP. Five affected and 6 unaffected participants from a 3-generation family with pure adult-onset autosomal dominant HSP of unknown genetic origin were included. Additionally, 163 unrelated participants with pure HSP of unknown genetic cause were screened. Mutation in the neuronal isoform of carnitine palmitoyl-transferase (CPT1C) gene. We identified the nucleotide substitution c.109C>T in exon 3 of CPT1C, which determined the base substitution of an evolutionarily conserved Cys residue for an Arg in the gene product. This variant strictly cosegregated with the disease phenotype and was absent in online single-nucleotide polymorphism databases and in 712 additional exomes of control participants. We showed that CPT1C, which localizes to the endoplasmic reticulum, is expressed in motor neurons and interacts with atlastin-1, an endoplasmic reticulum protein encoded by the ATL1 gene known to be mutated in pure HSPs. The mutation, as indicated by nuclear magnetic resonance spectroscopy studies, alters the protein conformation and reduces the mean (SD) number (213.0 [46.99] vs 81.9 [14.2]; P lipid droplets on overexpression in cells. We also observed a reduction of mean (SD) lipid droplets in primary cortical neurons

  11. Mosaicism in segmental darier disease: an in-depth molecular analysis quantifying proportions of mutated alleles in various tissues

    DEFF Research Database (Denmark)

    Harboe, Theresa Larriba; Willems, Patrick; Jespersgaard, Cathrine

    2011-01-01

    Darier disease is an autosomal dominant genodermatosis caused by germline mutations in the ATP2A2 gene. Clinical expression is variable, including rare segmental phenotypes thought to be caused by postzygotic mosaicism. Genetic counseling of segmental Darier patients is complex, as risk of transm......Darier disease is an autosomal dominant genodermatosis caused by germline mutations in the ATP2A2 gene. Clinical expression is variable, including rare segmental phenotypes thought to be caused by postzygotic mosaicism. Genetic counseling of segmental Darier patients is complex, as risk...... of transmitting a nonsegmental phenotype to offspring is of unknown magnitude. We present the first in-depth molecular analysis of a mosaic patient with segmental disease, quantifying proportions of mutated and normal alleles in various tissues. Pyrosequence analysis of DNA from semen, affected and normal skin......, peripheral leukocytes and hair revealed an uneven distribution of the mutated allele, from 14% in semen to 37% in affected skin. We suggest a model for segmental manifestation expression where a threshold number of mutated cells is needed for manifestation development. We further recommend molecular analysis...

  12. A novel A792D mutation in the CSF1R gene causes hereditary diffuse leukoencephalopathy with axonal spheroids characterized by slow progression

    Directory of Open Access Journals (Sweden)

    Sakiho Ueda

    2015-03-01

    Full Text Available Hereditary diffuse leukoencephalopathy with spheroids (HDLS is an autosomal dominant white matter disease that causes adult-onset cognitive impairment. The clinical manifestations are a variable combination of personality and behavioral changes, cognitive decline, parkinsonism, spasticity, and epilepsy. In 2012, mutations in the gene encoding colony stimulating factor 1 receptor (CSF1R were identified as the cause of HDLS. As the numbers of reported mutations are limited, the understanding of whole pathogenesis needs accumulation of disease-causing mutations with detailed clinical descriptions. We describe a Japanese family with autosomal dominant adult-onset cognitive impairment and characteristic white matter lesions. Genetic testing revealed a novel p.A792D mutation in the tyrosine kinase domain of CSF1R in two affected family members. The symptom profile of the present cases mostly matched the previously reported cases, with the notable exceptions of late-onset and long disease duration.

  13. A novel mutation of the fibrillin gene causing Ectopia lentis

    Energy Technology Data Exchange (ETDEWEB)

    Loennqvist, L.; Kainulainen, K.; Puhakka, L.; Peltonen, L. (National Public Health Institute, Helsinki (Finland)); Child, A. (St. George' s Hospital Medical School, London (United Kingdom)); Peltonen, L. (Duncan Guthrie Institute, Glasgow, Scotland (United Kingdom))

    1994-02-01

    Ectopia lentis (EL), a dominantly inherited connective tissue disorder, has been genetically linked to the fibrillin gene on chromosome 15 (FBN1) in earlier studies. Here, the authors report the first EL mutation in the FBN1 gene confirming that EL is caused by mutations of this gene. So far, several mutations in the FBN1 gene have been reported in patients with Marfan syndrome (MFS). EL and MFS are clinically related but distinct conditions with typical manifestations in the ocular and skeletal systems, the fundamental difference between them being the absence of cardiovascular involvement in EL. They report a point mutation, cosegregating with the disease in the described family, that displays EL over four generations. The mutation changes a conserved glutamic acid residue in an EGF-like motif, which is the major structural component of the fibrillin and is repeated throughout the polypeptide. In vitro mutagenetic studies have demonstrated the necessity of an analogous glutamic acid residue for calcium binding in an EGF-like repeat of human factor IX. This provides a possible explanation for the role of this mutation in the disease pathogenesis. 32 refs., 2 figs., 1 tab.

  14. A novel mutation in the ELOVL4 gene causes autosomal dominant Stargardt-like macular dystrophy.

    NARCIS (Netherlands)

    Maugeri, A.; Meire, F.; Hoyng, C.B.; Vink, C.W.; Regemorter, N. van; Karan, G.; Yang, Z.; Cremers, F.P.M.; Zhang, K.

    2004-01-01

    PURPOSE: To conduct clinical and genetic studies in a European family with autosomal dominant Stargardt-like macular dystrophy (adSTGD-like MD) and to investigate the functional consequences of a novel ELOVL4 mutation. METHODS: Ophthalmic examination and mutation screening by direct sequencing of

  15. Parkinson disease: α-synuclein mutational screening and new clinical insight into the p.E46K mutation.

    Science.gov (United States)

    Pimentel, Márcia M G; Rodrigues, Fabíola C; Leite, Marco Antônio A; Campos Júnior, Mário; Rosso, Ana Lucia; Nicaretta, Denise H; Pereira, João S; Silva, Delson José; Della Coletta, Marcus V; Vasconcellos, Luiz Felipe R; Abreu, Gabriella M; Dos Santos, Jussara M; Santos-Rebouças, Cíntia B

    2015-06-01

    Amongst Parkinson's disease-causing genetic factors, missense mutations and genomic multiplications in the gene encoding α-synuclein are well established causes of the disease, although genetic data in populations with a high degree of admixture, such as the Brazilian one, are still scarce. In this study, we conducted a molecular screening of α-synuclein point mutations and copy number variation in the largest cohort of Brazilian patients with Parkinson's disease (n = 549) and also in twelve Portuguese and one Bolivian immigrants. Genomic DNA was isolated from peripheral blood leukocytes or saliva, and the mutational screening was performed by quantitative and qualitative real-time PCR. The only alteration identified was the p.E46K mutation in a 60-year-old man, born in Bolivia, with a familial history of autosomal dominant Parkinson's disease. This is the second family ever reported, in which this rare pathogenic mutation is segregating. The same mutation was firstly described ten years ago in a Spanish family with a neurodegenerative syndrome combining parkinsonism, dementia and visual hallucinations. The clinical condition of our proband reveals a less aggressive phenotype than previously described and reinforces that marked phenotypic heterogeneity is common among patients with Parkinson's disease, even among those carriers sharing the same mutation. Our findings add new insight into the preexisting information about α-synuclein p.E46K, improving our understanding about the endophenotypes associated to this mutation and corroborate that missense alterations and multiplications in α-synuclein are uncommon among Brazilian patients with Parkinson's disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Stabilization of a nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator yields insight into disease-causing mutations.

    Science.gov (United States)

    Vernon, Robert M; Chong, P Andrew; Lin, Hong; Yang, Zhengrong; Zhou, Qingxian; Aleksandrov, Andrei A; Dawson, Jennifer E; Riordan, John R; Brouillette, Christie G; Thibodeau, Patrick H; Forman-Kay, Julie D

    2017-08-25

    Characterization of the second nucleotide-binding domain (NBD2) of the cystic fibrosis transmembrane conductance regulator (CFTR) has lagged behind research into the NBD1 domain, in part because NBD1 contains the F508del mutation, which is the dominant cause of cystic fibrosis. Research on NBD2 has also been hampered by the overall instability of the domain and the difficulty of producing reagents. Nonetheless, multiple disease-causing mutations reside in NBD2, and the domain is critical for CFTR function, because channel gating involves NBD1/NBD2 dimerization, and NBD2 contains the catalytically active ATPase site in CFTR. Recognizing the paucity of structural and biophysical data on NBD2, here we have defined a bioinformatics-based method for manually identifying stabilizing substitutions in NBD2, and we used an iterative process of screening single substitutions against thermal melting points to both produce minimally mutated stable constructs and individually characterize mutations. We present a range of stable constructs with minimal mutations to help inform further research on NBD2. We have used this stabilized background to study the effects of NBD2 mutations identified in cystic fibrosis (CF) patients, demonstrating that mutants such as N1303K and G1349D are characterized by lower stability, as shown previously for some NBD1 mutations, suggesting a potential role for NBD2 instability in the pathology of CF. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. A recurrent deletion mutation in OPA1 causes autosomal dominant optic atrophy in a Chinese family

    Science.gov (United States)

    Zhang, Liping; Shi, Wei; Song, Liming; Zhang, Xiao; Cheng, Lulu; Wang, Yanfang; Ge, Xianglian; Li, Wei; Zhang, Wei; Min, Qingjie; Jin, Zi-Bing; Qu, Jia; Gu, Feng

    2014-11-01

    Autosomal dominant optic atrophy (ADOA) is the most frequent form of hereditary optic neuropathy and occurs due to the degeneration of the retinal ganglion cells. To identify the genetic defect in a family with putative ADOA, we performed capture next generation sequencing (CNGS) to screen known retinal disease genes. However, six exons failed to be sequenced by CNGS in optic atrophy 1 gene (OPA1). Sequencing of those exons identified a 4 bp deletion mutation (c.2983-1_2985del) in OPA1. Furthermore, we sequenced the transcripts of OPA1 from the patient skin fibroblasts and found there is six-nucleotide deletion (c.2984-c.2989, AGAAAG). Quantitative-PCR and Western blotting showed that OPA1 mRNA and its protein expression have no obvious difference between patient skin fibroblast and control. The analysis of protein structure by molecular modeling suggests that the mutation may change the structure of OPA1 by formation of an alpha helix protruding into an existing pocket. Taken together, we identified an OPA1 mutation in a family with ADOA by filling the missing CNGS data. We also showed that this mutation affects the structural intactness of OPA1. It provides molecular insights for clinical genetic diagnosis and treatment of optic atrophy.

  18. SCREEN FOR DOMINANT BEHAVIORAL MUTATIONS CAUSED BY GENOMIC INSERTION OF P-ELEMENT TRANSPOSONS IN DROSOPHILA: AN EXAMINATION OF THE INTEGRATION OF VIRAL VECTOR SEQUENCES

    OpenAIRE

    FOX, LYLE E.; GREEN, DAVID; YAN, ZIYING; ENGELHARDT, JOHN F.; WU, CHUN-FANG

    2007-01-01

    Here we report the development of a high-throughput screen to assess dominant mutation rates caused by P-element transposition within the Drosophila genome that is suitable for assessing the undesirable effects of integrating foreign regulatory sequences (viral cargo) into a host genome. Three different behavioral paradigms were used: sensitivity to mechanical stress, response to heat stress, and ability to fly. The results, from our screen of 35,000 flies, indicate that mutations caused by t...

  19. The French series of autosomal dominant early onset Alzheimer's disease cases: mutation spectrum and cerebrospinal fluid biomarkers.

    Science.gov (United States)

    Wallon, David; Rousseau, Stéphane; Rovelet-Lecrux, Anne; Quillard-Muraine, Muriel; Guyant-Maréchal, Lucie; Martinaud, Olivier; Pariente, Jérémie; Puel, Michèle; Rollin-Sillaire, Adeline; Pasquier, Florence; Le Ber, Isabelle; Sarazin, Marie; Croisile, Bernard; Boutoleau-Bretonnière, Claire; Thomas-Antérion, Catherine; Paquet, Claire; Moreaud, Olivier; Gabelle, Audrey; Sellal, François; Sauvée, Mathilde; Laquerrière, Annie; Duyckaerts, Charles; Delisle, Marie-Bernadette; Streichenberger, Nathalie; Lannes, Béatrice; Frebourg, Thierry; Hannequin, Didier; Campion, Dominique

    2012-01-01

    We describe 56 novel autosomal dominant early-onset Alzheimer disease (ADEOAD) families with PSEN1, PSEN2, and AβPP mutations or duplications, raising the total of families with mutations on known genes to 111 (74 PSEN1, 8 PSEN2, 16 AβPP, and 13 AβPP duplications) in the French series. In 33 additional families (23% of the series), the genetic determinism remained uncharacterized after this screening. Cerebrospinal fluid (CSF) biomarker levels were obtained for patients of 58 families (42 with known mutations and 16 without genetic characterization). CSF biomarkers profile was consistent with an AD diagnosis in 90% of families carrying mutations on known genes. In families without mutation, CSF biomarkers were consistent with AD diagnosis in 14/16 cases. Overall, these results support further genetic heterogeneity in the determinism of ADEOAD and suggest that other major genes remain to be characterized.

  20. Frontotemporal dementia caused by CHMP2B mutations

    DEFF Research Database (Denmark)

    Isaacs, A M; Johannsen, P; Holm, I

    2011-01-01

    CHMP2B mutations are a rare cause of autosomal dominant frontotemporal dementia (FTD). The best studied example is frontotemporal dementia linked to chromosome 3 (FTD-3) which occurs in a large Danish family, with a further CHMP2B mutation identified in an unrelated Belgian familial FTD patient. ...

  1. Molecular Diagnostics in Autosomal Dominant Polycystic Kidney Disease: Utility and Limitations

    Science.gov (United States)

    Zhao, Xiao; Paterson, Andrew D.; Zahirieh, Alireza; He, Ning; Wang, Kairong; Pei, York

    2008-01-01

    Background and objectives: Gene-based mutation screening is now available and has the potential to provide diagnostic confirmation or exclusion of autosomal dominant polycystic kidney disease. This study illustrates its utility and limitations in the clinical setting. Design, setting, participants, & measurements: Using a molecular diagnostic service, genomic DNA of one affected individual from each study family was screened for pathologic PKD1 and PKD2 mutations. Bidirectional sequencing was performed to identify sequence variants in all exons and splice junctions of both genes and to confirm the specific mutations in other family members. In two multiplex families, microsatellite markers were genotyped at both PDK1 and PKD2 loci, and pair-wise and multipoint linkage analysis was performed. Results: Three of five probands studied were referred for assessment of renal cystic disease without a family history of autosomal dominant polycystic kidney disease, and two others were younger at-risk members of families with autosomal dominant polycystic kidney disease being evaluated as living-related kidney donors. Gene-based mutation screening identified pathogenic mutations that provided confirmation or exclusion of disease in three probands, but in the other two, only unclassified variants were identified. In one proband in which mutation screening was indeterminate, DNA linkage studies provided strong evidence for disease exclusion. Conclusions: Gene-based mutation screening or DNA linkage analysis should be considered in individuals in whom the diagnosis of autosomal dominant polycystic kidney disease is uncertain because of a lack of family history or equivocal imaging results and in younger at-risk individuals who are being evaluated as living-related kidney donors. PMID:18077784

  2. Axonal transport of TDP-43 mRNA granules in neurons is impaired by ALS-causing mutations

    Science.gov (United States)

    Carrasco, Monica A.; Williams, Luis A.; Winborn, Christina S.; Han, Steve S. W.; Kiskinis, Evangelos; Winborn, Brett; Freibaum, Brian D.; Kanagaraj, Anderson; Clare, Alison J.; Badders, Nisha M.; Bilican, Bilada; Chaum, Edward; Chandran, Siddharthan; Shaw, Christopher E.; Eggan, Kevin C.; Maniatis, Tom; Taylor, J. Paul

    2014-01-01

    Summary The RNA binding protein TDP-43 regulates RNA metabolism at multiple levels, including transcription, RNA splicing, and mRNA stability. TDP-43 is a major component of the cytoplasmic inclusions characteristic of amyotrophic lateral sclerosis and some types of frontotemporal lobar degeneration. The importance of TDP-43 in disease is underscored by the fact that dominant missense mutations are sufficient to cause disease, although the role of TDP-43 in pathogenesis is unknown. Here we show that TDP-43 forms cytoplasmic mRNP granules that undergo bidirectional, microtubule-dependent transport in neurons in vitro and in vivo and facilitate delivery of target mRNA to distal neuronal compartments. TDP-43 mutations impair this mRNA transport function in vivo and in vitro, including in stem cell-derived motor neurons from ALS patients bearing any one of three different TDP-43 ALS-causing mutations. Thus, TDP43 mutations that cause ALS lead to partial loss of a novel cytoplasmic function of TDP-43. PMID:24507191

  3. A Phenotype-Driven Approach to Generate Mouse Models with Pathogenic mtDNA Mutations Causing Mitochondrial Disease

    Directory of Open Access Journals (Sweden)

    Johanna H.K. Kauppila

    2016-09-01

    Full Text Available Mutations of mtDNA are an important cause of human disease, but few animal models exist. Because mammalian mitochondria cannot be transfected, the development of mice with pathogenic mtDNA mutations has been challenging, and the main strategy has therefore been to introduce mutations found in cell lines into mouse embryos. Here, we describe a phenotype-driven strategy that is based on detecting clonal expansion of pathogenic mtDNA mutations in colonic crypts of founder mice derived from heterozygous mtDNA mutator mice. As proof of concept, we report the generation of a mouse line transmitting a heteroplasmic pathogenic mutation in the alanine tRNA gene of mtDNA displaying typical characteristics of classic mitochondrial disease. In summary, we describe a straightforward and technically simple strategy based on mouse breeding and histology to generate animal models of mtDNA-mutation disease, which will be of great importance for studies of disease pathophysiology and preclinical treatment trials.

  4. Autosomal dominant familial neurohypophyseal diabetes insipidus caused by a mutation in the arginine-vasopressin II gene in four generations of a Korean family

    Directory of Open Access Journals (Sweden)

    Myo-Jing Kim

    2014-12-01

    Full Text Available Autosomal dominant neurohypophyseal diabetes insipidus is a rare form of central diabetes insipidus that is caused by mutations in the vasopressin-neurophysin II (AVP-NPII gene. It is characterized by persistent polydipsia and polyuria induced by deficient or absent secretion of arginine vasopressin (AVP. Here we report a case of familial neurohypophyseal diabetes insipidus in four generations of a Korean family, caused by heterozygous missense mutation in exon 2 of the AVP-NPII gene (c.286G>T. This is the first report of such a case in Korea.

  5. Truncating SLC5A7 mutations underlie a spectrum of dominant hereditary motor neuropathies.

    Science.gov (United States)

    Salter, Claire G; Beijer, Danique; Hardy, Holly; Barwick, Katy E S; Bower, Matthew; Mademan, Ines; De Jonghe, Peter; Deconinck, Tine; Russell, Mark A; McEntagart, Meriel M; Chioza, Barry A; Blakely, Randy D; Chilton, John K; De Bleecker, Jan; Baets, Jonathan; Baple, Emma L; Walk, David; Crosby, Andrew H

    2018-04-01

    To identify the genetic cause of disease in 2 previously unreported families with forms of distal hereditary motor neuropathies (dHMNs). The first family comprises individuals affected by dHMN type V, which lacks the cardinal clinical feature of vocal cord paralysis characteristic of dHMN-VII observed in the second family. Next-generation sequencing was performed on the proband of each family. Variants were annotated and filtered, initially focusing on genes associated with neuropathy. Candidate variants were further investigated and confirmed by dideoxy sequence analysis and cosegregation studies. Thorough patient phenotyping was completed, comprising clinical history, examination, and neurologic investigation. dHMNs are a heterogeneous group of peripheral motor neuron disorders characterized by length-dependent neuropathy and progressive distal limb muscle weakness and wasting. We previously reported a dominant-negative frameshift mutation located in the concluding exon of the SLC5A7 gene encoding the choline transporter (CHT), leading to protein truncation, as the likely cause of dominantly-inherited dHMN-VII in an extended UK family. In this study, our genetic studies identified distinct heterozygous frameshift mutations located in the last coding exon of SLC5A7 , predicted to result in the truncation of the CHT C-terminus, as the likely cause of the condition in each family. This study corroborates C-terminal CHT truncation as a cause of autosomal dominant dHMN, confirming upper limb predominating over lower limb involvement, and broadening the clinical spectrum arising from CHT malfunction.

  6. Loss of stability and hydrophobicity of presenilin 1 mutations causing Alzheimer's Disease

    DEFF Research Database (Denmark)

    Somavarapu, Arun Kumar; Kepp, Kasper Planeta

    2016-01-01

    Nearly 200 mutations in the gene coding for presenilin 1 (PSEN1) cause early-onset Alzheimer's Disease, yet the molecular mechanism remains obscure. As a meta-analysis, we compiled available clinical and biochemical data for PSEN1 variants and correlated these to chemical properties of the mutant...

  7. Autosomal dominant pseudohypoaldosteronism type 1 with a novel splice site mutation in MR gene

    Directory of Open Access Journals (Sweden)

    Kaito Hiroshi

    2009-11-01

    Full Text Available Abstract Background Autosomal dominant pseudohypoaldosteronism type 1 (PHA1 is a rare inherited condition that is characterized by renal resistance to aldosterone as well as salt wasting, hyperkalemia, and metabolic acidosis. Renal PHA1 is caused by mutations of the human mineralcorticoid receptor gene (MR, but it is a matter of debate whether MR mutations cause mineralcorticoid resistance via haploinsufficiency or dominant negative mechanism. It was previously reported that in a case with nonsense mutation the mutant mRNA was absent in lymphocytes because of nonsense mediated mRNA decay (NMD and therefore postulated that haploinsufficiency alone can give rise to the PHA1 phenotype in patients with truncated mutations. Methods and Results We conducted genomic DNA analysis and mRNA analysis for familial PHA1 patients extracted from lymphocytes and urinary sediments and could detect one novel splice site mutation which leads to exon skipping and frame shift result in premature termination at the transcript level. The mRNA analysis showed evidence of wild type and exon-skipped RT-PCR products. Conclusion mRNA analysis have been rarely conducted for PHA1 because kidney tissues are unavailable for this disease. However, we conducted RT-PCR analysis using mRNA extracted from urinary sediments. We could demonstrate that NMD does not fully function in kidney cells and that haploinsufficiency due to NMD with premature termination is not sufficient to give rise to the PHA1 phenotype at least in this mutation of our patient. Additional studies including mRNA analysis will be needed to identify the exact mechanism of the phenotype of PHA.

  8. Mosaicism for dominant collagen 6 mutations as a cause for intrafamilial phenotypic variability.

    Science.gov (United States)

    Donkervoort, Sandra; Hu, Ying; Stojkovic, Tanya; Voermans, Nicol C; Foley, A Reghan; Leach, Meganne E; Dastgir, Jahannaz; Bolduc, Véronique; Cullup, Thomas; de Becdelièvre, Alix; Yang, Lin; Su, Hai; Meilleur, Katherine; Schindler, Alice B; Kamsteeg, Erik-Jan; Richard, Pascale; Butterfield, Russell J; Winder, Thomas L; Crawford, Thomas O; Weiss, Robert B; Muntoni, Francesco; Allamand, Valérie; Bönnemann, Carsten G

    2015-01-01

    Collagen 6-related dystrophies and myopathies (COL6-RD) are a group of disorders that form a wide phenotypic spectrum, ranging from severe Ullrich congenital muscular dystrophy, intermediate phenotypes, to the milder Bethlem myopathy. Both inter- and intrafamilial variable expressivity are commonly observed. We present clinical, immunohistochemical, and genetic data on four COL6-RD families with marked intergenerational phenotypic heterogeneity. This variable expression seemingly masquerades as anticipation is due to parental mosaicism for a dominant mutation, with subsequent full inheritance and penetrance of the mutation in the heterozygous offspring. We also present an additional fifth simplex patient identified as a mosaic carrier. Parental mosaicism was confirmed in the four families through quantitative analysis of the ratio of mutant versus wild-type allele (COL6A1, COL6A2, and COL6A3) in genomic DNA from various tissues, including blood, dermal fibroblasts, and saliva. Consistent with somatic mosaicism, parental samples had lower ratios of mutant versus wild-type allele compared with the fully heterozygote offspring. However, there was notable variability of the mutant allele levels between tissues tested, ranging from 16% (saliva) to 43% (fibroblasts) in one mosaic father. This is the first report demonstrating mosaicism as a cause of intrafamilial/intergenerational variability of COL6-RD, and suggests that sporadic and parental mosaicism may be more common than previously suspected. © 2014 WILEY PERIODICALS, INC.

  9. Characterization of two Turkish beta-hexosaminidase mutations causing Tay-Sachs disease.

    Science.gov (United States)

    Ozkara, Hatice Asuman; Sandhoff, Konrad

    2003-04-01

    Two homoallelic mutations have recently been identified in the alpha-subunit of hexosaminidase A (EC 3.2.1.52) causing the infantile form of Tay-Sachs disease in Turkish patients. Both of these mutations, a 12 bp deletion (1096-1107 or 1098-1108 or 1099-1109) in exon 10 and a point mutation (G1362 to A, Gly454 to Asp) in exon 12, are located in the catalytic domain of the hexosaminidase alpha-chain. In order to determine whether these mutations affect the function of the catalytic domain or result in an instable protein, both mutant cDNAs were overexpressed in COS-1 cells. As judged by Western blotting, transfections of wild-type cDNA produced pro-alpha-chain and mature alpha-chain in parallel with a fivefold increase in cellular hexosaminidase activity using the synthetic substrate 4-methylumbelliferyl beta-N-acetylglucosamine 6-sulfate (MUGS). However, both mutants produced only pro-alpha-chains, although no mature form or detectable hexosaminidase activity towards two different synthetic substrates was observed. These data are consistent with the biochemical phenotype of infantile Tay-Sachs disease. We conclude that the overexpressed mutant pro-alpha-chains were misfolded and could not undergo further proteolytic processing to the active form of the enzyme in the lysosome.

  10. Somatic USP8 Gene Mutations Are a Common Cause of Pediatric Cushing Disease.

    Science.gov (United States)

    Faucz, Fabio R; Tirosh, Amit; Tatsi, Christina; Berthon, Annabel; Hernández-Ramírez, Laura C; Settas, Nikolaos; Angelousi, Anna; Correa, Ricardo; Papadakis, Georgios Z; Chittiboina, Prashant; Quezado, Martha; Pankratz, Nathan; Lane, John; Dimopoulos, Aggeliki; Mills, James L; Lodish, Maya; Stratakis, Constantine A

    2017-08-01

    Somatic mutations in the ubiquitin-specific protease 8 (USP8) gene have been recently identified as the most common genetic alteration in patients with Cushing disease (CD). However, the frequency of these mutations in the pediatric population has not been extensively assessed. We investigated the status of the USP8 gene at the somatic level in a cohort of pediatric patients with corticotroph adenomas. The USP8 gene was fully sequenced in both germline and tumor DNA samples from 42 pediatric patients with CD. Clinical, biochemical, and imaging data were compared between patients with and without somatic USP8 mutations. Five different USP8 mutations (three missense, one frameshift, and one in-frame deletion) were identified in 13 patients (31%), all of them located in exon 14 at the previously described mutational hotspot, affecting the 14-3-3 binding motif of the protein. Patients with somatic mutations were older at disease presentation [mean 5.1 ± 2.1 standard deviation (SD) vs 13.1 ± 3.6 years, P = 0.03]. Levels of urinary free cortisol, midnight serum cortisol, and adrenocorticotropic hormone, as well as tumor size and frequency of invasion of the cavernous sinus, were not significantly different between the two groups. However, patients harboring somatic USP8 mutations had a higher likelihood of recurrence compared with patients without mutations (46.2% vs 10.3%, P = 0.009). Somatic USP8 gene mutations are a common cause of pediatric CD. Patients harboring a somatic mutation had a higher likelihood of tumor recurrence, highlighting the potential importance of this molecular defect for the disease prognosis and the development of targeted therapeutic options. Copyright © 2017 Endocrine Society

  11. Darier disease mutation E917K of SERCA2b relieves the inhibitory influence of the 11th transmembrane segment

    DEFF Research Database (Denmark)

    Mikkelsen, Stine; Holdensen, Anne Nyholm; Vangheluwe, Peter

    Mutation E917K of the Sarco(endo)plasmic Reticulum Ca2+-ATPase isoform 2b (SERCA2b) causes Darier disease, an autosomal dominantly inherited skin disease also denoted as Keratosis Follicularis or Darier-White disease. SERCA is encoded by three genes ATP2A1, ATP2A2 and ATP2A3 giving rise to the pr......Mutation E917K of the Sarco(endo)plasmic Reticulum Ca2+-ATPase isoform 2b (SERCA2b) causes Darier disease, an autosomal dominantly inherited skin disease also denoted as Keratosis Follicularis or Darier-White disease. SERCA is encoded by three genes ATP2A1, ATP2A2 and ATP2A3 giving rise...

  12. Mutation in the novel nuclear-encoded mitochondrial protein CHCHD10 in a family with autosomal dominant mitochondrial myopathy.

    Science.gov (United States)

    Ajroud-Driss, Senda; Fecto, Faisal; Ajroud, Kaouther; Lalani, Irfan; Calvo, Sarah E; Mootha, Vamsi K; Deng, Han-Xiang; Siddique, Nailah; Tahmoush, Albert J; Heiman-Patterson, Terry D; Siddique, Teepu

    2015-01-01

    Mitochondrial myopathies belong to a larger group of systemic diseases caused by morphological or biochemical abnormalities of mitochondria. Mitochondrial disorders can be caused by mutations in either the mitochondrial or nuclear genome. Only 5% of all mitochondrial disorders are autosomal dominant. We analyzed DNA from members of the previously reported Puerto Rican kindred with an autosomal dominant mitochondrial myopathy (Heimann-Patterson et al. 1997). Linkage analysis suggested a putative locus on the pericentric region of the long arm of chromosome 22 (22q11). Using the tools of integrative genomics, we established chromosome 22 open reading frame 16 (C22orf16) (later designated as CHCHD10) as the only high-scoring mitochondrial candidate gene in our minimal candidate region. Sequence analysis revealed a double-missense mutation (R15S and G58R) in cis in CHCHD10 which encodes a coiled coil-helix-coiled coil-helix protein of unknown function. These two mutations completely co-segregated with the disease phenotype and were absent in 1,481 Caucasian and 80 Hispanic (including 32 Puerto Rican) controls. Expression profiling showed that CHCHD10 is enriched in skeletal muscle. Mitochondrial localization of the CHCHD10 protein was confirmed using immunofluorescence in cells expressing either wild-type or mutant CHCHD10. We found that the expression of the G58R, but not the R15S, mutation induced mitochondrial fragmentation. Our findings identify a novel gene causing mitochondrial myopathy, thereby expanding the spectrum of mitochondrial myopathies caused by nuclear genes. Our findings also suggest a role for CHCHD10 in the morphologic remodeling of the mitochondria.

  13. The m.3291T>C mt-tRNALeu(UUR) mutation is definitely pathogenic and causes multisystem mitochondrial disease

    Science.gov (United States)

    Yarham, John W.; Blakely, Emma L.; Alston, Charlotte L.; Roberts, Mark E.; Ealing, John; Pal, Piyali; Turnbull, Douglass M.; McFarland, Robert; Taylor, Robert W.

    2013-01-01

    Mitochondrial tRNA point mutations are important causes of human disease, and have been associated with a diverse range of clinical phenotypes. Definitively proving the pathogenicity of any given mt-tRNA mutation requires combined molecular, genetic and functional studies. Subsequent evaluation of the mutation using a pathogenicity scoring system is often very helpful in concluding whether or not the mutation is causing disease. Despite several independent reports linking the m.3291T>C mutation to disease in humans, albeit in association with several different phenotypes, its pathogenicity remains controversial. A lack of conclusive functional evidence and an over-emphasis on the poor evolutionary conservation of the affected nucleotide have contributed to this controversy. Here we describe an adult patient who presented with deafness and lipomas and evidence of mitochondrial abnormalities in his muscle biopsy, who harbours the m.3291T > C mutation, providing conclusive evidence of pathogenicity through analysis of mutation segregation with cytochrome c oxidase (COX) deficiency in single muscle fibres, underlining the importance of performing functional studies when assessing pathogenicity. PMID:23273904

  14. JUNCTOPHILIN 3 (JPH3) EXPANSION MUTATIONS CAUSING HUNTINGTON DISEASE LIKE 2 (HDL2) ARE COMMON IN SOUTH AFRICAN PATIENTS WITH AFRICAN ANCESTRY AND A HUNTINGTON DISEASE PHENOTYPE

    Science.gov (United States)

    Krause, A; Mitchell, CL; Essop, F; Tager, S; Temlett, J; Stevanin, G; Ross, CA; Rudnicki, DD; Margolis, RL

    2015-01-01

    Huntington disease (HD) is a progressive autosomal dominant neurodegenerative disorder, characterized by abnormal movements, cognitive decline and psychiatric symptoms, caused by a CAG repeat expansion in the huntingtin (HTT) gene on chromosome 4p. A CAG/CTG repeat expansion in the junctophilin-3 (JPH3) gene on chromosome 16q24.2 causes a Huntington disease-like phenotype (HDL2). All patients to date with HDL2 have some African ancestry. The present study aimed to characterize the genetic basis of the Huntington disease phenotype in South Africans and to investigate the possible origin of the JPH3 mutation. In a sample of unrelated South African individuals referred for diagnostic HD testing, 62% (106/171) of white patients compared to only 36% (47/130) of black patients had an expansion in HTT. However, 15% (20/130) of black South African patients and no white patients (0/171) had an expansion in JPH3, confirming the diagnosis of Huntington disease like 2 (HDL2). Individuals with HDL2 share many clinical features with individuals with HD and are clinically indistinguishable in many cases, although the average age of onset and diagnosis in HDL2 is 5 years later than HD and individual clinical features may be more prominent. HDL2 mutations contribute significantly to the HD phenotype in South Africans with African ancestry. JPH3 haplotype studies in 31 families, mainly from South Africa and North America, provide evidence for a founder mutation and support a common African origin for all HDL2 patients. Molecular testing in individuals with an HD phenotype and African ancestry should include testing routinely for JPH3 mutations. PMID:26079385

  15. Novel calcium-sensing receptor cytoplasmic tail deletion mutation causing autosomal dominant hypocalcemia: molecular and clinical study.

    Science.gov (United States)

    Obermannova, Barbora; Sumnik, Zdenek; Dusatkova, Petra; Cinek, Ondrej; Grant, Michael; Lebl, Jan; Hendy, Geoffrey N

    2016-04-01

    Autosomal dominant hypocalcemia (ADH) is a rare disorder caused by activating mutations of the calcium-sensing receptor (CASR). The treatment of ADH patients with 1α-hydroxylated vitamin D derivatives can cause hypercalciuria leading to nephrocalcinosis. We studied a girl who presented with hypoparathyroidism and asymptomatic hypocalcemia at age 2.5 years. Mutations of CASR were investigated by DNA sequencing. Functional analyses of mutant and WT CASRs were done in transiently transfected human embryonic kidney (HEK293) cells. The proband and her father are heterozygous for an eight-nucleotide deletion c.2703_2710delCCTTGGAG in the CASR encoding the intracellular domain of the protein. Transient expression of CASR constructs in kidney cells in vitro suggested greater cell surface expression of the mutant receptor with a left-shifted extracellular calcium dose-response curve relative to that of the WT receptor consistent with gain of function. Initial treatment of the patient with calcitriol led to increased urinary calcium excretion. Evaluation for mosaicism in the paternal grandparents of the proband was negative. We describe a novel naturally occurring deletion mutation within the CASR that apparently arose de novo in the father of the ADH proband. Functional analysis suggests that the cytoplasmic tail of the CASR contains determinants that regulate the attenuation of signal transduction. Early molecular analysis of the CASR gene in patients with isolated idiopathic hypoparathyroidism is recommended because of its relevance to clinical outcome and treatment choice. In ADH patients, calcium supplementation and low-dose cholecalciferol avoids hypocalcemic symptoms without compromising renal function. © 2016 European Society of Endocrinology.

  16. EDAR mutation in autosomal dominant hypohidrotic ectodermal dysplasia in two Swedish families

    Directory of Open Access Journals (Sweden)

    Schmitt-Egenolf Marcus

    2006-11-01

    Full Text Available Abstract Background Hypohidrotic ectodermal dysplasia (HED is a genetic disorder characterized by defective development of teeth, hair, nails and eccrine sweat glands. Both autosomal dominant and autosomal recessive forms of HED have previously been linked to mutations in the ectodysplasin 1 anhidrotic receptor (EDAR protein that plays an important role during embryogenesis. Methods The coding DNA sequence of the EDAR gene was analyzed in two large Swedish three-generational families with autosomal dominant HED. Results A non-sense C to T mutation in exon 12 was identified in both families. This disease-specific mutation changes an arginine amino acid in position 358 of the EDAR protein into a stop codon (p.Arg358X, thereby truncating the protein. In addition to the causative mutation two polymorphisms, not associated with the HED disorder, were also found in the EDAR gene. Conclusion The finding of the p.Arg358X mutation in the Swedish families is the first corroboration of a previously described observation in an American family. Thus, our study strengthens the role of this particular mutation in the aetiology of autosomal dominant HED and confirms the importance of EDAR for the development of HED.

  17. Alanyl-tRNA synthetase mutation in a family with dominant distal hereditary motor neuropathy

    Science.gov (United States)

    Zhao, Z.; Hashiguchi, A.; Sakiyama, Y.; Okamoto, Y.; Tokunaga, S.; Zhu, L.; Shen, H.; Takashima, H.

    2012-01-01

    Objective: To identify a new genetic cause of distal hereditary motor neuropathy (dHMN), which is also known as a variant of Charcot-Marie-Tooth disease (CMT), in a Chinese family. Methods: We investigated a Chinese family with dHMN clinically, electrophysiologically, and genetically. We screened for the mutations of 28 CMT or related pathogenic genes using an originally designed microarray resequencing DNA chip. Results: Investigation of the family history revealed an autosomal dominant transmission pattern. The clinical features of the family included mild weakness and wasting of the distal muscles of the lower limb and foot deformity, without clinical sensory involvement. Electrophysiologic studies revealed motor neuropathy. MRI of the lower limbs showed accentuated fatty infiltration of the gastrocnemius and vastus lateralis muscles. All 4 affected family members had a heterozygous missense mutation c.2677G>A (p.D893N) of alanyl-tRNA synthetase (AARS), which was not found in the 4 unaffected members and control subjects. Conclusion: An AARS mutation caused dHMN in a Chinese family. AARS mutations result in not only a CMT phenotype but also a dHMN phenotype. PMID:22573628

  18. Generation of an induced pluripotent stem cell line, IBMS-iPSC-014-05, from a female autosomal dominant polycystic kidney disease patient carrying a common mutation of R803X in PKD2

    Directory of Open Access Journals (Sweden)

    Ming-Ching Ho

    2017-12-01

    Full Text Available Autosomal dominant polycystic kidney disease (ADPKD is one of the most commonly inherited forms of polycystic kidney disease, and is characterized by the growth of numerous cysts in both kidneys. Here we generated an induced pluripotent stem cell (iPSC line from the peripheral blood mononuclear cells (PBMCs of a 63-year-old female ADPKD patient carrying an R803X mutation in the PKD2 gene using the Sendai-virus delivery system. Downstream characterization of these iPSCs showed that they possessed normal karyotyping, were free of genomic integration, retained the disease-causing PKD2 mutation, expressed pluripotency markers and could differentiate into three germ layers.

  19. Axonal Transport of TDP-43 mRNA Granules Is Impaired by ALS-Causing Mutations

    OpenAIRE

    Alami, Nael H.; Smith, Rebecca B.; Carrasco, Monica A.; Williams, Luis A.; Winborn, Christina S.; Han, Steve S.W.; Kiskinis, Evangelos; Winborn, Brett; Freibaum, Brian D.; Kanagaraj, Anderson; Clare, Alison J.; Badders, Nisha M.; Bilican, Bilada; Chaum, Edward; Chandran, Siddharthan

    2014-01-01

    The RNA binding protein TDP-43 regulates RNA metabolism at multiple levels, including transcription, RNA splicing, and mRNA stability. TDP-43 is a major component of the cytoplasmic inclusions characteristic of amyotrophic lateral sclerosis and some types of frontotemporal lobar degeneration. The importance of TDP-43 in disease is underscored by the fact that dominant missense mutations are sufficient to cause disease, although the role of TDP-43 in pathogenesis is unknown. ...

  20. Disease-causing mutations in exon 11 of the medium-chain acyl-CoA dehydrogenase gene

    DEFF Research Database (Denmark)

    Andresen, B S; Jensen, T G; Bross, P

    1994-01-01

    spot. Here we describe the results from sequence analysis of exon 11 and part of the flanking introns from 36 compound heterozygous patients with MCAD deficiency. We have identified four previously unknown disease-causing mutations (M301T, S311R, R324X, and E359X) and two silent mutations in exon 11...

  1. Progranulin mutations as risk factors for Alzheimer disease.

    Science.gov (United States)

    Perry, David C; Lehmann, Manja; Yokoyama, Jennifer S; Karydas, Anna; Lee, Jason Jiyong; Coppola, Giovanni; Grinberg, Lea T; Geschwind, Dan; Seeley, William W; Miller, Bruce L; Rosen, Howard; Rabinovici, Gil

    2013-06-01

    Mutations in the progranulin gene are known to cause diverse clinical syndromes, all attributed to frontotemporal lobar degeneration. We describe 2 patients with progranulin gene mutations and evidence of Alzheimer disease (AD) pathology. We also conducted a literature review. This study focused on case reports of 2 unrelated patients with progranulin mutations at the University of California, San Francisco, Memory and Aging Center. One patient presented at age 65 years with a clinical syndrome suggestive of AD and showed evidence of amyloid aggregation on positron emission tomography. Another patient presented at age 54 years with logopenic progressive aphasia and, at autopsy, showed both frontotemporal lobar degeneration with TDP-43 inclusions and AD. In addition to autosomal-dominant frontotemporal lobar degeneration, mutations in the progranulin gene may be a risk factor for AD clinical phenotypes and neuropathology.

  2. Autosomal dominant polycystic kidney disease in a family with mosaicism and hypomorphic allele.

    Science.gov (United States)

    Reiterová, Jana; Štekrová, Jitka; Merta, Miroslav; Kotlas, Jaroslav; Elišáková, Veronika; Lněnička, Petr; Korabečná, Marie; Kohoutová, Milada; Tesař, Vladimír

    2013-03-15

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common form of inherited kidney disease that results in renal failure. ADPKD is a systemic disorder with cysts and connective tissue abnormalities involving many organs. ADPKD caused by mutations in PKD1 gene is significantly more severe than the cases caused by PKD2 gene mutations. The large intra-familial variability of ADPKD highlights a role for genetic background. Here we report a case of ADPKD family initially appearing unlinked to the PKD1 or PKD2 loci and the influence of mosaicism and hypomorphic allele on the variability of the clinical course of the disease. A grandmother with the PKD1 gene mutation in mosaicism (p.Val1105ArgfsX4) and with mild clinical course of ADPKD (end stage renal failure at the age of 77) seemed to have ADPKD because of PKD2 gene mutation. On the other hand, her grandson had a severe clinical course (end stage renal disease at the age of 45) in spite of the early treatment of mild hypertension. There was found by mutational analysis of PKD genes that the severe clinical course was caused by PKD1 gene frameshifting mutation inherited from his father and mildly affected grandmother in combination with inherited hypomorphic PKD1 allele with described missense mutation (p.Thr2250Met) from his clinically healthy mother. The sister with two cysts and with PKD1 hypomorphic allele became the kidney donor to her severely affected brother. We present the first case of ADPKD with the influence of mosaicism and hypomorphic allele of the PKD1 gene on clinical course of ADPKD in one family. Moreover, this report illustrates the role of molecular genetic testing in assessing young related kidney donors for patients with ADPKD.

  3. Pathogenesis and potential therapy of autosomal dominant polycystic kidney disease

    Directory of Open Access Journals (Sweden)

    O.O. Melnyk

    2017-10-01

    Full Text Available Autosomal dominant polycystic kidney disease (ADPKD is a hereditary disease characterized by progressive growth of the cyst and an increase in the total volume of the kidneys which leads to kidney failure. The main causes of ADPKD are mutations in the genes PKD1 and PKD2 which encode the formation of polycystin-1 and polycystin-2 proteins. There is a connection between structural and functional defects in the primary cilia with the ADPKD. The most promising drugs for the treatment of ADPKD today are vasopressin-2 receptor antagonists, m-TOR and c-AMP inhibitors.

  4. Disease-Causing Mutations in the G Protein Gαs Subvert the Roles of GDP and GTP.

    Science.gov (United States)

    Hu, Qi; Shokat, Kevan M

    2018-05-17

    The single most frequent cancer-causing mutation across all heterotrimeric G proteins is R201C in Gαs. The current model explaining the gain-of-function activity of the R201 mutations is through the loss of GTPase activity and resulting inability to switch off to the GDP state. Here, we find that the R201C mutation can bypass the need for GTP binding by directly activating GDP-bound Gαs through stabilization of an intramolecular hydrogen bond network. Having found that a gain-of-function mutation can convert GDP into an activator, we postulated that a reciprocal mutation might disrupt the normal role of GTP. Indeed, we found R228C, a loss-of-function mutation in Gαs that causes pseudohypoparathyroidism type 1a (PHP-Ia), compromised the adenylyl cyclase-activating activity of Gαs bound to a non-hydrolyzable GTP analog. These findings show that disease-causing mutations in Gαs can subvert the canonical roles of GDP and GTP, providing new insights into the regulation mechanism of G proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. The effect of a change in mutation rate on the incidence of dominant and X-linked recessive disorders in man

    International Nuclear Information System (INIS)

    Childs, J.D.

    1981-01-01

    In order to assess the impact on man of a sustained change in mutation rate that might be caused by ionizing radiation or a chemical mutagen in the environment, it is important to determine the current incidence of genetic disease, the rate at which deleterious mutations arise and the number of generations that mutations persist before eliminated by selection. From these data it should be possible to estimate both the increase in genetic disease in the first generation following the increase in mutation rate, and the rate at which a new equilibrium between mutation and selection would occur. In this paper the results of a survey to determine birth frequency, mutation rate and reproductive fitness for each of the important dominant and X-linked recessive disorders are described. It is estimated that these disorders affect about 0.6% of live-born individuals, including 0.1% of live-borns who carry a newly-arising mutation. (orig.)

  6. Multiple self-healing squamous epithelioma is caused by a disease-specific spectrum of mutations in TGFBR1

    DEFF Research Database (Denmark)

    Goudie, David R; D'Alessandro, Mariella; Merriman, Barry

    2011-01-01

    Multiple self-healing squamous epithelioma (MSSE), also known as Ferguson-Smith disease (FSD), is an autosomal-dominant skin cancer condition characterized by multiple squamous-carcinoma-like locally invasive skin tumors that grow rapidly for a few weeks before spontaneously regressing, leaving s......-of-function TGFBR1 mutations and MSSE. This distinguishes MSSE from the Marfan syndrome-related disorders in which missense mutations in TGFBR1 lead to developmental defects with vascular involvement but no reported predisposition to cancer....

  7. Multiple self-healing squamous epithelioma is caused by a disease-specific spectrum of mutations in TGFBR1

    DEFF Research Database (Denmark)

    Goudie, David R; D'Alessandro, Mariella; Merriman, Barry

    2011-01-01

    Multiple self-healing squamous epithelioma (MSSE), also known as Ferguson-Smith disease (FSD), is an autosomal-dominant skin cancer condition characterized by multiple squamous-carcinoma-like locally invasive skin tumors that grow rapidly for a few weeks before spontaneously regressing, leaving......-of-function TGFBR1 mutations and MSSE. This distinguishes MSSE from the Marfan syndrome-related disorders in which missense mutations in TGFBR1 lead to developmental defects with vascular involvement but no reported predisposition to cancer....

  8. Autozygosity reveals recessive mutations and novel mechanisms in dominant genes: implications in variant interpretation

    KAUST Repository

    Monies, Dorota; Maddirevula, Sateesh; Kurdi, Wesam; Alanazy, Mohammed H.; Alkhalidi, Hisham; Al-Owain, Mohammed; Sulaiman, Raashda A.; Faqeih, Eissa; Goljan, Ewa; Ibrahim, Niema; Abdulwahab, Firdous; Hashem, Mais; Abouelhoda, Mohamed; Shaheen, Ranad; Arold, Stefan T.; Alkuraya, Fowzan S.

    2017-01-01

    The purpose of this study is to describe recessive alleles in strictly dominant genes. Identifying recessive mutations in genes for which only dominant disease or risk alleles have been reported can expand our understanding of the medical relevance

  9. No muscle involvement in myoclonus-dystonia caused by epsilon-sarcoglycan gene mutations1

    DEFF Research Database (Denmark)

    Hjermind, L.E.; Vissing, J.; Asmus, F.

    2008-01-01

    Mutations in the epsilon-sarcoglycan gene (SGCE) can cause autosomal dominant inherited myoclonus-dystonia (M-D). Defects in other sarcoglycans; alpha-, beta-, gamma-, and delta can cause autosomal recessive inherited limb girdle muscular dystrophies. epsilon- and alpha-sarcoglycans are very...... strength and mass showed no difference between M-D patients and controls. Our findings indicate that patients with M-D have no signs or symptoms of muscle disease. This suggests a different role of the sarcoglycan complex epsilonbetagammadelta versus alphabetagammadelta complex in humans, as earlier...

  10. Features of 5'-splice-site efficiency derived from disease-causing mutations and comparative genomics

    DEFF Research Database (Denmark)

    Roca, Xavier; Olson, Andrew J; Rao, Atmakuri R

    2008-01-01

    Many human diseases, including Fanconi anemia, hemophilia B, neurofibromatosis, and phenylketonuria, can be caused by 5'-splice-site (5'ss) mutations that are not predicted to disrupt splicing, according to position weight matrices. By using comparative genomics, we identify pairwise dependencies...

  11. Kufs disease, the major adult form of neuronal ceroid lipofuscinosis, caused by mutations in CLN6.

    LENUS (Irish Health Repository)

    Arsov, Todor

    2011-05-13

    The molecular basis of Kufs disease is unknown, whereas a series of genes accounting for most of the childhood-onset forms of neuronal ceroid lipofuscinosis (NCL) have been identified. Diagnosis of Kufs disease is difficult because the characteristic lipopigment is largely confined to neurons and can require a brain biopsy or autopsy for final diagnosis. We mapped four families with Kufs disease for whom there was good evidence of autosomal-recessive inheritance and found two peaks on chromosome 15. Three of the families were affected by Kufs type A disease and presented with progressive myoclonus epilepsy, and one was affected by type B (presenting with dementia and motor system dysfunction). Sequencing of a candidate gene in one peak shared by all four families identified no mutations, but sequencing of CLN6, found in the second peak and shared by only the three families affected by Kufs type A disease, revealed pathogenic mutations in all three families. We subsequently sequenced CLN6 in eight other families, three of which were affected by recessive Kufs type A disease. Mutations in both CLN6 alleles were found in the three type A cases and in one family affected by unclassified Kufs disease. Mutations in CLN6 are the major cause of recessive Kufs type A disease. The phenotypic differences between variant late-infantile NCL, previously found to be caused by CLN6, and Kufs type A disease are striking; there is a much later age at onset and lack of visual involvement in the latter. Sequencing of CLN6 will provide a simple diagnostic strategy in this disorder, in which definitive identification usually requires invasive biopsy.

  12. Recurrent De Novo Mutations Affecting Residue Arg138 of Pyrroline-5-Carboxylate Synthase Cause a Progeroid Form of Autosomal-Dominant Cutis Laxa.

    Science.gov (United States)

    Fischer-Zirnsak, Björn; Escande-Beillard, Nathalie; Ganesh, Jaya; Tan, Yu Xuan; Al Bughaili, Mohammed; Lin, Angela E; Sahai, Inderneel; Bahena, Paulina; Reichert, Sara L; Loh, Abigail; Wright, Graham D; Liu, Jaron; Rahikkala, Elisa; Pivnick, Eniko K; Choudhri, Asim F; Krüger, Ulrike; Zemojtel, Tomasz; van Ravenswaaij-Arts, Conny; Mostafavi, Roya; Stolte-Dijkstra, Irene; Symoens, Sofie; Pajunen, Leila; Al-Gazali, Lihadh; Meierhofer, David; Robinson, Peter N; Mundlos, Stefan; Villarroel, Camilo E; Byers, Peter; Masri, Amira; Robertson, Stephen P; Schwarze, Ulrike; Callewaert, Bert; Reversade, Bruno; Kornak, Uwe

    2015-09-03

    Progeroid disorders overlapping with De Barsy syndrome (DBS) are collectively denoted as autosomal-recessive cutis laxa type 3 (ARCL3). They are caused by biallelic mutations in PYCR1 or ALDH18A1, encoding pyrroline-5-carboxylate reductase 1 and pyrroline-5-carboxylate synthase (P5CS), respectively, which both operate in the mitochondrial proline cycle. We report here on eight unrelated individuals born to non-consanguineous families clinically diagnosed with DBS or wrinkly skin syndrome. We found three heterozygous mutations in ALDH18A1 leading to amino acid substitutions of the same highly conserved residue, Arg138 in P5CS. A de novo origin was confirmed in all six probands for whom parental DNA was available. Using fibroblasts from affected individuals and heterologous overexpression, we found that the P5CS-p.Arg138Trp protein was stable and able to interact with wild-type P5CS but showed an altered sub-mitochondrial distribution. A reduced size upon native gel electrophoresis indicated an alteration of the structure or composition of P5CS mutant complex. Furthermore, we found that the mutant cells had a reduced P5CS enzymatic activity leading to a delayed proline accumulation. In summary, recurrent de novo mutations, affecting the highly conserved residue Arg138 of P5CS, cause an autosomal-dominant form of cutis laxa with progeroid features. Our data provide insights into the etiology of cutis laxa diseases and will have immediate impact on diagnostics and genetic counseling. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  13. Autosomal dominant cutis laxa with progeroid features due to a novel, de novo mutation in ALDH18A1.

    Science.gov (United States)

    Bhola, Priya T; Hartley, Taila; Bareke, Eric; Boycott, Kym M; Nikkel, Sarah M; Dyment, David A

    2017-06-01

    De novo dominant mutations in the aldehyde dehydrogenase 18 family member A1 (ALDH18A1) gene have recently been shown to cause autosomal dominant cutis laxa with progeroid features (MIM 616603). To date, all de novo dominant mutations have been found in a single highly conserved amino acid residue at position p.Arg138. We report an 8-year-old male with a clinical diagnosis of autosomal dominant cutis laxa (ADCL) with progeroid features and a novel de novo missense mutation in ALDH18A1 (NM_002860.3: c.377G>A (p.Arg126His)). This is the first report of an individual with ALDH18A1-ADCL due to a substitution at a residue other than p.Arg138. Knowledge of the complete spectrum of dominant-acting mutations that cause this rare syndrome will have implications for molecular diagnosis and genetic counselling of these families.

  14. Data-driven models of dominantly-inherited Alzheimer's disease progression.

    Science.gov (United States)

    Oxtoby, Neil P; Young, Alexandra L; Cash, David M; Benzinger, Tammie L S; Fagan, Anne M; Morris, John C; Bateman, Randall J; Fox, Nick C; Schott, Jonathan M; Alexander, Daniel C

    2018-03-22

    Dominantly-inherited Alzheimer's disease is widely hoped to hold the key to developing interventions for sporadic late onset Alzheimer's disease. We use emerging techniques in generative data-driven disease progression modelling to characterize dominantly-inherited Alzheimer's disease progression with unprecedented resolution, and without relying upon familial estimates of years until symptom onset. We retrospectively analysed biomarker data from the sixth data freeze of the Dominantly Inherited Alzheimer Network observational study, including measures of amyloid proteins and neurofibrillary tangles in the brain, regional brain volumes and cortical thicknesses, brain glucose hypometabolism, and cognitive performance from the Mini-Mental State Examination (all adjusted for age, years of education, sex, and head size, as appropriate). Data included 338 participants with known mutation status (211 mutation carriers in three subtypes: 163 PSEN1, 17 PSEN2, and 31 APP) and a baseline visit (age 19-66; up to four visits each, 1.1 ± 1.9 years in duration; spanning 30 years before, to 21 years after, parental age of symptom onset). We used an event-based model to estimate sequences of biomarker changes from baseline data across disease subtypes (mutation groups), and a differential equation model to estimate biomarker trajectories from longitudinal data (up to 66 mutation carriers, all subtypes combined). The two models concur that biomarker abnormality proceeds as follows: amyloid deposition in cortical then subcortical regions (∼24 ± 11 years before onset); phosphorylated tau (17 ± 8 years), tau and amyloid-β changes in cerebrospinal fluid; neurodegeneration first in the putamen and nucleus accumbens (up to 6 ± 2 years); then cognitive decline (7 ± 6 years), cerebral hypometabolism (4 ± 4 years), and further regional neurodegeneration. Our models predicted symptom onset more accurately than predictions that used familial estimates: root mean squared error of 1

  15. Mutations in SLC20A2 are a major cause of familial idiopathic basal ganglia calcification

    Science.gov (United States)

    Hsu, Sandy Chan; Sears, Renee L.; Lemos, Roberta R.; Quintáns, Beatriz; Huang, Alden; Spiteri, Elizabeth; Nevarez, Lisette; Mamah, Catherine; Zatz, Mayana; Pierce, Kerrie D.; Fullerton, Janice M.; Adair, John C.; Berner, Jon E.; Bower, Matthew; Brodaty, Henry; Carmona, Olga; Dobricić, Valerija; Fogel, Brent L.; García-Estevez, Daniel; Goldman, Jill; Goudreau, John L.; Hopfer, Suellen; Janković, Milena; Jaumà, Serge; Jen, Joanna C.; Kirdlarp, Suppachok; Klepper, Joerg; Kostić, Vladimir; Lang, Anthony E.; Linglart, Agnès; Maisenbacher, Melissa K.; Manyam, Bala V.; Mazzoni, Pietro; Miedzybrodzka, Zofia; Mitarnun, Witoon; Mitchell, Philip B.; Mueller, Jennifer; Novaković, Ivana; Paucar, Martin; Paulson, Henry; Simpson, Sheila A.; Svenningsson, Per; Tuite, Paul; Vitek, Jerrold; Wetchaphanphesat, Suppachok; Williams, Charles; Yang, Michele; Schofield, Peter R.; de Oliveira, João R. M.; Sobrido, María-Jesús

    2014-01-01

    Familial idiopathic basal ganglia calcification (IBGC) or Fahr’s disease is a rare neurodegenerative disorder characterized by calcium deposits in the basal ganglia and other brain regions, which is associated with neuropsychiatric and motor symptoms. Familial IBGC is genetically heterogeneous and typically transmitted in an autosomal dominant fashion. We performed a mutational analysis of SLC20A2, the first gene found to cause IBGC, to assess its genetic contribution to familial IBGC. We recruited 218 subjects from 29 IBGC-affected families of varied ancestry and collected medical history, neurological exam, and head CT scans to characterize each patient’s disease status. We screened our patient cohort for mutations in SLC20A2. Twelve novel (nonsense, deletions, missense, and splice site) potentially pathogenic variants, one synonymous variant, and one previously reported mutation were identified in 13 families. Variants predicted to be deleterious cosegregated with disease in five families. Three families showed nonsegregation with clinical disease of such variants, but retrospective review of clinical and neuroimaging data strongly suggested previous misclassification. Overall, mutations in SLC20A2 account for as many as 41 % of our familial IBGC cases. Our screen in a large series expands the catalog of SLC20A2 mutations identified to date and demonstrates that mutations in SLC20A2 are a major cause of familial IBGC. Non-perfect segregation patterns of predicted deleterious variants highlight the challenges of phenotypic assessment in this condition with highly variable clinical presentation. PMID:23334463

  16. Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa

    International Nuclear Information System (INIS)

    Dryja, T.P.; Han, L.B.; Cowley, G.S.; McGee, T.L.; Berson, E.L.

    1991-01-01

    The authors searched for point mutations in every exon of the rhodopsin gene in 150 patients from separate families with autosomal dominant retinitis pigmentosa. Including the 4 mutations the authors reported previously, they found a total of 17 different mutations that correlate with the disease. Each of these mutations is a single-base substitution corresponding to a single amino acid substitution. Based on current models for the structure of rhodopsin, 3 of the 17 mutant amino acids are normally located on the cytoplasmic side of the protein, 6 in transmembrane domains, and 8 on the intradiscal side. Forty-three of the 150 patients (29%) carry 1 of these mutations, and no patient has more than 1 mutation. In every family with a mutation so far analyzed, the mutation cosegregates with the disease. They found one instance of a mutation in an affected patient that was absent in both unaffected parents (i.e., a new germ-line mutation), indicating that some isolate cases of retinitis pigmentosa carry a mutation of the rhodopsin gene

  17. Identification of Two Disease-causing Genes TJP2 and GJB2 in a Chinese Family with Unconditional Autosomal Dominant Nonsyndromic Hereditary Hearing Impairment

    Directory of Open Access Journals (Sweden)

    Hong-Yang Wang

    2015-01-01

    Full Text Available Background: There are more than 300 genetic loci that have been found to be related to hereditary hearing impairment (HHI, including 92 causative genes for nonsyndromic hearing loss, among which 34 genes are related to autosomal dominant nonsyndromic HHI (ADNSHHI. Traditional linkage analysis and candidate gene sequencing are not effective at detecting the ADNSHHI, especially for the unconditional families that may have more than one pathogenic cause. This study identified two disease-causing genes TJP2 and GJB2 in a Chinese family with unconditional ADNSHHI. Methods: To decipher the genetic code of a Chinese family (family 686 with ADNSHHI, different gene screening techniques have been performed, including linkage analysis, candidate genes screening, high-throughput sequencing and Sanger sequencing. These techniques were done on samples obtained from this family over a period of 10 years. Results: We identified a pathogenic missense mutation, c. 2081G>A (p.G694E, in TJP2, a gene that plays a crucial role in apoptosis and age-related hearing loss (ARHL. The mutation was co-segregated in this pedigree in all, but not in the two patients who presented with different phenotypes from the other affected family members. In one of the two patients, we confirmed that the compound heterozygosity for p.Y136FNx01 and p.G45E in the GJB2 gene may account for the phenotype shown in this patient. Conclusions: We identified the co-occurrence of two genetic causes in family 686. The possible disease-causing missense mutation of TJP2 in family 686 presents an opportunity for further investigation into ARHL. It is necessary to combine various genes screening methods, especially for some unconventional cases.

  18. A novel missense mutation in CCDC88C activates the JNK pathway and causes a dominant form of spinocerebellar ataxia.

    Science.gov (United States)

    Tsoi, Ho; Yu, Allen C S; Chen, Zhefan S; Ng, Nelson K N; Chan, Anne Y Y; Yuen, Liz Y P; Abrigo, Jill M; Tsang, Suk Ying; Tsui, Stephen K W; Tong, Tony M F; Lo, Ivan F M; Lam, Stephen T S; Mok, Vincent C T; Wong, Lawrence K S; Ngo, Jacky C K; Lau, Kwok-Fai; Chan, Ting-Fung; Chan, H Y Edwin

    2014-09-01

    Spinocerebellar ataxias (SCAs) are a group of clinically and genetically diverse and autosomal-dominant disorders characterised by neurological deficits in the cerebellum. At present, there is no cure for SCAs. Of the different distinct subtypes of autosomal-dominant SCAs identified to date, causative genes for only a fraction of them are currently known. In this study, we investigated the cause of an autosomal-dominant SCA phenotype in a family that exhibits cerebellar ataxia and pontocerebellar atrophy along with a global reduction in brain volume. Whole-exome analysis revealed a missense mutation c.G1391A (p.R464H) in the coding region of the coiled-coil domain containing 88C (CCDC88C) gene in all affected individuals. Functional studies showed that the mutant form of CCDC88C activates the c-Jun N-terminal kinase (JNK) pathway, induces caspase 3 cleavage and triggers apoptosis. This study expands our understanding of the cause of autosomal-dominant SCAs, a group of heterogeneous congenital neurological conditions in humans, and unveils a link between the JNK stress pathway and cerebellar atrophy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. GFI1B mutation causes a bleeding disorder with abnormal platelet function.

    Science.gov (United States)

    Stevenson, W S; Morel-Kopp, M-C; Chen, Q; Liang, H P; Bromhead, C J; Wright, S; Turakulov, R; Ng, A P; Roberts, A W; Bahlo, M; Ward, C M

    2013-11-01

    GFI1B is a transcription factor important for erythropoiesis and megakaryocyte development but previously unknown to be associated with human disease. A family with a novel bleeding disorder was identified and characterized. Genetic linkage analysis and massively parallel sequencing were used to localize the mutation causing the disease phenotype on chromosome 9. Functional studies were then performed in megakaryocytic cell lines to determine the biological effects of the mutant transcript. We have identified a family with an autosomal dominant bleeding disorder associated with macrothrombocytopenia, red cell anisopoikilocytosis, and platelet dysfunction. The severity of bleeding is variable with some affected individuals experiencing spontaneous bleeding while other family members exhibit only abnormal bleeding with surgery. A single nucleotide insertion was identified in GFI1B that predicts a frameshift mutation in the fifth zinc finger DNA-binding domain. This mutation alters the transcriptional activity of the protein, resulting in a reduction in platelet α-granule content and aberrant expression of key platelet proteins. GFI1B mutation represents a novel human bleeding disorder, and the described phenotype identifies GFI1B as a critical regulator of platelet shape, number, and function. © 2013 International Society on Thrombosis and Haemostasis.

  20. Two α1-Globin Gene Point Mutations Causing Severe Hb H Disease.

    Science.gov (United States)

    Jiang, Hua; Huang, Lv-Yin; Zhen, Li; Jiang, Fan; Li, Dong-Zhi

    Hb H disease is generally a moderate form of α-thalassemia (α-thal) that rarely requires regular blood transfusions. In this study, two Chinese families with members carrying transfusion-dependent Hb H disease were investigated for rare mutations on the α-globin genes (HBA1, HBA2). In one family, Hb Zürich-Albisrieden [α59(E8)Gly→Arg; HBA1: c.178G>C] in combination with the Southeast Asian (- - SEA ) deletion was the defect responsible for the severe phenotype. In another family, a novel hemoglobin (Hb) variant named Hb Sichuan (HBA1: c.393_394insT), causes α-thal and a severe phenotype when associated with the - - SEA deletion. As these two HBA1 mutations can present as continuous blood transfusion-dependent α-thal, it is important to take this point into account for detecting the carriers, especially in couples in which one partner is already a known α 0 -thal carrier.

  1. Common Variable Immunodeficiency Caused by FANC Mutations.

    Science.gov (United States)

    Sekinaka, Yujin; Mitsuiki, Noriko; Imai, Kohsuke; Yabe, Miharu; Yabe, Hiromasa; Mitsui-Sekinaka, Kanako; Honma, Kenichi; Takagi, Masatoshi; Arai, Ayako; Yoshida, Kenichi; Okuno, Yusuke; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Miyano, Satoru; Muramatsu, Hideki; Kojima, Seiji; Hira, Asuka; Takata, Minoru; Ohara, Osamu; Ogawa, Seishi; Morio, Tomohiro; Nonoyama, Shigeaki

    2017-07-01

    Common variable immunodeficiency (CVID) is the most common adult-onset primary antibody deficiency disease due to various causative genes. Several genes, which are known to be the cause of different diseases, have recently been reported as the cause of CVID in patients by performing whole exome sequencing (WES) analysis. Here, we found FANC gene mutations as a cause of adult-onset CVID in two patients. B cells were absent and CD4 + T cells were skewed toward CD45RO + memory T cells. T-cell receptor excision circles (TRECs) and signal joint kappa-deleting recombination excision circles (sjKRECs) were undetectable in both patients. Both patients had no anemia, neutropenia, or thrombocytopenia. Using WES, we identified compound heterozygous mutations of FANCE in one patient and homozygous mutation of FANCA in another patient. The impaired function of FANC protein complex was confirmed by a monoubiquitination assay and by chromosome fragility test. We then performed several immunological evaluations including quantitative lymphocyte analysis and TRECs/sjKRECs analysis for 32 individuals with Fanconi anemia (FA). In total, 22 FA patients (68.8%) were found to have immunological abnormalities, suggesting that such immunological findings may be common in FA patients. These data indicate that FANC mutations are involved in impaired lymphogenesis probably by the accumulation of DNA replication stress, leading to CVID. It is important to diagnose FA because it drastically changes clinical management. We propose that FANC mutations can cause isolated immunodeficiency in addition to bone marrow failure and malignancy.

  2. Compound Heterozygosity for Null Mutations and a Common Hypomorphic Risk Haplotype in TBX6 Causes Congenital Scoliosis.

    Science.gov (United States)

    Takeda, Kazuki; Kou, Ikuyo; Kawakami, Noriaki; Iida, Aritoshi; Nakajima, Masahiro; Ogura, Yoji; Imagawa, Eri; Miyake, Noriko; Matsumoto, Naomichi; Yasuhiko, Yukuto; Sudo, Hideki; Kotani, Toshiaki; Nakamura, Masaya; Matsumoto, Morio; Watanabe, Kota; Ikegawa, Shiro

    2017-03-01

    Congenital scoliosis (CS) occurs as a result of vertebral malformations and has an incidence of 0.5-1/1,000 births. Recently, TBX6 on chromosome 16p11.2 was reported as a disease gene for CS; about 10% of Chinese CS patients were compound heterozygotes for rare null mutations and a common haplotype defined by three SNPs in TBX6. All patients had hemivertebrae. We recruited 94 Japanese CS patients, investigated the TBX6 locus for both mutations and the risk haplotype, examined transcriptional activities of mutant TBX6 in vitro, and evaluated clinical and radiographic features. We identified TBX6 null mutations in nine patients, including a missense mutation that had a loss of function in vitro. All had the risk haplotype in the opposite allele. One of the mutations showed dominant negative effect. Although all Chinese patients had one or more hemivertebrae, two Japanese patients did not have hemivertebra. The compound heterozygosity of null mutations and the common risk haplotype in TBX6 also causes CS in Japanese patients with similar incidence. Hemivertebra was not a specific type of spinal malformation in TBX6-associated CS (TACS). A heterozygous TBX6 loss-of-function mutation has been reported in a family with autosomal-dominant spondylocostal dysostosis, but it may represent a spectrum of the same disease with TACS. © 2017 WILEY PERIODICALS, INC.

  3. Loss-of-function CARD8 mutation causes NLRP3 inflammasome activation and Crohn's disease.

    Science.gov (United States)

    Mao, Liming; Kitani, Atsushi; Similuk, Morgan; Oler, Andrew J; Albenberg, Lindsey; Kelsen, Judith; Aktay, Atiye; Quezado, Martha; Yao, Michael; Montgomery-Recht, Kim; Fuss, Ivan J; Strober, Warren

    2018-05-01

    In these studies, we evaluated the contribution of the NLRP3 inflammasome to Crohn's disease (CD) in a kindred containing individuals having a missense mutation in CARD8, a protein known to inhibit this inflammasome. Whole exome sequencing and PCR studies identified the affected individuals as having a V44I mutation in a single allele of the T60 isoform of CARD8. The serum levels of IL-1β in the affected individuals were increased compared with those in healthy controls, and their peripheral monocytes produced increased amounts of IL-1β when stimulated by NLRP3 activators. Immunoblot studies probing the basis of these findings showed that mutated T60 CARD8 failed to downregulate the NLRP3 inflammasome because it did not bind to NLRP3 and inhibit its oligomerization. In addition, these studies showed that mutated T60 CARD8 exerted a dominant-negative effect by its capacity to bind to and form oligomers with unmutated T60 or T48 CARD8 that impeded their binding to NLRP3. Finally, inflammasome activation studies revealed that intact but not mutated CARD8 prevented NLRP3 deubiquitination and serine dephosphorylation. CD due to a CARD8 mutation was not effectively treated by anti-TNF-α, but did respond to IL-1β inhibitors. Thus, patients with anti-TNF-α-resistant CD may respond to this treatment option.

  4. Mutations in AAGAB underlie autosomal dominant punctate palmoplantar keratoderma.

    Science.gov (United States)

    Dinani, N; Ali, M; Liu, L; McGrath, J; Mellerio, J

    2017-04-01

    Punctate palmoplantar keratoderma type 1 (PPPK1) is a rare autosomal dominant inherited skin disease, characterized by multiple hyperkeratotic lesions on the palms and soles. The causative gene for PPPK1 has been identified as AAGAB, which encodes α- and γ-adaptin-binding protein p34. We describe the clinical features in three unrelated families with PPPK1, and report three recurrent causative mutations in AAGAB. © 2017 British Association of Dermatologists.

  5. Heterozygous Mutations in TREX1 Cause Familial Chilblain Lupus and Dominant Aicardi-Goutières Syndrome

    Science.gov (United States)

    Rice, Gillian; Newman, William G.; Dean, John; Patrick, Teresa; Parmar, Rekha; Flintoff, Kim; Robins, Peter; Harvey, Scott; Hollis, Thomas; O’Hara, Ann; Herrick, Ariane L.; Bowden, Andrew P.; Perrino, Fred W.; Lindahl, Tomas; Barnes, Deborah E.; Crow, Yanick J.

    2007-01-01

    TREX1 constitutes the major 3′→5′ DNA exonuclease activity measured in mammalian cells. Recently, biallelic mutations in TREX1 have been shown to cause Aicardi-Goutières syndrome at the AGS1 locus. Interestingly, Aicardi-Goutières syndrome shows overlap with systemic lupus erythematosus at both clinical and pathological levels. Here, we report a heterozygous TREX1 mutation causing familial chilblain lupus. Additionally, we describe a de novo heterozygous mutation, affecting a critical catalytic residue in TREX1, that results in typical Aicardi-Goutières syndrome. PMID:17357087

  6. Familial gigantism caused by an NSD1 mutation.

    NARCIS (Netherlands)

    Haelst, M.M. van; Hoogeboom, J.J.; Baujat, G.; Bruggenwirth, H.T.; Laar, I. van de; Coleman, K.; Rahman, N.; Niermeijer, M.F.; Drop, S.L.; Scambler, P.J.

    2005-01-01

    A three-generation family with autosomal dominant segregation of a novel NSD1 mutation (6605G --> A, resulting in Cys2202Tyr) is reported. Haploinsufficiency of NSD1 has been identified as the major cause of Sotos syndrome. The overgrowth condition (MIM 117550) is characterized by facial anomalies,

  7. The functional importance of disease-associated mutation

    Directory of Open Access Journals (Sweden)

    Klein Teri E

    2002-09-01

    Full Text Available Abstract Background For many years, scientists believed that point mutations in genes are the genetic switches for somatic and inherited diseases such as cystic fibrosis, phenylketonuria and cancer. Some of these mutations likely alter a protein's function in a manner that is deleterious, and they should occur in functionally important regions of the protein products of genes. Here we show that disease-associated mutations occur in regions of genes that are conserved, and can identify likely disease-causing mutations. Results To show this, we have determined conservation patterns for 6185 non-synonymous and heritable disease-associated mutations in 231 genes. We define a parameter, the conservation ratio, as the ratio of average negative entropy of analyzable positions with reported mutations to that of every analyzable position in the gene sequence. We found that 84.0% of the 231 genes have conservation ratios less than one. 139 genes had eleven or more analyzable mutations and 88.0% of those had conservation ratios less than one. Conclusions These results indicate that phylogenetic information is a powerful tool for the study of disease-associated mutations. Our alignments and analysis has been made available as part of the database at http://cancer.stanford.edu/mut-paper/. Within this dataset, each position is annotated with the analysis, so the most likely disease-causing mutations can be identified.

  8. Muscarinic Acetylcholine Receptor M3 Mutation Causes Urinary Bladder Disease and a Prune-Belly-like Syndrome.

    Science.gov (United States)

    Weber, Stefanie; Thiele, Holger; Mir, Sevgi; Toliat, Mohammad Reza; Sozeri, Betül; Reutter, Heiko; Draaken, Markus; Ludwig, Michael; Altmüller, Janine; Frommolt, Peter; Stuart, Helen M; Ranjzad, Parisa; Hanley, Neil A; Jennings, Rachel; Newman, William G; Wilcox, Duncan T; Thiel, Uwe; Schlingmann, Karl Peter; Beetz, Rolf; Hoyer, Peter F; Konrad, Martin; Schaefer, Franz; Nürnberg, Peter; Woolf, Adrian S

    2011-11-11

    Urinary bladder malformations associated with bladder outlet obstruction are a frequent cause of progressive renal failure in children. We here describe a muscarinic acetylcholine receptor M3 (CHRM3) (1q41-q44) homozygous frameshift mutation in familial congenital bladder malformation associated with a prune-belly-like syndrome, defining an isolated gene defect underlying this sometimes devastating disease. CHRM3 encodes the M3 muscarinic acetylcholine receptor, which we show is present in developing renal epithelia and bladder muscle. These observations may imply that M3 has a role beyond its known contribution to detrusor contractions. This Mendelian disease caused by a muscarinic acetylcholine receptor mutation strikingly phenocopies Chrm3 null mutant mice. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  9. KITLG Mutations Cause Familial Progressive Hyper- and Hypopigmentation

    DEFF Research Database (Denmark)

    Amyere, Mustapha; Vogt, Thomas; Hoo, Joe

    2011-01-01

    by familial café-au-lait spots and skin fold freckling, caused by mutations in SPRED1. We performed a genome-wide linkage analysis in seven families with FPHH, and identified linkage on 12q21.12-q22, which overlaps with the DUH2 locus. We investigated whether KITLG in the locus is mutated in FPHH. We......Familial progressive hyper- and hypopigmentation (FPHH) is thought to be an autosomal dominant disorder with reduced penetrance. Clinical signs consist of progressive diffuse, partly blotchy hyperpigmented lesions, multiple café-au-lait spots, intermingled with scattered hypopigmented......-strand in KITLG, suggesting its important role in the activation of the KITLG receptor c-Kit. In aggregate, mutations in a single gene cause various pigmentation disorders: FPH, FPHH, and likely DUH2. Therefore, KITLG is an important modulator of skin pigmentation.Journal of Investigative Dermatology advance...

  10. Integrated sequence analysis pipeline provides one-stop solution for identifying disease-causing mutations.

    Science.gov (United States)

    Hu, Hao; Wienker, Thomas F; Musante, Luciana; Kalscheuer, Vera M; Kahrizi, Kimia; Najmabadi, Hossein; Ropers, H Hilger

    2014-12-01

    Next-generation sequencing has greatly accelerated the search for disease-causing defects, but even for experts the data analysis can be a major challenge. To facilitate the data processing in a clinical setting, we have developed a novel medical resequencing analysis pipeline (MERAP). MERAP assesses the quality of sequencing, and has optimized capacity for calling variants, including single-nucleotide variants, insertions and deletions, copy-number variation, and other structural variants. MERAP identifies polymorphic and known causal variants by filtering against public domain databases, and flags nonsynonymous and splice-site changes. MERAP uses a logistic model to estimate the causal likelihood of a given missense variant. MERAP considers the relevant information such as phenotype and interaction with known disease-causing genes. MERAP compares favorably with GATK, one of the widely used tools, because of its higher sensitivity for detecting indels, its easy installation, and its economical use of computational resources. Upon testing more than 1,200 individuals with mutations in known and novel disease genes, MERAP proved highly reliable, as illustrated here for five families with disease-causing variants. We believe that the clinical implementation of MERAP will expedite the diagnostic process of many disease-causing defects. © 2014 WILEY PERIODICALS, INC.

  11. Lack of MEF2A mutations in coronary artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Li; Kavaslar, Nihan; Ustaszewska, Anna; Doelle, Heather; Schackwitz, Wendy; Hebert, Sybil; Cohen, Jonathan; McPherson, Ruth; Pennacchio, Len A.

    2004-12-01

    Mutations in MEF2A have been implicated in an autosomal dominant form of coronary artery disease (adCAD1). In this study we sought to determine whether severe mutations in MEF2A might also explain sporadic cases of coronary artery disease (CAD). To do this, we resequenced the coding sequence and splice sites of MEF2A in {approx}300 patients with premature CAD and failed to find causative mutations in the CAD cohort. However, we did identify the 21 base pair (bp) MEF2A coding sequence deletion originally implicated in adCAD1 in one of 300 elderly control subjects without CAD. Further screening of an additional {approx}1,500 non-CAD patients revealed two more subjects with the MEF2A 21 bp deletion. Genotyping of 19 family members of the three probands with the 21 bp deletion in MEF2A revealed that the mutation did not co-segregate with early CAD. These studies demonstrate that MEF2A mutations are not a common cause of CAD and cast serious doubt on the role of the MEF2A 21 bp deletion in adCAD1.

  12. Identification of 3 novel VHL germ-line mutations in Danish VHL patients

    DEFF Research Database (Denmark)

    Dandanell, Mette; Friis-Hansen, Lennart Jan; Sunde, Lone

    2012-01-01

    von Hippel-Lindau (VHL) disease is a hereditary cancer syndrome in which the patients develop retinal and central nervous system hemangioblastomas, pheochromocytomas and clear-cell renal tumors. The autosomal dominant disease is caused by mutations in the VHL gene.......von Hippel-Lindau (VHL) disease is a hereditary cancer syndrome in which the patients develop retinal and central nervous system hemangioblastomas, pheochromocytomas and clear-cell renal tumors. The autosomal dominant disease is caused by mutations in the VHL gene....

  13. Involvement of Gaucher Disease Mutations in Parkinson Disease.

    Science.gov (United States)

    Vilageliu, Lluisa; Grinberg, Daniel

    2017-01-01

    Gaucher disease is an autosomal recessive lysosomal storage disorder, caused by mutations in the GBA gene. The frequency of Gaucher disease patients and heterozygote carriers that developed Parkinson disease has been found to be above that of the control population. This fact suggests that mutations in the GBA gene can be involved in Parkison's etiology. Analysis of large cohorts of patients with Parkinson disease has shown that there are significantly more cases bearing GBA mutations than those found among healthy individuals. Functional studies have proven an interaction between α-synuclein and GBA, the levels of which presented an inverse correlation. Mutant GBA proteins cause increases in α-synuclein levels, while an inhibition of GBA by α-synuclein has been also demonstrated. Saposin C, a coactivator of GBA, has been shown to protect GBA from this inhibition. Among the GBA variants associated with Parkinson disease, E326K seems to be one of the most prevalent. Interestingly, it is involved in Gaucher disease only when it forms part of a double-mutant allele, usually with the L444P mutation. Structural analyses have revealed that both residues (E326 and L444) interact with Saposin C and, probably, also with α-synuclein. This could explain the antagonistic role of these two proteins in relation to GBA. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. [Epigenome: what we learned from Rett syndrome, a neurological disease caused by mutation of a methyl-CpG binding protein].

    Science.gov (United States)

    Kubota, Takeo

    2013-01-01

    Epigenome is defined as DNA and histone modification-dependent gene regulation system. Abnormalities in this system are known to cause various neuro-developmental diseases. We recently reported that neurological symptoms of Rett syndrome, which is an autistic disorder caused by mutations in methyl-CpG binding protein 2 (MeCP2), was associated with failure of epigenomic gene regulation in neuronal cells, and that clinical differences in the identical twins with Rett syndrome in the differences in DNA methylation in neuronal genes, but not caused by DNA sequence differences. Since central nervus system requires precise gene regulation, neurological diseases including Alzheimer and Parkinson diseases may be caused by acquired DNA modification (epigenomic) changes that results in aberrant gene regulation as well as DNA sequence changes congenitally occurred (mutation).

  15. A dominantly acting murine allele of Mcm4 causes chromosomal abnormalities and promotes tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Bruce N Bagley

    Full Text Available Here we report the isolation of a murine model for heritable T cell lymphoblastic leukemia/lymphoma (T-ALL called Spontaneous dominant leukemia (Sdl. Sdl heterozygous mice develop disease with a short latency and high penetrance, while mice homozygous for the mutation die early during embryonic development. Sdl mice exhibit an increase in the frequency of micronucleated reticulocytes, and T-ALLs from Sdl mice harbor small amplifications and deletions, including activating deletions at the Notch1 locus. Using exome sequencing it was determined that Sdl mice harbor a spontaneously acquired mutation in Mcm4 (Mcm4(D573H. MCM4 is part of the heterohexameric complex of MCM2-7 that is important for licensing of DNA origins prior to S phase and also serves as the core of the replicative helicase that unwinds DNA at replication forks. Previous studies in murine models have discovered that genetic reductions of MCM complex levels promote tumor formation by causing genomic instability. However, Sdl mice possess normal levels of Mcms, and there is no evidence for loss-of-heterozygosity at the Mcm4 locus in Sdl leukemias. Studies in Saccharomyces cerevisiae indicate that the Sdl mutation produces a biologically inactive helicase. Together, these data support a model in which chromosomal abnormalities in Sdl mice result from the ability of MCM4(D573H to incorporate into MCM complexes and render them inactive. Our studies indicate that dominantly acting alleles of MCMs can be compatible with viability but have dramatic oncogenic consequences by causing chromosomal abnormalities.

  16. A dominantly acting murine allele of Mcm4 causes chromosomal abnormalities and promotes tumorigenesis.

    Science.gov (United States)

    Bagley, Bruce N; Keane, Thomas M; Maklakova, Vilena I; Marshall, Jonathon G; Lester, Rachael A; Cancel, Michelle M; Paulsen, Alex R; Bendzick, Laura E; Been, Raha A; Kogan, Scott C; Cormier, Robert T; Kendziorski, Christina; Adams, David J; Collier, Lara S

    2012-01-01

    Here we report the isolation of a murine model for heritable T cell lymphoblastic leukemia/lymphoma (T-ALL) called Spontaneous dominant leukemia (Sdl). Sdl heterozygous mice develop disease with a short latency and high penetrance, while mice homozygous for the mutation die early during embryonic development. Sdl mice exhibit an increase in the frequency of micronucleated reticulocytes, and T-ALLs from Sdl mice harbor small amplifications and deletions, including activating deletions at the Notch1 locus. Using exome sequencing it was determined that Sdl mice harbor a spontaneously acquired mutation in Mcm4 (Mcm4(D573H)). MCM4 is part of the heterohexameric complex of MCM2-7 that is important for licensing of DNA origins prior to S phase and also serves as the core of the replicative helicase that unwinds DNA at replication forks. Previous studies in murine models have discovered that genetic reductions of MCM complex levels promote tumor formation by causing genomic instability. However, Sdl mice possess normal levels of Mcms, and there is no evidence for loss-of-heterozygosity at the Mcm4 locus in Sdl leukemias. Studies in Saccharomyces cerevisiae indicate that the Sdl mutation produces a biologically inactive helicase. Together, these data support a model in which chromosomal abnormalities in Sdl mice result from the ability of MCM4(D573H) to incorporate into MCM complexes and render them inactive. Our studies indicate that dominantly acting alleles of MCMs can be compatible with viability but have dramatic oncogenic consequences by causing chromosomal abnormalities.

  17.  Mutations of noncollagen genes in osteogenesis imperfecta – implications of the gene products in collagen biosynthesis and pathogenesis of disease

    Directory of Open Access Journals (Sweden)

    Anna Galicka

    2012-06-01

    Full Text Available  Recent investigations revealed that the “brittle bone” phenotype in osteogenesis imperfecta (OI is caused not only by dominant mutations in collagen type I genes, but also by recessively inherited mutations in genes responsible for the post-translational processing of type I procollagen as well as for bone formation. The phenotype of patients with mutations in noncollagen genes overlaps with very severe type III and lethal type II OI caused by mutations in collagen genes. Mutations in genes that encode proteins involved in collagen prolyl 3-hydroxylation (P3H1/CRTAP/CyPB eliminated Pro986 hydroxylation and caused an increase in modification of collagen helix by prolyl 4-hydroxylase and lysyl hydroxylase. However, the importance of these disturbances in the disease pathomechanism is not known. Loss of complex proteins’ function as collagen chaperones may dominate the disease mechanism. The latest findings added to the spectrum of OI-causing and collagen-influencing factors other chaperones (HSP47 and FKBP65 and protein BMP-1, which emphasizes the complexity of collagen folding and secretion as well as their importance in bone formation. Furthermore, mutations in genes encoding transcription factor SP7/Osterix and pigment epithelium-derived factor (PEDF constitute a novel mechanism for OI, which is independent of changes in biosynthesis and processing of collagen.

  18. Non-syndromic hearing loss caused by the dominant cis mutation R75Q with the recessive mutation V37I of the GJB2 (Connexin 26) gene.

    Science.gov (United States)

    Kim, Juwon; Jung, Jinsei; Lee, Min Goo; Choi, Jae Young; Lee, Kyung-A

    2015-06-19

    GJB2 alleles containing two cis mutations have been rarely found in non-syndromic hearing loss. Herein, we present a Korean patient with non-syndromic hearing loss caused by the R75Q cis mutation with V37I, which arose de novo in the father and was inherited by the patient. Biochemical coupling and hemichannel permeability assays were performed after molecular cloning and transfection of HEK293T cells. Student's t-tests or analysis of variance followed by Tukey's multiple comparison test was used as statistical analysis. Biochemical coupling was significantly reduced in connexin 26 (Cx26)-R75Q- and Cx26-V37I-transfected cells, with greater extent in Cx26-R75Q and Cx26-R75Q+V37I cells. Interestingly, our patient and his father with the mutations had more residual hearing compared with patients with the dominant mutation alone. Although the difference in hemichannel activity between R75Q alone and R75Q in combination with V37I failed to reach significance, it is of note that there is a possibility that V37I located upstream of R75Q might have the ability to ameliorate R75Q expression. Our study emphasizes the importance of cis mutations with R75Q, as the gene effect of R75Q can be modulated depending on the type of additional mutation.

  19. RNA interference gene therapy in dominant retinitis pigmentosa and cone-rod dystrophy mouse models caused by GCAP1 mutations

    Directory of Open Access Journals (Sweden)

    Li eJiang

    2014-04-01

    Full Text Available RNA interference (RNAi knockdown is an efficacious therapeutic strategy for silencing genes causative for dominant retinal dystrophies. To test this, we used self-complementary (sc AAV2/8 vector to develop an RNAi-based therapy in two dominant retinal degeneration mouse models. The allele-specific model expresses transgenic bovine GCAP1(Y99C establishing a rapid RP-like phenotype, whereas the nonallele-specific model expresses mouse GCAP1(L151F producing a slowly progressing cone/rod dystrophy (CORD. The late onset GCAP1(L151F-CORD mimics the dystrophy observed in human GCAP1-CORD patients. Subretinal injection of scAAV2/8 carrying shRNA expression cassettes specific for bovine or mouse GCAP1 showed strong expression at one week post-injection. In both allele-specific (GCAP1(Y99C-RP and nonallele-specific (GCAP1(L151F-CORD models of dominant retinal dystrophy, RNAi-mediated gene silencing enhanced photoreceptor survival, delayed onset of degeneration and improved visual function. Such results provide a proof of concept toward effective RNAi-based gene therapy mediated by scAAV2/8 for dominant retinal disease based on GCAP1 mutation. Further, nonallele-specific RNAi knockdown of GCAP1 may prove generally applicable toward the rescue of any human GCAP1-based dominant cone-rod dystrophy.

  20. Dominant ELOVL1 mutation causes neurological disorder with ichthyotic keratoderma, spasticity, hypomyelination and dysmorphic features.

    Science.gov (United States)

    Kutkowska-Kaźmierczak, Anna; Rydzanicz, Małgorzata; Chlebowski, Aleksander; Kłosowska-Kosicka, Kamila; Mika, Adriana; Gruchota, Jakub; Jurkiewicz, Elżbieta; Kowalewski, Cezary; Pollak, Agnieszka; Stradomska, Teresa Joanna; Kmieć, Tomasz; Jakubowski, Rafał; Gasperowicz, Piotr; Walczak, Anna; Śladowski, Dariusz; Jankowska-Steifer, Ewa; Korniszewski, Lech; Kosińska, Joanna; Obersztyn, Ewa; Nowak, Wieslaw; Śledziński, Tomasz; Dziembowski, Andrzej; Płoski, Rafał

    2018-06-01

    Ichthyosis and neurological involvement occur in relatively few known Mendelian disorders caused by mutations in genes relevant both for epidermis and neural function. To identify the cause of a similar phenotype of ichthyotic keratoderma, spasticity, mild hypomyelination (on MRI) and dysmorphic features (IKSHD) observed in two unrelated paediatric probands without family history of disease. Whole exome sequencing was performed in both patients. The functional effect of prioritised variant in ELOVL1 (very-long-chain fatty acids (VLCFAs) elongase) was analysed by VLCFA profiling by gas chromatography-mass spectrometry in stably transfected HEK2932 cells and in cultured patient's fibroblasts. Probands shared novel heterozygous ELOVL1 p.Ser165Phe mutation (de novo in one family, while in the other family, father could not be tested). In transfected cells p.Ser165Phe: (1) reduced levels of FAs C24:0-C28:0 and C26:1 with the most pronounced effect for C26:0 (P=7.8×10 -6  vs HEK293 cells with wild type (wt) construct, no difference vs naïve HEK293) and (2) increased levels of C20:0 and C22:0 (P=6.3×10 -7 , P=1.2×10 -5 , for C20:0 and C22:0, respectively, comparison vs HEK293 cells with wt construct; P=2.2×10 -7 , P=1.9×10 -4 , respectively, comparison vs naïve HEK293). In skin fibroblasts, there was decrease of C26:1 (P=0.014), C28:0 (P=0.001) and increase of C20:0 (P=0.033) in the patient versus controls. There was a strong correlation (r=0.92, P=0.008) between the FAs profile of patient's fibroblasts and that of p.Ser165Phe transfected HEK293 cells. Serum levels of C20:0-C26:0 FAs were normal, but the C24:0/C22:0 ratio was decreased. The ELOVL1 p.Ser165Phe mutation is a likely cause of IKSHD. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. In Vivo Modeling of the Pathogenic Effect of Copper Transporter Mutations That Cause Menkes and Wilson Diseases, Motor Neuropathy, and Susceptibility to Alzheimer's Disease.

    Science.gov (United States)

    Mercer, Stephen W; Wang, Jianbin; Burke, Richard

    2017-03-10

    Copper is an essential biometal, and several inherited diseases are directly associated with a disruption to normal copper homeostasis. The best characterized are the copper deficiency and toxicity disorders Menkes and Wilson diseases caused by mutations in the p-type Cu-ATPase genes ATP7A and ATP7B , respectively. Missense mutations in the C-terminal portion of ATP7A have also been shown to cause distal motor neuropathy, whereas polymorphisms in ATP7B are associated with increased risk of Alzheimer's disease. We have generated a single, in vivo model for studying multiple pathogenic mutations in ATP7 proteins using Drosophila melanogaster , which has a single orthologue of ATP7A and ATP7B. Four pathogenic ATP7A mutations and two ATP7B mutations were introduced into a genomic ATP7 rescue construct containing an in-frame C-terminal GFP tag. Analysis of the wild type ATP7-GFP transgene confirmed that ATP7 is expressed at the basolateral membrane of larval midgut copper cells and that the transgene can rescue a normally early lethal ATP7 deletion allele to adulthood. Analysis of the gATP7-GFP transgenes containing pathogenic mutations showed that the function of ATP7 was affected, to varying degrees, by all six of the mutations investigated in this study. Of particular interest, the ATP7B K832R Alzheimer's disease susceptibility allele was found, for the first time, to be a loss of function allele. This in vivo system allows us to assess the severity of individual ATP7A / B mutations in an invariant genetic background and has the potential to be used to screen for therapeutic compounds able to restore function to faulty copper transport proteins. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. A novel T→G splice site mutation of CRYBA1/A3 associated with autosomal dominant nuclear cataracts in a Chinese family.

    Science.gov (United States)

    Yang, Zhenfei; Su, Dongmei; Li, Qian; Yang, Fan; Ma, Zicheng; Zhu, Siquan; Ma, Xu

    2012-01-01

    The purpose of this study was to identify the disease-causing mutation and the molecular phenotype that are responsible for the presence of an autosomal dominant congenital nuclear cataract disease in a Chinese family. The family history and clinical data were recorded. The patients were given a physical examination and their blood samples were collected for DNA extraction. Direct sequencing was used to detect the mutation. Transcription analysis of the mutant crystallin, beta A1 (CRYBA1/A3) gene was performed to verify whether the defective mutation had influenced the splice of the mature mRNA. The phenotype of the congenital cataract in the family was identified as a nuclear cataract type, by using slit-lamp photography. Direct sequencing revealed a novel mutation IVS3+2 T→G in CRYBA1/A3. This mutation co-segregated with all affected individuals in the family, but was not found in unaffected family members nor in the 100 unrelated controls. Transcription analysis of the mutant CRYBA1/A3 gene indicated that this mutation had influenced the splice of the mature mRNA. Our study identified a novel splice site mutation in CRYBA1/A3. This mutation was responsible for aberrant splicing of the mature mRNA and had caused the congenital nuclear cataracts in the family. This is the first report relating an IVS3+2 T→G mutation of CRYBA1/A3 to congenital cataracts.

  3. A Recurrent Mutation in CACNA1G Alters Cav3.1 T-Type Calcium-Channel Conduction and Causes Autosomal-Dominant Cerebellar Ataxia

    Science.gov (United States)

    Coutelier, Marie; Blesneac, Iulia; Monteil, Arnaud; Monin, Marie-Lorraine; Ando, Kunie; Mundwiller, Emeline; Brusco, Alfredo; Le Ber, Isabelle; Anheim, Mathieu; Castrioto, Anna; Duyckaerts, Charles; Brice, Alexis; Durr, Alexandra; Lory, Philippe; Stevanin, Giovanni

    2015-01-01

    Hereditary cerebellar ataxias (CAs) are neurodegenerative disorders clinically characterized by a cerebellar syndrome, often accompanied by other neurological or non-neurological signs. All transmission modes have been described. In autosomal-dominant CA (ADCA), mutations in more than 30 genes are implicated, but the molecular diagnosis remains unknown in about 40% of cases. Implication of ion channels has long been an ongoing topic in the genetics of CA, and mutations in several channel genes have been recently connected to ADCA. In a large family affected by ADCA and mild pyramidal signs, we searched for the causative variant by combining linkage analysis and whole-exome sequencing. In CACNA1G, we identified a c.5144G>A mutation, causing an arginine-to-histidine (p.Arg1715His) change in the voltage sensor S4 segment of the T-type channel protein Cav3.1. Two out of 479 index subjects screened subsequently harbored the same mutation. We performed electrophysiological experiments in HEK293T cells to compare the properties of the p.Arg1715His and wild-type Cav3.1 channels. The current-voltage and the steady-state activation curves of the p.Arg1715His channel were shifted positively, whereas the inactivation curve had a higher slope factor. Computer modeling in deep cerebellar nuclei (DCN) neurons suggested that the mutation results in decreased neuronal excitability. Taken together, these data establish CACNA1G, which is highly expressed in the cerebellum, as a gene whose mutations can cause ADCA. This is consistent with the neuropathological examination, which showed severe Purkinje cell loss. Our study further extends our knowledge of the link between calcium channelopathies and CAs. PMID:26456284

  4. Progranulin haploinsufficiency causes biphasic social dominance abnormalities in the tube test.

    Science.gov (United States)

    Arrant, A E; Filiano, A J; Warmus, B A; Hall, A M; Roberson, E D

    2016-07-01

    Loss-of-function mutations in progranulin (GRN) are a major autosomal dominant cause of frontotemporal dementia (FTD), a neurodegenerative disorder in which social behavior is disrupted. Progranulin-insufficient mice, both Grn(+/-) and Grn(-/-) , are used as models of FTD due to GRN mutations, with Grn(+/-) mice mimicking the progranulin haploinsufficiency of FTD patients with GRN mutations. Grn(+/-) mice have increased social dominance in the tube test at 6 months of age, although this phenotype has not been reported in Grn(-/-) mice. In this study, we investigated how the tube test phenotype of progranulin-insufficient mice changes with age, determined its robustness under several testing conditions, and explored the associated cellular mechanisms. We observed biphasic social dominance abnormalities in Grn(+/-) mice: at 6-8 months, Grn(+/-) mice were more dominant than wild-type littermates, while after 9 months of age, Grn(+/-) mice were less dominant. In contrast, Grn(-/-) mice did not exhibit abnormal social dominance, suggesting that progranulin haploinsufficiency has distinct effects from complete progranulin deficiency. The biphasic tube test phenotype of Grn(+/-) mice was associated with abnormal cellular signaling and neuronal morphology in the amygdala and prefrontal cortex. At 6-9 months, Grn(+/-) mice exhibited increased mTORC2/Akt signaling in the amygdala and enhanced dendritic arbors in the basomedial amygdala, and at 9-16 months Grn(+/-) mice exhibited diminished basal dendritic arbors in the prelimbic cortex. These data show a progressive change in tube test dominance in Grn(+/-) mice and highlight potential underlying mechanisms by which progranulin insufficiency may disrupt social behavior. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  5. Nervous system disease associated with dominant cellular radiosensitivity

    International Nuclear Information System (INIS)

    Kidson, C.; Chen, P.; Imray, F.P.; Gipps, E.

    1983-01-01

    Ionizing radiation sensitivity has been demonstrated in the following neurological diseases: sporadic and familial Alzheimer's disease, familial non-specific dementia, amyotrophic lateral sclerosis and Parkinsonism dementia of Guam, Huntington's disease, multiple sclerosis. Family studies in many cases give data consistent with dominant genetics, as does cell fusion analysis in the one disease so studied. In no case was there an absolute association between radiosensitivity and a given neurological disease. It is proposed that the underlying mutations are in genes controlling facets of nervous or immune system differentiation and development. 15 references, 2 tables

  6. Vascular-type Ehlers-Danlos syndrome caused by a hitherto unknown genetic mutation: a case report

    Directory of Open Access Journals (Sweden)

    Kashizaki Fumihiro

    2013-02-01

    Full Text Available Abstract Introduction Vascular-type Ehlers-Danlos syndrome is an autosomal dominant disease that causes arterial spurting, intestinal perforation, uterine rupture and hemopneumothorax due to decreased production of type III collagen. The average age at death is 48 years old, and it is considered to be the most severe form of Ehlers-Danlos syndrome. We report the case of a 64-year-old Japanese woman and her 38-year-old daughter who were diagnosed with this disease. Case presentation A 64-year-old Japanese woman was referred to our hospital because of right anterior chest pain following cough and pharyngeal discomfort. Pleurisy was suspected due to the presence of right pleural effusion, so the next day she was referred to our department, where a detailed examination led to the diagnosis of hemothorax. The bleeding that caused the right hemothorax was difficult to control, so our patient was transferred to the Department of Thoracic Surgery for hemostasis control. Our patient’s personal history of uterine hemorrhage and skin ulcers, as well as the finding of skin fragility during surgery, were indicative of a weak connective tissue disease; therefore, after improvement of the hemothorax, a genetic analysis was performed. This revealed a heterozygous missense mutation in COL3A1, c.2411 G>T p.Gly804Val (exon 36. A detailed investigation conducted at a later date revealed that her daughter also had the same genetic mutation. This led to the diagnosis of vascular-type Ehlers-Danlos syndrome characterized by a new gene mutation. Conclusion We report a new genetic mutation associated with vascular-type Ehlers-Danlos syndrome. We present the clinical and imaging findings, and the disease and treatment course in this patient. We believe this information will be important in treating future cases of vascular-type Ehlers-Danlos syndrome in patients with this mutation.

  7. Gain-of-function mutations in the phosphatidylserine synthase 1 (PTDSS1) gene cause Lenz-Majewski syndrome.

    Science.gov (United States)

    Sousa, Sérgio B; Jenkins, Dagan; Chanudet, Estelle; Tasseva, Guergana; Ishida, Miho; Anderson, Glenn; Docker, James; Ryten, Mina; Sa, Joaquim; Saraiva, Jorge M; Barnicoat, Angela; Scott, Richard; Calder, Alistair; Wattanasirichaigoon, Duangrurdee; Chrzanowska, Krystyna; Simandlová, Martina; Van Maldergem, Lionel; Stanier, Philip; Beales, Philip L; Vance, Jean E; Moore, Gudrun E

    2014-01-01

    Lenz-Majewski syndrome (LMS) is a syndrome of intellectual disability and multiple congenital anomalies that features generalized craniotubular hyperostosis. By using whole-exome sequencing and selecting variants consistent with the predicted dominant de novo etiology of LMS, we identified causative heterozygous missense mutations in PTDSS1, which encodes phosphatidylserine synthase 1 (PSS1). PSS1 is one of two enzymes involved in the production of phosphatidylserine. Phosphatidylserine synthesis was increased in intact fibroblasts from affected individuals, and end-product inhibition of PSS1 by phosphatidylserine was markedly reduced. Therefore, these mutations cause a gain-of-function effect associated with regulatory dysfunction of PSS1. We have identified LMS as the first human disease, to our knowledge, caused by disrupted phosphatidylserine metabolism. Our results point to an unexplored link between phosphatidylserine synthesis and bone metabolism.

  8. A dominant-negative mutation of mouse Lmx1b causes glaucoma and is semi-lethal via LDB1-mediated dimerization [corrected].

    Directory of Open Access Journals (Sweden)

    Sally H Cross

    2014-05-01

    Full Text Available Mutations in the LIM-homeodomain transcription factor LMX1B cause nail-patella syndrome, an autosomal dominant pleiotrophic human disorder in which nail, patella and elbow dysplasia is associated with other skeletal abnormalities and variably nephropathy and glaucoma. It is thought to be a haploinsufficient disorder. Studies in the mouse have shown that during development Lmx1b controls limb dorsal-ventral patterning and is also required for kidney and eye development, midbrain-hindbrain boundary establishment and the specification of specific neuronal subtypes. Mice completely deficient for Lmx1b die at birth. In contrast to the situation in humans, heterozygous null mice do not have a mutant phenotype. Here we report a novel mouse mutant Icst, an N-ethyl-N-nitrosourea-induced missense substitution, V265D, in the homeodomain of LMX1B that abolishes DNA binding and thereby the ability to transactivate other genes. Although the homozygous phenotypic consequences of Icst and the null allele of Lmx1b are the same, heterozygous Icst elicits a phenotype whilst the null allele does not. Heterozygous Icst causes glaucomatous eye defects and is semi-lethal, probably due to kidney failure. We show that the null phenotype is rescued more effectively by an Lmx1b transgene than is Icst. Co-immunoprecipitation experiments show that both wild-type and Icst LMX1B are found in complexes with LIM domain binding protein 1 (LDB1, resulting in lower levels of functional LMX1B in Icst heterozygotes than null heterozygotes. We conclude that Icst is a dominant-negative allele of Lmx1b. These findings indicate a reassessment of whether nail-patella syndrome is always haploinsufficient. Furthermore, Icst is a rare example of a model of human glaucoma caused by mutation of the same gene in humans and mice.

  9. Mutations in Splicing Factor Genes Are a Major Cause of Autosomal Dominant Retinitis Pigmentosa in Belgian Families

    Science.gov (United States)

    Coppieters, Frauke; Roels, Dimitri; De Jaegere, Sarah; Flipts, Helena; De Zaeytijd, Julie; Walraedt, Sophie; Claes, Charlotte; Fransen, Erik; Van Camp, Guy; Depasse, Fanny; Casteels, Ingele; de Ravel, Thomy

    2017-01-01

    Purpose Autosomal dominant retinitis pigmentosa (adRP) is characterized by an extensive genetic heterogeneity, implicating 27 genes, which account for 50 to 70% of cases. Here 86 Belgian probands with possible adRP underwent genetic testing to unravel the molecular basis and to assess the contribution of the genes underlying their condition. Methods Mutation detection methods evolved over the past ten years, including mutation specific methods (APEX chip analysis), linkage analysis, gene panel analysis (Sanger sequencing, targeted next-generation sequencing or whole exome sequencing), high-resolution copy number screening (customized microarray-based comparative genomic hybridization). Identified variants were classified following American College of Medical Genetics and Genomics (ACMG) recommendations. Results Molecular genetic screening revealed mutations in 48/86 cases (56%). In total, 17 novel pathogenic mutations were identified: four missense mutations in RHO, five frameshift mutations in RP1, six mutations in genes encoding spliceosome components (SNRNP200, PRPF8, and PRPF31), one frameshift mutation in PRPH2, and one frameshift mutation in TOPORS. The proportion of RHO mutations in our cohort (14%) is higher than reported in a French adRP population (10.3%), but lower than reported elsewhere (16.5–30%). The prevalence of RP1 mutations (10.5%) is comparable to other populations (3.5%-10%). The mutation frequency in genes encoding splicing factors is unexpectedly high (altogether 19.8%), with PRPF31 the second most prevalent mutated gene (10.5%). PRPH2 mutations were found in 4.7% of the Belgian cohort. Two families (2.3%) have the recurrent NR2E3 mutation p.(Gly56Arg). The prevalence of the recurrent PROM1 mutation p.(Arg373Cys) was higher than anticipated (3.5%). Conclusions Overall, we identified mutations in 48 of 86 Belgian adRP cases (56%), with the highest prevalence in RHO (14%), RP1 (10.5%) and PRPF31 (10.5%). Finally, we expanded the molecular

  10. A novel missense mutation in the CLCN7 gene linked to benign autosomal dominant osteopetrosis: a case series

    Directory of Open Access Journals (Sweden)

    Rashid Ban Mousa

    2013-01-01

    Full Text Available Abstract Introduction Osteopetrosis is a rare inherited genetic disease characterized by sclerosis of the skeleton. The absence or malfunction of osteoclasts is found to be strongly associated with the disease evolution. Currently, four clinically distinct forms of the disease have been recognized: the infantile autosomal recessive osteopetrosis, the malignant and the intermediate forms, and autosomal dominant osteopetrosis, type I and type II forms. The autosomal recessive types are the most severe forms with symptoms in very early childhood, whereas the autosomal dominant classes exhibit a heterogeneous trait with milder symptoms, often at later childhood or adulthood. Case presentation Case 1 is the 12-year-old daughter (index patient of an Iraqi-Kurdish family who, at the age of eight years, was diagnosed clinically to have mild autosomal dominant osteopetrosis. Presently, at 12-years old, she has severe complications due to the disease progression. In addition, the same family previously experienced the death of a female child in her late childhood. The deceased child had been misdiagnosed, at that time, with thalassemia major. In this report, we extended our investigation to identify the type of the inheritance patterns of osteopetrosis using molecular techniques, because consanguineous marriages exist within the family history. We have detected one heterozygous mutation in exon 15 of the Chloride Channel 7 gene in the index patient (Case 1, whereas other mutations were not detected in the associated genes TCIRG1, OSTM1, RANK, and RANKL. The missense mutation (CGG>TGG located in exon 15 (c.1225C>T of the Chloride Channel 7 gene changed the amino acid position 409 from arginine to tryptophan (p.R409W, c.1225C>T. Case 2 is the 16-year-old son (brother of the index patient of the same family who was diagnosed clinically with mild autosomal dominant osteopetrosis. We have identified the same heterozygous mutation in exon 15 of the Chloride

  11. A novel missense mutation in the CLCN7 gene linked to benign autosomal dominant osteopetrosis: a case series.

    Science.gov (United States)

    Rashid, Ban Mousa; Rashid, Nawshirwan Gafoor; Schulz, Ansgar; Lahr, Georgia; Nore, Beston Faiek

    2013-01-09

    Osteopetrosis is a rare inherited genetic disease characterized by sclerosis of the skeleton. The absence or malfunction of osteoclasts is found to be strongly associated with the disease evolution. Currently, four clinically distinct forms of the disease have been recognized: the infantile autosomal recessive osteopetrosis, the malignant and the intermediate forms, and autosomal dominant osteopetrosis, type I and type II forms. The autosomal recessive types are the most severe forms with symptoms in very early childhood, whereas the autosomal dominant classes exhibit a heterogeneous trait with milder symptoms, often at later childhood or adulthood. Case 1 is the 12-year-old daughter (index patient) of an Iraqi-Kurdish family who, at the age of eight years, was diagnosed clinically to have mild autosomal dominant osteopetrosis. Presently, at 12-years old, she has severe complications due to the disease progression. In addition, the same family previously experienced the death of a female child in her late childhood. The deceased child had been misdiagnosed, at that time, with thalassemia major. In this report, we extended our investigation to identify the type of the inheritance patterns of osteopetrosis using molecular techniques, because consanguineous marriages exist within the family history. We have detected one heterozygous mutation in exon 15 of the Chloride Channel 7 gene in the index patient (Case 1), whereas other mutations were not detected in the associated genes TCIRG1, OSTM1, RANK, and RANKL. The missense mutation (CGG>TGG) located in exon 15 (c.1225C>T) of the Chloride Channel 7 gene changed the amino acid position 409 from arginine to tryptophan (p.R409W, c.1225C>T).Case 2 is the 16-year-old son (brother of the index patient) of the same family who was diagnosed clinically with mild autosomal dominant osteopetrosis. We have identified the same heterozygous mutation in exon 15 of the Chloride channel 7 gene in this patient (Case 2). The missense

  12. A novel mutation in the SH3BP2 gene causes cherubism: case report

    Directory of Open Access Journals (Sweden)

    Yu Shi-Feng

    2006-12-01

    Full Text Available Abstract Background Cherubism is a rare hereditary multi-cystic disease of the jaws, characterized by its typical appearance in early childhood, and stabilization and remission after puberty. It is genetically transmitted in an autosomal dominant fashion and the gene coding for SH3-binding protein 2 (SH3BP2 may be involved. Case presentation We investigated a family consisting of 21 members with 3 female affected individuals with cherubism from Northern China. Of these 21 family members, 17 were recruited for the genetic analysis. We conducted the direct sequence analysis of the SH3BP2 gene among these 17 family members. A disease-causing mutation was identified in exon 9 of the gene. It was an A1517G base change, which leads to a D419G amino acid substitution. Conclusion To our knowledge, the A1517G mutation has not been reported previously in cherubism. This finding is novel.

  13. In silico investigation of molecular effects caused by missense mutations in creatine transporter protein

    Science.gov (United States)

    Zhang, Zhe; Schwatz, Charles; Alexov, Emil

    2011-03-01

    Creatine transporter (CT) protein, which is encoded by SLC6A8 gene, is essential for taking up the creatine in the cell, which in turn plays a key role in the spatial and temporal maintenance of energy in skeletal and cardiac muscle cells. It was shown that some missense mutations in CT cause mental retardation, while others are harmless non-synonymous single nucleoside polymorphism (nsSNP). Currently fifteen missense mutations in CT are known, among which twelve are disease-causing. Sequence analysis reveals that there is no clear trend distinguishing disease-causing from harmless missense mutations. Because of that, we built 3D model of the CT using highly homologous template and use the model to investigate the effects of mutations of CT stability and hydrogen bond network. It is demonstrated that disease-causing mutations affect the folding free energy and ionization states of titratable group in much greater extend as compared with harmless mutations. Supported by grants from NLM, NIH, grant numbers 1R03LM009748 and 1R03LM009748-S1.

  14. A sodium-channel mutation causes isolated cardiac conduction disease

    NARCIS (Netherlands)

    Tan, H. L.; Bink-Boelkens, M. T.; Bezzina, C. R.; Viswanathan, P. C.; Beaufort-Krol, G. C.; van Tintelen, P. J.; van den Berg, M. P.; Wilde, A. A.; Balser, J. R.

    2001-01-01

    Cardiac conduction disorders slow the heart rhythm and cause disability in millions of people worldwide. Inherited mutations in SCN5A, the gene encoding the human cardiac sodium (Na+) channel, have been associated with rapid heart rhythms that occur suddenly and are life-threatening; however, a

  15. A Novel Mutation in ERCC8 Gene Causing Cockayne Syndrome

    Directory of Open Access Journals (Sweden)

    Maryam Taghdiri

    2017-08-01

    Full Text Available Cockayne syndrome (CS is a rare autosomal recessive multisystem disorder characterized by impaired neurological and sensory functions, cachectic dwarfism, microcephaly, and photosensitivity. This syndrome shows a variable age of onset and rate of progression, and its phenotypic spectrum include a wide range of severity. Due to the progressive nature of this disorder, diagnosis can be more important when additional signs and symptoms appear gradually and become steadily worse over time. Therefore, mutation analysis of genes involved in CS pathogenesis can be helpful to confirm the suspected clinical diagnosis. Here, we report a novel mutation in ERCC8 gene in a 16-year-old boy who suffers from poor weight gain, short stature, microcephaly, intellectual disability, and photosensitivity. The patient was born to consanguineous family with no previous documented disease in his parents. To identify disease-causing mutation in the patient, whole exome sequencing utilizing next-generation sequencing on an Illumina HiSeq 2000 platform was performed. Results revealed a novel homozygote mutation in ERCC8 gene (NM_000082: exon 11, c.1122G>C in our patient. Another gene (ERCC6, which is also involved in CS did not have any disease-causing mutations in the proband. The new identified mutation was then confirmed by Sanger sequencing in the proband, his parents, and extended family members, confirming co-segregation with the disease. In addition, different bioinformatics programs which included MutationTaster, I-Mutant v2.0, NNSplice, Combined Annotation Dependent Depletion, The PhastCons, Genomic Evolutationary Rate Profiling conservation score, and T-Coffee Multiple Sequence Alignment predicted the pathogenicity of the mutation. Our study identified a rare novel mutation in ERCC8 gene and help to provide accurate genetic counseling and prenatal diagnosis to minimize new affected individuals in this family.

  16. A Novel Mutation in ERCC8 Gene Causing Cockayne Syndrome.

    Science.gov (United States)

    Taghdiri, Maryam; Dastsooz, Hassan; Fardaei, Majid; Mohammadi, Sanaz; Farazi Fard, Mohammad Ali; Faghihi, Mohammad Ali

    2017-01-01

    Cockayne syndrome (CS) is a rare autosomal recessive multisystem disorder characterized by impaired neurological and sensory functions, cachectic dwarfism, microcephaly, and photosensitivity. This syndrome shows a variable age of onset and rate of progression, and its phenotypic spectrum include a wide range of severity. Due to the progressive nature of this disorder, diagnosis can be more important when additional signs and symptoms appear gradually and become steadily worse over time. Therefore, mutation analysis of genes involved in CS pathogenesis can be helpful to confirm the suspected clinical diagnosis. Here, we report a novel mutation in ERCC8 gene in a 16-year-old boy who suffers from poor weight gain, short stature, microcephaly, intellectual disability, and photosensitivity. The patient was born to consanguineous family with no previous documented disease in his parents. To identify disease-causing mutation in the patient, whole exome sequencing utilizing next-generation sequencing on an Illumina HiSeq 2000 platform was performed. Results revealed a novel homozygote mutation in ERCC8 gene (NM_000082: exon 11, c.1122G>C) in our patient. Another gene ( ERCC6 ), which is also involved in CS did not have any disease-causing mutations in the proband. The new identified mutation was then confirmed by Sanger sequencing in the proband, his parents, and extended family members, confirming co-segregation with the disease. In addition, different bioinformatics programs which included MutationTaster, I-Mutant v2.0, NNSplice, Combined Annotation Dependent Depletion, The PhastCons, Genomic Evolutationary Rate Profiling conservation score, and T-Coffee Multiple Sequence Alignment predicted the pathogenicity of the mutation. Our study identified a rare novel mutation in ERCC8 gene and help to provide accurate genetic counseling and prenatal diagnosis to minimize new affected individuals in this family.

  17. Inverted formin 2 mutations with variable expression in patients with sporadic and hereditary focal and segmental glomerulosclerosis.

    LENUS (Irish Health Repository)

    Gbadegesin, Rasheed A

    2012-01-01

    Focal and segmental glomerulosclerosis (FSGS) is a major cause of end-stage kidney disease. Recent advances in molecular genetics show that defects in the podocyte play a major role in its pathogenesis and mutations in inverted formin 2 (INF2) cause autosomal dominant FSGS. In order to delineate the role of INF2 mutations in familial and sporadic FSGS, we sought to identify variants in a large cohort of patients with FSGS. A secondary objective was to define an approach for genetic screening in families with autosomal dominant disease. A total of 248 individuals were identified with FSGS, of whom 31 had idiopathic disease. The remaining patients clustered into 64 families encompassing 15 from autosomal recessive and 49 from autosomal dominant kindreds. There were missense mutations in 8 of the 49 families with autosomal dominant disease. Three of the detected variants were novel and all mutations were confined to exon 4 of INF2, a regulatory region responsible for 90% of all changes reported in FSGS due to INF2 mutations. Thus, in our series, INF2 mutations were responsible for 16% of all cases of autosomal dominant FSGS, with these mutations clustered in exon 4. Hence, screening for these mutations may represent a rapid, non-invasive and cost-effective method for the diagnosis of autosomal dominant FSGS.

  18. Dominant-lethal mutations and heritable translocations in mice

    Energy Technology Data Exchange (ETDEWEB)

    Generoso, W.M.

    1983-01-01

    Chromosome aberrations are a major component of radiation or chemically induced genetic damage in mammalian germ cells. The types of aberration produced are dependent upon the mutagen used and the germ-cell stage treated. For example, in male meiotic and postmeiotic germ cells certain alkylating chemicals induce both dominant-lethal mutations and heritable translocations while others induce primarily dominant-lethal mutations. Production of these two endpoints appears to be determined by the stability of alkylation products with the chromosomes. If the reaction products are intact in the male chromosomes at the time of sperm entry, they may be repaired in fertilized eggs. If repair is not effected and the alkylation products persist to the time of pronuclear chromosome replication, they lead to chromatid-type aberrations and eventually to dominant-lethality. The production of heritable translocations, on the other hand, requires a transformation of unstable alkylation products into suitable intermediate lesions. The process by which these lesions are converted into chromosome exchange within the male genome takes place after sperm enters the egg but prior to the time of pronuclear chromosome replication (i.e., chromosome-type). Thus, dominant-lethal mutations result from both chromatid- and chromosome-type aberrations while heritable translocations result primarily from the latter type. DNA target sites associated with the production of these two endpoints are discussed.

  19. Dominant-lethal mutations and heritable translocations in mice

    International Nuclear Information System (INIS)

    Generoso, W.M.

    1983-01-01

    Chromosome aberrations are a major component of radiation or chemically induced genetic damage in mammalian germ cells. The types of aberration produced are dependent upon the mutagen used and the germ-cell stage treated. For example, in male meiotic and postmeiotic germ cells certain alkylating chemicals induce both dominant-lethal mutations and heritable translocations while others induce primarily dominant-lethal mutations. Production of these two endpoints appears to be determined by the stability of alkylation products with the chromosomes. If the reaction products are intact in the male chromosomes at the time of sperm entry, they may be repaired in fertilized eggs. If repair is not effected and the alkylation products persist to the time of pronuclear chromosome replication, they lead to chromatid-type aberrations and eventually to dominant-lethality. The production of heritable translocations, on the other hand, requires a transformation of unstable alkylation products into suitable intermediate lesions. The process by which these lesions are converted into chromosome exchange within the male genome takes place after sperm enters the egg but prior to the time of pronuclear chromosome replication (i.e., chromosome-type). Thus, dominant-lethal mutations result from both chromatid- and chromosome-type aberrations while heritable translocations result primarily from the latter type. DNA target sites associated with the production of these two endpoints are discussed

  20. Novel mutation in TSPAN12 leads to autosomal recessive inheritance of congenital vitreoretinal disease with intra-familial phenotypic variability.

    Science.gov (United States)

    Gal, Moran; Levanon, Erez Y; Hujeirat, Yasir; Khayat, Morad; Pe'er, Jacob; Shalev, Stavit

    2014-12-01

    Developmental malformations of the vitreoretinal vasculature are a heterogeneous group of conditions with various modes of inheritance, and include familial exudative vitreoretinopathy (FEVR), persistent fetal vasculature (PFV), and Norrie disease. We investigated a large consanguineous kindred with multiple affected individuals exhibiting variable phenotypes of abnormal vitreoretinal vasculature, consistent with the three above-mentioned conditions and compatible with autosomal recessive inheritance. Exome sequencing identified a novel c.542G > T (p.C181F) apparently mutation in the TSPAN12 gene that segregated with the ocular disease in the family. The TSPAN12 gene was previously reported to cause dominant and recessive FEVR, but has not yet been associated with other vitreoretinal manifestations. The intra-familial clinical variability caused by a single mutation in the TSPAN12 gene underscores the complicated phenotype-genotype correlation of mutations in this gene, and suggests that there are additional genetic and environmental factors involved in the complex process of ocular vascularization during embryonic development. Our study supports considering PFV, FEVR, and Norrie disease a spectrum of disorders, with clinical and genetic overlap, caused by mutations in distinct genes acting in the Norrin/β-catenin signaling pathway. © 2014 Wiley Periodicals, Inc.

  1. A sodium-channel mutation causes isolated cardiac conduction disease

    NARCIS (Netherlands)

    Tan, HL; Bink-Boelkens, MTE; Bezzina, CR; Viswanathan, PC; Beaufort-Krol, GCM; van Tintelen, PJ; van den Berg, MP; Wilde, AAM; Balser, [No Value

    2001-01-01

    Cardiac conduction disorders slow the heart rhythm and cause disability in millions of people worldwide. Inherited mutations in SCN5A, the gene encoding the human cardiac sodium (Na+) channel, have been associated with rapid heart rhythms that occur suddenly and are life-threatening(1-3); however, a

  2. A de novo missense mutation of FGFR2 causes facial dysplasia syndrome in Holstein cattle.

    Science.gov (United States)

    Agerholm, Jørgen S; McEvoy, Fintan J; Heegaard, Steffen; Charlier, Carole; Jagannathan, Vidhya; Drögemüller, Cord

    2017-08-02

    Surveillance for bovine genetic diseases in Denmark identified a hitherto unreported congenital syndrome occurring among progeny of a Holstein sire used for artificial breeding. A genetic aetiology due to a dominant inheritance with incomplete penetrance or a mosaic germline mutation was suspected as all recorded cases were progeny of the same sire. Detailed investigations were performed to characterize the syndrome and to reveal its cause. Seven malformed calves were submitted examination. All cases shared a common morphology with the most striking lesions being severe facial dysplasia and complete prolapse of the eyes. Consequently the syndrome was named facial dysplasia syndrome (FDS). Furthermore, extensive brain malformations, including microencephaly, hydrocephalus, lobation of the cerebral hemispheres and compression of the brain were present. Subsequent data analysis of progeny of the sire revealed that around 0.5% of his offspring suffered from FDS. High density single nucleotide polymorphism (SNP) genotyping data of the seven cases and their parents were used to map the defect in the bovine genome. Significant genetic linkage was obtained for three regions, including chromosome 26 where whole genome sequencing of a case-parent trio revealed two de novo variants perfectly associated with the disease: an intronic SNP in the DMBT1 gene and a single non-synonymous variant in the FGFR2 gene. This FGFR2 missense variant (c.927G>T) affects a gene encoding a member of the fibroblast growth factor receptor family, where amino acid sequence is highly conserved between members and across species. It is predicted to change an evolutionary conserved tryptophan into a cysteine residue (p.Trp309Cys). Both variant alleles were proven to result from de novo mutation events in the germline of the sire. FDS is a novel genetic disorder of Holstein cattle. Mutations in the human FGFR2 gene are associated with various dominant inherited craniofacial dysostosis syndromes. Given

  3. Mutations in ROGDI Cause Kohlschutter-Tonz Syndrome

    NARCIS (Netherlands)

    Schossig, A.; Wolf, N.I.; Fischer, C.; Fischer, M.; Stocker, G.; Pabinger, S.; Dander, A.; Steiner, B.; Tonz, O.; Kotzot, D.; Haberlandt, E.; Amberger, A.; Burwinkel, B.; Wimmer, K.; Fauth, C.; Grond-Ginsbach, C.; Koch, M.J.; Deichmann, A.; von Kalle, C.; Bartram, C.R.; Kohlschutter, A.; Trajanoski, Z.; Zschocke, J.

    2012-01-01

    Kohlschütter-Tönz syndrome (KTS) is an autosomal-recessive disease characterized by the combination of epilepsy, psychomotor regression, and amelogenesis imperfecta. The molecular basis has not yet been elucidated. Here, we report that KTS is caused by mutations in ROGDI. Using a combination of

  4. G protein-coupled receptor mutations and human genetic disease.

    Science.gov (United States)

    Thompson, Miles D; Hendy, Geoffrey N; Percy, Maire E; Bichet, Daniel G; Cole, David E C

    2014-01-01

    Genetic variations in G protein-coupled receptor genes (GPCRs) disrupt GPCR function in a wide variety of human genetic diseases. In vitro strategies and animal models have been used to identify the molecular pathologies underlying naturally occurring GPCR mutations. Inactive, overactive, or constitutively active receptors have been identified that result in pathology. These receptor variants may alter ligand binding, G protein coupling, receptor desensitization and receptor recycling. Receptor systems discussed include rhodopsin, thyrotropin, parathyroid hormone, melanocortin, follicle-stimulating hormone (FSH), luteinizing hormone, gonadotropin-releasing hormone (GNRHR), adrenocorticotropic hormone, vasopressin, endothelin-β, purinergic, and the G protein associated with asthma (GPRA or neuropeptide S receptor 1 (NPSR1)). The role of activating and inactivating calcium-sensing receptor (CaSR) mutations is discussed in detail with respect to familial hypocalciuric hypercalcemia (FHH) and autosomal dominant hypocalemia (ADH). The CASR mutations have been associated with epilepsy. Diseases caused by the genetic disruption of GPCR functions are discussed in the context of their potential to be selectively targeted by drugs that rescue altered receptors. Examples of drugs developed as a result of targeting GPCRs mutated in disease include: calcimimetics and calcilytics, therapeutics targeting melanocortin receptors in obesity, interventions that alter GNRHR loss from the cell surface in idiopathic hypogonadotropic hypogonadism and novel drugs that might rescue the P2RY12 receptor congenital bleeding phenotype. De-orphanization projects have identified novel disease-associated receptors, such as NPSR1 and GPR35. The identification of variants in these receptors provides genetic reagents useful in drug screens. Discussion of the variety of GPCRs that are disrupted in monogenic Mendelian disorders provides the basis for examining the significance of common

  5. Three novel mutations in Iranian patients with Tay-Sachs disease.

    Science.gov (United States)

    Jamali, Solmaz; Eskandari, Nasim; Aryani, Omid; Salehpour, Shadab; Zaman, Talieh; Kamalidehghan, Behnam; Houshmand, Massoud

    2014-01-01

    Tay-Sachs disease (TSD), or GM2 gangliosidosis, is a lethal autosomal recessive neurodegenerative disorder, which is caused by a deficiency of beta-hexosaminidase A (HEXA), resulting in lysosomal accumulation of GM2 ganglioside. The aim of this study was to identify the TSD-causing mutations in an Iranian population. In this study, we examined 31 patients for TSD-causing mutations using PCR, followed by restriction enzyme digestion. Molecular genetics analysis of DNA from 23 patients of TSD revealed mutations that has been previously reported, including four-base duplications c.1274_1277dupTATC in exon 11 and IVS2+1G>A, deletion TTAGGCAAGGGC in exon 10 as well as a few novel mutations, including C331G, which altered Gln>Glu in HEXB, A>G, T>C, and p.R510X in exon 14, which predicted a termination codon or nonsense mutation. In conclusion, with the discovery of these novel mutations, the genotypic spectrum of Iranian patients with TSD disease has been extended and could facilitate definition of disease-related mutations.

  6. [Using exon combined target region capture sequencing chip to detect the disease-causing genes of retinitis pigmentosa].

    Science.gov (United States)

    Rong, Weining; Chen, Xuejuan; Li, Huiping; Liu, Yani; Sheng, Xunlun

    2014-06-01

    To detect the disease-causing genes of 10 retinitis pigmentosa pedigrees by using exon combined target region capture sequencing chip. Pedigree investigation study. From October 2010 to December 2013, 10 RP pedigrees were recruited for this study in Ningxia Eye Hospital. All the patients and family members received complete ophthalmic examinations. DNA was abstracted from patients, family members and controls. Using exon combined target region capture sequencing chip to screen the candidate disease-causing mutations. Polymerase chain reaction (PCR) and direct sequencing were used to confirm the disease-causing mutations. Seventy patients and 23 normal family members were recruited from 10 pedigrees. Among 10 RP pedigrees, 1 was autosomal dominant pedigrees and 9 were autosomal recessive pedigrees. 7 mutations related to 5 genes of 5 pedigrees were detected. A frameshift mutation on BBS7 gene was detected in No.2 pedigree, the patients of this pedigree combined with central obesity, polydactyly and mental handicap. No.2 pedigree was diagnosed as Bardet-Biedl syndrome finally. A missense mutation was detected in No.7 and No.10 pedigrees respectively. Because the patients suffered deafness meanwhile, the final diagnosis was Usher syndrome. A missense mutation on C3 gene related to age-related macular degeneration was also detected in No. 7 pedigrees. A nonsense mutation and a missense mutation on CRB1 gene were detected in No. 1 pedigree and a splicesite mutation on PROM1 gene was detected in No. 5 pedigree. Retinitis pigmentosa is a kind of genetic eye disease with diversity clinical phenotypes. Rapid and effective genetic diagnosis technology combined with clinical characteristics analysis is helpful to improve the level of clinical diagnosis of RP.

  7. [Clinical and molecular study in a family with autosomal dominant hypohidrotic ectodermal dysplasia].

    Science.gov (United States)

    Callea, Michele; Cammarata-Scalisi, Francisco; Willoughby, Colin E; Giglio, Sabrina R; Sani, Ilaria; Bargiacchi, Sara; Traficante, Giovanna; Bellacchio, Emanuele; Tadini, Gianluca; Yavuz, Izzet; Galeotti, Angela; Clarich, Gabriella

    2017-02-01

    Hypohidrotic ectodermal dysplasia (HED) is a rare disease characterized by deficiency in development of structure derived from the ectoderm and is caused by mutations in the genes EDA, EDAR, or EDARADD. Phenotypes caused by mutations in these three may exhibit similar clinical features, explained by a common signaling pathway. Mutations in EDA gene cause X linked HED, which is the most common form. Mutations in EDAR and EDARADD genes cause autosomal dominant and recessive form of HED. The most striking clinical findings in HED are hypodontia, hypotrichosis and hypohidrosis that can lead to episodes of hyperthermia. We report on clinical findings in a child with HED with autosomal dominant inheritance pattern with a heterozygous mutation c.1072C>T (p.Arg358X) in the EDAR gene. A review of the literature with regard to other cases presenting the same mutation has been carried out and discussed. Sociedad Argentina de Pediatría.

  8. Identification of a disease-causing mutation in a Chinese patient with retinitis pigmentosa by targeted next-generation sequencing

    DEFF Research Database (Denmark)

    Xiao, Jianping; Guo, Xueqin; Wang, Yong

    2017-01-01

    Purpose: To identify disease-causing mutations in a Chinese patient with retinitis pigmentosa (RP). Methods: A detailed clinical examination was performed on the proband. Targeted next-generation sequencing (NGS) combined with bioinformatics analysis was performed on the proband to detect candidate...

  9. Focal palmoplantar keratoderma caused by an autosomal dominant inherited mutation in the desmoglein 1 gene

    NARCIS (Netherlands)

    Milingou, M; Wood, P; Masouye, [No Value; McLean, WH; Borradori, L

    2006-01-01

    Background: Palmoplantar keratodermas (PPK) encompass a large genetically heterogeneous group of diseases associated with hyperkeratosis of the soles and/or palms that occur either isolated or in association with other cutaneous and extracutaneous manifestations. Pathogenic mutations in the

  10. P2X2 Dominant Deafness Mutations Have No Negative Effect on Wild-Type Isoform: Implications for Functional Rescue and in Deafness Mechanism

    Directory of Open Access Journals (Sweden)

    Yan Zhu

    2017-11-01

    Full Text Available The P2X2 receptor is an ATP-gated ion channel, assembled by three subunits. Recently, it has been found that heterozygous mutations of P2X2 V60L and G353R can cause autosomal dominant nonsyndromic hearing loss. However, the underlying mechanism remains unclear. The fact that heterozygous mutations cause deafness suggests that the mutations may have dominant-negative effect (DNE on wild-type (WT P2X2 isoforms and/or other partners leading to hearing loss. In this study, the effect of these dominant deafness P2X2 mutations on WT P2X2 was investigated. We found that sole transfection of both V60L and G353R deafness mutants could efficiently target to the plasma membrane, like WT P2X2, but exhibit a significantly reduced response to ATP stimulation. Both mutants reduced the channel conductance, but G353R mutation also altered the voltage dependency. Co-expression with WT P2X2 could restore the response to ATP. As the ratio of WT P2X2 vs. mutants increased, the response to ATP was also increased. Computer modeling confirmed that both V60L and G353R dominant-deafness mutant subunits do not have any negative effect on WT P2X2 subunit, when assembled as a heterotrimer. Improper docking or defective gating is the more likely mechanism for impaired channel function by these P2X2 deafness mutations. These results suggest that P2X2 dominant deafness mutations do not have negative effects on WT P2X2 isoforms, and that adding additional WT P2X2 could rescue the lost channel function caused by the deafness mutations. These P2X2 dominant deafness mutations may have negative-effects on other partners leading to hearing loss.

  11. CHCHD10 mutations p.R15L and p.G66V cause motoneuron disease by haploinsufficiency.

    Science.gov (United States)

    Brockmann, Sarah J; Freischmidt, Axel; Oeckl, Patrick; Müller, Kathrin; Ponna, Srinivas K; Helferich, Anika M; Paone, Christoph; Reinders, Jörg; Kojer, Kerstin; Orth, Michael; Jokela, Manu; Auranen, Mari; Udd, Bjarne; Hermann, Andreas; Danzer, Karin M; Lichtner, Peter; Walther, Paul; Ludolph, Albert C; Andersen, Peter M; Otto, Markus; Kursula, Petri; Just, Steffen; Weishaupt, Jochen H

    2018-02-15

    Mutations in the mitochondrially located protein CHCHD10 cause motoneuron disease by an unknown mechanism. In this study, we investigate the mutations p.R15L and p.G66V in comparison to wild-type CHCHD10 and the non-pathogenic variant p.P34S in vitro, in patient cells as well as in the vertebrate in vivo model zebrafish. We demonstrate a reduction of CHCHD10 protein levels in p.R15L and p.G66V mutant patient cells to approximately 50%. Quantitative real-time PCR revealed that expression of CHCHD10 p.R15L, but not of CHCHD10 p.G66V, is already abrogated at the mRNA level. Altered secondary structure and rapid protein degradation are observed with regard to the CHCHD10 p.G66V mutant. In contrast, no significant differences in expression, degradation rate or secondary structure of non-pathogenic CHCHD10 p.P34S are detected when compared with wild-type protein. Knockdown of CHCHD10 expression in zebrafish to about 50% causes motoneuron pathology, abnormal myofibrillar structure and motility deficits in vivo. Thus, our data show that the CHCHD10 mutations p.R15L and p.G66V cause motoneuron disease primarily based on haploinsufficiency of CHCHD10. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Mutations in PTRH2 cause novel infantile-onset multisystem disease with intellectual disability, microcephaly, progressive ataxia, and muscle weakness.

    Science.gov (United States)

    Hu, Hao; Matter, Michelle L; Issa-Jahns, Lina; Jijiwa, Mayumi; Kraemer, Nadine; Musante, Luciana; de la Vega, Michelle; Ninnemann, Olaf; Schindler, Detlev; Damatova, Natalia; Eirich, Katharina; Sifringer, Marco; Schrötter, Sandra; Eickholt, Britta J; van den Heuvel, Lambert; Casamina, Chanel; Stoltenburg-Didinger, Gisela; Ropers, Hans-Hilger; Wienker, Thomas F; Hübner, Christoph; Kaindl, Angela M

    2014-12-01

    To identify the cause of a so-far unreported phenotype of infantile-onset multisystem neurologic, endocrine, and pancreatic disease (IMNEPD). We characterized a consanguineous family of Yazidian-Turkish descent with IMNEPD. The two affected children suffer from intellectual disability, postnatal microcephaly, growth retardation, progressive ataxia, distal muscle weakness, peripheral demyelinating sensorimotor neuropathy, sensorineural deafness, exocrine pancreas insufficiency, hypothyroidism, and show signs of liver fibrosis. We performed whole-exome sequencing followed by bioinformatic analysis and Sanger sequencing on affected and unaffected family members. The effect of mutations in the candidate gene was studied in wild-type and mutant mice and in patient and control fibroblasts. In a consanguineous family with two individuals with IMNEPD, we identified a homozygous frameshift mutation in the previously not disease-associated peptidyl-tRNA hydrolase 2 (PTRH2) gene. PTRH2 encodes a primarily mitochondrial protein involved in integrin-mediated cell survival and apoptosis signaling. We show that PTRH2 is highly expressed in the developing brain and is a key determinant in maintaining cell survival during human tissue development. Moreover, we link PTRH2 to the mTOR pathway and thus the control of cell size. The pathology suggested by the human phenotype and neuroimaging studies is supported by analysis of mutant mice and patient fibroblasts. We report a novel disease phenotype, show that the genetic cause is a homozygous mutation in the PTRH2 gene, and demonstrate functional effects in mouse and human tissues. Mutations in PTRH2 should be considered in patients with undiagnosed multisystem neurologic, endocrine, and pancreatic disease.

  13. Mutations in PTRH2 cause novel infantile-onset multisystem disease with intellectual disability, microcephaly, progressive ataxia, and muscle weakness

    Science.gov (United States)

    Hu, Hao; Matter, Michelle L; Issa-Jahns, Lina; Jijiwa, Mayumi; Kraemer, Nadine; Musante, Luciana; de la Vega, Michelle; Ninnemann, Olaf; Schindler, Detlev; Damatova, Natalia; Eirich, Katharina; Sifringer, Marco; Schrötter, Sandra; Eickholt, Britta J; van den Heuvel, Lambert; Casamina, Chanel; Stoltenburg-Didinger, Gisela; Ropers, Hans-Hilger; Wienker, Thomas F; Hübner, Christoph; Kaindl, Angela M

    2014-01-01

    Objective To identify the cause of a so-far unreported phenotype of infantile-onset multisystem neurologic, endocrine, and pancreatic disease (IMNEPD). Methods We characterized a consanguineous family of Yazidian-Turkish descent with IMNEPD. The two affected children suffer from intellectual disability, postnatal microcephaly, growth retardation, progressive ataxia, distal muscle weakness, peripheral demyelinating sensorimotor neuropathy, sensorineural deafness, exocrine pancreas insufficiency, hypothyroidism, and show signs of liver fibrosis. We performed whole-exome sequencing followed by bioinformatic analysis and Sanger sequencing on affected and unaffected family members. The effect of mutations in the candidate gene was studied in wild-type and mutant mice and in patient and control fibroblasts. Results In a consanguineous family with two individuals with IMNEPD, we identified a homozygous frameshift mutation in the previously not disease-associated peptidyl-tRNA hydrolase 2 (PTRH2) gene. PTRH2 encodes a primarily mitochondrial protein involved in integrin-mediated cell survival and apoptosis signaling. We show that PTRH2 is highly expressed in the developing brain and is a key determinant in maintaining cell survival during human tissue development. Moreover, we link PTRH2 to the mTOR pathway and thus the control of cell size. The pathology suggested by the human phenotype and neuroimaging studies is supported by analysis of mutant mice and patient fibroblasts. Interpretation We report a novel disease phenotype, show that the genetic cause is a homozygous mutation in the PTRH2 gene, and demonstrate functional effects in mouse and human tissues. Mutations in PTRH2 should be considered in patients with undiagnosed multisystem neurologic, endocrine, and pancreatic disease. PMID:25574476

  14. Exome sequencing reveals VCP mutations as a cause of familial ALS

    OpenAIRE

    Johnson, Janel O.; Mandrioli, Jessica; Benatar, Michael; Abramzon, Yevgeniya; Van Deerlin, Vivianna M.; Trojanowski, John Q.; Gibbs, J Raphael; Brunetti, Maura; Gronka, Susan; Wuu, Joanne; Ding, Jinhui; McCluskey, Leo; Martinez-Lage, Maria; Falcone, Dana; Hernandez, Dena G.

    2010-01-01

    Using exome sequencing, we identified a p.R191Q amino acid change in the valosin-containing protein (VCP) gene in an Italian family with autosomal dominantly inherited amyotrophic lateral sclerosis (ALS). Mutations in VCP have previously been identified in families with Inclusion Body Myopathy, Paget’s disease and Frontotemporal Dementia (IBMPFD). Screening of VCP in a cohort of 210 familial ALS cases and 78 autopsy-proven ALS cases identified four additional mutations including a p.R155H mut...

  15. LRIG2 mutations cause urofacial syndrome.

    Science.gov (United States)

    Stuart, Helen M; Roberts, Neil A; Burgu, Berk; Daly, Sarah B; Urquhart, Jill E; Bhaskar, Sanjeev; Dickerson, Jonathan E; Mermerkaya, Murat; Silay, Mesrur Selcuk; Lewis, Malcolm A; Olondriz, M Beatriz Orive; Gener, Blanca; Beetz, Christian; Varga, Rita E; Gülpınar, Omer; Süer, Evren; Soygür, Tarkan; Ozçakar, Zeynep B; Yalçınkaya, Fatoş; Kavaz, Aslı; Bulum, Burcu; Gücük, Adnan; Yue, Wyatt W; Erdogan, Firat; Berry, Andrew; Hanley, Neil A; McKenzie, Edward A; Hilton, Emma N; Woolf, Adrian S; Newman, William G

    2013-02-07

    Urofacial syndrome (UFS) (or Ochoa syndrome) is an autosomal-recessive disease characterized by congenital urinary bladder dysfunction, associated with a significant risk of kidney failure, and an abnormal facial expression upon smiling, laughing, and crying. We report that a subset of UFS-affected individuals have biallelic mutations in LRIG2, encoding leucine-rich repeats and immunoglobulin-like domains 2, a protein implicated in neural cell signaling and tumorigenesis. Importantly, we have demonstrated that rare variants in LRIG2 might be relevant to nonsyndromic bladder disease. We have previously shown that UFS is also caused by mutations in HPSE2, encoding heparanase-2. LRIG2 and heparanase-2 were immunodetected in nerve fascicles growing between muscle bundles within the human fetal bladder, directly implicating both molecules in neural development in the lower urinary tract. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  16. Point mutation in D8C domain of Tamm-Horsfall protein/uromodulin in transgenic mice causes progressive renal damage and hyperuricemia.

    Directory of Open Access Journals (Sweden)

    Lijie Ma

    Full Text Available Hereditary mutations in Tamm-Horsfall protein (THP/uromodulin gene cause autosomal dominant kidney diseases characterized by juvenile-onset hyperuricemia, gout and progressive kidney failure, although the disease pathogenesis remains unclear. Here we show that targeted expression in transgenic mice of a mutation within the domain of 8 cysteines of THP in kidneys' thick ascending limb (TAL caused unfolded protein response in younger (1-month old mice and apoptosis in older (12-month old mice. While the young mice had urine concentration defects and polyuria, such defects progressively reversed in the older mice to marked oliguria, highly concentrated urine, fibrotic kidneys and reduced creatinine clearance. Both the young and the old transgenic mice had significantly higher serum uric acid and its catabolic product, allantoin, than age-matched wild-type mice. This THP mutation apparently caused primary defects in TAL by compromising the luminal translocation and reabsorptive functions of NKCC2 and ROMK and secondary responses in proximal tubules by upregulating NHE3 and URAT1. Our results strongly suggest that the progressive worsening of kidney functions reflects the accumulation of the deleterious effects of the misfolded mutant THP and the compensatory responses. Transgenic mice recapitulating human THP/uromodulin-associated kidney diseases could be used to elucidate their pathogenesis and test novel therapeutic strategies.

  17. Point mutation in D8C domain of Tamm-Horsfall protein/uromodulin in transgenic mice causes progressive renal damage and hyperuricemia

    Science.gov (United States)

    Landry, Nichole K.; El-Achkar, Tarek M.; Lieske, John C.

    2017-01-01

    Hereditary mutations in Tamm-Horsfall protein (THP/uromodulin) gene cause autosomal dominant kidney diseases characterized by juvenile-onset hyperuricemia, gout and progressive kidney failure, although the disease pathogenesis remains unclear. Here we show that targeted expression in transgenic mice of a mutation within the domain of 8 cysteines of THP in kidneys’ thick ascending limb (TAL) caused unfolded protein response in younger (1-month old) mice and apoptosis in older (12-month old) mice. While the young mice had urine concentration defects and polyuria, such defects progressively reversed in the older mice to marked oliguria, highly concentrated urine, fibrotic kidneys and reduced creatinine clearance. Both the young and the old transgenic mice had significantly higher serum uric acid and its catabolic product, allantoin, than age-matched wild-type mice. This THP mutation apparently caused primary defects in TAL by compromising the luminal translocation and reabsorptive functions of NKCC2 and ROMK and secondary responses in proximal tubules by upregulating NHE3 and URAT1. Our results strongly suggest that the progressive worsening of kidney functions reflects the accumulation of the deleterious effects of the misfolded mutant THP and the compensatory responses. Transgenic mice recapitulating human THP/uromodulin-associated kidney diseases could be used to elucidate their pathogenesis and test novel therapeutic strategies. PMID:29145399

  18. Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death

    DEFF Research Database (Denmark)

    Nyegaard, Mette; Overgaard, Michael Toft; Sondergaard, M.T.

    2012-01-01

    a substantial part of sudden cardiac deaths in young individuals. Mutations in RYR2, encoding the cardiac sarcoplasmic calcium channel, have been identified as causative in approximately half of all dominantly inherited CPVT cases. Applying a genome-wide linkage analysis in a large Swedish family with a severe......Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a devastating inherited disorder characterized by episodic syncope and/or sudden cardiac arrest during exercise or acute emotion in individuals without structural cardiac abnormalities. Although rare, CPVT is suspected to cause...... calmodulin-binding-domain peptide at low calcium concentrations. We conclude that calmodulin mutations can cause severe cardiac arrhythmia and that the calmodulin genes are candidates for genetic screening of individual cases and families with idiopathic ventricular tachycardia and unexplained sudden cardiac...

  19. Girl with idiopathic childhood hypercalcemia reveals new disease-causing CYP24A1 mutation

    DEFF Research Database (Denmark)

    Madsen, Jens Otto Broby; Sauer, Sabrina; Beck, Bodo

    2018-01-01

    of a 21 months old girl initially hospitalized due to excessive consumption of water and behavioral difficulties. Blood tests showed hypercalcemia, borderline high vitamin-D levels, and renal ultrasound revealed medullary nephrocalcinosis. An abnormality within the vitamin-D metabolism was suspected......CONTEXT: Idiopathic Infantile Hypercalcemia (IHH) was associated with vitamin-D supplementation in the 1950's. 50 years later mutations in the CYP241A gene, involved in the degradation of vitamin-D, have been identified as being a part of the etiology. CASE DESCRIPTION: We hereby report a case...... and genetic testing was performed. This revealed the patient to be compound heterozygous for a common (p.E143del) and a novel (likely) disease-causing mutation (p.H83D) in the CYP24A1 gene. The hypercalcemia normalized after calcium depleted diet and discontinuation of vitamin-D supplementation. CONCLUSIONS...

  20. A MITF mutation associated with a dominant white phenotype and bilateral deafness in German Fleckvieh cattle.

    Directory of Open Access Journals (Sweden)

    Ute Philipp

    Full Text Available A dominantly inherited syndrome associated with hypopigmentation, heterochromia irides, colobomatous eyes and bilateral hearing loss has been ascertained in Fleckvieh cattle (German White Fleckvieh syndrome. This syndrome has been mapped to bovine chromosome (BTA 22 using a genome-wide association study with the bovine high density single nucleotide polymorphism array. An R210I missense mutation has been identified within microphthalmia-associated transcription factor (MITF as responsible for this syndrome. The mutation is located in the highly conserved basic region of the protein and causes a negative-dominant effect. SOX10 and PAX3 promoter binding site mutations in MITF could be ruled out as causative for the German White Fleckvieh syndrome. Molecular characterization of this newly detected bovine syndrome means a large animal model is now available for the Tietz syndrome in humans.

  1. Mutations that Cause Human Disease: A Computational/Experimental Approach

    Energy Technology Data Exchange (ETDEWEB)

    Beernink, P; Barsky, D; Pesavento, B

    2006-01-11

    International genome sequencing projects have produced billions of nucleotides (letters) of DNA sequence data, including the complete genome sequences of 74 organisms. These genome sequences have created many new scientific opportunities, including the ability to identify sequence variations among individuals within a species. These genetic differences, which are known as single nucleotide polymorphisms (SNPs), are particularly important in understanding the genetic basis for disease susceptibility. Since the report of the complete human genome sequence, over two million human SNPs have been identified, including a large-scale comparison of an entire chromosome from twenty individuals. Of the protein coding SNPs (cSNPs), approximately half leads to a single amino acid change in the encoded protein (non-synonymous coding SNPs). Most of these changes are functionally silent, while the remainder negatively impact the protein and sometimes cause human disease. To date, over 550 SNPs have been found to cause single locus (monogenic) diseases and many others have been associated with polygenic diseases. SNPs have been linked to specific human diseases, including late-onset Parkinson disease, autism, rheumatoid arthritis and cancer. The ability to predict accurately the effects of these SNPs on protein function would represent a major advance toward understanding these diseases. To date several attempts have been made toward predicting the effects of such mutations. The most successful of these is a computational approach called ''Sorting Intolerant From Tolerant'' (SIFT). This method uses sequence conservation among many similar proteins to predict which residues in a protein are functionally important. However, this method suffers from several limitations. First, a query sequence must have a sufficient number of relatives to infer sequence conservation. Second, this method does not make use of or provide any information on protein structure, which

  2. Mutations in XRCC4 cause primordial dwarfism without causing immunodeficiency.

    Science.gov (United States)

    Saito, Shinta; Kurosawa, Aya; Adachi, Noritaka

    2016-08-01

    In successive reports from 2014 to 2015, X-ray repair cross-complementing protein 4 (XRCC4) has been identified as a novel causative gene of primordial dwarfism. XRCC4 is indispensable for non-homologous end joining (NHEJ), the major pathway for repairing DNA double-strand breaks. As NHEJ is essential for V(D)J recombination during lymphocyte development, it is generally believed that abnormalities in XRCC4 cause severe combined immunodeficiency. Contrary to expectations, however, no overt immunodeficiency has been observed in patients with primordial dwarfism harboring XRCC4 mutations. Here, we describe the various XRCC4 mutations that lead to disease and discuss their impact on NHEJ and V(D)J recombination.

  3. Functional characteristics of three new germline mutations of the thyrotropin receptor gene causing autosomal dominant toxic thyroid hyperplasia

    Energy Technology Data Exchange (ETDEWEB)

    Tonacchera, M.; Van Sande, J.; Cetani, F. [Universite Libre de Bruxelles, Brussels (Belgium)] [and others

    1996-02-01

    We report three unrelated families in which hyperthyroidism associated with thyroid hyperplasia was transmitted in an autosomal dominant fashion, in the absence of signs of autoimmunity. Exon 10 of the TSH receptor gene was directly sequenced after PCR amplification from DNA of peripheral leukocytes. In one family, a C to A transversion resulted in an S505R substitution in the third transmembrane segment; in the second, an A to T transversion caused an N650Y substitution in the sixth transmembrane segment; and in the third family, an A to G transition resulted in an N670S substitution in the seventh transmembrane segment. When expressed by transfection in COS-7 cells, each mutated receptor displayed an increase in constitutive stimulation of cAMP production; no effect on basal accumulation of inositol phosphates (IP) could be detected. In binding studies, cells transfected with wild-type of mutated receptors showed similar levels of expression, with the mutated receptors displaying similar or slightly increased affinity for bovine TSH (bTSH) binding. Cells transfected with S505R and N650Y mutants showed a similar cAMP maximal TSH-stimulated accumulation over the cells transfected with the wild type, whereas N670S transfectants showed a blunted response with an increase in EC{sub 50}. A higher IP response to 100 mU/mL bTSH over that obtained with the wild-type receptor was obtained in cells transfected with N650Y; in contrast, cells transfected with S505R showed a blunted IP production (50% less), and the N670S mutant completely lost the ability to stimulate IP accumulation in response to bTSH. The differential effects of individual mutations on stimulation by bTSH of cAMP or IP accumulation suggest that individual mutant receptors may achieve different active conformations with selective abilities to couple to G{sub s}{alpha} and to G{sub q}{alpha}. 17 refs., 8 figs.

  4. Dominant mutations in KAT6A cause intellectual disability with recognizable syndromic features.

    Science.gov (United States)

    Tham, Emma; Lindstrand, Anna; Santani, Avni; Malmgren, Helena; Nesbitt, Addie; Dubbs, Holly A; Zackai, Elaine H; Parker, Michael J; Millan, Francisca; Rosenbaum, Kenneth; Wilson, Golder N; Nordgren, Ann

    2015-03-05

    Through a multi-center collaboration study, we here report six individuals from five unrelated families, with mutations in KAT6A/MOZ detected by whole-exome sequencing. All five different de novo heterozygous truncating mutations were located in the C-terminal transactivation domain of KAT6A: NM_001099412.1: c.3116_3117 delCT, p.(Ser1039∗); c.3830_3831insTT, p.(Arg1278Serfs∗17); c.3879 dupA, p.(Glu1294Argfs∗19); c.4108G>T p.(Glu1370∗) and c.4292 dupT, p.(Leu1431Phefs∗8). An additional subject with a 0.23 MB microdeletion including the entire KAT6A reading frame was identified with genome-wide array comparative genomic hybridization. Finally, by detailed clinical characterization we provide evidence that heterozygous mutations in KAT6A cause a distinct intellectual disability syndrome. The common phenotype includes hypotonia, intellectual disability, early feeding and oromotor difficulties, microcephaly and/or craniosynostosis, and cardiac defects in combination with subtle facial features such as bitemporal narrowing, broad nasal tip, thin upper lip, posteriorly rotated or low-set ears, and microretrognathia. The identification of human subjects complements previous work from mice and zebrafish where knockouts of Kat6a/kat6a lead to developmental defects. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  5. Novel USH2A compound heterozygous mutations cause RP/USH2 in a Chinese family.

    Science.gov (United States)

    Liu, Xiaowen; Tang, Zhaohui; Li, Chang; Yang, Kangjuan; Gan, Guanqi; Zhang, Zibo; Liu, Jingyu; Jiang, Fagang; Wang, Qing; Liu, Mugen

    2010-03-17

    To identify the disease-causing gene in a four-generation Chinese family affected with retinitis pigmentosa (RP). Linkage analysis was performed with a panel of microsatellite markers flanking the candidate genetic loci of RP. These loci included 38 known RP genes. The complete coding region and exon-intron boundaries of Usher syndrome 2A (USH2A) were sequenced with the proband DNA to screen the disease-causing gene mutation. Restriction fragment length polymorphism (RFLP) analysis and direct DNA sequence analysis were done to demonstrate co-segregation of the USH2A mutations with the family disease. One hundred normal controls were used without the mutations. The disease-causing gene in this Chinese family was linked to the USH2A locus on chromosome 1q41. Direct DNA sequence analysis of USH2A identified two novel mutations in the patients: one missense mutation p.G1734R in exon 26 and a splice site mutation, IVS32+1G>A, which was found in the donor site of intron 32 of USH2A. Neither the p.G1734R nor the IVS32+1G>A mutation was found in the unaffected family members or the 100 normal controls. One patient with a homozygous mutation displayed only RP symptoms until now, while three patients with compound heterozygous mutations in the family of study showed both RP and hearing impairment. This study identified two novel mutations: p.G1734R and IVS32+1G>A of USH2A in a four-generation Chinese RP family. In this study, the heterozygous mutation and the homozygous mutation in USH2A may cause Usher syndrome Type II or RP, respectively. These two mutations expand the mutant spectrum of USH2A.

  6. Predicting the impact of Lynch syndrome-causing missense mutations from structural calculations.

    Directory of Open Access Journals (Sweden)

    Sofie V Nielsen

    2017-04-01

    Full Text Available Accurate methods to assess the pathogenicity of mutations are needed to fully leverage the possibilities of genome sequencing in diagnosis. Current data-driven and bioinformatics approaches are, however, limited by the large number of new variations found in each newly sequenced genome, and often do not provide direct mechanistic insight. Here we demonstrate, for the first time, that saturation mutagenesis, biophysical modeling and co-variation analysis, performed in silico, can predict the abundance, metabolic stability, and function of proteins inside living cells. As a model system, we selected the human mismatch repair protein, MSH2, where missense variants are known to cause the hereditary cancer predisposition disease, known as Lynch syndrome. We show that the majority of disease-causing MSH2 mutations give rise to folding defects and proteasome-dependent degradation rather than inherent loss of function, and accordingly our in silico modeling data accurately identifies disease-causing mutations and outperforms the traditionally used genetic disease predictors. Thus, in conclusion, in silico biophysical modeling should be considered for making genotype-phenotype predictions and for diagnosis of Lynch syndrome, and perhaps other hereditary diseases.

  7. A Mild Version of Danon Disease Caused by a Newly Recognized Mutation in the Lysosome-associated Membrane Protein-2 Gene.

    Science.gov (United States)

    Kyaw, Htoo; Shaik, Fatima; Lin, Aung Naing; Shinnar, Meir

    2018-02-04

    We present the case of a patient with dilated cardiomyopathy caused by a novel mutation in the lysosome-associated membrane protein-2 (LAMP-2) gene. Patients with pathogenic mutations of this gene typically suffer from Danon disease - a condition that leads to cognitive decline, severe skeletal myopathy, and severe hypertrophic cardiomyopathy. Our patient's presentation and clinical course, however, is different and much less severe than other patients with this disease. He did not suffer from neurologic and musculoskeletal complications. He is also possibly the longest-known survivor of this disease without a heart transplant. This disease is unfamiliar to many physicians, and our case highlights the importance of an awareness of this disorder, particularly because of its implications for both the patient and his family.

  8. Vacuolar Protein Sorting Genes in Parkinson's Disease: A Re-appraisal of Mutations Detection Rate and Neurobiology of Disease.

    Science.gov (United States)

    Gambardella, Stefano; Biagioni, Francesca; Ferese, Rosangela; Busceti, Carla L; Frati, Alessandro; Novelli, Giuseppe; Ruggieri, Stefano; Fornai, Francesco

    2016-01-01

    Mammalian retromers play a critical role in protein trans-membrane sorting from endosome to the trans-Golgi network (TGN). Recently, retromer alterations have been related to the onset of Parkinson's Disease (PD) since the variant p.Asp620Asn in VPS35 (Vacuolar Protein Sorting 35) was identified as a cause of late onset PD. This variant causes a primary defect in endosomal trafficking and retromers formation. Other mutations in VPS genes have been reported in both sporadic and familial PD. These mutations are less defined. Understanding the specific prevalence of all VPS gene mutations is key to understand the relevance of retromers impairment in the onset of PD. A number of PD-related mutations despite affecting different biochemical systems (autophagy, mitophagy, proteasome, endosomes, protein folding), all converge in producing an impairment in cell clearance. This may explain how genetic predispositions to PD may derive from slightly deleterious VPS mutations when combined with environmental agents overwhelming the clearance of the cell. This manuscript reviews genetic data produced in the last 5 years to re-define the actual prevalence of VPS gene mutations in the onset of PD. The prevalence of p.Asp620Asn mutation in VPS35 is 0.286 of familial PD. This increases up to 0.548 when considering mutations affecting all VPS genes. This configures mutations in VPS genes as the second most frequent autosomal dominant PD genotype. This high prevalence, joined with increased awareness of the role played by retromers in the neurobiology of PD, suggests environmentally-induced VPS alterations as crucial in the genesis of PD.

  9. Pathogenic Parkinson's disease mutations across the functional domains of LRRK2 alter the autophagic/lysosomal response to starvation.

    Science.gov (United States)

    Manzoni, Claudia; Mamais, Adamantios; Dihanich, Sybille; McGoldrick, Phillip; Devine, Michael J; Zerle, Julia; Kara, Eleanna; Taanman, Jan-Willem; Healy, Daniel G; Marti-Masso, Jose-Felix; Schapira, Anthony H; Plun-Favreau, Helene; Tooze, Sharon; Hardy, John; Bandopadhyay, Rina; Lewis, Patrick A

    2013-11-29

    LRRK2 is one of the most important genetic contributors to Parkinson's disease (PD). Point mutations in this gene cause an autosomal dominant form of PD, but to date no cellular phenotype has been consistently linked with mutations in each of the functional domains (ROC, COR and Kinase) of the protein product of this gene. In this study, primary fibroblasts from individuals carrying pathogenic mutations in the three central domains of LRRK2 were assessed for alterations in the autophagy/lysosomal pathway using a combination of biochemical and cellular approaches. Mutations in all three domains resulted in alterations in markers for autophagy/lysosomal function compared to wild type cells. These data highlight the autophagy and lysosomal pathways as read outs for pathogenic LRRK2 function and as a marker for disease, and provide insight into the mechanisms linking LRRK2 function and mutations. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Identification of p.A684V missense mutation in the WFS1 gene as a frequent cause of autosomal dominant optic atrophy and hearing impairment

    DEFF Research Database (Denmark)

    Rendtorff, Nanna D; Lodahl, Marianne; Boulahbel, Houda

    2011-01-01

    DNA deletions were detected in muscle from one p.A684V patient analyzed. Finally, wolframin p.A684V mutant ectopically expressed in HEK cells showed reduced protein levels compared to wild-type wolframin, strongly indicating that the mutation is disease-causing. Our data support OA and SNHL...

  11. Induced pluripotent stem cells (iPSCs) derived from a symptomatic carrier of a S305I mutation in the microtubule-associated protein tau (MAPT)-gene causing frontotemporal dementia

    DEFF Research Database (Denmark)

    Nimsanor, Natakarn; Jørring, Ida; Rasmussen, Mikkel A.

    2016-01-01

    Frontotemporal dementia with parkinsonism linked to chromosome 17q21.2 (FTDP-17) is an autosomal-dominant neurodegenerative disorder. Mutations in the gene coding the microtubule-associated protein tau (MAPT) can cause FTDP-17 but the underlying mechanisms of the disease are still unknown. Induced...

  12. Predicting the impact of Lynch syndrome-causing missense mutations from structural calculations

    DEFF Research Database (Denmark)

    Nielsen, Sofie V,; Stein, Amelie; Dinitzen, Alexander B.

    2017-01-01

    selected the human mismatch repair protein, MSH2, where missense variants are known to cause the hereditary cancer predisposition disease, known as Lynch syndrome. We show that the majority of disease-causing MSH2 mutations give rise to folding defects and proteasome-dependent degradation rather than...... and for diagnosis of Lynch syndrome, and perhaps other hereditary diseases....

  13. A missense mutation in the alpha-actinin 1 gene (ACTN1 is the cause of autosomal dominant macrothrombocytopenia in a large French family.

    Directory of Open Access Journals (Sweden)

    Paul Guéguen

    Full Text Available Inherited thrombocytopenia is a heterogeneous group of disorders characterized by a reduced number of blood platelets. Despite the identification of nearly 20 causative genes in the past decade, approximately half of all subjects with inherited thrombocytopenia still remain unexplained in terms of the underlying pathogenic mechanisms. Here we report a six-generation French pedigree with an autosomal dominant mode of inheritance and the identification of its genetic basis. Of the 55 subjects available for analysis, 26 were diagnosed with isolated macrothrombocytopenia. Genome-wide linkage analysis mapped a 10.9 Mb locus to chromosome 14 (14q22 with a LOD score of 7.6. Candidate gene analysis complemented by targeted next-generation sequencing identified a missense mutation (c.137GA; p.Arg46Gln in the alpha-actinin 1 gene (ACTN1 that segregated with macrothrombocytopenia in this large pedigree. The missense mutation occurred within actin-binding domain of alpha-actinin 1, a functionally critical domain that crosslinks actin filaments into bundles. The evaluation of cultured mutation-harboring megakaryocytes by electron microscopy and the immunofluorescence examination of transfected COS-7 cells suggested that the mutation causes disorganization of the cellular cytoplasm. Our study concurred with a recently published whole-exome sequence analysis of six small Japanese families with congenital macrothrombocytopenia, adding ACTN1 to the growing list of thrombocytopenia genes.

  14. Vacuolar Protein Sorting genes in Parkinson’s Disease: a re-appraisal of mutations detection rate and neurobiology of disease

    Directory of Open Access Journals (Sweden)

    Stefano Gambardella

    2016-11-01

    Full Text Available Mammalian retromers play a critical role in protein trans-membrane sorting from endosome to the trans-Golgi network (TGN. Recently, retromers have been linked to Parkinson's Disease (PD since the identification of the variant p.Asp620Asn in VPS35 (Vacuolar Protein Sorting 35 as a cause of late onset PD. This variant causes a primary defect in endosomal trafficking and retromers formation, which represent critical steps in the molecular mechanisms of disease. Other slightly penetrant and mildly deleterious mutations in VPS genes have been reported in both sporadic and familial PD. Therefore, understanding the actual prevalence of the whole range of VPS gene mutations is key to understand the relevance of retromers impairment in PD. This scenario indicates a plethora of mutations occurring in different pathways (autophagy, mitophagy, proteasome, endosomes, protein misfolding all converging to cell clearing systems. This may explain how genetic predispositions to PD may derive from slightly deleterious mutations when combining with heterogeneous environmental factors. This manuscript is a re-appraisal of genetic data produced in the last five years redefining the prevalence of VPS mutations in PD. The prevalence of p.Asp620Asn in VPS35 is 0.286 of familial PD. This data increases up to 0.548 considering mutations affecting all VPS genes, thus representing the second most frequent autosomal dominant PD genotype. This high prevalence, joined with increased awareness of the key role of retromers alterations in PD, strongly candidate environmentally-induced VPS alterations as key molecular mechanisms in the genesis of PD. rations as key molecular mechanisms in the genesis of PD.

  15. Mutation, somatic mutation and diseases of man

    International Nuclear Information System (INIS)

    Burnet, F.M.

    1976-01-01

    The relevance of the intrinsic mutagenesis for the evolution process, genetic diseases and the process of aging is exemplified. The fundamental reaction is the function of the DNA and the DNA-enzymes like the DNA-polymerases in replication, repair, and transcription. These defects are responsible for the mutation frequency and the genetic drift in the evolution process. They cause genetic diseases like Xeroderma pigmentosum which is described here in detail. The accumulation of structural and functional mistakes leads to diseases of old age, for example to autoimmune diseases and immune suppression. There is a proportionality between the duration of life and the frequency of mistakes in the enzymatic repair system. No possibility of prophylaxis or therapy is seen. Methods for prognosis could be developed. (AJ) [de

  16. A patient with Dent disease and features of Bartter syndrome caused by a novel mutation of CLCN5.

    Science.gov (United States)

    Okamoto, Takayuki; Tajima, Toshihiro; Hirayama, Tomoya; Sasaki, Satoshi

    2012-02-01

    Dent disease is an X-linked tubulopathy mainly caused by inactivating mutations of CLCN5. Features of Bartter syndrome such as hypokalemic metabolic alkalosis are rarely observed in patients with Dent disease. We report a Japanese male patient with Dent disease who also manifested features of Bartter syndrome. At the age of 3 years, he was diagnosed with Dent disease based on low molecular weight proteinuria and hypercalciuria. One year later, he was found to have features of Bartter syndrome, i.e., hypokalemia and metabolic alkalosis, and high levels of plasma renin activity and aldosterone with a normal blood pressure. Despite medical interventions, he developed chronic kidney disease stage 3 at the age of 21 years. To investigate the molecular basis of his disease, CLCN5, KCNJ1, SLC12A1, and CLCkb were analyzed and a novel mutation (Y567X) in CLCN5 was identified. Hypokalemic metabolic alkalosis is a rare manifestation in Dent disease. It is speculated that Dent patients with features of Bartter syndrome are susceptible to progression to renal failure. To study this hypothesis, additional observations and long-term follow-up of such patients are necessary.

  17. Mutations in DSTYK and dominant urinary tract malformations.

    Science.gov (United States)

    Sanna-Cherchi, Simone; Sampogna, Rosemary V; Papeta, Natalia; Burgess, Katelyn E; Nees, Shannon N; Perry, Brittany J; Choi, Murim; Bodria, Monica; Liu, Yan; Weng, Patricia L; Lozanovski, Vladimir J; Verbitsky, Miguel; Lugani, Francesca; Sterken, Roel; Paragas, Neal; Caridi, Gianluca; Carrea, Alba; Dagnino, Monica; Materna-Kiryluk, Anna; Santamaria, Giuseppe; Murtas, Corrado; Ristoska-Bojkovska, Nadica; Izzi, Claudia; Kacak, Nilgun; Bianco, Beatrice; Giberti, Stefania; Gigante, Maddalena; Piaggio, Giorgio; Gesualdo, Loreto; Vukic, Durdica Kosuljandic; Vukojevic, Katarina; Saraga-Babic, Mirna; Saraga, Marijan; Gucev, Zoran; Allegri, Landino; Latos-Bielenska, Anna; Casu, Domenica; State, Matthew; Scolari, Francesco; Ravazzolo, Roberto; Kiryluk, Krzysztof; Al-Awqati, Qais; D'Agati, Vivette D; Drummond, Iain A; Tasic, Velibor; Lifton, Richard P; Ghiggeri, Gian Marco; Gharavi, Ali G

    2013-08-15

    Congenital abnormalities of the kidney and the urinary tract are the most common cause of pediatric kidney failure. These disorders are highly heterogeneous, and the etiologic factors are poorly understood. We performed genomewide linkage analysis and whole-exome sequencing in a family with an autosomal dominant form of congenital abnormalities of the kidney or urinary tract (seven affected family members). We also performed a sequence analysis in 311 unrelated patients, as well as histologic and functional studies. Linkage analysis identified five regions of the genome that were shared among all affected family members. Exome sequencing identified a single, rare, deleterious variant within these linkage intervals, a heterozygous splice-site mutation in the dual serine-threonine and tyrosine protein kinase gene (DSTYK). This variant, which resulted in aberrant splicing of messenger RNA, was present in all affected family members. Additional, independent DSTYK mutations, including nonsense and splice-site mutations, were detected in 7 of 311 unrelated patients. DSTYK is highly expressed in the maturing epithelia of all major organs, localizing to cell membranes. Knockdown in zebrafish resulted in developmental defects in multiple organs, which suggested loss of fibroblast growth factor (FGF) signaling. Consistent with this finding is the observation that DSTYK colocalizes with FGF receptors in the ureteric bud and metanephric mesenchyme. DSTYK knockdown in human embryonic kidney cells inhibited FGF-stimulated phosphorylation of extracellular-signal-regulated kinase (ERK), the principal signal downstream of receptor tyrosine kinases. We detected independent DSTYK mutations in 2.3% of patients with congenital abnormalities of the kidney or urinary tract, a finding that suggests that DSTYK is a major determinant of human urinary tract development, downstream of FGF signaling. (Funded by the National Institutes of Health and others.).

  18. Hot-spot KIF5A mutations cause familial ALS

    Science.gov (United States)

    Yilmaz, Rüstem; Müller, Kathrin; Grehl, Torsten; Petri, Susanne; Meyer, Thomas; Grosskreutz, Julian; Weydt, Patrick; Ruf, Wolfgang; Neuwirth, Christoph; Weber, Markus; Pinto, Susana; Claeys, Kristl G; Schrank, Berthold; Jordan, Berit; Knehr, Antje; Günther, Kornelia; Hübers, Annemarie; Zeller, Daniel; Kubisch, Christian; Jablonka, Sibylle; Klopstock, Thomas; de Carvalho, Mamede; Sperfeld, Anne; Borck, Guntram; Volk, Alexander E; Dorst, Johannes; Weis, Joachim; Otto, Markus; Schuster, Joachim; Del Tredici, Kelly; Braak, Heiko; Danzer, Karin M; Freischmidt, Axel; Meitinger, Thomas; Strom, Tim M; Ludolph, Albert C; Andersen, Peter M; Weishaupt, Jochen H; Weyen, Ute; Hermann, Andreas; Hagenacker, Tim; Koch, Jan Christoph; Lingor, Paul; Göricke, Bettina; Zierz, Stephan; Baum, Petra; Wolf, Joachim; Winkler, Andrea; Young, Peter; Bogdahn, Ulrich; Prudlo, Johannes; Kassubek., Jan

    2018-01-01

    Abstract Heterozygous missense mutations in the N-terminal motor or coiled-coil domains of the kinesin family member 5A (KIF5A) gene cause monogenic spastic paraplegia (HSP10) and Charcot-Marie-Tooth disease type 2 (CMT2). Moreover, heterozygous de novo frame-shift mutations in the C-terminal domain of KIF5A are associated with neonatal intractable myoclonus, a neurodevelopmental syndrome. These findings, together with the observation that many of the disease genes associated with amyotrophic lateral sclerosis disrupt cytoskeletal function and intracellular transport, led us to hypothesize that mutations in KIF5A are also a cause of amyotrophic lateral sclerosis. Using whole exome sequencing followed by rare variant analysis of 426 patients with familial amyotrophic lateral sclerosis and 6137 control subjects, we detected an enrichment of KIF5A splice-site mutations in amyotrophic lateral sclerosis (2/426 compared to 0/6137 in controls; P = 4.2 × 10−3), both located in a hot-spot in the C-terminus of the protein and predicted to affect splicing exon 27. We additionally show co-segregation with amyotrophic lateral sclerosis of two canonical splice-site mutations in two families. Investigation of lymphoblast cell lines from patients with KIF5A splice-site mutations revealed the loss of mutant RNA expression and suggested haploinsufficiency as the most probable underlying molecular mechanism. Furthermore, mRNA sequencing of a rare non-synonymous missense mutation (predicting p.Arg1007Gly) located in the C-terminus of the protein shortly upstream of the splice donor of exon 27 revealed defective KIF5A pre-mRNA splicing in respective patient-derived cell lines owing to abrogation of the donor site. Finally, the non-synonymous single nucleotide variant rs113247976 (minor allele frequency = 1.00% in controls, n = 6137), also located in the C-terminal region [p.(Pro986Leu) in exon 26], was significantly enriched in familial amyotrophic lateral sclerosis patients (minor

  19. A novel mutation in the nerve-specific 5'UTR of the GJB1 gene causes X-linked Charcot-Marie-Tooth disease.

    LENUS (Irish Health Repository)

    Murphy, Sinéad M

    2011-03-01

    X-linked Charcot-Marie-Tooth disease (CMT1X) is the second most common cause of CMT, and is usually caused by mutations in the gap junction protein beta 1 (GJB1) gene which codes for connexin 32 (CX32). CX32 has three tissue-specific promoters, P1 which is specific for liver and pancreas, P1a specific for liver, oocytes and embryonic stem cells, and P2 which is nerve-specific. Over 300 mutations have been described in GJB1, spread throughout the coding region. We describe two families with X-linked inheritance and a phenotype consistent with CMT1X who did not have mutations in the GJB1 coding region. The non-coding region of GJB1 was sequenced and an upstream exon-splicing variant found at approximately - 373G>A which segregated with the disease in both families and was not present in controls. This substitution is located at the last base of the nerve-specific 5\\'UTR and thus may disrupt splicing of the nerve-specific transcript. Online consensus splice-site programs predict a reduced score for the mutant sequence vs. the normal sequence. It is likely that other mutations within the GJB1 non-coding regions account for the CMT1X families who do not have coding region mutations.

  20. Vacuolar Protein Sorting Genes in Parkinson's Disease: A Re-appraisal of Mutations Detection Rate and Neurobiology of Disease

    Science.gov (United States)

    Gambardella, Stefano; Biagioni, Francesca; Ferese, Rosangela; Busceti, Carla L.; Frati, Alessandro; Novelli, Giuseppe; Ruggieri, Stefano; Fornai, Francesco

    2016-01-01

    Mammalian retromers play a critical role in protein trans-membrane sorting from endosome to the trans-Golgi network (TGN). Recently, retromer alterations have been related to the onset of Parkinson's Disease (PD) since the variant p.Asp620Asn in VPS35 (Vacuolar Protein Sorting 35) was identified as a cause of late onset PD. This variant causes a primary defect in endosomal trafficking and retromers formation. Other mutations in VPS genes have been reported in both sporadic and familial PD. These mutations are less defined. Understanding the specific prevalence of all VPS gene mutations is key to understand the relevance of retromers impairment in the onset of PD. A number of PD-related mutations despite affecting different biochemical systems (autophagy, mitophagy, proteasome, endosomes, protein folding), all converge in producing an impairment in cell clearance. This may explain how genetic predispositions to PD may derive from slightly deleterious VPS mutations when combined with environmental agents overwhelming the clearance of the cell. This manuscript reviews genetic data produced in the last 5 years to re-define the actual prevalence of VPS gene mutations in the onset of PD. The prevalence of p.Asp620Asn mutation in VPS35 is 0.286 of familial PD. This increases up to 0.548 when considering mutations affecting all VPS genes. This configures mutations in VPS genes as the second most frequent autosomal dominant PD genotype. This high prevalence, joined with increased awareness of the role played by retromers in the neurobiology of PD, suggests environmentally-induced VPS alterations as crucial in the genesis of PD. PMID:27932943

  1. Muscle imaging in patients with tubular aggregate myopathy caused by mutations in STIM1

    DEFF Research Database (Denmark)

    Tasca, Giorgio; D'Amico, Adele; Monforte, Mauro

    2015-01-01

    Tubular aggregate myopathy is a genetically heterogeneous disease characterized by tubular aggregates as the hallmark on muscle biopsy. Mutations in STIM1 have recently been identified as one genetic cause in a number of tubular aggregate myopathy cases. To characterize the pattern of muscle...... involvement in this disease, upper and lower girdles and lower limbs were imaged in five patients with mutations in STIM1, and the scans were compared with two patients with tubular aggregate myopathy not caused by mutations in STIM1. A common pattern of involvement was found in STIM1-mutated patients...... of thigh and posterior leg with sparing of gracilis, tibialis anterior and, to a lesser extent, short head of biceps femoris. Mutations in STIM1 are associated with a homogeneous involvement on imaging despite variable clinical features. Muscle imaging can be useful in identifying STIM1-mutated patients...

  2. Prediction of disease causing non-synonymous SNPs by the Artificial Neural Network Predictor NetDiseaseSNP.

    Directory of Open Access Journals (Sweden)

    Morten Bo Johansen

    Full Text Available We have developed a sequence conservation-based artificial neural network predictor called NetDiseaseSNP which classifies nsSNPs as disease-causing or neutral. Our method uses the excellent alignment generation algorithm of SIFT to identify related sequences and a combination of 31 features assessing sequence conservation and the predicted surface accessibility to produce a single score which can be used to rank nsSNPs based on their potential to cause disease. NetDiseaseSNP classifies successfully disease-causing and neutral mutations. In addition, we show that NetDiseaseSNP discriminates cancer driver and passenger mutations satisfactorily. Our method outperforms other state-of-the-art methods on several disease/neutral datasets as well as on cancer driver/passenger mutation datasets and can thus be used to pinpoint and prioritize plausible disease candidates among nsSNPs for further investigation. NetDiseaseSNP is publicly available as an online tool as well as a web service: http://www.cbs.dtu.dk/services/NetDiseaseSNP.

  3. ER stress and basement membrane defects combine to cause glomerular and tubular renal disease resulting from Col4a1 mutations in mice

    Directory of Open Access Journals (Sweden)

    Frances E. Jones

    2016-02-01

    Full Text Available Collagen IV is a major component of basement membranes, and mutations in COL4A1, which encodes collagen IV alpha chain 1, cause a multisystemic disease encompassing cerebrovascular, eye and kidney defects. However, COL4A1 renal disease remains poorly characterized and its pathomolecular mechanisms are unknown. We show that Col4a1 mutations in mice cause hypotension and renal disease, including proteinuria and defects in Bowman's capsule and the glomerular basement membrane, indicating a role for Col4a1 in glomerular filtration. Impaired sodium reabsorption in the loop of Henle and distal nephron despite elevated aldosterone levels indicates that tubular defects contribute to the hypotension, highlighting a novel role for the basement membrane in vascular homeostasis by modulation of the tubular response to aldosterone. Col4a1 mutations also cause diabetes insipidus, whereby the tubular defects lead to polyuria associated with medullary atrophy and a subsequent reduction in the ability to upregulate aquaporin 2 and concentrate urine. Moreover, haematuria, haemorrhage and vascular basement membrane defects confirm an important vascular component. Interestingly, although structural and compositional basement membrane defects occurred in the glomerulus and Bowman's capsule, no tubular basement membrane defects were detected. By contrast, medullary atrophy was associated with chronic ER stress, providing evidence for cell-type-dependent molecular mechanisms of Col4a1 mutations. These data show that both basement membrane defects and ER stress contribute to Col4a1 renal disease, which has important implications for the development of treatment strategies for collagenopathies.

  4. Structure-based analysis of five novel disease-causing mutations in 21-hydroxylase-deficient patients.

    Directory of Open Access Journals (Sweden)

    Carolina Minutolo

    2011-01-01

    Full Text Available Congenital adrenal hyperplasia (CAH due to 21-hydroxylase deficiency is the most frequent inborn error of metabolism, and accounts for 90-95% of CAH cases. The affected enzyme, P450C21, is encoded by the CYP21A2 gene, located together with a 98% nucleotide sequence identity CYP21A1P pseudogene, on chromosome 6p21.3. Even though most patients carry CYP21A1P-derived mutations, an increasing number of novel and rare mutations in disease causing alleles were found in the last years. In the present work, we describe five CYP21A2 novel mutations, p.R132C, p.149C, p.M283V, p.E431K and a frameshift g.2511_2512delGG, in four non-classical and one salt wasting patients from Argentina. All novel point mutations are located in CYP21 protein residues that are conserved throughout mammalian species, and none of them were found in control individuals. The putative pathogenic mechanisms of the novel variants were analyzed in silico. A three-dimensional CYP21 structure was generated by homology modeling and the protein design algorithm FoldX was used to calculate changes in stability of CYP21A2 protein. Our analysis revealed changes in protein stability or in the surface charge of the mutant enzymes, which could be related to the clinical manifestation found in patients.

  5. Noonan syndrome-causing genes: Molecular update and an assessment of the mutation rate

    Directory of Open Access Journals (Sweden)

    Ihssane El Bouchikhi

    2016-12-01

    Full Text Available Noonan syndrome is a common autosomal dominant disorder characterized by short stature, congenital heart disease and facial dysmorphia with an incidence of 1/1000 to 2500 live births. Up to now, several genes have been proven to be involved in the disturbance of the transduction signal through the RAS-MAP Kinase pathway and the manifestation of Noonan syndrome. The first gene described was PTPN11, followed by SOS1, RAF1, KRAS, BRAF, NRAS, MAP2K1, and RIT1, and recently SOS2, LZTR1, and A2ML1, among others. Progressively, the physiopathology and molecular etiology of most signs of Noonan syndrome have been demonstrated, and inheritance patterns as well as genetic counseling have been established. In this review, we summarize the data concerning clinical features frequently observed in Noonan syndrome, and then, we describe the molecular etiology as well as the physiopathology of most Noonan syndrome-causing genes. In the second part of this review, we assess the mutational rate of Noonan syndrome-causing genes reported up to now in most screening studies. This review should give clinicians as well as geneticists a full view of the molecular aspects of Noonan syndrome and the authentic prevalence of the mutational events of its causing-genes. It will also facilitate laying the groundwork for future molecular diagnosis research, and the development of novel treatment strategies.

  6. Cole Disease Results from Mutations in ENPP1.

    Science.gov (United States)

    Eytan, Ori; Morice-Picard, Fanny; Sarig, Ofer; Ezzedine, Khaled; Isakov, Ofer; Li, Qiaoli; Ishida-Yamamoto, Akemi; Shomron, Noam; Goldsmith, Tomer; Fuchs-Telem, Dana; Adir, Noam; Uitto, Jouni; Orlow, Seth J; Taieb, Alain; Sprecher, Eli

    2013-10-03

    The coexistence of abnormal keratinization and aberrant pigmentation in a number of cornification disorders has long suggested a mechanistic link between these two processes. Here, we deciphered the genetic basis of Cole disease, a rare autosomal-dominant genodermatosis featuring punctate keratoderma, patchy hypopigmentation, and uncommonly, cutaneous calcifications. Using a combination of exome and direct sequencing, we showed complete cosegregation of the disease phenotype with three heterozygous ENPP1 mutations in three unrelated families. All mutations were found to affect cysteine residues in the somatomedin-B-like 2 (SMB2) domain in the encoded protein, which has been implicated in insulin signaling. ENPP1 encodes ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), which is responsible for the generation of inorganic pyrophosphate, a natural inhibitor of mineralization. Previously, biallelic mutations in ENPP1 were shown to underlie a number of recessive conditions characterized by ectopic calcification, thus providing evidence of profound phenotypic heterogeneity in ENPP1-associated genetic diseases. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  7. In silico analysis of a disease-causing mutation in PCDH15 gene in a consanguineous Pakistani family with Usher phenotype

    Directory of Open Access Journals (Sweden)

    Shamim Saleha

    2016-05-01

    Full Text Available AIM: To map Usher phenotype in a consanguineous Pakistani family and identify disease-associated mutation in a causative gene to establish phenotype-genotype correlation. METHODS: A consanguineous Pakistani family in which Usher phenotype was segregating as an autosomal recessive trait was ascertained. On the basis of results of clinical investigations of affected members of this family disease was diagnosed as Usher syndrome (USH. To identify the locus responsible for the Usher phenotype in this family, genomic DNA from blood sample of each individual was genotyped using microsatellite Short Tandem Repeat (STR markers for the known Usher syndrome loci. Then direct sequencing was performed to find out disease associated mutations in the candidate gene. RESULTS: By genetic linkage analysis, the USH phenotype of this family was mapped to PCDH15 locus on chromosome 10q21.1. Three different point mutations in exon 11 of PCDH15 were identified and one of them, c.1304A>C was found to be segregating with the disease phenotype in Pakistani family with Usher phenotype. This, c.1304A>C transversion mutation predicts an amino-acid substitution of aspartic acid with an alanine at residue number 435 (p.D435A of its protein product. Moreover, in silico analysis revealed conservation of aspartic acid at position 435 and predicated this change as pathogenic. CONCLUSION: The identification of c.1304A>C pathogenic mutation in PCDH15 gene and its association with Usher syndrome in a consanguineous Pakistani family is the first example of a missense mutation of PCDH15 causing USH1 phenotype. In previous reports, it was hypothesized that severe mutations such as truncated protein of PCDH15 led to the Usher I phenotype and that missense variants are mainly responsible for non-syndromic hearing impairment.

  8. In silico analysis of a disease-causing mutation in PCDH15 gene in a consanguineous Pakistani family with Usher phenotype.

    Science.gov (United States)

    Saleha, Shamim; Ajmal, Muhammad; Jamil, Muhammad; Nasir, Muhammad; Hameed, Abdul

    2016-01-01

    To map Usher phenotype in a consanguineous Pakistani family and identify disease-associated mutation in a causative gene to establish phenotype-genotype correlation. A consanguineous Pakistani family in which Usher phenotype was segregating as an autosomal recessive trait was ascertained. On the basis of results of clinical investigations of affected members of this family disease was diagnosed as Usher syndrome (USH). To identify the locus responsible for the Usher phenotype in this family, genomic DNA from blood sample of each individual was genotyped using microsatellite Short Tandem Repeat (STR) markers for the known Usher syndrome loci. Then direct sequencing was performed to find out disease associated mutations in the candidate gene. By genetic linkage analysis, the USH phenotype of this family was mapped to PCDH15 locus on chromosome 10q21.1. Three different point mutations in exon 11 of PCDH15 were identified and one of them, c.1304A>C was found to be segregating with the disease phenotype in Pakistani family with Usher phenotype. This, c.1304A>C transversion mutation predicts an amino-acid substitution of aspartic acid with an alanine at residue number 435 (p.D435A) of its protein product. Moreover, in silico analysis revealed conservation of aspartic acid at position 435 and predicated this change as pathogenic. The identification of c.1304A>C pathogenic mutation in PCDH15 gene and its association with Usher syndrome in a consanguineous Pakistani family is the first example of a missense mutation of PCDH15 causing USH1 phenotype. In previous reports, it was hypothesized that severe mutations such as truncated protein of PCDH15 led to the Usher I phenotype and that missense variants are mainly responsible for non-syndromic hearing impairment.

  9. Neuropathology of the recessive A673V APP mutation: Alzheimer disease with distinctive features.

    Science.gov (United States)

    Giaccone, Giorgio; Morbin, Michela; Moda, Fabio; Botta, Mario; Mazzoleni, Giulia; Uggetti, Andrea; Catania, Marcella; Moro, Maria Luisa; Redaelli, Veronica; Spagnoli, Alberto; Rossi, Roberta Simona; Salmona, Mario; Di Fede, Giuseppe; Tagliavini, Fabrizio

    2010-12-01

    Mutations of three different genes, encoding β-amyloid precursor protein (APP), presenilin 1 and presenilin 2 are associated with familial Alzheimer's disease (AD). Recently, the APP mutation A673V has been identified that stands out from all the genetic defects previously reported in these three genes, since it causes the disease only in the homozygous state (Di Fede et al. in Science 323:1473-1477, 2009). We here provide the detailed neuropathological picture of the proband of this family, who was homozygous for the APP A673V mutation and recently came to death. The brain has been studied by histological and immunohistochemical techniques, at the optical and ultrastructural levels. Cerebral Aβ accumulation and tau pathology were severe and extensive. Peculiar features were the configuration of the Aβ deposits that were of large size, mostly perivascular and exhibited a close correspondence between the pattern elicited by amyloid stainings and the labeling obtained with immunoreagents specific for Aβ40 or Aβ42. Moreover, Aβ deposition spared the neostriatum while deeply affecting the cerebellum, and therefore was not in compliance with the hierarchical topographical sequence of involvement documented in sporadic AD. Therefore, the neuropathological picture of familial AD caused by the APP recessive mutation A673V presents distinctive characteristics compared to sporadic AD or familial AD inherited as a dominant trait. Main peculiar features are the morphology, structural properties and composition of the Aβ deposits as well as their topographic distribution in the brain.

  10. CSB-PGBD3 Mutations Cause Premature Ovarian Failure.

    Directory of Open Access Journals (Sweden)

    Yingying Qin

    2015-07-01

    Full Text Available Premature ovarian failure (POF is a rare, heterogeneous disorder characterized by cessation of menstruation occurring before the age of 40 years. Genetic etiology is responsible for perhaps 25% of cases, but most cases are sporadic and unexplained. In this study, through whole exome sequencing in a non-consanguineous family having four affected members with POF and Sanger sequencing in 432 sporadic cases, we identified three novel mutations in the fusion gene CSB-PGBD3. Subsequently functional studies suggest that mutated CSB-PGBD3 fusion protein was impaired in response to DNA damage, as indicated by delayed or absent recruitment to damaged sites. Our data provide the first evidence that mutations in the CSB-PGBD3 fusion protein can cause human disease, even in the presence of functional CSB, thus potentially explaining conservation of the fusion protein for 43 My since marmoset. The localization of the CSB-PGBD3 fusion protein to UVA-induced nuclear DNA repair foci further suggests that the CSB-PGBD3 fusion protein, like many other proteins that can cause POF, modulates or participates in DNA repair.

  11. Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer's disease.

    Science.gov (United States)

    Rodriguez-Vieitez, Elena; Saint-Aubert, Laure; Carter, Stephen F; Almkvist, Ove; Farid, Karim; Schöll, Michael; Chiotis, Konstantinos; Thordardottir, Steinunn; Graff, Caroline; Wall, Anders; Långström, Bengt; Nordberg, Agneta

    2016-03-01

    Alzheimer's disease is a multifactorial dementia disorder characterized by early amyloid-β, tau deposition, glial activation and neurodegeneration, where the interrelationships between the different pathophysiological events are not yet well characterized. In this study, longitudinal multitracer positron emission tomography imaging of individuals with autosomal dominant or sporadic Alzheimer's disease was used to quantify the changes in regional distribution of brain astrocytosis (tracer (11)C-deuterium-L-deprenyl), fibrillar amyloid-β plaque deposition ((11)C-Pittsburgh compound B), and glucose metabolism ((18)F-fluorodeoxyglucose) from early presymptomatic stages over an extended period to clinical symptoms. The 52 baseline participants comprised autosomal dominant Alzheimer's disease mutation carriers (n = 11; 49.6 ± 10.3 years old) and non-carriers (n = 16; 51.1 ± 14.2 years old; 10 male), and patients with sporadic mild cognitive impairment (n = 17; 61.9 ± 6.4 years old; nine male) and sporadic Alzheimer's disease (n = 8; 63.0 ± 6.5 years old; five male); for confidentiality reasons, the gender of mutation carriers is not revealed. The autosomal dominant Alzheimer's disease participants belonged to families with known mutations in either presenilin 1 (PSEN1) or amyloid precursor protein (APPswe or APParc) genes. Sporadic mild cognitive impairment patients were further divided into (11)C-Pittsburgh compound B-positive (n = 13; 62.0 ± 6.4; seven male) and (11)C-Pittsburgh compound B-negative (n = 4; 61.8 ± 7.5 years old; two male) groups using a neocortical standardized uptake value ratio cut-off value of 1.41, which was calculated with respect to the cerebellar grey matter. All baseline participants underwent multitracer positron emission tomography scans, cerebrospinal fluid biomarker analysis and neuropsychological assessment. Twenty-six of the participants underwent clinical and imaging follow-up examinations after 2.8 ± 0.6 years. By using linear

  12. Characterization of Cat-2t, a radiation-induced dominant cataract mutation in mice

    International Nuclear Information System (INIS)

    Graw, J.; Bors, W.; Gopinath, P.M.; Merkle, S.; Michel, C.; Reitmeir, P.; Schaeffer, E.S.; Summer, K.H.; Wulff, A.

    1990-01-01

    A dominant cataract mutation was detected recently among the offspring of x-ray-irradiated male mice. The mutation, which causes total lens opacity, has provisionally been designated by the gene symbol Cat-2t. In the lenses of heterozygous and homozygous Cat-2t mutants, the epithelial and fiber cells were swollen and the lens capsule was ruptured. The histologic analysis demonstrated a complete destruction of the cellular organization of the lens, which might be caused by its altered developmental processes. The data derived from biochemical investigations indicate that biochemistry of the cataractous Cat-2t lenses is affected: the osmotic state as indicated by the increased water content and increased Na(+)-K(+)-adenosinetriphosphatase (ATPase) activity; the energy state as indicated by the decreased adenosine triphosphate (ATP) concentration; and the redox state as indicated by the enhanced content of oxidized glutathione. Additionally, the lenticular protein composition is altered because of the presence of vimentin in the water-soluble fraction. This cannot be explained by the enhanced crosslinking activity of transglutaminase. The changes of the osmotic, energy, and redox states are considered to be secondary in relation to the altered lenticular development. In contrast, the variations concerning vimentin and transglutaminase might be a biochemical indication of the changed development. Possible similarities to other dominantly expressed murine cataract mutants are discussed

  13. MSH2 mutation carriers are at higher risk of cancer than MLH1 mutation carriers : A study of hereditary nonpolyposis colorectal cancer families

    NARCIS (Netherlands)

    Vasen, HFA; Stormorken, A; Menko, FH; Nagengast, FM; Kleibeuker, JH; Griffioen, G; Taal, BG; Moller, P; Wijnen, JT

    2001-01-01

    Purpose: Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant disease characterized by the clustering of colorectal cancer, endometrial cancer, and various other cancers. The disease is caused by mutations in DNA-mismatch-repair (MMR) genes, most frequently in MLH1, MSH2, and

  14. MSH2 mutation carriers are at higher risk of cancer than MLH1 mutation carriers: a study of hereditary nonpolyposis colorectal cancer families.

    NARCIS (Netherlands)

    Vasen, H.F.; Stormorken, A.; Menko, F.H.; Nagengast, F.M.; Kleibeuker, J.H.; Griffioen, G.; Taal, B.G.; Moller, P.; Wijnen, J.T.

    2001-01-01

    PURPOSE: Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant disease characterized by the clustering of colorectal cancer, endometrial cancer, and various other cancers. The disease is caused by mutations in DNA-mismatch-repair (MMR) genes, most frequently in MLH1, MSH2, and

  15. Rapid characterization of disease-causing mutations in the low density lipoprotein receptor (LDL-R) gene by overexpression in COS cells

    DEFF Research Database (Denmark)

    Jensen, T G; Andresen, B S; Jensen, H K

    1996-01-01

    To characterize disease-causing mutations in the low density lipoprotein receptor (LDL-R) gene, COS cells are transfected with the mutant gene in an EBV-based expression vector and characterized by flow cytometry. Using antibodies against the LDL-receptor the amount of receptor protein on the cel...

  16. De novo mutations in ATP1A3 cause alternating hemiplegia of childhood

    Science.gov (United States)

    Heinzen, Erin L.; Swoboda, Kathryn J.; Hitomi, Yuki; Gurrieri, Fiorella; Nicole, Sophie; de Vries, Boukje; Tiziano, F. Danilo; Fontaine, Bertrand; Walley, Nicole M.; Heavin, Sinéad; Panagiotakaki, Eleni; Fiori, Stefania; Abiusi, Emanuela; Di Pietro, Lorena; Sweney, Matthew T.; Newcomb, Tara M.; Viollet, Louis; Huff, Chad; Jorde, Lynn B.; Reyna, Sandra P.; Murphy, Kelley J.; Shianna, Kevin V.; Gumbs, Curtis E.; Little, Latasha; Silver, Kenneth; Ptác̆ek, Louis J.; Haan, Joost; Ferrari, Michel D.; Bye, Ann M.; Herkes, Geoffrey K.; Whitelaw, Charlotte M.; Webb, David; Lynch, Bryan J.; Uldall, Peter; King, Mary D.; Scheffer, Ingrid E.; Neri, Giovanni; Arzimanoglou, Alexis; van den Maagdenberg, Arn M.J.M.; Sisodiya, Sanjay M.; Mikati, Mohamad A.; Goldstein, David B.; Nicole, Sophie; Gurrieri, Fiorella; Neri, Giovanni; de Vries, Boukje; Koelewijn, Stephany; Kamphorst, Jessica; Geilenkirchen, Marije; Pelzer, Nadine; Laan, Laura; Haan, Joost; Ferrari, Michel; van den Maagdenberg, Arn; Zucca, Claudio; Bassi, Maria Teresa; Franchini, Filippo; Vavassori, Rosaria; Giannotta, Melania; Gobbi, Giuseppe; Granata, Tiziana; Nardocci, Nardo; De Grandis, Elisa; Veneselli, Edvige; Stagnaro, Michela; Gurrieri, Fiorella; Neri, Giovanni; Vigevano, Federico; Panagiotakaki, Eleni; Oechsler, Claudia; Arzimanoglou, Alexis; Nicole, Sophie; Giannotta, Melania; Gobbi, Giuseppe; Ninan, Miriam; Neville, Brian; Ebinger, Friedrich; Fons, Carmen; Campistol, Jaume; Kemlink, David; Nevsimalova, Sona; Laan, Laura; Peeters-Scholte, Cacha; van den Maagdenberg, Arn; Casaer, Paul; Casari, Giorgio; Sange, Guenter; Spiel, Georg; Boneschi, Filippo Martinelli; Zucca, Claudio; Bassi, Maria Teresa; Schyns, Tsveta; Crawley, Francis; Poncelin, Dominique; Vavassori, Rosaria

    2012-01-01

    Alternating hemiplegia of childhood (AHC) is a rare, severe neurodevelopmental syndrome characterized by recurrent hemiplegic episodes and distinct neurologic manifestations. AHC is usually a sporadic disorder with unknown etiology. Using exome sequencing of seven patients with AHC, and their unaffected parents, we identified de novo nonsynonymous mutations in ATP1A3 in all seven AHC patients. Subsequent sequence analysis of ATP1A3 in 98 additional patients revealed that 78% of AHC cases have a likely causal ATP1A3 mutation, including one inherited mutation in a familial case of AHC. Remarkably, six ATP1A3 mutations explain the majority of patients, including one observed in 36 patients. Unlike ATP1A3 mutations that cause rapid-onset-dystonia-parkinsonism, AHC-causing mutations revealed consistent reductions in ATPase activity without effects on protein expression. This work identifies de novo ATP1A3 mutations as the primary cause of AHC, and offers insight into disease pathophysiology by expanding the spectrum of phenotypes associated with mutations in this gene. PMID:22842232

  17. Conduction block and tonic pupils in Charcot-Marie-Tooth disease caused by a myelin protein zero p.Ile112Thr mutation.

    LENUS (Irish Health Repository)

    Murphy, Sinéad M

    2011-03-01

    We report a patient with Charcot-Marie-Tooth disease (CMT) due to the p.Ile112Thr mutation in myelin protein zero (MPZ) who presented with a patchy neuropathy with conduction block and tonic pupils. Conduction block is unusual in inherited neuropathies, while pupil abnormalities are recognised to occur in CMT especially due to MPZ mutations. This case highlights that patchy demyelinating neuropathy with conduction block may occur in p.Ile112Thr MPZ mutations. Involvement of the pupils, as in this case, may be a pointer towards a genetic rather than inflammatory cause of neuropathy.

  18. A novel syndrome of autosomal-dominant hyperinsulinemic hypoglycemia linked to a mutation in the human insulin receptor gene

    DEFF Research Database (Denmark)

    Højlund, Kurt; Hansen, Torben; Lajer, Maria

    2004-01-01

    a missense mutation (Arg1174Gln) in the tyrosine kinase domain of the insulin receptor gene that cosegregated with the disease phenotype (logarithm of odds [LOD] score 3.21). In conclusion, we report a novel syndrome of autosomal-dominant hyperinsulinemic hypoglycemia. The findings demonstrate...

  19. Autosomal dominant anhidrotic ectodermal dysplasia with immunodeficiency caused by a novel NFKBIA mutation, p.Ser36Tyr, presents with mild ectodermal dysplasia and non-infectious systemic inflammation.

    Science.gov (United States)

    Yoshioka, Takakazu; Nishikomori, Ryuta; Hara, Junichi; Okada, Keiko; Hashii, Yoshiko; Okafuji, Ikuo; Nodomi, Seishiro; Kawai, Tomoki; Izawa, Kazushi; Ohnishi, Hidenori; Yasumi, Takahiro; Nakahata, Tatsutoshi; Heike, Toshio

    2013-10-01

    Anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) is characterized by hypohidrosis, dental abnormalities, sparse hair, and immunodeficiency. Autosomal dominant (AD)-EDA-ID, caused by a heterozygous mutation within NFKBIA, is very rare and its clinical features remain largely unknown. This study describes a patient with AD-EDA-ID harboring a novel NFKBIA mutation who presented with mild EDA and non-infectious systemic inflammation. The clinical presentation of an AD-EDA-ID patient was described and immunological, genetic, and biochemical analyses were performed, with a focus on nuclear factor kappa B (NF-κB) activation. The patient presented with symptoms of mild EDA-ID, namely sparse hair and hypohidrosis, although a skin biopsy confirmed the presence of sweat glands. There were no dental abnormalities. The patient also suffered from non-infectious inflammation, which responded to systemic corticosteroid therapy; however, the patient remained ill. Immunological analyses revealed reduced Toll-like receptor/IL-1 (TLR/IL-1) and tumor necrosis factor (TNF) receptor family responses to various stimuli. Genetic analysis identified a de novo heterozygous missense mutation, p.Ser36Tyr, in NFKBIA, resulting in defective NFKBIA degradation and impaired NF-κB activation. The patient was diagnosed with AD-EDA-ID and underwent hematopoietic stem cell transplantation. Engraftment was successful, with few signs of acute graft versus host disease. However, the patient suffered hemolytic anemia and thrombocytopenia, and died from a brain hemorrhage due to intractable thrombocytopenia. AD-EDA-ID patients can present with mild ectodermal dysplasia and non-infectious inflammation, rather than with recurrent infections. Also, hematopoietic stem cell transplantation for AD-EDA-ID is still a clinical challenge.

  20. Reciprocal mouse and human limb phenotypes caused by gain- and loss-of-function mutations affecting Lmbr1.

    OpenAIRE

    Clark, R M; Marker, P C; Roessler, E; Dutra, A; Schimenti, J C; Muenke, M; Kingsley, D M

    2001-01-01

    The major locus for dominant preaxial polydactyly in humans has been mapped to 7q36. In mice the dominant Hemimelic extra toes (Hx) and Hammertoe (Hm) mutations map to a homologous chromosomal region and cause similar limb defects. The Lmbr1 gene is entirely within the small critical intervals recently defined for both the mouse and human mutations and is misexpressed at the exact time that the mouse Hx phenotype becomes apparent during limb development. This result suggests that Lmbr1 may un...

  1. Seizures in dominantly inherited Alzheimer disease.

    Science.gov (United States)

    Zarea, Aline; Charbonnier, Camille; Rovelet-Lecrux, Anne; Nicolas, Gaël; Rousseau, Stéphane; Borden, Alaina; Pariente, Jeremie; Le Ber, Isabelle; Pasquier, Florence; Formaglio, Maite; Martinaud, Olivier; Rollin-Sillaire, Adeline; Sarazin, Marie; Croisile, Bernard; Boutoleau-Bretonnière, Claire; Ceccaldi, Mathieu; Gabelle, Audrey; Chamard, Ludivine; Blanc, Frédéric; Sellal, François; Paquet, Claire; Campion, Dominique; Hannequin, Didier; Wallon, David

    2016-08-30

    To assess seizure frequency in a large French cohort of autosomal dominant early-onset Alzheimer disease (ADEOAD) and to determine possible correlations with causative mutations. A national multicentric study was performed in patients with ADEOAD harboring a pathogenic mutation within PSEN1, PSEN2, APP, or a duplication of APP, and a minimal follow-up of 5 years. Clinical, EEG, and imaging data were systematically recorded. We included 132 patients from 77 families: 94 PSEN1 mutation carriers (MCs), 16 APP duplication carriers, 15 APP MCs, and 7 PSEN2 MCs. Seizure frequency was 47.7% after a mean follow-up of 8.4 years (range 5-25). After 5-year follow-up and using a Cox model analysis, the percentages of patients with seizures were respectively 19.1% (10.8%-26.7%) for PSEN1, 28.6% (0%-55.3%) for PSEN2, 31.2% (4.3%-50.6%) for APP duplications, and no patient for APP mutation. APP duplication carriers showed a significantly increased seizure risk compared to both APP MCs (hazard ratio [HR] = 5.55 [95% confidence interval 1.87-16.44]) and PSEN1 MCs (HR = 4.46 [2.11-9.44]). Among all PSEN1 mutations, those within the domains of protein hydrophilic I, transmembrane II (TM-II), TM-III, TM-IV, and TM-VII were associated with a significant increase in seizure frequency compared to other domains (HR = 4.53 [1.93-10.65], p = 0.0005). Seizures are a common feature of ADEOAD. In this population, risk was significantly higher in the APP duplication group than in all other groups. Within PSEN1, 5 specific domains were associated with a higher seizure risk indicating specific correlations between causative mutation and seizures. © 2016 American Academy of Neurology.

  2. Autozygosity reveals recessive mutations and novel mechanisms in dominant genes: implications in variant interpretation

    KAUST Repository

    Monies, Dorota

    2017-04-06

    The purpose of this study is to describe recessive alleles in strictly dominant genes. Identifying recessive mutations in genes for which only dominant disease or risk alleles have been reported can expand our understanding of the medical relevance of these genes both phenotypically and mechanistically. The Saudi population is enriched for autozygosity, which enhances the homozygous occurrence of alleles, including pathogenic alleles in genes that have been associated only with a dominant inheritance pattern.Exome sequencing of patients from consanguineous families with likely recessive phenotypes was performed. In one family, the genotype of the deceased children was inferred from their parents due to lack of available samples.We describe the identification of 11 recessive variants (5 of which are reported here for the first time) in 11 genes for which only dominant disease or risk alleles have been reported. The observed phenotypes for these recessive variants were novel (e.g., FBN2-related myopathy and CSF1R-related brain malformation and osteopetrosis), typical (e.g., ACTG2-related visceral myopathy), or an apparently healthy state (e.g., PDE11A), consistent with the corresponding mouse knockout phenotypes.Our results show that, in the era of genomic sequencing and

  3. Novel CREB3L3 Nonsense Mutation in a Family With Dominant Hypertriglyceridemia.

    Science.gov (United States)

    Cefalù, Angelo B; Spina, Rossella; Noto, Davide; Valenti, Vincenza; Ingrassia, Valeria; Giammanco, Antonina; Panno, Maria D; Ganci, Antonina; Barbagallo, Carlo M; Averna, Maurizio R

    2015-12-01

    Cyclic AMP responsive element-binding protein 3-like 3 (CREB3L3) is a novel candidate gene for dominant hypertriglyceridemia. To date, only 4 kindred with dominant hypertriglyceridemia have been found to be carriers of 2 nonsense mutations in CREB3L3 gene (245fs and W46X). We investigated a family in which hypertriglyceridemia displayed an autosomal dominant pattern of inheritance. The proband was a 49-year-old woman with high plasma triglycerides (≤1300 mg/dL; 14.68 mmol/L). Her father had a history of moderate hypertriglyceridemia, and her 51-year-old brother had triglycerides levels as high as 1600 mg/dL (18.06 mmol/L). To identify the causal mutation in this family, we analyzed the candidate genes of recessive and dominant forms of primary hypertriglyceridemia by direct sequencing. The sequencing of CREB3L3 gene led to the discovery of a novel minute frame shift mutation in exon 3 of CREB3L3 gene, predicted to result in the formation of a truncated protein devoid of function (c.359delG-p.K120fsX20). Heterozygosity for the c.359delG mutation resulted in a severe phenotype occurring later in life in the proband and her brother and a good response to diet and a hypotriglyceridemic treatment. The same mutation was detected in a 13-year-old daughter who to date is normotriglyceridemic. We have identified a novel pathogenic mutation in CREB3L3 gene in a family with dominant hypertriglyceridemia with a variable pattern of penetrance. © 2015 American Heart Association, Inc.

  4. Hot-spot KIF5A mutations cause familial ALS.

    Science.gov (United States)

    Brenner, David; Yilmaz, Rüstem; Müller, Kathrin; Grehl, Torsten; Petri, Susanne; Meyer, Thomas; Grosskreutz, Julian; Weydt, Patrick; Ruf, Wolfgang; Neuwirth, Christoph; Weber, Markus; Pinto, Susana; Claeys, Kristl G; Schrank, Berthold; Jordan, Berit; Knehr, Antje; Günther, Kornelia; Hübers, Annemarie; Zeller, Daniel; Kubisch, Christian; Jablonka, Sibylle; Sendtner, Michael; Klopstock, Thomas; de Carvalho, Mamede; Sperfeld, Anne; Borck, Guntram; Volk, Alexander E; Dorst, Johannes; Weis, Joachim; Otto, Markus; Schuster, Joachim; Del Tredici, Kelly; Braak, Heiko; Danzer, Karin M; Freischmidt, Axel; Meitinger, Thomas; Strom, Tim M; Ludolph, Albert C; Andersen, Peter M; Weishaupt, Jochen H

    2018-01-12

    Heterozygous missense mutations in the N-terminal motor or coiled-coil domains of the kinesin family member 5A (KIF5A) gene cause monogenic spastic paraplegia (HSP10) and Charcot-Marie-Tooth disease type 2 (CMT2). Moreover, heterozygous de novo frame-shift mutations in the C-terminal domain of KIF5A are associated with neonatal intractable myoclonus, a neurodevelopmental syndrome. These findings, together with the observation that many of the disease genes associated with amyotrophic lateral sclerosis disrupt cytoskeletal function and intracellular transport, led us to hypothesize that mutations in KIF5A are also a cause of amyotrophic lateral sclerosis. Using whole exome sequencing followed by rare variant analysis of 426 patients with familial amyotrophic lateral sclerosis and 6137 control subjects, we detected an enrichment of KIF5A splice-site mutations in amyotrophic lateral sclerosis (2/426 compared to 0/6137 in controls; P = 4.2 × 10-3), both located in a hot-spot in the C-terminus of the protein and predicted to affect splicing exon 27. We additionally show co-segregation with amyotrophic lateral sclerosis of two canonical splice-site mutations in two families. Investigation of lymphoblast cell lines from patients with KIF5A splice-site mutations revealed the loss of mutant RNA expression and suggested haploinsufficiency as the most probable underlying molecular mechanism. Furthermore, mRNA sequencing of a rare non-synonymous missense mutation (predicting p.Arg1007Gly) located in the C-terminus of the protein shortly upstream of the splice donor of exon 27 revealed defective KIF5A pre-mRNA splicing in respective patient-derived cell lines owing to abrogation of the donor site. Finally, the non-synonymous single nucleotide variant rs113247976 (minor allele frequency = 1.00% in controls, n = 6137), also located in the C-terminal region [p.(Pro986Leu) in exon 26], was significantly enriched in familial amyotrophic lateral sclerosis patients (minor allele

  5. Hereditary Persistence of Fetal Hemoglobin Caused by Single Nucleotide Promoter Mutations in Sickle Cell Trait and Hb SC Disease.

    Science.gov (United States)

    Akinbami, Anthony O; Campbell, Andrew D; Han, Zeqiu J; Luo, Hong-Yuan; Chui, David H K; Steinberg, Martin H

    2016-01-01

    Hereditary persistence of fetal hemoglobin (HPFH) can be caused by point mutations in the γ-globin gene promoters. We report three rare cases: a child compound heterozygous for Hb S (HBB: c.20A > T) and HPFH with a novel point mutation in the (A)γ-globin gene promoter who had 42.0% Hb S, 17.0% Hb A and 38.0% Hb F; a man with Hb SC (HBB: c.19G > A) disease and a point mutation in the (G)γ-globin gene promoter who had 54.0% Hb S, 18.0% Hb C and 25.0% Hb F; a child heterozygous for Hb S and HPFH due to mutations in both the (A)γ- and (G)γ-globin gene promoters in cis [(G)γ(A)γ(β(+)) HPFH], with 67.0% Hb A, 6.5% Hb S and 25.0% Hb F.

  6. Dystonia-Causing Mutations as a Contribution to the Etiology of Spasmodic Dysphonia.

    Science.gov (United States)

    de Gusmão, Claudio M; Fuchs, Tania; Moses, Andrew; Multhaupt-Buell, Trisha; Song, Phillip C; Ozelius, Laurie J; Franco, Ramon A; Sharma, Nutan

    2016-10-01

    Spasmodic dysphonia is a focal dystonia of the larynx with heterogeneous manifestations and association with familial risk factors. There are scarce data to allow precise understanding of etiology and pathophysiology. Screening for dystonia-causing genetic mutations has the potential to allow accurate diagnosis, inform about genotype-phenotype correlations, and allow a better understanding of mechanisms of disease. Cross-sectional study. Tertiary academic medical center. We enrolled patients presenting with spasmodic dysphonia to the voice clinic of our academic medical center. Data included demographics, clinical features, family history, and treatments administered. The following genes with disease-causing mutations previously associated with spasmodic dysphonia were screened: TOR1A (DYT1), TUBB4 (DYT4), and THAP1 (DYT6). Eighty-six patients were recruited, comprising 77% females and 23% males. A definite family history of neurologic disorder was present in 15% (13 of 86). Average age (± standard deviation) of symptom onset was 42.1 ± 15.7 years. Most (99%; 85 of 86) were treated with botulinum toxin, and 12% (11 of 86) received oral medications. Genetic screening was negative in all patients for the GAG deletion in TOR1A (DYT1) and in the 5 exons currently associated with disease-causing mutations in TUBB4 (DYT4). Two patients tested positive for novel/rare variants in THAP1 (DYT6). Genetic screening targeted at currently known disease-causing mutations in TOR1A, THAP1, and TUBB4 appears to have low diagnostic yield in sporadic spasmodic dysphonia. In our cohort, only 2 patients tested positive for novel/rare variants in THAP1. Clinicians should make use of genetic testing judiciously and in cost-effective ways. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  7. Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension.

    Science.gov (United States)

    Vilarinho, Sílvia; Sari, Sinan; Yilmaz, Güldal; Stiegler, Amy L; Boggon, Titus J; Jain, Dhanpat; Akyol, Gulen; Dalgic, Buket; Günel, Murat; Lifton, Richard P

    2016-06-01

    Despite advances in the diagnosis and management of idiopathic noncirrhotic portal hypertension, its pathogenesis remains elusive. Insight may be gained from study of early-onset familial idiopathic noncirrhotic portal hypertension, in which Mendelian mutations may account for disease. We performed exome sequencing of eight subjects from six kindreds with onset of portal hypertension of indeterminate etiology during infancy or childhood. Three subjects from two consanguineous families shared the identical rare homozygous p.N46S mutation in DGUOK, a deoxyguanosine kinase required for mitochondrial DNA replication; haplotype sharing demonstrated that the mutation in the two families was inherited from a remote common ancestor. All three affected subjects had stable portal hypertension with noncirrhotic liver disease for 6-16 years of follow-up. This mutation impairs adenosine triphosphate binding and reduces catalytic activity. Loss-of-function mutations in DGUOK have previously been implicated in cirrhosis and liver failure but not in isolated portal hypertension. Interestingly, treatment of patients with human immunodeficiency viral infection with the nucleoside analogue didanosine is known to cause portal hypertension in a subset of patients and lowers deoxyguanosine kinase levels in vitro; the current findings implicate these effects on deoxyguanosine kinase in the causal mechanism. Our findings provide new insight into the mechanisms mediating inherited and acquired noncirrhotic portal hypertension, expand the phenotypic spectrum of DGUOK deficiency, and provide a new genetic test for a specific cause of idiopathic noncirrhotic portal hypertension. (Hepatology 2016;63:1977-1986). © 2016 by the American Association for the Study of Liver Diseases.

  8. Dominant mutations in S. cerevisiae PMS1 identify the Mlh1-Pms1 endonuclease active site and an exonuclease 1-independent mismatch repair pathway.

    Science.gov (United States)

    Smith, Catherine E; Mendillo, Marc L; Bowen, Nikki; Hombauer, Hans; Campbell, Christopher S; Desai, Arshad; Putnam, Christopher D; Kolodner, Richard D

    2013-10-01

    Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC) is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR) caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. To better understand the function of Mlh1-Pms1 in MMR, we used Saccharomyces cerevisiae to identify six pms1 mutations (pms1-G683E, pms1-C817R, pms1-C848S, pms1-H850R, pms1-H703A and pms1-E707A) that were weakly dominant in wild-type cells, which surprisingly caused a strong MMR defect when present on low copy plasmids in an exo1Δ mutant. Molecular modeling showed these mutations caused amino acid substitutions in the metal coordination pocket of the Pms1 endonuclease active site and biochemical studies showed that they inactivated the endonuclease activity. This model of Mlh1-Pms1 suggested that the Mlh1-FERC motif contributes to the endonuclease active site. Consistent with this, the mlh1-E767stp mutation caused both MMR and endonuclease defects similar to those caused by the dominant pms1 mutations whereas mutations affecting the predicted metal coordinating residue Mlh1-C769 had no effect. These studies establish that the Mlh1-Pms1 endonuclease is required for MMR in a previously uncharacterized Exo1-independent MMR pathway.

  9. Dominant mutations in S. cerevisiae PMS1 identify the Mlh1-Pms1 endonuclease active site and an exonuclease 1-independent mismatch repair pathway.

    Directory of Open Access Journals (Sweden)

    Catherine E Smith

    2013-10-01

    Full Text Available Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. To better understand the function of Mlh1-Pms1 in MMR, we used Saccharomyces cerevisiae to identify six pms1 mutations (pms1-G683E, pms1-C817R, pms1-C848S, pms1-H850R, pms1-H703A and pms1-E707A that were weakly dominant in wild-type cells, which surprisingly caused a strong MMR defect when present on low copy plasmids in an exo1Δ mutant. Molecular modeling showed these mutations caused amino acid substitutions in the metal coordination pocket of the Pms1 endonuclease active site and biochemical studies showed that they inactivated the endonuclease activity. This model of Mlh1-Pms1 suggested that the Mlh1-FERC motif contributes to the endonuclease active site. Consistent with this, the mlh1-E767stp mutation caused both MMR and endonuclease defects similar to those caused by the dominant pms1 mutations whereas mutations affecting the predicted metal coordinating residue Mlh1-C769 had no effect. These studies establish that the Mlh1-Pms1 endonuclease is required for MMR in a previously uncharacterized Exo1-independent MMR pathway.

  10. Loss-of-function mutation in RUSC2 causes intellectual disability and secondary microcephaly.

    Science.gov (United States)

    Alwadei, Ali H; Benini, Ruba; Mahmoud, Adel; Alasmari, Ali; Kamsteeg, Erik-Jan; Alfadhel, Majid

    2016-12-01

    Inherited aberrancies in intracellular vesicular transport are associated with a variety of neurological and non-neurological diseases. RUSC2 is a gene found on chromosome 9p13.3 that codes for iporin, a ubiquitous protein with high expression in the brain that interacts with Rab proteins (GTPases implicated in intracellular protein trafficking). Although mutations in Rab proteins have been described as causing brain abnormalities and intellectual disability, until now no disease-causing mutations in RUSC2 have ever been reported in humans. We describe, to our knowledge for the first time, three patients with inherited homozygous nonsense mutations identified in RUSC2 on whole-exome sequencing. All three patients had central hypotonia, microcephaly, and moderate to severe intellectual disability. Two patients had additional features of early-onset epilepsy and absence of the splenium. This report adds to the ever-expanding landscape of genetic causes of intellectual disability and increases our understanding of the cellular processes underlying this important neurological entity. © 2016 Mac Keith Press.

  11. Prenatal diagnosis of autosomal dominant hereditary spastic paraplegia (SPG4) using direct mutation detection

    DEFF Research Database (Denmark)

    Nielsen, Jørgen E; Koefoed, Pernille; Kjaergaard, Susanne

    2004-01-01

    OBJECTIVE: To present a report on prenatal diagnosis using direct SPG4 gene analysis in a family with autosomal dominant hereditary spastic paraplegia (AD-HSP). METHODS: Genetic linkage and haplotype analysis were previously carried out with chromosome 2p markers. DNA was obtained from affected...... individuals, the affected father, the mother, and fetal DNA from an ongoing pregnancy by chorionic villus sampling (CVS) in the first trimester. The spastin gene (SPG4) was completely sequenced. RESULTS: A novel 832insGdelAA frameshift mutation, predicted to cause loss of functional protein, was identified...... in the affected father and in the fetal DNA. CONCLUSIONS: This is the first report on direct prenatal diagnosis of chromosome 2p-linked AD-HSP (SPG4). In addition, we report a novel SPG4-combined small insertion/deletion mutation in exon 5, which may be the first SPG4 mutational hot spot....

  12. Structural consequences of disease-causing mutations in the ATRX-DNMT3-DNMT3L (ADD) domain of the chromatin-associated protein ATRX.

    Science.gov (United States)

    Argentaro, Anthony; Yang, Ji-Chun; Chapman, Lynda; Kowalczyk, Monika S; Gibbons, Richard J; Higgs, Douglas R; Neuhaus, David; Rhodes, Daniela

    2007-07-17

    The chromatin-associated protein ATRX was originally identified because mutations in the ATRX gene cause a severe form of syndromal X-linked mental retardation associated with alpha-thalassemia. Half of all of the disease-associated missense mutations cluster in a cysteine-rich region in the N terminus of ATRX. This region was named the ATRX-DNMT3-DNMT3L (ADD) domain, based on sequence homology with a family of DNA methyltransferases. Here, we report the solution structure of the ADD domain of ATRX, which consists of an N-terminal GATA-like zinc finger, a plant homeodomain finger, and a long C-terminal alpha-helix that pack together to form a single globular domain. Interestingly, the alpha-helix of the GATA-like finger is exposed and highly basic, suggesting a DNA-binding function for ATRX. The disease-causing mutations fall into two groups: the majority affect buried residues and hence affect the structural integrity of the ADD domain; another group affects a cluster of surface residues, and these are likely to perturb a potential protein interaction site. The effects of individual point mutations on the folding state and stability of the ADD domain correlate well with the levels of mutant ATRX protein in patients, providing insights into the molecular pathophysiology of ATR-X syndrome.

  13. Simultaneous Occurence of an Autosomal Dominant Inherited MSX1 Mutation and an X-linked Recessive Inherited EDA Mutation in One Chinese Family with Non-syndromic Oligodontia.

    Science.gov (United States)

    Zhang, Xiao Xia; Wong, Sing Wai; Han, Dong; Feng, Hai Lan

    2015-01-01

    To describe the simultaneous occurence of an autosomal dominant inherited MSX1 mutation and an X-linked recessive inherited EDA mutation in one Chinese family with nonsyndromic oligodontia. Clinical data of characteristics of tooth agenesis were collected. MSX1 and EDA gene mutations were detected in a Chinese family of non-syndromic oligodontia. Mild hypodontia in the parents and severe oligodontia in the son was recorded. A novel missense heterozygous mutation c.517C>A (p.Arg173Ser) was detected in the MSX1 gene in the boy and the father. A homozygous missense mutation c.1001G>A (p.Arg334His) was detected in the EDA gene in the boy and the same mutant occurred heterozygously in the mother. Simultaneous occurence of two different gene mutations with different inheritence patterns, which both caused oligodontia, which occurred in one subject and in one family, was reported.

  14. Naxos disease in an Arab family is not caused by the Pk2157del2 mutation; evidance for exclusion of the plakoglobin gene

    International Nuclear Information System (INIS)

    Stuhmann, M.; El-Harith, A.; Bukhari, Iqbal A.

    2004-01-01

    Nax os disease is a rare hereditary disorder characterized by palmoplantar keratoderma, woolly hair and cardiomyopathy. This study aims to determine whether Naxos disease in a Saudi Arab family is caused by the Pk2157del2 mutation that was identified in Greek families from Naxos Island where the disease had originally been described. This study was undertaken at King Fahad Hospital of the University, Al-Khobar, and the Medical University of Hannover, in the spring of 2003. Naxos disease has been encountered in a 2-year-old girl and her 30-year-old aunt of a Saudi Arab family. Deoxyribonucleic acid samples of this family were analyzed by polymerase chain-reaction (PCR) amplification of the respective region of the plakoglobin gene, and direct nucleotide sequencing of the PCR-products. Segregation analysis was performed employing the newly detected IVS11+22G/A polymorphism. Molecular genetic analysis of the DNA sample of the child diagnosed with Naxos disease showed absence of the Pk2157del2 mutation. In addition, the segregation analysis revealed heterozygosity for IVS11+22G/A in the affected girl. Absence of the Pk2157del2 frameshift in the affected child proved that Naxos disease in this Saudi Arab family is not caused by the same mutation that was identified in the Greek families. Furthermore, heterozygosity for the IVS11+22G/A polymorphism provided evidence for exclusion of the plakoglobin gene in this consanguineous family. (author)

  15. Mutations in DZIP1L, which encodes a ciliary transition zone protein, cause autosomal recessive polycystic kidney disease

    Science.gov (United States)

    Lu, Hao; Galeano, Maria C. Rondón; Ott, Elisabeth; Kaeslin, Geraldine; Kausalya, P. Jaya; Kramer, Carina; Ortiz-Brüchle, Nadina; Hilger, Nadescha; Metzis, Vicki; Hiersche, Milan; Tay, Shang Yew; Tunningley, Robert; Vij, Shubha; Courtney, Andrew D.; Whittle, Belinda; Wühl, Elke; Vester, Udo; Hartleben, Björn; Neuber, Steffen; Frank, Valeska; Little, Melissa H.; Epting, Daniel; Papathanasiou, Peter; Perkins, Andrew C.; Wright, Graham D.; Hunziker, Walter; Gee, Heon Yung; Otto, Edgar A.; Zerres, Klaus; Hildebrandt, Friedhelm; Roy, Sudipto; Wicking, Carol; Bergmann, Carsten

    2017-01-01

    Autosomal recessive polycystic kidney disease (ARPKD), usually considered to be a genetically homogeneous disease caused by mutations in PKHD1, has been associated with ciliary dysfunction. Here, we describe mutations in the DAZ interacting protein 1-like (DZIP1L) gene in patients with ARPKD, findings we have further validated by loss-of-function studies in mice and zebrafish. DZIP1L localizes to centrioles and at the distal end of basal bodies, and interacts with septin2, a protein implicated in maintenance of the periciliary diffusion barrier at the ciliary transition zone. Consistent with a defect in the diffusion barrier, we found that the ciliary membrane translocation of the PKD proteins, polycystin-1 and −2, is compromised in DZIP1L mutant cells. Together, these data provide the first conclusive evidence that ARPKD is not a homogeneous disorder, and establishes DZIP1L as a second gene involved in its pathogenesis. PMID:28530676

  16. Mutations in DZIP1L, which encodes a ciliary-transition-zone protein, cause autosomal recessive polycystic kidney disease.

    Science.gov (United States)

    Lu, Hao; Galeano, Maria C Rondón; Ott, Elisabeth; Kaeslin, Geraldine; Kausalya, P Jaya; Kramer, Carina; Ortiz-Brüchle, Nadina; Hilger, Nadescha; Metzis, Vicki; Hiersche, Milan; Tay, Shang Yew; Tunningley, Robert; Vij, Shubha; Courtney, Andrew D; Whittle, Belinda; Wühl, Elke; Vester, Udo; Hartleben, Björn; Neuber, Steffen; Frank, Valeska; Little, Melissa H; Epting, Daniel; Papathanasiou, Peter; Perkins, Andrew C; Wright, Graham D; Hunziker, Walter; Gee, Heon Yung; Otto, Edgar A; Zerres, Klaus; Hildebrandt, Friedhelm; Roy, Sudipto; Wicking, Carol; Bergmann, Carsten

    2017-07-01

    Autosomal recessive polycystic kidney disease (ARPKD), usually considered to be a genetically homogeneous disease caused by mutations in PKHD1, has been associated with ciliary dysfunction. Here, we describe mutations in DZIP1L, which encodes DAZ interacting protein 1-like, in patients with ARPKD. We further validated these findings through loss-of-function studies in mice and zebrafish. DZIP1L localizes to centrioles and to the distal ends of basal bodies, and interacts with septin2, a protein implicated in maintenance of the periciliary diffusion barrier at the ciliary transition zone. In agreement with a defect in the diffusion barrier, we found that the ciliary-membrane translocation of the PKD proteins polycystin-1 and polycystin-2 is compromised in DZIP1L-mutant cells. Together, these data provide what is, to our knowledge, the first conclusive evidence that ARPKD is not a homogeneous disorder and further establish DZIP1L as a second gene involved in ARPKD pathogenesis.

  17. Frequencies of aneuploidy and dominant lethal mutations in young female mice induced by low dose γ-rays

    International Nuclear Information System (INIS)

    Yao Suyan; Zhang Chaoyang; Dai Lianlian; Gao Changwen

    1991-01-01

    Relationship between aneuploidy, dominant lethal mutations and doses in young feral mice induced by low dose γ-rays was examined. The results suggest that the frequencies of aneuploidy of embryos increased at 0.15 Gy, but increases at over 0.50 Gy after irradiation in groups. The frequencies of aneuploidy and dominant lethal mutations increased with increasing doses and fitted linear relationship. This dose-response relationship of trisomic was not significant. The frequency of dominant lethal mutations induced by 60 Co γ irradiation is 5.59%. The effect of dominant lethal mutation is higher than that of the aneuploidy

  18. The frequency of Tay-Sachs disease causing mutations in the Brazilian Jewish population justifies a carrier screening program.

    Science.gov (United States)

    Rozenberg, R; Pereira, L da V

    2001-07-05

    Tay-Sachs disease is an autosomal recessive disease characterized by progressive neurologic degeneration, fatal in early childhood. In the Ashkenazi Jewish population the disease incidence is about 1 in every 3,500 newborns and the carrier frequency is 1 in every 29 individuals. Carrier screening programs for Tay-Sachs disease have reduced disease incidence by 90% in high-risk populations in several countries. The Brazilian Jewish population is estimated at 90,000 individuals. Currently, there is no screening program for Tay-Sachs disease in this population. To evaluate the importance of a Tay-Sachs disease carrier screening program in the Brazilian Jewish population by determining the frequency of heterozygotes and the acceptance of the program by the community. Laboratory of Molecular Genetics--Institute of Biosciences--Universidade de São Paulo. 581 senior students from selected Jewish high schools. Molecular analysis of Tay-Sachs disease causing mutations by PCR amplification of genomic DNA, followed by restriction enzyme digestion. Among 581 students that attended educational classes, 404 (70%) elected to be tested for Tay-Sachs disease mutations. Of these, approximately 65% were of Ashkenazi Jewish origin. Eight carriers were detected corresponding to a carrier frequency of 1 in every 33 individuals in the Ashkenazi Jewish fraction of the sample. The frequency of Tay-Sachs disease carriers among the Ashkenazi Jewish population of Brazil is similar to that of other countries where carrier screening programs have led to a significant decrease in disease incidence. Therefore, it is justifiable to implement a Tay-Sachs disease carrier screening program for the Brazilian Jewish population.

  19. Waardenburg syndrome type 4: report of two new cases caused by SOX10 mutations in Spain.

    Science.gov (United States)

    Fernández, Raquel M; Núñez-Ramos, Raquel; Enguix-Riego, M Valle; Román-Rodríguez, Francisco José; Galán-Gómez, Enrique; Blesa-Sánchez, Emilio; Antiñolo, Guillermo; Núñez-Núñez, Ramón; Borrego, Salud

    2014-02-01

    Shah-Waardenburg syndrome or Waardenburg syndrome type 4 (WS4) is a neurocristopathy characterized by the association of deafness, depigmentation and Hirschsprung disease. Three disease-causing genes have been identified so far for WS4: EDNRB, EDN3, and SOX10. SOX10 mutations, found in 45-55% of WS4 patients, are inherited in autosomal dominant way. In addition, mutations in SOX10 are also responsible for an extended syndrome involving peripheral and central neurological phenotypes, referred to as PCWH (peripheral demyelinating neuropathy, central dysmyelinating leucodystrophy, Waardenburg syndrome, Hirschsprung disease). Such mutations are mostly private, and a high intra- and inter-familial variability exists. In this report, we present a patient with WS4 and a second with PCWH due to SOX10 mutations supporting again the genetic and phenotypic heterogeneity of these syndromes. Interestingly, the WS4 family carries an insertion of 19 nucleotides in exon 5 of SOX10, which results in distinct phenotypes along three different generations: hypopigmentation in the maternal grandmother, hearing loss in the mother, and WS4 in the proband. Since mosaicism cannot explain the three different related-WS features observed in this family, we propose as the most plausible explanation the existence of additional molecular events, acting in an additive or multiplicative fashion, in genes or regulatory regions unidentified so far. On the other hand, the PCWH case was due to a de novo deletion in exon 5 of the gene. Efforts should be devoted to unravel the mechanisms underlying the intrafamilial phenotypic variability observed in the families affected, and to identify new genes responsible for the still unsolved WS4 cases. © 2013 Wiley Periodicals, Inc.

  20. Reversed polarized delivery of an aquaporin-2 mutant causes dominant nephrogenic diabetes insipidus.

    NARCIS (Netherlands)

    Kamsteeg, E.J.; Bichet, D.G.; Konings, I.B.M.; Nivet, H.; Lonergan, M.; Arthus, M.F.; Os, C.H. van; Deen, P.M.T.

    2003-01-01

    Vasopressin regulates body water conservation by redistributing aquaporin-2 (AQP2) water channels from intracellular vesicles to the apical surface of renal collecting ducts, resulting in water reabsorption from urine. Mutations in AQP2 cause autosomal nephrogenic diabetes insipidus (NDI), a disease

  1. Recurrent LDL-receptor mutation causes familial ...

    African Journals Online (AJOL)

    1995-05-05

    May 5, 1995 ... 3. eaudet . New. Recurrent LDL-receptor mutation causes familial hypercholesterolaemia in ... amplification refractory mutation system (ARMS)" and single- strand conformation .... Location. Afrikaner. Mixed race. ApaLl.

  2. IARS mutation causes prenatal death in Japanese Black cattle.

    Science.gov (United States)

    Hirano, Takashi; Matsuhashi, Tamako; Takeda, Kenji; Hara, Hiromi; Kobayashi, Naohiko; Kita, Kazuo; Sugimoto, Yoshikazu; Hanzawa, Kei

    2016-09-01

    Isoleucyl-tRNA synthetase (IARS) c.235G > C (p.V79L) is a causative mutation for a recessive disease called IARS disorder in Japanese black cattle. The disease is involved in weak calf syndrome and is characterized by low birth weight, weakness and poor suckling. The gestation period is often slightly extended, implying that intrauterine growth is retarded. In a previous analysis of 2597 artificial insemination (AI) procedures, we suggested that the IARS mutation might contribute toward an increase in the incidence of prenatal death. In this study, we extended this analysis to better clarify the association between the IARS mutation and prenatal death. The IARS genotypes of 92 animals resulting from crosses between carrier (G/C) × G/C were 27 normal (G/G), 55 G/C and 10 affected animals (C/C) (expected numbers: 23, 46 and 23, respectively). Compared to the expected numbers, there were significantly fewer affected animals in this population (P causes calf death, but also embryonic or fetal death. © 2016 Japanese Society of Animal Science.

  3. Autosomal Dominant Tubulointerstitial Kidney Disease: Clinical Presentation of Patients With ADTKD-UMOD and ADTKD-MUC1.

    Science.gov (United States)

    Ayasreh, Nadia; Bullich, Gemma; Miquel, Rosa; Furlano, Mónica; Ruiz, Patricia; Lorente, Laura; Valero, Oliver; García-González, Miguel Angel; Arhda, Nisrine; Garin, Intza; Martínez, Víctor; Pérez-Gómez, Vanessa; Fulladosa, Xavier; Arroyo, David; Martínez-Vea, Alberto; Espinosa, Mario; Ballarín, Jose; Ars, Elisabet; Torra, Roser

    2018-05-18

    Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a rare underdiagnosed cause of end-stage renal disease (ESRD). ADTKD is caused by mutations in at least 4 different genes: MUC1, UMOD, HNF1B, and REN. Retrospective cohort study. 56 families (131 affected individuals) with ADTKD referred from different Spanish hospitals. Clinical, laboratory, radiologic, and pathologic data were collected, and genetic testing for UMOD, MUC1, REN, and HNF1B was performed. Hyperuricemia, ultrasound findings, renal histology, genetic mutations. Age at ESRD, rate of decline in estimated glomerular filtration rate. ADTKD was diagnosed in 25 families (45%), 9 carried UMOD pathogenic variants (41 affected members), and 16 carried the MUC1 pathogenic mutation c.(428)dupC (90 affected members). No pathogenic variants were identified in REN or HNF1B. Among the 77 individuals who developed ESRD, median age at onset of ESRD was 51 years for those with ADTKD-MUC1 versus 56 years (P=0.1) for those with ADTKD-UMOD. Individuals with the MUC1 duplication presented higher risk for developing ESRD (HR, 2.24; P=0.03). The slope of decline in estimated glomerular filtration rate showed no significant difference between groups (-3.0mL/min/1.73m 2 per year in the ADTKD-UMOD group versus -3.9mL/min/1.73m 2 per year in the ADTKD-MUC1 group; P=0.2). The prevalence of hyperuricemia was significantly higher in individuals with ADTKD-UMOD (87% vs 54%; P=0.006). Although gout occurred more frequently in this group, the difference was not statistically significant (24% vs 7%; P=0.07). Relatively small Spanish cohort. MUC1 analysis limited to cytosine duplication. The main genetic cause of ADTKD in our Spanish cohort is the MUC1 pathogenic mutation c.(428)dupC. Renal survival may be worse in individuals with the MUC1 mutation than in those with UMOD mutations. Clinical presentation does not permit distinguishing between these variants. However, hyperuricemia and gout are more frequent in individuals

  4. Recurrent missense mutations in TMEM43 (ARVD5) due to founder effects cause arrhythmogenic cardiomyopathies in the UK and Canada

    KAUST Repository

    Haywood, Annika; Merner, Nancy D.; Hodgkinson, Kathy A.; Houston, Jim; Syrris, Petros; Booth, Valerie; Connors, Sean; Pantazis, Antonios; Quarta, Giovanni; Elliott, Perry; McKenna, William; Young, Terry Lynn

    2012-01-01

    AimsAutosomal dominant arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) (in the group of arrhythmogenic cardiomyopathies) is a common cause of sudden cardiac death in young adults. It is both clinically and genetically heterogeneous, with 12 loci (ARVC/D1-12) and eight genes identified, the majority of which encode structural proteins of cardiac desmosomes. The most recent gene identified, TMEM43, causes disease due to a missense mutation in a non-desmosomal gene (p.S358L) in 15 extended families from Newfoundland, Canada. To determine whether mutations in TMEM43 cause ARVC/D and arrhythmogenic cardiomyopathy in other populations, we fully re-sequenced TMEM43 on 143 ARVC/D probands (families) from the UK and 55 probands (from 55 families) from Newfoundland.Methods and resultsBidirectional sequencing of TMEM43 including intron-exon boundaries revealed 33 variants, the majority located in non-coding regions of TMEM43. For the purpose of validation, families of probands with rare, potentially deleterious coding variants were subjected to clinical and molecular follow-up. Three missense variants of uncertain significance (p.R28W, p.E142K, p.R312W) were located in highly conserved regions of the TMEM43 protein. One variant (p.R312W) also co-segregated with relatives showing clinical signs of disease. Genotyping and expansion of the disease-associated haplotype in subjects with the p.R312W variant from Newfoundland, Canada, and the UK suggest common ancestry.ConclusionAlthough the p.R312W variant was found in controls (3/378), identification of an ancestral disease p R312W haplotype suggests that the p.R312W variant is a pathogenic founder mutation. © 2012 The Author.

  5. Recurrent missense mutations in TMEM43 (ARVD5) due to founder effects cause arrhythmogenic cardiomyopathies in the UK and Canada

    KAUST Repository

    Haywood, Annika

    2012-11-15

    AimsAutosomal dominant arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) (in the group of arrhythmogenic cardiomyopathies) is a common cause of sudden cardiac death in young adults. It is both clinically and genetically heterogeneous, with 12 loci (ARVC/D1-12) and eight genes identified, the majority of which encode structural proteins of cardiac desmosomes. The most recent gene identified, TMEM43, causes disease due to a missense mutation in a non-desmosomal gene (p.S358L) in 15 extended families from Newfoundland, Canada. To determine whether mutations in TMEM43 cause ARVC/D and arrhythmogenic cardiomyopathy in other populations, we fully re-sequenced TMEM43 on 143 ARVC/D probands (families) from the UK and 55 probands (from 55 families) from Newfoundland.Methods and resultsBidirectional sequencing of TMEM43 including intron-exon boundaries revealed 33 variants, the majority located in non-coding regions of TMEM43. For the purpose of validation, families of probands with rare, potentially deleterious coding variants were subjected to clinical and molecular follow-up. Three missense variants of uncertain significance (p.R28W, p.E142K, p.R312W) were located in highly conserved regions of the TMEM43 protein. One variant (p.R312W) also co-segregated with relatives showing clinical signs of disease. Genotyping and expansion of the disease-associated haplotype in subjects with the p.R312W variant from Newfoundland, Canada, and the UK suggest common ancestry.ConclusionAlthough the p.R312W variant was found in controls (3/378), identification of an ancestral disease p R312W haplotype suggests that the p.R312W variant is a pathogenic founder mutation. © 2012 The Author.

  6. Familial juvenile hyperuricemic nephropathy : report on a new mutation and a pregnancy

    NARCIS (Netherlands)

    Lhotta, Karl; Gehringer, A; Jennings, P; Kronenberg, F.; Brezinka, C; Andersone, I; Strazdins, V

    BACKGROUND: Familial juvenile hyperuricemic nephropathy (FJHN) is a rare autosomal dominant disease caused by mutations in the uromodulin gene (UMOD) and leading to gout, tubulointerstitial nephropathy and end-stage renal disease. CASE REPORTS AND RESULTS: A Latvian family suffering from FJHN is

  7. Statistical guidance for experimental design and data analysis of mutation detection in rare monogenic mendelian diseases by exome sequencing.

    Directory of Open Access Journals (Sweden)

    Degui Zhi

    Full Text Available Recently, whole-genome sequencing, especially exome sequencing, has successfully led to the identification of causal mutations for rare monogenic Mendelian diseases. However, it is unclear whether this approach can be generalized and effectively applied to other Mendelian diseases with high locus heterogeneity. Moreover, the current exome sequencing approach has limitations such as false positive and false negative rates of mutation detection due to sequencing errors and other artifacts, but the impact of these limitations on experimental design has not been systematically analyzed. To address these questions, we present a statistical modeling framework to calculate the power, the probability of identifying truly disease-causing genes, under various inheritance models and experimental conditions, providing guidance for both proper experimental design and data analysis. Based on our model, we found that the exome sequencing approach is well-powered for mutation detection in recessive, but not dominant, Mendelian diseases with high locus heterogeneity. A disease gene responsible for as low as 5% of the disease population can be readily identified by sequencing just 200 unrelated patients. Based on these results, for identifying rare Mendelian disease genes, we propose that a viable approach is to combine, sequence, and analyze patients with the same disease together, leveraging the statistical framework presented in this work.

  8. Autosomal dominant hypocalcemia with Bartter syndrome due to a novel activating mutation of calcium sensing receptor, Y829C.

    Science.gov (United States)

    Choi, Keun Hee; Shin, Choong Ho; Yang, Sei Won; Cheong, Hae Il

    2015-04-01

    The calcium sensing receptor (CaSR) plays an important role in calcium homeostasis. Activating mutations of CaSR cause autosomal dominant hypocalcemia by affecting parathyroid hormone secretion in parathyroid gland and calcium resorption in kidney. They can also cause a type 5 Bartter syndrome by inhibiting the apical potassium channel in the thick ascending limb of the loop of Henle in the kidney. This study presents a patient who had autosomal dominant hypocalcemia with Bartter syndrome due to an activating mutation Y829C in the transmembrane domain of the CaSR. Symptoms of hypocalcemia occurred 12 days after birth and medication was started immediately. Medullary nephrocalcinosis and basal ganglia calcification were found at 7 years old and at 17 years old. Three hypercalcemic episodes occurred, one at 14 years old and two at 17 years old. The Bartter syndrome was not severe while the serum calcium concentration was controlled, but during hypercalcemic periods, the symptoms of Bartter syndrome were aggravated.

  9. Origin and spread of the 1278insTATC mutation causing Tay-Sachs disease in Ashkenazi Jews: genetic drift as a robust and parsimonious hypothesis.

    Science.gov (United States)

    Frisch, Amos; Colombo, Roberto; Michaelovsky, Elena; Karpati, Mazal; Goldman, Boleslaw; Peleg, Leah

    2004-03-01

    The 1278insTATC is the most prevalent beta-hexosaminidase A ( HEXA) gene mutation causing Tay-Sachs disease (TSD), one of the four lysosomal storage diseases (LSDs) occurring at elevated frequencies among Ashkenazi Jews (AJs). To investigate the genetic history of this mutation in the AJ population, a conserved haplotype (D15S981:175-D15S131:240-D15S1050:284-D15S197:144-D15S188:418) was identified in 1278insTATC chromosomes from 55 unrelated AJ individuals (15 homozygotes and 40 heterozygotes for the TSD mutation), suggesting the occurrence of a common founder. When two methods were used for analysis of linkage disequilibrium (LD) between flanking polymorphic markers and the disease locus and for the study of the decay of LD over time, the estimated age of the insertion was found to be 40+/-12 generations (95% confidence interval: 30-50 generations), so that the most recent common ancestor of the mutation-bearing chromosomes would date to the 8th-9th century. This corresponds with the demographic expansion of AJs in central Europe, following the founding of the Ashkenaz settlement in the early Middle Ages. The results are consistent with the geographic distribution of the main TSD mutation, 1278insTATC being more common in central Europe, and with the coalescent times of mutations causing two other LSDs, Gaucher disease and mucolipidosis type IV. Evidence for the absence of a determinant positive selection (heterozygote advantage) over the mutation is provided by a comparison between the estimated age of 1278insTATC and the probability of the current AJ frequency of the mutant allele as a function of its age, calculated by use of a branching-process model. Therefore, the founder effect in a rapidly expanding population arising from a bottleneck provides a robust parsimonious hypothesis explaining the spread of 1278insTATC-linked TSD in AJ individuals.

  10. UBIAD1 mutation alters a mitochondrial prenyltransferase to cause Schnyder corneal dystrophy.

    Directory of Open Access Journals (Sweden)

    Michael L Nickerson

    2010-05-01

    Full Text Available Mutations in a novel gene, UBIAD1, were recently found to cause the autosomal dominant eye disease Schnyder corneal dystrophy (SCD. SCD is characterized by an abnormal deposition of cholesterol and phospholipids in the cornea resulting in progressive corneal opacification and visual loss. We characterized lesions in the UBIAD1 gene in new SCD families and examined protein homology, localization, and structure.We characterized five novel mutations in the UBIAD1 gene in ten SCD families, including a first SCD family of Native American ethnicity. Examination of protein homology revealed that SCD altered amino acids which were highly conserved across species. Cell lines were established from patients including keratocytes obtained after corneal transplant surgery and lymphoblastoid cell lines from Epstein-Barr virus immortalized peripheral blood mononuclear cells. These were used to determine the subcellular localization of mutant and wild type protein, and to examine cholesterol metabolite ratios. Immunohistochemistry using antibodies specific for UBIAD1 protein in keratocytes revealed that both wild type and N102S protein were localized sub-cellularly to mitochondria. Analysis of cholesterol metabolites in patient cell line extracts showed no significant alteration in the presence of mutant protein indicating a potentially novel function of the UBIAD1 protein in cholesterol biochemistry. Molecular modeling was used to develop a model of human UBIAD1 protein in a membrane and revealed potentially critical roles for amino acids mutated in SCD. Potential primary and secondary substrate binding sites were identified and docking simulations indicated likely substrates including prenyl and phenolic molecules.Accumulating evidence from the SCD familial mutation spectrum, protein homology across species, and molecular modeling suggest that protein function is likely down-regulated by SCD mutations. Mitochondrial UBIAD1 protein appears to have a highly

  11. De novo mutations in ATP1A3 cause alternating hemiplegia of childhood

    DEFF Research Database (Denmark)

    Heinzen, Erin L; Swoboda, Kathryn J; Hitomi, Yuki

    2012-01-01

    and their unaffected parents to identify de novo nonsynonymous mutations in ATP1A3 in all seven individuals. In a subsequent sequence analysis of ATP1A3 in 98 other patients with AHC, we found that ATP1A3 mutations were likely to be responsible for at least 74% of the cases; we also identified one inherited mutation...... affecting the level of protein expression. This work identifies de novo ATP1A3 mutations as the primary cause of AHC and offers insight into disease pathophysiology by expanding the spectrum of phenotypes associated with mutations in ATP1A3....

  12. Guanine holes are prominent targets for mutation in cancer and inherited disease.

    Directory of Open Access Journals (Sweden)

    Albino Bacolla

    Full Text Available Single base substitutions constitute the most frequent type of human gene mutation and are a leading cause of cancer and inherited disease. These alterations occur non-randomly in DNA, being strongly influenced by the local nucleotide sequence context. However, the molecular mechanisms underlying such sequence context-dependent mutagenesis are not fully understood. Using bioinformatics, computational and molecular modeling analyses, we have determined the frequencies of mutation at G • C bp in the context of all 64 5'-NGNN-3' motifs that contain the mutation at the second position. Twenty-four datasets were employed, comprising >530,000 somatic single base substitutions from 21 cancer genomes, >77,000 germline single-base substitutions causing or associated with human inherited disease and 16.7 million benign germline single-nucleotide variants. In several cancer types, the number of mutated motifs correlated both with the free energies of base stacking and the energies required for abstracting an electron from the target guanines (ionization potentials. Similar correlations were also evident for the pathological missense and nonsense germline mutations, but only when the target guanines were located on the non-transcribed DNA strand. Likewise, pathogenic splicing mutations predominantly affected positions in which a purine was located on the non-transcribed DNA strand. Novel candidate driver mutations and tissue-specific mutational patterns were also identified in the cancer datasets. We conclude that electron transfer reactions within the DNA molecule contribute to sequence context-dependent mutagenesis, involving both somatic driver and passenger mutations in cancer, as well as germline alterations causing or associated with inherited disease.

  13. Transcriptome analysis of skin fibroblasts with dominant negative COL3A1 mutations provides molecular insights into the etiopathology of vascular Ehlers-Danlos syndrome.

    Science.gov (United States)

    Chiarelli, Nicola; Carini, Giulia; Zoppi, Nicoletta; Ritelli, Marco; Colombi, Marina

    2018-01-01

    Vascular Ehlers-Danlos syndrome (vEDS) is a dominantly inherited connective tissue disorder caused by mutations in the COL3A1 gene that encodes type III collagen (COLLIII), which is the major expressed collagen in blood vessels and hollow organs. The majority of disease-causing variants in COL3A1 are glycine substitutions and in-frame splice mutations in the triple helix domain that through a dominant negative effect are associated with the severe clinical spectrum potentially lethal of vEDS, characterized by fragility of soft connective tissues with arterial and organ ruptures. To shed lights into molecular mechanisms underlying vEDS, we performed gene expression profiling in cultured skin fibroblasts from three patients with different structural COL3A1 mutations. Transcriptome analysis revealed significant changes in the expression levels of several genes involved in maintenance of cell redox and endoplasmic reticulum (ER) homeostasis, COLLs folding and extracellular matrix (ECM) organization, formation of the proteasome complex, and cell cycle regulation. Protein analyses showed that aberrant COLLIII expression is associated with the disassembly of many structural ECM constituents, such as fibrillins, EMILINs, and elastin, as well as with the reduction of the proteoglycans perlecan, decorin, and versican, all playing an important role in the vascular system. Furthermore, the altered distribution of the ER marker protein disulfide isomerase PDI and the strong reduction of the COLLs-modifying enzyme FKBP22 are consistent with the disturbance of ER-related homeostasis and COLLs biosynthesis and post-translational modifications, indicated by microarray analysis. Our findings add new insights into the pathophysiology of this severe vascular disorder, since they provide a picture of the gene expression changes in vEDS skin fibroblasts and highlight that dominant negative mutations in COL3A1 also affect post-translational modifications and deposition into the ECM of

  14. Transcriptome analysis of skin fibroblasts with dominant negative COL3A1 mutations provides molecular insights into the etiopathology of vascular Ehlers-Danlos syndrome.

    Directory of Open Access Journals (Sweden)

    Nicola Chiarelli

    Full Text Available Vascular Ehlers-Danlos syndrome (vEDS is a dominantly inherited connective tissue disorder caused by mutations in the COL3A1 gene that encodes type III collagen (COLLIII, which is the major expressed collagen in blood vessels and hollow organs. The majority of disease-causing variants in COL3A1 are glycine substitutions and in-frame splice mutations in the triple helix domain that through a dominant negative effect are associated with the severe clinical spectrum potentially lethal of vEDS, characterized by fragility of soft connective tissues with arterial and organ ruptures. To shed lights into molecular mechanisms underlying vEDS, we performed gene expression profiling in cultured skin fibroblasts from three patients with different structural COL3A1 mutations. Transcriptome analysis revealed significant changes in the expression levels of several genes involved in maintenance of cell redox and endoplasmic reticulum (ER homeostasis, COLLs folding and extracellular matrix (ECM organization, formation of the proteasome complex, and cell cycle regulation. Protein analyses showed that aberrant COLLIII expression is associated with the disassembly of many structural ECM constituents, such as fibrillins, EMILINs, and elastin, as well as with the reduction of the proteoglycans perlecan, decorin, and versican, all playing an important role in the vascular system. Furthermore, the altered distribution of the ER marker protein disulfide isomerase PDI and the strong reduction of the COLLs-modifying enzyme FKBP22 are consistent with the disturbance of ER-related homeostasis and COLLs biosynthesis and post-translational modifications, indicated by microarray analysis. Our findings add new insights into the pathophysiology of this severe vascular disorder, since they provide a picture of the gene expression changes in vEDS skin fibroblasts and highlight that dominant negative mutations in COL3A1 also affect post-translational modifications and deposition

  15. Position of nonmuscle myosin heavy chain IIA (NMMHC-IIA) mutations predicts the natural history of MYH9-related disease

    DEFF Research Database (Denmark)

    Pecci, A.; Panza, E.; Pujol-Moix, N.

    2008-01-01

    MYH9-related disease (MYH9-RD) is a rare autosomal-dominant disorder caused by mutations in MYH9, the gene for the heavy chain of nonmuscle myosin IIA (NMMHC-IIA). All patients present from birth with macrothrombocytopenia, but in infancy or adult life, some of them develop sensorineural deafness...... to 50 unrelated pedigrees. The risk of noncongenital manifestations associated with different genotypes was estimated over time by event-free survival analysis. We demonstrated that all subjects with mutations in the motor domain of NMMHC-IIA present with severe thrombocytopenia and develop nephritis...... and deafness before the age of 40 years, while those with mutations in the tail domain have a much lower risk of noncongenital complications and significantly higher platelet counts. We also evaluated the clinical course of patients with mutations in the four most frequently affected residues of NMMHC...

  16. A mutation in the Norrie disease gene (NDP) associated with X-linked familial exudative vitreoretinopathy.

    Science.gov (United States)

    Chen, Z Y; Battinelli, E M; Fielder, A; Bundey, S; Sims, K; Breakefield, X O; Craig, I W

    1993-10-01

    Familial exudative vitreoretinopathy (FEVR) is a hereditary disorder characterized by an abnormality of the peripheral retina. Both autosomal dominant (adFEVR) and X-linked (XLFEVR) forms have been described, but the biochemical defect(s) underlying the symptoms are unknown. Molecular analysis of the Norrie gene locus (NDP) in a four generation FEVR family (shown previously to exhibit linkage to the X-chromosome markers DXS228 and MAOA (Xp11.4-p11.3)) reveals a missense mutation in the highly conserved region of the NDP gene, which caused a neutral amino acid substitution (Leu124Phe), was detected in all of the affected males, but not in the unaffected family members, nor in normal controls. The observations suggest that phenotypes of both XLFEVR and Norrie disease can result from mutations in the same gene.

  17. Somatic and germline mosaicism for a mutation of the PHEX gene can lead to genetic transmission of X-linked hypophosphatemic rickets that mimics an autosomal dominant trait.

    Science.gov (United States)

    Goji, Katsumi; Ozaki, Kayo; Sadewa, Ahmad H; Nishio, Hisahide; Matsuo, Masafumi

    2006-02-01

    Familial hypophosphatemic rickets is usually transmitted as an X-linked dominant disorder (XLH), although autosomal dominant forms have also been observed. Genetic studies of these disorders have identified mutations in PHEX and FGF23 as the causes of X-linked dominant disorder and autosomal dominant forms, respectively. The objective of the study was to describe the molecular genetic findings in a family affected by hypophosphatemic rickets with presumed autosomal dominant inheritance. We studied a family in which the father and the elder of his two daughters, but not the second daughter, were affected by hypophosphatemic rickets. The pedigree interpretation of the family suggested that genetic transmission of the disorder occurred as an autosomal dominant trait. Direct nucleotide sequencing of FGF23 and PHEX revealed that the elder daughter was heterozygous for an R567X mutation in PHEX, rather than FGF23, suggesting that the genetic transmission occurred as an X-linked dominant trait. Unexpectedly, the father was heterozygous for this mutation. Single-nucleotide primer extension and denaturing HPLC analysis of the father using DNA from single hair roots revealed that he was a somatic mosaic for the mutation. Haplotype analysis confirmed that the father transmitted the genotypes for 18 markers on the X chromosome equally to his two daughters. The fact that the father transmitted the mutation to only one of his two daughters indicated that he was a germline mosaic for the mutation. Somatic and germline mosaicism for an X-linked dominant mutation in PHEX may mimic autosomal dominant inheritance.

  18. Congenital myopathy is caused by mutation of HACD1.

    Science.gov (United States)

    Muhammad, Emad; Reish, Orit; Ohno, Yusuke; Scheetz, Todd; Deluca, Adam; Searby, Charles; Regev, Miriam; Benyamini, Lilach; Fellig, Yakov; Kihara, Akio; Sheffield, Val C; Parvari, Ruti

    2013-12-20

    Congenital myopathies are heterogeneous inherited diseases of muscle characterized by a range of distinctive histologic abnormalities. We have studied a consanguineous family with congenital myopathy. Genome-wide linkage analysis and whole-exome sequencing identified a homozygous non-sense mutation in 3-hydroxyacyl-CoA dehydratase 1 (HACD1) in affected individuals. The mutation results in non-sense mediated decay of the HACD1 mRNA to 31% of control levels in patient muscle and completely abrogates the enzymatic activity of dehydration of 3-hydroxyacyl-CoA, the third step in the elongation of very long-chain fatty acids (VLCFAs). We describe clinical findings correlated with a deleterious mutation in a gene not previously known to be associated with congenital myopathy in humans. We suggest that the mutation in the HACD1 gene causes a reduction in the synthesis of VLCFAs, which are components of membrane lipids and participants in physiological processes, leading to congenital myopathy. These data indicate that HACD1 is necessary for muscle function.

  19. Alzheimer's Disease Phenotypes and Genotypes Associated with Mutations in Presenilin 2

    Science.gov (United States)

    Jayadev, Suman; Leverenz, James B.; Steinbart, Ellen; Stahl, Justin; Klunk, William; Yu, Cheng-En; Bird, Thomas D.

    2010-01-01

    Mutations in presenilin 2 are rare causes of early onset familial Alzheimer's disease. Eighteen presenilin 2 mutations have been reported, although not all have been confirmed pathogenic. Much remains to be learned about the range of phenotypes associated with these mutations. We have analysed our unique collection of 146 affected cases in 11…

  20. Disease-associated mutations disrupt functionally important regions of intrinsic protein disorder.

    Directory of Open Access Journals (Sweden)

    Vladimir Vacic

    Full Text Available The effects of disease mutations on protein structure and function have been extensively investigated, and many predictors of the functional impact of single amino acid substitutions are publicly available. The majority of these predictors are based on protein structure and evolutionary conservation, following the assumption that disease mutations predominantly affect folded and conserved protein regions. However, the prevalence of the intrinsically disordered proteins (IDPs and regions (IDRs in the human proteome together with their lack of fixed structure and low sequence conservation raise a question about the impact of disease mutations in IDRs. Here, we investigate annotated missense disease mutations and show that 21.7% of them are located within such intrinsically disordered regions. We further demonstrate that 20% of disease mutations in IDRs cause local disorder-to-order transitions, which represents a 1.7-2.7 fold increase compared to annotated polymorphisms and neutral evolutionary substitutions, respectively. Secondary structure predictions show elevated rates of transition from helices and strands into loops and vice versa in the disease mutations dataset. Disease disorder-to-order mutations also influence predicted molecular recognition features (MoRFs more often than the control mutations. The repertoire of disorder-to-order transition mutations is limited, with five most frequent mutations (R→W, R→C, E→K, R→H, R→Q collectively accounting for 44% of all deleterious disorder-to-order transitions. As a proof of concept, we performed accelerated molecular dynamics simulations on a deleterious disorder-to-order transition mutation of tumor protein p63 and, in agreement with our predictions, observed an increased α-helical propensity of the region harboring the mutation. Our findings highlight the importance of mutations in IDRs and refine the traditional structure-centric view of disease mutations. The results of this study

  1. The frequency of Tay-Sachs disease causing mutations in the Brazilian Jewish population justifies a carrier screening program

    Directory of Open Access Journals (Sweden)

    Roberto Rozenberg

    Full Text Available CONTEXT: Tay-Sachs disease is an autosomal recessive disease characterized by progressive neurologic degeneration, fatal in early childhood. In the Ashkenazi Jewish population the disease incidence is about 1 in every 3,500 newborns and the carrier frequency is 1 in every 29 individuals. Carrier screening programs for Tay-Sachs disease have reduced disease incidence by 90% in high-risk populations in several countries. The Brazilian Jewish population is estimated at 90,000 individuals. Currently, there is no screening program for Tay-Sachs disease in this population. OBJECTIVE: To evaluate the importance of a Tay-Sachs disease carrier screening program in the Brazilian Jewish population by determining the frequency of heterozygotes and the acceptance of the program by the community. SETTING: Laboratory of Molecular Genetics - Institute of Biosciences - Universidade de São Paulo. PARTICIPANTS: 581 senior students from selected Jewish high schools. PROCEDURE: Molecular analysis of Tay-Sachs disease causing mutations by PCR amplification of genomic DNA, followed by restriction enzyme digestion. RESULTS: Among 581 students that attended educational classes, 404 (70% elected to be tested for Tay-Sachs disease mutations. Of these, approximately 65% were of Ashkenazi Jewish origin. Eight carriers were detected corresponding to a carrier frequency of 1 in every 33 individuals in the Ashkenazi Jewish fraction of the sample. CONCLUSION: The frequency of Tay-Sachs disease carriers among the Ashkenazi Jewish population of Brazil is similar to that of other countries where carrier screening programs have led to a significant decrease in disease incidence. Therefore, it is justifiable to implement a Tay-Sachs disease carrier screening program for the Brazilian Jewish population.

  2. EDNRB mutations cause Waardenburg syndrome type II in the heterozygous state.

    Science.gov (United States)

    Issa, Sarah; Bondurand, Nadege; Faubert, Emmanuelle; Poisson, Sylvain; Lecerf, Laure; Nitschke, Patrick; Deggouj, Naima; Loundon, Natalie; Jonard, Laurence; David, Albert; Sznajer, Yves; Blanchet, Patricia; Marlin, Sandrine; Pingault, Veronique

    2017-05-01

    Waardenburg syndrome (WS) is a genetic disorder characterized by sensorineural hearing loss and pigmentation anomalies. The clinical definition of four WS types is based on additional features due to defects in structures mostly arising from the neural crest, with type I and type II being the most frequent. While type I is tightly associated to PAX3 mutations, WS type II (WS2) remains partly enigmatic with mutations in known genes (MITF, SOX10) accounting for only 30% of the cases. We performed exome sequencing in a WS2 index case and identified a heterozygous missense variation in EDNRB. Interestingly, homozygous (and very rare heterozygous) EDNRB mutations are already described in type IV WS (i.e., in association with Hirschsprung disease [HD]) and heterozygous mutations in isolated HD. Screening of a WS2 cohort led to the identification of an overall of six heterozygous EDNRB variations. Clinical phenotypes, pedigrees and molecular segregation investigations unraveled a dominant mode of inheritance with incomplete penetrance. In parallel, cellular and functional studies showed that each of the mutations impairs the subcellular localization of the receptor or induces a defective downstream signaling pathway. Based on our results, we now estimate EDNRB mutations to be responsible for 5%-6% of WS2. © 2017 Wiley Periodicals, Inc.

  3. De novo dominant mutation of SOX10 gene in a Chinese family with Waardenburg syndrome type II.

    Science.gov (United States)

    Chen, Kaitian; Zong, Ling; Liu, Min; Zhan, Yuan; Wu, Xuan; Zou, Wenting; Jiang, Hongyan

    2014-06-01

    Waardenburg syndrome is a rare genetic disorder, inherited as an autosomal dominant trait. The condition is characterized by sensorineural hearing loss and pigment disturbances of the hair, skin, and iris. The de novo mutation in the SOX10 gene, responsible for Waardenburg syndrome type II, is rarely seen. The present study aimed to identify the genetic causes of Waardenburg syndrome type II in a Chinese family. Clinical and molecular evaluations were conducted in a Chinese family with Waardenburg syndrome type II. A novel SOX10 heterozygous c.259-260delCT mutation was identified. Heterozygosity was not observed in the parents and sister of the proband, indicating that the mutation has arisen de novo. The novel frameshift mutation, located in exon 3 of the SOX10 gene, disrupted normal amino acid coding from Leu87, leading to premature termination at nucleotide 396 (TGA). The high mobility group domain of SOX10 was inferred to be partially impaired. The novel heterozygous c.259-260delCT mutation in the SOX10 gene was considered to be the cause of Waardenburg syndrome in the proband. The clinical and genetic characterization of this family would help elucidate the genetic heterogeneity of SOX10 in Waardenburg syndrome type II. Moreover, the de novo pattern expanded the mutation data of SOX10. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. ALS5/SPG11/ KIAA1840 mutations cause autosomal recessive axonal Charcot–Marie–Tooth disease

    Science.gov (United States)

    Montecchiani, Celeste; Pedace, Lucia; Lo Giudice, Temistocle; Casella, Antonella; Mearini, Marzia; Gaudiello, Fabrizio; Pedroso, José L.; Terracciano, Chiara; Caltagirone, Carlo; Massa, Roberto; St George-Hyslop, Peter H.; Barsottini, Orlando G. P.; Kawarai, Toshitaka

    2016-01-01

    Abstract Charcot–Marie–Tooth disease is a group of hereditary peripheral neuropathies that share clinical characteristics of progressive distal muscle weakness and atrophy, foot deformities, distal sensory loss, as well as diminished tendon reflexes. Hundreds of causative DNA changes have been found, but much of the genetic basis of the disease is still unexplained. Mutations in the ALS5/SPG11/ KIAA1840 gene are a frequent cause of autosomal recessive hereditary spastic paraplegia with thin corpus callosum and peripheral axonal neuropathy, and account for ∼40% of autosomal recessive juvenile amyotrophic lateral sclerosis. The overlap of axonal Charcot–Marie–Tooth disease with both diseases, as well as the common autosomal recessive inheritance pattern of thin corpus callosum and axonal Charcot–Marie–Tooth disease in three related patients, prompted us to analyse the ALS5/SPG11/ KIAA1840 gene in affected individuals with autosomal recessive axonal Charcot–Marie–Tooth disease. We investigated 28 unrelated families with autosomal recessive axonal Charcot–Marie–Tooth disease defined by clinical, electrophysiological, as well as pathological evaluation. Besides, we screened for all the known genes related to axonal autosomal recessive Charcot–Marie-Tooth disease (CMT2A2/HMSN2A2/ MFN2 , CMT2B1/ LMNA , CMT2B2/ MED25 , CMT2B5/ NEFL , ARCMT2F/dHMN2B/ HSPB1 , CMT2K/ GDAP1 , CMT2P/ LRSAM1 , CMT2R/ TRIM2 , CMT2S/ IGHMBP2 , CMT2T/ HSJ1 , CMTRID/ COX6A1 , ARAN-NM/ HINT and GAN/ GAN ), for the genes related to autosomal recessive hereditary spastic paraplegia with thin corpus callosum and axonal peripheral neuropathy (SPG7/ PGN , SPG15/ ZFYVE26, SPG21/ ACP33 , SPG35/ FA2H , SPG46/ GBA2 , SPG55/ C12orf65 and SPG56/ CYP2U1 ), as well as for the causative gene of peripheral neuropathy with or without agenesis of the corpus callosum ( SLC12A6 ) . Mitochondrial disorders related to Charcot–Marie–Tooth disease type 2 were also excluded by sequencing POLG and

  5. ALS5/SPG11/KIAA1840 mutations cause autosomal recessive axonal Charcot-Marie-Tooth disease.

    Science.gov (United States)

    Montecchiani, Celeste; Pedace, Lucia; Lo Giudice, Temistocle; Casella, Antonella; Mearini, Marzia; Gaudiello, Fabrizio; Pedroso, José L; Terracciano, Chiara; Caltagirone, Carlo; Massa, Roberto; St George-Hyslop, Peter H; Barsottini, Orlando G P; Kawarai, Toshitaka; Orlacchio, Antonio

    2016-01-01

    Charcot-Marie-Tooth disease is a group of hereditary peripheral neuropathies that share clinical characteristics of progressive distal muscle weakness and atrophy, foot deformities, distal sensory loss, as well as diminished tendon reflexes. Hundreds of causative DNA changes have been found, but much of the genetic basis of the disease is still unexplained. Mutations in the ALS5/SPG11/KIAA1840 gene are a frequent cause of autosomal recessive hereditary spastic paraplegia with thin corpus callosum and peripheral axonal neuropathy, and account for ∼ 40% of autosomal recessive juvenile amyotrophic lateral sclerosis. The overlap of axonal Charcot-Marie-Tooth disease with both diseases, as well as the common autosomal recessive inheritance pattern of thin corpus callosum and axonal Charcot-Marie-Tooth disease in three related patients, prompted us to analyse the ALS5/SPG11/KIAA1840 gene in affected individuals with autosomal recessive axonal Charcot-Marie-Tooth disease. We investigated 28 unrelated families with autosomal recessive axonal Charcot-Marie-Tooth disease defined by clinical, electrophysiological, as well as pathological evaluation. Besides, we screened for all the known genes related to axonal autosomal recessive Charcot-Marie-Tooth disease (CMT2A2/HMSN2A2/MFN2, CMT2B1/LMNA, CMT2B2/MED25, CMT2B5/NEFL, ARCMT2F/dHMN2B/HSPB1, CMT2K/GDAP1, CMT2P/LRSAM1, CMT2R/TRIM2, CMT2S/IGHMBP2, CMT2T/HSJ1, CMTRID/COX6A1, ARAN-NM/HINT and GAN/GAN), for the genes related to autosomal recessive hereditary spastic paraplegia with thin corpus callosum and axonal peripheral neuropathy (SPG7/PGN, SPG15/ZFYVE26, SPG21/ACP33, SPG35/FA2H, SPG46/GBA2, SPG55/C12orf65 and SPG56/CYP2U1), as well as for the causative gene of peripheral neuropathy with or without agenesis of the corpus callosum (SLC12A6). Mitochondrial disorders related to Charcot-Marie-Tooth disease type 2 were also excluded by sequencing POLG and TYMP genes. An additional locus for autosomal recessive Charcot

  6. Revertant mutation releases confined lethal mutation, opening Pandora's box: a novel genetic pathogenesis.

    Directory of Open Access Journals (Sweden)

    Yasushi Ogawa

    2014-05-01

    Full Text Available When two mutations, one dominant pathogenic and the other "confining" nonsense, coexist in the same allele, theoretically, reversion of the latter may elicit a disease, like the opening of Pandora's box. However, cases of this hypothetical pathogenic mechanism have never been reported. We describe a lethal form of keratitis-ichthyosis-deafness (KID syndrome caused by the reversion of the GJB2 nonsense mutation p.Tyr136X that would otherwise have confined the effect of another dominant lethal mutation, p.Gly45Glu, in the same allele. The patient's mother had the identical misssense mutation which was confined by the nonsense mutation. The biological relationship between the parents and the child was confirmed by genotyping of 15 short tandem repeat loci. Haplotype analysis using 40 SNPs spanning the >39 kbp region surrounding the GJB2 gene and an extended SNP microarray analysis spanning 83,483 SNPs throughout chromosome 13 in the family showed that an allelic recombination event involving the maternal allele carrying the mutations generated the pathogenic allele unique to the patient, although the possibility of coincidental accumulation of spontaneous point mutations cannot be completely excluded. Previous reports and our mutation screening support that p.Gly45Glu is in complete linkage disequilibrium with p.Tyr136X in the Japanese population. Estimated from statisitics in the literature, there may be approximately 11,000 p.Gly45Glu carriers in the Japanese population who have this second-site confining mutation, which acts as natural genetic protection from the lethal disease. The reversion-triggered onset of the disesase shown in this study is a previously unreported genetic pathogenesis based on Mendelian inheritance.

  7. Preimplantation Genetic Diagnosis Counseling in Autosomal Dominant Polycystic Kidney Disease.

    Science.gov (United States)

    Murphy, Erin L; Droher, Madeline L; DiMaio, Miriam S; Dahl, Neera K

    2018-03-30

    Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common hereditary forms of chronic kidney disease. Mutations within PKD1 or PKD2 lead to innumerable fluid-filled cysts in the kidneys and in some instances, end-stage renal disease (ESRD). Affected individuals have a 50% chance of passing the mutation to each of their offspring. Assisted reproductive technology using preimplantation genetic diagnosis (PGD) allows these individuals to reduce this risk to 1% to 2%. We assess the disease burden of 8 individuals with ADPKD who have undergone genetic testing in preparation for PGD. Clinical features that predict high risk for progression to ESRD in patients with ADPKD include genotype, early onset of hypertension, a urologic event before age 35 years, and a large height-adjusted total kidney volume. Patients may have a family history of intracranial aneurysms or complications involving hepatic cysts, which may further influence the decision to pursue PGD. We also explore the cost, risks, and benefits of using PGD. All patients with ADPKD of childbearing potential, regardless of risk for progression to ESRD or risk for a significant disease burden, will likely benefit from genetic counseling. Copyright © 2018 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  8. Frontotemporal dementia caused by CHMP2B mutation is characterised by neuronal lysosomal storage pathology

    DEFF Research Database (Denmark)

    Clayton, Emma L.; Mizielinska, Sarah; Edgar, James R.

    2015-01-01

    Mutations in the charged multivesicular body protein 2B (CHMP2B) cause frontotemporal dementia (FTD). We report that mice which express FTD-causative mutant CHMP2B at physiological levels develop a novel lysosomal storage pathology characterised by large neuronal autofluorescent aggregates...... in human CHMP2B mutation brain than in neurodegenerative disease or age-matched control brains. These data suggest that lysosomal storage pathology is the major neuronal pathology in FTD caused by CHMP2B mutation. Recent evidence suggests that two other genes associated with FTD, GRN and TMEM106B...... are important for lysosomal function. Our identification of lysosomal storage pathology in FTD caused by CHMP2B mutation now provides evidence that endolysosomal dysfunction is a major degenerative pathway in FTD....

  9. Mutations in FLNB cause boomerang dysplasia.

    Science.gov (United States)

    Bicknell, L S; Morgan, T; Bonafé, L; Wessels, M W; Bialer, M G; Willems, P J; Cohn, D H; Krakow, D; Robertson, S P

    2005-07-01

    Boomerang dysplasia (BD) is a perinatal lethal osteochondrodysplasia, characterised by absence or underossification of the limb bones and vertebrae. The BD phenotype is similar to a group of disorders including atelosteogenesis I, atelosteogenesis III, and dominantly inherited Larsen syndrome that we have recently shown to be associated with mutations in FLNB, the gene encoding the actin binding cytoskeletal protein, filamin B. We report the identification of mutations in FLNB in two unrelated individuals with boomerang dysplasia. The resultant substitutions, L171R and S235P, lie within the calponin homology 2 region of the actin binding domain of filamin B and occur at sites that are evolutionarily well conserved. These findings expand the phenotypic spectrum resulting from mutations in FLNB and underline the central role this protein plays during skeletogenesis in humans.

  10. EYS Mutations Causing Autosomal Recessive Retinitis Pigmentosa: Changes of Retinal Structure and Function with Disease Progression

    Directory of Open Access Journals (Sweden)

    David B. McGuigan

    2017-07-01

    Full Text Available Mutations in the EYS (eyes shut homolog gene are a common cause of autosomal recessive (ar retinitis pigmentosa (RP. Without a mammalian model of human EYS disease, there is limited understanding of details of disease expression and rates of progression of the retinal degeneration. We studied clinically and with chromatic static perimetry, spectral-domain optical coherence tomography (OCT, and en face autofluoresence imaging, a cohort of 15 patients (ages 12–51 at first visit, some of whom had longitudinal data of function and structure. Rod sensitivity was able to be measured by chromatic perimetry in most patients at their earliest visits and some patients retained patchy rod function into the fifth decade of life. As expected from RP, cone sensitivity persisted after rod function was no longer measurable. The photoreceptor nuclear layer of the central retina was abnormal except at the fovea in most patients at first visit. Perifoveal disease measured over a period of years indicated that photoreceptor structural loss was followed by dysmorphology of the inner retina and loss of retinal pigment epithelial integrity. Although there could be variability in severity, preliminary analyses of the rates of vision loss suggested that EYS is a more rapidly progressive disease than other ciliopathies causing arRP, such as USH2A and MAK.

  11. Fifteen novel FBN1 mutations causing Marfan syndrome detected by heteroduplex analysis of genomic amplicons

    Energy Technology Data Exchange (ETDEWEB)

    Nijbroek, G.; Sood, S.; McIntosh, I. [John Hopkins Univ. School of Medicine, Baltimore, MD (United States)] [and others

    1995-07-01

    Mutations in the gene encoding fibrillin-1 (FBN1), a component of the extracellular microfibril, cause the Marfan syndrome (MFS). This statement is supported by the observations that the classic Marfan phenotype cosegregates with intragenic and/or flanking marker alleles in all families tested and that a significant number of FBN1 mutations have been identified in affected individuals. We have now devised a method to screen the entire coding sequence and flanking splice junctions of FBN1. On completion for a panel of nine probands with classic MFS, six new mutations were identified that accounted for disease in seven (78%) of nine patients. Nine additional new mutations have been characterized in the early stages of a larger screening project. These 15 mutations were equally distributed throughout the gene and, with one exception, were specific to single families. One-third of mutations created premature termination codons, and 6 of 15 substituted residues with putative significance for calcium finding to epidermal growth factor (EGF)-like domains. Mutations causing severe and rapidly progressive disease that presents in the neonatal period can occur in a larger region of the gene than previously demonstrated, and the nature of the mutation is as important a determinant as its location, in predisposing to this phenotype. 56 refs., 5 figs., 3 tabs.

  12. Rare co-occurrence of osteogenesis imperfecta type I and autosomal dominant polycystic kidney disease.

    Science.gov (United States)

    Hoefele, Julia; Mayer, Karin; Marschall, Christoph; Alberer, Martin; Klein, Hanns-Georg; Kirschstein, Martin

    2016-11-01

    There are several clinical reports about the co-occurrence of autosomal dominant polycystic kidney disease (ADPKD) and connective tissue disorders. A simultaneous occurrence of osteogenesis imperfecta (OI) type I and ADPKD has not been observed so far. This report presents the first patient with OI type I and ADPKD. Mutational analysis of PKD1 and COL1A1 in the index patient revealed a heterozygous mutation in each of the two genes. Mutational analysis of the parents indicated the mother as a carrier of the PKD1 mutation and the father as a carrier of the COL1A1 mutation. The simultaneous occurrence of both disorders has an estimated frequency of 3.5:100 000 000. In singular cases, ADPKD can occur in combination with other rare disorders, e.g. connective tissue disorders.

  13. Autosomal dominant distal myopathy due to a novel ACTA1 mutation.

    Science.gov (United States)

    Liewluck, Teerin; Sorenson, Eric J; Walkiewicz, Magdalena A; Rumilla, Kandelaria M; Milone, Margherita

    2017-08-01

    Mutations in skeletal muscle α-actin 1-encoding gene (ACTA1) cause autosomal dominant or recessive myopathies with marked clinical and pathological heterogeneity. Patients typically develop generalized or limb-girdle pattern of weakness, but recently a family with scapuloperoneal myopathy was reported. We describe a father and 2 children with childhood-to-juvenile onset distal myopathy, carrying a novel dominant ACTA1 variant, c.757G>C (p.Gly253Arg). Father had delayed motor development and developed significant proximal weakness later in life; he was initially misdiagnosed as having spinal muscular atrophy based on electromyographic findings. His children had predominant anterior distal leg and finger extensor involvement. Nemaline rods were abundant on the daughter's biopsy, absent on the father's initial biopsy, and extremely rare on the father's subsequent biopsy a decade later. The father's second biopsy also showed myofibrillar pathology and rare fibers with actin filament aggregates. The present family expands the spectrum of actinopathy to include a distal myopathy. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The heartstrings mutation in zebrafish causes heart/fin Tbx5 deficiency syndrome.

    Science.gov (United States)

    Garrity, Deborah M; Childs, Sarah; Fishman, Mark C

    2002-10-01

    Holt-Oram syndrome is one of the autosomal dominant human "heart-hand" disorders, with a combination of upper limb malformations and cardiac defects. Holt-Oram syndrome is caused by mutations in the TBX5 gene, a member of a large family of T-box transcription factors that play important roles in cell-type specification and morphogenesis. In a screen for mutations affecting zebrafish cardiac function, we isolated the recessive lethal mutant heartstrings, which lacks pectoral fins and exhibits severe cardiac dysfunction, beginning with a slow heart rate and progressing to a stretched, non-functional heart. We mapped and cloned the heartstrings mutation and find it to encode the zebrafish ortholog of the TBX5 gene. The heartstrings mutation causes premature termination at amino acid 316. Homozygous mutant embryos never develop pectoral fin buds and do not express several markers of early fin differentiation. The total absence of any fin bud differentiation distinguishes heartstrings from most other mutations that affect zebrafish fin development, suggesting that Tbx5 functions very early in the pectoral fin induction pathway. Moderate reduction of Tbx5 by morpholino causes fin malformations, revealing an additional early requirement for Tbx5 in coordinating the axes of fin outgrowth. The heart of heartstrings mutant embryos appears to form and function normally through the early heart tube stage, manifesting only a slight bradycardia compared with wild-type siblings. However, the heart fails to loop and then progressively deteriorates, a process affecting the ventricle as well as the atrium. Relative to mammals, fish require lower levels of Tbx5 to produce malformed appendages and display whole-heart rather than atrial-predominant cardiac defects. However, the syndromic deficiencies of tbx5 mutation are remarkably well retained between fish and mammals.

  15. Progranulin mutation causes frontotemporal dementia in the Swedish Karolinska family.

    Science.gov (United States)

    Chiang, Huei-Hsin; Rosvall, Lina; Brohede, Jesper; Axelman, Karin; Björk, Behnosh F; Nennesmo, Inger; Robins, Tiina; Graff, Caroline

    2008-11-01

    Frontotemporal dementia (FTD) is a neurodegenerative disease characterized by cognitive impairment, language dysfunction, and/or changes in personality. Recently it has been shown that progranulin (GRN) mutations can cause FTD as well as other neurodegenerative phenotypes. DNA from 30 family members, of whom seven were diagnosed with FTD, in the Karolinska family was available for GRN sequencing. Fibroblast cell mRNA from one affected family member and six control individuals was available for relative quantitative real-time polymerase chain reaction to investigate the effect of the mutation. Furthermore, the cDNA of an affected individual was sequenced. Clinical and neuropathologic findings of a previously undescribed family branch are presented. A frameshift mutation in GRN (g.102delC) was detected in all affected family members and absent in four unaffected family members older than 70 years. Real-time polymerase chain reaction data showed an approximately 50% reduction of GRN fibroblast mRNA in an affected individual. The mutated mRNA transcripts were undetectable by cDNA sequencing. Segregation and RNA analyses showed that the g.102delC mutation, previously reported, causes FTD in the Karolinska family. Our findings add further support to the significance of GRN in FTD etiology and the presence of modifying genes, which emphasize the need for further studies into the mechanisms of clinical heterogeneity. However, the results already call for attention to the complexity of predictive genetic testing of GRN mutations.

  16. Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly.

    Science.gov (United States)

    Braun, Daniela A; Rao, Jia; Mollet, Geraldine; Schapiro, David; Daugeron, Marie-Claire; Tan, Weizhen; Gribouval, Olivier; Boyer, Olivia; Revy, Patrick; Jobst-Schwan, Tilman; Schmidt, Johanna Magdalena; Lawson, Jennifer A; Schanze, Denny; Ashraf, Shazia; Ullmann, Jeremy F P; Hoogstraten, Charlotte A; Boddaert, Nathalie; Collinet, Bruno; Martin, Gaëlle; Liger, Dominique; Lovric, Svjetlana; Furlano, Monica; Guerrera, I Chiara; Sanchez-Ferras, Oraly; Hu, Jennifer F; Boschat, Anne-Claire; Sanquer, Sylvia; Menten, Björn; Vergult, Sarah; De Rocker, Nina; Airik, Merlin; Hermle, Tobias; Shril, Shirlee; Widmeier, Eugen; Gee, Heon Yung; Choi, Won-Il; Sadowski, Carolin E; Pabst, Werner L; Warejko, Jillian K; Daga, Ankana; Basta, Tamara; Matejas, Verena; Scharmann, Karin; Kienast, Sandra D; Behnam, Babak; Beeson, Brendan; Begtrup, Amber; Bruce, Malcolm; Ch'ng, Gaik-Siew; Lin, Shuan-Pei; Chang, Jui-Hsing; Chen, Chao-Huei; Cho, Megan T; Gaffney, Patrick M; Gipson, Patrick E; Hsu, Chyong-Hsin; Kari, Jameela A; Ke, Yu-Yuan; Kiraly-Borri, Cathy; Lai, Wai-Ming; Lemyre, Emmanuelle; Littlejohn, Rebecca Okashah; Masri, Amira; Moghtaderi, Mastaneh; Nakamura, Kazuyuki; Ozaltin, Fatih; Praet, Marleen; Prasad, Chitra; Prytula, Agnieszka; Roeder, Elizabeth R; Rump, Patrick; Schnur, Rhonda E; Shiihara, Takashi; Sinha, Manish D; Soliman, Neveen A; Soulami, Kenza; Sweetser, David A; Tsai, Wen-Hui; Tsai, Jeng-Daw; Topaloglu, Rezan; Vester, Udo; Viskochil, David H; Vatanavicharn, Nithiwat; Waxler, Jessica L; Wierenga, Klaas J; Wolf, Matthias T F; Wong, Sik-Nin; Leidel, Sebastian A; Truglio, Gessica; Dedon, Peter C; Poduri, Annapurna; Mane, Shrikant; Lifton, Richard P; Bouchard, Maxime; Kannu, Peter; Chitayat, David; Magen, Daniella; Callewaert, Bert; van Tilbeurgh, Herman; Zenker, Martin; Antignac, Corinne; Hildebrandt, Friedhelm

    2017-10-01

    Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS complex, in 37 individuals from 32 families with GAMOS. CRISPR-Cas9 knockout in zebrafish and mice recapitulated the human phenotype of primary microcephaly and resulted in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibited cell proliferation, which human mutations did not rescue. Furthermore, knockdown of these genes impaired protein translation, caused endoplasmic reticulum stress, activated DNA-damage-response signaling, and ultimately induced apoptosis. Knockdown of OSGEP or TP53RK induced defects in the actin cytoskeleton and decreased the migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identified four new monogenic causes of GAMOS, describe a link between KEOPS function and human disease, and delineate potential pathogenic mechanisms.

  17. Identification of two HEXA mutations causing infantile-onset Tay-Sachs disease in the Persian population.

    Science.gov (United States)

    Haghighi, Alireza; Rezazadeh, Jamileh; Shadmehri, Azam Ahmadi; Haghighi, Amirreza; Kornreich, Ruth; Desnick, Robert J

    2011-09-01

    The β-hexosaminidase A (HEXA) mutations in the first reported cases of infantile Tay-Sachs disease in the Persian population were identified in two unrelated consanguineous families. The clinical diagnoses of the affected infants were confirmed by their markedly deficient levels of HEXA activity in plasma or peripheral leukocytes. The specific causative mutation in each family was determined by sequencing the HEXA alleles in both sets of related parents. Two mutations were identified: c.1A>G (p.MIV), which obliterated the initiating methionine in codon 1, and c.1177C>T (p.R393X), which predicted a termination codon or nonsense mutation.

  18. Non-Mendelian Dominant Maternal Effects Caused by CRISPR/Cas9 Transgenic Components in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Chun-Chieh Lin

    2016-11-01

    Full Text Available The CRISPR/Cas9 system has revolutionized genomic editing. The Cas9 endonuclease targets DNA via an experimentally determined guide RNA (gRNA. This results in a double-strand break at the target site . We generated transgenic Drosophila melanogaster in which the CRISPR/Cas9 system was used to target a GAL4 transgene in vivo. To our surprise, progeny whose genomes did not contain CRISPR/Cas9 components were still capable of mutating GAL4 sequences. We demonstrate this effect was caused by maternal deposition of Cas9 and gRNAs into the embryo, leading to extensive GAL4 mutations in both somatic and germline tissues. This serves as a cautionary observation on the effects of maternal contributions when conducting experiments using genomically encoded CRISPR/Cas9 components. These results also highlight a mode of artificial inheritance in which maternal contributions of DNA editing components lead to transmissible mutant defects even in animals whose genomes lack the editing components. We suggest calling this a dominant maternal effect to reflect it is caused by the gain of maternally contributed products. Models of CRISPR-mediated gene drive will need to incorporate dominant maternal effects in order to accurately predict the efficiency and dynamics of gene drive in a population.

  19. MARS variant associated with both recessive interstitial lung and liver disease and dominant Charcot-Marie-Tooth disease.

    Science.gov (United States)

    Rips, Jonathan; Meyer-Schuman, Rebecca; Breuer, Oded; Tsabari, Reuven; Shaag, Avraham; Revel-Vilk, Shoshana; Reif, Shimon; Elpeleg, Orly; Antonellis, Anthony; Harel, Tamar

    2018-04-12

    Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed enzymes responsible for charging tRNA with cognate amino acids during protein translation. Non-canonical functions are increasingly recognized, and include transcription and translation control and extracellular signaling. Monoallelic mutations in genes encoding several ARSs have been identified in axonal Charcot-Marie-Tooth (CMT2) disease, whereas biallelic mutations in ARS loci have been associated with multi-tissue syndromes, variably involving the central nervous system, lung, and liver. We report a male infant of non-consanguineous origin, presenting with successive onset of transfusion-dependent anemia, hypothyroidism, cholestasis, interstitial lung disease, and developmental delay. Whole-exome sequencing (WES) revealed compound heterozygosity for two variants (p.Tyr307Cys and p.Arg618Cys) in MARS, encoding methionyl-tRNA synthetase. Biallelic MARS mutations are associated with interstitial lung and liver disease (ILLD). Interestingly, the p.Arg618Cys variant, inherited from an unaffected father, was previously reported in a family with autosomal dominant late-onset CMT2. Yeast complementation assays confirmed pathogenicity of p.Arg618Cys, yet suggested retained function of p.Tyr307Cys. Our findings underscore the phenotypic variability associated with ARS mutations, and suggest genetic or environmental modifying factors in the onset of monoallelic MARS-associated CMT2. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Novel missense mutations in PNPLA2 causing late onset and clinical heterogeneity of neutral lipid storage disease with myopathy in three siblings.

    Science.gov (United States)

    Missaglia, Sara; Tasca, Elisabetta; Angelini, Corrado; Moro, Laura; Tavian, Daniela

    2015-01-01

    Neutral lipid storage disease with myopathy (NLSD-M) is a rare autosomal recessive disorder characterised by an abnormal accumulation of triacylglycerol into cytoplasmic lipid droplets (LDs). NLSD-M patients are mainly affected by progressive myopathy, cardiomyopathy and hepatomegaly. Mutations in the PNPLA2 gene cause variable phenotypes of NLSD-M. PNPLA2 codes for adipose triglyceride lipase (ATGL), an enzyme that hydrolyses fatty acids from triacylglycerol. This report outlines the clinical and genetic findings in a NLSD-M Italian family with three affected members. In our patients, we identified two novel PNPLA2 missense mutations (p.L56R and p.I193F). Functional data analysis demonstrated that these mutations caused the production of ATGL proteins able to bind to LDs, but with decreased lipase activity. The oldest brother, at the age of 38, had weakness and atrophy of the right upper arm and kyphosis. Now he is 61 years old and is unable to raise arms in the horizontal position. The second brother, from the age of 44, had exercise intolerance, cramps and pain in lower limbs. He is currently 50 years old and has an asymmetric distal amyotrophy. One of the two sisters, 58 years old, presents the same PNPLA2 mutations, but she is still oligo-symptomatic on neuromuscular examination with slight triceps muscle involvement. She suffered from diabetes and liver steatosis. This NLSD-M family shows a wide range of intra-familial phenotypic variability in subjects carrying the same mutations, both in terms of target-organs and in terms of rate of disease progression. Copyright © 2015. Published by Elsevier Inc.

  1. Indian hedgehog mutations causing brachydactyly type A1 impair Hedgehog signal transduction at multiple levels

    Science.gov (United States)

    Ma, Gang; Yu, Jiang; Xiao, Yue; Chan, Danny; Gao, Bo; Hu, Jianxin; He, Yongxing; Guo, Shengzhen; Zhou, Jian; Zhang, Lingling; Gao, Linghan; Zhang, Wenjuan; Kang, Yan; Cheah, Kathryn SE; Feng, Guoyin; Guo, Xizhi; Wang, Yujiong; Zhou, Cong-zhao; He, Lin

    2011-01-01

    Brachydactyly type A1 (BDA1), the first recorded Mendelian autosomal dominant disorder in humans, is characterized by a shortening or absence of the middle phalanges. Heterozygous missense mutations in the Indian Hedgehog (IHH) gene have been identified as a cause of BDA1; however, the biochemical consequences of these mutations are unclear. In this paper, we analyzed three BDA1 mutations (E95K, D100E, and E131K) in the N-terminal fragment of Indian Hedgehog (IhhN). Structural analysis showed that the E95K mutation changes a negatively charged area to a positively charged area in a calcium-binding groove, and that the D100E mutation changes the local tertiary structure. Furthermore, we showed that the E95K and D100E mutations led to a temperature-sensitive and calcium-dependent instability of IhhN, which might contribute to an enhanced intracellular degradation of the mutant proteins via the lysosome. Notably, all three mutations affected Hh binding to the receptor Patched1 (PTC1), reducing its capacity to induce cellular differentiation. We propose that these are common features of the mutations that cause BDA1, affecting the Hh tertiary structure, intracellular fate, binding to the receptor/partners, and binding to extracellular components. The combination of these features alters signaling capacity and range, but the impact is likely to be variable and mutation-dependent. The potential variation in the signaling range is characterized by an enhanced interaction with heparan sulfate for IHH with the E95K mutation, but not the E131K mutation. Taken together, our results suggest that these IHH mutations affect Hh signaling at multiple levels, causing abnormal bone development and abnormal digit formation. PMID:21537345

  2. Migraine- and dystonia-related disease-mutations of Na+/K+-ATPases: Relevance of behavioral studies in mice to disease symptoms and neurological manifestations in humans

    DEFF Research Database (Denmark)

    Bøttger, Pernille; Doganli, Canan; Lykke-Hartmann, Karin

    2012-01-01

    The two autosomal dominantly inherited neurological diseases: familial hemiplegic migraine type 2 (FHM2) and familial rapid-onset of dystonia-parkinsonism (Familial RDP) are caused by in vivo mutations of specific alpha subunits of the sodium–potassium pump (Na+/K+-ATPase). Intriguingly, patients...... with classical FHM2 and RDP symptoms additionally suffer from other manifestations, such as epilepsy/seizures and developmental disabilities. Recent studies of FHM2 and RDP mouse models provide valuable tools for dissecting the vital roles of the Na+/K+-ATPases, and we discuss their relevance to the complex...

  3. Heterozygous Germline Mutations in the CBL Tumor-Suppressor Gene Cause a Noonan Syndrome-like Phenotype

    Science.gov (United States)

    Martinelli, Simone; De Luca, Alessandro; Stellacci, Emilia; Rossi, Cesare; Checquolo, Saula; Lepri, Francesca; Caputo, Viviana; Silvano, Marianna; Buscherini, Francesco; Consoli, Federica; Ferrara, Grazia; Digilio, Maria C.; Cavaliere, Maria L.; van Hagen, Johanna M.; Zampino, Giuseppe; van der Burgt, Ineke; Ferrero, Giovanni B.; Mazzanti, Laura; Screpanti, Isabella; Yntema, Helger G.; Nillesen, Willy M.; Savarirayan, Ravi; Zenker, Martin; Dallapiccola, Bruno; Gelb, Bruce D.; Tartaglia, Marco

    2010-01-01

    RAS signaling plays a key role in controlling appropriate cell responses to extracellular stimuli and participates in early and late developmental processes. Although enhanced flow through this pathway has been established as a major contributor to oncogenesis, recent discoveries have revealed that aberrant RAS activation causes a group of clinically related developmental disorders characterized by facial dysmorphism, a wide spectrum of cardiac disease, reduced growth, variable cognitive deficits, ectodermal and musculoskeletal anomalies, and increased risk for certain malignancies. Here, we report that heterozygous germline mutations in CBL, a tumor-suppressor gene that is mutated in myeloid malignancies and encodes a multivalent adaptor protein with E3 ubiquitin ligase activity, can underlie a phenotype with clinical features fitting or partially overlapping Noonan syndrome (NS), the most common condition of this disease family. Independent CBL mutations were identified in two sporadic cases and two families from among 365 unrelated subjects who had NS or suggestive features and were negative for mutations in previously identified disease genes. Phenotypic heterogeneity and variable expressivity were documented. Mutations were missense changes altering evolutionarily conserved residues located in the RING finger domain or the linker connecting this domain to the N-terminal tyrosine kinase binding domain, a known mutational hot spot in myeloid malignancies. Mutations were shown to affect CBL-mediated receptor ubiquitylation and dysregulate signal flow through RAS. These findings document that germline mutations in CBL alter development to cause a clinically variable condition that resembles NS and that possibly predisposes to malignancies. PMID:20619386

  4. Mutation Spectrum of the ABCA4 Gene in a Greek Cohort with Stargardt Disease: Identification of Novel Mutations and Evidence of Three Prevalent Mutated Alleles

    Directory of Open Access Journals (Sweden)

    Kamakari Smaragda

    2018-01-01

    Full Text Available Aim. To evaluate the frequency and pattern of disease-associated mutations of ABCA4 gene among Greek patients with presumed Stargardt disease (STGD1. Materials and Methods. A total of 59 patients were analyzed for ABCA4 mutations using the ABCR400 microarray and PCR-based sequencing of all coding exons and flanking intronic regions. MLPA analysis as well as sequencing of two regions in introns 30 and 36 reported earlier to harbor deep intronic disease-associated variants was used in 4 selected cases. Results. An overall detection rate of at least one mutant allele was achieved in 52 of the 59 patients (88.1%. Direct sequencing improved significantly the complete characterization rate, that is, identification of two mutations compared to the microarray analysis (93.1% versus 50%. In total, 40 distinct potentially disease-causing variants of the ABCA4 gene were detected, including six previously unreported potentially pathogenic variants. Among the disease-causing variants, in this cohort, the most frequent was c.5714+5G>A representing 16.1%, while p.Gly1961Glu and p.Leu541Pro represented 15.2% and 8.5%, respectively. Conclusions. By using a combination of methods, we completely molecularly diagnosed 48 of the 59 patients studied. In addition, we identified six previously unreported, potentially pathogenic ABCA4 mutations.

  5. Genomic deletions in OPA1 in Danish patients with autosomal dominant optic atrophy

    DEFF Research Database (Denmark)

    Almind, Gitte J; Grønskov, Karen; Milea, Dan

    2011-01-01

    Autosomal dominant optic atrophy (ADOA, Kjer disease, MIM #165500) is the most common form of hereditary optic neuropathy. Mutations in OPA1 located at chromosome 3q28 are the predominant cause for ADOA explaining between 32 and 89% of cases. Although deletions of OPA1 were recently reported...

  6. Changes in causes of death and risk of cancer in Danish patients with autosomal dominant polycystic kidney disease and end-stage renal disease.

    Science.gov (United States)

    Orskov, Bjarne; Sørensen, Vibeke Rømming; Feldt-Rasmussen, Bo; Strandgaard, Svend

    2012-04-01

    With the improved prognosis in patients with autosomal dominant polycystic kidney disease (ADPKD), causes of death and the risk of cancer might have changed. This was investigated in a Danish population with ADPKD and end-stage renal disease (ESRD) between 1 January 1993 and 31 December 2008. Data were retrieved from three Danish national registries and a total of 823 patients were identified of which 431 had died during the study period. The 16 years were divided into two 8-year periods and the causes of death were divided into six categories: cancer, cardiovascular, cerebrovascular, infection, other and unknown. Cardiovascular disease was the major cause of death. A multivariate competing risk model comparing the two 8-year periods, adjusted for age at ESRD, gender and treatment modality, showed that deaths from cardiovascular disease decreased by 35% [hazard ratios (HR) 0.65, P=0.008] and deaths from cerebrovascular disease decreased by 69% (HR 0.31, P=0.0003) from the first to the second time period. There were no significant changes between the time periods in death from cancer, infection, other or unknown. From the first to the second 8-year interval, the prevalence of cancer increased by 35% (P=0.0002) while the cancer incidence was stable. In Danish patients with ADPKD and ESRD, there was a significant reduction in cardiovascular and cerebrovascular deaths from 1993 to 2008. The prevalence of cancer increased without significant change in cancer incidence or deaths from cancer.

  7. Autosomal-dominant chronic mucocutaneous candidiasis with STAT1-mutation can be complicated with chronic active hepatitis and hypothyroidism.

    Science.gov (United States)

    Hori, Tomohiro; Ohnishi, Hidenori; Teramoto, Takahide; Tsubouchi, Kohji; Naiki, Takafumi; Hirose, Yoshinobu; Ohara, Osamu; Seishima, Mariko; Kaneko, Hideo; Fukao, Toshiyuki; Kondo, Naomi

    2012-12-01

    To describe a case of autosomal-dominant (AD)-chronic mucocutaneous candidiasis (CMC) with a signal transducer and activator of transcription (STAT) 1 gene mutation, and some of the important complications of this disease such as chronic hepatitis. We present a 23-year-old woman with CMC, chronic active hepatitis, and hypothyroidism. Her father also had CMC. We performed several immunological analyses of blood and liver samples, and searched for gene mutations for CMC in the patient and her father. We identified the heterozygous substitution c.821 G > A (p.Arg274Gln) in the STAT1 gene of both the patient and her father. The level of β-glucan induced interferon (IFN)-γ in her blood cells was significantly low. Immunoblot analysis detected serum anti-interleukin (IL)-17 F autoantibody. She was found to have increased (low-titer) antibodies related to her hypothyroidism and hepatitis. Her serum IL-18 levels fluctuated with her AST and ALT levels. Liver biopsy revealed CD68-positive cell infiltration and IL-18 expression in the sinusoidal regions. These results suggest that the chronic active hepatitis in this patient may be exacerbated by the excessive IL-18 accumulation caused by recurrent mucocutaneous fungal infection, and decreased IFN-γ production. AD-CMC is known to be caused by a gain-of-function mutation of the STAT1 gene. Chronic active hepatitis is a rare complication of AD-CMC, with currently unknown pathogenesis. It seems that the clinical phenotype in this patient is modified by autoimmune mechanisms and cytokine dysregulation. AD-CMC can be complicated by various immune disorders including autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy.

  8. Beckwith-Wiedemann and IMAGe syndromes: two very different diseases caused by mutations on the same gene.

    Science.gov (United States)

    Milani, Donatella; Pezzani, Lidia; Tabano, Silvia; Miozzo, Monica

    2014-01-01

    Genomic imprinting is an epigenetically regulated mechanism leading to parental-origin allele-specific expression. Beckwith-Wiedemann syndrome (BWS) is an imprinting disease related to 11p15.5 genetic and epigenetic alterations, among them loss-of-function CDKN1C mutations. Intriguing is that CDKN1C gain-of-function variations were recently found in patients with IMAGe syndrome (intrauterine growth restriction, metaphyseal dysplasia, congenital adrenal hypoplasia, and genital anomalies). BWS and IMAGe share an imprinted mode of inheritance; familial analysis demonstrated the presence of the phenotype exclusively when the mutant CDKN1C allele is inherited from the mother. Interestingly, both IMAGe and BWS are characterized by growth disturbances, although with opposite clinical phenotypes; IMAGe patients display growth restriction whereas BWS patients display overgrowth. CDKN1C codifies for CDKN1C/KIP2, a nuclear protein and potent tight-binding inhibitor of several cyclin/Cdk complexes, playing a role in maintenance of the nonproliferative state of cells. The mirror phenotype of BWS and IMAGe can be, at least in part, explained by the effect of mutations on protein functions. All the IMAGe-associated mutations are clustered in the proliferating cell nuclear antigen-binding domain of CDKN1C and cause a dramatic increase in the stability of the protein, which probably results in a functional gain of growth inhibition properties. In contrast, BWS mutations are not clustered within a single domain, are loss-of-function, and promote cell proliferation. CDKN1C is an example of allelic heterogeneity associated with opposite syndromes.

  9. Changes in causes of death and risk of cancer in Danish patients with autosomal dominant polycystic kidney didease and end-stage renal disease

    DEFF Research Database (Denmark)

    Ørskov, Bjarne; Feldt-Rasmussen, Bo Friis; Strandgaard, Svend Valdemar

    2012-01-01

    Abstract Background. With the improved prognosis in patients with autosomal dominant polycystic kidney disease (ADPKD), causes of death and the risk of cancer might have changed. This was investigated in a Danish population with ADPKD and end-stage renal disease (ESRD) between 1 January 1993 and 31...... December 2008. Methods. Data were retrieved from three Danish national registries and a total of 823 patients were identified of which 431 had died during the study period. The 16 years were divided into two 8-year periods and the causes of death were divided into six categories: cancer, cardiovascular......, cerebrovascular, infection, other and unknown. Results. Cardiovascular disease was the major cause of death. A multivariate competing risk model comparing the two 8-year periods, adjusted for age at ESRD, gender and treatment modality, showed that deaths from cardiovascular disease decreased by 35% [hazard ratios...

  10. A novel SERPINA1 mutation causing serum alpha(1-antitrypsin deficiency.

    Directory of Open Access Journals (Sweden)

    Darren N Saunders

    Full Text Available Mutations in the SERPINA1 gene can cause deficiency in the circulating serine protease inhibitor α(1-Antitrypsin (α(1AT. α(1AT deficiency is the major contributor to pulmonary emphysema and liver disease in persons of European ancestry, with a prevalence of 1 in 2500 in the USA. We present the discovery and characterization of a novel SERPINA1 mutant from an asymptomatic Middle Eastern male with circulating α(1AT deficiency. This 49 base pair deletion mutation (T379Δ, originally mistyped by IEF, causes a frame-shift replacement of the last sixteen α(1AT residues and adds an extra twenty-four residues. Functional analysis showed that the mutant protein is not secreted and prone to intracellular aggregation.

  11. Retinal vascular abnormalities and dragged maculae in a carrier with a new NDP mutation (c.268delC) that caused severe Norrie disease in the proband.

    Science.gov (United States)

    Lin, Phoebe; Shankar, Suma P; Duncan, Jacque; Slavotinek, Anne; Stone, Edwin M; Rutar, Tina

    2010-02-01

    Norrie disease (ND) is caused by mutations in the ND pseudoglioma (NDP) gene (MIM 300658) located at chromosome Xp11.4-p11.3. ND is characterized by abnormal retinal vascular development and vitreoretinal disorganization presenting at birth. Systemic manifestations include sensorineural deafness, progressive mental disorder, behavioral and psychological problems, growth failure, and seizures. Other vitreoretinopathies that are associated with NDP gene mutations include X-linked familial exudative vitreoretinopathy, Coats disease, persistent fetal vasculature, and retinopathy of prematurity. Phenotypic variability associated with NDP gene mutations has been well documented in affected male patients. However, there are limited data on signs in female carriers, with mild peripheral retinal abnormalities reported in both carrier and noncarrier females of families with NDP gene mutations. Here, we report a family harboring a single base-pair deletion, c.268delC, in the NDP gene causing a severe ND phenotype in the male proband and peripheral retinal vascular abnormalities with dragged maculae similar to those observed in familial exudative vitreoretinopathy in his carrier mother. Copyright (c) 2010 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.

  12. Disease: H00743 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available own as Eulenburg's disease, is an autosomal dominant inherited disease whose predominant feature is an episodic cold- or exercise...s giving way to flaccid paralysis and weakness in exposed or exercised muscles. It is caused by mutations in

  13. A KCNC3 mutation causes a neurodevelopmental, non-progressive SCA13 subtype associated with dominant negative effects and aberrant EGFR trafficking.

    Science.gov (United States)

    Khare, Swati; Nick, Jerelyn A; Zhang, Yalan; Galeano, Kira; Butler, Brittany; Khoshbouei, Habibeh; Rayaprolu, Sruti; Hathorn, Tyisha; Ranum, Laura P W; Smithson, Lisa; Golde, Todd E; Paucar, Martin; Morse, Richard; Raff, Michael; Simon, Julie; Nordenskjöld, Magnus; Wirdefeldt, Karin; Rincon-Limas, Diego E; Lewis, Jada; Kaczmarek, Leonard K; Fernandez-Funez, Pedro; Nick, Harry S; Waters, Michael F

    2017-01-01

    The autosomal dominant spinocerebellar ataxias (SCAs) are a diverse group of neurological disorders anchored by the phenotypes of motor incoordination and cerebellar atrophy. Disease heterogeneity is appreciated through varying comorbidities: dysarthria, dysphagia, oculomotor and/or retinal abnormalities, motor neuron pathology, epilepsy, cognitive impairment, autonomic dysfunction, and psychiatric manifestations. Our study focuses on SCA13, which is caused by several allelic variants in the voltage-gated potassium channel KCNC3 (Kv3.3). We detail the clinical phenotype of four SCA13 kindreds that confirm causation of the KCNC3R423H allele. The heralding features demonstrate congenital onset with non-progressive, neurodevelopmental cerebellar hypoplasia and lifetime improvement in motor and cognitive function that implicate compensatory neural mechanisms. Targeted expression of human KCNC3R423H in Drosophila triggers aberrant wing veins, maldeveloped eyes, and fused ommatidia consistent with the neurodevelopmental presentation of patients. Furthermore, human KCNC3R423H expression in mammalian cells results in altered glycosylation and aberrant retention of the channel in anterograde and/or endosomal vesicles. Confirmation of the absence of plasma membrane targeting was based on the loss of current conductance in cells expressing the mutant channel. Mechanistically, genetic studies in Drosophila, along with cellular and biophysical studies in mammalian systems, demonstrate the dominant negative effect exerted by the mutant on the wild-type (WT) protein, which explains dominant inheritance. We demonstrate that ocular co-expression of KCNC3R423H with Drosophila epidermal growth factor receptor (dEgfr) results in striking rescue of the eye phenotype, whereas KCNC3R423H expression in mammalian cells results in aberrant intracellular retention of human epidermal growth factor receptor (EGFR). Together, these results indicate that the neurodevelopmental consequences of

  14. Bartter and Gitelman syndromes: Spectrum of clinical manifestations caused by different mutations

    Science.gov (United States)

    Al Shibli, Amar; Narchi, Hassib

    2015-01-01

    Bartter and Gitelman syndromes (BS and GS) are inherited disorders resulting in defects in renal tubular handling of sodium, potassium and chloride. Previously considered as genotypic and phenotypic heterogeneous diseases, recent evidence suggests that they constitute a spectrum of disease caused by different genetic mutations with the molecular defects of chloride reabsorption originating at different sites of the nephron in each condition. Although they share some characteristic metabolic abnormalities such as hypokalemia, metabolic alkalosis, hyperplasia of the juxtaglomerular apparatus with hyperreninemia, hyperaldosteronism, the clinical and laboratory manifestations may not always allow distinction between them. Diuretics tests, measuring the changes in urinary fractional excretion of chloride from baseline after administration of either hydrochlorothiazide or furosemide show very little change (< 2.3%) in the fractional excretion of chloride from baseline in GS when compared with BS, except when BS is associated with KCNJ1 mutations where a good response to both diuretics exists. The diuretic test is not recommended for infants or young children with suspected BS because of a higher risk of volume depletion in such children. Clinical symptoms and biochemical markers of GS and classic form of BS (type III) may overlap and thus genetic analysis may specify the real cause of symptoms. However, although genetic analysis is available, its use remains limited because of limited availability, large gene dimensions, lack of hot-spot mutations, heavy workup time and costs involved. Furthermore, considerable overlap exists between the different genotypes and phenotypes. Although BS and GS usually have distinct presentations and are associated with specific gene mutations, there remains considerable overlap between their phenotypes and genotypes. Thus, they are better described as a spectrum of clinical manifestations caused by different gene mutations. PMID:26140272

  15. Characterization of Autosomal Dominant Hypercholesterolemia Caused by PCSK9 Gain of Function Mutations and Its Specific Treatment With Alirocumab, a PCSK9 Monoclonal Antibody

    NARCIS (Netherlands)

    Hopkins, Paul N.; Defesche, Joep; Fouchier, Sigrid W.; Bruckert, Eric; Luc, Gérald; Cariou, Bertrand; Sjouke, Barbara; Leren, Trond P.; Harada-Shiba, Mariko; Mabuchi, Hiroshi; Rabès, Jean-Pierre; Carrié, Alain; van Heyningen, Charles; Carreau, Valérie; Farnier, Michel; Teoh, Yee P.; Bourbon, Mafalda; Kawashiri, Masa-Aki; Nohara, Atsushi; Soran, Handrean; Marais, A. David; Tada, Hayato; Abifadel, Marianne; Boileau, Catherine; Chanu, Bernard; Katsuda, Shoji; Kishimoto, Ichiro; Lambert, Gilles; Makino, Hisashi; Miyamoto, Yoshihiro; Pichelin, Matthieu; Yagi, Kunimasa; Yamagishi, Masakazu; Zair, Yassine; Mellis, Scott; Yancopoulos, George D.; Stahl, Neil; Mendoza, Johanna; Du, Yunling; Hamon, Sara; Krempf, Michel; Swergold, Gary D.

    2015-01-01

    Background Patients with PCSK9 gene gain of function (GOF) mutations have a rare form of autosomal dominant hypercholesterolemia. However, data examining their clinical characteristics and geographic distribution are lacking. Furthermore, no randomized treatment study in this population has been

  16. Mutations in CDK5RAP2 cause Seckel syndrome.

    Science.gov (United States)

    Yigit, Gökhan; Brown, Karen E; Kayserili, Hülya; Pohl, Esther; Caliebe, Almuth; Zahnleiter, Diana; Rosser, Elisabeth; Bögershausen, Nina; Uyguner, Zehra Oya; Altunoglu, Umut; Nürnberg, Gudrun; Nürnberg, Peter; Rauch, Anita; Li, Yun; Thiel, Christian Thomas; Wollnik, Bernd

    2015-09-01

    Seckel syndrome is a heterogeneous, autosomal recessive disorder marked by prenatal proportionate short stature, severe microcephaly, intellectual disability, and characteristic facial features. Here, we describe the novel homozygous splice-site mutations c.383+1G>C and c.4005-9A>G in CDK5RAP2 in two consanguineous families with Seckel syndrome. CDK5RAP2 (CEP215) encodes a centrosomal protein which is known to be essential for centrosomal cohesion and proper spindle formation and has been shown to be causally involved in autosomal recessive primary microcephaly. We establish CDK5RAP2 as a disease-causing gene for Seckel syndrome and show that loss of functional CDK5RAP2 leads to severe defects in mitosis and spindle organization, resulting in cells with abnormal nuclei and centrosomal pattern, which underlines the important role of centrosomal and mitotic proteins in the pathogenesis of the disease. Additionally, we present an intriguing case of possible digenic inheritance in Seckel syndrome: A severely affected child of nonconsanguineous German parents was found to carry heterozygous mutations in CDK5RAP2 and CEP152. This finding points toward a potential additive genetic effect of mutations in CDK5RAP2 and CEP152.

  17. Mutations in CDK5RAP2 cause Seckel syndrome

    Science.gov (United States)

    Yigit, Gökhan; Brown, Karen E; Kayserili, Hülya; Pohl, Esther; Caliebe, Almuth; Zahnleiter, Diana; Rosser, Elisabeth; Bögershausen, Nina; Uyguner, Zehra Oya; Altunoglu, Umut; Nürnberg, Gudrun; Nürnberg, Peter; Rauch, Anita; Li, Yun; Thiel, Christian Thomas; Wollnik, Bernd

    2015-01-01

    Seckel syndrome is a heterogeneous, autosomal recessive disorder marked by prenatal proportionate short stature, severe microcephaly, intellectual disability, and characteristic facial features. Here, we describe the novel homozygous splice-site mutations c.383+1G>C and c.4005-9A>G in CDK5RAP2 in two consanguineous families with Seckel syndrome. CDK5RAP2 (CEP215) encodes a centrosomal protein which is known to be essential for centrosomal cohesion and proper spindle formation and has been shown to be causally involved in autosomal recessive primary microcephaly. We establish CDK5RAP2 as a disease-causing gene for Seckel syndrome and show that loss of functional CDK5RAP2 leads to severe defects in mitosis and spindle organization, resulting in cells with abnormal nuclei and centrosomal pattern, which underlines the important role of centrosomal and mitotic proteins in the pathogenesis of the disease. Additionally, we present an intriguing case of possible digenic inheritance in Seckel syndrome: A severely affected child of nonconsanguineous German parents was found to carry heterozygous mutations in CDK5RAP2 and CEP152. This finding points toward a potential additive genetic effect of mutations in CDK5RAP2 and CEP152. PMID:26436113

  18. A novel NHS mutation causes Nance-Horan Syndrome in a Chinese family.

    Science.gov (United States)

    Tian, Qi; Li, Yunping; Kousar, Rizwana; Guo, Hui; Peng, Fenglan; Zheng, Yu; Yang, Xiaohua; Long, Zhigao; Tian, Runyi; Xia, Kun; Lin, Haiying; Pan, Qian

    2017-01-07

    Nance-Horan Syndrome (NHS) (OMIM: 302350) is a rare X-linked developmental disorder characterized by bilateral congenital cataracts, with occasional dental anomalies, characteristic dysmorphic features, brachymetacarpia and mental retardation. Carrier females exhibit similar manifestations that are less severe than in affected males. Here, we report a four-generation Chinese family with multiple affected individuals presenting Nance-Horan Syndrome. Whole-exome sequencing combined with RT-PCR and Sanger sequencing was used to search for a genetic cause underlying the disease phenotype. Whole-exome sequencing identified in all affected individuals of the family a novel donor splicing site mutation (NM_198270: c.1045 + 2T > A) in intron 4 of the gene NHS, which maps to chromosome Xp22.13. The identified mutation results in an RNA processing defect causing a 416-nucleotide addition to exon 4 of the mRNA transcript, likely producing a truncated NHS protein. The donor splicing site mutation NM_198270: c.1045 + 2T > A of the NHS gene is the causative mutation in this Nance-Horan Syndrome family. This research broadens the spectrum of NHS gene mutations, contributing to our understanding of the molecular genetics of NHS.

  19. Recessive mutations in ELOVL4 cause ichthyosis, intellectual disability, and spastic quadriplegia.

    Science.gov (United States)

    Aldahmesh, Mohammed A; Mohamed, Jawahir Y; Alkuraya, Hisham S; Verma, Ishwar C; Puri, Ratna D; Alaiya, Ayodele A; Rizzo, William B; Alkuraya, Fowzan S

    2011-12-09

    Very-long-chain fatty acids (VLCFAs) play important roles in membrane structure and cellular signaling, and their contribution to human health is increasingly recognized. Fatty acid elongases catalyze the first and rate-limiting step in VLCFA synthesis. Heterozygous mutations in ELOVL4, the gene encoding one of the elongases, are known to cause macular degeneration in humans and retinal abnormalities in mice. However, biallelic ELOVL4 mutations have not been observed in humans, and murine models with homozygous mutations die within hours of birth as a result of a defective epidermal water barrier. Here, we report on two human individuals with recessive ELOVL4 mutations revealed by a combination of autozygome analysis and exome sequencing. These individuals exhibit clinical features of ichthyosis, seizures, mental retardation, and spasticity-a constellation that resembles Sjögren-Larsson syndrome (SLS) but presents a more severe neurologic phenotype. Our findings identify recessive mutations in ELOVL4 as the cause of a neuro-ichthyotic disease and emphasize the importance of VLCFA synthesis in brain and cutaneous development. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  20. Mechanisms of Disease and Clinical Features of Mutations of the Gene for Mitofusin 2: An Important Cause of Hereditary Peripheral Neuropathy with Striking Clinical Variability in Children and Adults

    Science.gov (United States)

    Ouvrier, Robert; Grew, Simon

    2010-01-01

    Mitofusin 2, a large transmembrane GTPase located in the outer mitochondrial membrane, promotes membrane fusion and is involved in the maintenance of the morphology of axonal mitochondria. Mutations of the gene encoding mitofusin 2 ("MFN2") have recently been identified as the cause of approximately one-third of dominantly inherited cases of the…

  1. Gene repair of an Usher syndrome causing mutation by zinc-finger nuclease mediated homologous recombination.

    Science.gov (United States)

    Overlack, Nora; Goldmann, Tobias; Wolfrum, Uwe; Nagel-Wolfrum, Kerstin

    2012-06-26

    Human Usher syndrome (USH) is the most frequent cause of inherited deaf-blindness. It is clinically and genetically heterogeneous, assigned to three clinical types of which the most severe type is USH1. No effective treatment for the ophthalmic component of USH exists. Gene augmentation is an attractive strategy for hereditary retinal diseases. However, several USH genes, like USH1C, are expressed in various isoforms, hampering gene augmentation. As an alternative treatment strategy, we applied the zinc-finger nuclease (ZFN) technology for targeted gene repair of an USH1C, causing mutation by homologous recombination. We designed ZFNs customized for the p.R31X nonsense mutation in Ush1c. We evaluated ZFNs for DNA cleavage capability and analyzed ZFNs biocompatibilities by XTT assays. We demonstrated ZFNs mediated gene repair on genomic level by digestion assays and DNA sequencing, and on protein level by indirect immunofluorescence and Western blot analyses. The specifically designed ZFNs did not show cytotoxic effects in a p.R31X cell line. We demonstrated that ZFN induced cleavage of their target sequence. We showed that simultaneous application of ZFN and rescue DNA induced gene repair of the disease-causing mutation on the genomic level, resulting in recovery of protein expression. In our present study, we analyzed for the first time ZFN-activated gene repair of an USH gene. The data highlight the ability of ZFNs to induce targeted homologous recombination and mediate gene repair in USH. We provide further evidence that the ZFN technology holds great potential to recover disease-causing mutations in inherited retinal disorders.

  2. Norrie disease: first mutation report and prenatal diagnosis in an Indian family.

    Science.gov (United States)

    Ghosh, Manju; Sharma, Shipra; Shastri, Shivaram; Arora, Sadhna; Shukla, Rashmi; Gupta, Neerja; Deka, Deepika; Kabra, Madhulika

    2012-11-01

    Norrie Disease (ND) is a rare X-linked recessive disorder characterised by congenital blindness due to severe retinal dysgenesis. Hearing loss and intellectual disability is present in 30-50 % cases. ND is caused by mutations in the NDP gene, located at Xp11.3. The authors describe mutation analysis of a proband with ND and subsequently prenatal diagnosis. Sequence analysis of the NDP gene revealed a hemizygous missense mutation arginine to serine in codon 41 (p.Arg41Ser) in the affected child. Mother was carrier for the mutation. In a subsequent di-chorionic di-amniotic pregnancy, the authors performed prenatal diagnosis by mutation analysis on chorionic villi sample at 11 wk of gestation. The fetuses were unaffected. This is a first mutation report and prenatal diagnosis of a familial case of Norrie disease from India. The importance of genetic testing of Norrie disease for confirmation, carrier testing, prenatal diagnosis and genetic counseling is emphasized.

  3. PPIB mutations cause severe osteogenesis imperfecta.

    Science.gov (United States)

    van Dijk, Fleur S; Nesbitt, Isabel M; Zwikstra, Eline H; Nikkels, Peter G J; Piersma, Sander R; Fratantoni, Silvina A; Jimenez, Connie R; Huizer, Margriet; Morsman, Alice C; Cobben, Jan M; van Roij, Mirjam H H; Elting, Mariet W; Verbeke, Jonathan I M L; Wijnaendts, Liliane C D; Shaw, Nick J; Högler, Wolfgang; McKeown, Carole; Sistermans, Erik A; Dalton, Ann; Meijers-Heijboer, Hanne; Pals, Gerard

    2009-10-01

    Deficiency of cartilage-associated protein (CRTAP) or prolyl 3-hydroxylase 1(P3H1) has been reported in autosomal-recessive lethal or severe osteogenesis imperfecta (OI). CRTAP, P3H1, and cyclophilin B (CyPB) form an intracellular collagen-modifying complex that 3-hydroxylates proline at position 986 (P986) in the alpha1 chains of collagen type I. This 3-prolyl hydroxylation is decreased in patients with CRTAP and P3H1 deficiency. It was suspected that mutations in the PPIB gene encoding CyPB would also cause OI with decreased collagen 3-prolyl hydroxylation. To our knowledge we present the first two families with recessive OI caused by PPIB gene mutations. The clinical phenotype is compatible with OI Sillence type II-B/III as seen with COL1A1/2, CRTAP, and LEPRE1 mutations. The percentage of 3-hydroxylated P986 residues in patients with PPIB mutations is decreased in comparison to normal, but it is higher than in patients with CRTAP and LEPRE1 mutations. This result and the fact that CyPB is demonstrable independent of CRTAP and P3H1, along with reported decreased 3-prolyl hydroxylation due to deficiency of CRTAP lacking the catalytic hydroxylation domain and the known function of CyPB as a cis-trans isomerase, suggest that recessive OI is caused by a dysfunctional P3H1/CRTAP/CyPB complex rather than by the lack of 3-prolyl hydroxylation of a single proline residue in the alpha1 chains of collagen type I.

  4. The role of noise and positive feedback in the onset of autosomal dominant diseases

    Directory of Open Access Journals (Sweden)

    Bosl William J

    2010-06-01

    Full Text Available Abstract Background Autosomal dominant (AD diseases result when a single mutant or non-functioning gene is present on an autosomal chromosome. These diseases often do not emerge at birth. There are presently two prevailing theories explaining the expression of AD diseases. One explanation originates from the Knudson two-hit theory of hereditary cancers, where loss of heterozygosity or occurrence of somatic mutations impairs the function of the wild-type copy. While these somatic second hits may be sufficient for stable disease states, it is often difficult to determine if their occurrence necessarily marks the initiation of disease progression. A more direct consequence of a heterozygous genetic background is haploinsufficiency, referring to a lack of sufficient gene function due to reduced wild-type gene copy number; however, haploinsufficiency can involve a variety of additional mechanisms, such as noise in gene expression or protein levels, injury and second hit mutations in other genes. In this study, we explore the possible contribution to the onset of autosomal dominant diseases from intrinsic factors, such as those determined by the structure of the molecular networks governing normal cellular physiology. Results First, simple models of single gene insufficiency using the positive feedback loops that may be derived from a three-component network were studied by computer simulation using Bionet software. The network structure is shown to affect the dynamics considerably; some networks are relatively stable even when large stochastic variations in are present, while others exhibit switch-like dynamics. In the latter cases, once the network switches over to the disease state it remains in that state permanently. Model pathways for two autosomal dominant diseases, AD polycystic kidney disease and mature onset diabetes of youth (MODY were simulated and the results are compared to known disease characteristics. Conclusions By identifying the

  5. Mutations in SYNGAP1 Cause Intellectual Disability, Autism, and a Specific Form of Epilepsy by Inducing Haploinsufficiency

    DEFF Research Database (Denmark)

    Berryer, Martin H; Hamdan, Fadi F; Klitten, Laura L

    2013-01-01

    De novo mutations in SYNGAP1, which codes for a RAS/RAP GTP-activating protein, cause nonsyndromic intellectual disability (NSID). All disease-causing point mutations identified until now in SYNGAP1 are truncating, raising the possibility of an association between this type of mutations and NSID...... also showed ataxia, autism, and a specific form of generalized epilepsy that can be refractory to treatment. All of these mutations occurred de novo, except c.283dupC, which was inherited from a father who is a mosaic. Biolistic transfection of wild-type SYNGAP1 in pyramidal cells from cortical...

  6. A novel AMELX mutation causes hypoplastic amelogenesis imperfecta.

    Science.gov (United States)

    Kim, Young-Jae; Kim, Youn Jung; Kang, Jenny; Shin, Teo Jeon; Hyun, Hong-Keun; Lee, Sang-Hoon; Lee, Zang Hee; Kim, Jung-Wook

    2017-04-01

    Amelogenesis imperfecta (AI) is a hereditary genetic defect affecting tooth enamel. AI is heterogeneous in clinical phenotype as well as in genetic etiology. To date, more than 10 genes have been associated with the etiology of AI. Amelogenin is the most abundant enamel matrix protein, most of which is encoded by the amelogenin gene in the X-chromosome (AMELX). More than 16 alternative splicing transcripts have been identified in the murine Amelx gene. The purpose of this study was to identify the genetic cause of an AI family. We recruited a family with hypoplastic AI and performed mutational analysis on the candidate gene based on the clinical phenotype. Mutational analysis revealed a missense mutation in exon 6 (NM_182680.1; c.242C > T), which changes a sequence in a highly conserved amino acid (NP_872621.1; p.Pro81Leu). Furthermore, a splicing assay using a minigene displayed that the mutation changed the mRNA splicing repertory. In this study, we identified a novel AMELX missense mutation causing hypoplastic AI, and this mutation also resulted in altered mRNA splicing. These results will not only expand the mutation spectrum causing AI but also broaden our understanding of the biological mechanism of enamel formation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Dysplastic spondylolysis is caused by mutations in the diastrophic dysplasia sulfate transporter gene.

    Science.gov (United States)

    Cai, Tao; Yang, Liu; Cai, Wanshi; Guo, Sen; Yu, Ping; Li, Jinchen; Hu, Xueyu; Yan, Ming; Shao, Qianzhi; Jin, Yan; Sun, Zhong Sheng; Luo, Zhuo-Jing

    2015-06-30

    Spondylolysis is a fracture in part of the vertebra with a reported prevalence of about 3-6% in the general population. Genetic etiology of this disorder remains unknown. The present study was aimed at identifying genomic mutations in patients with dysplastic spondylolysis as well as the potential pathogenesis of the abnormalities. Whole-exome sequencing and functional analysis were performed for patients with spondylolysis. We identified a novel heterozygous mutation (c.2286A > T; p.D673V) in the sulfate transporter gene SLC26A2 in five affected subjects of a Chinese family. Two additional mutations (e.g., c.1922A > G; p.H641R and g.18654T > C in the intron 1) in the gene were identified by screening a cohort of 30 unrelated patients with the disease. In situ hybridization analysis showed that SLC26A2 is abundantly expressed in the lumbosacral spine of the mouse embryo at day 14.5. Sulfate uptake activities in CHO cells transfected with mutant SLC26A2 were dramatically reduced compared with the wild type, confirming the pathogenicity of the two missense mutations. Further analysis of the gene-disease network revealed a convergent pathogenic network for the development of lumbosacral spine. To our knowledge, our findings provide the first identification of autosomal dominant SLC26A2 mutations in patients with dysplastic spondylolysis, suggesting a new clinical entity in the pathogenesis of chondrodysplasia involving lumbosacral spine. The analysis of the gene-disease network may shed new light on the study of patients with dysplastic spondylolysis and spondylolisthesis as well as high-risk individuals who are asymptomatic.

  8. Mutations of alpha-galactosidase A gene in two unusual cases of Fabry disease

    NARCIS (Netherlands)

    Beyer, EM; Kopishinskaya, SV; Van Amstel, JKP; Tsvetkova, [No Value

    1999-01-01

    The mutation analysis of alpha-galactosidase A gene was carried out in two families with Fabry disease described by us earlier. In the family P. a new point mutation E341K (a G to A transition at position 10999 of the gene) was identified. The mutation causes a Glu341Lys substitution in

  9. Characterization of Heterozygous HTRA1 Mutations in Taiwanese Patients With Cerebral Small Vessel Disease.

    Science.gov (United States)

    Lee, Yi-Chung; Chung, Chih-Ping; Chao, Nai-Chen; Fuh, Jong-Ling; Chang, Feng-Chi; Soong, Bing-Wing; Liao, Yi-Chu

    2018-07-01

    Homozygous and compound heterozygous mutations in the high temperature requirement serine peptidase A1 gene ( HTRA1 ) cause cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. However, heterozygous HTRA1 mutations were recently identified to be associated with autosomal dominant cerebral small vessel disease (SVD). The present study aims at investigating the clinical features, frequency, and spectrum of HTRA1 mutations in a Taiwanese cohort with SVD. Mutational analyses of HTRA1 were performed by Sanger sequencing in 222 subjects, selected from a cohort of 337 unrelated patients with SVD after excluding those harboring a NOTCH3 mutation. The influence of these mutations on HTRA1 protease activities was characterized. Seven novel heterozygous mutations in HTRA1 were identified, including p.Gly120Asp, p.Ile179Asn, p.Ala182Profs*33, p.Ile256Thr, p.Gly276Ala, p.Gln289Ter, and p.Asn324Thr, and each was identified in 1 single index patient. All mutations significantly compromise the HTRA1 protease activities. For the 7 index cases and another 2 affected siblings carrying a heterozygous HTRA1 mutation, the common clinical presentations include lacunar infarction, intracerebral hemorrhage, cognitive decline, and spondylosis at the fifth to sixth decade of life. Among the 9 patients, 4 have psychiatric symptoms as delusion, depression, and compulsive behavior, 3 have leukoencephalopathy in anterior temporal poles, and 2 patients have alopecia. Heterozygous HTRA1 mutations account for 2.08% (7 of 337) of SVD in Taiwan. The clinical and neuroradiological features of HTRA1 -related SVD and sporadic SVD are similar. These findings broaden the mutational spectrum of HTRA1 and highlight the pathogenic role of heterozygous HTRA1 mutations in SVD. © 2018 American Heart Association, Inc.

  10. Hypoparathyroidism, sensorineural deafness, and renal dysgenesis syndrome with a mutation

    Directory of Open Access Journals (Sweden)

    Yong Suk Shim

    2015-03-01

    Full Text Available Hypoparathyroidism, sensorineural deafness, and renal dysgenesis syndrome is an autosomal dominant disease caused by mutations in the GATA3 gene on chromosome 10p15. We identified a patient diagnosed with hypoparathyroidism who also had a family history of hypoparathyroidism and sensorineural deafness, present in the father. The patient was subsequently diagnosed and found to be a heterozygote for an insertion mutation c.255_256ins4 (GTGC in exon 2 of GATA3. His father was also confirmed to have the same mutation in GATA3.

  11. A novel germline mutation (c.A527G) in STK11 gene causes Peutz-Jeghers syndrome in a Chinese girl: A case report.

    Science.gov (United States)

    Zhao, Zi-Ye; Jiang, Yu-Liang; Li, Bai-Rong; Yang, Fu; Li, Jing; Jin, Xiao-Wei; Sun, Shu-Han; Ning, Shou-Bin

    2017-12-01

    Peutz-Jeghers syndrome (PJS) is a Mendelian autosomal dominant disease caused by mutations in the tumor suppressor gene, serine/threonine kinase 11 (STK11). The features of this syndrome include gastrointestinal (GI) hamartomas, melanin spots on the lips and the extremities, and an increased risk of developing cancer. Early onset of disease is often characterized by mucocutaneous pigmentation and intussusception due to GI polyps in childhood. A girl with a positive family history grew oral pigmentation at 1 and got intussusception by small bowel hamartomas at 5. She was diagnosed with PJS based on oral pigmentation and a positive family history of PJS. Enteroscopy was employed to treat the GI polyps. Sanger sequencing was used to investigate STK11 mutation in this family. A large jejunal polyp together with other smaller ones was resected, and the girl recovered uneventfully. We discovered a heterozygous substitution in STK11, c.A527G in exon 4, in the girl and her father who was also a PJS patient, and the amine acid change was an aspartic acid-glycine substitution in codon 176. This mutation was not found in other healthy family members and 50 unrelated non-PJS controls, and it is not recorded in databases, which prove it a novel mutation. Evolutionary conservation analysis of amino acid residues showed this aspartic acid is a conserved one between species, and protein structure prediction by SWISS-MODEL indicated an obvious change in local structure. In addition, PolyPhen-2 score for this mutation is 1, which indicates it probably damaging. PJS can cause severe complication like intussusception in young children, and early screening for small bowel may be beneficial for these patients. The mutation of STK11 found in this girl is a novel one, which enlarges the spectrum of STK11. Our analysis supported it a causative one in PJS.

  12. Col4a1 mutations cause progressive retinal neovascular defects and retinopathy.

    Science.gov (United States)

    Alavi, Marcel V; Mao, Mao; Pawlikowski, Bradley T; Kvezereli, Manana; Duncan, Jacque L; Libby, Richard T; John, Simon W M; Gould, Douglas B

    2016-01-27

    Mutations in collagen, type IV, alpha 1 (COL4A1), a major component of basement membranes, cause multisystem disorders in humans and mice. In the eye, these include anterior segment dysgenesis, optic nerve hypoplasia and retinal vascular tortuosity. Here we investigate the retinal pathology in mice carrying dominant-negative Col4a1 mutations. To this end, we examined retinas longitudinally in vivo using fluorescein angiography, funduscopy and optical coherence tomography. We assessed retinal function by electroretinography and studied the retinal ultrastructural pathology. Retinal examinations revealed serous chorioretinopathy, retinal hemorrhages, fibrosis or signs of pathogenic angiogenesis with chorioretinal anastomosis in up to approximately 90% of Col4a1 mutant eyes depending on age and the specific mutation. To identify the cell-type responsible for pathogenesis we generated a conditional Col4a1 mutation and determined that primary vascular defects underlie Col4a1-associated retinopathy. We also found focal activation of Müller cells and increased expression of pro-angiogenic factors in retinas from Col4a1(+/Δex41)mice. Together, our findings suggest that patients with COL4A1 and COL4A2 mutations may be at elevated risk of retinal hemorrhages and that retinal examinations may be useful for identifying patients with COL4A1 and COL4A2 mutations who are also at elevated risk of hemorrhagic strokes.

  13. Mutation update and genotype-phenotype correlations of novel and previously described mutations in TPM2 and TPM3 causing congenital myopathies

    NARCIS (Netherlands)

    Marttila, Minttu; Lehtokari, Vilma-Lotta; Marston, Steven; Nyman, Tuula A.; Barnerias, Christine; Beggs, Alan H.; Bertini, Enrico; Ceyhan-Birsoy, Ozge; Cintas, Pascal; Gerard, Marion; Gilbert-Dussardier, Brigitte; Hogue, Jacob S.; Longman, Cheryl; Eymard, Bruno; Frydman, Moshe; Kang, Peter B.; Klinge, Lars; Kolski, Hanna; Lochmüller, Hans; Magy, Laurent; Manel, Véronique; Mayer, Michèle; Mercuri, Eugenio; North, Kathryn N.; Peudenier-Robert, Sylviane; Pihko, Helena; Probst, Frank J.; Reisin, Ricardo; Stewart, Willie; Taratuto, Ana Lia; de Visser, Marianne; Wilichowski, Ekkehard; Winer, John; Nowak, Kristen; Laing, Nigel G.; Winder, Tom L.; Monnier, Nicole; Clarke, Nigel F.; Pelin, Katarina; Grönholm, Mikaela; Wallgren-Pettersson, Carina

    2014-01-01

    Mutations affecting skeletal muscle isoforms of the tropomyosin genes may cause nemaline myopathy, cap myopathy, core-rod myopathy, congenital fiber-type disproportion, distal arthrogryposes, and Escobar syndrome. We correlate the clinical picture of these diseases with novel (19) and previously

  14. Unexpected identification of a recurrent mutation in the DLX3 gene causing amelogenesis imperfecta.

    Science.gov (United States)

    Kim, Y-J; Seymen, F; Koruyucu, M; Kasimoglu, Y; Gencay, K; Shin, T J; Hyun, H-K; Lee, Z H; Kim, J-W

    2016-05-01

    To identify the molecular genetic aetiology of a family with autosomal dominant amelogenesis imperfecta (AI). DNA samples were collected from a six-generation family, and the candidate gene approach was used to screen for the enamelin (ENAM) gene. Whole-exome sequencing and linkage analysis with SNP array data identified linked regions, and candidate gene screening was performed. Mutational analysis revealed a mutation (c.561_562delCT and p.Tyr188Glnfs*13) in the DLX3 gene. After finding a recurrent DLX3 mutation, the clinical phenotype of the family members was re-examined. The proband's mother had pulp elongation in the third molars. The proband had not hair phenotype, but her cousin had curly hair at birth. In this study, we identified a recurrent 2-bp deletional DLX3 mutation in a new family. The clinical phenotype was the mildest one associated with the DLX3 mutations. These results will advance the understanding of the functional role of DLX3 in developmental processes. © 2016 The Authors. Oral Diseases Published by John Wiley & Sons Ltd.

  15. Molecular pathogenesis of megalencephalic leukoencephalopathy with subcortical cysts: mutations in MLC1 cause folding defects

    NARCIS (Netherlands)

    Duarri, A.; Teijido, O.; Lopez-Hernandez, T.; Scheper, G.C.; Barriere, H.; Boor, P.K.I.; Aguado, F.; Zorzano, A.; Palacin, M.; Martinez, A; Lukacs, G.L.; van der Knaap, M.S.; Nunes, V.; Estevez, R.

    2008-01-01

    Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare type of leukodystrophy, most often caused by mutations in the MLC1 gene. MLC1 is an oligomeric plasma membrane (PM) protein of unknown function expressed mainly in glial cells and neurons. Most disease-causing missense

  16. Functional analysis of Waardenburg syndrome-associated PAX3 and SOX10 mutations: report of a dominant-negative SOX10 mutation in Waardenburg syndrome type II.

    Science.gov (United States)

    Zhang, Hua; Chen, Hongsheng; Luo, Hunjin; An, Jing; Sun, Lin; Mei, Lingyun; He, Chufeng; Jiang, Lu; Jiang, Wen; Xia, Kun; Li, Jia-Da; Feng, Yong

    2012-03-01

    Waardenburg syndrome (WS) is an auditory-pigmentary disorder resulting from melanocyte defects, with varying combinations of sensorineural hearing loss and abnormal pigmentation of the hair, skin, and inner ear. WS is classified into four subtypes (WS1-WS4) based on additional symptoms. PAX3 and SOX10 are two transcription factors that can activate the expression of microphthalmia-associated transcription factor (MITF), a critical transcription factor for melanocyte development. Mutations of PAX3 are associated with WS1 and WS3, while mutations of SOX10 cause WS2 and WS4. Recently, we identified some novel WS-associated mutations in PAX3 and SOX10 in a cohort of Chinese WS patients. Here, we further identified an E248fsX30 SOX10 mutation in a family of WS2. We analyzed the subcellular distribution, expression and in vitro activity of two PAX3 mutations (p.H80D, p.H186fsX5) and four SOX10 mutations (p.E248fsX30, p.G37fsX58, p.G38fsX69 and p.R43X). Except H80D PAX3, which retained partial activity, the other mutants were unable to activate MITF promoter. The H80D PAX3 and E248fsX30 SOX10 were localized in the nucleus as wild type (WT) proteins, whereas the other mutant proteins were distributed in both cytoplasm and nucleus. Furthermore, E248fsX30 SOX10 protein retained the DNA-binding activity and showed dominant-negative effect on WT SOX10. However, E248fsX30 SOX10 protein seems to decay faster than the WT one, which may underlie the mild WS2 phenotype caused by this mutation.

  17. A Disease Mutation Causing Episodic Ataxia Type I in the S1 Links Directly to the Voltage Sensor and the Selectivity Filter in Kv Channels.

    Science.gov (United States)

    Petitjean, Dimitri; Kalstrup, Tanja; Zhao, Juan; Blunck, Rikard

    2015-09-02

    The mutation F184C in Kv1.1 leads to development of episodic ataxia type I (EA1). Although the mutation has been said to alter activation kinetics and to lower expression, we show here that the underlying molecular mechanisms may be more complex. Although F184 is positioned in the "peripheral" S1 helix, it occupies a central position in the 3D fold. We show in cut-open oocyte voltage-clamp recordings of gating and ionic currents of the Shaker Kv channel expressed in Xenopus oocytes that F184 not only interacts directly with the gating charges of the S4, but also creates a functional link to the selectivity filter of the neighboring subunit. This link leads to impaired fast and slow inactivation. The effect on fast inactivation is of an allosteric nature considering that fast inactivation is caused by a linked cytosolic ball peptide. The extensive effects of F184C provide a new mechanism underlying EA. Episodic ataxia (EA) is an inherited disease that leads to occasional loss of motor control in combination with variable other symptoms such as vertigo or migraine. EA type I (EA1), studied here, is caused by mutations in a voltage-gated potassium channel that contributes to the generation of electrical signals in the brain. The mechanism by which mutations in voltage-gated potassium channels lead to EA is still unknown and there is no consistent pharmacological treatment. By studying in detail one disease-causing mutation in Kv1.1, we describe a novel molecular mechanism distinct from mechanisms described previously. This mechanism contributes to the understanding of potassium channel function in general and might lead to a better understanding of how EA develops. Copyright © 2015 the authors 0270-6474/15/3512198-09$15.00/0.

  18. Hypertrophic Cardiomyopathy: A Vicious Cycle Triggered by Sarcomere Mutations and Secondary Disease Hits.

    Science.gov (United States)

    Wijnker, Paul J M; Sequeira, Vasco; Kuster, Diederik W D; Velden, Jolanda van der

    2018-04-11

    Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease characterized by left ventricular hypertrophy, diastolic dysfunction, and myocardial disarray. Disease onset occurs between 20 and 50 years of age, thus affecting patients in the prime of their life. HCM is caused by mutations in sarcomere proteins, the contractile building blocks of the heart. Despite increased knowledge of causal mutations, the exact path from genetic defect leading to cardiomyopathy is complex and involves additional disease hits. Recent Advances: Laboratory-based studies indicate that HCM development not only depends on the primary sarcomere impairment caused by the mutation but also on secondary disease-related alterations in the heart. Here we propose a vicious mutation-induced disease cycle, in which a mutation-induced energy depletion alters cellular metabolism with increased mitochondrial work, which triggers secondary disease modifiers that will worsen disease and ultimately lead to end-stage HCM. Evidence shows excessive cellular reactive oxygen species (ROS) in HCM patients and HCM animal models. Oxidative stress markers are increased in the heart (oxidized proteins, DNA, and lipids) and serum of HCM patients. In addition, increased mitochondrial ROS production and changes in endogenous antioxidants are reported in HCM. Mutant sarcomeric protein may drive excessive levels of cardiac ROS via changes in cardiac efficiency and metabolism, mitochondrial activation and/or dysfunction, impaired protein quality control, and microvascular dysfunction. Interventions restoring metabolism, mitochondrial function, and improved ROS balance may be promising therapeutic approaches. We discuss the effects of current HCM pharmacological therapies and potential future therapies to prevent and reverse HCM. Antioxid. Redox Signal. 00, 000-000.

  19. Case reports of juvenile GM1 gangliosidosisis type II caused by mutation in GLB1 gene.

    Science.gov (United States)

    Karimzadeh, Parvaneh; Naderi, Samaneh; Modarresi, Farzaneh; Dastsooz, Hassan; Nemati, Hamid; Farokhashtiani, Tayebeh; Shamsian, Bibi Shahin; Inaloo, Soroor; Faghihi, Mohammad Ali

    2017-07-17

    Type II or juvenile GM1-gangliosidosis is an autosomal recessive lysosomal storage disorder, which is clinically distinct from infantile form of the disease by the lack of characteristic cherry-red spot and hepatosplenomegaly. The disease is characterized by slowly progressive neurodegeneration and mild skeletal changes. Due to the later age of onset and uncharacteristic presentation, diagnosis is frequently puzzled with other ataxic and purely neurological disorders. Up to now, 3-4 types of GM1-gangliosidosis have been reported and among them type I is the most common phenotype with the age of onset around 6 months. Various forms of GM1-gangliosidosis are caused by GLB1 gene mutations but severity of the disease and age of onset are directly related to the position and the nature of deleterious mutations. However, due to its unique genetic cause and overlapping clinical features, some researchers believe that GM1 gangliosidosis represents an overlapped disease spectrum instead of four distinct types. Here, we report a less frequent type of autosomal recessive GM1 gangliosidosis with perplexing clinical presentation in three families in the southwest part of Iran, who are unrelated but all from "Lurs" ethnic background. To identify disease-causing mutations, Whole Exome Sequencing (WES) utilizing next generation sequencing was performed. Four patients from three families were investigated with the age of onset around 3 years old. Clinical presentations were ataxia, gate disturbances and dystonia leading to wheelchair-dependent disability, regression of intellectual abilities, and general developmental regression. They all were born in consanguineous families with no previous documented similar disease in their parents. A homozygote missense mutation in GLB1 gene (c. 601 G > A, p.R201C) was found in all patients. Using Sanger sequencing this identified mutation was confirmed in the proband, their parents, grandparents, and extended family members, confirming

  20. SAAMBE: Webserver to Predict the Charge of Binding Free Energy Caused by Amino Acids Mutations.

    Science.gov (United States)

    Petukh, Marharyta; Dai, Luogeng; Alexov, Emil

    2016-04-12

    Predicting the effect of amino acid substitutions on protein-protein affinity (typically evaluated via the change of protein binding free energy) is important for both understanding the disease-causing mechanism of missense mutations and guiding protein engineering. In addition, researchers are also interested in understanding which energy components are mostly affected by the mutation and how the mutation affects the overall structure of the corresponding protein. Here we report a webserver, the Single Amino Acid Mutation based change in Binding free Energy (SAAMBE) webserver, which addresses the demand for tools for predicting the change of protein binding free energy. SAAMBE is an easy to use webserver, which only requires that a coordinate file be inputted and the user is provided with various, but easy to navigate, options. The user specifies the mutation position, wild type residue and type of mutation to be made. The server predicts the binding free energy change, the changes of the corresponding energy components and provides the energy minimized 3D structure of the wild type and mutant proteins for download. The SAAMBE protocol performance was tested by benchmarking the predictions against over 1300 experimentally determined changes of binding free energy and a Pearson correlation coefficient of 0.62 was obtained. How the predictions can be used for discriminating disease-causing from harmless mutations is discussed. The webserver can be accessed via http://compbio.clemson.edu/saambe_webserver/.

  1. SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis.

    Science.gov (United States)

    Orlacchio, Antonio; Babalini, Carla; Borreca, Antonella; Patrono, Clarice; Massa, Roberto; Basaran, Sarenur; Munhoz, Renato P; Rogaeva, Ekaterina A; St George-Hyslop, Peter H; Bernardi, Giorgio; Kawarai, Toshitaka

    2010-02-01

    The mutation of the spatacsin gene is the single most common cause of autosomal recessive hereditary spastic paraplegia with thin corpus callosum. Common clinical, pathological and genetic features between amyotrophic lateral sclerosis and hereditary spastic paraplegia motivated us to investigate 25 families with autosomal recessive juvenile amyotrophic lateral sclerosis and long-term survival for mutations in the spatascin gene. The inclusion criterion was a diagnosis of clinically definite amyotrophic lateral sclerosis according to the revised El Escorial criteria. The exclusion criterion was a diagnosis of hereditary spastic paraplegia with thin corpus callosum in line with an established protocol. Additional pathological and genetic evaluations were also performed. Surprisingly, 12 sequence alterations in the spatacsin gene (one of which is novel, IVS30 + 1 G > A) were identified in 10 unrelated pedigrees with autosomal recessive juvenile amyotrophic lateral sclerosis and long-term survival. The countries of origin of these families were Italy, Brazil, Canada, Japan and Turkey. The variants seemed to be pathogenic since they co-segregated with the disease in all pedigrees, were absent in controls and were associated with amyotrophic lateral sclerosis neuropathology in one member of one of these families for whom central nervous system tissue was available. Our study indicates that mutations in the spatascin gene could cause a much wider spectrum of clinical features than previously recognized, including autosomal recessive juvenile amyotrophic lateral sclerosis.

  2. Screening for NDP mutations in 44 unrelated patients with familial exudative vitreoretinopathy or Norrie disease.

    Science.gov (United States)

    Yang, Huiqin; Li, Shiqiang; Xiao, Xueshan; Guo, Xiangming; Zhang, Qingjiong

    2012-08-01

    To screen mutations in the norrin (NDP) gene in 44 unrelated Chinese patients with familial exudative vitreoretinopathy (FEVR, 38 cases) or Norrie disease (6 cases) and to describe the associated phenotypes. Of the 44 patients, mutation in FZD4, LRP5, and TSPAN12 was excluded in 38 patients with FEVR in previous study. Sanger sequencing was used to analyze the 2 coding exons and their adjacent regions of NDP in the 44 patients. Clinical data were presented for patients with mutation. NDP variants in 5 of the 6 patients with Norrie disease were identified, including a novel missense mutation (c.164G>A, p.Cys55Phe) in one patient, two known missense mutations (c.122G>A, p.Arg41Lys; c.220C>T, p.Arg74Cys) in two patients, and a gross deletion encompassing the two coding exons in two patients. Of the 5 patients, 3 had a family history and 2 were singleton cases. No mutation in NDP was detected in the 38 patients with FEVR. NDP mutations are common cause of Norrie disease but might be rare cause for FEVR in Chinese.

  3. Mutations in FUS cause FALS and SALS in French and French Canadian populations.

    Science.gov (United States)

    Belzil, V V; Valdmanis, P N; Dion, P A; Daoud, H; Kabashi, E; Noreau, A; Gauthier, J; Hince, P; Desjarlais, A; Bouchard, J-P; Lacomblez, L; Salachas, F; Pradat, P-F; Camu, W; Meininger, V; Dupré, N; Rouleau, G A

    2009-10-13

    The identification of mutations in the TARDBP and more recently the identification of mutations in the FUS gene as the cause of amyotrophic lateral sclerosis (ALS) is providing the field with new insight about the mechanisms involved in this severe neurodegenerative disease. To extend these recent genetic reports, we screened the entire gene in a cohort of 200 patients with ALS. An additional 285 patients with sporadic ALS were screened for variants in exon 15 for which mutations were previously reported. In total, 3 different mutations were identified in 4 different patients, including 1 3-bp deletion in exon 3 of a patient with sporadic ALS and 2 missense mutations in exon 15 of 1 patient with familial ALS and 2 patients with sporadic ALS. Our study identified sporadic patients with mutations in the FUS gene. The accumulation and description of different genes and mutations helps to develop a more comprehensive picture of the genetic events underlying amyotrophic lateral sclerosis.

  4. A KCNC3 mutation causes a neurodevelopmental, non-progressive SCA13 subtype associated with dominant negative effects and aberrant EGFR trafficking.

    Directory of Open Access Journals (Sweden)

    Swati Khare

    Full Text Available The autosomal dominant spinocerebellar ataxias (SCAs are a diverse group of neurological disorders anchored by the phenotypes of motor incoordination and cerebellar atrophy. Disease heterogeneity is appreciated through varying comorbidities: dysarthria, dysphagia, oculomotor and/or retinal abnormalities, motor neuron pathology, epilepsy, cognitive impairment, autonomic dysfunction, and psychiatric manifestations. Our study focuses on SCA13, which is caused by several allelic variants in the voltage-gated potassium channel KCNC3 (Kv3.3. We detail the clinical phenotype of four SCA13 kindreds that confirm causation of the KCNC3R423H allele. The heralding features demonstrate congenital onset with non-progressive, neurodevelopmental cerebellar hypoplasia and lifetime improvement in motor and cognitive function that implicate compensatory neural mechanisms. Targeted expression of human KCNC3R423H in Drosophila triggers aberrant wing veins, maldeveloped eyes, and fused ommatidia consistent with the neurodevelopmental presentation of patients. Furthermore, human KCNC3R423H expression in mammalian cells results in altered glycosylation and aberrant retention of the channel in anterograde and/or endosomal vesicles. Confirmation of the absence of plasma membrane targeting was based on the loss of current conductance in cells expressing the mutant channel. Mechanistically, genetic studies in Drosophila, along with cellular and biophysical studies in mammalian systems, demonstrate the dominant negative effect exerted by the mutant on the wild-type (WT protein, which explains dominant inheritance. We demonstrate that ocular co-expression of KCNC3R423H with Drosophila epidermal growth factor receptor (dEgfr results in striking rescue of the eye phenotype, whereas KCNC3R423H expression in mammalian cells results in aberrant intracellular retention of human epidermal growth factor receptor (EGFR. Together, these results indicate that the neurodevelopmental

  5. Naturally occurring dominant drug resistance mutations occur infrequently in the setting of recently acquired hepatitis C.

    Science.gov (United States)

    Applegate, Tanya L; Gaudieri, Silvana; Plauzolles, Anne; Chopra, Abha; Grebely, Jason; Lucas, Michaela; Hellard, Margaret; Luciani, Fabio; Dore, Gregory J; Matthews, Gail V

    2015-01-01

    Direct-acting antivirals (DAAs) are predicted to transform hepatitis C therapy, yet little is known about the prevalence of naturally occurring resistance mutations in recently acquired HCV. This study aimed to determine the prevalence and frequency of drug resistance mutations in the viral quasispecies among HIV-positive and -negative individuals with recent HCV. The NS3 protease, NS5A and NS5B polymerase genes were amplified from 50 genotype 1a participants of the Australian Trial in Acute Hepatitis C. Amino acid variations at sites known to be associated with possible drug resistance were analysed by ultra-deep pyrosequencing. A total of 12% of individuals harboured dominant resistance mutations, while 36% demonstrated non-dominant resistant variants below that detectable by bulk sequencing (that is, Resistance variants (resistance from all classes, with the exception of sofosbuvir. Dominant resistant mutations were uncommonly observed in the setting of recent HCV. However, low-level mutations to all DAA classes were observed by deep sequencing at the majority of sites and in most individuals. The significance of these variants and impact on future treatment options remains to be determined. Clinicaltrials.gov NCT00192569.

  6. ITGB6 loss-of-function mutations cause autosomal recessive amelogenesis imperfecta.

    Science.gov (United States)

    Wang, Shih-Kai; Choi, Murim; Richardson, Amelia S; Reid, Bryan M; Lin, Brent P; Wang, Susan J; Kim, Jung-Wook; Simmer, James P; Hu, Jan C-C

    2014-04-15

    Integrins are cell-surface adhesion receptors that bind to extracellular matrices (ECM) and mediate cell-ECM interactions. Some integrins are known to play critical roles in dental enamel formation. We recruited two Hispanic families with generalized hypoplastic amelogenesis imperfecta (AI). Analysis of whole-exome sequences identified three integrin beta 6 (ITGB6) mutations responsible for their enamel malformations. The female proband of Family 1 was a compound heterozygote with an ITGB6 transition mutation in Exon 4 (g.4545G > A c.427G > A p.Ala143Thr) and an ITGB6 transversion mutation in Exon 6 (g.27415T > A c.825T > A p.His275Gln). The male proband of Family 2 was homozygous for an ITGB6 transition mutation in Exon 11 (g.73664C > T c.1846C > T p.Arg616*) and hemizygous for a transition mutation in Exon 6 of Nance-Horan Syndrome (NHS Xp22.13; g.355444T > C c.1697T > C p.Met566Thr). These are the first disease-causing ITGB6 mutations to be reported. Immunohistochemistry of mouse mandibular incisors localized ITGB6 to the distal membrane of differentiating ameloblasts and pre-ameloblasts, and then ITGB6 appeared to be internalized by secretory stage ameloblasts. ITGB6 expression was strongest in the maturation stage and its localization was associated with ameloblast modulation. Our findings demonstrate that early and late amelogenesis depend upon cell-matrix interactions. Our approach (from knockout mouse phenotype to human disease) demonstrates the power of mouse reverse genetics in mutational analysis of human genetic disorders and attests to the need for a careful dental phenotyping in large-scale knockout mouse projects.

  7. Identification of the first nonsense CDSN mutation with expression of a truncated protein causing peeling skin syndrome type B.

    Science.gov (United States)

    Mallet, A; Kypriotou, M; George, K; Leclerc, E; Rivero, D; Mazereeuw-Hautier, J; Serre, G; Huber, M; Jonca, N; Hohl, D

    2013-12-01

    Peeling skin disease (PSD), a generalized inflammatory form of peeling skin syndrome, is caused by autosomal recessive nonsense mutations in the corneodesmosin gene (CDSN). To investigate a novel mutation in CDSN. A 50-year-old white woman showed widespread peeling with erythema and elevated serum IgE. DNA sequencing, immunohistochemistry, Western blot and real-time polymerase chain reaction analyses of skin biopsies were performed in order to study the genetics and to characterize the molecular profile of the disease. Histology showed hyperkeratosis and acanthosis of the epidermis, and inflammatory infiltrates in the dermis. DNA sequencing revealed a homozygous mutation leading to a premature termination codon in CDSN: p.Gly142*. Protein analyses showed reduced expression of a 16-kDa corneodesmosin mutant in the upper epidermal layers, whereas the full-length protein was absent. These results are interesting regarding the genotype-phenotype correlations in diseases caused by CDSN mutations. The PSD-causing CDSN mutations identified heretofore result in total corneodesmosin loss, suggesting that PSD is due to full corneodesmosin deficiency. Here, we show for the first time that a mutant corneodesmosin can be stably expressed in some patients with PSD, and that this truncated protein is very probably nonfunctional. © 2013 British Association of Dermatologists.

  8. A novel OPA1 mutation in a Chinese family with autosomal dominant optic atrophy

    International Nuclear Information System (INIS)

    Zhang, Juanjuan; Yuan, Yimin; Lin, Bing; Feng, Hao; Li, Yan; Dai, Xianning; Zhou, Huihui; Dong, Xujie; Liu, Xiao-Ling; Guan, Min-Xin

    2012-01-01

    Highlights: ► We report the characterization of a four-generation large Chinese family with ADOA. ► We find a new heterozygous mutation c.C1198G in OPA1 gene which may be a novel pathogenic mutation in this pedigree. ► We do not find any mitochondrial DNA mutations associated with optic atrophy. ► Other factors may also contribute to the phenotypic variability of ADOA in this pedigree. -- Abstract: A large four-generation Chinese family with autosomal dominant optic atrophy (ADOA) was investigated in the present study. Eight of the family members were affected in this pedigree. The affected family members exhibited early-onset and progressive visual impairment, resulting in mild to profound loss of visual acuity. The average age-at-onset was 15.9 years. A new heterozygous mutation c.C1198G was identified by sequence analysis of the 12th exon of the OPA1 gene. This mutation resulted in a proline to alanine substitution at codon 400, which was located in an evolutionarily conserved region. This missense mutation in the GTPase domain was supposed to result in a loss of function for the encoded protein and act through a dominant negative effect. No other mutations associated with optic atrophy were found in our present study. The c.C1198G heterozygous mutation in the OPA1 gene may be a novel key pathogenic mutation in this pedigree with ADOA. Furthermore, additional nuclear modifier genes, environmental factors, and psychological factors may also contribute to the phenotypic variability of ADOA in this pedigree.

  9. Screening of drugs inhibiting in vitro oligomerization of Cu/Zn-superoxide dismutase with a mutation causing amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Itsuki Anzai

    2016-08-01

    Full Text Available Dominant mutations in Cu/Zn-superoxide dismutase (SOD1 gene have been shown to cause a familial form of amyotrophic lateral sclerosis (SOD1-ALS. A major pathological hallmark of this disease is abnormal accumulation of mutant SOD1 oligomers in the affected spinal motor neurons. While no effective therapeutics for SOD1-ALS is currently available, SOD1 oligomerization will be a good target for developing cures of this disease. Recently, we have reproduced the formation of SOD1 oligomers abnormally cross-linked via disulfide bonds in a test tube. Using our in vitro model of SOD1 oligomerization, therefore, we screened 640 FDA-approved drugs for inhibiting the oligomerization of SOD1 proteins, and three effective classes of chemical compounds were identified. Those hit compounds will provide valuable information on the chemical structures for developing a novel drug candidate suppressing the abnormal oligomerization of mutant SOD1 and possibly curing the disease.

  10. Biochemical Characterization of P4-ATPase Mutations Associated with Intrahepatic Cholestatic Disease

    DEFF Research Database (Denmark)

    Gantzel, Rasmus; Vestergaard, Anna Lindeløv; Mikkelsen, Stine

    The cholestatic disorders progressive familial intrahepatic cholestasis type 1 (PFIC1, also referred to as Byler’s disease) and benign recurrent intrahepatic cholestasis type 1 (BRIC1) are caused by mutation of the P4-ATPase ATP8B1. The substrate of ATP8B1 is very likely to be phosphatidylserine...... families have been investigated, and more than 50 distinct disease mutations have been identified, with roughly half being missense mutations. In this project we try to answer the question whether PFIC1 mutations are generally more disturbing than BRIC1 mutations with respect to expression, structural...... stability and function. We investigate the mutations in our well functioning system of ATP8A2, being expressed in mammalian HEK293T cells, affinity-purified, and reconstituted in lipid vesicles. Well-known mutations from both groups of patients have been selected for study. I91P in ATP8A2 (L127P in ATP8B1...

  11. The glucocerobrosidase E326K variant predisposes to Parkinson's disease, but does not cause Gaucher's disease.

    Science.gov (United States)

    Duran, Raquel; Mencacci, Niccolo E; Angeli, Aikaterini V; Shoai, Maryam; Deas, Emma; Houlden, Henry; Mehta, Atul; Hughes, Derralynn; Cox, Timothy M; Deegan, Patrick; Schapira, Anthony H; Lees, Andrew J; Limousin, Patricia; Jarman, Paul R; Bhatia, Kailash P; Wood, Nicholas W; Hardy, John; Foltynie, Tom

    2013-02-01

    Heterozygous loss-of-function mutations in the acid beta-glucocerebrosidase (GBA1) gene, responsible for the recessive lysosomal storage disorder, Gaucher's disease (GD), are the strongest known risk factor for Parkinson's disease (PD). Our aim was to assess the contribution of GBA1 mutations in a series of early-onset PD. One hundred and eighty-five PD patients (with an onset age of ≤50) and 283 age-matched controls were screened for GBA1 mutations by Sanger sequencing. We show that the frequency of GBA1 mutations is much higher in this patient series than in typical late-onset patient cohorts. Furthermore, our results reveal that the most prevalent PD-associated GBA1 mutation is E326K, a variant that does not, when homozygous, cause GD. Our results confirm recent reports that the mutation, E326K, predisposes to PD and suggest that, in addition to reduced GBA1 activity, other molecular mechanisms may contribute to the development of the disease. Copyright © 2012 Movement Disorders Society.

  12. BRF1 mutations alter RNA polymerase III–dependent transcription and cause neurodevelopmental anomalies

    Science.gov (United States)

    Hög, Friederike; Dentici, Maria Lisa; Tan, Perciliz L.; Sowada, Nadine; Medeira, Ana; Gueneau, Lucie; Thiele, Holger; Kousi, Maria; Lepri, Francesca; Wenzeck, Larissa; Blumenthal, Ian; Radicioni, Antonio; Schwarzenberg, Tito Livio; Mandriani, Barbara; Fischetto, Rita; Morris-Rosendahl, Deborah J.; Altmüller, Janine; Reymond, Alexandre; Nürnberg, Peter; Merla, Giuseppe; Dallapiccola, Bruno; Katsanis, Nicholas; Cramer, Patrick; Kubisch, Christian

    2015-01-01

    RNA polymerase III (Pol III) synthesizes tRNAs and other small noncoding RNAs to regulate protein synthesis. Dysregulation of Pol III transcription has been linked to cancer, and germline mutations in genes encoding Pol III subunits or tRNA processing factors cause neurogenetic disorders in humans, such as hypomyelinating leukodystrophies and pontocerebellar hypoplasia. Here we describe an autosomal recessive disorder characterized by cerebellar hypoplasia and intellectual disability, as well as facial dysmorphic features, short stature, microcephaly, and dental anomalies. Whole-exome sequencing revealed biallelic missense alterations of BRF1 in three families. In support of the pathogenic potential of the discovered alleles, suppression or CRISPR-mediated deletion of brf1 in zebrafish embryos recapitulated key neurodevelopmental phenotypes; in vivo complementation showed all four candidate mutations to be pathogenic in an apparent isoform-specific context. BRF1 associates with BDP1 and TBP to form the transcription factor IIIB (TFIIIB), which recruits Pol III to target genes. We show that disease-causing mutations reduce Brf1 occupancy at tRNA target genes in Saccharomyces cerevisiae and impair cell growth. Moreover, BRF1 mutations reduce Pol III–related transcription activity in vitro. Taken together, our data show that BRF1 mutations that reduce protein activity cause neurodevelopmental anomalies, suggesting that BRF1-mediated Pol III transcription is required for normal cerebellar and cognitive development. PMID:25561519

  13. The first USH2A mutation analysis of Japanese autosomal recessive retinitis pigmentosa patients: a totally different mutation profile with the lack of frequent mutations found in Caucasian patients.

    Science.gov (United States)

    Zhao, Yang; Hosono, Katsuhiro; Suto, Kimiko; Ishigami, Chie; Arai, Yuuki; Hikoya, Akiko; Hirami, Yasuhiko; Ohtsubo, Masafumi; Ueno, Shinji; Terasaki, Hiroko; Sato, Miho; Nakanishi, Hiroshi; Endo, Shiori; Mizuta, Kunihiro; Mineta, Hiroyuki; Kondo, Mineo; Takahashi, Masayo; Minoshima, Shinsei; Hotta, Yoshihiro

    2014-09-01

    Retinitis pigmentosa (RP) is a highly heterogeneous genetic disease. The USH2A gene, which accounts for approximately 74-90% of Usher syndrome type 2 (USH2) cases, is also one of the major autosomal recessive RP (arRP) causative genes among Caucasian populations. To identify disease-causing USH2A gene mutations in Japanese RP patients, all 73 exons were screened for mutations by direct sequencing. In total, 100 unrelated Japanese RP patients with no systemic manifestations were identified, excluding families with obvious autosomal dominant inheritance. Of these 100 patients, 82 were included in this present study after 18 RP patients with very likely pathogenic EYS (eyes shut homolog) mutations were excluded. The mutation analysis of the USH2A revealed five very likely pathogenic mutations in four patients. A patient had only one very likely pathogenic mutation and the others had two of them. Caucasian frequent mutations p.C759F in arRP and p.E767fs in USH2 were not found. All the four patients exhibited typical clinical features of RP. The observed prevalence of USH2A gene mutations was approximately 4% among Japanese arRP patients, and the profile of the USH2A gene mutations differed largely between Japanese patients and previously reported Caucasian populations.

  14. Epilepsy caused by CDKL5 mutations.

    Science.gov (United States)

    Castrén, Maija; Gaily, Eija; Tengström, Carola; Lähdetie, Jaana; Archer, Hayley; Ala-Mello, Sirpa

    2011-01-01

    Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) have been identified in female patients with early onset epileptic encephalopathy and severe mental retardation with a Rett-like phenotype. Subsequently CDKL5 mutations were shown to be associated with more diverse phenotypes including mild epilepsy and autism without epilepsy. Furthermore, CDKL5 mutations were found in patients with Angelman-like phenotype. The severity of epilepsy associated with CDKL5 mutations was recently shown to correlate with the type of CDKL5 mutations and epilepsy was identified to involve three distinct sequential stages. Here, we describe the phenotype of a severe form of neurodevelopmental disease in a female patient with a de novo nonsense mutation of the CDKL5 gene c.175C > T (p.R59X) affecting the catalytic domain of CDKL5 protein. Mutations in the CDKL5 gene are less common in males and can be associated with a genomic deletion as found in our male patient with a deletion of 0.3 Mb at Xp22.13 including the CDKL5 gene. We review phenotypes associated with CDKL5 mutations and examine putative relationships between the clinical epilepsy phenotype and the type of the mutation in the CDKL5 gene. © 2010 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  15. c.376G>A mutation in WFS1 gene causes Wolfram syndrome without deafness.

    Science.gov (United States)

    Safarpour Lima, Behnam; Ghaedi, Hamid; Daftarian, Narsis; Ahmadieh, Hamid; Jamshidi, Javad; Khorrami, Mehdi; Noroozi, Rezvan; Sohrabifar, Nasim; Assarzadegan, Farhad; Hesami, Omid; Taghavi, Shaghayegh; Ahmadifard, Azadeh; Atakhorrami, Minoo; Rahimi-Aliabadi, Simin; Shahmohammadibeni, Neda; Alehabib, Elham; Andarva, Monavvar; Darvish, Hossein; Emamalizadeh, Babak

    2016-02-01

    Wolfram syndrome is one of the rare autosomal recessive, progressive, neurodegenerative disorders, characterized by diabetes mellitus and optic atrophy. Several other features are observed in patients including deafness, ataxia, and peripheral neuropathy. A gene called WFS1 is identified on chromosome 4p, responsible for Wolfram syndrome. We investigated a family consisted of parents and 8 children, which 5 of them have been diagnosed for Wolfram syndrome. WFS1 gene in all family members was sequenced for causative mutations. A mutation (c.376G>A, p.A126T) was found in all affected members in homozygous state and in both parents in heterozygous state. The bioinformatics analysis showed the deleterious effects of this nucleotide change on the structure and function of the protein product. As all of the patients in the family showed the homozygote mutation, and parents were both heterozygote, this mutation is probably the cause of the disease. We identified this mutation in homozygous state for the first time as Wolfram syndrome causation. We also showed that this mutation probably doesn't cause deafness in affected individuals. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Heterozygous ABCC8 mutations are a cause of MODY.

    Science.gov (United States)

    Bowman, P; Flanagan, S E; Edghill, E L; Damhuis, A; Shepherd, M H; Paisey, R; Hattersley, A T; Ellard, S

    2012-01-01

    The ABCC8 gene encodes the sulfonylurea receptor 1 (SUR1) subunit of the pancreatic beta cell ATP-sensitive potassium (K(ATP)) channel. Inactivating mutations cause congenital hyperinsulinism (CHI) and activating mutations cause transient neonatal diabetes (TNDM) or permanent neonatal diabetes (PNDM) that can usually be treated with sulfonylureas. Sulfonylurea sensitivity is also a feature of HNF1A and HNF4A MODY, but patients referred for genetic testing with clinical features of these types of diabetes do not always have mutations in the HNF1A/4A genes. Our aim was to establish whether mutations in the ABCC8 gene cause MODY that is responsive to sulfonylurea therapy. We sequenced the ABCC8 gene in 85 patients with a BMI MODY criteria, with two diagnosed after 25 years and one patient, who had no family history of diabetes, as a result of a proven de novo mutation. ABCC8 mutations can cause MODY in patients whose clinical features are similar to those with HNF1A/4A MODY. Therefore, sequencing of ABCC8 in addition to the known MODY genes should be considered if such features are present, to facilitate optimal clinical management of these patients.

  17. SKIV2L Mutations Cause Syndromic Diarrhea, or Trichohepatoenteric Syndrome

    Science.gov (United States)

    Fabre, Alexandre; Charroux, Bernard; Martinez-Vinson, Christine; Roquelaure, Bertrand; Odul, Egritas; Sayar, Ersin; Smith, Hilary; Colomb, Virginie; Andre, Nicolas; Hugot, Jean-Pierre; Goulet, Olivier; Lacoste, Caroline; Sarles, Jacques; Royet, Julien; Levy, Nicolas; Badens, Catherine

    2012-01-01

    Syndromic diarrhea (or trichohepatoenteric syndrome) is a rare congenital bowel disorder characterized by intractable diarrhea and woolly hair, and it has recently been associated with mutations in TTC37. Although databases report TTC37 as being the human ortholog of Ski3p, one of the yeast Ski-complex cofactors, this lead was not investigated in initial studies. The Ski complex is a multiprotein complex required for exosome-mediated RNA surveillance, including the regulation of normal mRNA and the decay of nonfunctional mRNA. Considering the fact that TTC37 is homologous to Ski3p, we explored a gene encoding another Ski-complex cofactor, SKIV2L, in six individuals presenting with typical syndromic diarrhea without variation in TTC37. We identified mutations in all six individuals. Our results show that mutations in genes encoding cofactors of the human Ski complex cause syndromic diarrhea, establishing a link between defects of the human exosome complex and a Mendelian disease. PMID:22444670

  18. IHH Gene Mutations Causing Short Stature With Nonspecific Skeletal Abnormalities and Response to Growth Hormone Therapy.

    Science.gov (United States)

    Vasques, Gabriela A; Funari, Mariana F A; Ferreira, Frederico M; Aza-Carmona, Miriam; Sentchordi-Montané, Lucia; Barraza-García, Jimena; Lerario, Antonio M; Yamamoto, Guilherme L; Naslavsky, Michel S; Duarte, Yeda A O; Bertola, Debora R; Heath, Karen E; Jorge, Alexander A L

    2018-02-01

    Genetic evaluation has been recognized as an important tool to elucidate the causes of growth disorders. To investigate the cause of short stature and to determine the phenotype of patients with IHH mutations, including the response to recombinant human growth hormone (rhGH) therapy. We studied 17 families with autosomal-dominant short stature by using whole exome sequencing and screened IHH defects in 290 patients with growth disorders. Molecular analyses were performed to evaluate the potential impact of N-terminal IHH variants. We identified 10 pathogenic or possibly pathogenic variants in IHH, an important regulator of endochondral ossification. Molecular analyses revealed a smaller potential energy of mutated IHH molecules. The allele frequency of rare, predicted to be deleterious IHH variants found in short-stature samples (1.6%) was higher than that observed in two control cohorts (0.017% and 0.08%; P IHH variants segregate with short stature in a dominant inheritance pattern. Affected individuals typically manifest mild disproportional short stature with a frequent finding of shortening of the middle phalanx of the fifth finger. None of them have classic features of brachydactyly type A1, which was previously associated with IHH mutations. Five patients heterozygous for IHH variants had a good response to rhGH therapy. The mean change in height standard deviation score in 1 year was 0.6. Our study demonstrated the association of pathogenic variants in IHH with short stature with nonspecific skeletal abnormalities and established a frequent cause of growth disorder, with a preliminary good response to rhGH. Copyright © 2017 Endocrine Society

  19. FATP4 missense and nonsense mutations cause similar features in Ichthyosis Prematurity Syndrome

    Directory of Open Access Journals (Sweden)

    Dahl Niklas

    2011-03-01

    Full Text Available Abstract Background Ichthyosis Prematurity Syndrome (IPS is an autosomal recessive disorder characterized by premature birth, non-scaly ichthyosis and atopic manifestations. The disease was recently shown to be caused by mutations in the gene encoding the fatty acid transport protein 4 (FATP4 and a specific reduction in the incorporation of very long chain fatty acids (VLCFA into cellular lipids. Findings We screened probands from five families segregating IPS for mutations in the FATP4 gene. Four probands were compound heterozygous for four different mutations of which three are novel. Four patients were heterozygous and one patient homozygous for the previously reported non-sense mutation p.C168X (c.504c > a. All patients had clinical characteristics of IPS and a similar clinical course. Conclusions Missense mutations and non-sense mutations in FATP4 are associated with similar clinical features suggesting that missense mutations have a severe impact on FATP4 function. The results broaden the mutational spectrum in FATP4 associated with IPS for molecular diagnosis of and further functional analysis of FATP4.

  20. Novel insertion mutation in a non-Jewish Caucasian type 1 Gaucher disease patient

    Energy Technology Data Exchange (ETDEWEB)

    Choy, F.Y.M.; Humphries, M.L. [Univ. of Victoria, British Columbia (Canada); Ferreira, P. [Univ. of Alberta, Edmonton (Canada)

    1997-01-20

    Gaucher disease is the most prevalent lysosomal storage disorder. It is autosomal recessive, resulting in lysosomal glucocerebrosidase deficiency. Three clinical forms of Gaucher disease have been described: type 1 (nonneuronopathic), type 2 (acute neuronopathic), and type 3 (subacute neuronopathic). We performed PCR-thermal cycle sequence analysis of glucocerebrosidase genomic DNA and identified a novel mutation in a non-Jewish type 1 Gaucher disease patient. It is a C insertion in exon 3 at cDNA nucleotide position 122 and genomic nucleotide position 1626. This mutation causes a frameshift and, subsequently, four of the five codons immediately downstream of the insertion were changed while the sixth was converted to a stop codon, resulting in premature termination of protein translation. The 122CC insertion abolishes a Cac81 restriction endonuclease cleavage site, allowing a convenient and reliable method for detection using RFLP analysis of PCR-amplified glucocerebrosidase genomic DNA. The mutation in the other Gaucher allele was found to be an A{r_arrow}G substitution at glucocerebrosidase cDNA nucleotide position 1226 that so far has only been reported among type 1 Gaucher disease patients. Since mutation 122CC causes a frameshift and early termination of protein translation, it most likely results in a meaningless transcript and subsequently no residual glucocerebrosidase enzyme activity. We speculate that mutation 122CC may result in a worse prognosis than mutations associated with partial activity. When present in the homozygous form, it could be a lethal allele similar to what has been postulated for the other known insertion mutation, 84GG. Our patient, who is a compound heterozygote 122CC/1226G, has moderately severe type 1 Gaucher disease. Her clinical response to Ceredase{reg_sign} therapy that began 31 months ago has been favorable, though incomplete. 30 refs., 3 figs., 2 tabs.

  1. Glycogen branching enzyme (GBE1) mutation causing equine glycogen storage disease IV.

    Science.gov (United States)

    Ward, Tara L; Valberg, Stephanie J; Adelson, David L; Abbey, Colette A; Binns, Matthew M; Mickelson, James R

    2004-07-01

    Comparative biochemical and histopathological evidence suggests that a deficiency in the glycogen branching enzyme, encoded by the GBE1 gene, is responsible for a recently identified recessive fatal fetal and neonatal glycogen storage disease (GSD) in American Quarter Horses termed GSD IV. We have now derived the complete GBE1 cDNA sequences for control horses and affected foals, and identified a C to A substitution at base 102 that results in a tyrosine (Y) to stop (X) mutation in codon 34 of exon 1. All 11 affected foals were homozygous for the X34 allele, their 11 available dams and sires were heterozygous, and all 16 control horses were homozygous for the Y34 allele. The previous findings of poorly branched glycogen, abnormal polysaccharide accumulation, lack of measurable GBE1 enzyme activity and immunodetectable GBE1 protein, coupled with the present observation of abundant GBE1 mRNA in affected foals, are all consistent with the nonsense mutation in the 699 amino acid GBE1 protein. The affected foal pedigrees have a common ancestor and contain prolific stallions that are likely carriers of the recessive X34 allele. Defining the molecular basis of equine GSD IV will allow for accurate DNA testing and the ability to prevent occurrence of this devastating disease affecting American Quarter Horses and related breeds.

  2. A familial case of achondrogenesis type II caused by a dominant COL2A1 mutation and "patchy" expression in the mosaic father.

    Science.gov (United States)

    Forzano, F; Lituania, M; Viassolo, A; Superti-Furga, V; Wildhardt, G; Zabel, B; Faravelli, F

    2007-12-01

    Achondrogenesis type II (ACG2) is the most severe disorder that can be produced by dominant mutations in COL2A1. We report on four pregnancies of an apparently healthy, nonconsanguineous young couple. The father had scoliosis as a child, and has slight body disproportion with short trunk. The first child was born at 32 weeks and died neonatally. In the second pregnancy, short limbs and fetal hygroma were noted on ultrasound at 17 weeks' gestation. Similar findings were observed in the third fetus. Clinical, radiological, and histological evaluation of the fetuses after termination of the pregnancies showed findings consistent with ACG2. Molecular analysis of genomic DNA extracted from amniotic cells of the second and third fetuses revealed heterozygosity for a 10370G > T missense mutation (G346V) in the COL2A1 gene. This mutation was also found in the father, as a mosaic. The couple had a fourth pregnancy, and at 11 weeks fetal hydrops with a septated cystic hygroma were obvious. DNA from CVS demonstrated the same COL2A1 mutation. (c) 2007 Wiley-Liss, Inc.

  3. A novel c.240_241insGG mutation in NDP gene in a family with Norrie disease.

    Science.gov (United States)

    Andarva, Monavvar; Jamshidi, Javad; Ghaedi, Hamid; Daftarian, Narsis; Emamalizadeh, Babak; Alehabib, Elham; Taghavi, Shaghyegh; Pouriran, Ramin; Darvish, Hossein

    2018-03-01

    Norrie disease (ND) is a rare, X-linked recessive disorder with the main characteristic of early childhood blindness. The aim of the present study was to identify the genetic cause of the disease and the phenotypic characteristics of the patients in an Iranian family with four affected males with ND. Norrie disease pseudoglioma (NDP) gene was sequenced and clinical examination was performed on patients. A GG dinucleotide insertion in exon 3 (c.240_241insGG) of NDP was detected in all patients. The mutation caused a frameshift and an early stop codon (p.Phe81Glyfs*23). A novel mutation was found in the NDP gene in the affected males of the family. As the mutation was absent in the normal male members of the family, it should be the genetic cause of the disease. © 2017 Optometry Australia.

  4. Primary ciliary dyskinesia-causing mutations in Amish and Mennonite communities.

    Science.gov (United States)

    Ferkol, Thomas W; Puffenberger, Erik G; Lie, Hauw; Helms, Cynthia; Strauss, Kevin A; Bowcock, Anne; Carson, John L; Hazucha, Milan; Morton, D Holmes; Patel, Anand C; Leigh, Margaret W; Knowles, Michael R; Zariwala, Maimoona A

    2013-08-01

    To determine whether individuals with primary ciliary dyskinesia (PCD) from unrelated Amish and Mennonite families harbor a single and unique founder mutation. Subjects from Amish and Mennonite communities in several states were enrolled in the study. All subjects were clinically characterized, and nasal nitric oxide levels were measured. Nasal epithelial scrapings were collected from several subjects for ciliary ultrastructural analyses. DNA was isolated from patients with PCD and their unaffected first- and second-degree relatives. Genome-wide homozygosity mapping, linkage analyses, targeted mutation analyses, and exome sequencing were performed. All subjects from Old-Order Amish communities from Pennsylvania were homozygous for a nonsense mutant DNAH5 allele, c.4348C>T (p.Q1450X). Two affected siblings from an unrelated Mennonite family in Arkansas were homozygous for the same nonsense DNAH5 mutation. Children with PCD from an Amish family from Wisconsin had biallelic DNAH5 mutations, c.4348C>T (p.Q1450X) and c.10815delT (p.P3606HfsX23), and mutations in other genes associated with PCD were also identified in this community. The Amish and Mennonite subjects from geographically dispersed and socially isolated communities had the same founder DNAH5 mutation, owing to the common heritage of these populations. However, disease-causing mutations in other PCD-associated genes were also found in affected individuals in these communities, illustrating the genetic heterogeneity in this consanguineous population. Copyright © 2013 Mosby, Inc. All rights reserved.

  5. Point mutation in the MITF gene causing Waardenburg syndrome type II in a three-generation Indian family.

    Science.gov (United States)

    Lalwani, A K; Attaie, A; Randolph, F T; Deshmukh, D; Wang, C; Mhatre, A; Wilcox, E

    1998-12-04

    Waardenburg syndrome (WS) is an autosomal-dominant neural crest cell disorder phenotypically characterized by hearing impairment and disturbance of pigmentation. A presence of dystopia canthorum is indicative of WS type 1, caused by loss of function mutation in the PAX3 gene. In contrast, type 2 WS (WS2) is characterized by normally placed medial canthi and is genetically heterogeneous; mutations in MITF (microphthalmia associated transcription factor) associated with WS2 have been identified in some but not all affected families. Here, we report on a three-generation Indian family with a point mutation in the MITF gene causing WS2. This mutation, initially reported in a Northern European family, creates a stop codon in exon 7 and is predicted to result in a truncated protein lacking the HLH-Zip or Zip structure necessary for normal interaction with its target DNA motif. Comparison of the phenotype between the two families demonstrates a significant difference in pigmentary disturbance of the eye. This family, with the first documented case of two unrelated WS2 families harboring identical mutations, provides additional evidence for the importance of genetic background on the clinical phenotype.

  6. Dominant Red Coat Color in Holstein Cattle Is Associated with a Missense Mutation in the Coatomer Protein Complex, Subunit Alpha (COPA Gene.

    Directory of Open Access Journals (Sweden)

    Ben Dorshorst

    Full Text Available Coat color in Holstein dairy cattle is primarily controlled by the melanocortin 1 receptor (MC1R gene, a central determinant of black (eumelanin vs. red/brown pheomelanin synthesis across animal species. The major MC1R alleles in Holsteins are Dominant Black (MC1RD and Recessive Red (MC1Re. A novel form of dominant red coat color was first observed in an animal born in 1980. The mutation underlying this phenotype was named Dominant Red and is epistatic to the constitutively activated MC1RD. Here we show that a missense mutation in the coatomer protein complex, subunit alpha (COPA, a gene with previously no known role in pigmentation synthesis, is completely associated with Dominant Red in Holstein dairy cattle. The mutation results in an arginine to cysteine substitution at an amino acid residue completely conserved across eukaryotes. Despite this high level of conservation we show that both heterozygotes and homozygotes are healthy and viable. Analysis of hair pigment composition shows that the Dominant Red phenotype is similar to the MC1R Recessive Red phenotype, although less effective at reducing eumelanin synthesis. RNA-seq data similarly show that Dominant Red animals achieve predominantly pheomelanin synthesis by downregulating genes normally required for eumelanin synthesis. COPA is a component of the coat protein I seven subunit complex that is involved with retrograde and cis-Golgi intracellular coated vesicle transport of both protein and RNA cargo. This suggests that Dominant Red may be caused by aberrant MC1R protein or mRNA trafficking within the highly compartmentalized melanocyte, mimicking the effect of the Recessive Red loss of function MC1R allele.

  7. Mutation in filamin A causes periventricular heterotopia, developmental regression, and West syndrome in males.

    Science.gov (United States)

    Masruha, Marcelo R; Caboclo, Luis O S F; Carrete, Henrique; Cendes, Iscia L; Rodrigues, Murilo G; Garzon, Eliana; Yacubian, Elza M T; Sakamoto, Américo C; Sheen, Volney; Harney, Megan; Neal, Jason; Hill, R Sean; Bodell, Adria; Walsh, Christopher; Vilanova, Luiz C P

    2006-01-01

    Familial periventricular heterotopia (PH) represents a disorder of neuronal migration resulting in multiple gray-matter nodules along the lateral ventricular walls. Prior studies have shown that mutations in the filamin A (FLNA) gene can cause PH through an X-linked dominant pattern. Heterozygotic female patients usually remain asymptomatic until the second or third decade of life, when they may have predominantly focal seizures, whereas hemizygotic male fetuses typically die in utero. Recent studies have also reported mutations in FLNA in male patients with PH who are cognitively normal. We describe PH in three male siblings with PH due to FLNA, severe developmental regression, and West syndrome. The study includes the three affected brothers and their parents. Video-EEG recordings and magnetic resonance image (MRI) scanning were performed on all individuals. Mutations for FLNA were detected by using polymerase chain reaction (PCR) on genomic DNA followed by single-stranded conformational polymorphism (SSCP) analysis or sequencing. Two of the siblings are monozygotic twins, and all had West syndrome with hypsarrhythmia on EEG. MRI of the brain revealed periventricular nodules of cerebral gray-matter intensity, typical for PH. Mutational analyses demonstrated a cytosine-to-thymidine missense mutation (c. C1286T), resulting in a threonine-to-methionine amino acid substitution in exon 9 of the FLNA gene. The association between PH and West syndrome, to our knowledge, has not been previously reported. Males with PH have been known to harbor FLNA mutations, although uniformly, they either show early lethality or survive and have a normal intellect. The current studies show that FLNA mutations can cause periventricular heterotopia, developmental regression, and West syndrome in male patients, suggesting that this type of FLNA mutation may contribute to severe neurologic deficits.

  8. A novel OPA1 mutation in a Chinese family with autosomal dominant optic atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Juanjuan; Yuan, Yimin; Lin, Bing; Feng, Hao; Li, Yan [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou 325027, Zhejiang (China); Dai, Xianning; Zhou, Huihui [Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou 325035, Zhejiang (China); Dong, Xujie [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou 325027, Zhejiang (China); Liu, Xiao-Ling, E-mail: lxl@mail.eye.ac.cn [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou 325027, Zhejiang (China); Guan, Min-Xin, E-mail: min-xin.guan@cchmc.org [Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou 325035, Zhejiang (China); Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang 310012 (China); Division of Human Genetics, Cincinnati Children' s Hospital Medical Center, OH 45229 (United States)

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer We report the characterization of a four-generation large Chinese family with ADOA. Black-Right-Pointing-Pointer We find a new heterozygous mutation c.C1198G in OPA1 gene which may be a novel pathogenic mutation in this pedigree. Black-Right-Pointing-Pointer We do not find any mitochondrial DNA mutations associated with optic atrophy. Black-Right-Pointing-Pointer Other factors may also contribute to the phenotypic variability of ADOA in this pedigree. -- Abstract: A large four-generation Chinese family with autosomal dominant optic atrophy (ADOA) was investigated in the present study. Eight of the family members were affected in this pedigree. The affected family members exhibited early-onset and progressive visual impairment, resulting in mild to profound loss of visual acuity. The average age-at-onset was 15.9 years. A new heterozygous mutation c.C1198G was identified by sequence analysis of the 12th exon of the OPA1 gene. This mutation resulted in a proline to alanine substitution at codon 400, which was located in an evolutionarily conserved region. This missense mutation in the GTPase domain was supposed to result in a loss of function for the encoded protein and act through a dominant negative effect. No other mutations associated with optic atrophy were found in our present study. The c.C1198G heterozygous mutation in the OPA1 gene may be a novel key pathogenic mutation in this pedigree with ADOA. Furthermore, additional nuclear modifier genes, environmental factors, and psychological factors may also contribute to the phenotypic variability of ADOA in this pedigree.

  9. Further evidence for P59L mutation in GJA3 associated with autosomal dominant congenital cataract

    Directory of Open Access Journals (Sweden)

    Li Wang

    2016-01-01

    Full Text Available Context: Congenital cataracts are one of the common eye disorders leading to visual impairment or blindness in children worldwide. We found a Chinese family with autosomal dominant pulverulent cataract. Aims: To identify the pathogenic gene mutation in a Chinese family with autosomal dominant inherited pulverulent cataract. Subjects and Methods: After obtained informed consent, detailed ophthalmic examinations were carried out; genomic DNAs were obtained from seven family members in a three-generation Chinese family with three affected. All exons of candidate genes were amplified by polymerase chain reaction and were sequenced performed by bidirectional sequencing. Results: By sequencing the encoding regions of the candidate genes, a missense mutation (c. 176C>T was detected in gap junction protein alpha 3 genes (GJA3, which resulted in the substitution of highly conserved proline by leucine at codon 59 (p.P59L. The mutation co-segregated with all patients and was absent in 100 normal Chinese controls. Conclusions: The study identified a missense mutation (c. 176C>T in GJA3 gene associated with autosomal dominant congenital pulverulent cataract in a Chinese family. It gave further evidence of phenotype heterogeneity for P59L mutation in GJA3 associated with congenital cataract.

  10. EARS2 mutations cause fatal neonatal lactic acidosis, recurrent hypoglycemia and agenesis of corpus callosum.

    Science.gov (United States)

    Danhauser, Katharina; Haack, Tobias B; Alhaddad, Bader; Melcher, Marlen; Seibt, Annette; Strom, Tim M; Meitinger, Thomas; Klee, Dirk; Mayatepek, Ertan; Prokisch, Holger; Distelmaier, Felix

    2016-06-01

    Mitochondrial aminoacyl tRNA synthetases are essential for organelle protein synthesis. Genetic defects affecting the function of these enzymes may cause pediatric mitochondrial disease. Here, we report on a child with fatal neonatal lactic acidosis and recurrent hypoglycemia caused by mutations in EARS2, encoding mitochondrial glutamyl-tRNA synthetase 2. Brain ultrasound revealed agenesis of corpus callosum. Studies on patient-derived skin fibroblasts showed severely decreased EARS2 protein levels, elevated reactive oxygen species (ROS) production, and altered mitochondrial morphology. Our report further illustrates the clinical spectrum of the severe neonatal-onset form of EARS2 mutations. Moreover, in this case the live-cell parameters appeared to be more sensitive to mitochondrial dysfunction compared to standard diagnostics, which indicates the potential relevance of fibroblast studies in children with mitochondrial diseases.

  11. Autosomal dominant frontometaphyseal dysplasia : Delineation of the clinical phenotype

    NARCIS (Netherlands)

    Wade, Emma M.; Jenkins, Zandra A.; Daniel, Philip B.; Morgan, Tim; Addor, Marie C.; Ades, Lesley C.; Bertola, Debora; Bohring, Axel; Carter, Erin; Cho, Tae-Joon; de Geus, Christa M.; Duba, Hans-Christoph; Fletcher, Elaine; Hadzsiev, Kinga; Hennekam, Raoul C. M.; Kim, Chong A.; Krakow, Deborah; Morava, Eva; Neuhann, Teresa; Sillence, David; Superti-Furga, Andrea; Veenstra-Knol, Hermine E.; Wieczorek, Dagmar; Wilson, Louise C.; Markie, David M.; Robertson, Stephen P.

    Frontometaphyseal dysplasia (FMD) is caused by gain-of-function mutations in the X-linked gene FLNA in approximately 50% of patients. Recently we characterized an autosomal dominant form of FMD (AD-FMD) caused by mutations in MAP3K7, which accounts for the condition in the majority of patients who

  12. Autosomal dominant frontometaphyseal dysplasia: Delineation of the clinical phenotype

    NARCIS (Netherlands)

    Wade, Emma M.; Jenkins, Zandra A.; Daniel, Philip B.; Morgan, Tim; Addor, Marie C.; Adés, Lesley C.; Bertola, Debora; Bohring, Axel; Carter, Erin; Cho, Tae-Joon; de Geus, Christa M.; Duba, Hans-Christoph; Fletcher, Elaine; Hadzsiev, Kinga; Hennekam, Raoul C. M.; Kim, Chong A.; Krakow, Deborah; Morava, Eva; Neuhann, Teresa; Sillence, David; Superti-Furga, Andrea; Veenstra-Knol, Hermine E.; Wieczorek, Dagmar; Wilson, Louise C.; Markie, David M.; Robertson, Stephen P.

    2017-01-01

    Frontometaphyseal dysplasia (FMD) is caused by gain-of-function mutations in the X-linked gene FLNA in approximately 50% of patients. Recently we characterized an autosomal dominant form of FMD (AD-FMD) caused by mutations in MAP3K7, which accounts for the condition in the majority of patients who

  13. Splice, insertion-deletion and nonsense mutations that perturb the phenylalanine hydroxylase transcript cause phenylketonuria in India.

    Science.gov (United States)

    Bashyam, Murali D; Chaudhary, Ajay K; Kiran, Manjari; Nagarajaram, Hampapathalu A; Devi, Radha Rama; Ranganath, Prajnya; Dalal, Ashwin; Bashyam, Leena; Gupta, Neerja; Kabra, Madhulika; Muranjan, Mamta; Puri, Ratna D; Verma, Ishwar C; Nampoothiri, Sheela; Kadandale, Jayarama S

    2014-03-01

    Phenylketonuria (PKU) is an autosomal recessive metabolic disorder caused by mutational inactivation of the phenylalanine hydroxylase (PAH) gene. Missense mutations are the most common PAH mutation type detected in PKU patients worldwide. We performed PAH mutation analysis in 27 suspected Indian PKU families (including 7 from our previous study) followed by structure and function analysis of specific missense and splice/insertion-deletion/nonsense mutations, respectively. Of the 27 families, disease-causing mutations were detected in 25. A total of 20 different mutations were identified of which 7 "unique" mutations accounted for 13 of 25 mutation positive families. The unique mutations detected exclusively in Indian PKU patients included three recurrent mutations detected in three families each. The 20 mutations included only 5 missense mutations in addition to 5 splice, 4 each nonsense and insertion-deletion mutations, a silent variant in coding region and a 3'UTR mutation. One deletion and two nonsense mutations were characterized to confirm significant reduction in mutant transcript levels possibly through activation of nonsense mediated decay. All missense mutations affected conserved amino acid residues and sequence and structure analysis suggested significant perturbations in the enzyme activity of respective mutant proteins. This is probably the first report of identification of a significantly low proportion of missense PAH mutations from PKU families and together with the presence of a high proportion of splice, insertion-deletion, and nonsense mutations, points to a unique PAH mutation profile in Indian PKU patients. © 2013 Wiley Periodicals, Inc.

  14. Disease-associated mutations that alter the RNA structural ensemble.

    Directory of Open Access Journals (Sweden)

    Matthew Halvorsen

    2010-08-01

    Full Text Available Genome-wide association studies (GWAS often identify disease-associated mutations in intergenic and non-coding regions of the genome. Given the high percentage of the human genome that is transcribed, we postulate that for some observed associations the disease phenotype is caused by a structural rearrangement in a regulatory region of the RNA transcript. To identify such mutations, we have performed a genome-wide analysis of all known disease-associated Single Nucleotide Polymorphisms (SNPs from the Human Gene Mutation Database (HGMD that map to the untranslated regions (UTRs of a gene. Rather than using minimum free energy approaches (e.g. mFold, we use a partition function calculation that takes into consideration the ensemble of possible RNA conformations for a given sequence. We identified in the human genome disease-associated SNPs that significantly alter the global conformation of the UTR to which they map. For six disease-states (Hyperferritinemia Cataract Syndrome, beta-Thalassemia, Cartilage-Hair Hypoplasia, Retinoblastoma, Chronic Obstructive Pulmonary Disease (COPD, and Hypertension, we identified multiple SNPs in UTRs that alter the mRNA structural ensemble of the associated genes. Using a Boltzmann sampling procedure for sub-optimal RNA structures, we are able to characterize and visualize the nature of the conformational changes induced by the disease-associated mutations in the structural ensemble. We observe in several cases (specifically the 5' UTRs of FTL and RB1 SNP-induced conformational changes analogous to those observed in bacterial regulatory Riboswitches when specific ligands bind. We propose that the UTR and SNP combinations we identify constitute a "RiboSNitch," that is a regulatory RNA in which a specific SNP has a structural consequence that results in a disease phenotype. Our SNPfold algorithm can help identify RiboSNitches by leveraging GWAS data and an analysis of the mRNA structural ensemble.

  15. A novel mouse model carrying a human cytoplasmic dynein mutation shows motor behavior deficits consistent with Charcot-Marie-Tooth type 2O disease.

    Science.gov (United States)

    Sabblah, Thywill T; Nandini, Swaran; Ledray, Aaron P; Pasos, Julio; Calderon, Jami L Conley; Love, Rachal; King, Linda E; King, Stephen J

    2018-01-29

    Charcot-Marie-Tooth disease (CMT) is a peripheral neuromuscular disorder in which axonal degeneration causes progressive loss of motor and sensory nerve function. The loss of motor nerve function leads to distal muscle weakness and atrophy, resulting in gait problems and difficulties with walking, running, and balance. A mutation in the cytoplasmic dynein heavy chain (DHC) gene was discovered to cause an autosomal dominant form of the disease designated Charcot-Marie-Tooth type 2 O disease (CMT2O) in 2011. The mutation is a single amino acid change of histidine into arginine at amino acid 306 (H306R) in DHC. In order to understand the onset and progression of CMT2, we generated a knock-in mouse carrying the corresponding CMT2O mutation (H304R/+). We examined H304R/+ mouse cohorts in a 12-month longitudinal study of grip strength, tail suspension, and rotarod assays. H304R/+ mice displayed distal muscle weakness and loss of motor coordination phenotypes consistent with those of individuals with CMT2. Analysis of the gastrocnemius of H304R/+ male mice showed prominent defects in neuromuscular junction (NMJ) morphology including reduced size, branching, and complexity. Based on these results, the H304R/+ mouse will be an important model for uncovering functions of dynein in complex organisms, especially related to CMT onset and progression.

  16. Parkinson's disease-related LRRK2 G2019S mutation results from independent mutational events in humans.

    Science.gov (United States)

    Lesage, Suzanne; Patin, Etienne; Condroyer, Christel; Leutenegger, Anne-Louise; Lohmann, Ebba; Giladi, Nir; Bar-Shira, Anat; Belarbi, Soraya; Hecham, Nassima; Pollak, Pierre; Ouvrard-Hernandez, Anne-Marie; Bardien, Soraya; Carr, Jonathan; Benhassine, Traki; Tomiyama, Hiroyuki; Pirkevi, Caroline; Hamadouche, Tarik; Cazeneuve, Cécile; Basak, A Nazli; Hattori, Nobutaka; Dürr, Alexandra; Tazir, Meriem; Orr-Urtreger, Avi; Quintana-Murci, Lluis; Brice, Alexis

    2010-05-15

    Mutations in the leucine-rich-repeat kinase 2 (LRRK2) gene have been identified in families with autosomal dominant Parkinson's disease (PD) and in sporadic cases; the G2019S mutation is the single most frequent. Intriguingly, the frequency of this mutation in PD patients varies greatly among ethnic groups and geographic origins: it is present at <0.1% in East Asia, approximately 2% in European-descent patients and can reach frequencies of up to 15-40% in PD Ashkenazi Jews and North African Arabs. To ascertain the evolutionary dynamics of the G2019S mutation in different populations, we genotyped 74 markers spanning a 16 Mb genomic region around G2019S, in 191 individuals carrying the mutation from 126 families of different origins. Sixty-seven families were of North-African Arab origin, 18 were of North/Western European descent, 37 were of Jewish origin, mostly from Eastern Europe, one was from Japan, one from Turkey and two were of mixed origins. We found the G2019S mutation on three different haplotypes. Network analyses of the three carrier haplotypes showed that G2019S arose independently at least twice in humans. In addition, the population distribution of the intra-allelic diversity of the most widespread carrier haplotype, together with estimations of the age of G2019S determined by two different methods, suggests that one of the founding G2019S mutational events occurred in the Near East at least 4000 years ago.

  17. Structural consequences of amino acid substitutions causing Tay-Sachs disease.

    Science.gov (United States)

    Ohno, Kazuki; Saito, Seiji; Sugawara, Kanako; Sakuraba, Hitoshi

    2008-08-01

    To determine the structural changes in the alpha-subunit of beta-hexosaminidase due to amino acid substitutions causing Tay-Sachs disease, we built structural models of mutant alpha-subunits resulting from 33 missense mutations (24 infantile and 9 late-onset), and analyzed the influence of each amino acid replacement on the structure by calculating the number of atoms affected and determining the solvent-accessible surface area of the corresponding amino acid residue in the wild-type alpha-subunit. In the infantile Tay-Sachs group, the number of atoms influenced by a mutation was generally larger than that in the late-onset Tay-Sachs group in both the main chain and the side chain, and residues associated with the mutations found in the infantile Tay-Sachs group tended to be less solvent-accessible than those in the late-onset Tay-Sachs group. Furthermore, color imaging determined the distribution and degree of the structural changes caused by representative amino acid substitutions, and that there were also differences between the infantile and late-onset Tay-Sachs disease groups. Structural study is useful for elucidating the basis of Tay-Sachs disease.

  18. Mutated PET117 causes complex IV deficiency and is associated with neurodevelopmental regression and medulla oblongata lesions.

    Science.gov (United States)

    Renkema, G H; Visser, G; Baertling, F; Wintjes, L T; Wolters, V M; van Montfrans, J; de Kort, G A P; Nikkels, P G J; van Hasselt, P M; van der Crabben, S N; Rodenburg, R J T

    2017-06-01

    The genetic basis of the many progressive, multi systemic, mitochondrial diseases that cause a lack of cellular ATP production is heterogeneous, with defects found both in the mitochondrial genome as well as in the nuclear genome. Many different mutations have been found in the genes encoding subunits of the enzyme complexes of the oxidative phosphorylation system. In addition, mutations in genes encoding proteins involved in the assembly of these complexes are known to cause mitochondrial disorders. Here we describe two sisters with a mitochondrial disease characterized by lesions in the medulla oblongata, as demonstrated by brain magnetic resonance imaging, and an isolated complex IV deficiency and reduced levels of individual complex IV subunits. Whole exome sequencing revealed a homozygous nonsense mutation resulting in a premature stop codon in the gene encoding Pet117, a small protein that has previously been predicted to be a complex IV assembly factor. PET117 has not been identified as a mitochondrial disease gene before. Lentiviral complementation of patient fibroblasts with wild-type PET117 restored the complex IV deficiency, proving that the gene defect is responsible for the complex IV deficiency in the patients, and indicating a pivotal role of this protein in the proper functioning of complex IV. Although previous studies had suggested a possible role of this protein in the insertion of copper into complex IV, studies in patient fibroblasts could not confirm this. This case presentation thus implicates mutations in PET117 as a novel cause of mitochondrial disease.

  19. A de novo nonsense PDGFB mutation causing idiopathic basal ganglia calcification with laryngeal dystonia.

    Science.gov (United States)

    Nicolas, Gaël; Jacquin, Agnès; Thauvin-Robinet, Christel; Rovelet-Lecrux, Anne; Rouaud, Olivier; Pottier, Cyril; Aubriot-Lorton, Marie-Hélène; Rousseau, Stéphane; Wallon, David; Duvillard, Christian; Béjot, Yannick; Frébourg, Thierry; Giroud, Maurice; Campion, Dominique; Hannequin, Didier

    2014-10-01

    Idiopathic basal ganglia calcification (IBGC) is characterized by brain calcification and a wide variety of neurologic and psychiatric symptoms. In families with autosomal dominant inheritance, three causative genes have been identified: SLC20A2, PDGFRB, and, very recently, PDGFB. Whereas in clinical practice sporadic presentation of IBGC is frequent, well-documented reports of true sporadic occurrence are rare. We report the case of a 20-year-old woman who presented laryngeal dystonia revealing IBGC. Her healthy parents' CT scans were both normal. We identified in the proband a new nonsense mutation in exon 4 of PDGFB, c.439C>T (p.Gln147*), which was absent from the parents' DNA. This mutation may result in a loss-of-function of PDGF-B, which has been shown to cause IBGC in humans and to disrupt the blood-brain barrier in mice, resulting in brain calcification. The c.439C>T mutation is located between two previously reported nonsense mutations, c.433C>T (p.Gln145*) and c.445C>T (p.Arg149*), on a region that could be a hot spot for de novo mutations. We present the first full demonstration of the de novo occurrence of an IBGC-causative mutation in a sporadic case.

  20. The myopathy-causing mutation DNM2-S619L leads to defective tubulation in vitro and in developing zebrafish

    Directory of Open Access Journals (Sweden)

    Elizabeth M. Gibbs

    2014-01-01

    Full Text Available DNM2 is a ubiquitously expressed GTPase that regulates multiple subcellular processes. Mutations in DNM2 are a common cause of centronuclear myopathy, a severe disorder characterized by altered skeletal muscle structure and function. The precise mechanisms underlying disease-associated DNM2 mutations are unresolved. We examined the common DNM2-S619L mutation using both in vitro and in vivo approaches. Expression of DNM2-S619L in zebrafish led to the accumulation of aberrant vesicular structures and to defective excitation-contraction coupling. Expression of DNM2-S619L in COS7 cells resulted in defective BIN1-dependent tubule formation. These data suggest that DNM2-S619L causes disease, in part, by interfering with membrane tubulation.

  1. Mitochondrial recessive ataxia syndrome mimicking dominant spinocerebellar ataxia.

    Science.gov (United States)

    Palin, Eino J H; Hakonen, Anna H; Korpela, Mari; Paetau, Anders; Suomalainen, Anu

    2012-04-15

    We studied the genetic background of a family with SCA, showing dominant inheritance and anticipation. Muscle histology, POLG1 gene sequence, neuropathology and mitochondrial DNA analyses in a mother and a son showed typical findings for a mitochondrial disorder, and both were shown to be homozygous for a recessive POLG1 mutation, underlying mitochondrial recessive ataxia syndrome, MIRAS. The healthy father was a heterozygous carrier for the same mutation. Recessively inherited MIRAS mutations should be tested in dominantly inherited SCAs cases of unknown cause, as the high carrier frequency of MIRAS may result in two independent introductions of the mutant allele in the family and thereby mimic dominant inheritance. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Human SOD1 ALS Mutations in a Drosophila Knock-In Model Cause Severe Phenotypes and Reveal Dosage-Sensitive Gain- and Loss-of-Function Components.

    Science.gov (United States)

    Şahin, Aslı; Held, Aaron; Bredvik, Kirsten; Major, Paxton; Achilli, Toni-Marie; Kerson, Abigail G; Wharton, Kristi; Stilwell, Geoff; Reenan, Robert

    2017-02-01

    Amyotrophic Lateral Sclerosis (ALS) is the most common adult-onset motor neuron disease and familial forms can be caused by numerous dominant mutations of the copper-zinc superoxide dismutase 1 (SOD1) gene. Substantial efforts have been invested in studying SOD1-ALS transgenic animal models; yet, the molecular mechanisms by which ALS-mutant SOD1 protein acquires toxicity are not well understood. ALS-like phenotypes in animal models are highly dependent on transgene dosage. Thus, issues of whether the ALS-like phenotypes of these models stem from overexpression of mutant alleles or from aspects of the SOD1 mutation itself are not easily deconvolved. To address concerns about levels of mutant SOD1 in disease pathogenesis, we have genetically engineered four human ALS-causing SOD1 point mutations (G37R, H48R, H71Y, and G85R) into the endogenous locus of Drosophila SOD1 (dsod) via ends-out homologous recombination and analyzed the resulting molecular, biochemical, and behavioral phenotypes. Contrary to previous transgenic models, we have recapitulated ALS-like phenotypes without overexpression of the mutant protein. Drosophila carrying homozygous mutations rendering SOD1 protein enzymatically inactive (G85R, H48R, and H71Y) exhibited neurodegeneration, locomotor deficits, and shortened life span. The mutation retaining enzymatic activity (G37R) was phenotypically indistinguishable from controls. While the observed mutant dsod phenotypes were recessive, a gain-of-function component was uncovered through dosage studies and comparisons with age-matched dsod null animals, which failed to show severe locomotor defects or nerve degeneration. We conclude that the Drosophila knock-in model captures important aspects of human SOD1-based ALS and provides a powerful and useful tool for further genetic studies. Copyright © 2017 by the Genetics Society of America.

  3. Gain-of-function SOS1 mutations cause a distinctive form of noonansyndrome

    Energy Technology Data Exchange (ETDEWEB)

    Tartaglia, Marco; Pennacchio, Len A.; Zhao, Chen; Yadav, KamleshK.; Fodale, Valentina; Sarkozy, Anna; Pandit, Bhaswati; Oishi, Kimihiko; Martinelli, Simone; Schackwitz, Wendy; Ustaszewska, Anna; Martin, Joes; Bristow, James; Carta, Claudio; Lepri, Francesca; Neri, Cinzia; Vasta,Isabella; Gibson, Kate; Curry, Cynthia J.; Lopez Siguero, Juan Pedro; Digilio, Maria Cristina; Zampino, Giuseppe; Dallapiccola, Bruno; Bar-Sagi, Dafna; Gelb, Brude D.

    2006-09-01

    Noonan syndrome (NS) is a developmental disordercharacterized by short stature, facial dysmorphia, congenital heartdefects and skeletal anomalies1. Increased RAS-mitogenactivated proteinkinase (MAPK) signaling due to PTPN11 and KRAS mutations cause 50 percentof NS2-6. Here, we report that 22 of 129 NS patients without PTPN11 orKRAS mutation (17 percent) have missense mutations in SOS1, which encodesa RAS-specific guanine nucleotide exchange factor (GEF). SOS1 mutationscluster at residues implicated in the maintenance of SOS1 in itsautoinhibited form and ectopic expression of two NS-associated mutantsinduced enhanced RAS activation. The phenotype associated with SOS1defects is distinctive, although within NS spectrum, with a highprevalence of ectodermal abnormalities but generally normal developmentand linear growth. Our findings implicate for the first timegain-of-function mutations in a RAS GEF in inherited disease and define anew mechanism by which upregulation of the RAS pathway can profoundlychange human development.

  4. XLID-Causing Mutations and Associated Genes Challenged in Light of Data From Large-Scale Human Exome Sequencing

    OpenAIRE

    Piton, Amélie; Redin, Claire; Mandel, Jean-Louis

    2013-01-01

    Because of the unbalanced sex ratio (1.3–1.4 to 1) observed in intellectual disability (ID) and the identification of large ID-affected families showing X-linked segregation, much attention has been focused on the genetics of X-linked ID (XLID). Mutations causing monogenic XLID have now been reported in over 100 genes, most of which are commonly included in XLID diagnostic gene panels. Nonetheless, the boundary between true mutations and rare non-disease-causing variants often remains elusive...

  5. WDR73 missense mutation causes infantile onset intellectual disability and cerebellar hypoplasia in a consanguineous family.

    Science.gov (United States)

    Jiang, Chen; Gai, Nan; Zou, Yongyi; Zheng, Yu; Ma, Ruiyu; Wei, Xianda; Liang, Desheng; Wu, Lingqian

    2017-01-01

    Galloway-Mowat syndrome (GMS) is a very rare autosomal-recessive disorder characterized by nephrotic syndrome associated with microcephaly, and various central nervous system abnormalities, mostly cerebral hypoplasia or cerebellar atrophy, intellectual disability and neural-migration defects. WDR73 is the only gene known to cause GMS, and has never been implicated in other disease. Here we present a Chinese consanguineous family with infantile onset intellectual disability and cerebellar hypoplasia but no microcephaly. Whole exome sequencing identified a WDR73 p.W371G missense mutation. The mutation is confirmed to be segregated in this family by Sanger sequencing according to a recessive inheritance pattern. It is predicted to be deleterious by multiple algorithms and affect highly conserved site. Structural modeling revealed conformational differences between the wild type protein and the p.W371G protein. Real-time PCR and Western blotting revealed altered mRNA and protein levels in mutated samples. Our study indicates the novel WDR73 p.W371G missense mutation causes infantile onset intellectual disability and cerebellar hypoplasia in recessive mode of inheritance. Our findings imply that microcephaly is a variable phenotype in WDR73-related disease, suggest WDR73 to be a candidate gene of severe intellectual disability and cerebellar hypoplasia, and expand the molecular spectrum of WDR73-related disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Dominant lethal mutations research in mice fed with irradiated black beams

    International Nuclear Information System (INIS)

    Andrade, Z.P.

    1982-01-01

    To evaluate the potential mutagenic effects of irradiated black beans (Phaseolus vulgaris) with conservation purpose, in germ cells of mice, dominant lethal assay were employed. Three groups of albino swiss male mice (S W-55) were fed with a normal ration, or unirradiated or irradiated (0,2; 0,5; 1; 5; 10; 15 e 20 KGy) test diets for eight weeks. After the feeding period the males were mated with groups of untreated females mice for four consecutive weeks. Numbers of pregnancy rates females were observed. The females were autopsied at mid-term pregnancy for evaluation of dominant lethal mutations. (author)

  7. A novel TNNI2 mutation causes Freeman-Sheldon syndrome in a Chinese family with an affected adult with only facial contractures.

    Science.gov (United States)

    Li, Xuefu; Jiang, Miao; Han, Weitian; Zhao, Ning; Liu, Wei; Sui, Yu; Lu, Yongping; Li, Jianxin

    2013-09-25

    Distal arthrogryposes (DAs), a clinically and genetically heterogeneous group of disorders characterized by congenital contractures with predominant involvement of the hands and feet, can be classified into at least 12 different forms. These autosomal dominant disorders are of variable expressivity and reduced penetrance. Mutations in sarcomeric protein genes, including troponin I2 (TNNI2), troponin T3 (TNNT3), tropomyosin 2 (TPM2), embryonic myosin heavy chain 3 (MYH3), and myosin binding protein C1 (MYBPC1), have been identified in distal arthrogryposis type 1 (DA1, MIM 108120), type 2B (DA2B, MIM 601680) and type 2A (DA2A)/Freeman-Sheldon syndrome (FSS, MIM 193700). However, mutations causing FSS have only been reported in MYH3. Herein we describe a Chinese DA family whose members meet classical strict criteria for FSS, as well as one member of the family who has isolated facial features consistent with FSS. No disease-causing mutation was found in MYH3. Segregation of microsatellite markers flanking the TNNI2 and TNNT3 genes at 11p15.5 was compatible with linkage. Subsequent sequencing of TNNI2 revealed a novel mutation, c.A493T (p.I165F), located in the C-terminal region, which is critical for proper protein function. This mutation was found to cosegregate with the FSS phenotype in this family, and assessment using SIFT and PolyPhen-2 predicted a damaging effect. To the best of our knowledge, we report the first TNNI2 mutation in classical FSS and describe an atypical adult FSS case with only facial contractures resulting from somatic mosaicism. We infer that DA1, DA2B and FSS represent a phenotypic continuum of the same disorder and provide further genetic evidence for this hypothesis. © 2013.

  8. RHO Mutations (p.W126L and p.A346P in Two Japanese Families with Autosomal Dominant Retinitis Pigmentosa

    Directory of Open Access Journals (Sweden)

    Satoshi Katagiri

    2014-01-01

    Full Text Available Purpose. To investigate genetic and clinical features of patients with rhodopsin (RHO mutations in two Japanese families with autosomal dominant retinitis pigmentosa (adRP. Methods. Whole-exome sequence analysis was performed in ten adRP families. Identified RHO mutations for the cosegregation analysis were confirmed by Sanger sequencing. Ophthalmic examinations were performed to evaluate the RP phenotypes. The impact of the RHO mutation on the rhodopsin conformation was examined by molecular modeling analysis. Results. In two adRP families, we identified two RHO mutations (c.377G>T (p.W126L and c.1036G>C (p.A346P, one of which was novel. Complete cosegregation was confirmed for each mutation exhibiting the RP phenotype in both families. Molecular modeling predicted that the novel mutation (p.W126L might impair rhodopsin function by affecting its conformational transition in the light-adapted form. Clinical phenotypes showed that patients with p.W126L exhibited sector RP, whereas patients with p.A346P exhibited classic RP. Conclusions. Our findings demonstrated that the novel mutation (p.W126L may be associated with the phenotype of sector RP. Identification of RHO mutations is a very useful tool for predicting disease severity and providing precise genetic counseling.

  9. Induction of dominant lethal mutations by gamma irradiation of Gallus domesticus spermatozoa

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, J; Grom, A; Csuka, J; Kindlova, L [Poultry Research Institute, Ivanka pri Dunaji (Czechoslovakia)

    1977-01-01

    Mixed semen of Gallus domesticus cocks was gamma irradiated in vitro with exposures of 500, 1000, 2000, and 3000 R at the exposure rate of 5.86 Rs/sup -1/. After the irradiation the semen was applied to experimental and control layer hens, the embryonic mortality in F/sub 1/ was observed, the total number of incubated eggs was 3344. Irradiation with 500 R had a favourable influence on embryonic vitality, the exposures 1000, 2000, and 3000 R resulted in increased embryonic mortality, for 2100 R a 50% mortality of offspring was found. Induced dominant lethality was manifest during embryonic and oviduct development. The frequency of induced dominant lethality for exposures used was 19.2, 9.9, 48.3, and 69.1%, the values of mutation rate were 0.087, 0.104, 0.659, and 1.174. The mutation rate had a linear course, the value of the lethal hit per gamete for 1 R was 1.04x10/sup -4/.

  10. Induction of dominant lethal mutations by gamma irradiation of Gallus domesticus spermatozoa

    International Nuclear Information System (INIS)

    Baumgartner, J.; Grom, A.; Csuka, J.; Kindlova, L.

    1977-01-01

    Mixed semen of Gallus domesticus cocks was gamma irradiated in vitro with exposures of 500, 1000, 2000 and 3000 R at the exposure rate of 5.86 Rs -1 . After the irradiation the semen was applied to experimental and control layer hens, the embryonic mortality in F 1 was observed, the total number of incubated eggs was 3344. Irradiation with 500 R had a favourable influence on embryonic vitality, the exposures 1000, 2000 and 3000 R resulted in increased embryonic mortality, for 2100 R a 50% mortality of offspring was found. Induced dominant lethality was manifest during embryonic and oviduct development. The frequency of induced dominant lethality for exposures used was 19.2, 9.9, 48.3, and 69.1%, the values of mutation rate were 0.087, 0.104, 0.659, and 1.174. The mutation rate had linear course, the value of the lethal hit per gamete for 1 R was 1.04x10 -4 . (author)

  11. Mutations in plasmalemma vesicle-associated protein cause severe syndromic protein-losing enteropathy.

    Science.gov (United States)

    Broekaert, Ilse Julia; Becker, Kerstin; Gottschalk, Ingo; Körber, Friederike; Dötsch, Jörg; Thiele, Holger; Altmüller, Janine; Nürnberg, Peter; Hünseler, Christoph; Cirak, Sebahattin

    2018-04-16

    Protein-losing enteropathy (PLE) is characterised by gastrointestinal protein leakage due to loss of mucosal integrity or lymphatic abnormalities. PLE can manifest as congenital diarrhoea and should be differentiated from other congenital diarrhoeal disorders. Primary PLEs are genetically heterogeneous and the underlying genetic defects are currently emerging. We report an infant with fatal PLE for whom we aimed to uncover the underlying pathogenic mutation. We performed whole exome sequencing (WES) for the index patient. Variants were classified based on the American College of Medical Genetics and Genomics guidelines. WES results and our detailed clinical description of the patient were compared with the literature. We discovered a novel homozygous stop mutation (c.988C>T, p.Q330*) in the Plasmalemma Vesicle-Associated Protein ( PLVAP ) gene in a newborn with fatal PLE, facial dysmorphism, and renal, ocular and cardiac anomalies. The Q330* mutation is predicted to result in complete loss of PLVAP protein expression leading to deletion of the diaphragms of endothelial fenestrae, resulting in plasma protein extravasation and PLE. Recently, another single homozygous stop mutation in PLVAP causing lethal PLE in an infant was reported. Our findings validate PLVAP mutations as a cause of syndromic PLE. Prenatal anomalies, severe PLE and syndromic features may guide the diagnosis of this rare disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. Methylation-mediated deamination of 5-methylcytosine appears to give rise to mutations causing human inherited disease in CpNpG trinucleotides, as well as in CpG dinucleotides

    Directory of Open Access Journals (Sweden)

    Cooper David N

    2010-08-01

    Full Text Available Abstract The cytosine-guanine (CpG dinucleotide has long been known to be a hotspot for pathological mutation in the human genome. This hypermutability is related to its role as the major site of cytosine methylation with the attendant risk of spontaneous deamination of 5-methylcytosine (5mC to yield thymine. Cytosine methylation, however, also occurs in the context of CpNpG sites in the human genome, an unsurprising finding since the intrinsic symmetry of CpNpG renders it capable of supporting a semi-conservative model of replication of the methylation pattern. Recently, it has become clear that significant DNA methylation occurs in a CpHpG context (where H = A, C or T in a variety of human somatic tissues. If we assume that CpHpG methylation also occurs in the germline, and that 5mC deamination can occur within a CpHpG context, then we might surmise that methylated CpHpG sites could also constitute mutation hotspots causing human genetic disease. To test this postulate, 54,625 missense and nonsense mutations from 2,113 genes causing inherited disease were retrieved from the Human Gene Mutation Database http://www.hgmd.org. Some 18.2 per cent of these pathological lesions were found to be C → T and G → A transitions located in CpG dinucleotides (compatible with a model of methylation-mediated deamination of 5mC, an approximately ten-fold higher proportion than would have been expected by chance alone. The corresponding proportion for the CpHpG trinucleotide was 9.9 per cent, an approximately two-fold higher proportion than would have been expected by chance. We therefore estimate that ~5 per cent of missense/nonsense mutations causing human inherited disease may be attributable to methylation-mediated deamination of 5mC within a CpHpG context.

  13. NBAS mutations cause a multisystem disorder involving bone, connective tissue, liver, immune system, and retina

    NARCIS (Netherlands)

    Segarra, Nuria Garcia; Ballhausen, Diana; Crawford, Heather; Perreau, Matthieu; Campos-Xavier, Belinda; van Spaendonck-Zwarts, Karin; Vermeer, Cees; Russo, Michel; Zambelli, Pierre-Yves; Stevenson, Brian; Royer-Bertrand, Beryl; Rivolta, Carlo; Candotti, Fabio; Unger, Sheila; Munier, Francis L.; Superti-Furga, Andrea; Bonafé, Luisa

    2015-01-01

    We report two unrelated patients with a multisystem disease involving liver, eye, immune system, connective tissue, and bone, caused by biallelic mutations in the neuroblastoma amplified sequence (NBAS) gene. Both presented as infants with recurrent episodes triggered by fever with vomiting,

  14. Massively Parallel Sequencing of a Chinese Family with DFNA9 Identified a Novel Missense Mutation in the LCCL Domain of COCH

    Directory of Open Access Journals (Sweden)

    Xiaodong Gu

    2016-01-01

    Full Text Available DFNA9 is a late-onset, progressive, autosomal dominantly inherited sensorineural hearing loss with vestibular dysfunction, which is caused by mutations in the COCH (coagulation factor C homology gene. In this study, we investigated a Chinese family segregating autosomal dominant nonsyndromic sensorineural hearing loss. We identified a missense mutation c.T275A p.V92D in the LCCL domain of COCH cosegregating with the disease and absent in 100 normal hearing controls. This mutation leads to substitution of the hydrophobic valine to an acidic amino acid aspartic acid. Our data enriched the mutation spectrum of DFNA9 and implied the importance for mutation screening of COCH in age related hearing loss with vestibular dysfunctions.

  15. The Glucocerobrosidase E326K Variant Predisposes to Parkinson’s Disease, But Does Not Cause Gaucher’s Disease

    Science.gov (United States)

    Angeli, Aikaterini V.; Shoai, Maryam; Deas, Emma; Houlden, Henry; Mehta, Atul; Hughes, Derralynn; Cox, Timothy M.; Deegan, Patrick; Schapira, Anthony H.; Lees, Andrew J.; Limousin, Patricia; Jarman, Paul R.; Bhatia, Kailash P.; Wood, Nicholas W.; Hardy, John; Foltynie, Tom

    2014-01-01

    Background Heterozygous loss-of-function mutations in the acid beta-glucocerebrosidase (GBA1) gene, responsible for the recessive lysosomal storage disorder, Gaucher’s disease (GD), are the strongest known risk factor for Parkinson’s disease (PD). Our aim was to assess the contribution of GBA1 mutations in a series of early-onset PD. Methods One hundred and eighty-five PD patients (with an onset age of ≤50) and 283 age-matched controls were screened for GBA1 mutations by Sanger sequencing. Results We show that the frequency of GBA1 mutations is much higher in this patient series than in typical late-onset patient cohorts. Furthermore, our results reveal that the most prevalent PD-associated GBA1 mutation is E326K, a variant that does not, when homozygous, cause GD. Conclusions Our results confirm recent reports that the mutation, E326K, predisposes to PD and suggest that, in addition to reduced GBA1 activity, other molecular mechanisms may contribute to the development of the disease. PMID:23225227

  16. CAV3 mutations causing exercise intolerance, myalgia and rhabdomyolysis: Expanding the phenotypic spectrum of caveolinopathies.

    Science.gov (United States)

    Scalco, Renata Siciliani; Gardiner, Alice R; Pitceathly, Robert D S; Hilton-Jones, David; Schapira, Anthony H; Turner, Chris; Parton, Matt; Desikan, Mahalekshmi; Barresi, Rita; Marsh, Julie; Manzur, Adnan Y; Childs, Anne-Marie; Feng, Lucy; Murphy, Elaine; Lamont, Phillipa J; Ravenscroft, Gianina; Wallefeld, William; Davis, Mark R; Laing, Nigel G; Holton, Janice L; Fialho, Doreen; Bushby, Kate; Hanna, Michael G; Phadke, Rahul; Jungbluth, Heinz; Houlden, Henry; Quinlivan, Ros

    2016-08-01

    Rhabdomyolysis is often due to a combination of environmental trigger(s) and genetic predisposition; however, the underlying genetic cause remains elusive in many cases. Mutations in CAV3 lead to various neuromuscular phenotypes with partial overlap, including limb girdle muscular dystrophy type 1C (LGMD1C), rippling muscle disease, distal myopathy and isolated hyperCKemia. Here we present a series of eight patients from seven families presenting with exercise intolerance and rhabdomyolysis caused by mutations in CAV3 diagnosed by next generation sequencing (NGS) (n = 6). Symptoms included myalgia (n = 7), exercise intolerance (n = 7) and episodes of rhabdomyolysis (n = 2). Percussion-induced rapid muscle contractions (PIRCs) were seen in five out of six patients examined. A previously reported heterozygous mutation in CAV3 (p.T78M) and three novel variants (p.V14I, p.F41S, p.F54V) were identified. Caveolin-3 immunolabeling in muscle was normal in 3/4 patients; however, immunoblotting showed more than 50% reduction of caveolin-3 in five patients compared with controls. This case series demonstrates that exercise intolerance, myalgia and rhabdomyolysis may be caused by CAV3 mutations and broadens the phenotypic spectrum of caveolinopathies. In our series, immunoblotting was a more sensitive method to detect reduced caveolin-3 levels than immunohistochemistry in skeletal muscle. Patients presenting with muscle pain, exercise intolerance and rhabdomyolysis should be routinely tested for PIRCs as this may be an important clinical clue for caveolinopathies, even in the absence of other "typical" features. The use of NGS may expand current knowledge concerning inherited diseases, and unexpected/atypical phenotypes may be attributed to well-known human disease genes. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Changes in causes of death and risk of cancer in Danish patients with autosomal dominant polycystic kidney didease and end-stage renal disease

    DEFF Research Database (Denmark)

    Ørskov, Bjarne; Sørensen, Vibeke Rømming; Feldt-Rasmussen, Bo Friis

    2012-01-01

    Abstract Background. With the improved prognosis in patients with autosomal dominant polycystic kidney disease (ADPKD), causes of death and the risk of cancer might have changed. This was investigated in a Danish population with ADPKD and end-stage renal disease (ESRD) between 1 January 1993 and 31...... December 2008. Methods. Data were retrieved from three Danish national registries and a total of 823 patients were identified of which 431 had died during the study period. The 16 years were divided into two 8-year periods and the causes of death were divided into six categories: cancer, cardiovascular...... (HR) 0.65, P = 0.008] and deaths from cerebrovascular disease decreased by 69% (HR 0.31, P = 0.0003) from the first to the second time period. There were no significant changes between the time periods in death from cancer, infection, other or unknown. From the first to the second 8-year interval...

  18. Mutations in noncoding regions of GJB1 are a major cause of X-linked CMT

    Science.gov (United States)

    Tomaselli, Pedro J.; Rossor, Alexander M.; Horga, Alejandro; Jaunmuktane, Zane; Carr, Aisling; Saveri, Paola; Piscosquito, Giuseppe; Pareyson, Davide; Laura, Matilde; Blake, Julian C.; Poh, Roy; Polke, James; Houlden, Henry

    2017-01-01

    Objective: To determine the prevalence and clinical and genetic characteristics of patients with X-linked Charcot-Marie-Tooth disease (CMT) due to mutations in noncoding regions of the gap junction β-1 gene (GJB1). Methods: Mutations were identified by bidirectional Sanger sequence analysis of the 595 bases of the upstream promoter region, and 25 bases of the 3′ untranslated region (UTR) sequence in patients in whom mutations in the coding region had been excluded. Clinical and neurophysiologic data were retrospectively collected. Results: Five mutations were detected in 25 individuals from 10 kindreds representing 11.4% of all cases of CMTX1 diagnosed in our neurogenetics laboratory between 1996 and 2016. Four pathogenic mutations, c.-17G>A, c.-17+1G>T, c.-103C>T, and c.-146-90_146-89insT were detected in the 5′UTR. A novel mutation, c.*15C>T, was detected in the 3′ UTR of GJB1 in 2 unrelated families with CMTX1 and is the first pathogenic mutation in the 3′UTR of any myelin-associated CMT gene. Mutations segregated with the phenotype, were at sites predicted to be pathogenic, and were not present in the normal population. Conclusions: Mutations in noncoding DNA are a major cause of CMTX1 and highlight the importance of mutations in noncoding DNA in human disease. Next-generation sequencing platforms for use in inherited neuropathy should therefore include coverage of these regions. PMID:28283593

  19. Waardenburg syndrome: a rare cause of inherited neuropathy due to SOX10 mutation.

    Science.gov (United States)

    Bogdanova-Mihaylova, Petya; Alexander, Michael D; Murphy, Raymond P J; Murphy, Sinéad M

    2017-09-01

    Waardenburg syndrome (WS) is a rare disorder comprising sensorineural deafness and pigmentation abnormalities. Four distinct subtypes are defined based on the presence or absence of additional symptoms. Mutations in six genes have been described in WS. SOX10 mutations are usually associated with a more severe phenotype of WS with peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, and Hirschsprung disease. Here we report a 32-year-old man with a novel heterozygous missense variant in SOX10 gene, who presented with congenital deafness, Hirschsprung disease, iris heterochromia, foot deformity, and intermediate conduction velocity length-dependent sensorimotor neuropathy. This case highlights that the presence of other non-neuropathic features in a patient with presumed hereditary neuropathy should alert the clinician to possible atypical rare causes. © 2017 Peripheral Nerve Society.

  20. Frontal Tasks and Behavior in Rigid or Tremor-Dominant Parkinson Disease.

    Science.gov (United States)

    Moretti, Rita; Milner, Vera; Caruso, Paola; Gazzin, Silvia; Rumiati, Raffaella

    2017-08-01

    Parkinson disease (PD) is not an unambiguous entity, and there is a general consensus for the statement that an akinetic-rigid dominant type of presentation has a worse prognosis, in the follow-up. The aim of our study was to examine the differences in frontal tasks and behavior, in 2 PD naive groups: the rigid and the tremor-dominant types of presentation, according to motor scores. Our study has showed some important differences in frontal tasks and in behavior, performing more apathy, aggressiveness, and irritability in the rigid type, and more depression and anxiety in the tremor-dominant type. The former group causes the caregiver more distress and has a very rapid disease progression. It can be argued that rigid type PD presentation needs specific dedicated cares and more strong clinical attention.

  1. A case report of novel mutation in PRF1 gene, which causes familial autosomal recessive hemophagocytic lymphohistiocytosis.

    Science.gov (United States)

    Bordbar, Mohammad Reza; Modarresi, Farzaneh; Farazi Fard, Mohammad Ali; Dastsooz, Hassan; Shakib Azad, Nader; Faghihi, Mohammad Ali

    2017-05-03

    Hemophagocytic Lymphohistiocytosis (HLH) is a life-threatening immunodeficiency and multi-organ disease that affects people of all ages and ethnic groups. Common symptoms and signs of this disease are high fever, hepatosplenomegaly, and cytopenias. Familial form of HLH disease, which is an autosomal recessive hematological disorder is due to disease-causing mutations in several genes essential for NK and T-cell granule-mediated cytotoxic function. For an effective cytotoxic response from cytotoxic T lymphocyte or NK cell encountering an infected cell or tumor cell, different processes are required, including trafficking, docking, priming, membrane fusion, and entry of cytotoxic granules into the target cell leading to apoptosis. Therefore, genes involved in these steps play important roles in the pathogenesis of HLH disease which include PRF1, UNC13D (MUNC13-4), STX11, and STXBP2 (MUNC18-2). Here, we report a novel missense mutation in an 8-year-old boy suffered from hepatosplenomegaly, hepatitis, epilepsy and pancytopenia. The patient was born to a first-cousin parents with no previous documented disease in his parents. To identify mutated gene in the proband, Whole Exome Sequencing (WES) utilizing next generation sequencing was used on an Illumina HiSeq 2000 platform on DNA sample from the patient. Results showed a novel deleterious homozygous missense mutation in PRF1 gene (NM_001083116: exon3: c. 1120 T > G, p.W374G) in the patient and then using Sanger sequencing it was confirmed in the proband and his parents. Since his parents were heterozygous for the identified mutation, autosomal recessive pattern of inheritance was confirmed in the family. Our study identified a rare new pathogenic missense mutation in PRF1 gene in patient with HLH disease and it is the first report of mutation in PRF1 in Iranian patients with this disease.

  2. Mutations in PYCR1 cause cutis laxa with progeroid features.

    Science.gov (United States)

    Reversade, Bruno; Escande-Beillard, Nathalie; Dimopoulou, Aikaterini; Fischer, Björn; Chng, Serene C; Li, Yun; Shboul, Mohammad; Tham, Puay-Yoke; Kayserili, Hülya; Al-Gazali, Lihadh; Shahwan, Monzer; Brancati, Francesco; Lee, Hane; O'Connor, Brian D; Schmidt-von Kegler, Mareen; Merriman, Barry; Nelson, Stanley F; Masri, Amira; Alkazaleh, Fawaz; Guerra, Deanna; Ferrari, Paola; Nanda, Arti; Rajab, Anna; Markie, David; Gray, Mary; Nelson, John; Grix, Arthur; Sommer, Annemarie; Savarirayan, Ravi; Janecke, Andreas R; Steichen, Elisabeth; Sillence, David; Hausser, Ingrid; Budde, Birgit; Nürnberg, Gudrun; Nürnberg, Peter; Seemann, Petra; Kunkel, Désirée; Zambruno, Giovanna; Dallapiccola, Bruno; Schuelke, Markus; Robertson, Stephen; Hamamy, Hanan; Wollnik, Bernd; Van Maldergem, Lionel; Mundlos, Stefan; Kornak, Uwe

    2009-09-01

    Autosomal recessive cutis laxa (ARCL) describes a group of syndromal disorders that are often associated with a progeroid appearance, lax and wrinkled skin, osteopenia and mental retardation. Homozygosity mapping in several kindreds with ARCL identified a candidate region on chromosome 17q25. By high-throughput sequencing of the entire candidate region, we detected disease-causing mutations in the gene PYCR1. We found that the gene product, an enzyme involved in proline metabolism, localizes to mitochondria. Altered mitochondrial morphology, membrane potential and increased apoptosis rate upon oxidative stress were evident in fibroblasts from affected individuals. Knockdown of the orthologous genes in Xenopus and zebrafish led to epidermal hypoplasia and blistering that was accompanied by a massive increase of apoptosis. Our findings link mutations in PYCR1 to altered mitochondrial function and progeroid changes in connective tissues.

  3. The FTD-like syndrome causing TREM2 T66M mutation impairs microglia function, brain perfusion, and glucose metabolism.

    Science.gov (United States)

    Kleinberger, Gernot; Brendel, Matthias; Mracsko, Eva; Wefers, Benedikt; Groeneweg, Linda; Xiang, Xianyuan; Focke, Carola; Deußing, Maximilian; Suárez-Calvet, Marc; Mazaheri, Fargol; Parhizkar, Samira; Pettkus, Nadine; Wurst, Wolfgang; Feederle, Regina; Bartenstein, Peter; Mueggler, Thomas; Arzberger, Thomas; Knuesel, Irene; Rominger, Axel; Haass, Christian

    2017-07-03

    Genetic variants in the triggering receptor expressed on myeloid cells 2 (TREM2) increase the risk for several neurodegenerative diseases including Alzheimer's disease and frontotemporal dementia (FTD). Homozygous TREM2 missense mutations, such as p.T66M, lead to the FTD-like syndrome, but how they cause pathology is unknown. Using CRISPR/Cas9 genome editing, we generated a knock-in mouse model for the disease-associated Trem2 p.T66M mutation. Consistent with a loss-of-function mutation, we observe an intracellular accumulation of immature mutant Trem2 and reduced generation of soluble Trem2 similar to patients with the homozygous p.T66M mutation. Trem2 p.T66M knock-in mice show delayed resolution of inflammation upon in vivo lipopolysaccharide stimulation and cultured macrophages display significantly reduced phagocytic activity. Immunohistochemistry together with in vivo TSPO small animal positron emission tomography (μPET) demonstrates an age-dependent reduction in microglial activity. Surprisingly, perfusion magnetic resonance imaging and FDG-μPET imaging reveal a significant reduction in cerebral blood flow and brain glucose metabolism. Thus, we demonstrate that a TREM2 loss-of-function mutation causes brain-wide metabolic alterations pointing toward a possible function of microglia in regulating brain glucose metabolism. © 2017 The Authors.

  4. SLC3A1 and SLC7A9 mutations in autosomal recessive or dominant canine cystinuria: a new classification system.

    Science.gov (United States)

    Brons, A-K; Henthorn, P S; Raj, K; Fitzgerald, C A; Liu, J; Sewell, A C; Giger, U

    2013-01-01

    Cystinuria, one of the first recognized inborn errors of metabolism, has been reported in many dog breeds. To determine urinary cystine concentrations, inheritance, and mutations in the SLC3A1 and SLC7A9 genes associated with cystinuria in 3 breeds. Mixed and purebred Labrador Retrievers (n = 6), Australian Cattle Dogs (6), Miniature Pinschers (4), and 1 mixed breed dog with cystine urolithiasis, relatives and control dogs. Urinary cystinuria and aminoaciduria was assessed and exons of the SLC3A1 and SLC7A9 genes were sequenced from genomic DNA. In each breed, male and female dogs, independent of neuter status, were found to form calculi. A frameshift mutation in SLC3A1 (c.350delG) resulting in a premature stop codon was identified in autosomal-recessive (AR) cystinuria in Labrador Retrievers and mixed breed dogs. A 6 bp deletion (c.1095_1100del) removing 2 threonines in SLC3A1 was found in autosomal-dominant (AD) cystinuria with a more severe phenotype in homozygous than in heterozygous Australian Cattle Dogs. A missense mutation in SLC7A9 (c.964G>A) was discovered in AD cystinuria in Miniature Pinschers with only heterozygous affected dogs observed to date. Breed-specific DNA tests were developed, but the prevalence of each mutation remains unknown. These studies describe the first AD inheritance and the first putative SLC7A9 mutation to cause cystinuria in dogs and expand our understanding of this phenotypically and genetically heterogeneous disease, leading to a new classification system for canine cystinuria and better therapeutic management and genetic control in these breeds. Copyright © 2013 by the American College of Veterinary Internal Medicine.

  5. Hematologically important mutations: The autosomal recessive forms of chronic granulomatous disease (second update)

    NARCIS (Netherlands)

    Roos, Dirk; Kuhns, Douglas B.; Maddalena, Anne; Bustamante, Jacinta; Kannengiesser, Caroline; de Boer, Martin; van Leeuwen, Karin; Köker, M. Yavuz; Wolach, Baruch; Roesler, Joachim; Malech, Harry L.; Holland, Steven M.; Gallin, John I.; Stasia, Marie-José

    2010-01-01

    Chronic granulomatous Disease (CGD) is an immunodeficiency disorder affecting about 1 in 250,000 individuals. The disease is caused by mutations in the genes encoding the components of the leukocyte NADPH oxidase. This enzyme produces superoxide, which is essential in the process of intracellular

  6. Mutations in the evolutionarily highly conserved KEOPS complex genes cause nephrotic syndrome with microcephaly

    Science.gov (United States)

    Braun, Daniela A.; Rao, Jia; Mollet, Geraldine; Schapiro, David; Daugeron, Marie-Claire; Tan, Weizhen; Gribouval, Olivier; Boyer, Olivia; Revy, Patrick; Jobst-Schwan, Tilman; Schmidt, Johanna Magdalena; Lawson, Jennifer A.; Schanze, Denny; Ashraf, Shazia; Boddaert, Nathalie; Collinet, Bruno; Martin, Gaëlle; Liger, Dominique; Lovric, Svjetlana; Furlano, Monica; Guerrera, I. Chiara; Sanchez-Ferras, Oraly; Menten, Björn; Vergult, Sarah; De Rocker, Nina; Airik, Merlin; Hermle, Tobias; Shril, Shirlee; Widmeier, Eugen; Gee, Heon Yung; Choi, Won-Il; Sadowski, Carolin E.; Pabst, Werner L.; Warejko, Jillian; Daga, Ankana; LeBerre, Tamara Basta; Matejas, Verena; Behnam, Babak; Beeson, Brendan; Begtrup, Amber; Bruce, Malcolm; Ch'ng, Gaik-Siew; Lin, Shuan-Pei; Chang, Jui-Hsing; Chen, Chao-Huei; Cho, Megan T.; Gipson, Patrick E.; Hsu, Chyong-Hsin; Kari, Jameela A.; Ke, Yu-Yuan; Kiraly-Borri, Cathy; Lai, Wai-ming; Lemyre, Emmanuelle; Littlejohn, Rebecca Okasha; Masri, Amira; Moghtaderi, Mastaneh; Nakamura, Kazuyuki; Praet, Marleen; Prasad, Chitra; Prytula, Agnieszka; Roeder, Elizabeth; Rump, Patrick; Schnur, Rhonda E.; Shiihara, Takashi; Sinha, Manish; Soliman, Neveen A; Soulami, Kenza; Sweetser, David A.; Tsai, Wen-Hui; Tsai, Jeng-Daw; Vester, Udo; Viskochil, David H.; Vatanavicharn, Nithiwat; Waxler, Jessica L.; Wolf, Matthias T.F.; Wong, Sik-Nin; Poduri, Annapurna; Truglio, Gessica; Mane, Shrikant; Lifton, Richard P.; Bouchard, Maxime; Kannu, Peter; Chitayat, David; Magen, Daniella; Calleweart, Bert; van Tilbeurgh, Herman; Zenker, Martin; Antignac, Corinne; Hildebrandt, Friedhelm

    2018-01-01

    Galloway-Mowat syndrome (GAMOS) is a severe autosomal-recessive disease characterized by the combination of early-onset steroid-resistant nephrotic syndrome (SRNS) and microcephaly with brain anomalies. To date, mutations of WDR73 are the only known monogenic cause of GAMOS and in most affected individuals the molecular diagnosis remains elusive. We here identify recessive mutations of OSGEP, TP53RK, TPRKB, or LAGE3, encoding the 4 subunits of the KEOPS complex in 33 individuals of 30 families with GAMOS. CRISPR/Cas9 knockout in zebrafish and mice recapitulates the human phenotype of microcephaly and results in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibits cell proliferation, which human mutations fail to rescue, and knockdown of either gene activates DNA damage response signaling and induces apoptosis. OSGEP and TP53RK molecularly interact and co-localize with the actin-regulating ARP2/3 complex. Furthermore, knockdown of OSGEP and TP53RK induces defects of the actin cytoskeleton and reduces migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identify 4 novel monogenic causes of GAMOS, describe the first link between KEOPS function and human disease, and delineate potential pathogenic mechanisms. PMID:28805828

  7. Missense variants in plakophilin-2 in arrhythmogenic right ventricular cardiomyopathy patients--disease-causing or innocent bystanders?

    Science.gov (United States)

    Christensen, Alex Hørby; Benn, Marianne; Tybjaerg-Hansen, Anne; Haunso, Stig; Svendsen, Jesper Hastrup

    2010-01-01

    Mutations in genes encoding desmosomal proteins have been linked to arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D). We hypothesized that a Scandinavian ARVC/D population would have a different spectrum of plakophilin-2 (PKP2) mutations and that some of the reported missense mutations may not be pathogenic. We screened 53 unrelated patients fulfilling Task Force criteria for ARVC/D for mutations in PKP2 by direct sequencing. Seven different mutations were identified: two insertion/deletions (E329fsX352, P401fsX406), 1 splice site (2146-2A>T), 1 non-sense (R79X) and 4 missense mutations (Q62K in 2 patients, G489R, G673V) of undeterminable pathogeneity. None of these mutations was present in 650 controls. Five of the mutations were novel. Seven patients carried reported missense mutations (D26N, S140F, V587I); however, these mutations were identified in our healthy controls, although at a lower frequency. Evaluation of all reported missense mutations in PKP2 showed unclear pathogeneity of several reported mutations. Fifteen percent of Danish ARVC/D patients carried PKP2 mutations. Our finding of reported disease-causing mutations at a low frequency among healthy controls suggests that these variants are disease modifying but not directly disease causing. We recommend conservative interpretation of missense variants in PKP2, functional characterization and large-scale sequencing to clarify normal variation in the gene.

  8. Mutations in the ELA2 gene encoding neutrophil elastase are present in most patients with sporadic severe congenital neutropenia but only in some patients with the familial form of the disease.

    Science.gov (United States)

    Ancliff, P J; Gale, R E; Liesner, R; Hann, I M; Linch, D C

    2001-11-01

    Severe congenital neutropenia (SCN) was originally described as an autosomal recessive disorder. Subsequently, autosomal dominant and sporadic forms of the disease have been recognized. All forms are manifest by persistent severe neutropenia and recurrent bacterial infection. In contrast, cyclical hematopoiesis is characterized by periodic neutropenia inter-spaced with (near) normal neutrophil counts. Recently, linkage analysis on 13 affected pedigrees identified chromosome 19p13.3 as the likely position for mutations in cyclical hematopoiesis. Heterozygous mutations in the ELA2 gene encoding neutrophil elastase were detected in all families studied. Further work also demonstrated mutations in ELA2 in sporadic and autosomal dominant SCN. However, all mutations described to date are heterozygous and thus appear to act in a dominant fashion, which is inconsistent with an autosomal recessive disease. Therefore, the current study investigated whether mutations in ELA2 could account for the disease phenotype in classical autosomal recessive SCN and in the sporadic and autosomal dominant types. All 5 exons of ELA2 and their flanking introns were studied in 18 patients (3 autosomal recessive, 5 autosomal dominant [from 3 kindreds], and 10 sporadic) using direct automated sequencing. No mutations were found in the autosomal recessive families. A point mutation was identified in 1 of 3 autosomal dominant families, and a base substitution was identified in 8 of 10 patients with the sporadic form, though 1 was subsequently shown to be a low-frequency polymorphism. These results suggest that mutations in ELA2 are not responsible for classical autosomal recessive Kostmann syndrome but provide further evidence for the role of ELA2 in SCN.

  9. Identification of novel mutations in the α-galactosidase A gene in patients with Fabry disease: pitfalls of mutation analyses in patients with low α-galactosidase A activity.

    Science.gov (United States)

    Yoshimitsu, Makoto; Higuchi, Koji; Miyata, Masaaki; Devine, Sean; Mattman, Andre; Sirrs, Sandra; Medin, Jeffrey A; Tei, Chuwa; Takenaka, Toshihiro

    2011-05-01

    Fabry disease is an X-linked lysosomal storage disorder caused by mutations of the α-galactosidase A (GLA) gene, and the disease is a relatively prevalent cause of left ventricular hypertrophy followed by conduction abnormalities and arrhythmias. Mutation analysis of the GLA gene is a valuable tool for accurate diagnosis of affected families. In this study, we carried out molecular studies of 10 unrelated families diagnosed with Fabry disease. Genetic analysis of the GLA gene using conventional genomic sequencing was performed in 9 hemizygous males and 6 heterozygous females. In patients with no mutations in coding DNA sequence, multiplex ligation-dependent probe amplification (MLPA) and/or cDNA sequencing were performed. We identified a novel exon 2 deletion (IVS1_IVS2) in a heterozygous female by MLPA, which was undetectable by conventional sequencing methods. In addition, the g.9331G>A mutation that has previously been found only in patients with cardiac Fabry disease was found in 3 unrelated, newly-diagnosed, cardiac Fabry patients by sequencing GLA genomic DNA and cDNA. Two other novel mutations, g.8319A>G and 832delA were also found in addition to 4 previously reported mutations (R112C, C142Y, M296I, and G373D) in 6 other families. We could identify GLA gene mutations in all hemizygotes and heterozygotes from 10 families with Fabry disease. Mutations in 4 out of 10 families could not be identified by classical genomic analysis, which focuses on exons and the flanking region. Instead, these data suggest that MLPA analysis and cDNA sequence should be considered in genetic testing surveys of patients with Fabry disease. Copyright © 2011 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  10. A novel COL4A3 mutation causes autosomal-recessive Alport syndrome in a large Turkish family.

    Science.gov (United States)

    Uzak, Asli Subasioglu; Tokgoz, Bulent; Dundar, Munis; Tekin, Mustafa

    2013-03-01

    Alport syndrome (AS) is a genetically heterogeneous disorder that is characterized by hematuria, progressive renal failure typically resulting in end-stage renal disease, sensorineural hearing loss, and variable ocular abnormalities. Only 15% of cases with AS are autosomal recessive and are caused by mutations in the COL4A3 or COL4A4 genes, encoding type IV collagen. Clinical data in a large consanguineous family with four affected members were reviewed, and genomic DNA was extracted. For mapping, 15 microsatellite markers flanking COL4A3, COL4A4, and COL4A5 in 16 family members were typed. For mutation screening, all coding exons of COL4A3 were polymerase chain reaction- amplified and Sanger-sequenced from genomic DNA. The disease locus was mapped to chromosome 2q36.3, where COL4A3 and COL4A4 reside. Sanger sequencing revealed a novel mis-sense mutation (c.2T>C; p.M1T) in exon 1 of COL4A3. The identified nucleotide change was not found in 100 healthy ethnicity-matched controls via Sanger sequencing. We present a large consanguineous Turkish family with AS that was found to have a COL4A3 mutation as the cause of the disease. Although the relationship between the various genotypes and phenotypes in AS has not been fully elucidated, detailed clinical and molecular analyses are helpful for providing data to be used in genetic counseling. It is important to identify new mutations to clarify their clinical importance, to assess the prognosis of the disease, and to avoid renal biopsy for final diagnosis.

  11. Genetic Analysis of Three Dominant Female-Sterile Mutations Located on the X Chromosome of DROSOPHILA MELANOGASTER

    OpenAIRE

    Busson, D.; Gans, M.; Komitopoulou, K.; Masson, M.

    1983-01-01

    Three dominant female-sterile mutations were isolated following ethyl methanesulfonate (EMS) mutagenesis. Females heterozygous for two of these mutations show atrophy of the ovaries and produce no eggs (ovo D1) or few eggs (ovoD2); females heterozygous for the third mutation, ovoD3, lay flaccid eggs. All three mutations are germ line-dependent and map to the cytological region 4D-E on the X chromosome; they represent a single allelic series. Two doses of the wild-type allele restore fertility...

  12. The estimation of risks from the induction of recessive mutations after exposure to ionising radiation

    International Nuclear Information System (INIS)

    Searle, A.G.; Edwards, J.H.

    1986-01-01

    Induced recessive mutations can cause harm by (1) partnership with a defective allele already established in the population; (2) partnership with another recessive mutation induced at the same locus; (3) the formation of homozygous descendants, that is, identify by descent; and (4) heterozygous effects. Calculations based on a combination of data from observations on human populations and from mouse experiments suggest that an extra genetically significant dose of 1 cGy X or γ irradiation received by each parent in a stable population with a million liveborn offspring would induce up to 1200 extra recessive mutations. From partnership effects, about one extra case of recessive disease would be expected in the following 10 generations. Homozygosity resulting from identity by descent could not normally occur until the fourth generation after exposure but, on certain assumptions, about ten extra cases of recessive disease would be expected from this cause by the tenth generation. In the same period, about 250 recessive alleles would be eliminated in heterozygotes given 2.5% heterozygous disadvantage. These deleterious heterozygous effects should not be combined with those of dominants, as has been done in some previous risk estimates. It is considered unlikely that many radiation induced recessives would show heterozygous advantage. Certain dominants should be excluded from calculations of mutational risk because they are unlikely to be maintained by mutation. (author)

  13. A functional alternative splicing mutation in AIRE gene causes autoimmune polyendocrine syndrome type 1.

    Directory of Open Access Journals (Sweden)

    Junyu Zhang

    Full Text Available Autoimmune polyendocrine syndrome type 1 (APS-1 is a rare autosomal recessive disease defined by the presence of two of the three conditions: mucocutaneous candidiasis, hypoparathyroidism, and Addison's disease. Loss-of-function mutations of the autoimmune regulator (AIRE gene have been linked to APS-1. Here we report mutational analysis and functional characterization of an AIRE mutation in a consanguineous Chinese family with APS-1. All exons of the AIRE gene and adjacent exon-intron sequences were amplified by PCR and subsequently sequenced. We identified a homozygous missense AIRE mutation c.463G>A (p.Gly155Ser in two siblings with different clinical features of APS-1. In silico splice-site prediction and minigene analysis were carried out to study the potential pathological consequence. Minigene splicing analysis and subsequent cDNA sequencing revealed that the AIRE mutation potentially compromised the recognition of the splice donor of intron 3, causing alternative pre-mRNA splicing by intron 3 retention. Furthermore, the aberrant AIRE transcript was identified in a heterozygous carrier of the c.463G>A mutation. The aberrant intron 3-retaining transcript generated a truncated protein (p.G155fsX203 containing the first 154 AIRE amino acids and followed by 48 aberrant amino acids. Therefore, our study represents the first functional characterization of the alternatively spliced AIRE mutation that may explain the pathogenetic role in APS-1.

  14. Axonal neuropathy with optic atrophy is caused by mutations in mitofusin 2

    NARCIS (Netherlands)

    Züchner, Stephan; de Jonghe, Peter; Jordanova, Albena; Claeys, Kristl G.; Guergueltcheva, Velina; Cherninkova, Sylvia; Hamilton, Steven R.; van Stavern, Greg; Krajewski, Karen M.; Stajich, Jeffery; Tournev, Ivajlo; Verhoeven, Kristien; Langerhorst, Christine T.; de Visser, Marianne; Baas, Frank; Bird, Thomas; Timmerman, Vincent; Shy, Michael; Vance, Jeffery M.

    2006-01-01

    OBJECTIVE: Charcot-Marie-Tooth (CMT) neuropathy with visual impairment due to optic atrophy has been designated as hereditary motor and sensory neuropathy type VI (HMSN VI). Reports of affected families have indicated autosomal dominant and recessive forms, but the genetic cause of this disease has

  15. Genome instability in Alzheimer disease

    DEFF Research Database (Denmark)

    Hou, Yujun; Song, Hyundong; Croteau, Deborah L

    2017-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. Autosomal dominant, familial AD (fAD) is very rare and caused by mutations in amyloid precursor protein (APP), presenilin-1 (PSEN-1), and presenilin-2 (PSEN-2) genes. The pathogenesis...

  16. Transcranial sonography and functional imaging in glucocerebrosidase mutation Parkinson disease.

    Science.gov (United States)

    Barrett, M J; Hagenah, J; Dhawan, V; Peng, S; Stanley, K; Raymond, D; Deik, A; Gross, S J; Schreiber-Agus, N; Mirelman, A; Marder, K; Ozelius, L J; Eidelberg, D; Bressman, S B; Saunders-Pullman, R

    2013-02-01

    Heterozygous glucocerebrosidase (GBA) mutations are the leading genetic risk factor for Parkinson disease, yet imaging correlates, particularly transcranial sonography, have not been extensively described. To determine whether GBA mutation heterozygotes with Parkinson disease demonstrate hyperechogenicity of the substantia nigra, transcranial sonography was performed in Ashkenazi Jewish Parkinson disease subjects, tested for the eight most common Gaucher disease mutations and the LRRK2 G2019S mutation, and in controls. [(18)F]-fluorodeoxyglucose or [(18)F]-fluorodopa positron emission tomography is also reported from a subset of Parkinson disease subjects with heterozygous GBA mutations. Parkinson disease subjects with heterozygous GBA mutations (n = 23) had a greater median maximal area of substantia nigral echogenicity compared to controls (n = 34, aSNmax = 0.30 vs. 0.18, p = 0.007). There was no difference in median maximal area of nigral echogenicity between Parkinson disease groups defined by GBA and LRRK2 genotype: GBA heterozygotes; GBA homozygotes/compound heterozygotes (n = 4, aSNmax = 0.27); subjects without LRRK2 or GBA mutations (n = 32, aSNmax = 0.27); LRRK2 heterozygotes/homozygotes without GBA mutations (n = 27, aSNmax = 0.28); and GBA heterozygotes/LRRK2 heterozygotes (n = 4, aSNmax = 0.32, overall p = 0.63). In secondary analyses among Parkinson disease subjects with GBA mutations, maximal area of nigral echogenicity did not differ based on GBA mutation severity or mutation number. [(18)F]-fluorodeoxyglucose (n = 3) and [(18)F]-fluorodopa (n = 2) positron emission tomography in Parkinson disease subjects with heterozygous GBA mutations was consistent with findings in idiopathic Parkinson disease. Both transcranial sonography and positron emission tomography are abnormal in GBA mutation associated Parkinson disease, similar to other Parkinson disease subjects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Expanding the spectrum of HEXA mutations in Indian patients with Tay-Sachs disease.

    Science.gov (United States)

    Sheth, Jayesh; Mistri, Mehul; Datar, Chaitanya; Kalane, Umesh; Patil, Shekhar; Kamate, Mahesh; Shah, Harshuti; Nampoothiri, Sheela; Gupta, Sarita; Sheth, Frenny

    2014-01-01

    Tay-Sachs disease is an autosomal recessive neurodegenerative disorder occurring due to impaired activity of β-hexosaminidase-A (EC 3.2.1.52), resulting from the mutation in HEXA gene. Very little is known about the molecular pathology of TSD in Indian children except for a few mutations identified by us. The present study is aimed to determine additional mutations leading to Tay-Sachs disease in nine patients confirmed by the deficiency of β-hexosaminidase-A (C (D175A) and c.805G>C (p.G269R) in one case; and one small 1 bp deletion c.426delT (p.F142LfsX57) and one splice site mutation c.459+4A>C in the other two cases respectively. None of these mutations were detected in 100 chromosomes from healthy individuals of the same ethnic group. Three previously reported missense mutations, (i) c.532C>T (p.R178C), (ii) c.964G>T (p.D322Y), and (iii) c.1385A>T (p.E462V); two nonsense mutations (i) c.709C>T (p.Q237X) and (ii) c.1528C>T (p.R510X), one 4 bp insertion c.1277_1278insTATC (p.Y427IfsX5) and one splice site mutation c.459+5G>A were also identified in six cases. We observe from this study that novel mutations are more frequently observed in Indian patients with Tay-Sachs disease with clustering of ~ 73% of disease causing mutations in exons 5 to 12. This database can be used for a carrier rate screening in the larger population of the country.

  18. Targeted high-throughput sequencing identifies mutations in atlastin-1 as a cause of hereditary sensory neuropathy type I.

    Science.gov (United States)

    Guelly, Christian; Zhu, Peng-Peng; Leonardis, Lea; Papić, Lea; Zidar, Janez; Schabhüttl, Maria; Strohmaier, Heimo; Weis, Joachim; Strom, Tim M; Baets, Jonathan; Willems, Jan; De Jonghe, Peter; Reilly, Mary M; Fröhlich, Eleonore; Hatz, Martina; Trajanoski, Slave; Pieber, Thomas R; Janecke, Andreas R; Blackstone, Craig; Auer-Grumbach, Michaela

    2011-01-07

    Hereditary sensory neuropathy type I (HSN I) is an axonal form of autosomal-dominant hereditary motor and sensory neuropathy distinguished by prominent sensory loss that leads to painless injuries. Unrecognized, these can result in delayed wound healing and osteomyelitis, necessitating distal amputations. To elucidate the genetic basis of an HSN I subtype in a family in which mutations in the few known HSN I genes had been excluded, we employed massive parallel exon sequencing of the 14.3 Mb disease interval on chromosome 14q. We detected a missense mutation (c.1065C>A, p.Asn355Lys) in atlastin-1 (ATL1), a gene that is known to be mutated in early-onset hereditary spastic paraplegia SPG3A and that encodes the large dynamin-related GTPase atlastin-1. The mutant protein exhibited reduced GTPase activity and prominently disrupted ER network morphology when expressed in COS7 cells, strongly supporting pathogenicity. An expanded screen in 115 additional HSN I patients identified two further dominant ATL1 mutations (c.196G>C [p.Glu66Gln] and c.976 delG [p.Val326TrpfsX8]). This study highlights an unexpected major role for atlastin-1 in the function of sensory neurons and identifies HSN I and SPG3A as allelic disorders.

  19. Germline KRAS mutations cause Noonan syndrome.

    NARCIS (Netherlands)

    Schubbert, S.; Zenker, M.; Rowe, S.L.; Boll, S.; Klein, C.; Bollag, G.; Burgt, I. van der; Musante, L.; Kalscheuer, V.M.M.; Wehner, L.E.; Nguyen, H.; West, B.; Zhang, K.Y.; Sistermans, E.A.; Rauch, A.; Niemeyer, C.M.; Shannon, K.; Kratz, C.P.

    2006-01-01

    Noonan syndrome (MIM 163950) is characterized by short stature, facial dysmorphism and cardiac defects. Heterozygous mutations in PTPN11, which encodes SHP-2, cause approximately 50% of cases of Noonan syndrome. The SHP-2 phosphatase relays signals from activated receptor complexes to downstream

  20. Autosomal Dominant Growth Hormone Deficiency (Type II).

    Science.gov (United States)

    Alatzoglou, Kyriaki S; Kular, Dalvir; Dattani, Mehul T

    2015-06-01

    Isolated growth hormone deficiency (IGHD) is the commonest pituitary hormone deficiency resulting from congenital or acquired causes, although for most patients its etiology remains unknown. Among the known factors, heterozygous mutations in the growth hormone gene (GH1) lead to the autosomal dominant form of GHD, also known as type II GHD. In many cohorts this is the commonest form of congenital isolated GHD and is mainly caused by mutations that affect the correct splicing of GH-1. These mutations cause skipping of the third exon and lead to the production of a 17.5-kDa GH isoform that exerts a dominant negative effect on the secretion of the wild type GH. The identification of these mutations has clinical implications for the management of patients, as there is a well-documented correlation between the severity of the phenotype and the increased expression of the 17.5-kDa isoform. Patients with type II GHD have a variable height deficit and severity of GHD and may develop additional pituitary hormone defiencies over time, including ACTH, TSH and gonadotropin deficiencies. Therefore, their lifelong follow-up is recommended. Detailed studies on the effect of heterozygous GH1 mutations on the trafficking, secretion and action of growth hormone can elucidate their mechanism on a cellular level and may influence future treatment options for GHD type II.

  1. A novel nonsense mutation in the NDP gene in a Chinese family with Norrie disease.

    Science.gov (United States)

    Liu, Deyuan; Hu, Zhengmao; Peng, Yu; Yu, Changhong; Liu, Yalan; Mo, Xiaoyun; Li, Xiaoping; Lu, Lina; Xu, Xiaojuan; Su, Wei; Pan, Qian; Xia, Kun

    2010-12-08

    Norrie disease (ND), a rare X-linked recessive disorder, is characterized by congenital blindness and, occasionally, mental retardation and hearing loss. ND is caused by the Norrie Disease Protein gene (NDP), which codes for norrin, a cysteine-rich protein involved in ocular vascular development. Here, we report a novel mutation of NDP that was identified in a Chinese family in which three members displayed typical ND symptoms and other complex phenotypes, such as cerebellar atrophy, motor disorders, and mental disorders. We conducted an extensive clinical examination of the proband and performed a computed tomography (CT) scan of his brain. Additionally, we performed ophthalmic examinations, haplotype analyses, and NDP DNA sequencing for 26 individuals from the proband's extended family. The proband's computed tomography scan, in which the fifth ventricle could be observed, indicated cerebellar atrophy. Genome scans and haplotype analyses traced the disease to chromosome Xp21.1-p11.22. Mutation screening of the NDP gene identified a novel nonsense mutation, c.343C>T, in this region. Although recent research has shown that multiple different mutations can be responsible for the ND phenotype, additional research is needed to understand the mechanism responsible for the diverse phenotypes caused by mutations in the NDP gene.

  2. A novel HSF4 gene mutation (p.R405X causing autosomal recessive congenital cataracts in a large consanguineous family from Pakistan

    Directory of Open Access Journals (Sweden)

    Cheema Abdul

    2008-11-01

    Full Text Available Abstract Background Hereditary cataracts are most frequently inherited as autosomal dominant traits, but can also be inherited in an autosomal recessive or X-linked fashion. To date, 12 loci for autosomal recessive cataracts have been mapped including a locus on chromosome 16q22 containing the disease-causing gene HSF4 (Genbank accession number NM_001040667. Here, we describe a family from Pakistan with the first nonsense mutation in HSF4 thus expanding the mutational spectrum of this heat shock transcription factor gene. Methods A large consanguineous Pakistani family with autosomal recessive cataracts was collected from Quetta. Genetic linkage analysis was performed for the common known autosomal recessive cataracts loci and linkage to a locus containing HSF4 (OMIM 602438 was found. All exons and adjacent splice sites of the heat shock transcription factor 4 gene (HSF4 were sequenced. A mutation-specific restriction enzyme digest (HphI was performed for all family members and unrelated controls. Results The disease phenotype perfectly co-segregated with markers flanking the known cataract gene HSF4, whereas other autosomal recessive loci were excluded. A maximum two-point LOD score with a Zmax = 5.6 at θ = 0 was obtained for D16S421. Direct sequencing of HSF4 revealed the nucleotide exchange c.1213C > T in this family predicting an arginine to stop codon exchange (p.R405X. Conclusion We identified the first nonsense mutation (p.R405X in exon 11 of HSF4 in a large consanguineous Pakistani family with autosomal recessive cataract.

  3. A de novo mutation in KCNN3 associated with autosomal dominant idiopathic non-cirrhotic portal hypertension.

    Science.gov (United States)

    Koot, Bart G P; Alders, Marielle; Verheij, Joanne; Beuers, Ulrich; Cobben, Jan M

    2016-04-01

    Non-cirrhotic portal hypertension is characterized by histopathological abnormalities in the liver, mostly affecting small intrahepatic portal veins that cause portal hypertension in the absence of cirrhosis. It can be secondary to coagulation disorders or toxic agents. However, most cases are idiopathic non-cirrhotic portal hypertension (INCPH) and familial cases are rare. We report a family in which a father and three of his four children conceived with three different mothers are affected by INCPH. Whole exome and Sanger sequencing showed the father to have a de novo single nucleotide substitution c.1348G>C in the KCNN3 gene that was transmitted to all three of his affected offspring. The KCNN3 gene encodes small conductance calcium-activated potassium (SK) channel 3. SK channels are involved in the regulation of arterial and venous vascular tone by causing smooth muscle relaxation on activation. No data exist on the expression and function of SK channels in portal veins. The autosomal dominant inheritance in this unique pedigree and the single de novo mutation identified, strongly suggests that KCNN3 mutations have a pathogenetic role in INCPH. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  4. Mutations in the ABCA4 (ABCR) gene are the major cause of autosomal recessive cone-rod dystrophy.

    Science.gov (United States)

    Maugeri, A; Klevering, B J; Rohrschneider, K; Blankenagel, A; Brunner, H G; Deutman, A F; Hoyng, C B; Cremers, F P

    2000-10-01

    The photoreceptor cell-specific ATP-binding cassette transporter gene (ABCA4; previously denoted "ABCR") is mutated, in most patients, with autosomal recessive (AR) Stargardt disease (STGD1) or fundus flavimaculatus (FFM). In addition, a few cases with AR retinitis pigmentosa (RP) and AR cone-rod dystrophy (CRD) have been found to have ABCA4 mutations. To evaluate the importance of the ABCA4 gene as a cause of AR CRD, we selected 5 patients with AR CRD and 15 patients from Germany and The Netherlands with isolated CRD. Single-strand conformation-polymorphism analysis and sequencing revealed 19 ABCA4 mutations in 13 (65%) of 20 patients. In six patients, mutations were identified in both ABCA4 alleles; in seven patients, mutations were detected in one allele. One complex ABCA4 allele (L541P;A1038V) was found exclusively in German patients with CRD; one patient carried this complex allele homozygously, and five others were compound heterozygous. These findings suggest that mutations in the ABCA4 gene are the major cause of AR CRD. A primary role of the ABCA4 gene in STGD1/FFM and AR CRD, together with the gene's involvement in an as-yet-unknown proportion of cases with AR RP, strengthens the idea that mutations in the ABCA4 gene could be the most frequent cause of inherited retinal dystrophy in humans.

  5. A novel CYP27B1 mutation causes a feline vitamin D-dependent rickets type IA.

    Science.gov (United States)

    Grahn, Robert A; Ellis, Melanie R; Grahn, Jennifer C; Lyons, Leslie A

    2012-08-01

    A 12-week-old domestic cat presented at a local veterinary clinic with hypocalcemia and skeletal abnormalities suggestive of rickets. Osteomalacia (rickets) is a disease caused by impaired bone mineralization leading to an increased prevalence of fractures and deformity. Described in a variety of species, rickets is most commonly caused by vitamin D or calcium deficiencies owing to both environmental and or genetic abnormalities. Vitamin D-dependent rickets type 1A (VDDR-1A) is a result of the enzymatic pathway defect caused by mutations in the 25-hydroxyvitamin D(3)-1-alpha-hydroxylase gene [cytochrome P27 B1 (CYP27B1)]. Calcitriol, the active form of vitamin D(3), regulates calcium homeostasis, which requires sufficient dietary calcium availability and correct hormonal function for proper bone growth and maintenance. Patient calcitriol concentrations were low while calcidiol levels were normal suggestive of VDDR-1A. The entire DNA coding sequencing of CYP27B1 was evaluated. The affected cat was wild type for previously identified VDDR-1A causative mutations. However, six novel mutations were identified, one of which was a nonsense mutation at G637T in exon 4. The exon 4 G637T nonsense mutation results in a premature protein truncation, changing a glutamic acid to a stop codon, E213X, likely causing the clinical presentation of rickets. The previously documented genetic mutation resulting in feline VDDR-1A rickets, as well as the case presented in this research, result from novel exon 4 CYP27B1 mutations, thus exon 4 should be the initial focus of future sequencing efforts.

  6. Exonization of an Intronic LINE-1 Element Causing Becker Muscular Dystrophy as a Novel Mutational Mechanism in Dystrophin Gene.

    Science.gov (United States)

    Gonçalves, Ana; Oliveira, Jorge; Coelho, Teresa; Taipa, Ricardo; Melo-Pires, Manuel; Sousa, Mário; Santos, Rosário

    2017-10-03

    A broad mutational spectrum in the dystrophin ( DMD ) gene, from large deletions/duplications to point mutations, causes Duchenne/Becker muscular dystrophy (D/BMD). Comprehensive genotyping is particularly relevant considering the mutation-centered therapies for dystrophinopathies. We report the genetic characterization of a patient with disease onset at age 13 years, elevated creatine kinase levels and reduced dystrophin labeling, where multiplex-ligation probe amplification (MLPA) and genomic sequencing failed to detect pathogenic variants. Bioinformatic, transcriptomic (real time PCR, RT-PCR), and genomic approaches (Southern blot, long-range PCR, and single molecule real-time sequencing) were used to characterize the mutation. An aberrant transcript was identified, containing a 103-nucleotide insertion between exons 51 and 52, with no similarity with the DMD gene. This corresponded to the partial exonization of a long interspersed nuclear element (LINE-1), disrupting the open reading frame. Further characterization identified a complete LINE-1 (~6 kb with typical hallmarks) deeply inserted in intron 51. Haplotyping and segregation analysis demonstrated that the mutation had a de novo origin. Besides underscoring the importance of mRNA studies in genetically unsolved cases, this is the first report of a disease-causing fully intronic LINE-1 element in DMD , adding to the diversity of mutational events that give rise to D/BMD.

  7. Exonization of an Intronic LINE-1 Element Causing Becker Muscular Dystrophy as a Novel Mutational Mechanism in Dystrophin Gene

    Science.gov (United States)

    Gonçalves, Ana; Coelho, Teresa; Melo-Pires, Manuel; Sousa, Mário

    2017-01-01

    A broad mutational spectrum in the dystrophin (DMD) gene, from large deletions/duplications to point mutations, causes Duchenne/Becker muscular dystrophy (D/BMD). Comprehensive genotyping is particularly relevant considering the mutation-centered therapies for dystrophinopathies. We report the genetic characterization of a patient with disease onset at age 13 years, elevated creatine kinase levels and reduced dystrophin labeling, where multiplex-ligation probe amplification (MLPA) and genomic sequencing failed to detect pathogenic variants. Bioinformatic, transcriptomic (real time PCR, RT-PCR), and genomic approaches (Southern blot, long-range PCR, and single molecule real-time sequencing) were used to characterize the mutation. An aberrant transcript was identified, containing a 103-nucleotide insertion between exons 51 and 52, with no similarity with the DMD gene. This corresponded to the partial exonization of a long interspersed nuclear element (LINE-1), disrupting the open reading frame. Further characterization identified a complete LINE-1 (~6 kb with typical hallmarks) deeply inserted in intron 51. Haplotyping and segregation analysis demonstrated that the mutation had a de novo origin. Besides underscoring the importance of mRNA studies in genetically unsolved cases, this is the first report of a disease-causing fully intronic LINE-1 element in DMD, adding to the diversity of mutational events that give rise to D/BMD. PMID:28972564

  8. PAP-1, the mutated gene underlying the RP9 form of dominant retinitis pigmentosa, is a splicing factor

    International Nuclear Information System (INIS)

    Maita, Hiroshi; Kitaura, Hirotake; Keen, T. Jeffrey; Inglehearn, Chris F.; Ariga, Hiroyoshi; Iguchi-Ariga, Sanae M.M.

    2004-01-01

    PAP-1 is an in vitro phosphorylation target of the Pim-1 oncogene. Although PAP-1 binds to Pim-1, it is not a substrate for phosphorylation by Pim-1 in vivo. PAP-1 has recently been implicated as the defective gene in RP9, one type of autosomal dominant retinitis pigmentosa (adRP). However, RP9 is a rare disease and only two missense mutations have been described, so the report of a link between PAP-1 and RP9 was tentative. The precise cellular role of PAP-1 was also unknown at that time. We now report that PAP-1 localizes in nuclear speckles containing the splicing factor SC35 and interacts directly with another splicing factor, U2AF35. Furthermore, we used in vitro and in vivo splicing assays to show that PAP-1 has an activity, which alters the pattern of pre-mRNA splicing and that this activity is dependent on the phosphorylation state of PAP-1. We used the same splicing assay to examine the activities of two mutant forms of PAP-1 found in RP9 patients. The results showed that while one of the mutations, H137L, had no effect on splicing activity compared with that of wild-type PAP-1, the other, D170G, resulted in both a defect in splicing activity and a decreased proportion of phosphorylated PAP-1. The D170G mutation may therefore cause RP by altering splicing of retinal genes through a decrease in PAP-1 phosphorylation. These results demonstrate that PAP-1 has a role in pre-mRNA splicing and, given that three other splicing factors have been implicated in adRP, this finding provides compelling further evidence that PAP-1 is indeed the RP9 gene

  9. Preimplantation genetic diagnosis of Von Hippel-Lindau disease cancer syndrome by combined mutation and segregation analysis

    Directory of Open Access Journals (Sweden)

    Denilce R. Sumita

    2007-03-01

    Full Text Available Von Hippel-Lindau (VHL disease is an autosomal dominant cancer syndrome, associated with the development of tumors and cysts in multiple organ systems, whose expression and age of onset are highly variable. The VHL disease tumor suppressor gene (VHL maps to 3p25-p26 and mutations ranging from a single base change to large deletions have been detected in patients with VHL disease. We developed a single cell PCR protocol for preimplantation genetic diagnosis (PGD of VHL disease to select unaffected embryos on the basis of the detection of the specific mutation and segregation analysis of polymorphic linked markers. Multiplex-nested PCR using single buccal cells of an affected individual were performed in order to test the accuracy and reliability of this single-cell protocol. For each locus tested, amplification efficiency was 83% to 87% and allelic drop-out rates ranged from 12% to 8%. Three VHL disease PGD cycles were performed on cells from a couple with paternal transmission of a 436delC mutation in exon 2 of the VHL gene, leading to the identification of three unaffected embryos. Independent of the mutation present, this general PGD protocol for the diagnosis of VHL disease can be used in families informative for either the D3S1038 or D3S1317 microsatellite markers.

  10. Clinical study of DMD gene point mutation causing Becker muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Ji-qing CAO

    2015-07-01

    Full Text Available Background  DMD gene point mutation, mainly nonsense mutation, always cause the most severe Duchenne muscular dystrophy (DMD. However, we also observed some cases of Becker muscular dystrophy (BMD carrying DMD point mutation. This paper aims to explore the mechanism of DMD point mutation causing BMD, in order to enhance the understanding of mutation types of BMD.  Methods  Sequence analysis was performed in 11 cases of BMD confirmed by typical clinical manifestations and muscle biopsy. The exon of DMD gene was detected non-deletion or duplication by multiplex ligation-dependent probe amplification (MLPA.  Results  Eleven patients carried 10 mutation types without mutational hotspot. Six patients carried nonsense mutations [c.5002G>T, p.(Glu1668X; c.1615C > T, p.(Arg539X; c.7105G > T, p.(Glu2369X; c.5287C > T, p.(Arg1763X; c.9284T > G, p.(Leu3095X]. One patient carried missense mutation [c.5234G > A, p.(Arg1745His]. Two patients carried frameshift mutations (c.10231dupT, c.10491delC. Two patients carried splicing site mutations (c.4518 + 3A > T, c.649 + 2T > C.  Conclusions  DMD gene point mutation may result in BMD with mild clinical symptoms. When clinical manifestations suggest the possibility of BMD and MLPA reveals non?deletion or duplication mutation of DMD gene, BMD should be considered. Study on the mechanism of DMD point mutation causing BMD is very important for gene therapy of DMD. DOI: 10.3969/j.issn.1672-6731.2015.06.005

  11. Two novel mutations in thymidine kinase-2 cause early onset fatal encephalomyopathy and severe mtDNA depletion.

    Science.gov (United States)

    Lesko, Nicole; Naess, Karin; Wibom, Rolf; Solaroli, Nicola; Nennesmo, Inger; von Döbeln, Ulrika; Karlsson, Anna; Larsson, Nils-Göran

    2010-03-01

    Deficiency of thymidine kinase-2 (TK2) has been described in children with early onset fatal skeletal myopathy. TK2 is a mitochondrial deoxyribonucleoside kinase required for the phosphorylation of deoxycytidine and deoxythymidine and hence is vital for the maintenance of a balanced mitochondrial dNTP pool in post-mitotic tissues. We describe a patient with two novel TK2 mutations, which caused disease onset shortly after birth and death at the age of three months. One mutation (219insCG) generated an early stop codon, thus preventing the synthesis of a functional protein. The second mutation (R130W) resulted in an amino acid substitution, which caused a severe reduction (TK2 enzyme activity. These two novel TK2 mutations cause an extremely severe phenotype with overwhelming central nervous system symptoms not commonly seen in patients with TK2-deficiency. We conclude that the severe clinical presentation in this patient was due to a virtual lack of mitochondrial TK2 activity. Copyright 2009 Elsevier B.V. All rights reserved.

  12. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9.

    Science.gov (United States)

    Paquet, Dominik; Kwart, Dylan; Chen, Antonia; Sproul, Andrew; Jacob, Samson; Teo, Shaun; Olsen, Kimberly Moore; Gregg, Andrew; Noggle, Scott; Tessier-Lavigne, Marc

    2016-05-05

    The bacterial CRISPR/Cas9 system allows sequence-specific gene editing in many organisms and holds promise as a tool to generate models of human diseases, for example, in human pluripotent stem cells. CRISPR/Cas9 introduces targeted double-stranded breaks (DSBs) with high efficiency, which are typically repaired by non-homologous end-joining (NHEJ) resulting in nonspecific insertions, deletions or other mutations (indels). DSBs may also be repaired by homology-directed repair (HDR) using a DNA repair template, such as an introduced single-stranded oligo DNA nucleotide (ssODN), allowing knock-in of specific mutations. Although CRISPR/Cas9 is used extensively to engineer gene knockouts through NHEJ, editing by HDR remains inefficient and can be corrupted by additional indels, preventing its widespread use for modelling genetic disorders through introducing disease-associated mutations. Furthermore, targeted mutational knock-in at single alleles to model diseases caused by heterozygous mutations has not been reported. Here we describe a CRISPR/Cas9-based genome-editing framework that allows selective introduction of mono- and bi-allelic sequence changes with high efficiency and accuracy. We show that HDR accuracy is increased dramatically by incorporating silent CRISPR/Cas-blocking mutations along with pathogenic mutations, and establish a method termed 'CORRECT' for scarless genome editing. By characterizing and exploiting a stereotyped inverse relationship between a mutation's incorporation rate and its distance to the DSB, we achieve predictable control of zygosity. Homozygous introduction requires a guide RNA targeting close to the intended mutation, whereas heterozygous introduction can be accomplished by distance-dependent suboptimal mutation incorporation or by use of mixed repair templates. Using this approach, we generated human induced pluripotent stem cells with heterozygous and homozygous dominant early onset Alzheimer's disease-causing mutations in

  13. APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: A genetic screening study of familial and sporadic cases.

    Science.gov (United States)

    Lanoiselée, Hélène-Marie; Nicolas, Gaël; Wallon, David; Rovelet-Lecrux, Anne; Lacour, Morgane; Rousseau, Stéphane; Richard, Anne-Claire; Pasquier, Florence; Rollin-Sillaire, Adeline; Martinaud, Olivier; Quillard-Muraine, Muriel; de la Sayette, Vincent; Boutoleau-Bretonniere, Claire; Etcharry-Bouyx, Frédérique; Chauviré, Valérie; Sarazin, Marie; le Ber, Isabelle; Epelbaum, Stéphane; Jonveaux, Thérèse; Rouaud, Olivier; Ceccaldi, Mathieu; Félician, Olivier; Godefroy, Olivier; Formaglio, Maite; Croisile, Bernard; Auriacombe, Sophie; Chamard, Ludivine; Vincent, Jean-Louis; Sauvée, Mathilde; Marelli-Tosi, Cecilia; Gabelle, Audrey; Ozsancak, Canan; Pariente, Jérémie; Paquet, Claire; Hannequin, Didier; Campion, Dominique

    2017-03-01

    Amyloid protein precursor (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2) mutations cause autosomal dominant forms of early-onset Alzheimer disease (AD-EOAD). Although these genes were identified in the 1990s, variant classification remains a challenge, highlighting the need to colligate mutations from large series. We report here a novel update (2012-2016) of the genetic screening of the large AD-EOAD series ascertained across 28 French hospitals from 1993 onwards, bringing the total number of families with identified mutations to n = 170. Families were included when at least two first-degree relatives suffered from early-onset Alzheimer disease (EOAD) with an age of onset (AOO) ≤65 y in two generations. Furthermore, we also screened 129 sporadic cases of Alzheimer disease with an AOO below age 51 (44% males, mean AOO = 45 ± 2 y). APP, PSEN1, or PSEN2 mutations were identified in 53 novel AD-EOAD families. Of the 129 sporadic cases screened, 17 carried a PSEN1 mutation and 1 carried an APP duplication (13%). Parental DNA was available for 10 sporadic mutation carriers, allowing us to show that the mutation had occurred de novo in each case. Thirteen mutations (12 in PSEN1 and 1 in PSEN2) identified either in familial or in sporadic cases were previously unreported. Of the 53 mutation carriers with available cerebrospinal fluid (CSF) biomarkers, 46 (87%) had all three CSF biomarkers-total tau protein (Tau), phospho-tau protein (P-Tau), and amyloid β (Aβ)42-in abnormal ranges. No mutation carrier had the three biomarkers in normal ranges. One limitation of this study is the absence of functional assessment of the possibly and probably pathogenic variants, which should help their classification. Our findings suggest that a nonnegligible fraction of PSEN1 mutations occurs de novo, which is of high importance for genetic counseling, as PSEN1 mutational screening is currently performed in familial cases only. Among the 90 distinct mutations found in the whole

  14. APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: A genetic screening study of familial and sporadic cases.

    Directory of Open Access Journals (Sweden)

    Hélène-Marie Lanoiselée

    2017-03-01

    Full Text Available Amyloid protein precursor (APP, presenilin-1 (PSEN1, and presenilin-2 (PSEN2 mutations cause autosomal dominant forms of early-onset Alzheimer disease (AD-EOAD. Although these genes were identified in the 1990s, variant classification remains a challenge, highlighting the need to colligate mutations from large series.We report here a novel update (2012-2016 of the genetic screening of the large AD-EOAD series ascertained across 28 French hospitals from 1993 onwards, bringing the total number of families with identified mutations to n = 170. Families were included when at least two first-degree relatives suffered from early-onset Alzheimer disease (EOAD with an age of onset (AOO ≤65 y in two generations. Furthermore, we also screened 129 sporadic cases of Alzheimer disease with an AOO below age 51 (44% males, mean AOO = 45 ± 2 y. APP, PSEN1, or PSEN2 mutations were identified in 53 novel AD-EOAD families. Of the 129 sporadic cases screened, 17 carried a PSEN1 mutation and 1 carried an APP duplication (13%. Parental DNA was available for 10 sporadic mutation carriers, allowing us to show that the mutation had occurred de novo in each case. Thirteen mutations (12 in PSEN1 and 1 in PSEN2 identified either in familial or in sporadic cases were previously unreported. Of the 53 mutation carriers with available cerebrospinal fluid (CSF biomarkers, 46 (87% had all three CSF biomarkers-total tau protein (Tau, phospho-tau protein (P-Tau, and amyloid β (Aβ42-in abnormal ranges. No mutation carrier had the three biomarkers in normal ranges. One limitation of this study is the absence of functional assessment of the possibly and probably pathogenic variants, which should help their classification.Our findings suggest that a nonnegligible fraction of PSEN1 mutations occurs de novo, which is of high importance for genetic counseling, as PSEN1 mutational screening is currently performed in familial cases only. Among the 90 distinct mutations found in the

  15. Novel mutations in EPM2A and NHLRC1 widen the spectrum of Lafora disease

    DEFF Research Database (Denmark)

    Lesca, Gaetan; Boutry-Kryza, Nadia; de Toffol, Bertrand

    2010-01-01

    Lafora disease (LD) is an autosomal recessive form of progressive myoclonus epilepsy with onset in childhood or adolescence and with fatal outcome caused by mutations in two genes: EPM2A and NHLRC1. The aim of this study was to characterize the mutation spectrum in a cohort of unrelated patients ...

  16. Novel mutations in EPM2A and NHLRC1 widen the spectrum of Lafora disease

    DEFF Research Database (Denmark)

    Lesca, Gaetan; Boutry-Kryza, Nadia; de Toffol, Bertrand

    2010-01-01

    Lafora disease (LD) is an autosomal recessive form of progressive myoclonus epilepsy with onset in childhood or adolescence and with fatal outcome caused by mutations in two genes: EPM2A and NHLRC1. The aim of this study was to characterize the mutation spectrum in a cohort of unrelated patients...

  17. Mutations in DONSON disrupt replication fork stability and cause microcephalic dwarfism.

    Science.gov (United States)

    Reynolds, John J; Bicknell, Louise S; Carroll, Paula; Higgs, Martin R; Shaheen, Ranad; Murray, Jennie E; Papadopoulos, Dimitrios K; Leitch, Andrea; Murina, Olga; Tarnauskaitė, Žygimantė; Wessel, Sarah R; Zlatanou, Anastasia; Vernet, Audrey; von Kriegsheim, Alex; Mottram, Rachel M A; Logan, Clare V; Bye, Hannah; Li, Yun; Brean, Alexander; Maddirevula, Sateesh; Challis, Rachel C; Skouloudaki, Kassiani; Almoisheer, Agaadir; Alsaif, Hessa S; Amar, Ariella; Prescott, Natalie J; Bober, Michael B; Duker, Angela; Faqeih, Eissa; Seidahmed, Mohammed Zain; Al Tala, Saeed; Alswaid, Abdulrahman; Ahmed, Saleem; Al-Aama, Jumana Yousuf; Altmüller, Janine; Al Balwi, Mohammed; Brady, Angela F; Chessa, Luciana; Cox, Helen; Fischetto, Rita; Heller, Raoul; Henderson, Bertram D; Hobson, Emma; Nürnberg, Peter; Percin, E Ferda; Peron, Angela; Spaccini, Luigina; Quigley, Alan J; Thakur, Seema; Wise, Carol A; Yoon, Grace; Alnemer, Maha; Tomancak, Pavel; Yigit, Gökhan; Taylor, A Malcolm R; Reijns, Martin A M; Simpson, Michael A; Cortez, David; Alkuraya, Fowzan S; Mathew, Christopher G; Jackson, Andrew P; Stewart, Grant S

    2017-04-01

    To ensure efficient genome duplication, cells have evolved numerous factors that promote unperturbed DNA replication and protect, repair and restart damaged forks. Here we identify downstream neighbor of SON (DONSON) as a novel fork protection factor and report biallelic DONSON mutations in 29 individuals with microcephalic dwarfism. We demonstrate that DONSON is a replisome component that stabilizes forks during genome replication. Loss of DONSON leads to severe replication-associated DNA damage arising from nucleolytic cleavage of stalled replication forks. Furthermore, ATM- and Rad3-related (ATR)-dependent signaling in response to replication stress is impaired in DONSON-deficient cells, resulting in decreased checkpoint activity and the potentiation of chromosomal instability. Hypomorphic mutations in DONSON substantially reduce DONSON protein levels and impair fork stability in cells from patients, consistent with defective DNA replication underlying the disease phenotype. In summary, we have identified mutations in DONSON as a common cause of microcephalic dwarfism and established DONSON as a critical replication fork protein required for mammalian DNA replication and genome stability.

  18. Expanding the spectrum of HEXA mutations in Indian patients with Tay–Sachs disease

    Directory of Open Access Journals (Sweden)

    Jayesh Sheth

    2014-01-01

    Full Text Available Tay–Sachs disease is an autosomal recessive neurodegenerative disorder occurring due to impaired activity of β-hexosaminidase-A (EC 3.2.1.52, resulting from the mutation in HEXA gene. Very little is known about the molecular pathology of TSD in Indian children except for a few mutations identified by us. The present study is aimed to determine additional mutations leading to Tay–Sachs disease in nine patients confirmed by the deficiency of β-hexosaminidase-A (C (D175A and c.805G>C (p.G269R in one case; and one small 1 bp deletion c.426delT (p.F142LfsX57 and one splice site mutation c.459+4A>C in the other two cases respectively. None of these mutations were detected in 100 chromosomes from healthy individuals of the same ethnic group. Three previously reported missense mutations, (i c.532C>T (p.R178C, (ii c.964G>T (p.D322Y, and (iii c.1385A>T (p.E462V; two nonsense mutations (i c.709C>T (p.Q237X and (ii c.1528C>T (p.R510X, one 4 bp insertion c.1277_1278insTATC (p.Y427IfsX5 and one splice site mutation c.459+5G>A were also identified in six cases. We observe from this study that novel mutations are more frequently observed in Indian patients with Tay–Sachs disease with clustering of ~73% of disease causing mutations in exons 5 to 12. This database can be used for a carrier rate screening in the larger population of the country.

  19. Molecular and cellular pathogenesis of autosomal dominant polycystic kidney disease

    Directory of Open Access Journals (Sweden)

    A.P. Bastos

    2011-07-01

    Full Text Available Autosomal dominant polycystic kidney disease (ADPKD is one of the most common human life-threatening monogenic disorders. The disease is characterized by bilateral, progressive renal cystogenesis and cyst and kidney enlargement, often leading to end-stage renal disease, and may include extrarenal manifestations. ADPKD is caused by mutation in one of two genes, PKD1 and PKD2, which encode polycystin-1 (PC1 and polycystin-2 (PC2, respectively. PC2 is a non-selective cation channel permeable to Ca2+, while PC1 is thought to function as a membrane receptor. The cyst cell phenotype includes increased proliferation and apoptosis, dedifferentiation, defective planar polarity, and a secretory pattern associated with extracellular matrix remodeling. The two-hit model for cyst formation has been recently extended by the demonstration that early gene inactivation leads to rapid and diffuse development of renal cysts, while inactivation in adult life is followed by focal and late cyst formation. Renal ischemia/reperfusion, however, can function as a third hit, triggering rapid cyst development in kidneys with Pkd1 inactivation induced in adult life. The PC1-PC2 complex behaves as a sensor in the primary cilium, mediating signal transduction via Ca2+ signaling. The intracellular Ca2+ homeostasis is impaired in ADPKD, being apparently responsible for the cAMP accumulation and abnormal cell proliferative response to cAMP. Activated mammalian target for rapamycin (mTOR and cell cycle dysregulation are also significant features of PKD. Based on the identification of pathways altered in PKD, a large number of preclinical studies have been performed and are underway, providing a basis for clinical trials in ADPKD and helping the design of future trials.

  20. A novel mutation in CRYAB associated with autosomal dominant congenital nuclear cataract in a Chinese family.

    Science.gov (United States)

    Chen, Qiang; Ma, Junjie; Yan, Ming; Mothobi, Maneo Emily; Liu, Yuanyuan; Zheng, Fang

    2009-07-10

    To identify the genetic defects associated with autosomal dominant congenital nuclear cataract in a Chinese family. Clinical data were collected, and the phenotypes of the affected members in this family were recorded by slit-lamp photography. Genomic DNA was isolated from peripheral blood. Mutations were screened in cataract-associated candidate genes through polymerase chain reaction (PCR) analyses and sequencing. Structural models of the wild-type and mutant alphaB-crystallin were generated and analyzed by SWISS-MODEL. Mutation screening identified only one heterozygous G-->A transition at nucleotide 32 in the first exon of alphaB-crystallin (CRYAB), resulting in an amino acid change from arginine to histidine at codon 11 (R11H). This mutation segregated in all available affected family members but was not observed in any of the unaffected persons of the family. The putative mutation disrupted a restriction site for the enzyme, Fnu4HI, in the affected family members. The disruption, however, was not found in any of the randomly selected ophthalmologically normal individuals or in 40 unrelated senile cataract patients. Computer-assisted prediction suggested that this mutation affected the biochemical properties as well as the structure of alphaB-crystallin. These results supported the idea that the novel R11H mutation was responsible for the autosomal dominant nuclear congenital cataract in this pedigree.

  1. Late-Onset Glycogen Storage Disease Type II (Pompe's Disease) with a Novel Mutation: A Malaysian Experience.

    Science.gov (United States)

    Fu Liong, Hiew; Abdul Wahab, Siti Aishah; Yakob, Yusnita; Lock Hock, Ngu; Thong, Wong Kum; Viswanathan, Shanthi

    2014-01-01

    Pompe's disease (acid maltase deficiency, glycogen storage disease type II) is an autosomal recessive disorder caused by a deficiency of lysosomal acid α-1,4-glucosidase, resulting in excessive accumulation of glycogen in the lysosomes and cytoplasm of all tissues, most notably in skeletal muscles. We present a case of adult-onset Pompe's disease with progressive proximal muscles weakness over 5 years and respiratory failure on admission, requiring prolonged mechanical ventilation. Electromyography showed evidence of myopathic process with small amplitudes, polyphasic motor unit action potentials, and presence of pseudomyotonic discharges. Muscle biopsy showed glycogen-containing vacuoles in the muscle fibers consistent with glycogen storage disease. Genetic analysis revealed two compound heterozygous mutations at c.444C>G (p.Tyr148∗) in exon 2 and c.2238G>C (p.Trp746Cys) in exon 16, with the former being a novel mutation. This mutation has not been reported before, to our knowledge. The patient was treated with high protein diet during the admission and subsequently showed good clinical response to enzyme replacement therapy with survival now to the eighth year. Conclusion. In patients with late-onset adult Pompe's disease, careful evaluation and early identification of the disease and its treatment with high protein diet and enzyme replacement therapy improve muscle function and have beneficial impact on long term survival.

  2. Limited importance of the dominant-negative effect of TP53 missense mutations

    International Nuclear Information System (INIS)

    Stoczynska-Fidelus, Ewelina; Liberski, Pawel P; Rieske, Piotr; Szybka, Malgorzata; Piaskowski, Sylwester; Bienkowski, Michal; Hulas-Bigoszewska, Krystyna; Banaszczyk, Mateusz; Zawlik, Izabela; Jesionek-Kupnicka, Dorota; Kordek, Radzislaw

    2011-01-01

    Heterozygosity of TP53 missense mutations is related to the phenomenon of the dominant-negative effect (DNE). To estimate the importance of the DNE of TP53 mutations, we analysed the percentage of cancer cases showing a single heterozygous mutation of TP53 and searched for a cell line with a single heterozygous mutation of this gene. This approach was based on the knowledge that genes with evident DNE, such as EGFR and IDH1, represent nearly 100% of single heterozygous mutations in tumour specimens and cell lines. Genetic analyses (LOH and sequencing) performed for early and late passages of several cell lines originally described as showing single heterozygous TP53 mutations (H-318, G-16, PF-382, MOLT-13, ST-486 and LS-123). Statistical analysis of IARC TP53 and SANGER databases. Genetic analyses of N-RAS, FBXW7, PTEN and STR markers to test cross-contamination and cell line identity. Cell cloning, fluorescence-activated cell sorting and SSCP performed for the PF-382 cell line. A database study revealed TP53 single heterozygous mutations in 35% of in vivo (surgical and biopsy) samples and only 10% of cultured cells (in vitro), although those numbers appeared to be overestimated. We deem that published in vivo TP53 mutation analyses are not as rigorous as studies in vitro, and we did not find any cell line showing a stable, single heterozygous mutation. G16, PF-382 and MOLT-13 cells harboured single heterozygous mutations temporarily. ST-486, H-318 and LS-123 cell lines were misclassified. Specific mutations, such as R175H, R273H, R273L or R273P, which are reported in the literature to exert a DNE, showed the lowest percentage of single heterozygous mutations in vitro (about 5%). We suggest that the currently reported percentage of TP53 single heterozygous mutations in tumour samples and cancer cell lines is overestimated. Thus, the magnitude of the DNE of TP53 mutations is questionable. This scepticism is supported by database investigations showing that retention

  3. A novel frameshift mutation in CX46 associated with hereditary dominant cataracts in a Chinese family

    Directory of Open Access Journals (Sweden)

    Xiu-Kun Cui

    2017-05-01

    Full Text Available AIM: To investigate the genetic mutations that are associated the hereditary autosomal dominant cataract in a Chinese family. METHODS: A Chinese family consisting of 20 cataract patients (including 9 male and 11 female and 2 unaffected individuals from 5 generations were diagnosed to be a typical autosomal dominant cataract pedigree. Genomic DNA samples were extracted from the peripheral blood cells of the participants in this pedigree. Exon sequence was used for genetic mutation screening. In silico analysis was used to study the structure characteristics of connexin 46 (CX46 mutant. Immunoblotting was conduceted for testing the expression of CX46. RESULTS: To determine the involved genetic mutations, 11 well-known cataract-associated genes (cryaa, cryab, crybb1, crybb2, crygc, crygd, Gja3, Gja8, Hsf4, Mip and Pitx3 were chosen for genetic mutation test by using exon sequencing. A novel cytosine insertion at position 1195 of CX46 cDNA (c.1194_1195ins C was found in the samples of 5 tested cataract patients but not in the unaffected 2 individuals nor in normal controls, which resulted in 30 amino acids more extension in CX46C-terminus (cx46fs400 compared with the wild-type CX46. In silico protein structure analysis indicated that the mutant showed distinctive hydrophobicity and protein secondary structure compared with the wild-type CX46. The immunoblot results revealed that CX46 protein, which expressed in the aging cataract lens tissues, was absence in the proband lens. In contrast, CX50, alpha A-crystallin and alphaB-crystallin expressed equally in both proband and aging cataract tissues. Those results revealed that the cx46fs400 mutation could impair CX46 protein expression. CONCLUSION: The insertion of cytosine at position 1195 of CX46 cDNA is a novel mutation site that is associated with the autosomal dominant cataracts in this Chinese family. The C-terminal frameshift mutation is involved in regulating CX46 protein expression.

  4. Mutations in KCNT1 cause a spectrum of focal epilepsies

    Science.gov (United States)

    Møller, Rikke S.; Heron, Sarah E.; Larsen, Line H. G.; Lim, Chiao Xin; Ricos, Michael G.; Bayly, Marta A.; van Kempen, Marjan J. A.; Klinkenberg, Sylvia; Andrews, Ian; Kelley, Kent; Ronen, Gabriel M.; Callen, David; McMahon, Jacinta M.; Yendle, Simone C.; Carvill, Gemma L.; Mefford, Heather C.; Nabbout, Rima; Poduri, Annapurna; Striano, Pasquale; Baglietto, Maria G.; Zara, Federico; Smith, Nicholas J.; Pridmore, Clair; Gardella, Elena; Nikanorova, Marina; Dahl, Hans Atli; Gellert, Pia; Scheffer, Ingrid E.; Gunning, Boudewijn; Kragh-Olsen, Bente; Dibbens, Leanne M.

    2018-01-01

    Summary Autosomal dominant mutations in the sodium-gated potassium channel subunit gene KCNT1 have been associated with two distinct seizure syndromes, nocturnal frontal lobe epilepsy (NFLE) and malignant migrating focal seizures of infancy (MMFSI). To further explore the phenotypic spectrum associated with KCNT1, we examined individuals affected with focal epilepsy or an epileptic encephalopathy for mutations in the gene. We identified KCNT1 mutations in 12 previously unreported patients with focal epilepsy, multifocal epilepsy, cardiac arrhythmia, and in a family with sudden unexpected death in epilepsy (SUDEP), in addition to patients with NFLE and MMFSI. In contrast to the 100% penetrance so far reported for KCNT1 mutations, we observed incomplete penetrance. It is notable that we report that the one KCNT1 mutation, p.Arg398Gln, can lead to either of the two distinct phenotypes, ADNFLE or MMFSI, even within the same family. This indicates that genotype–phenotype relationships for KCNT1 mutations are not straightforward. We demonstrate that KCNT1 mutations are highly pleiotropic and are associated with phenotypes other than ADNFLE and MMFSI. KCNT1 mutations are now associated with Ohtahara syndrome, MMFSI, and nocturnal focal epilepsy. They may also be associated with multifocal epilepsy and cardiac disturbances. PMID:26122718

  5. Berberine slows cell growth in autosomal dominant polycystic kidney disease cells

    International Nuclear Information System (INIS)

    Bonon, Anna; Mangolini, Alessandra; Pinton, Paolo; Senno, Laura del; Aguiari, Gianluca

    2013-01-01

    Highlights: •Berberine at appropriate doses slows cell proliferation in ADPKD cystic cells. •Reduction of cell growth by berberine occurs by inhibition of ERK and p70-S6 kinase. •Higher doses of berberine cause an overall cytotoxic effect. •Berberine overdose induces apoptotic bodies formation and DNA fragmentation. •Antiproliferative properties of this drug make it a new candidate for ADPKD therapy. -- Abstract: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary monogenic disorder characterized by development and enlargement of kidney cysts that lead to loss of renal function. It is caused by mutations in two genes (PKD1 and PKD2) encoding for polycystin-1 and polycystin-2 proteins which regulate different signals including cAMP, mTOR and EGFR pathways. Abnormal activation of these signals following PC1 or PC2 loss of function causes an increased cell proliferation which is a typical hallmark of this disease. Despite the promising findings obtained in animal models with targeted inhibitors able to reduce cystic cell growth, currently, no specific approved therapy for ADPKD is available. Therefore, the research of new more effective molecules could be crucial for the treatment of this severe pathology. In this regard, we have studied the effect of berberine, an isoquinoline quaternary alkaloid, on cell proliferation and apoptosis in human and mouse ADPKD cystic cell lines. Berberine treatment slows cell proliferation of ADPKD cystic cells in a dose-dependent manner and at high doses (100 μg/mL) it induces cell death in cystic cells as well as in normal kidney tubule cells. However, at 10 μg/mL, berberine reduces cell growth in ADPKD cystic cells only enhancing G 0 /G 1 phase of cell cycle and inhibiting ERK and p70-S6 kinases. Our results indicate that berberine shows a selected antiproliferative activity in cellular models for ADPKD, suggesting that this molecule and similar natural compounds could open new opportunities

  6. Berberine slows cell growth in autosomal dominant polycystic kidney disease cells

    Energy Technology Data Exchange (ETDEWEB)

    Bonon, Anna; Mangolini, Alessandra [Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara (Italy); Pinton, Paolo [Department of Morphology, Surgery and Experimental Medicine, Section of General Pathology, University of Ferrara, 44121 Ferrara (Italy); Senno, Laura del [Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara (Italy); Aguiari, Gianluca, E-mail: dsn@unife.it [Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara (Italy)

    2013-11-22

    Highlights: •Berberine at appropriate doses slows cell proliferation in ADPKD cystic cells. •Reduction of cell growth by berberine occurs by inhibition of ERK and p70-S6 kinase. •Higher doses of berberine cause an overall cytotoxic effect. •Berberine overdose induces apoptotic bodies formation and DNA fragmentation. •Antiproliferative properties of this drug make it a new candidate for ADPKD therapy. -- Abstract: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary monogenic disorder characterized by development and enlargement of kidney cysts that lead to loss of renal function. It is caused by mutations in two genes (PKD1 and PKD2) encoding for polycystin-1 and polycystin-2 proteins which regulate different signals including cAMP, mTOR and EGFR pathways. Abnormal activation of these signals following PC1 or PC2 loss of function causes an increased cell proliferation which is a typical hallmark of this disease. Despite the promising findings obtained in animal models with targeted inhibitors able to reduce cystic cell growth, currently, no specific approved therapy for ADPKD is available. Therefore, the research of new more effective molecules could be crucial for the treatment of this severe pathology. In this regard, we have studied the effect of berberine, an isoquinoline quaternary alkaloid, on cell proliferation and apoptosis in human and mouse ADPKD cystic cell lines. Berberine treatment slows cell proliferation of ADPKD cystic cells in a dose-dependent manner and at high doses (100 μg/mL) it induces cell death in cystic cells as well as in normal kidney tubule cells. However, at 10 μg/mL, berberine reduces cell growth in ADPKD cystic cells only enhancing G{sub 0}/G{sub 1} phase of cell cycle and inhibiting ERK and p70-S6 kinases. Our results indicate that berberine shows a selected antiproliferative activity in cellular models for ADPKD, suggesting that this molecule and similar natural compounds could open new

  7. Screening for duplications, deletions and a common intronic mutation detects 35% of second mutations in patients with USH2A monoallelic mutations on Sanger sequencing.

    Science.gov (United States)

    Steele-Stallard, Heather B; Le Quesne Stabej, Polona; Lenassi, Eva; Luxon, Linda M; Claustres, Mireille; Roux, Anne-Francoise; Webster, Andrew R; Bitner-Glindzicz, Maria

    2013-08-08

    Usher Syndrome is the leading cause of inherited deaf-blindness. It is divided into three subtypes, of which the most common is Usher type 2, and the USH2A gene accounts for 75-80% of cases. Despite recent sequencing strategies, in our cohort a significant proportion of individuals with Usher type 2 have just one heterozygous disease-causing mutation in USH2A, or no convincing disease-causing mutations across nine Usher genes. The purpose of this study was to improve the molecular diagnosis in these families by screening USH2A for duplications, heterozygous deletions and a common pathogenic deep intronic variant USH2A: c.7595-2144A>G. Forty-nine Usher type 2 or atypical Usher families who had missing mutations (mono-allelic USH2A or no mutations following Sanger sequencing of nine Usher genes) were screened for duplications/deletions using the USH2A SALSA MLPA reagent kit (MRC-Holland). Identification of USH2A: c.7595-2144A>G was achieved by Sanger sequencing. Mutations were confirmed by a combination of reverse transcription PCR using RNA extracted from nasal epithelial cells or fibroblasts, and by array comparative genomic hybridisation with sequencing across the genomic breakpoints. Eight mutations were identified in 23 Usher type 2 families (35%) with one previously identified heterozygous disease-causing mutation in USH2A. These consisted of five heterozygous deletions, one duplication, and two heterozygous instances of the pathogenic variant USH2A: c.7595-2144A>G. No variants were found in the 15 Usher type 2 families with no previously identified disease-causing mutations. In 11 atypical families, none of whom had any previously identified convincing disease-causing mutations, the mutation USH2A: c.7595-2144A>G was identified in a heterozygous state in one family. All five deletions and the heterozygous duplication we report here are novel. This is the first time that a duplication in USH2A has been reported as a cause of Usher syndrome. We found that 8 of

  8. Altered Pre-mRNA Splicing Caused by a Novel Intronic Mutation c.1443+5G>A in the Dihydropyrimidinase (DPYS) Gene

    NARCIS (Netherlands)

    Nakajima, Yoko; Meijer, Judith; Zhang, Chunhua; Wang, Xu; Kondo, Tomomi; Ito, Tetsuya; Dobritzsch, Doreen; van Kuilenburg, André B. P.

    2016-01-01

    Dihydropyrimidinase (DHP) deficiency is an autosomal recessive disease caused by mutations in the DPYS gene. Patients present with highly elevated levels of dihydrouracil and dihydrothymine in their urine, blood and cerebrospinal fluid. The analysis of the effect of mutations in DPYS on pre-mRNA

  9. Generation and analysis of knock-in mice carrying pseudohypoaldosteronism type II-causing mutations in the cullin 3 gene.

    Science.gov (United States)

    Araki, Yuya; Rai, Tatemitsu; Sohara, Eisei; Mori, Takayasu; Inoue, Yuichi; Isobe, Kiyoshi; Kikuchi, Eriko; Ohta, Akihito; Sasaki, Sei; Uchida, Shinichi

    2015-10-21

    Pseudohypoaldosteronism type II (PHAII) is a hereditary hypertensive disease caused by mutations in four different genes: with-no-lysine kinases (WNK) 1 and 4, Kelch-like family member 3 (KLHL3), and cullin 3 (Cul3). Cul3 and KLHL3 form an E3 ligase complex that ubiquitinates and reduces the expression level of WNK4. PHAII-causing mutations in WNK4 and KLHL3 impair WNK4 ubiquitination. However, the molecular pathogenesis of PHAII caused by Cul3 mutations is unclear. In cultured cells and human leukocytes, PHAII-causing Cul3 mutations result in the skipping of exon 9, producing mutant Cul3 protein lacking 57 amino acids. However, whether this phenomenon occurs in the kidneys and is responsible for the pathogenesis of PHAII in vivo is unknown. We generated knock-in mice carrying a mutation in the C-terminus of intron 8 of Cul3, c.1207-1G>A, which corresponds to a PHAII-causing mutation in the human Cul3 gene. Heterozygous Cul3(G(-1)A/+) knock-in mice did not exhibit PHAII phenotypes, and the skipping of exon 9 was not evident in their kidneys. However, the level of Cul3 mRNA expression in the kidneys of heterozygous knock-in mice was approximately half that of wild-type mice. Furthermore, homozygous knock-in mice were nonviable. It suggested that the mutant allele behaved like a knockout allele and did not produce Cul3 mRNA lacking exon 9. A reduction in Cul3 expression alone was not sufficient to develop PHAII in the knock-in mice. Our findings highlighted the pathogenic role of mutant Cul3 protein and provided insight to explain why PHAII-causing mutations in Cul3 cause kidney-predominant PHAII phenotypes. © 2015. Published by The Company of Biologists Ltd.

  10. A Novel Missense Mutation in Oncostatin M Receptor Beta Causing Primary Localized Cutaneous Amyloidosis

    Directory of Open Access Journals (Sweden)

    Marjan Saeedi

    2014-01-01

    Full Text Available Primary localized cutaneous amyloidosis (PLCA is a chronic skin disorder, caused by amyloid material deposition in the upper dermis. Autosomal dominant PLCA has been mapped earlier to pathogenic missense mutations in the OSMR gene, which encodes the oncostatin M receptor ß subunit (OSMRß. OSMRß is interleukin-6 family cytokine receptors and possesses two ligands, oncostatin M and interleukin-31, which both have biologic roles in inflammation and keratinocyte cell proliferation, differentiation, and apoptosis. Here, we identified a new OSMR mutation in a Kurdish family for the first time. Blood samples were taken from all the affected individuals in the family. DNA extraction was performed using salting out technique. Primers were designed for intron flanking individual exons of OSMR gene which were subjected to direct sequencing after PCR amplification for each sample. Sequencing showed a C/T substitution at position 613 in the proband. This mutation results in an L613S (leucine 613 to serine amino acid change. The identified mutation was observed in all affected family members but not in 100 ethnically matched healthy controls. Elucidating the molecular basis of familial PLCA provides new insight into mechanisms of itch in human skin and may lead to new therapeutic targets for pruritus.

  11. Mutations in KCNT1 cause a spectrum of focal epilepsies

    DEFF Research Database (Denmark)

    Møller, Rikke Steensbjerre; Heron, Sarah E.; Larsen, Line H. G.

    2015-01-01

    Autosomal dominant mutations in the sodium-gated potassium channel subunit gene KCNT1 have been associated with two distinct seizure syndromes, nocturnal frontal lobe epilepsy (NFLE) and malignant migrating focal seizures of infancy (MMFSI). To further explore the phenotypic spectrum associated w...

  12. A Case of New Familiar Genetic Variant of Autosomal Dominant Polycystic Kidney Disease-2: A Case Study.

    Science.gov (United States)

    Litvinchuk, Tetiana; Tao, Yunxia; Singh, Ruchi; Vasylyeva, Tetyana L

    2015-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is characterized by renal cyst formation due to mutations in genes coding for polycystin-1 [PKD1 (85-90% of cases), on ch 16p13.3] and polycystin-2 [PKD2 (10-15% of cases), on ch 4q13-23] and PKD3 gene (gene unmapped). It is also associated with TSC2/PKD1 contiguous gene syndrome. ADPKD is usually inherited, but new mutations without a family history occur in approximately 10% of the cases. A 17-year-old boy was followed up for bilateral cystic kidney disease, hypertension, and obesity since he was 13 years old. The diagnosis was an accidental finding during abdominal CT at age 13 to rule out appendicitis. A renal ultrasonogram also demonstrated a multiple bilateral cysts. Because of parental history of bilateral renal cysts, PKD1 and PKD2, genetic testing was ordered. Results showed, PKD2 variant 1:3 bp deletion of TGT; nucleotide position: 1602-1604; codon position: 512-513; mRNA reading frame maintained. The same mutation was later identified in his father. A smaller number of patients have a defect in the PKD2 locus on chromosome 4 (resulting in PKD2 disease). There are no known published cases on this familiar genetic variant of ADPKD-2 cystic kidney disease. In this case, the disease is present unusually early in life.

  13. Ocular findings associated with a Cys39Arg mutation in the Norrie disease gene.

    Science.gov (United States)

    Joos, K M; Kimura, A E; Vandenburgh, K; Bartley, J A; Stone, E M

    1994-12-01

    To diagnose the carriers and noncarriers in a family affected with Norrie disease based on molecular analysis. Family members from three generations, including one affected patient, two obligate carriers, one carrier identified with linkage analysis, one noncarrier identified with linkage analysis, and one female family member with indeterminate carrier status, were examined clinically and electrophysiologically. Linkage analysis had previously failed to determine the carrier status of one female family member in the third generation. Blood samples were screened for mutations in the Norrie disease gene with single-strand conformation polymorphism analysis. The mutation was characterized by dideoxy-termination sequencing. Ophthalmoscopy and electroretinographic examination failed to detect the carrier state. The affected individuals and carriers in this family were found to have a transition from thymidine to cytosine in the first nucleotide of codon 39 of the Norrie disease gene, causing a cysteine-to-arginine mutation. Single-strand conformation polymorphism analysis identified a patient of indeterminate status (by linkage) to be a noncarrier of Norrie disease. Ophthalmoscopy and electroretinography could not identify carriers of this Norrie disease mutation. Single-strand conformation polymorphism analysis was more sensitive and specific than linkage analysis in identifying carriers in this family.

  14. NDP gene mutations in 14 French families with Norrie disease.

    Science.gov (United States)

    Royer, Ghislaine; Hanein, Sylvain; Raclin, Valérie; Gigarel, Nadine; Rozet, Jean-Michel; Munnich, Arnold; Steffann, Julie; Dufier, Jean-Louis; Kaplan, Josseline; Bonnefont, Jean-Paul

    2003-12-01

    Norrie disease is a rare X-inked recessive condition characterized by congenital blindness and occasionally deafness and mental retardation in males. This disease has been ascribed to mutations in the NDP gene on chromosome Xp11.1. Previous investigations of the NDP gene have identified largely sixty disease-causing sequence variants. Here, we report on ten different NDP gene allelic variants in fourteen of a series of 21 families fulfilling inclusion criteria. Two alterations were intragenic deletions and eight were nucleotide substitutions or splicing variants, six of them being hitherto unreported, namely c.112C>T (p.Arg38Cys), c.129C>G (p.His43Gln), c.133G>A (p.Val45Met), c.268C>T (p.Arg90Cys), c.382T>C (p.Cys128Arg), c.23479-1G>C (unknown). No NDP gene sequence variant was found in seven of the 21 families. This observation raises the issue of misdiagnosis, phenocopies, or existence of other X-linked or autosomal genes, the mutations of which would mimic the Norrie disease phenotype. Copyright 2003 Wiley-Liss, Inc.

  15. Whole-exome re-sequencing in a family quartet identifies POP1 mutations as the cause of a novel skeletal dysplasia.

    Directory of Open Access Journals (Sweden)

    Evgeny A Glazov

    2011-03-01

    Full Text Available Recent advances in DNA sequencing have enabled mapping of genes for monogenic traits in families with small pedigrees and even in unrelated cases. We report the identification of disease-causing mutations in a rare, severe, skeletal dysplasia, studying a family of two healthy unrelated parents and two affected children using whole-exome sequencing. The two affected daughters have clinical and radiographic features suggestive of anauxetic dysplasia (OMIM 607095, a rare form of dwarfism caused by mutations of RMRP. However, mutations of RMRP were excluded in this family by direct sequencing. Our studies identified two novel compound heterozygous loss-of-function mutations in POP1, which encodes a core component of the RNase mitochondrial RNA processing (RNase MRP complex that directly interacts with the RMRP RNA domains that are affected in anauxetic dysplasia. We demonstrate that these mutations impair the integrity and activity of this complex and that they impair cell proliferation, providing likely molecular and cellular mechanisms by which POP1 mutations cause this severe skeletal dysplasia.

  16. Hypothalamic digoxin, hemispheric chemical dominance, and peptic ulcer disease.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-10-01

    The isoprenoid pathway produces three key metabolites--endogenous digoxin-like factor (EDLF) (membrane sodium-potassium ATPase inhibitor and regulator of neurotransmitter transport), ubiquinone (free radical scavenger), and dolichol (regulator of glycoconjugate metabolism). The pathway was assessed in peptic ulcer and acid peptic disease and its relation to hemispheric dominance studied. The activity of HMG CoA reductase, serum levels of EDLF, magnesium, tryptophan catabolites, and tyrosine catabolites were measured in acid peptic disease, right hemispheric dominant, left hemispheric dominant, and bihemispheric dominant individuals. All the patients with peptic ulcer disease were right-handed/left hemispheric dominant by the dichotic listening test. The pathway was upregulated with increased EDLF synthesis in peptic ulcer disease (PUD). There was increase in tryptophan catabolites and reduction in tyrosine catabolites in these patients. The ubiquinone levels were low and free radical production increased. Dolichol and glycoconjugate levels were increased and lysosomal stability reduced in patients with acid peptic disease (APD). There was increase in cholesterol:phospholipid ratio with decreased glyco conjugate levels in membranes of patients with PUD. Acid peptic disease represents an elevated EDLF state which can modulate gastric acid secretion and the structure of the gastric mucous barrier. It can also lead to persistence of Helicobacter pylori infection. The biochemical pattern obtained in peptic ulcer disease is similar to those obtained in left-handed/right hemispheric chemically dominant individuals. But all the patients with peptic ulcer disease were right-handed/left hemispheric dominant by the dichotic listen ing test. Hemispheric chemical dominance has no correlation with handedness or the dichotic listening test. Peptic ulcer disease occurs in right hemispheric chemically dominant individuals and is a reflection of altered brain function.

  17. A novel mutation in PNPLA2 causes neutral lipid storage disease with myopathy and triglyceride deposit cardiomyovasculopathy: a case report and literature review.

    Science.gov (United States)

    Kaneko, Kimihiko; Kuroda, Hiroshi; Izumi, Rumiko; Tateyama, Maki; Kato, Masaaki; Sugimura, Koichiro; Sakata, Yasuhiko; Ikeda, Yoshihiko; Hirano, Ken-Ichi; Aoki, Masashi

    2014-07-01

    Mutations in PNPLA2 cause neutral lipid storage disease with myopathy (NLSDM) or triglyceride deposit cardiomyovasculopathy (TGCV). We report a 59-year-old patient with NLSDM/TGCV presenting marked asymmetric skeletal myopathy and cardiomyovasculopathy. Skeletal muscle and endomyocardial biopsies showed cytoplasmic vacuoles containing neutral lipid. Gene analysis revealed a novel homozygous mutation (c.576delC) in PNPLA2. We reviewed 37 genetically-proven NLSDM/TGCV cases; median age was 30 years; distribution of myopathy was proximal (69%) and distal predominant (16%); asymmetric myopathy (right>left) was reported in 41% of the patients. Frequently-affected muscles were posterior compartment of leg (75%), shoulder girdle to upper arm (50%), and paraspinal (33%). Skeletal muscle biopsies showed lipid accumulation in 100% and rimmed vacuoles in 22%. Frequent comorbidities were cardiomyopathy (44%), hyperlipidemia (23%), diabetes mellitus (24%), and pancreatitis (14%). PNPLA2 mutations concentrated in Exon 4-7 without apparent genotype-phenotype correlations. To know the characteristic features is essential for the early diagnosis of NLSDM/TGCV. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. A novel Norrie disease pseudoglioma gene mutation, c.-1_2delAAT, responsible for Norrie disease in a Chinese family.

    Science.gov (United States)

    Zhang, Xin-Yu; Jiang, Wei-Ying; Chen, Lu-Ming; Chen, Su-Qin

    2013-01-01

    To investigate the genetic findings and phenotypic characteristics of a Chinese family with Norrie disease (ND). Molecular genetic analysis and clinical examinations were performed on a Chinese family with ND. Mutations in the Norrie disease pseudoglioma (NDP) gene were detected by direct sequencing. Haplotypes were constructed and compared with the phenotypes in the family. Evolutionary comparisons and mutant open reading frame (ORF) prediction were also undertaken. Two family members with ocular manifestations were diagnosed with ND. No signs of sensorineural hearing loss were observed in either patient, while one of them showed signs of mild mental retardation. A novel heterozygous mutation in the NDP gene, c.-1_2delAAT, was detected in both patients. The mutation and the mutation bearing haplotype co-segregated with the ND phenotype in males and was transmitted from their mothers and/or grandmothers (II:2). The male without ND did not harbor the mutation. The mutation occurred at the highly conserved nucleotides. ORF finder predicted that the mutation would lead to the production of a truncated protein that lacks the first 11 N-terminal amino acids. A novel mutation, c.-1_2delAAT in the NDP gene, was identified in a Chinese family with ND. This mutation caused ND without obvious sensorineural hearing loss. Mental disorder was found in one but not the other patients. The clinical heterogeneity in the family indicated that other genetic variants and epigenetic factors may also play a role in the disease presentation.

  19. EDA mutation as a cause of hypohidrotic ectodermal dysplasia: a case report and review of the literature.

    Science.gov (United States)

    Huang, S X; Liang, J L; Sui, W G; Lin, H; Xue, W; Chen, J J; Zhang, Y; Gong, W W; Dai, Y; Ou, M L

    2015-08-28

    Ectodermal dysplasia (ED) represents a collection of rare disorders that result from a failure of development of the tissues derived from the embryonic ectoderm. ED is often associated with hair, teeth, and skin abnormalities, which are serious conditions affecting the quality of life of the patient. To date, a large number of genes have been found to be associated with this syndrome. Here, we report a patient with hypohidrotic ED (HED) without family history. We identified that this patient's disorder arises from an X-linked HED with a mutation in the EDA gene (G299D) found by whole-exome sequencing. In addition, in this paper we summarize the disease-causing mutations based on current literature. Overall, recent clinical and genetic research involving patients with HED have uncovered a large number of pathogenic mutations in EDA, which might contribute to a full understanding of the function of EDA and the underlying mechanisms of HED caused by EDA mutations.

  20. In Vivo Modelling of ATP1A3 G316S-Induced Ataxia in C. elegans Using CRISPR/Cas9-Mediated Homologous Recombination Reveals Dominant Loss of Function Defects.

    Directory of Open Access Journals (Sweden)

    Altar Sorkaç

    Full Text Available The NIH Undiagnosed Diseases Program admitted a male patient with unclassifiable late-onset ataxia-like symptoms. Exome sequencing revealed a heterozygous de novo mutation converting glycine 316 to serine in ATP1A3, which might cause disease. ATP1A3 encodes the Na+/K+ ATPase pump α3-subunit. Using CRISPR/Cas9-mediated homologous recombination for genome editing, we modelled this putative disease-causing allele in Caenorhabditis elegans, recreating the patient amino acid change in eat-6, the orthologue of ATP1A3. The impact of the mutation on eat-6 function at the neuromuscular junction was examined using two behavioural assays: rate of pharyngeal pumping and sensitivity to aldicarb, a drug that causes paralysis over time via the inhibition of acetylcholinesterase. The patient allele decreased pumping rates and caused hypersensitivity to aldicarb. Animals heterozygous for the allele exhibited similar defects, whereas loss of function mutations in eat-6 were recessive. These results indicate that the mutation is dominant and impairs the neuromuscular function. Thus, we conclude that the de novo G316S mutation in ATP1A3 likely causes or contributes to patient symptoms. More broadly, we conclude that, for conserved genes, it is possible to rapidly and easily model human diseases in C. elegans using CRIPSR/Cas9 genome editing.

  1. A nonsense mutation in FMR1 causing fragile X syndrome

    DEFF Research Database (Denmark)

    Grønskov, Karen; Brøndum-Nielsen, Karen; Dedic, Alma

    2011-01-01

    Fragile X syndrome is a common cause of inherited intellectual disability. It is caused by lack of the FMR1 gene product FMRP. The most frequent cause is the expansion of a CGG repeat located in the 5'UTR of FMR1. Alleles with 200 or more repeats become hypermethylated and transcriptionally silent....... Only few patients with intragenic point mutations in FMR1 have been reported and, currently, routine analysis of patients referred for fragile X syndrome includes solely analysis for repeat expansion and methylation status. We identified a substitution in exon 2 of FMR1, c.80C>A, causing a nonsense...... mutation p.Ser27X, in a patient with classical clinical symptoms of fragile X syndrome. The mother who carried the mutation in heterozygous form presented with mild intellectual impairment. We conclude that further studies including western blot and DNA sequence analysis of the FMR1 gene should...

  2. X-linked juvenile retinoschisis: mutations at the retinoschisis and Norrie disease gene loci?

    Science.gov (United States)

    Hiraoka, M; Rossi, F; Trese, M T; Shastry, B S

    2001-01-01

    Juvenile retinoschisis (RS) and Norrie disease (ND) are X-linked recessive retinal disorders. Both disorders, in the majority of cases, are monogenic and are caused by mutations in the RS and ND genes, respectively. Here we report the identification of a family in which mutations in both the RS and ND genes are segregating with RS pathology. Although the mutations identified in this report were not functionally characterized with regard to their pathogenicity, it is likely that both of them are involved in RS pathology in the family analyzed. This suggests the complexity and digenic nature of monogenic human disorders in some cases. If this proves to be a widespread problem, it will complicate the strategies used to identify the genes involved in diseases and to develop methods for intervention.

  3. Type IX Collagen Gene Mutations Can Result in Multiple Epiphyseal Dysplasia That Is Associated With Osteochondritis Dissecans and a Mild Myopathy

    NARCIS (Netherlands)

    Jackson, Gail C.; Marcus-Soekarman, Dominique; Stolte-Dijkstra, Irene; Verrips, Aad; Taylor, Jacqueline A.; Briggs, Michael D.

    Multiple epiphyseal dysplasia (MED) is a clinically variable and genetically heterogeneous disease that is characterized by mild short stature and early onset osteoarthritis. Autosomal dominant forms are caused by mutations in the genes that encode type IX collagen, cartilage oligomeric matrix

  4. Type IX collagen gene mutations can result in multiple epiphyseal dysplasia that is associated with osteochondritis dissecans and a mild myopathy.

    NARCIS (Netherlands)

    Jackson, G.C.; Marcus-Soekarman, D.; Stolte-Dijkstra, I.; Verrips, A.; Taylor, J.A.; Briggs, M.D.

    2010-01-01

    Multiple epiphyseal dysplasia (MED) is a clinically variable and genetically heterogeneous disease that is characterized by mild short stature and early onset osteoarthritis. Autosomal dominant forms are caused by mutations in the genes that encode type IX collagen, cartilage oligomeric matrix

  5. Autosomal dominant polycystic kidney disease: recent advances in clinical management [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Zhiguo Mao

    2016-08-01

    Full Text Available The first clinical descriptions of autosomal dominant polycystic kidney disease (ADPKD go back at least 500 years to the late 16th century. Advances in understanding disease presentation and pathophysiology have mirrored the progress of clinical medicine in anatomy, pathology, physiology, cell biology, and genetics. The identification of PKD1 and PKD2, the major genes mutated in ADPKD, has stimulated major advances, which in turn have led to the first approved drug for this disorder and a fresh reassessment of patient management in the 21st century. In this commentary, we consider how clinical management is likely to change in the coming decade.

  6. The PTPN11 loss-of-function mutation Q510E-Shp2 causes hypertrophic cardiomyopathy by dysregulating mTOR signaling.

    Science.gov (United States)

    Schramm, Christine; Fine, Deborah M; Edwards, Michelle A; Reeb, Ashley N; Krenz, Maike

    2012-01-01

    The identification of mutations in PTPN11 (encoding the protein tyrosine phosphatase Shp2) in families with congenital heart disease has facilitated mechanistic studies of various cardiovascular defects. However, the roles of normal and mutant Shp2 in the developing heart are still poorly understood. Furthermore, it remains unclear how Shp2 loss-of-function (LOF) mutations cause LEOPARD Syndrome (also termed Noonan Syndrome with multiple lentigines), which is characterized by congenital heart defects such as pulmonary valve stenosis and hypertrophic cardiomyopathy (HCM). In normal hearts, Shp2 controls cardiomyocyte size by regulating signaling through protein kinase B (Akt) and mammalian target of rapamycin (mTOR). We hypothesized that Shp2 LOF mutations dysregulate this pathway, resulting in HCM. For our studies, we chose the Shp2 mutation Q510E, a dominant-negative LOF mutation associated with severe early onset HCM. Newborn mice with cardiomyocyte-specific overexpression of Q510E-Shp2 starting before birth displayed increased cardiomyocyte sizes, heart-to-body weight ratios, interventricular septum thickness, and cardiomyocyte disarray. In 3-mo-old hearts, interstitial fibrosis was detected. Echocardiographically, ventricular walls were thickened and contractile function was depressed. In ventricular tissue samples, signaling through Akt/mTOR was hyperactivated, indicating that the presence of Q510E-Shp2 led to upregulation of this pathway. Importantly, rapamycin treatment started shortly after birth rescued the Q510E-Shp2-induced phenotype in vivo. If rapamycin was started at 6 wk of age, HCM was also ameliorated. We also generated a second mouse model in which cardiomyocyte-specific Q510E-Shp2 overexpression started after birth. In contrast to the first model, these mice did not develop HCM. In summary, our studies establish a role for mTOR signaling in HCM caused by Q510E-Shp2. Q510E-Shp2 overexpression in the cardiomyocyte population alone was sufficient to

  7. [From gene to disease; achondroplasia and other skeletal dysplasias due to an activating mutation in the fibroblast growth factor

    NARCIS (Netherlands)

    Ravenswaaij-Arts, C.M.A. van; Losekoot, M.

    2001-01-01

    Achondroplasia, the most common and best known skeletal dysplasia, is inherited in an autosomal dominant fashion. Like a number of other skeletal dysplasias, among which hypochondroplasia and thanatophoric dysplasia, achondroplasia is caused by mutations in the fibroblast growth factor receptor 3

  8. Hydrops fetalis and pulmonary lymphangiectasia due to FOXC2 mutation: an autosomal dominant hereditary lymphedema syndrome with variable expression.

    Science.gov (United States)

    de Bruyn, Gwendolyn; Casaer, Alexandra; Devolder, Katrien; Van Acker, Geert; Logghe, Hilde; Devriendt, Koen; Cornette, Luc

    2012-03-01

    Non-immune hydrops fetalis may find its origin within genetically determined lymphedema syndromes, caused by mutations in FOXC2 and SOX-18. We describe a newborn girl, diagnosed with non-immune hydrops fetalis at a gestational age of 30 weeks. Family history revealed the presence of an autosomal dominant late-onset form of lymphedema of the lower limbs in her father, associated with an aberrant implantation of the eyelashes in some individuals. The newborn, hydropic girl suffered from severe pulmonary lymphangiectasia, resulting in terminal respiratory failure at the age of 3 months. Genetic analysis in both the father and the newborn girl demonstrated a heterozygous FOXC2 mutation, i.e., c.939C>A, p.Tyr313X. Her two older sisters are currently asymptomatic and the parents decided not to test them for the FOXC2 mutation. Patients with a mutation in the FOXC2 transcription factor usually show lower limb lymphedema with onset at or after puberty, together with distichiasis. However, the eye manifestations can be very mild and easily overlooked. The association between FOXC2 mutation and neonatal hydrops resulting in terminal respiratory failure is not reported so far. Therefore, in sporadic patients diagnosed with non-immune hydrops fetalis, lymphangiogenic genes should be systematically screened for mutations. In addition, all cases of fetal edema must prompt a thorough analysis of the familial pedigree, in order to detect familial patterns and to facilitate adequate antenatal counseling.

  9. A novel mutation in the NOD2 gene associated with Blau syndrome: a Norwegian family with four affected members

    DEFF Research Database (Denmark)

    Milman, N; Ursin, K; Rødevand, E

    2009-01-01

    BACKGROUND: Blau syndrome is a chronic granulomatous disease with an autosomal dominant trait characterized by the triad granulomatous dermatitis, arthritis, and uveitis. It is caused by mutations in the NOD2 gene, also termed the CARD15 gene. OBJECTIVE: To report a novel mutation in the NOD2 gen...... with an autosomal dominant heritage. Most likely the mutation has arisen de novo in the proband. Genetic counselling and antenatal diagnostics should be available to the involved families....... associated with Blau syndrome. METHODS AND RESULTS: The proband was a 68-year-old ethnic Norwegian male who had uveitis and arthritis since 10 years of age followed by lifelong recurrent arthritis and chronic eye involvement. Genetic analysis showed a heterozygous c.1814 C>A, T605N mutation in NOD2 that has...

  10. Disabilities caused by unstable mutations in Costa Rica

    OpenAIRE

    Morales Montero, Fernando; Cuenca Berger, Patricia; Castro Volio, Isabel

    2004-01-01

    Myotonic dystrophy and fragile X syndrome are two genetically determined relatively common disabilities. Both are examples of a new type of mutation mechanism called unstable or dynamic mutations, triple repeats expansions or DNA amplification. Fragile X syndrome is recognized as the main cause of hereditary mental retardation and myotonic dystrophy is considered the most common muscular dystrophy of adults. This is a prospective non randomized study of clinically affected people,...

  11. HFE gene mutations and Wilson's disease in Sardinia.

    Science.gov (United States)

    Sorbello, Orazio; Sini, Margherita; Civolani, Alberto; Demelia, Luigi

    2010-03-01

    Hypocaeruloplasminaemia can lead to tissue iron storage in Wilson's disease and the possibility of iron overload in long-term overtreated patients should be considered. The HFE gene encodes a protein that is intimately involved in intestinal iron absorption. The aim of this study was to determine the prevalence of the HFE gene mutation, its role in iron metabolism of Wilson's disease patients and the interplay of therapy in copper and iron homeostasis. The records of 32 patients with Wilson's disease were reviewed for iron and copper indices, HFE gene mutations and liver biopsy. Twenty-six patients were negative for HFE gene mutations and did not present significant alterations of iron metabolism. The HFE mutation was significantly associated with increased hepatic iron content (PHFE gene wild-type. The HFE gene mutations may be an addictional factor in iron overload in Wilson's disease. Our results showed that an adjustment of dosage of drugs could prevent further iron overload induced by overtreatment only in patients HFE wild-type. 2009. Published by Elsevier Ltd.

  12. Late-Onset Glycogen Storage Disease Type II (Pompe’s Disease with a Novel Mutation: A Malaysian Experience

    Directory of Open Access Journals (Sweden)

    Hiew Fu Liong

    2014-01-01

    Full Text Available Pompe’s disease (acid maltase deficiency, glycogen storage disease type II is an autosomal recessive disorder caused by a deficiency of lysosomal acid α-1,4-glucosidase, resulting in excessive accumulation of glycogen in the lysosomes and cytoplasm of all tissues, most notably in skeletal muscles. We present a case of adult-onset Pompe’s disease with progressive proximal muscles weakness over 5 years and respiratory failure on admission, requiring prolonged mechanical ventilation. Electromyography showed evidence of myopathic process with small amplitudes, polyphasic motor unit action potentials, and presence of pseudomyotonic discharges. Muscle biopsy showed glycogen-containing vacuoles in the muscle fibers consistent with glycogen storage disease. Genetic analysis revealed two compound heterozygous mutations at c.444C>G (p.Tyr148* in exon 2 and c.2238G>C (p.Trp746Cys in exon 16, with the former being a novel mutation. This mutation has not been reported before, to our knowledge. The patient was treated with high protein diet during the admission and subsequently showed good clinical response to enzyme replacement therapy with survival now to the eighth year. Conclusion. In patients with late-onset adult Pompe’s disease, careful evaluation and early identification of the disease and its treatment with high protein diet and enzyme replacement therapy improve muscle function and have beneficial impact on long term survival.

  13. Alternative Splicing and Tissue-specific Elastin Misassembly Act as Biological Modifiers of Human Elastin Gene Frameshift Mutations Associated with Dominant Cutis Laxa*

    Science.gov (United States)

    Sugitani, Hideki; Hirano, Eiichi; Knutsen, Russell H.; Shifren, Adrian; Wagenseil, Jessica E.; Ciliberto, Christopher; Kozel, Beth A.; Urban, Zsolt; Davis, Elaine C.; Broekelmann, Thomas J.; Mecham, Robert P.

    2012-01-01

    Elastin is the extracellular matrix protein in vertebrates that provides elastic recoil to blood vessels, the lung, and skin. Because the elastin gene has undergone significant changes in the primate lineage, modeling elastin diseases in non-human animals can be problematic. To investigate the pathophysiology underlying a class of elastin gene mutations leading to autosomal dominant cutis laxa, we engineered a cutis laxa mutation (single base deletion) into the human elastin gene contained in a bacterial artificial chromosome. When expressed as a transgene in mice, mutant elastin was incorporated into elastic fibers in the skin and lung with adverse effects on tissue function. In contrast, only low levels of mutant protein incorporated into aortic elastin, which explains why the vasculature is relatively unaffected in this disease. RNA stability studies found that alternative exon splicing acts as a modifier of disease severity by influencing the spectrum of mutant transcripts that survive nonsense-mediated decay. Our results confirm the critical role of the C-terminal region of tropoelastin in elastic fiber assembly and suggest tissue-specific differences in the elastin assembly pathway. PMID:22573328

  14. Identification and Functional Characterization of a Novel Mutation in the Human Calcium-Sensing Receptor That Co-Segregates With Autosomal-Dominant Hypocalcemia

    Directory of Open Access Journals (Sweden)

    Anne Qvist Rasmussen

    2018-04-01

    Full Text Available The human calcium-sensing receptor (CASR is the key controller of extracellular Cao2+ homeostasis, and different mutations in the CASR gene have been linked to different calcium diseases, such as familial hypocalciuric hypercalcemia, severe hyperparathyroidism, autosomal-dominant hypocalcemia (ADH, and Bartter’s syndrome type V. In this study, two generations of a family with biochemically and clinically confirmed ADH who suffered severe muscle pain, arthralgia, tetany, abdominal pain, and fatigue were evaluated for mutations in the CASR gene. The study comprises genotyping of all family members, functional characterization of a potential mutant receptor by in vitro analysis related to the wild-type receptor to reveal an association between the genotype and phenotype in the affected family members. The in vitro analysis of functional characteristics includes measurements of inositol trisphosphate accumulation, Ca2+ mobilization in response to [Ca2+]o-stimulation and receptor expression. The results reveal a significant leftward shift of inositol trisphosphate accumulation as a result of the “gain-of-function” mutant receptor and surprisingly a normalization of the response in (Ca2+i release in the downstream pathway and additionally the maximal response of (Ca2+i release was significantly decreased compared to the wild type. However, no gross differences were seen in D126V and the D126V/WT CASR dimeric >250 kDa band expression compared to the WT receptor, however, the D126V and D126V/WT CASR immature ~140 kDa species appear to have reduced expression compared to the WT receptor. In conclusion, in this study, a family with a clinical diagnosis of ADH in two generations was evaluated to identify a mutation in the CASR gene and reveal an association between genotype and phenotype in the affected family members. The clinical condition was caused by a novel, activating, missense mutation (D126V in the CASR gene and the in vitro functional

  15. Nonsyndromic Hearing Loss Caused by USH1G Mutations: Widening the USH1G Disease Spectrum

    NARCIS (Netherlands)

    Oonk, A.M.M.; Huet, R.A.C. van; Leijendeckers, J.M.; Oostrik, J.; Venselaar, H.; WIjk, E. van; Beynon, A.J.; Kunst, H.P.M.; Hoyng, C.B.; Kremer, H.; Schraders, M.; Pennings, R.J.E.

    2015-01-01

    OBJECTIVE: Currently, six genes are known to be associated with Usher syndrome type I, and mutations in most of these genes can also cause nonsyndromic hearing loss. The one exception is USH1G, which is currently only known to be involved in Usher syndrome type I and atypical Usher syndrome. DESIGN:

  16. Presenilin-1 mutations alter K+ currents in the human neuroblastoma cell line, SH-SY5Y

    DEFF Research Database (Denmark)

    Plant, Leigh D; Boyle, John P; Thomas, Natasha M

    2002-01-01

    Mutations in presenilin 1 (PS1) are the major cause of autosomal dominant Alzheimer's disease. We have measured the voltage-gated K+ current in the human neuroblastoma cell line SH-SY5Y using whole-cell patch-clamp. When cells were stably transfected to over-express PS1, no change in K+ current...

  17. Novel mutations in Norrie disease gene in Japanese patients with Norrie disease and familial exudative vitreoretinopathy.

    Science.gov (United States)

    Kondo, Hiroyuki; Qin, Minghui; Kusaka, Shunji; Tahira, Tomoko; Hasebe, Haruyuki; Hayashi, Hideyuki; Uchio, Eiichi; Hayashi, Kenshi

    2007-03-01

    To search for mutations in the Norrie disease gene (NDP) in Japanese patients with familial exudative vitreoretinopathy (FEVR) and Norrie disease (ND) and to delineate the mutation-associated clinical features. Direct sequencing after polymerase chain reaction of all exons of the NDP gene was performed on blood collected from 62 probands (31 familial and 31 simplex) with FEVR, from 3 probands with ND, and from some of their family members. The clinical symptoms and signs in the patients with mutations were assessed. X-inactivation in the female carriers was examined in three FEVR families by using leukocyte DNA. Four novel mutations-I18K, K54N, R115L, and IVS2-1G-->A-and one reported mutation, R97P, in the NDP gene were identified in six families. The severity of vitreoretinopathy varied among these patients. Three probands with either K54N or R115L had typical features of FEVR, whereas the proband with R97P had those of ND. Families with IVS2-1G-->A exhibited either ND or FEVR characteristics. A proband with I18K presented with significant phenotypic heterogeneity between the two eyes. In addition, affected female carriers in a family harboring the K54N mutation presented with different degrees of vascular abnormalities in the periphery of the retina. X-inactivation profiles indicated that the skewing was not significantly different between affected and unaffected women. These observations indicate that mutations of the NDP gene can cause ND and 6% of FEVR cases in the Japanese population. The X-inactivation assay with leukocytes may not be predictive of the presence of a mutation in affected female carriers.

  18. Recurrent Skin and Lung Infections in Autosomal Dominant Hyper IgE Syndrome with Transactivation Domain STAT3 Mutation

    Directory of Open Access Journals (Sweden)

    Chad J. Cooper

    2014-01-01

    Full Text Available Background. Hyper IgE is a rare systemic disease characterized by the clinical triad of high serum levels of IgE (>2000 IU/mL, eczema, and recurrent staphylococcal skin and lung infections. The presentation of hyper IgE syndrome is highly variable, which makes it easy to confuse the diagnosis with that of severe atopy or other rare immunodeficiency disorders. Case Report. A 23-year-old Hispanic presented with history of frequent respiratory and gastrointestinal infections as a child and multiple episodes of skin and lung infections (abscess with Staphylococcus aureus throughout his adult life. He had multiple eczematous lesions and folliculitis over his entire body, oral/esophageal candidiasis, and retention of his primary teeth. The IgE was elevated (>5000 IU/mL. Genetic mutation analysis revealed a mutation affecting the transactivation domain of the STAT3 gene. Conclusion. The hallmark of hyper IgE syndrome is serum IgE of >2000 IU/mL. Hyper IgE syndrome is a genetic disorder that is either autosomal dominant or recessive. A definite diagnosis can be made with genetic mutation analysis, and in this case, it revealed a very rare finding of the transactivation domain STAT3 mutation. Hyper IgE syndrome is a challenge for clinicians in establishing a diagnosis in suspected cases.

  19. Generation of an isogenic, gene-corrected iPSC line from a symptomatic 59-year-old female patient with frontotemporal dementia caused by an R406W mutation in the microtubule associated protein tau (MAPT) gene

    DEFF Research Database (Denmark)

    Nimsanor, Natakarn; Poulsen, Ulla; Rasmussen, Mikkel A.

    2016-01-01

    pluripotent stem cells (iPSCs) hold great promise to model FTDP-17 as such cells can be differentiated in vitro to the required cell type. Furthermore, gene-editing approaches allow generating isogenic gene-corrected controls that can be used as a very specific control. Here, we report the generation......Frontotemporal dementia with parkinsonism linked to chromosome 17q21.2 (FTDP-17) is an autosomal-dominant neurodegenerative disorder. Mutations in the MAPT (microtubule-associated protein tau) gene can cause FTDP-17, but the underlying pathomechanisms of the disease are still unknown. Induced...... of genetically corrected iPSCs from a 59-year-old female FTD-17 patient carrying an R406W mutation in the MAPT-gene....

  20. Generation of an isogenic, gene-corrected iPSC line from a symptomatic 57-year-old female patient with frontotemporal dementia caused by a P301L mutation in the microtubule associated protein tau (MAPT) gene

    DEFF Research Database (Denmark)

    Nimsanor, Natakarn; Kitiyanant, Narisorn; Poulsen, Ulla

    2016-01-01

    pluripotent stem cells (iPSCs) hold great promise to model FTDP-17 as such cells can be differentiated in vitro to the required cell type. Furthermore, gene-editing approaches allow generating isogenic gene-corrected controls that can be used as a very specific control. Here, we report the generation......Frontotemporal dementia with parkinsonism linked to chromosome 17q21.2 (FTDP-17) is an autosomal-dominant neurodegenerative disorder. Mutations in the MAPT (microtubule-associated protein tau)-gene can cause FTDP-17, but the underlying pathomechanisms of the disease are still unknown. Induced...... of genetically corrected iPSCs from a 57-year-old female FTD-17 patient carrying an P301L mutation in the MAPT-gene....

  1. Molecular Diagnostics of Copper-Transporting Protein Mutations Allows Early Onset Individual Therapy of Menkes Disease.

    Science.gov (United States)

    Králík, L; Flachsová, E; Hansíková, H; Saudek, V; Zeman, J; Martásek, P

    2017-01-01

    Menkes disease is a severe X-linked recessive disorder caused by a defect in the ATP7A gene, which encodes a membrane copper-transporting ATPase. Deficient activity of the ATP7A protein results in decreased intestinal absorption of copper, low copper level in serum and defective distribution of copper in tissues. The clinical symptoms are caused by decreased activities of copper-dependent enzymes and include neurodegeneration, connective tissue disorders, arterial changes and hair abnormalities. Without therapy, the disease is fatal in early infancy. Rapid diagnosis of Menkes disease and early start of copper therapy is critical for the effectiveness of treatment. We report a molecular biology-based strategy that allows early diagnosis of copper transport defects and implementation of individual therapies before the full development of pathological symptoms. Low serum copper and decreased activity of copperdependent mitochondrial cytochrome c oxidase in isolated platelets found in three patients indicated a possibility of functional defects in copper-transporting proteins, especially in the ATPA7 protein, a copper- transporting P-type ATPase. Rapid mutational screening of the ATP7A gene using high-resolution melting analysis of DNA indicated presence of mutations in the patients. Molecular investigation for mutations in the ATP7A gene revealed three nonsense mutations: c.2170C>T (p.Gln724Ter); c.3745G>T (p.Glu1249Ter); and c.3862C>T (p.Gln1288Ter). The mutation c.3745G>T (p.Glu1249Ter) has not been identified previously. Molecular analysis of the ATOX1 gene as a possible modulating factor of Menkes disease did not reveal presence of pathogenic mutations. Molecular diagnostics allowed early onset of individual therapies, adequate genetic counselling and prenatal diagnosis in the affected families.

  2. Nucleic Acid-Based Therapy Approaches for Huntington's Disease

    Directory of Open Access Journals (Sweden)

    Tatyana Vagner

    2012-01-01

    Full Text Available Huntington's disease (HD is caused by a dominant mutation that results in an unstable expansion of a CAG repeat in the huntingtin gene leading to a toxic gain of function in huntingtin protein which causes massive neurodegeneration mainly in the striatum and clinical symptoms associated with the disease. Since the mutation has multiple effects in the cell and the precise mechanism of the disease remains to be elucidated, gene therapy approaches have been developed that intervene in different aspects of the condition. These approaches include increasing expression of growth factors, decreasing levels of mutant huntingtin, and restoring cell metabolism and transcriptional balance. The aim of this paper is to outline the nucleic acid-based therapeutic strategies that have been tested to date.

  3. Mutations in the Norrie disease gene.

    Science.gov (United States)

    Schuback, D E; Chen, Z Y; Craig, I W; Breakefield, X O; Sims, K B

    1995-01-01

    We report our experience to date in mutation identification in the Norrie disease (ND) gene. We carried out mutational analysis in 26 kindreds in an attempt to identify regions presumed critical to protein function and potentially correlated with generation of the disease phenotype. All coding exons, as well as noncoding regions of exons 1 and 2, 636 nucleotides in the noncoding region of exon 3, and 197 nucleotides of 5' flanking sequence, were analyzed for single-strand conformation polymorphisms (SSCP) by polymerase chain reaction (PCR) amplification of genomic DNA. DNA fragments that showed altered SSCP band mobilities were sequenced to locate the specific mutations. In addition to three previously described submicroscopic deletions encompassing the entire ND gene, we have now identified 6 intragenic deletions, 8 missense (seven point mutations, one 9-bp deletion), 6 nonsense (three point mutations, three single bp deletions/frameshift) and one 10-bp insertion, creating an expanded repeat in the 5' noncoding region of exon 1. Thus, mutations have been identified in a total of 24 of 26 (92%) of the kindreds we have studied to date. With the exception of two different mutations, each found in two apparently unrelated kindreds, these mutations are unique and expand the genotype database. Localization of the majority of point mutations at or near cysteine residues, potentially critical in protein tertiary structure, supports a previous protein model for norrin as member of a cystine knot growth factor family (Meitinger et al., 1993). Genotype-phenotype correlations were not evident with the limited clinical data available, except in the cases of larger submicroscopic deletions associated with a more severe neurologic syndrome.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. A novel Norrie disease pseudoglioma gene mutation, c.-1_2delAAT, responsible for Norrie disease in a Chinese family

    Directory of Open Access Journals (Sweden)

    Xin-Yu Zhang

    2013-12-01

    Full Text Available AIM:To investigate the genetic findings and phenotypic characteristics of a Chinese family with Norrie disease (ND.METHODS:Molecular genetic analysis and clinical examinations were performed on a Chinese family with ND. Mutations in the Norrie disease pseudoglioma (NDP gene were detected by direct sequencing. Haplotypes were constructed and compared with the phenotypes in the family. Evolutionary comparisons and mutant open reading frame (ORF prediction were also undertaken.RESULTS:Two family members with ocular manifestations were diagnosed with ND. No signs of sensorineural hearing loss were observed in either patient, while one of them showed signs of mild mental retardation. A novel heterozygous mutation in the NDP gene, c.-1_2delAAT, was detected in both patients. The mutation and the mutation bearing haplotype co-segregated with the ND phenotype in males and was transmitted from their mothers and/or grandmothers (II:2. The male without ND did not harbor the mutation. The mutation occurred at the highly conserved nucleotides. ORF finder predicted that the mutation would lead to the production of a truncated protein that lacks the first 11 N-terminal amino acids.CONCLUSION:A novel mutation, c.-1_2delAAT in the NDP gene, was identified in a Chinese family with ND. This mutation caused ND without obvious sensorineural hearing loss. Mental disorder was found in one but not the other patients. The clinical heterogeneity in the family indicated that other genetic variants and epigenetic factors may also play a role in the disease presentation.

  5. Autosomal-dominant non-autoimmune hyperthyroidism presenting with neuromuscular symptoms.

    Science.gov (United States)

    Elgadi, Aziz; Arvidsson, C-G; Janson, Annika; Marcus, Claude; Costagliola, Sabine; Norgren, Svante

    2005-08-01

    Neuromuscular presentations are common in thyroid disease, although the mechanism is unclear. In the present study, we investigated the pathogenesis in a boy with autosomal-dominant hyperthyroidism presenting with neuromuscular symptoms. The TSHr gene was investigated by direct sequencing. Functional properties of the mutant TSHr were investigated during transient expression in COS-7 cells. Family members were investigated by clinical and biochemical examinations. Sequence analysis revealed a previously reported heterozygous missense mutation Glycine 431 for Serine in the first transmembrane segment, leading to an increased specific constitutive activity. Three additional affected family members carried the same mutation. There was no indication of autoimmune disorder. All symptoms disappeared upon treatment with thacapzol and L-thyroxine and subsequent subtotal thyroidectomy. The data imply that neuromuscular symptoms can be caused by excessive thyroid hormone levels rather than by autoimmunity.

  6. Genetic dysfunction of MT-ATP6 causes axonal Charcot-Marie-Tooth disease.

    LENUS (Irish Health Repository)

    Pitceathly, Robert D S

    2012-09-11

    Charcot-Marie-Tooth (CMT) disease is the most common inherited neuromuscular disorder, affecting 1 in 2,500 individuals. Mitochondrial DNA (mtDNA) mutations are not generally considered within the differential diagnosis of patients with uncomplicated inherited neuropathy, despite the essential requirement of ATP for axonal function. We identified the mtDNA mutation m.9185T>C in MT-ATP6, encoding the ATP6 subunit of the mitochondrial ATP synthase (OXPHOS complex V), at homoplasmic levels in a family with mitochondrial disease in whom a severe motor axonal neuropathy was a striking feature. This led us to hypothesize that mutations in the 2 mtDNA complex V subunit encoding genes, MT-ATP6 and MT-ATP8, might be an unrecognized cause of isolated axonal CMT and distal hereditary motor neuropathy (dHMN).

  7. [From gene to disease; genetic causes of hearing loss and visual impairment sometimes accompanied by vestibular problems (Usher syndrome)].

    Science.gov (United States)

    Pennings, R J E; Kremer, H; Deutman, A F; Kimberling, W J; Cremers, C W R J

    2002-12-07

    Usher syndrome is an autosomal recessively inherited disease, characterised by sensorineural hearing loss, tapetoretinal degeneration and in some cases vestibular problems. Based on the clinical heterogeneity, the disease can be classified into three clinical types (I, II and III), which have their own genetic subtypes (Usher 1A-Usher IG, Usher 2A-Usher 2C and Usher 3). The majority of the Usher type I cases are caused by mutations in the MYO7A gene (Usher 1B) while mutations in the USH2A gene (Usher 2A) are the cause of most cases of type II. Usher syndrome type III, caused by mutations in the USH3 gene, is frequently seen only in Finland.

  8. Replicative DNA polymerase mutations in cancer☆

    Science.gov (United States)

    Heitzer, Ellen; Tomlinson, Ian

    2014-01-01

    Three DNA polymerases — Pol α, Pol δ and Pol ɛ — are essential for DNA replication. After initiation of DNA synthesis by Pol α, Pol δ or Pol ɛ take over on the lagging and leading strand respectively. Pol δ and Pol ɛ perform the bulk of replication with very high fidelity, which is ensured by Watson–Crick base pairing and 3′exonuclease (proofreading) activity. Yeast models have shown that mutations in the exonuclease domain of Pol δ and Pol ɛ homologues can cause a mutator phenotype. Recently, we identified germline exonuclease domain mutations (EDMs) in human POLD1 and POLE that predispose to ‘polymerase proofreading associated polyposis’ (PPAP), a disease characterised by multiple colorectal adenomas and carcinoma, with high penetrance and dominant inheritance. Moreover, somatic EDMs in POLE have also been found in sporadic colorectal and endometrial cancers. Tumors with EDMs are microsatellite stable and show an ‘ultramutator’ phenotype, with a dramatic increase in base substitutions. PMID:24583393

  9. Recurrent De Novo Mutations Affecting Residue Arg1 38 of Pyrroline-5-Carboxylate Synthase Cause a Progeroid Form of Autosomal-Dominant Cutis Laxa

    NARCIS (Netherlands)

    Fischer-Zirnsak, Björn; Escande-Beillard, Nathalie; Ganesh, Jaya; Tan, Yu Xuan; Al Bughaili, Mohammed; Lin, Angela E.; Sahai, Inderneel; Bahena, Paulina; Reichert, Sara L.; Loh, Abigail; Wright, Graham D.; Liu, Jaron; Rahikkala, Elisa; Pivnick, Eniko K.; Choudhri, Asim F.; Krüger, Ulrike; Zemojtel, Tomasz; van Ravenswaaij-Arts, Conny; Mostafavi, Roya; Stolte-Dijkstra, Irene; Symoens, Sofie; Pajunen, Leila; Al-Gazali, Lihadh; Meierhofer, David; Robinson, Peter N.; Mundlos, Stefan; Villarroel, Camilo E.; Byers, Peter; Masri, Amira; Robertson, Stephen P.; Schwarze, Ulrike; Callewaert, Bert; Reversade, Bruno; Kornak, Uwe

    2015-01-01

    Progeroid disorders overlapping with De Barsy syndrome (DBS) are collectively denoted as autosomal-recessive cutis laxa type 3 (ARCL3). They are caused by biallelic mutations in PYCR1 or ALDH18A1, encoding pyrroline-5-carboxylate reductase 1 and pyrroline-5-carboxylate synthase (P5CS), respectively,

  10. Novel GABRG2 mutations cause familial febrile seizures

    Science.gov (United States)

    Boillot, Morgane; Morin-Brureau, Mélanie; Picard, Fabienne; Weckhuysen, Sarah; Lambrecq, Virginie; Minetti, Carlo; Striano, Pasquale; Zara, Federico; Iacomino, Michele; Ishida, Saeko; An-Gourfinkel, Isabelle; Daniau, Mailys; Hardies, Katia; Baulac, Michel; Dulac, Olivier; Leguern, Eric; Nabbout, Rima

    2015-01-01

    Objective: To identify the genetic cause in a large family with febrile seizures (FS) and temporal lobe epilepsy (TLE) and subsequently search for additional mutations in a cohort of 107 families with FS, with or without epilepsy. Methods: The cohort consisted of 1 large family with FS and TLE, 64 smaller French families recruited through a national French campaign, and 43 Italian families. Molecular analyses consisted of whole-exome sequencing and mutational screening. Results: Exome sequencing revealed a p.Glu402fs*3 mutation in the γ2 subunit of the GABAA receptor gene (GABRG2) in the large family with FS and TLE. Three additional nonsense and frameshift GABRG2 mutations (p.Arg136*, p.Val462fs*33, and p.Pro59fs*12), 1 missense mutation (p.Met199Val), and 1 exonic deletion were subsequently identified in 5 families of the follow-up cohort. Conclusions: We report GABRG2 mutations in 5.6% (6/108) of families with FS, with or without associated epilepsy. This study provides evidence that GABRG2 mutations are linked to the FS phenotype, rather than epilepsy, and that loss-of-function of GABAA receptor γ2 subunit is the probable underlying pathogenic mechanism. PMID:27066572

  11. Two novel mutations in the EYS gene are possible major causes of autosomal recessive retinitis pigmentosa in the Japanese population.

    Directory of Open Access Journals (Sweden)

    Katsuhiro Hosono

    Full Text Available Retinitis pigmentosa (RP is a highly heterogeneous genetic disease including autosomal recessive (ar, autosomal dominant (ad, and X-linked inheritance. Recently, arRP has been associated with mutations in EYS (Eyes shut homolog, which is a major causative gene for this disease. This study was conducted to determine the spectrum and frequency of EYS mutations in 100 Japanese arRP patients. To determine the prevalence of EYS mutations, all EYS exons were screened for mutations by polymerase chain reaction amplification, and sequence analysis was performed. We detected 67 sequence alterations in EYS, of which 21 were novel. Of these, 7 were very likely pathogenic mutations, 6 were possible pathogenic mutations, and 54 were predicted non-pathogenic sequence alterations. The minimum observed prevalence of distinct EYS mutations in our study was 18% (18/100, comprising 9 patients with 2 very likely pathogenic mutations and the remaining 9 with only one such mutation. Among these mutations, 2 novel truncating mutations, c.4957_4958insA (p.S1653KfsX2 and c.8868C>A (p.Y2956X, were identified in 16 patients and accounted for 57.1% (20/35 alleles of the mutated alleles. Although these 2 truncating mutations were not detected in Japanese patients with adRP or Leber's congenital amaurosis, we detected them in Korean arRP patients. Similar to Japanese arRP results, the c.4957_4958insA mutation was more frequently detected than the c.8868C>A mutation. The 18% estimated prevalence of very likely pathogenic mutations in our study suggests a major involvement of EYS in the pathogenesis of arRP in the Japanese population. Mutation spectrum of EYS in 100 Japanese patients, including 13 distinct very likely and possible pathogenic mutations, was largely different from the previously reported spectrum in patients from non-Asian populations. Screening for c.4957_4958insA and c.8868C>A mutations in the EYS gene may therefore be very effective for the genetic testing

  12. Novel ENAM and LAMB3 mutations in Chinese families with hypoplastic amelogenesis imperfecta.

    Science.gov (United States)

    Wang, Xin; Zhao, Yuming; Yang, Yuan; Qin, Man

    2015-01-01

    Amelogenesis imperfecta is a group of inherited diseases affecting the quality and quantity of dental enamel. To date, mutations in more than ten genes have been associated with non-syndromic amelogenesis imperfecta (AI). Among these, ENAM and LAMB3 mutations are known to be parts of the etiology of hypoplastic AI in human cases. When both alleles of LAMB3 are defective, it could cause junctional epidermolysis bullosa (JEB), while with only one mutant allele in the C-terminus of LAMB3, it could result in severe hypoplastic AI without skin fragility. We enrolled three Chinese families with hypoplastic autosomal-dominant AI. Despite the diagnosis falling into the same type, the characteristics of their enamel hypoplasia were different. Screening of ENAM and LAMB3 genes was performed by direct sequencing of genomic DNA from blood samples. Disease-causing mutations were identified and perfectly segregated with the enamel defects in three families: a 19-bp insertion mutation in the exon 7 of ENAM (c.406_407insTCAAAAAAGCCGACCACAA, p.K136Ifs*16) in Family 1, a single-base deletion mutation in the exon 5 of ENAM (c. 139delA, p. M47Cfs*11) in Family 2, and a LAMB3 nonsense mutation in the last exon (c.3466C>T, p.Q1156X) in Family 3. Our results suggest that heterozygous mutations in ENAM and LAMB3 genes can cause hypoplastic AI with markedly different phenotypes in Chinese patients. And these findings extend the mutation spectrum of both genes and can be used for mutation screening of AI in the Chinese population.

  13. Novel ENAM and LAMB3 mutations in Chinese families with hypoplastic amelogenesis imperfecta.

    Directory of Open Access Journals (Sweden)

    Xin Wang

    Full Text Available Amelogenesis imperfecta is a group of inherited diseases affecting the quality and quantity of dental enamel. To date, mutations in more than ten genes have been associated with non-syndromic amelogenesis imperfecta (AI. Among these, ENAM and LAMB3 mutations are known to be parts of the etiology of hypoplastic AI in human cases. When both alleles of LAMB3 are defective, it could cause junctional epidermolysis bullosa (JEB, while with only one mutant allele in the C-terminus of LAMB3, it could result in severe hypoplastic AI without skin fragility. We enrolled three Chinese families with hypoplastic autosomal-dominant AI. Despite the diagnosis falling into the same type, the characteristics of their enamel hypoplasia were different. Screening of ENAM and LAMB3 genes was performed by direct sequencing of genomic DNA from blood samples. Disease-causing mutations were identified and perfectly segregated with the enamel defects in three families: a 19-bp insertion mutation in the exon 7 of ENAM (c.406_407insTCAAAAAAGCCGACCACAA, p.K136Ifs*16 in Family 1, a single-base deletion mutation in the exon 5 of ENAM (c. 139delA, p. M47Cfs*11 in Family 2, and a LAMB3 nonsense mutation in the last exon (c.3466C>T, p.Q1156X in Family 3. Our results suggest that heterozygous mutations in ENAM and LAMB3 genes can cause hypoplastic AI with markedly different phenotypes in Chinese patients. And these findings extend the mutation spectrum of both genes and can be used for mutation screening of AI in the Chinese population.

  14. Cerebral amyloidosis associated with cognitive decline in autosomal dominant Alzheimer disease.

    Science.gov (United States)

    Wang, Fen; Gordon, Brian A; Ryman, Davis C; Ma, Shengmei; Xiong, Chengjie; Hassenstab, Jason; Goate, Alison; Fagan, Anne M; Cairns, Nigel J; Marcus, Daniel S; McDade, Eric; Ringman, John M; Graff-Radford, Neill R; Ghetti, Bernardino; Farlow, Martin R; Sperling, Reisa; Salloway, Steve; Schofield, Peter R; Masters, Colin L; Martins, Ralph N; Rossor, Martin N; Jucker, Mathias; Danek, Adrian; Förster, Stefan; Lane, Christopher A S; Morris, John C; Benzinger, Tammie L S; Bateman, Randall J

    2015-09-01

    To investigate the associations of cerebral amyloidosis with concurrent cognitive performance and with longitudinal cognitive decline in asymptomatic and symptomatic stages of autosomal dominant Alzheimer disease (ADAD). Two hundred sixty-three participants enrolled in the Dominantly Inherited Alzheimer Network observational study underwent neuropsychological evaluation as well as PET scans with Pittsburgh compound B. One hundred twenty-one participants completed at least 1 follow-up neuropsychological evaluation. Four composite cognitive measures representing global cognition, episodic memory, language, and working memory were generated using z scores from a battery of 13 standard neuropsychological tests. General linear mixed-effects models were used to investigate the relationship between baseline cerebral amyloidosis and baseline cognitive performance and whether baseline cerebral amyloidosis predicts cognitive change over time (mean follow-up 2.32 years ± 0.92, range 0.89-4.19) after controlling for estimated years from expected symptom onset, APOE ε4 allelic status, and education. In asymptomatic mutation carriers, amyloid burden was not associated with baseline cognitive functioning but was significantly predictive of longitudinal decline in episodic memory. In symptomatic mutation carriers, cerebral amyloidosis was correlated with worse baseline performance in multiple cognitive composites and predicted greater decline over time in global cognition, working memory, and Mini-Mental State Examination. Cerebral amyloidosis predicts longitudinal episodic memory decline in presymptomatic ADAD and multidomain cognitive decline in symptomatic ADAD. These findings imply that amyloidosis in the brain is an indicator of early cognitive decline and provides a useful outcome measure for early assessment and prevention treatment trials. © 2015 American Academy of Neurology.

  15. A novel IMPDH1 mutation (Arg231Pro) in a family with a severe form of autosomal dominant retinitis pigmentosa.

    Science.gov (United States)

    Grover, Sandeep; Fishman, Gerald A; Stone, Edwin M

    2004-10-01

    To define ophthalmic findings in a family with autosomal dominant retinitis pigmentosa and a novel IMPDH1 gene mutation. Genetic and observational family study. Sixteen affected members of a family with autosomal dominant retinitis pigmentosa. Ophthalmic examination, including best-corrected visual acuity (VA), slit-lamp biomicroscopy, direct and indirect ophthalmoscopy, Goldmann kinetic perimetry, and electroretinography were performed. Deoxyribonucleic acid single-strand conformation polymorphism (SSCP) analysis was done. Abnormal polymerase chain reaction products identified by SSCP analysis were sequenced bidirectionally. All affected patients had the onset of night blindness within the first decade of life. Ocular findings were characterized by diffuse retinal pigmentary degenerative changes, marked restriction of peripheral visual fields, severe loss of VA, nondetectable electroretinography amplitudes, and a high frequency of posterior subcapsular lens opacities. Affected members were observed to harbor a novel IMPDH1 gene mutation. A novel IMPDH1 gene mutation (Arg231Pro) was associated with a severe form of autosomal dominant retinitis pigmentosa. Families affected with a severe form of this genetic subtype should be investigated for a mutation in the IMPDH1 gene.

  16. Autosomal-dominant polycystic kidney disease (ADPKD) : executive summary from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference

    NARCIS (Netherlands)

    Chapman, Arlene B.; Devuyst, Olivier; Eckardt, Kai-Uwe; Gansevoort, Ron T.; Harris, Tess; Horie, Shigeo; Kasiske, Bertram L.; Odland, Dwight; Pei, York; Perrone, Ronald D.; Pirson, Yves; Schrier, Robert W.; Torra, Roser; Torres, Vicente E.; Watnick, Terry; Wheeler, David C.

    Autosomal-dominant polycystic kidney disease (ADPKD) affects up to 12 million individuals and is the fourth most common cause for renal replacement therapy worldwide. There have been many recent advances in the understanding of its molecular genetics and biology, and in the diagnosis and management

  17. Next-generation sequencing reveals a novel NDP gene mutation in a Chinese family with Norrie disease

    OpenAIRE

    Huang, Xiaoyan; Tian, Mao; Li, Jiankang; Cui, Ling; Li, Min; Zhang, Jianguo

    2017-01-01

    Purpose: Norrie disease (ND) is a rare X-linked genetic disorder, the main symptoms of which are congenital blindness and white pupils. It has been reported that ND is caused by mutations in the NDP gene. Although many mutations in NDP have been reported, the genetic cause for many patients remains unknown. In this study, the aim is to investigate the genetic defect in a five-generation family with typical symptoms of ND. Methods: To identify the causative gene, next-generation sequencing bas...

  18. Mutated PET117 causes complex IV deficiency and is associated with neurodevelopmental regression and medulla oblongata lesions

    NARCIS (Netherlands)

    Renkema, G. Herma; Visser, G.; Baertling, F.; Wintjes, L. T.; Wolters, V. M.; van Montfrans, J.; de Kort, G. A.P.; Nikkels, P. G.J.; van Hasselt, P. M.; van der Crabben, S. N.; Rodenburg, Richard J. T.

    2017-01-01

    The genetic basis of the many progressive, multi systemic, mitochondrial diseases that cause a lack of cellular ATP production is heterogeneous, with defects found both in the mitochondrial genome as well as in the nuclear genome. Many different mutations have been found in the genes encoding

  19. Mutations in CEP78 Cause Cone-Rod Dystrophy and Hearing Loss Associated with Primary-Cilia Defects.

    Science.gov (United States)

    Nikopoulos, Konstantinos; Farinelli, Pietro; Giangreco, Basilio; Tsika, Chrysanthi; Royer-Bertrand, Beryl; Mbefo, Martial K; Bedoni, Nicola; Kjellström, Ulrika; El Zaoui, Ikram; Di Gioia, Silvio Alessandro; Balzano, Sara; Cisarova, Katarina; Messina, Andrea; Decembrini, Sarah; Plainis, Sotiris; Blazaki, Styliani V; Khan, Muhammad Imran; Micheal, Shazia; Boldt, Karsten; Ueffing, Marius; Moulin, Alexandre P; Cremers, Frans P M; Roepman, Ronald; Arsenijevic, Yvan; Tsilimbaris, Miltiadis K; Andréasson, Sten; Rivolta, Carlo

    2016-09-01

    Cone-rod degeneration (CRD) belongs to the disease spectrum of retinal degenerations, a group of hereditary disorders characterized by an extreme clinical and genetic heterogeneity. It mainly differentiates from other retinal dystrophies, and in particular from the more frequent disease retinitis pigmentosa, because cone photoreceptors degenerate at a higher rate than rod photoreceptors, causing severe deficiency of central vision. After exome analysis of a cohort of individuals with CRD, we identified biallelic mutations in the orphan gene CEP78 in three subjects from two families: one from Greece and another from Sweden. The Greek subject, from the island of Crete, was homozygous for the c.499+1G>T (IVS3+1G>T) mutation in intron 3. The Swedish subjects, two siblings, were compound heterozygotes for the nearby mutation c.499+5G>A (IVS3+5G>A) and for the frameshift-causing variant c.633delC (p.Trp212Glyfs(∗)18). In addition to CRD, these three individuals had hearing loss or hearing deficit. Immunostaining highlighted the presence of CEP78 in the inner segments of retinal photoreceptors, predominantly of cones, and at the base of the primary cilium of fibroblasts. Interaction studies also showed that CEP78 binds to FAM161A, another ciliary protein associated with retinal degeneration. Finally, analysis of skin fibroblasts derived from affected individuals revealed abnormal ciliary morphology, as compared to that of control cells. Altogether, our data strongly suggest that mutations in CEP78 cause a previously undescribed clinical entity of a ciliary nature characterized by blindness and deafness but clearly distinct from Usher syndrome, a condition for which visual impairment is due to retinitis pigmentosa. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  20. A Dutch family with autosomal recessively inherited lower motor neuron predominant motor neuron disease due to optineurin mutations

    NARCIS (Netherlands)

    Beeldman, Emma; van der Kooi, Anneke J.; de Visser, Marianne; van Maarle, Merel C.; van Ruissen, Fred; Baas, Frank

    2015-01-01

    Approximately 10% of motor neuron disease (MND) patients report a familial predisposition for MND. Autosomal recessively inherited MND is less common and is most often caused by mutations in the superoxide dismutase 1 (SOD1) gene. In 2010, autosomal recessively inherited mutations in the optineurin

  1. Multi-center analysis of glucocerebrosidase mutations in Parkinson disease

    Science.gov (United States)

    Sidransky, Ellen; Nalls, Michael A.; Aasly, Jan O.; Aharon-Peretz, Judith; Annesi, Grazia; Barbosa, Egberto Reis; Bar-Shira, Anat; Berg, Daniela; Bras, Jose; Brice, Alexis; Chen, Chiung-Mei; Clark, Lorraine N.; Condroyer, Christel; De Marco, Elvira Valeria; Dürr, Alexandra; Eblan, Michael J.; Fahn, Stanley; Farrer, Matthew; Fung, Hon-Chung; Gan-Or, Ziv; Gasser, Thomas; Gershoni-Baruch, Ruth; Giladi, Nir; Griffith, Alida; Gurevich, Tanya; Januario, Cristina; Kropp, Peter; Lang, Anthony E.; Lee-Chen, Guey-Jen; Lesage, Suzanne; Marder, Karen; Mata, Ignacio F.; Mirelman, Anat; Mitsui, Jun; Mizuta, Ikuko; Nicoletti, Giuseppe; Oliveira, Catarina; Ottman, Ruth; Orr-Urtreger, Avi; Pereira, Lygia V.; Quattrone, Aldo; Rogaeva, Ekaterina; Rolfs, Arndt; Rosenbaum, Hanna; Rozenberg, Roberto; Samii, Ali; Samaddar, Ted; Schulte, Claudia; Sharma, Manu; Singleton, Andrew; Spitz, Mariana; Tan, Eng-King; Tayebi, Nahid; Toda, Tatsushi; Troiano, André; Tsuji, Shoji; Wittstock, Matthias; Wolfsberg, Tyra G.; Wu, Yih-Ru; Zabetian, Cyrus P.; Zhao, Yi; Ziegler, Shira G.

    2010-01-01

    Background Recent studies indicate an increased frequency of mutations in the gene for Gaucher disease, glucocerebrosidase (GBA), among patients with Parkinson disease. An international collaborative study was conducted to ascertain the frequency of GBA mutations in ethnically diverse patients with Parkinson disease. Methods Sixteen centers participated, including five from the Americas, six from Europe, two from Israel and three from Asia. Each received a standard DNA panel to compare genotyping results. Genotypes and phenotypic data from patients and controls were analyzed using multivariate logistic regression models and the Mantel Haenszel procedure to estimate odds ratios (ORs) across studies. The sample included 5691 patients (780 Ashkenazi Jews) and 4898 controls (387 Ashkenazi Jews). Results All 16 centers could detect GBA mutations, L444P and N370S, and the two were found in 15.3% of Ashkenazi patients with Parkinson disease (ORs = 4.95 for L444P and 5.62 for N370S), and in 3.2% of non-Ashkenazi patients (ORs = 9.68 for L444P and 3.30 for N370S). GBA was sequenced in 1642 non-Ashkenazi subjects, yielding a frequency of 6.9% for all mutations, demonstrate that limited mutation screens miss half the mutant alleles. The presence of any GBA mutation was associated with an OR of 5.43 across studies. Clinically, although phenotypes varied, subjects with a GBA mutation presented earlier, and were more likely to have affected relatives and atypical manifestations. Conclusion Data collected from sixteen centers demonstrate that there is a strong association between GBA mutations and Parkinson disease. PMID:19846850

  2. Subjective memory complaints in preclinical autosomal dominant Alzheimer disease.

    Science.gov (United States)

    Norton, Daniel J; Amariglio, Rebecca; Protas, Hillary; Chen, Kewei; Aguirre-Acevedo, Daniel C; Pulsifer, Brendan; Castrillon, Gabriel; Tirado, Victoria; Munoz, Claudia; Tariot, Pierre; Langbaum, Jessica B; Reiman, Eric M; Lopera, Francisco; Sperling, Reisa A; Quiroz, Yakeel T

    2017-10-03

    To cross-sectionally study subjective memory complaints (SMC) in autosomal dominant Alzheimer disease (ADAD). We examined self-reported and study partner-based SMC in 52 young, cognitively unimpaired individuals from a Colombian kindred with early-onset ADAD. Twenty-six carried the PSEN-1 E280A mutation, averaging 7 years of age younger than the kindred's expected clinical onset. Twenty-six were age-matched noncarriers. Participants also underwent structural MRI and cognitive testing. Self-reported SMC were greater in carriers than noncarriers ( p = 0.02). Study partner-based SMC did not differ between groups ( p = 0.21), but in carriers increased with age ( r = 0.66, p < 0.001) and decreased with hippocampal volume ( r = -0.35, p = 0.08). Cognitively unimpaired PSEN-1 carriers have elevated SMC. Self-reported SMC may be a relatively early indicator of preclinical AD, while partner- reported SMC increases later in preclinical AD, closer to clinical onset. © 2017 American Academy of Neurology.

  3. Phenotypic diversity in autosomal-dominant cone-rod dystrophy elucidated by adaptive optics retinal imaging.

    Science.gov (United States)

    Song, Hongxin; Rossi, Ethan A; Stone, Edwin; Latchney, Lisa; Williams, David; Dubra, Alfredo; Chung, Mina

    2018-01-01

    Several genes causing autosomal-dominant cone-rod dystrophy (AD-CRD) have been identified. However, the mechanisms by which genetic mutations lead to cellular loss in human disease remain poorly understood. Here we combine genotyping with high-resolution adaptive optics retinal imaging to elucidate the retinal phenotype at a cellular level in patients with AD-CRD harbouring a defect in the GUCA1A gene. Nine affected members of a four-generation AD-CRD pedigree and three unaffected first-degree relatives underwent clinical examinations including visual acuity, fundus examination, Goldmann perimetry, spectral domain optical coherence tomography and electroretinography. Genome-wide scan followed by bidirectional sequencing was performed on all affected participants. High-resolution imaging using a custom adaptive optics scanning light ophthalmoscope (AOSLO) was performed for selected participants. Clinical evaluations showed a range of disease severity from normal fundus appearance in teenaged patients to pronounced macular atrophy in older patients. Molecular genetic testing showed a mutation in in GUCA1A segregating with disease. AOSLO imaging revealed that of the two teenage patients with mild disease, one had severe disruption of the photoreceptor mosaic while the other had a normal cone mosaic. AOSLO imaging demonstrated variability in the pattern of cone and rod cell loss between two teenage cousins with early AD-CRD, who had similar clinical features and had the identical disease-causing mutation in GUCA1A . This finding suggests that a mutation in GUCA1A does not lead to the same degree of AD-CRD in all patients. Modifying factors may mitigate or augment disease severity, leading to different retinal cellular phenotypes. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Neonatal severe hyperparathyroidism caused by homozygous mutation in CASR: A rare cause of life-threatening hypercalcemia.

    Science.gov (United States)

    Murphy, Heidi; Patrick, Jessica; Báez-Irizarry, Eileen; Lacassie, Yves; Gómez, Ricardo; Vargas, Alfonso; Barkemeyer, Brian; Kanotra, Sohit; Zambrano, Regina M

    2016-04-01

    Neonatal severe hyperparathyroidism (NSHPT) is a rare, life-threatening condition that presents with severe hypercalcemia, hyperparathyroidism, and osteopenia in the newborn period. Treatment of NSHPT traditionally includes hydration and bisphosphonates; however newer calcimimetic agents, such as cinacalcet, are now being utilized to prevent or delay parathyroidectomy which is technically difficult in the newborn. Medical treatment success is related to calcium sensing receptor (CaSR) genotype. We report a 4-day-old infant who presented with hyperbilirubinemia, poor feeding, weight loss, severe hypotonia and was ultimately diagnosed with NSHPT. The patient's total serum calcium level of 36.8 mg/dL (reference range: 8.5-10.4 mg/dL) is, to our knowledge, the highest ever documented in this setting. Exome data previously obtained on the infant's parents was re-analyzed demonstrating bi-parental heterozygosity for a mutation of the CASR gene: c.206G > A, and Sanger sequencing data confirmed the patient was a homozygote for the same mutation. Though a patient with the same CaSR gene mutation described here has responded to cinacalcet, our patient did not respond and required parathyroidectomy. Though this case has previously been published as a surgical case report, a full report of the medical management and underlying genetic etiology is warranted; this case underscores the importance of disclosing bi-parental heterozygosity for a gene causing severe neonatal disease particularly when treatment is available and illustrates the need for further in vitro studies of this CaSR mutation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Mutations in the ABCA4 (ABCR) Gene Are the Major Cause of Autosomal Recessive Cone-Rod Dystrophy

    OpenAIRE

    Maugeri, Alessandra; Klevering, B. Jeroen; Rohrschneider, Klaus; Blankenagel, Anita; Brunner, Han G.; Deutman, August F.; Hoyng, Carel B.; Cremers, Frans P. M.

    2000-01-01

    The photoreceptor cell–specific ATP-binding cassette transporter gene (ABCA4; previously denoted “ABCR”) is mutated in most patients with autosomal recessive (AR) Stargardt disease (STGD1) or fundus flavimaculatus (FFM). In addition, a few cases with AR retinitis pigmentosa (RP) and AR cone-rod dystrophy (CRD) have been found to have ABCA4 mutations. To evaluate the importance of the ABCA4 gene as a cause of AR CRD, we selected 5 patients with AR CRD and 15 patients with isolated CRD, all fro...

  6. A novel mutation in ABCA1 gene causing Tangier Disease in an Italian family with uncommon neurological presentation

    Directory of Open Access Journals (Sweden)

    Marco Ceccanti

    2016-11-01

    Full Text Available Tangier disease is an autosomal recessive disorder characterized by severe reduction in HDL-cholesterol and peripheral lipid storage. We describe a family with c.5094C>A p.Tyr16980* mutation in the ABCA1 gene, clinically characterized by syringomyelic-like anesthesia, demyelinating multineuropathy and reduction in intraepidermal small fibers innervation. In the proband patient, cardiac involvement determined a myocardial infarction; lipid storage was demonstrated in gut, cornea and aortic wall. The reported ABCA1 mutation has never been described before in a Tangier family.

  7. Complete staghorn calculus in polycystic kidney disease: infection is still the cause.

    Science.gov (United States)

    Mao, Zhiguo; Xu, Jing; Ye, Chaoyang; Chen, Dongping; Mei, Changlin

    2013-08-01

    Kidney stones in patients with autosomal dominant polycystic kidney disease are common, regarded as the consequence of the combination of anatomic abnormality and metabolic risk factors. However, complete staghorn calculus is rare in polycystic kidney disease and predicts a gloomy prognosis of kidney. For general population, recent data showed metabolic factors were the dominant causes for staghorn calculus, but for polycystic kidney disease patients, the cause for staghorn calculus remained elusive. We report a case of complete staghorm calculus in a polycystic kidney disease patient induced by repeatedly urinary tract infections. This 37-year-old autosomal dominant polycystic kidney disease female with positive family history was admitted in this hospital for repeatedly upper urinary tract infection for 3 years. CT scan revealed the existence of a complete staghorn calculus in her right kidney, while there was no kidney stone 3 years before, and the urinary stone component analysis showed the composition of calculus was magnesium ammonium phosphate. UTI is an important complication for polycystic kidney disease and will facilitate the formation of staghorn calculi. As staghorn calculi are associated with kidney fibrosis and high long-term renal deterioration rate, prompt control of urinary tract infection in polycystic kidney disease patient will be beneficial in preventing staghorn calculus formation.

  8. Hereditary spastic paraplegia caused by the PLP1 'rumpshaker mutation'

    DEFF Research Database (Denmark)

    Svenstrup, Kirsten; Giraud, Geneviève; Boespflug-Tanguy, Odile

    2010-01-01

    with the 'rumpshaker mutation.' PATIENTS: A family with HSP caused by the 'rumpshaker mutation.' RESULTS: The patients showed nystagmus during infancy and had early onset of HSP. They had normal cognition, and cerebral MRI showed relatively unspecific white matter abnormalities on T2 sequences without clear...

  9. Mutations in the G6PC3 gene cause Dursun syndrome.

    Science.gov (United States)

    Banka, Siddharth; Newman, William G; Ozgül, R Koksal; Dursun, Ali

    2010-10-01

    Dursun syndrome is a triad of familial primary pulmonary hypertension, leucopenia, and atrial septal defect. Here we demonstrate that mutations in G6PC3 cause Dursun syndrome. Mutations in G6PC3 are known to also cause severe congenital neutropenia type 4. Identification of the genetic basis of Dursun syndrome expands the pre-existing knowledge about the phenotypic effects of mutations in G6PC3. We propose that Dursun syndrome should now be considered as a subset of severe congenital neutropenia type 4 with pulmonary hypertension as an important clinical feature. Copyright © 2010 Wiley-Liss, Inc.

  10. Low-level APC mutational mosaicism is the underlying cause in a substantial fraction of unexplained colorectal adenomatous polyposis cases.

    Science.gov (United States)

    Spier, Isabel; Drichel, Dmitriy; Kerick, Martin; Kirfel, Jutta; Horpaopan, Sukanya; Laner, Andreas; Holzapfel, Stefanie; Peters, Sophia; Adam, Ronja; Zhao, Bixiao; Becker, Tim; Lifton, Richard P; Perner, Sven; Hoffmann, Per; Kristiansen, Glen; Timmermann, Bernd; Nöthen, Markus M; Holinski-Feder, Elke; Schweiger, Michal R; Aretz, Stefan

    2016-03-01

    In 30-50% of patients with colorectal adenomatous polyposis, no germline mutation in the known genes APC, causing familial adenomatous polyposis, MUTYH, causing MUTYH-associated polyposis, or POLE or POLD1, causing polymerase-proofreading-associated polyposis can be identified, although a hereditary aetiology is likely. This study aimed to explore the impact of APC mutational mosaicism in unexplained polyposis. To comprehensively screen for somatic low-level APC mosaicism, high-coverage next-generation sequencing of the APC gene was performed using DNA from leucocytes and a total of 53 colorectal tumours from 20 unrelated patients with unexplained sporadic adenomatous polyposis. APC mosaicism was assumed if the same loss-of-function APC mutation was present in ≥ 2 anatomically separated colorectal adenomas/carcinomas per patient. All mutations were validated using diverse methods. In 25% (5/20) of patients, somatic mosaicism of a pathogenic APC mutation was identified as underlying cause of the disease. In 2/5 cases, the mosaic level in leucocyte DNA was slightly below the sensitivity threshold of Sanger sequencing; while in 3/5 cases, the allelic fraction was either very low (0.1-1%) or no mutations were detectable. The majority of mosaic mutations were located outside the somatic mutation cluster region of the gene. The present data indicate a high prevalence of pathogenic mosaic APC mutations below the detection thresholds of routine diagnostics in adenomatous polyposis, even if high-coverage sequencing of leucocyte DNA alone is taken into account. This has important implications for both routine work-up and strategies to identify new causative genes in this patient group. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  11. siRNA-mediated Allele-specific Silencing of a COL6A3 Mutation in a Cellular Model of Dominant Ullrich Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Véronique Bolduc

    2014-01-01

    Full Text Available Congenital muscular dystrophy type Ullrich (UCMD is a severe disorder of early childhood onset for which currently there is no effective treatment. UCMD commonly is caused by dominant-negative mutations in the genes coding for collagen type VI, a major microfibrillar component of the extracellular matrix surrounding the muscle fibers. To explore RNA interference (RNAi as a potential therapy for UCMD, we designed a series of small interfering RNA (siRNA oligos that specifically target the most common mutations resulting in skipping of exon 16 in the COL6A3 gene and tested them in UCMD-derived dermal fibroblasts. Transcript analysis by semiquantitative and quantitative reverse transcriptase PCR showed that two of these siRNAs were the most allele-specific, i.e., they efficiently knocked down the expression from the mutant allele, without affecting the normal allele. In HEK293T cells, these siRNAs selectively suppressed protein expression from a reporter construct carrying the mutation, with no or minimal suppression of the wild-type (WT construct, suggesting that collagen VI protein levels are as also reduced in an allele-specific manner. Furthermore, we found that treating UCMD fibroblasts with these siRNAs considerably improved the quantity and quality of the collagen VI matrix, as assessed by confocal microscopy. Our current study establishes RNAi as a promising molecular approach for treating dominant COL6-related dystrophies.

  12. A novel mutation causing nephronophthisis in the Lewis polycystic kidney rat localises to a conserved RCC1 domain in Nek8

    Directory of Open Access Journals (Sweden)

    McCooke John K

    2012-08-01

    Full Text Available Abstract Background Nephronophthisis (NPHP as a cause of cystic kidney disease is the most common genetic cause of progressive renal failure in children and young adults. NPHP is characterized by abnormal and/or loss of function of proteins associated with primary cilia. Previously, we characterized an autosomal recessive phenotype of cystic kidney disease in the Lewis Polycystic Kidney (LPK rat. Results In this study, quantitative trait locus analysis was used to define a ~1.6Mbp region on rat chromosome 10q25 harbouring the lpk mutation. Targeted genome capture and next-generation sequencing of this region identified a non-synonymous mutation R650C in the NIMA (never in mitosis gene a- related kinase 8 ( Nek8 gene. This is a novel Nek8 mutation that occurs within the regulator of chromosome condensation 1 (RCC1-like region of the protein. Specifically, the R650C substitution is located within a G[QRC]LG repeat motif of the predicted seven bladed beta-propeller structure of the RCC1 domain. The rat Nek8 gene is located in a region syntenic to portions of human chromosome 17 and mouse 11. Scanning electron microscopy confirmed abnormally long cilia on LPK kidney epithelial cells, and fluorescence immunohistochemistry for Nek8 protein revealed altered cilia localisation. Conclusions When assessed relative to other Nek8 NPHP mutations, our results indicate the whole propeller structure of the RCC1 domain is important, as the different mutations cause comparable phenotypes. This study establishes the LPK rat as a novel model system for NPHP and further consolidates the link between cystic kidney disease and cilia proteins.

  13. X-Linked Dyskeratosis Congenita Is Predominantly Caused by Missense Mutations in the DKC1 Gene

    OpenAIRE

    Knight, S.W.; Heiss, N.S.; Vulliamy, T.J.; Greschner, S.; Stavrides, G.; Pai, G.S.; Lestringant, G.; Varma, N.; Mason, P.J.; Dokal, I.; Poustka, A.

    1999-01-01

    Dyskeratosis congenita is a rare inherited bone marrow-failure syndrome characterized by abnormal skin pigmentation, nail dystrophy, and mucosal leukoplakia. More than 80% of patients develop bone-marrow failure, and this is the major cause of premature death. The X-linked form of the disease (MIM 305000) has been shown to be caused by mutations in the DKC1 gene. The gene encodes a 514-amino-acid protein, dyskerin, that is homologous to Saccharomyces cerevisiae Cbf5p and rat Nap57 proteins. B...

  14. Relationship between chromosomal aberration of germ cells and dominant lethal mutation in male mice after low dosage of X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mingdong, Wang; Baochen, Yang; Yuke, Jin [Bethune (N.) Medical Univ., Changchun, JL (China). Dept. of Gentics

    1989-01-01

    The relationship between chromosomal aberration adn dominant mutation in spermatocytes of late pachytene phase in male mice after a single X-irridiation was reported. It was found that the frequency of aberrant cells was correlative to the rate of fetal death, the latter was being about 2.5 times as high as the former. The frequency of dominant lethal mutation induced by X-irradiation is 2.1995x10{sup -3} gamete {center dot} 10 mGy.

  15. Ichthyosis vulgaris: the filaggrin mutation disease.

    Science.gov (United States)

    Thyssen, J P; Godoy-Gijon, E; Elias, P M

    2013-06-01

    Ichthyosis vulgaris is caused by loss-of-function mutations in the filaggrin gene (FLG) and is characterized clinically by xerosis, scaling, keratosis pilaris, palmar and plantar hyperlinearity, and a strong association with atopic disorders. According to the published studies presented in this review article, FLG mutations are observed in approximately 7·7% of Europeans and 3·0% of Asians, but appear to be infrequent in darker-skinned populations. This clinical review article provides an overview of ichthyosis vulgaris epidemiology, related disorders and pathomechanisms. Not only does ichthyosis vulgaris possess a wide clinical spectrum, recent studies suggest that carriers of FLG mutations may have a generally altered risk of developing common diseases, even beyond atopic disorders. Mechanistic studies have shown increased penetration of allergens and chemicals in filaggrin-deficient skin, and epidemiological studies have found higher levels of hand eczema, irritant contact dermatitis, nickel sensitization and serum vitamin D levels. When relevant, individuals should be informed about an increased risk of developing dermatitis when repeatedly or continuously exposed to nickel or irritants. Moreover, with our current knowledge, individuals with ichthyosis vulgaris should be protected against neonatal exposure to cats to prevent atopic dermatitis and should abstain from smoking to prevent asthma. Finally, they should be advised against excessive exposure to factors that decrease skin barrier functions and increase the risk of atopic dermatitis. © 2013 The Authors. BJD © 2013 British Association of Dermatologists.

  16. Heterozygous RTEL1 mutations are associated with familial pulmonary fibrosis.

    Science.gov (United States)

    Kannengiesser, Caroline; Borie, Raphael; Ménard, Christelle; Réocreux, Marion; Nitschké, Patrick; Gazal, Steven; Mal, Hervé; Taillé, Camille; Cadranel, Jacques; Nunes, Hilario; Valeyre, Dominique; Cordier, Jean François; Callebaut, Isabelle; Boileau, Catherine; Cottin, Vincent; Grandchamp, Bernard; Revy, Patrick; Crestani, Bruno

    2015-08-01

    Pulmonary fibrosis is a fatal disease with progressive loss of respiratory function. Defective telomere maintenance leading to telomere shortening is a cause of pulmonary fibrosis, as mutations in the telomerase component genes TERT (reverse transcriptase) and TERC (RNA component) are found in 15% of familial pulmonary fibrosis (FPF) cases. However, so far, about 85% of FPF remain genetically uncharacterised.Here, in order to identify new genetic causes of FPF, we performed whole-exome sequencing, with a candidate-gene approach, of 47 affected subjects from 35 families with FPF without TERT and TERC mutations.We identified heterozygous mutations in regulator of telomere elongation helicase 1 (RTEL1) in four families. RTEL1 is a DNA helicase with roles in DNA replication, genome stability, DNA repair and telomere maintenance. The heterozygous RTEL1 mutations segregated as an autosomal dominant trait in FPF, and were predicted by structural analyses to severely affect the function and/or stability of RTEL1. In agreement with this, RTEL1-mutated patients exhibited short telomeres in comparison with age-matched controls.Our results provide evidence that heterozygous RTEL1 mutations are responsible for FPF and, thereby, extend the clinical spectrum of RTEL1 deficiency. Thus, RTEL1 enlarges the number of telomere-associated genes implicated in FPF. Copyright ©ERS 2015.

  17. Treatable childhood neuronopathy caused by mutations in riboflavin transporter RFVT2

    Science.gov (United States)

    Foley, A. Reghan; Menezes, Manoj P.; Pandraud, Amelie; Gonzalez, Michael A.; Al-Odaib, Ahmad; Abrams, Alexander J.; Sugano, Kumiko; Yonezawa, Atsushi; Manzur, Adnan Y.; Burns, Joshua; Hughes, Imelda; McCullagh, B. Gary; Jungbluth, Heinz; Lim, Ming J.; Lin, Jean-Pierre; Megarbane, Andre; Urtizberea, J. Andoni; Shah, Ayaz H.; Antony, Jayne; Webster, Richard; Broomfield, Alexander; Ng, Joanne; Mathew, Ann A.; O’Byrne, James J.; Forman, Eva; Scoto, Mariacristina; Prasad, Manish; O’Brien, Katherine; Olpin, Simon; Oppenheim, Marcus; Hargreaves, Iain; Land, John M.; Wang, Min X.; Carpenter, Kevin; Horvath, Rita; Straub, Volker; Lek, Monkol; Gold, Wendy; Farrell, Michael O.; Brandner, Sebastian; Phadke, Rahul; Matsubara, Kazuo; McGarvey, Michael L.; Scherer, Steven S.; Baxter, Peter S.; King, Mary D.; Clayton, Peter; Rahman, Shamima; Reilly, Mary M.; Ouvrier, Robert A.; Christodoulou, John; Züchner, Stephan; Muntoni, Francesco

    2014-01-01

    Childhood onset motor neuron diseases or neuronopathies are a clinically heterogeneous group of disorders. A particularly severe subgroup first described in 1894, and subsequently called Brown-Vialetto-Van Laere syndrome, is characterized by progressive pontobulbar palsy, sensorineural hearing loss and respiratory insufficiency. There has been no treatment for this progressive neurodegenerative disorder, which leads to respiratory failure and usually death during childhood. We recently reported the identification of SLC52A2, encoding riboflavin transporter RFVT2, as a new causative gene for Brown-Vialetto-Van Laere syndrome. We used both exome and Sanger sequencing to identify SLC52A2 mutations in patients presenting with cranial neuropathies and sensorimotor neuropathy with or without respiratory insufficiency. We undertook clinical, neurophysiological and biochemical characterization of patients with mutations in SLC52A2, functionally analysed the most prevalent mutations and initiated a regimen of high-dose oral riboflavin. We identified 18 patients from 13 families with compound heterozygous or homozygous mutations in SLC52A2. Affected individuals share a core phenotype of rapidly progressive axonal sensorimotor neuropathy (manifesting with sensory ataxia, severe weakness of the upper limbs and axial muscles with distinctly preserved strength of the lower limbs), hearing loss, optic atrophy and respiratory insufficiency. We demonstrate that SLC52A2 mutations cause reduced riboflavin uptake and reduced riboflavin transporter protein expression, and we report the response to high-dose oral riboflavin therapy in patients with SLC52A2 mutations, including significant and sustained clinical and biochemical improvements in two patients and preliminary clinical response data in 13 patients with associated biochemical improvements in 10 patients. The clinical and biochemical responses of this SLC52A2-specific cohort suggest that riboflavin supplementation can

  18. Neurological disease mutations of α3 Na+,K+-ATPase: Structural and functional perspectives and rescue of compromised function.

    Science.gov (United States)

    Holm, Rikke; Toustrup-Jensen, Mads S; Einholm, Anja P; Schack, Vivien R; Andersen, Jens P; Vilsen, Bente

    2016-11-01

    Na + ,K + -ATPase creates transmembrane ion gradients crucial to the function of the central nervous system. The α-subunit of Na + ,K + -ATPase exists as four isoforms (α1-α4). Several neurological phenotypes derive from α3 mutations. The effects of some of these mutations on Na + ,K + -ATPase function have been studied in vitro. Here we discuss the α3 disease mutations as well as information derived from studies of corresponding mutations of α1 in the light of the high-resolution crystal structures of the Na + ,K + -ATPase. A high proportion of the α3 disease mutations occur in the transmembrane sector and nearby regions essential to Na + and K + binding. In several cases the compromised function can be traced to disturbance of the Na + specific binding site III. Recently, a secondary mutation was found to rescue the defective Na + binding caused by a disease mutation. A perspective is that it may be possible to develop an efficient pharmaceutical mimicking the rescuing effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A disease-causing mutation illuminates the protein membrane topology of the kidney-expressed prohibitin homology (PHB) domain protein podocin.

    Science.gov (United States)

    Schurek, Eva-Maria; Völker, Linus A; Tax, Judit; Lamkemeyer, Tobias; Rinschen, Markus M; Ungrue, Denise; Kratz, John E; Sirianant, Lalida; Kunzelmann, Karl; Chalfie, Martin; Schermer, Bernhard; Benzing, Thomas; Höhne, Martin

    2014-04-18

    Mutations in the NPHS2 gene are a major cause of steroid-resistant nephrotic syndrome, a severe human kidney disorder. The NPHS2 gene product podocin is a key component of the slit diaphragm cell junction at the kidney filtration barrier and part of a multiprotein-lipid supercomplex. A similar complex with the podocin ortholog MEC-2 is required for touch sensation in Caenorhabditis elegans. Although podocin and MEC-2 are membrane-associated proteins with a predicted hairpin-like structure and amino and carboxyl termini facing the cytoplasm, this membrane topology has not been convincingly confirmed. One particular mutation that causes kidney disease in humans (podocin(P118L)) has also been identified in C. elegans in genetic screens for touch insensitivity (MEC-2(P134S)). Here we show that both mutant proteins, in contrast to the wild-type variants, are N-glycosylated because of the fact that the mutant C termini project extracellularly. Podocin(P118L) and MEC-2(P134S) did not fractionate in detergent-resistant membrane domains. Moreover, mutant podocin failed to activate the ion channel TRPC6, which is part of the multiprotein-lipid supercomplex, indicative of the fact that cholesterol recruitment to the ion channels, an intrinsic function of both proteins, requires C termini facing the cytoplasmic leaflet of the plasma membrane. Taken together, this study demonstrates that the carboxyl terminus of podocin/MEC-2 has to be placed at the inner leaflet of the plasma membrane to mediate cholesterol binding and contribute to ion channel activity, a prerequisite for mechanosensation and the integrity of the kidney filtration barrier.

  20. Screening for Fabry Disease in Left Ventricular Hypertrophy: Documentation of a Novel Mutation

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Ana, E-mail: baptista-ana@hotmail.com; Magalhães, Pedro; Leão, Sílvia; Carvalho, Sofia; Mateus, Pedro; Moreira, Ilídio [Centro Hospitalar de Trás-os-Montes e Alto Douro, Unidade de Vila Real (Portugal)

    2015-08-15

    Fabry disease is a lysosomal storage disease caused by enzyme α-galactosidase A deficiency as a result of mutations in the GLA gene. Cardiac involvement is characterized by progressive left ventricular hypertrophy. To estimate the prevalence of Fabry disease in a population with left ventricular hypertrophy. The patients were assessed for the presence of left ventricular hypertrophy defined as a left ventricular mass index ≥ 96 g/m{sup 2} for women or ≥ 116 g/m{sup 2} for men. Severe aortic stenosis and arterial hypertension with mild left ventricular hypertrophy were exclusion criteria. All patients included were assessed for enzyme α-galactosidase A activity using dry spot testing. Genetic study was performed whenever the enzyme activity was decreased. A total of 47 patients with a mean left ventricular mass index of 141.1 g/m{sup 2} (± 28.5; 99.2 to 228.5 g/m{sup 2}] were included. Most of the patients were females (51.1%). Nine (19.1%) showed decreased α-galactosidase A activity, but only one positive genetic test − [GLA] c.785G>T; p.W262L (exon 5), a mutation not previously described in the literature. This clinical investigation was able to establish the association between the mutation and the clinical presentation. In a population of patients with left ventricular hypertrophy, we documented a Fabry disease prevalence of 2.1%. This novel case was defined in the sequence of a mutation of unknown meaning in the GLA gene with further pathogenicity study. Thus, this study permitted the definition of a novel causal mutation for Fabry disease - [GLA] c.785G>T; p.W262L (exon 5)

  1. Screening for Fabry Disease in Left Ventricular Hypertrophy: Documentation of a Novel Mutation

    International Nuclear Information System (INIS)

    Baptista, Ana; Magalhães, Pedro; Leão, Sílvia; Carvalho, Sofia; Mateus, Pedro; Moreira, Ilídio

    2015-01-01

    Fabry disease is a lysosomal storage disease caused by enzyme α-galactosidase A deficiency as a result of mutations in the GLA gene. Cardiac involvement is characterized by progressive left ventricular hypertrophy. To estimate the prevalence of Fabry disease in a population with left ventricular hypertrophy. The patients were assessed for the presence of left ventricular hypertrophy defined as a left ventricular mass index ≥ 96 g/m 2 for women or ≥ 116 g/m 2 for men. Severe aortic stenosis and arterial hypertension with mild left ventricular hypertrophy were exclusion criteria. All patients included were assessed for enzyme α-galactosidase A activity using dry spot testing. Genetic study was performed whenever the enzyme activity was decreased. A total of 47 patients with a mean left ventricular mass index of 141.1 g/m 2 (± 28.5; 99.2 to 228.5 g/m 2 ] were included. Most of the patients were females (51.1%). Nine (19.1%) showed decreased α-galactosidase A activity, but only one positive genetic test − [GLA] c.785G>T; p.W262L (exon 5), a mutation not previously described in the literature. This clinical investigation was able to establish the association between the mutation and the clinical presentation. In a population of patients with left ventricular hypertrophy, we documented a Fabry disease prevalence of 2.1%. This novel case was defined in the sequence of a mutation of unknown meaning in the GLA gene with further pathogenicity study. Thus, this study permitted the definition of a novel causal mutation for Fabry disease - [GLA] c.785G>T; p.W262L (exon 5)

  2. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis

    Science.gov (United States)

    Gomez-Ospina, Natalia; Potter, Carol J.; Xiao, Rui; Manickam, Kandamurugu; Kim, Mi-Sun; Kim, Kang Ho; Shneider, Benjamin L.; Picarsic, Jennifer L.; Jacobson, Theodora A.; Zhang, Jing; He, Weimin; Liu, Pengfei; Knisely, A. S.; Finegold, Milton J.; Muzny, Donna M.; Boerwinkle, Eric; Lupski, James R.; Plon, Sharon E.; Gibbs, Richard A.; Eng, Christine M.; Yang, Yaping; Washington, Gabriel C.; Porteus, Matthew H.; Berquist, William E.; Kambham, Neeraja; Singh, Ravinder J.; Xia, Fan; Enns, Gregory M.; Moore, David D.

    2016-01-01

    Neonatal cholestasis is a potentially life-threatening condition requiring prompt diagnosis. Mutations in several different genes can cause progressive familial intrahepatic cholestasis, but known genes cannot account for all familial cases. Here we report four individuals from two unrelated families with neonatal cholestasis and mutations in NR1H4, which encodes the farnesoid X receptor (FXR), a bile acid-activated nuclear hormone receptor that regulates bile acid metabolism. Clinical features of severe, persistent NR1H4-related cholestasis include neonatal onset with rapid progression to end-stage liver disease, vitamin K-independent coagulopathy, low-to-normal serum gamma-glutamyl transferase activity, elevated serum alpha-fetoprotein and undetectable liver bile salt export pump (ABCB11) expression. Our findings demonstrate a pivotal function for FXR in bile acid homeostasis and liver protection. PMID:26888176

  3. The Mutations Associated with Dilated Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Ruti Parvari

    2012-01-01

    Full Text Available Cardiomyopathy is an important cause of heart failure and a major indication for heart transplantation in children and adults. This paper describes the state of the genetic knowledge of dilated cardiomyopathy (DCM. The identification of the causing mutation is important since presymptomatic interventions of DCM have proven value in preventing morbidity and mortality. Additionally, as in general in genetic studies, the identification of the mutated genes has a direct clinical impact for the families and population involved. Identifying causative mutations immediately amplifies the possibilities for disease prevention through carrier screening and prenatal testing. This often lifts a burden of social isolation from affected families, since healthy family members can be assured of having healthy children. Identification of the mutated genes holds the potential to lead to the understanding of disease etiology, pathophysiology, and therefore potential therapy. This paper presents the genetic variations, or disease-causing mutations, contributing to the pathogenesis of hereditary DCM, and tries to relate these to the functions of the mutated genes.

  4. Genetic counseling for a three-generation Chinese family with Waardenburg syndrome type II associated with a rare SOX10 mutation.

    Science.gov (United States)

    Chen, Kaitian; Zong, Ling; Zhan, Yuan; Wu, Xuan; Liu, Min; Jiang, Hongyan

    2015-05-01

    Waardenburg syndrome is clinically and genetically heterogeneous. The SOX10 mutation related with Waardenburg syndrome type II is rare in Chinese. This study aimed to uncover the genetic causes of Waardenburg syndrome type II in a three-generation family to improve genetic counseling. Complete clinical and molecular evaluations were conducted in a three-generation Han Chinese family with Waardenburg syndrome type II. Targeted genetic counseling was provided to this family. We identified a rare heterozygous dominant mutation c.621C>A (p.Y207X) in SOX10 gene in this family. The premature termination codon occurs in exon 4, 27 residues downstream of the carboxyl end of the high mobility group box. Bioinformatics prediction suggested this variant to be disease-causing, probably due to nonsense-mediated mRNA decay. Useful genetic counseling was given to the family for prenatal guidance. Identification of a rare dominant heterozygous SOX10 mutation c.621C>A in this family provided an efficient way to understand the causes of Waardenburg syndrome type II and improved genetic counseling. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Congenital Neonatal Hyperthyroidism Caused by Germline Mutations in the TSH Receptor Gene: Case Report and Review of the Literature

    Science.gov (United States)

    Chester, Jeremy; Rotenstein, Deborah; Ringkananont, Usanee; Steuer, Guy; Carlin, Beatrice; Stewart, Lindsay; Grasberger, Helmut; Refetoff, Samuel

    2018-01-01

    Neonatal hyperthyroidism, a rare and serious disorder occurs in two forms. An autoimmune form associated with maternal Graves’ disease, resulting from transplacental passage of maternal thyroid-stimulating antibodies, and a nonautoimmune form, resulting from mutations in the stimulatory G protein or the thyrotropin receptor (TSHR) causing constitutive activation of intracellular signaling cascades. To date, 29 separate cases of thyrotoxicosis caused by germline mutations of the TSHR have been documented. These cases have expressed themselves in a range of clinical consequences. This report describes a new case of a newborn with nonautoimmune hyperthyroidism secondary to a constitutively active TSHR mutation (S281N) whose clinical course was complicated by severe respiratory compromise. Typical clinical findings in this disorder are discussed by a review of all previously published cases. PMID:18655531

  6. Novel mutation in the replication focus targeting sequence domain of DNMT1 causes hereditary sensory and autonomic neuropathy IE.

    Science.gov (United States)

    Yuan, Junhui; Higuchi, Yujiro; Nagado, Tatsui; Nozuma, Satoshi; Nakamura, Tomonori; Matsuura, Eiji; Hashiguchi, Akihiro; Sakiyama, Yusuke; Yoshimura, Akiko; Takashima, Hiroshi

    2013-03-01

    DNMT1, encoding DNA methyltransferase 1 (Dnmt1), is a critical enzyme which is mainly responsible for conversion of unmethylated DNA into hemimethylated DNA. To date, two phenotypes produced by DNMT1 mutations have been reported, including hereditary sensory and autonomic neuropathy (HSAN) type IE with mutations in exon 20, and autosomal dominant cerebellar ataxia, deafness, and narcolepsy caused by mutations in exon 21. We report a sporadic case in a Japanese patient with loss of pain and vibration sense, chronic osteomyelitis, autonomic system dysfunctions, hearing loss, and mild dementia, but without definite cerebellar ataxia. Electrophysiological studies revealed absent sensory nerve action potential with nearly normal motor nerve conduction studies. Brain magnetic resonance imaging revealed mild diffuse cerebral and cerebellar atrophy. Using a next-generation sequencing system, 16 candidate genes were analyzed and a novel missense mutation, c.1706A>G (p.His569Arg), was identified in exon 21 of DNMT1. Our findings suggest that mutation in exon 21 of DNMT1 may also produce a HSAN phenotype. Because all reported mutations of DNMT1 are concentrated in exons 20 and 21, which encode the replication focus targeting sequence (RFTS) domain of Dnmt1, the RFTS domain could be a mutation hot spot. © 2013 Peripheral Nerve Society.

  7. Familial knockin mutation of LRRK2 causes lysosomal dysfunction and accumulation of endogenous insoluble α-synuclein in neurons.

    Science.gov (United States)

    Schapansky, Jason; Khasnavis, Saurabh; DeAndrade, Mark P; Nardozzi, Jonathan D; Falkson, Samuel R; Boyd, Justin D; Sanderson, John B; Bartels, Tim; Melrose, Heather L; LaVoie, Matthew J

    2018-03-01

    Missense mutations in the multi-domain kinase LRRK2 cause late onset familial Parkinson's disease. They most commonly with classic proteinopathy in the form of Lewy bodies and Lewy neurites comprised of insoluble α-synuclein, but in rare cases can also manifest tauopathy. The normal function of LRRK2 has remained elusive, as have the cellular consequences of its mutation. Data from LRRK2 null model organisms and LRRK2-inhibitor treated animals support a physiological role for LRRK2 in regulating lysosome function. Since idiopathic and LRRK2-linked PD are associated with the intraneuronal accumulation of protein aggregates, a series of critical questions emerge. First, how do pathogenic mutations that increase LRRK2 kinase activity affect lysosome biology in neurons? Second, are mutation-induced changes in lysosome function sufficient to alter the metabolism of α-synuclein? Lastly, are changes caused by pathogenic mutation sensitive to reversal with LRRK2 kinase inhibitors? Here, we report that mutation of LRRK2 induces modest but significant changes in lysosomal morphology and acidification, and decreased basal autophagic flux when compared to WT neurons. These changes were associated with an accumulation of detergent-insoluble α-synuclein and increased neuronal release of α-synuclein and were reversed by pharmacologic inhibition of LRRK2 kinase activity. These data demonstrate a critical and disease-relevant influence of native neuronal LRRK2 kinase activity on lysosome function and α-synuclein homeostasis. Furthermore, they also suggest that lysosome dysfunction, altered neuronal α-synuclein metabolism, and the insidious accumulation of aggregated protein over decades may contribute to pathogenesis in this late-onset form of familial PD. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Hypothalamic digoxin, hemispheric chemical dominance, and inflammatory bowel disease.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-09-01

    The isoprenoid pathway produces three key metabolites--endogenous digoxin, dolichol, and ubiquinone. It was considered pertinent to assess the pathway in inflammatory bowel disease (ulcerative colitis and regional ileitis). Since endogenous digoxin can regulate neurotransmitter transport, the pathway and the related cascade were also assessed in individuals with differing hemispheric dominance to find out the role of hemispheric dominance in its pathogenesis. All the patients with inflammatory bowel disease were right-handed/left hemispheric dominant by the dichotic listening test. The following parameters were measured in patients with inflammatory bowel disease and in individuals with differing hemispheric dominance: (1) plasma HMG CoA reductase, digoxin, dolichol, ubiquinone, and magnesium levels; (2) tryptophan/tyrosine catabolic patterns; (3) free-radical metabolism; (4) glycoconjugate metabolism; and (5) membrane composition and RBC membrane Na+-K+ ATPase activity. Statistical analysis was done by ANOVA. In patients with inflammatory bowel disease there was elevated digoxin synthesis, increased dolichol and glycoconjugate levels, and low ubiquinone and elevated free radical levels. There was also an increase in tryptophan catabolites and a reduction in tyrosine catabolites. There was an increase in cholesterol:phospholipid ratio and a reduction in glycoconjugate level of RBC membrane in these groups of patients. Inflammatory bowel disease is associated with an upregulated isoprenoid pathway and elevated digoxin secretion from the hypothalamus. This can contribute to immune activation, defective glycoprotein bowel antigen presentation, and autoimmunity and a schizophreniform psychosis important in its pathogenesis. The biochemical patterns obtained in inflammatory bowel disease is similar to those obtained in left-handed/right hemispheric dominant individuals by the dichotic listening test. But all the patients with peptic ulcer disease were right

  9. Null missense ABCR (ABCA4) mutations in a family with stargardt disease and retinitis pigmentosa.

    Science.gov (United States)

    Shroyer, N F; Lewis, R A; Yatsenko, A N; Lupski, J R

    2001-11-01

    To determine the type of ABCR mutations that segregate in a family that manifests both Stargardt disease (STGD) and retinitis pigmentosa (RP), and the functional consequences of the underlying mutations. Direct sequencing of all 50 exons and flanking intronic regions of ABCR was performed for the STGD- and RP-affected relatives. RNA hybridization, Western blot analysis, and azido-adenosine triphosphate (ATP) labeling was used to determine the effect of disease-associated ABCR mutations in an in vitro assay system. Compound heterozygous missense mutations were identified in patients with STGD and RP. STGD-affected individual AR682-03 was compound heterozygous for the mutation 2588G-->C and a complex allele, [W1408R; R1640W]. RP-affected individuals AR682-04 and-05 were compound heterozygous for the complex allele [W1408R; R1640W] and the missense mutation V767D. Functional analysis of the mutation V767D by Western blot and ATP binding revealed a severe reduction in protein expression. In vitro analysis of ABCR protein with the mutations W1408R and R1640W showed a moderate effect of these individual mutations on expression and ATP-binding; the complex allele [W1408R; R1640W] caused a severe reduction in protein expression. These data reveal that missense ABCR mutations may be associated with RP. Functional analysis reveals that the RP-associated missense ABCR mutations are likely to be functionally null. These studies of the complex allele W1408R; R1640W suggest a synergistic effect of the individual mutations. These data are congruent with a model in which RP is associated with homozygous null mutations and with the notion that severity of retinal disease is inversely related to residual ABCR activity.

  10. Occipital horn syndrome and classical Menkes syndrome caused by deep intronic mutations, leading to the activation of ATP7A pseudo-exon

    DEFF Research Database (Denmark)

    Yasmeen, Saiqa; Lund, Katrine; De Paepe, Anne

    2014-01-01

    Menkes disease is an X-linked disorder of copper metabolism caused by mutations in the ATP7A gene. Whereas most of the patients exhibit a severe classical form, about 9% of the patients exhibit a milder form of Menkes disease. The mildest form is called occipital horn syndrome (OHS). Mutations...... patients: two patients with OHS and one patient with classical Menkes disease. The pseudo-exons were inserted between exons 10 and 11, between exons 16 and 17 and between exons 14 and 15 in the three patients, as a result of deep intronic mutations. This is the first time the activation of pseudo...... mechanism, which has hitherto been overlooked.European Journal of Human Genetics advance online publication, 4 September 2013; doi:10.1038/ejhg.2013.191....

  11. A GYS1 gene mutation is highly associated with polysaccharide storage myopathy in Cob Normand draught horses.

    Science.gov (United States)

    Herszberg, B; McCue, M E; Larcher, T; Mata, X; Vaiman, A; Chaffaux, S; Chérel, Y; Valberg, S J; Mickelson, J R; Guérin, G

    2009-02-01

    Glycogen storage diseases or glycogenoses are inherited diseases caused by abnormalities of enzymes that regulate the synthesis or degradation of glycogen. Deleterious mutations in many genes of the glyco(geno)lytic or the glycogenesis pathways can potentially cause a glycogenosis, and currently mutations in fourteen different genes are known to cause animal or human glycogenoses, resulting in myopathies and/or hepatic disorders. The genetic bases of two forms of glycogenosis are currently known in horses. A fatal neonatal polysystemic type IV glycogenosis, inherited recessively in affected Quarter Horse foals, is due to a mutation in the glycogen branching enzyme gene (GBE1). A second type of glycogenosis, termed polysaccharide storage myopathy (PSSM), is observed in adult Quarter Horses and other breeds. A severe form of PSSM also occurs in draught horses. A mutation in the skeletal muscle glycogen synthase gene (GYS1) was recently reported to be highly associated with PSSM in Quarter Horses and Belgian draught horses. This GYS1 point mutation appears to cause a gain-of-function of the enzyme and to result in the accumulation of a glycogen-like, less-branched polysaccharide in skeletal muscle. It is inherited as a dominant trait. The aim of this work was to test for possible associations between genetic polymorphisms in four candidate genes of the glycogen pathway or the GYS1 mutation in Cob Normand draught horses diagnosed with PSSM by muscle biopsy.

  12. Clinical variability in hereditary optic neuropathies: Two novel mutations in two patients with dominant optic atrophy and Wolfram syndrome.

    Science.gov (United States)

    Galvez-Ruiz, Alberto

    2015-01-01

    Dominant optic atrophy (DOA) and Wolfram syndrome share a great deal of clinical variability, including an association with hearing loss and the presence of optic atrophy at similar ages. The objective of this paper was to discuss the phenotypic variability of these syndromes with respect to the presentation of two clinical cases. We present two patients, each with either DOA or Wolfram syndrome, and contribute to the research literature through our findings of two novel mutations. The overlapping of several clinical characteristics in hereditary optic neuropathies can complicate the differential diagnosis. Future studies are needed to better determine the genotype-phenotype correlation for these diseases.

  13. A Turkish family with Sjögren-Larsson syndrome caused by a novel ALDH3A2 mutation

    Directory of Open Access Journals (Sweden)

    Faruk Incecik

    2013-01-01

    Full Text Available Sjögren-Larsson syndrome (SLS is an inherited neurocutaneous disorder caused by mutations in the aldehyde dehydrogenase family 3 member A2 (ALDH3A2 gene that encodes fatty aldehyde dehydrogenase. Affected patients display ichthyosis, mental retardation, and spastic diplegia. More than 70 mutations in ALDH3A2 have been discovered in SLS patients. We diagnosed two brothers age of 12 and 20 years with characteristic features of this rare syndrome. Magnetic resonance imaging showed demyelinating disease in both of them. We described a novel homozygous, c. 835 T > A (p.Y279N mutation in exon 6 in two patients.

  14. Dominant lethal mutations in insects with holokinetic chromosomes: irradiation of pink bollworm sperm

    International Nuclear Information System (INIS)

    Berg, G.J.; LaChance, L.E.

    1976-01-01

    Adult males of the pink bollworm, Pectinophora gosypiella (Saunders), were irradiated with 19 and 30 krad of gamma radiation and mated with virgin, untreated females. Males treated with 19 or 30 krad of gamma radiation, at 2 to 24-h or 48 to 72-h postemergence, respectively, did not show reduced mating frequency compared with the untreated male controls. However, transfer of eupyrene sperm was reduced by treating 2 to 24-h postemergent males with 30 krad. Irradiation with 19 or 30 krad did not cause complete male sterility; 12.7 and 16.8 percent, respectively, of the fertilized eggs hatched. Eggs fertilized with irradiated sperm were examined cytologically and showed a retardation of embryonic development up to the blastoderm stage. From the blastoderm stage onward, development was parallel to those eggs which were fertilized by unirradiated sperm. Of the embryos in the groups treated with 30 and 19 krad, 51.3 to 66.6 percent, respectively, developed into fully differentiated, normal-appearing, prehatch embryos. The radiation-induced dominant lethal mutations were, generally, expressed very late in embryonic development

  15. Germline mutation of CBL is associated with moyamoya disease in a child with juvenile myelomonocytic leukemia and Noonan syndrome-like disorder.

    Science.gov (United States)

    Hyakuna, Nobuyuki; Muramatsu, Hideki; Higa, Takeshi; Chinen, Yasutsugu; Wang, Xinan; Kojima, Seiji

    2015-03-01

    Germline mutations in CBL have been identified in patients with Noonan syndrome-like phenotypes, while juvenile myelomonocytic leukemia (JMML) harbors duplication of a germline CBL, resulting in acquired isodisomy. The association between moyamoya disease and Noonan syndrome carrying a PTPN11 mutation has recently been reported. We present a patient with JMML who developed moyamoya disease and neovascular glaucoma. Our patient exhibited a Noonan syndrome-like phenotype. Genetic analysis revealed acquired isodisomy and a germline heterozygous mutation in CBL. This is a rare case of CBL mutation associated with moyamoya disease. Prolonged RAS pathway signaling may cause disruption of cerebrovascular development. © 2014 Wiley Periodicals, Inc.

  16. SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis

    OpenAIRE

    Orlacchio, Antonio; Babalini, Carla; Borreca, Antonella; Patrono, Clarice; Massa, Roberto; Basaran, Sarenur; Munhoz, Renato P.; Rogaeva, Ekaterina A.; St George-Hyslop, Peter H.; Bernardi, Giorgio; Kawarai, Toshitaka

    2010-01-01

    The mutation of the spatacsin gene is the single most common cause of autosomal recessive hereditary spastic paraplegia with thin corpus callosum. Common clinical, pathological and genetic features between amyotrophic lateral sclerosis and hereditary spastic paraplegia motivated us to investigate 25 families with autosomal recessive juvenile amyotrophic lateral sclerosis and long-term survival for mutations in the spatascin gene. The inclusion criterion was a diagnosis of clinically definite ...

  17. A novel mutation in MIP associated with congenital nuclear cataract in a Chinese family.

    Science.gov (United States)

    Wang, Kai Jie; Li, Sha Sha; Yun, Bo; Ma, Wen Xian; Jiang, Tian Ge; Zhu, Si Quan

    2011-01-08

    To identify the underlying genetic defect in a Chinese family affected with autosomal dominant congenital nuclear cataract. A four-generation Chinese family with inherited nuclear cataract phenotype was recruited. Detailed family history and clinical data were recorded. All reported nuclear cataract-related candidate genes were screened for causative mutations by direct DNA sequencing. Effects of amino acid changes on the structure and function of protein were predicted by bioinformatics analysis. All affected individuals in this family showed nuclear cataracts. Sequencing of the candidate genes revealed a heterozygous c.559C>T change in the coding region of the major intrinsic protein (MIP), which caused a substitution of highly conserved arginine by cysteine at codon 187 (p.R187C). This mutation co-segregated with all affected individuals and was not observed in unaffected family members or 110 ethnically matched controls. Bioinformatics analysis showed that the mutation was predicted to affect the function and secondary structure of MIP protein. This study identified a novel disease-causing mutation p.R187C in MIP in a Chinese cataract family, expanding the mutation spectrum of MIP causing congenital cataract.

  18. A new mutation causing autosomal dominant periodic fever syndrome in a Danish family

    DEFF Research Database (Denmark)

    Weyhreter, Heike; Schwartz, Marianne; Kristensen, Tim D

    2003-01-01

    We describe four members in a family of 8 individuals over 3 generations with the autosomal dominant inherited periodic fever syndrome tumor necrosis factor receptor-associated periodic syndrome (TRAPS). The patients had recurrent episodes of fever, abdominal pain, arthritis, and rash. We examined...

  19. Founder Fukutin mutation causes Walker-Warburg syndrome in four Ashkenazi Jewish families.

    Science.gov (United States)

    Chang, Wendy; Winder, Thomas L; LeDuc, Charles A; Simpson, Lynn L; Millar, William S; Dungan, Jeffrey; Ginsberg, Norman; Plaga, Stacey; Moore, Steven A; Chung, Wendy K

    2009-06-01

    Walker-Warburg syndrome (WWS) is a genetically heterogeneous congenital muscular dystrophy caused by abnormal glycosylation of alpha-dystroglycan (alpha-DG) that is associated with brain malformations and eye anomalies. The Fukutin (FKTN) gene, which causes autosomal recessively inherited WWS is most often associated with Fukuyama congenital muscular dystrophy in Japan. We describe the clinical features of four nonconsanguinous Ashkenazi Jewish families with WWS and identify the underlying genetic basis for WWS. We screened for mutations in POMGnT1, POMT1, POMT2, and FKTN, genes causing WWS, by dideoxy sequence analysis. We identified an identical homozygous c.1167insA mutation in the FKTN gene on a common haplotype in all four families and identified 2/299 (0.7%) carriers for the c.1167insA mutation among normal American Ashkenazi Jewish adults. These data suggest that the c.1167insA FKTN mutation described by us is a founder mutation that can be used to target diagnostic testing and carrier screening in the Ashkenazi Jewish population. Copyright (c) 2009 John Wiley & Sons, Ltd.

  20. Founder Fukutin mutation causes Walker-Warburg syndrome in four Ashkenazi Jewish families†

    Science.gov (United States)

    Chang, Wendy; Winder, Thomas L.; LeDuc, Charles A.; Simpson, Lynn L.; Millar, William S.; Dungan, Jeffrey; Ginsberg, Norman; Plaga, Stacey; Moore, Steven A.; Chung, Wendy K.

    2009-01-01

    Objective Walker-Warburg syndrome (WWS) is a genetically heterogeneous congenital muscular dystrophy caused by abnormal glycosylation of α-dystroglycan (α-DG) that is associated with brain malformations and eye anomalies. The Fukutin (FKTN) gene, which causes autosomal recessively inherited WWS is most often associated with Fukuyama congenital muscular dystrophy in Japan. We describe the clinical features of four nonconsanguinous Ashkenazi Jewish families with WWS and identify the underlying genetic basis for WWS. Method We screened for mutations in POMGnT1, POMT1, POMT2, and FKTN, genes causing WWS, by dideoxy sequence analysis. Results We identified an identical homozygous c.1167insA mutation in the FKTN gene on a common haplotype in all four families and identified 2/299 (0.7%) carriers for the c.1167insA mutation among normal American Ashkenazi Jewish adults. Conclusion These data suggest that the c.1167insA FKTN mutation described by us is a founder mutation that can be used to target diagnostic testing and carrier screening in the Ashkenazi Jewish population. PMID:19266496