WorldWideScience

Sample records for disease virus vp1

  1. Purification of recombinant budgerigar fledgling disease virus VP1 capsid protein and its ability for in vitro capsid assembly

    Science.gov (United States)

    Rodgers, R. E.; Chang, D.; Cai, X.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    A recombinant system for the major capsid VP1 protein of budgerigar fledgling disease virus has been established. The VP1 gene was inserted into a truncated form of the pFlag-1 vector and expressed in Escherichia coli. The budgerigar fledgling disease virus VP1 protein was purified to near homogeneity by immunoaffinity chromatography. Fractions containing highly purified VP1 were pooled and found to constitute 3.3% of the original E. coli-expressed VP1 protein. Electron microscopy revealed that the VP1 protein was isolated as pentameric capsomeres. Electron microscopy also revealed that capsid-like particles were formed in vitro from purified VP1 capsomeres with the addition of Ca2+ ions and the removal of chelating and reducing agents.

  2. Radioimmunoassay for detection of VP1 specific neutralizing antibodies of foot and mouse disease virus

    International Nuclear Information System (INIS)

    Patzer, E.J.; Jackson, M.L.; Moore, D.M.

    1985-01-01

    A solid-phase radioimmunoassay was developed for the detection of antibodies against a specific region of the VP1 protein of the A24 and O1 serotypes of foot and mouth disease virus. The antibody titers from the radioimmunoassay showed a positive correlation with neutralizing antibody titers determined by a mouse protection assay. The specificity of the assay resides in the peptide used as antigen. The assay is rapid, reproducible and does not require the use of whole virions. (orig.)

  3. Determinants of the VP1/2A junction cleavage by the 3C protease in foot-and-mouth disease virus-infected cells.

    Science.gov (United States)

    Kristensen, Thea; Normann, Preben; Gullberg, Maria; Fahnøe, Ulrik; Polacek, Charlotta; Rasmussen, Thomas Bruun; Belsham, Graham J

    2017-03-01

    The foot-and-mouth disease virus (FMDV) capsid precursor, P1-2A, is cleaved by FMDV 3C protease to yield VP0, VP3, VP1 and 2A. Cleavage of the VP1/2A junction is the slowest. Serotype O FMDVs with uncleaved VP1-2A (having a K210E substitution in VP1; at position P2 in cleavage site) have been described previously and acquired a second site substitution (VP1 E83K) during virus rescue. Furthermore, introduction of the VP1 E83K substitution alone generated a second site change at the VP1/2A junction (2A L2P, position P2' in cleavage site). These virus adaptations have now been analysed using next-generation sequencing to determine sub-consensus level changes in the virus; this revealed other variants within the E83K mutant virus population that changed residue VP1 K210. The construction of serotype A viruses with a blocked VP1/2A cleavage site (containing K210E) has now been achieved. A collection of alternative amino acid substitutions was made at this site, and the properties of the mutant viruses were determined. Only the presence of a positively charged residue at position P2 in the cleavage site permitted efficient cleavage of the VP1/2A junction, consistent with analyses of diverse FMDV genome sequences. Interestingly, in contrast to the serotype O virus results, no second site mutations occurred within the VP1 coding region of serotype A viruses with the blocked VP1/2A cleavage site. However, some of these viruses acquired changes in the 2C protein that is involved in enterovirus morphogenesis. These results have implications for the testing of potential antiviral agents targeting the FMDV 3C protease.

  4. Coupled adaptations affecting cleavage of the VP1/2A junction by 3C protease in foot-and-mouth disease virus infected cells

    DEFF Research Database (Denmark)

    Gullberg, Maria; Polacek, Charlotta; Belsham, Graham

    The foot-and-mouth disease virus (FMDV) capsid protein precursor P1-2A is cleaved by the 3C protease to produce VP0, VP3, VP1 and 2A. It was shown previously that modification of a single amino acid residue (K210) within the VP1 protein, close to the VP1/2A cleavage site, inhibited cleavage......, introduction of the 2A L2P substitution alone, or with the VP1 K210E change, into this virus resulted in the production of viable viruses. Cells infected with viruses containing the VP1 K210E and/or the 2A L2P substitutions contained the uncleaved VP1-2A protein; the 2A L2P substitution rendered the VP1/2A...... of this junction and resulted in the production of “self-tagged” virus particles containing the 2A peptide. A second site substitution (E83K) within VP1 was also observed within the rescued virus (Gullberg et al., 2013). It is now shown that introduction of this E83K change alone into a serotype O virus resulted...

  5. Antigenic heterogeneity of capsid protein VP1 in foot-and-mouth disease virus (FMDV serotype Asia1

    Directory of Open Access Journals (Sweden)

    Alam SM

    2013-08-01

    Full Text Available SM Sabbir Alam,1 Ruhul Amin,1 Mohammed Ziaur Rahman,2 M Anwar Hossain,1 Munawar Sultana11Department of Microbiology, University of Dhaka, Dhaka, Bangladesh; 2International Centre for Diarrhoeal Disease Research, Dhaka, BangladeshAbstract: Foot and mouth disease virus (FMDV, with its seven serotypes, is a highly contagious virus infecting mainly cloven-hoofed animals. The serotype Asia1 occurs mainly in Asian regions. An in-silico approach was taken to reveal the antigenic heterogeneities within the capsid protein VP1 of Asia1. A total of 47 VP1 sequences of Asia1 isolates from different countries of South Asian regions were selected, retrieved from database, and were aligned. The structure of VP1 protein was modeled using a homology modeling approach. Several antigenic sites were identified and mapped onto the three-dimensional protein structure. Variations at these antigenic sites were analyzed by calculating the protein variability index and finding mutation combinations. The data suggested that vaccine escape mutants have derived from only few mutations at several antigenic sites. Five antigenic peptides have been identified as the least variable epitopes, with just fewer amino acid substitutions. Only a limited number of serotype Asia1 antigenic variants were found to be circulated within the South Asian region. This emphasizes a possibility of formulating synthetic vaccines for controlling foot-and-mouth disease by Asia1 serotypes.Keywords: protein modeling, antigenic sites, sequence variation

  6. Identification of H-2d Restricted T Cell Epitope of Foot-and-mouth Disease Virus Structural Protein VP1

    Directory of Open Access Journals (Sweden)

    Zhang Zhong-Wang

    2011-09-01

    Full Text Available Abstract Background Foot-and-mouth disease (FMD is a highly contagious and devastating disease affecting livestock that causes significant financial losses. Therefore, safer and more effective vaccines are required against Foot-and-mouth disease virus(FMDV. The purpose of this study is to screen and identify an H-2d restricted T cell epitope from the virus structural protein VP1, which is present with FMD. We therefore provide a method and basis for studying a specific FMDV T cell epitope. Results A codon-optimized expression method was adopted for effective expression of VP1 protein in colon bacillus. We used foot-and-mouth disease standard positive serum was used for Western blot detection of its immunogenicity. The VP1 protein was used for immunizing BALB/c mice, and spleen lymphocytes were isolated. Then, a common in vitro training stimulus was conducted for potential H-2Dd, H-2Kd and H-2Ld restricted T cell epitope on VP1 proteins that were predicted and synthesized by using a bioinformatics method. The H-2Kd restricted T cell epitope pK1 (AYHKGPFTRL and the H-2Dd restricted T cell epitope pD7 (GFIMDRFVKI were identified using lymphocyte proliferation assays and IFN-γ ELISPOT experiments. Conclusions The results of this study lay foundation for studying the FMDV immune process, vaccine development, among other things. These results also showed that, to identify viral T cell epitopes, the combined application of bioinformatics and molecular biology methods is effective.

  7. Sequence adaptations affecting cleavage of the VP1/2A junction by the 3C protease in foot-and-mouth disease virus-infected cells

    DEFF Research Database (Denmark)

    Gullberg, Maria; Polacek, Charlotta; Belsham, Graham

    2014-01-01

    The foot-and-mouth disease virus (FMDV) capsid protein precursor P1-2A is cleaved by the virus-encoded 3C protease to VP0, VP3, VP1 and 2A. It was shown previously that modification of a single amino acid residue (K210E) within the VP1 protein and close to the VP1/2A cleavage site, inhibited...... cleavage of this junction and produced 'self-tagged' virus particles. A second site substitution (E83K) within VP1 was also observed within the rescued virus [Gullberg et al. (2013). J Virol 87: , 11591-11603]. It was shown here that introduction of this E83K change alone into a serotype O virus resulted...... in the rapid accumulation of a second site substitution within the 2A sequence (L2P), which also blocked VP1/2A cleavage. This suggests a linkage between the E83K change in VP1 and cleavage of the VP1/2A junction. Cells infected with viruses containing the VP1 K210E or the 2A L2P substitutions contained...

  8. Evolutionary Analysis of Structural Protein Gene VP1 of Foot-and-Mouth Disease Virus Serotype Asia 1

    Science.gov (United States)

    Zhang, Qingxun; Liu, Xinsheng; Fang, Yuzhen; Pan, Li; Lv, Jianliang; Zhang, Zhongwang; Zhou, Peng; Ding, Yaozhong; Chen, Haotai; Shao, Junjun; Zhao, Furong; Lin, Tong; Chang, Huiyun; Zhang, Jie; Wang, Yonglu; Zhang, Yongguang

    2015-01-01

    Foot-and-mouth disease virus (FMDV) serotype Asia 1 was mostly endemic in Asia and then was responsible for economically important viral disease of cloven-hoofed animals, but the study on its selection and evolutionary process is comparatively rare. In this study, we characterized 377 isolates from Asia collected up until 2012, including four vaccine strains. Maximum likelihood analysis suggested that the strains circulating in Asia were classified into 8 different groups (groups I–VIII) or were unclassified (viruses collected before 2000). On the basis of divergence time analyses, we infer that the TMRCA of Asia 1 virus existed approximately 86.29 years ago. The result suggested that the virus had a high mutation rate (5.745 × 10−3 substitutions/site/year) in comparison to the other serotypes of FMDV VP1 gene. Furthermore, the structural protein VP1 was under lower selection pressure and the positive selection occurred at many sites, and four codons (positions 141, 146, 151, and 169) were located in known critical antigenic residues. The remaining sites were not located in known functional regions and were moderately conserved, and the reason for supporting all sites under positive selection remains to be elucidated because the power of these analyses was largely unknown. PMID:25793223

  9. Characteristics of a foot-and-mouth disease virus with a partial VP1 G-H loop deletion in experimentally infected cattle

    DEFF Research Database (Denmark)

    Fowler, Veronica; Bashiruddin, John B.; Belsham, Graham

    2014-01-01

    Previous work in cattle illustrated the protective efficacy and negative marker potential of a A serotype foot-and-mouth disease virus (FMDV) vaccine prepared from a virus lacking a significant portion of the VP1 G-H loop (termed A(−)). Since this deletion also includes the arginine-glycine-aspar......Previous work in cattle illustrated the protective efficacy and negative marker potential of a A serotype foot-and-mouth disease virus (FMDV) vaccine prepared from a virus lacking a significant portion of the VP1 G-H loop (termed A(−)). Since this deletion also includes the arginine...

  10. Protection against Foot-and-Mouth Disease Virus in Guinea Pigs via Oral Administration of Recombinant Lactobacillus plantarum Expressing VP1.

    Directory of Open Access Journals (Sweden)

    Miao Wang

    Full Text Available Mucosal vaccination is an effective strategy for generating antigen-specific immune responses against mucosal infections of foot-and-mouth disease virus (FMDV. In this study, Lactobacillus plantarum strains NC8 and WCFS1 were used as oral delivery vehicles containing a pSIP411-VP1 recombinant plasmid to initiate mucosal and systemic immune responses in guinea pigs. Guinea pigs were orally vaccinated (three doses with NC8-pSIP411, NC8-pSIP411-VP1, WCFS1-pSIP411, WCFS1-pSIP411-VP1 or milk. Animals immunized with NC8-pSIP411-VP1 and WCFS1-pSIP411-VP1 developed high levels of antigen-specific serum IgG, IgA, IgM, mucosal secretory IgA (sIgA and neutralizing antibodies, and revealed stronger cell-mediated immune responses and enhanced protection against FMDV challenge compared with control groups. The recombinant pSIP411-VP1 effectively improved immunoprotection against FMDV in guinea pigs.

  11. Identification of a conformational neutralizing epitope on the VP1 protein of type A foot-and-mouth disease virus.

    Science.gov (United States)

    Liu, Wenming; Yang, Baolin; Wang, Mingxia; Wang, Haiwei; Yang, Decheng; Ma, Wenge; Zhou, Guohui; Yu, Li

    2017-12-01

    Foot-and-mouth disease (FMD) caused by foot-and-mouth disease virus (FMDV), is a highly contagious infectious disease that affects domestic and wild cloven-hoofed animals worldwide. In recent years, outbreaks of serotype A FMD have occurred in many countries. High-affinity neutralizing antibodies against a conserved epitope could provide protective immunity against diverse subtypes of FMDV serotype A and protect against future pandemics. In this study, we generated a serotype A FMDV-specific potent neutralizing monoclonal antibody (MAb), 6C9, which recognizes a conformation-dependent epitope. MAb 6C9 potently neutralized FMDV A/XJBC/CHA/2010 with a 50% neutralization titer (NT 50 ) of 4096. Screening of a phage-displayed random 12-mer peptide library revealed that MAb 6C9 bound to phages displaying the consensus motif YxxPxGDLG, which is highly homologous to the 135 YxxPxxxxxGDLG 147 motif found in the serotype A FMDV virus-encoded structural protein VP1. To further verify the authentic epitope recognized by MAb 6C9, two FMDV A/XJBC/CHA/2010 mutant viruses, P138A and G144A, were generated using a reverse genetic system. Subsequent micro-neutralization assays and double-antibody sandwich (DAS) ELISA analyses revealed that the Pro 138 and Gly 144 residues of the conformational epitope that are recognized by 6C9 are important for MAb 6C9 binding. Importantly, the epitope 135 YxxPxxxxxGDLG 147 was highly conserved among different topotypes of serotype A FMDV strains in a sequence alignment analysis. Thus, the results of this study could have potential applications in the development of novel epitope-based vaccines and suitable a MAb-based diagnostic method for the detection of serotype A FMDV and the quantitation of antibodies against this serotype. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The Kinase STK3 Interacts with the Viral Structural Protein VP1 and Inhibits Foot-and-Mouth Disease Virus Replication

    Science.gov (United States)

    Xue, Qiao

    2017-01-01

    Foot-and-mouth disease virus (FMDV) is the etiological agent of FMD, which affects domestic and wild cloven-hoofed animals. The structural protein VP1 plays an important role in FMDV pathogenesis. However, the interacting partners of VP1 in host cells and the effects of these interactions in FMDV replication remain incompletely elucidated. Here, we identified a porcine cell protein, serine/threonine kinase 3 (STK3), which interacts with FMDV VP1 using the yeast two-hybrid system. The VP1-STK3 interaction was further confirmed by coimmunoprecipitation experiments in human embryonic kidney 293T and porcine kidney 15 (PK-15) cells. The carboxyl-terminal region (amino acids 180–214) of VP1 was essential for its interaction with STK3. The effects of overexpression and underexpressing of STK3 in PK-15 cells were assessed, and the results indicated that STK3 significantly inhibited FMDV replication. Our data expand the role of STK3 during viral infection, provide new information regarding the host cell kinases that are involved in viral replication, and identify potential targets for future antiviral strategies. PMID:29226127

  13. Determinants of the VP1/2A junction cleavage by the 3C protease in foot-and-mouth disease virus infected cells

    DEFF Research Database (Denmark)

    Kristensen, Thea; Normann, Preben; Gullberg, Maria

    2017-01-01

    . Interestingly, in contrast to the serotype O virus results, no second site mutations occurred within the VP1 coding region of serotype A viruses with the blocked VP1/2A cleavage site. However, some of these viruses acquired changes in the 2C protein that is involved in enterovirus morphogenesis. These results...

  14. Processing of the VP1/2A Junction Is Not Necessary for Production of Foot-and-Mouth Disease Virus Empty Capsids and Infectious Viruses: Characterization of “Self-Tagged” Particles

    DEFF Research Database (Denmark)

    Gullberg, Maria; Polacek, Charlotta; Bøtner, Anette

    2013-01-01

    The foot-and-mouth disease virus (FMDV) capsid protein precursor, P1-2A, is cleaved by 3Cpro to generate VP0, VP3, VP1, and the peptide 2A. The capsid proteins self-assemble into empty capsid particles or viruses which do not contain 2A. In a cell culture-adapted strain of FMDV (O1 Manisa [Lindholm...... the unmodified empty capsids in antigen enzyme-linked immunosorbent assays and integrin receptor binding assays. Furthermore, mutant viruses with uncleaved VP1-2A could be rescued in cells from full-length FMDV RNA transcripts encoding the K210E substitution in VP1. Thus, cleavage of the VP1/2A junction...

  15. Processing of the VP1/2A junction is not necessary for production of foot-and-mouth disease virus empty capsids and infectious viruses: characterization of "self-tagged" particles.

    Science.gov (United States)

    Gullberg, Maria; Polacek, Charlotta; Bøtner, Anette; Belsham, Graham J

    2013-11-01

    The foot-and-mouth disease virus (FMDV) capsid protein precursor, P1-2A, is cleaved by 3C(pro) to generate VP0, VP3, VP1, and the peptide 2A. The capsid proteins self-assemble into empty capsid particles or viruses which do not contain 2A. In a cell culture-adapted strain of FMDV (O1 Manisa [Lindholm]), three different amino acid substitutions (E83K, S134C, and K210E) were identified within the VP1 region of the P1-2A precursor compared to the field strain (wild type [wt]). Expression of the O1 Manisa P1-2A (wt or with the S134C substitution in VP1) plus 3C(pro), using a transient expression system, resulted in efficient capsid protein production and self-assembly of empty capsid particles. Removal of the 2A peptide from the capsid protein precursor had no effect on capsid protein processing or particle assembly. However, modification of E83K alone abrogated particle assembly with no apparent effect on protein processing. Interestingly, the K210E substitution, close to the VP1/2A junction, completely blocked processing by 3C(pro) at this cleavage site, but efficient assembly of "self-tagged" empty capsid particles, containing the uncleaved VP1-2A, was observed. These self-tagged particles behaved like the unmodified empty capsids in antigen enzyme-linked immunosorbent assays and integrin receptor binding assays. Furthermore, mutant viruses with uncleaved VP1-2A could be rescued in cells from full-length FMDV RNA transcripts encoding the K210E substitution in VP1. Thus, cleavage of the VP1/2A junction is not essential for virus viability. The production of such engineered self-tagged empty capsid particles may facilitate their purification for use as diagnostic reagents and vaccines.

  16. Characteristics of a foot-and-mouth disease virus with a partial VP1 G-H loop deletion in experimentally infected cattle.

    Science.gov (United States)

    Fowler, Veronica; Bashiruddin, John B; Belsham, Graham J; Stenfeldt, Carolina; Bøtner, Anette; Knowles, Nick J; Bankowski, Bartlomiej; Parida, Satya; Barnett, Paul

    2014-02-21

    Previous work in cattle illustrated the protective efficacy and negative marker potential of a A serotype foot-and-mouth disease virus (FMDV) vaccine prepared from a virus lacking a significant portion of the VP1 G-H loop (termed A(-)). Since this deletion also includes the arginine-glycine-aspartate (RGD) motif required for virus attachment to the host cell in vivo, it was hypothesised that this virus would be attentuated in naturally susceptible animals. The A(-) virus was passaged three times in cattle via needle inoculation of virus suspension delivered into the intradermal space of the tongue (intradermolingual: IDL). Included in the study were three direct contact cattle, two of which were used for the third cattle passage (by inoculation) after direct contact exposure for three days. Cattle were monitored for clinical signs and samples were collected for sequencing as well as antibody and viral genome detection by ELISA and qRT-PCR. Following needle inoculation with the A(-) virus, naïve cattle developed typical clinical signs of FMDV infection, diagnostic assays also provided positive serological and virological results. However, the contact cattle did not develop clinical signs or generate serological or virological markers indicative of FMDV infection even when the cattle were subsequently needle inoculated with 10(5) TCID50 A(-) FMDV delivered IDL following three days of direct contact exposure. The results suggest that the A(-) virus is not attentuated in cattle when inoculated IDL. This virus could be useful as a tool to understand further the natural pathogenesis, receptor usage and internalisation pathways of FMDV. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  17. Novel chimeric foot-and-mouth disease virus-like particles harboring serotype O VP1 protect guinea pigs against challenge.

    Science.gov (United States)

    Li, Haitao; Li, Zhiyong; Xie, Yinli; Qin, Xiaodong; Qi, Xingcai; Sun, Peng; Bai, Xingwen; Ma, Youji; Zhang, Zhidong

    2016-02-01

    Foot-and-mouth disease is a highly contagious, acute viral disease of cloven-hoofed animal species causing severe economic losses worldwide. Among the seven serotypes of foot-and-mouth disease virus (FMDV), serotype O is predominant, but its viral capsid is more acid sensitive than other serotypes, making it more difficult to produce empty serotype O VLPs in the low pH insect hemolymph. Therefore, a novel chimeric virus-like particle (VLP)-based candidate vaccine for serotype O FMDV was developed and characterized in the present study. The chimeric VLPs were composed of antigenic VP1 from serotype O and segments of viral capsid proteins from serotype Asia1. These VLPs elicited significantly higher FMDV-specific antibody levels in immunized mice than did the inactivated vaccine. Furthermore, the chimeric VLPs protected guinea pigs from FMDV challenge with an efficacy similar to that of the inactivated vaccine. These results suggest that chimeric VLPs have the potential for use in vaccines against serotype O FMDV infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Molecular characterization of amino acid deletion in VP1 (1D) protein and novel amino acid substitutions in 3D polymerase protein of foot and mouth disease virus subtype A/Iran87.

    Science.gov (United States)

    Esmaelizad, Majid; Jelokhani-Niaraki, Saber; Hashemnejad, Khadije; Kamalzadeh, Morteza; Lotfi, Mohsen

    2011-12-01

    The nucleotide sequence of the VP1 (1D) and partial 3D polymerase (3D(pol)) coding regions of the foot and mouth disease virus (FMDV) vaccine strain A/Iran87, a highly passaged isolate (~150 passages), was determined and aligned with previously published FMDV serotype A sequences. Overall analysis of the amino acid substitutions revealed that the partial 3D(pol) coding region contained four amino acid alterations. Amino acid sequence comparison of the VP1 coding region of the field isolates revealed deletions in the highly passaged Iranian isolate (A/Iran87). The prominent G-H loop of the FMDV VP1 protein contains the conserved arginine-glycine-aspartic acid (RGD) tripeptide, which is a well-known ligand for a specific cell surface integrin. Despite losing the RGD sequence of the VP1 protein and an Asp(26)→Glu substitution in a beta sheet located within a small groove of the 3D(pol) protein, the virus grew in BHK 21 suspension cell cultures. Since this strain has been used as a vaccine strain, it may be inferred that the RGD deletion has no critical role in virus attachment to the cell during the initiation of infection. It is probable that this FMDV subtype can utilize other pathways for cell attachment.

  19. Serotype identification and VP1 coding sequence analysis of foot-and-mouth disease virus from outbreaks in Eastern and Northern Uganda in 2008/9

    DEFF Research Database (Denmark)

    Kasambula, L.; Belsham, Graham; Siegismund, H. R.

    2012-01-01

    regions, and the presence of FMDV RNA in these samples was determined using a standard diagnostic RT-PCR assay. From the total of 27 positive samples, the VP1 coding region was amplified and sequenced. Each of these sequences showed >99% identity to each other, and just five distinct sequences were...

  20. The pH Stability of Foot-and-Mouth Disease Virus Particles Is Modulated by Residues Located at the Pentameric Interface and in the N Terminus of VP1.

    Science.gov (United States)

    Caridi, Flavia; Vázquez-Calvo, Angela; Sobrino, Francisco; Martín-Acebes, Miguel A

    2015-05-01

    The picornavirus foot-and-mouth disease virus (FMDV) is the etiological agent of a highly contagious disease that affects important livestock species. The FMDV capsid is highly acid labile, and viral particles lose infectivity due to their disassembly at pH values slightly below neutrality. This acid sensitivity is related to the mechanism of viral uncoating and genome penetration from endosomes. In this study, we have analyzed the molecular basis of FMDV acid-induced disassembly by isolating and characterizing a panel of novel FMDV mutants differing in acid sensitivity. Amino acid replacements altering virion stability were preferentially distributed in two different regions of the capsid: the N terminus of VP1 and the pentameric interface. Even more, the acid labile phenotype induced by a mutation located at the pentameric interface in VP3 could be compensated by introduction of an amino acid substitution in the N terminus of VP1. These results indicate that the acid sensitivity of FMDV can be considered a multifactorial trait and that virion stability is the fine-tuned product of the interaction between residues from different capsid proteins, in particular those located within the N terminus of VP1 or close to the pentameric interface. The viral capsid protects the viral genome from environmental factors and contributes to virus dissemination and infection. Thus, understanding of the molecular mechanisms that modulate capsid stability is of interest for the basic knowledge of the biology of viruses and as a tool to improve the stability of conventional vaccines based on inactivated virions or empty capsids. Using foot-and-mouth disease virus (FMDV), which displays a capsid with extreme acid sensitivity, we have performed a genetic study to identify the molecular determinants involved in capsid stability. A panel of FMDV mutants with differential sensitivity to acidic pH was generated and characterized, and the results showed that two different regions of FMDV

  1. In vivo interactions between the proteins of infectious bursal disease virus: capsid protein VP3 interacts with the RNA dependent polymerase VP1

    NARCIS (Netherlands)

    Tacken, M.G.J.; Rottier, P.J.M.; Gielkens, A.L.J.; Peeters, B.P.H.

    2000-01-01

    Little is known about the intermolecular interactions between the viral proteins of infectious bursal disease virus (IBDV). By using the yeast two-hybrid system, which allows the detection of protein-protein interactions in vivo, all possible interactions were tested by fusing the viral proteins to

  2. Interactions in vivo between the proteins of infectious bursal disease virus: capsid protein VP3 interacts with the RNA-dependent polymerase, VP1

    NARCIS (Netherlands)

    Tacken, M.G.J.; Rottier, P.J.M.; Gielkens, A.L.J.; Peeters, B.P.H.

    2000-01-01

    Little is known about the intermolecular interactions between the viral proteins of infectious bursal disease virus (IBDV). By using the yeast two-hybrid system, which allows the detection of protein-protein interactions in vivo, all possible interactions were tested by fusing the viral proteins to

  3. Expression of Recombinant Pichia pastoris VP1-2A and Multi-epitopes of Type O Foot-and-Mouth Disease Virus%O型口蹄疫病毒VP1-2A基因及多表位片段在毕赤酵母中的表达

    Institute of Scientific and Technical Information of China (English)

    袭莹; 朱战波; 金宁一; 胡博; 任静强; 刘存霞; 张军; 王鹤; 鲁会军

    2010-01-01

    利用毕赤酵母表达系统串联表达O型口蹄疫病毒(FMDV)VP1-2A基因及O型FMDV多表位片段(CTE),将O型FMDV vp1基因和CTE多表位片段克隆到毕赤酵母分泌性表达载体pPIC9K中,构建重组表达载体pPIC9K-VP1-2A-CTE并测序.经Sal I线性化后,通过电击转化法将重组质粒导入毕赤酵母GS115中,并对表达产物用SDS-PAGE和Western blot进行分析.重组质粒通过电转进入毕赤酵母后,能表达相对分子量为41.8KD(CTE)和26.5KD(VP1-2A)的蛋白,经Western blot分析,两种蛋白均具有抗原性.在毕赤酵母中成功地表达O型FMDV VP1-2A蛋白和多表位片段(CTE),为研制新型口蹄疫的基因工程疫苗奠定了基础.

  4. A proposed vestigial translation initiation motif in VP1 of hepatitis A virus.

    Science.gov (United States)

    Kang, Jeong-Ah; Funkhouser, Ann W

    2002-07-01

    The internal ribosome entry site (IRES) of picornaviruses has a 3' polypyrimidine tract (PPT) 16-24 bases upstream of an AUG triplet (PPT/AUG motif). This motif is critical in determining the efficiency of cap-independent translation. HAV has a conserved PPT/AUG motif consisting of a nine base sequence (AGGUUUUUC) 23 bases upstream of the preferred AUG start codon. This HAV-specific PPT/AUG motif is repeated and conserved in VP1 of HAV, but not of other picornaviruses. We proposed that the PPT/AUG motif in the open reading frame initiated translation and/or had an impact on the life cycle of the virus. In vitro translation of mutant bicistronic mRNAs and growth in cell culture of mutant viruses provided no evidence that the VP1 PPT/AUG motif had any impact on either translation or growth. HAV differs from other picornaviruses in its inefficient growth in cell culture. Since the HAV-specific PPT/AUG motif is found in only 1 in 300,000 reported viral sequences outside the hepatovirus genus, this motif may be a vestigial translation initiation element and may have played a role in determining the unusual phenotype of HAV.

  5. Recombinant VP1 protein as a potential marker for the diagnosis of acute hepatitis A virus infection.

    Science.gov (United States)

    da Silva Junior, Haroldo Cid; da Silva, Edimilson Domingos; Lewis-Ximenez de Souza Rodrigues, Lia Laura; Medeiros, Marco Alberto

    2017-07-01

    Since hepatitis A virus (HAV) production is time-consuming and expensive, the use of recombinant proteins may represent an alternative source of antigens for diagnostic purposes. The present study aimed to express, purify and evaluate the potential of recombinant VP1 protein (rVP1) as a marker for the diagnosis of acute HAV infection. The rVP1 was expressed and purified successfully from Escherichia coli. The purified rVP1 was used to establish an in-house enzyme-linked immunosorbent assay (ELISA-rVP1) for detection of IgM antibodies in sera from HAV-positive patients. For a cut-off point of 0.351, the sensitivity and specificity of ELISA-rVP1 were 100.0% and 95.0%, respectively. These results indicate that rVP1 may be a useful antigen for detection of IgM antibodies against HAV. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. High yield expression in a recombinant E. coli of a codon optimized chicken anemia virus capsid protein VP1 useful for vaccine development

    Directory of Open Access Journals (Sweden)

    You Bang-Jau

    2011-07-01

    Full Text Available Abstract Background Chicken anemia virus (CAV, the causative agent chicken anemia, is the only member of the genus Gyrovirus of the Circoviridae family. CAV is an immune suppressive virus and causes anemia, lymph organ atrophy and immunodeficiency. The production and biochemical characterization of VP1 protein and its use in a subunit vaccine or as part of a diagnostic kit would be useful to CAV infection prevention. Results Significantly increased expression of the recombinant full-length VP1 capsid protein from chicken anemia virus was demonstrated using an E. coli expression system. The VP1 gene was cloned into various different expression vectors and then these were expressed in a number of different E. coli strains. The expression of CAV VP1 in E. coli was significantly increased when VP1 was fused with GST protein rather than a His-tag. By optimizing the various rare amino acid codons within the N-terminus of the VP1 protein, the expression level of the VP1 protein in E. coli BL21(DE3-pLysS was further increased significantly. The highest protein expression level obtained was 17.5 g/L per liter of bacterial culture after induction with 0.1 mM IPTG for 2 h. After purification by GST affinity chromatography, the purified full-length VP1 protein produced in this way was demonstrated to have good antigenicity and was able to be recognized by CAV-positive chicken serum in an ELISA assay. Conclusions Purified recombinant VP1 protein with the gene's codons optimized in the N-terminal region has potential as chimeric protein that, when expressed in E. coli, may be useful in the future for the development of subunit vaccines and diagnostic tests.

  7. Evolutionary trajectory of the VP1 gene of human enterovirus 71 genogroup B and C viruses

    NARCIS (Netherlands)

    S.M.G. van der Sanden (Sabine); H.G.A.M. van der Avoort (Harrie); P. Lemey (Philippe); G. Uslu (Gökhan); M.P.G. Koopmans D.V.M. (Marion)

    2010-01-01

    textabstractFrom 1963 to 1986, human enterovirus 71 (HEV71) infections in the Netherlands were successively caused by viruses of subgenogroups B0, B1 and B2. A genogroup shift occurred in 1987, after which viruses of subgenogroups C1 and C2 were detected exclusively. This is in line with HEV71

  8. Point mutation in calcium-binding domain of mouse polyomavirus VP1 protein does not prevent virus-like particle formation, but changes VP1 interactions with Saccharomyces cerevisiae cell structures

    Czech Academy of Sciences Publication Activity Database

    Adamec, T.; Palková, Zdena; Velková, K.; Štokrová, Jitka; Forstová, J.

    2005-01-01

    Roč. 5, 4-5 (2005), s. 331-340 ISSN 1567-1356 R&D Projects: GA ČR GA204/03/0593 Institutional research plan: CEZ:AV0Z5052915 Keywords : polyomavirus VP1 * Saccharomyces cerevisiae * heterologous expression Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.477, year: 2005

  9. Expression and immunogenicity of novel subunit enterovirus 71 VP1 antigens

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Juan [China-US Vaccine Research Center, The First Affiliated Hospital, Nanjing Medical University (China); Department of Microbiology and Immunology, Nanjing Medical University (China); Wang, Shixia [China-US Vaccine Research Center, The First Affiliated Hospital, Nanjing Medical University (China); Department of Medicine, University of Massachusetts Medical School (United States); Gan, Weihua [Department of Pediatrics, The Second Affiliated Hospital, Nanjing Medical University (China); Zhang, Wenhong [Department of Infectious Diseases, Huashan Hospital, Fudan University (China); Ju, Liwen [School of Public Health, Fudan University (China); Huang, Zuhu [Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University (China); China-US Vaccine Research Center, The First Affiliated Hospital, Nanjing Medical University (China); Lu, Shan, E-mail: shan.lu@umassmed.edu [Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University (China); China-US Vaccine Research Center, The First Affiliated Hospital, Nanjing Medical University (China); Department of Medicine, University of Massachusetts Medical School (United States)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer EV71 is a major emerging infectious disease in many Asian countries. Black-Right-Pointing-Pointer Inactivated EV71 vaccines are in clinical studies but their safety and efficacy are unknown. Black-Right-Pointing-Pointer Developing subunit based EV71 vaccines is significant and novel antigen design is needed. Black-Right-Pointing-Pointer DNA immunization is an efficient tool to test the immunogenicity of VP1 based EV71 vaccines. Black-Right-Pointing-Pointer Multiple VP1 antigens are developed showing immunogenic potential. -- Abstract: Hand, foot, and mouth disease (HFMD) is a common viral illness in young children. HFMD is caused by viruses belonging to the enterovirus genus of the picornavirus family. Recently, enterovirus 71 (EV71) has emerged as a virulent agent for HFMD with severe clinical outcomes. In the current report, we conducted a pilot antigen engineering study to optimize the expression and immunogenicity of subunit VP1 antigen for the design of EV71 vaccines. DNA immunization was adopted as a simple technical approach to test different designs of VP1 antigens without the need to express VP1 protein in vitro first. Our studies indicated that the expression and immunogenicity of VP1 protein can be improved with alternated VP1 antigen designs. Data presented in the current report revealed novel pathways to optimize the design of VP1 antigen-based EV71 vaccines.

  10. Expression and immunogenicity of novel subunit enterovirus 71 VP1 antigens

    International Nuclear Information System (INIS)

    Xu, Juan; Wang, Shixia; Gan, Weihua; Zhang, Wenhong; Ju, Liwen; Huang, Zuhu; Lu, Shan

    2012-01-01

    Highlights: ► EV71 is a major emerging infectious disease in many Asian countries. ► Inactivated EV71 vaccines are in clinical studies but their safety and efficacy are unknown. ► Developing subunit based EV71 vaccines is significant and novel antigen design is needed. ► DNA immunization is an efficient tool to test the immunogenicity of VP1 based EV71 vaccines. ► Multiple VP1 antigens are developed showing immunogenic potential. -- Abstract: Hand, foot, and mouth disease (HFMD) is a common viral illness in young children. HFMD is caused by viruses belonging to the enterovirus genus of the picornavirus family. Recently, enterovirus 71 (EV71) has emerged as a virulent agent for HFMD with severe clinical outcomes. In the current report, we conducted a pilot antigen engineering study to optimize the expression and immunogenicity of subunit VP1 antigen for the design of EV71 vaccines. DNA immunization was adopted as a simple technical approach to test different designs of VP1 antigens without the need to express VP1 protein in vitro first. Our studies indicated that the expression and immunogenicity of VP1 protein can be improved with alternated VP1 antigen designs. Data presented in the current report revealed novel pathways to optimize the design of VP1 antigen-based EV71 vaccines.

  11. A highly conserved amino acid in VP1 regulates maturation of enterovirus 71.

    Directory of Open Access Journals (Sweden)

    Yong-Xin Zhang

    2017-09-01

    Full Text Available Enterovirus 71 (EV71 is the major causative agent of hand, foot and mouth disease (HFMD in children, causing severe clinical outcomes and even death. Here, we report an important role of the highly conserved alanine residue at position 107 in the capsid protein VP1 (VP1A107 in the efficient replication of EV71. Substitutional mutations of VP1A107 significantly diminish viral growth kinetics without significant effect on viral entry, expression of viral genes and viral production. The results of mechanistic studies reveal that VP1A107 regulates the efficient cleavage of the VP0 precursor during EV71 assembly, which is required, in the next round of infection, for the transformation of the mature virion (160S into an intermediate or A-particle (135S, a key step of virus uncoating. Furthermore, the results of molecular dynamic simulations and hydrogen-bond networks analysis of VP1A107 suggest that flexibility of the VP1 BC loop or the region surrounding the VP1107 residue directly correlates with viral infectivity. It is possible that sufficient flexibility of the region surrounding the VP1107 residue favors VP0 conformational change that is required for the efficient cleavage of VP0 as well as subsequent viral uncoating and viral replication. Taken together, our data reveal the structural role of the highly conserved VP1A107 in regulating EV71 maturation. Characterization of this novel determinant of EV71 virulence would promote the study on pathogenesis of Enteroviruses.

  12. Recombinant VP1, an Akt inhibitor, suppresses progression of hepatocellular carcinoma by inducing apoptosis and modulation of CCL2 production.

    Directory of Open Access Journals (Sweden)

    Tai-An Chen

    Full Text Available BACKGROUND: The application of viral elements in tumor therapy is one facet of cancer research. Recombinant capsid protein VP1 (rVP1 of foot-and-mouth disease virus has previously been demonstrated to induce apoptosis in cancer cell lines. Here, we aim to further investigate its apoptotic mechanism and possible anti-metastatic effect in murine models of hepatocellular carcinoma (HCC, one of the most common human cancers worldwide. METHODOLOGY/PRINCIPAL FINDINGS: Treatment with rVP1 inhibited cell proliferation in two murine HCC cell lines, BNL and Hepa1-6, with IC₅₀ values in the range of 0.1-0.2 µM. rVP1 also induced apoptosis in these cells, which was mediated by Akt deactivation and dissociation of Ku70-Bax, and resulted in conformational changes and mitochondrial translocation of Bax, leading to the activation of caspases-9, -3 and -7. Treatment with 0.025 µM rVP1, which did not affect the viability of normal hepatocytes, suppressed cell migration and invasion via attenuating CCL2 production. The production of CCL2 was modulated by Akt-dependent NF-κB activation that was decreased after rVP1 treatment. The in vivo antitumor effects of rVP1 were assessed in both subcutaneous and orthotopic mouse models of HCC in immune-competent BALB/c mice. Intratumoral delivery of rVP1 inhibited subcutaneous tumor growth as a result of increased apoptosis. Intravenous administration of rVP1 in an orthotopic HCC model suppressed tumor growth, inhibited intra-hepatic metastasis, and prolonged survival. Furthermore, a decrease in the serum level of CCL2 was observed in rVP1-treated mice. CONCLUSIONS/SIGNIFICANCE: The data presented herein suggest that, via inhibiting Akt phosphorylation, rVP1 suppresses the growth, migration, and invasion of murine HCC cells by inducing apoptosis and attenuating CCL2 production both in vitro and in vivo. Recombinant protein VP1 thus has the potential to be developed as a new therapeutic agent for HCC.

  13. The Receptor-Binding Domain in the VP1u Region of Parvovirus B19.

    Science.gov (United States)

    Leisi, Remo; Di Tommaso, Chiarina; Kempf, Christoph; Ros, Carlos

    2016-02-24

    Parvovirus B19 (B19V) is known as the human pathogen causing the mild childhood disease erythema infectiosum. B19V shows an extraordinary narrow tissue tropism for erythroid progenitor cells in the bone marrow, which is determined by a highly restricted uptake. We have previously shown that the specific internalization is mediated by the interaction of the viral protein 1 unique region (VP1u) with a yet unknown cellular receptor. To locate the receptor-binding domain (RBD) within the VP1u, we analyzed the effect of truncations and mutations on the internalization capacity of the recombinant protein into UT7/Epo cells. Here we report that the N-terminal amino acids 5-80 of the VP1u are necessary and sufficient for cellular binding and internalization; thus, this N-terminal region represents the RBD required for B19V uptake. Using site-directed mutagenesis, we further identified a cluster of important amino acids playing a critical role in VP1u internalization. In silico predictions and experimental results suggest that the RBD is structured as a rigid fold of three α-helices. Finally, we found that dimerization of the VP1u leads to a considerably enhanced cellular binding and internalization. Taken together, we identified the RBD that mediates B19V uptake and mapped functional and structural motifs within this sequence. The findings reveal insights into the uptake process of B19V, which contribute to understand the pathogenesis of the infection and the neutralization of the virus by the immune system.

  14. Comparing Enterovirus 71 with Coxsackievirus A16 by analyzing nucleotide sequences and antigenicity of recombinant proteins of VP1s and VP4s

    Directory of Open Access Journals (Sweden)

    Sun Yu

    2011-11-01

    Full Text Available Abstract Background Enterovirus 71 (EV71 and Coxsackievirus A16 (CA16 are two major etiological agents of Hand, Foot and Mouth Disease (HFMD. EV71 is associated with severe cases but not CA16. The mechanisms contributed to the different pathogenesis of these two viruses are unknown. VP1 and VP4 are two major structural proteins of these viruses, and should be paid close attention to. Results The sequences of vp1s from 14 EV71 and 14 CA16, and vp4s from 10 EV71 and 1 CA16 isolated in this study during 2007 to 2009 HFMD seasons were analyzed together with the corresponding sequences available in GenBank using DNAStar and MEGA 4.0. Phylogenetic analysis of complete vp1s or vp4s showed that EV71 isolated in Beijing belonged to C4 and CA16 belonged to lineage B2 (lineage C. VP1s and VP4s from 4 strains of viruses expressed in E. coli BL21 cells were used to detect IgM and IgG in human sera by Western Blot. The detection of IgM against VP1s of EV71 and CA16 showed consistent results with current infection, while none of the sera were positive against VP4s of EV71 and CA16. There was significant difference in the positive rates between EV71 VP1 and CA16 VP1 (χ2 = 5.02, P 2 = 15.30, P 2 = 26.47, P 2 = 16.78, P Conclusions EV71 and CA16 were highly diverse in the nucleotide sequences of vp1s and vp4s. The sera positive rates of VP1 and VP4 of EV71 were lower than those of CA16 respectively, which suggested a less exposure rate to EV71 than CA16 in Beijing population. Human serum antibodies detected by Western blot using VP1s and VP4s as antigen indicated that the immunological reaction to VP1 and VP4 of both EV71 and CA16 was different.

  15. Production of a recombinant capsid protein VP1 from a newly described polyomavirus (RacPyV for downstream use in virus characterization

    Directory of Open Access Journals (Sweden)

    Molly E. Church

    2016-06-01

    Full Text Available Here we describe the methods for production of a recombinant viral capsid protein and subsequent use in an indirect enzyme linked immunosorbent assay (ELISA, and for use in production of a rabbit polyclonal antibody. These reagents were utilized in development and optimization of an ELISA, which established the extent of exposure of free ranging raccoons to a newly described polyomavirus (RacPyV [1]. Production of a polyclonal antibody has allowed for further characterization of RacPyV, including immunohistochemistry and immunocytochemistry techniques, in order to answer questions about pathogenesis of this virus.

  16. Foot-and-Mouth Disease Virus Serotype SAT 3 in Long-Horned Ankole Calf, Uganda

    DEFF Research Database (Denmark)

    Dhikusooka, Moses Tefula; Tjørnehøj, Kirsten; Ayebazibwe, Chrisostom

    2015-01-01

    After a 16-year interval, foot-and-mouth disease virus serotype SAT 3 was isolated in 2013 from an apparently healthy long-horned Ankole calf that grazed close to buffalo in Uganda. The emergent virus strain is ≈20% different in nucleotide sequence (encoding VP1 [viral protein 1]) from its closest...

  17. Induction of protective immunity in swine by recombinant bamboo mosaic virus expressing foot-and-mouth disease virus epitopes

    Directory of Open Access Journals (Sweden)

    Lin Na-Sheng

    2007-09-01

    Full Text Available Abstract Background Plant viruses can be employed as versatile vectors for the production of vaccines by expressing immunogenic epitopes on the surface of chimeric viral particles. Although several viruses, including tobacco mosaic virus, potato virus X and cowpea mosaic virus, have been developed as vectors, we aimed to develop a new viral vaccine delivery system, a bamboo mosaic virus (BaMV, that would carry larger transgene loads, and generate better immunity in the target animals with fewer adverse environmental effects. Methods We engineered the BaMV as a vaccine vector expressing the antigenic epitope(s of the capsid protein VP1 of foot-and-mouth disease virus (FMDV. The recombinant BaMV plasmid (pBVP1 was constructed by replacing DNA encoding the 35 N-terminal amino acid residues of the BaMV coat protein with that encoding 37 amino acid residues (T128-N164 of FMDV VP1. Results The pBVP1 was able to infect host plants and to generate a chimeric virion BVP1 expressing VP1 epitopes in its coat protein. Inoculation of swine with BVP1 virions resulted in the production of anti-FMDV neutralizing antibodies. Real-time PCR analysis of peripheral blood mononuclear cells from the BVP1-immunized swine revealed that they produced VP1-specific IFN-γ. Furthermore, all BVP1-immunized swine were protected against FMDV challenge. Conclusion Chimeric BaMV virions that express partial sequence of FMDV VP1 can effectively induce not only humoral and cell-mediated immune responses but also full protection against FMDV in target animals. This BaMV-based vector technology may be applied to other vaccines that require correct expression of antigens on chimeric viral particles.

  18. Ebola (Ebola Virus Disease)

    Science.gov (United States)

    ... Controls Cancel Submit Search the CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is not ... gov . Recommend on Facebook Tweet Share Compartir Ebola Virus Disease (EVD) is a rare and deadly disease ...

  19. Evolutionary analysis of serotype A foot-and-mouth disease viruses circulating in Pakistan and Afghanistan during 2002–2009

    DEFF Research Database (Denmark)

    Jamal, Syed Muhammad; Ferrari, Giancarlo; Ahmed, Safia

    2011-01-01

    Foot-and-mouth disease (FMD) is endemic in Pakistan and Afghanistan. Three different serotypes of the virus, namely O, A and Asia-1, are responsible for the outbreaks of this disease in these countries. In the present study, the nucleotide-coding sequences for the VP1 capsid protein (69 samples) ...

  20. High prevalence of human polyomavirus JC VP1 gene sequences in pediatric malignancies.

    Science.gov (United States)

    Shiramizu, B; Hu, N; Frisque, R J; Nerurkar, V R

    2007-05-15

    The oncogenic potential of human polyomavirus JC (JCV), a ubiquitous virus that establishes infection during early childhood in approximately 70% of the human population, is unclear. As a neurotropic virus, JCV has been implicated in pediatric central nervous system tumors and has been suggested to be a pathogenic agent in pediatric acute lymphoblastic leukemia. Recent studies have demonstrated JCV gene sequences in pediatric medulloblastomas and among patients with colorectal cancer. JCV early protein T-antigen (TAg) can form complexes with cellular regulatory proteins and thus may play a role in tumorigenesis. Since JCV is detected in B-lymphocytes, a retrospective analysis of pediatric B-cell and non-B-cell malignancies as well as other HIV-associated pediatric malignancies was conducted for the presence of JCV gene sequences. DNA was extracted from 49 pediatric malignancies, including Hodgkin disease, non-Hodgkin lymphoma, large cell lymphoma and sarcoma. Polymerase chain reaction (PCR) was conducted using JCV specific nested primer sets for the transcriptional control region (TCR), TAg, and viral capsid protein 1 (VP1) genes. Southern blot analysis and DNA sequencing were used to confirm specificity of the amplicons. A 215-bp region of the JCV VP1 gene was amplified from 26 (53%) pediatric tumor tissues. The JCV TCR and two JCV gene regions were amplified from a leiomyosarcoma specimen from an HIV-infected patient. The leiomyosarcoma specimen from the cecum harbored the archetype strain of JCV. Including the leiomyosarcoma specimen, three of five specimens sequenced were typed as JCV genotype 2. The failure to amplify JCV TCR, and TAg gene sequences in the presence of JCV VP1 gene sequence is surprising. Even though JCV TAg gene, which is similar to the SV40 TAg gene, is oncogenic in animal models, the presence of JCV gene sequences in pediatric malignancies does not prove causality. In light of the available data on the presence of JCV in normal and cancerous

  1. Vaccination of mice with plasmids expressing processed capsid protein of foot-and-mouth disease virus - Importance of dominant and subdominant epitopes for antigenicity and protection

    DEFF Research Database (Denmark)

    Frimann, Tine; Barfoed, Annette Malene; Aasted, Bent

    2007-01-01

    The capsid of foot-and-mouth disease virus (FMDV) displays several independent B cell epitopes, which stimulate the production of neutralising antibodies. Some of these epitopes are highly variable between virus strains, but dominate the immune response. The site A on VP1 is the most prominent...

  2. Molecular characterization of field infectious bursal disease virus isolates from Nigeria

    Directory of Open Access Journals (Sweden)

    Ijeoma O. Nwagbo

    2016-12-01

    Full Text Available Aim: To characterize field isolates of infectious bursal disease virus (IBDV from outbreaks in nine states in Nigeria through reverse transcription polymerase chain reaction (RT-PCR and sequence analysis of portions of the VP2 and VP1 genes and to determine the presence or absence of reassortant viruses. Materials and Methods: A total of 377 bursa samples were collected from 201 suspected IBD outbreaks during 2009 to 2014 from nine states in Nigeria. Samples were subjected to RT-PCR using VP2 and VP1 gene specific primers, and the resulting PCR products were sequenced. Results: A total of 143 samples were positive for IBDV by RT-PCR. These assays amplified a 743 bp fragment from nt 701 to 1444 in the IBDV VP2 hypervariable region (hvVP2 of segment A and a 722 bp fragment from nt 168 to 889 in the VP1 gene of segment B. RT-PCR products were sequenced, aligned and compared with reference IBDV sequences obtained from GenBank. All but one hvVP2 sequence showed similarity to very virulent IBDV (vvIBDV reference strains, yet only 3 of the VP1 67 VP1 sequences showed similarity to the VP1 gene of vvIBDV. Phylogenetic analysis revealed a new lineage of Nigerian reassortant IBDV strains. Conclusion: Phylogenetic analysis of partial sequences of genome segment A and B of IBDV in Nigeria confirmed the existence of vvIBDV in Nigeria. In addition, we noted the existence of reassortant IBDV strains with novel triplet amino acid motifs at positions 145, 146 and 147 in the reassorted Nigerian IBDV.

  3. Human parvovirus B19 VP1u Protein as inflammatory mediators induces liver injury in naïve mice.

    Science.gov (United States)

    Hsu, Tsai-Ching; Chiu, Chun-Ching; Chang, Shun-Chih; Chan, Hsu-Chin; Shi, Ya-Fang; Chen, Tzy-Yen; Tzang, Bor-Show

    2016-01-01

    Human parvovirus B19 (B19V) is a human pathogen known to be associated with many non-erythroid diseases, including hepatitis. Although B19V VP1-unique region (B19-VP1u) has crucial roles in the pathogenesis of B19V infection, the influence of B19-VP1u proteins on hepatic injury is still obscure. This study investigated the effect and possible inflammatory signaling of B19-VP1u in livers from BALB/c mice that were subcutaneously inoculated with VP1u-expressing COS-7 cells. The in vivo effects of B19-VP1u were analyzed by using live animal imaging system (IVIS), Haematoxylin-Eosin staining, gel zymography, and immunoblotting after inoculation. Markedly hepatocyte disarray and lymphocyte infiltration, enhanced matrix metalloproteinase (MMP)-9 activity and increased phosphorylation of p38, ERK, IKK-α, IκB and NF-κB (p-p65) proteins were observed in livers from BALB/c mice receiving COS-7 cells expressing B19-VP1u as well as the significantly increased CRP, IL-1β and IL-6. Notably, IFN-γ and phosphorylated STAT1, but not STAT3, were also significantly increased in the livers of BALB/c mice that were subcutaneously inoculated with VP1u-expressing COS-7 cells. These findings revealed the effects of B19-VP1u on liver injury and suggested that B19-VP1u may have a role as mediators of inflammation in B19V infection.

  4. Unusual structural transition of antimicrobial VP1 peptide.

    Science.gov (United States)

    Shanmugam, Ganesh; Phambu, Nsoki; Polavarapu, Prasad L

    2011-05-01

    VP1 peptide, an active domain of m-calpain enzyme with antimicrobial activity is found to undergo an unusual conformational transition in trifluoroethanol (TFE) solvent. The nature of, and time dependent variations in, circular dichroism associated with the amide I vibrations, suggest that VP1 undergoes self-aggregation forming anti-parallel β-sheet structure in TFE. Transmission electron micrograph (TEM) images revealed that β-sheet aggregates formed by VP1 possess fibril-like assemblies. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Bioinformatic prediction of polymerase elements in the rotavirus VP1 protein

    Directory of Open Access Journals (Sweden)

    RODRIGO VÁSQUEZ-DEL CARPIÓ

    2006-01-01

    Full Text Available Rotaviruses are the major cause of acute gastroenteritis in infants world-wide. The genome consists of eleven double stranded RNA segments. The major segment encodes the structural protein VP1, the viral RNA-dependent RNA polymerase (RdRp, which is a minor component of the viral inner core. This study is a detailed bioinformatic assessment of the VP1 sequence. Using various methods we have identified canonical motifs within the VP1 sequence which correspond to motifs previously identified within RdRps of other positive strand, double-strand RNA viruses. The study also predicts an overall structural conservation in the middle region that may correspond to the palm subdomain and part of the fingers and thumb subdomains, which comprise the polymerase core of the protein. Based on this analysis, we suggest that the rotavirus replicase has the minimal elements to function as an RNA-dependent RNA polymerase. VP1, besides having common RdRp features, also contains large unique regions that might be responsible for characteristic features observed in the Reoviridae family

  6. Ebola (Ebola Virus Disease): Diagnosis

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is ... message, please visit this page: About CDC.gov . Ebola (Ebola Virus Disease) What is Ebola Virus Disease? ...

  7. Ebola (Ebola Virus Disease): Transmission

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is ... message, please visit this page: About CDC.gov . Ebola (Ebola Virus Disease) What is Ebola Virus Disease? ...

  8. Ebola (Ebola Virus Disease): Treatment

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is ... message, please visit this page: About CDC.gov . Ebola (Ebola Virus Disease) What is Ebola Virus Disease? ...

  9. Antigenicity analysis of human parvovirus B19-VP1u protein in the induction of anti-phospholipid syndrome.

    Science.gov (United States)

    Lin, Chun-Yu; Chiu, Chun-Ching; Cheng, Ju; Lin, Chia-Yun; Shi, Ya-Fang; Tsai, Chun-Chou; Tzang, Bor-Show; Hsu, Tsai-Ching

    2018-01-01

    Mounting evidence suggests a connection between human parvovirus B19 (B19) and autoimmune diseases, and especially an association between the B19-VP1 unique region (VP1u) and anti-phospholipid syndrome (APS). However, little is known about the antigenicity of B19-VP1u in the induction of APS-like syndrome. To elucidate the antigenicity of B19-VP1u in the induction of APS, N-terminal truncated B19-VP1u (tVP1u) proteins were prepared to immunize Balb/c mice to generate antibodies against B19-tVP1u proteins. The secreted phospholipase A2 (sPLA2) activities and binding specificity of mice anti-B19-tVP1u antibodies with cardiolipin (CL) and beta-2-glycoprotein I (β2GPI) were evaluated by performing immunoblot, ELISA and absorption experiments. A mice model of passively induced APS was adopted. Although sPLA2 activities were identified in all B19-tVP1u proteins, only amino acid residues 61-227 B19-tVP1u exhibited a higher sPLA2 activity. Autoantibodies against CL and β2GPI exhibited binding activities with all B19-tVP1u proteins. IgG that was purified from mice that had been immunized with amino acid residues 21-227 to 121-227 B19-tVP1u proteins exhibited significantly higher binding activity with CL. IgG that was purified from mice that had been immunized with amino acid residues 21-227, 31-227, 82-227 and 91-227 B19-tVP1u proteins exhibited significantly higher binding activity with β2GPI. Accordingly, significantly higher binding inhibition of CL was detected in the presence of amino acid residues 61-227 and 101-227 B19-tVP1u. Significantly higher binding inhibition of β2GPI was detected in the presence of amino acid residues 21-227, 31-227, 82-227 and 91-227 B19-tVP1u. The mice that received amino acid residues 31-227 or 61-227 anti-tB19-VP1u IgG revealed significant thrombocytopenia and those that received amino acid residues 21-227, 31-227, 61-227, 71-227, 82-227, 91-227, 101-227 or 114-227 anti-tB19-VP1u IgG exhibited significantly prolonged aPTT. These

  10. Zika virus disease

    Directory of Open Access Journals (Sweden)

    Adel I Al-Afaleq

    2017-01-01

    Full Text Available The Zika virus is an arbovirus belonging to the virus family Flaviviridae. The virus was isolated in 1947 from a rhesus monkey in the Zika Forest of Uganda. The virus causes sporadic mild human infections in Africa and later in Asia. However, by 2007 a major shift in its infection pattern was noticed and thousands of human infections were reported in the State of Yap and Federated States of Micronesia. In the last 3 years, major outbreaks have continued to occur and the virus has spread to several Pacific and American countries. These outbreaks were mostly asymptomatic; however, there were more severe clinical signs associated with the infections. Those signs included microcephaly and Guillain–Barre syndrome. It is believed that various species of mosquitoes can biologically transmit the virus. However, Aedes aegypti is most widely associated with the Zika virus. Recently, new modes of virus transmission have been reported, including mother-to-fetus, sexual, blood transfusion, animal bites, laboratory exposure and breast milk. Differential diagnosis is very important as some other arboviruses such as yellow fever virus, West Nile virus, dengue virus, and chikungunya virus have similar clinical manifestations to the Zika virus infection as well as relating serologically to some of these viruses. Established laboratory diagnostic tests to detect the Zika virus are limited, with reverse transcription polymerase chain reaction being the most widely used test. Taking into consideration the quickness of the spread of infection, size of the infected population and change of the infection severity pattern, the Zika virus infection merits collective efforts on all levels to prevent and control the disease. Limited research work and data, concurrent infection with other arboviruses, involvement of biological vectors, mass crowd events, human and trade movements and lack of vaccines are some of the challenges that we face in our efforts to prevent and

  11. [Establishment of chemiluminescent enzyme immunoassay for detecting antibodies against foot-and-mouth disease virus serotype O in swine].

    Science.gov (United States)

    Cui, Chen; Huang, Ligang; Li, Jing; Zou, Xingqi; Zhu, Yuanyuan; Xie, Lei; Zhao, Qizu; Yang, Limin; Liu, Wenjun

    2016-11-25

    Recombinant structural protein VP1 of foot-and-mouth disease virus serotype O was expressed in Escherichia coli and then purified using Nickel affinity chromatography. A chemiluminescent enzyme immunoassay (CLEIA) method was established using the purified recombinant protein as coating antigen to detect antibody of foot-and-mouth disease virus serotype O in swine. The specificity of VP1-CLEIA method is 100%. The coefficients of variation in the plate and between plates are 1.10%-6.70% and 0.66%-4.80%, respectively. Comparing with the commercial indirect ELISA kit or liquid phase block ELISA kit, the calculated coincidence rate is 93.50% or 94.00%. The high specificity and stability suggested this detection method can be used to monitor the antibody level of foot-and-mouth disease virus serotype O in swine.

  12. Ebola Virus Disease

    Centers for Disease Control (CDC) Podcasts

    This podcast provides general information about Ebola virus disease and the outbreak in West Africa. The program contains remarks from CDC Director Dr. Tom Frieden, as well as a brief description of CDC’s response efforts.

  13. Positively charged residues at the five-fold symmetry axis of cell culture-adapted foot-and-mouth disease virus permit novel receptor interactions.

    Science.gov (United States)

    Berryman, Stephen; Clark, Stuart; Kakker, Naresh K; Silk, Rhiannon; Seago, Julian; Wadsworth, Jemma; Chamberlain, Kyle; Knowles, Nick J; Jackson, Terry

    2013-08-01

    Field isolates of foot-and-mouth disease virus (FMDV) have a restricted cell tropism which is limited by the need for certain RGD-dependent integrin receptors. In contrast, cell culture-adapted viruses use heparan sulfate (HS) or other unidentified molecules as receptors to initiate infection. Here, we report several novel findings resulting from cell culture adaptation of FMDV. In cell culture, a virus with the capsid of the A/Turkey/2/2006 field isolate gained the ability to infect CHO and HS-deficient CHO cells as a result of a single glutamine (Q)-to-lysine (K) substitution at VP1-110 (VP1-(Q)110(K)). Using site-directed mutagenesis, the introduction of lysine at this same site also resulted in an acquired ability to infect CHO cells by type O and Asia-1 FMDV. However, this ability appeared to require a second positively charged residue at VP1-109. CHO cells express two RGD-binding integrins (α5β1 and αvβ5) that, although not used by FMDV, have the potential to be used as receptors; however, viruses with the VP1-(Q)110(K) substitution did not use these integrins. In contrast, the VP1-(Q)110(K) substitution appeared to result in enhanced interactions with αvβ6, which allowed a virus with KGE in place of the normal RGD integrin-binding motif to use αvβ6 as a receptor. Thus, our results confirmed the existence of nonintegrin, non-HS receptors for FMDV on CHO cells and revealed a novel, non-RGD-dependent use of αvβ6 as a receptor. The introduction of lysine at VP1-110 may allow for cell culture adaptation of FMDV by design, which may prove useful for vaccine manufacture when cell culture adaptation proves intractable.

  14. Positively Charged Residues at the Five-Fold Symmetry Axis of Cell Culture-Adapted Foot-and-Mouth Disease Virus Permit Novel Receptor Interactions

    Science.gov (United States)

    Berryman, Stephen; Clark, Stuart; Kakker, Naresh K.; Silk, Rhiannon; Seago, Julian; Wadsworth, Jemma; Chamberlain, Kyle; Knowles, Nick J.

    2013-01-01

    Field isolates of foot-and-mouth disease virus (FMDV) have a restricted cell tropism which is limited by the need for certain RGD-dependent integrin receptors. In contrast, cell culture-adapted viruses use heparan sulfate (HS) or other unidentified molecules as receptors to initiate infection. Here, we report several novel findings resulting from cell culture adaptation of FMDV. In cell culture, a virus with the capsid of the A/Turkey/2/2006 field isolate gained the ability to infect CHO and HS-deficient CHO cells as a result of a single glutamine (Q)-to-lysine (K) substitution at VP1-110 (VP1-Q110K). Using site-directed mutagenesis, the introduction of lysine at this same site also resulted in an acquired ability to infect CHO cells by type O and Asia-1 FMDV. However, this ability appeared to require a second positively charged residue at VP1-109. CHO cells express two RGD-binding integrins (α5β1 and αvβ5) that, although not used by FMDV, have the potential to be used as receptors; however, viruses with the VP1-Q110K substitution did not use these integrins. In contrast, the VP1-Q110K substitution appeared to result in enhanced interactions with αvβ6, which allowed a virus with KGE in place of the normal RGD integrin-binding motif to use αvβ6 as a receptor. Thus, our results confirmed the existence of nonintegrin, non-HS receptors for FMDV on CHO cells and revealed a novel, non-RGD-dependent use of αvβ6 as a receptor. The introduction of lysine at VP1-110 may allow for cell culture adaptation of FMDV by design, which may prove useful for vaccine manufacture when cell culture adaptation proves intractable. PMID:23740982

  15. Evolutionary analysis of foot-and-mouth disease virus serotype SAT 1 isolates from east africa suggests two independent introductions from southern africa

    DEFF Research Database (Denmark)

    Sangula, Abraham K.; Belsham, Graham; Muwanika, Vincent B.

    2010-01-01

    Background: In East Africa, foot-and-mouth disease virus serotype SAT 1 is responsible for occasional severe outbreaks in livestock and is known to be maintained within the buffalo populations. Little is known about the evolutionary forces underlying its epidemiology in the region. To enhance our...... 1 FMD viruses from East Africa has been determined and compared with known sequences derived from other SAT 1 viruses from sub-Saharan Africa. Purifying (negative) selection and low substitution rates characterized the SAT 1 virus isolates in East Africa. Two virus groups with probable independent...... appreciation of the epidemiological status of serotype SAT 1 virus in the region, we inferred its evolutionary and phylogeographic history by means of genealogy-based coalescent methods using 53 VP1 coding sequences covering a sampling period from 1948-2007. Results: The VP1 coding sequence of 11 serotype SAT...

  16. Expression of enterovirus 71 capsid protein VP1 in Escherichia coli and its clinical application

    Directory of Open Access Journals (Sweden)

    Mei Shi

    2013-12-01

    Full Text Available The VPl gene of enterovirus 71 (EV71 was synthesized, construct a recombinant plasmid pET15b/VP1 and expressed in E. coli BL21. The recombinant VP1 protein could specifically react with EV71-infected patient sera without the cross-reaction with serum antibodies of coxsackievirus A16 (CA16, A4, A5, B3 and B5 as well as echovirus 6. In acute and convalescent phases, IgM and IgG antibodies of 182 serum samples were detected by ELISA with recombinant VP1 protein as a coated antigen. The results showed that the sensitivity, specificity, positive predictive value (PPV and negative predictive value (NPV of IgM antibodies in serum samples for the diagnosis of EV71 infection were 90.1, 98.4, 98.8 and 88.7%, respectively; similarly, those of IgG antibodies in serum samples were 82.4, 89.1, 91.5 and 78.1%, respectively. Five of 80 samples (6.25% from CA16infected patients were detected positive by ELISA with recombinant VP1 protein in which indicated the cross reactions and 0 of 5 samples from patients infected with other enteroviruses including CA4, CA5, CB3, CB5 and echovirus 6. Therefore, the recombinant VP1 protein of EV7l may provide a theoretical reference for establishing an effective antibody screening of IgM for EV71-infected patients with clinically suspected hand, foot, and mouth disease (HFMD.

  17. Increased expression of Matrix Metalloproteinase 9 in liver from NZB/W F1 mice received antibody against human parvovirus B19 VP1 unique region protein

    Directory of Open Access Journals (Sweden)

    Hsu Gwo-Jong

    2009-01-01

    Full Text Available Abstract Background Human parvovirus B19 infection has been postulated to the anti-phospholipid syndrome (APS in autoimmunity. However, the influence of anti-B19-VP1u antibody in autoimmune diseases is still obscure. Methods To elucidate the effect of anti-B19-VP1u antibodies in systemic lupus erythematosus (SLE, passive transfer of rabbit anti-B19-VP1u IgG was injected intravenously into NZB/W F1 mice. Results Significant reduction of platelet count and prolonged thrombocytopenia time were detected in anti-B19-VP1u IgG group as compared to other groups, whereas significant increases of anti-B19-VP1u, anti-phospholipid (APhL, and anti-double strand DNA (dsDNA antibody binding activity were detected in anti-B19-VP1u group. Additionally, significant increases of matrix metalloproteinase-9 (MMP9 activity and protein expression were detected in B19-VP1u IgG group. Notably, phosphatidylinositol 3-phosphate kinase (PI3K and phosphorylated extracellular signal-regulated kinase (ERK proteins were involved in the induction of MMP9. Conclusion These experimental results firstly demonstrated the aggravated effects of anti-B19-VP1u antibody in disease activity of SLE.

  18. Ebola (Ebola Virus Disease): Prevention

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is ... message, please visit this page: About CDC.gov . Ebola (Ebola Virus Disease) About Ebola Questions & Answers 2014- ...

  19. Ebola Virus Disease

    Centers for Disease Control (CDC) Podcasts

    2014-08-08

    This podcast provides general information about Ebola virus disease and the outbreak in West Africa. The program contains remarks from CDC Director Dr. Tom Frieden, as well as a brief description of CDC’s response efforts.  Created: 8/8/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 8/8/2014.

  20. Nairobi sheep disease virus/Ganjam virus.

    Science.gov (United States)

    M D, Baron; B, Holzer

    2015-08-01

    Nairobi sheep disease virus (NSDV) is a tick-borne virus which causes a severe disease in sheep and goats, and has been responsible for several outbreaks of disease in East Africa. The virus is also found in the Indian subcontinent, where it is known as Ganjam virus. The virus only spreads through the feeding of competent infected ticks, and is therefore limited in its geographic distribution by the distribution of those ticks, Rhipicephalus appendiculata in Africa and Haemaphysalis intermedia in India. Animals bred in endemic areas do not normally develop disease, and the impact is therefore primarily on animals being moved for trade or breeding purposes. The disease caused by NSDV has similarities to several other ruminant diseases, and laboratory diagnosis is necessary for confirmation. There are published methods for diagnosis based on polymerase chain reaction, for virus growth in cell culture and for other simple diagnostic tests, though none has been commercialised. There is no established vaccine against NSDV, although cell-culture attenuated strains have been developed which show promise and could be put into field trials if it were deemed necessary. The virus is closely related to Crimean-Congo haemorrhagic fever virus, and studies on NSDV may therefore be useful in understanding this important human pathogen.

  1. Capsid coding sequences of foot-and-mouth disease viruses are determinants of pathogenicity in pigs

    DEFF Research Database (Denmark)

    Lohse, Louise; Jackson, Terry; Bøtner, Anette

    2012-01-01

    The surface exposed capsid proteins, VP1, VP2 and VP3, of foot-and-mouth disease virus (FMDV) determine its antigenicity and the ability of the virus to interact with host-cell receptors. Hence, modification of these structural proteins may alter the properties of the virus. In the present study we...... compared the pathogenicity of different FMDVs in young pigs. In total 32 pigs, 7-weeks-old, were exposed to virus, either by direct inoculation or through contact with inoculated pigs, using cell culture adapted (O1K B64), chimeric (O1K/A-TUR and O1K/O-UKG) or field strain (O-UKG/34/2001) viruses. The O1K...... coding sequences are determinants of FMDV pathogenicity in pigs....

  2. Blueberry (Vaccinium corymbosum)-Virus Diseases

    Science.gov (United States)

    At least six viruses have been found in highbush blueberry plantings in the Pacific Northwest: Blueberry mosaic virus, Blueberry red ringspot virus, Blueberry scorch virus, Blueberry shock virus, Tobacco ringspot virus, and Tomato ringspot virus. Six other virus and virus-like diseases of highbush b...

  3. Immune responses to baculovirus-displayed enterovirus 71 VP1 antigen.

    Science.gov (United States)

    Kiener, Tanja K; Premanand, Balraj; Kwang, Jimmy

    2013-04-01

    The increased distribution and neurovirulence of enterovirus 71 is an important health threat for young children in Asia Pacific. Vaccine design has concentrated on inactivated virus with the most advanced undergoing Phase III clinical trials. By using a subunit vaccine approach, production costs could be reduced by lowering the need for biocontainment. In addition, novel mutations could be rapidly incorporated to reflect the emergence of new enterovirus 71 subgenogroups. To circumvent the problems associated with conventional subunit vaccines, the antigen can be displayed on a viral vector that conveys stability and facilitates purification. Additional advantages of viral-vectored subunit vaccines are their ability to stimulate the innate immune system by transducing cells and the possibility of oral or nasal delivery, which dispenses with the need for syringes and medical personnel. Baculovirus-displayed VP1 combines all these benefits with protection that is as efficient as inactivated virus.

  4. VP1u phospholipase activity is critical for infectivity of full-length parvovirus B19 genomic clones.

    Science.gov (United States)

    Filippone, Claudia; Zhi, Ning; Wong, Susan; Lu, Jun; Kajigaya, Sachiko; Gallinella, Giorgio; Kakkola, Laura; Söderlund-Venermo, Maria; Young, Neal S; Brown, Kevin E

    2008-05-10

    Three full-length genomic clones (pB19-M20, pB19-FL and pB19-HG1) of parvovirus B19 were produced in different laboratories. pB19-M20 was shown to produce infectious virus. To determine the differences in infectivity, all three plasmids were tested by transfection and infection assays. All three clones were similar in viral DNA replication, RNA transcription, and viral capsid protein production. However, only pB19-M20 and pB19-HG1 produced infectious virus. Comparison of viral sequences showed no significant differences in ITR or NS regions. In the capsid region, there was a nucleotide sequence difference conferring an amino acid substitution (E176K) in the phospholipase A2-like motif of the VP1-unique (VP1u) region. The recombinant VP1u with the E176K mutation had no catalytic activity as compared with the wild-type. When this mutation was introduced into pB19-M20, infectivity was significantly attenuated, confirming the critical role of this motif. Investigation of the original serum from which pB19-FL was cloned confirmed that the phospholipase mutation was present in the native B19 virus.

  5. VP1u phospholipase activity is critical for infectivity of full-length parvovirus B19 genomic clones✰

    Science.gov (United States)

    Filippone, Claudia; Zhi, Ning; Wong, Susan; Lu, Jun; Kajigaya, Sachiko; Gallinella, Giorgio; Kakkola, Laura; Venermo, Maria S Söderlund; Young, Neal S.; Brown, Kevin E.

    2008-01-01

    Three full-length genomic clones (pB19-M20, pB19-FL and pB19-HG1) of parvovirus B19 were produced in different laboratories. pB19-M20 was shown to produce infectious virus. To determine the differences in infectivity, all three plasmids were tested by transfection and infection assays. All three clones were similar in viral DNA replication, RNA transcription, and viral capsid protein production. However, only pB19-M20 and pB19-HG1 produced infectious virus. Comparison of viral sequences showed no significant differences in ITR or NS regions. In the capsid region, there was a nucleotide sequence difference conferring an amino acid substitution (E176K) in the phospholipase A2-like motif of the VP1-unique (VP1u) region. The recombinant VP1u with the E176K mutation had no catalytic activity as compared with the wild-type. When this mutation was introduced into pB19-M20, infectivity was significantly attenuated, confirming the critical role of this motif. Investigation of the original serum from which pB19-FL was cloned confirmed that the phospholipase mutation was present in the native B19 virus. PMID:18252260

  6. Unrecognized circulation of SAT 1 foot-and-mouth disease virus in cattle herds around Queen Elizabeth National Park in Uganda

    DEFF Research Database (Denmark)

    Dhikusooka, Moses Tefula; Ayebazibwe, Chrisostom; Namatovu, Alice

    2016-01-01

    Foot-and-mouth disease (FMD) is endemic in Uganda in spite of the control measures used. Various aspects of the maintenance and circulation of FMD viruses (FMDV) in Uganda are not well understood; these include the role of the African buffalo (Syncerus caffer) as a reservoir for FMDV. To better...... neutralizing antibodies were only detected against serotype O in 3 samples. Two FMDV isolates, with identical VP1 coding sequences, were obtained from probang samples from clinically healthy calves from the same herd and are serotype SAT 1 (topotype IV (EA-I)). Based on the VP1 coding sequences, these viruses...... in other herds may be due to the occasional introduction of animals to the area or maternal antibodies from past infection and/or vaccination. The evidence for asymptomatic FMDV infection has implications for disease control strategies in the area since this obstructs early disease detection that is based...

  7. Control of Newcastle disease virus

    Science.gov (United States)

    Newcastle disease virus (NDV), also know as avian paramyxovirus serotype 1, is an important poultry pathogen worldwide. In naive poultry, the virulent forms of the virus cause high mortality. Because of this the virus is reportable to the World Organization for Animal Health and can be an important ...

  8. [Ebola virus disease: Update].

    Science.gov (United States)

    de la Calle-Prieto, Fernando; Arsuaga-Vicente, Marta; Mora-Rillo, Marta; Arnalich-Fernandez, Francisco; Arribas, Jose Ramon

    2016-01-01

    The first known Ebola outbreak occurred in 1976. Since then, 24 limited outbreaks had been reported in Central Africa, but never affecting more than 425 persons. The current outbreak in Western Africa is the largest in history with 28,220 reported cases and 11,291 deaths. The magnitude of the epidemic has caused worldwide alarm. For the first time, evacuated patients were treated outside Africa, and secondary cases have occurred in Spain and the United States. Since the start of the current epidemic, our knowledge about the epidemiology, clinical picture, laboratory findings, and virology of Ebola virus disease has considerably expanded. For the first time, experimental treatment has been tried, and there have been spectacular advances in vaccine development. A review is presented of these advances in the knowledge of Ebola virus disease. Copyright © 2015 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  9. Molecular Characterization of Foot-and-Mouth Disease Viruses Collected in Tanzania Between 1967 and 2009.

    Science.gov (United States)

    Kasanga, C J; Wadsworth, J; Mpelumbe-Ngeleja, C A R; Sallu, R; Kivaria, F; Wambura, P N; Yongolo, M G S; Rweyemamu, M M; Knowles, N J; King, D P

    2015-10-01

    This paper describes the molecular characterization of foot-and-mouth disease viruses (FMDV) recovered from outbreaks in Tanzania that occurred between 1967 and 2009. A total of 44 FMDV isolates, containing representatives of serotypes O, A, SAT 1 and SAT 2 from 13 regions of Tanzania, were selected from the FAO World Reference Laboratory for FMD (WRLFMD) virus collection. VP1 nucleotide sequences were determined for RT-PCR amplicons, and phylogenetic reconstructions were determined by maximum likelihood and neighbour-joining methods. These analyses showed that Tanzanian type O viruses fell into the EAST AFRICA 2 (EA-2) topotype, type A viruses fell into the AFRICA topotype (genotype I), type SAT 1 viruses into topotype I and type SAT 2 viruses into topotype IV. Taken together, these findings reveal that serotypes O, A, SAT 1 and SAT 2 that caused FMD outbreaks in Tanzania were genetically related to lineages and topotypes occurring in the East African region. The close genetic relationship of viruses in Tanzania to those from other countries suggests that animal movements can contribute to virus dispersal in sub-Saharan Africa. This is the first molecular description of viruses circulating in Tanzania and highlights the need for further sampling of representative viruses from the region so as to elucidate the complex epidemiology of FMD in Tanzania and sub-Saharan Africa. © 2014 The Authors. Transboundary and Emerging Diseases Published by Blackwell Verlag GmbH.

  10. Genetic stability of foot-and-mouth disease virus during long-term infections in natural hosts.

    Science.gov (United States)

    Ramirez-Carvajal, Lisbeth; Pauszek, Steven J; Ahmed, Zaheer; Farooq, Umer; Naeem, Khalid; Shabman, Reed S; Stockwell, Timothy B; Rodriguez, Luis L

    2018-01-01

    Foot-and-mouth disease (FMD) is a severe infection caused by a picornavirus that affects livestock and wildlife. Persistence in ruminants is a well-documented feature of Foot-and-mouth disease virus (FMDV) pathogenesis and a major concern for disease control. Persistently infected animals harbor virus for extended periods, providing a unique opportunity to study within-host virus evolution. This study investigated the genetic dynamics of FMDV during persistent infections of naturally infected Asian buffalo. Using next-generation sequencing (NGS) we obtained 21 near complete FMDV genome sequences from 12 sub-clinically infected buffalo over a period of one year. Four animals yielded only one virus isolate and one yielded two isolates of different serotype suggesting a serial infection. Seven persistently infected animals yielded more than one virus of the same serotype showing a long-term intra-host viral genetic divergence at the consensus level of less than 2.5%. Quasi-species analysis showed few nucleotide variants and non-synonymous substitutions of progeny virus despite intra-host persistence of up to 152 days. Phylogenetic analyses of serotype Asia-1 VP1 sequences clustered all viruses from persistent animals with Group VII viruses circulating in Pakistan in 2011, but distinct from those circulating on 2008-2009. Furthermore, signature amino acid (aa) substitutions were found in the antigenically relevant VP1 of persistent viruses compared with viruses from 2008-2009. Intra-host purifying selective pressure was observed, with few codons in structural proteins undergoing positive selection. However, FMD persistent viruses did not show a clear pattern of antigenic selection. Our findings provide insight into the evolutionary dynamics of FMDV populations within naturally occurring subclinical and persistent infections that may have implications to vaccination strategies in the region.

  11. Genetic stability of foot-and-mouth disease virus during long-term infections in natural hosts.

    Directory of Open Access Journals (Sweden)

    Lisbeth Ramirez-Carvajal

    Full Text Available Foot-and-mouth disease (FMD is a severe infection caused by a picornavirus that affects livestock and wildlife. Persistence in ruminants is a well-documented feature of Foot-and-mouth disease virus (FMDV pathogenesis and a major concern for disease control. Persistently infected animals harbor virus for extended periods, providing a unique opportunity to study within-host virus evolution. This study investigated the genetic dynamics of FMDV during persistent infections of naturally infected Asian buffalo. Using next-generation sequencing (NGS we obtained 21 near complete FMDV genome sequences from 12 sub-clinically infected buffalo over a period of one year. Four animals yielded only one virus isolate and one yielded two isolates of different serotype suggesting a serial infection. Seven persistently infected animals yielded more than one virus of the same serotype showing a long-term intra-host viral genetic divergence at the consensus level of less than 2.5%. Quasi-species analysis showed few nucleotide variants and non-synonymous substitutions of progeny virus despite intra-host persistence of up to 152 days. Phylogenetic analyses of serotype Asia-1 VP1 sequences clustered all viruses from persistent animals with Group VII viruses circulating in Pakistan in 2011, but distinct from those circulating on 2008-2009. Furthermore, signature amino acid (aa substitutions were found in the antigenically relevant VP1 of persistent viruses compared with viruses from 2008-2009. Intra-host purifying selective pressure was observed, with few codons in structural proteins undergoing positive selection. However, FMD persistent viruses did not show a clear pattern of antigenic selection. Our findings provide insight into the evolutionary dynamics of FMDV populations within naturally occurring subclinical and persistent infections that may have implications to vaccination strategies in the region.

  12. Prediction and characterization of novel epitopes of serotype A foot-and-mouth disease viruses circulating in East Africa using site-directed mutagenesis

    Science.gov (United States)

    Bari, Fufa Dawo; Parida, Satya; Asfor, Amin S.; Haydon, Daniel T.; Reeve, Richard; Paton, David J.

    2015-01-01

    Epitopes on the surface of the foot-and-mouth disease virus (FMDV) capsid have been identified by monoclonal antibody (mAb) escape mutant studies leading to the designation of four antigenic sites in serotype A FMDV. Previous work focused on viruses isolated mainly from Asia, Europe and Latin America. In this study we report on the prediction of epitopes in African serotype A FMDVs and testing of selected epitopes using reverse genetics. Twenty-four capsid amino acid residues were predicted to be of antigenic significance by analysing the capsid sequences (n = 56) using in silico methods, and six residues by correlating capsid sequence with serum–virus neutralization data. The predicted residues were distributed on the surface-exposed capsid regions, VP1–VP3. The significance of residue changes at eight of the predicted epitopes was tested by site-directed mutagenesis using a cDNA clone resulting in the generation of 12 mutant viruses involving seven sites. The effect of the amino acid substitutions on the antigenic nature of the virus was assessed by virus neutralization (VN) test. Mutations at four different positions, namely VP1-43, VP1-45, VP2-191 and VP3-132, led to significant reduction in VN titre (P value = 0.05, 0.05, 0.001 and 0.05, respectively). This is the first time, to our knowledge, that the antigenic regions encompassing amino acids VP1-43 to -45 (equivalent to antigenic site 3 in serotype O), VP2-191 and VP3-132 have been predicted as epitopes and evaluated serologically for serotype A FMDVs. This identifies novel capsid epitopes of recently circulating serotype A FMDVs in East Africa. PMID:25614587

  13. Zika virus disease

    Science.gov (United States)

    ... May 2015, the virus was discovered for the first time in Brazil. It has now spread to many territories, states, and countries in: Caribbean Islands Central America Mexico South America Pacific Islands Africa The virus ...

  14. Promising MS2 mediated virus-like particle vaccine against foot-and-mouth disease.

    Science.gov (United States)

    Dong, Yan-mei; Zhang, Guo-guang; Huang, Xiao-jun; Chen, Liang; Chen, Hao-tai

    2015-05-01

    Foot-and-mouth disease (FMD) has caused severe economic losses to millions of farmers worldwide. In this work, the coding genes of 141-160 epitope peptide (EP141-160) of VP1 were inserted into the coat protein (CP) genes of MS2 in prokaryotic expression vector, and the recombinant protein self-assembled into virus-like particles (VLP). Results showed that the CP-EP141-160 VLP had a strong immunoreaction with the FMD virus (FMDV) antigen in vitro, and also had an effective immune response in mice. Further virus challenge tests were carried out on guinea pigs and swine, high-titer neutralizing antibodies were produced and the CP-EP141-160 VLP vaccine could protect most of the animals against FMDV. Copyright © 2015. Published by Elsevier B.V.

  15. The rescue and evaluation of FLAG and HIS epitope-tagged Asia 1 type foot-and-mouth disease viruses.

    Science.gov (United States)

    Yang, Bo; Yang, Fan; Zhang, Yan; Liu, Huanan; Jin, Ye; Cao, Weijun; Zhu, Zixiang; Zheng, Haixue; Yin, Hong

    2016-02-02

    The VP1 G-H loop of the foot-and-mouth disease virus (FMDV) contains the primary antigenic site, as well as an Arg-Gly-Asp (RGD) binding motif for the αv-integrin family of cell surface receptors. We anticipated that introducing a foreign epitope tag sequence downstream of the RGD motif would be tolerated by the viral capsid and would not destroy the antigenic site of FMDV. In this study, we have designed, generated, and characterized two recombinant FMDVs with a FLAG tag or histidine (HIS) inserted in the VP1 G-H loop downstream of the RGD motif +9 position. The tagged viruses were genetically stable and exhibited similar growth properties with their parental virus. What is more, the recombinant viruses rFMDV-FLAG and rFMDV-HIS showed neutralization sensitivity to FMDV type Asia1-specific mAbs, as well as to polyclonal antibodies. Additionally, the r1 values of the recombinant viruses were similar to that of the parental virus, indicating that the insertion of FLAG or HIS tag sequences downstream of the RGD motif +9 position do not eradicate the antigenic site of FMDV and do not affect its antigenicity. These results indicated that the G-H loop of Asia1 FMDV is able to effectively display the foreign epitopes, making this a potential approach for novel FMDV vaccines development. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Enterovirus 71 VP1 activates calmodulin-dependent protein kinase II and results in the rearrangement of vimentin in human astrocyte cells.

    Directory of Open Access Journals (Sweden)

    Cong Haolong

    Full Text Available Enterovirus 71 (EV71 is one of the main causative agents of foot, hand and mouth disease. Its infection usually causes severe central nervous system diseases and complications in infected infants and young children. In the present study, we demonstrated that EV71 infection caused the rearrangement of vimentin in human astrocytoma cells. The rearranged vimentin, together with various EV71 components, formed aggresomes-like structures in the perinuclear region. Electron microscopy and viral RNA labeling indicated that the aggresomes were virus replication sites since most of the EV71 particles and the newly synthesized viral RNA were concentrated here. Further analysis revealed that the vimentin in the virus factories was serine-82 phosphorylated. More importantly, EV71 VP1 protein is responsible for the activation of calmodulin-dependent protein kinase II (CaMK-II which phosphorylated the N-terminal domain of vimentin on serine 82. Phosphorylation of vimentin and the formation of aggresomes were required for the replication of EV71 since the latter was decreased markedly after phosphorylation was blocked by KN93, a CaMK-II inhibitor. Thus, as one of the consequences of CaMK-II activation, vimentin phosphorylation and rearrangement may support virus replication by playing a structural role for the formation of the replication factories. Collectively, this study identified the replication centers of EV71 in human astrocyte cells. This may help us understand the replication mechanism and pathogenesis of EV71 in human.

  17. Foot-and-mouth disease virus capsid proteins; analysis of protein processing, assembly and utility as vaccines

    DEFF Research Database (Denmark)

    Belsham, Graham

    Foot-and-mouth disease (FMD) remains one of the most economically important infectious diseases of production animals globally. The infection is caused by foot-and-mouth disease virus (FMDV), a member of the picornavirus family. The positive sense RNA genome of the virus includes a single, large......, open reading frame that encodes a polyprotein. The intact polyprotein is never observed as it is processed, both during and after translation, to 15 different mature proteins plus a variety of precursors. The FMDV capsid protein precursor, P1-2A, is cleaved by the virus encoded 3C protease (3Cpro......) to generate VP0, VP3, VP1 and the peptide 2A. Sixty copies of each of the capsid proteins “self-assemble” into empty capsid particles or with the RNA genome into infectious viruses. These particles normally lack 2A but it is possible to construct and isolate mutant FMDVs in which the cleavage of the VP1/2A...

  18. Amino acid sequences mediating vascular cell adhesion molecule 1 binding to integrin alpha 4: homologous DSP sequence found for JC polyoma VP1 coat protein

    Directory of Open Access Journals (Sweden)

    Michael Andrew Meyer

    2013-07-01

    Full Text Available The JC polyoma viral coat protein VP1 was analyzed for amino acid sequences homologies to the IDSP sequence which mediates binding of VLA-4 (integrin alpha 4 to vascular cell adhesion molecule 1. Although the full sequence was not found, a DSP sequence was located near the critical arginine residue linked to infectivity of the virus and binding to sialic acid containing molecules such as integrins (3. For the JC polyoma virus, a DSP sequence was found at residues 70, 71 and 72 with homology also noted for the mouse polyoma virus and SV40 virus. Three dimensional modeling of the VP1 molecule suggests that the DSP loop has an accessible site for interaction from the external side of the assembled viral capsid pentamer.

  19. West Nile Virus Neuroinvasive Disease

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2009-07-01

    Full Text Available Epidemiological features of West Nile Virus (WNV disease among children (<18 years of age reported to the Centers for Disease Control and Prevention from 1999 through 2007 were analyzed and compared with those of adult WNV neuroinvasive disease (WNND, in a study at CDC&P, Fort Collins, CO.

  20. Detection of polyomavirus major capsid antigen (VP-1 in human pilomatricomas Detección del antígeno mayor de la cápside de poliomavirus (VP-1 en pilomatricomas humanos

    Directory of Open Access Journals (Sweden)

    Norberto A. Sanjuán

    2010-04-01

    Full Text Available The family Polyomaviridae is composed of small, non-enveloped, double-stranded DNA viruses widely used to study cell transformation in vitro and tumor induction in vivo. The development of pilomatricomas in mice experimentally infected with polyomavirus led us to detect the viral major capsid protein VP-1 in human pilomatricomas. This tumor, even uncommon, is one of the most frequent benign hair follicle tumors in humans and is composed of proliferating matrix cells that undergo keratinization, and form cystic neoplasms. The detection of VP-1 was performed using the peroxidase-antiperoxidase technique in paraffin-embedded slides with a specific primary serum. Adjacent slides treated with normal rabbit serum as a primary were employed as internal control. Positive and negative controls were also employed as well as slides of lesions caused by human papillomavirus to rule out any unspecific cross-reactivity. In 4 out of 10 cases polyomavirus VP-1 was clearly detected in nuclei of human pilomatricomas proliferating cells, in a patchy pattern of distribution. The controls confirmed the specificity of the immunocytochemical procedure. These results could indicate either an eventual infection of the virus in already developed tumors or alternatively, a direct involvement of polyomavirus in the pathogenesis of some pilomatricomas. The recent discovery of a new human polyomavirus associated with Merkel cell carcinomas has been a strong contribution to better understand the pathogenesis of some human uncommon skin cancers. Hopefully the results reported in this work will encourage further research on the role of polyomavirus in other human skin neoplasms.La familia Poliomaviridae está compuesta por virus oncogénicos pequeños, no envueltos, con ADN de doble cadena. En un modelo experimental murino pudimos desarrollar pilomatricomas inducidos por la inoculación de virus polioma. Eso nos llevó a estudiar la posibilidad de que otro virus polioma

  1. Capsid coding sequences of foot-and-mouth disease viruses are determinants of pathogenicity in pigs.

    Science.gov (United States)

    Lohse, Louise; Jackson, Terry; Bøtner, Anette; Belsham, Graham J

    2012-05-24

    The surface exposed capsid proteins, VP1, VP2 and VP3, of foot-and-mouth disease virus (FMDV) determine its antigenicity and the ability of the virus to interact with host-cell receptors. Hence, modification of these structural proteins may alter the properties of the virus.In the present study we compared the pathogenicity of different FMDVs in young pigs. In total 32 pigs, 7-weeks-old, were exposed to virus, either by direct inoculation or through contact with inoculated pigs, using cell culture adapted (O1K B64), chimeric (O1K/A-TUR and O1K/O-UKG) or field strain (O-UKG/34/2001) viruses. The O1K B64 virus and the two chimeric viruses are identical to each other except for the capsid coding region.Animals exposed to O1K B64 did not exhibit signs of disease, while pigs exposed to each of the other viruses showed typical clinical signs of foot-and-mouth disease (FMD). All pigs infected with the O1K/O-UKG chimera or the field strain (O-UKG/34/2001) developed fulminant disease. Furthermore, 3 of 4 in-contact pigs exposed to the O1K/O-UKG virus died in the acute phase of infection, likely from myocardial infection. However, in the group exposed to the O1K/A-TUR chimeric virus, only 1 pig showed symptoms of disease within the time frame of the experiment (10 days). All pigs that developed clinical disease showed a high level of viral RNA in serum and infected pigs that survived the acute phase of infection developed a serotype specific antibody response. It is concluded that the capsid coding sequences are determinants of FMDV pathogenicity in pigs.

  2. Evolutionary phylodynamics of foot-and-mouth disease virus serotypes O and A circulating in Vietnam.

    Science.gov (United States)

    Le, Van Phan; Vu, Thi Thu Hang; Duong, Hong-Quan; Than, Van Thai; Song, Daesub

    2016-11-29

    Foot-and-mouth disease virus (FMDV) is one of the highest risk factors that affects the animal industry of the country. The virus causes production loss and high ratio mortality in young cloven-hoofed animals in Vietnam. The VP1 coding gene of 80 FMDV samples (66 samples of the serotype O and 14 samples of the serotype A) collected from endemic outbreaks during 2006-2014 were analyzed to investigate their phylogeny and genetic relationship with other available FMDVs globally. Phylogenetic analysis indicated that the serotype O strains were clustered into two distinct viral topotypes (the SEA and ME-SA), while the serotype A strains were all clustered into the genotype IX. Among the study strains, the amino acid sequence identities were shared at a level of 90.1-100, 92.9-100, and 92.8-100% for the topotypes SEA, ME-SA, and genotype IX, respectively. Substitutions leading to changes in the amino acid sequence, which are critical for the VP1 antigenic sites were also identified. Our results showed that the studied strains are most closely related to the recent FMDV isolates from Southeast Asian countries (Myanmar, Thailand, Cambodia, Malaysia, and Laos), but are distinct from the earlier FMDV isolates within the genotypes. This study provides important evidence of recent movement of FMDVs serotype O and A into Vietnam within the last decade and their genetic accumulation to be closely related to strains causing FMD in surrounding countries.

  3. Guinea pig-adapted foot-and-mouth disease virus with altered receptor recognition can productively infect a natural host.

    Science.gov (United States)

    Núñez, José I; Molina, Nicolas; Baranowski, Eric; Domingo, Esteban; Clark, Stuart; Burman, Alison; Berryman, Stephen; Jackson, Terry; Sobrino, Francisco

    2007-08-01

    We report that adaptation to infect the guinea pig did not modify the capacity of foot-and-mouth disease virus (FMDV) to kill suckling mice and to cause an acute and transmissible disease in the pig, an important natural host for this pathogen. Adaptive amino acid replacements (I(248)-->T in 2C, Q(44)-->R in 3A, and L(147)-->P in VP1), selected upon serial passages of a type C FMDV isolated from swine (biological clone C-S8c1) in the guinea pig, were maintained after virus multiplication in swine and suckling mice. However, the adaptive replacement L(147)-->P, next to the integrin-binding RGD motif at the GH loop in VP1, abolished growth of the virus in different established cell lines and modified its antigenicity. In contrast, primary bovine thyroid cell cultures could be productively infected by viruses with replacement L(147)-->P, and this infection was inhibited by antibodies to alphavbeta6 and by an FMDV-derived RGD-containing peptide, suggesting that integrin alphavbeta6 may be used as a receptor for these mutants in the animal (porcine, guinea pig, and suckling mice) host. Substitution T(248)-->N in 2C was not detectable in C-S8c1 but was present in a low proportion of the guinea pig-adapted virus. This substitution became rapidly dominant in the viral population after the reintroduction of the guinea pig-adapted virus into pigs. These observations illustrate how the appearance of minority variant viruses in an unnatural host can result in the dominance of these viruses on reinfection of the original host species.

  4. Construction of stabilized and tagged foot-and-mouth disease virus.

    Science.gov (United States)

    Park, Jeong-Nam; Ko, Mi-Kyeong; Kim, Rae-Hyung; Park, Min-Eun; Lee, Seo-Yong; Yoon, Ji-Eun; Choi, Joo-Hyung; You, Su-Hwa; Park, Jung-Won; Lee, Kwang-Nyeong; Chun, Ji-Eun; Kim, Su-Mi; Tark, Dongseob; Lee, Hyang-Sim; Ko, Young-Joon; Kim, Byounghan; Lee, Myoung-Heon; Park, Jong-Hyeon

    2016-11-01

    Foot-and-mouth disease (FMD) is a highly contagious and economically devastating disease that affects cloven-hoofed animals worldwide. Construction and purification of stable antigen for vaccine are necessary but technically difficult and laborious. Here, we have tried to investigate an alternative method by inserting a hexa-histidine tag (6xHIS) in the VP1 C-terminal for easy purification and replacing two amino acids of VP1/VP2 to enhance the stability of the capsid of the FMD virus (FMDV) Asia1/MOG/05. In addition, infectious 6xHIS-tagged stable (S/T) FMDVs were maintained under acidic conditions (pH 6.0) and were readily purified from small-scale cultures using a commercial metal-affinity column. The groups vaccinated with the S/T FMDV antigen showed complete protection comparing to low survival rate in the group vaccinated with non-S/T FMDV against lethal challenge with Asia1 Shamir in mice. Therefore, the present findings indicate that the stabilized and tagged antigen offers an alternative to using the current methods for antigen purification and enhancement of stability and has potential for the development of a new FMD vaccine. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Outbreaks of Foot-and-Mouth Disease in Libya and Saudi Arabia During 2013 Due to an Exotic O/ME-SA/Ind-2001 Lineage Virus.

    Science.gov (United States)

    Knowles, N J; Bachanek-Bankowska, K; Wadsworth, J; Mioulet, V; Valdazo-González, B; Eldaghayes, I M; Dayhum, A S; Kammon, A M; Sharif, M A; Waight, S; Shamia, A M; Tenzin, S; Wernery, U; Grazioli, S; Brocchi, E; Subramaniam, S; Pattnaik, B; King, D P

    2016-10-01

    Foot-and-mouth disease viruses are often restricted to specific geographical regions and spread to new areas may lead to significant epidemics. Phylogenetic analysis of sequences of the VP1 genome region of recent outbreak viruses from Libya and Saudi Arabia has revealed a lineage, O-Ind-2001, normally found in the Indian subcontinent. This paper describes the characterization of field viruses collected from these cases and provides information about a new real-time RT-PCR assay that can be used to detect viruses from this lineage and discriminate them from other endemic FMD viruses that are co-circulating in North Africa and western Eurasia. © 2014 The Authors. Transboundary and Emerging Diseases Published by Blackwell Verlag GmbH.

  6. Diversity and transboundary mobility of serotype O foot-and-mouth disease virus in East Africa: Implications for vaccination policies

    DEFF Research Database (Denmark)

    Balinda, Sheila; Sangula, Abraham; Heller, Rasmus

    2010-01-01

    Foot-and-mouth disease (FMD) virus serotype O has been responsible for most reported outbreaks of the disease in East Africa. A sustained campaign for the past 40 years to control FMD mainly by vaccination, combined with quarantine and zoosanitary measures has been undertaken with limited success....... We investigated the genetic relationships among serotype O strains in eastern Africa using complete VP1 coding region sequences obtained from 46 FMD virus isolates collected in Kenya in the years 1964–2008 and 8 Ugandan isolates collected between 1999 and 2006. In addition, 21 selected FMDV sequences...... the dominant evolutionary force. Cross-border disease transmission within the region has been suggested with probable incursions of topotypes EA-3 and EA-4 into Kenya and Uganda from neighboring Ethiopia and Sudan. We conclude that the vaccines have probably been effective in controlling EA-1, but less so...

  7. Virus Diseases Infecting Almond Germplasm in Lebanon

    OpenAIRE

    Adeeb Saad; Yusuf Abou-Jawdah; Zahi Kanaan-Atallah

    2000-01-01

    Cultivated and wild almond species were surveyed for virus diseases. Four viruses infected cultivated almonds (Prunus dulcis): Prunus necrotic ringspot virus (PNRSV), Prune dwarf virus (PDV), Apple chlorotic leaf spot virus (ACLSV) and Apple mosaic virus (ApMV). Only ACLSV and ApMV were detected on wild almonds, (Prunus orientalis and P. korschinskii). The occurence of PNRSV or PDV on seeds used for the production of rootstocks, on seedlings in nurseries, and on mother plants reve...

  8. Determining the Epitope Dominance on the Capsid of a Serotype SAT2 Foot-and-Mouth Disease Virus by Mutational Analyses

    Science.gov (United States)

    Opperman, Pamela A.; Rotherham, Lia S.; Esterhuysen, Jan; Charleston, Bryan; Juleff, Nicholas; Capozzo, Alejandra V.; Theron, Jacques

    2014-01-01

    ABSTRACT Monoclonal-antibody (MAb)-resistant mutants were used to map antigenic sites on foot-and-mouth disease virus (FMDV), which resulted in the identification of neutralizing epitopes in the flexible βG-βH loop in VP1. For FMDV SAT2 viruses, studies have shown that at least two antigenic sites exist. By use of an infectious SAT2 cDNA clone, 10 structurally exposed and highly variable loops were identified as putative antigenic sites on the VP1, VP2, and VP3 capsid proteins of SAT2/Zimbabwe (ZIM)/7/83 (topotype II) and replaced with the corresponding regions of SAT2/Kruger National Park (KNP)/19/89 (topotype I). Virus neutralization assays using convalescent-phase antisera raised against the parental virus, SAT2/ZIM/7/83, indicated that the mutant virus containing the TQQS-to-ETPV mutation in the N-terminal part of the βG-βH loop of VP1 showed not only a significant increase in the neutralization titer but also an increase in the index of avidity to the convalescent-phase antisera. Furthermore, antigenic profiling of the epitope-replaced and parental viruses with nonneutralizing SAT2-specific MAbs led to the identification of two nonneutralizing antigenic regions. Both regions were mapped to incorporate residues 71 to 72 of VP2 as the major contact point. The binding footprint of one of the antigenic regions encompasses residues 71 to 72 and 133 to 134 of VP2 and residues 48 to 50 of VP1, and the second antigenic region encompasses residues 71 to 72 and 133 to 134 of VP2 and residues 84 to 86 and 109 to 11 of VP1. This is the first time that antigenic regions encompassing residues 71 to 72 of VP2 have been identified on the capsid of a SAT2 FMDV. IMPORTANCE Monoclonal-antibody-resistant mutants have traditionally been used to map antigenic sites on foot-and-mouth disease virus (FMDV). However, for SAT2-type viruses, which are responsible for most of the FMD outbreaks in Africa and are the most varied of all seven serotypes, only two antigenic sites have been

  9. The roles of viruses in periodontal diseases

    OpenAIRE

    C C Azodo; P Erhabor

    2015-01-01

    The roles of bacteria in the etiopathogenesis of periodontal disease are well-understand, but that of the virus found in the periodontal environment are poorly understood. The aim of this literature review was to report the roles of viruses in periodontal diseases. The roles of viruses in periodontal diseases were categorized into the role in disease etiology, role in the pathogenesis of periodontal diseases, role in diseases progression and role in response to treatment. Clearer understandin...

  10. Viruses & kidney disease: beyond HIV

    Science.gov (United States)

    Waldman, Meryl; Marshall, Vickie; Whitby, Denise; Kopp, Jeffrey B.

    2008-01-01

    HIV-infected patients may acquire new viral co-infections; they may also experience the reactivation or worsening of existing viral infections, including active, smoldering, or latent infections. HIV-infected patients may be predisposed to these viral infections due to immunodeficiency or to risk factors common to HIV and other viruses. A number of these affect the kidney, either by direct infection or by deposition of immune complexes. In this review we discuss the renal manifestations and treatment of hepatitis C virus, BK virus, adenovirus, cytomegalovirus, and parvovirus B19 in patients with HIV disease. We also discuss an approach to the identification of new viral renal pathogens, using a viral gene chip to identify viral DNA or RNA. PMID:19013331

  11. Viruses: agents of coral disease?

    Science.gov (United States)

    Davy, S K; Burchett, S G; Dale, A L; Davies, P; Davy, J E; Muncke, C; Hoegh-Guldberg, O; Wilson, W H

    2006-03-23

    The potential role of viruses in coral disease has only recently begun to receive attention. Here we describe our attempts to determine whether viruses are present in thermally stressed corals Pavona danai, Acropora formosa and Stylophora pistillata and zoanthids Zoanthus sp., and their zooxanthellae. Heat-shocked P. danai, A. formosa and Zoanthus sp. all produced numerous virus-like particles (VLPs) that were evident in the animal tissue, zooxanthellae and the surrounding seawater; VLPs were also seen around heat-shocked freshly isolated zooxanthellae (FIZ) from P. danai and S. pistillata. The most commonly seen VLPs were tail-less, hexagonal and about 40 to 50 nm in diameter, though a diverse range of other VLP morphotypes (e.g. rounded, rod-shaped, droplet-shaped, filamentous) were also present around corals. When VLPs around heat-shocked FIZ from S. pistillata were added to non-stressed FIZ from this coral, they resulted in cell lysis, suggesting that an infectious agent was present; however, analysis with transmission electron microscopy provided no clear evidence of viral infection. The release of diverse VLPs was again apparent when flow cytometry was used to enumerate release by heat-stressed A. formosa nubbins. Our data support the infection of reef corals by viruses, though we cannot yet determine the precise origin (i.e. coral, zooxanthellae and/or surface microbes) of the VLPs seen. Furthermore, genome sequence data are required to establish the presence of viruses unequivocally.

  12. T135I substitution in the nonstructural protein 2C enhances foot-and-mouth disease virus replication.

    Science.gov (United States)

    Yuan, Tiangang; Wang, Haiwei; Li, Chen; Yang, Decheng; Zhou, Guohui; Yu, Li

    2017-12-01

    The foot-and-mouth disease virus (FMDV) nonstructural protein 3A plays an important role in viral replication, virulence, and host range. It has been shown that deletions of 10 or 19-20 amino acids in the C-terminal half of 3A attenuate serotype O and C FMDVs, which replicate poorly in bovine cells but normally in porcine-derived cells, and the C-terminal half of 3A is not essential for serotype Asia1 FMDV replication in BHK-21 cells. In this study, we constructed a 3A deletion FMDV mutant based on a serotype O FMDV, the wild-type virus O/YS/CHA/05, with a 60-amino acid deletion in the 3A protein sequence, between residues 84 and 143. The rescued virus O/YS/CHA/05-Δ3A exhibited slower growth kinetics and formed smaller plaques compared to O/YS/CHA/05 in both BHK-21 and IBRS-2 cells, indicating that the 60-amino acid deletion in the 3A protein impaired FMDV replication. After 14 passages in BHK-21 cells, the replication capacity of the passaged virus O/YS/CHA/05-Δ3A-P14 returned to a level similar to the wild-type virus, suggesting that amino acid substitutions responsible for the enhanced replication capacity occurred in the genome of O/YS/CHA/05-Δ3A-P14. By sequence analysis, two amino acid substitutions, P153L in VP1 and T135I in 2C, were found in the O/YS/CHA/05-Δ3A-P14 genome compared to the O/YS/CHA/05-Δ3A genome. Subsequently, the amino acid substitutions VP1 P153L and 2C T135I were separately introduced into O/YS/CHA/05-Δ3A to rescue mutant viruses for examining their growth kinetics. Results showed that the 2C T135I instead of the VP1 P153L enhanced the virus replication capacity. The 2C T135I substitution also improved the replication of the wild-type virus, indicating that the effect of 2C T135I substitution on FMDV replication is not associated with the 3A deletion. Furthermore, our results showed that the T135I substitution in the nonstructural protein 2C enhanced O/YS/CHA/05 replication through promoting viral RNA synthesis.

  13. Identification of a novel cell culture adaptation site on the capsid of foot-and-mouth disease virus.

    Science.gov (United States)

    Chamberlain, Kyle; Fowler, Veronica L; Barnett, Paul V; Gold, Sarah; Wadsworth, Jemma; Knowles, Nick J; Jackson, Terry

    2015-09-01

    Vaccination remains the most effective tool for control of foot-and-mouth disease both in endemic countries and as an emergency preparedness for new outbreaks. Foot-and-mouth disease vaccines are chemically inactivated virus preparations and the production of new vaccines is critically dependent upon cell culture adaptation of field viruses, which can prove problematic. A major driver of cell culture adaptation is receptor availability. Field isolates of foot-and-mouth disease virus (FMDV) use RGD-dependent integrins as receptors, whereas cell culture adaptation often selects for variants with altered receptor preferences. Previously, two independent sites on the capsid have been identified where mutations are associated with improved cell culture growth. One is a shallow depression formed by the three major structural proteins (VP1-VP3) where mutations create a heparan sulphate (HS)-binding site (the canonical HS-binding site). The other involves residues of VP1 and is located at the fivefold symmetry axis. For some viruses, changes at this site result in HS binding; for others, the receptors are unknown. Here, we report the identification of a novel site on VP2 where mutations resulted in an expanded cell tropism of a vaccine variant of A/IRN/87 (called A - ). Furthermore, we show that introducing the same mutations into a different type A field virus (A/TUR/2/2006) resulted in the same expanded cell culture tropism as the A/IRN/87 A -  vaccine variant. These observations add to the evidence for multiple cell attachment mechanisms for FMDV and may be useful for vaccine manufacture when cell culture adaptation proves difficult.

  14. Ebola virus disease: radiology preparedness.

    Science.gov (United States)

    Bluemke, David A; Meltzer, Carolyn C

    2015-02-01

    At present, there is a major emphasis on Ebola virus disease (EVD) preparedness training at medical facilities throughout the United States. Failure to have proper EVD procedures in place was cited as a major reason for infection of medical personnel in the United States. Medical imaging does not provide diagnosis of EVD, but patient assessment in the emergency department and treatment isolation care unit is likely to require imaging services. The purpose of this article is to present an overview of relevant aspects of EVD disease and preparedness relevant to the radiologic community. © RSNA, 2014.

  15. Phylogenetic similarity of the canine parvovirus wild-type isolates on the basis of VP1/VP2 gene fragment sequence analysis.

    Science.gov (United States)

    Rypul, K; Chmielewski, R; Smielewska-Loś, E; Klimentowski, S

    2002-04-01

    Biological material was taken from dogs with diarrhoea. Faecal samples were taken from within live animals and intestinal tract fragments (i.e. small intestine, and stomach) were taken from dead animals. In total, 18 specimens were investigated from dogs housed alone or in large groups. To test for the presence of the virus, latex (On Site Biotech, Uppsala, Sweden) and direct immunofluorescence tests were performed. At the same time, polymerase chain reaction (PCR) with primers complementary to a conservative region of VP1/VP2 was carried out. The products of amplification were analysed on 2% agarose gel. The purified products were cloned with the Template Generation System (Finnzymes, Espoo, Finland) using a transposition reaction and positive clones were searched using the 'colony screening by PCR' method. The sequencing gave 12 sequences of VP1/VP2 gene fragments that were of high similarity. Among the 12 analysed sequences, six exhibited 88% similarity, four exhibited 100% similarity and two exhibited 71% similarity.

  16. Treatment of ebola virus disease.

    Science.gov (United States)

    Kilgore, Paul E; Grabenstein, John D; Salim, Abdulbaset M; Rybak, Michael

    2015-01-01

    In March 2014, the largest Ebola outbreak in history exploded across West Africa. As of November 14, 2014, the World Health Organization has reported a total of 21,296 Ebola virus disease (EVD) cases, including 13,427 laboratory-confirmed EVD cases reported from the three most affected countries (Guinea, Liberia, and Sierra Leone). As the outbreak of EVD has spread, clinical disease severity and national EVD case-fatality rates have remained high (21.2-60.8%). Prior to 2013, several EVD outbreaks were controlled by using routine public health interventions; however, the widespread nature of the current EVD outbreak as well as cultural practices in the affected countries have challenged even the most active case identification efforts. In addition, although treatment centers provide supportive care, no effective therapeutic agents are available for EVD-endemic countries. The ongoing EVD outbreak has stimulated investigation of several different therapeutic strategies that target specific viral structures and mechanisms of Ebola viruses. Six to eight putative pharmacotherapies or immunologically based treatments have demonstrated promising results in animal studies. In addition, agents composed of small interfering RNAs targeting specific proteins of Ebola viruses, traditional hyperimmune globulin isolated from Ebola animal models, monoclonal antibodies, and morpholino oligomers (small molecules used to block viral gene expression). A number of EVD therapeutic agents are now entering accelerated human trials in EVD-endemic countries. The goal of therapeutic agent development includes postexposure prevention and EVD cure. As knowledge of Ebola virus virology and pathogenesis grows, it is likely that new therapeutic tools will be developed. Deployment of novel Ebola therapies will require unprecedented cooperation as well as investment to ensure that therapeutic tools become available to populations at greatest risk for EVD and its complications. In this article, we

  17. Recovery of viral RNA and infectious foot-and-mouth disease virus from positive lateral-flow devices.

    Science.gov (United States)

    Fowler, Veronica L; Bankowski, Bartlomiej M; Armson, Bryony; Di Nardo, Antonello; Valdazo-Gonzalez, Begoña; Reid, Scott M; Barnett, Paul V; Wadsworth, Jemma; Ferris, Nigel P; Mioulet, Valérie; King, Donald P

    2014-01-01

    Foot-and-mouth disease Virus (FMDV) is an economically important, highly contagious picornavirus that affects both wild and domesticated cloven hooved animals. In developing countries, the effective laboratory diagnosis of foot-and-mouth disease (FMD) is often hindered by inadequate sample preservation due to difficulties in the transportation and storage of clinical material. These factors can compromise the ability to detect and characterise FMD virus in countries where the disease is endemic. Furthermore, the high cost of sending infectious virus material and the biosecurity risk it presents emphasises the need for a thermo-stable, non-infectious mode of transporting diagnostic samples. This paper investigates the potential of using FMDV lateral-flow devices (LFDs) for dry transportation of clinical samples for subsequent nucleic acid amplification, sequencing and recovery of infectious virus by electroporation. FMDV positive samples (epithelial suspensions and cell culture isolates) representing four FMDV serotypes were applied to antigen LFDs: after which it was possible to recover viral RNA that could be detected using real-time RT-PCR. Using this nucleic acid, it was also possible to recover VP1 sequences and also successfully utilise protocols for amplification of complete FMD virus genomes. It was not possible to recover infectious FMDV directly from the LFDs, however following electroporation into BHK-21 cells and subsequent cell passage, infectious virus could be recovered. Therefore, these results support the use of the antigen LFD for the dry, non-hazardous transportation of samples from FMD endemic countries to international reference laboratories.

  18. Foot-and-mouth disease virus serotype SAT1 in cattle, Nigeria.

    Science.gov (United States)

    Ehizibolo, D O; Haegeman, A; De Vleeschauwer, A R; Umoh, J U; Kazeem, H M; Okolocha, E C; Van Borm, S; De Clercq, K

    2017-06-01

    The knowledge of foot-and-mouth disease virus (FMDV) dynamics and epidemiology in Nigeria and the West Africa subregion is important to support local and regional control plans and international risk assessment. Foot-and-mouth disease virus serotype South African territories (SAT)1 was isolated, identified and characterized from an FMD outbreak in cattle in Nigeria in 2015, 35 years after the last report of FMDV SAT1 in West Africa. The VP1 coding sequence of the Nigerian 2015 SAT1 isolates diverges from reported SAT1 topotypes resulting in a separate topotype. The reporting of a novel FMDV SAT1 strain in the virus pool 5 (West and Central Africa) highlights the dynamic and complex nature of FMDV in this region of Africa. Sustained surveillance is needed to understand the origin, the extent and distribution of this novel SAT1 topotype in the region as well as to detect and monitor the occurrence of (re-)emerging FMDV strains. © 2017 Blackwell Verlag GmbH.

  19. Mechanism for Coordinated RNA Packaging and Genome Replication by Rotavirus Polymerase VP1

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaohui; McDonald, Sarah M.; Tortorici, M. Alejandra; Tao, Yizhi Jane; Vasquez-Del Carpio, Rodrigo; Nibert, Max L.; Patton, John T.; Harrison, Stephen C. (Harvard-Med); (NIH); (CH-Boston)

    2009-04-08

    Rotavirus RNA-dependent RNA polymerase VP1 catalyzes RNA synthesis within a subviral particle. This activity depends on core shell protein VP2. A conserved sequence at the 3' end of plus-strand RNA templates is important for polymerase association and genome replication. We have determined the structure of VP1 at 2.9 {angstrom} resolution, as apoenzyme and in complex with RNA. The cage-like enzyme is similar to reovirus {lambda}3, with four tunnels leading to or from a central, catalytic cavity. A distinguishing characteristic of VP1 is specific recognition, by conserved features of the template-entry channel, of four bases, UGUG, in the conserved 3' sequence. Well-defined interactions with these bases position the RNA so that its 3' end overshoots the initiating register, producing a stable but catalytically inactive complex. We propose that specific 3' end recognition selects rotavirus RNA for packaging and that VP2 activates the autoinhibited VP1/RNA complex to coordinate packaging and genome replication.

  20. NNDSS - Table II. West Nile virus disease

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. West Nile virus disease - 2015.In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding year),...

  1. NNDSS - Table II. West Nile virus disease

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. West Nile virus disease - 2017. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding year),...

  2. NNDSS - Table II. West Nile virus disease

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. West Nile virus disease - 2016. In this Table, provisional* cases of selected† notifiable diseases (≥1,000 cases reported during the preceding...

  3. Xenoepitope substitution avoids deceptive imprinting and broadens the immune response to foot-and-mouth disease virus.

    Science.gov (United States)

    Szczepanek, Steven M; Barrette, Roger W; Rood, Debra; Alejo, Diana; Silbart, Lawrence K

    2012-04-01

    Many RNA viruses encode error-prone polymerases which introduce mutations into B and T cell epitopes, providing a mechanism for immunological escape. When regions of hypervariability are found within immunodominant epitopes with no known function, they are referred to as "decoy epitopes," which often deceptively imprint the host's immune response. In this work, a decoy epitope was identified in the foot-and-mouth disease virus (FMDV) serotype O VP1 G-H loop after multiple sequence alignment of 118 isolates. A series of chimeric cyclic peptides resembling the type O G-H loop were prepared, each bearing a defined "B cell xenoepitope" from another virus in place of the native decoy epitope. These sequences were derived from porcine respiratory and reproductive syndrome virus (PRRSV), from HIV, or from a presumptively tolerogenic sequence from murine albumin and were subsequently used as immunogens in BALB/c mice. Cross-reactive antibody responses against all peptides were compared to a wild-type peptide and ovalbumin (OVA). A broadened antibody response was generated in animals inoculated with the PRRSV chimeric peptide, in which virus binding of serum antibodies was also observed. A B cell epitope mapping experiment did not reveal recognition of any contiguous linear epitopes, raising the possibility that the refocused response was directed to a conformational epitope. Taken together, these results indicate that xenoepitope substitution is a novel method for immune refocusing against decoy epitopes of RNA viruses such as FMDV as part of the rational design of next-generation vaccines.

  4. Genetic diversity of serotype A foot-and-mouth disease viruses in Kenya from 1964 to 2013; implications for control strategies in eastern Africa

    DEFF Research Database (Denmark)

    Wekesa, Sabenzia N.; Sangula, Abraham K.; Belsham, Graham

    2014-01-01

    Serotype A is the most genetically and antigenically diverse of the foot-and-mouth disease virus (FMDV) serotypes. Records of its occurrence in Kenya date back to 1952 and the antigenic diversity of the outbreak viruses in this region is reflected by the current use of two different vaccine strains...... (K5/1980 and K35/1980) and previous use of two other strains (K18/66 and K179/71). This study aimed at enhancing the understanding of the patterns of genetic variation of serotype A FMDV in Kenya. The complete VP1 coding region sequences of 38 field isolates, identified as serotype A FMDV, collected...... between 1964 and 2013 were determined. Coalescent-based methods were used to infer times of divergence of the virus strains and the evolutionary rates alongside 27 other serotype A FMDV sequences from Genbank and the World Reference Laboratory (WRL). This study represents the first comprehensive genetic...

  5. Genetic characterization and molecular epidemiology of foot-and-mouth disease viruses isolated from Afghanistan in 2003-2005.

    Science.gov (United States)

    Schumann, Kate R; Knowles, Nick J; Davies, Paul R; Midgley, Rebecca J; Valarcher, Jean-Francois; Raoufi, Abdul Quader; McKenna, Thomas S; Hurtle, William; Burans, James P; Martin, Barbara M; Rodriguez, Luis L; Beckham, Tammy R

    2008-04-01

    Foot-and-mouth disease virus (FMDV) isolates collected from various geographic locations in Afghanistan between 2003 and 2005 were genetically characterized, and their phylogeny was reconstructed utilizing nucleotide sequences of the complete VP1 coding region. Three serotypes of FMDV (types A, O, and Asia 1) were identified as causing clinical disease in Afghanistan during this period. Phylogenetic analysis revealed that the type A viruses were most closely related to isolates collected in Iran during 2002-2004. This is the first published report of serotype A in Afghanistan since 1975, therefore indicating the need for inclusion of serotype A in vaccine formulations that will be used to control disease outbreaks in this country. Serotype O virus isolates were closely related to PanAsia strains, including those that originated from Bhutan and Nepal during 2003-2004. The Asia 1 viruses, collected along the northern and eastern borders of Afghanistan, were most closely related to FMDV isolates collected in Pakistan during 2003 and 2004. Data obtained from this study provide valuable information on the FMDV serotypes circulating in Afghanistan and their genetic relationship with strains causing FMD in neighboring countries.

  6. Enhanced mucosal immune responses induced by a combined candidate mucosal vaccine based on Hepatitis A virus and Hepatitis E virus structural proteins linked to tuftsin.

    Science.gov (United States)

    Gao, Yan; Su, Qiudong; Yi, Yao; Jia, Zhiyuan; Wang, Hao; Lu, Xuexin; Qiu, Feng; Bi, Shengli

    2015-01-01

    Hepatitis A virus (HAV) and Hepatitis E virus (HEV) are the most common causes of infectious hepatitis. These viruses are spread largely by the fecal-oral route and lead to clinically important disease in developing countries. To evaluate the potential of targeting hepatitis A and E infection simultaneously, a combined mucosal candidate vaccine was developed with the partial open reading frame 2 (ORF2) sequence (aa 368-607) of HEV (HE-ORF2) and partial virus protein 1 (VP1) sequence (aa 1-198) of HAV (HA-VP1), which included the viral neutralization epitopes. Tuftsin is an immunostimulatory peptide which can enhance the immunogenicity of a protein by targeting it to macrophages and dendritic cells. Here, we developed a novel combined protein vaccine by conjugating tuftsin to HE-ORF2 and HA-VP1 and used synthetic CpG oligodeoxynucleotides (ODNs) as the adjuvant. Subsequent experiments in BALB/c mice demonstrated that tuftsin enhanced the serum-specific IgG and IgA antibodies against HEV and HAV at the intestinal, vaginal and pulmonary interface when delivered intranasally. Moreover, mice from the intranasally immunized tuftsin group (HE-ORF2-tuftsin + HA-VP1-tuftsin + CpG) showed higher levels of IFN-γ-secreting splenocytes (Th1 response) and ratio of CD4+/CD8+ T cells than those of the no-tuftsin group (HE-ORF2 + HA-VP1 + CpG). Thus, the tuftsin group generated stronger humoral and cellular immune responses compared with the no-tuftsin group. Moreover, enhanced responses to the combined protein vaccine were obtained by intranasal immunization compared with intramuscular injection. By integrating HE-ORF2, HA-VP1 and tuftsin in a vaccine, this study validated an important concept for further development of a combined mucosal vaccine against hepatitis A and E infection.

  7. Molecular differentiation and phylogenetic analysis of the Egyptian foot-and-mouth disease virus SAT2.

    Science.gov (United States)

    El-Shehawy, Laila I; Abu-Elnaga, Hany I; Rizk, Sonia A; Abd El-Kreem, Ahmed S; Mohamed, A A; Fawzy, Hossam G

    2014-03-01

    In February 2012, a massive new foot-and-mouth disease (FMD) outbreak struck Egypt. In this work, one-step RT-PCR assays were used for in-house detection and differentiation of foot-and-mouth disease virus (FMDV) in Egypt in this year using pan-serotypic and serotype-targeting sequence primers. FMDV SAT2 was the dominant virus in the examined isolates from the epidemic. The complete VP1 coding regions of two isolates were sequenced. The two isolates had 99.2 % sequence identity to most contemporary Egyptian SAT2 reference viruses, whereas they had 89.7-90.1 % identity to the SAT2/EGY/2/2012 isolate, which was collected from Alexandria, Egypt, and previously sequenced by WRLFMD. Phylogenetic analysis showed that Egypt had one topotype and two lineage of FMDV SAT2 in 2012. The Egyptian and the Palestinian 2012 strains were associated mainly with topotype VII, lineage SAT2/VII/Ghb-12, while the virus isolated from Alexandria Governorate belonged to the SAT2/VII/Alx-12 lineage. Topotype VII also comprised lineages that included strains isolated from Libya in 2012 and 2003. Furthermore, within the same topotype, the Egyptian SAT2/2012 isolates were related to strains from Saudi Arabia, Sudan, Eritrea, Cameroon and Nigeria. Nevertheless, more epidemiological work with neighboring countries is needed to prevent cross-border spread of disease and to reach a precise conclusion about the origin of the 2012 FMDV SAT2 emergency in the Middle East.

  8. Border Disease Virus among Chamois, Spain

    Science.gov (United States)

    Rosell, Rosa; Cabezón, Oscar; Mentaberre, Gregorio; Casas, Encarna; Velarde, Roser; Lavín, Santiago

    2009-01-01

    Approximately 3,000 Pyrenean chamois (Rupicapra pyrenaica pyrenaica) died in northeastern Spain during 2005–2007. Border disease virus infection was identified by reverse transcription–PCR and sequencing analysis. These results implicate this virus as the primary cause of death, similar to findings in the previous epizootic in 2001. PMID:19239761

  9. Evaluation of the immune response in Shitou geese (Anser anser domesticus) following immunization with GPV-VP1 DNA-based and live attenuated vaccines.

    Science.gov (United States)

    Deng, Shu-xuan; Cai, Ming-sheng; Cui, Wei; Huang, Jin-lu; Li, Mei-li

    2014-01-01

    Goose parvovirus (GPV) is a highly contagious and deadly disease for goslings and Muscovy ducklings. To compare the differences in immune response of geese immunized with GPV-VP1 DNA-based and live attenuated vaccines. Shitou geese were immunized once with either 20 μg pcDNA-GPV-VP1 DNA gene vaccine by gene gun bombardment via intramuscular injection, or 300 μg by i.m. injection, or 300 μL live attenuated vaccine by i.m. injection, whereas 300 μg pcDNA3.1 (+) i.m. or 300 μL saline i.m. were used as positive and negative controls, respectively. Each group comprised 28 animals. Peripheral blood samples were collected from 2-210 days after immunization and the proliferation of T lymphocytes, the number of CD4(+) and CD8(+) T cells and the level of IgG assessed. Statistical analysis was performed using a one-way analysis of variance with group multiple comparisons via Tukey's test. The pcDNA-GPV-VP1 DNA and attenuated vaccine induced cellular and humoral responses, and there were no differences between the 20 and 300 μg group in the responses of proliferation of T lymphocyte and the CD8(+) T-cell. However, as to CD4(+) T-cell response and humoral immunity, the 20 μg group performed better than the 300 μg group, which induced better cellular and humoral immunity than live attenuated vaccine. This study showed that it is possible to induce both cellular and humoral response using DNA-based vaccines and that the pcDNA-GPV-VP1 DNA gene vaccine induced better cellular and humoral immunity than live attenuated vaccine.

  10. Cloning of the first human anti-JCPyV/VP1 neutralizing monoclonal antibody: epitope definition and implications in risk stratification of patients under natalizumab therapy.

    Science.gov (United States)

    Diotti, Roberta Antonia; Mancini, Nicasio; Clementi, Nicola; Sautto, Giuseppe; Moreno, Guisella Janett; Criscuolo, Elena; Cappelletti, Francesca; Man, Petr; Forest, Eric; Remy, Louise; Giannecchini, Simone; Clementi, Massimo; Burioni, Roberto

    2014-08-01

    JC virus (JCPyV) has gained novel clinical importance as cause of progressive multifocal leukoencephalopathy (PML), a rare demyelinating disease recently associated to immunomodulatory drugs, such as natalizumab used in multiple sclerosis (MS) cases. Little is known about the mechanisms leading to PML, and this makes the need of PML risk stratification among natalizumab-treated patients very compelling. Clinical and laboratory-based risk-stratification markers have been proposed, one of these is represented by the JCPyV-seropositive status, which includes about 54% of MS patients. We recently proposed to investigate the possible protective role of neutralizing humoral immune response in preventing JCPyV reactivation. In this proof-of-concept study, by cloning the first human monoclonal antibody (GRE1) directed against a neutralizing epitope on JCPyV/VP1, we optimized a robust anti-JCPyV neutralization assay. This allowed us to evaluate the neutralizing activity in JCPyV-positive sera from MS patients, demonstrating the lack of correlation between the level of anti-JCPyV antibody and anti-JCPyV neutralizing activity. Relevant consequences may derive from future clinical studies induced by these findings; indeed the study of the serum anti-JCPyV neutralizing activity could allow not only a better risk stratification of the patients during natalizumab treatment, but also a better understanding of the pathophysiological mechanisms leading to PML, highlighting the contribution of peripheral versus central nervous system JCPyV reactivation. Noteworthy, the availability of GRE1 could allow the design of novel immunoprophylactic strategies during the immunomodulatory treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Inhibition of enterovirus 71 (EV-71 infections by a novel antiviral peptide derived from EV-71 capsid protein VP1.

    Directory of Open Access Journals (Sweden)

    Chee Wah Tan

    Full Text Available Enterovirus 71 (EV-71 is the main causative agent of hand, foot and mouth disease (HFMD. In recent years, EV-71 infections were reported to cause high fatalities and severe neurological complications in Asia. Currently, no effective antiviral or vaccine is available to treat or prevent EV-71 infection. In this study, we have discovered a synthetic peptide which could be developed as a potential antiviral for inhibition of EV-71. Ninety five synthetic peptides (15-mers overlapping the entire EV-71 capsid protein, VP1, were chemically synthesized and tested for antiviral properties against EV-71 in human Rhabdomyosarcoma (RD cells. One peptide, SP40, was found to significantly reduce cytopathic effects of all representative EV-71 strains from genotypes A, B and C tested, with IC(50 values ranging from 6-9.3 µM in RD cells. The in vitro inhibitory effect of SP40 exhibited a dose dependent concentration corresponding to a decrease in infectious viral particles, total viral RNA and the levels of VP1 protein. The antiviral activity of SP40 peptide was not restricted to a specific cell line as inhibition of EV-71 was observed in RD, HeLa, HT-29 and Vero cells. Besides inhibition of EV-71, it also had antiviral activities against CV-A16 and poliovirus type 1 in cell culture. Mechanism of action studies suggested that the SP40 peptide was not virucidal but was able to block viral attachment to the RD cells. Substitutions of arginine and lysine residues with alanine in the SP40 peptide at positions R3A, R4A, K5A and R13A were found to significantly decrease antiviral activities, implying the importance of positively charged amino acids for the antiviral activities. The data demonstrated the potential and feasibility of SP40 as a broad spectrum antiviral agent against EV-71.

  12. Genetic diversity of foot-and-mouth disease virus serotype O in Pakistan and Afghanistan, 1997–2009

    DEFF Research Database (Denmark)

    Jamal, Syed Muhammad; Ferrari, Giancarlo; Ahmed, Safia

    2011-01-01

    Foot-and-mouth disease (FMD) is endemic in Pakistan and Afghanistan; serotypes O, A and Asia-1 of the virus are responsible for the outbreaks in these countries with FMDV type O usually being the most common. In the present study, the nucleotide sequences encoding the FMDV capsid protein VP1 from...... in the region were found to be 6.65×10−3 (95% CI=5.49–7.80×10−3) and 7.80×10−3 (95% CI=6.72–8.89×10−3) substitutions per nucleotide per year, respectively. The present study reveals the presence of multiple (sub-)lineages of FMDV serotype O co-circulating in the region and that significant new variants...

  13. Full protection of swine against foot-and-mouth disease by a bivalent B-cell epitope dendrimer peptide

    NARCIS (Netherlands)

    Blanco, Esther; Guerra, Beatriz; Torre, de la Beatriz; Defaus, Sira; Dekker, A.; Andreu, D.; Sobrino, Francisco

    2016-01-01

    Foot-and-mouth disease virus (FMDV) causes a highly contagious disease of cloven-hoofed animals. We have reported (Cubillos et al., 2008) that a synthetic dendrimeric peptide consisting of four copies of a B-cell epitope [VP1(136–154)] linked through thioether bonds to a T-cell epitope [3A(21–35)

  14. Identification of a Common Epitope between Enterovirus 71 and Human MED25 Proteins Which May Explain Virus-Associated Neurological Disease

    Directory of Open Access Journals (Sweden)

    Peihu Fan

    2015-03-01

    Full Text Available Enterovirus 71 (EV71 is a major causative pathogen of hand, foot and mouth disease with especially severe neurologic complications, which mainly account for fatalities from this disease. To date, the pathogenesis of EV71 in the central neurons system has remained unclear. Cytokine-mediated immunopathogenesis and nervous tissue damage by virus proliferation are two widely speculated causes of the neurological disease. To further study the pathogenesis, we identified a common epitope (co-epitope between EV71 VP1 and human mediator complex subunit 25 (MED25 highly expressed in brain stem. A monoclonal antibody (2H2 against the co-epitope was prepared, and its interaction with MED25 was examined by ELISA, immunofluorescence assay and Western blot in vitro and by live small animal imaging in vivo. Additionally, 2H2 could bind to both VP1 and MED25 with the affinity constant (Kd of 10−7 M as determined by the ForteBio Octet System. Intravenously injected 2H2 was distributed in brain stem of mice after seven days of EV71 infection. Interestingly, 2H2-like antibodies were detected in the serum of EV71-infected patients. These findings suggest that EV71 infection induces the production of antibodies that can bind to autoantigens expressed in nervous tissue and maybe further trigger autoimmune reactions resulting in neurological disease.

  15. Control of sweet potato virus diseases.

    Science.gov (United States)

    Loebenstein, Gad

    2015-01-01

    Sweet potato (Ipomoea batatas) is ranked seventh in global food crop production and is the third most important root crop after potato and cassava. Sweet potatoes are vegetative propagated from vines, root slips (sprouts), or tubers. Therefore, virus diseases can be a major constrain, reducing yields markedly, often more than 50%. The main viruses worldwide are Sweet potato feathery mottle virus (SPFMV) and Sweet potato chlorotic stunt virus (SPCSV). Effects on yields by SPFMV or SPCSV alone are minor, or but in complex infection by the two or other viruses yield losses of 50%. The orthodox way of controlling viruses in vegetative propagated crops is by supplying the growers with virus-tested planting material. High-yielding plants are tested for freedom of viruses by PCR, serology, and grafting to sweet potato virus indicator plants. After this, meristem tips are taken from those plants that reacted negative. The meristems were grown into plants which were kept under insect-proof conditions and away from other sweet potato material for distribution to farmers after another cycle of reproduction. © 2015 Elsevier Inc. All rights reserved.

  16. Immunotherapy of Human Papilloma Virus Induced Disease

    Science.gov (United States)

    van der Burg, Sjoerd H

    2012-01-01

    Immunotherapy is the generic name for treatment modalities aiming to reinforce the immune system against diseases in which the immune system plays a role. The design of an optimal immunotherapeutic treatment against chronic viruses and associated diseases requires a detailed understanding of the interactions between the target virus and its host, in order to define the specific strategies that may have the best chance to deliver success at each stage of disease. Recently, a first series of successes was reported for the immunotherapy of Human Papilloma Virus (HPV)-induced premalignant diseases but there is definitely room for improvement. Here I discuss a number of topics that in my opinion require more study as the answers to these questions allows us to better understand the underlying mechanisms of disease and as such to tailor treatment. PMID:23341861

  17. 9 CFR 113.212 - Bursal Disease Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Bursal Disease Vaccine, Killed Virus..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.212 Bursal Disease Vaccine, Killed Virus. Bursal Disease Vaccine...

  18. Phylogenetic analyses of the polyprotein coding sequences of serotype O foot-and-mouth disease viruses in East Africa: evidence for interserotypic recombination

    Directory of Open Access Journals (Sweden)

    Balinda Sheila N

    2010-08-01

    Full Text Available Abstract Background Foot-and-mouth disease (FMD is endemic in East Africa with the majority of the reported outbreaks attributed to serotype O virus. In this study, phylogenetic analyses of the polyprotein coding region of serotype O FMD viruses from Kenya and Uganda has been undertaken to infer evolutionary relationships and processes responsible for the generation and maintenance of diversity within this serotype. FMD virus RNA was obtained from six samples following virus isolation in cell culture and in one case by direct extraction from an oropharyngeal sample. Following RT-PCR, the single long open reading frame, encoding the polyprotein, was sequenced. Results Phylogenetic comparisons of the VP1 coding region showed that the recent East African viruses belong to one lineage within the EA-2 topotype while an older Kenyan strain, K/52/1992 is a representative of the topotype EA-1. Evolutionary relationships between the coding regions for the leader protease (L, the capsid region and almost the entire coding region are monophyletic except for the K/52/1992 which is distinct. Furthermore, phylogenetic relationships for the P2 and P3 regions suggest that the K/52/1992 is a probable recombinant between serotypes A and O. A bootscan analysis of K/52/1992 with East African FMD serotype A viruses (A21/KEN/1964 and A23/KEN/1965 and serotype O viral isolate (K/117/1999 revealed that the P2 region is probably derived from a serotype A strain while the P3 region appears to be a mosaic derived from both serotypes A and O. Conclusions Sequences of the VP1 coding region from recent serotype O FMDVs from Kenya and Uganda are all representatives of a specific East African lineage (topotype EA-2, a probable indication that hardly any FMD introductions of this serotype have occurred from outside the region in the recent past. Furthermore, evidence for interserotypic recombination, within the non-structural protein coding regions, between FMDVs of serotypes A

  19. Characterization of foot-and-mouth disease viruses from Ugandan cattle outbreaks during 2012-2013: Evidence for circulation of multiple serotypes

    DEFF Research Database (Denmark)

    Namatovu, Alice; Tjørnehøj, Kirsten; Belsham, Graham

    2015-01-01

    To investigate the foot-and-mouth disease virus (FMDV) serotypes circulating in Uganda’s cattle population, both serological and virological analyses of samples from outbreaks that occurred during 2012-2013 were performed. Altogether, 79 sera and 60 oropharyngeal fluid (OP)/tissue/oral swab samples...... were collected from herds with reported FMD outbreaks in seven different Ugandan districts. Overall, 61/79 (77%) of the cattle sera were positive for antibodies against FMDV by PrioCHECK® FMDV NS ELISA and solid phase blocking ELISA detected titres ≥ 80 for serotypes O, SAT 1, SAT 2 and SAT 3 in 41, 45...... Kiruhura, Isingiro and Ntungamo districts. Consistent with the detection of high levels of neutralising antibodies against SAT 2, was the isolation of a SAT 2 FMDV from Isingiro; sequencing (for the VP1 coding region) indicated that this virus belonged to lineage I within this serotype, like the currently...

  20. Characterisation of recent foot-and-mouth disease viruses from African buffalo (Syncerus caffer) and cattle in Kenya is consistent with independent virus populations.

    Science.gov (United States)

    Wekesa, Sabenzia Nabalayo; Sangula, Abraham Kiprotich; Belsham, Graham J; Tjornehoj, Kirsten; Muwanika, Vincent B; Gakuya, Francis; Mijele, Dominic; Siegismund, Hans Redlef

    2015-02-03

    Understanding the epidemiology of foot-and-mouth disease (FMD), including roles played by different hosts, is essential for improving disease control. The African buffalo (Syncerus caffer) is a reservoir for the SAT serotypes of FMD virus (FMDV). Large buffalo populations commonly intermingle with livestock in Kenya, yet earlier studies have focused on FMD in the domestic livestock, hence the contribution of buffalo to disease in livestock is largely unknown. This study analysed 47 epithelia collected from FMD outbreaks in Kenyan cattle between 2008 and 2012, and 102 probang and serum samples collected from buffalo in three different Kenyan ecosystems; Maasai-Mara (MME) (n = 40), Tsavo (TSE) (n = 33), and Meru (ME) (n = 29). Antibodies against FMDV non-structural proteins were found in 65 of 102 (64%) sera from buffalo with 44/102 and 53/102 also having neutralising antibodies directed against FMDV SAT 1 and SAT 2, respectively. FMDV RNA was detected in 42% of the buffalo probang samples by RT-qPCR (Cycle Threshold (Ct) ≤32). Two buffalo probang samples were positive by VI and were identified as FMDV SAT 1 and SAT 2 by Ag-ELISA, while the latter assay detected serotypes O (1), A (20), SAT 1 (7) and SAT 2 (19) in the 47 cattle epithelia. VP1 coding sequences were generated for two buffalo and 21 cattle samples. Phylogenetic analyses revealed SAT 1 and SAT 2 virus lineages within buffalo that were distinct from those detected in cattle. We found that FMDV serotypes O, A, SAT 1 and SAT 2 were circulating among cattle in Kenya and cause disease, but only SAT 1 and SAT 2 viruses were successfully isolated from clinically normal buffalo. The buffalo isolates were genetically distinct from isolates obtained from cattle. Control efforts should focus primarily on reducing FMDV circulation among livestock and limiting interaction with buffalo. Comprehensive studies incorporating additional buffalo viruses are recommended.

  1. Foot-and-mouth disease virus induces autophagosomes during cell entry via a class III phosphatidylinositol 3-kinase-independent pathway.

    Science.gov (United States)

    Berryman, Stephen; Brooks, Elizabeth; Burman, Alison; Hawes, Philippa; Roberts, Rebecca; Netherton, Christopher; Monaghan, Paul; Whelband, Matthew; Cottam, Eleanor; Elazar, Zvulun; Jackson, Terry; Wileman, Thomas

    2012-12-01

    Autophagy is an intracellular pathway that can contribute to innate antiviral immunity by delivering viruses to lysosomes for degradation or can be beneficial for viruses by providing specialized membranes for virus replication. Here, we show that the picornavirus foot-and-mouth disease virus (FMDV) induces the formation of autophagosomes. Induction was dependent on Atg5, involved processing of LC3 to LC3II, and led to a redistribution of LC3 from the cytosol to punctate vesicles indicative of authentic autophagosomes. Furthermore, FMDV yields were reduced in cells lacking Atg5, suggesting that autophagy may facilitate FMDV infection. However, induction of autophagosomes by FMDV appeared to differ from starvation, as the generation of LC3 punctae was not inhibited by wortmannin, implying that FMDV-induced autophagosome formation does not require the class III phosphatidylinositol 3-kinase (PI3-kinase) activity of vps34. Unlike other picornaviruses, for which there is strong evidence that autophagosome formation is linked to expression of viral nonstructural proteins, FMDV induced autophagosomes very early during infection. Furthermore, autophagosomes could be triggered by either UV-inactivated virus or empty FMDV capsids, suggesting that autophagosome formation was activated during cell entry. Unlike other picornaviruses, FMDV-induced autophagosomes did not colocalize with the viral 3A or 3D protein. In contrast, ∼50% of the autophagosomes induced by FMDV colocalized with VP1. LC3 and VP1 also colocalized with the cellular adaptor protein p62, which normally targets ubiquitinated proteins to autophagosomes. These results suggest that FMDV induces autophagosomes during cell entry to facilitate infection, but not to provide membranes for replication.

  2. Genetic diversity and comparison of diagnostic tests for characterization of foot-and-mouth disease virus strains from Pakistan 2008-2012.

    Science.gov (United States)

    Ahmed, Z; Pauszek, S J; Ludi, A; LaRocco, M; Khan, E-U-H; Afzal, M; Arshed, M J; Farooq, U; Arzt, J; Bertram, M; Brito, B; Naeem, K; Abubakar, M; Rodriguez, L L

    2018-04-01

    We report the laboratory analysis of 125 clinical samples from suspected cases of foot-and-mouth disease (FMD) in cattle and Asian buffalo collected in Pakistan between 2008 and 2012. Of these samples, 89 were found to contain viral RNA by rRT-PCR, of which 88 were also found to contain infectious FMD virus (FMDV) by virus isolation (VI), with strong correlation between these tests (κ = 0.96). Samples that were VI-positive were serotyped by antigen detection ELISA (Ag-ELISA) and VP1 sequence acquisition and analysis. Sequence data identified FMDV serotypes A (n = 13), O (n = 36) and Asia-1 (n = 41), including three samples from which both serotypes Asia-1 and O were detected. Serotype A viruses were classified within three different Iran-05 sublineages: HER-10, FAR-11 and ESF-10. All serotype Asia-1 were within Group VII (Sindh-08 lineage), in a genetic clade that differs from viruses isolated prior to 2010. All serotypes O were classified as PanAsia-2 within two different sublineages: ANT-10 and BAL-09. Using VP1 sequencing as the gold standard for serotype determination, the overall sensitivity of Ag-ELISA to correctly determine serotype was 74%, and serotype-specific sensitivity was 8% for serotype A, 88% for Asia-1 and 89% for O. Serotype-specific specificity was 100% for serotype A, 93% for Asia-1 and 94% for O. Interestingly, 12 of 13 serotype A viruses were not detected by Ag-ELISA. This study confirms earlier accounts of regional genetic diversity of FMDV in Pakistan and highlights the importance of continued validation of diagnostic tests for rapidly evolving pathogens such as FMDV. © 2017 Blackwell Verlag GmbH.

  3. Chronic Active Epstein-Barr Virus Disease.

    Science.gov (United States)

    Kimura, Hiroshi; Cohen, Jeffrey I

    2017-01-01

    Chronic active Epstein-Barr virus (CAEBV) disease is a rare disorder in which persons are unable to control infection with the virus. The disease is progressive with markedly elevated levels of EBV DNA in the blood and infiltration of organs by EBV-positive lymphocytes. Patients often present with fever, lymphadenopathy, splenomegaly, EBV hepatitis, or pancytopenia. Over time, these patients develop progressive immunodeficiency and if not treated, succumb to opportunistic infections, hemophagocytosis, multiorgan failure, or EBV-positive lymphomas. Patients with CAEBV in the United States most often present with disease involving B or T cells, while in Asia, the disease usually involves T or NK cells. The only proven effective treatment for the disease is hematopoietic stem cell transplantation. Current studies to find a cause of this disease focus on immune defects and genetic abnormalities associated with the disease.

  4. Chronic Active Epstein–Barr Virus Disease

    Directory of Open Access Journals (Sweden)

    Hiroshi Kimura

    2017-12-01

    Full Text Available Chronic active Epstein–Barr virus (CAEBV disease is a rare disorder in which persons are unable to control infection with the virus. The disease is progressive with markedly elevated levels of EBV DNA in the blood and infiltration of organs by EBV-positive lymphocytes. Patients often present with fever, lymphadenopathy, splenomegaly, EBV hepatitis, or pancytopenia. Over time, these patients develop progressive immunodeficiency and if not treated, succumb to opportunistic infections, hemophagocytosis, multiorgan failure, or EBV-positive lymphomas. Patients with CAEBV in the United States most often present with disease involving B or T cells, while in Asia, the disease usually involves T or NK cells. The only proven effective treatment for the disease is hematopoietic stem cell transplantation. Current studies to find a cause of this disease focus on immune defects and genetic abnormalities associated with the disease.

  5. Recovery of viral RNA and infectious foot-and-mouth disease virus from positive lateral-flow devices.

    Directory of Open Access Journals (Sweden)

    Veronica L Fowler

    Full Text Available Foot-and-mouth disease Virus (FMDV is an economically important, highly contagious picornavirus that affects both wild and domesticated cloven hooved animals. In developing countries, the effective laboratory diagnosis of foot-and-mouth disease (FMD is often hindered by inadequate sample preservation due to difficulties in the transportation and storage of clinical material. These factors can compromise the ability to detect and characterise FMD virus in countries where the disease is endemic. Furthermore, the high cost of sending infectious virus material and the biosecurity risk it presents emphasises the need for a thermo-stable, non-infectious mode of transporting diagnostic samples. This paper investigates the potential of using FMDV lateral-flow devices (LFDs for dry transportation of clinical samples for subsequent nucleic acid amplification, sequencing and recovery of infectious virus by electroporation. FMDV positive samples (epithelial suspensions and cell culture isolates representing four FMDV serotypes were applied to antigen LFDs: after which it was possible to recover viral RNA that could be detected using real-time RT-PCR. Using this nucleic acid, it was also possible to recover VP1 sequences and also successfully utilise protocols for amplification of complete FMD virus genomes. It was not possible to recover infectious FMDV directly from the LFDs, however following electroporation into BHK-21 cells and subsequent cell passage, infectious virus could be recovered. Therefore, these results support the use of the antigen LFD for the dry, non-hazardous transportation of samples from FMD endemic countries to international reference laboratories.

  6. Invasive pneumococcal and meningococcal disease : association with influenza virus and respiratory syncytial virus activity?

    NARCIS (Netherlands)

    Jansen, A G S C; Sanders, E A M; VAN DER Ende, A; VAN Loon, A M; Hoes, A W; Hak, E

    2008-01-01

    Few studies have examined the relationship between viral activity and bacterial invasive disease, considering both influenza virus and respiratory syncytial virus (RSV). This study aimed to assess the potential relationship between invasive pneumococcal disease (IPD), meningococcal disease (MD), and

  7. Ebola virus disease: past, present and future

    Directory of Open Access Journals (Sweden)

    Harish Rajak

    2015-05-01

    Full Text Available Ebola virus disease is one of the most deadly ailments known to mankind due to its high mortality rate (up to 90% accompanying with the disease. Ebola haemorrhagic fever (EHF is an infectious disease of animal that can be transmitted to both human and non-human primates. The first epidemic of EHF occurred in 1976 in the Democratic Republic of the Congo. The incubation period of ebola is less than 21 days. Ebola virus infections are depicted by immune suppression and a systemic inflammatory response that leads to damage of the vascular, coagulation and immune systems, causing multi-organ failure and shock. Five genetically distinct members of the Filoviridae family responsible for EHF are as follows: Zaire ebolavirus, Sudan ebolavirus, Côte d’Ivoire ebolavirus, Bundibugyo ebolavirus and Reston ebolavirus. The ongoing 2014 West Africa ebola epidemic has been considered as the most serious panic in the medical field with respect to both the number of human cases and death toll. The natural host for ebola virus is unknown, thus it is not possible to carry out programs to regulate or abolish virus from transmission to people. The ebola virus infection provides little chance to develop acquired immunity causing rapid progression of the disease. It is pertinent to mention that at present, there is no antiviral therapy or vaccine that is helpful against ebola virus infection in humans. The impediment of EHF necessitates much better understanding of the epidemiology of the disease, particularly the role of wildlife, as well as bats, in the spread of ebola virus to humans.

  8. Ebola Virus Disease – An Update

    Directory of Open Access Journals (Sweden)

    Surekha Kishore

    2014-12-01

    Full Text Available Ebola Virus Disease (EVD is a severe, haemorrhagic febrile disease, often fatal in humans, caused by a non segmented, negative sense RNA virus of the family Filoviridae and genus Ebolavirus. It is also known as Ebola Haemorrhagic fever. There are five species of Ebolavirus, namely Bundibugyo ebolavirus, Zaire ebolavirus, Reston ebolavirus, Sudan ebolavirus and Tai Forest ebolavirus. The Zaire species has caused multiple large outbreaks with mortality rates of 55 to 88 percent since first appearance of the disease whereas the Sudan virus has been associated with an approximate 50 percent case-fatality rate in four known epidemics: two in Sudan in the 1970s, one in Uganda in 2000, and another in Sudan in 2004 [1-5].

  9. Viruses & kidney disease: beyond HIV

    OpenAIRE

    Waldman, Meryl; Marshall, Vickie; Whitby, Denise; Kopp, Jeffrey B.

    2008-01-01

    HIV-infected patients may acquire new viral co-infections; they may also experience the reactivation or worsening of existing viral infections, including active, smoldering, or latent infections. HIV-infected patients may be predisposed to these viral infections due to immunodeficiency or to risk factors common to HIV and other viruses. A number of these affect the kidney, either by direct infection or by deposition of immune complexes. In this review we discuss the renal manifestations and t...

  10. Protection against myxomatosis and rabbit viral hemorrhagic disease with recombinant myxoma viruses expressing rabbit hemorrhagic disease virus capsid protein

    OpenAIRE

    Bertagnoli, Stéphane; Gelfi, Jacqueline; Le Gall, Ghislaine; Boilletot, Eric; Vautherot, Jean-François; Rasschaert, Denis; Laurent, Sylvie; Petit, Frédérique; Boucraut-Baralon, Corine; Milon, Alain

    1996-01-01

    Two myxoma virus-rabbit hemorrhagic disease virus (RHDV) recombinant viruses were constructed with the SG33 strain of myxoma virus to protect rabbits against myxomatosis and rabbit viral hemorrhagic disease. These recombinant viruses expressed the RHDV capsid protein (VP60). The recombinant protein, which is 60 kDa in size, was antigenic, as revealed by its reaction in immunoprecipitation with antibodies raised against RHDV. Both recombinant viruses induced high levels of RHDV- and myxoma vir...

  11. 9 CFR 113.205 - Newcastle Disease Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... Virus. 113.205 Section 113.205 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.205 Newcastle Disease Vaccine, Killed Virus. Newcastle Disease Vaccine...

  12. Genetic Characterization of Serotypes A and Asia-1 Foot-and-mouth Disease Viruses in Balochistan, Pakistan, in 2011.

    Science.gov (United States)

    Ullah, A; Jamal, S M; Romey, A; Gorna, K; Kakar, M A; Abbas, F; Ahmad, J; Zientara, S; Bakkali Kassimi, L

    2017-10-01

    This study reports characterization of foot-and-mouth disease virus (FMDV) in samples collected from Balochistan, Pakistan. FMDV was detected by pan-FMDV real-time RT-PCR in 31 samples (epithelial and oral swabs) collected in 2011 from clinical suspect cases. Of these, 29 samples were serotyped by serotype-specific real-time RT-PCR assays and were confirmed by sequencing the VP1 coding region. Sixteen samples were found positive for serotype A and eight for serotype Asia-1, whereas five samples were found positive for both serotypes A and Asia-1. Two serotype A positive samples were found positive for two different strains of serotype A FMDV each. Phylogenetic analyses of serotype A FMDVs showed circulation of at least three different sublineages within the A-Iran05 lineage. These included two earlier reported sublineages, A-Iran05 HER -10 and A-Iran05 FAR -11 , and a new sublineage, designated here as A-Iran05 BAL -11 . This shows that viruses belonging to the A-Iran05 lineage are continuously evolving in the region. Viruses belonging to the A-Iran05 FAR -11 sublineage showed close identity with the viruses circulating in 2009 in Pakistan and Afghanistan. However, viruses belonging to the A-Iran05 HER -10 detected in Balochistan, Pakistan, showed close identity with the viruses circulating in Kyrgyzstan, Iran and Kazakhstan in 2011 and 2012, showing that viruses responsible for outbreak in these countries have a common origin. Serotype Asia-1 FMDVs reported in this study all belonged to the earlier reported Group-VII (Sindh-08), which is currently a dominant strain in the West Eurasian region. Detection of two different serotypes of FMDV or/and two different strains of the same serotype in one animal/sample shows complexity in occurrence of FMD in the region. © 2016 Blackwell Verlag GmbH.

  13. Coinfecting viruses as determinants of HIV disease.

    Science.gov (United States)

    Lisco, Andrea; Vanpouille, Christophe; Margolis, Leonid

    2009-02-01

    The human body constitutes a balanced ecosystem of its own cells together with various microbes ("host-microbe ecosystem"). The transmission of HIV-1 and the progression of HIV disease in such an ecosystem are accompanied by de novo infection by other microbes or by activation of microbes that were present in the host in homeostatic equilibrium before HIV-1 infection. In recent years, data have accumulated on the interactions of these coinfecting microbes-viruses in particular-with HIV. Coinfecting viruses generate negative and positive signals that suppress or upregulate HIV-1. We suggest that the signals generated by these viruses may largely affect HIV transmission, pathogenesis, and evolution. The study of the mechanisms of HIV interaction with coinfecting viruses may indicate strategies to suppress positive signals, enhance negative signals, and lead to the development of new and original anti-HIV therapies.

  14. Viruses and kidney disease: beyond HIV.

    Science.gov (United States)

    Waldman, Meryl; Marshall, Vickie; Whitby, Denise; Kopp, Jeffrey B

    2008-11-01

    Human immunodeficiency virus (HIV)-infected patients may acquire new viral co-infections; they also may experience the reactivation or worsening of existing viral infections, including active, smoldering, or latent infections. HIV-infected patients may be predisposed to these viral infections owing to immunodeficiency or risk factors common to HIV and other viruses. A number of these affect the kidney, either by direct infection or by deposition of immune complexes. In this review we discuss the renal manifestations and treatment of hepatitis C virus, BK virus, adenovirus, cytomegalovirus, and parvovirus B19 in patients with HIV disease. We also discuss an approach to the identification of new viral renal pathogens, using a viral gene chip to identify viral DNA or RNA.

  15. Down-Regulation of Na+/K+ ATPase Activity by Human Parvovirus B19 Capsid Protein VP1

    Directory of Open Access Journals (Sweden)

    Ahmad Almilaji

    2013-05-01

    Full Text Available Background/Aims: Human parvovirus B19 (B19V may cause inflammatory cardiomyopathy (iCMP which is accompanied by endothelial dysfunction. The B19V capsid protein VP1 contains a lysophosphatidylcholine producing phospholipase A2 (PLA sequence. Lysophosphatidylcholine has in turn been shown to inhibit Na+/K+ ATPase. The present study explored whether VP1 modifies Na+/K+ ATPase activity. Methods: Xenopus oocytes were injected with cRNA encoding VP1 isolated from a patient suffering from fatal B19V-iCMP or cRNA encoding PLA2-negative VP1 mutant (H153A and K+ induced pump current (Ipump as well as ouabain-inhibited current (Iouabain both reflecting Na+/K+-ATPase activity were determined by dual electrode voltage clamp. Results: Injection of cRNA encoding VP1, but not of VP1(H153A or water, was followed by a significant decrease of both, Ipump and Iouabain in Xenopus oocytes. The effect was not modified by inhibition of transcription with actinomycin (10 µM for 36 hours but was abrogated in the presence of PLA2 specific blocker 4-bromophenacylbromide (50 µM and was mimicked by lysophosphatidylcholine (0.5 - 1 µg/ml. According to whole cell patch clamp, lysophosphatidylcholine (1 µg /ml similarly decreased Ipump in human microvascular endothelial cells (HMEC. Conclusion: The B19V capsid protein VP1 is a powerful inhibitor of host cell Na+/K+ ATPase, an effect at least partially due to phospholipase A2 (PLA2 dependent formation of lysophosphatidylcholine.

  16. Structures of foot and mouth disease virus pentamers: Insight into capsid dissociation and unexpected pentamer reassociation.

    Directory of Open Access Journals (Sweden)

    Nayab Malik

    2017-09-01

    Full Text Available Foot-and-mouth disease virus (FMDV belongs to the Aphthovirus genus of the Picornaviridae, a family of small, icosahedral, non-enveloped, single-stranded RNA viruses. It is a highly infectious pathogen and is one of the biggest hindrances to the international trade of animals and animal products. FMDV capsids (which are unstable below pH6.5 release their genome into the host cell from an acidic compartment, such as that of an endosome, and in the process dissociate into pentamers. Whilst other members of the family (enteroviruses have been visualized to form an expanded intermediate capsid with holes from which inner capsid proteins (VP4, N-termini (VP1 and RNA can be released, there has been no visualization of any such state for an aphthovirus, instead the capsid appears to simply dissociate into pentamers. Here we present the 8-Å resolution structure of isolated dissociated pentamers of FMDV, lacking VP4. We also found these pentamers to re-associate into a rigid, icosahedrally symmetric assembly, which enabled their structure to be solved at higher resolution (5.2 Å. In this assembly, the pentamers unexpectedly associate 'inside out', but still with their exposed hydrophobic edges buried. Stabilizing interactions occur between the HI loop of VP2 and its symmetry related partners at the icosahedral 3-fold axes, and between the BC and EF loops of VP3 with the VP2 βB-strand and the CD loop at the 2-fold axes. A relatively extensive but subtle structural rearrangement towards the periphery of the dissociated pentamer compared to that in the mature virus provides insight into the mechanism of dissociation of FMDV and the marked difference in antigenicity.

  17. Full genome sequencing and genetic characterization of Eubenangee viruses identify Pata virus as a distinct species within the genus Orbivirus.

    Directory of Open Access Journals (Sweden)

    Manjunatha N Belaganahalli

    Full Text Available Eubenangee virus has previously been identified as the cause of Tammar sudden death syndrome (TSDS. Eubenangee virus (EUBV, Tilligery virus (TILV, Pata virus (PATAV and Ngoupe virus (NGOV are currently all classified within the Eubenangee virus species of the genus Orbivirus, family Reoviridae. Full genome sequencing confirmed that EUBV and TILV (both of which are from Australia show high levels of aa sequence identity (>92% in the conserved polymerase VP1(Pol, sub-core VP3(T2 and outer core VP7(T13 proteins, and are therefore appropriately classified within the same virus species. However, they show much lower amino acid (aa identity levels in their larger outer-capsid protein VP2 (<53%, consistent with membership of two different serotypes - EUBV-1 and EUBV-2 (respectively. In contrast PATAV showed significantly lower levels of aa sequence identity with either EUBV or TILV (with <71% in VP1(Pol and VP3(T2, and <57% aa identity in VP7(T13 consistent with membership of a distinct virus species. A proposal has therefore been sent to the Reoviridae Study Group of ICTV to recognise 'Pata virus' as a new Orbivirus species, with the PATAV isolate as serotype 1 (PATAV-1. Amongst the other orbiviruses, PATAV shows closest relationships to Epizootic Haemorrhagic Disease virus (EHDV, with 80.7%, 72.4% and 66.9% aa identity in VP3(T2, VP1(Pol, and VP7(T13 respectively. Although Ngoupe virus was not available for these studies, like PATAV it was isolated in Central Africa, and therefore seems likely to also belong to the new species, possibly as a distinct 'type'. The data presented will facilitate diagnostic assay design and the identification of additional isolates of these viruses.

  18. Optimization of Newcastle disease virus production in T-flask

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... In the present study, the production of lentogenic Asplin F strain of Newcastle disease virus by ... future live Newcastle disease vaccine production in larger ..... Production of yellow fever virus in microcarrier-based Vero cell ...

  19. Molecular characterization of serotype Asia-1 foot-and-mouth disease viruses in Pakistan and Afghanistan; emergence of a new genetic Group and evidence for a novel recombinant virus.

    Science.gov (United States)

    Jamal, Syed M; Ferrari, Giancarlo; Ahmed, Safia; Normann, Preben; Belsham, Graham J

    2011-12-01

    Foot-and-mouth disease (FMD) is endemic in Pakistan and Afghanistan. The FMD virus serotypes O, A and Asia-1 are responsible for the outbreaks in these countries. Diverse strains of FMDV, even within the same serotype, co-circulate. Characterization of the viruses in circulation can facilitate appropriate vaccine selection and tracing of outbreaks. The present study characterized foot-and-mouth disease serotype Asia-1 viruses circulating in Pakistan and Afghanistan during the period 1998-2009. Phylogenetic analysis of FMDV type Asia-1 revealed that three different genetic Groups of serotype Asia-1 have circulated in Pakistan during this time. These are Group-II, -VI and, recently, a novel Group (designated here as Group-VII). This new Group has not been detected in neighbouring Afghanistan during the study period but viruses from Groups I and -II are in circulation there. Using near complete genome sequences, from FMD viruses of serotypes Asia-1 and A that are currently circulating in Pakistan, we have identified an interserotypic recombinant virus, which has the VP2-VP3-VP1-2A coding sequences derived from a Group-VII Asia-1 virus and the remainder of the genome from a serotype A virus of the A-Iran05(AFG-07) sub-lineage. The Asia-1 FMDVs currently circulating in Pakistan and Afghanistan are not efficiently neutralized by antisera raised against the Asia-1/Shamir vaccine strain. Thus, new Asia-1 vaccine strains may be required to block the spread of the current Asia-1 viruses. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Analysis of Recent Serotype O Foot-and-Mouth Disease Viruses from Livestock in Kenya: Evidence of Four Independently Evolving Lineages.

    Science.gov (United States)

    Wekesa, S N; Muwanika, V B; Siegismund, H R; Sangula, A K; Namatovu, A; Dhikusooka, M T; Tjørnehøj, K; Balinda, S N; Wadsworth, J; Knowles, N J; Belsham, G J

    2015-06-01

    Foot-and-mouth disease (FMD) is endemic in Kenya where four serotypes (O, A, SAT 1 and SAT 2) of the virus are currently in circulation. Within 2010 and 2011, the National Laboratory recorded an increase in the number of FMD outbreaks caused by serotype O virus. The characteristics of these viruses were determined to ascertain whether these were independent outbreaks or one single strain spreading throughout the country. The sequences of the complete VP1-coding region were analysed from viruses sampled within different areas of Kenya during 2010 and 2011. The results indicated that the 2010 to 2011 outbreaks in Kenya were caused by four independent strains. By comparison with earlier type O isolates from Eastern Africa, it was apparent that the outbreaks were caused by viruses from three different lineages of topotype EA-2 and a fourth virus strain belonging to topotype EA-4. The topotypes EA-1 and EA-3 were not detected from these outbreaks. Implications of these results for FMD control in Eastern Africa are discussed. © 2013 Blackwell Verlag GmbH.

  1. Protection against myxomatosis and rabbit viral hemorrhagic disease with recombinant myxoma viruses expressing rabbit hemorrhagic disease virus capsid protein.

    Science.gov (United States)

    Bertagnoli, S; Gelfi, J; Le Gall, G; Boilletot, E; Vautherot, J F; Rasschaert, D; Laurent, S; Petit, F; Boucraut-Baralon, C; Milon, A

    1996-08-01

    Two myxoma virus-rabbit hemorrhagic disease virus (RHDV) recombinant viruses were constructed with the SG33 strain of myxoma virus to protect rabbits against myxomatosis and rabbit viral hemorrhagic disease. These recombinant viruses expressed the RHDV capsid protein (VP60). The recombinant protein, which is 60 kDa in size, was antigenic, as revealed by its reaction in immunoprecipitation with antibodies raised against RHDV. Both recombinant viruses induced high levels of RHDV- and myxoma virus-specific antibodies in rabbits after immunization. Inoculations by the intradermal route protected animals against virulent RHDV and myxoma virus challenges.

  2. Preserved immunogenicity of an inactivated vaccine based on foot-and-mouth disease virus particles with improved stability.

    Science.gov (United States)

    Caridi, Flavia; Vázquez-Calvo, Ángela; Borrego, Belén; McCullough, Kenneth; Summerfield, Artur; Sobrino, Francisco; Martín-Acebes, Miguel A

    2017-05-01

    Foot-and-mouth disease virus (FMDV) is the etiological agent of a highly contagious disease that affects important livestock species. Vaccines based on inactivated FMDV virions provide a useful tool for the control of this pathogen. However, long term storage at 4°C (the temperature for vaccine storage) or ruptures of the cold chain, provoke the dissociation of virions, reducing the immunogenicity of the vaccine. An FMDV mutant carrying amino acid replacements VP1 N17D and VP2 H145Y isolated previously rendered virions with increased resistance to dissociation at 4°C. We have evaluated the immunogenicity in swine (a natural FMDV host) of a chemically inactivated vaccine based on this mutant. The presence of these amino acid substitutions did not compromise the immunological potential, including its ability to elicit neutralizing antibodies. These results support the feasibility of this kind of mutants with increased capsid stability as suitable viruses for producing improved FMDV vaccines. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Emerging tropical diseases in Australia. Part 5. Hendra virus

    DEFF Research Database (Denmark)

    Tulsiani, Suhella; Graham, G C; Moore, P R

    2011-01-01

    gene of the virus and the discovery that the virus had an exceptionally large genome subsequently led to HeV being assigned to a new genus, Henipavirus, along with Nipah virus (a newly emergent virus in pigs). The regular outbreaks of HeV-related disease that have occurred in Australia since 1994 have...

  4. Crystal Structures of Yeast-Produced Enterovirus 71 and Enterovirus 71/Coxsackievirus A16 Chimeric Virus-Like Particles Provide the Structural Basis for Novel Vaccine Design against Hand-Foot-and-Mouth Disease.

    Science.gov (United States)

    Lyu, Ke; He, Ya-Ling; Li, Hao-Yang; Chen, Rong

    2015-06-01

    Human enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) are the two major causative agents for hand-foot-and-mouth disease (HFMD). Previously, we demonstrated that a virus-like particle (VLP) for EV71 produced from Saccharomyces cerevisiae is a potential vaccine candidate against EV71 infection, and an EV71/CVA16 chimeric VLP can elicit protective immune responses against both virus infections. Here, we presented the crystal structures of both VLPs, showing that both the linear and conformational neutralization epitopes identified in EV71 are mostly preserved on both VLPs. The replacement of only 4 residues in the VP1 GH loop converted strongly negatively charged surface patches formed by portions of the SP70 epitope in EV71 VLP into a relatively neutral surface in the chimeric VLP, which likely accounted for the additional neutralization capability of the chimeric VLP against CVA16 infection. Such local variations in the amino acid sequences and the surface charge potential are also present in different types of polioviruses. In comparison to EV71 VLP, the chimeric VLP exhibits structural changes at the local site of amino acid replacement and the surface loops of all capsid proteins. This is consistent with the observation that the VP1 GH loop located near the pseudo-3-fold junction is involved in extensive interactions with other capsid regions. Furthermore, portions of VP0 and VP1 in EV71 VLP are at least transiently exposed, revealing the structural flexibility of the VLP. Together, our structural analysis provided insights into the structural basis of enterovirus neutralization and novel vaccine design against HFMD and other enterovirus-associated diseases. Our previous studies demonstrated that the enterovirus 71 (EV71) virus-like particle (VLP) produced from yeast is a vaccine candidate against EV71 infection and that a chimeric EV71/coxsackievirus A16 (CVA16) VLP with the replacement of 4 amino acids in the VP1 GH loop can confer protection against both

  5. Ebola Virus Disease: A Review of Its Past and Present.

    Science.gov (United States)

    Murray, Michael J

    2015-09-01

    Ebola virus, the virus responsible for Ebola virus disease, has spawned several epidemics during the past 38 years. In 2014, an Ebola epidemic spread from Africa to other continents, becoming a pandemic. The virus's relatively unique structure, its infectivity and lethality, the difficulty in stopping its spread, and the lack of an effective treatment captured the world's attention. This article provides a brief review of the known history of Ebola virus disease, its etiology, epidemiology, and pathophysiology and a review of the limited information on managing patients with Ebola virus disease.

  6. Ganjam virus/Nairobi sheep disease virus induces a pro-inflammatory response in infected sheep

    OpenAIRE

    bin Tarif, Abid; Lasecka, Lidia; Holzer, Barbara; Baron, Michael D

    2012-01-01

    Abstract Partly due to climate change, and partly due to changes of human habitat occupation, the impact of tick-borne viruses is increasing. Nairobi sheep disease virus (NSDV) and Ganjam virus (GV) are two names for the same virus, which causes disease in sheep and goats and is currently known to be circulating in India and East Africa. The virus is transmitted by ixodid ticks and causes a severe hemorrhagic disease. We have developed a real-time PCR assay for the virus genome and validated ...

  7. Unrecognized circulation of SAT 1 foot-and-mouth disease virus in cattle herds around Queen Elizabeth National Park in Uganda.

    Science.gov (United States)

    Dhikusooka, Moses Tefula; Ayebazibwe, Chrisostom; Namatovu, Alice; Belsham, Graham J; Siegismund, Hans Redlef; Wekesa, Sabenzia Nabalayo; Balinda, Sheila Nina; Muwanika, Vincent B; Tjørnehøj, Kirsten

    2016-01-06

    Foot-and-mouth disease (FMD) is endemic in Uganda in spite of the control measures used. Various aspects of the maintenance and circulation of FMD viruses (FMDV) in Uganda are not well understood; these include the role of the African buffalo (Syncerus caffer) as a reservoir for FMDV. To better understand the epidemiology of FMD at the livestock-wildlife-interface, samples were collected from young, unvaccinated cattle from 24 pastoral herds that closely interact with wildlife around Queen Elizabeth National Park in Uganda, and analysed for evidence of FMDV infection. In total, 37 (15%) of 247 serum samples had detectable antibodies against FMDV non-structural proteins (NSPs) using a pan-serotypic assay. Within these 37 sera, antibody titres ≥ 80 against the structural proteins of serotypes O, SAT 1, SAT 2 and SAT 3 were detected by ELISA in 5, 7, 4 and 3 samples, respectively, while neutralizing antibodies were only detected against serotype O in 3 samples. Two FMDV isolates, with identical VP1 coding sequences, were obtained from probang samples from clinically healthy calves from the same herd and are serotype SAT 1 (topotype IV (EA-I)). Based on the VP1 coding sequences, these viruses are distinct from previous cattle and buffalo SAT 1 FMDV isolates obtained from the same area (19-30% nucleotide difference) and from the vaccine strain (TAN/155/71) used within Uganda (26% nucleotide difference). Eight herds had only one or a few animals with antibodies against FMDV NSPs while six herds had more substantial evidence of prior infection with FMDV. There was no evidence for exposure to FMDV in the other ten herds. The two identical SAT 1 FMDV VP1 sequences are distinct from former buffalo and cattle isolates from the same area, thus, transmission between buffalo and cattle was not demonstrated. These new SAT 1 FMDV isolates differed significantly from the vaccine strain used to control Ugandan FMD outbreaks, indicating a need for vaccine matching studies. Only

  8. Characterization of Foot-and-Mouth Disease Viruses Collected in Nigeria Between 2007 and 2014: Evidence for Epidemiological Links Between West and East Africa.

    Science.gov (United States)

    Ularamu, H G; Ibu, J O; Wood, B A; Abenga, J N; Lazarus, D D; Wungak, Y S; Knowles, N J; Wadsworth, J; Mioulet, V; King, D P; Shamaki, D; Adah, M I

    2017-12-01

    This study describes the molecular characterization of 47 foot-and-mouth disease (FMD) viruses recovered from field outbreaks in Nigeria between 2007 and 2014. Antigen ELISA of viral isolates was used to identify FMD virus serotypes O, A and SAT 2. Phylogenetic analyses of VP1 nucleotide sequences provide evidence for the presence of multiple sublineages of serotype SAT 2, and O/EAST AFRICA 3 (EA-3) and O/WEST AFRICA topotypes in the country. In contrast, for serotype A, a single monophyletic cluster of viruses has persisted within Nigeria (2009-2013). These results demonstrate the close genetic relatedness of viruses in Nigeria to those from other African countries, including the first formal characterization of serotype O/EA-3 viruses in Nigeria. The introductions and persistence of certain viral lineages in Nigeria may reflect transmission patterns via nomadic pastoralism and animal trade. Continuous monitoring of field outbreaks is necessary to dissect the complexity of FMD epidemiology in sub-Saharan Africa. © 2016 Blackwell Verlag GmbH.

  9. Foot-and-Mouth Disease Virus Receptors: Comparison of Bovine αV Integrin Utilization by Type A and O Viruses

    Science.gov (United States)

    Duque, Hernando; Baxt, Barry

    2003-01-01

    Three members of the αV integrin family of cellular receptors, αVβ1, αVβ3, and αVβ6, have been identified as receptors for foot-and-mouth disease virus (FMDV) in vitro. The virus interacts with these receptors via a highly conserved arginine-glycine-aspartic acid (RGD) amino acid sequence motif located within the βG-βH (G-H) loop of VP1. Other αV integrins, as well as several other integrins, recognize and bind to RGD motifs on their natural ligands and also may be candidate receptors for FMDV. To analyze the roles of the αV integrins from a susceptible species as viral receptors, we molecularly cloned the bovine β1, β5, and β6 integrin subunits. Using these subunits, along with previously cloned bovine αV and β3 subunits, in a transient expression assay system, we compared the efficiencies of infection mediated by αVβ1, αVβ3, αVβ5, and αVβ6 among three strains of FMDV serotype A and two strains of serotype O. While all the viruses could infect cells expressing these integrins, they exhibited different efficiencies of integrin utilization. All the type A viruses used αVβ3 and αVβ6 with relatively high efficiency, while only one virus utilized αVβ1 with moderate efficiency. In contrast, both type O viruses utilized αVβ6 and αVβ1 with higher efficiency than αVβ3. Only low levels of viral replication were detected in αVβ5-expressing cells infected with either serotype. Experiments in which the ligand-binding domains among the β subunits were exchanged indicated that this region of the integrin subunit appears to contribute to the differences in integrin utilizations among strains. In contrast, the G-H loops of the different viruses do not appear to be involved in this phenomenon. Thus, the ability of the virus to utilize multiple integrins in vitro may be a reflection of the use of multiple receptors during the course of infection within the susceptible host. PMID:12551988

  10. Evaluation and use of in-silico structure-based epitope prediction with foot-and-mouth disease virus.

    Directory of Open Access Journals (Sweden)

    Daryl W Borley

    Full Text Available Understanding virus antigenicity is of fundamental importance for the development of better, more cross-reactive vaccines. However, as far as we are aware, no systematic work has yet been conducted using the 3D structure of a virus to identify novel epitopes. Therefore we have extended several existing structural prediction algorithms to build a method for identifying epitopes on the appropriate outer surface of intact virus capsids (which are structurally different from globular proteins in both shape and arrangement of multiple repeated elements and applied it here as a proof of principle concept to the capsid of foot-and-mouth disease virus (FMDV. We have analysed how reliably several freely available structure-based B cell epitope prediction programs can identify already known viral epitopes of FMDV in the context of the viral capsid. To do this we constructed a simple objective metric to measure the sensitivity and discrimination of such algorithms. After optimising the parameters for five methods using an independent training set we used this measure to evaluate the methods. Individually any one algorithm performed rather poorly (three performing better than the other two suggesting that there may be value in developing virus-specific software. Taking a very conservative approach requiring a consensus between all three top methods predicts a number of previously described antigenic residues as potential epitopes on more than one serotype of FMDV, consistent with experimental results. The consensus results identified novel residues as potential epitopes on more than one serotype. These include residues 190-192 of VP2 (not previously determined to be antigenic, residues 69-71 and 193-197 of VP3 spanning the pentamer-pentamer interface, and another region incorporating residues 83, 84 and 169-174 of VP1 (all only previously experimentally defined on serotype A. The computer programs needed to create a semi-automated procedure for carrying out

  11. Regulation of the Osem gene by abscisic acid and the transcriptional activator VP1: analysis of cis-acting promoter elements required for regulation by abscisic acid and VP1.

    Science.gov (United States)

    Hattori, T; Terada, T; Hamasuna, S

    1995-06-01

    Osem, a rice gene homologous to the wheat Em gene, which encodes one of the late-embryogenesis abundant proteins was isolated. The gene was characterized with respect to control of transcription by abscisic acid (ABA) and the transcriptional activator VP1, which is involved in the ABA-regulated gene expression during late embryo-genesis. A fusion gene (Osem-GUS) consisting of the Osem promoter and the bacterial beta-glucuronidase (GUS) gene was constructed and tested in a transient expression system, using protoplasts derived from a suspension-cultured line of rice cells, for activation by ABA and by co-transfection with an expression vector (35S-Osvp1) for the rice VP1 (OSVP1) cDNA. The expression of Osem-GUS was strongly (40- to 150-fold) activated by externally applied ABA and by over-expression of (OS)VP1. The Osem promoter has three ACGTG-containing sequences, motif A, motif B and motif A', which resemble the abscisic acid-responsive element (ABRE) that was previously identified in the wheat Em and the rice Rab16. There is also a CATGCATG sequence, which is known as the Sph box and is shown to be essential for the regulation by VP1 of the maize anthocyanin regulatory gene C1. Focusing on these sequence elements, various mutant derivatives of the Osem promoter in the transient expression system were assayed. The analysis revealed that motif A functions not only as an ABRE but also as a sequence element required for the regulation by (OS)VP1.

  12. Effects of Human Parvovirus B19 and Bocavirus VP1 Unique Region on Tight Junction of Human Airway Epithelial A549 Cells

    Science.gov (United States)

    Chiu, Chun-Ching; Shi, Ya-Fang; Yang, Jiann-Jou; Hsiao, Yuan-Chao; Tzang, Bor-Show; Hsu, Tsai-Ching

    2014-01-01

    As is widely recognized, human parvovirus B19 (B19) and human bocavirus (HBoV) are important human pathogens. Obviously, both VP1 unique region (VP1u) of B19 and HBoV exhibit the secreted phospholipase A2 (sPLA2)-like enzymatic activity and are recognized to participate in the pathogenesis of lower respiratory tract illnesses. However, exactly how, both VP1u from B19 and HBoV affect tight junction has seldom been addressed. Therefore, this study investigates how B19-VP1u and HBoV-VP1u may affect the tight junction of the airway epithelial A549 cells by examining phospholipase A2 activity and transepithelial electrical resistance (TEER) as well as performing immunoblotting analyses. Experimental results indicate that TEER is more significantly decreased in A549 cells by treatment with TNF-α (10 ng), two dosages of B19-VP1u and BoV-VP1u (400 ng and 4000 ng) or bee venom PLA2 (10 ng) than that of the control. Accordingly, more significantly increased claudin-1 and decreased occludin are detected in A549 cells by treatment with TNF-α or both dosages of HBoV-VP1u than that of the control. Additionally, more significantly decreased Na+/K+ ATPase is observed in A549 cells by treatment with TNF-α, high dosage of B19-VP1u or both dosages of BoV-VP1u than that of the control. Above findings suggest that HBoV-VP1u rather than B19 VP1u likely plays more important roles in the disruption of tight junction in the airway tract. Meanwhile, this discrepancy appears not to be associated with the secreted phospholipase A2 (sPLA2)-like enzymatic activity. PMID:25268969

  13. Rhinovirus-induced VP1-specific Antibodies are Group-specific and Associated With Severity of Respiratory Symptoms

    Directory of Open Access Journals (Sweden)

    Katarzyna Niespodziana

    2015-01-01

    Interpretation: Our results demonstrate that increases of antibodies towards the VP1 N-terminus are group-specific and associated with severity of respiratory symptoms and suggest that it may be possible to develop serological tests for identifying causative RV groups.

  14. Overview of Ebola virus disease in 2014

    Directory of Open Access Journals (Sweden)

    Chih-Peng Tseng

    2015-01-01

    Full Text Available In late December 2013, a deadly infectious epidemic, Ebola virus disease (EVD, emerged from West Africa and resulted in a formidable outbreak in areas including Guinea, Liberia, Sierra Leone and Nigeria. EVD is a zoonotic disease with a high mortality rate. Person-to-person transmission occurs through blood or body fluid exposure, which can jeopardize first-line healthcare workers if there is a lack of stringent infection control or no proper personal protective equipment available. Currently, there is no standard treatment for EVD. To promptly identify patients and prevent further spreading, physicians should be aware of travel or contact history for patients with constitutional symptoms.

  15. Hepatitis C virus infection and risk of coronary artery disease

    DEFF Research Database (Denmark)

    Roed, Torsten; Lebech, Anne-Mette; Kjaer, Andreas

    2012-01-01

    Several chronic infections have been associated with cardiovascular diseases, including Chlamydia pneumoniae, human immunodeficiency virus and viral hepatitis. This review evaluates the literature on the association between chronic hepatitis C virus (HCV) infection and the risk of coronary artery...

  16. Field investigation of Foot and Mouth Disease (FMD) virus infection ...

    African Journals Online (AJOL)

    Prof. Ogunji

    Foot and Mouth Disease Virus (FMDV) is a non-enveloped, single stranded RNA virus ... continents of Asia, Africa, and some regions in the South America. .... FCT = Federal Capital Territory; NE = North East, NC = North Central; NW =.

  17. Assembly and characterization of foot-and-mouth disease virus empty capsid particles expressed within mammalian cells

    DEFF Research Database (Denmark)

    Gullberg, Maria; Muszynski, Bartosz; Organtini, Lindsey J.

    2013-01-01

    The foot-and-mouth disease virus (FMDV) structural protein precursor, P1-2A, is cleaved by the virus-encoded 3C protease (3Cpro) into the capsid proteins VP0, VP1 and VP3 (and 2A). In some systems, it is difficult to produce large amounts of these processed capsid proteins since 3Cpro can be toxic...... (from serotypes O and A) and 3Cpro were expressed from monocistronic cDNA cassettes as P1-2A-3C, or from dicistronic cassettes with the 3Cpro expression dependent on a mutant FMDV internal ribosome entry site (IRES) (designated P1-2A-mIRES-3C). The effects of using a mutant 3Cpro with reduced catalytic....... These products self-assembled to form FMDV empty capsid particles, which have a related, but distinct, morphology (as determined by electron microscopy and reconstruction) from that determined previously by X-ray crystallography. The assembled empty capsids bind, in a divalent cation-dependent manner, to the RGD...

  18. Ebola virus disease: preparedness in Japan.

    Science.gov (United States)

    Ashino, Yugo; Chagan-Yasutan, Haorile; Egawa, Shinichi; Hattori, Toshio

    2015-02-01

    The current outbreak of Ebola virus disease (EVD) is due to a lack of resources, untrained medical personnel, and the specific contact-mediated type of infection of this virus. In Japan's history, education and mass vaccination of the native Ainu people successfully eradicated epidemics of smallpox. Even though a zoonotic virus is hard to control, appropriate precautions and personal protection, as well as anti-symptomatic treatment, will control the outbreak of EVD. Ebola virus utilizes the antibody-dependent enhancement of infection to seed the cells of various organs. The pathogenesis of EVD is due to the cytokine storm of pro-inflammatory cytokines and the lack of antiviral interferon-α2. Matricellular proteins of galectin-9 and osteopontin might also be involved in the edema and abnormality of the coagulation system in EVD. Anti-fibrinolytic treatment will be effective. In the era of globalization, interviews of travelers with fever within 3 weeks of departure from the affected areas will be necessary. Not only the hospitals designated for specific biohazards but every hospital should be aware of the biology of biohazards and establish measures to protect both patients and the community.

  19. Inhibition of Interferon Induction and Action by the Nairovirus Nairobi Sheep Disease Virus/Ganjam Virus

    OpenAIRE

    Holzer, Barbara; Bakshi, Siddharth; Bridgen, Anne; Baron, Michael D.

    2011-01-01

    The Nairoviruses are an important group of tick-borne viruses that includes pathogens of man (Crimean Congo hemorrhagic fever virus) and livestock animals (Dugbe virus, Nairobi sheep disease virus (NSDV)). NSDV is found in large parts of East Africa and the Indian subcontinent (where it is known as Ganjam virus). We have investigated the ability of NSDV to antagonise the induction and actions of interferon. Both pathogenic and apathogenic isolates could actively inhibit the induction of type ...

  20. Intracellular cargo delivery by virus capsid protein-based vehicles: From nano to micro.

    Science.gov (United States)

    Gao, Ding; Lin, Xiu-Ping; Zhang, Zhi-Ping; Li, Wei; Men, Dong; Zhang, Xian-En; Cui, Zong-Qiang

    2016-02-01

    Cellular delivery is an important concern for the efficiency of medicines and sensors for disease diagnoses and therapy. However, this task is quite challenging. Self-assembly virus capsid proteins might be developed as building blocks for multifunctional cellular delivery vehicles. In this work, we found that SV40 VP1 (Simian virus 40 major capsid protein) could function as a new cell-penetrating protein. The VP1 protein could carry foreign proteins into cells in a pentameric structure. A double color structure, with red QDs (Quantum dots) encapsulated by viral capsids fused with EGFP, was created for imaging cargo delivery and release from viral capsids. The viral capsids encapsulating QDs were further used for cellular delivery of micron-sized iron oxide particles (MPIOs). MPIOs were efficiently delivered into live cells and controlled by a magnetic field. Therefore, our study built virus-based cellular delivery systems for different sizes of cargos: protein molecules, nanoparticles, and micron-sized particles. Much research is being done to investigate methods for efficient and specific cellular delivery of drugs, proteins or genetic material. In this article, the authors describe their approach in using self-assembly virus capsid proteins SV40 VP1 (Simian virus 40 major capsid protein). The cell-penetrating behavior provided excellent cellular delivery and should give a new method for biomedical applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Ebola virus disease: a literature review

    Directory of Open Access Journals (Sweden)

    Hirokazu Kimura

    2015-02-01

    Full Text Available Ebola virus disease (EVD is a life-threatening viral disease with a fatality rate ranging from around 30% to 90%. The first EVD outbreak was reported in the 1970s in Zaire (now the Democratic Republic of the Congo. Until 2013, most outbreaks occurred in the Central Africa region, including Zaire, Sudan and Uganda. However, between March and October 2014, over 10 000 cases of EVD have been recorded in West Africa, such as in Guinea, Liberia, Sierra Leone, and Nigeria, and a few hospital or secondary infections of EVD have occurred in Spain and the United States of America. EVD is presently one of the world's most feared diseases. In this literature review, we describe the epidemiology, clinical features, diagnosis, and treatment of EVD.

  2. Ebola Virus Disease Candidate Vaccines Under Evaluation in Clinical Trials

    Science.gov (United States)

    2016-06-02

    evidence that oral vaccines fail in populations with disturbed microbiota, poor nutrition , and high intestinal inflammation [102-104]. Additionally...countermeasure development against Ebola virus disease becoming a global public- health priority. This review summarizes the status quo of candidate...members of the mononegaviral family Filoviridae) cause two diseases recognized by the World Health Organization (WHO): Ebola virus disease (EVD) can be

  3. Development of a multiplex Luminex assay for detecting swine antibodies to structural and nonstructural proteins of foot-and-mouth disease virus in Taiwan.

    Science.gov (United States)

    Chen, Tsu-Han; Lee, Fan; Lin, Yeou-Liang; Pan, Chu-Hsiang; Shih, Chia-Ni; Tseng, Chun-Hsien; Tsai, Hsiang-Jung

    2016-04-01

    Foot-and-mouth disease (FMD) and swine vesicular disease (SVD) are serious vesicular diseases that have devastated swine populations throughout the world. The aim of this study was to develop a multianalyte profiling (xMAP) Luminex assay for the differential detection of antibodies to the FMD virus of structural proteins (SP) and nonstructural proteins (NSP). After the xMAP was optimized, it detected antibodies to SP-VP1 and NSP-3ABC of the FMD virus in a single serum sample. These tests were also compared with 3ABC polypeptide blocking enzyme-linked immunosorbent assay (ELISA) and virus neutralization test (VNT) methods for the differential diagnosis and assessment of immune status, respectively. To detect SP antibodies in 661 sera from infected naïve pigs and vaccinated pigs, the diagnostic sensitivity (DSn) and diagnostic specificity (DSp) of the xMAP were 90.0-98.7% and 93.0-96.5%, respectively. To detect NSP antibodies, the DSn was 90% and the DSp ranged from 93.3% to 99.1%. The xMAP can detect the immune response to SP and NSP as early as 4 days postinfection and 8 days postinfection, respectively. Furthermore, the SP and NSP antibodies in all 15 vaccinated but unprotected pigs were detected by xMAP. A comparison of SP and NSP antibodies detected in the sera of the infected samples indicated that the results from the xMAP had a high positive correlation with results from the VNT and a 3ABC polypeptide blocking ELISA assay. However, simultaneous quantitation detected that xMAP had no relationship with the VNT. Furthermore, the specificity was 93.3-94.9% with 3ABC polypeptide blocking ELISA for the FMDV-NSP antibody. The results indicated that xMAP has the potential to detect antibodies to FMDV-SP-VP1 and NSP-3ABC and to distinguish FMDV-infected pigs from pigs infected with the swine vesicular disease virus. Copyright © 2014. Published by Elsevier B.V.

  4. Virus diseases in lettuce in the Mediterranean basin.

    Science.gov (United States)

    Moreno, Aranzazu; Fereres, Alberto

    2012-01-01

    Lettuce is frequently attacked by several viruses causing disease epidemics and considerable yield losses along the Mediterranean basin. Aphids are key pests and the major vectors of plant viruses in lettuce fields. Lettuce mosaic virus (LMV) is probably the most important because it is seed-transmitted in addition to be transmissible by many aphid species that alight on the crop. Tomato spotted wilt virus (TSWV) is another virus that causes severe damage since the introduction of its major vector, the thrips Frankliniella occidentalis. In regions with heavy and humid soils, Lettuce Mirafiori big-vein virus (LMBVV) can also produce major yield losses. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Rapid, sensitive and effective diagnostic tools for foot-and-mouth disease virus in Africa

    Directory of Open Access Journals (Sweden)

    Christopher J. Kasanga

    2014-04-01

    Full Text Available Speed is paramount in the diagnosis of highly infectious diseases, such as foot-and-mouth disease (FMD, as well as for emerging diseases; however, simplicity is required if a test is to be deployed in the field. Recent developments in molecular biology have enabled the specific detection of FMD virus (FMDV by reverse-transcription loop-mediated isothermal amplification (RT-LAMP, real-time  reverse-transcription polymerase chain reaction (RT-qPCR and sequencing. RT-LAMP enables amplification of the FMDV RNA-dependent RNA polymerase 3D(pol gene at 63 °C (in the presence of a primer mixture and both reverse transcriptase and Bst DNA polymerase for 1 h, whilst RT-qPCR amplifies the same gene in approximately 2 h 30 min. In this study, we compared the sensitivity and effectiveness of RT-LAMP against RT-qPCR for the detection of the FMDV 3D(pol gene in 179 oesophageal-pharyngeal scraping samples (collected by probang obtained from clinically healthy cattle and buffalo in Malawi, Mozambique and Tanzania in 2010. The FMDV detection rate was higher with RT-LAMP (30.2%; n = 54 than with RT-qPCR (17.3%; n = 31. All samples positive by RT-qPCR (Cq ≤ 32.0 were also positive for the RT-LAMP assay; and both assays proved to be highly specific for the FMDV target sequence. In addition, the VP1 sequences of 10 viruses isolated from positive samples corresponded to the respective FMDV serotypes and genotypes. Our findings indicate that the performance of RT-LAMP is superior to RT-qPCR. Accordingly, we consider this test to have great potential with regard to the specific detection and surveillance of infectious diseases of humans and animals in resource-compromised developing countries.

  6. PLAQUE ASSAY OF NEWCASTLE DISEASE VIRUS

    Directory of Open Access Journals (Sweden)

    B. Sardjono

    2012-09-01

    Full Text Available The Newcastle disease virus (NDV was isolated from a 3 months-old indigenous chicken (buras or kampung chicken which showed clinical signs of Newcastle disease (ND. For viral isolation a small part of the spleen and lung were inoculated into 10 days-old embryonated chicken eggs. The physical characteristics of the isolate (A/120 were studied. The hemagglutination of chicken red blood cell showed slow elution, thermostability of hemagglutinin at 56°C was 120 minutes. The vims was able to agglutinate horse erythrocytes but not those of sheep. The biological characteristics on mean death time (MDT of embryonated chicken egg and plaque morphology on chicken embryo fibroblast (CEF primary cell cultures were studied. The MDT was 56 hours, the isolate was velogenic NDV. There were three different plaque morphologies on CEF : 2 mm clear plaques, 1 mm clear plaques, and minute clear plaques which were visible only with microscopic examination.

  7. Ebola Virus Disease – Global Scenario & Bangladesh

    Directory of Open Access Journals (Sweden)

    Md Rezwanur Rahman

    2015-03-01

    Full Text Available Ebola virus disease (EVD, caused by one of the Ebola virus strains is an acute, serious illness which is often fatal when untreated. EVD, previously known as Ebola hemorrhagic fever, is a rare and deadly disease. It first appeared in 1976 in two simultaneous outbreaks, one in Nzara, Sudan, and the other in Yambuku, Democratic Republic of Congo. The latter occurred in a village near the Ebola River, from which the disease takes its name.1,2 On March 23, 2014, the World Health Organization (WHO was notified of an outbreak of EVD in Guinea. On August 8, WHO declared the epidemic to be a ‘Public health emergency of international concern’.3 The current 2014 outbreak in West Africa is the largest and most complex Ebola outbreak.1 It is to be noticed that the most severely affected countries, Guinea, Sierra Leone and Liberia have very weak health systems, lacking human and infrastructural resources and these countries recently emerged from long periods of conflict and instability.1 The virus family Filoviridae includes three genera: Cuevavirus, Marburgvirus, and Ebolavirus. Till date five species have been identified: Zaire, Bundibugyo, Sudan, Reston and Taï Forest. The recent outbreak belongs to the Zaire species which is the most lethal one, with an average case fatality rate of 78%.1,4 Till 6 December 2014, total 17,834 suspected cases and 6,678 deaths had been reported; however, WHO has said that these numbers may be vastly underestimated.5 The natural reservoir for Ebola has yet to be confirmed; however, fruit bats of the Pteropodidae family are considered to be the most likely candidate species.1,2,6 Ebola can be transmitted to human through close contact with the blood, secretions, organs or other bodily fluids of infected animals such as fruit bats, chimpanzees, gorillas, monkeys, etc. Ebola then spreads through human-to-human transmission via direct contact (through broken skin or mucous membranes with the blood, secretions, organs or

  8. A Novel Virus Causes Scale Drop Disease in Lates calcarifer.

    Directory of Open Access Journals (Sweden)

    Ad de Groof

    2015-08-01

    Full Text Available From 1992 onwards, outbreaks of a previously unknown illness have been reported in Asian seabass (Lates calcarifer kept in maricultures in Southeast Asia. The most striking symptom of this emerging disease is the loss of scales. It was referred to as scale drop syndrome, but the etiology remained enigmatic. By using a next-generation virus discovery technique, VIDISCA-454, sequences of an unknown virus were detected in serum of diseased fish. The near complete genome sequence of the virus was determined, which shows a unique genome organization, and low levels of identity to known members of the Iridoviridae. Based on homology of a series of putatively encoded proteins, the virus is a novel member of the Megalocytivirus genus of the Iridoviridae family. The virus was isolated and propagated in cell culture, where it caused a cytopathogenic effect in infected Asian seabass kidney and brain cells. Electron microscopy revealed icosahedral virions of about 140 nm, characteristic for the Iridoviridae. In vitro cultured virus induced scale drop syndrome in Asian seabass in vivo and the virus could be reisolated from these infected fish. These findings show that the virus is the causative agent for the scale drop syndrome, as each of Koch's postulates is fulfilled. We have named the virus Scale Drop Disease Virus. Vaccines prepared from BEI- and formalin inactivated virus, as well as from E. coli produced major capsid protein provide efficacious protection against scale drop disease.

  9. Survival of foot-and-mouth disease virus in cheese.

    Science.gov (United States)

    Blackwell, J H

    1976-09-01

    Persistence of foot-and-mouth disease virus during the manufacture of Cheddar, Mozzarella, Camembert cheese prepared from milk of cows experimentally infected with the virus was studied. Cheese samples were made on a laboratory scale with commercial lactic acid starter cultures and the microbial protease MARZYME as a coagulant. Milk was heated at different temperatures for different intervals before it was made into cheese. Food-and-mouth disease virus survived the acidic conditions of Cheddar and Camembert cheese processing but not that of Mozzarella. Foot-and-mouth disease virus survived processing but not curing for 30 days in Cheddar cheese preparaed from heated milk. However, the virus survived curing for 60 days but not for 120 days in cheese (pH 5) prepared from unheated milk. Foot-and-mouth disease virus survived in Camembert cheese (pH 5) for 21 days at 2 C but not for 35 days.

  10. Seroprevalence of Marek's Disease Virus antibody in some poultry ...

    African Journals Online (AJOL)

    This study reports a survey of Marek's disease virus (MDV) antibody done in 21 selected poultry flocks in Lagos, Ogun and Oyo states of southwestern Nigeria. A total of 315 serum samples were examined using the Enzyme Linked Immunosorbent Assay (ELISA) technique. Marek's disease virus antibody was present in ...

  11. hand hygiene practices post ebola virus disease outbreak

    African Journals Online (AJOL)

    2014-10-20

    Oct 20, 2014 ... INTRODUCTION. Ebola virus disease (EVD) is an infectious viral disease characterized by a high case-fatality rate which may be as high as 90%.1,2 Ebola virus may be acquired during contact with blood or body fluids of an infected animal, commonly monkeys or fruit bats.2 Once human infection occurs ...

  12. Live Attenuated Vaccine based on Duck Enteritis Virus against Duck Hepatitis A Virus Types 1 and 3

    Directory of Open Access Journals (Sweden)

    Zhong Zou

    2016-10-01

    Full Text Available As causative agents of duck viral hepatitis, duck hepatitis A virus type 1 (DHAV-1 and type 3 (DHAV-3 causes significant economic losses in the duck industry. However, a licensed commercial vaccine that simultaneously controls both pathogens is currently unavailable. Here, we generated DEV recombinants (rC-KCE-2VP1 containing both VP1 from DHAV-1 (VP1/DHAV-1 and VP1 from DHAV-3 (VP1/DHAV-3 between UL27 and UL26. A self-cleaving 2A-element of FMDV was inserted between the two different types of VP1, allowing production of both proteins from a single open reading frame. Immunofluorescence and Western blot analysis results demonstrated that both VP1 proteins were robustly expressed in rC-KCE-2VP1-infected chicken embryo fibroblasts. Ducks that received a single dose of rC-KCE-2VP1 showed potent humoral and cellular immune responses and were completely protected against challenges of both pathogenic DHAV-1 and DHAV-3 strains. The protection was rapid, achieved as early as three days after vaccination. Moreover, viral replication was fully blocked in vaccinated ducks as early as one week post-vaccination. These results demonstrated, for the first time, that recombinant rC-KCE-2VP1 is potential fast-acting vaccine against DHAV-1 and DHAV-3.

  13. Genome variability of foot-and-mouth disease virus during the short period of the 2010 epidemic in Japan.

    Science.gov (United States)

    Nishi, Tatsuya; Yamada, Manabu; Fukai, Katsuhiko; Shimada, Nobuaki; Morioka, Kazuki; Yoshida, Kazuo; Sakamoto, Kenichi; Kanno, Toru; Yamakawa, Makoto

    2017-02-01

    Foot-and-mouth disease virus (FMDV) is highly contagious and has a high mutation rate, leading to extensive genetic variation. To investigate how FMDV genetically evolves over a short period of an epidemic after initial introduction into an FMD-free area, whole L-fragment sequences of 104 FMDVs isolated from the 2010 epidemic in Japan, which continued for less than three months were determined and phylogenetically and comparatively analyzed. Phylogenetic analysis of whole L-fragment sequences showed that these isolates were classified into a single group, indicating that FMDV was introduced into Japan in the epidemic via a single introduction. Nucleotide sequences of 104 virus isolates showed more than 99.56% pairwise identity rates without any genetic deletion or insertion, although no sequences were completely identical with each other. These results indicate that genetic substitutions of FMDV occurred gradually and constantly during the epidemic and generation of an extensive mutant virus could have been prevented by rapid eradication strategy. From comparative analysis of variability of each FMDV protein coding region, VP4 and 2C regions showed the highest average identity rates and invariant rates, and were confirmed as highly conserved. In contrast, the protein coding regions VP2 and VP1 were confirmed to be highly variable regions with the lowest average identity rates and invariant rates, respectively. Our data demonstrate the importance of rapid eradication strategy in an FMD epidemic and provide valuable information on the genome variability of FMDV during the short period of an epidemic. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Recombinant viruses as vaccines against viral diseases

    Directory of Open Access Journals (Sweden)

    A.P.D. Souza

    2005-04-01

    Full Text Available Vaccine approaches to infectious diseases are widely applied and appreciated. Amongst them, vectors based on recombinant viruses have shown great promise and play an important role in the development of new vaccines. Many viruses have been investigated for their ability to express proteins from foreign pathogens and induce specific immunological responses against these antigens in vivo. Generally, gene-based vaccines can stimulate potent humoral and cellular immune responses and viral vectors might be an effective strategy for both the delivery of antigen-encoding genes and the facilitation and enhancement of antigen presentation. In order to be utilized as a vaccine carrier, the ideal viral vector should be safe and enable efficient presentation of required pathogen-specific antigens to the immune system. It should also exhibit low intrinsic immunogenicity to allow for its re-administration in order to boost relevant specific immune responses. Furthermore, the vector system must meet criteria that enable its production on a large-scale basis. Several viral vaccine vectors have thus emerged to date, all of them having relative advantages and limits depending on the proposed application, and thus far none of them have proven to be ideal vaccine carriers. In this review we describe the potential, as well as some of the foreseeable obstacles associated with viral vaccine vectors and their use in preventive medicine.

  15. Research update: Avian Disease and Oncology Laboratory avian tumor viruses

    Science.gov (United States)

    Genomics and Immunogenetics Use of genomics to identify QTL, genes, and proteins associated with resistance to Marek’s disease. Marek’s disease (MD), a lymphoproliferative disease caused by the highly oncogenic herpesvirus Marek's disease virus (MDV), continues to be a major disease concern to the p...

  16. Elymus dahuricus H+-PPase EdVP1 enhances potassium uptake and utilization of wheat through the development of root system

    OpenAIRE

    Ruan, L; Zhang, J; Xin, X; Miller, A. J; Tong, Y

    2013-01-01

    We investigated the differences of K acquisition and utilization, morphological and physiological characteristics of roots and grain yield between Elymus dahuricus H+-PPase (EdVP1) transgenic wheat and wild type wheat under low K stress. The results showed that, the grain yield and K economic utilization index (KUI-E) in wild type wheat were only 61.14% and 50.20% of those in EdVP1 transgenic wheat. EdVP1 increased the free IAA accumulations in roots, which may play a key role in the developm...

  17. Ganjam virus/Nairobi sheep disease virus induces a pro-inflammatory response in infected sheep

    Directory of Open Access Journals (Sweden)

    bin Tarif Abid

    2012-10-01

    Full Text Available Abstract Partly due to climate change, and partly due to changes of human habitat occupation, the impact of tick-borne viruses is increasing. Nairobi sheep disease virus (NSDV and Ganjam virus (GV are two names for the same virus, which causes disease in sheep and goats and is currently known to be circulating in India and East Africa. The virus is transmitted by ixodid ticks and causes a severe hemorrhagic disease. We have developed a real-time PCR assay for the virus genome and validated it in a pilot study of the pathogenicity induced by two different isolates of NSDV/GV. One isolate was highly adapted to tissue culture, grew in most cell lines tested, and was essentially apathogenic in sheep. The second isolate appeared to be poorly adapted to cell culture and retained pathogenicity in sheep. The real-time PCR assay for virus easily detected 4 copies or less of the viral genome, and allowed a quantitative measure of the virus in whole blood. Measurement of the changes in cytokine mRNAs showed similar changes to those observed in humans infected by the closely related virus Crimean Congo hemorrhagic fever virus.

  18. Ganjam virus/Nairobi sheep disease virus induces a pro-inflammatory response in infected sheep.

    Science.gov (United States)

    Bin Tarif, Abid; Lasecka, Lidia; Holzer, Barbara; Baron, Michael D

    2012-10-19

    Partly due to climate change, and partly due to changes of human habitat occupation, the impact of tick-borne viruses is increasing. Nairobi sheep disease virus (NSDV) and Ganjam virus (GV) are two names for the same virus, which causes disease in sheep and goats and is currently known to be circulating in India and East Africa. The virus is transmitted by ixodid ticks and causes a severe hemorrhagic disease. We have developed a real-time PCR assay for the virus genome and validated it in a pilot study of the pathogenicity induced by two different isolates of NSDV/GV. One isolate was highly adapted to tissue culture, grew in most cell lines tested, and was essentially apathogenic in sheep. The second isolate appeared to be poorly adapted to cell culture and retained pathogenicity in sheep. The real-time PCR assay for virus easily detected 4 copies or less of the viral genome, and allowed a quantitative measure of the virus in whole blood. Measurement of the changes in cytokine mRNAs showed similar changes to those observed in humans infected by the closely related virus Crimean Congo hemorrhagic fever virus.

  19. Evaluation of FTA(®) card for the rescue of infectious foot-and-mouth disease virus by chemical transfection of extracted RNA in cultured cells.

    Science.gov (United States)

    Biswal, Jitendra K; Subramaniam, Saravanan; Ranjan, Rajeev; Pattnaik, Bramhadev

    2016-08-01

    Foot-and-mouth disease (FMD) is a highly contagious epidemic disease of transboundary importance. Inadequate storage and shipment of suspected clinical samples can compromise the ability to detect and characterise FMD virus (FMDV) in endemic countries, thereby, leading to the loss of valuable virological and epidemiological data. This study, investigates the potential of using FTA(®) cards for dry transportation of clinical samples and subsequent recovery of infectious FMDV by chemical transfection of FTA(®) card fixed RNA as an alternative to the conventional cell culture based virus isolation method. A higher proportion of infectious FMDV was rescued from clinical samples (cell culture isolates, tongue epithelial suspension and impression smears) by the FTA(®) card fixed RNA transfection method (76%) compared to the conventional cell culture based virus isolation (56%), suggesting a better performance of the current RNA transfection procedure. Furthermore, it was possible to rescue live virus by the transfection of RNA extracted from FTA(®) card impregnated with clinical samples that had been stored at varying temperature (4-37 °C) up to a period of six weeks. The VP1 sequence data and antigenic relationships with the vaccine strains, between viruses rescued by FTA(®) card fixed RNA transfection and conventional cell culture, were comparable. Therefore, these results support the use of the FTA(®) card for the economic, dry, non-hazardous transport of FMD suspected clinical samples from the site of collection to national/international reference laboratories. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Comparative analysis of rabbit hemorrhagic disease virus (RHDV) and new RHDV2 virus antigenicity, using specific virus-like particles

    OpenAIRE

    Bárcena, Juan; Guerra, Beatriz; Angulo, Iván; González, Julia; Valcárcel, Félix; Mata, Carlos P.; Castón, José R.; Blanco, Esther; Alejo, Alí

    2015-01-01

    International audience; In 2010 a new Lagovirus related to rabbit haemorrhagic disease virus (RHDV) emerged in France and has since rapidly spread throughout domestic and wild rabbit populations of several European countries. The new virus, termed RHDV2, exhibits distinctive genetic, antigenic and pathogenic features. Notably, RHDV2 kills rabbits previously vaccinated with RHDV vaccines. Here we report for the first time the generation and characterization of RHDV2-specific virus-like particl...

  1. H+ -pyrophosphatase IbVP1 promotes efficient iron use in sweet potato [Ipomoea batatas (L.) Lam.].

    Science.gov (United States)

    Fan, Weijuan; Wang, Hongxia; Wu, Yinliang; Yang, Nan; Yang, Jun; Zhang, Peng

    2017-06-01

    Iron (Fe) deficiency is one of the most common micronutrient deficiencies limiting crop production globally, especially in arid regions because of decreased availability of iron in alkaline soils. Sweet potato [Ipomoea batatas (L.) Lam.] grows well in arid regions and is tolerant to Fe deficiency. Here, we report that the transcription of type I H + -pyrophosphatase (H + -PPase) gene IbVP1 in sweet potato plants was strongly induced by Fe deficiency and auxin in hydroponics, improving Fe acquisition via increased rhizosphere acidification and auxin regulation. When overexpressed, transgenic plants show higher pyrophosphate hydrolysis and plasma membrane H + -ATPase activity compared with the wild type, leading to increased rhizosphere acidification. The IbVP1-overexpressing plants showed better growth, including enlarged root systems, under Fe-sufficient or Fe-deficient conditions. Increased ferric precipitation and ferric chelate reductase activity in the roots of transgenic lines indicate improved iron uptake, which is also confirmed by increased Fe content and up-regulation of Fe uptake genes, e.g. FRO2, IRT1 and FIT. Carbohydrate metabolism is significantly affected in the transgenic lines, showing increased sugar and starch content associated with the increased expression of AGPase and SUT1 genes and the decrease in β-amylase gene expression. Improved antioxidant capacities were also detected in the transgenic plants, which showed reduced H 2 O 2 accumulation associated with up-regulated ROS-scavenging activity. Therefore, H + -PPase plays a key role in the response to Fe deficiency by sweet potato and effectively improves the Fe acquisition by overexpressing IbVP1 in crops cultivated in micronutrient-deficient soils. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Potential role of viruses in white plague coral disease.

    Science.gov (United States)

    Soffer, Nitzan; Brandt, Marilyn E; Correa, Adrienne M S; Smith, Tyler B; Thurber, Rebecca Vega

    2014-02-01

    White plague (WP)-like diseases of tropical corals are implicated in reef decline worldwide, although their etiological cause is generally unknown. Studies thus far have focused on bacterial or eukaryotic pathogens as the source of these diseases; no studies have examined the role of viruses. Using a combination of transmission electron microscopy (TEM) and 454 pyrosequencing, we compared 24 viral metagenomes generated from Montastraea annularis corals showing signs of WP-like disease and/or bleaching, control conspecific corals, and adjacent seawater. TEM was used for visual inspection of diseased coral tissue. No bacteria were visually identified within diseased coral tissues, but viral particles and sequence similarities to eukaryotic circular Rep-encoding single-stranded DNA viruses and their associated satellites (SCSDVs) were abundant in WP diseased tissues. In contrast, sequence similarities to SCSDVs were not found in any healthy coral tissues, suggesting SCSDVs might have a role in WP disease. Furthermore, Herpesviridae gene signatures dominated healthy tissues, corroborating reports that herpes-like viruses infect all corals. Nucleocytoplasmic large DNA virus (NCLDV) sequences, similar to those recently identified in cultures of Symbiodinium (the algal symbionts of corals), were most common in bleached corals. This finding further implicates that these NCLDV viruses may have a role in bleaching, as suggested in previous studies. This study determined that a specific group of viruses is associated with diseased Caribbean corals and highlights the potential for viral disease in regional coral reef decline.

  3. An Integrative Analysis of Foot-and-Mouth Disease Virus Carriers in Vietnam Achieved Through Targeted Surveillance and Molecular Epidemiology.

    Science.gov (United States)

    de Carvalho Ferreira, H C; Pauszek, S J; Ludi, A; Huston, C L; Pacheco, J M; Le, V T; Nguyen, P T; Bui, H H; Nguyen, T D; Nguyen, T; Nguyen, T T; Ngo, L T; Do, D H; Rodriguez, L; Arzt, J

    2017-04-01

    Foot-and-mouth disease (FMD) is a major constraint to transboundary trade in animal products, yet much of its natural ecology and epidemiology in endemic regions is still poorly understood. To address this gap, a multidisciplinary, molecular and conventional epidemiological approach was applied to an investigation of endemic FMD in Vietnam. Within the study space, it was found that 22.3% of sampled ruminants had previously been infected with FMD virus (FMDV), of which 10.8% were persistent, asymptomatic carriers (2.4% of the total population). Descriptive data collected from targeted surveillance and a farm questionnaire showed a significantly lower prevalence of FMDV infection for dairy farms. In contrast, farms of intermediate size and/or history of infection in 2010 were at increased risk of FMD exposure. At the individual animal level, buffalo had the highest exposure risk (over cattle), and there was spatial heterogeneity in exposure risk at the commune level. Conversely, carrier prevalence was higher for beef cattle, suggesting lower susceptibility of buffalo to persistent FMDV infection. To characterize virus strains currently circulating in Vietnam, partial FMDV genomic (VP1) sequences from carrier animals collected between 2012 and 2013 (N = 27) and from FMDV outbreaks between 2009 and 2013 (N = 79) were compared by phylogenetic analysis. Sequence analysis suggested that within the study period, there were two apparent novel introductions of serotype A viruses and that the dominant lineage of serotype O in Vietnam shifted from SEA/Mya-98 to ME-SA/PanAsia. FMDV strains shared close ancestors with FMDV from other South-East Asian countries indicating substantial transboundary movement of the predominant circulating strains. Close genetic relationships were observed between carrier and outbreak viruses, which may suggest that asymptomatic carriers of FMDV contribute to regional disease persistence. Multiple viral sequences obtained from carrier cattle

  4. A Rare Case of Transfusion Transmission of Hepatitis A Virus to Two Patients with Haematological Disease.

    Science.gov (United States)

    da Silva, Suely Gonçalves Cordeiro; Leon, Luciane Almeida Amado; Alves, Gilda; Brito, Selma Magalhães; Sandes, Valcieny de Souza; Lima, Magda Maria Adorno Ferreira; Nogueira, Marta Colares; Tavares, Rita de Cássia Barbosa da Silva; Dobbin, Jane; Apa, Alexandre; de Paula, Vanessa Salete; Oliveira, Jaqueline Mendes de Oliveira; Pinto, Marcelo Alves; Ferreira, Orlando da Costa; Motta, Iara de Jesus Ferreira

    2016-03-01

    This paper describes the transmission of hepatitis A virus (HAV) to two blood recipients from a healthy donor that later presented to the blood bank with jaundice. The RNA of HAV was detected by qualitative nested reverse transcription polymerase chain reaction (nested RT-PCR) and quantified by real-time RT-PCR. HAV RNA samples were genotyped by direct sequencing of PCR products. A sequence from a fragment of 168 bp from the VP1/2A HAV region was used to construct a phylogenetic tree. A 31-year-old male donor accepted for donation of a whole blood unit returned to the blood bank with clinical jaundice 20 days after donation. His serological and NAT tests were negative for HBV and HCV. Serological tests for HAV IgM and IgG were negative on donation sample but positive on follow-up sample, confirming donor's HAV acute infection. Both recipients of red blood cells (R1) and platelet concentrate (R2) from the same implicated donation were HAV IgM-negative and IgG-positive. Qualitative PCR was positive on samples from all three individuals and phylogenetic analysis of viruses proved HAV transmission to the two recipients of blood products. HAV viral load on donor follow-up sample and the platelet recipient was 1.3 and 1.5 × 10(3) IU/ml, respectively. The RBC recipient, also infected by HCV, was undergoing bone marrow transplantation and died from fulminant hepatitis, 26 days after the implicated HAV transfusion. The blood donor, a garbage collector, spontaneously returned to the blood bank when developing jaundice. This highlights the importance of donor education to immediately report to blood banks of any signs and symptoms related to infectious disease developed after blood donation. The fact that one immunocompromised patient with HCV infection died from fulminant hepatitis after receiving a HAV-contaminated platelet transfusion underpins the importance of a HAV vaccination program for these group of patients.

  5. Interference of Infectious Bursal Diseases (IBD) Virus and Vaccine ...

    African Journals Online (AJOL)

    The interference of Infectious bursal disease (IBD) virus and vaccine with the immune response of the grey brested guinea fowl (Numida meleagridis galeata palas) to Newcastle desease (ND) “LaSota” vaccine was studied using hemagglutination inhibition (HI) test for detection of ND virus antibody and agar gel ...

  6. Carriers of foot-and-mouth disease virus: a review

    NARCIS (Netherlands)

    Moonen, P.; Schrijver, R.

    2000-01-01

    This review describes current knowledge about persistent foot-and-mouth disease virus (FMDV) infections, the available methods to detect carrier animals, the properties of persisting virus, the immunological mechanisms, and the risk of transmission. In particular, knowledge about the carrier state,

  7. The cellular receptors for infectious bursal disease virus | Zhu ...

    African Journals Online (AJOL)

    Virus receptors are simplistically defined as cell surface molecules that mediate binding (attachment, adsorption) and/or trigger membrane fusion or entry through other processes. Infectious bursal disease virus (IBDV) entry into host cells occurs by recognition of specific cellular receptor(s) with viral envelope glycoprotein, ...

  8. Comparative analysis of rabbit hemorrhagic disease virus (RHDV) and new RHDV2 virus antigenicity, using specific virus-like particles.

    Science.gov (United States)

    Bárcena, Juan; Guerra, Beatriz; Angulo, Iván; González, Julia; Valcárcel, Félix; Mata, Carlos P; Castón, José R; Blanco, Esther; Alejo, Alí

    2015-09-24

    In 2010 a new Lagovirus related to rabbit haemorrhagic disease virus (RHDV) emerged in France and has since rapidly spread throughout domestic and wild rabbit populations of several European countries. The new virus, termed RHDV2, exhibits distinctive genetic, antigenic and pathogenic features. Notably, RHDV2 kills rabbits previously vaccinated with RHDV vaccines. Here we report for the first time the generation and characterization of RHDV2-specific virus-like particles (VLPs). Our results further confirmed the differential antigenic properties exhibited by RHDV and RHDV2, highlighting the need of using RHDV2-specific diagnostic assays to monitor the spread of this new virus.

  9. Capsid coding region diversity of re-emerging lineage C foot-and-mouth disease virus serotype Asia1 from India.

    Science.gov (United States)

    Subramaniam, Saravanan; Mohapatra, Jajati K; Das, Biswajit; Sharma, Gaurav K; Biswal, Jitendra K; Mahajan, Sonalika; Misri, Jyoti; Dash, Bana B; Pattnaik, Bramhadev

    2015-07-01

    Foot-and-mouth disease virus (FMDV) serotype Asia1 was first reported in India in 1951, where three major genetic lineages (B, C and D) of this serotype have been described until now. In this study, the capsid protein coding region of serotype Asia1 viruses (n = 99) from India were analyzed, giving importance to the viruses circulating since 2007. All of the isolates (n = 50) recovered during 2007-2013 were found to group within the re-emerging cluster of lineage C (designated as sublineage C(R)). The evolutionary rate of sublineage C(R) was estimated to be slightly higher than that of the serotype as a whole, and the time of the most recent common ancestor for this cluster was estimated to be approximately 2001. In comparison to the older isolates of lineage C (1993-2001), the re-emerging viruses showed variation at eight amino acid positions, including substitutions at the antigenically critical residues VP279 and VP2131. However, no direct correlation was found between sequence variations and antigenic relationships. The number of codons under positive selection and the nature of the selection pressure varied widely among the structural proteins, implying a heterogeneous pattern of evolution in serotype Asia1. While episodic diversifying selection appears to play a major role in shaping the evolution of VP1 and VP3, selection pressure acting on codons of VP2 is largely pervasive. Further, episodic positive selection appears to be responsible for the early diversification of lineage C. Recombination events identified in the structural protein coding region indicates its probable role in adaptive evolution of serotype Asia1 viruses.

  10. NNDSS - Table II. Varicella to West Nile virus disease

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Varicella to West Nile virus disease - 2014.In this Table, all conditions with a 5-year average annual national total of more than or equals 1,000...

  11. Genetic Similarity between Cotton Leafroll Dwarf Virus and Chickpea Stunt Disease Associated Virus in India

    Directory of Open Access Journals (Sweden)

    Arup Kumar Mukherjee

    2016-12-01

    Full Text Available The cotton leafroll dwarf virus (CLRDV is one of the most devastating pathogens of cotton. This malady, known as cotton blue disease, is widespread in South America where it causes huge crop losses. Recently the disease has been reported from India. We noticed occurrence of cotton blue disease and chickpea stunt disease in adjoining cotton and chickpea fields and got interested in knowing if these two viral diseases have some association. By genetic studies, we have shown here that CLRDV is very close to chickpea stunt disease associated virus (CpSDaV. We were successful in transmitting the CLRDV from cotton to chickpea. Our studies indicate that CpSDaV and CLRDV in India are possibly two different strains of the same virus. These findings would be helpful in managing these serious diseases by altering the cropping patterns.

  12. [Zika Virus and Zika Viral Disease].

    Science.gov (United States)

    Zhang, Shuo; Li, Dexin

    2016-01-01

    Since Zika virus (ZIKV) has firstly been isolated in 1947, Uganda, outbreaks of Zika fever have been reported in many areas such as in Africa, Southeast Asia and America. Imported cases in China also have been reported. Zika virus belongs to the family Flaviviridae, genus Flavivirus, and include Africa subtype and Asia subtype. It is a mosquito-borne virus primarily transmitted by Aedes aegypti mosquitoes. Sexual transmission, Blood transmission and mother-to-fetus transmission were also reported. Zika virus can go though blood-brain barrier and infect central nervous system. Symptoms are generally mild and self-limited, but recent evidence suggests a possible association between maternal Zika virus infection and adverse fetal outcomes, such as congenital microcephaly, as well as a possible association with Guillain-Barré syndrome. Laboratorial Diagnosis includes nucleic acid detection, Serological test, and isolation of virus. Currently, no vaccine or medication exists to prevent or treat Zika virus infection. Preventive measures against Zika virus infection should be taken through prevention of mosquito bites and surveillance in epidemic area.

  13. Effects of two amino acid substitutions in the capsid proteins on the interaction of two cell-adapted PanAsia-1 strains of foot-and-mouth disease virus serotype O with heparan sulfate receptor.

    Science.gov (United States)

    Bai, Xingwen; Bao, Huifang; Li, Pinghua; Wei, Wei; Zhang, Meng; Sun, Pu; Cao, Yimei; Lu, Zengjun; Fu, Yuanfang; Xie, Baoxia; Chen, Yingli; Li, Dong; Luo, Jianxun; Liu, Zaixin

    2014-07-24

    Some cell-adapted strains of foot-and-mouth disease virus (FMDV) can utilize heparan sulfate (HS) as a receptor to facilitate viral infection in cultured cells. A number of independent sites on the capsid that might be involved in FMDV-HS interaction have been studied. However, the previously reported residues do not adequately explain HS-dependent infection of two cell-adapted PanAsia-1 strains (O/Tibet/CHA/6/99tc and O/Fujian/CHA/9/99tc) of FMDV serotype O. To identify the molecular determinant(s) for the interaction of O/Tibet/CHA/6/99tc and O/Fujian/CHA/9/99tc with HS receptor, several chimeric viruses and site-directed mutants were generated by using an infectious cDNA of a non-HS-utilizing rescued virus (Cathay topotype) as the genomic backbone. Phenotypic properties of these viruses were determined by plaque assays and virus adsorption and penetration assays in cultured cells. Only two of the rescued viruses encoding VP0 of O/Tibet/CHA/6/99tc or VP1 of O/Fujian/CHA/9/99tc formed plaques on wild-type Chinese hamster ovary (WT-CHO; HS+) cells, but not on HS-negative pgsD-677 cells. The formation of plaques by these two chimeric viruses on WT-CHO cells could be abolished by the introduction of single amino acid mutations Gln-2080 → Leu in VP2 of O/Tibet/CHA/6/99tc and Lys-1083 → Glu in VP1 of O/Fujian/CHA/9/99tc, respectively. Nonetheless, the introduced mutation Leu-2080 → Gln in VP2 of O/Fujian/CHA/9/99tc for the construction of expectant recombinant plasmid led to non-infectious progeny virus in baby hamster kidney 21 (BHK-21) cells, and the site-directed mutant encoding Glu-1083 → Lys in VP1 of O/Tibet/CHA/6/99tc did not acquire the ability to produce plaques on WT-CHO cells. Significant differences in the inhibition of the infectivity of four HS-utilizing viruses by heparin and RGD-containing peptide were observed in BHK-21 cells. Interestingly, the chimeric virus encoding VP0 of O/Fujian/CHA/9/99tc, and the site-directed mutant

  14. Assay for Serum Antibodies to Infectious Bursal Disease Virus in ...

    African Journals Online (AJOL)

    Infectious bursal disease (IBD) is an acute, lymphocidal disease that has been a threat to poultry production in Nigeria and a major disease problem of poultry producing areas of the world. A serological detection of antibodies to the virus was conducted on 300 sera samples derived from local chickens slaughtered at Sheik ...

  15. Quality and Toxicity Assessments of Foot and Mouth Disease Virus ...

    African Journals Online (AJOL)

    The quality and toxicity assessment of foot and mouth disease virus vaccine was carried out in inoculated guinea pigs. ... could be used for the control and prevention of foot and mouth disease in Nigerian livestock. Keyword: Foot and Mouth Disease ... 2 blended with Incomplete. Seepic Adjuvant (ISA) montanide 206, which.

  16. Development and evaluation of tailored specific real-time RT-PCR assays for detection of foot-and-mouth disease virus serotypes circulating in East Africa.

    Science.gov (United States)

    Bachanek-Bankowska, Katarzyna; Mero, Herieth R; Wadsworth, Jemma; Mioulet, Valerie; Sallu, Raphael; Belsham, Graham J; Kasanga, Christopher J; Knowles, Nick J; King, Donald P

    2016-11-01

    Rapid, reliable and accurate diagnostic methods provide essential support to programmes that monitor and control foot-and-mouth disease (FMD). While pan-specific molecular tests for FMD virus (FMDV) detection are well established and widely used in endemic and FMD-free countries, current serotyping methods mainly rely either on antigen detection ELISAs or nucleotide sequencing approaches. This report describes the development of a panel of serotype-specific real-time RT-PCR assays (rRT-PCR) tailored to detect FMDV lineages currently circulating in East Africa. These assays target sequences within the VP1-coding region that share high intra-lineage identity, but do not cross-react with FMD viruses from other serotypes that circulate in the region. These serotype-specific assays operate with the same thermal profile as the pan-diagnostic tests making it possible to run them in parallel to produce C T values comparable to the pan-diagnostic test detecting the 3D-coding region. These assays were evaluated alongside the established pan-specific molecular test using field samples and virus isolates collected from Tanzania, Kenya and Ethiopia that had been previously characterised by nucleotide sequencing. Samples (n=71) representing serotype A (topotype AFRICA, lineage G-I), serotype O (topotypes EA-2 and EA-4), serotype SAT 1 (topotype I (NWZ)) and serotype SAT2 (topotype IV) were correctly identified with these rRT-PCR assays. Furthermore, FMDV RNA from samples that did not contain infectious virus could still be serotyped using these assays. These serotype-specific real-time RT-PCR assays can detect and characterise FMDVs currently circulating in East Africa and hence improve disease control in this region. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. A combination in-ovo vaccine for avian influenza virus and Newcastle disease virus.

    Science.gov (United States)

    Steel, John; Burmakina, Svetlana V; Thomas, Colleen; Spackman, Erica; García-Sastre, Adolfo; Swayne, David E; Palese, Peter

    2008-01-24

    The protection of poultry from H5N1 highly pathogenic avian influenza A (HPAI) and Newcastle disease virus (NDV) can be achieved through vaccination, as part of a broader disease control strategy. We have previously generated a recombinant influenza virus expressing, (i) an H5 hemagglutinin protein, modified by the removal of the polybasic cleavage peptide and (ii) the ectodomain of the NDV hemagglutinin-neuraminidase (HN) protein in the place of the ectodomain of influenza neuraminidase (Park MS, et al. Proc Natl Acad Sci USA 2006;103(21):8203-8). Here we show this virus is attenuated in primary normal human bronchial epithelial (NHBE) cell culture, and demonstrate protection of C57BL/6 mice from lethal challenge with an H5 HA-containing influenza virus through immunisation with the recombinant virus. In addition, in-ovo vaccination of 18-day-old embryonated chicken eggs provided 90% and 80% protection against highly stringent lethal challenge by NDV and H5N1 virus, respectively. We propose that this virus has potential as a safe in-ovo live, attenuated, bivalent avian influenza and Newcastle disease virus vaccine.

  18. Hepatitis C virus in sickle cell disease.

    Science.gov (United States)

    Hassan, Mohamed; Hasan, Syed; Giday, Samuel; Alamgir, Laila; Banks, Alpha; Frederick, Winston; Smoot, Duane; Castro, Oswaldo

    2003-01-01

    PURPOSE: To determine the prevalence of hepatitis C virus antibodies (anti-HCV) in patients with sickle cell disease. PATIENTS AND METHODS: Between 1983 and 2001, 150 patients from the Howard University Hospital Center for Sickle Cell Disease were screened for HCV antibody (52% women, 48% men, mean age 34 years). Frozen serum samples from 56 adult sickle cell patients who had participated in previous surveys (1983-92) of HIV and HTLV-1 serology and who were tested in 1992 for anti-HCV antibody--when commercial ELISA test (Ortho) became available--were included in this paper. Of the 150 patients in the study, 132 had sickle cell anemia genotype (SS), 15 had sickle cell hemoglobin-C disease (SC) and three had sickle beta thalassemia. Clinical charts were reviewed for history of blood transfusion, IV drug abuse, homosexuality, tattooing, iron overload, and alcohol abuse. RESULTS: Antibodies to HCV were detected in 53 patients (35.3%). Of the 55 patients who had frozen serum samples tested in 1992, 32 (58%) were reactive for anti-HCV, while only 21 of the 95 patients (22%) tested after 1992 were positive for HCV antibodies (P<0.001). Thirty-nine of 77 patients (51%) who received more than 10 units of packed red blood cells were positive for HCV antibody, and only 14 of 61 patients (23%) who received less than 10 units of packed red blood cells transfusion were positive for HCV antibodies (P<0.001). None of the 12 patients who never received transfusion were positive for HCV antibody. In the 53 anti-HCV positive patients, the mean alanine amino-transferase (ALT) value was 98- and 81 U/L, respectively, for males and females. These values were normal for the HCV-antibody negative patients. The aspartate amino-transferase (AST) and the total bilirubin were also higher in the anti-HCV positive patients compared to patients in the anti-HCV negative group. Forty-four patients (57.1%) who were transfused more than 10 units developed iron overload defined by a serum ferritin

  19. Travel to tropical areas: Zika virus disease

    CERN Multimedia

    CERN Medical Service

    2016-01-01

    Transmitted by the bite of a certain species of mosquitoes (Aedes), the Zika virus is spreading quickly in tropical areas of Central America, the Caribbean and South America.   Although no specific treatment nor vaccine is currently available, the most effective preventive measures are those focused on avoiding mosquito bites. There are no travel restrictions in place at present. However it is recommended that pregnant women defer travel plans to countries affected by the Zika virus. For further information on symptoms and prevention measures, please click on the Zika virus link or contact the Medical Service.

  20. Acute viral hemorrhage disease: A summary on new viruses

    Directory of Open Access Journals (Sweden)

    Somsri Wiwanitkit

    2015-10-01

    Full Text Available Acute hemorrhagic disease is an important problem in medicine that can be seen in many countries, especially those in tropical world. There are many causes of acute hemorrhagic disease and the viral infection seems to be the common cause. The well-known infection is dengue, however, there are many new identified viruses that can cause acute hemorrhagic diseases. In this specific short review, the authors present and discuss on those new virus diseases that present as “acute hemorrhagic fever”.

  1. Ebola (Ebola Virus Disease): Signs and Symptoms

    Science.gov (United States)

    ... Exposure Communication Resources Videos Audio Infographics & Illustrations Factsheets Posters Virus Ecology Graphic Signs and Symptoms Recommend on ... site? Adobe PDF file Microsoft PowerPoint file Microsoft Word file Microsoft Excel file Audio/Video file Apple ...

  2. Immunogenicity evaluation of MS2 phage-mediated chimeric nanoparticle displaying an immunodominant B cell epitope of foot-and-mouth disease virus

    Directory of Open Access Journals (Sweden)

    Guoqiang Wang

    2018-05-01

    Full Text Available Foot-and-mouth disease (FMD is a highly contagious disease of cloven-hoofed animals that has caused tremendous economic losses worldwide. In this study, we designed a chimeric nanoparticles (CNPs vaccine that displays the predominant epitope of the serotype O foot-and-mouth disease virus (FMDV VP1 131-160 on the surface of MS2 phage. The recombinant protein was expressed in Escherichia Coli and can self-assemble into CNPs with diameter at 25–30 nm in vitro. A tandem repeat peptide epitopes (TRE was prepared as control. Mice were immunized with CNPs, TRE and commercialized synthetic peptide vaccines (PepVac, respectively. The ELISA results showed that CNPs stimulated a little higher specific antibody levels to PepVac, but was significantly higher than the TRE groups. Moreover, the results from specific IFN-γ responses and lymphocyte proliferation test indicated that CNP immunized mice exhibited significantly enhanced cellular immune response compared to TRE. These results suggested that the CNPs constructed in current study could be a potential alternative vaccine in future FMDV control.

  3. Virus like particle-based vaccines against emerging infectious disease viruses.

    Science.gov (United States)

    Liu, Jinliang; Dai, Shiyu; Wang, Manli; Hu, Zhihong; Wang, Hualin; Deng, Fei

    2016-08-01

    Emerging infectious diseases are major threats to human health. Most severe viral disease outbreaks occur in developing regions where health conditions are poor. With increased international travel and business, the possibility of eventually transmitting infectious viruses between different countries is increasing. The most effective approach in preventing viral diseases is vaccination. However, vaccines are not currently available for numerous viral diseases. Virus-like particles (VLPs) are engineered vaccine candidates that have been studied for decades. VLPs are constructed by viral protein expression in various expression systems that promote the selfassembly of proteins into structures resembling virus particles. VLPs have antigenicity similar to that of the native virus, but are non-infectious as they lack key viral genetic material. VLP vaccines have attracted considerable research interest because they offer several advantages over traditional vaccines. Studies have shown that VLP vaccines can stimulate both humoral and cellular immune responses, which may offer effective antiviral protection. Here we review recent developments with VLP-based vaccines for several highly virulent emerging or re-emerging infectious diseases. The infectious agents discussed include RNA viruses from different virus families, such as the Arenaviridae, Bunyaviridae, Caliciviridae, Coronaviridae, Filoviridae, Flaviviridae, Orthomyxoviridae, Paramyxoviridae, and Togaviridae families.

  4. Identification of specific antigenic epitope at N-terminal segment of enterovirus 71 (EV-71) VP1 protein and characterization of its use in recombinant form for early diagnosis of EV-71 infection.

    Science.gov (United States)

    Zhang, Jianhua; Jiang, Bingfu; Xu, Mingjie; Dai, Xing; Purdy, Michael A; Meng, Jihong

    2014-08-30

    Human enterovirus 71 (EV-71) is the main etiologic agent of hand, foot and mouth disease (HFMD). We sought to identify EV-71 specific antigens and develop serologic assays for acute-phase EV-71 infection. A series of truncated proteins within the N-terminal 100 amino acids (aa) of EV-71 VP1 was expressed in Escherichia coli. Western blot (WB) analysis showed that positions around 11-21 aa contain EV-71-specific antigenic sites, whereas positions 1-5 and 51-100 contain epitopes shared with human coxsackievirus A16 (CV-A16) and human echovirus 6 (E-6). The N-terminal truncated protein of VP1, VP₁₆₋₄₃, exhibited good stability and was recognized by anti-EV-71 specific rabbit sera. Alignment analysis showed that VP₁₆₋₄₃ is highly conserved among EV-71 strains from different genotypes but was heterologous among other enteroviruses. When the GST-VP₁₆₋₄₃ fusion protein was incorporated as antibody-capture agent in a WB assay and an ELISA for detecting anti-EV-71 IgM in human sera, sensitivities of 91.7% and 77.8% were achieved, respectively, with 100% specificity for both. The characterized EV-71 VP1 protein truncated to positions 6-43 aa has potential as an antigen for detection of anti-EV-71 IgM for early diagnosis of EV-71 infection in a WB format. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Chronic Inflammatory Periodontal Disease in Patients with Human Immunodeficiency Virus.

    OpenAIRE

    Vania López Rodríguez; Emilio Carpio Muñoz; Vicente Fardales Macías; Iralys Benítez Guzmán

    2009-01-01

    Background: The Chronic Inflammatory Periodontal Disease is related with multiple risk factors. Those patients with human immunodeficiency virus have higher risk of presenting this disease and it is usually more serious in these cases. Objective: To describe the prevalence of Chronic Inflammatory Periodontal Disease in patients with HIV. Methods: Descriptive, observational, cross-sectional study including patients with HIV in Sancti Spiritus province. The occurrence of the disease was determi...

  6. Cloning and expression of a sorghum gene with homology to maize vp1. Its potential involvement in pre-harvest sprouting resistance.

    Science.gov (United States)

    Carrari, F; Perez-Flore, L; Lijavetzky, D; Enciso, S; Sanchez, R; Benech-Arnold, R; Iusem, N

    2001-04-01

    Pre-harvest sprouting (PHS) in sorghum is related to the lack of a normal dormancy level during seed development and maturation. Based on previous evidence that seed dormancy in maize is controlled by the vp1 gene, we used a PCR-based approach to isolate two Sorghum bicolor genomic and cDNA clones from two genotypes exhibiting different PHS behaviour and sensitivity to abscisic acid (ABA). The two 699 amino acid predicted protein sequences differ in two residues at positions 341 (Gly or Cys within the repression domain) and 448 (Pro or Ser) and show over 80, 70 and 60% homology to maize, rice and oat VP1 proteins respectively. Expression analysis of the sorghum vp1 gene in the two lines shows a slightly higher level of vp1 mRNA in the embryos susceptible to PHS than in those resistant to PHS during embryogenesis. However, timing of expression was different between these genotypes during this developmental process. Whereas for the former the main peak of expression was observed at 20 days after pollination (DAP), the peak in the latter was found at later developmental stages when seed maturation was almost complete. Under favourable germination conditions and in the presence of fluridone (an inhibitor of ABA biosynthesis), sorghum vp1 mRNA showed to be consistently correlated with sensitivity to ABA but not with ABA content and dormancy.

  7. A Medicago truncatula H+-pyrophosphatase gene, MtVP1, improves sucrose accumulation and anthocyanin biosynthesis in potato (Solanum tuberosum L.).

    Science.gov (United States)

    Wang, J W; Wang, H Q; Xiang, W W; Chai, T Y

    2014-05-09

    We recently cloned MtVP1, a type I vacuolar-type H(+)-translocating inorganic pyrophosphatase from Medicago truncatula. In the present study, we investigated the cellular location and the function of this H(+)-PPase in Arabidopsis and potato (Solanum tuberosum L.). An MtVP1::enhanced green fluorescent protein fusion was constructed, which localized to the plasma membrane of onion epidermal cells. Transgenic Arabidopsis thaliana overexpressing MtVP1 had more robust root systems and redder shoots than wild-type (WT) plants under conditions of cold stress. Furthermore, overexpression of MtVP1 in potato accelerated the formation and growth of vegetative organs. The tuber buds and stem base of transgenic potatoes became redder than those of WT plants, but flowering was delayed by approximately half a month. Interestingly, anthocyanin biosynthesis was promoted in transgenic Arabidopsis seedlings and potato tuber buds. The sucrose concentration of transgenic potato tubers and tuber buds was enhanced compared with that of WT plants. Furthermore, sucrose concentration in tubers was higher than that in tuber buds. Although there was no direct evidence to support Fuglsang's hypothetical model regarding the effects of H(+)-PPase on sucrose phloem loading, we speculated that sucrose concentration was increased in tuber buds owing to the increased concentration in tubers. Therefore, overexpressed MtVP1 enhanced sucrose accumulation of source organs, which might enhance sucrose transport to sink organs, thus affecting anthocyanin biosynthesis.

  8. Characterization of Foot-And-Mouth Disease Viruses (FMDVs) from Ugandan Cattle Outbreaks during 2012-2013: Evidence for Circulation of Multiple Serotypes

    Science.gov (United States)

    Namatovu, Alice; Tjørnehøj, Kirsten; Belsham, Graham J.; Dhikusooka, Moses T.; Wekesa, Sabenzia N.; Muwanika, Vincent B.; Siegismund, Hans R.; Ayebazibwe, Chrisostom

    2015-01-01

    To investigate the foot-and-mouth disease virus (FMDV) serotypes circulating in Uganda’s cattle population, both serological and virological analyses of samples from outbreaks that occurred during 2012–2013 were performed. Altogether, 79 sera and 60 oropharyngeal fluid (OP)/tissue/oral swab samples were collected from herds with reported FMD outbreaks in seven different Ugandan districts. Overall, 61/79 (77%) of the cattle sera were positive for antibodies against FMDV by PrioCHECK FMDV NS ELISA and solid phase blocking ELISA detected titres ≥ 80 for serotypes O, SAT 1, SAT 2 and SAT 3 in 41, 45, 30 and 45 of these 61 seropositive samples, respectively. Virus neutralisation tests detected the highest levels of neutralising antibodies (titres ≥ 45) against serotype O in the herds from Kween and Rakai districts, against SAT 1 in the herd from Nwoya district and against SAT 2 in the herds from Kiruhura, Isingiro and Ntungamo districts. The isolation of a SAT 2 FMDV from Isingiro was consistent with the detection of high levels of neutralising antibodies against SAT 2; sequencing (for the VP1 coding region) indicated that this virus belonged to lineage I within this serotype, like the currently used vaccine strain. From the Wakiso district 11 tissue/swab samples were collected; serotype A FMDV, genotype Africa (G-I), was isolated from the epithelial samples. This study shows that within a period of less than one year, FMD outbreaks in Uganda were caused by four different serotypes namely O, A, SAT 1 and SAT 2. Therefore, to enhance the control of FMD in Uganda, there is need for efficient and timely determination of outbreak virus strains/serotypes and vaccine matching. The value of incorporating serotype A antigen into the imported vaccines along with the current serotype O, SAT 1 and SAT 2 strains should be considered. PMID:25664876

  9. Avian influenza A virus and Newcastle disease virus mono- and co-infections in birds

    Directory of Open Access Journals (Sweden)

    Iv. Zarkov

    2017-06-01

    Full Text Available The main features of avian influenza viruses (AIV and Newcastle disease virus (APMV-1, the possibilities for isolation and identification in laboratory conditions, methods of diagnostics, main hosts, clinical signs and virus shedding are reviewed in chronological order. The other part of the review explains the mechanisms and interactions in cases of co-infection of AIV and APMV-1, either between them or with other pathogens in various indicator systems – cell cultures, chick embryos or birds. The emphasis is placed on quantitative data on the virus present mainly in the first ten days following experimental infection of birds, the periods of virus carrier ship and shedding, clinical signs, pathological changes, diagnostic challenges

  10. Development of tailored real-time RT-PCR assays for the detection and differentiation of serotype O, A and Asia-1 foot-and-mouth disease virus lineages circulating in the Middle East.

    Science.gov (United States)

    Reid, Scott M; Mioulet, Valerie; Knowles, Nick J; Shirazi, Nazeem; Belsham, Graham J; King, Donald P

    2014-10-01

    Rapid and accurate diagnosis is essential for effective control of foot-and-mouth disease (FMD). In countries where FMD is endemic, identification of the serotypes of the causative virus strains is important for vaccine selection and tracing the source of outbreaks. In this study, real-time reverse transcription polymerase chain reaction (rRT-PCR) assays using primer/probe sets designed from the VP1 coding region of the virus genomes were developed for the specific detection of serotype O, A and Asia-1 FMD viruses (FMDVs) circulating in the Middle East. These assays were evaluated using representative field samples of serotype O strains belonging exclusively to the PanAsia-2 lineage, serotype A strains of the Iran-05 lineage and serotype Asia-1 viruses from three relevant sub-groups. When RNA extracted from archival and contemporary field strains was tested using one- or two-step rRT-PCR assays, all three primer/probe sets detected the RNA from homotypic viruses and no cross-reactivity was observed with heterotypic viruses. Similar results were obtained using both single- and multiplex assay formats. Using plasmid standards, the minimum detection level of these tests was found to be lower than two copies. The results illustrate the potential of tailored rRT-PCR tools for the detection and categorization of viruses circulating in the Middle East belonging to distinct subgroups of serotypes O, A and Asia-1. These assays can also overcome the problem of serotyping samples which are found positive by the generic rRT-PCR diagnostic assays but negative by virus isolation and antigen-detection ELISA which would otherwise have to be serotyped by nucleotide sequencing. A similar approach could be used to develop serotyping assays for FMDV strains circulating in other regions of the world. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Haematology of infectious bursal disease virus infected chickens on ...

    African Journals Online (AJOL)

    Garlic (Allium sativum) is an herbal spice proven to posses antimicrobial and immunostimulating properties which could be useful in the control of endemic diseases of poultry such as infectious bursal disease (IBD). Its effect on IBD virus infection was therefore investigated via haematological assessment. One hundred and ...

  12. Prevalence of Newcastle disease virus antibodies in sera and eggs ...

    African Journals Online (AJOL)

    ADEYEYE

    2016-03-07

    Mar 7, 2016 ... The seroprevalence and maternal antibody profiles to Newcastle disease virus infection of guinea fowls were studied using ..... gallisepticum. Avian diseases, 28 (4): 877-883. Sa'idu L, Tekdek LB & Abdu PA (2004). Prevalence of ND antibodies in domestic and semi domestic birds in Zaria, Nigeria.

  13. Animal models of human respiratory syncytial virus disease

    NARCIS (Netherlands)

    Bem, Reinout A.; Domachowske, Joseph B.; Rosenberg, Helene F.

    2011-01-01

    Infection with the human pneumovirus pathogen, respiratory syncytial virus (hRSV), causes a wide spectrum of respiratory disease, notably among infants and the elderly. Laboratory animal studies permit detailed experimental modeling of hRSV disease and are therefore indispensable in the search for

  14. Molecular and Biological Characterization of Chinese Sacbrood Virus LN Isolate

    OpenAIRE

    Mingxiao, Ma; Ming, Li; Jian, Cheng; Song, Yang; Shude, Wang; Pengfei, Li

    2011-01-01

    Chinese sacbrood virus (CSBV) was purified from diseased insects, and its genome was cloned and sequenced. The genomic RNA of CSBV is 8863 nucleotides in length and contains a single large open reading frame encoding a 319.614 kDa polyprotein. The coding sequence is flanked by a 178-nucleotide 5′ nontranslated leader sequence and a 142-nucleotide 3′ nontranslated region, followed a poly(A) tail. Four major structural proteins, VP1,VP2, VP3 and VP4, were predicted in the N-teminal of the poly...

  15. Simultaneous Detection of Barley Virus Diseases in Korea

    Directory of Open Access Journals (Sweden)

    Bong-Choon Lee

    2017-12-01

    Full Text Available Barley mild mosaic virus (BaMMV, Barley yellow mosaic virus (BaYMV and Barley yellow dwarf virus (BYDV have been identified as an important causative agents for an economically important disease of winter barley in Korea. In this study, a multiplex reverse transcription polymerase chain reaction (mRT-PCR method was used for the simultaneous detection. Three sets of virus-specific primers targeted to the capsid protein coding genes of BaMMV, BaYMV and BYDV were used to amplify fragments that were 594 bp, 461 bp, and 290 bp, respectively. Several sets of primers for each target virus were evaluated for their sensitivity and specificity by multiplex RT-PCR. The optimum primer concentrations and RT-PCR conditions were determined for the multiplex RT-PCR. The mRT-PCR assay was found to be a better and rapid virus diagnostic tool of specific barley diseases and potential for investigating the epidemiology of these viral diseases.

  16. Real-Time Evolution of Zika Virus Disease Outbreak, Roatán, Honduras.

    Science.gov (United States)

    Brooks, Trevor; Roy-Burman, Arup; Tuholske, Cascade; Busch, Michael P; Bakkour, Sonia; Stone, Mars; Linnen, Jeffrey M; Gao, Kui; Coleman, Jayleen; Bloch, Evan M

    2017-08-01

    A Zika virus disease outbreak occurred in Roatán, Honduras, during September 2015-July 2016. Blood samples and clinical information were obtained from 183 patients given a clinical diagnosis of suspected dengue virus infection. A total of 79 patients were positive for Zika virus, 13 for chikungunya virus, and 6 for dengue virus.

  17. Ebolavirus Vaccines: Progress in the Fight Against Ebola Virus Disease.

    Science.gov (United States)

    Wu, Xiao-Xin; Yao, Hang-Ping; Wu, Nan-Ping; Gao, Hai-Nv; Wu, Hai-Bo; Jin, Chang-Zhong; Lu, Xiang-Yun; Xie, Tian-Shen; Li, Lan-Juan

    2015-01-01

    Ebolaviruses are highly infectious pathogens that cause lethal Ebola virus disease (EVD) in humans and non-human primates (NHPs). Due to their high pathogenicity and transmissibility, as well as the potential to be misused as a bioterrorism agent, ebolaviruses would threaten the health of global populations if not controlled. In this review, we describe the origin and structure of ebolaviruses and the development of vaccines from the beginning of the 1980s, including conventional ebolavirus vaccines, DNA vaccines, Ebola virus-like particles (VLPs), vaccinia virus-based vaccines, Venezuelan equine encephalitis virus (VEEV)-like replicon particles, Kunjin virus-based vaccine, recombinant Zaire Ebolavirusx2206;VP30, recombinant cytomegalovirus (CMV)-based vaccines, recombinant rabies virus (RABV)-based vaccines, recombinant paramyxovirus-based vaccines, adenovirus-based vaccines and vesicular stomatitis virus (VSV)-based vaccines. No licensed vaccine or specific treatment is currently available to counteract ebolavirus infection, although DNA plasmids and several viral vector approaches have been evaluated as promising vaccine platforms. These vaccine candidates have been confirmed to be successful in protecting NHPs against lethal infection. Moreover, these vaccine candidates were successfully advanced to clinical trials. The present review provides an update of the current research on Ebola vaccines, with the aim of providing an overview on current prospects in the fight against EVD. © 2015 The Author(s) Published by S. Karger AG, Basel.

  18. Ebolavirus Vaccines: Progress in the Fight Against Ebola Virus Disease

    Directory of Open Access Journals (Sweden)

    Xiao-Xin Wu

    2015-11-01

    Full Text Available Ebolaviruses are highly infectious pathogens that cause lethal Ebola virus disease (EVD in humans and non-human primates (NHPs. Due to their high pathogenicity and transmissibility, as well as the potential to be misused as a bioterrorism agent, ebolaviruses would threaten the health of global populations if not controlled. In this review, we describe the origin and structure of ebolaviruses and the development of vaccines from the beginning of the 1980s, including conventional ebolavirus vaccines, DNA vaccines, Ebola virus-like particles (VLPs, vaccinia virus-based vaccines, Venezuelan equine encephalitis virus (VEEV-like replicon particles, Kunjin virus-based vaccine, recombinant Zaire Ebolavirus∆VP30, recombinant cytomegalovirus (CMV-based vaccines, recombinant rabies virus (RABV-based vaccines, recombinant paramyxovirus-based vaccines, adenovirus-based vaccines and vesicular stomatitis virus (VSV-based vaccines. No licensed vaccine or specific treatment is currently available to counteract ebolavirus infection, although DNA plasmids and several viral vector approaches have been evaluated as promising vaccine platforms. These vaccine candidates have been confirmed to be successful in protecting NHPs against lethal infection. Moreover, these vaccine candidates were successfully advanced to clinical trials. The present review provides an update of the current research on Ebola vaccines, with the aim of providing an overview on current prospects in the fight against EVD.

  19. Advances in vaccine research against economically important viral diseases of food animals: Infectious bursal disease virus.

    Science.gov (United States)

    Jackwood, Daral J

    2017-07-01

    Numerous reviews have been published on infectious bursal disease (IBD) and infectious bursal disease virus (IBDV). Many high quality vaccines are commercially available for the control of IBD that, when used correctly, provide solid protection against infection and disease caused by IBDV. Viruses are not static however; they continue to evolve and vaccines need to keep pace with them. The evolution of IBDV has resulted in very virulent strains and new antigenic types of the virus. This review will discuss some of the limitations associated with existing vaccines, potential solutions to these problems and advances in new vaccines for the control of IBD. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Zika virus disease: a new look at a well-known disease

    Directory of Open Access Journals (Sweden)

    I. V. Shestakova

    2016-01-01

    Full Text Available For the first time in the domestic medical literature presents a deep review about epidemiological, clinical, and laboratory knowledge of Zika virus disease, based mainly on the publications of foreign authors and leading international organizations from 1947 to March 2016. Analyzed the essence of the problem, treatment of patients with Zika virus disease and infected pregnant women, indicated the unresolved question. For the first time were systematic sources of contemporary information about Zika virus disease for professionals and patients.

  1. Molecular Evolution of the VP1 Gene in Human Norovirus GII.4 Variants in 1974–2015

    Directory of Open Access Journals (Sweden)

    Takumi Motoya

    2017-12-01

    Full Text Available Human norovirus (HuNoV is a leading cause of viral gastroenteritis worldwide, of which GII.4 is the most predominant genotype. Unlike other genotypes, GII.4 has created various variants that escaped from previously acquired immunity of the host and caused repeated epidemics. However, the molecular evolutionary differences among all GII.4 variants, including recently discovered strains, have not been elucidated. Thus, we conducted a series of bioinformatic analyses using numerous, globally collected, full-length GII.4 major capsid (VP1 gene sequences (466 strains to compare the evolutionary patterns among GII.4 variants. The time-scaled phylogenetic tree constructed using the Bayesian Markov chain Monte Carlo (MCMC method showed that the common ancestor of the GII.4 VP1 gene diverged from GII.20 in 1840. The GII.4 genotype emerged in 1932, and then formed seven clusters including 14 known variants after 1980. The evolutionary rate of GII.4 strains was estimated to be 7.68 × 10−3 substitutions/site/year. The evolutionary rates probably differed among variants as well as domains [protruding 1 (P1, shell, and P2 domains]. The Osaka 2007 variant strains probably contained more nucleotide substitutions than any other variant. Few conformational epitopes were located in the shell and P1 domains, although most were contained in the P2 domain, which, as previously established, is associated with attachment to host factors and antigenicity. We found that positive selection sites for the whole GII.4 genotype existed in the shell and P1 domains, while Den Haag 2006b, New Orleans 2009, and Sydney 2012 variants were under positive selection in the P2 domain. Amino acid substitutions overlapped with putative epitopes or were located around the epitopes in the P2 domain. The effective population sizes of the present strains increased stepwise for Den Haag 2006b, New Orleans 2009, and Sydney 2012 variants. These results suggest that HuNoV GII.4 rapidly

  2. A Mouse Model of Chronic West Nile Virus Disease.

    Directory of Open Access Journals (Sweden)

    Jessica B Graham

    2016-11-01

    Full Text Available Infection with West Nile virus (WNV leads to a range of disease outcomes, including chronic infection, though lack of a robust mouse model of chronic WNV infection has precluded identification of the immune events contributing to persistent infection. Using the Collaborative Cross, a population of recombinant inbred mouse strains with high levels of standing genetic variation, we have identified a mouse model of persistent WNV disease, with persistence of viral loads within the brain. Compared to lines exhibiting no disease or marked disease, the F1 cross CC(032x013F1 displays a strong immunoregulatory signature upon infection that correlates with restraint of the WNV-directed cytolytic response. We hypothesize that this regulatory T cell response sufficiently restrains the immune response such that a chronic infection can be maintained in the CNS. Use of this new mouse model of chronic neuroinvasive virus will be critical in developing improved strategies to prevent prolonged disease in humans.

  3. Co-circulation of two extremely divergent serotype SAT 2 lineages in Kenya highlights challenges to foot-and-mouth disease control

    DEFF Research Database (Denmark)

    Sangula, Abraham; Belsham, Graham; Muwanika, Vincent

    2010-01-01

    Amongst the SAT serotypes of foot-and-mouth disease virus (FMDV), the SAT 2 serotype is the most widely distributed throughout sub-Saharan Africa. Kenyan serotype SAT 2 viruses have been reported to display the highest genetic diversity for the serotype globally. This complicates diagnosis...... and control, and it is essential that patterns of virus circulation are known in order to overcome these difficulties. This study was undertaken to establish patterns of evolution of FMDV serotype SAT 2 in Kenya using complete VP1 coding sequences in a dataset of 65 sequences from Africa, collected over...

  4. Characterization of sheep pox virus vaccine for cattle against lumpy skin disease virus.

    Science.gov (United States)

    Tuppurainen, Eeva S M; Pearson, Caroline R; Bachanek-Bankowska, Katarzyna; Knowles, Nick J; Amareen, Shadi; Frost, Lorraine; Henstock, Mark R; Lamien, Charles E; Diallo, Adama; Mertens, Peter P C

    2014-09-01

    Lumpy skin disease is of significant economic impact for the cattle industry in Africa. The disease is currently spreading aggressively in the Near East, posing a threat of incursion to Europe and Asia. Due to cross-protection within the Capripoxvirus genus, sheep pox virus (SPPV) vaccines have been widely used for cattle against lumpy skin disease virus (LSDV). In the Middle East and the Horn of Africa these vaccines have been associated with incomplete protection and adverse reactions in cattle post-vaccination. The present study confirms that the real identity of the commonly used Kenyan sheep and goat pox vaccine virus (KSGP) O-240 is not SPPV but is actually LSDV. The low level attenuation of this virus is likely to be not sufficient for safe use in cattle, causing clinical disease in vaccinated animals. In addition, Isiolo and Kedong goat pox strains, capable of infecting sheep, goats and cattle are identified for potential use as broad-spectrum vaccine candidates against all capripox diseases. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  5. Characterization of sheep pox virus vaccine for cattle against lumpy skin disease virus

    Science.gov (United States)

    Tuppurainen, Eeva S.M.; Pearson, Caroline R.; Bachanek-Bankowska, Katarzyna; Knowles, Nick J.; Amareen, Shadi; Frost, Lorraine; Henstock, Mark R.; Lamien, Charles E.; Diallo, Adama; Mertens, Peter P.C.

    2014-01-01

    Lumpy skin disease is of significant economic impact for the cattle industry in Africa. The disease is currently spreading aggressively in the Near East, posing a threat of incursion to Europe and Asia. Due to cross-protection within the Capripoxvirus genus, sheep pox virus (SPPV) vaccines have been widely used for cattle against lumpy skin disease virus (LSDV). In the Middle East and the Horn of Africa these vaccines have been associated with incomplete protection and adverse reactions in cattle post-vaccination. The present study confirms that the real identity of the commonly used Kenyan sheep and goat pox vaccine virus (KSGP) O-240 is not SPPV but is actually LSDV. The low level attenuation of this virus is likely to be not sufficient for safe use in cattle, causing clinical disease in vaccinated animals. In addition, Isiolo and Kedong goat pox strains, capable of infecting sheep, goats and cattle are identified for potential use as broad-spectrum vaccine candidates against all capripox diseases. PMID:24973760

  6. Ebola Virus Disease in Pregnancy: Clinical, Histopathologic, and Immunohistochemical Findings.

    Science.gov (United States)

    Muehlenbachs, Atis; de la Rosa Vázquez, Olimpia; Bausch, Daniel G; Schafer, Ilana J; Paddock, Christopher D; Nyakio, Jean Paul; Lame, Papys; Bergeron, Eric; McCollum, Andrea M; Goldsmith, Cynthia S; Bollweg, Brigid C; Prieto, Miriam Alía; Lushima, Robert Shongo; Ilunga, Benoit Kebela; Nichol, Stuart T; Shieh, Wun-Ju; Ströher, Ute; Rollin, Pierre E; Zaki, Sherif R

    2017-01-01

    Here we describe clinicopathologic features of Ebola virus disease in pregnancy. One woman infected with Sudan virus in Gulu, Uganda, in 2000 had a stillbirth and survived, and another woman infected with Bundibugyo virus had a live birth with maternal and infant death in Isiro, the Democratic Republic of the Congo in 2012. Ebolavirus antigen was seen in the syncytiotrophoblast and placental maternal mononuclear cells by immunohistochemical analysis, and no antigen was seen in fetal placental stromal cells or fetal organs. In the Gulu case, ebolavirus antigen localized to malarial parasite pigment-laden macrophages. These data suggest that trophoblast infection may be a mechanism of transplacental ebolavirus transmission. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  7. Polyomavirus BK replication in renal transplant recipients: combined monitoring of viremia and VP1 mRNA in urine

    Directory of Open Access Journals (Sweden)

    Sara Astegiano

    2010-06-01

    Full Text Available Introduction. Human polyomavirus BK (BKV is worldwide distributed, with a seroprevalence rate of 70–90% in the adults. Following primary infection, BK remains latent in the renourinary tract as the epidemiologically most relevant latency site, and in B cell, brain, spleen and probably other tissues. Reactivation may occur in both immunocompetent subjects and immunocompromised patients. In renal transplantation, in the context of intense immunosuppression, viral replication may determine BKV-associated nephropathy (BKVAN with interstitial nephritis and/or ureteral stenosis in 1–10% of the patients and leading to graft failure and return to haemodialysis in 30 to 80% of the cases (5. Screening of BKV replication represents the basic strategy to predict early the onset of BKVAN and may allow for earlier intervention with reduced allograft loss (3, 4. Nowadays, replication of BKV is monitored by quantification of BKV-DNA in serum and urine (2. The aim of this study was to evaluated the role of BKV VP1 mRNA in urine as a marker of viral replication in renal transplant recipients.

  8. A Serological Survey for Newcastle Disease Virus Antibobies in ...

    African Journals Online (AJOL)

    A Serological Survey for Newcastle Disease Virus Antibobies in Village Poultry in Yobe State, Nigeria. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more information about how to print, save, ...

  9. Molecular screening and isolation of Newcastle disease virus from ...

    African Journals Online (AJOL)

    Molecular screening and isolation of Newcastle disease virus from live poultry markets and chickens from commercial poultry farms in Zaria, Kaduna state, Nigeria. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

  10. Expression of VP60 gene from rabbit haemorrhagic disease virus ...

    African Journals Online (AJOL)

    The VP60 gene from rabbit haemorrhagic disease virus (RHDV) YL strain in Northeast of China, under control of the ats1A promoter from Rubisco small subunit genes of Arabidopsis thaliana, was introduced into the transfer deoxyribonucleic acid (T-DNA) region of plant transfer vector pCAMBIA1300 and transferred to ...

  11. Reemerging Sudan Ebola Virus Disease in Uganda, 2011

    Science.gov (United States)

    Shoemaker, Trevor; Balinandi, Stephen; Campbell, Shelley; Wamala, Joseph Francis; McMullan, Laura K.; Downing, Robert; Lutwama, Julius; Mbidde, Edward; Ströher, Ute; Rollin, Pierre E.; Nichol, Stuart T.

    2012-01-01

    Two large outbreaks of Ebola hemorrhagic fever occurred in Uganda in 2000 and 2007. In May 2011, we identified a single case of Sudan Ebola virus disease in Luwero District. The establishment of a permanent in-country laboratory and cooperation between international public health entities facilitated rapid outbreak response and control activities. PMID:22931687

  12. Detection of Infectious Bursal Disease Virus (IBDV) in naturally ...

    African Journals Online (AJOL)

    The Reverse Transcription - Polymerase Chain Reaction (RT-PCR) was used for the identification of Infectious bursal disease virus (IBDV). The technique was applied on bursa of Fabricius of infected chicken. Some of these bursae have been kept in the freezer for 16years under conditions of regular electric power ...

  13. A Serological Survey for Newcastle Disease Virus Antibobies in ...

    African Journals Online (AJOL)

    Abstract. A serological survey to detect the presence of antibodies to Newcastle disease virus (NDV) in village poultry was conducted in 17 villages of Yobe State, Nigeria. The aim of the study was to investigate the prevalence of NDV using haemaggluttination inhibition test. Ten households were sampled from each village.

  14. West Africa Ebola Virus Disease Epidemic: The Africa Experience ...

    African Journals Online (AJOL)

    Ebola Virus Disease (EVD), formerly known as Ebola haemorrhagic fever, is a severe acute viral illness characterized by sudden onset of fever, myalgia, malaise, and severe headache, followed by vomiting and diarrhea and, in some instances, bleeding. The 2014 West Africa outbreak is the largest in history, affecting ...

  15. Hand hygiene practices post ebola virus disease outbreak in a ...

    African Journals Online (AJOL)

    Introduction: Ebola virus disease (EVD) is a highly contagious viral infection that requires a high risk perception and practice of good hand hygiene by regular hand washing or use of hand sanitizers for infection control at all time. The declaration of Nigeria as an Ebola-free country by the World Health Organization on the ...

  16. Progression of experimental chronic Aleutian mink disease virus infection

    DEFF Research Database (Denmark)

    Jensen, Trine Hammer; Chriél, Mariann; Hansen, Mette Sif

    2016-01-01

    Aleutian mink disease virus (AMDV) is found world-wide and has a major impact on mink health and welfare by decreasing reproduction and fur quality. In the majority of mink, the infection is subclinical and the diagnosis must be confirmed by serology or polymerase chain reaction (PCR). Increased ...

  17. Strategies to manage hepatitis C virus (HCV) disease burden

    DEFF Research Database (Denmark)

    Wedemeyer, H; Duberg, A S; Buti, M

    2014-01-01

    The number of hepatitis C virus (HCV) infections is projected to decline while those with advanced liver disease will increase. A modeling approach was used to forecast two treatment scenarios: (i) the impact of increased treatment efficacy while keeping the number of treated patients constant...

  18. Social vulnerability and Ebola virus disease in rural Liberia

    Science.gov (United States)

    John A. Stanturf; Scott L. Goodrick; Melvin L. Warren; Susan Charnley; Christie M. Stegall

    2015-01-01

    The Ebola virus disease (EVD) epidemic that has stricken thousands of people in the three West African countries of Liberia, Sierra Leone, and Guinea highlights the lack of adaptive capacity in post-conflict countries. The scarcity of health services in particular renders these populations vulnerable to multiple interacting stressors including food insecurity, climate...

  19. Histopathology of Marine and Freshwater Fish Lymphocytosis Disease Virus (LCDV)

    International Nuclear Information System (INIS)

    Hossain, M.; Myung-Joo, Oh

    2011-01-01

    Lymphocytosis disease (LCD) in fishes is caused by the agent called lymphocytosis disease virus (LCDV). LCDV is a chronic and benign virus. The disease affects 96 species of marine and fresh water fishes ranged among 34 families in the world. Affected fish with LCD has a typical external symptom with clusters consisted of enormously hypertrophied dermal cells on the skin and fins. The hypertrophied cells, generally named lymphocytosis cells, have a thick hyaline capsule, an enlarged nucleus and prominent basophilic cytoplasmic inclusions. Among the four species of fishes, olive flounder Paralichthys olivaceus, and rockfish Sebastes schlegeli were marine cultured fish, and gourami Trichogaster leeri and painted glass fish Channa baculis were freshwater ornamental fish. Although LCD causes low mortality, the disfigurement of infected fish can make them unsellable. Thus LCD has resulted in an important economic loss in the aquaculture industry. This study of histopathology may be adequate for a presumptive diagnosis of lymphocytosis diseases both in marine and freshwater fish species. (author)

  20. Ebola virus disease surveillance and response preparedness in northern Ghana

    OpenAIRE

    Adokiya, Martin N.; Awoonor-Williams, John K.

    2016-01-01

    Background: The recent Ebola virus disease (EVD) outbreak has been described as unprecedented in terms of morbidity, mortality, and geographical extension. It also revealed many weaknesses and inadequacies for disease surveillance and response systems in Africa due to underqualified staff, cultural beliefs, and lack of trust for the formal health care sector. In 2014, Ghana had high risk of importation of EVD cases.Objective: The objective of this study was to assess the EVD surveillance and ...

  1. A Virus-like disease of chinook salmon

    Science.gov (United States)

    Ross, A.J.; Pelnar, J.; Rucker, R.R.

    1960-01-01

    Consideration is given to a recurring disease of early feeding chinook salmon fingerlings at the Coleman, California, Federal Fish Cultural Station. The infection becomes manifest in the early spring months at low water temperatures and abates as the water temperature rises. Bacteriological studies have failed to yield the presence of a disease agent, either by cultural or staining procedures. The disease has been successfully transmitted from infected fish to healthy fish by the injection of bacteria-free filtrates prepared from diseased fish tissue. The causative agent is therefore believed to be a virus-like entity.

  2. Natural type 3/type 2 intertypic vaccine-related poliovirus recombinants with the first crossover sites within the VP1 capsid coding region.

    Science.gov (United States)

    Zhang, Yong; Zhu, Shuangli; Yan, Dongmei; Liu, Guiyan; Bai, Ruyin; Wang, Dongyan; Chen, Li; Zhu, Hui; An, Hongqiu; Kew, Olen; Xu, Wenbo

    2010-12-21

    Ten uncommon natural type 3/type 2 intertypic poliovirus recombinants were isolated from stool specimens from nine acute flaccid paralysis case patients and one healthy vaccinee in China from 2001 to 2008. Complete genomic sequences revealed their vaccine-related genomic features and showed that their first crossover sites were randomly distributed in the 3' end of the VP1 coding region. The length of donor Sabin 2 sequences ranged from 55 to 136 nucleotides, which is the longest donor sequence reported in the literature for this type of poliovirus recombination. The recombination resulted in the introduction of Sabin 2 neutralizing antigenic site 3a (NAg3a) into a Sabin 3 genomic background in the VP1 coding region, which may have been altered by some of the type 3-specific antigenic properties, but had not acquired any type 2-specific characterizations. NAg3a of the Sabin 3 strain seems atypical; other wild-type poliovirus isolates that have circulated in recent years have sequences of NAg3a more like the Sabin 2 strain. 10 natural type 3/type 2 intertypic VP1 capsid-recombinant polioviruses, in which the first crossover sites were found to be in the VP1 coding region, were isolated and characterized. In spite of the complete replacement of NAg3a by type 2-specific amino acids, the serotypes of the recombinants were not altered, and they were totally neutralized by polyclonal type 3 antisera but not at all by type 2 antisera. It is possible that recent type 3 wild poliovirus isolates may be a recombinant having NAg3a sequences derived from another strain during between 1967 and 1980, and the type 3/type 2 recombination events in the 3' end of the VP1 coding region may result in a higher fitness.

  3. Natural type 3/type 2 intertypic vaccine-related poliovirus recombinants with the first crossover sites within the VP1 capsid coding region.

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    Full Text Available BACKGROUND: Ten uncommon natural type 3/type 2 intertypic poliovirus recombinants were isolated from stool specimens from nine acute flaccid paralysis case patients and one healthy vaccinee in China from 2001 to 2008. PRINCIPAL FINDINGS: Complete genomic sequences revealed their vaccine-related genomic features and showed that their first crossover sites were randomly distributed in the 3' end of the VP1 coding region. The length of donor Sabin 2 sequences ranged from 55 to 136 nucleotides, which is the longest donor sequence reported in the literature for this type of poliovirus recombination. The recombination resulted in the introduction of Sabin 2 neutralizing antigenic site 3a (NAg3a into a Sabin 3 genomic background in the VP1 coding region, which may have been altered by some of the type 3-specific antigenic properties, but had not acquired any type 2-specific characterizations. NAg3a of the Sabin 3 strain seems atypical; other wild-type poliovirus isolates that have circulated in recent years have sequences of NAg3a more like the Sabin 2 strain. CONCLUSIONS: 10 natural type 3/type 2 intertypic VP1 capsid-recombinant polioviruses, in which the first crossover sites were found to be in the VP1 coding region, were isolated and characterized. In spite of the complete replacement of NAg3a by type 2-specific amino acids, the serotypes of the recombinants were not altered, and they were totally neutralized by polyclonal type 3 antisera but not at all by type 2 antisera. It is possible that recent type 3 wild poliovirus isolates may be a recombinant having NAg3a sequences derived from another strain during between 1967 and 1980, and the type 3/type 2 recombination events in the 3' end of the VP1 coding region may result in a higher fitness.

  4. Inhibition of interferon induction and action by the nairovirus Nairobi sheep disease virus/Ganjam virus.

    Science.gov (United States)

    Holzer, Barbara; Bakshi, Siddharth; Bridgen, Anne; Baron, Michael D

    2011-01-01

    The Nairoviruses are an important group of tick-borne viruses that includes pathogens of man (Crimean Congo hemorrhagic fever virus) and livestock animals (Dugbe virus, Nairobi sheep disease virus (NSDV)). NSDV is found in large parts of East Africa and the Indian subcontinent (where it is known as Ganjam virus). We have investigated the ability of NSDV to antagonise the induction and actions of interferon. Both pathogenic and apathogenic isolates could actively inhibit the induction of type 1 interferon, and also blocked the signalling pathways of both type 1 and type 2 interferons. Using transient expression of viral proteins or sections of viral proteins, these activities all mapped to the ovarian tumour-like protease domain (OTU) found in the viral RNA polymerase. Virus infection, or expression of this OTU domain in transfected cells, led to a great reduction in the incorporation of ubiquitin or ISG15 protein into host cell proteins. Point mutations in the OTU that inhibited the protease activity also prevented it from antagonising interferon induction and action. Interestingly, a mutation at a peripheral site, which had little apparent effect on the ability of the OTU to inhibit ubiquitination and ISG15ylation, removed the ability of the OTU to block the induction of type 1 and the action of type 2 interferons, but had a lesser effect on the ability to block type 1 interferon action, suggesting that targets other than ubiquitin and ISG15 may be involved in the actions of the viral OTU.

  5. Inhibition of interferon induction and action by the nairovirus Nairobi sheep disease virus/Ganjam virus.

    Directory of Open Access Journals (Sweden)

    Barbara Holzer

    Full Text Available The Nairoviruses are an important group of tick-borne viruses that includes pathogens of man (Crimean Congo hemorrhagic fever virus and livestock animals (Dugbe virus, Nairobi sheep disease virus (NSDV. NSDV is found in large parts of East Africa and the Indian subcontinent (where it is known as Ganjam virus. We have investigated the ability of NSDV to antagonise the induction and actions of interferon. Both pathogenic and apathogenic isolates could actively inhibit the induction of type 1 interferon, and also blocked the signalling pathways of both type 1 and type 2 interferons. Using transient expression of viral proteins or sections of viral proteins, these activities all mapped to the ovarian tumour-like protease domain (OTU found in the viral RNA polymerase. Virus infection, or expression of this OTU domain in transfected cells, led to a great reduction in the incorporation of ubiquitin or ISG15 protein into host cell proteins. Point mutations in the OTU that inhibited the protease activity also prevented it from antagonising interferon induction and action. Interestingly, a mutation at a peripheral site, which had little apparent effect on the ability of the OTU to inhibit ubiquitination and ISG15ylation, removed the ability of the OTU to block the induction of type 1 and the action of type 2 interferons, but had a lesser effect on the ability to block type 1 interferon action, suggesting that targets other than ubiquitin and ISG15 may be involved in the actions of the viral OTU.

  6. Immune responses of poultry to Newcastle disease virus.

    Science.gov (United States)

    Kapczynski, Darrell R; Afonso, Claudio L; Miller, Patti J

    2013-11-01

    Newcastle disease (ND) remains a constant threat to poultry producers worldwide, in spite of the availability and global employment of ND vaccinations since the 1950s. Strains of Newcastle disease virus (NDV) belong to the order Mononegavirales, family Paramyxoviridae, and genus Avulavirus, are contained in one serotype and are also known as avian paramyxovirus serotype-1 (APMV-1). They are pleomorphic in shape and are single-stranded, non-segmented, negative sense RNA viruses. The virus has been reported to infect most orders of birds and thus has a wide host range. Isolates are characterized by virulence in chickens and the presence of basic amino acids at the fusion protein cleavage site. Low virulent NDV typically produce subclinical disease with some morbidity, whereas virulent isolates can result in rapid, high mortality of birds. Virulent NDV are listed pathogens that require immediate notification to the Office of International Epizootics and outbreaks typically result in trade embargos. Protection against NDV is through the use of vaccines generated with low virulent NDV strains. Immunity is derived from neutralizing antibodies formed against the viral hemagglutinin and fusion glycoproteins, which are responsible for attachment and spread of the virus. However, new techniques and technologies have also allowed for more in depth analysis of the innate and cell-mediated immunity of poultry to NDV. Gene profiling experiments have led to the discovery of novel host genes modulated immediately after infection. Differences in virus virulence alter host gene response patterns have been demonstrated. Furthermore, the timing and contributions of cell-mediated immune responses appear to decrease disease and transmission potential. In view of recent reports of vaccine failure from many countries on the ability of classical NDV vaccines to stop spread of disease, renewed interest in a more complete understanding of the global immune response of poultry to NDV will be

  7. Comparison of immune responses against foot-and-mouth disease virus induced by fusion proteins using the swine IgG heavy chain constant region or β-galactosidase as a carrier of immunogenic epitopes

    International Nuclear Information System (INIS)

    Li Guangjin; Chen Weizao; Yan Weiyao; Zhao Kai; Liu Mingqiu; Zhang Jun; Fei Liang; Xu Quanxing; Sheng Zutian; Lu Yonggan; Zheng Zhaoxin

    2004-01-01

    Previously, we demonstrated that a fusion protein (Gal-FMDV) consisting of β-galactosidase and an immunogenic peptide, amino acids (141-160)-(21-40)-(141-160), of foot-and-mouth disease virus (FMDV) VP1 protein induced protective immune responses in guinea pigs and swine. We now designed a new potential recombinant protein vaccine against FMDV in swine. The immunogenic peptide, amino acids (141-160)-(21-40)-(141-160) from the VP1 protein of serotype O FMDV, was fused to the carboxy terminus of a swine immunoglobulin G single heavy chain constant region and expressed in Escherichia coli. The expressed fusion protein (IgG-FMDV) was purified and emulsified with oil adjuvant. Vaccination twice at an interval of 3 weeks with the emulsified IgG-FMDV fusion protein induced an FMDV-specific spleen proliferative T-cell response in guinea pigs and elicited high levels of neutralizing antibody in guinea pigs and swine. All of the immunized animals were efficiently protected against FMDV challenge. There was no significant difference between IgG-FMDV and Gal-FMDV in eliciting immunity after vaccination twice in swine. However, when evaluating the efficacy of a single inoculation of the fusion proteins, we found that IgG-FMDV could elicit a protective immune response in swine, while Gal-FMDV only elicited a weak neutralizing activity and could not protect the swine against FMDV challenge. Our results suggest that the IgG-FMDV fusion protein is a promising vaccine candidate for FMD in swine

  8. Nurses leading the fight against Ebola virus disease.

    Science.gov (United States)

    Sagar, Priscilla L

    2015-05-01

    The current Ebola crisis has sparked worldwide reaction of panic and disbelief in its wake as it decimated communities in West Africa, particularly in Guinea, Liberia, and Sierra Leone, including its health care workers. This article affirms the crucial role nurses play in maintaining health and preventing diseases, connects the devastating havoc of the Ebola virus disease to another issue of nursing shortage in underdeveloped countries, and asserts the key leadership nurses play in protecting the communities they serve while maintaining their safety and those of other health care workers. Nurses must actively seek a place at the table, as echoed by the American Academy of Nursing and American Nurses Association and the American Nurses Association, when decisions are being made regarding Ebola virus disease: at care settings, in the board room, and at federal, state, and local levels. © The Author(s) 2015.

  9. OUTBREAK OF ZIKA VIRUS DISEASE AND ITS COMPLICATIONS

    Directory of Open Access Journals (Sweden)

    Gabriela S. Tsankova

    2016-07-01

    Full Text Available Zika virus (ZIKV is an arbovirus from Flaviviridae family, genus Flavivirus. Like most of the viruses which belong to the Flavivirus genus, it replicates in and is transmitted by mosquitoes. Unlike other arbovirus infections including dengue and chikungunya, Zika virus causes a relatively mild disease. The most common symptoms of ZIKV are mild fever, arthralgia, myalgia, headache, asthenia, abdominal pain, oedema, lymphadenopathy, retro-orbital pain, conjunctivitis, and cutaneous maculopapular rash, which last for several days to a week. Although 80% of the cases with ZIKV are asymptomatic, severe complications such as microcephalia and GBS may be observed. This explains why ZIKV is more dangerous that it was thought to be and why it rapidly evolves in unexpected challenge for the international and national public health authorities.

  10. Four emerging arboviral diseases in North America: Jamestown Canyon, Powassan, chikungunya, and Zika virus diseases.

    Science.gov (United States)

    Pastula, Daniel M; Smith, Daniel E; Beckham, J David; Tyler, Kenneth L

    2016-06-01

    Arthropod-borne viruses, or arboviruses, are viruses that are transmitted through the bites of mosquitoes, ticks, or sandflies. There are numerous arboviruses throughout the world capable of causing human disease spanning different viral families and genera. Recently, Jamestown Canyon, Powassan, chikungunya, and Zika viruses have emerged as increasingly important arboviruses that can cause human disease in North America. Unfortunately, there are currently no proven disease-modifying therapies for these arboviral diseases, so treatment is largely supportive. Given there are also no commercially available vaccines for these four arboviral infections, prevention is the key. To prevent mosquito or tick bites that might result in one of these arboviral diseases, people should wear long-sleeved shirts and pants while outside if feasible, apply insect repellant when going outdoors, using window screens or air conditioning to keep mosquitoes outside, and perform tick checks after being in wooded or brushy outdoor areas.

  11. Ebola virus disease. Short history, long impact

    Directory of Open Access Journals (Sweden)

    Mª Teófila Vicente-Herrero

    2015-07-01

    Full Text Available Ebola Virus infection is at present times a growing worldwide concern, although its history goes back to 1967, with subsequent outbreaks in 1979, 1980 and 1987, all of them by contact in workers in affected areas. The concern of the scientific community about this issue is partially reflected in publications included in MEDLINE (PUBMED database and in which, taking as a keyword in the search box “Ebola virus”, 2.151 publications are found, belonging 984 of them to the last 5 years (45.7% and 527 of these publications (53.5% to the years 2014-2015. The earliest publication dates back to 1977, attaching no listed authors either reference abstract, and the most recent to January of current year 2015. This means Ebola infection is a global problem and that concern the international scientific community. A review of some of the studies published in this matter, considered of interest and discussed by the authors, is performed in this work.

  12. Molecular characterisation of lumpy skin disease virus and sheeppox virus based on P32 gene

    Directory of Open Access Journals (Sweden)

    P.M.A.Rashid

    2017-06-01

    Full Text Available Lumpy skin disease virus (LSDV and sheeppox virus (SPV have a considerable economic impact on the cattle and small ruminant industry. They are listed in group A of contagious disease by the World Organization for Animal Health (OIE. This study addressed molecular characterisation of first LSDV outbreak and an endemic SPV in Kurdistan region of Iraq based on P32 gene. The results indicated that P32 gene can be successfully used for diagnosis of LSDV. The phylogenic and molecular analysis showed that there may be a new LSDV isolate circulating in Kurdistan which uniquely shared the same characteristic amino acid sequence with SPV and GPV, leucine at amino acid position 51 in P32 gene as well as few genetically distinct SPV causing pox disease in Kurdistan sheep. This study provided sequence information of P32 gene for several LSDV isolates, which positively affects the epidemiological study of Capripoxvirus

  13. Zika and Spondweni Viruses: Historic Evidence of Misidentification, Misdiagnosis and Serious Clinical Disease Manifestations

    Science.gov (United States)

    2016-10-01

    isolations of 153 Zika virus from Aedes (Stegomyia) africanus (Theobald) taken in and above a Uganda Forest. 154 Bulletin of the World Health...1 Zika and Spondweni viruses : Historic evidence of misidentification, misdiagnosis, and serious clinical disease manifestations Andrew D...serogroup (family Flaviviridae, genus Flavivirus) consists of two members: Zika 3 and Spondweni viruses . Both viruses have been historically misidentified

  14. Bowen's Disease Associated With Two Human Papilloma Virus Types.

    Science.gov (United States)

    Eftekhari, Hojat; Gharaei Nejad, Kaveh; Azimi, Seyyede Zeinab; Rafiei, Rana; Mesbah, Alireza

    2017-09-01

    Bowen's disease (BD) is an epidermal in-situ squamous cell carcinoma (SCC). Most Human Papilloma Viruses (HPV)-positive lesions in Bowen's disease are localized to the genital region or distal extremities (periungual sites) in which HPV type-16 is frequently detected. Patient was a 64-year-old construction worker for whom we detected 2 erythematous psoriasiform reticular scaly plaques on peri-umbilical and medial knee. Biopsy established the diagnosis of Bowen's disease and polymerase chain reaction assay showed HPV-6, -18 co-infection. Patient was referred for surgical excision.

  15. [Zika virus infection or the future of infectious diseases].

    Science.gov (United States)

    Valerio Sallent, Lluís; Roure Díez, Sílvia; Fernández Rivas, Gema

    2016-10-07

    Zika virus belongs to the Flaviridae, an extended phylogenetic family containing dengue or yellow fever, viruses whose shared main vector are Aedes aegypti mosquitoes. The virus originally came from Central African simian reservoirs and, from there, expanded rapidly across the Pacific to South America. The disease is an example of exantematic fever usually mild. Mortality is very low and mainly limited to secondary Guillain-Barré or fetal microcephaly cases. Diagnostic confirmation requires a RT-PCR in blood up to the 5th day from the onset or in urine up to the 10-14th day. Specific IgM are identifiable from the 5th symptomatic day. Clinically, a suspected case should comply with: a) a journey to epidemic areas; b) a clinically compatible appearance with fever and skin rash, and c) a generally normal blood count/basic biochemistry. There is some evidence that causally relates Zika virus infection with fetal microcephaly. While waiting for definitive data, all pregnant women coming from Central or South America should be tested for Zika virus. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  16. Comparison of the structures of three circoviruses: chicken anemia virus, porcine circovirus type 2, and beak and feather disease virus.

    Science.gov (United States)

    Crowther, R A; Berriman, J A; Curran, W L; Allan, G M; Todd, D

    2003-12-01

    Circoviruses are small, nonenveloped icosahedral animal viruses characterized by circular single-stranded DNA genomes. Their genomes are the smallest possessed by animal viruses. Infections with circoviruses, which can lead to economically important diseases, frequently result in virus-induced damage to lymphoid tissue and immunosuppression. Within the family Circoviridae, different genera are distinguished by differences in genomic organization. Thus, Chicken anemia virus is in the genus Gyrovirus, while porcine circoviruses and Beak and feather disease virus belong to the genus CIRCOVIRUS: Little is known about the structures of circoviruses. Accordingly, we investigated the structures of these three viruses with a view to determining whether they are related. Three-dimensional maps computed from electron micrographs showed that all three viruses have a T=1 organization with capsids formed from 60 subunits. Porcine circovirus type 2 and beak and feather disease virus show similar capsid structures with flat pentameric morphological units, whereas chicken anemia virus has stikingly different protruding pentagonal trumpet-shaped units. It thus appears that the structures of viruses in the same genus are related but that those of viruses in different genera are unrelated.

  17. Ferrets Infected with Bundibugyo Virus or Ebola Virus Recapitulate Important Aspects of Human Filovirus Disease.

    Science.gov (United States)

    Kozak, Robert; He, Shihua; Kroeker, Andrea; de La Vega, Marc-Antoine; Audet, Jonathan; Wong, Gary; Urfano, Chantel; Antonation, Kym; Embury-Hyatt, Carissa; Kobinger, Gary P; Qiu, Xiangguo

    2016-10-15

    Bundibugyo virus (BDBV) is the etiological agent of a severe hemorrhagic fever in humans with a case-fatality rate ranging from 25 to 36%. Despite having been known to the scientific and medical communities for almost 1 decade, there is a dearth of studies on this pathogen due to the lack of a small animal model. Domestic ferrets are commonly used to study other RNA viruses, including members of the order Mononegavirales To investigate whether ferrets were susceptible to filovirus infections, ferrets were challenged with a clinical isolate of BDBV. Animals became viremic within 4 days and succumbed to infection between 8 and 9 days, and a petechial rash was observed with moribund ferrets. Furthermore, several hallmarks of human filoviral disease were recapitulated in the ferret model, including substantial decreases in lymphocyte and platelet counts and dysregulation of key biochemical markers related to hepatic/renal function, as well as coagulation abnormalities. Virological, histopathological, and immunohistochemical analyses confirmed uncontrolled BDBV replication in the major organs. Ferrets were also infected with Ebola virus (EBOV) to confirm their susceptibility to another filovirus species and to potentially establish a virus transmission model. Similar to what was seen with BDBV, important hallmarks of human filoviral disease were observed in EBOV-infected ferrets. This study demonstrates the potential of this small animal model for studying BDBV and EBOV using wild-type isolates and will accelerate efforts to understand filovirus pathogenesis and transmission as well as the development of specific vaccines and antivirals. The 2013-2016 outbreak of Ebola virus in West Africa has highlighted the threat posed by filoviruses to global public health. Bundibugyo virus (BDBV) is a member of the genus Ebolavirus and has caused outbreaks in the past but is relatively understudied, likely due to the lack of a suitable small animal model. Such a model for BDBV is

  18. Genetic variation of Border disease virus species strains

    Directory of Open Access Journals (Sweden)

    Massimo Giangaspero

    2011-12-01

    Full Text Available The 5´-untranslated region of Pestivirus strains isolated from domestic and wild animals were analysed to determine their taxonomic status according to nucleotide changes in the secondary genomic structure using the palindromic nucleotide substitutions (PNS method. A total of 131 isolates out of 536 Pestivirus strains evaluated, were clustered as Border disease virus (BDV species. The BDV strains were further divided into at least 8 genotypes or subspecies. Thirty-two isolates from small ruminants suffering from clinical symptoms of Border disease were clustered into bovine viral diarrhoea virus 1 (BVDV-1, BVDV-2 and classical swine fever (hog cholera virus species and also into the tentative BDV-2 species. Since the definition of an infectious disease is based primarily on a specific causative pathogen and taking into account the heterogeneity of the genus Pestivirus, clinical cases should be named according to the laboratory results. The PNS procedure could be useful for laboratory diagnosis of Border disease in domestic and wild ruminants.

  19. Virus Infections on Prion Diseased Mice Exacerbate Inflammatory Microglial Response

    Science.gov (United States)

    Lins, Nara; Mourão, Luiz; Trévia, Nonata; Passos, Aline; Farias, José Augusto; Assunção, Jarila; Bento-Torres, João; Consentino Kronka Sosthenes, Marcia; Diniz, José Antonio Picanço; Vasconcelos, Pedro Fernando da Costa

    2016-01-01

    We investigated possible interaction between an arbovirus infection and the ME7 induced mice prion disease. C57BL/6, females, 6-week-old, were submitted to a bilateral intrahippocampal injection of ME7 prion strain (ME7) or normal brain homogenate (NBH). After injections, animals were organized into two groups: NBH (n = 26) and ME7 (n = 29). At 15th week after injections (wpi), animals were challenged intranasally with a suspension of Piry arbovirus 0.001% or with NBH. Behavioral changes in ME7 animals appeared in burrowing activity at 14 wpi. Hyperactivity on open field test, errors on rod bridge, and time reduction in inverted screen were detected at 15th, 19th, and 20th wpi respectively. Burrowing was more sensitive to earlier hippocampus dysfunction. However, Piry-infection did not significantly affect the already ongoing burrowing decline in the ME7-treated mice. After behavioral tests, brains were processed for IBA1, protease-resistant form of PrP, and Piry virus antigens. Although virus infection in isolation did not change the number of microglia in CA1, virus infection in prion diseased mice (at 17th wpi) induced changes in number and morphology of microglia in a laminar-dependent way. We suggest that virus infection exacerbates microglial inflammatory response to a greater degree in prion-infected mice, and this is not necessarily correlated with hippocampal-dependent behavioral deficits. PMID:28003864

  20. Ebola Virus Disease in Children, Sierra Leone, 2014–2015

    Science.gov (United States)

    Naveed, Asad; Wing, Kevin; Gbessay, Musa; Ross, J.C.G.; Checchi, Francesco; Youkee, Daniel; Jalloh, Mohammed Boie; Baion, David; Mustapha, Ayeshatu; Jah, Hawanatu; Lako, Sandra; Oza, Shefali; Boufkhed, Sabah; Feury, Reynold; Bielicki, Julia A.; Gibb, Diana M.; Klein, Nigel; Sahr, Foday; Yeung, Shunmay

    2016-01-01

    Little is known about potentially modifiable factors in Ebola virus disease in children. We undertook a retrospective cohort study of children <13 years old admitted to 11 Ebola holding units in the Western Area, Sierra Leone, during 2014–2015 to identify factors affecting outcome. Primary outcome was death or discharge after transfer to Ebola treatment centers. All 309 Ebola virus–positive children 2 days–12 years old were included; outcomes were available for 282 (91%). Case-fatality was 57%, and 55% of deaths occurred in Ebola holding units. Blood test results showed hypoglycemia and hepatic/renal dysfunction. Death occurred swiftly (median 3 days after admission) and was associated with younger age and diarrhea. Despite triangulation of information from multiple sources, data availability was limited, and we identified no modifiable factors substantially affecting death. In future Ebola virus disease epidemics, robust, rapid data collection is vital to determine effectiveness of interventions for children. PMID:27649367

  1. Ebola Virus Disease, Democratic Republic of the Congo, 2014.

    Science.gov (United States)

    Nanclares, Carolina; Kapetshi, Jimmy; Lionetto, Fanshen; de la Rosa, Olimpia; Tamfun, Jean-Jacques Muyembe; Alia, Miriam; Kobinger, Gary; Bernasconi, Andrea

    2016-09-01

    During July-November 2014, the Democratic Republic of the Congo underwent its seventh Ebola virus disease (EVD) outbreak. The etiologic agent was Zaire Ebola virus; 66 cases were reported (overall case-fatality rate 74.2%). Through a retrospective observational study of confirmed EVD in 25 patients admitted to either of 2 Ebola treatment centers, we described clinical features and investigated correlates associated with death. Clinical features were mainly generic. At admission, 76% of patients had >1 gastrointestinal symptom and 28% >1 hemorrhagic symptom. The case-fatality rate in this group was 48% and was higher for female patients (67%). Cox regression analysis correlated death with initial low cycle threshold, indicating high viral load. Cycle threshold was a robust predictor of death, as were fever, hiccups, diarrhea, dyspnea, dehydration, disorientation, hematemesis, bloody feces during hospitalization, and anorexia in recent medical history. Differences from other outbreaks could suggest guidance for optimizing clinical management and disease control.

  2. Ebola Virus Disease: Essential Public Health Principles for Clinicians

    Directory of Open Access Journals (Sweden)

    Kristi L. Koenig

    2014-11-01

    Full Text Available Ebola Virus Disease (EVD has become a public health emergency of international concern. The World Health Organization and Centers for Disease Control and Prevention have developed guidance to educate and inform healthcare workers and travelers worldwide. Symptoms of EVD include abrupt onset of fever, myalgias, and headache in the early phase, followed by vomiting, diarrhea and possible progression to hemorrhagic rash, life-threatening bleeding, and multi-organ failure in the later phase. The disease is not transmitted via airborne spread like influenza, but rather from person-to-person, or animal to person, via direct contact with bodily fluids or blood. It is crucial that emergency physicians be educated on disease presentation and how to generate a timely and accurate differential diagnosis that includes exotic diseases in the appropriate patient population. A patient should be evaluated for EVD when both suggestive symptoms, including unexplained hemorrhage, AND risk factors within 3 weeks prior, such as travel to an endemic area, direct handling of animals from outbreak areas, or ingestion of fruit or other uncooked foods contaminated with bat feces containing the virus are present. There are experimental therapies for treatment of EVD virus; however the mainstay of therapy is supportive care. Emergency department personnel on the frontlines must be prepared to rapidly identify and isolate febrile travelers if indicated. All healthcare workers involved in care of EVD patients should wear personal protective equipment. Despite the intense media focus on EVD rather than other threats, emergency physicians must master and follow essential public health principles for management of all infectious diseases. This includes not only identification and treatment of individuals, but also protection of healthcare workers and prevention of spread, keeping in mind the possibility of other more common disease processes. [West J Emerg Med. 2014;15(7:–0.

  3. Evolution of foot-and-mouth disease virus serotype A capsid coding (P1) region on a timescale of three decades in an endemic context.

    Science.gov (United States)

    Das, Biswajit; Mohapatra, Jajati K; Pande, Veena; Subramaniam, Saravanan; Sanyal, Aniket

    2016-07-01

    Three decades-long (1977-2013) evolutionary trend of the capsid coding (P1) region of foot-and-mouth disease virus (FMDV) serotype A isolated in India was analysed. The exclusive presence of genotype 18 since 2001 and the dominance of the VP3(59)-deletion group of genotype 18 was evident in the recent years. Clade 18c was found to be currently the only active one among the three clades (18a, 18b and 18c) identified in the deletion group. The rate of evolution of the Indian isolates at the capsid region was found to be 4.96×10(-3)substitutions/site/year. The timescale analysis predicted the most recent common ancestor to have existed during 1962 for Indian FMDV serotype A and around 1998 for the deletion group. The evolutionary pattern of serotype A in India appears to be homogeneous as no spatial or temporal structure was observed. Bayesian skyline plots indicate a sharp decline in the effective number of infections after 2008, which might be a result of mass vaccination or inherent loss of virus fitness. Analyses of variability at 38 known antigenically critical positions in a countrywide longitudinal data set suggested that the substitutions neither followed any specific trend nor remained fixed for a long period since frequent reversions and convergence was noticed. A maximum of 6 different amino acid residues was seen in the gene pool at any antigenically critical site over the decades, suggesting a limited combination of residues being responsible for the observed antigenic variation. Evidence of positive selection at some of the antigenically critical residues and the structurally proximal positions suggest a possible role of pre-existing immunity in the host population in driving evolution. The VP1 C-terminus neither revealed variability nor positive selection, suggesting the possibility that this stretch does not contribute to the antigenic variation and adaptation under immune selection. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Microculture system for detection of Newcastle disease virus antibodies.

    Science.gov (United States)

    Wooley, R E; Brown, J; Gratzek, J B; Kleven, S H; Scott, T A

    1974-05-01

    A microculture system utilizing cytopathic effect (CPE) and hemadsorption (HAd) end points was effective in determining the level of Newcastle disease virus (NDV) antibodies. The microculture system was of comparable sensitivity to the plaque reduction test for the detection of NDV antibodies. The standards by which the CPE and HAd microculture tests would be considered reproducible were defined. The results indicate that the CPE and HAd microculture tests are reproducible within one twofold dilution.

  5. The Pathogenesis of Ebola Virus Disease.

    Science.gov (United States)

    Baseler, Laura; Chertow, Daniel S; Johnson, Karl M; Feldmann, Heinz; Morens, David M

    2017-01-24

    For almost 50 years, ebolaviruses and related filoviruses have been repeatedly reemerging across the vast equatorial belt of the African continent to cause epidemics of highly fatal hemorrhagic fever. The 2013-2015 West African epidemic, by far the most geographically extensive, most fatal, and longest lasting epidemic in Ebola's history, presented an enormous international public health challenge, but it also provided insights into Ebola's pathogenesis and natural history, clinical expression, treatment, prevention, and control. Growing understanding of ebolavirus pathogenetic mechanisms and important new clinical observations of the disease course provide fresh clues about prevention and treatment approaches. Although viral cytopathology and immune-mediated cell damage in ebolavirus disease often result in severe compromise of multiple organs, tissue repair and organ function recovery can be expected if patients receive supportive care with fluids and electrolytes; maintenance of oxygenation and tissue perfusion; and respiratory, renal, and cardiovascular support. Major challenges for managing future Ebola epidemics include establishment of early and aggressive epidemic control and earlier and better patient care and treatment in remote, resource-poor areas where Ebola typically reemerges. In addition, it will be important to further develop Ebola vaccines and to adopt policies for their use in epidemic and pre-epidemic situations.

  6. Uveitis and Systemic Inflammatory Markers in Convalescent Phase of Ebola Virus Disease.

    Science.gov (United States)

    Chancellor, John R; Padmanabhan, Sriranjani P; Greenough, Thomas C; Sacra, Richard; Ellison, Richard T; Madoff, Lawrence C; Droms, Rebecca J; Hinkle, David M; Asdourian, George K; Finberg, Robert W; Stroher, Ute; Uyeki, Timothy M; Cerón, Olga M

    2016-02-01

    We report a case of probable Zaire Ebola virus-related ophthalmologic complications in a physician from the United States who contracted Ebola virus disease in Liberia. Uveitis, immune activation, and nonspecific increase in antibody titers developed during convalescence. This case highlights immune phenomena that could complicate management of Ebola virus disease-related uveitis during convalescence.

  7. Epstein-Barr Virus Sequence Variation—Biology and Disease

    Science.gov (United States)

    Tzellos, Stelios; Farrell, Paul J.

    2012-01-01

    Some key questions in Epstein-Barr virus (EBV) biology center on whether naturally occurring sequence differences in the virus affect infection or EBV associated diseases. Understanding the pattern of EBV sequence variation is also important for possible development of EBV vaccines. At present EBV isolates worldwide can be grouped into Type 1 and Type 2, a classification based on the EBNA2 gene sequence. Type 1 EBV is the most prevalent worldwide but Type 2 is common in parts of Africa. Type 1 transforms human B cells into lymphoblastoid cell lines much more efficiently than Type 2 EBV. Molecular mechanisms that may account for this difference in cell transformation are now becoming clearer. Advances in sequencing technology will greatly increase the amount of whole EBV genome data for EBV isolated from different parts of the world. Study of regional variation of EBV strains independent of the Type 1/Type 2 classification and systematic investigation of the relationship between viral strains, infection and disease will become possible. The recent discovery that specific mutation of the EBV EBNA3B gene may be linked to development of diffuse large B cell lymphoma illustrates the importance that mutations in the virus genome may have in infection and human disease. PMID:25436768

  8. Expression of the gene encoding transcription factor PaVP1 differs in Picea abies embryogenic lines depending on their ability to develop somatic embryos

    Czech Academy of Sciences Publication Activity Database

    Fischerová, Lucie; Fischer, L.; Vondráková, Zuzana; Vágner, Martin

    2008-01-01

    Roč. 27, č. 3 (2008), s. 435-441 ISSN 0721-7714 R&D Projects: GA MŠk LN00A081; GA MŠk(CZ) LC06034; GA AV ČR KJB6038402 Institutional research plan: CEZ:AV0Z50380511 Keywords : ABI3/VP1 transcription factor * Alternative splicing * Anatomy Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.946, year: 2008

  9. Quantitative statistical analysis of cis-regulatory sequences in ABA/VP1- and CBF/DREB1-regulated genes of Arabidopsis.

    Science.gov (United States)

    Suzuki, Masaharu; Ketterling, Matthew G; McCarty, Donald R

    2005-09-01

    We have developed a simple quantitative computational approach for objective analysis of cis-regulatory sequences in promoters of coregulated genes. The program, designated MotifFinder, identifies oligo sequences that are overrepresented in promoters of coregulated genes. We used this approach to analyze promoter sequences of Viviparous1 (VP1)/abscisic acid (ABA)-regulated genes and cold-regulated genes, respectively, of Arabidopsis (Arabidopsis thaliana). We detected significantly enriched sequences in up-regulated genes but not in down-regulated genes. This result suggests that gene activation but not repression is mediated by specific and common sequence elements in promoters. The enriched motifs include several known cis-regulatory sequences as well as previously unidentified motifs. With respect to known cis-elements, we dissected the flanking nucleotides of the core sequences of Sph element, ABA response elements (ABREs), and the C repeat/dehydration-responsive element. This analysis identified the motif variants that may correlate with qualitative and quantitative differences in gene expression. While both VP1 and cold responses are mediated in part by ABA signaling via ABREs, these responses correlate with unique ABRE variants distinguished by nucleotides flanking the ACGT core. ABRE and Sph motifs are tightly associated uniquely in the coregulated set of genes showing a strict dependence on VP1 and ABA signaling. Finally, analysis of distribution of the enriched sequences revealed a striking concentration of enriched motifs in a proximal 200-base region of VP1/ABA and cold-regulated promoters. Overall, each class of coregulated genes possesses a discrete set of the enriched motifs with unique distributions in their promoters that may account for the specificity of gene regulation.

  10. Foot-and-mouth disease virus-like particles produced by a SUMO fusion protein system in Escherichia coli induce potent protective immune responses in guinea pigs, swine and cattle

    Science.gov (United States)

    2013-01-01

    Foot-and-mouth disease virus (FMDV) causes a highly contagious infection in cloven-hoofed animals. The format of FMD virus-like particles (VLP) as a non-replicating particulate vaccine candidate is a promising alternative to conventional inactivated FMDV vaccines. In this study, we explored a prokaryotic system to express and assemble the FMD VLP and validated the potential of VLP as an FMDV vaccine candidate. VLP composed entirely of FMDV (Asia1/Jiangsu/China/2005) capsid proteins (VP0, VP1 and VP3) were simultaneously produced as SUMO fusion proteins by an improved SUMO fusion protein system in E. coli. Proteolytic removal of the SUMO moiety from the fusion proteins resulted in the assembly of VLP with size and shape resembling the authentic FMDV. Immunization of guinea pigs, swine and cattle with FMD VLP by intramuscular inoculation stimulated the FMDV-specific antibody response, neutralizing antibody response, T-cell proliferation response and secretion of cytokine IFN-γ. In addition, immunization with one dose of the VLP resulted in complete protection of these animals from homologous FMDV challenge. The 50% protection dose (PD50) of FMD VLP in cattle is up to 6.34. These results suggest that FMD VLP expressed in E. coli are an effective vaccine in guinea pigs, swine and cattle and support further development of these VLP as a vaccine candidate for protection against FMDV. PMID:23826638

  11. Isolation and molecular characterization of Newcastle disease viruses from raptors.

    Science.gov (United States)

    Jindal, Naresh; Chander, Yogesh; Primus, Alexander; Redig, Patrick T; Goyal, Sagar M

    2010-12-01

    The present study was undertaken to detect and characterize Newcastle disease virus (NDV) in raptors. Cloacal and oropharyngeal swab samples were collected from 60 casualty raptors during January to March 2009 in Minnesota. Inoculation of all these samples (n=120) in 9-day-old embryonated hens' eggs resulted in isolation of haemagglutinating viruses in three samples from two bald eagles and one great horned owl. These three haemagglutinating viruses were confirmed as NDV by reverse transcription-polymerase chain reaction (RT-PCR) using fusion gene-specific primers, and were negative for avian influenza virus by RT-PCR. Further characterization revealed that all three possessed (112)GKQGRL(117) at the fusion gene cleavage site, indicating that they were lentogenic strains. Phylogenetic analysis revealed that all three isolates clustered with published class II genotype II NDVs. The nucleotide sequence homology of the three NDV isolates among themselves was 98.4 to 99.6% and the sequence homology with lentogenic strains from wild birds used for comparison varied between 94.5 and 100%. Detection of NDV strains from raptors merits further epidemiological studies to determine the prevalence of different NDV strains in raptors and their impact in relation to transmission to domestic poultry.

  12. GATA2 Deficiency and Epstein-Barr Virus Disease.

    Science.gov (United States)

    Cohen, Jeffrey I

    2017-01-01

    GATA2 is a transcription factor that binds to the promoter of hematopoietic genes. Mutations in one copy of the gene are associated with haploinsufficiency and reduced levels of protein. This results in reduced numbers of several cell types important for immune surveillance including dendritic cells, monocytes, CD4, and NK cells, as well as impaired NK cell function. Recently, GATA2 has been associated with several different presentations of severe Epstein-Barr virus (EBV) disease including primary infection requiring repeated hospitalizations, chronic active EBV disease, EBV-associated hydroa vacciniforme with hemophagocytosis, and EBV-positive smooth muscle tumors. EBV was found predominantly in B cells in each of the cases in which it was studied, unlike most cases of chronic active EBV disease in which the virus is usually present in T or NK cells. The variety of EBV-associated diseases seen in patients with GATA2 deficiency suggest that additional forms of severe EBV disease may be found in patients with GATA2 deficiency in the future.

  13. GATA2 Deficiency and Epstein–Barr Virus Disease

    Directory of Open Access Journals (Sweden)

    Jeffrey I. Cohen

    2017-12-01

    Full Text Available GATA2 is a transcription factor that binds to the promoter of hematopoietic genes. Mutations in one copy of the gene are associated with haploinsufficiency and reduced levels of protein. This results in reduced numbers of several cell types important for immune surveillance including dendritic cells, monocytes, CD4, and NK cells, as well as impaired NK cell function. Recently, GATA2 has been associated with several different presentations of severe Epstein–Barr virus (EBV disease including primary infection requiring repeated hospitalizations, chronic active EBV disease, EBV-associated hydroa vacciniforme with hemophagocytosis, and EBV-positive smooth muscle tumors. EBV was found predominantly in B cells in each of the cases in which it was studied, unlike most cases of chronic active EBV disease in which the virus is usually present in T or NK cells. The variety of EBV-associated diseases seen in patients with GATA2 deficiency suggest that additional forms of severe EBV disease may be found in patients with GATA2 deficiency in the future.

  14. Diagnosis of Ebola Virus Disease: Past, Present, and Future

    Science.gov (United States)

    Brooks, Tim J. G.

    2016-01-01

    SUMMARY Laboratory diagnosis of Ebola virus disease plays a critical role in outbreak response efforts; however, establishing safe and expeditious testing strategies for this high-biosafety-level pathogen in resource-poor environments remains extremely challenging. Since the discovery of Ebola virus in 1976 via traditional viral culture techniques and electron microscopy, diagnostic methodologies have trended toward faster, more accurate molecular assays. Importantly, technological advances have been paired with increasing efforts to support decentralized diagnostic testing capacity that can be deployed at or near the point of patient care. The unprecedented scope of the 2014-2015 West Africa Ebola epidemic spurred tremendous innovation in this arena, and a variety of new diagnostic platforms that have the potential both to immediately improve ongoing surveillance efforts in West Africa and to transform future outbreak responses have reached the field. In this review, we describe the evolution of Ebola virus disease diagnostic testing and efforts to deploy field diagnostic laboratories in prior outbreaks. We then explore the diagnostic challenges pervading the 2014-2015 epidemic and provide a comprehensive examination of novel diagnostic tests that are likely to address some of these challenges moving forward. PMID:27413095

  15. Potent Inhibitors against Newcastle Disease Virus Hemagglutinin-Neuraminidase.

    Science.gov (United States)

    Rota, Paola; La Rocca, Paolo; Piccoli, Marco; Montefiori, Marco; Cirillo, Federica; Olsen, Lars; Orioli, Marica; Allevi, Pietro; Anastasia, Luigi

    2018-02-06

    Neuraminidase activity is essential for the infection and propagation of paramyxoviruses, including human parainfluenza viruses (hPIVs) and the Newcastle disease virus (NDV). Thus, many inhibitors have been developed based on the 2-deoxy-2,3-didehydro-d-N-acetylneuraminic acid inhibitor (DANA) backbone. Along this line, herein we report a series of neuraminidase inhibitors, having C4 (p-toluenesulfonamido and azido substituents) and C5 (N-perfluorinated chains) modifications to the DANA backbone, resulting in compounds with 5- to 15-fold greater potency than the currently most active compound, the N-trifluoroacetyl derivative of DANA (FANA), toward the NDV hemagglutinin-neuraminidase (NDV-HN). Remarkably, these inhibitors were found to be essentially inactive against the human sialidase NEU3, which is present on the outer layer of the cell membrane and is highly affected by the current NDV inhibitor FANA. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Wild Birds in Romania Are More Exposed to West Nile Virus Than to Newcastle Disease Virus.

    Science.gov (United States)

    Paştiu, Anamaria Ioana; Pap, Péter László; Vágási, Csongor István; Niculae, Mihaela; Páll, Emőke; Domşa, Cristian; Brudaşcă, Florinel Ghe; Spînu, Marina

    2016-03-01

    The aim of this study was to evaluate the seroprevalence of West Nile virus (WNV) and Newcastle disease virus (NDV) in wild and domestic birds from Romania. During 2011-2014, 159 plasma samples from wild birds assigned to 11 orders, 27 families, and 61 species and from 21 domestic birds (Gallus gallus domesticus, Anas platyrhynchos domesticus) were collected. The sera were assayed by two commercial competitive enzyme-linked immunosorbent assay (cELISA) kits for antibodies against WNV and NDV. We found a high prevalence of WNV antibodies in both domestic (19.1%) and wild (32.1%) birds captured after the human epidemic in 2010. Moreover, the presence of anti-NDV antibodies among wild birds from Romania (5.4%) was confirmed serologically for the first time, as far as we are aware. Our findings provide evidence that wild birds, especially resident ones are involved in local West Nile and Newcastle disease enzootic and epizootic cycles. These may allow virus maintenance and spread and also enhance the chance of new outbreaks.

  17. Bioinformatics and molecular analysis of the evolutionary relationship between bovine rhinitis A viruses and foot-and-mouth disease virus

    Science.gov (United States)

    Bovine rhinitis viruses (BRV) cause mild respiratory disease of cattle. In this study, a near full length genome sequence of a virus named RS3X, formerly classified as bovine rhinovirus type 1, isolated from infected cattle from the United Kingdom in the 1960s, was obtained and analyzed. Phylogeneti...

  18. VP1u phospholipase activity is critical for infectivity of full-length parvovirus B19 genomic clones

    OpenAIRE

    Filippone, Claudia; Zhi, Ning; Wong, Susan; Lu, Jun; Kajigaya, Sachiko; Gallinella, Giorgio; Kakkola, Laura; Söderlund-Venermo, Maria; Young, Neal S.; Brown, Kevin E.

    2008-01-01

    Three full-length genomic clones (pB19-M20, pB19-FL and pB19-HG1) of parvovirus B19 were produced in different laboratories. pB19-M20 was shown to produce infectious virus. To determine the differences in infectivity, all three plasmids were tested by transfection and infection assays. All three clones were similar in viral DNA replication, RNA transcription, and viral capsid protein production. However, only pB19-M20 and pB19-HG1 produced infectious virus. Comparison of viral sequences showe...

  19. Genetic Modification of Oncolytic Newcastle Disease Virus for Cancer Therapy.

    Science.gov (United States)

    Cheng, Xing; Wang, Weijia; Xu, Qi; Harper, James; Carroll, Danielle; Galinski, Mark S; Suzich, JoAnn; Jin, Hong

    2016-06-01

    Clinical development of a mesogenic strain of Newcastle disease virus (NDV) as an oncolytic agent for cancer therapy has been hampered by its select agent status due to its pathogenicity in avian species. Using reverse genetics, we have generated a lead candidate oncolytic NDV based on the mesogenic NDV-73T strain that is no longer classified as a select agent for clinical development. This recombinant NDV has a modification at the fusion protein (F) cleavage site to reduce the efficiency of F protein cleavage and an insertion of a 198-nucleotide sequence into the HN-L intergenic region, resulting in reduced viral gene expression and replication in avian cells but not in mammalian cells. In mammalian cells, except for viral polymerase (L) gene expression, viral gene expression is not negatively impacted or increased by the HN-L intergenic insertion. Furthermore, the virus can be engineered to express a foreign gene while still retaining the ability to grow to high titers in cell culture. The recombinant NDV selectively replicates in and kills tumor cells and is able to drive potent tumor growth inhibition following intratumoral or intravenous administration in a mouse tumor model. The candidate is well positioned for clinical development as an oncolytic virus. Avian paramyxovirus type 1, NDV, has been an attractive oncolytic agent for cancer virotherapy. However, this virus can cause epidemic disease in poultry, and concerns about the potential environmental and economic impact of an NDV outbreak have precluded its clinical development. Here we describe generation and characterization of a highly potent oncolytic NDV variant that is unlikely to cause Newcastle disease in its avian host, representing an essential step toward moving NDV forward as an oncolytic agent. Several attenuation mechanisms have been genetically engineered into the recombinant NDV that reduce chicken pathogenicity to a level that is acceptable worldwide without impacting viral production in

  20. Development of tailored real-time RT-PCR assays for the detection and differentiation of serotype O, A and Asia-1 foot-and-mouth disease virus lineages circulating in the Middle East

    DEFF Research Database (Denmark)

    Reid, Scott M.; Mioulet, Valerie; Knowles, Nick J.

    2014-01-01

    transcription polymerase chain reaction (rRT-PCR) assays using primer/probe sets designed from the VP1 coding region of the virus genomes were developed for the specific detection of serotype O, A and Asia-1 FMD viruses (FMDVs) circulating in the Middle East. These assays were evaluated using representative...... by the generic rRT-PCR diagnostic assays but negative by virus isolation and antigen-detection ELISA which would otherwise have to be serotyped by nucleotide sequencing. A similar approach could be used to develop serotyping assays for FMDV strains circulating in other regions of the world....

  1. Epstein-Barr virus infection and related hematological diseases.

    Science.gov (United States)

    Sawada, Akihisa

    2016-01-01

    Once the Epstein-Barr virus (EBV) has infected a person, it then latently infects B cells. This latent infection lasts a lifetime. However, EBV can infect T or NK cells (T/NK cells) in rare cases. Therefore, EBV causes various hematological diseases. Among these diseases, CAEBV is regarded as the most problematic because, although it is not particularly uncommon, the diagnostic tests for this disease are not covered by health insurance, a serious illness in the "non-active" periods is lacking, and the appropriate motivation for early initiation of treatment can easily be lost. However, the symptoms may suddenly change; and if the manifestations are resistant when such exacerbation occurs, CAEBC is potentially lethal. Allogeneic hematopoietic stem cell transplantation (HSCT) is the only cure. Once the diagnosis has been made, earlier treatment initiation, safer bridging to allogeneic HSCT with multi-drug chemotherapy, and then, planned HSCT can be completed more safely and thereby achieve a better outcome.

  2. HUMAN PAPILLOMA VIRUS. PREVENTION OF HPV-ASSOCIATED DISEASES

    Directory of Open Access Journals (Sweden)

    F. C. Shakhtakhtinskaya

    2015-01-01

    Full Text Available High prevalence of sexually transmitted diseases among the population attracts attention of specialists in all countries due to frequent development of complications resulting in reproductive dysfunction. The article presents one of the urgent issues of modern medicine — papillomavirus infection, which is the most common sexually transmitted disease. 70–80% of the sexually active persons contract human papilloma virus at one point. HPV induces a broad range of oncological reproductive diseases, including cervical, vulvar, vaginal and anal cancer and anogenital condylomae, which are observed both in men and women. The only reliable method of preventing papillomavirus infection is vaccination. The authors present new data on the use of the quadrivalent vaccine, including a new immunization pattern for 9–14-years-old girls.

  3. Pulmonary disease in patients with human immunodeficiency virus infection

    DEFF Research Database (Denmark)

    Lundgren, J D; Orholm, Marianne; Lundgren, B

    1989-01-01

    cause pulmonary disease alone or in combination. Bilateral interstitial infiltrates are the most frequent chest x-ray abnormality and are most frequently caused by infection with Pneumocystis carinii. Cytomegalovirus, Mycobacterium tuberculosis, nonspecific interstitial pneumonitis and pulmonary Kaposi......Pulmonary disease is the most important cause of morbidity and mortality in patients infected with human immunodeficiency virus (HIV). All parts of the hospital system are expected to be involved in the diagnosis and treatment of HIV infected patients in the coming years. Many different processes......'s sarcoma are the most important parts of the differential diagnosis. An aggressive approach to the diagnosis of pulmonary disease in this patient population is indicated in order to provide optimal care and assess new therapies....

  4. Subcellular distribution of swine vesicular disease virus proteins and alterations induced in infected cells: A comparative study with foot-and-mouth disease virus and vesicular stomatitis virus

    International Nuclear Information System (INIS)

    Martin-Acebes, Miguel A.; Gonzalez-Magaldi, Monica; Rosas, Maria F.; Borrego, Belen; Brocchi, Emiliana; Armas-Portela, Rosario; Sobrino, Francisco

    2008-01-01

    The intracellular distribution of swine vesicular disease virus (SVDV) proteins and the induced reorganization of endomembranes in IBRS-2 cells were analyzed. Fluorescence to new SVDV capsids appeared first upon infection, concentrated in perinuclear circular structures and colocalized to dsRNA. As in foot-and-mouth disease virus (FMDV)-infected cells, a vesicular pattern was predominantly found in later stages of SVDV capsid morphogenesis that colocalized with those of non-structural proteins 2C, 2BC and 3A. These results suggest that assembly of capsid proteins is associated to the replication complex. Confocal microscopy showed a decreased fluorescence to ER markers (calreticulin and protein disulfide isomerase), and disorganization of cis-Golgi gp74 and trans-Golgi caveolin-1 markers in SVDV- and FMDV-, but not in vesicular stomatitis virus (VSV)-infected cells. Electron microscopy of SVDV-infected cells at an early stage of infection revealed fragmented ER cisternae with expanded lumen and accumulation of large Golgi vesicles, suggesting alterations of vesicle traffic through Golgi compartments. At this early stage, FMDV induced different patterns of ER fragmentation and Golgi alterations. At later stages of SVDV cytopathology, cells showed a completely vacuolated cytoplasm containing vesicles of different sizes. Cell treatment with brefeldin A, which disrupts the Golgi complex, reduced SVDV (∼ 5 log) and VSV (∼ 4 log) titers, but did not affect FMDV growth. Thus, three viruses, which share target tissues and clinical signs in natural hosts, induce different intracellular effects in cultured cells

  5. Ebola virus disease and social media: A systematic review.

    Science.gov (United States)

    Fung, Isaac Chun-Hai; Duke, Carmen Hope; Finch, Kathryn Cameron; Snook, Kassandra Renee; Tseng, Pei-Ling; Hernandez, Ana Cristina; Gambhir, Manoj; Fu, King-Wa; Tse, Zion Tsz Ho

    2016-12-01

    We systematically reviewed existing research pertinent to Ebola virus disease and social media, especially to identify the research questions and the methods used to collect and analyze social media. We searched 6 databases for research articles pertinent to Ebola virus disease and social media. We extracted the data using a standardized form. We evaluated the quality of the included articles. Twelve articles were included in the main analysis: 7 from Twitter with 1 also including Weibo, 1 from Facebook, 3 from YouTube, and 1 from Instagram and Flickr. All the studies were cross-sectional. Eleven of the 12 articles studied ≥ 1of these 3 elements of social media and their relationships: themes or topics of social media contents, meta-data of social media posts (such as frequency of original posts and reposts, and impressions) and characteristics of the social media accounts that made these posts (such as whether they are individuals or institutions). One article studied how news videos influenced Twitter traffic. Twitter content analysis methods included text mining (n = 3) and manual coding (n = 1). Two studies involved mathematical modeling. All 3 YouTube studies and the Instagram/Flickr study used manual coding of videos and images, respectively. Published Ebola virus disease-related social media research focused on Twitter and YouTube. The utility of social media research to public health practitioners is warranted. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  6. Change in Occurrence of Rice stripe virus Disease

    Directory of Open Access Journals (Sweden)

    Bong Choon Lee

    2012-12-01

    Full Text Available We surveyed the occurrence of Rice stripe virus (RSV disease in 672 fields from 29 rice representative area inJuly 2012 as nationwide survey for RSV occurrence since 2008. We confirmed occurrence of virus disease in18 areas, in west coast region including Secheon, Taean, Buwan and Cheorwon. RSV incidence rates of plantin Sacheon and Buan were less than 0.01% and 0.15%, respectively, showing similar rate with the nationwidesurvey carried out in 2008, whereas incidence rate of field declined from 19.9% in 2008 to 4.9% in 2012.Earlier, RSV occurred largely across the southern region of Korea. In 2001, RSV disease was found inGangwha and Gyeonggi-do, the northern region of Korea. In 2007, RSV appeared in west coast; Buan inJeollabuk-do and Seocheon in Choongnam-do. After migration of the vector, small brown plant hopper, fromChina in 2009, RSV is becoming a pandemic.

  7. Industry-Wide Surveillance of Marek's Disease Virus on Commercial Poultry Farms.

    Science.gov (United States)

    Kennedy, David A; Cairns, Christopher; Jones, Matthew J; Bell, Andrew S; Salathé, Rahel M; Baigent, Susan J; Nair, Venugopal K; Dunn, Patricia A; Read, Andrew F

    2017-06-01

    Marek's disease virus is a herpesvirus of chickens that costs the worldwide poultry industry more than US$1 billion annually. Two generations of Marek's disease vaccines have shown reduced efficacy over the last half century due to evolution of the virus. Understanding where the virus is present may give insight into whether continued reductions in efficacy are likely. We conducted a 3-yr surveillance study to assess the prevalence of Marek's disease virus on commercial poultry farms, determine the effect of various factors on virus prevalence, and document virus dynamics in broiler chicken houses over short (weeks) and long (years) timescales. We extracted DNA from dust samples collected from commercial chicken and egg production facilities in Pennsylvania, USA. Quantitative PCR was used to assess wild-type virus detectability and concentration. Using data from 1018 dust samples with Bayesian generalized linear mixed effects models, we determined the factors that correlated with virus prevalence across farms. Maximum likelihood and autocorrelation function estimation on 3727 additional dust samples were used to document and characterize virus concentrations within houses over time. Overall, wild-type virus was detectable at least once on 36 of 104 farms at rates that varied substantially between farms. Virus was detected in one of three broiler-breeder operations (companies), four of five broiler operations, and three of five egg layer operations. Marek's disease virus detectability differed by production type, bird age, day of the year, operation (company), farm, house, flock, and sample. Operation (company) was the most important factor, accounting for between 12% and 63.4% of the variation in virus detectability. Within individual houses, virus concentration often dropped below detectable levels and reemerged later. These data characterize Marek's disease virus dynamics, which are potentially important to the evolution of the virus.

  8. Optimization of Newcastle disease virus production in T-flask | Arifin ...

    African Journals Online (AJOL)

    In the present study, the production of lentogenic Asplin F strain of Newcastle disease virus by using cell culture method was studied. Experiments were carried out in T-flasks to investigate the effects of serum concentration in the culture medium during virus replication phase and multiplicity of infection (MOI) on ND virus ...

  9. Development of Recombinant Newcastle Disease Viruses Expressing the Glycoprotein (G) of Avian Metapneumovirus as Bivalent Vaccines

    Science.gov (United States)

    Using reverse genetics technology, Newcastle disease virus (NDV) LaSota strain-based recombinant viruses were engineered to express the glycoprotein (G) of avian metapneumovirus (aMPV), subtype A, B or C, as bivalent vaccines. These recombinant viruses were slightly attenuated in vivo, yet maintaine...

  10. Experimental infection with Brazilian Newcastle disease virus strain in pigeons and chickens

    Directory of Open Access Journals (Sweden)

    Adriano de Oliveira Torres Carrasco

    2016-03-01

    Full Text Available Abstract This study was designed with the goal of adding as much information as possible about the role of pigeons (Columba livia and chickens (Gallus gallus in Newcastle disease virus epidemiology. These species were submitted to direct experimental infection with Newcastle disease virus to evaluate interspecies transmission and virus-host relationships. The results obtained in four experimental models were analyzed by hemagglutination inhibition and reverse transcriptase polymerase chain reaction for detection of virus shedding. These techniques revealed that both avian species, when previously immunized with a low pathogenic Newcastle disease virus strain (LaSota, developed high antibody titers that significantly reduced virus shedding after infection with a highly pathogenic Newcastle disease virus strain (São Joao do Meriti and that, in chickens, prevent clinical signs. Infected pigeons shed the pathogenic strain, which was not detected in sentinel chickens or control birds. When the presence of Newcastle disease virus was analyzed in tissue samples by RT-PCR, in both species, the virus was most frequently found in the spleen. The vaccination regimen can prevent clinical disease in chickens and reduce viral shedding by chickens or pigeons. Biosecurity measures associated with vaccination programs are crucial to maintain a virulent Newcastle disease virus-free status in industrial poultry in Brazil.

  11. Therapeutic potential of oncolytic Newcastle disease virus: a critical review.

    Science.gov (United States)

    Tayeb, Shay; Zakay-Rones, Zichria; Panet, Amos

    2015-01-01

    Newcastle disease virus (NDV) features a natural preference for replication in many tumor cells compared with normal cells. The observed antitumor effect of NDV appears to be a result of both selective killing of tumor cells and induction of immune responses. Genetic manipulations to change viral tropism and arming the virus with genes encoding for cytokines improved the oncolytic capacity of NDV. Several intracellular proteins in tumor cells, including antiapoptotic proteins (Livin) and oncogenic proteins (H-Ras), are relevant for the oncolytic activity of NDV. Defects in the interferon system, found in some tumor cells, also contribute to the oncolytic selectivity of NDV. Notwithstanding, NDV displays effective oncolytic activity in many tumor types, despite having intact interferon signaling. Taken together, several cellular systems appear to dictate the selective oncolytic activity of NDV. Some barriers, such as neutralizing antibodies elicited during NDV treatment and the extracellular matrix in tumor tissue appear to interfere with spread of NDV and reduce oncolysis. To further understand the oncolytic activity of NDV, we compared two NDV strains, ie, an attenuated virus (NDV-HUJ) and a pathogenic virus (NDV-MTH-68/H). Significant differences in amino acid sequence were noted in several viral proteins, including the fusion precursor (F0) glycoprotein, an important determinant of replication and pathogenicity. However, no difference in the oncolytic activity of the two strains was noted using human tumor tissues maintained as organ cultures or in mouse tumor models. To optimize virotherapy in clinical trials, we describe here a unique organ culture methodology, using a biopsy taken from a patient's tumor before treatment for ex vivo infection with NDV to determine the oncolytic potential on an individual basis. In conclusion, oncolytic NDV is an excellent candidate for cancer therapy, but more knowledge is needed to ensure success in clinical trials.

  12. Newcastle disease virus triggers autophagy in U251 glioma cells to enhance virus replication.

    Science.gov (United States)

    Meng, Chunchun; Zhou, Zhizhi; Jiang, Ke; Yu, Shengqing; Jia, Lijun; Wu, Yantao; Liu, Yanqing; Meng, Songshu; Ding, Chan

    2012-06-01

    Newcastle disease virus (NDV) can replicate in tumor cells and induce apoptosis in late stages of infection. However, the interaction between NDV and cells in early stages of infection is not well understood. Here, we report that, shortly after infection, NDV triggers the formation of autophagosomes in U251 glioma cells, as demonstrated by an increased number of double-membrane vesicles, GFP-microtubule-associated protein 1 light chain 3 (GFP-LC3) a dot formations, and elevated production of LC3II. Moreover, modulation of NDV-induced autophagy by rapamycin, chloroquine or small interfering RNAs targeting the genes critical for autophagosome formation (Atg5 and Beclin-1) affects virus production, indicating that autophagy may be utilized by NDV to facilitate its own production. Furthermore, the class III phosphatidylinositol 3-kinase (PI3K)/Beclin-1 pathway plays a role in NDV-induced autophagy and virus production. Collectively, our data provide a unique example of a paramyxovirus that uses autophagy to enhance its production.

  13. Virus survival in slurry: Analysis of the stability of foot-and-mouth disease, classical swine fever, bovine viral diarrhoea and swine influenza viruses

    DEFF Research Database (Denmark)

    Bøtner, Anette; Belsham, Graham

    2012-01-01

    of an outbreak of disease before it has been recognized. The survival of foot-and-mouth disease virus, classical swine fever virus, bovine viral diarrhoea virus and swine influenza virus, which belong to three different RNA virus families plus porcine parvovirus (a DNA virus) was examined under controlled...... conditions. For each RNA virus, the virus survival in farm slurry under anaerobic conditions was short (generally ≤1h) when heated (to 55°C) but each of these viruses could retain infectivity at cool temperatures (5°C) for many weeks. The porcine parvovirus survived considerably longer than each of the RNA...... viruses under all conditions tested. The implications for disease spread are discussed....

  14. Experimental Treatment of Ebola Virus Disease with Brincidofovir.

    Directory of Open Access Journals (Sweden)

    Jake Dunning

    Full Text Available The nucleotide analogue brincidofovir was developed to prevent and treat infections caused by double-stranded DNA viruses. Based on in vitro data suggesting an antiviral effect against Ebola virus, brincidofovir was included in the World Health Organisation list of agents that should be prioritised for clinical evaluation in patients with Ebola virus disease (EVD during the West African epidemic.In this single-arm phase 2 trial conducted in Liberia, patients with laboratory-confirmed EVD (two months of age or older, enrolment bodyweight ≥50 kg received oral brincidofovir 200 mg as a loading dose on day 0, followed by 100 mg brincidofovir on days 3, 7, 10, and 14. Bodyweight-adjusted dosing was used for patients weighing <50 kg at enrolment. The primary outcome was survival at Day 14 after the first dose of brincidofovir. Four patients were enrolled between 01 January 2015 and 31 January 2015. The trial was stopped following the decision by the manufacturer to terminate their program of development of brincidofovir for EVD. No Serious Adverse Reactions or Suspected Unexpected Serious Adverse Reactions were identified. All enrolled subjects died of an illness consistent with EVD.Due to the small sample size it was not possible to determine the efficacy of brincidofovir for the treatment of EVD. The premature termination of the trial highlights the need to establish better practices for preclinical in-vitro and animal screening of therapeutics for potentially emerging epidemic infectious diseases prior to their use in patients.Pan African Clinical Trials Registry PACTR201411000939962.

  15. Biology, etiology, and control of virus diseases of banana and plantain.

    Science.gov (United States)

    Kumar, P Lava; Selvarajan, Ramasamy; Iskra-Caruana, Marie-Line; Chabannes, Matthieu; Hanna, Rachid

    2015-01-01

    Banana and plantain (Musa spp.), produced in 10.3 million ha in the tropics, are among the world's top 10 food crops. They are vegetatively propagated using suckers or tissue culture plants and grown almost as perennial plantations. These are prone to the accumulation of pests and pathogens, especially viruses which contribute to yield reduction and are also barriers to the international exchange of germplasm. The most economically important viruses of banana and plantain are Banana bunchy top virus (BBTV), a complex of banana streak viruses (BSVs) and Banana bract mosaic virus (BBrMV). BBTV is known to cause the most serious economic losses in the "Old World," contributing to a yield reduction of up to 100% and responsible for a dramatic reduction in cropping area. The BSVs exist as episomal and endogenous forms are known to be worldwide in distribution. In India and the Philippines, BBrMV is known to be economically important but recently the virus was discovered in Colombia and Costa Rica, thus signaling its spread into the "New World." Banana and plantain are also known to be susceptible to five other viruses of minor significance, such as Abaca mosaic virus, Abaca bunchy top virus, Banana mild mosaic virus, Banana virus X, and Cucumber mosaic virus. Studies over the past 100 years have contributed to important knowledge on disease biology, distribution, and spread. Research during the last 25 years have led to a better understanding of the virus-vector-host interactions, virus diversity, disease etiology, and epidemiology. In addition, new diagnostic tools were developed which were used for surveillance and the certification of planting material. Due to a lack of durable host resistance in the Musa spp., phytosanitary measures and the use of virus-free planting material are the major methods of virus control. The state of knowledge on BBTV, BBrMV, and BSVs, and other minor viruses, disease spread, and control are summarized in this review. © 2015 Elsevier Inc

  16. Molecular characterization of foot-and-mouth disease virus: implications for disease control in Bangladesh.

    Science.gov (United States)

    Loth, L; Osmani, M G; Kalam, M A; Chakraborty, R K; Wadsworth, J; Knowles, N J; Hammond, J M; Benigno, C

    2011-06-01

    Foot-and-mouth disease (FMD) is endemic in Bangladesh, and to implement an effective FMD control programme, it is essential to understand the complex epidemiology of the disease. Here, we report on the characterization of FMD virus (FMDV) recovered from FMD outbreaks in Bangladesh in late 2009. All isolated viruses belonged to the FMDV serotype O. The phylogenetic reconstruction showed that all isolates belonged to the Middle East-South Asia (ME-SA) topotype, but fell into two distinct sublineages, one named Ind-2001 (the other has not been named). Within both sublineages, the 2009 Bangladesh isolates were most closely related to viruses from Nepal collected during 2008 and 2009. Additionally, both sublineages contained older viruses from India collected in 2000 and 2001. In South Asia, there is extensive cross-border cattle movement from Nepal and India to Bangladesh. Both these findings have implications for the control of FMD in Bangladesh. Because of the porous borders, a regional FMD control strategy should be developed. Further, animal identification and monitoring animal movements are necessary to identify the cross-border movements and market chain interactions of ruminants, leading to improved border and movement controls. Additionally, a vaccination strategy should be developed with the initial objective of protecting small-scale dairy herds from disease. For any successful FMD control programme, long-term Government commitment and adequate resources are necessary. A sustainable programme will also need farmer education, commitment and financial contributions. © 2011 Blackwell Verlag GmbH.

  17. The Role of Exosomal VP40 in Ebola Virus Disease.

    Science.gov (United States)

    Pleet, Michelle L; DeMarino, Catherine; Lepene, Benjamin; Aman, M Javad; Kashanchi, Fatah

    2017-04-01

    Ebola virus (EBOV) can cause a devastating hemorrhagic disease, leading to death in a short period of time. After infection, the resulting EBOV disease results in high levels of circulating cytokines, endothelial dysfunction, coagulopathy, and bystander lymphocyte apoptosis in humans and nonhuman primates. The VP40 matrix protein of EBOV is essential for viral assembly and budding from the host cell. Recent data have shown that VP40 exists in the extracellular environment, including in exosomes, and exosomal VP40 can impact the viability of recipient immune cells, including myeloid and T cells, through the regulation of the RNAi and endosomal sorting complexes required for transport pathways. In this study, we discuss the latest findings of the impact of exosomal VP40 on immune cells in vitro and its potential implications for pathogenesis in vivo.

  18. Overview of respiratory syncytial virus disease in young children

    Directory of Open Access Journals (Sweden)

    Hoopes JM

    2012-07-01

    Full Text Available J Michael Hoopes1, Veena R Kumar21Medical Information, 2Medical and Scientific Affairs, MedImmune, LLC, Gaithersburg, MD, USAAbstract: Respiratory tract illnesses associated with respiratory syncytial virus (RSV were first reported more than 160 years ago and gained acceptance as a major respiratory pathogen in the late 1950s. Annual epidemics show a seasonal pattern typically beginning in the late fall and ending in early spring, averaging 5 months in length, and varying in time of onset, offset, and duration depending on geographic location. Manifestations of RSV illness primarily involve the upper respiratory tract but can spread to the lower airways and lead to bronchiolitis and/or pneumonia. Initial infection occurs in approximately two-thirds of children during the first year of life; nearly all children are infected at least once by 2 years of age. Reinfection is common throughout life, but initial illness during infancy generally presents with the most severe symptoms. Medical risk conditions that consistently predispose young children to serious lower respiratory tract infection (LRTI include congenital heart disease, chronic lung disease, and premature birth. Serious LRTI due to RSV is the leading cause of hospitalization in infants and young children worldwide and annual mean hospital expenses have been estimated to exceed 1 billion dollars in the United States. Young children incur more inpatient and outpatient visits for RSV LRTI than for influenza. RSV has a greater impact than influenza on hospitalization in infants with respect to length of stay, severity/course of disease, and resultant needs for ancillary treatments. Unlike many other childhood illnesses, a vaccine is not currently available for preventing RSV disease.Keywords: bronchopulmonary dysplasia, infants, hospitalization, prematurity, respiratory syncytial virus

  19. Epstein-Barr Virus in Systemic Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Anette Holck Draborg

    2013-01-01

    Full Text Available Systemic autoimmune diseases (SADs are a group of connective tissue diseases with diverse, yet overlapping, symptoms and autoantibody development. The etiology behind SADs is not fully elucidated, but a number of genetic and environmental factors are known to influence the incidence of SADs. Recent findings link dysregulation of Epstein-Barr virus (EBV with SAD development. EBV causes a persistent infection with a tight latency programme in memory B-cells, which enables evasion of the immune defence. A number of immune escape mechanisms and immune-modulating proteins have been described for EBV. These immune modulating functions make EBV a good candidate for initiation of autoimmune diseases and exacerbation of disease progression. This review focuses on systemic lupus erythematosus (SLE, rheumatoid arthritis (RA, and Sjögren’s syndrome (SS and sum up the existing data linking EBV with these diseases including elevated titres of EBV antibodies, reduced T-cell defence against EBV, and elevated EBV viral load. Together, these data suggest that uncontrolled EBV infection can develop diverse autoreactivities in genetic susceptible individuals with different manifestations depending on the genetic background and the site of reactivation.

  20. Epstein-Barr virus in systemic autoimmune diseases.

    Science.gov (United States)

    Draborg, Anette Holck; Duus, Karen; Houen, Gunnar

    2013-01-01

    Systemic autoimmune diseases (SADs) are a group of connective tissue diseases with diverse, yet overlapping, symptoms and autoantibody development. The etiology behind SADs is not fully elucidated, but a number of genetic and environmental factors are known to influence the incidence of SADs. Recent findings link dysregulation of Epstein-Barr virus (EBV) with SAD development. EBV causes a persistent infection with a tight latency programme in memory B-cells, which enables evasion of the immune defence. A number of immune escape mechanisms and immune-modulating proteins have been described for EBV. These immune modulating functions make EBV a good candidate for initiation of autoimmune diseases and exacerbation of disease progression. This review focuses on systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and Sjögren's syndrome (SS) and sum up the existing data linking EBV with these diseases including elevated titres of EBV antibodies, reduced T-cell defence against EBV, and elevated EBV viral load. Together, these data suggest that uncontrolled EBV infection can develop diverse autoreactivities in genetic susceptible individuals with different manifestations depending on the genetic background and the site of reactivation.

  1. Global Considerations in Human Immunodeficiency Virus-Associated Respiratory Disease.

    Science.gov (United States)

    Rylance, Jamie; Meghji, Jamilah; Miller, Robert F; Ferrand, Rashida A

    2016-04-01

    Respiratory tract infection, particularly tuberculosis, is a major cause of mortality among human immunodeficiency virus (HIV)-infected individuals. Antiretroviral therapy (ART) has resulted in a dramatic increase in survival, although coverage of HIV treatment remains low in many parts of the world. There is a concurrent growing burden of chronic noninfectious respiratory disease as a result of increased survival. Many risk factors associated with the development of respiratory disease, such as cigarette smoking and intravenous drug use, are overrepresented among people living with HIV. In addition, there is emerging evidence that HIV infection may directly cause or accelerate the course of chronic lung disease. This review summarizes the clinical spectrum and epidemiology of respiratory tract infections and noninfectious pulmonary pathologies, and factors that explain the global variation in HIV-associated respiratory disease. The potential for enhancing diagnoses of noninfective chronic conditions through the use of clinical algorithms is discussed. We also consider issues in assessment and management of HIV-related respiratory disease in view of the increasing global scale up of ART. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. Recombination and population mosaic of a multifunctional viral gene, adeno-associated virus cap.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Takeuchi

    Full Text Available Homologous recombination is a dominant force in evolution and results in genetic mosaics. To detect evidence of recombination events and assess the biological significance of genetic mosaics, genome sequences for various viral populations of reasonably large size are now available in the GenBank. We studied a multi-functional viral gene, the adeno-associated virus (AAV cap gene, which codes for three capsid proteins, VP1, VP2 and VP3. VP1-3 share a common C-terminal domain corresponding to VP3, which forms the viral core structure, while the VP1 unique N-terminal part contains an enzymatic domain with phospholipase A2 activity. Our recombinant detection program (RecI revealed five novel recombination events, four of which have their cross-over points in the N-terminal, VP1 and VP2 unique region. Comparison of phylogenetic trees for different cap gene regions confirmed discordant phylogenies for the recombinant sequences. Furthermore, differences in the phylogenetic tree structures for the VP1 unique (VP1u region and the rest of cap highlighted the mosaic nature of cap gene in the AAV population: two dominant forms of VP1u sequences were identified and these forms are linked to diverse sequences in the rest of cap gene. This observation together with the finding of frequent recombination in the VP1 and 2 unique regions suggests that this region is a recombination hot spot. Recombination events in this region preserve protein blocks of distinctive functions and contribute to convergence in VP1u and divergence of the rest of cap. Additionally the possible biological significance of two dominant VP1u forms is inferred.

  3. Lateral Flow Immunoassays for Ebola Virus Disease Detection in Liberia.

    Science.gov (United States)

    Phan, Jill C; Pettitt, James; George, Josiah S; Fakoli, Lawrence S; Taweh, Fahn M; Bateman, Stacey L; Bennett, Richard S; Norris, Sarah L; Spinnler, David A; Pimentel, Guillermo; Sahr, Phillip K; Bolay, Fatorma K; Schoepp, Randal J

    2016-10-15

    Lateral flow immunoassays (LFIs) are point-of-care diagnostic assays that are designed for single use outside a formal laboratory, with in-home pregnancy tests the best-known example of these tests. Although the LFI has some limitations over more-complex immunoassay procedures, such as reduced sensitivity and the potential for false-positive results when using complex sample matrices, the assay has the benefits of a rapid time to result and ease of use. These benefits make it an attractive option for obtaining rapid results in an austere environment. In an outbreak of any magnitude, a field-based rapid diagnostic assay would allow proper patient transport and for safe burials to be conducted without the delay caused by transport of samples between remote villages and testing facilities. Use of such point-of-care instruments in the ongoing Ebola virus disease (EVD) outbreak in West Africa would have distinct advantages in control and prevention of local outbreaks, but proper understanding of the technology and interpretation of results are important. In this study, a LFI, originally developed by the Naval Medical Research Center for Ebola virus environmental testing, was evaluated for its ability to detect the virus in clinical samples in Liberia. Clinical blood and plasma samples and post mortem oral swabs submitted to the Liberian Institute for Biomedical Research, the National Public Health Reference Laboratory for EVD testing, were tested and compared to results of real-time reverse transcription-polymerase chain reaction (rRT-PCR), using assays targeting Ebola virus glycoprotein and nucleoprotein. The LFI findings correlated well with those of the real-time RT-PCR assays used as benchmarks. Rapid antigen-detection tests such as LFIs are attractive alternatives to traditional immunoassays but have reduced sensitivity and specificity, resulting in increases in false-positive and false-negative results. An understanding of the strengths, weaknesses, and

  4. Humanized Mouse Model of Ebola Virus Disease Mimics the Immune Responses in Human Disease.

    Science.gov (United States)

    Bird, Brian H; Spengler, Jessica R; Chakrabarti, Ayan K; Khristova, Marina L; Sealy, Tara K; Coleman-McCray, JoAnn D; Martin, Brock E; Dodd, Kimberly A; Goldsmith, Cynthia S; Sanders, Jeanine; Zaki, Sherif R; Nichol, Stuart T; Spiropoulou, Christina F

    2016-03-01

    Animal models recapitulating human Ebola virus disease (EVD) are critical for insights into virus pathogenesis. Ebola virus (EBOV) isolates derived directly from human specimens do not, without adaptation, cause disease in immunocompetent adult rodents. Here, we describe EVD in mice engrafted with human immune cells (hu-BLT). hu-BLT mice developed EVD following wild-type EBOV infection. Infection with high-dose EBOV resulted in rapid, lethal EVD with high viral loads, alterations in key human antiviral immune cytokines and chemokines, and severe histopathologic findings similar to those shown in the limited human postmortem data available. A dose- and donor-dependent clinical course was observed in hu-BLT mice infected with lower doses of either Mayinga (1976) or Makona (2014) isolates derived from human EBOV cases. Engraftment of the human cellular immune system appeared to be essential for the observed virulence, as nonengrafted mice did not support productive EBOV replication or develop lethal disease. hu-BLT mice offer a unique model for investigating the human immune response in EVD and an alternative animal model for EVD pathogenesis studies and therapeutic screening. Published by Oxford University Press for the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  5. Renal disease in cats infected with feline immunodeficiency virus.

    Science.gov (United States)

    Baxter, K J; Levy, J K; Edinboro, C H; Vaden, S L; Tompkins, M B

    2012-01-01

    Feline immunodeficiency virus (FIV) and human immunodeficiency virus (HIV) infection cause similar clinical syndromes of immune dysregulation, opportunistic infections, inflammatory diseases, and neoplasia. Renal disease is the 4th most common cause of death associated with HIV infection. To investigate the association between FIV infection and renal disease in cats. Client-owned cats (153 FIV-infected, 306 FIV-noninfected) and specific-pathogen-free (SPF) research colony cats (95 FIV-infected, 98 FIV-noninfected). A mixed retrospective/prospective cross-sectional study. Blood urea nitrogen (BUN), serum creatinine, urine specific gravity (USG), and urine protein:creatinine ratio (UPC) data were compared between FIV-infected and FIV-noninfected cats. In FIV-infected cats, total CD4+ and CD8+ T lymphocytes were measured using flow cytometry, and CD4+:CD8+ T lymphocyte ratio was calculated. Renal azotemia was defined as a serum creatinine ≥ 1.9 mg/dL with USG ≤ 1.035. Proteinuria was defined as a UPC > 0.4 with an inactive urine sediment. Among the client-owned cats, no association was detected between FIV infection and renal azotemia (P = .24); however, a greater proportion of FIV-infected cats were proteinuric (25.0%, 16 of 64 cats) compared to FIV-noninfected cats (10.3%, 20 of 195 cats) (P < .01). Neither neuter status nor health status were risk factors for proteinuria in FIV-infected cats, but UPC was positively correlated with the CD4+:CD8+ T lymphocyte ratio (Spearman's rho = 0.37, P = .01). Among the SPF research colony cats, no association was detected between FIV infection and renal azotemia (P = .21) or proteinuria (P = .25). Proteinuria but not azotemia was associated with natural FIV infection. Copyright © 2012 by the American College of Veterinary Internal Medicine.

  6. Regulation of c-myc and c-fos mRNA levels by polyomavirus: distinct roles for the capsid protein VP1 and the viral early proteins

    International Nuclear Information System (INIS)

    Zullo, J.; Stiles, C.D.; Garcea, R.L.

    1987-01-01

    The levels of c-myc, c-fos, and JE mRNAs accumulate in a biphasic pattern following infection of quiescent BALB/c 3T3 mouse cells with polyomavirus. Maximal levels of c-myc and c-fos mRNAs were seen within 1 hr and were nearly undetectable at 6 hr after infection. At 12 hr after infection mRNA levels were again maximal and remained elevated thereafter. Empty virions (capsids) and recombinant VP 1 protein, purified from Escherichia coli, induced the early but not the late phase of mRNA accumulation. Virions, capsids, and recombinant VP 1 protein stimulated [ 3 H]thymidine nuclear labeling and c-myc mRNA accumulation in a dose-responsive manner paralleling their affinity for the cell receptor for polyoma. The second phase of mRNA accumulation is regulated by the viral early gene products, as shown by polyomavirus early gene mutants and by a transfected cell line (336a) expressing middle tumor antigen upon glucocorticoid addition. These results suggest that polyomavirus interacts with the cell membrane at the onset of infection to increase the levels of mRNA for the cellular genes associated with cell competence for DNA replication, and subsequently these levels are maintained by the action of the early viral proteins

  7. Molecular Comparison and Evolutionary Analyses of VP1 Nucleotide Sequences of New African Human Enterovirus 71 Isolates Reveal a Wide Genetic Diversity

    Science.gov (United States)

    Nougairède, Antoine; Joffret, Marie-Line; Deshpande, Jagadish M.; Dubot-Pérès, Audrey; Héraud, Jean-Michel

    2014-01-01

    Most circulating strains of Human enterovirus 71 (EV-A71) have been classified primarily into three genogroups (A to C) on the basis of genetic divergence between the 1D gene, which encodes the VP1 capsid protein. The aim of the present study was to provide further insights into the diversity of the EV-A71 genogroups following the recent description of highly divergent isolates, in particular those from African countries, including Madagascar. We classified recent EV-A71 isolates by a large comparison of 3,346 VP1 nucleotidic sequences collected from GenBank. Analysis of genetic distances and phylogenetic investigations indicated that some recently-reported isolates did not fall into the genogroups A-C and clustered into three additional genogroups, including one Indian genogroup (genogroup D) and 2 African ones (E and F). Our Bayesian phylogenetic analysis provided consistent data showing that the genogroup D isolates share a recent common ancestor with the members of genogroup E, while the isolates of genogroup F evolved from a recent common ancestor shared with the members of the genogroup B. Our results reveal the wide diversity that exists among EV-A71 isolates and suggest that the number of circulating genogroups is probably underestimated, particularly in developing countries where EV-A71 epidemiology has been poorly studied. PMID:24598878

  8. Antigenic structure of the capsid protein of rabbit haemorrhagic disease virus

    DEFF Research Database (Denmark)

    Martinez-Torrecuadrada, Jorge L.; Cortes, Elena; Vela, Carmen

    1998-01-01

    Rabbit haemorrhagic disease virus (RHDV) causes an important disease in rabbits. The virus capsid is composed of a single 60 kDa protein. The capsid protein gene was cloned in Escherichia coli using the pET3 system, and the antigenic structure of RHDV VP60 was dissected using 11 monoclonal...

  9. Clinical Features and Outcome of Ebola Virus Disease in Pediatric Patients

    DEFF Research Database (Denmark)

    Damkjær, Mads; Rudolf, Frauke; Mishra, Sharmistha

    2016-01-01

    Clinical and outcome data on pediatric Ebola virus disease are limited. We report a case-series of 33 pediatric patients with Ebola virus disease in a single Ebola Treatment Center in 2014-2015. The case-fatality rate was 42%, with the majority of deaths occurring within 10 days of admission....

  10. Differential replication of foot-and-mouth disease viruses in mice determine lethality

    Science.gov (United States)

    Adult C57BL/6J mice have been used to study foot-and-mouth disease virus (FMDV) biology. In this work, two variants of an FMDV A/Arg/01 strain exhibiting differential pathogenicity in adult mice were identified and characterized: a non-lethal virus (A01NL) caused mild signs of disease, whereas a let...

  11. A systems view and lessons from the ongoing Ebola Virus disease ...

    African Journals Online (AJOL)

    This article analyses the on-going (2014) Ebola Virus Disease (EVD) outbreak in West Africa from a systems perspective; and draws out lessons for West Africa in general and Ghana in particular. Keywords: Ebola Virus Disease, West Africa , Ghana , Systems , Prevention and Control ...

  12. Milk thistle for alcoholic and/or hepatitis B or C virus liver diseases

    DEFF Research Database (Denmark)

    Rambaldi, A; Jacobs, B P; Iaquinto, G

    2005-01-01

    Alcohol and hepatotoxic viruses cause the majority of liver diseases. Randomised clinical trials have assessed whether extracts of milk thistle, Silybum marianum (L) Gaertneri, have any effect in patients with alcoholic and/or hepatitis B or C virus liver diseases....

  13. Milk thistle for alcoholic and/or hepatitis B or C virus liver diseases

    DEFF Research Database (Denmark)

    Rambaldi, A; Jacobs, B P; Gluud, C

    2007-01-01

    Alcohol and hepatotoxic viruses cause the majority of liver diseases. Randomised clinical trials have assessed whether extracts of milk thistle, Silybum marianum (L) Gaertneri, have any effect in patients with alcoholic and/or hepatitis B or C virus liver diseases....

  14. Genetic characterization of epizootic hemorrhagic disease virus strains isolated from cattle in Israel

    Science.gov (United States)

    Epizootic hemorrhagic disease virus (EHDV), an Orbivirus not previously reported in Israel, was isolated from Israeli cattle during a “bluetongue like” disease outbreak in 2006. To ascertain the origin of this new virus, three isolates from the outbreak were fully sequenced and compared with availab...

  15. Molecular epidemiology, evolution and phylogeny of foot-and-mouth disease virus

    DEFF Research Database (Denmark)

    Jamal, Syed Muhammad; Belsham, Graham J

    2018-01-01

    Foot-and-mouth disease virus (FMDV) is responsible for one of the most economically important infectious diseases of livestock. The virus spreads very easily and continues to affect many countries (mainly in Africa and Asia). The risks associated with the introduction of FMDV result in major...

  16. Virus-like particle vaccine primes immune responses preventing inactivated-virus vaccine-enhanced disease against respiratory syncytial virus.

    Science.gov (United States)

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Ko, Eun-Ju; Lee, Youri; Kwon, Young-Man; Kang, Sang-Moo

    2017-11-01

    Formalin inactivated respiratory syncytial virus (FI-RSV) vaccination caused vaccine-enhanced respiratory disease (ERD) upon exposure to RSV in children. Virus-like particles presenting RSV F fusion protein (F VLP) are known to increase T helper type-1 (Th1) immune responses and avoid ERD in animal models. We hypothesized that F VLP would prime immune responses preventing ERD upon subsequent exposure to ERD-prone FI-RSV. Here, we demonstrated that heterologous F VLP priming and FI-RSV boosting of mice prevented FI-RSV vaccine-enhanced lung inflammation and eosinophilia upon RSV challenge. F VLP priming redirected pulmonary T cells toward effector CD8 T cells producing Th1 cytokines and significantly suppressed pulmonary Th2 cytokines. This study suggests that RSV F VLP priming would modulate and shift immune responses to subsequent exposure to ERD-prone FI-RSV vaccine and RSV infection, suppressing Th2 immune-mediated pulmonary histopathology and eosinophilia. Copyright © 2017. Published by Elsevier Inc.

  17. Quantitative trait loci for resistance to maize streak virus disease in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-18

    Jul 18, 2008 ... African Journal of Biotechnology Vol. ... development ... Biotechnology Center, Kenya Agricultural Research Institute, P.O. Box 58711-00200, Nairobi, ... Maize streak virus disease is an important disease of maize in Kenya.

  18. An inactivated whole-virus porcine parvovirus vaccine protects pigs against disease but does not prevent virus shedding even after homologous virus challenge.

    Science.gov (United States)

    Foerster, Tessa; Streck, André Felipe; Speck, Stephanie; Selbitz, Hans-Joachim; Lindner, Thomas; Truyen, Uwe

    2016-06-01

    Inactivated whole-virus vaccines against porcine parvovirus (PPV) can prevent disease but not infection and virus shedding after heterologous virus challenge. Here, we showed that the same is true for a homologous challenge. Pregnant sows were vaccinated with an experimental inactivated vaccine based on PPV strain 27a. They were challenged on day 40 of gestation with the virulent porcine parvovirus PPV-27a from which the vaccine was prepared (homologous challenge). On day 90 of gestation, the fetuses from vaccinated sows were protected against disease, while the fetuses of the non-vaccinated sows (control group) exhibited signs of parvovirus disease. All gilts, whether vaccinated or not vaccinated, showed a boost of PPV-specific antibodies indicative of virus infection and replication. Low DNA copy numbers, but not infectious virus, could be demonstrated in nasal or rectal swabs of immunized sows, but high copy numbers of challenge virus DNA as well as infectious virus could both be demonstrated in non-vaccinated sows.

  19. Molecular epidemiology of infectious bursal disease virus in Zambia

    Directory of Open Access Journals (Sweden)

    Christopher J. Kasanga

    2013-10-01

    Full Text Available Nucleotide sequences of the VP2 hypervariable region (VP2-HVR of 10 infectious bursal disease viruses detected in indigenous and exotic chickens in Zambia from 2004 to 2005 were determined. Phylogenetic analysis showed that the viruses diverged into two genotypes and belonged to the African very virulent types (VV1 and VV2. In the phylogenetic tree, strains in one genotype clustered in a distinct group and were closely related to some strains isolated in western Africa (VV1, with nucleotide similarities of 95.7%– 96.5%. Strains in the other genotype were clustered within the eastern African VV type (VV2, with nucleotide similarities of 97.3%– 98.5%. Both genotypes were distributed in the southern parts of Zambia and had a unique conserved amino acid substitution at 300 (E→A in addition to the putative virulence marker at positions 222(A, 242(I, 256(I, 294(I and 299(S. These findings represent the first documentation of the existence of the African VV-IBDV variants in both indigenous and exotic chickens in Zambia.

  20. Mapping the zoonotic niche of Ebola virus disease in Africa

    Science.gov (United States)

    Pigott, David M; Golding, Nick; Mylne, Adrian; Huang, Zhi; Henry, Andrew J; Weiss, Daniel J; Brady, Oliver J; Kraemer, Moritz UG; Smith, David L; Moyes, Catherine L; Bhatt, Samir; Gething, Peter W; Horby, Peter W; Bogoch, Isaac I; Brownstein, John S; Mekaru, Sumiko R; Tatem, Andrew J; Khan, Kamran; Hay, Simon I

    2014-01-01

    Ebola virus disease (EVD) is a complex zoonosis that is highly virulent in humans. The largest recorded outbreak of EVD is ongoing in West Africa, outside of its previously reported and predicted niche. We assembled location data on all recorded zoonotic transmission to humans and Ebola virus infection in bats and primates (1976–2014). Using species distribution models, these occurrence data were paired with environmental covariates to predict a zoonotic transmission niche covering 22 countries across Central and West Africa. Vegetation, elevation, temperature, evapotranspiration, and suspected reservoir bat distributions define this relationship. At-risk areas are inhabited by 22 million people; however, the rarity of human outbreaks emphasises the very low probability of transmission to humans. Increasing population sizes and international connectivity by air since the first detection of EVD in 1976 suggest that the dynamics of human-to-human secondary transmission in contemporary outbreaks will be very different to those of the past. DOI: http://dx.doi.org/10.7554/eLife.04395.001 PMID:25201877

  1. Ebola virus disease: Effects of respiratory protection on healthcare workers

    Directory of Open Access Journals (Sweden)

    Hanan Mohammed Mohammed

    2015-07-01

    Full Text Available Ebola virus disease outbreak in West Africa sends an alarming message to all countries in the world, to increase the level of coordination and application of preventive measures globally to avoid a disastrous epidemic in the World, as the current situation in West Africa is critical especially after the World Health Organization increased the alarming level to an emergency in public health all over the world. Viral hemorrhagic fevers are important because they can readily spread within a hospital or mortuary setting, there is no effective cure or vaccine, they have a high mortality rate and they are difficult to recognize and diagnose rapidly. WHO has recommended respiratory protection for HCWs performing certain tasks such as aerosol-generating procedures, laboratory procedures, and autopsies. Particulate respirators are designed to help reduce the wearer’s exposure to certain airborne particles. The most effective way to block aerosolized particles is to use either a half-face or a full-face respirator. HCWs still need shoe covers, a full face respirator and latex or nitrile gloves to decrease the risk of Ebola virus contamination.

  2. Immune Response and Partial Protection against Heterologous Foot-and-Mouth Disease Virus Induced by Dendrimer Peptides in Cattle

    Directory of Open Access Journals (Sweden)

    I. Soria

    2018-01-01

    Full Text Available Synthetic peptides mimicking protective B- and T-cell epitopes are good candidates for safer, more effective FMD vaccines. Nevertheless, previous studies of immunization with linear peptides showed that they failed to induce solid protection in cattle. Dendrimeric peptides displaying two or four copies of a peptide corresponding to the B-cell epitope VP1 [136–154] of type O FMDV (O/UKG/11/2001 linked through thioether bonds to a single copy of the T-cell epitope 3A [21–35] (termed B2T and B4T, resp. afforded protection in vaccinated pigs. In this work, we show that dendrimeric peptides B2T and B4T can elicit specific humoral responses in cattle and confer partial protection against the challenge with a heterologous type O virus (O1/Campos/Bra/58. This protective response correlated with the induction of specific T-cells as well as with an anamnestic antibody response upon virus challenge, as shown by the detection of virus-specific antibody-secreting cells (ASC in lymphoid tissues distal from the inoculation point.

  3. A transgenic plant cell-suspension system for expression of epitopes on chimeric Bamboo mosaic virus particles.

    Science.gov (United States)

    Muthamilselvan, Thangarasu; Lee, Chin-Wei; Cho, Yu-Hsin; Wu, Feng-Chao; Hu, Chung-Chi; Liang, Yu-Chuan; Lin, Na-Sheng; Hsu, Yau-Heiu

    2016-01-01

    We describe a novel strategy to produce vaccine antigens using a plant cell-suspension culture system in lieu of the conventional bacterial or animal cell-culture systems. We generated transgenic cell-suspension cultures from Nicotiana benthamiana leaves carrying wild-type or chimeric Bamboo mosaic virus (BaMV) expression constructs encoding the viral protein 1 (VP1) epitope of foot-and-mouth disease virus (FMDV). Antigens accumulated to high levels in BdT38 and BdT19 transgenic cell lines co-expressing silencing suppressor protein P38 or P19. BaMV chimeric virus particles (CVPs) were subsequently purified from the respective cell lines (1.5 and 2.1 mg CVPs/20 g fresh weight of suspended biomass, respectively), and the resulting CVPs displayed VP1 epitope on the surfaces. Guinea pigs vaccinated with purified CVPs produced humoral antibodies. This study represents an important advance in the large-scale production of immunopeptide vaccines in a cost-effective manner using a plant cell-suspension culture system. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Multiple Virus Infections and the Characteristics of Chronic Bee Paralysis Virus in Diseased Honey Bees (Apis Mellifera L. in China

    Directory of Open Access Journals (Sweden)

    Wu Yan Y.

    2015-12-01

    Full Text Available China has the largest number of managed honey bee colonies globally, but there is currently no data on viral infection in diseased A. mellifera L. colonies in China. In particular, there is a lack of data on chronic bee paralysis virus (CBPV in Chinese honey bee colonies. Consequently, the present study investigated the occurrence and frequency of several widespread honey bee viruses in diseased Chinese apiaries, and we used the reverse transcription-polymerase chain reaction (RT-PCR assay. Described was the relationship between the presence of CBPV and diseased colonies (with at least one of the following symptoms: depopulation, paralysis, dark body colorings and hairless, or a mass of dead bees on the ground surrounding the beehives. Phylogenetic analyses of CBPV were employed. The prevalence of multiple infections of honey bee viruses in diseased Chinese apiaries was 100%, and the prevalence of infections with even five and six viruses were higher than expected. The incidence of CBPV in diseased colonies was significantly higher than that in apparently healthy colonies in Chinese A. mellifera aparies, and CBPV isolates from China can be separated into Chinese-Japanese clade 1 and 2. The results indicate that beekeeping in China may be threatened by colony decline due to the high prevalence of multiple viruses with CBPV.

  5. Carp edema virus/Koi sleepy disease: an emerging disease in Central-East Europe.

    Science.gov (United States)

    Lewisch, E; Gorgoglione, B; Way, K; El-Matbouli, M

    2015-02-01

    Koi sleepy disease (KSD), also known as carp edema virus (CEV), was first reported from juvenile colour carp in Japan in the 1970s. Recently, this pox virus was detected in several European countries, including Germany, France and the Netherlands. In England, in addition to colour carp, outbreaks in common carp are reported. KSD/CEV is an emerging infectious disease characterized by a typical sleepy behaviour, enophthalmia, generalized oedematous condition and gill necrosis, leading to hypoxia. High mortality, of up to 80-100%, is seen in juvenile koi collected from infected ponds. In Austria, this disease had not been detected until now. In spring 2014, diagnostic work revealed the disease in two unrelated cases. In one instance, a pond with adult koi was affected; in the other, the disease was diagnosed in adult common carp recently imported from the Czech Republic. A survey was carried out on recent cases (2013/2014), chosen from those with similar anamnestic and physical examination findings, revealing a total of 5/22 cases positive for KSD/CEV. In this study, two paradigmatic cases are presented in detail. Results together with molecular evidence shaped the pattern of the first diagnosis of KSD/CEV in fish from Austrian ponds. In the light of the positive cases detected from archived material, and the spread of the disease through live stock, imported from a neighbouring country, the need for epidemiological investigations in Austria and surrounding countries is emphasized. © 2014 Blackwell Verlag GmbH.

  6. Defective interfering particles in monolayer-propagated Newcastle disease virus

    International Nuclear Information System (INIS)

    Roman, J.M.; Simon, E.H.

    1976-01-01

    Newcastle disease virus (NDV) serially passaged in chick embryo fibroblasts (M-NDV) gives rise to defective interfering (NDV-DI) particles, while NDV passaged in embryonated eggs (E-NDV) does not. Co-infection with these particles and infectious virions results in a 99 percent reduction in yield. Interference is not due to interferon or to prevention of absorption of infectious virions and is specific for NDV. The particles mediating interference sediment at the same velocity as infectious virions. The accumulation of NDV-DI particles in monolayers but not in eggs may be a consequence of the fact that M-NDV virions are larger and probably contain more RNA, or it may reflect differences in NDV replicative processes in eggs and monolayers, or both

  7. Planning and response to Ebola virus disease: An integrated approach.

    Science.gov (United States)

    Smith, Philip W; Boulter, Kathleen C; Hewlett, Angela L; Kratochvil, Christopher J; Beam, Elizabeth J; Gibbs, Shawn G; Lowe, John-Martin J; Schwedhelm, Michelle M

    2015-05-01

    The care of patients with Ebola virus disease (EVD) requires the application of critical care medicine principles under conditions of stringent infection control precautions. The care of patients with EVD requires a number of elements in terms of physical layout, personal protective apparel, and other equipment. Provision of care is demanding in terms of depth of staff and training. The key to safely providing such care is a system that brings many valuable skills to the table, and allows communication between these individuals. We present our approach to leadership structure and function--a variation of incident command--in providing care to 3 patients with EVD. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  8. Social Vulnerability and Ebola Virus Disease in Rural Liberia.

    Science.gov (United States)

    Stanturf, John A; Goodrick, Scott L; Warren, Melvin L; Charnley, Susan; Stegall, Christie M

    2015-01-01

    The Ebola virus disease (EVD) epidemic that has stricken thousands of people in the three West African countries of Liberia, Sierra Leone, and Guinea highlights the lack of adaptive capacity in post-conflict countries. The scarcity of health services in particular renders these populations vulnerable to multiple interacting stressors including food insecurity, climate change, and the cascading effects of disease epidemics such as EVD. However, the spatial distribution of vulnerable rural populations and the individual stressors contributing to their vulnerability are unknown. We developed a Social Vulnerability Classification using census indicators and mapped it at the district scale for Liberia. According to the Classification, we estimate that districts having the highest social vulnerability lie in the north and west of Liberia in Lofa, Bong, Grand Cape Mount, and Bomi Counties. Three of these counties together with the capital Monrovia and surrounding Montserrado and Margibi counties experienced the highest levels of EVD infections in Liberia. Vulnerability has multiple dimensions and a classification developed from multiple variables provides a more holistic view of vulnerability than single indicators such as food insecurity or scarcity of health care facilities. Few rural Liberians are food secure and many cannot reach a medical clinic in Liberia may be warranted. We demonstrate how social vulnerability index approaches can be applied in the context of disease outbreaks, and our methods are relevant elsewhere.

  9. Properties of a virus causing mosaic and leaf curl disease of Celosia argentea L. in Nigeria.

    Science.gov (United States)

    Owolabi, T A; Taiwo, M A; Thottappilly, G A; Shoyinka, S A; Proll, E; Rabenstein, F

    1998-06-01

    A sap transmissible virus, causing mosaic and leaf curl disease of Celosia argentea, was isolated at vegetable farms in Amuwo Odofin, Tejuoso, and Abule Ado, Lagos, Nigeria. The virus had a restricted host range confined to a few species of the Amaranthaceae, Chenopodiaceae and Solanaceae families. It failed to infect several other species of the Aizoaceae, Brassicaceae, Cucurbitaceae, Fabaceae, Lamiaceae, Malvaceae, Poaceae and Tiliaceae families. The virus was transmitted in a non-persistent manner by Aphis spiraecola and Toxoptera citricidus but not by eight other aphid species tested. There was no evidence of transmission by seeds of C. argentae varieties. The viral coat protein had a relative molecular mass (M(r)) of about 30.2 K. Electron microscopy of purified virus preparations revealed flexuous rod shaped particles of about 750 nm in length. Serological studies were performed using the enzyme-linked immunosorbent assay (ELISA), immunosorbent electron microscopy (ISEM) and Western blot analysis. The virus reacted positively with an universal potyvirus group monoclonal antibody (MoAb) and MoAb P-3-3H8 raised against peanut stripe potyvirus. It also reacted with polyclonal antibodies raised against several potyviruses including asparagus virus-1 (AV-1), turnip mosaic virus (TuMV), maize dwarf mosaic virus (MDMV), watermelon mosaic virus (WMV-2), plum pox virus (PPV), soybean mosaic virus (SoyMV), lettuce mosaic virus (LMV), bean common mosaic virus (BCMV) and beet mosaic virus (BMV) in at least one of the serological assays used. On the basis of host range, mode of transmission, and available literature data, the celosia virus seems to be different from potyviruses previously reported to infect vegetables in Nigeria. The name celosia mosaic virus (CIMV) has been proposed for this virus.

  10. Ebola virus disease surveillance and response preparedness in northern Ghana

    Directory of Open Access Journals (Sweden)

    Martin N. Adokiya

    2016-05-01

    Full Text Available Background: The recent Ebola virus disease (EVD outbreak has been described as unprecedented in terms of morbidity, mortality, and geographical extension. It also revealed many weaknesses and inadequacies for disease surveillance and response systems in Africa due to underqualified staff, cultural beliefs, and lack of trust for the formal health care sector. In 2014, Ghana had high risk of importation of EVD cases. Objective: The objective of this study was to assess the EVD surveillance and response system in northern Ghana. Design: This was an observational study conducted among 47 health workers (district directors, medical, disease control, and laboratory officers in all 13 districts of the Upper East Region representing public, mission, and private health services. A semi-structured questionnaire with focus on core and support functions (e.g. detection, confirmation was administered to the informants. Their responses were recorded according to specific themes. In addition, 34 weekly Integrated Disease Surveillance and Response reports (August 2014 to March 2015 were collated from each district. Results: In 2014 and 2015, a total of 10 suspected Ebola cases were clinically diagnosed from four districts. Out of the suspected cases, eight died and the cause of death was unexplained. All the 10 suspected cases were reported, none was confirmed. The informants had knowledge on EVD surveillance and data reporting. However, there were gaps such as delayed reporting, low quality protective equipment (e.g. gloves, aprons, inadequate staff, and lack of laboratory capacity. The majority (38/47 of the respondents were not satisfied with EVD surveillance system and response preparedness due to lack of infrared thermometers, ineffective screening, and lack of isolation centres. Conclusion: EVD surveillance and response preparedness is insufficient and the epidemic is a wake-up call for early detection and response preparedness. Ebola surveillance remains

  11. Ebola (Ebola Virus Disease): Q&As on Transmission

    Science.gov (United States)

    ... in these fluids, but CDC and partners are working together to study how long the virus persists in ... Health, CDC, and the World Health Organization are working together to determine how long Ebola virus persists or ...

  12. Phylogenetic analysis of Newcastle disease viruses isolated from commercial poultry in Mozambique, 2011 to 2016

    International Nuclear Information System (INIS)

    Mapaco, L.P.; Monjane, I.V.A.; Nhamusso, A.E.; Viljoen, G.J; Dundon, W.G.; Achá, S.J.

    2016-01-01

    Full text: The complete sequence of the fusion (F) protein gene from eleven Newcastle disease viruses (NDV) isolated from commercial poultry in Mozambique between 2011 and 2016 has been generated. The F gene cleavage site motif for all eleven isolates was 112RRRKRF117 indicating that the viruses are virulent. A phylogenetic analysis using the full F gene sequence revealed that the viruses clustered within genotype VIIh and showed a higher similarity to NDVs from South Africa, China and Southeast Asia than to viruses previously described in Mozambique in 1994 to 1995 and 2005. The characterization of these new NDVs has important implications for Newcastle disease management and control in Mozambique. (author)

  13. Diagnostic evaluation of a multiplexed RT-PCR microsphere array assay for the detection of foot-and-mouth disease virus and look-alike disease viruses

    Energy Technology Data Exchange (ETDEWEB)

    Hindson, B J; Reid, S M; Baker, B R; Ebert, K; Ferris, N P; Bentley Tammero, L F; Lenhoff, R J; Naraghi-Arani, P; Vitalis, E A; Slezak, T R; Hullinger, P J; King, D P

    2007-07-26

    A high-throughput multiplexed assay was developed for the differential laboratory diagnosis of foot-and-mouth disease virus (FMDV) from viruses which cause clinically similar diseases of livestock. This assay simultaneously screens for five RNA and two DNA viruses using multiplexed reverse transcription PCR (mRT-PCR) amplification coupled with a microsphere hybridization array and flow-cytometric detection. Two of the seventeen primer-probe sets included in this multiplex assay were adopted from previously characterized real-time RT-PCR (rRT-PCR) assays for FMDV. The diagnostic accuracy of the mRT-PCR was evaluated using 287 field samples, including 248 (true positive n= 213, true negative n=34) from suspect cases of foot-and-mouth disease collected from 65 countries between 1965 and 2006 and 39 true negative samples collected from healthy animals. The mRT-PCR assay results were compared with two singleplex rRT-PCR assays, using virus isolation with antigen-ELISA as the reference method. The diagnostic sensitivity of the mRT-PCR assay for FMDV was 93.9% [95% C.I. 89.8-96.4%], compared to 98.1% [95% C.I. 95.3-99.3%] for the two singleplex rRT-PCR assays used in combination. In addition, the assay could reliably differentiate between FMDV and other vesicular viruses such as swine vesicular disease virus and vesicular exanthema of swine virus. Interestingly, the mRT-PCR detected parapoxvirus (n=2) and bovine viral diarrhea virus (n=2) in clinical samples, demonstrating the screening potential of this mRT-PCR assay to identify viruses in FMDV-negative material not previously recognized using focused single-target rRT-PCR assays.

  14. A systematic approach to novel virus discovery in emerging infectious disease outbreaks.

    Science.gov (United States)

    Sridhar, Siddharth; To, Kelvin K W; Chan, Jasper F W; Lau, Susanna K P; Woo, Patrick C Y; Yuen, Kwok-Yung

    2015-05-01

    The discovery of novel viruses is of great importance to human health-both in the setting of emerging infectious disease outbreaks and in disease syndromes of unknown etiology. Despite the recent proliferation of many efficient virus discovery methods, careful selection of a combination of methods is important to demonstrate a novel virus, its clinical associations, and its relevance in a timely manner. The identification of a patient or an outbreak with distinctive clinical features and negative routine microbiological workup is often the starting point for virus hunting. This review appraises the roles of culture, electron microscopy, and nucleic acid detection-based methods in optimizing virus discovery. Cell culture is generally slow but may yield viable virus. Although the choice of cell line often involves trial and error, it may be guided by the clinical syndrome. Electron microscopy is insensitive but fast, and may provide morphological clues to choice of cell line or consensus primers for nucleic acid detection. Consensus primer PCR can be used to detect viruses that are closely related to known virus families. Random primer amplification and high-throughput sequencing can catch any virus genome but cannot yield an infectious virion for testing Koch postulates. A systematic approach that incorporates carefully chosen combinations of virus detection techniques is required for successful virus discovery. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  15. Role of Virus-Encoded microRNAs in Avian Viral Diseases

    Directory of Open Access Journals (Sweden)

    Yongxiu Yao

    2014-03-01

    Full Text Available With total dependence on the host cell, several viruses have adopted strategies to modulate the host cellular environment, including the modulation of microRNA (miRNA pathway through virus-encoded miRNAs. Several avian viruses, mostly herpesviruses, have been shown to encode a number of novel miRNAs. These include the highly oncogenic Marek’s disease virus-1 (26 miRNAs, avirulent Marek’s disease virus-2 (36 miRNAs, herpesvirus of turkeys (28 miRNAs, infectious laryngotracheitis virus (10 miRNAs, duck enteritis virus (33 miRNAs and avian leukosis virus (2 miRNAs. Despite the closer antigenic and phylogenetic relationship among some of the herpesviruses, miRNAs encoded by different viruses showed no sequence conservation, although locations of some of the miRNAs were conserved within the repeat regions of the genomes. However, some of the virus-encoded miRNAs showed significant sequence homology with host miRNAs demonstrating their ability to serve as functional orthologs. For example, mdv1-miR-M4-5p, a functional ortholog of gga-miR-155, is critical for the oncogenicity of Marek’s disease virus. Additionally, we also describe the potential association of the recently described avian leukosis virus subgroup J encoded E (XSR miRNA in the induction of myeloid tumors in certain genetically-distinct chicken lines. In this review, we describe the advances in our understanding on the role of virus-encoded miRNAs in avian diseases.

  16. Epstein-Barr virus: general factors, virus-related diseases and measurement of viral load after transplant

    Directory of Open Access Journals (Sweden)

    Luciana Cristina Fagundes Gequelin

    2011-10-01

    Full Text Available The Epstein-Barr virus is responsible for infectious mononucleosis syndrome and is also closely associated to several types of cancer. The main complication involving Epstein-Barr virus infection, both in recipients of hematopoietic stem cells and solid organs, is post-transplant lymphoproliferative disease. The importance of this disease has increased interest in the development of laboratory tools to improve post-transplant monitoring and to detect the disease before clinical evolution. Viral load analysis for Epstein-Barr virus through real-time polymerase chain reaction is, at present, the best tool to measure viral load. However, there is not a consensus on which sample type is the best for the test and what is its predictive value for therapeutic interventions.

  17. Structure of the Triatoma virus capsid.

    Science.gov (United States)

    Squires, Gaëlle; Pous, Joan; Agirre, Jon; Rozas-Dennis, Gabriela S; Costabel, Marcelo D; Marti, Gerardo A; Navaza, Jorge; Bressanelli, Stéphane; Guérin, Diego M A; Rey, Felix A

    2013-06-01

    The members of the Dicistroviridae family are non-enveloped positive-sense single-stranded RNA (+ssRNA) viruses pathogenic to beneficial arthropods as well as insect pests of medical importance. Triatoma virus (TrV), a member of this family, infects several species of triatomine insects (popularly named kissing bugs), which are vectors for human trypanosomiasis, more commonly known as Chagas disease. The potential use of dicistroviruses as biological control agents has drawn considerable attention in the past decade, and several viruses of this family have been identified, with their targets covering honey bees, aphids and field crickets, among others. Here, the crystal structure of the TrV capsid at 2.5 Å resolution is reported, showing that as expected it is very similar to that of Cricket paralysis virus (CrPV). Nevertheless, a number of distinguishing structural features support the introduction of a new genus (Triatovirus; type species TrV) under the Dicistroviridae family. The most striking differences are the absence of icosahedrally ordered VP4 within the infectious particle and the presence of prominent projections that surround the fivefold axis. Furthermore, the structure identifies a second putative autoproteolytic DDF motif in protein VP3, in addition to the conserved one in VP1 which is believed to be responsible for VP0 cleavage during capsid maturation. The potential meaning of these new findings is discussed.

  18. [Role of hepatitis A and E viruses in the development of autoimmune diseases].

    Science.gov (United States)

    Iakimchuk, K S; Malinnikova, E Iu; Poleshchuk, V F; Mikhaĭlov, M I

    2011-01-01

    The mechanisms of development of autoimmune diseases may be associated with a complex of genetic, immune, hormonal, and infectious factors. Autoimmune diseases include a wide range of systemic and organ-specific diseases, including autoimmune hepatitis (AIH). It is currently assumed that the pathogenesis of AIH is due to compromised immune regulation in the presence of an exogenous triggering factor. Exogenous factors, such as viruses, may be triggers of AIH. There may be different ways of initiating an autoimmune response by viruses, which includes nonspecific T-lymphocyte activation and molecular mimicry. There is much evidence supporting the initiating role of hepatitis viruses in the development of AIH and other autoimmune diseases. The development of AIH symptoms during hepatitis A and E virus infections has been described elsewhere. The creation of animal models of viral hepatitis is required to confirm the hypothesis that the viruses trigger the development of AIH and other autoimmune manifestations.

  19. Viraemia and Ebola virus secretion in survivors of Ebola virus disease in Sierra Leone: a cross-sectional cohort study.

    Science.gov (United States)

    Green, Edward; Hunt, Luke; Ross, J C Gareth; Nissen, Nina Marie; Curran, Tanya; Badhan, Anjna; Sutherland, Katherine A; Richards, Jade; Lee, James S; Allen, Samuel H; Laird, Steven; Blackman, Mandy; Collacott, Ian; Parker, Paul A; Walbridge, Andrew; Phillips, Rebecca; Sellu, Sia Jammie; Dama, Agnes; Sheriff, Alpha Karim; Zombo, Joseph; Ngegba, Doris; Wurie, Alieh H; Checchi, Francesco; Brooks, Timothy J

    2016-09-01

    In survivors of Ebola virus disease, clinical sequelae including uveitis, arthralgia, and fatigue are common and necessitate systematic follow-up. However, the infection risk to health-care providers is poorly defined. Here we report Ebola virus RT-PCR data for body site and fluid samples from a large cohort of Ebola virus survivors at clinic follow-up. In this cross-sectional cohort study, consecutive survivors of Ebola virus disease attending Kerry Town survivor clinic (Freetown, Sierra Leone), who had been discharged from the Kerry Town Ebola treatment unit, were invited to participate. We collected and tested axillary, blood, conjunctival, forehead, mouth, rectal, semen, urine, and vaginal specimens for presence of Ebola virus using RT-PCR. We regarded samples to be positive for Ebola virus disease if the cycle threshold was 40 or lower. We collected demographic data from survivors of their age, sex, time since discharge from the treatment unit, and length of acute admission in the Ebola treatment unit using anonymised standard forms. Between April 2, and June 16, 2015, of 151 survivors of Ebola virus disease invited to participate, 112 (74%) provided consent. The median age of participants was 21·5 years (IQR 14-31·5) with 34 (30%) participants younger than 16 years. 50 (45%) of 112 participants were male. We tested a total of 555 specimens: 103 from the axilla, 93 from blood, 92 from conjunctiva, 54 from forehead, 105 from mouth, 17 from the rectum, one from semen, 69 from urine, and 21 from the vagina. The median time from Ebola treatment unit discharge to specimen collection was 142 days (IQR 127-159). 15 participants had a total of 74 swabs taken less than 100 days from discharge. The semen sample from one participant tested positive for Ebola virus at 114 days after discharge from the treatment unit; specimens taken from the axilla, blood, conjunctiva, forehead, mouth, rectum, and urine of the same participant tested negative. All specimens from the

  20. Modeling the transmission dynamics of Ebola virus disease in Liberia.

    Science.gov (United States)

    Xia, Zhi-Qiang; Wang, Shi-Fu; Li, Shen-Long; Huang, Liu-Yu; Zhang, Wen-Yi; Sun, Gui-Quan; Gai, Zhong-Tao; Jin, Zhen

    2015-09-08

    Ebola virus disease (EVD) has erupted many times in some zones since it was first found in 1976. The 2014 EVD outbreak in West Africa is the largest ever, which has caused a large number of deaths and the most serious country is Liberia during the outbreak period. Based on the data released by World Health Organization and the actual transmission situations, we investigate the impact of different transmission routes on the EVD outbreak in Liberia and estimate the basic reproduction number R0 = 2.012 in the absence of effective control measures. Through sensitivity and uncertainty analysis, we reveal that the transmission coefficients of suspected and probable cases have stronger correlations on the basic reproduction number. Furthermore, we study the influence of control measures (isolation and safe burial measures) on EVD outbreak. It is found that if combined control measures are taken, the basic reproduction number will be less than one and thus EVD in Liberia may be well contained. The obtained results may provide new guidance to prevent and control the spread of disease.

  1. Biochemical map of polypeptides specified by foot-and-mouth disease virus.

    OpenAIRE

    Grubman, M J; Robertson, B H; Morgan, D O; Moore, D M; Dowbenko, D

    1984-01-01

    Pulse-chase labeling of foot-and-mouth disease virus-infected bovine kidney cells revealed stable and unstable viral-specific polypeptides. To identify precursor-product relationships among these polypeptides, antisera against a number of structural and nonstructural viral-specific polypeptides were used. Cell-free translations programmed with foot-and-mouth disease virion RNA or foot-and-mouth disease virus-infected bovine kidney cell lysates, which were shown to contain almost identical pol...

  2. Influence of the Leader protein coding region of foot-and-mouth disease virus on virus replication

    DEFF Research Database (Denmark)

    Belsham, Graham

    2013-01-01

    The foot-and-mouth disease virus (FMDV) Leader (L) protein is produced in two forms, Lab and Lb, differing only at their amino-termini, due to the use of separate initiation codons, usually 84 nt apart. It has been shown previously, and confirmed here, that precise deletion of the Lab coding......, in the context of the virus lacking the Lb coding region, was also tolerated by the virus within BHK cells. However, precise loss of the Lb coding sequence alone blocked FMDV replication in primary bovine thyroid cells. Thus, the requirement for the Leader protein coding sequences is highly dependent...... on the nature and extent of the residual Leader protein sequences and on the host cell system used. FMDVs precisely lacking Lb and with the Lab initiation codon modified may represent safer seed viruses for vaccine production....

  3. Heat Shock Protein 70 Enhances Mucosal Immunity against Human Norovirus When Coexpressed from a Vesicular Stomatitis Virus Vector

    Science.gov (United States)

    Ma, Yuanmei; Duan, Yue; Wei, Yongwei; Liang, Xueya; Niewiesk, Stefan; Oglesbee, Michael

    2014-01-01

    ABSTRACT Human norovirus (NoV) accounts for 95% of nonbacterial gastroenteritis worldwide. Currently, there is no vaccine available to combat human NoV as it is not cultivable and lacks a small-animal model. Recently, we demonstrated that recombinant vesicular stomatitis virus (rVSV) expressing human NoV capsid protein (rVSV-VP1) induced strong immunities in mice (Y. Ma and J. Li, J. Virol. 85:2942–2952, 2011). To further improve the safety and efficacy of the vaccine candidate, heat shock protein 70 (HSP70) was inserted into the rVSV-VP1 backbone vector. A second construct was generated in which the firefly luciferase (Luc) gene was inserted in place of HSP70 as a control for the double insertion. The resultant recombinant viruses (rVSV-HSP70-VP1 and rVSV-Luc-VP1) were significantly more attenuated in cell culture and viral spread in mice than rVSV-VP1. At the inoculation dose of 1.0 × 106 PFU, rVSV-HSP70-VP1 triggered significantly higher vaginal IgA than rVSV-VP1 and significantly higher fecal and vaginal IgA responses than rVSV-Luc-VP1, although serum IgG and T cell responses were similar. At the inoculation dose of 5.0 × 106 PFU, rVSV-HSP70-VP1 stimulated significantly higher T cell, fecal, and vaginal IgA responses than rVSV-VP1. Fecal and vaginal IgA responses were also significantly increased when combined vaccination of rVSV-VP1 and rVSV-HSP70 was used. Collectively, these data indicate that (i) insertion of an additional gene (HSP70 or Luc) into the rVSV-VP1 backbone further attenuates the VSV-based vaccine in vitro and in vivo, thus improving the safety of the vaccine candidate, and (ii) HSP70 enhances the human NoV-specific mucosal and T cell immunities triggered by a VSV-based human NoV vaccine. IMPORTANCE Human norovirus (NoV) is responsible for more than 95% of acute nonbacterial gastroenteritis worldwide. Currently, there is no vaccine for this virus. Development of a live attenuated vaccine for human NoV has not been possible because it is

  4. Identification of a New Cotton Disease Caused by an Atypical Cotton Leafroll Dwarf Virus in Argentina.

    Science.gov (United States)

    Agrofoglio, Yamila C; Delfosse, Verónica C; Casse, María F; Hopp, Horacio E; Kresic, Iván Bonacic; Distéfano, Ana J

    2017-03-01

    An outbreak of a new disease occurred in cotton (Gossypium hirsutum) fields in northwest Argentina starting in the 2009-10 growing season and is still spreading steadily. The characteristic symptoms of the disease included slight leaf rolling and a bushy phenotype in the upper part of the plant. In this study, we determined the complete nucleotide sequences of two independent virus genomes isolated from cotton blue disease (CBD)-resistant and -susceptible cotton varieties. This virus genome comprised 5,866 nucleotides with an organization similar to that of the genus Polerovirus and was closely related to cotton leafroll dwarf virus, with protein identity ranging from 88 to 98%. The virus was subsequently transmitted to a CBD-resistant cotton variety using Aphis gossypii and symptoms were successfully reproduced. To study the persistence of the virus, we analyzed symptomatic plants from CBD-resistant varieties from different cotton-growing fields between 2013 and 2015 and showed the presence of the same virus strain. In addition, a constructed full-length infectious cDNA clone from the virus caused disease symptoms in systemic leaves of CBD-resistant cotton plants. Altogether, the new leafroll disease in CBD-resistant cotton plants is caused by an atypical cotton leafroll dwarf virus.

  5. A new reportable disease is born: Taiwan Centers for Disease Control's response to emerging Zika virus infection.

    Science.gov (United States)

    Huang, Angela Song-En; Shu, Pei-Yun; Yang, Chin-Hui

    2016-04-01

    Zika virus infection, usually a mild disease transmitted through the bite of Aedes mosquitos, has been reported to be possibly associated with microcephaly and neurologic complications. Taiwan's first imported case of Zika virus infection was found through fever screening at airport entry in January 2016. No virus was isolated from patient's blood taken during acute illness; however, PCR products showed that the virus was of Asian lineage closely related to virus from Cambodia. To prevent Zika virus from spreading in Taiwan, the Taiwan Centers for Disease Control has strengthened efforts in quarantine and surveillance, increased Zika virus infection diagnostic capacity, implemented healthcare system preparedness plans, and enhanced vector control program through community mobilization and education. Besides the first imported case, no additional cases of Zika virus infection have been identified. Furthermore, no significant increase in the number of microcephaly or Guillain- Barré Syndrome has been observed in Taiwan. To date, there have been no autochthonous transmissions of Zika virus infection. Copyright © 2016. Published by Elsevier B.V.

  6. Virus interference between H7N2 low pathogenic avian influenza virus and lentogenic Newcastle disease virus in experimental co-infections in chickens and turkeys.

    Science.gov (United States)

    Costa-Hurtado, Mar; Afonso, Claudio L; Miller, Patti J; Spackman, Erica; Kapczynski, Darrell R; Swayne, David E; Shepherd, Eric; Smith, Diane; Zsak, Aniko; Pantin-Jackwood, Mary

    2014-01-06

    Low pathogenicity avian influenza virus (LPAIV) and lentogenic Newcastle disease virus (lNDV) are commonly reported causes of respiratory disease in poultry worldwide with similar clinical and pathobiological presentation. Co-infections do occur but are not easily detected, and the impact of co-infections on pathobiology is unknown. In this study chickens and turkeys were infected with a lNDV vaccine strain (LaSota) and a H7N2 LPAIV (A/turkey/VA/SEP-67/2002) simultaneously or sequentially three days apart. No clinical signs were observed in chickens co-infected with the lNDV and LPAIV or in chickens infected with the viruses individually. However, the pattern of virus shed was different with co-infected chickens, which excreted lower titers of lNDV and LPAIV at 2 and 3 days post inoculation (dpi) and higher titers at subsequent time points. All turkeys inoculated with the LPAIV, whether or not they were exposed to lNDV, presented mild clinical signs. Co-infection effects were more pronounced in turkeys than in chickens with reduction in the number of birds shedding virus and in virus titers, especially when LPAIV was followed by lNDV. In conclusion, co-infection of chickens or turkeys with lNDV and LPAIV affected the replication dynamics of these viruses but did not affect clinical signs. The effect on virus replication was different depending on the species and on the time of infection. These results suggest that infection with a heterologous virus may result in temporary competition for cell receptors or competent cells for replication, most likely interferon-mediated, which decreases with time.

  7. Isolation of lumpy skin disease virus from cattle in and around ...

    African Journals Online (AJOL)

    ... Lumpy Skin Disease was found to be a serious disease in the study area. So, further investigation is needed on identification of the causative agents and Molecular characterization of Lumpy Skin Disease Virus and risk factors of the disease in South Wollo Zone. Keywords: Cattle, Dessie and Kombolcha, LSD, LSDV, ...

  8. Pathotyping of a Newcastle disease virus isolated from peacock (Pavo cristatus).

    Science.gov (United States)

    Vijayarani, K; Muthusamy, S; Tirumurugaan, K G; Sakthivelan, S M; Kumanan, K

    2010-03-01

    This report describes Newcastle disease in peacock and the isolation and characterization of the virus. The virus had an intracerbral pathogenicity index of 1.71 and mean death time of 47 h. The isolate had multiple basic amino acids at the fusion protein cleavage site sequence ((110)GGRRQRRFIG(119)) with a phenylalanine at residue 117. Biological and molecular characterization revealed that the virus is velogenic. Phylogenetic analysis placed the isolate in genotype II.

  9. [Several issues on the epidemiology of Zika virus disease].

    Science.gov (United States)

    Lu, Guiyang; Su, Yingying; Wang, Ning

    2016-04-01

    Zika virus belongs to Aedes mosquito-borne flavivirus. In response to the current cluster of congenital malformations (microcephaly) and other neurological complications (Guillain-Barré Syndrome) that could be linked to Zika virus infection, WHO declares that Zika virus is of global public health importance. Data sources were from peer review articles and WHO documents. The sources of Zika virus infection would include patients, people with asymptomatic infections and primates. The infectious period of Zika virus remains unclear. However, according to the period that RNA of Zika virus can be positively detected in blood, saliva, urine or semen, we can presume that the communicable period may last for 2 months or even longer. Zika virus is primarily transmitted to humans by infected Aedes spp. mosquitoes. Presumptive vertical, blood or sexual routes of transmission have been reported. More evidence indicated the existence of a cause-effect relationship between Zika virus infection and congenital microcephaly/Guillain-Barre syndrome. Strategies include successful control the amount of mosquitoes and minimize the contacts between mosquitoes and human beings could effectively prevent the Zika virus transmission. Other preventive measures as cutting off vertical, blood or sexual routes of transmission should also be adopted. The epidemiology of Zika virus remains uncertain which calls for further research.

  10. Coxsackievirus A6 and enterovirus 71 causing hand, foot and mouth disease in Cuba, 2011-2013.

    Science.gov (United States)

    Fonseca, Magilé C; Sarmiento, Luis; Resik, Sonia; Martínez, Yenisleidys; Hung, Lai Heng; Morier, Luis; Piñón, Alexander; Valdéz, Odalys; Kourí, Vivian; González, Guelsys

    2014-09-01

    Hand, foot and mouth disease (HFMD) is usually caused by coxsackievirus A16 or enterovirus 71 (EV71). Between 2011 and 2013, HFMD cases were reported from different Cuban provinces. A total of 42 clinical specimens were obtained from 23 patients. Detection, identification and phylogenetic analysis of enterovirus-associated HFMD were carried out by virus isolation, specific enterovirus PCR and partial VP1 sequences. HEV was detected in 11 HFMD cases. Emerging genetic variants of coxsackievirus A6 and EV71 were identified as the causative agents of the Cuban HFMD cases.

  11. Genetic susceptibility to and presence of endogenous avian leukosis viruses impose no significant impact on survival days of chickens challenged with very virulent plus Marek's disease virus

    Science.gov (United States)

    Chicks of distinct genotypes at the tumor virus B locus (TVB) in combination with presence or absence of endogenous avian leukosis virus ev21 gene in their genomes were examined for survival day patterns after challenge with very virulent plus Marek’s disease virus (vv+MDV) in three consecutive tria...

  12. Social Vulnerability and Ebola Virus Disease in Rural Liberia.

    Directory of Open Access Journals (Sweden)

    John A Stanturf

    Full Text Available The Ebola virus disease (EVD epidemic that has stricken thousands of people in the three West African countries of Liberia, Sierra Leone, and Guinea highlights the lack of adaptive capacity in post-conflict countries. The scarcity of health services in particular renders these populations vulnerable to multiple interacting stressors including food insecurity, climate change, and the cascading effects of disease epidemics such as EVD. However, the spatial distribution of vulnerable rural populations and the individual stressors contributing to their vulnerability are unknown. We developed a Social Vulnerability Classification using census indicators and mapped it at the district scale for Liberia. According to the Classification, we estimate that districts having the highest social vulnerability lie in the north and west of Liberia in Lofa, Bong, Grand Cape Mount, and Bomi Counties. Three of these counties together with the capital Monrovia and surrounding Montserrado and Margibi counties experienced the highest levels of EVD infections in Liberia. Vulnerability has multiple dimensions and a classification developed from multiple variables provides a more holistic view of vulnerability than single indicators such as food insecurity or scarcity of health care facilities. Few rural Liberians are food secure and many cannot reach a medical clinic in <80 minutes. Our results illustrate how census and household survey data, when displayed spatially at a sub-county level, may help highlight the location of the most vulnerable households and populations. Our results can be used to identify vulnerability hotspots where development strategies and allocation of resources to address the underlying causes of vulnerability in Liberia may be warranted. We demonstrate how social vulnerability index approaches can be applied in the context of disease outbreaks, and our methods are relevant elsewhere.

  13. Ebola Virus Disease: Ethics and Emergency Medical Response Policy.

    Science.gov (United States)

    Jecker, Nancy S; Dudzinski, Denise M; Diekema, Douglas S; Tonelli, Mark

    2015-09-01

    Caring for patients affected with Ebola virus disease (EVD) while simultaneously preventing EVD transmission represents a central ethical challenge of the EVD epidemic. To address this challenge, we propose a model policy for resuscitation and emergent procedure policy of patients with EVD and set forth ethical principles that lend support to this policy. The policy and principles we propose bear relevance beyond the EVD epidemic, offering guidance for the care of patients with other highly contagious, virulent, and lethal diseases. The policy establishes (1) a limited code status for patients with confirmed or suspected EVD. Limited code status means that a code blue will not be called for patients with confirmed or suspected EVD at any stage of the disease; however, properly protected providers (those already in full protective equipment) may initiate resuscitative efforts if, in their clinical assessment, these efforts are likely to benefit the patient. The policy also requires that (2) resuscitation not be attempted for patients with advanced EVD, as resuscitation would be medically futile; (3) providers caring for or having contact with patients with confirmed or suspected EVD be properly protected and trained; (4) the treating team identify and treat in advance likely causes of cardiac and respiratory arrest to minimize the need for emergency response; (5) patients with EVD and their proxies be involved in care discussions; and (6) care team and provider discretion guide the care of patients with EVD. We discuss ethical issues involving medical futility and the duty to avoid harm and propose a utilitarian-based principle of triage to address resource scarcity in the emergency setting.

  14. Molecular characterization of a virus from the family Luteoviridae associated with cotton blue disease.

    Science.gov (United States)

    Corrêa, R L; Silva, T F; Simões-Araújo, J L; Barroso, P A V; Vidal, M S; Vaslin, M F S

    2005-07-01

    Cotton blue disease is an aphid-transmitted cotton disease described in Brazil in 1962 as Vein Mosaic "var. Ribeirão Bonito". At present it causes economically important losses in cotton crops if control measures are not implemented. The observed symptoms and mode of transmission have prompted researchers to speculate that cotton blue disease could be attributed to a member of the family Luteoviridae, but there was no molecular evidence supporting this hypothesis. We have amplified part of the genome of a virus associated with this disease using degenerate primers for members of the family Luteoviridae. Sequence analysis of the entire capsid and a partial RdRp revealed a virus probably belonging to the genus Polerovirus. Based on our results we propose that cotton blue disease is associated with a virus with the putative name Cotton leafroll dwarf virus (CLRDV).

  15. Incidence of Viral Diseases and Occurrence of Three Unreported Viruses in Yams in Korea

    Directory of Open Access Journals (Sweden)

    Joong-Hwan Lee

    2017-03-01

    Full Text Available During 2012 to 2014, a survey for the presence of viral diseases in yam plants was carried out in a field of the Institute for Bioresources Research in Gyeongsangbuk-do, Korea. A total of 88 leaf samples were collected and tested by reverse transcription polymerase chain reaction using specific primer sets. Eighty-one samples were positive for Broad bean wilt virus 2 (BBWV2, Chinese yam necrotic mosaic virus (ChYNMV, Cucumber mosaic virus (CMV, Japanese yam mosaic virus (JYMV, and Yam mild mosaic virus (YMMV, whereas Yam mosaic virus (YMV was not detected. Additionally, seven samples were negative for all viruses. Several samples exhibited mixed (double and triple infections. Three viruses (CMV, JYMV, and YMMV were detected for the first time in yam plants in Korea. A BLAST search showed that three viruses shared nucleotide identities with CMV-Ca (98%, JYMV-O2 (91%, and YMMV-TG_NH_1 (86%. Thus, our findings confirmed that yam plants cultivated in Korea were infected with multiple viruses with three of these viruses reported for the first time in Korea.

  16. Virus interference between H7N2 low pathogenic avian influenza virus and lentogenic Newcastle disease virus in experimental co-infections in chickens and turkeys

    OpenAIRE

    Costa-Hurtado, Mar; Afonso, Claudio L; Miller, Patti J; Spackman, Erica; Kapczynski, Darrell R; Swayne, David E; Shepherd, Eric; Smith, Diane; Zsak, Aniko; Pantin-Jackwood, Mary

    2014-01-01

    International audience; Low pathogenicity avian influenza virus (LPAIV) and lentogenic Newcastle disease virus (l NDV) are commonly reported causes of respiratory disease in poultry worldwide with similar clinical and pathobiological presentation. Co-infections do occur but are not easily detected, and the impact of co-infections on pathobiology is unknown. In this study chickens and turkeys were infected with a l NDV vaccine strain (LaSota) and a H7N2 LPAIV (A/turkey/VA/SEP-67/2002) simultan...

  17. The use of convalescent plasma to treat emerging infectious diseases: focus on Ebola virus disease.

    Science.gov (United States)

    Winkler, Anne M; Koepsell, Scott A

    2015-11-01

    The purpose of this review is to discuss the use of convalescent plasma for the treatment of emerging infectious diseases, focusing on the recent use for the treatment of Ebola virus disease (EVD). Ebola convalescent plasma has been used as a therapy for treatment of EVD during the 2014 West Africa epidemic. Several cases from the United States and Europe have been recently published, in addition to multiple ongoing clinical trials in the United States and West Africa. Even more recently, convalescent plasma has been used for treatment of individuals with Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Although the first reports of successful treatment with passive immune therapy date back to the early 1900s, convalescent plasma has materialized as a possible therapy for patients who develop infection from one of the emerging infectious diseases such as EVD or MERS-CoV, although the efficacy of such therapy has yet to be proven in clinical trials.

  18. Vector competence of Culicoides sonorensis (Diptera: Ceratopogonidae) to epizootic hemorrhagic disease virus serotype 7

    Science.gov (United States)

    Background: Culicoides sonorensis (Diptera: Ceratopogonidae) is a vector of epizootic hemorrhagic disease virus (EHDV) serotypes 1 and 2 in North America, where these viruses are well-known pathogens of white-tailed deer (WTD) and other wild ruminants. Although historically rare, reports of clinica...

  19. Epstein-Barr Virus Lymphoproliferative Disease Following Allogeneic Hematopoietic Stem Cell Transplantation: Prediction and Early Intervention

    NARCIS (Netherlands)

    J.W.J. van Esser (Joost)

    2003-01-01

    textabstractEpstein-Barr virus (EBV) has been associated with a variety of both infectious and malignant human diseases. These viruses are characterized by (B-cell) lymphotropism, their ability to establish latent infection in host cells and to induce proliferation of these latently infected cells.

  20. Immune Evasion During Foot-and-Mouth Disease Virus (FMDV) Infection of Swine

    Science.gov (United States)

    The interface between successful pathogens and their hosts is often a tenuous balance. In acute viral infections, this involves induction and inhibition of innate responses. Foot-and-mouth disease virus (FMDV) is considered one of the most contagious viruses known and is characterized by rapid induc...

  1. Influenza A (H10N7) Virus Causes Respiratory Tract Disease in Harbor Seals and Ferrets

    NARCIS (Netherlands)

    van den Brand, Judith M A; Wohlsein, Peter; Herfst, Sander; Bodewes, Rogier; Pfankuche, Vanessa M; van de Bildt, Marco W G; Seehusen, Frauke; Puff, Christina; Richard, Mathilde; Siebert, Ursula; Lehnert, Kristina; Bestebroer, Theo; Lexmond, Pascal; Fouchier, Ron A M; Prenger-Berninghoff, Ellen; Herbst, Werner; Koopmans, Marion; Osterhaus, Albert D M E; Kuiken, Thijs; Baumgärtner, Wolfgang

    2016-01-01

    Avian influenza viruses sporadically cross the species barrier to mammals, including humans, in which they may cause epidemic disease. Recently such an epidemic occurred due to the emergence of avian influenza virus of the subtype H10N7 (Seal/H10N7) in harbor seals (Phoca vitulina). This epidemic

  2. Foot-and-mouth disease virus-induced RNA polymerase is associated with Golgi apparatus.

    OpenAIRE

    Polatnick, J; Wool, S H

    1985-01-01

    Electrophoretic analysis of the Golgi apparatus isolated by differential centrifugation from radiolabeled cells infected with foot-and-mouth disease virus showed about 10 protein bands. The virus-induced RNA polymerase was identified by immunoprecipitation and electron microscope staining procedures. Pulse-chase experiments indicated that the polymerase passed through the Golgi apparatus in less than 1 h.

  3. Aerosol transmission of foot-and-mouth disease virus Asia-1 under experimental conditions

    NARCIS (Netherlands)

    Colenutt, C.; Gonzales, J.L.; Paton, D.J.; Gloster, J.; Nelson, N.; Sanders, C.

    2016-01-01

    Foot-and-mouth disease virus (FMDV) control measures rely on understanding of virus transmission mechanisms. Direct contact between naïve and infected animals or spread by contaminated fomites is prevented by quarantines and rigorous decontamination procedures during outbreaks. Transmission of

  4. Rate of Foot-and mouth Disease Virus Transmission by Carriers Quantified from Experimental Data

    NARCIS (Netherlands)

    Dekker, A.; Vernooij, J.C.M.; Bouma, A.; Stegeman, J.A.

    2008-01-01

    Upon infection with foot-and-mouth disease virus (FMDV) a considerable number of animals become carriers of the virus. These carriers are considered to be a risk for new outbreaks, but the rate at which these animals can transmit the infection has not been quantified. An analysis was carried out

  5. Characterization of a chimeric foot-and-mouth disease virus bearing bovine rhinitis B virus leader proteinase

    Science.gov (United States)

    Our recent study has shown that bovine rhinovirus type 2 (BRV2), a new member of the Aphthovirus genus, shares many motifs and sequence similarities with foot-and-mouth disease virus (FMDV). Despite low sequence conservation (36percent amino acid identity) and N- and C-terminus folding differences,...

  6. Data on the irradiation of liquid manure artificially infected with foot-and mouth disease virus

    International Nuclear Information System (INIS)

    Simon, J.; Solyom, F.; Felkai, V.; Oroszlany, P.

    1976-01-01

    Research on the application of an ionizing radiation treatment to liquid manure infected with Foot- and Mouth disease virus is described. Virus suspensions diluted with a phosphate buffer solution showed a considerable decrease of virulence already at an exposure to 0.4 - 0.8 Mrad at low initial titre. 1.2 Mrad proved to be effective also against high concentrations of the virus. However, with liquid manure used as diluent, a certain protective effect was noted against the destructive influence of radiation on the virus. (author)

  7. Epstein-Barr Virus Association with Peptic Ulcer Disease

    Directory of Open Access Journals (Sweden)

    María G. Cárdenas-Mondragón

    2015-01-01

    Full Text Available Background. Helicobacter pylori (HP infection and nonsteroidal anti-inflammatory drugs (NSAID use are considered the main risk to develop peptic ulcer disease (PUD. However, PUD also occurs in the absence of HP infection and/or NSAID use. Recently, we have found evidence that Epstein-Barr virus (EBV reactivation increases the risk to develop premalignant and malignant gastric lesions. Objective. To study a possible association between EBV and PUD. Methods. Antibodies against an EBV reactivation antigen, HP, and the HP virulence factor CagA were measured in sera from 207 Mexican subjects, controls (healthy individuals, n = 129, and PUD patients (n = 78, 58 duodenal and 20 gastric ulcers. Statistical associations were estimated. Results. Duodenal PUD was significantly associated with high anti-EBV IgG titers (p = 0.022, OR = 2.5, while anti-EBV IgA was positively associated with gastric PUD (p = 0.002, OR = 10.1. Conclusions. Our study suggests that EBV reactivation in gastric and duodenal epithelium increases the risk to develop PUD.

  8. Characterizing the transmission dynamics and control of ebola virus disease.

    Directory of Open Access Journals (Sweden)

    Gerardo Chowell

    2015-01-01

    Full Text Available Carefully calibrated transmission models have the potential to guide public health officials on the nature and scale of the interventions required to control epidemics. In the context of the ongoing Ebola virus disease (EVD epidemic in Liberia, Drake and colleagues, in this issue of PLOS Biology, employed an elegant modeling approach to capture the distributions of the number of secondary cases that arise in the community and health care settings in the context of changing population behaviors and increasing hospital capacity. Their findings underscore the role of increasing the rate of safe burials and the fractions of infectious individuals who seek hospitalization together with hospital capacity to achieve epidemic control. However, further modeling efforts of EVD transmission and control in West Africa should utilize the spatial-temporal patterns of spread in the region by incorporating spatial heterogeneity in the transmission process. Detailed datasets are urgently needed to characterize temporal changes in population behaviors, contact networks at different spatial scales, population mobility patterns, adherence to infection control measures in hospital settings, and hospitalization and reporting rates.

  9. Inflammatory bowel disease exacerbation associated with Epstein-Barr virus infection.

    Science.gov (United States)

    Dimitroulia, Evangelia; Pitiriga, Vassiliki C; Piperaki, Evangelia-Theophano; Spanakis, Nicholas E; Tsakris, Athanassios

    2013-03-01

    Epstein-Barr virus infection is associated with inflammatory bowel disease, but its role as a pathogenetic or exacerbating factor remains unclear. The aim of this study was to evaluate the association between Epstein-Barr virus infection and inflammatory bowel disease, particularly in regard to exacerbation of disease activity. This was a nonrandomized crosssectional study in subgroups of patients with inflammatory bowel disease compared with a control group with noninflammatory disease. Participants were patients treated for ulcerative colitis or Crohn's disease and individuals undergoing evaluation for noninflammatory disease recruited from 2 urban adult gastrointestinal referral centers in Greece. Diagnosis of inflammatory bowel disease was based on standard clinical and endoscopic criteria. Demographic and clinical characteristics of all participants were recorded. Whole blood samples and fresh tissue samples from biopsy of intestinal sites were obtained from each participant. The presence of Epstein-Barr virus was determined by amplifying the LMP1 gene of the virus in blood and intestinal tissue samples. The study comprised 94 patients with inflammatory bowel disease (63 with ulcerative colitis and 31 with Crohn's disease) and 45 controls with noninflammatory disease. Of the 94 patients, 67 (71.3%) had disease exacerbation and 27 (28.7%) were in remission. The prevalence of Epstein-Barr virus genome was significantly higher in patients than in controls for intestinal tissue (44 patients, 46.8% vs 6 controls, 13.3%; p = 0.001), but not for whole blood (24 patients, 25.5% vs 9 controls, 20%; p = 0.3). The viral genome was found significantly more frequently in intestinal samples from patients with disease exacerbation compared with patients in remission (38 patients with exacerbation, 56.7% vs 6 patients in remission, 22.2%; p = 0.001), but no significant difference was found for whole blood (18 patients with exacerbation, 26.8% vs 6 patients in remission, 22

  10. Cassava brown streak disease in Rwanda, the associated viruses and disease phenotypes.

    Science.gov (United States)

    Munganyinka, E; Ateka, E M; Kihurani, A W; Kanyange, M C; Tairo, F; Sseruwagi, P; Ndunguru, J

    2018-02-01

    Cassava brown streak disease (CBSD) was first observed on cassava ( Manihot esculenta ) in Rwanda in 2009. In 2014 eight major cassava-growing districts in the country were surveyed to determine the distribution and variability of symptom phenotypes associated with CBSD, and the genetic diversity of cassava brown streak viruses. Distribution of the CBSD symptom phenotypes and their combinations varied greatly between districts, cultivars and their associated viruses. The symptoms on leaf alone recorded the highest (32.2%) incidence, followed by roots (25.7%), leaf + stem (20.3%), leaf + root (10.4%), leaf + stem + root (5.2%), stem + root (3.7%), and stem (2.5%) symptoms. Analysis by RT-PCR showed that single infections of Ugandan cassava brown streak virus (UCBSV) were most common (74.2% of total infections) and associated with all the seven phenotypes studied. Single infections of Cassava brown streak virus (CBSV) were predominant (15.3% of total infections) in CBSD-affected plants showing symptoms on stems alone. Mixed infections (CBSV + UCBSV) comprised 10.5% of total infections and predominated in the combinations of leaf + stem + root phenotypes. Phylogenetic analysis and the estimates of evolutionary divergence, using partial sequences (210 nt) of the coat protein gene, revealed that in Rwanda there is one type of CBSV and an indication of diverse UCBSV. This study is the first to report the occurrence and distribution of both CBSV and UCBSV based on molecular techniques in Rwanda.

  11. 9. Fight Ebola virus disease in Africa, a question related to the ...

    African Journals Online (AJOL)

    user

    Keywords: Environment; Ebola virus disease; West Africa ... (Spain, United States of America, Italy, Mali,. Nigeria, United ... particularly dry conditions at the end of a wet season: this can ... Hypsignathus and Epomops, forest antelopes and. 4.

  12. Biological and phylogenetic characterization of a genotype VII Newcastle disease virus from Venezuela: Efficacy of vaccination

    Science.gov (United States)

    Here we describe the characterization a virulent genotype VII Newcastle disease virus (NDV) from Venezuela and evaluate the efficacy of heterologous genotype commercial vaccination under field and controlled rearing conditions. Biological pathotyping and molecular analysis were applied. Results sh...

  13. Horizontal transmissible protection against myxomatosis and rabbit hemorrhagic disease by using a recombinant myxoma virus.

    Science.gov (United States)

    Bárcena, J; Morales, M; Vázquez, B; Boga, J A; Parra, F; Lucientes, J; Pagès-Manté, A; Sánchez-Vizcaíno, J M; Blasco, R; Torres, J M

    2000-02-01

    We have developed a new strategy for immunization of wild rabbit populations against myxomatosis and rabbit hemorrhagic disease (RHD) that uses recombinant viruses based on a naturally attenuated field strain of myxoma virus (MV). The recombinant viruses expressed the RHDV major capsid protein (VP60) including a linear epitope tag from the transmissible gastroenteritis virus (TGEV) nucleoprotein. Following inoculation, the recombinant viruses induced specific antibody responses against MV, RHDV, and the TGEV tag. Immunization of wild rabbits by the subcutaneous and oral routes conferred protection against virulent RHDV and MV challenges. The recombinant viruses showed a limited horizontal transmission capacity, either by direct contact or in a flea-mediated process, promoting immunization of contact uninoculated animals.

  14. Human papilloma virus and lupus: the virus, the vaccine and the disease.

    Science.gov (United States)

    Segal, Yahel; Calabrò, Michele; Kanduc, Darja; Shoenfeld, Yehuda

    2017-07-01

    Systemic lupus erythematosus (SLE) is a well known, widespread autoimmune disease, involving multiple organ systems, with a multifaceted, widely unmapped etiopathogenesis. Recently, a new aspect of morbidity has been described among SLE patients: infection with human papilloma virus (HPV). We set out to review data regarding the intricate relationship between the two and attempt to determine whether HPV may pose as a contributing factor to the development of SLE. We relate to epidemiological, molecular and clinical data. We have found evidence in all these fields suggesting HPV to be involved in the pathogenesis of SLE: increased prevalence of HPV infection among SLE patients; vast molecular homology between viral peptides and human proteins associated with SLE; several reports of SLE development post-HPV vaccination. Our findings suggest a possible involvement of HPV infection in the induction of SLE, via a mechanism of immune cross-reaction due to molecular homology. We review clinical, epidemiological and molecular data suggesting involvement of HPV infection in the pathogenesis of SLE. We suggest that these findings may justify the development of new HPV vaccines containing viral peptides that bear no homology to the human proteome, in order to avoid possible adverse immune cross-reactivity.

  15. Virus diseases of peppers (Capsicum spp.) and their control.

    Science.gov (United States)

    Kenyon, Lawrence; Kumar, Sanjeet; Tsai, Wen-Shi; Hughes, Jacqueline d'A

    2014-01-01

    The number of virus species infecting pepper (Capsicum spp.) crops and their incidences has increased considerably over the past 30 years, particularly in tropical and subtropical pepper production systems. This is probably due to a combination of factors, including the expansion and intensification of pepper cultivation in these regions, the increased volume and speed of global trade of fresh produce (including peppers) carrying viruses and vectors to new locations, and perhaps climate change expanding the geographic range suitable for the viruses and vectors. With the increased incidences of diverse virus species comes increased incidences of coinfection with two or more virus species in the same plant. There is then greater chance of synergistic interactions between virus species, increasing symptom severity and weakening host resistance, as well as the opportunity for genetic recombination and component exchange and a possible increase in aggressiveness, virulence, and transmissibility. The main virus groups infecting peppers are transmitted by aphids, whiteflies, or thrips, and a feature of many populations of these vector groups is that they can develop resistance to some of the commonly used insecticides relatively quickly. This, coupled with the increasing concern over the impact of over- or misuse of insecticides on the environment, growers, and consumers, means that there should be less reliance on insecticides to control the vectors of viruses infecting pepper crops. To improve the durability of pepper crop protection measures, there should be a shift away from the broadscale use of insecticides and the use of single, major gene resistance to viruses. Instead, integrated and pragmatic virus control measures should be sought that combine (1) cultural practices that reduce sources of virus inoculum and decrease the rate of spread of viruliferous vectors into the pepper crop, (2) synthetic insecticides, which should be used judiciously and only when the

  16. The Disease Caused by Zika Virus: Current Clinical and Epidemiological Features

    Directory of Open Access Journals (Sweden)

    O.K. Duda

    2016-04-01

    Full Text Available The article deals with the topical issue of today — the disease caused by Zika virus. The etiology and pathogenesis of the disease were described, attention is paid to the examination of a patient with suspected Zika virus. Laboratory tests available in the Synevo laboratory are listed. Recommendations for the treatment are given taking into account the fact that today the causal antiviral treatment is not developed.

  17. Impact of Ultraviolet-Blocking Plastic Films on Insect Vectors of Virus Diseases Infesting Crisp Lettuce

    OpenAIRE

    Díaz Desani, Beatriz M.; Biurrun, R.; Moreno, Aránzazu; Nebreda, Miguel; Fereres, Alberto

    2006-01-01

    Ultraviolet (UV)-absorbing plastic films are being used as a photoselective barrier to control insect vectors and associated virus diseases in different horticultural crops. A 2-year experiment was carried out in northeastern Spain (Navarra) to evaluate the impact of a UV-blocking film (AD-IR AV) on the population density of insect pests and the spread of insect-transmitted virus diseases associated with head lettuce [Lactuca sativa (L.)]. Results showed that the UV-absorbing plastic film did...

  18. Hepatitis C virus viremia increases the incidence of chronic kidney disease in HIV-infected patients

    DEFF Research Database (Denmark)

    Peters, Lars; Grint, Daniel; Lundgren, Jens

    2012-01-01

    Several studies have reported on an association between hepatitis C virus (HCV) antibody status and the development of chronic kidney disease (CKD), but the role of HCV viremia and genotype are not well defined.......Several studies have reported on an association between hepatitis C virus (HCV) antibody status and the development of chronic kidney disease (CKD), but the role of HCV viremia and genotype are not well defined....

  19. The complete genome sequence of a virus associated with cotton blue disease, cotton leafroll dwarf virus, confirms that it is a new member of the genus Polerovirus.

    Science.gov (United States)

    Distéfano, Ana J; Bonacic Kresic, Ivan; Hopp, H Esteban

    2010-11-01

    Cotton blue disease is the most important virus disease of cotton in the southern part of America. The complete nucleotide sequence of the ssRNA genome of the cotton blue disease-associated virus was determined for the first time. It comprised 5,866 nucleotides, and the deduced genomic organization resembled that of members of the genus Polerovirus. Sequence homology comparison and phylogenetic analysis confirm that this virus (previous proposed name cotton leafroll dwarf virus) is a member of a new species within the genus Polerovirus.

  20. Differential Persistence of Foot-and-Mouth Disease Virus in African Buffalo Is Related to Virus Virulence.

    Science.gov (United States)

    Maree, Francois; de Klerk-Lorist, Lin-Mari; Gubbins, Simon; Zhang, Fuquan; Seago, Julian; Pérez-Martín, Eva; Reid, Liz; Scott, Katherine; van Schalkwyk, Louis; Bengis, Roy; Charleston, Bryan; Juleff, Nicholas

    2016-05-15

    Foot-and-mouth disease (FMD) virus (FMDV) circulates as multiple serotypes and strains in many regions of endemicity. In particular, the three Southern African Territories (SAT) serotypes are maintained effectively in their wildlife reservoir, the African buffalo, and individuals may harbor multiple SAT serotypes for extended periods in the pharyngeal region. However, the exact site and mechanism for persistence remain unclear. FMD in buffaloes offers a unique opportunity to study FMDV persistence, as transmission from carrier ruminants has convincingly been demonstrated for only this species. Following coinfection of naive African buffaloes with isolates of three SAT serotypes from field buffaloes, palatine tonsil swabs were the sample of choice for recovering infectious FMDV up to 400 days postinfection (dpi). Postmortem examination identified infectious virus for up to 185 dpi and viral genomes for up to 400 dpi in lymphoid tissues of the head and neck, focused mainly in germinal centers. Interestingly, viral persistence in vivo was not homogenous, and the SAT-1 isolate persisted longer than the SAT-2 and SAT-3 isolates. Coinfection and passage of these SAT isolates in goat and buffalo cell lines demonstrated a direct correlation between persistence and cell-killing capacity. These data suggest that FMDV persistence occurs in the germinal centers of lymphoid tissue but that the duration of persistence is related to virus replication and cell-killing capacity. Foot-and-mouth disease virus (FMDV) causes a highly contagious acute vesicular disease in domestic livestock and wildlife species. African buffaloes (Syncerus caffer) are the primary carrier hosts of FMDV in African savannah ecosystems, where the disease is endemic. We have shown that the virus persists for up to 400 days in buffaloes and that there is competition between viruses during mixed infections. There was similar competition in cell culture: viruses that killed cells quickly persisted more

  1. Antigenic profile of African horse sickness virus serotype 4 VP5 and identification of a neutralizing epitope shared with bluetongue virus and epizootic hemorrhagic disease virus

    DEFF Research Database (Denmark)

    Martinez-Torrecuadrada, J.L.; Langeveld, J.P.M.; Venteo, A.

    1999-01-01

    African horse sickness virus (AHSV) causes a fatal disease in horses. The virus capsid is composed of a double protein layer, the outermost of which is formed by two proteins: VP2 and VP5. VP2 is known to determine the serotype of the virus and to contain the neutralizing epitopes. The biological...... in a plaque reduction assay were generated. To dissect the antigenic structure of AHSV VP5, the protein was cloned in Escherichia coil using the pET3 system. The immunoreactivity of both MAbs, and horse and rabbit polyclonal antisera, with 17 overlapping fragments from VP5 was analyzed. The most....... Neutralizing epitopes were defined at positions 85-92 (PDPLSPGE) for MAb 10AE12 and at 179-185 (EEDLRTR) for MAb 10AC6. Epitope 10AE12 is highly conserved between the different orbiviruses. MAb 10AE12 was able to recognize bluetongue virus VP5 and epizootic hemorrhagic disease virus VP5 by several techniques...

  2. Goose parvovirus structural proteins expressed by recombinant baculoviruses self-assemble into virus-like particles with strong immunogenicity in goose.

    Science.gov (United States)

    Ju, Huanyu; Wei, Na; Wang, Qian; Wang, Chunyuan; Jing, Zhiqiang; Guo, Lu; Liu, Dapeng; Gao, Mingchun; Ma, Bo; Wang, Junwei

    2011-05-27

    Goose parvovirus (GPV), a small non-enveloped ssDNA virus, can cause Derzsy's disease, and three capsid proteins of VP1, VP2, and VP3 are encoded by an overlapping nucleotide sequence. However, little is known on whether recombinant viral proteins (VPs) could spontaneously assemble into virus-like particles (VLPs) in insect cells and whether these VLPs could retain their immunoreactivity and immunogenicity in susceptible geese. To address these issues, genes for these GPV VPs were amplified by PCR, and the recombinant VPs proteins were expressed in insect cells using a baculovirus expression system for the characterization of their structures, immunoreactivity, and immunogenicity. The rVP1, rVP2, and rVP3 expressed in Sf9 cells were detected by anti-GPV sera, anti-VP3 sera, and anti-His antibodies, respectively. Electron microscopy revealed that these rVPs spontaneously assembled into VLPs in insect cells, similar to that of the purified wild-type GPV virions. In addition, vaccination with individual types of VLPs, particularly with the rVP2-VLPs, induced higher titers of antibodies and neutralized different strains of GPVs in primary goose and duck embryo fibroblast cells in vitro. These data indicated that these VLPs retained immunoreactivity and had strong immunogenicity in susceptible geese. Therefore, our findings may provide a framework for development of new vaccines for the prevention of Derzsy's disease and vehicles for the delivery of drugs. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Cross-protective efficacy of engineering serotype A foot-and-mouth disease virus vaccine against the two pandemic strains in swine.

    Science.gov (United States)

    Zheng, Haixue; Lian, Kaiqi; Yang, Fan; Jin, Ye; Zhu, Zixiang; Guo, Jianhong; Cao, Weijun; Liu, Huanan; He, Jijun; Zhang, Keshan; Li, Dan; Liu, Xiangtao

    2015-10-26

    Foot-and-mouth disease (FMD) is a highly contagious vesicular disease that affects domestic and wild cloven-hoofed animals worldwide. Recently, a series of outbreaks of type A FMDV occurred in Southeast Asian countries, China, the Russia Federation, Mongolia, Kazakhstan and South Korea. The FMD virus (A/GDMM/CHA/2013) from China's Guangdong province (2013) is representative of those responsible for the latest epidemic, and has low amino acid identity (93.9%) in VP1 protein with the epidemic strain A/WH/CHA/09 from Wuhan, China in 2009. Both of isolates belong to the Sea-97 genotype of ASIA topotype. Therefore, the application of a new vaccine strain with cross-protective efficacy is of fundamental importance to control the spread of the two described pandemic strains. A chimeric strain rA/P1-FMDV constructed by our lab previously through replacing the P1 gene in the vaccine strain O/CHA/99 with that from the epidemic stain A/WH/CHA/09, has been demonstrated to exhibit good growth characteristics in culture, and the rA/P1-FMDV inactivated vaccine can provide protection against epidemic strain A/WH/CHA/09 in cattle. However, it is still unclear whether the vaccine produces efficient protection against the new pandemic strain (A/GDMM/CHA/2013). Here, vaccine matching and pig 50% protective dose (PD50) tests were performed to assess the vaccine potency. The vaccine matching test showed cross-reactivity of sera from full dose vaccine vaccinated pigs with A/WH/CHA/09 and A/GDMM/CHA/2013 isolates, with average r1 values of 0.94±0.12 and 0.68±0.06 (r1≥0.3), which indicates that the rA/P1-FMDV vaccine is likely to confer good cross-protection against the two isolates. When challenged with two pandemic isolates A/WH/CHA/09 and A/GDMM/CHA/2013 strain, the vaccine achieved 12.51 PD50 and 10.05 PD50 per dose (2.8μg), respectively. The results indicated that the rA/P1-FMDV inactivated vaccine could protect pigs against both A/WH/CHA/09 and A/GDMM/CHA/2013 pandemic isolates

  4. Genetic diversity of the VP1/VP2 gene of canine parvovirus type 2b amplified from clinical specimens in Brazil Diversidade genética no gene VP1/VP2 do parvovirus canino tipo 2b amplificado de material clínico no Brasil

    Directory of Open Access Journals (Sweden)

    Cesar A. D. Pereira

    2000-10-01

    Full Text Available We evaluated the genetic diversity in the VP1/VP2 gene of CPV type 2b isolates from symptomatic dogs in Brazil. A total of 21 isolates collected from 1990 through 1995 previously typed as CPV2b by PCR assay were studied. Overall we found a high degree of similarity among sequences from different CPV clinical isolates collected. Genetic analysis of this selected region gave no indication of a specific Brazilian parvovirus lineage.Neste estudo foi avaliada a diversidade genética no gene VP1/VP2 do parvovírus canino tipo 2b a partir de amostras isoladas de cães sintomáticos no Brasil. Foram estudadas 21 amostras coletadas no período de 1990 à 1995, previamente caracterizadas como CPV 2b pela técnica de PCR. Observou-se alto grau de similaridade entre as seqüências estudadas e a análise genética da região selecionada não indicou a presença de uma linhagem brasileira específica.

  5. Description of an as yet unclassified DNA virus from diseased Cyprinus carpio species.

    Science.gov (United States)

    Hutoran, Marina; Ronen, Ariel; Perelberg, Ayana; Ilouze, Maya; Dishon, Arnon; Bejerano, Izhak; Chen, Nissim; Kotler, Moshe

    2005-02-01

    Numerous deaths of koi and common carp (Cyprinus carpio) were observed on many farms throughout Israel, resulting in severe financial losses. The lethal viral disease observed is highly contagious and extremely virulent, but morbidity and mortality are restricted to koi and common carp populations. Diseased fish exhibit fatigue and gasping movements in shallow water. Infected fish had interstitial nephritis and gill necrosis as well as petechial hemorrhages in the liver and other symptoms that were not consistent with viral disease, suggesting a secondary infection. Here we report the isolation of carp nephritis and gill necrosis virus (CNGV), which is the etiologic agent of this disease. The virus propagates and induces severe cytopathic effects by 5 days postinfection in fresh koi or carp fin cell cultures (KFC and CFC, respectively), but not in epithelioma papillosum cyprini cells. The virus harvested from KFC cultures induced the same clinical signs, with a mortality of 75 to 95%, upon inoculation into naive koi and common carp. Using PCR, we provide final proof that the isolated virus is indeed the etiologic agent of food and ornamental carp mortalities in fish husbandry. Electron microscopy revealed viral cores with icosahedral morphology of 100 to 110 nm that resembled herpesviruses. Electron micrographs of purified pelleted CNGV sections, together with viral sensitivities to ether and Triton X-100, suggested that it is an enveloped virus. However, the genome of the isolated virus is a double-stranded DNA (dsDNA) molecule of 270 to 290 kbp, which is larger than known herpesviruses. The viral DNA seems highly divergent and bears only small fragments (16 to 45 bp) that are similar to the genomes of several DNA viruses. Nevertheless, amino acid sequences encoded by CNGV DNA fragments bear similarities primarily to members of the Poxviridae and Herpesviridae and to other large dsDNA viruses. We suggest, therefore, that the etiologic agent of this disease may

  6. Borna disease virus and its role in the pathology of animals and humans

    Directory of Open Access Journals (Sweden)

    A. O. Mikheev

    2017-12-01

    Full Text Available Infectious diseases that are caused by numerous pathogenic microorganisms – bacteria, viruses, protozoa or fungi – can be transmitted from patients or carriers to healthy people or animals. A large group of infectious disease is caused by pathogens of animal infections – zoonoses. The issue of zoonoses is of great significance in human pathology and requires comprehensive study. This is of particular relevance to Ukraine, as the question of prevalence, level within the population and threats to human life and health from zoonoses, though highly important, has remained insufficiently studied. Information about many of these pathogens is absent in the existing scientific literature accessible in Ukraine – both veterinary and medical. This applies, in particular, to a causative agent of viral zoonoses the Borna disease virus or Bornavirus. For this purpose, an analysis of the literature concerning the role of the Bornavirus in the pathology of animals and humans was conducted. It is well known that a large number of pathogens of animal infections (zoonoses, including viral, pose a potential threat to human health. Among these potential threats is the Borna disease virus belonging to the family of Bornaviridae, order Mononegavirales. This order includes representatives of deadly human diseases like rabies (family Rhabdoviridae, Ebola virus (family Filoviridae and Nipah virus (family Paramyxoviridae. Borna virus disease affects mainly mammals, but can infect birds and even reptiles (Aspid bornavirus. It is established that Bornaviruses have a wide range of natural hosts (horses, sheeps, cats, bats and various birds, including domestic animals, which poses a potential threat to human health. This is evidenced by numerous, although contradictory, research into the role of the Borna disease virus in human pathologies such as schizophrenia, depression, prolonged fatigue syndrome, multiple sclerosis and others. Analysis of the literature clearly

  7. Control of Ebola virus disease - firestone district, liberia, 2014.

    Science.gov (United States)

    Reaves, Erik J; Mabande, Lyndon G; Thoroughman, Douglas A; Arwady, M Allison; Montgomery, Joel M

    2014-10-24

    On March 30, 2014, the Ministry of Health and Social Welfare (MOHSW) of Liberia alerted health officials at Firestone Liberia, Inc. (Firestone) of the first known case of Ebola virus disease (Ebola) inside the Firestone rubber tree plantation of Liberia. The patient, who was the wife of a Firestone employee, had cared for a family member with confirmed Ebola in Lofa County, the epicenter of the Ebola outbreak in Liberia during March-April 2014. To prevent a large outbreak among Firestone's 8,500 employees, their dependents, and the surrounding population, the company responded by 1) establishing an incident management system, 2) instituting procedures for the early recognition and isolation of Ebola patients, 3) enforcing adherence to standard Ebola infection control guidelines, and 4) providing differing levels of management for contacts depending on their exposure, including options for voluntary quarantine in the home or in dedicated facilities. In addition, Firestone created multidisciplinary teams to oversee the outbreak response, address case detection, manage cases in a dedicated unit, and reintegrate convalescent patients into the community. The company also created a robust risk communication, prevention, and social mobilization campaign to boost community awareness of Ebola and how to prevent transmission. During August 1-September 23, a period of intense Ebola transmission in the surrounding areas, 71 cases of Ebola were diagnosed among the approximately 80,000 Liberians for whom Firestone provides health care (cumulative incidence = 0.09%). Fifty-seven (80%) of the cases were laboratory confirmed; 39 (68%) of these cases were fatal. Aspects of Firestone's response appear to have minimized the spread of Ebola in the local population and might be successfully implemented elsewhere to limit the spread of Ebola and prevent transmission to health care workers (HCWs).

  8. Predicting Subnational Ebola Virus Disease Epidemic Dynamics from Sociodemographic Indicators.

    Directory of Open Access Journals (Sweden)

    Linda Valeri

    Full Text Available The recent Ebola virus disease (EVD outbreak in West Africa has spread wider than any previous human EVD epidemic. While individual-level risk factors that contribute to the spread of EVD have been studied, the population-level attributes of subnational regions associated with outbreak severity have not yet been considered.To investigate the area-level predictors of EVD dynamics, we integrated time series data on cumulative reported cases of EVD from the World Health Organization and covariate data from the Demographic and Health Surveys. We first estimated the early growth rates of epidemics in each second-level administrative district (ADM2 in Guinea, Sierra Leone and Liberia using exponential, logistic and polynomial growth models. We then evaluated how these growth rates, as well as epidemic size within ADM2s, were ecologically associated with several demographic and socio-economic characteristics of the ADM2, using bivariate correlations and multivariable regression models.The polynomial growth model appeared to best fit the ADM2 epidemic curves, displaying the lowest residual standard error. Each outcome was associated with various regional characteristics in bivariate models, however in stepwise multivariable models only mean education levels were consistently associated with a worse local epidemic.By combining two common methods-estimation of epidemic parameters using mathematical models, and estimation of associations using ecological regression models-we identified some factors predicting rapid and severe EVD epidemics in West African subnational regions. While care should be taken interpreting such results as anything more than correlational, we suggest that our approach of using data sources that were publicly available in advance of the epidemic or in real-time provides an analytic framework that may assist countries in understanding the dynamics of future outbreaks as they occur.

  9. Zika virus infection: Past and present of another emerging vector-borne disease.

    Science.gov (United States)

    Sakkas, Hercules; Economou, Vangelis; Papadopoulou, Chrissanthy

    2016-01-01

    Zika virus infection is an emerging mosquito-borne disease, first identified in Uganda in 1947. It is caused by the Zika arbovirus, and transmitted by the bites of infected mosquitoes of the genus Aedes. For almost half a century, the Zika virus was reported as the causative agent of sporadic human infections. In 2007, the Zika virus emerged outside Asia and Africa causing an epidemic on the Island of Yap in Micronesia. The manifestation of the newly acquired human infection varies from asymptomatic to self-limiting acute febrile illness with symptoms and clinical features similar to those caused by the Dengue virus ('Dengue-like syndrome'). The real-time PCR and serological methods have been successfully applied for the diagnosis of the disease. The treatment is symptomatic, since there is no specific antiviral treatment or a vaccine. During the recent outbreaks in French Polynesia and Brazil, incidents of Guillain-Barrι syndrome and microcephaly were associated with Zika virus infection, giving rise to fears of further global spread of the virus. Prevention and vector control strategies have to be urgently implemented by national health authorities in order to contain future outbreaks in vulnerable populations. This review summarizes the existing information on Zika virus characteristics, pathogenesis and epidemiology, the available methods for the diagnosis of Zika virus infection and recent approaches for prevention and control.

  10. Critical Role of Airway Macrophages in Modulating Disease Severity during Influenza Virus Infection of Mice ▿

    Science.gov (United States)

    Tate, Michelle D.; Pickett, Danielle L.; van Rooijen, Nico; Brooks, Andrew G.; Reading, Patrick C.

    2010-01-01

    Airway macrophages provide a first line of host defense against a range of airborne pathogens, including influenza virus. In this study, we show that influenza viruses differ markedly in their abilities to infect murine macrophages in vitro and that infection of macrophages is nonproductive and no infectious virus is released. Virus strain BJx109 (H3N2) infected macrophages with high efficiency and was associated with mild disease following intranasal infection of mice. In contrast, virus strain PR8 (H1N1) was poor in its ability to infect macrophages and highly virulent for mice. Depletion of airway macrophages by clodronate-loaded liposomes led to the development of severe viral pneumonia in BJx109-infected mice but did not modulate disease severity in PR8-infected mice. The severe disease observed in macrophage-depleted mice infected with BJx109 was associated with exacerbated virus replication in the airways, leading to severe airway inflammation, pulmonary edema, and vascular leakage, indicative of lung injury. Thymic atrophy, lymphopenia, and dysregulated cytokine and chemokine production were additional systemic manifestations associated with severe disease. Thus, airway macrophages play a critical role in limiting lung injury and associated disease caused by BJx109. Furthermore, the inability of PR8 to infect airway macrophages may be a critical factor contributing to its virulence for mice. PMID:20504924

  11. The cellular receptors for infectious bursal disease virus

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... Based on the atomic structure of the viral particles. (Coulibaly et al., 2005) the .... investigation of the molecules involved in the cause of virus entry. ... National Science Foundation Grant (No.30571374 and. No. 30771603).

  12. Comparative quantitative monitoring of rabbit haemorrhagic disease viruses in rabbit kittens.

    Science.gov (United States)

    Matthaei, Markus; Kerr, Peter J; Read, Andrew J; Hick, Paul; Haboury, Stephanie; Wright, John D; Strive, Tanja

    2014-06-09

    Only one strain (the Czech CAPM-v351) of rabbit haemorrhagic disease virus (RHDV) has been released in Australia and New Zealand to control pest populations of the European rabbit O. cuniculus. Antigenic variants of RHDV known as RHDVa strains are reportedly replacing RHDV strains in other parts of the world, and Australia is currently investigating the usefulness of RHDVa to complement rabbit biocontrol efforts in Australia and New Zealand. RHDV efficiently kills adult rabbits but not rabbit kittens, which are more resistant to RHD the younger they are and which may carry the virus without signs of disease for prolonged periods. These different infection patterns in young rabbits may significantly influence RHDV epidemiology in the field and hence attempts to control rabbit numbers. We quantified RHDV replication and shedding in 4-5 week old rabbits using quantitative real time PCR to assess their potential to shape RHDV epidemiology by shedding and transmitting virus. We further compared RHDV-v351 with an antigenic variant strain of RHDVa in kittens that is currently being considered as a potential RHDV strain for future release to improve rabbit biocontrol in Australia. Kittens were susceptible to infection with virus doses as low as 10 ID50. Virus growth, shedding and transmission after RHDVa infection was found to be comparable or non-significantly lower compared to RHDV. Virus replication and shedding was observed in all kittens infected, but was low in comparison to adult rabbits. Both viruses were shed and transmitted to bystander rabbits. While blood titres indicated that 4-5 week old kittens mostly clear the infection even in the absence of maternal antibodies, virus titres in liver, spleen and mesenteric lymph node were still high on day 5 post infection. Rabbit kittens are susceptible to infection with very low doses of RHDV, and can transmit virus before they seroconvert. They may therefore play an important role in RHDV field epidemiology, in

  13. Using epidemiological information to develop effective integrated virus disease management strategies.

    Science.gov (United States)

    Jones, Roger A C

    2004-03-01

    Virus diseases cause serious losses in yield and quality of cultivated plants worldwide. These losses and the resulting financial damage can be limited by controlling epidemics using measures that minimise virus infection sources or suppress virus spread. For each combination of virus, cultivated plant and production system, there is an 'economic threshold' above which the financial damage is sufficient to justify using such measures. However, individual measures used alone may bring only small benefits and they may become ineffective, especially over the long term. When diverse control measures that act in different ways are combined and used together, their effects are complementary resulting in far more effective overall control. Such experiences have led to the development of integrated management concepts for virus diseases that combine available host resistance, cultural, chemical and biological control measures. Selecting the ideal mix of measures for each pathosystem and production situation requires detailed knowledge of the epidemiology of the causal virus and the mode of action of each individual control measure so that diverse responses can be devised to meet the unique features of each of the different scenarios considered. The strategies developed must be robust and necessitate minimal extra expense, labour demands and disruption to standard practices. Examples of how epidemiological information can be used to develop effective integrated disease management (IDM) strategies for diverse situations are described. They involve circumstances where virus transmission from plant-to-plant occurs in four different ways: by contact, non-persistently or persistently by insect vectors, and by root-infecting fungi. The examples are: Subterranean clover mottle virus (SCMoV) (contact-transmitted) and Bean yellow mosaic virus (BYMV) (non-persistently aphid-transmitted) in annually self-regenerating clover pasture; three seed-borne viruses (all non-persistently aphid

  14. Emerging sexually transmitted viral infections: 1. Review of Ebola virus disease.

    Science.gov (United States)

    Caswell, Rachel J; Manavi, Kaveh

    2017-11-01

    This is the first in a series of articles reviewing four viral infections, Ebola virus, Zika virus, human T-cell lymphotropic virus, type 1 and hepatitis C virus, with an emphasis on recent advances in our understanding of their sexual transmission. With current day speed and ease of travel it is important for staff in sexual healthcare services to know and understand these infections when patients present to them and also to be able to advise those travelling to endemic regions. Following the recent resurgence in West Africa, this first article looks at Ebola virus disease (EVD). EVD has a high mortality rate and, of note, has been detected in the semen of those who have cleared the virus from their blood and have clinically recovered from the disease. As the result of emerging data, the WHO now recommends safe sex practices for all male survivors of EVD for 12 months after the onset of the disease or after having had two consecutive negative tests of semen specimens for the virus. This review provides an up-to-date summary of what is currently known about EVD and its implications for sexual health practice.

  15. Vero cell technology for rapid development of inactivated whole virus vaccines for emerging viral diseases.

    Science.gov (United States)

    Barrett, P Noel; Terpening, Sara J; Snow, Doris; Cobb, Ronald R; Kistner, Otfried

    2017-09-01

    Rapid development and production of vaccines against emerging diseases requires well established, validated, robust technologies to allow industrial scale production and accelerated licensure of products. Areas covered: A versatile Vero cell platform has been developed and utilized to deliver a wide range of candidate and licensed vaccines against emerging viral diseases. This platform builds on the 35 years' experience and safety record with inactivated whole virus vaccines such as polio vaccine. The current platform has been optimized to include a novel double inactivation procedure in order to ensure a highly robust inactivation procedure for novel emerging viruses. The utility of this platform in rapidly developing inactivated whole virus vaccines against pandemic (-like) influenza viruses and other emerging viruses such as West Nile, Chikungunya, Ross River and SARS is reviewed. The potential of the platform for development of vaccines against other emerging viruses such as Zika virus is described. Expert commentary: Use of this platform can substantially accelerate process development and facilitate licensure because of the substantial existing data set available for the cell matrix. However, programs to provide vaccines against emerging diseases must allow alternative clinical development paths to licensure, without the requirement to carry out large scale field efficacy studies.

  16. Deep sequencing of foot-and-mouth disease virus reveals RNA sequences involved in genome packaging.

    Science.gov (United States)

    Logan, Grace; Newman, Joseph; Wright, Caroline F; Lasecka-Dykes, Lidia; Haydon, Daniel T; Cottam, Eleanor M; Tuthill, Tobias J

    2017-10-18

    Non-enveloped viruses protect their genomes by packaging them into an outer shell or capsid of virus-encoded proteins. Packaging and capsid assembly in RNA viruses can involve interactions between capsid proteins and secondary structures in the viral genome as exemplified by the RNA bacteriophage MS2 and as proposed for other RNA viruses of plants, animals and human. In the picornavirus family of non-enveloped RNA viruses, the requirements for genome packaging remain poorly understood. Here we show a novel and simple approach to identify predicted RNA secondary structures involved in genome packaging in the picornavirus foot-and-mouth disease virus (FMDV). By interrogating deep sequencing data generated from both packaged and unpackaged populations of RNA we have determined multiple regions of the genome with constrained variation in the packaged population. Predicted secondary structures of these regions revealed stem loops with conservation of structure and a common motif at the loop. Disruption of these features resulted in attenuation of virus growth in cell culture due to a reduction in assembly of mature virions. This study provides evidence for the involvement of predicted RNA structures in picornavirus packaging and offers a readily transferable methodology for identifying packaging requirements in many other viruses. Importance In order to transmit their genetic material to a new host, non-enveloped viruses must protect their genomes by packaging them into an outer shell or capsid of virus-encoded proteins. For many non-enveloped RNA viruses the requirements for this critical part of the viral life cycle remain poorly understood. We have identified RNA sequences involved in genome packaging of the picornavirus foot-and-mouth disease virus. This virus causes an economically devastating disease of livestock affecting both the developed and developing world. The experimental methods developed to carry out this work are novel, simple and transferable to the

  17. The effect of temperature on the in vitro transcriptase reaction of bluetongue virus, epizootic haemorrhagic disease virus and African horsesickness virus

    International Nuclear Information System (INIS)

    Van Dijk, A.A.; Huismans, H.

    1982-01-01

    Virions of bluetongue virus (BTV), epizootic haemorrhagic disease virus (EHDV) and African horsesickness virus (AHSV) can be converted to core particles by treatment with chymotrypsin and magnesium. The conversion is characterized by the removal of the 2 outer capsid polypeptides of the virion. The loss of these 2 proteins results in an increase in density from 1,36 g/ml to 1,40 g/ml on CsCl gradients. The BTV, EHDV and AHSV core particles have an associated double-stranded RNA dependent RNA transcriptase that appears to transcribe mRNA optimally at 28 degrees Celsius. It was found, at least in the case of BTV, that this low temperature preference is not an intrinsic characteristic of the transcriptase, but is due to a temperature-dependent inhibition of transcription at high core concentrations

  18. Progress toward an enhanced vaccine: Eight marked attenuated viruses to porcine reproductive and respiratory disease virus.

    Science.gov (United States)

    Spear, Allyn; Wang, Feng-Xue; Kappes, Matthew A; Das, Phani B; Faaberg, Kay S

    2018-03-01

    Recombinant viruses of strain Ingelvac® PRRS porcine reproductive and respiratory syndrome virus (PRRSV) modified live virus vaccine were produced with two individual small in-frame deletions in nonstructural protein 2 (nsp2; Δ23 and Δ87) and also the same deletions supplanted with foreign tags (Δ23-V5, Δ23-FLAG, Δ23-S, Δ87-V5, Δ87-FLAG, Δ87-S). The viruses, but one (Δ87-FLAG), were stable for 10 passages and showed minimal effects on in vitro growth. Northern hybridization showed that the Δ23-tagged probe detected intracellular viral genome RNA as well as shorter RNAs that may represent heteroclite species, while the Δ87-tagged probe detected predominantly only genome length RNAs. When the tagged viruses were used to probe nsp2 protein in infected cells, perinuclear localization similar to native nsp2 was seen. Dual infection of Δ23-S and Δ87-S viruses allowed some discrimination of individual tagged nsp2 protein, facilitating future research. The mutants could potentially also be used to differentiate infected from vaccinated animals. Published by Elsevier Inc.

  19. Experimental co-infections of domestic ducks with a virulent Newcastle disease virus and low or highly pathogenic avian influenza viruses.

    Science.gov (United States)

    Pantin-Jackwood, Mary J; Costa-Hurtado, Mar; Miller, Patti J; Afonso, Claudio L; Spackman, Erica; Kapczynski, Darrell R; Shepherd, Eric; Smith, Diane; Swayne, David E

    2015-05-15

    Infections with avian influenza viruses (AIV) of low and high pathogenicity (LP and HP) and Newcastle disease virus (NDV) are commonly reported in domestic ducks in many parts of the world. However, it is not clear if co-infections with these viruses affect the severity of the diseases they produce, the amount of virus shed, and transmission of the viruses. In this study we infected domestic ducks with a virulent NDV virus (vNDV) and either a LPAIV or a HPAIV by giving the viruses individually, simultaneously, or sequentially two days apart. No clinical signs were observed in ducks infected or co-infected with vNDV and LPAIV, but co-infection decreased the number of ducks shedding vNDV and the amount of virus shed (Pducks inoculated with only LPAIV compared to ducks co-infected with vNDV. Ducks that received the HPAIV with the vNDV simultaneously survived fewer days (Pducks that received the vNDV two days before the HPAIV. Co-infection also reduced transmission of vNDV to naïve contact ducks housed with the inoculated ducks. In conclusion, domestic ducks can become co-infected with vNDV and LPAIV with no effect on clinical signs but with reduction of virus shedding and transmission. These findings indicate that infection with one virus can interfere with replication of another, modifying the pathogenesis and transmission of the viruses. Published by Elsevier B.V.

  20. Novel serotype of bluetongue virus in South America and first report of epizootic haemorrhagic disease virus in Ecuador.

    Science.gov (United States)

    Verdezoto, J; Breard, E; Viarouge, C; Quenault, H; Lucas, P; Sailleau, C; Zientara, S; Augot, D; Zapata, S

    2018-02-01

    Bluetongue virus (BTV) and Epizootic haemorrhagic disease virus (EHDV) are closely related Orbiviruses that affect domestic and wild ruminants. In Ecuador previous serological studies reported the presence of BTV; however, no data are available about the presence of EHDV. In this study, 295 cattle without symptoms of infection were sampled from two farms located in Andean and Amazonian regions and from a slaughterhouse in the coastal region. ELISA analyses showed high prevalence of BTV (98.9%) and EHDV (81.3%) antibodies, and RT-qPCRs revealed the presence of EHDV (24.1%) and BTV (10.2%) genomes in cattle blood samples. Viral isolation allowed to identify EHDV serotype 1 (EHDV1) and BTV serotypes 9 (BTV9), 13 and 18. These findings suggest that BTV and EHDV are enzootic diseases in Ecuador. © 2017 Blackwell Verlag GmbH.

  1. Phenotype Variation in Human Immunodeficiency virus Type 1 Transmission and Disease Progression

    Directory of Open Access Journals (Sweden)

    Mariangela Cavarelli

    2009-01-01

    Full Text Available Human immunodeficiency virus type I (HIV-1 infects target cells through interaction with the CD4 molecule and chemokine receptors, mainly CCR5 and CXCR4. Viral isolates can be phenotypically classified based on the co-receptor they utilize to infect target cells. Thus, R5 and X4 virus use respectively CCR5 and CXCR4, whereas R5X4 virus can use either CCR5 or CXCR4. This review describes the central role played by co-receptor expression and usage for HIV-1 cell tropism, transmission and pathogenesis. We discuss various hypotheses proposed to explain the preferential transmission of R5 viruses and the mechanisms driving the change of HIV-1 co-receptor usage in the course of infection. Recent insights in the intrinsic variability of R5 viruses and their role in influencing disease progression in both adults and children are also discussed.

  2. Phenotype variation in human immunodeficiency virus type 1 transmission and disease progression.

    Science.gov (United States)

    Cavarelli, Mariangela; Scarlatti, Gabriella

    2009-01-01

    Human immunodeficiency virus type I (HIV-1) infects target cells through interaction with the CD4 molecule and chemokine receptors, mainly CCR5 and CXCR4. Viral isolates can be phenotypically classified based on the co-receptor they utilize to infect target cells. Thus, R5 and X4 virus use respectively CCR5 and CXCR4, whereas R5X4 virus can use either CCR5 or CXCR4. This review describes the central role played by co-receptor expression and usage for HIV-1 cell tropism, transmission and pathogenesis. We discuss various hypotheses proposed to explain the preferential transmission of R5 viruses and the mechanisms driving the change of HIV-1 co-receptor usage in the course of infection. Recent insights in the intrinsic variability of R5 viruses and their role in influencing disease progression in both adults and children are also discussed.

  3. Virus-host interactions and their roles in coral reef health and disease.

    Science.gov (United States)

    Thurber, Rebecca Vega; Payet, Jérôme P; Thurber, Andrew R; Correa, Adrienne M S

    2017-04-01

    Coral reefs occur in nutrient-poor shallow waters, constitute biodiversity and productivity hotspots, and are threatened by anthropogenic disturbance. This Review provides an introduction to coral reef virology and emphasizes the links between viruses, coral mortality and reef ecosystem decline. We describe the distinctive benthic-associated and water-column- associated viromes that are unique to coral reefs, which have received less attention than viruses in open-ocean systems. We hypothesize that viruses of bacteria and eukaryotes dynamically interact with their hosts in the water column and with scleractinian (stony) corals to influence microbial community dynamics, coral bleaching and disease, and reef biogeochemical cycling. Last, we outline how marine viruses are an integral part of the reef system and suggest that the influence of viruses on reef function is an essential component of these globally important environments.

  4. Genomic 3' terminal sequence comparison of three isolates of rabbit haemorrhagic disease virus.

    Science.gov (United States)

    Milton, I D; Vlasak, R; Nowotny, N; Rodak, L; Carter, M J

    1992-05-15

    Comparison of sequence data is necessary in older to investigate virus origins, identify features common to virulent strains, and characterize genomic organization within virus families. A virulent caliciviral disease of rabbits recently emerged in China. We have sequenced 1100 bases from the 3' ends of two independent European isolates of this virus, and compared these with previously determined calicivirus sequences. Rabbit caliciviruses were closely related, despite the different countries in which isolation was made. This supports the rapid spread of a new virus across Europe. The capsid protein sequences of these rabbit viruses differ markedly from those determined for feline calicivirus, but a hypothetical 3' open reading frame is relatively well conserved between the caliciviruses of these two different hosts and argues for a functional role.

  5. Recombinant Newcastle disease virus-vectored vaccines against human and animal infectious diseases.

    Science.gov (United States)

    Duan, Zhiqiang; Xu, Houqiang; Ji, Xinqin; Zhao, Jiafu

    2015-01-01

    Recent advances in recombinant genetic engineering techniques have brought forward a leap in designing new vaccines in modern medicine. One attractive strategy is the application of reverse genetics technology to make recombinant Newcastle disease virus (rNDV) deliver protective antigens of pathogens. In recent years, numerous studies have demonstrated that rNDV-vectored vaccines can induce quicker and better humoral and mucosal immune responses than conventional vaccines and are protective against pathogen challenges. With deeper understanding of NDV molecular biology, it is feasible to develop gene-modified rNDV vaccines accompanied by good safety, high efficacy, low toxicity and better immunogenicity. This review summarizes the development of reverse genetics technology in using NDV as a promising vaccine vector to design new vaccines for human and animal use.

  6. Derivation of chicken induced pluripotent stem cells tolerant to Newcastle disease virus-induced lysis through multiple rounds of infection

    Science.gov (United States)

    Background: Newcastle disease (ND), caused by Newcastle disease virus (NDV), is a devastating disease of poultry and wild birds. ND is prevented by rigorous biocontainment and vaccination. One potential approach to prevent spread of the virus is production of birds that show innate resistance to NDV...

  7. Quantification of Foot-and-mouth Disease Virus Transmission Rates Using Published Data

    NARCIS (Netherlands)

    Goris, N.E.; Eble, P.L.; Jong, de M.C.M.; Clercq, K.

    2009-01-01

    Foot-and-mouth disease is an extremely infectious and devastating disease affecting all species of cloven-hoofed animals. To understand the epidemiology of the causative virus and predict viral transmission dynamics, quantified transmission parameters are essential to decision makers and modellers

  8. Characterization of epitope-tagged foot-and-mouth disease virus

    NARCIS (Netherlands)

    Seago, J.; Jackson, T.; Doel, C.; Fry, E.; Stuart, D.; Harmsen, M.M.; Charleston, B.; Juleff, N.

    2012-01-01

    Foot-and-mouth disease (FMD) is a highly contagious and economically devastating disease of cloven-hoofed animals with an almost-worldwide distribution. Conventional FMD vaccines consisting of chemically inactivated viruses have aided in the eradication of FMD from Europe and remain the main tool

  9. Marek’s disease virus induced transient atrophy of cecal tonsils

    Science.gov (United States)

    Although bursal and thymic atrophy associated with Marek’s disease (MD) is well established and characterized, the effect of Marek's disease virus (MDV) infection on lymphoid aggregates within the gut-associated lymphoid tissue (GALT) is not known. The cecal tonsils (CT) are the two largest lympho...

  10. Viral shedding and emission of airborne infectious bursal disease virus from a broiler room

    NARCIS (Netherlands)

    Zhao, Y.; Aarnink, A.J.A.; Cambra-Lopez, M.; Fabri, T.

    2013-01-01

    1. The significance of airborne transmission in epidemics of infectious diseases in the livestock production industry remains unclear. The study therefore investigated the shedding route (faeces vs. exhaled air) of a vaccine strain of infectious bursal disease virus (IBDV) by broilers and the

  11. Biomarker Correlates of Survival in Pediatric Patients with Ebola Virus Disease

    Centers for Disease Control (CDC) Podcasts

    2014-08-19

    Dr. Mike Miller reads an abridged version of the article, Biomarker Correlates of Survival in Pediatric Patients with Ebola Virus Disease.  Created: 8/19/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 8/19/2014.

  12. Capsid proteins from field strains of foot-and-mouth disease virus confer a pathogenic phenotype in cattle on an attenuated, cell-culture-adapted virus

    DEFF Research Database (Denmark)

    Bøtner, Anette; Kakker, Naresh K.; Barbezange, Cyril

    2011-01-01

    Chimeric foot-and-mouth disease viruses (FMDVs) have been generated from plasmids containing full-length FMDV cDNAs and characterized. The parental virus cDNA was derived from the cell-culture-adapted O1Kaufbeuren B64 (O1K B64) strain. Chimeric viruses, containing capsid coding sequences derived...... cells than the rescued parental O1K B64 virus. The two chimeric viruses displayed the expected antigenicity in serotype-specific antigen ELISAs. Following inoculation of each virus into cattle, the rescued O1K B64 strain proved to be attenuated whereas, with each chimeric virus, typical clinical signs...... region within the O1K B64 strain that inhibits replication in cattle. These chimeric infectious cDNA plasmids provide a basis for the analysis of FMDV pathogenicity and characterization of receptor utilization in vivo....

  13. Herpes simplex type 2 virus deleted in glycoprotein D protects against vaginal, skin and neural disease

    OpenAIRE

    Petro, Christopher; Gonz?lez, Pablo A; Cheshenko, Natalia; Jandl, Thomas; Khajoueinejad, Nazanin; B?nard, Ang?le; Sengupta, Mayami; Herold, Betsy C; Jacobs, William R

    2015-01-01

    eLife digest Herpes simplex virus 2 (or HSV-2) infects millions of people worldwide and is the leading cause of genital diseases. The virus initially infects skin cells, but then spreads to nerve cells where it persists for life. Often, the virus remains in a dormant state for long periods of time and does not cause any symptoms. However, HSV-2 can periodically re-activate, leading to repeated infections; this can be life-threatening in patients who suffer from a weak immune system. There is ...

  14. Characterization of foot-and-mouth disease virus's viral peptides with LC-ESI-MS

    International Nuclear Information System (INIS)

    Pzdemir, Z.O.; Bulut, E.K.; Mustafeva, Z.; Karahan, M.

    2010-01-01

    Peptides and proteins play a central role in numerous biological and physiological processes in living organisms. Viral capsid peptides are part of the viruses' outer shell of genetic materials. Viruses are recognized by immune system via capsid peptides. Depending on this property of capsid peptides, prototypes synthetic peptide-based vaccine can be developed. In this work, we synthesized three different viral peptide sequences of foot-and-mouth disease virus with microwave enhanced solid phase synthesis method. These peptides were characterized by using liquid chromatography electro spray interface mass spectrometry (LC-ESI-MS) with electro spray ionization. We briefly describe the essential facts for peptide characterization. (author)

  15. Newcastle disease virus surveillance in Hong Kong on local and imported poultry.

    Science.gov (United States)

    Shortridge, K F; Alexander, D J

    1978-09-01

    Surveillance of apparently healthy ducks, geese and fowl originating in Hong Kong and the People's Republic of China at a poultry dressing plant in Hong Kong yielded 67 isolates of Newcastle disease virus. More than twice as many viruses were isolated from the cloaca than from the trachea. Twelve representative isolates were examined in virulence tests--all six of the fowl isolates and two of five duck isolates behaved as velogenic strains, the other four were lentogenic.

  16. Quantification of foot and mouth disease virus excretion and transmission within groups of lambs with and without vaccination

    NARCIS (Netherlands)

    Orsel, K.; Dekker, A.; Bouma, A.; Stegeman, J.A.; Jong, de M.C.M.

    2007-01-01

    Sheep are well known to be susceptible for foot and mouth disease virus (FMDV), but it is unknown whether the infection can spread and persist in a sheep population. We therefore quantified virus transmission by performing experiments with FMD virus strain O/NET/2001 in groups of lambs. We used six

  17. Chimeric polyomavirus-derived virus-like particles: the immunogenicity of an inserted peptide applied without adjuvant to mice depends on its insertion site and its flanking linker sequence

    OpenAIRE

    Lawatscheck, R.; Aleksaite, E.; Schenk, J.A.; Micheel, B.; Jandrig, B.; Holland, G.; Sasnauskas, K.; Gedvilaite, A.; Ulrich, R.G.

    2007-01-01

    We inserted the sequence of the carcinoembryonic antigen-derived T cell epitope CAP-1-6D (CEA) into different positions of the hamster polyomavirus major capsid protein VP1. Independently from additional flanking linkers, yeast-expressed VP1 proteins harboring the CEA insertion between VP1 amino acid residues 80 and 89 (site 1) or 288 and 295 (site 4) or simultaneously at both positions assembled to chimeric virus-like particles (VLPs). BALB/c mice immunized with adjuvant-free VLPs developed ...

  18. Effect of low dose gamma-radiation upon Newcastle disease virus antibody level in chicken

    International Nuclear Information System (INIS)

    Vilic, M.; Gottstein, Z.; Ciglar Grozdanic, I.; Matanovic, K.; Miljanic, S.; Mazija, H.; Kraljevic, P.

    2009-01-01

    The specific antibody response against Newcastle disease virus in the blood serum of chickens hatched from eggs exposed to low dose gamma-radiation was studied. Materials and methods: Two groups of eggs of commercial meat chicken lines were irradiated with the dose of 0.30 Gy 60 Co gamma-rays before incubation and on the 19 th day of incubation, respectively. The same number of eggs unexposed to gamma-radiation served as controls. After hatching the group of chicken hatched from eggs irradiated on the 19 th day of incubation was not vaccinated while the group of chicken hatched from eggs irradiated before incubation was vaccinated on the 14 day. Specific serum anti-Newcastle disease virus antibodies were quantified by the hemagglutination inhibition assay with 4 HA units of Newcastle disease virus La Sota strain. Result: Specific antibody titres against Newcastle disease virus in the blood serum of chickens hatched from eggs irradiated before incubation and vaccinated on the 14 th day significantly increased on the 28 th day. Specific antibody titre against Newcastle disease virus in the blood serum of chickens hatched from eggs irradiated on the 19 th day of incubation and non-vaccinated was significantly higher on the 1 st and 14 th day. Conclusion: Acute irradiation of heavy breeding chicken eggs with the dose of 0.30 Gy 60 Co gamma-rays before incubation and on the 19 th day of incubation could have a stimulative effect on humoral immunity in chickens.

  19. Virus Excretion from Foot-And-Mouth Disease Virus Carrier Cattle and Their Potential Role in Causing New Outbreaks.

    Science.gov (United States)

    Parthiban, Aravindh Babu R; Mahapatra, Mana; Gubbins, Simon; Parida, Satya

    2015-01-01

    The role of foot-and-mouth disease virus (FMDV) carrier cattle in causing new outbreaks is still a matter of debate and it is important to find out these carrier animals by post-outbreak serosurveillance to declare freedom from FMDV infection. In this study we explore the differences in viral shedding between carrier and non-carrier animals, quantify the transmission rate of FMDV infection from carriers to susceptible animals and identify potential viral determinants of viral persistence. We collected nasal and saliva samples from 32 vaccinated and 7 unvaccinated FMDV carrier cattle and 48 vaccinated and 13 unvaccinated non-carrier cattle (total n=100) during the acute phase of infection (up to 28 days post-challenge) and then from limited number of animals up to a maximum 168 days post-challenge. We demonstrate that unvaccinated cattle excrete significantly higher levels of virus for longer periods compared with vaccinated cattle and this is independent of whether or not they subsequently become carriers. By introducing naïve cattle in to the FMDV carrier population we show the risk of new outbreaks is clearly very low in controlled conditions, although there could still be a potential threat of these carrier animals causing new outbreaks in the field situation. Finally, we compared the complete genome sequences of viruses from carrier cattle with the challenge virus and found no evidence for viral determinants of the carrier state.

  20. Virus Excretion from Foot-And-Mouth Disease Virus Carrier Cattle and Their Potential Role in Causing New Outbreaks.

    Directory of Open Access Journals (Sweden)

    Aravindh Babu R Parthiban

    Full Text Available The role of foot-and-mouth disease virus (FMDV carrier cattle in causing new outbreaks is still a matter of debate and it is important to find out these carrier animals by post-outbreak serosurveillance to declare freedom from FMDV infection. In this study we explore the differences in viral shedding between carrier and non-carrier animals, quantify the transmission rate of FMDV infection from carriers to susceptible animals and identify potential viral determinants of viral persistence. We collected nasal and saliva samples from 32 vaccinated and 7 unvaccinated FMDV carrier cattle and 48 vaccinated and 13 unvaccinated non-carrier cattle (total n=100 during the acute phase of infection (up to 28 days post-challenge and then from limited number of animals up to a maximum 168 days post-challenge. We demonstrate that unvaccinated cattle excrete significantly higher levels of virus for longer periods compared with vaccinated cattle and this is independent of whether or not they subsequently become carriers. By introducing naïve cattle in to the FMDV carrier population we show the risk of new outbreaks is clearly very low in controlled conditions, although there could still be a potential threat of these carrier animals causing new outbreaks in the field situation. Finally, we compared the complete genome sequences of viruses from carrier cattle with the challenge virus and found no evidence for viral determinants of the carrier state.

  1. Presence of Vaccine-Derived Newcastle Disease Viruses in Wild Birds.

    Directory of Open Access Journals (Sweden)

    Andrea J Ayala

    Full Text Available Our study demonstrates the repeated isolation of vaccine-derived Newcastle disease viruses from different species of wild birds across four continents from 1997 through 2014. The data indicate that at least 17 species from ten avian orders occupying different habitats excrete vaccine-derived Newcastle disease viruses. The most frequently reported isolates were detected among individuals in the order Columbiformes (n = 23, followed in frequency by the order Anseriformes (n = 13. Samples were isolated from both free-ranging (n = 47 and wild birds kept in captivity (n = 7. The number of recovered vaccine-derived viruses corresponded with the most widely utilized vaccines, LaSota (n = 28 and Hitchner B1 (n = 19. Other detected vaccine-derived viruses resembled the PHY-LMV2 and V4 vaccines, with five and two cases, respectively. These results and the ubiquitous and synanthropic nature of wild pigeons highlight their potential role as indicator species for the presence of Newcastle disease virus of low virulence in the environment. The reverse spillover of live agents from domestic animals to wildlife as a result of the expansion of livestock industries employing massive amounts of live virus vaccines represent an underappreciated and poorly studied effect of human activity on wildlife.

  2. Presence of Vaccine-Derived Newcastle Disease Viruses in Wild Birds

    Science.gov (United States)

    Ayala, Andrea J.; Dimitrov, Kiril M.; Becker, Cassidy R.; Goraichuk, Iryna V.; Arns, Clarice W.; Bolotin, Vitaly I.; Ferreira, Helena L.; Gerilovych, Anton P.; Goujgoulova, Gabriela V.; Martini, Matheus C.; Muzyka, Denys V.; Orsi, Maria A.; Scagion, Guilherme P.; Silva, Renata K.; Solodiankin, Olexii S.; Stegniy, Boris T.; Miller, Patti J.; Afonso, Claudio L.

    2016-01-01

    Our study demonstrates the repeated isolation of vaccine-derived Newcastle disease viruses from different species of wild birds across four continents from 1997 through 2014. The data indicate that at least 17 species from ten avian orders occupying different habitats excrete vaccine-derived Newcastle disease viruses. The most frequently reported isolates were detected among individuals in the order Columbiformes (n = 23), followed in frequency by the order Anseriformes (n = 13). Samples were isolated from both free-ranging (n = 47) and wild birds kept in captivity (n = 7). The number of recovered vaccine-derived viruses corresponded with the most widely utilized vaccines, LaSota (n = 28) and Hitchner B1 (n = 19). Other detected vaccine-derived viruses resembled the PHY-LMV2 and V4 vaccines, with five and two cases, respectively. These results and the ubiquitous and synanthropic nature of wild pigeons highlight their potential role as indicator species for the presence of Newcastle disease virus of low virulence in the environment. The reverse spillover of live agents from domestic animals to wildlife as a result of the expansion of livestock industries employing massive amounts of live virus vaccines represent an underappreciated and poorly studied effect of human activity on wildlife. PMID:27626272

  3. Vaccine-induced anti-HA2 antibodies promote virus fusion and enhance influenza virus respiratory disease.

    Science.gov (United States)

    Khurana, Surender; Loving, Crystal L; Manischewitz, Jody; King, Lisa R; Gauger, Phillip C; Henningson, Jamie; Vincent, Amy L; Golding, Hana

    2013-08-28

    Vaccine-induced disease enhancement has been described in connection with several viral vaccines in animal models and in humans. We investigated a swine model to evaluate mismatched influenza vaccine-associated enhanced respiratory disease (VAERD) after pH1N1 infection. Vaccinating pigs with whole inactivated H1N2 (human-like) virus vaccine (WIV-H1N2) resulted in enhanced pneumonia and disease after pH1N1 infection. WIV-H1N2 immune sera contained high titers of cross-reactive anti-pH1N1 hemagglutinin (HA) antibodies that bound exclusively to the HA2 domain but not to the HA1 globular head. No hemagglutination inhibition titers against pH1N1 (challenge virus) were measured. Epitope mapping using phage display library identified the immunodominant epitope recognized by WIV-H1N2 immune sera as amino acids 32 to 77 of pH1N1-HA2 domain, close to the fusion peptide. These cross-reactive anti-HA2 antibodies enhanced pH1N1 infection of Madin-Darby canine kidney cells by promoting virus membrane fusion activity. The enhanced fusion activity correlated with lung pathology in pigs. This study suggests a role for fusion-enhancing anti-HA2 antibodies in VAERD, in the absence of receptor-blocking virus-neutralizing antibodies. These findings should be considered during the evaluation of universal influenza vaccines designed to elicit HA2 stem-targeting antibodies.

  4. Occult hepatitis B virus infection is not associated with disease progression of chronic hepatitis C virus infection.

    Science.gov (United States)

    Cho, Junhyeon; Lee, Sang Soo; Choi, Yun Suk; Jeon, Yejoo; Chung, Jung Wha; Baeg, Joo Yeong; Si, Won Keun; Jang, Eun Sun; Kim, Jin-Wook; Jeong, Sook-Hyang

    2016-11-14

    To clarify the prevalence of occult hepatitis B virus (HBV) infection (OBI) and the association between OBI and liver disease progression, defined as development of liver cirrhosis or hepatocellular carcinoma (HCC), worsening of Child-Pugh class, or mortality in cases of chronic hepatitis C virus (HCV) infection. This prospective cohort study enrolled 174 patients with chronic HCV infection (chronic hepatitis, n = 83; cirrhosis, n = 47; HCC, n = 44), and evaluated disease progression during a mean follow-up of 38.7 mo. OBI was defined as HBV DNA positivity in 2 or more different viral genomic regions by nested polymerase chain reaction using 4 sets of primers in the S, C, P and X open reading frame of the HBV genome. The overall OBI prevalence in chronic HCV patients at enrollment was 18.4%, with 16.9%, 25.5% and 13.6% in the chronic hepatitis C, liver cirrhosis and HCC groups, respectively ( P = 0.845). During follow-up, 52 patients showed disease progression, which was independently associated with aspartate aminotransferase > 40 IU/L, Child-Pugh score and sustained virologic response (SVR), but not with OBI positivity. In 136 patients who were not in the SVR state during the study period, OBI positivity was associated with neither disease progression, nor HCC development. The prevalence of OBI in chronic HCV patients was 18.4%, and OBI was not associated with disease progression in South Koreans.

  5. Zika virus infection: The resurgence of a neglected disease

    Directory of Open Access Journals (Sweden)

    Tushar Kambale

    2016-01-01

    Full Text Available "Zika virus" (ZIKV is an enveloped, icosahedral virus and has a positive-sense, single-stranded RNA genome approximately 11 kb in length. Genetic studies have revealed three ZIKV lineages: East African, West African, and Asian. Serologic studies and virus isolations have demonstrated that the virus has a wide geographic distribution, spanning East and West Africa, the Americas, Indian subcontinent, and Southeast Asia. ZIKV can cause complications such as Guillain-Barré syndrome, meningitis, meningoencephalitis, and myelitis. During pregnancy ZIKV infection can lead to miscarriages and microcephaly, cerebral calcifications, macular neuroretinal atrophy, and loss of foveal reflex in the fetus. A clinically suspected case of infection with dengue negative result should be further tested for Flavivirus, including Zika. Immunofluorescence or enzyme-linked immunosorbent assay is used to detect specific IgM or IgG antibodies against ZIKV. In cases of positive ZIKV infection, symptomatic treatment should be given after excluding other condition such as dengue, malaria, and bacterial infections.

  6. Significance and transmission of maize streak virus disease in Africa ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... soil nutrients, altitude and temperature on the biology of maize streak virus (MSV) / vector populations is discussed. ... status of maize host plants and its effects on population dynamics of Cicadulina mbila Naudé. (Homoptera: ..... time necessary for the leafhopper to reach the mesophyll of the leaf and ingest ...

  7. Understanding the biological mechanisms of Zika virus disease ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project will use advanced biomolecular, genomics and proteomics techniques to explain the molecular mechanisms by which the Zika virus infects and persists in the human body, how it affects the human reproductive and central nervous system, and how the risk of fetal abnormalities can be better predicted in infected ...

  8. Generation of Newcastle Disease Virus (NDV) Recombinants Expressing the Infectious Laryngotracheitis Virus (ILTV) Glycoprotein gB or gD as Dual Vaccines.

    Science.gov (United States)

    Zhao, Wei; Spatz, Stephen; Zsak, Laszlo; Yu, Qingzhong

    2016-01-01

    Infectious laryngotracheitis (ILT) is a highly contagious acute respiratory disease of chickens caused by infection with infectious laryngotracheitis virus (ILTV), a member of the family Herpesviridae. The current commercial ILT vaccines are either unsafe or ineffective. Therefore, there is a pressing need to develop safer and more efficacious vaccines. Newcastle disease (ND), caused by infection with Newcastle disease virus (NDV), a member of the family Paramyxoviridae, is one of the most serious infectious diseases of poultry. The NDV LaSota strain, a naturally occurring low-virulence NDV strain, has been routinely used as a live vaccine throughout the world. This chapter describes the generation of Newcastle disease virus (NDV) LaSota vaccine strain-based recombinant viruses expressing glycoprotein B (gB) or glycoprotein D (gD) of ILTV as dual vaccines against ND and ILT using reverse genetics technology.

  9. Detection Rate and Clinical Impact of Respiratory Viruses in Children with Kawasaki Disease

    Directory of Open Access Journals (Sweden)

    Ja Hye Kim

    2012-12-01

    Full Text Available &lt;B&gt;Purpose:&lt;/B&gt; The purpose of this prospective case-control study was to survey the detection rate of respiratory viruses in children with Kawasaki disease (KD by using multiplex reverse transcriptasepolymerase chain reaction (RT-PCR, and to investigate the clinical implications of the prevalence of respiratory viruses during the acute phase of KD. &lt;B&gt;Methods:&lt;/B&gt; RT-PCR assays were carried out to screen for the presence of respiratory syncytial virus A and B, adenovirus, rhinovirus, parainfluenza viruses 1 to 4, influenza virus A and B, metapneumovirus, bocavirus, coronavirus OC43/229E and NL63, and enterovirus in nasopharyngeal secretions of 55 KD patients and 78 control subjects. &lt;B&gt;Results:&lt;/B&gt; Virus detection rates in KD patients and control subjects were 32.7% and 30.8%, respectively (P=0.811. However, there was no significant association between the presence of any of the 15 viruses and the incidence of KD. Comparisons between the 18 patients with positive RT-PCR results and the other 37 KD patients revealed no significant differences in terms of clinical findings (including the prevalence of incomplete presentation of the disease and coronary artery diameter. &lt;B&gt;Conclusion:&lt;/B&gt; A positive RT-PCR for currently epidemic respiratory viruses should not be used as an evidence against the diagnosis of KD. These viruses were not associated with the incomplete presentation of KD and coronary artery dilatation.

  10. Enfermedad del virus del Ébola (Ebola Virus Disease)

    Centers for Disease Control (CDC) Podcasts

    Este podcast proporciona información general sobre la enfermedad del virus del Ébola y el brote en África Occidental. El programa contiene declaraciones del director de los CDC, Dr. Tom Frieden, así como una breve descripción de las actividades de respuesta de los CDC.

  11. Rapid Engineering of Foot-and-Mouth Disease Vaccine and Challenge Viruses.

    Science.gov (United States)

    Lee, Seo-Yong; Lee, Yeo-Joo; Kim, Rae-Hyung; Park, Jeong-Nam; Park, Min-Eun; Ko, Mi-Kyeong; Choi, Joo-Hyung; Chu, Jia-Qi; Lee, Kwang-Nyeong; Kim, Su-Mi; Tark, Dongseob; Lee, Hyang-Sim; Ko, Young-Joon; Seo, Min-Goo; Park, Jung-Won; Kim, Byounghan; Lee, Myoung-Heon; Lee, Jong-Soo; Park, Jong-Hyeon

    2017-08-15

    There are seven antigenically distinct serotypes of foot-and-mouth disease virus (FMDV), each of which has intratypic variants. In the present study, we have developed methods to efficiently generate promising vaccines against seven serotypes or subtypes. The capsid-encoding gene (P1) of the vaccine strain O1/Manisa/Turkey/69 was replaced with the amplified or synthetic genes from the O, A, Asia1, C, SAT1, SAT2, and SAT3 serotypes. Viruses of the seven serotype were rescued successfully. Each chimeric FMDV with a replacement of P1 showed serotype-specific antigenicity and varied in terms of pathogenesis in pigs and mice. Vaccination of pigs with an experimental trivalent vaccine containing the inactivated recombinants based on the main serotypes O, A, and Asia1 effectively protected them from virus challenge. This technology could be a potential strategy for a customized vaccine with challenge tools to protect against epizootic disease caused by specific serotypes or subtypes of FMDV. IMPORTANCE Foot-and-mouth disease (FMD) virus (FMDV) causes significant economic losses. For vaccine preparation, the selection of vaccine strains was complicated by high antigenic variation. In the present study, we suggested an effective strategy to rapidly prepare and evaluate mass-produced customized vaccines against epidemic strains. The P1 gene encoding the structural proteins of the well-known vaccine virus was replaced by the synthetic or amplified genes of viruses of seven representative serotypes. These chimeric viruses generally replicated readily in cell culture and had a particle size similar to that of the original vaccine strain. Their antigenicity mirrored that of the original serotype from which their P1 gene was derived. Animal infection experiments revealed that the recombinants varied in terms of pathogenicity. This strategy will be a useful tool for rapidly generating customized FMD vaccines or challenge viruses for all serotypes, especially for FMD-free countries

  12. Recent advances in the development of vaccines for Ebola virus disease.

    Science.gov (United States)

    Ohimain, Elijah Ige

    2016-01-04

    Ebola virus is one of the most dangerous microorganisms in the world causing hemorrhagic fevers in humans and non-human primates. Ebola virus (EBOV) is a zoonotic infection, which emerges and re-emerges in human populations. The 2014 outbreak was caused by the Zaire strain, which has a kill rate of up to 90%, though 40% was recorded in the current outbreak. The 2014 outbreak is larger than all 20 outbreaks that have occurred since 1976, when the virus was first discovered. It is the first time that the virus was sustained in urban centers and spread beyond Africa into Europe and USA. Thus far, over 22,000 cases have been reported with about 50% mortality in one year. There are currently no approved therapeutics and preventive vaccines against Ebola virus disease (EVD). Responding to the devastating effe1cts of the 2014 outbreak and the potential risk of global spread, has spurred research for the development of therapeutics and vaccines. This review is therefore aimed at presenting the progress of vaccine development. Results showed that conventional inactivated vaccines produced from EBOV by heat, formalin or gamma irradiation appear to be ineffective. However, novel vaccines production techniques have emerged leading to the production of candidate vaccines that have been demonstrated to be effective in preclinical trials using small animal and non-human primates (NHP) models. Some of the promising vaccines have undergone phase 1 clinical trials, which demonstrated their safety and immunogenicity. Many of the candidate vaccines are vector based such as Vesicular Stomatitis Virus (VSV), Rabies Virus (RABV), Adenovirus (Ad), Modified Vaccinia Ankara (MVA), Cytomegalovirus (CMV), human parainfluenza virus type 3 (HPIV3) and Venezuelan Equine Encephalitis Virus (VEEV). Other platforms include virus like particle (VLP), DNA and subunit vaccines. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Longitudinal peripheral blood transcriptional analysis of a patient with severe Ebola virus disease.

    Science.gov (United States)

    Kash, John C; Walters, Kathie-Anne; Kindrachuk, Jason; Baxter, David; Scherler, Kelsey; Janosko, Krisztina B; Adams, Rick D; Herbert, Andrew S; James, Rebekah M; Stonier, Spencer W; Memoli, Matthew J; Dye, John M; Davey, Richard T; Chertow, Daniel S; Taubenberger, Jeffery K

    2017-04-12

    The 2013-2015 outbreak of Ebola virus disease in Guinea, Liberia, and Sierra Leone was unprecedented in the number of documented cases, but there have been few published reports on immune responses in clinical cases and their relationships with the course of illness and severity of Ebola virus disease. Symptoms of Ebola virus disease can include severe headache, myalgia, asthenia, fever, fatigue, diarrhea, vomiting, abdominal pain, and hemorrhage. Although experimental treatments are in development, there are no current U.S. Food and Drug Administration-approved vaccines or therapies. We report a detailed study of host gene expression as measured by microarray in daily peripheral blood samples collected from a patient with severe Ebola virus disease. This individual was provided with supportive care without experimental therapies at the National Institutes of Health Clinical Center from before onset of critical illness to recovery. Pearson analysis of daily gene expression signatures revealed marked gene expression changes in peripheral blood leukocytes that correlated with changes in serum and peripheral blood leukocytes, viral load, antibody responses, coagulopathy, multiple organ dysfunction, and then recovery. This study revealed marked shifts in immune and antiviral responses that preceded changes in medical condition, indicating that clearance of replicating Ebola virus from peripheral blood leukocytes is likely important for systemic viral clearance. Copyright © 2017, American Association for the Advancement of Science.

  14. Health care workers indicate ill preparedness for Ebola Virus Disease outbreak in Ashanti Region of Ghana

    OpenAIRE

    Augustina Angelina Annan; Denis Dekugmen Yar; Michael Owusu; Eno Akua Biney; Paa Kobina Forson; Portia Boakye Okyere; Akosua Adumea Gyimah; Ellis Owusu-Dabo

    2017-01-01

    Abstract Background The recent Ebola Virus Disease (EVD) epidemic that hit some countries in West Africa underscores the need to train front line high-risk health workers on disease prevention skills. Although Ghana did not record (and is yet to) any case, and several health workers have received numerous training schemes, there is no record of any study that assessed preparedness of healthcare workers (HCWS) regarding EVD and any emergency prone disease in Ghana. We therefore conducted a hos...

  15. Modeling Marek's disease virus transmission: A framework for evaluating the impact of farming practices and evolution

    OpenAIRE

    David A. Kennedy; Patricia A. Dunn; Andrew F. Read

    2018-01-01

    Marek's disease virus (MDV) is a pathogen of chickens whose control has twice been undermined by pathogen evolution. Disease ecology is believed to be the main driver of this evolution, yet mathematical models of MDV disease ecology have never been confronted with data to test their reliability. Here, we develop a suite of MDV models that differ in the ecological mechanisms they include. We fit these models with maximum likelihood using iterated filtering in ‘pomp’ to data on MDV concentratio...

  16. Effect of mosaic virus diseases on dry matter content and starch ...

    African Journals Online (AJOL)

    The effect of mosaic virus diseases on dry matter content and starch yield of five local accessions of cassava, “Ankrah”, “AW/17, “Tomfa”, “Dagarti” and “Tuaka” was evaluated. Tomfa showed the highest (95%) incidence of the disease, index of severity of symptoms for all plants (ISSAP) of 3.70, as well as, for diseased plants ...

  17. Conserved elements within the genome of foot-and mouth disease virus; their influence on virus replication

    DEFF Research Database (Denmark)

    Kjær, Jonas; Poulsen, Line D.; Vinther, Jeppe

    Objectives: Several conserved elements within the genome of foot-and-mouth disease virus (FMDV) have been identified, e.g. the IRES. Such elements can be crucial for the efficient replication of the genomic RNA. Previously, SHAPE analysis of the entire FMDV genome (Poulsen et al., 2016 submitted......) has identified a conserved RNA structure within the 3Dpol coding region (the RNA-dependent RNA polymerase) which might have an important role in virus replication. The FMDV 2A peptide, another conserved element, is responsible for the primary “cleavage” at its own C-terminus (2A/2B junction......). It is believed that this “cleavage” is achieved by ribosomal skipping, in which the 2A peptide prevents the ribosome from linking the next amino acid (aa) to the growing polypeptide. The nature of this “cleavage” has so far not been investigated in the context of the full-length FMDV RNA within cells. Through...

  18. A monoclonal antibody to inclusion body disease of cranes virus enabling specific immunohistochemistry and competitive ELISA

    Science.gov (United States)

    Letchworth, G.J.; Fishel, J.R.; Hansen, W.R.

    1997-01-01

    Inclusion body disease of cranes (IBDC) herpesvirus kills some infected cranes and persists in convalescent animals. To enable further study and rapid identification of carrier animals, we developed a monoclonal antibody (MAb) to IBDC virus and used it in immunohistochemistry and a competitive enzyme-linked immunosorbent assay (ELISA). We used conventional techniques to make murine MAbs directed against IBDC virus purified from infected duck embryo cells. Hybridomas reacting in an ELISA with IBDC virus but not uninfected duck embryo cells were characterized by radioimmunoprecipitation, in situ immunohistochemistry, and competitive ELISA with neutralizing and nonneutralizing crane sera. MAb 2C11 immunoprecipitated 59-, 61-, and 110-kD proteins from IBDC virus-infected but not uninfected cells and stained glutaraldehyde-fixed IBDC virus plaques but not surrounding uninfected duck embryo cells in vitro. Antibody 2C11 did not react with duck embryo cells infected with falcon herpesvirus, psittacine herpesvirus, infectious laryngotracheitis, pigeon herpesvirus, or duck plague virus. A competitive ELISA using antibody 2C11 identified most sera that were positive in the neutralization test. This antibody will be useful in further characterizing IBDC virus, its pathogenesis, and its natural history.

  19. General introduction into the Ebola virus biology and disease.

    Science.gov (United States)

    Zawilińska, Barbara; Kosz-Vnenchak, Magdalena

    2014-01-01

    Epidemic of Ebola hemorrhagic fever which appeared in the countries of West Africa in 2014, is the largest outbreak which occurred so far. The virus causing this epidemic, Zaire Ebolavirus (ZEBOV), along with four other species of Ebolaviruses is classified to the genus Ebolavirus in the family Filoviridae. ZEBOV is one of the most virulent pathogens among the viral haemorrhagic fevers, and case fatality rates up to 90% have been reported. Mortality is the result of multi-organ failure and severe bleeding complications. The aim of this review is to present the general characteristics of the virus and its biological properties, pathogenicity and epidemiology, with a focus on laboratory methods used in the diagnosis of these infections.

  20. Newcastle disease virus-based H5 influenza vaccine protects chickens from lethal challenge with a highly pathogenic H5N2 avian influenza virus

    OpenAIRE

    Ma, Jingjiao; Lee, Jinhwa; Liu, Haixia; Mena, Ignacio; Davis, A. Sally; Sunwoo, Sun Young; Lang, Yuekun; Duff, Michael; Morozov, Igor; Li, Yuhao; Yang, Jianmei; García-Sastre, Adolfo; Richt, Juergen A.; Ma, Wenjun

    2017-01-01

    Since December 2014, Eurasian-origin, highly pathogenic avian influenza H5 viruses including H5N1, H5N2, and H5N8 subtypes (called H5Nx viruses), which belong to the H5 clade 2.3.4.4, have been detected in U.S. wild birds. Subsequently, highly pathogenic H5N2 and H5N8 viruses have caused outbreaks in U.S. domestic poultry. Vaccination is one of the most effective ways to control influenza outbreaks and protect animal and public health. Newcastle disease virus (NDV)-based influenza vaccines ha...

  1. Attenuation of Foot-and-Mouth Disease Virus by Engineered Viral Polymerase Fidelity.

    Science.gov (United States)

    Rai, Devendra K; Diaz-San Segundo, Fayna; Campagnola, Grace; Keith, Anna; Schafer, Elizabeth A; Kloc, Anna; de Los Santos, Teresa; Peersen, Olve; Rieder, Elizabeth

    2017-08-01

    Foot-and-mouth disease virus (FMDV) RNA-dependent RNA polymerase (RdRp) (3D pol ) catalyzes viral RNA synthesis. Its characteristic low fidelity and absence of proofreading activity allow FMDV to rapidly mutate and adapt to dynamic environments. In this study, we used the structure of FMDV 3D pol in combination with previously reported results from similar picornaviral polymerases to design point mutations that would alter replication fidelity. In particular, we targeted Trp237 within conserved polymerase motif A because of the low reversion potential inherent in the single UGG codon. Using biochemical and genetic tools, we show that the replacement of tryptophan 237 with phenylalanine imparts higher fidelity, but replacements with isoleucine and leucine resulted in lower-fidelity phenotypes. Viruses containing these W237 substitutions show in vitro growth kinetics and plaque morphologies similar to those of the wild-type (WT) A 24 Cruzeiro strain in BHK cells, and both high- and low-fidelity variants retained fitness during coinfection with the wild-type virus. The higher-fidelity W237F (W237F HF ) mutant virus was more resistant to the mutagenic nucleoside analogs ribavirin and 5-fluorouracil than the WT virus, whereas the lower-fidelity W237I (W237I LF ) and W237L LF mutant viruses exhibited lower ribavirin resistance. Interestingly, the variant viruses showed heterogeneous and slightly delayed growth kinetics in primary porcine kidney cells, and they were significantly attenuated in mouse infection experiments. These data demonstrate, for a single virus, that either increased or decreased RdRp fidelity attenuates virus growth in animals, which is a desirable feature for the development of safer and genetically more stable vaccine candidates. IMPORTANCE Foot-and-mouth disease (FMD) is the most devastating disease affecting livestock worldwide. Here, using structural and biochemical analyses, we have identified FMDV 3D pol mutations that affect polymerase

  2. Heterologous prime-boost immunization of Newcastle disease virus vectored vaccines protected broiler chickens against highly pathogenic avian influenza and Newcastle disease viruses.

    Science.gov (United States)

    Kim, Shin-Hee; Samal, Siba K

    2017-07-24

    Avian Influenza virus (AIV) is an important pathogen for both human and animal health. There is a great need to develop a safe and effective vaccine for AI infections in the field. Live-attenuated Newcastle disease virus (NDV) vectored AI vaccines have shown to be effective, but preexisting antibodies to the vaccine vector can affect the protective efficacy of the vaccine in the field. To improve the efficacy of AI vaccine, we generated a novel vectored vaccine by using a chimeric NDV vector that is serologically distant from NDV. In this study, the protective efficacy of our vaccines was evaluated by using H5N1 highly pathogenic avian influenza virus (HPAIV) strain A/Vietnam/1203/2004, a prototype strain for vaccine development. The vaccine viruses were three chimeric NDVs expressing the hemagglutinin (HA) protein in combination with the neuraminidase (NA) protein, matrix 1 protein, or nonstructural 1 protein. Comparison of their protective efficacy between a single and prime-boost immunizations indicated that prime immunization of 1-day-old SPF chicks with our vaccine viruses followed by boosting with the conventional NDV vector strain LaSota expressing the HA protein provided complete protection of chickens against mortality, clinical signs and virus shedding. Further verification of our heterologous prime-boost immunization using commercial broiler chickens suggested that a sequential immunization of chickens with chimeric NDV vector expressing the HA and NA proteins following the boost with NDV vector expressing the HA protein can be a promising strategy for the field vaccination against HPAIVs and against highly virulent NDVs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Disinfection of foot-and-mouth disease and African swine fever viruses with citric acid and sodium hypochlorite on birch wood carriers

    Science.gov (United States)

    Transboundary animal disease viruses such as foot-and-mouth disease virus (FMDV) and African swine fever virus (ASFV) are highly contagious and cause severe morbidity and mortality in livestock. Proper disinfection during an outbreak can help prevent virus spread and will shorten the time for contam...

  4. Genomic analysis reveals Nairobi sheep disease virus to be highly diverse and present in both Africa, and in India in the form of the Ganjam virus variant.

    Science.gov (United States)

    Yadav, Pragya D; Vincent, Martin J; Khristova, Marina; Kale, Charuta; Nichol, Stuart T; Mishra, Akhilesh C; Mourya, Devendra T

    2011-07-01

    Nairobi sheep disease (NSD) virus, the prototype tick-borne virus of the genus Nairovirus, family Bunyaviridae is associated with acute hemorrhagic gastroenteritis in sheep and goats in East and Central Africa. The closely related Ganjam virus found in India is associated with febrile illness in humans and disease in livestock. The complete S, M and L segment sequences of Ganjam and NSD virus and partial sequence analysis of Ganjam viral RNA genome S, M and L segments encoding regions (396 bp, 701 bp and 425 bp) of the viral nucleocapsid (N), glycoprotein precursor (GPC) and L polymerase (L) proteins, respectively, was carried out for multiple Ganjam virus isolates obtained from 1954 to 2002 and from various regions of India. M segments of NSD and Ganjam virus encode a large ORF for the glycoprotein precursor (GPC), (1627 and 1624 amino acids in length, respectively) and their L segments encode a very large L polymerase (3991 amino acids). The complete S, M and L segments of NSD and Ganjam viruses were more closely related to one another than to other characterized nairoviruses, and no evidence of reassortment was found. However, the NSD and Ganjam virus complete M segment differed by 22.90% and 14.70%, for nucleotide and amino acid respectively, and the complete L segment nucleotide and protein differing by 9.90% and 2.70%, respectively among themselves. Ganjam and NSD virus, complete S segment differed by 9.40-10.40% and 3.2-4.10 for nucleotide and proteins while among Ganjam viruses 0.0-6.20% and 0.0-1.4%, variation was found for nucleotide and amino acids. Ganjam virus isolates differed by up to 17% and 11% at the nucleotide level for the partial S and L gene fragments, respectively, with less variation observed at the deduced amino acid level (10.5 and 2%, S and L, respectively). However, the virus partial M gene fragment (which encodes the hypervariable mucin-like domain) of these viruses differed by as much as 56% at the nucleotide level. Phylogenetic

  5. Foot-and-mouth disease virus persists in the light zone of germinal centres.

    Directory of Open Access Journals (Sweden)

    Nicholas Juleff

    Full Text Available Foot-and-mouth disease virus (FMDV is one of the most contagious viruses of animals and is recognised as the most important constraint to international trade in animals and animal products. Two fundamental problems remain to be understood before more effective control measures can be put in place. These problems are the FMDV "carrier state" and the short duration of immunity after vaccination which contrasts with prolonged immunity after natural infection. Here we show by laser capture microdissection in combination with quantitative real-time reverse transcription polymerase chain reaction, immunohistochemical analysis and corroborate by in situ hybridization that FMDV locates rapidly to, and is maintained in, the light zone of germinal centres following primary infection of naïve cattle. We propose that maintenance of non-replicating FMDV in these sites represents a source of persisting infectious virus and also contributes to the generation of long-lasting antibody responses against neutralising epitopes of the virus.

  6. Differences in the susceptibility of dromedary and Bactrian camels to foot-and-mouth disease virus

    DEFF Research Database (Denmark)

    Larska, M.; Wernery, U.; Kinne, J.

    2009-01-01

    In this study, two sheep, eight dromedary camels and two Bactrian camels were inoculated with foot-and-mouth disease virus (FMDV) type A SAU 22/92. Five naive dromedary camels and four sheep were kept in direct or indirect contact with the inoculated camels. The inoculated sheep, which served...... as positive controls, displayed typical moderate clinical signs of FMD and developed viraemia and high antibody titres. The presence of the virus was also detected in probang and mouth-swab samples for several days after inoculation. In contrast, the inoculated dromedary camels were not susceptible to FMDV...... type A infection. None of them showed clinical signs of FMD or developed viraemia or specific anti-FMDV antibodies despite the high dose of virus inoculated. All the contact sheep and contact dromedaries that were kept together with the inoculated camels remained virus-negative and did not seroconvert...

  7. Multi-platform ’Omics Analysis of Human Ebola Virus Disease Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Eisfeld, Amie J.; Halfmann, Peter J.; Wendler, Jason P.; Kyle, Jennifer E.; Burnum-Johnson, Kristin E.; Peralta, Zuleyma; Maemura, Tadashi; Walters, Kevin B.; Watanabe, Tokiko; Fukuyama, Satoshi; Yamashita, Makoto; Jacobs, Jon M.; Kim, Young-Mo; Casey, Cameron P.; Stratton, Kelly G.; Webb-Robertson, Bobbie-Jo M.; Gritsenko, Marina A.; Monroe, Matthew E.; Weitz, Karl K.; Shukla, Anil K.; Tian, Mingyuan; Neumann, Gabriele; Reed, Jennifer L.; van Bakel, Harm; Metz, Thomas O.; Smith, Richard D.; Waters, Katrina M.; N' jai, Alhaji; Sahr, Foday; Kawaoka, Yoshihiro

    2017-12-01

    The pathogenesis of human Ebola virus disease (EVD) is complex. EVD is characterized by high levels of virus replication and dissemination, dysregulated immune responses, extensive virus- and host-mediated tissue damage, and disordered coagulation. To clarify how host responses contribute to EVD pathophysiology, we performed multi-platform ’omics analysis of peripheral blood mononuclear cells and plasma from EVD patients. Our results indicate that EVD molecular signatures overlap with those of sepsis, imply that pancreatic enzymes contribute to tissue damage in fatal EVD, and suggest that Ebola virus infection may induce aberrant neutrophils whose activity could explain hallmarks of fatal EVD. Moreover, integrated biomarker prediction identified putative biomarkers from different data platforms that differentiated survivors and fatalities early after infection. This work reveals insight into EVD pathogenesis, suggests an effective approach for biomarker identification, and provides an important community resource for further analysis of human EVD severity.

  8. The Heterologous Expression of the p22 RNA Silencing Suppressor of the Crinivirus Tomato Chlorosis Virus from Tobacco Rattle Virus and Potato Virus X Enhances Disease Severity but Does Not Complement Suppressor-Defective Mutant Viruses.

    Science.gov (United States)

    Landeo-Ríos, Yazmín; Navas-Castillo, Jesús; Moriones, Enrique; Cañizares, M. Carmen

    2017-11-24

    To counteract host antiviral RNA silencing, plant viruses express suppressor proteins that function as pathogenicity enhancers. The genome of the Tomato chlorosis virus (ToCV) (genus Crinivirus , family Closteroviridae ) encodes an RNA silencing suppressor, the protein p22, that has been described as having one of the longest lasting local suppressor activities when assayed in Nicotiana benthamiana . Since suppression of RNA silencing and the ability to enhance disease severity are closely associated, we analyzed the effect of expressing p22 in heterologous viral contexts. Thus, we studied the effect of the expression of ToCV p22 from viral vectors Tobacco rattle virus (TRV) and Potato virus X (PVX), and from attenuated suppressor mutants in N. benthamiana plants. Our results show that although an exacerbation of disease symptoms leading to plant death was observed in the heterologous expression of ToCV p22 from both viruses, only in the case of TRV did increased viral accumulation occur. The heterologous expression of ToCV p22 could not complement suppressor-defective mutant viruses.

  9. Feline immunodeficiency virus: disease association versus causation in domestic and nondomestic felids.

    Science.gov (United States)

    White, Joanna; Stickney, Alison; Norris, Jacqueline M

    2011-11-01

    Feline immunodeficiency virus (FIV) is an important infection in both domestic and nondomestic cats. Although many studies have provided insight into FIV pathophysiology and immunologic responses to infection in cats, questions remain regarding the association of FIV with specific disease syndromes. For many diseases, both association and causation of disease with FIV remain to be confirmed and clarified. The use of experimental infection models is unlikely to yield answers about naturally infected domestic cats and is not feasible in nondomestic felids, many of which are endangered species. Researches might consider further study of naturally occurring disease with an emphasis on confirming which diseases have a likely association with FIV.

  10. Newcastle disease virus (NDV) recombinants expressing infectious laryngotracheitis virus (ILTV) glycoproteins gB and gD protect chickens against ILTV and NDV challenges.

    Science.gov (United States)

    Zhao, Wei; Spatz, Stephen; Zhang, Zhenyu; Wen, Guoyuan; Garcia, Maricarmen; Zsak, Laszlo; Yu, Qingzhong

    2014-08-01

    Infectious laryngotracheitis (ILT) is a highly contagious acute respiratory disease of chickens caused by infectious laryngotracheitis virus (ILTV). The disease is controlled mainly through biosecurity and vaccination with live attenuated strains of ILTV and vectored vaccines based on turkey herpesvirus (HVT) and fowlpox virus (FPV). The current live attenuated vaccines (chicken embryo origin [CEO] and tissue culture origin [TCO]), although effective, can regain virulence, whereas HVT- and FPV-vectored ILTV vaccines are less efficacious than live attenuated vaccines. Therefore, there is a pressing need to develop safer and more efficacious ILTV vaccines. In the present study, we generated Newcastle disease virus (NDV) recombinants, based on the LaSota vaccine strain, expressing glycoproteins B (gB) and D (gD) of ILTV using reverse genetics technology. These recombinant viruses, rLS/ILTV-gB and rLS/ILTV-gD, were slightly attenuated in vivo yet retained growth dynamics, stability, and virus titers in vitro that were similar to those of the parental LaSota virus. Expression of ILTV gB and gD proteins in the recombinant virus-infected cells was detected by immunofluorescence assay. Vaccination of specific-pathogen-free chickens with these recombinant viruses conferred significant protection against virulent ILTV and velogenic NDV challenges. Immunization of commercial broilers with rLS/ILTV-gB provided a level of protection against clinical disease similar to that provided by the live attenuated commercial vaccines, with no decrease in body weight gains. The results of the study suggested that the rLS/ILTV-gB and -gD viruses are safe, stable, and effective bivalent vaccines that can be mass administered via aerosol or drinking water to large chicken populations. This paper describes the development and evaluation of novel bivalent vaccines against chicken infectious laryngotracheitis (ILT) and Newcastle disease (ND), two of the most economically important infectious

  11. Current trends in the management of Ebola virus disease-an updated systematic review

    Directory of Open Access Journals (Sweden)

    Palanisamy Sivanandy

    2016-08-01

    Full Text Available The Ebola virus created a ripple of fear when its number of cases rose rapidly and drastically in recent years. Ebola infection is transmitted in humans when contact closely with blood, organs or other body fluids of infected animals or secretions. It is often mortal as it affects vascular system of the body, results in organ failure and serious internal bleeding. Hence, this review was aimed to summarize various essential aspects of Ebola virus disease and its management. A systematic review was carried out by collecting various literatures, published research articles, notes and other published date related to Ebola virus disease. Standard supporting care in a hospital setting such as replenishment of fluid and electrolytes, ventilation support, pain control and nutritional support is initiated to the patients to manage the symptoms and prevent any complications of Ebola disease since there are no Food and Drug Administrationapproved medications available. In terms of pharmacological drug therapy, favipiravir has been shown to be efficacious and safe in treating the Ebola virus disease. Nevertheless, there are some preventive measures as well to decrease the risk of getting the disease. Further, the review suggests the efficient control and prevention of Ebola epidemic require adequate political support from the government as well as the establishment of a robust public health infrastructure and medical reserve. Strengthening of contact tracing and quarantine policies are also important for the prevention of Ebola virus disease. There should be a well-designed disease surveillance system when a suspected case is reported. Given the elevated case-fatality rate and the absence of effective treatment, it is sensible to evade research ethics and develop the promising future of experimental vaccines. The collection of clinical and epidemiological information of Ebola should be vigorous and systematic in the endemic affected areas.

  12. Foot-and-Mouth Disease Virus 2C Is a Hexameric AAA+ Protein with a Coordinated ATP Hydrolysis Mechanism

    DEFF Research Database (Denmark)

    Sweeney, Trevor; Cisnetto, Valentina; Bose, Daniel

    2010-01-01

    Foot-and-mouth disease virus (FMDV), a positive sense, single-stranded RNA virus, causes a highly contagious disease in cloven-hoofed livestock. Like other picornaviruses, FMDV has a conserved 2C protein assigned to the superfamily 3 helicases a group of AAA+ ATPases that has a predicted N-termin...

  13. Molecular epidemiology of Newcastle disease in Mexico and the potential spillover of viruses from poultry into wild bird species.

    Science.gov (United States)

    Cardenas Garcia, Stivalis; Navarro Lopez, Roberto; Morales, Romeo; Olvera, Miguel A; Marquez, Miguel A; Merino, Ruben; Miller, Patti J; Afonso, Claudio L

    2013-08-01

    Newcastle disease, one of the most important health problems that affects the poultry industry around the world, is caused by virulent strains of Newcastle disease virus. Newcastle disease virus is considered to be endemic in several countries in the Americas, including Mexico. In order to control Newcastle disease outbreaks and spread, intensive vaccination programs, which include vaccines formulated with strains isolated at least 60 years ago, have been established. These vaccines are dissimilar in genotype to the virulent Newcastle disease viruses that had been circulating in Mexico until 2008. Here, 28 isolates obtained between 2008 and 2011 from different regions of Mexico from free-living wild birds, captive wild birds, and poultry were phylogenetically and biologically characterized in order to study the recent epidemiology of Newcastle disease viruses in Mexico. Here we demonstrate that, until recently, virulent viruses from genotype V continued to circulate and evolve in the country. All of the Newcastle disease viruses of low virulence, mostly isolated from nonvaccinated free-living wild birds and captive wild birds, were highly similar to LaSota (genotype II) and PHY-LMV42 (genotype I) vaccine strains. These findings, together with the discovery of two virulent viruses at the Mexican zoo, suggest that Newcastle disease viruses may be escaping from poultry into the environment.

  14. Infection and transmission of live recombinant Newcastle disease virus vaccines in Rock Pigeons, European House Sparrows, and Japanese Quail

    Science.gov (United States)

    In China and Mexico, engineered recombinant Newcastle disease virus (rNDV) strains are used as live vaccines for the control of Newcastle disease and as vectors to express the avian influenza virus hemagglutinin (HA) gene to control avian influenza in poultry. In this study, non-target species wer...

  15. Protecting trees against virus diseases in the 21st century: genetic engineering of Plum pox virus resistance - from concept to product

    Science.gov (United States)

    Sharka disease, caused by Plum pox virus (PPV), was first recorded in Bulgaria during the early twentieth century. Since that first report, the disease has progressively spread throughout Europe where it has infected over 100 million stone fruit trees. From Europe, sharka disease spread to Asia, A...

  16. Powassan (POW) Virus Basics

    Science.gov (United States)

    ... Health Professionals Related Topics For International Travelers Powassan Virus Disease Basics Download this fact sheet formatted for ... Virus Disease Fact Sheet (PDF) What is Powassan virus? Powassan virus is a tickborne flavivirus that is ...

  17. Vaccines for emerging infectious diseases: Lessons from MERS coronavirus and Zika virus

    Science.gov (United States)

    Maslow, Joel N.

    2017-01-01

    ABSTRACT The past decade and a half has been characterized by numerous emerging infectious diseases. With each new threat, there has been a call for rapid vaccine development. Pathogens such as the Middle East Respiratory Syndrome coronavirus (MERS-CoV) and the Zika virus represent either new viral entities or viruses emergent in new geographic locales and characterized by novel complications. Both serve as paradigms for the global spread that can accompany new pathogens. In this paper, we review the epidemiology and pathogenesis of MERS-CoV and Zika virus with respect to vaccine development. The challenges in vaccine development and the approach to clinical trial design to test vaccine candidates for disease entities with a changing epidemiology are discussed. PMID:28846484

  18. Vaccines for emerging infectious diseases: Lessons from MERS coronavirus and Zika virus.

    Science.gov (United States)

    Maslow, Joel N

    2017-12-02

    The past decade and a half has been characterized by numerous emerging infectious diseases. With each new threat, there has been a call for rapid vaccine development. Pathogens such as the Middle East Respiratory Syndrome coronavirus (MERS-CoV) and the Zika virus represent either new viral entities or viruses emergent in new geographic locales and characterized by novel complications. Both serve as paradigms for the global spread that can accompany new pathogens. In this paper, we review the epidemiology and pathogenesis of MERS-CoV and Zika virus with respect to vaccine development. The challenges in vaccine development and the approach to clinical trial design to test vaccine candidates for disease entities with a changing epidemiology are discussed.

  19. Research progress of Zika virus disease%寨卡病毒病研究进展

    Institute of Scientific and Technical Information of China (English)

    管晓庆; 陈志海

    2017-01-01

    Zika virus disease is caused by Zika virus transmitted by Aedes mosquitoes. The virus is mainly transmitted by the bite of Aedes Aegypti and Ae. Albopictu, and mounting evidence has shown the possibility of sexual transmission and maternofetal transmission. The clinical presentation of Zika virus disease is nonspecific,including rash, fever, conjunctivitis, arthralgia, etc. The emergence of Zika virus is associated with the description of severe neurological complications, microcephaly in neonates and Guillian-Barre syndrome in adults. Laboratory diagnosis of Zika virus disease relies on the detection of viral nucleic acid by real-tirne PCR and the detection of IgM antibodies by enzyme-linked immunosorbent assay (ELISA). There is no specific treatment or vaccine currently available for this disease, Prevention measures are mainly individual protection from mosquito bites and vector control.%寨卡病毒病是由寨卡病毒引起的一种自限性急性传染病.寨卡病毒主要通过埃及伊蚊和白纹伊蚊叮咬传播,有证据表明也可通过性传播和母婴传播.临床表现主要为皮疹、发热、关节痛或结膜炎等非特异性症状,但寨卡病毒感染与新生儿小头畸形、格林-巴利综合征等存在密切关系.实验室检测方法包括实时荧光定量PCR检测病毒核酸和ELISA检测IgM抗体.该疾病目前无有效的抗病毒药物和疫苗.预防措施主要为预防蚊虫叮咬和采取虫媒控制措施.

  20. Safety evaluation of a recombinant myxoma-RHDV virus inducing horizontal transmissible protection against myxomatosis and rabbit haemorrhagic disease.

    Science.gov (United States)

    Torres, J M; Ramírez, M A; Morales, M; Bárcena, J; Vázquez, B; Espuña, E; Pagès-Manté, A; Sánchez-Vizcaíno, J M

    2000-09-15

    We have recently developed a transmissible vaccine to immunize rabbits against myxomatosis and rabbit haemorrhagic disease based on a recombinant myxoma virus (MV) expressing the rabbit haemorrhagic disease virus (RHDV) capsid protein [Bárcena et al. Horizontal transmissible protection against myxomatosis and rabbit haemorragic disease using a recombinant myxoma virus. J. Virol. 2000;74:1114-23]. Administration of the recombinant virus protects rabbits against lethal RHDV and MV challenges. Furthermore, the recombinant virus is capable of horizontal spreading promoting protection of contact animals, thus providing the opportunity to immunize wild rabbit populations. However, potential risks must be extensively evaluated before considering its field use. In this study several safety issues concerning the proposed vaccine have been evaluated under laboratory conditions. Results indicated that vaccine administration is safe even at a 100-fold overdose. No undesirable effects were detected upon administration to immunosuppressed or pregnant rabbits. The recombinant virus maintained its attenuated phenotype after 10 passages in vivo.

  1. Influence of border disease virus (BDV) on serological surveillance within the bovine virus diarrhea (BVD) eradication program in Switzerland.

    Science.gov (United States)

    Kaiser, V; Nebel, L; Schüpbach-Regula, G; Zanoni, R G; Schweizer, M

    2017-01-13

    In 2008, a program to eradicate bovine virus diarrhea (BVD) in cattle in Switzerland was initiated. After targeted elimination of persistently infected animals that represent the main virus reservoir, the absence of BVD is surveilled serologically since 2012. In view of steadily decreasing pestivirus seroprevalence in the cattle population, the susceptibility for (re-) infection by border disease (BD) virus mainly from small ruminants increases. Due to serological cross-reactivity of pestiviruses, serological surveillance of BVD by ELISA does not distinguish between BVD and BD virus as source of infection. In this work the cross-serum neutralisation test (SNT) procedure was adapted to the epidemiological situation in Switzerland by the use of three pestiviruses, i.e., strains representing the subgenotype BVDV-1a, BVDV-1h and BDSwiss-a, for adequate differentiation between BVDV and BDV. Thereby the BDV-seroprevalence in seropositive cattle in Switzerland was determined for the first time. Out of 1,555 seropositive blood samples taken from cattle in the frame of the surveillance program, a total of 104 samples (6.7%) reacted with significantly higher titers against BDV than BVDV. These samples originated from 65 farms and encompassed 15 different cantons with the highest BDV-seroprevalence found in Central Switzerland. On the base of epidemiological information collected by questionnaire in case- and control farms, common housing of cattle and sheep was identified as the most significant risk factor for BDV infection in cattle by logistic regression. This indicates that pestiviruses from sheep should be considered as a source of infection of domestic cattle and might well impede serological BVD surveillance.

  2. Modifications to the Foot-and-Mouth Disease Virus 2A Peptide: Influence on Polyprotein Processing and Virus Replication.

    Science.gov (United States)

    Kjær, Jonas; Belsham, Graham J

    2018-04-15

    Foot-and-mouth disease virus (FMDV) has a positive-sense single-stranded RNA (ssRNA) genome that includes a single, large open reading frame encoding a polyprotein. The cotranslational "cleavage" of this polyprotein at the 2A/2B junction is mediated by the 2A peptide (18 residues in length) using a nonproteolytic mechanism termed "ribosome skipping" or "StopGo." Multiple variants of the 2A polypeptide with this property among the picornaviruses share a conserved C-terminal motif [D(V/I)E(S/T)NPG↓P]. The impact of 2A modifications within this motif on FMDV protein synthesis, polyprotein processing, and virus viability were investigated. Amino acid substitutions are tolerated at residues E 14 , S 15 , and N 16 within the 2A sequences of infectious FMDVs despite their reported "cleavage" efficiencies at the 2A/2B junction of only ca. 30 to 50% compared to that of the wild type (wt). In contrast, no viruses containing substitutions at residue P 17 , G 18 , or P 19 , which displayed little or no "cleavage" activity in vitro , were rescued, but wt revertants were obtained. The 2A substitutions impaired the replication of an FMDV replicon. Using transient-expression assays, it was shown that certain amino acid substitutions at residues E 14 , S 15 , N 16 , and P 19 resulted in partial "cleavage" of a protease-free polyprotein, indicating that these specific residues are not essential for cotranslational "cleavage." Immunofluorescence studies, using full-length FMDV RNA transcripts encoding mutant 2A peptides, indicated that the 2A peptide remained attached to adjacent proteins, presumably 2B. These results show that efficient "cleavage" at the 2A/2B junction is required for optimal virus replication. However, maximal StopGo activity does not appear to be essential for the viability of FMDV. IMPORTANCE Foot-and-mouth disease virus (FMDV) causes one of the most economically important diseases of farm animals. Cotranslational "cleavage" of the FMDV polyprotein precursor at

  3. Physical Factors Affecting in Vitro Replication of Foot and Mouth Disease Virus (Serotype “O”

    Directory of Open Access Journals (Sweden)

    Muhammad Taslim Ghori*, Khushi Muhammad and Masood Rabbani1

    2011-10-01

    Full Text Available Effect of physical factors (temperature, pH and UV light on replicating ability of “O” type of Foot and Mouth Disease (FMD virus on Baby Hamster Kidney (BHK cell line was determined. The freshly grown FMD virus containing 106 units of tissue culture infective dose (TCID50 was divided into aliquots. Each of the 9 virus aliquots was exposed to 37, 57 or 77C for 15, 30 or 45 minutes, respectively. Each of the 5 virus aliquots was mixed with MEM-199 maintenance medium having pH 3, 5, 7, 9, or 11. Similarly, each of the 3 aliquots having 1 mm depth of the medium was exposed to ultraviolet light (252.7 nm wavelength: one foot distance for 15, 30 or 45 minutes. Each of the virus aliquot exposed to either of the temperature, pH or ultraviolet light (UV for either of the interaction time was inoculated to 8 wells of the 96-well cell culture plate containing complete monolayer of BHK cell line. One row of 8 wells served as virus control and other row of 8 wells served as control for monolayer of the BHK-21 cell line. The plates were incubated at 37°C for 48 hours. It was observed that temperature of 57 and 77C inactivated the virus within 15 minutes. The virus when admixed in the MEM-199 maintenance medium having pH 3, 5, 9 or 11, of the medium inactivated the virus while pH 7 did not show any detrimental effect on its survival. The ultraviolet light for 15, 30 or 45 minutes showed undetectable effect on survival of the virus as either of the virus aliquot exposed to the UV light for either of the interaction time showed cytopathogenic effects (CPE. It was concluded that the temperature of 57°C or higher for 15 minutes, acidic pH (below 5 or basic pH (more than 9 may inactivate the FMD virus.

  4. Cloning of the first human anti-JCPyV/vp1 neutralizing monoclonal antibody: Epitope definition and implications in risk stratification of patients under natalizumab therapy

    Czech Academy of Sciences Publication Activity Database

    Diotti, R.A.; Mancini, N.; Clementi, N.; Sautto, G.; Moreno, G.J.; Criscuolo, E.; Cappalletti, F.; Man, Petr; Forest, E.; Remy, L.; Giannecchini, S.; Clementi, M.; Burioni, R.

    2014-01-01

    Roč. 108, č. 2 (2014), s. 94-103 ISSN 0166-3542 Institutional support: RVO:61388971 Keywords : natalizumab * JC virus * multiple sclerosis Subject RIV: EE - Microbiology, Virology Impact factor: 3.938, year: 2014

  5. [Serological detection of Brucella suis, influenza virus and Aujeszky's disease virus in backyard and small swine holders in Argentina].

    Science.gov (United States)

    Dibarbora, Marina; Cappuccio, Javier A; Aznar, María N; Bessone, Fernando A; Piscitelli, Hernán; Pereda, Ariel J; Pérez, Daniel R

    Farmers raising less than 100 sows represent more than 99% of swine producers in Argentina, although little is known about their sanitary status and productive characteristics in the country. Sanitary and productive information was obtained. Furthermore, samples for serological studies were taken to detect antibodies against Brucella suis (Bs), Aujeszky's disease virus (AV) and influenza virus (IV) in 68 backyard and small producers with less than 100 sows located in the north, central and south regions of Argentina. Antibodies against H1 pandemic were detected in 80% of the farms while 11%, 11.7% and 6.0% of the producers were positive to influenza H3 cluster 2, AV and Bs, respectively. None of the producers was aware of the risk factors concerning the transmission of diseases from pigs to humans. A percentage of 47% of them buy pigs for breeding from other farmers and markets. With regard to biosecurity measures, only 16% of the farms had perimeter fences. The results of this study demonstrate that productive characterization and disease surveys are important to improve productivity and to reduce the risk of disease transmission among animals and humans. The study of sanitary status and risk factors is necessary for better control and eradication of diseases in backyard or small producers. More representative studies at country level should be carried out to detect the pathogensthat circulate and, with this knowledge, to implement prevention and control measures. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Particle-to-PFU ratio of Ebola virus influences disease course and survival in cynomolgus macaques.

    Science.gov (United States)

    Alfson, Kendra J; Avena, Laura E; Beadles, Michael W; Staples, Hilary; Nunneley, Jerritt W; Ticer, Anysha; Dick, Edward J; Owston, Michael A; Reed, Christopher; Patterson, Jean L; Carrion, Ricardo; Griffiths, Anthony

    2015-07-01

    This study addresses the role of Ebola virus (EBOV) specific infectivity in virulence. Filoviruses are highly lethal, enveloped, single-stranded negative-sense RNA viruses that can cause hemorrhagic fever. No approved vaccines or therapies exist for filovirus infections, and infectious virus must be handled in maximum containment. Efficacy testing of countermeasures, in addition to investigations of pathogenicity and immune response, often requires a well-characterized animal model. For EBOV, an obstacle in performing accurate disease modeling is a poor understanding of what constitutes an infectious dose in animal models. One well-recognized consequence of viral passage in cell culture is a change in specific infectivity, often measured as a particle-to-PFU ratio. Here, we report that serial passages of EBOV in cell culture resulted in a decrease in particle-to-PFU ratio. Notably, this correlated with decreased potency in a lethal cynomolgus macaque (Macaca fascicularis) model of infection; animals were infected with the same viral dose as determined by plaque assay, but animals that received more virus particles exhibited increased disease. This suggests that some particles are unable to form a plaque in a cell culture assay but are able to result in lethal disease in vivo. These results have a significant impact on how future studies are designed to model EBOV disease and test countermeasures. Ebola virus (EBOV) can cause severe hemorrhagic disease with a high case-fatality rate, and there are no approved vaccines or therapies. Specific infectivity can be considered the total number of viral particles per PFU, and its impact on disease is poorly understood. In stocks of most mammalian viruses, there are particles that are unable to complete an infectious cycle or unable to cause cell pathology in cultured cells. We asked if these particles cause disease in nonhuman primates by infecting monkeys with equal infectious doses of genetically identical stocks

  7. Zika virus and Zika virus disease%Zika病毒与Zika病毒病

    Institute of Scientific and Technical Information of China (English)

    瞿涤

    2016-01-01

    Zika病毒(Zika virus,ZIKV)是一种新现虫媒病毒,属于黄病毒科黄病毒属.其感染后临床表现为轻症发热,因病重住院者罕见.流行病学数据显示Zika病毒病的流行与自身免疫性神经性疾病格林-巴利综合征及先天性小头畸形有关,引起了专家和公众的关注,但具体机制有待深入研究.

  8. No between-pen transmission of foot-and-mouth disease virus in vaccinated pigs

    NARCIS (Netherlands)

    Roermund, van H.J.W.; Eblé, P.L.; Jong, de M.C.M.; Dekker, A.

    2010-01-01

    Many studies have shown transmission of foot-and-mouth disease virus (FMDV) within groups of pigs, even when vaccinated, but only limited information is available on transmission between pens. Three new experiments were carried out in two replicates, which consisted of infectious pigs housed in a

  9. Modelling the atmospheric dispersion of foot-and-mouth disease virus for emergency preparedness

    DEFF Research Database (Denmark)

    Sørensen, J.H.; Jensen, C.O.; Mikkelsen, T.

    2001-01-01

    A model system for simulating airborne spread of foot-and-mouth disease (FMD) is described. The system includes a virus production model and the local- and mesoscale atmospheric dispersion model RIMPUFF linked to the LINCOM local-scale Row model. LINCOM is used to calculate the sub-grid scale Row...

  10. Emergence of ebola virus disease and its devastating impact in poor ...

    African Journals Online (AJOL)

    There is the urgent need by stakeholders to device appropriate preventive / control measures including development of effective drugs and vaccines to checkmate the spread of EVD and associated severe morbidity, high mortality and devastating socio-economic impact. Key Words: Ebola virus disease, severe morbidity, ...

  11. Complete Genome Sequence of Genotype VI Newcastle Disease Viruses Isolated from Pigeons in Pakistan

    OpenAIRE

    Wajid, Abdul; Rehmani, Shafqat Fatima; Sharma, Poonam; Goraichuk, Iryna V.; Dimitrov, Kiril M.; Afonso, Claudio L.

    2016-01-01

    Two complete genome sequences of Newcastle disease virus (NDV) are described here. Virulent isolates pigeon/Pakistan/Lahore/21A/2015 and pigeon/Pakistan/Lahore/25A/2015 were obtained from racing pigeons sampled in the Pakistani province of Punjab during 2015. Phylogenetic analysis of the fusion protein genes and complete genomes classified the isolates as members of NDV class II, genotype VI.

  12. Identification and Complete Genome Sequence Analysis of a Genotype XIV Newcastle Disease Virus from Nigeria

    OpenAIRE

    Shittu, Ismaila; Sharma, Poonam; Volkening, Jeremy D.; Solomon, Ponman; Sulaiman, Lanre K.; Joannis, Tony M.; Williams-Coplin, Dawn; Miller, Patti J.; Dimitrov, Kiril M.; Afonso, Claudio L.

    2016-01-01

    The first complete genome sequence of a strain of Newcastle disease virus (NDV) from genotype XIV is reported here. Strain duck/Nigeria/NG-695/KG.LOM.11-16/2009 was isolated from an apparently healthy domestic duck from a live bird market in Kogi State, Nigeria, in 2009. This strain is classified as a member of subgenotype XIVb of class II.

  13. Rapid immunohistochemical diagnosis of tobacco mosaic virus disease by microwave-assisted plant sample preparation

    Science.gov (United States)

    Zellnig, Günther; Möstl, Stefan; Zechmann, Bernd

    2013-01-01

    Immunoelectron microscopy is a powerful method to diagnose viral diseases and to study the distribution of the viral agent within plant cells and tissues. Nevertheless, current protocols for the immunological detection of viral diseases with transmission electron microscopy (TEM) in plants take between 3 and 6 days and are therefore not suited for rapid diagnosis of virus diseases in plants. In this study, we describe a method that allows rapid cytohistochemical detection of tobacco mosaic virus (TMV) in leaves of tobacco plants. With the help of microwave irradiation, sample preparation of the leaves was reduced to 90 min. After sample sectioning, virus particles were stained on the sections by immunogold labelling of the viral coat protein, which took 100 min. After investigation with the TEM, a clear visualization of TMV in tobacco cells was achieved altogether in about half a day. Comparison of gold particle density by image analysis revealed that samples prepared with the help of microwave irradiation yielded significantly higher gold particle density as samples prepared conventionally at room temperature. This study clearly demonstrates that microwave-assisted plant sample preparation in combination with cytohistochemical localization of viral coat protein is well suited for rapid diagnosis of plant virus diseases in altogether about half a day by TEM. PMID:23580761

  14. Neuropsychological long-term sequelae of Ebola virus disease survivors - A systematic review

    NARCIS (Netherlands)

    Lötsch, Felix; Schnyder, Jenny; Goorhuis, Abraham; Grobusch, Martin P.

    2017-01-01

    The recent West African Ebola virus disease (EVD) outbreak had catastrophic impact on populations, health care systems and economies of the affected countries. Somatic symptoms have been reported to persist long beyond the acute infection. This review was conducted to provide an overview on neuro-

  15. AN MHC class I immune evasion gene of Marek's disease virus

    Science.gov (United States)

    Marek's disease virus (MDV) is a widespread a-herpesvirus of chickens that causes T cell tumors. Acute, but not latent, MDV infection has previously been shown to lead to downregulation of cell-surface MHC class I (Virology 282:198–205 (2001)), but the gene(s) involved have not been identified. Here...

  16. Chronic diseases, chromosomal abnormalities, and congenital malformations as risk factors for respiratory syncytial virus hospitalization

    DEFF Research Database (Denmark)

    Kristensen, Kim; Hjuler, Thomas; Ravn, Henrik

    2012-01-01

    Little is known about how chronic conditions other than prematurity, heart disease, and Down syndrome affect the risk and severity of hospitalization for respiratory syncytial virus (RSV). We assess the risk and severity of RSV hospitalization in children with chronic conditions in this register...

  17. Signifiance of Arginine 20 in the 2A protease for swine vesicular disease virus pathogenicity

    DEFF Research Database (Denmark)

    Inoue, Toru; Zhang, Zhidong; Wang, Leyuan

    2007-01-01

    Pathogenic and attenuated strains of swine vesicular disease virus (SVDV), an enterovirus, have been characterized previously and, by using chimeric infectious cDNA clones, the key determinants of pathogenicity in pigs have been mapped to the coding region for 1D–2A. Within this region, residue 20...

  18. Epidemiological features and trends of Ebola virus disease in West Africa

    Directory of Open Access Journals (Sweden)

    Ligui Wang

    2015-09-01

    Full Text Available According to a World Health Organization report, the epidemiological features of Ebola virus disease (EVD have changed significantly in West Africa. In this study, the new epidemiological features and prevalence trends for EVD in Guinea, Liberia, and Sierra Leone are described. It was predicted that the Ebola outbreak would end in June 2015.

  19. The Macroeconomic Impact of Ebola Virus Disease (Evd: A Contribution to the Empirics of Growth

    Directory of Open Access Journals (Sweden)

    Obukohwo Oba Efayena

    2016-04-01

    Full Text Available The paper addressed the formulation of a macro model to capture the macroeconomic impact of the Ebola Virus Disease (EVD. Previous studies has adopted various models such as the dynamic computable general equilibrium (CGE model, endogenous model and the LINKAGE model, but there is dire need to generate a step-by-step model which will comprehensively capture how the Ebola Virus Disease (EVD impacts on macroeconomic variables. Adopting the traditional neoclassical growth model, the model aggregated the various macroeconomic variables as well as captured the epidemic’s strain on each of these variables. The paper also empirically shows that the Ebola Virus Disease (EVD has direct, indirect and deferred indirect cost implications for the economy. Using case studies of countries in Africa, the study evaluated how the Ebola Virus Disease (EVD has affected the macroeconomic status of selected economies. The findings imply that there is dire need to control the spread of the deadly plague. The paper contribute immensely to empirical studies in the field of macroeconomics.

  20. Stability of Newcastle Disease Virus Strain V4-UPM Coated on ...

    African Journals Online (AJOL)

    Protection of village chickens against Newcastle disease (ND) is considered feasible through food-delivered vaccines. Vaccine virus strain V4-UPM coated on cassava granules with or without additive (2% gelatin) was tested for stability at room temperature (RT) for 8 weeks and 40oC for 12 hours at weekly and two hourly ...

  1. Serological Detection of Foot and Mouth Disease Virus (Fmdv) Sat 1 ...

    African Journals Online (AJOL)

    The prevalence of Foot and Mouth Disease virus (FMDV) serotypes SAT 1 and SAT 2 antibodies among Nigerian cattle was determined using complement fixation (CF) and neutralization tests (NT) in 2000 cattle sera obtained from nine northern states. The two serological tests were very specific and sensitive enough to ...

  2. Fight Ebola virus disease in Africa: a question related to the ...

    African Journals Online (AJOL)

    Repetitive outbreaks of Ebola virus disease is a major public health problem in Africa. Indeed, since September 1976, date of its isolation and its first description in the north of the ex-Zaire (now Democratic Republic of Congo) and in the south Sudan, many African countries continue to live recurring episodes of epidemics ...

  3. Clinical management of ebola virus disease in the United States and Europe

    NARCIS (Netherlands)

    Uyeki, Timothy M.; Mehta, Aneesh K.; Davey, Richard T.; Liddell, Allison M.; Wolf, Timo; Vetter, Pauline; Schmiedel, Stefan; Grünewald, Thomas; Jacobs, Michael; Arribas, Jose R.; Evans, Laura; Hewlett, Angela L.; Brantsaeter, Arne B.; Ippolito, Giuseppe; Rapp, Christophe; Hoepelman, Andy I M; Gutman, Julie

    2016-01-01

    Background Available data on the characteristics of patients with Ebola virus disease (EVD) and clinical management of EVD in settings outside West Africa, as well as the complications observed in those patients, are limited. METHODS We reviewed available clinical, laboratory, and virologic data

  4. White spot syndrome virus molecular epidemiology: relation with shrimp farming and disease outbreaks

    NARCIS (Netherlands)

    Tran Thi Tuyet, H.

    2012-01-01

    White spot syndrome virus (WSSV), the causative agent of white spot disease (WSD), has been responsible for most shrimp production losses around the world since the early 1990s. Previous research has focused mainly on the characterization of WSSV genomic variation to gain a better insight in the

  5. The Carrier Rate of Newcastle Disease Virus in Pigeons in Owerri ...

    African Journals Online (AJOL)

    Two positive results were recorded for white pigeons, while only one black pigeon showed evidence of NDV. From this study, the carrier rate of NDV in pigeons in Owerri area of Imo State is estimated at 5% Keywords: Carrier Rate, Newcastle Disease Virus, Pigeons. Journal of Medical Laboratory Sciences Vol. 14 (1) 2005: ...

  6. Identification of factors associated with increased excretion of foot-and-mouth disease virus

    NARCIS (Netherlands)

    Bravo De Rueda, C.; Dekker, A.; Eble, P.L.; Jong, de M.C.M.

    2014-01-01

    We investigated which variables possibly influence the amount of foot-and-mouth disease virus (FMDV) shed in secretions and excretions by FMDV infected animals, as it is likely that the amount of FMDV shed is related to transmission risk. First, in a separate analysis of laboratory data, we showed

  7. Estimation of the transmission of foot-and-mouth disease virus from infected sheep to cattle

    NARCIS (Netherlands)

    Bravo De Rueda, C.; Jong, de M.C.M.; Eble, P.L.; Dekker, A.

    2014-01-01

    The quantitative role of sheep in the transmission of foot-and-mouth disease virus (FMDV) is not well known. To estimate the role of sheep in the transmission of FMDV, a direct contact transmission experiment with 10 groups of animals each consisting of 2 infected lambs and 1 contact calf was

  8. Pathogenesis of new strains of Newcastle disease virus from Israel and Pakistan

    Science.gov (United States)

    In the past few years, Newcastle disease virus (NDV) strains with epizootic characteristics belonging to subgenotypes VIIi and XIIIb emerged in the Middle East and Asia. In this study, 2 NDV strains—1 representative of subgenotype VIIi isolated in Israel (Kvuzat/13) and 1 representative of subgenoty...

  9. Complete genome sequence of a recent panzootic virulent Newcastle disease virus from Pakistan

    Science.gov (United States)

    Complete genome sequence of a new strain of Newcastle disease virus (NDV) (chicken/Pak/Lahore-611/2013) is reported. The strain was isolated from a vaccinated chicken flock in Pakistan in 2013 and has panzootic features. The genome is 15192 nucleotides in length and is classified as sub-genotype V...

  10. Presence of virulent Newcastle disease virus in vaccinated chickens in farms in Pakistan

    Science.gov (United States)

    The sites where virulent Newcastle disease virus persists in endemic countries are unknown. Evidence presented here shows that the same strain that caused a previous outbreak was present in both apparently healthy and sick vaccinated birds from multiple farms that had high average specific antibody...

  11. Stability of foot-and-mouth disease virus, its genome and proteins at 37 grad C

    International Nuclear Information System (INIS)

    Razdan, R.; Sen, A.K.; Rao, B.V.; Suryanarayana, V.V.S.

    1996-01-01

    Infectivity titers of foot-and-mouth disease virus (FMDV) types Asia 1 and 0 were reduced by 4 and 2 log units, respectively, after incubation at 37 grad C for 12 hours. The stability of the FMDV RNA genome at 37 grad C was studied using 32 P-labelled virus. The RNA of FMDV type 0 was found to be more stable than that of type Asia 1. Oligo(dT)-cellulose chromatography showed that 21 % and 31 % of the labelled RNA were bound to the column in the case of types Asia 1 and 0, respectively. Possible correlation between the poly(A) tail length, accessibility of the genome to nucleases and thermo-stability of the infective virus is discussed. A possible correlation between the thermo-stability of the genome and general distribution of a particular virus type seems to exist. A stable genome associated with poor virus immunogenicity may be responsible for the prevalence of FMDV type 0 in the nature. The isoelectric focussing of structural proteins isolated from the virus samples incubated at 37 grad C revealed charge differences in the major immuno-gen between the two FMDV types. A rapid proteolytic degradation of the viral immuno-gen and stability of the genome may be responsible for frequent outbreaks of FMDV, at least, in the endemic countries. (author)

  12. Interleukin-10 Modulation of Virus Clearance and Disease in Mice with Alphaviral Encephalomyelitis.

    Science.gov (United States)

    Martin, Nina M; Griffin, Diane E

    2018-03-15

    Alphaviruses are an important cause of mosquito-borne outbreaks of arthritis, rash, and encephalomyelitis. Previous studies in mice with a virulent strain (neuroadapted SINV [NSV]) of the alphavirus Sindbis virus (SINV) identified a role for Th17 cells and regulation by interleukin-10 (IL-10) in the pathogenesis of fatal encephalomyelitis (K. A. Kulcsar, V. K. Baxter, I. P. Greene, and D. E. Griffin, Proc Natl Acad Sci U S A 111:16053-16058, 2014, https://doi.org/10.1073/pnas.1418966111). To determine the role of virus virulence in generation of immune responses, we analyzed the modulatory effects of IL-10 on disease severity, virus clearance, and the CD4 + T cell response to infection with a recombinant strain of SINV of intermediate virulence (TE12). The absence of IL-10 during TE12 infection led to longer morbidity, more weight loss, higher mortality, and slower viral clearance than in wild-type mice. More severe disease and impaired virus clearance in IL-10 -/- mice were associated with more Th1 cells, fewer Th2 cells, innate lymphoid type 2 cells, regulatory cells, and B cells, and delayed production of antiviral antibody in the central nervous system (CNS) without an effect on Th17 cells. Therefore, IL-10 deficiency led to more severe disease in TE12-infected mice by increasing Th1 cells and by hampering development of the local B cell responses necessary for rapid production of antiviral antibody and virus clearance from the CNS. In addition, the shift from Th17 to Th1 responses with decreased virus virulence indicates that the effects of IL-10 deficiency on immunopathologic responses in the CNS during alphavirus infection are influenced by virus strain. IMPORTANCE Alphaviruses cause mosquito-borne outbreaks of encephalomyelitis, but determinants of outcome are incompletely understood. We analyzed the effects of the anti-inflammatory cytokine IL-10 on disease severity and virus clearance after infection with an alphavirus strain of intermediate virulence

  13. Molecular characterization of velogenic viscerotropic Ranikhet (Newcastle) disease virus from different outbreaks in desi chickens

    OpenAIRE

    Dhaygude, V. S.; Sawale, G. K.; Chawak, M. M.; Bulbule, N. R.; Moregaonkar, S. D.; Gavhane, D. S.

    2017-01-01

    Aim: Diagnosis of velogenic viscerotropic Ranikhet disease from six different flocks of desi chicken in and around Mumbai by gross and histopathological examination, isolation of virus and molecular methods. Materials and Methods: A total of 25 carcasses (varying between 2 and 6 carcasses from each flock) of six different flocks of adult desi chicken were subjected to necropsy examination for diagnosis of the disease during the span of a year (2014-2015). After thorough gross examination,...

  14. Incidence, Distribution and Characteristics of Major Tomato Leaf Curl and Mosaic Virus Diseases in Uganda

    OpenAIRE

    Ssekyewa, C

    2006-01-01

    In Uganda, about 3 million households consume tomato. However, tomato yields (10 ton/ ha) are low due to poor agronomic practices, lack of high yielding and disease resistant varieties, and pests (Varela, 1995; Hansen, 1990; Defrancq, 1989). Viral diseases are the third major cause of low tomato productivity in Uganda. Therefore, a survey was conducted; symptoms observed on tomato were categorized, and screened for both ribonucleic and deoxyribonucleic acid tomato viruses. Genetic identity fo...

  15. Microbes and Viruses Are Bugging the Gut in Celiac Disease. Are They Friends or Foes?

    Science.gov (United States)

    Lerner, Aaron; Arleevskaya, Marina; Schmiedl, Andreas; Matthias, Torsten

    2017-01-01

    The links between microorganisms/viruses and autoimmunity are complex and multidirectional. A huge number of studies demonstrated the triggering impact of microbes and viruses as the major environmental factors on the autoimmune and inflammatory diseases. However, growing evidences suggest that infectious agents can also play a protective role or even abrogate these processes. This protective crosstalk between microbes/viruses and us might represent a mutual beneficial equilibrium relationship between two cohabiting ecosystems. The protective pathways might involve post-translational modification of proteins, decreased intestinal permeability, Th1 to Th2 immune shift, induction of apoptosis, auto-aggressive cells relocation from the target organ, immunosuppressive extracellular vesicles and down regulation of auto-reactive cells by the microbial derived proteins. Our analysis demonstrates that the interaction of the microorganisms/viruses and celiac disease (CD) is always a set of multidirectional processes. A deeper inquiry into the CD interplay with Herpes viruses and Helicobacter pylori demonstrates that the role of these infections, suggested to be potential CD protectors, is not as controversial as for the other infectious agents. The outcome of these interactions might be due to a balance between these multidirectional processes.

  16. Microbes and Viruses Are Bugging the Gut in Celiac Disease. Are They Friends or Foes?

    Directory of Open Access Journals (Sweden)

    Aaron Lerner

    2017-08-01

    Full Text Available The links between microorganisms/viruses and autoimmunity are complex and multidirectional. A huge number of studies demonstrated the triggering impact of microbes and viruses as the major environmental factors on the autoimmune and inflammatory diseases. However, growing evidences suggest that infectious agents can also play a protective role or even abrogate these processes. This protective crosstalk between microbes/viruses and us might represent a mutual beneficial equilibrium relationship between two cohabiting ecosystems. The protective pathways might involve post-translational modification of proteins, decreased intestinal permeability, Th1 to Th2 immune shift, induction of apoptosis, auto-aggressive cells relocation from the target organ, immunosuppressive extracellular vesicles and down regulation of auto-reactive cells by the microbial derived proteins. Our analysis demonstrates that the interaction of the microorganisms/viruses and celiac disease (CD is always a set of multidirectional processes. A deeper inquiry into the CD interplay with Herpes viruses and Helicobacter pylori demonstrates that the role of these infections, suggested to be potential CD protectors, is not as controversial as for the other infectious agents. The outcome of these interactions might be due to a balance between these multidirectional processes.

  17. Differential replication of Foot-and-mouth disease viruses in mice determine lethality.

    Science.gov (United States)

    Cacciabue, Marco; García-Núñez, María Soledad; Delgado, Fernando; Currá, Anabella; Marrero, Rubén; Molinari, Paula; Rieder, Elizabeth; Carrillo, Elisa; Gismondi, María Inés

    2017-09-01

    Adult C57BL/6J mice have been used to study Foot-and-mouth disease virus (FMDV) biology. In this work, two variants of an FMDV A/Arg/01 strain exhibiting differential pathogenicity in adult mice were identified and characterized: a non-lethal virus (A01NL) caused mild signs of disease, whereas a lethal virus (A01L) caused death within 24-48h independently of the dose used. Both viruses caused a systemic infection with pathological changes in the exocrine pancreas. Virus A01L reached higher viral loads in plasma and organs of inoculated mice as well as increased replication in an ovine kidney cell line. Complete consensus sequences revealed 6 non-synonymous changes between A01L and A10NL genomes that might be linked to replication differences, as suggested by in silico prediction studies. Our results highlight the biological significance of discrete genomic variations and reinforce the usefulness of this animal model to study viral determinants of lethality. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Citrus leprosis virus N: A New Dichorhavirus Causing Citrus Leprosis Disease.

    Science.gov (United States)

    Ramos-González, Pedro Luis; Chabi-Jesus, Camila; Guerra-Peraza, Orlene; Tassi, Aline Daniele; Kitajima, Elliot Watanabe; Harakava, Ricardo; Salaroli, Renato Barbosa; Freitas-Astúa, Juliana

    2017-08-01

    Citrus leprosis (CL) is a viral disease endemic to the Western Hemisphere that produces local necrotic and chlorotic lesions on leaves, branches, and fruit and causes serious yield reduction in citrus orchards. Samples of sweet orange (Citrus × sinensis) trees showing CL symptoms were collected during a survey in noncommercial citrus areas in the southeast region of Brazil in 2013 to 2016. Transmission electron microscopy analyses of foliar lesions confirmed the presence of rod-like viral particles commonly associated with CL in the nucleus and cytoplasm of infected cells. However, every attempt to identify these particles by reverse-transcription polymerase chain reaction tests failed, even though all described primers for the detection of known CL-causing cileviruses and dichorhaviruses were used. Next-generation sequencing of total RNA extracts from three symptomatic samples revealed the genome of distinct, although highly related (>92% nucleotide sequence identity), viruses whose genetic organization is similar to that of dichorhaviruses. The genome sequence of these viruses showed trees and those used for the transmission of one of the characterized isolates to Arabidopsis plants were anatomically recognized as Brevipalpus phoenicis sensu stricto. Molecular and biological features indicate that the identified viruses belong to a new species of CL-associated dichorhavirus, which we propose to call Citrus leprosis N dichorhavirus. Our results, while emphasizing the increasing diversity of viruses causing CL disease, lead to a reevaluation of the nomenclature of those viruses assigned to the genus Dichorhavirus. In this regard, a comprehensive discussion is presented.

  19. Temporal, geographic, and host distribution of avian paramyxovirus 1 (Newcastle disease virus)

    Science.gov (United States)

    Dimitrov, Kiril M.; Ramey, Andy M.; Qiu, Xueting; Bahl, Justin; Afonso, Claudio L.

    2016-01-01

    Newcastle disease is caused by virulent forms of avian paramyxovirus of serotype 1 (APMV-1) and has global economic importance. The disease reached panzootic proportions within two decades after first being identified in 1926 in the United Kingdom and Indonesia and still remains endemic in many countries across the world. Here we review information on the host, temporal, and geographic distribution of APMV-1 genetic diversity based on the evolutionary systematics of the complete coding region of the fusion gene. Strains of APMV-1 are phylogenetically separated into two classes (class I and class II) and further classified into genotypes based on genetic differences. Class I viruses are genetically less diverse, generally present in wild waterfowl, and are of low virulence. Class II viruses are genetically and phenotypically more diverse, frequently isolated from poultry with occasional spillovers into wild birds, and exhibit a wider range of virulence. Waterfowl, cormorants, and pigeons are natural reservoirs of all APMV-1 pathotypes, except viscerotropic velogenic viruses for which natural reservoirs have not been identified. Genotypes I and II within class II include isolates of high and low virulence, the latter often being used as vaccines. Viruses of genotypes III and IX that emerged decades ago are now isolated rarely, but may be found in domestic and wild birds in China. Containing only virulent viruses and responsible for the majority of recent outbreaks in poultry and wild birds, viruses from genotypes V, VI, and VII, are highly mobile and have been isolated on different continents. Conversely, virulent viruses of genotypes XI (Madagascar), XIII (mainly Southwest Asia), XVI (North America) and XIV, XVII and XVIII (Africa) appear to have a more limited geographic distribution and have been isolated predominantly from poultry.

  20. Construction and characterization of 3A-epitope-tagged foot-and-mouth disease virus.

    Science.gov (United States)

    Ma, Xueqing; Li, Pinghua; Sun, Pu; Bai, Xingwen; Bao, Huifang; Lu, Zengjun; Fu, Yuanfang; Cao, Yimei; Li, Dong; Chen, Yingli; Qiao, Zilin; Liu, Zaixin

    2015-04-01

    Nonstructural protein 3A of foot-and-mouth disease virus (FMDV) is a partially conserved protein of 153 amino acids (aa) in most FMDVs examined to date. Specific deletion in the FMDV 3A protein has been associated with the inability of FMDV to grow in primary bovine cells and cause disease in cattle. However, the aa residues playing key roles in these processes are poorly understood. In this study, we constructed epitope-tagged FMDVs containing an 8 aa FLAG epitope, a 9 aa haemagglutinin (HA) epitope, and a 10 aa c-Myc epitope to substitute residues 94-101, 93-101, and 93-102 of 3A protein, respectively, using a recently developed O/SEA/Mya-98 FMDV infectious cDNA clone. Immunofluorescence assay (IFA), Western blot and sequence analysis showed that the epitope-tagged viruses stably maintained and expressed the foreign epitopes even after 10 serial passages in BHK-21 cells. The epitope-tagged viruses displayed growth properties and plaque phenotypes similar to those of the parental virus in BHK-21 cells. However, the epitope-tagged viruses exhibited lower growth rates and smaller plaque size phenotypes than those of the parental virus in primary fetal bovine kidney (FBK) cells, but similar growth properties and plaque phenotypes to those of the recombinant viruses harboring 93-102 deletion in 3A. These results demonstrate that the decreased ability of FMDV to replicate in primary bovine cells was not associated with the length of 3A, and the genetic determinant thought to play key role in decreased ability to replicate in primary bovine cells could be reduced from 93-102 residues to 8 aa residues at positions 94-101 in 3A protein. Copyright © 2015 Elsevier B.V. All rights reserved.