WorldWideScience

Sample records for disease virus expressing

  1. Protective efficacy of a recombinant Newcastle disease virus expressing glycoprotein of vesicular stomatitis virus in mice

    OpenAIRE

    Zhang, Minmin; Ge, Jinying; Li, Xiaofang; Chen, Weiye; Wang, Xijun; Wen, Zhiyuan; Bu, Zhigao

    2016-01-01

    Background Vesicular stomatitis virus (VSV) causes severe losses to the animal husbandry industry. In this study, a recombinant Newcastle disease virus (NDV) expressing the glycoprotein (G) of VSV (rL-VSV-G) was constructed and its pathogenicity and immune protective efficacy in mouse were evaluated. Results In pathogenicity evaluation test, the analysis of the viral distribution in mouse organs and body weight change showed that rL-VSV-G was safe in mice. In immune protection assay, the reco...

  2. Development of Recombinant Newcastle Disease Viruses Expressing the Glycoprotein (G) of Avian Metapneumovirus as Bivalent Vaccines

    Science.gov (United States)

    Using reverse genetics technology, Newcastle disease virus (NDV) LaSota strain-based recombinant viruses were engineered to express the glycoprotein (G) of avian metapneumovirus (aMPV), subtype A, B or C, as bivalent vaccines. These recombinant viruses were slightly attenuated in vivo, yet maintaine...

  3. Expression of VP60 gene from rabbit haemorrhagic disease virus ...

    African Journals Online (AJOL)

    The VP60 gene from rabbit haemorrhagic disease virus (RHDV) YL strain in Northeast of China, under control of the ats1A promoter from Rubisco small subunit genes of Arabidopsis thaliana, was introduced into the transfer deoxyribonucleic acid (T-DNA) region of plant transfer vector pCAMBIA1300 and transferred to ...

  4. Protective efficacy of a recombinant Newcastle disease virus expressing glycoprotein of vesicular stomatitis virus in mice.

    Science.gov (United States)

    Zhang, Minmin; Ge, Jinying; Li, Xiaofang; Chen, Weiye; Wang, Xijun; Wen, Zhiyuan; Bu, Zhigao

    2016-02-24

    Vesicular stomatitis virus (VSV) causes severe losses to the animal husbandry industry. In this study, a recombinant Newcastle disease virus (NDV) expressing the glycoprotein (G) of VSV (rL-VSV-G) was constructed and its pathogenicity and immune protective efficacy in mouse were evaluated. In pathogenicity evaluation test, the analysis of the viral distribution in mouse organs and body weight change showed that rL-VSV-G was safe in mice. In immune protection assay, the recombinant rL-VSV-G triggered a high titer of neutralizing antibodies against VSV. After challenge, the wild-type (wt) VSV viral load in mouse organs was lower in rL-VSV-G group than that in rLaSota groups. wt VSV was not detected in the blood, liver, or kidneys of mice, whereas it was found in these tissues in control groups. The mice body weight had no significant change after challenge in the rL-VSV-G group. Additionally, suckling mice produced from female mice immunized with rL-VSV-G were partially protected from wt VSV challenge. These results demonstrated that rL-VSV-G may be a suitable candidate vaccine against vesicular stomatitis (VS).

  5. Recombinant Newcastle disease virus expressing the infectious bronchitis virus S1 gene protects chickens against Newcastle disease virus and infectious bronchitis virus challenge.

    Science.gov (United States)

    Zhao, Ran; Sun, Junfeng; Qi, Tianming; Zhao, Wen; Han, Zongxi; Yang, Xiaopu; Liu, Shengwang

    2017-04-25

    The recombinant LaSota strain expressing a chimeric IBV S1 gene (rLaSota-S1) was constructed with the S1 gene of the LX4 type IBV ck/CH/LDL/091022. The expression of the S1 protein was detected by an indirect immunofluorescence assay and Western blotting. The rLaSota-S1 strain was slightly attenuated, and its growth dynamics were similar to that of the parental LaSota strain. Vaccination of specific pathogen-free chickens with the rLaSota-S1 strain induced NDV hemagglutination inhibition antibodies, and it protected chickens from challenge with virulent NDV. In addition, vaccination with the rLaSota-S1 strain induced IBV-specific IgG antibodies and cellular immunity; however, a single vaccination provided partial protection with reduced virus shedding. Better protection efficiency was observed after a booster vaccination, which resulted in higher antibody titers, significantly fewer disease symptoms, and reduced virus replication and shedding. Our results suggest that the rLaSota-S1 strain is a bivalent vaccine candidate against both NDV and IBV. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Role of untranslated regions in regulation of gene expression, replication, and pathogenicity of Newcastle disease virus expressing green fluorescent protein.

    Science.gov (United States)

    Kim, Shin-Hee; Samal, Siba K

    2010-03-01

    To gain insight into the role of untranslated regions (UTRs) in regulation of foreign gene expression, replication, and pathogenicity of Newcastle disease virus (NDV), a green fluorescent protein (GFP) gene flanked by 5' and 3' UTRs of each NDV gene was individually expressed by recombinant NDVs. UTRs of each gene modulated GFP expression positively or negatively. In particular, UTRs of the M and F genes enhanced levels of GFP expression at the junction of the P and M genes without altering replication of NDV, suggesting that UTRs could be used for enhanced expression of a foreign gene by NDV.

  7. Role of Untranslated Regions in Regulation of Gene Expression, Replication, and Pathogenicity of Newcastle Disease Virus Expressing Green Fluorescent Protein▿

    OpenAIRE

    Kim, Shin-Hee; Samal, Siba K.

    2009-01-01

    To gain insight into the role of untranslated regions (UTRs) in regulation of foreign gene expression, replication, and pathogenicity of Newcastle disease virus (NDV), a green fluorescent protein (GFP) gene flanked by 5′ and 3′ UTRs of each NDV gene was individually expressed by recombinant NDVs. UTRs of each gene modulated GFP expression positively or negatively. In particular, UTRs of the M and F genes enhanced levels of GFP expression at the junction of the P and M genes without altering r...

  8. Delay of Disease Development in Transgenic Plants that Express the Tobacco Mosaic Virus Coat Protein Gene

    Science.gov (United States)

    Powell Abel, Patricia; Nelson, Richard S.; de, Barun; Hoffmann, Nancy; Rogers, Stephen G.; Fraley, Robert T.; Beachy, Roger N.

    1986-05-01

    A chimeric gene containing a cloned cDNA of the coat protein (CP) gene of tobacco mosaic virus (TMV) was introduced into tobacco cells on a Ti plasmid of Agrobacterium tumefaciens from which tumor inducing genes had been removed. Plants regenerated from transformed cells expressed TMV mRNA and CP as a nuclear trait. Seedlings from self-fertilized transgenic plants were inoculated with TMV and observed for development of disease symptoms. The seedlings that expressed the CP gene were delayed in symptom development and 10 to 60 percent of the transgenic plants failed to develop symptoms for the duration of the experiments. Increasing the concentration of TMV in the inoculum shortened the delay in appearance of symptoms. The results of these experiments indicate that plants can be genetically transformed for resistance to virus disease development.

  9. Mechanisms of foot-and-mouth disease virus tropism inferred from differential tissue gene expression

    Science.gov (United States)

    Foot-and-Mouth Disease virus (FMDV) has a characteristic tropism in terms of primary, secondary, and persistent infection and vesicular lesion sites. The virus targets specific tissues for primary replication. From these tissues, the virus spreads via the blood stream to a few preferred secondary in...

  10. Mechanisms of foot-and-mouth disease virus tropism inferred from differential tissue gene expression.

    Directory of Open Access Journals (Sweden)

    James J Zhu

    Full Text Available Foot-and-mouth disease virus (FMDV targets specific tissues for primary infection, secondary high-titer replication (e.g. foot and mouth where it causes typical vesicular lesions and long-term persistence at some primary replication sites. Although integrin αVβ6 receptor has been identified as primary FMDV receptors in animals, their tissue distribution alone fails to explain these highly selective tropism-driven events. Thus, other molecular mechanisms must play roles in determining this tissue specificity. We hypothesized that differences in certain biological activities due to differential gene expression determine FMDV tropism and applied whole genome gene expression profiling to identify genes differentially expressed between FMDV-targeted and non-targeted tissues in terms of supporting primary infection, secondary replication including vesicular lesions, and persistence. Using statistical and bioinformatic tools to analyze the differential gene expression, we identified mechanisms that could explain FMDV tissue tropism based on its association with differential expression of integrin αVβ6 heterodimeric receptor (FMDV receptor, fibronectin (ligand of the receptor, IL-1 cytokines, death receptors and the ligands, and multiple genes in the biological pathways involved in extracellular matrix turnover and interferon signaling found in this study. Our results together with reported findings indicate that differences in (1 FMDV receptor availability and accessibility, (2 type I interferon-inducible immune response, and (3 ability to clear virus infected cells via death receptor signaling play roles in determining FMDV tissue tropism and the additional increase of high extracellular matrix turnover induced by FMDV infection, likely via triggering the signaling of highly expressed IL-1 cytokines, play a key role in the pathogenesis of vesicular lesions.

  11. Cucumber mosaic virus as the expression system for a potential vaccine against Alzheimer's disease.

    Science.gov (United States)

    Vitti, A; Piazzolla, G; Condelli, V; Nuzzaci, M; Lanorte, M T; Boscia, D; De Stradis, A; Antonaci, S; Piazzolla, P; Tortorella, C

    2010-11-01

    A primary therapeutic goal in Alzheimer's disease (AD) is to reduce the quantity of amyloid β protein (Aβ) present in the brain. To develop an effective, safe system for vaccination against Alzheimer's disease, the plant virus Cucumber mosaic virus (CMV) was engineered genetically to express Aβ-derived fragments that stimulate mainly humoral immune responses. Six chimeric constructs, bearing the Aβ1-15 or the Aβ4-15 sequence in positions 248, 392 or 529 of the CMV coat protein (CP) gene, were created. Viral products proved to be able to replicate in their natural host. However, only chimeric Aβ1-15-CMVs were detected by Aβ1-42 antiserum in Western blot analysis. Experimental evidence of Immunoelectron microscopy revealed a complete decoration of Aβ1-15-CMV(248) and Aβ1-15-CMV(392) following incubation with either anti-Aβ1-15 or anti-Aβ1-42 polyclonal antibodies. These two chimeric CMVs appear to be endowed with features making them possible candidates for vaccination against Alzheimer's disease. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Generation of Newcastle Disease Virus (NDV) Recombinants Expressing the Infectious Laryngotracheitis Virus (ILTV) Glycoprotein gB or gD as Dual Vaccines.

    Science.gov (United States)

    Zhao, Wei; Spatz, Stephen; Zsak, Laszlo; Yu, Qingzhong

    2016-01-01

    Infectious laryngotracheitis (ILT) is a highly contagious acute respiratory disease of chickens caused by infection with infectious laryngotracheitis virus (ILTV), a member of the family Herpesviridae. The current commercial ILT vaccines are either unsafe or ineffective. Therefore, there is a pressing need to develop safer and more efficacious vaccines. Newcastle disease (ND), caused by infection with Newcastle disease virus (NDV), a member of the family Paramyxoviridae, is one of the most serious infectious diseases of poultry. The NDV LaSota strain, a naturally occurring low-virulence NDV strain, has been routinely used as a live vaccine throughout the world. This chapter describes the generation of Newcastle disease virus (NDV) LaSota vaccine strain-based recombinant viruses expressing glycoprotein B (gB) or glycoprotein D (gD) of ILTV as dual vaccines against ND and ILT using reverse genetics technology.

  13. Cloning of cDNA of major antigen of foot and mouth disease virus and expression in E. coli

    Science.gov (United States)

    Küpper, Hans; Keller, Walter; Kurz, Christina; Forss, Sonja; Schaller, Heinz

    1981-02-01

    Double-stranded DNA copies of the single-stranded genomic RNA of foot and mouth disease virus have been cloned into the Escherichia coli plasmid pBR322. A restriction map of the viral genome was established and aligned with the biochemical map of foot and mouth disease virus. The coding sequence for structural protein VP1, the major antigen of the virus, was identified and inserted into a plasmid vector where the expression of this sequence is under control of the phage λ PL promoter. In an appropriate host the synthesis of antigenic polypeptide can be demonstrated by radioimmunoassay.

  14. Comparison of different sites in recombinant Marek's disease virus for the expression of green fluorescent protein.

    Science.gov (United States)

    Liu, Yongzhen; Li, Kai; Cui, Hongyu; Gao, Li; Liu, Changjun; Zhang, Yanping; Gao, Yulong; Wang, Xiaomei

    2017-05-02

    Marek's disease virus (MDV) is a preferred vector for recombinant vaccine construction, and insertion site is the main factor influencing foreign gene expression and vaccine efficacy. In this study, recombinant MDVs inserted with the enhanced green fluorescent protein (eGFP) gene at different sites in its genome were generated from overlapping fosmid DNAs and the eGFP expression was compared. The results showed that the eGFP expression levels from the sites in the unique long (UL) region (within UL41, between UL45 and UL46, and between UL55 and LORF10) were comparable, which were significantly higher than those from the sites in the unique short (US) region (US2 and US10), and the eGFP expression level from US2 was significantly higher than that from US10. The identification and comparison of the insertion sites in MDV genome could help elevate the protection efficacy of the recombinant MDVs expressing desired antigens. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Newcastle disease virus (NDV) recombinants expressing infectious laryngotracheitis virus (ILTV) glycoproteins gB and gD protect chickens against ILTV and NDV challenges.

    Science.gov (United States)

    Zhao, Wei; Spatz, Stephen; Zhang, Zhenyu; Wen, Guoyuan; Garcia, Maricarmen; Zsak, Laszlo; Yu, Qingzhong

    2014-08-01

    Infectious laryngotracheitis (ILT) is a highly contagious acute respiratory disease of chickens caused by infectious laryngotracheitis virus (ILTV). The disease is controlled mainly through biosecurity and vaccination with live attenuated strains of ILTV and vectored vaccines based on turkey herpesvirus (HVT) and fowlpox virus (FPV). The current live attenuated vaccines (chicken embryo origin [CEO] and tissue culture origin [TCO]), although effective, can regain virulence, whereas HVT- and FPV-vectored ILTV vaccines are less efficacious than live attenuated vaccines. Therefore, there is a pressing need to develop safer and more efficacious ILTV vaccines. In the present study, we generated Newcastle disease virus (NDV) recombinants, based on the LaSota vaccine strain, expressing glycoproteins B (gB) and D (gD) of ILTV using reverse genetics technology. These recombinant viruses, rLS/ILTV-gB and rLS/ILTV-gD, were slightly attenuated in vivo yet retained growth dynamics, stability, and virus titers in vitro that were similar to those of the parental LaSota virus. Expression of ILTV gB and gD proteins in the recombinant virus-infected cells was detected by immunofluorescence assay. Vaccination of specific-pathogen-free chickens with these recombinant viruses conferred significant protection against virulent ILTV and velogenic NDV challenges. Immunization of commercial broilers with rLS/ILTV-gB provided a level of protection against clinical disease similar to that provided by the live attenuated commercial vaccines, with no decrease in body weight gains. The results of the study suggested that the rLS/ILTV-gB and -gD viruses are safe, stable, and effective bivalent vaccines that can be mass administered via aerosol or drinking water to large chicken populations. This paper describes the development and evaluation of novel bivalent vaccines against chicken infectious laryngotracheitis (ILT) and Newcastle disease (ND), two of the most economically important infectious

  16. The Heterologous Expression of the p22 RNA Silencing Suppressor of the Crinivirus Tomato Chlorosis Virus from Tobacco Rattle Virus and Potato Virus X Enhances Disease Severity but Does Not Complement Suppressor-Defective Mutant Viruses.

    Science.gov (United States)

    Landeo-Ríos, Yazmín; Navas-Castillo, Jesús; Moriones, Enrique; Cañizares, M. Carmen

    2017-11-24

    To counteract host antiviral RNA silencing, plant viruses express suppressor proteins that function as pathogenicity enhancers. The genome of the Tomato chlorosis virus (ToCV) (genus Crinivirus , family Closteroviridae ) encodes an RNA silencing suppressor, the protein p22, that has been described as having one of the longest lasting local suppressor activities when assayed in Nicotiana benthamiana . Since suppression of RNA silencing and the ability to enhance disease severity are closely associated, we analyzed the effect of expressing p22 in heterologous viral contexts. Thus, we studied the effect of the expression of ToCV p22 from viral vectors Tobacco rattle virus (TRV) and Potato virus X (PVX), and from attenuated suppressor mutants in N. benthamiana plants. Our results show that although an exacerbation of disease symptoms leading to plant death was observed in the heterologous expression of ToCV p22 from both viruses, only in the case of TRV did increased viral accumulation occur. The heterologous expression of ToCV p22 could not complement suppressor-defective mutant viruses.

  17. Epstein - Barr virus expression in Hodgkin's disease: Correlation withhistologic subtypes and T and B lymphocyte distribution

    International Nuclear Information System (INIS)

    Mourad, W.; Bazerbashi, S.; Alsohaibani, Mohamed O.; Saddik, M.

    1998-01-01

    The pathogenesis of Hodgkin's disease is linked to Epstein-Barr virus(EBV). Some histologic subtypes show a high level of viral expression. Theseinclude mixed cellularity (MCHD) and nodular sclerosis (NSHD) subtypes. GradeII NSHD is a more aggressive variant of HD. Lymphocyte predominant (LPHD) isa B cell lymphoproliferative disorder that has not been associated with EBVexpression. Infiltrating lymphocytes in HD are predominantly T lymphocytes,with minor component of B lymphocytes. In the current study, EBV expressionwas tested in cases of HD in relation to histologic subtypes. An attempt wasmade at correlating EBV expression with T and B lymphocyte distribution inlymph nodes involved by HD. Formalin-fixed paraffin-embedded tissue from 62cases of HD were tested for EBV and mRNA expression, using the EBER-1 probeand in situ hybridization. T and B lymphocyte distribution and their ratioswere evaluated using antibodies to T and B lymphocytes (UCHL-1 [CD45RO] andCD20, respectively), and the immunoperoxidase technique. The cases were seenin 38 male and 24 female patients, with an age range of 3 to 72 years (median25 years). There were 30 cases of grade I and 15 cases of grade II NSHD, 9cases of MCHD and 8 cases of LPHD. EBV mRNA expression was seen in 29 cases(46%). This expression was seen in 8 cases of grade I NSHD (26%), 13 cases ofgrade II NSHD (86%) and 8 cases of MCHD (88%). None of the cases of LPHDshowed viral expression. T to B lymphocytes ratios in EBV-positive casesranged from 1/6 to 8/1 and ranged from 2/1 to 20/1 in EBV-negative cases(P=0.06). Nine of the 29 positive cases (31%) showed equal T/B lymphocyteratios (n=4), or predominance of B lymphocytes (n=5). None of theEBV-negative cases showed predominance of B lymphocytes. Our study confirmedpreviously reported findings of the prevalence of EBV expression in MCHD andNSHD. Our findings also suggest that EBV expression may be more commonly seenin aggressive forms of HD. Decreased number of T lymphocytes in

  18. P and M gene junction is the optimal insertion site in Newcastle disease virus vaccine vector for foreign gene expression.

    Science.gov (United States)

    Zhao, Wei; Zhang, Zhenyu; Zsak, Laszlo; Yu, Qingzhong

    2015-01-01

    Newcastle disease virus (NDV) has been developed as a vector for vaccine and gene therapy purposes. However, the optimal insertion site for foreign gene expression remained to be determined. In the present study, we inserted the green fluorescence protein (GFP) gene into five different intergenic regions of the enterotropic NDV VG/GA vaccine strain using reverse genetics technology. The rescued recombinant viruses retained lentogenic pathotype and displayed delayed growth dynamics, particularly when the GFP gene was inserted between the NP and P genes of the virus. The GFP mRNA level was most abundant when the gene was inserted closer to the 3' end and gradually decreased as the gene was inserted closer to the 5' end. Measurement of the GFP fluorescence intensity in recombinant virus-infected cells demonstrated that the non-coding region between the P and M genes is the optimal insertion site for foreign gene expression in the VG/GA vaccine vector.

  19. Effects of insertion sites in a Newcastle disease virus vector on foreign gene expression through an internal ribosomal entry site

    Science.gov (United States)

    Newcastle disease virus (NDV), avian paramyxovirus type 1, has been developed as a vector to express foreign genes for vaccine and gene therapy purposes. The foreign genes are usually inserted into a non-coding region of the NDV genome as an independent transcription unit (ITU), which potentially a...

  20. Development of a Newcastle disease virus vector expressing a foreign gene through an internal ribosomal entry site

    Science.gov (United States)

    Newcastle disease virus (NDV) has been developed as a vector to express foreign genes for vaccine and gene therapy purposes. The foreign genes are usually inserted into a non-coding region of the NDV genome as an independent transcription unit (ITU). Based on the well-accepted “stop-start” transcr...

  1. Recombinant Newcastle disease viral vector expressing hemagglutinin or fusion of canine distemper virus is safe and immunogenic in minks.

    Science.gov (United States)

    Ge, Jinying; Wang, Xijun; Tian, Meijie; Gao, Yuwei; Wen, Zhiyuan; Yu, Guimei; Zhou, Weiwei; Zu, Shulong; Bu, Zhigao

    2015-05-15

    Canine Distemper Virus (CDV) infects many carnivores and cause several high-mortality disease outbreaks. The current CDV live vaccine cannot be safely used in some exotic species, such as mink and ferret. Here, we generated recombinant lentogenic Newcastle disease virus (NDV) LaSota expressing either envelope glycoproyein, heamagglutinine (H) or fusion protein (F), named as rLa-CDVH and rLa-CDVF, respectively. The feasibility of these recombinant NDVs to serve as live virus-vectored CD vaccine was evaluated in minks. rLa-CDVH induced significant neutralization antibodies (NA) to CDV and provided solid protection against virulent CDV challenge. On the contrast, rLa-CDVF induced much lower NA to CDV and fail to protected mink from virulent CDV challenge. Results suggest that recombinant NDV expressing CDV H is safe and efficient candidate vaccine against CDV in mink, and maybe other host species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Expression and stability of foreign epitopes introduced into 3A nonstructural protein of foot-and-mouth disease virus.

    Directory of Open Access Journals (Sweden)

    Pinghua Li

    Full Text Available Foot-and-mouth disease virus (FMDV is an aphthovirus that belongs to the Picornaviridae family and causes one of the most important animal diseases worldwide. The capacity of other picornaviruses to express foreign antigens has been extensively reported, however, little is known about FMDV. To explore the potential of FMDV as a viral vector, an 11-amino-acid (aa HSV epitope and an 8 aa FLAG epitope were introduced into the C-terminal different regions of 3A protein of FMDV full-length infectious cDNA clone. Recombinant viruses expressing the HSV or FLAG epitope were successfully rescued after transfection of both modified constructs. Immunofluorescence assay, Western blot and sequence analysis showed that the recombinant viruses stably maintained the foreign epitopes even after 11 serial passages in BHK-21 cells. The 3A-tagged viruses shared similar plaque phenotypes and replication kinetics to those of the parental virus. In addition, mice experimentally infected with the epitope-tagged viruses could induce tag-specific antibodies. Our results demonstrate that FMDV can be used effectively as a viral vector for the delivery of foreign tags.

  3. Generation of recombinant newcastle disease viruses, expressing the glycoprotein (G) of avian metapneumovirus, subtype A, or B, for use as bivalent vaccines

    Science.gov (United States)

    Using reverse genetics technology, Newcastle disease virus (NDV) LaSota strain-based recombinant viruses were engineered to express the glycoprotein (G) of avian metapneumovirus (aMPV), subtype A, or B, as bivalent vaccines. These recombinant viruses, rLS/aMPV-A G and rLS/aMPV-B G, were slightly att...

  4. The S2 accessory gene of equine infectious anemia virus is essential for expression of disease in ponies.

    Science.gov (United States)

    Fagerness, Angela J; Flaherty, Maureen T; Perry, Stephanie T; Jia, Bin; Payne, Susan L; Fuller, Frederick J

    2006-05-25

    Equine infectious anemia virus (EIAV) is a macrophage-tropic lentivirus that persistently infects horses and causes a disease that is characterized by periodic episodes of fever, thrombocytopenia, and viremia. EIAV encodes only four regulatory/accessory genes, (tat, rev, ttm, and S2) and is the least genetically complex of all known lentiviruses. We sought to determine the role of the EIAV S2 accessory gene of EIAV by introducing mutations that would prevent S2 expression on the p19/wenv17 infectious molecular clone. Virus derived from the p19/wenv17 molecular clone is highly virulent and routinely fatal when given in high doses (J. Virol. 72 (1998) 483). In contrast, an S2 deletion mutant on the p19/wenv17 background is unable to induce acute disease and plasma virus loads were reduced by 2.5 to 4.0 logs at 15 days post-infection. The S2 deleted virus failed to produce any detectable clinical signs during a 5-month observation period. These results demonstrate that S2 gene expression is essential for disease expression of EIAV.

  5. Recombinant infectious bronchitis virus (IBV) H120 vaccine strain expressing the hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) protects chickens against IBV and NDV challenge.

    Science.gov (United States)

    Yang, Xin; Zhou, Yingshun; Li, Jianan; Fu, Li; Ji, Gaosheng; Zeng, Fanya; Zhou, Long; Gao, Wenqian; Wang, Hongning

    2016-05-01

    Infectious bronchitis (IB) and Newcastle disease (ND) are common viral diseases of chickens, which are caused by infectious bronchitis virus (IBV) and Newcastle disease virus (NDV), respectively. Vaccination with live attenuated strains of IBV-H120 and NDV-LaSota are important for the control of IB and ND. However, conventional live attenuated vaccines are expensive and result in the inability to differentiate between infected and vaccinated chickens. Therefore, there is an urgent need to develop new efficacious vaccines. In this study, using a previously established reverse genetics system, we generated a recombinant IBV virus based on the IBV H120 vaccine strain expressing the haemagglutinin-neuraminidase (HN) protein of NDV. The recombinant virus, R-H120-HN/5a, exhibited growth dynamics, pathogenicity and viral titers that were similar to those of the parental IBV H120, but it had acquired hemagglutination activity from NDV. Vaccination of SPF chickens with the R-H120-HN/5a virus induced a humoral response at a level comparable to that of the LaSota/H120 commercial bivalent vaccine and provided significant protection against challenge with virulent IBV and NDV. In summary, the results of this study indicate that the IBV H120 strain could serve as an effective tool for designing vaccines against IB and other infectious diseases, and the generation of IBV R-H120-HN/5a provides a solid foundation for the development of an effective bivalent vaccine against IBV and NDV.

  6. Infectious bursal disease virus as a replication-incompetent viral vector expressing green fluorescent protein.

    Science.gov (United States)

    Mosley, Yung-Yi C; Wu, Ching Ching; Lin, Tsang Long

    2017-01-01

    Infectious bursal disease virus (IBDV) has been established as a replication-competent viral vector capable of carrying an epitope at multiple loci in the genome. To enhance the safety and increase the insertion capacity of IBDV as a vector, a replication-incompetent IBDV vector was developed in the present study. The feasibility of replacing one of the viral gene loci, including pvp2, vp3, vp1, or the polyprotein vp243, with the sequence of green fluorescent protein (GFP) was explored. A method combining TCID 50 and immunoperoxidase monolayer assay (IPMA) determined the most feasible locus for gene replacement to be pvp2. The genomic segment containing gfp at the pvp2 locus was able to be encapsidated into IBDV particles. Furthermore, the expression of GFP in GFP-IBDV infected cells was confirmed by Western blotting and GFP-IBDV particles showed similar morphology and size to that of wildtype IBDV by electron microscopy. By providing the deleted protein in trans in a packaging cell line (pVP2-DF1), replication-incompetent GFP-IBDV particles were successfully plaque-quantified. The gfp sequence from the plaque-forming GFP-IBDV in pVP2-DF1 was confirmed by RT-PCR and sequencing. To our knowledge, GFP-IBDV developed in the present study is the first replication-incompetent IBDV vector which expresses a foreign protein in infected cells without the capability to produce viral progeny. Additionally, such replication-incompetent IBDV vectors could serve as bivalent vaccine vectors for conferring protection against infections with IBDV and other economically important, or zoonotic, avian pathogens.

  7. Complementation between avirulent Newcastle disease virus and a fusion protein gene expressed from a retrovirus vector: requirements for membrane fusion.

    OpenAIRE

    Morrison, T; McQuain, C; McGinnes, L

    1991-01-01

    The cDNA derived from the fusion gene of the virulent AV strain of Newcastle disease virus (NDV) was expressed in chicken embryo cells by using a retrovirus vector. The fusion protein expressed in this system was transported to the cell surface and was efficiently cleaved into the disulfide-linked F1-F2 form found in infectious virions. The cells expressing the fusion gene grew normally and could be passaged many times. Monolayers of these cells would plaque, in the absence of trypsin, avirul...

  8. Recombinant human adenovirus-5 expressing capsid proteins of Indian vaccine strains of foot-and-mouth disease virus elicits effective antibody response in cattle

    Science.gov (United States)

    Recombinant adenovirus-5 vectored foot-and-mouth disease constructs (Ad5- FMD) were made for three Indian vaccine virus serotypes O,A and Asia 1. Constructs co-expressing foot-and- mouth disease virus (FMDV) capsid and viral 3C protease sequences, were evaluated for their ability to induce a neutral...

  9. Herpesvirus of turkey recombinant viruses expressing infectious bursal disease virus (IBDV) VP2 immunogen induce protection against an IBDV virulent challenge in chickens.

    Science.gov (United States)

    Darteil, R; Bublot, M; Laplace, E; Bouquet, J F; Audonnet, J C; Rivière, M

    1995-08-20

    Two recombinant herpesviruses of turkey (HVT) expressing the VP2 protein of infectious bursal disease virus (IBDV or Gumboro disease virus) have been constructed: vHVT001 and vHVT002. The VP2 open reading frame was inserted at the locus of the small subunit of ribonucleotide reductase gene (HSV-1 UL40 homolog) without any exogenous promoter in vHVT001 and at the locus of gl gene (HSV-1 US7 homolog) under the control of the human cytomegalovirus immediate-early promoter in vHVT002. The isolation of these recombinant viruses indicated that the deleted genes were not required for replication of HVT in chicken embryo fibroblasts. Efficacy of these recombinant viruses against IBDV strain 52/70 and Marek's disease virus (MDV strain RB1B) virulent challenges was evaluated in chickens vaccinated at 1 day of age. In the IBDV challenge, a good protection against mortality and bursal gross lesion was observed in vHVT002-vaccinated chickens: 100% with 10(5) PFU dose and 60% with 10(4) PFU dose; in contrast, only a weak level of protection was achieved after vaccination with vHVT001. Protection levels against MDV challenge obtained with vHVT001 and vHVT002 were low (around 10%) compared to that induced by the parental HVT (84%). In spite of the low protection level against MDV, this is the first report which describes induction of full protection against IBDV with a single inoculation of a recombinant virus.

  10. Expression of common housekeeping genes is affected by disease in human hepatitis C virus-infected liver.

    Science.gov (United States)

    Congiu, Mario; Slavin, John L; Desmond, Paul V

    2011-03-01

    Comparative gene expression is commonly determined with reference to the expression of a housekeeping gene (HKG), the level of which is assumed to be unregulated. There are little data to date on the effect of disease on the expression of classic HKGs in hepatitis C virus (HCV)-infected human liver. To identity HKGs stable across a wide spectrum of disease in human HCV-infected liver. β-Actin, hypoxanthine phosphoribosyltransferase 1 (HPRT1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), splicing factor arginine/serine-rich 4, β-glucuronidase and 18S ribosomal RNA (18S rRNA) were measured by real-time polymerase chain reaction in liver biopsy tissue. Samples were categorised for inflammation, fibrosis and steatosis, and allocated into groups with mild or severe liver disease. Values were analysed using Spearman's rank correlation, NormFinder, BestKeeper and geNorm programs. All genes performed well in the samples of patients with low disease activity, but HPRT1, β-actin, GAPDH and 18S rRNA ranked poorly in samples with severe fibrosis or inflammation. Our results indicate that liver disease affects the expression of common HKGs and that β-glucuronidase and splicing factor arginine/serine-rich 4 are the most stable HKGs from this group for studies of gene expression in HCV-infected human liver. © 2010 John Wiley & Sons A/S.

  11. Differentially expressed genes during spontaneous lytic switch of Marek's disease virus in lymphoblastoid cell lines determined by global gene expression profiling.

    Science.gov (United States)

    Mwangi, William N; Vasoya, Deepali; Kgosana, Lydia B; Watson, Mick; Nair, Venugopal

    2017-04-01

    Marek's disease virus (MDV), an alphaherpesvirus of poultry, causes Marek's disease and is characterized by visceral CD4+TCRαβ+ T-cell lymphomas in susceptible hosts. Immortal cell lines harbouring the viral genome have been generated from ex vivo cultures of MD tumours. As readily available sources of large numbers of cells, MDV-transformed lymphoblastoid cell lines (LCLs) are extremely valuable for studies of virus-host interaction. While the viral genome in most cells is held in a latent state, minor populations of cells display spontaneous reactivation identifiable by the expression of lytic viral genes. Spontaneous reactivation in these cells presents an opportunity to investigate the biological processes involved in the virus reactivation. For detailed characterization of the molecular events associated with reactivation, we used two lymphoblastoid cell lines derived from lymphomas induced by pRB1B-UL47eGFP, a recombinant MDV engineered to express enhanced green fluorescent protein (EGFP) fused with the UL47. We used fluorescence-activated cell sorting to purify the low-frequency EGFP-positive cells with a spontaneously activating viral genome from the majority EGFP-negative cells and analysed their gene expression profiles by RNA-seq using Illumina HiSeq2500. Ingenuity pathway analysis on more than 2000 differentially expressed genes between the lytically infected (EGFP-positive) and latently infected (EGFP-negative) cell populations identified the biological pathways involved in the reactivation. Virus-reactivating cells exhibited differential expression of a significant number of viral genes, with hierarchical differences in expression levels. Downregulation of a number of host genes including those directly involved in T-cell activation, such as CD3, CD28, ICOS and phospholipase C, was also noticed in the LCL undergoing lytic switch.

  12. Expression and role of the TGF-β family in glial cells infected with Borna disease virus.

    Science.gov (United States)

    Nishino, Yoshii; Murakami, Masaru; Funaba, Masayuki

    2016-02-01

    A previous study revealed that the expression of the Borna disease virus (BDV)-encoding phosphoprotein in glial cells was sufficient to induce neurobehavioral abnormalities resembling Borna disease. To evaluate the involvement of the TGF-β family in BDV-induced changes in cell responses by C6 glial cells, we examined the expression levels of the TGF-β family and effects of inhibiting the TGF-β family pathway in BDV-infected C6 (C6BV) cells. The expression of activin βA and BMP7 was markedly increased in BDV-infected cells. Expression of Smad7, a TGF-β family-inducible gene, was increased by BDV infection, and the expression was decreased by treatment with A-83-01 or LDN-193189, inhibitors of the TGF-β/activin or BMP pathway, respectively. These results suggest autocrine effects of activin A and BMP7 in C6BV cells. IGFBP-3 expression was also induced by BDV infection; it was below the detection limit in C6 cells. The expression level of IGFBP-3 was decreased by LDN-193189 in C6BV cells, suggesting that endogenous BMP activity is responsible for IGFBP-3 gene induction. Our results reveal the regulatory expression of genes related to the TGF-β family, and the role of the enhanced BMP pathway in modulating cell responses in BDV-infected glial cells. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. Expression of putative zinc-finger protein lcn61 gene in lymphocystis disease virus China (LCDV-cn) genome

    Science.gov (United States)

    Yan, Xiuying; Sun, Xiuqin

    2009-05-01

    An open reading frame ( lcn61) of lymphocystis disease virus China (LCDV-cn), probably responsible for encoding putative zinc-finger proteins was amplified and inserted into pET24a (+) vector. Then it expressed in E. coli BL21 (DE3), and His-tag fusion protein of high yield was obtained. It was found that the fusion protein existed in E. coli mainly as inclusion bodies. The bioinformatics analysis indicates that LCN61 is C2H2 type zinc-finger protein containing four C2H2 zinc-finger motifs. This work provides a theory for functional research of lcn61 gene.

  14. mosaic virus disease

    African Journals Online (AJOL)

    . variabilis densities on the susceptible cultivar. Implications of these results for the control ofAfrican cassava mosaic virus disease are discussed. Key Words: Aleurotrachelus socialis, Trialeurodes variabilis, cowpea, maize, intercropping. yield.

  15. Ebola Virus Disease

    Science.gov (United States)

    ... latter occurred in a village near the Ebola River, from which the disease takes its name. The ... Ebola virus infection are made using the following diagnostic methods: antibody-capture enzyme-linked immunosorbent assay (ELISA) ...

  16. Engineered Disease Resistance in Cotton Using RNA-Interference to Knock down Cotton leaf curl Kokhran virus-Burewala and Cotton leaf curl Multan betasatellite Expression

    OpenAIRE

    Ahmad, Aftab; Zia-Ur-Rehman, Muhammad; Hameed, Usman; Qayyum Rao, Abdul; Ahad, Ammara; Yasmeen, Aneela; Akram, Faheem; Bajwa, Kamran Shahzad; Scheffler, Jodi; Nasir, Idrees Ahmad; Shahid, Ahmad Ali; Iqbal, Muhammad Javed; Husnain, Tayyab; Haider, Muhammad Saleem; Brown, Judith K.

    2017-01-01

    Cotton leaf curl virus disease (CLCuD) is caused by a suite of whitefly-transmitted begomovirus species and strains, resulting in extensive losses annually in India and Pakistan. RNA-interference (RNAi) is a proven technology used for knockdown of gene expression in higher organisms and viruses. In this study, a small interfering RNA (siRNA) construct was designed to target the AC1 gene of Cotton leaf curl Kokhran virus-Burewala (CLCuKoV-Bu) and the βC1 gene and satellite conserved region of ...

  17. Expression of recombinant Newcastle disease virus F protein in Pichia pastoris and its immunogenicity using flagellin as the adjuvant.

    Science.gov (United States)

    Kang, Xilong; Wang, Jing; Jiao, Yang; Tang, Peipei; Song, Li; Xiong, Dan; Yin, Yuelan; Pan, Zhiming; Jiao, Xinan

    2016-12-01

    Newcastle disease (ND), a highly contagious, acute, and potent infectious disease caused by Newcastle disease virus (NDV), has a considerable impact on the global poultry industry. Although both live attenuated and inactivated vaccines are used to prevent and control the spread of ND among chickens, the increasing number of ND outbreaks in commercial poultry flocks worldwide indicates that routine vaccinations are insufficient to control ND. Hence, efforts are being invested into developing alternative and more effective vaccination strategies. In this study, we focus on F protein, the neutralizing and protective antigen of NDV, and flagellin (FliC), a toll-like receptor 5 (TLR5) agonist that is an effective inducer of innate immune responses. We amplified F gene from velogenic NDV strain F48E8. The recombinant histidine (His)-tagged F protein was efficiently expressed in a Pichia pastoris (P. pastoris) eukaryotic system and verified by sodium dodecyl sulfate polyacrylamide gel electrophoresis and western blotting. The conditions for F protein expression in P. pastoris were optimal. The immunogenicity of F protein with FliC as the adjuvant was evaluated in a C3H/HeJ mouse model. FliC was found to enhance both F-specific and NDV-specific IgG responses and F-specific cellular immune responses following intraperitoneal co-administration with F protein. Thus, the recombinant F protein expressed by P. pastoris when used with flagellin as the adjuvant has potential as a subunit vaccine candidate. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Poultry Allele-Specific Expression (ASE) of CD4+ T Cells in Response to Marek’s Disease Virus Infection

    Science.gov (United States)

    Marek’s disease (MD) is a T cell lymphoma disease of poultry induced by Marek’s disease virus (MDV), a highly oncogenic alphaherpesvirus. To identify high-confidence candidate genes of MD genetic resistance, transcriptomic data in CD4+ T cells were obtained from MDV infected and non-infected groups ...

  19. Generation and evaluation of a recombinant Newcastle disease virus expressing the glycoprotein (G) of avian metapneumovirus subgroup C as a bivalent vaccine in turkeys.

    Science.gov (United States)

    Hu, Haixia; Roth, Jason P; Estevez, Carlos N; Zsak, Laszlo; Liu, Bo; Yu, Qingzhong

    2011-11-03

    Virulent strains of Newcastle disease virus (NDV) and avian metapneumovirus (aMPV) can cause serious respiratory diseases in poultry. Vaccination combined with strict biosecurity practices has been the recommendation for controlling both NDV and aMPV diseases in the field. In the present study, an NDV based, LaSota strain recombinant vaccine virus expressing the glycoprotein (G) of aMPV subgroup C (aMPV-C) was generated as a bivalent vaccine using a reverse genetics approach. The recombinant virus, rLS/aMPV-C G was slightly attenuated in vivo, yet maintained similar growth dynamics, cytopathic effects, and virus titers in vitro when compared to the parental LaSota virus. Expression of the aMPV G protein in rLS/aMPV-C G-infected cells was detected by immunofluorescence assay. Vaccination of turkeys with one dose of rLS/aMPV-C G induced moderate aMPV-C-specific immune responses and comparable NDV-specific serum antibody responses to a LaSota vaccination control. Partial protection against pathogenic aMPV-C challenge and complete protection against velogenic NDV challenge was conferred. These results suggest that the LaSota recombinant virus is a safe and effective vaccine vector and that expression of the aMPV-C G protein alone is not sufficient to provide full protection against an aMPV-C infection. Expression of other immunogenic protein(s) of the aMPV-C virus alone or in conjunction with the G protein may be needed to induce a stronger protective immunity against the aMPV-C disease. Published by Elsevier Ltd.

  20. Have we found an optimal insertion site in a Newcastle disease virus vector to express a foreign gene for vaccine and gene therapy purposes?

    Science.gov (United States)

    Using reverse genetics technology, many strains of Newcastle disease virus (NDV) have been developed as vectors to express foreign genes for vaccine and gene therapy purposes. The foreign gene is usually inserted into a non-coding region of the NDV genome as an independent transcription unit. Eval...

  1. [Ebola virus disease].

    Science.gov (United States)

    Nazimek, Katarzyna; Bociaga-Jasik, Monika; Bryniarski, Krzysztof; Gałas, Aleksander; Garlicki, Aleksander; Gawda, Anna; Gawlik, Grzegorz; Gil, Krzysztof; Kosz-Vnenchak, Magdalena; Mrozek-Budzyn, Dorota; Olszanecki, Rafał; Piatek, Anna; Zawilińska, Barbara; Marcinkiewicz, Janusz

    2014-01-01

    Ebola is one of the most virulent zoonotic RNA viruses causing in humans haemorrhagic fever with fatality ratio reaching 90%. During the outbreak of 2014 the number of deaths exceeded 8.000. The "imported" cases reported in Western Europe and USA highlighted the extreme risk of Ebola virus spreading outside the African countries. Thus, haemorrhagic fever outbreak is an international epidemiological problem, also due to the lack of approved prevention and therapeutic strategies. The editorial review article briefly summarizes current knowledge on Ebola virus disease epidemiology, etiology, pathogenesis, clinical presentation, diagnosis as well as possible prevention and treatment.

  2. Bioinformatics analysis of the factors controlling type I IFN gene expression in autoimmune disease and virus-induced immunity

    Directory of Open Access Journals (Sweden)

    Di eFeng

    2013-09-01

    Full Text Available Patients with systemic lupus erythematosus (SLE and Sjögren's syndrome (SS display increased levels of type I IFN-induced genes. Plasmacytoid dendritic cells (PDCs are natural interferon producing cells and considered to be a primary source of IFN-α in these two diseases. Differential expression patterns of type I IFN inducible transcripts can be found in different immune cell subsets and in patients with both active and inactive autoimmune disease. A type I IFN gene signature generally consists of three groups of IFN-induced genes - those regulated in response to virus-induced type I IFN, those regulated by the IFN-induced mitogen-activated protein kinase/extracellular-regulated kinase (MAPK/ERK pathway, and those by the IFN-induced phosphoinositide-3 kinase (PI-3K pathway. These three groups of type I IFN-regulated genes control important cellular processes such as apoptosis, survival, adhesion, and chemotaxis, that when dysregulated, contribute to autoimmunity. With the recent generation of large datasets in the public domain from next-generation sequencing and DNA microarray experiments, one can perform detailed analyses of cell type-specific gene signatures as well as identify distinct transcription factors that differentially regulate these gene signatures. We have performed bioinformatics analysis of data in the public domain and experimental data from our lab to gain insight into the regulation of type I IFN gene expression. We have found that the genetic landscape of the IFNA and IFNB genes are occupied by transcription factors, such as insulators CTCF and cohesin, that negatively regulate transcription, as well as IRF5 and IRF7, that positively and distinctly regulate IFNA subtypes. A detailed understanding of the factors controlling type I IFN gene transcription will significantly aid in the identification and development of new therapeutic strategies targeting the IFN pathway in autoimmune disease.

  3. MHC expression on spleen lymphocyte subsets in genetically resistant and susceptible chickens infected with Marek's disease virus.

    Science.gov (United States)

    Dalgaard, Tina; Boving, Mette K; Handberg, Kurt; Jensen, Karin H; Norup, Liselotte R; Juul-Madsen, Helle R

    2009-10-01

    Resistance and susceptibility to Marek's disease (MD) are strongly influenced by the chicken major histocompatibility complex (MHC). In this study, splenic lymphocytes from MD-resistant and MD-susceptible chickens of three MHC genotypes (B21/B21, B19/B21, and B19/B19) were analyzed by flow cytometry for MHC surface expression. In the spleen, constitutive MHC class I surface expression was found to be highest in homozygous B19, lowest in homozygous B21, and intermediate in heterozygous B19/B21 animals. This was observed on CD4(+), CD8(+), and Bu-1(+) splenic lymphocytes. Chickens of all three genotypes were subjected to infection with MD virus (GA strain) and spleen samples from infected as well as MHC-matched negative controls were analyzed at 1, 4, and 8 wk post-infection (p.i.). It was observed that MDV induced an increase in MHC class I expression late in the infection. Thus, MHC class I was increased on the surface of CD4(+) cells from infected chickens of all genotypes at 4 and 8 wk p.i. compared with negative controls. Also, MHC class I expression was increased on CD8(+) cells from infected chickens of all genotypes at 4 and 8 wk p.i., except for the homozygous B19 animals, that showed no increase at 8 wk p.i. MDV-induced differences in MHC class II surface levels were also found. Thus, MHC class II expression was increased on CD4(+) cells from infected B19/21 and B21/B21 chickens at 4 wk p.i., and also at 8 wk p.i. on CD4(+) cells from infected B19/B21 animals. MHC class II expression was increased on CD8(+) cells from infected chickens of all genotypes at 4 wk p.i. These findings suggest that MDV infection in vivo increases the level of MHC surface expression on splenic T cells, indicating a possible role in immunity against MDV.

  4. Expression of chicken interleukin-2 by a highly virulent strain of Newcastle disease virus leads to decreased systemic viral load but does not significantly affect mortality in chickens.

    Science.gov (United States)

    Susta, Leonardo; Diel, Diego G; Courtney, Sean; Cardenas-Garcia, Stivalis; Sundick, Roy S; Miller, Patti J; Brown, Corrie C; Afonso, Claudio L

    2015-08-08

    In mammals, interleukin 2 (IL-2) has been shown to decrease replication or attenuate pathogenicity of numerous viral pathogens (herpes simplex virus, vaccinia virus, human respiratory syncytial virus, human immunodeficiency virus) by activating natural killer cells (NK), cytotoxic T lymphocytes and expanding subsets of memory cells. In chickens, IL-2 has been shown to activate T cells, and as such it might have the potential to affect replication and pathogenesis of Newcastle disease virus (NDV). To assess the effect of IL-2 during NDV infection in chickens, we produced a recombinant virulent NDV strain expressing chicken IL-2 (rZJ1-IL2). The effects of IL-2 expression were investigated in vivo using the intracerebral pathogenicity index (ICPI) in day-old chicks and pathogenesis experiments in 4-week-old chickens. In these studies, rZJ1-IL2 was compared to a control virus expressing the green fluorescent protein (rZJ1-GFP). Assessed parameters included survival curves, detailed histological and immunohistochemical grading of lesions in multiple organs, and virus isolation in blood, spleen and mucosal secretions of infected birds. At the site of infection (eyelid), expression of IL-2 was demonstrated in areas of rZJ-IL2 replication, confirming IL-2 production in vivo. Compared to rZJ1-GFP strain, rZJ1-IL2 caused milder lesions and displayed decreased viral load in blood, spleen and mucosal secretions of infected birds. In the rZJ1-IL2-infected group, virus level in the blood peaked at day 4 post-infection (pi) (10(3.46) EID50 /0.1 ml) and drastically decreased at day 5 pi (10(0.9) EID50/0.1 ml), while in the rZJ1-GFP-infected group virus levels in the blood reached 10(5.35) EID50/0.1 ml at day 5. However, rZJ1-IL2-infected groups presented survival curves similar to control birds infected with rZJ1-GFP, with comparable clinical signs and 100 % mortality. Further, expression of IL-2 did not significantly affect the ICPI scores, compared to rZJ1-GFP strain. Increased

  5. Ebola (Ebola Virus Disease): Transmission

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is ... message, please visit this page: About CDC.gov . Ebola (Ebola Virus Disease) About Ebola Questions & Answers 2014- ...

  6. Ebola (Ebola Virus Disease): Prevention

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is ... message, please visit this page: About CDC.gov . Ebola (Ebola Virus Disease) About Ebola Questions & Answers 2014- ...

  7. Ebola (Ebola Virus Disease): Diagnosis

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is ... message, please visit this page: About CDC.gov . Ebola (Ebola Virus Disease) About Ebola Questions & Answers 2014- ...

  8. Ebola (Ebola Virus Disease): Treatment

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is ... message, please visit this page: About CDC.gov . Ebola (Ebola Virus Disease) About Ebola Questions & Answers 2014- ...

  9. Ebola Virus Disease

    Centers for Disease Control (CDC) Podcasts

    2014-08-08

    This podcast provides general information about Ebola virus disease and the outbreak in West Africa. The program contains remarks from CDC Director Dr. Tom Frieden, as well as a brief description of CDC’s response efforts.  Created: 8/8/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 8/8/2014.

  10. Nairobi sheep disease virus/Ganjam virus.

    Science.gov (United States)

    M D, Baron; B, Holzer

    2015-08-01

    Nairobi sheep disease virus (NSDV) is a tick-borne virus which causes a severe disease in sheep and goats, and has been responsible for several outbreaks of disease in East Africa. The virus is also found in the Indian subcontinent, where it is known as Ganjam virus. The virus only spreads through the feeding of competent infected ticks, and is therefore limited in its geographic distribution by the distribution of those ticks, Rhipicephalus appendiculata in Africa and Haemaphysalis intermedia in India. Animals bred in endemic areas do not normally develop disease, and the impact is therefore primarily on animals being moved for trade or breeding purposes. The disease caused by NSDV has similarities to several other ruminant diseases, and laboratory diagnosis is necessary for confirmation. There are published methods for diagnosis based on polymerase chain reaction, for virus growth in cell culture and for other simple diagnostic tests, though none has been commercialised. There is no established vaccine against NSDV, although cell-culture attenuated strains have been developed which show promise and could be put into field trials if it were deemed necessary. The virus is closely related to Crimean-Congo haemorrhagic fever virus, and studies on NSDV may therefore be useful in understanding this important human pathogen.

  11. Plant Virus Expression Vector Development: New Perspectives

    Directory of Open Access Journals (Sweden)

    Kathleen Hefferon

    2014-01-01

    Full Text Available Plant made biologics have elicited much attention over recent years for their potential in assisting those in developing countries who have poor access to modern medicine. Additional applications such as the stockpiling of vaccines against pandemic infectious diseases or potential biological warfare agents are also under investigation. Plant virus expression vectors represent a technology that enables high levels of pharmaceutical proteins to be produced in a very short period of time. Recent advances in research and development have brought about the generation of superior virus expression systems which can be readily delivered to the host plant in a manner that is both efficient and cost effective. This review presents recent innovations in plant virus expression systems and their uses for producing biologics from plants.

  12. Genetically engineered Newcastle disease virus expressing interleukin-2 and TNF-related apoptosis-inducing ligand for cancer therapy

    Science.gov (United States)

    Recombinant Newcastle disease virus (rNDV) has shown oncolytic therapeutic efficacy in preclinical studies and are currently in clinical trials. In this study, we have evaluated the possibility to enhance the cancer therapeutic potential of NDV by means of inserting both interleukin-2 (IL-2) and tu...

  13. Ebola Virus Replication and Disease Without Immunopathology in Mice Expressing Transgenes to Support Human Myeloid and Lymphoid Cell Engraftment.

    Science.gov (United States)

    Spengler, Jessica R; Lavender, Kerry J; Martellaro, Cynthia; Carmody, Aaron; Kurth, Andreas; Keck, James G; Saturday, Greg; Scott, Dana P; Nichol, Stuart T; Hasenkrug, Kim J; Spiropoulou, Christina F; Feldmann, Heinz; Prescott, Joseph

    2016-10-15

    The study of Ebola virus (EBOV) pathogenesis in vivo has been limited to nonhuman primate models or use of an adapted virus to cause disease in rodent models. Herein we describe wild-type EBOV (Makona variant) infection of mice engrafted with human hematopoietic CD34 + stem cells (Hu-NSG™-SGM3 mice; hereafter referred to as SGM3 HuMice). SGM3 HuMice support increased development of myeloid immune cells, which are primary EBOV targets. In SGM3 HuMice, EBOV replicated to high levels, and disease was observed following either intraperitoneal or intramuscular inoculation. Despite the high levels of viral antigen and inflammatory cell infiltration in the liver, the characteristic histopathology of Ebola virus disease was not observed, and this absence of severe immunopathology may have contributed to the recovery and survival of some of the animals. Future investigations into the underlying mechanisms of the atypical disease presentation in SGM3 HuMice will provide additional insights into the immunopathogenesis of severe EBOV disease. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  14. Infectious Bursal Disease Virus

    Science.gov (United States)

    Gimenez, María Cecilia; Zanetti, Flavia Adriana; Terebiznik, Mauricio R; Colombo, María Isabel; Delgui, Laura Ruth

    2018-03-14

    Birnaviruses are unconventional members of the double-stranded RNA (dsRNA) viruses group that are characterized by the lack of a transcriptionally active inner core. Instead, the birnaviral particles organize their genome in ribonucleoprotein complexes (RNPs) composed by dsRNA segments, the dsRNA-binding VP3 protein, and the viral encoded RNA-dependent RNA-polymerase (RdRp). This and other structural features suggests that birnaviruses may follow a completely different replication program from that followed by members of the Reoviridae family, supporting the hypothesis that birnaviruses are the evolutionary link between single-stranded positive RNA (+ssRNA) and dsRNA viruses. Here, we demonstrated that the Infectious Bursal Disease Virus (IBDV), a prototypical member of the Birnaviridae family, hijacks endosomal membranes of infected cells through the interaction of viral protein, VP3, with the phospholipids on the cytosolic leaflet of these compartments for replication. Employing a mutagenesis approach, we demonstrated that VP3 domain PATCH 2 (P2) mediates the association of VP3 with the endosomal membranes. To determine the role of VP3 P2 in the context of virus replication cycle, we used avian cells stably overexpressing VP3 P2 for IBDV infection. Importantly, the intra- and extra-cellular virus yields, as well as the intracellular levels of VP2 viral capsid protein, significantly diminished in VP3 P2 stably overexpressing cells. Altogether, our results indicate that the association of VP3 with endosomes has a relevant role in IBDV replication cycle. This report provides direct experimental evidence for membranous compartments such as endosomes being required by a dsRNA virus for its replication. The results also support the previously proposed role of birnaviruses as an evolutionary link between +ssRNA and dsRNA viruses. IMPORTANCE Infectious Bursal Disease (IBD, also called Gumboro disease) is an acute, highly contagious immunosuppressive disease that affects

  15. Control of Newcastle disease virus

    Science.gov (United States)

    Newcastle disease virus (NDV), also know as avian paramyxovirus serotype 1, is an important poultry pathogen worldwide. In naive poultry, the virulent forms of the virus cause high mortality. Because of this the virus is reportable to the World Organization for Animal Health and can be an important ...

  16. [Ebola virus disease: Update].

    Science.gov (United States)

    de la Calle-Prieto, Fernando; Arsuaga-Vicente, Marta; Mora-Rillo, Marta; Arnalich-Fernandez, Francisco; Arribas, Jose Ramon

    2016-01-01

    The first known Ebola outbreak occurred in 1976. Since then, 24 limited outbreaks had been reported in Central Africa, but never affecting more than 425 persons. The current outbreak in Western Africa is the largest in history with 28,220 reported cases and 11,291 deaths. The magnitude of the epidemic has caused worldwide alarm. For the first time, evacuated patients were treated outside Africa, and secondary cases have occurred in Spain and the United States. Since the start of the current epidemic, our knowledge about the epidemiology, clinical picture, laboratory findings, and virology of Ebola virus disease has considerably expanded. For the first time, experimental treatment has been tried, and there have been spectacular advances in vaccine development. A review is presented of these advances in the knowledge of Ebola virus disease. Copyright © 2015 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  17. Generation and evaluation of recombinant Newcastle disease viruses (NDV) expressing the F and G proteins of avian metapneumovirus subtype C (aMPV-C) as bivalent vaccine against NDV and aMPV challenges in turkeys

    Science.gov (United States)

    Previously we generated a Newcastle disease virus (NDV) LaSota strain-based recombinant virus expressing the glycoprotein (G) of avian metapneumovirus subgroup C (aMPV-C) as a bivalent vaccine, which provided a partial protection against aMPV-C challenge in turkeys. To improve the vaccine efficacy,...

  18. Transient gene expression in serum-free suspension-growing mammalian cells for the production of foot-and-mouth disease virus empty capsids.

    Directory of Open Access Journals (Sweden)

    Ana Clara Mignaqui

    Full Text Available Foot-and-mouth disease (FMD is a highly contagious disease of cloven-hoofed animals. It produces severe economic losses in the livestock industry. Currently available vaccines are based on inactivated FMD virus (FMDV. The use of empty capsids as a subunit vaccine has been reported to be a promising candidate because it avoids the use of virus in the vaccine production and conserves the conformational epitopes of the virus. In this report, we explored transient gene expression (TGE in serum-free suspension-growing mammalian cells for the production of FMDV recombinant empty capsids as a subunit vaccine. The recombinant proteins produced, assembled into empty capsids and induced protective immune response against viral challenge in mice. Furthermore, they were recognized by anti-FMDV bovine sera. By using this technology, we were able to achieve expression levels that are compatible with the development of a vaccine. Thus, TGE of mammalian cells is an easy to perform, scalable and cost-effective technology for the production of a recombinant subunit vaccine against FMDV.

  19. Treatment of ebola virus disease.

    Science.gov (United States)

    Kilgore, Paul E; Grabenstein, John D; Salim, Abdulbaset M; Rybak, Michael

    2015-01-01

    In March 2014, the largest Ebola outbreak in history exploded across West Africa. As of November 14, 2014, the World Health Organization has reported a total of 21,296 Ebola virus disease (EVD) cases, including 13,427 laboratory-confirmed EVD cases reported from the three most affected countries (Guinea, Liberia, and Sierra Leone). As the outbreak of EVD has spread, clinical disease severity and national EVD case-fatality rates have remained high (21.2-60.8%). Prior to 2013, several EVD outbreaks were controlled by using routine public health interventions; however, the widespread nature of the current EVD outbreak as well as cultural practices in the affected countries have challenged even the most active case identification efforts. In addition, although treatment centers provide supportive care, no effective therapeutic agents are available for EVD-endemic countries. The ongoing EVD outbreak has stimulated investigation of several different therapeutic strategies that target specific viral structures and mechanisms of Ebola viruses. Six to eight putative pharmacotherapies or immunologically based treatments have demonstrated promising results in animal studies. In addition, agents composed of small interfering RNAs targeting specific proteins of Ebola viruses, traditional hyperimmune globulin isolated from Ebola animal models, monoclonal antibodies, and morpholino oligomers (small molecules used to block viral gene expression). A number of EVD therapeutic agents are now entering accelerated human trials in EVD-endemic countries. The goal of therapeutic agent development includes postexposure prevention and EVD cure. As knowledge of Ebola virus virology and pathogenesis grows, it is likely that new therapeutic tools will be developed. Deployment of novel Ebola therapies will require unprecedented cooperation as well as investment to ensure that therapeutic tools become available to populations at greatest risk for EVD and its complications. In this article, we

  20. MHC Expression on Spleen Lymphocyte Subsets in Genetically Resistant and Susceptible Chickens Infected with Marek's Disease Virus

    DEFF Research Database (Denmark)

    Dalgaard, Tina; Bøving, Mette K.; Handberg, Kurt

    2009-01-01

    cytometry for MHC surface expression. In the spleen, constitutive MHC class I surface expression was found to be highest in homozygous B19, lowest in homozygous B21, and intermediate in heterozygous B19/B21 animals. This was observed on CD4(+), CD8(+), and Bu-1(+) splenic lymphocytes. Chickens of all three...... genotypes were subjected to infection with MD virus (GA strain) and spleen samples from infected as well as MHC-matched negative controls were analyzed at 1, 4, and 8 wk post-infection (p.i.). It was observed that MDV induced an increase in MHC class I expression late in the infection. Thus, MHC class I...... was increased on the surface of CD4(+) cells from infected chickens of all genotypes at 4 and 8 wk p.i. compared with negative controls. Also, MHC class I expression was increased on CD8(+) cells from infected chickens of all genotypes at 4 and 8 wk p.i., except for the homozygous B19 animals, that showed...

  1. Stable expression of foot-and-mouth disease virus protein VP1 fused with cholera toxin B subunit in the potato (Solanum tuberosum).

    Science.gov (United States)

    He, Dong-Mei; Qian, Kai-Xian; Shen, Gui-Fang; Li, Yi-Nü; Zhang, Zhi-Fang; Su, Zhong-Liang; Shao, Hong-Bo

    2007-04-01

    The expression vector, pBI121CTBVP1, containing the fusion of the foot and mouth disease virus (FMDV) VP1 gene and the cholera toxin B subunit (CTB) gene was constructed by fused PCR and transferred into potato (Solanum tuberosum L.) by Agrobacterium-mediated transformation. Transformed plants were obtained by selecting on kanamycin-resistant medium strictly and regenerated. The transgenic plantlets were identified by PCR, Southern-blot and the production of fused protein was confirmed and quantified by Western-blot and ELISA assays. The results showed that the fused genes were expressed stablely under the control of specific-tuber patatin promoter. The expressed fused proteins have a certain degree of immunogenicity.

  2. Fusion protein strategy to increase expression and solubility of hypervariable region of VP2 protein of infectious bursal disease virus in Escherichia coli.

    Science.gov (United States)

    Sedighzadeh, Sahar Sadat; Shamsara, Mehdi; Shahpiri, Azar

    2012-10-01

    Infectious bursal disease is one of the most important viral diseases in the young chickens. VP2 protein is the major host protective immunogen of the virus. A hypervariable region is present in VP2 protein (hvVP2) that contains immunodominant epitops. The high hydrophobicity of hvVP2 region causes protein aggregation in Escherichia coli (E. coli). The objective of the present study was to improve the expression and the solubility of the hvVP2 protein in E. coli. The effects of fusion partners on the solubility of hvVP2 protein were studied. The protein was expressed in forms of unfused and N-terminally fused to GST and NusA. The results showed that the unfused hvVP2 protein was expressed in very low level. But, N-terminally fused hvVP2 protein to GST (glutathione-S-transferase) and NusA (N utilization substance A) showed significantly enhanced protein expression. The fusion of GST and hvVP2 was produced in aggregated form while in the presence of NusA, the hvVP2 protein was expressed in a soluble form. The NusA-hvVP2 protein was detected by a neutralizing monoclonal antibody, 1A6, in antigen-capture ELISA. In conclusion, the NusA protein is a suitable fusion partner to improve expression and solubility of the hvVP2 protein in E. coli.

  3. Evaluation of the HerpeSelect Express rapid test in the detection of herpes simplex virus type 2 antibodies in patients with genital ulcer disease.

    Science.gov (United States)

    Al-Shobaili, Hani; Hassanein, Khaled M; Mostafa, Marwa Salah; Al Duways, Ali Saleh

    2015-01-01

    A rapid point-of-care test with high sensitivity and specificity is required in order to fulfill the need for early detection and screening of Herpes simplex virus type 2 (HSV-2) infection among patients with genital ulcer disease (GUD), for better management and control of virus transmission. The goal of this study is to evaluate the performance of the commercially available HerpeSelect Express rapid test in comparison with three ELISA assays: HerpeSelect ELISA, Kalon HSV-2 glycoprotein G2 assay, and monoclonal antibody blocking enzyme immunoassay, which was used as the gold standard for the detection of HSV-2 antibodies. This study showed high sensitivity (ranging from 82.6 to 100%) and specificity (100%) of the HerpeSelect Express rapid test when compared to the three ELISA assays. The agreement between the HerpeSelect Express rapid test with the three ELISAs ranged from 93.3 to 100%. The HerpeSelect Express rapid test has adequate sensitivity and specificity for confirming HSV-2 infection in patients with GUD, indicating its suitability for epidemiological studies. © 2014 Wiley Periodicals, Inc.

  4. Expression of self-complementary hairpin RNA under the control of the rolC promoter confers systemic disease resistance to plum pox virus without preventing local infection.

    Science.gov (United States)

    Pandolfini, Tiziana; Molesini, Barbara; Avesani, Linda; Spena, Angelo; Polverari, Annalisa

    2003-06-25

    Homology-dependent selective degradation of RNA, or post-transcriptional gene silencing (PTGS), is involved in several biological phenomena, including adaptative defense mechanisms against plant viruses. Small interfering RNAs mediate the selective degradation of target RNA by guiding a multicomponent RNAse. Expression of self-complementary hairpin RNAs within two complementary regions separated by an intron elicits PTGS with high efficiency. Plum pox virus (PPV) is the etiological agent of sharka disease in Drupaceae, although it can also be transmitted to herbaceous species (e.g. Nicotiana benthamiana). Once inside the plant, PPV is transmitted via plasmodesmata from cell to cell, and at longer distances, via phloem. The rolC promoter drives expression in phloem cells. RolC expression is absent in both epidermal and mesophyll cells. The aim of the present study was to confer systemic disease resistance without preventing local viral infection. In the ihprolC-PP197 gene (intron hair pin rolC PPV 197), a 197 bp sequence homologous to the PPV RNA genome (from base 134 to 330) was placed as two inverted repeats separated by the DNA sequence of the rolA intron. This hairpin construct is under the control of the rolC promoter.N. benthamiana plants transgenic for the ihprolC-PP197 gene contain siRNAs homologous to the 197 bp sequence. The transgenic progeny of ihprolC-PP197 plants are resistant to PPV systemic infection. Local infection is unaffected. Most (80%) transgenic plants are virus free and symptomless. Some plants (20%) contain virus in uninoculated apical leaves; however they show only mild symptoms of leaf mottling. PPV systemic resistance cosegregates with the ihprolC-PP197 transgene and was observed in progeny plants of all independent transgenic lines analyzed. SiRNAs of 23-25 nt homologous to the PPV sequence used in the ihprolC-PP197 construct were detected in transgenic plants before and after inoculation. Transitivity of siRNAs was observed in

  5. Expression of self-complementary hairpin RNA under the control of the rolC promoter confers systemic disease resistance to plum pox virus without preventing local infection

    Directory of Open Access Journals (Sweden)

    Spena Angelo

    2003-06-01

    Full Text Available Abstract Background Homology-dependent selective degradation of RNA, or post-transcriptional gene silencing (PTGS, is involved in several biological phenomena, including adaptative defense mechanisms against plant viruses. Small interfering RNAs mediate the selective degradation of target RNA by guiding a multicomponent RNAse. Expression of self-complementary hairpin RNAs within two complementary regions separated by an intron elicits PTGS with high efficiency. Plum pox virus (PPV is the etiological agent of sharka disease in Drupaceae, although it can also be transmitted to herbaceous species (e.g. Nicotiana benthamiana. Once inside the plant, PPV is transmitted via plasmodesmata from cell to cell, and at longer distances, via phloem. The rolC promoter drives expression in phloem cells. RolC expression is absent in both epidermal and mesophyll cells. The aim of the present study was to confer systemic disease resistance without preventing local viral infection. Results In the ihprolC-PP197 gene (intron hair pin rolC PPV 197, a 197 bp sequence homologous to the PPV RNA genome (from base 134 to 330 was placed as two inverted repeats separated by the DNA sequence of the rolA intron. This hairpin construct is under the control of the rolC promoter.N. benthamiana plants transgenic for the ihprolC-PP197 gene contain siRNAs homologous to the 197 bp sequence. The transgenic progeny of ihprolC-PP197 plants are resistant to PPV systemic infection. Local infection is unaffected. Most (80% transgenic plants are virus free and symptomless. Some plants (20% contain virus in uninoculated apical leaves; however they show only mild symptoms of leaf mottling. PPV systemic resistance cosegregates with the ihprolC-PP197 transgene and was observed in progeny plants of all independent transgenic lines analyzed. SiRNAs of 23–25 nt homologous to the PPV sequence used in the ihprolC-PP197 construct were detected in transgenic plants before and after inoculation

  6. Increased expressions of ADAMTS-13, neuronal nitric oxide synthase, and neurofilament correlate with severity of neuropathology in Border disease virus-infected small ruminants.

    Directory of Open Access Journals (Sweden)

    Gungor Cagdas Dincel

    Full Text Available Border Disease (BD, caused by Pestivirus from the family Flaviviridae, leads to serious reproductive losses and brain anomalies such as hydranencephaly and cerebellar hypoplasia in aborted fetuses and neonatal lambs. In this report it is aimed to investigate the expression of neuronal nitric oxide synthase (nNOS, A Disintegrin And Metalloprotease with Thrombospondin type I repeats-13 (ADAMTS-13, and neurofilament (NF in the brain tissue in small ruminants infected with Border Disease Virus (BDV and to identify any correlation between hypomyelinogenesis and BD neuropathology. Results of the study revealed that the levels of ADAMTS-13 (p<0.05, nNOS (p<0.05, and NF (p<0.05 were remarkably higher in BDV-infected brain tissue than in the uninfected control. It was suggested that L-arginine-NO synthase pathway is activated after infection by BDV and that the expression of NF and nNOS is associated with the severity of BD. A few studies have focused on ADAMTS-13 expression in the central nervous system, and its function continues to remain unclear. The most prominent finding from our study was that ADAMTS-13, which contain two CUB domains, has two CUB domains and its high expression levels are probably associated with the development of the central nervous system (CNS. The results also clearly indicate that the interaction of ADAMTS-13 and NO may play an important role in the regulation and protection of the CNS microenvironment in neurodegenerative diseases. In addition, NF expression might indicate the progress of the disease. To the best of the authors'knowledge, this is the first report on ADAMTS-13 expression in the CNS of BDV-infected small ruminants.

  7. Engineered Disease Resistance in Cotton Using RNA-Interference to Knock down Cotton leaf curl Kokhran virus-Burewala and Cotton leaf curl Multan betasatellite Expression

    Directory of Open Access Journals (Sweden)

    Aftab Ahmad

    2017-09-01

    Full Text Available Cotton leaf curl virus disease (CLCuD is caused by a suite of whitefly-transmitted begomovirus species and strains, resulting in extensive losses annually in India and Pakistan. RNA-interference (RNAi is a proven technology used for knockdown of gene expression in higher organisms and viruses. In this study, a small interfering RNA (siRNA construct was designed to target the AC1 gene of Cotton leaf curl Kokhran virus-Burewala (CLCuKoV-Bu and the βC1 gene and satellite conserved region of the Cotton leaf curl Multan betasatellite (CLCuMB. The AC1 gene and CLCuMB coding and non-coding regions function in replication initiation and suppression of the plant host defense pathway, respectively. The construct, Vβ, was transformed into cotton plants using the Agrobacterium-mediated embryo shoot apex cut method. Results from fluorescence in situ hybridization and karyotyping assays indicated that six of the 11 T1 plants harbored a single copy of the Vβ transgene. Transgenic cotton plants and non-transgenic (susceptible test plants included as the positive control were challenge-inoculated using the viruliferous whitefly vector to transmit the CLCuKoV-Bu/CLCuMB complex. Among the test plants, plant Vβ-6 was asymptomatic, had the lowest amount of detectable virus, and harbored a single copy of the transgene on chromosome six. Absence of characteristic leaf curl symptom development in transgenic Vβ-6 cotton plants, and significantly reduced begomoviral-betasatellite accumulation based on real-time polymerase chain reaction, indicated the successful knockdown of CLCuKoV-Bu and CLCuMB expression, resulting in leaf curl resistant plants.

  8. Protective efficacy of Newcastle disease virus expressing soluble trimeric hemagglutinin against highly pathogenic H5N1 influenza in chickens and mice.

    Directory of Open Access Journals (Sweden)

    Lisette A H M Cornelissen

    Full Text Available BACKGROUND: Highly pathogenic avian influenza virus (HPAIV causes a highly contagious often fatal disease in poultry, resulting in significant economic losses in the poultry industry. HPAIV H5N1 also poses a major public health threat as it can be transmitted directly from infected poultry to humans. One effective way to combat avian influenza with pandemic potential is through the vaccination of poultry. Several live vaccines based on attenuated Newcastle disease virus (NDV that express influenza hemagglutinin (HA have been developed to protect chickens or mammalian species against HPAIV. However, the zoonotic potential of NDV raises safety concerns regarding the use of live NDV recombinants, as the incorporation of a heterologous attachment protein may result in the generation of NDV with altered tropism and/or pathogenicity. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we generated recombinant NDVs expressing either full length, membrane-anchored HA of the H5 subtype (NDV-H5 or a soluble trimeric form thereof (NDV-sH5(3. A single intramuscular immunization with NDV-sH5(3 or NDV-H5 fully protected chickens against disease after a lethal challenge with H5N1 and reduced levels of virus shedding in tracheal and cloacal swabs. NDV-sH5(3 was less protective than NDV-H5 (50% vs 80% protection when administered via the respiratory tract. The NDV-sH5(3 was ineffective in mice, regardless of whether administered oculonasally or intramuscularly. In this species, NDV-H5 induced protective immunity against HPAIV H5N1, but only after oculonasal administration, despite the poor H5-specific serum antibody response it elicited. CONCLUSIONS/SIGNIFICANCE: Although NDV expressing membrane anchored H5 in general provided better protection than its counterpart expressing soluble H5, chickens could be fully protected against a lethal challenge with H5N1 by using the latter NDV vector. This study thus provides proof of concept for the use of recombinant

  9. West Nile Virus Neuroinvasive Disease

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2009-07-01

    Full Text Available Epidemiological features of West Nile Virus (WNV disease among children (<18 years of age reported to the Centers for Disease Control and Prevention from 1999 through 2007 were analyzed and compared with those of adult WNV neuroinvasive disease (WNND, in a study at CDC&P, Fort Collins, CO.

  10. Disease severity is associated with differential gene expression at the early and late phases of infection in nonhuman primates infected with different H5N1 highly pathogenic avian influenza viruses.

    Science.gov (United States)

    Muramoto, Yukiko; Shoemaker, Jason E; Le, Mai Quynh; Itoh, Yasushi; Tamura, Daisuke; Sakai-Tagawa, Yuko; Imai, Hirotaka; Uraki, Ryuta; Takano, Ryo; Kawakami, Eiryo; Ito, Mutsumi; Okamoto, Kiyoko; Ishigaki, Hirohito; Mimuro, Hitomi; Sasakawa, Chihiro; Matsuoka, Yukiko; Noda, Takeshi; Fukuyama, Satoshi; Ogasawara, Kazumasa; Kitano, Hiroaki; Kawaoka, Yoshihiro

    2014-08-01

    Occasional transmission of highly pathogenic avian H5N1 influenza viruses to humans causes severe pneumonia with high mortality. To better understand the mechanisms via which H5N1 viruses induce severe disease in humans, we infected cynomolgus macaques with six different H5N1 strains isolated from human patients and compared their pathogenicity and the global host responses to the virus infection. Although all H5N1 viruses replicated in the respiratory tract, there was substantial heterogeneity in their replicative ability and in the disease severity induced, which ranged from asymptomatic to fatal. A comparison of global gene expression between severe and mild disease cases indicated that interferon-induced upregulation of genes related to innate immunity, apoptosis, and antigen processing/presentation in the early phase of infection was limited in severe disease cases, although interferon expression was upregulated in both severe and mild cases. Furthermore, coexpression analysis of microarray data, which reveals the dynamics of host responses during the infection, demonstrated that the limited expression of these genes early in infection led to a failure to suppress virus replication and to the hyperinduction of genes related to immunity, inflammation, coagulation, and homeostasis in the late phase of infection, resulting in a more severe disease. Our data suggest that the attenuated interferon-induced activation of innate immunity, apoptosis, and antigen presentation in the early phase of H5N1 virus infection leads to subsequent severe disease outcome. Highly pathogenic avian H5N1 influenza viruses sometimes transmit to humans and cause severe pneumonia with ca. 60% lethality. The continued circulation of these viruses poses a pandemic threat; however, their pathogenesis in mammals is not fully understood. We, therefore, investigated the pathogenicity of six H5N1 viruses and compared the host responses of cynomolgus macaques to the virus infection. We

  11. Oral immunization with transgenic rice seeds expressing VP2 protein of infectious bursal disease virus induces protective immune responses in chickens.

    Science.gov (United States)

    Wu, Jianxiang; Yu, Lian; Li, Long; Hu, Jinqiang; Zhou, Jiyong; Zhou, Xueping

    2007-09-01

    The expression of infectious bursal disease virus (IBDV) host-protective immunogen VP2 protein in rice seeds, its immunogenicity and protective capability in chickens were investigated. The VP2 cDNA of IBDV strain ZJ2000 was cloned downstream of the Gt1 promoter of the rice glutelin GluA-2 gene in the binary expression vector, pCambia1301-Gt1. Agrobacterium tumefaciens containing the recombinant vector was used to transform rice embryogenic calli, and 121 transgenic lines were obtained and grown to maturity in a greenhouse. The expression level of VP2 protein in transgenic rice seeds varied from 0.678% to 4.521% microg/mg of the total soluble seed protein. Specific pathogen-free chickens orally vaccinated with transgenic rice seeds expressing VP2 protein produced neutralizing antibodies against IBDV and were protected when challenged with a highly virulent IBDV strain, BC6/85. These results demonstrate that transgenic rice seeds expressing IBDV VP2 can be used as an effective, safe and inexpensive vaccine against IBDV.

  12. Cloning of fusion protein gene of Newcastle disease virus into a baculovirus derived bacmid shuttle vector, in order to express it in insect cell line

    Directory of Open Access Journals (Sweden)

    Hashemzadeh MS

    2015-05-01

    Full Text Available Abstract Background: Newcastle disease virus (NDV is one of the major pathogens in poultry and vaccination is intended to control the disease, as an effective solution, yet. Fusion protein (F on surface of NDV, has a fundamental role in virus pathogenicity and can induce protective immunity, alone. With this background, here our aim was to construct a baculovirus derived recombinant bacmid shuttle vector (encoding F-protein in order to express it in insect cell line. Materials and Methods: In this experimental study, at first complete F gene from avirulent strain La Sota of NDV was amplified by RT-PCR to produce F cDNA. The amplicon was cloned into T/A cloning vector and afterwards into pFastBac Dual donor plasmid. After the verification of cloning process by two methods, PCR and enzymatic digestion analysis, the accuracy of F gene sequence was confirmed by sequencing. Finally, F-containing recombinant bacmid was subsequently generated in DH10Bac cell and the construct production was confirmed by a special PCR panel, using F specific primers and M13 universal primers. Results: Analysis of confirmatory tests showed that the recombinant bacmid, expressing of F-protein gene in correct sequence and framework, has been constructed successfully. Conclusion: The product of this F-containing recombinant bacmid, in addition to its independent application in the induction of protective immunity, can be used with the other individual recombinant baculoviruses, expressing HN and NP genes to produce NDV-VLPs in insect cell line.

  13. Central nervous system Toll-like receptor expression in response to Theiler's murine encephalomyelitis virus-induced demyelination disease in resistant and susceptible mouse strains

    Directory of Open Access Journals (Sweden)

    Turrin Nicolas P

    2008-12-01

    Full Text Available Abstract Background In immunopathological diseases, such as multiple sclerosis (MS, genetic and environmental factors that contribute to the initiation and progression of the disease are often discussed. The Theiler murine encephalomyelitis virus-induced demyelination disease (TMEV-IDD model used to study MS reflects this: genetically susceptible mice infected intra-cerebrally with TMEV develop a chronic demyelination disease. TMEV-IDD can be induced in resistant mouse strains by inducing innate immunity with lipopolysaccharide (LPS. Interestingly, Toll-like receptor 4 (TLR4 is the cognate receptor for LPS and its activation can induces up-regulation of other TLRs, such as TLR7 (the receptor for TMEV and 9, known to be involved in autoimmunity. Up-regulation of TLRs could be involved in precipitating an autoimmune susceptible state. Consequently, we looked at TLR expression in the susceptible (SJL/J and resistant (C57BL/6 strains of mice infected with TMEV. The resistant mice were induced to develop TMEV-IDD by two LPS injections following TMEV infection. Results Both strains were found to up-regulate multiple TLRs (TLR2, 7 and 9 following the TMEV infection. Expression of these TLRs and of viral mRNA was significantly greater in infected SJL/J mice. The susceptible SJL/J mice showed up-regulation of TLR3, 6 and 8, which was not seen in C57BL/6 mice. Conclusion Expression of TLRs by susceptible mice and the up-regulation of the TLRs in resistant mice could participate in priming the mice toward an autoimmune state and develop TMEV-IDD. This could have implications on therapies that target TLRs to prevent the emergence of conditions such as MS in patients at risk for the disease.

  14. A pseudotype baculovirus expressing the capsid protein of foot-and-mouth disease virus and a T-Cell immunogen shows enhanced immunogenicity in mice

    Directory of Open Access Journals (Sweden)

    Liu Xiangtao

    2011-02-01

    Full Text Available Abstract Background Foot-and-mouth disease (FMD is a highly contagious disease of livestock which causes severe economic loss in cloven-hoofed animals. Vaccination is still a major strategy in developing countries to control FMD. Currently, inactivated vaccine of FMDV has been used in many countries with limited success and safety concerns. Development of a novel effective vaccine is must. Methods In the present study, two recombinant pseudotype baculoviruses, one expressing the capsid of foot-and-mouth disease virus (FMDV under the control of a cytomegalovirus immediate early enhancer/promoter (CMV-IE, and the other the caspid plus a T-cell immunogen coding region under a CAG promoter were constructed, and their expression was characterized in mammalian cells. In addition, their immunogenicity in a mouse model was investigated. The humoral and cell-mediated immune responses induced by pseudotype baculovirus were compared with those of inactivated vaccine. Results Indirect immunofluorescence assay (IFA and indirect sandwich-ELISA (IS-ELISA showed both recombinant baculoviruses (with or without T-cell epitopes were transduced efficiently and expressed target proteins in BHK-21 cells. In mice, intramuscular inoculation of recombinants with 1 × 109 or 1 × 1010 PFU/mouse induced the production of FMDV-specific neutralizing antibodies and gamma interferon (IFN-γ. Furthermore, recombinant baculovirus with T-cell epitopes had better immunogenicity than the recombinant without T-cell epitopes as demonstrated by significantly enhanced IFN-γ production (P P Conclusions These results indicate that pseudotype baculovirus-mediated gene delivery could be a alternative strategy to develop a new generation of vaccines against FMDV infection.

  15. Expression of antígens derived from foot-and-mouth disease virus 1n different eukariotic systems

    OpenAIRE

    Taboga, Oscar A.

    2000-01-01

    La fiebre aftosa es una enfermedad de gran importancia económica que afecta principalmente al ganado bovino. Esta enfermedad está causada por un picornavirus, el virus de la fiebre aftosa (VFA). El control de la enfermedad se lleva a cabo mediante eliminación de los animales infectados y vacunación con vacunas basadas en virus inactivado. Existen varias desventajas relacionadas con la producción y el uso de tales vacunas, entre las que están la reintroducción de la enfermedad debida a la mani...

  16. Viruses: Bystanders of periodontal disease.

    Science.gov (United States)

    Aggarwal, Titiksha; Lamba, Arundeep Kaur; Faraz, Farrukh; Tandon, Shruti

    2017-01-01

    Bacterial etiology of periodontal disease is an established fact today. However, despite advances in the field of pharmacology with advent of newer and better antibiotics prevalence of the disease could not be abated. Moreover, unpredictable remissions and indefinite pattern in a single host force us to go back to the exact etiology of the disease. Present is a short review highlighting the role and plausible mechanisms by which viruses can affect the development of periodontal disease. This broadens our concept and will help establish a better treatment protocol for periodontal disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Evaluation of a LaSota strain-based recombinant Newcastle disease virus (NDV) expressing the glycoprotein (G) of avian metapneumovirus (aMPV) subgroup A or B as a bivalent vaccine in turkeys

    Science.gov (United States)

    To develop a bivalent vaccine candidate, a LaSota strain-based recombinant Newcastle disease virus (NDV) clone expressing the glycoprotein (G) of avian metapneumovirus (aMPV) subgroup A or B was generated using reverse genetics. Vaccination of turkeys with the NDV/aMPV-A G or NDV/aMPV-B G recombinan...

  18. Modulation of MHC antigen expression by viruses and oncogenes.

    Science.gov (United States)

    Maudsley, D J; Pound, J D

    1991-12-01

    It is becoming increasingly clear that regulation of MHC antigen expression by viruses and oncogenes, leading to either immune evasion or autoimmunity, is widespread and important in disease. At a recent meeting*, which brought together workers interested in tumour immunology, viral infection and the MHC, a number of mechanisms for the regulation of MHC antigen expression were revealed and the importance of balanced expression of MHC gene products to effective immunity was underlined.

  19. Genome-wide identification and quantification of cis- and trans-regulated genes responding to Marek’s disease virus infection via analysis of allele-specific expression

    Directory of Open Access Journals (Sweden)

    Sean eMaceachern

    2012-01-01

    Full Text Available Marek’s disease (MD is a commercially important neoplastic disease of chickens caused by Marek’s disease virus (MDV, an oncogenic alphaherpesvirus. Selecting for increased genetic resistance to MD is a control strategy that can augment vaccinal control measures. To identify high-confidence candidate MD resistance genes, we conducted a genome-wide screen for allele-specific expression (ASE amongst F1 progeny of two inbred chicken lines that differ in MD resistance. High throughput sequencing was used to profile transcriptomes from pools of uninfected and infected individuals at 4 days post-infection to identify any genes showing ASE in response to MDV infection. RNA sequencing identified 22,655 single nucleotide polymorphisms (SNPs of which 5,360 in 3,773 genes exhibited significant allelic imbalance. Illumina GoldenGate assays were subsequently used to quantify regulatory variation controlled at the gene (cis and elsewhere in the genome (trans by examining differences in expression between F1 individuals and artificial F1 RNA pools over 6 time periods in 1,536 of the most significant SNPs identified by RNA sequencing. Allelic imbalance as a result of cis-regulatory changes was confirmed in 861 of the 1,233 GoldenGate assays successfully examined. Furthermore we have identified 7 genes that display trans-regulation only in infected animals and approximately 500 SNP that show a complex interaction between cis- and trans-regulatory changes. Our results indicate ASE analyses are a powerful approach to identify regulatory variation responsible for differences in transcript abundance in genes underlying complex traits. And the genes with SNPs exhibiting ASE provide a strong foundation to further investigate the causative polymorphisms and genetic mechanisms for MD resistance. Finally, the methods used here for identifying specific genes and SNPs may have practical implications for applying marker-assisted selection to complex traits that are

  20. Bursal transcriptome profiling of different inbred chicken lines reveals key differentially expressed genes at 3 days post-infection with very virulent infectious bursal disease virus.

    Science.gov (United States)

    Farhanah, Mohd Isa; Yasmin, Abd Rahaman; Mat Isa, Nurulfiza; Hair-Bejo, Mohd; Ideris, Aini; Powers, Claire; Oladapo, Omobolanle; Nair, Venugopal; Khoo, Jia-Shiun; Ghazali, Ahmad-Kamal; Yee, Wai-Yan; Omar, Abdul Rahman

    2018-01-01

    Infectious bursal disease is a highly contagious disease in the poultry industry and causes immunosuppression in chickens. Genome-wide regulations of immune response genes of inbred chickens with different genetic backgrounds, following very virulent infectious bursal disease virus (vvIBDV) infection are poorly characterized. Therefore, this study aims to analyse the bursal tissue transcriptome of six inbred chicken lines 6, 7, 15, N, O and P following infection with vvIBDV strain UK661 using strand-specific next-generation sequencing, by highlighting important genes and pathways involved in the infected chicken during peak infection at 3 days post-infection. All infected chickens succumbed to the infection without major variations among the different lines. However, based on the viral loads and bursal lesion scoring, lines P and 6 can be considered as the most susceptible lines, while lines 15 and N were regarded as the least affected lines. Transcriptome profiling of the bursa identified 4588 genes to be differentially expressed, with 2985 upregulated and 1642 downregulated genes, in which these genes were commonly or uniquely detected in all or several infected lines. Genes that were upregulated are primarily pro-inflammatory cytokines, chemokines and IFN-related. Various genes that are associated with B-cell functions and genes related to apoptosis were downregulated, together with the genes involved in p53 signalling. In conclusion, bursal transcriptome profiles of different inbred lines showed differential expressions of pro-inflammatory cytokines and chemokines, Th1 cytokines, JAK-STAT signalling genes, MAPK signalling genes, and their related pathways following vvIBDV infection.

  1. Differential gene expression in chicken primary B cells infected ex vivo with attenuated and very virulent strains of infectious bursal disease virus (IBDV).

    Science.gov (United States)

    Dulwich, Katherine L; Giotis, Efstathios S; Gray, Alice; Nair, Venugopal; Skinner, Michael A; Broadbent, Andrew J

    2017-12-01

    Infectious bursal disease virus (IBDV) belongs to the family Birnaviridae and is economically important to the poultry industry worldwide. IBDV infects B cells in the bursa of Fabricius (BF), causing immunosuppression and morbidity in young chickens. In addition to strains that cause classical Gumboro disease, the so-called 'very virulent' (vv) strain, also in circulation, causes more severe disease and increased mortality. IBDV has traditionally been controlled through the use of live attenuated vaccines, with attenuation resulting from serial passage in non-lymphoid cells. However, the factors that contribute to the vv or attenuated phenotypes are poorly understood. In order to address this, we aimed to investigate host cell-IBDV interactions using a recently described chicken primary B-cell model, where chicken B cells are harvested from the BF and cultured ex vivo in the presence of chicken CD40L. We demonstrated that these cells could support the replication of IBDV when infected ex vivo in the laboratory. Furthermore, we evaluated the gene expression profiles of B cells infected with an attenuated strain (D78) and a very virulent strain (UK661) by microarray. We found that key genes involved in B-cell activation and signalling (TNFSF13B, CD72 and GRAP) were down-regulated following infection relative to mock, which we speculate could contribute to IBDV-mediated immunosuppression. Moreover, cells responded to infection by expressing antiviral type I IFNs and IFN-stimulated genes, but the induction was far less pronounced upon infection with UK661, which we speculate could contribute to its virulence.

  2. Persistent Foot-and-Mouth Disease Virus Infection in the Nasopharynx of Cattle; Tissue-Specific Distribution and Local Cytokine Expression.

    Directory of Open Access Journals (Sweden)

    Juan M Pacheco

    Full Text Available Tissues obtained post-mortem from cattle persistently infected with foot-and-mouth disease virus (FMDV were analyzed to characterize the tissue-specific localization of FMDV and partial transcriptome profiles for selected immunoregulatory cytokines. Analysis of 28 distinct anatomic sites from 21 steers infected with FMDV serotype A, O or SAT2, had the highest prevalence of overall viral detection in the dorsal nasopharynx (80.95% and dorsal soft palate (71.43%. FMDV was less frequently detected in laryngeal mucosal tissues, oropharyngeal mucosal sites, and lymph nodes draining the pharynx. Immunomicroscopy indicated that within persistently infected mucosal tissues, FMDV antigens were rarely detectable within few epithelial cells in regions of mucosa-associated lymphoid tissue (MALT. Transcriptome analysis of persistently infected pharyngeal tissues by qRT-PCR for 14 cytokine genes indicated a general trend of decreased mRNA levels compared to uninfected control animals. Although, statistically significant differences were not observed, greatest suppression of relative expression (RE was identified for IP-10 (RE = 0.198, IFN-β (RE = 0.269, IL-12 (RE = 0.275, and IL-2 (RE = 0.312. Increased relative expression was detected for IL-6 (RE = 2.065. Overall, this data demonstrates that during the FMDV carrier state in cattle, viral persistence is associated with epithelial cells of the nasopharynx in the upper respiratory tract and decreased levels of mRNA for several immunoregulatory cytokines in the infected tissues.

  3. Complete nucleotide sequence of a virus associated with rusty mottle disease of sweet cherry (Prunus avium).

    Science.gov (United States)

    Villamor, D V; Druffel, K L; Eastwell, K C

    2013-08-01

    Cherry rusty mottle is a disease of sweet cherries first described in 1940 in western North America. Because of the graft-transmissible nature of the disease, a viral nature of the disease was assumed. Here, the complete genomic nucleotide sequences of virus isolates from two trees expressing cherry rusty mottle disease symptoms are characterized; the virus is designated cherry rusty mottle associated virus (CRMaV). The biological and molecular characteristics of this virus in comparison to those of cherry necrotic rusty mottle virus (CNRMV) and cherry green ring mottle virus (CGRMV) are described. CRMaV was subsequently detected in additional sweet cherry trees expressing symptoms of cherry rusty mottle disease.

  4. The roles of viruses in periodontal diseases

    OpenAIRE

    C C Azodo; P Erhabor

    2015-01-01

    The roles of bacteria in the etiopathogenesis of periodontal disease are well-understand, but that of the virus found in the periodontal environment are poorly understood. The aim of this literature review was to report the roles of viruses in periodontal diseases. The roles of viruses in periodontal diseases were categorized into the role in disease etiology, role in the pathogenesis of periodontal diseases, role in diseases progression and role in response to treatment. Clearer understandin...

  5. The roles of viruses in periodontal diseases

    Directory of Open Access Journals (Sweden)

    C C Azodo

    2015-01-01

    Full Text Available The roles of bacteria in the etiopathogenesis of periodontal disease are well-understand, but that of the virus found in the periodontal environment are poorly understood. The aim of this literature review was to report the roles of viruses in periodontal diseases. The roles of viruses in periodontal diseases were categorized into the role in disease etiology, role in the pathogenesis of periodontal diseases, role in diseases progression and role in response to treatment. Clearer understanding of roles of viruses in periodontal diseases will facilitate the provision of effective periodontal disease prevention and treatment.

  6. Viruses: agents of coral disease?

    Science.gov (United States)

    Davy, S K; Burchett, S G; Dale, A L; Davies, P; Davy, J E; Muncke, C; Hoegh-Guldberg, O; Wilson, W H

    2006-03-23

    The potential role of viruses in coral disease has only recently begun to receive attention. Here we describe our attempts to determine whether viruses are present in thermally stressed corals Pavona danai, Acropora formosa and Stylophora pistillata and zoanthids Zoanthus sp., and their zooxanthellae. Heat-shocked P. danai, A. formosa and Zoanthus sp. all produced numerous virus-like particles (VLPs) that were evident in the animal tissue, zooxanthellae and the surrounding seawater; VLPs were also seen around heat-shocked freshly isolated zooxanthellae (FIZ) from P. danai and S. pistillata. The most commonly seen VLPs were tail-less, hexagonal and about 40 to 50 nm in diameter, though a diverse range of other VLP morphotypes (e.g. rounded, rod-shaped, droplet-shaped, filamentous) were also present around corals. When VLPs around heat-shocked FIZ from S. pistillata were added to non-stressed FIZ from this coral, they resulted in cell lysis, suggesting that an infectious agent was present; however, analysis with transmission electron microscopy provided no clear evidence of viral infection. The release of diverse VLPs was again apparent when flow cytometry was used to enumerate release by heat-stressed A. formosa nubbins. Our data support the infection of reef corals by viruses, though we cannot yet determine the precise origin (i.e. coral, zooxanthellae and/or surface microbes) of the VLPs seen. Furthermore, genome sequence data are required to establish the presence of viruses unequivocally.

  7. Measles Virus Nucleocapsid (MJVNP) Gene Expression and RANK Receptor Signaling in Osteoclast Precursors. Osteoclast Inhibitors Peptide Therapy for Pagets Disease

    Science.gov (United States)

    2005-10-31

    appeared in the IFN-γ receptor (-/-) mice than in wild type mice. IFN-γ failed to suppress osteoclastogenesis in bone marrow cell cultures derived...bone disease after osteoporosis and affects approximately 2-3 million people in the United States. We shown that bone marrow cells from patients...development in Paget’s disease. OIP-1 blocks these signaling events and inhibits MVNP induced osteoclastogenesis and elevated bone resorption activity in

  8. Aujeszky's disease virus production in disposable bioreactor

    Indian Academy of Sciences (India)

    Aujeszky's disease virus, baby hamster kidney cells, cell culture, disposable bioreactor, virus titre. Abstract. A novel, disposable-bag bioreactor system that uses wave action for mixing and transferring oxygen was evaluated for BHK 21 C13 cell line growth and Aujeszky's disease virus (ADV) production. Growth kinetics of ...

  9. Expression of porcine fusion protein IRF7/3(5D) efficiently controls foot-and-mouth disease virus replication

    Science.gov (United States)

    Several studies have demonstrated that administration of type I, II, or III interferons (IFN) delivered using a replication defective human adenovirus 5 (Ad5) vector is effective to control Foot-and-Mouth Disease (FMD) in cattle and swine during experimental infections. However, high doses are requi...

  10. Engineered newcastle disease virus expressing the F and G protein of AMPV-C confers protection against challenges in turkeys.

    Science.gov (United States)

    Avian metapneumovirus (aMPV) infects the respiratory and reproductive tracts of domestic poultry, which may develop into secondary infections that can result in substantial economic losses for producers. Live attenuated vaccines appear to be the most effective in countries where the disease is prev...

  11. Vaccination of mice with plasmids expressing processed capsid protein of foot-and-mouth disease virus - Importance of dominant and subdominant epitopes for antigenicity and protection

    DEFF Research Database (Denmark)

    Frimann, Tine; Barfoed, Annette Malene; Aasted, Bent

    2007-01-01

    The capsid of foot-and-mouth disease virus (FMDV) displays several independent B cell epitopes, which stimulate the production of neutralising antibodies. Some of these epitopes are highly variable between virus strains, but dominate the immune response. The site A on VP1 is the most prominent ex...... as compared to mice vaccinated with wild type epitopes. Most of the modifications did not adversely affect the ability of the plasmids to induce complete protection of mice against homologous challenge....... example of a dominant and variable site. This variability is a problem when designing vaccines against this disease, because it necessitates a close match between vaccine strain and virus in an outbreak. We have introduced a series of mutations into viral capsid proteins with the aim of selectively...

  12. Ebola virus disease: radiology preparedness.

    Science.gov (United States)

    Bluemke, David A; Meltzer, Carolyn C

    2015-02-01

    At present, there is a major emphasis on Ebola virus disease (EVD) preparedness training at medical facilities throughout the United States. Failure to have proper EVD procedures in place was cited as a major reason for infection of medical personnel in the United States. Medical imaging does not provide diagnosis of EVD, but patient assessment in the emergency department and treatment isolation care unit is likely to require imaging services. The purpose of this article is to present an overview of relevant aspects of EVD disease and preparedness relevant to the radiologic community. © RSNA, 2014.

  13. Identification of Protective Brucella Antigens and their Expressions in Vaccinia Virus to Prevent Disease in Animals and Humans.

    Science.gov (United States)

    1996-05-01

    selected antigens is through fractionation of Brucella strain RB51 or E.coli recombinants expressing the appropriateBrucella antigen. Briefly, the method...animal species infected with Brucella spp. It is also able to induce the in vitro production of INF-y with lymphocytes of RB51 vaccinated mice (Table...SOD RB51 1IkDa 20 15 x0 0- 10 E 0- Uve Acetone Buffer Void 0-0.1 0.1-0-25 0.25->0.5 0.5-0.75 0.75->1.0 Klled 14 Preparation of new vaccinia/ Brucella

  14. Protective Efficacy of Newcastle Disease Virus Expressing Soluble Trimeric Hemagglutinin against Highly Pathogenic H5N1 Influenza in Chickens and Mice

    NARCIS (Netherlands)

    Cornelissen, A.H.M.; Leeuw, de O.S.; Tacken, M.G.J.; Klos, H.C.; Vries, de R.P.; Boer-Luijtze, de E.A.; Zoelen-Bos, van D.J.; Rigter, A.; Rottier, P.J.M.; Moormann, R.J.M.; Haan, de C.A.M.

    2012-01-01

    Background: Highly pathogenic avian influenza virus (HPAIV) causes a highly contagious often fatal disease in poultry, resulting in significant economic losses in the poultry industry. HPAIV H5N1 also poses a major public health threat as it can be transmitted directly from infected poultry to

  15. Modulation of Cytokine mRNA Expression in Pharyngeal Epithelial Samples obtained from Cattle Infected with Foot-and-Mouth Disease Virus

    DEFF Research Database (Denmark)

    Stenfeldt, Anna Carolina; Heegaard, Peter M. H.; Stockmarr, Anders

    2012-01-01

    A novel technique of endoscopical collection of small tissue samples was used to obtain sequential tissue samples from the dorsal soft palate (DSP) of individual cattle infected with foot-and-mouth disease virus (FMDV) at different phases of the infection. Levels of mRNA encoding interferon (IFN...

  16. Control of virus diseases in maize.

    Science.gov (United States)

    Redinbaugh, Margaret G; Zambrano, José L

    2014-01-01

    Diseases caused by viruses are found throughout the maize-growing regions of the world and can cause significant losses for producers. In this review, virus diseases of maize and the pathogens that cause them are discussed. Factors leading to the spread of disease and measures for disease control are reviewed, as is our current knowledge of the genetics of virus resistance in this important crop.

  17. A recombinant rabies virus expressing luciferase.

    Science.gov (United States)

    Liang, H; Tan, Y; Dun, C; Guo, X

    2010-01-01

    A recombinant Rabies virus (RV) expressing firefly luciferase (rRV-luc) was generated by an improved reverse genetics system. Its biological properties were compared with those of the parental RV. The rRV-luc grew in BHK-21 cells similarly to RV, but its virulence for mice was weaker as shown by the lower infectious titers in brain. Rising infectious titers of rRV-luc during its passaging in BHK-21 cells indicated a virus adaptation, while the luciferase (luc) expression was stable. These results suggest that the recombinant RV carrying luc gene might prove a useful tool for further analysis of pathogenesis of RV in small animal models.

  18. Construction, expression and immunoassay detection of recombinant plasmid encoding fusion protein of Roman chicken complement C3d and Newcastle disease virus F gene.

    Science.gov (United States)

    Liu, D; Niu, Z-X

    2008-12-01

    The terminal degradation product (C3d) of mammalian complement component C3 plays an important role in modulation of the adaptive immune response through the interaction with complement receptor type 2 (CR2) on B cells. In this study, the gene fragment coding for the complement protein C3d (chC3d) from Roman chicken was cloned and expressed as a fusion protein for its application in the vaccine study of chicken, and for in vitro experiments. The chC3d fragment strengthened B-cell responses when complexed with antigen. Three potential vaccine construct units were engineered to contain two, four and six copies of chC3d coding gene linked to the F gene of Newcastle disease virus (NDV), an economically important pathogen of chicken that is classified as a list A contagious disease of poultry by the Office International des Epizooties. The cloned chC3d protein and different repeats of C3d proteins in addition to the F gene of NDV were generated separately in Escherichia coli and chicken embryo fibroblast cells with the help of expression vectors. All recombinant proteins were analysed by SDS-PAGE and Western blotting. Analysis of the immunogenicity of different repeats of C3d revealed that chC3d had an enhancing effect on the immunogenicity of antigens, and that six or more repeats of C3d may be necessary for efficient enhancement of antigen-specific immune responses. To date, published research into the adjuvant activities of C3d has been limited to experiments in mice, rabbits and cattle. The adjuvant properties of C3d have not been assessed in poultry using homologous C3d in association with antigens relevant to the target species. The Roman chicken C3d fusion proteins described in this study is the first report and will provide a basis for immunization trials in chicken, studies of receptor binding and cell activation of chicken lymphocytes, and investigations of new types of vaccines, including recombinant vaccines and DNA vaccines for future use against other

  19. Anti-Tumor Effects of an Oncolytic Adenovirus Expressing Hemagglutinin-Neuraminidase of Newcastle Disease Virus in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Dongyun He

    2014-02-01

    Full Text Available Oncolytic virotherapy has been an attractive drug platform for targeted therapy of cancer over the past few years. Viral vectors can be used to target and lyse cancer cells, but achieving good efficacy and specificity with this treatment approach is a major challenge. Here, we assessed the ability of a novel dual-specific anti-tumor oncolytic adenovirus, expressing the hemagglutinin-neuraminidase (HN gene from the Newcastle disease virus under the human telomerase reverse transcriptase (hTERT promoter (Ad-hTERTp-E1a-HN, to inhibit esophageal cancer EC-109 cells in culture and to reduce tumor burden in xenografted BALB/c nude mice. In vitro, infection with Ad-hTERT-E1a-HN could inhibit the growth of EC-109 cells significantly and also protect normal human liver cell line L02 from growth suppression in 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assays. Ad-hTERT-E1a-HN also effectively and selectively decreased the sialic acid level on EC-109 cells, but not on L02 cells. Furthermore, Ad-hTERT-E1a-HN was shown to induce the apoptosis pathway via acridine orange and ethidium bromide staining (AO/EB staining, increase reactive oxygen species (ROS, reduce mitochondrial membrane potential and release cytochrome c. In vivo, xenografted BALB/c nude mice were treated via intratumoral or intravenous injections of Ad-hTERT-E1a-HN. Although both treatments showed an obvious suppression in tumor volume, only Ad-hTERT-E1a-HN delivered via intratumoral injection elicited a complete response to treatment. These results reinforced previous findings and highlighted the potential therapeutic application of Ad-hTERT-E1a-HN for treatment of esophageal cancer in clinical trials.

  20. NNDSS - Table II. West Nile virus disease

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. West Nile virus disease - 2017. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding year),...

  1. NNDSS - Table II. West Nile virus disease

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. West Nile virus disease - 2016. In this Table, provisional* cases of selected† notifiable diseases (≥1,000 cases reported during the preceding...

  2. NNDSS - Table II. West Nile virus disease

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. West Nile virus disease - 2015.In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding year),...

  3. NNDSS - Table II. West Nile virus disease

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. West Nile virus disease - 2017. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding...

  4. Recombinant rabies virus expressing the H protein of canine distemper virus protects dogs from the lethal distemper challenge.

    Science.gov (United States)

    Wang, Feng-Xue; Zhang, Shu-Qin; Zhu, Hong-Wei; Yang, Yong; Sun, Na; Tan, Bin; Li, Zhen-Guang; Cheng, Shi-Peng; Fu, Zhen F; Wen, Yong-Jun

    2014-12-05

    The rabies virus (RV) vector LBNSE expressing foreign antigens have shown considerable promise as vaccines against viral and bacteria diseases, which is effective and safe. We produced a new RV-based vaccine vehicle expressing 1.824 kb hemagglutinin (H) gene of the canine distemper virus (CDV) by reverse genetics technology. The recombinant virus LBNSE-CDV-H retained growth properties similar to those of vector LBNSE both in BSR and mNA cell culture. The H gene of CDV was expressed and detected by immunostaining. To compare the immunogenicity of LBNSE-CDV-H, dogs were immunized with each of these recombinant viruses by intramuscular (i.m.). The dogs were bled at third weeks after the immunization for the measurement of virus neutralizing antibody (VNA) and then challenged with virulent virus (ZJ 7) at fourth weeks. The parent virus (LBNSE) without expression of any foreign molecules was included for comparison. Dogs inoculated with LBNSE-CDV-H showed no any signs of disease and exhibited seroconversion against both RV and CDV H protein. The LBNSE-CDV-H did not cause disease in dogs and conferred protection from challenge with a lethal wild type CDV strain, demonstrating its potential value for wildlife conservation efforts. Together, these studies suggest that recombinant RV expressing H protein from CDV stimulated high levels of adaptive immune responses (VNA), and protected all dogs challenge infection. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. TLR2 Expression in Peripheral CD4+ T Cells Promotes Th17 Response and Is Associated with Disease Aggravation of Hepatitis B Virus-Related Acute-On-Chronic Liver Failure

    Directory of Open Access Journals (Sweden)

    Chunli Xu

    2017-11-01

    Full Text Available Th17 responses have been shown to play crucial roles in the pathogenesis of hepatitis B virus (HBV-associated acute-on-chronic liver failure (ACLF. The mechanism underlying the enhanced Th17 responses in these patients remains largely unclear. Here we investigated toll-like receptors (TLRs expression in peripheral T cells and their roles in Th17 cell differentiation and disease aggravation in ACLF patients. 18 healthy subjects (HS, 20 chronic HBV-infected (CHB patients, and 26 ACLF patients were enrolled and examined for TLRs expression in peripheral blood mononuclear cells (PBMCs. The correlations of T cell TLR2 expression with the antigen non-specific Th17 responses and disease aggravation, as well as the Th17 response to TLR2 ligand stimulation were evaluated in ACLF patients. Compared to HS and CHB patients, ACLF patients showed a distinct TLRs expression pattern in PBMCs. Significantly increased TLR2 expression in T cells was observed in ACLF patients. The TLR2 expression in CD4+ T cells was correlated with the Th17 responses and the clinical markers for disease aggravation in ACLF patients. Moreover, TLR2 ligands stimulation promoted Th17 cell differentiation and response in PBMCs of ACLF patients. These findings implicate that TLR2 signaling plays critical roles in Th17 cell differentiation and disease aggravation of HBV-related ACLF.

  6. The peptide motif of the single dominantly expressed class I molecule of the chicken MHC can explain the response to a molecular defined vaccine of infectious bursal disease virus (IBDV).

    Science.gov (United States)

    Butter, Colin; Staines, Karen; van Hateren, Andrew; Davison, T Fred; Kaufman, Jim

    2013-08-01

    In contrast to typical mammals, the chicken MHC (the BF-BL region of the B locus) has strong genetic associations with resistance and susceptibility to infectious pathogens as well as responses to vaccines. We have shown that the chicken MHC encodes a single dominantly expressed class I molecule whose peptide-binding motifs can determine resistance to viral pathogens, such as Rous sarcoma virus and Marek's disease virus. In this report, we examine the response to a molecular defined vaccine, fp-IBD1, which consists of a fowlpox virus vector carrying the VP2 gene of infectious bursal disease virus (IBDV) fused with β-galactosidase. We vaccinated parental lines and two backcross families with fp-IBD1, challenged with the virulent IBDV strain F52/70, and measured damage to the bursa. We found that the MHC haplotype B15 from line 15I confers no protection, whereas B2 from line 61 and B12 from line C determine protection, although another locus from line 61 was also important. Using our peptide motifs, we found that many more peptides from VP2 were predicted to bind to the dominantly expressed class I molecule BF2*1201 than BF2*1501. Moreover, most of the peptides predicted to bind BF2*1201 did in fact bind, while none bound BF2*1501. Using peptide vaccination, we identified one B12 peptide that conferred protection to challenge, as assessed by bursal damage and viremia. Thus, we show the strong genetic association of the chicken MHC to a T cell vaccine can be explained by peptide presentation by the single dominantly expressed class I molecule.

  7. Control of virus diseases in soybeans.

    Science.gov (United States)

    Hill, John H; Whitham, Steven A

    2014-01-01

    Soybean, one of the world's most important sources of animal feed and vegetable oil, can be infected by numerous viruses. However, only a small number of the viruses that can potentially infect soybean are considered as major economic problems to soybean production. Therefore, we consider management options available to control diseases caused by eight viruses that cause, or have the potential to cause, significant economic loss to producers. We summarize management tactics in use and suggest direction for the future. Clearly, the most important tactic is disease resistance. Several resistance genes are available for three of the eight viruses discussed. Other options include use of virus-free seed and avoidance of alternative virus hosts when planting. Attempts at arthropod vector control have generally not provided consistent disease management. In the future, disease management will be considerably enhanced by knowledge of the interaction between soybean and viral proteins. Identification of genes required for soybean defense may represent key regulatory hubs that will enhance or broaden the spectrum of basal resistance to viruses. It may be possible to create new recessive or dominant negative alleles of host proteins that do not support viral functions but perform normal cellular function. The future approach to virus control based on gene editing or exploiting allelic diversity points to necessary research into soybean-virus interactions. This will help to generate the knowledge needed for rational design of durable resistance that will maximize global production.

  8. An Acute Hemorrhagic Infectious Disease: Ebola Virus Disease

    Directory of Open Access Journals (Sweden)

    JIAO Lei

    2014-09-01

    Full Text Available Ebola virus disease (EVD is an acute hemorrhagic infectious disease caused by ebola virus, with high infectivity and fatality rate. At present, it mainly occurs in areas of Central Africa and West Africa and no effective vaccine and antiviral drugs are available for the clinical treatment.

  9. Border Disease Virus among Chamois, Spain

    Science.gov (United States)

    Rosell, Rosa; Cabezón, Oscar; Mentaberre, Gregorio; Casas, Encarna; Velarde, Roser; Lavín, Santiago

    2009-01-01

    Approximately 3,000 Pyrenean chamois (Rupicapra pyrenaica pyrenaica) died in northeastern Spain during 2005–2007. Border disease virus infection was identified by reverse transcription–PCR and sequencing analysis. These results implicate this virus as the primary cause of death, similar to findings in the previous epizootic in 2001. PMID:19239761

  10. Does this patient have Ebola virus disease?

    OpenAIRE

    Tattevin , Pierre; Durante-Mangoni , Emanuele; Massaquoi , Moses

    2014-01-01

    International audience; (beginning of the introduction) Ebola virus is one of the most virulent human pathogens. Since 1976, Ebola virus disease (EVD) has caused more than 20 outbreaks in Africa, with case fatality rates of 30%-90%, in the absence of any approved treatment or vaccination [1].

  11. Differentiation of foot-and-mouth disease virus infected animals from vaccinated animals using a blocking ELISA based on baculovirus expressed FMDV 3ABC antigen and a 3ABC monoclonal antibody

    DEFF Research Database (Denmark)

    Sørensen, K.J.; de Stricker, K.; Dyrting, K.C.

    2005-01-01

    A blocking ELISA that differentiated foot-and-mouth disease virus (FMDV) infected animals from vaccinated animals was developed which uses baculovirus expressed FMDV 3ABC non-structural protein as antigen and monoclonal antibody against FMDV 3ABC non-structural protein as capture and detector...... and sheep collected after experimental or natural infection. The blocking ELISA based on recombinant FMDV 3ABC antigen and a monoclonal antibody to 3ABC is a promising tool for FMD control and eradication campaigns, where vaccination has been carried out....

  12. Virus Pathogenity of Newcastle Disease in Chicken

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2011-06-01

    Full Text Available Newcastle disease (ND is one of the highly infectious diseases in poultry industry. Newcastle disease causes high morbidity and mortality in birds, then it causes significant loss for poultry industry. This disease is caused by Avian paramyxovirus-1, included in the genus of Avulavirus and family of Paramyxoviridae. This virus has six prior proteins and two non structural proteins that evolving its genom. Those proteins are Nucleocapsid protein (N, Phosphoprotein (P, Matrix protein (M, Fusion protein (F, Hemagglutinin-neuraminidase protein (HN and Large polymerase protein (L and two non structural proteins iVe and W protein which are produced during the transcriptation process of P gen on editing process. Each of the protein has a specific role that responsible for the virulence of the virus. The previous result showed that HN and F proteins have significant contribution in the virulence and spreading of ND virus in the hosts. Virulence of ND virus primarily is determined by the cleavage site of F protein, but the recent research showed that the cleavage site motiv of F0 protein is not the only factor to determine the virulence of ND virus. Besides F protein, other proteins also contribute patern to the virulence of ND virus. ND virus can infect more than 200 species of birds, but the severity level of the disease varies depending on the host and strain of ND virus. Chicken has the highest pathogenicity index compared to other birds. Generally, the immunity system in chicken against infection of ND virus is similar to the immunity system of other birds. Cell mediated and humoral immunity responses play an important role in overcome ND virus.

  13. Recombinant Hendra viruses expressing a reporter gene retain pathogenicity in ferrets.

    Science.gov (United States)

    Marsh, Glenn A; Virtue, Elena R; Smith, Ina; Todd, Shawn; Arkinstall, Rachel; Frazer, Leah; Monaghan, Paul; Smith, Greg A; Broder, Christopher C; Middleton, Deborah; Wang, Lin-Fa

    2013-03-25

    Hendra virus (HeV) is an Australian bat-borne zoonotic paramyxovirus that repeatedly spills-over to horses causing fatal disease. Human cases have all been associated with close contact with infected horses. A full-length antigenome clone of HeV was assembled, a reporter gene (GFP or luciferase) inserted between the P and M genes and transfected to 293T cells to generate infectious reporter gene-encoding recombinant viruses. These viruses were then assessed in vitro for expression of the reporter genes. The GFP expressing recombinant HeV was used to challenge ferrets to assess the virulence and tissue distribution by monitoring GFP expression in infected cells. Three recombinant HeV constructs were successfully cloned and rescued; a wild-type virus, a GFP-expressing virus and a firefly luciferase-expressing virus. In vitro characterisation demonstrated expression of the reporter genes, with levels proportional to the initial inoculum levels. Challenge of ferrets with the GFP virus demonstrated maintenance of the fatal phenotype with disease progressing to death consistent with that observed previously with the parental wild-type isolate of HeV. GFP expression could be observed in infected tissues collected from animals at euthanasia. Here, we report on the first successful rescue of recombinant HeV, including wild-type virus and viruses expressing two different reporter genes encoded as an additional gene cassette inserted between the P and M genes. We further demonstrate that the GFP virus retained the ability to cause fatal disease in a well-characterized ferret model of henipavirus infection despite the genome being an extra 1290 nucleotides in length.

  14. Recombinant viruses as vaccines against viral diseases

    Directory of Open Access Journals (Sweden)

    A.P.D. Souza

    2005-04-01

    Full Text Available Vaccine approaches to infectious diseases are widely applied and appreciated. Amongst them, vectors based on recombinant viruses have shown great promise and play an important role in the development of new vaccines. Many viruses have been investigated for their ability to express proteins from foreign pathogens and induce specific immunological responses against these antigens in vivo. Generally, gene-based vaccines can stimulate potent humoral and cellular immune responses and viral vectors might be an effective strategy for both the delivery of antigen-encoding genes and the facilitation and enhancement of antigen presentation. In order to be utilized as a vaccine carrier, the ideal viral vector should be safe and enable efficient presentation of required pathogen-specific antigens to the immune system. It should also exhibit low intrinsic immunogenicity to allow for its re-administration in order to boost relevant specific immune responses. Furthermore, the vector system must meet criteria that enable its production on a large-scale basis. Several viral vaccine vectors have thus emerged to date, all of them having relative advantages and limits depending on the proposed application, and thus far none of them have proven to be ideal vaccine carriers. In this review we describe the potential, as well as some of the foreseeable obstacles associated with viral vaccine vectors and their use in preventive medicine.

  15. Monitoring the Efficacy of Oncolytic Viruses via Gene Expression

    Directory of Open Access Journals (Sweden)

    Ashley Ansel

    2017-11-01

    Full Text Available With the recent success of oncolytic viruses in clinical trials, efforts toward improved monitoring of the viruses and their mechanism have intensified. Four main gene expression strategies have been employed to date including: analyzing overall gene expression in tumor cells, looking at gene expression of a few specific genes in the tumor cells, focusing on gene expression of specific transgenes introduced into the virus, and following gene expression of certain viral genes. Each strategy presents certain advantages and disadvantages over the others. Various methods to organize the dysregulated genes into clusters have provided a window into the mechanism of action for these viruses. Methodologically, the combined approach of looking at both overall gene expression, the tumor cells and gene expression of viral genes, enables researchers to assess correlation between the introduction of the virus and the changes in the tumor. This would seem to be the most productive approach for future studies, providing much information on mechanism and timing.

  16. Control of sweet potato virus diseases.

    Science.gov (United States)

    Loebenstein, Gad

    2015-01-01

    Sweet potato (Ipomoea batatas) is ranked seventh in global food crop production and is the third most important root crop after potato and cassava. Sweet potatoes are vegetative propagated from vines, root slips (sprouts), or tubers. Therefore, virus diseases can be a major constrain, reducing yields markedly, often more than 50%. The main viruses worldwide are Sweet potato feathery mottle virus (SPFMV) and Sweet potato chlorotic stunt virus (SPCSV). Effects on yields by SPFMV or SPCSV alone are minor, or but in complex infection by the two or other viruses yield losses of 50%. The orthodox way of controlling viruses in vegetative propagated crops is by supplying the growers with virus-tested planting material. High-yielding plants are tested for freedom of viruses by PCR, serology, and grafting to sweet potato virus indicator plants. After this, meristem tips are taken from those plants that reacted negative. The meristems were grown into plants which were kept under insect-proof conditions and away from other sweet potato material for distribution to farmers after another cycle of reproduction. © 2015 Elsevier Inc. All rights reserved.

  17. Impact of viruses on airway diseases

    Directory of Open Access Journals (Sweden)

    S. L. Johnston

    2005-12-01

    Full Text Available There is strong epidemiological evidence that respiratory viral infections are associated with 80–85% of asthma exacerbations in children. There is less evidence in adults, but the available data suggest viruses are associated with around two-thirds to three-quarters of exacerbations in adults. These associations include severe exacerbations requiring hospitalisation. The most common viruses detected in these studies were rhinoviruses, accounting for two-thirds of viruses detected. Asthmatics have increased susceptibility to respiratory virus infection and have recently been shown to have profoundly defective interferon-beta responses to virus infection, resulting in increased virus replication. Atypical bacterial infections are also associated with chronic asthma and asthma exacerbations and a recent study indicates antibiotic therapy active against atypical bacteria is effective in treatment of exacerbations. Recent data also indicates asthmatics are at increased risk of invasive pneumococcal disease, suggesting they may also have impaired antibacterial immunity. Research is urgently required to determine whether augmenting anti-infective immunity is beneficial in the treatment/prevention of asthma exacerbations. More recent data also implicates viruses in the majority of exacerbations of chronic obstructive pulmonary disease. Studies are also required investigating anti-infective host defence in chronic obstructive pulmonary disease.

  18. RNAi combining Sleeping Beauty transposon system inhibits ex vivo expression of foot-and-mouth disease virus VP1 in transgenic sheep cells.

    Science.gov (United States)

    Deng, Shoulong; Li, Guangdong; Yu, Kun; Tian, Xiuzhi; Wang, Feng; Li, Wenting; Jiang, Wuqi; Ji, Pengyun; Han, Hongbing; Fu, Juncai; Zhang, Xiaosheng; Zhang, Jinlong; Liu, Yixun; Lian, Zhengxing; Liu, Guoshi

    2017-08-30

    Foot and mouth disease, which is induced by the foot and mouth disease virus (FMDV), takes its toll on the cloven-hoofed domestic animals. The VP1 gene in FMDV genome encodes the viral capsid, a vital element for FMDV replication. Sleeping Beauty (SB) is an active DNA-transposon system responsible for genetic transformation and insertional mutagenesis in vertebrates. In this study, a conserved VP1-shRNA which specifically targets the ovine FMDV-VP1 gene was constructed and combined with SB transposase and transposon. Then, they were microinjected into pronuclear embryos to breed transgenic sheep. Ninety-two lambs were born and the VP1-shRNA was positively integrated into eight of them. The rate of transgenic sheep production in SB transposon system was significantly higher than that in controls (13.04% vs. 3.57% and 7.14%, P sheep were successfully generated by the current new method. The ear fibroblasts from these transgenic sheep possess a great resistance to FMDV. The result indicated that RNAi technology combining the "Sleeping Beauty" transposon system is an efficient method to produce transgenic animals.

  19. 9 CFR 113.212 - Bursal Disease Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Bursal Disease Vaccine, Killed Virus..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.212 Bursal Disease Vaccine, Killed Virus. Bursal Disease Vaccine...

  20. DENGUE VIRUS VIRULENCE AND DISEASES SEVERITY.

    Science.gov (United States)

    Prommalikit, Olarn; Thisyakorn, Usa

    2015-01-01

    The dengue virus is the causative agent of a wide spectrum of clinical manifestations, ranging from mild acute febrile illness to classical dengue fever, dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS). DHF and DSS are the potentially fatal forms of dengue virus infection, which has become an intractable public health problem in many countries. The pathogeneses of DHF/ DSS are not clearly understood. One hypothesis concerning virus virulence and the immune enhancement hypothesis has been debated. Although dengue disease severity has been associated with evidence of genetic differences in dengue strains, virus virulence has been difficult to measure because of the lack of in vivo and in vitro models of the disease.

  1. Invasive pneumococcal and meningococcal disease : association with influenza virus and respiratory syncytial virus activity?

    NARCIS (Netherlands)

    Jansen, A G S C; Sanders, E A M; VAN DER Ende, A; VAN Loon, A M; Hoes, A W; Hak, E

    2008-01-01

    Few studies have examined the relationship between viral activity and bacterial invasive disease, considering both influenza virus and respiratory syncytial virus (RSV). This study aimed to assess the potential relationship between invasive pneumococcal disease (IPD), meningococcal disease (MD), and

  2. Foot-and-mouth disease virus L peptidase

    Science.gov (United States)

    Foot-and-mouth disease virus (FMDV), equine rhinitis A virus (ERAV) and bovine rhinitis B virus (BRBV) comprise the genus Aphthovirus of the Picornaviridae family. Seven genera within this family, Aphthoviruses, Cardioviruses, Erboviruses (ERBV), Kobuviruses, Senecaviruses, Sapeloviruses, and Tescho...

  3. Protection against Foot-and-Mouth Disease Virus in Guinea Pigs via Oral Administration of Recombinant Lactobacillus plantarum Expressing VP1.

    Directory of Open Access Journals (Sweden)

    Miao Wang

    Full Text Available Mucosal vaccination is an effective strategy for generating antigen-specific immune responses against mucosal infections of foot-and-mouth disease virus (FMDV. In this study, Lactobacillus plantarum strains NC8 and WCFS1 were used as oral delivery vehicles containing a pSIP411-VP1 recombinant plasmid to initiate mucosal and systemic immune responses in guinea pigs. Guinea pigs were orally vaccinated (three doses with NC8-pSIP411, NC8-pSIP411-VP1, WCFS1-pSIP411, WCFS1-pSIP411-VP1 or milk. Animals immunized with NC8-pSIP411-VP1 and WCFS1-pSIP411-VP1 developed high levels of antigen-specific serum IgG, IgA, IgM, mucosal secretory IgA (sIgA and neutralizing antibodies, and revealed stronger cell-mediated immune responses and enhanced protection against FMDV challenge compared with control groups. The recombinant pSIP411-VP1 effectively improved immunoprotection against FMDV in guinea pigs.

  4. Ebola virus disease: past, present and future

    Directory of Open Access Journals (Sweden)

    Harish Rajak

    2015-05-01

    Full Text Available Ebola virus disease is one of the most deadly ailments known to mankind due to its high mortality rate (up to 90% accompanying with the disease. Ebola haemorrhagic fever (EHF is an infectious disease of animal that can be transmitted to both human and non-human primates. The first epidemic of EHF occurred in 1976 in the Democratic Republic of the Congo. The incubation period of ebola is less than 21 days. Ebola virus infections are depicted by immune suppression and a systemic inflammatory response that leads to damage of the vascular, coagulation and immune systems, causing multi-organ failure and shock. Five genetically distinct members of the Filoviridae family responsible for EHF are as follows: Zaire ebolavirus, Sudan ebolavirus, Côte d’Ivoire ebolavirus, Bundibugyo ebolavirus and Reston ebolavirus. The ongoing 2014 West Africa ebola epidemic has been considered as the most serious panic in the medical field with respect to both the number of human cases and death toll. The natural host for ebola virus is unknown, thus it is not possible to carry out programs to regulate or abolish virus from transmission to people. The ebola virus infection provides little chance to develop acquired immunity causing rapid progression of the disease. It is pertinent to mention that at present, there is no antiviral therapy or vaccine that is helpful against ebola virus infection in humans. The impediment of EHF necessitates much better understanding of the epidemiology of the disease, particularly the role of wildlife, as well as bats, in the spread of ebola virus to humans.

  5. A Pregnant Patient With Ebola Virus Disease.

    Science.gov (United States)

    Oduyebo, Titilope; Pineda, Denis; Lamin, Manjo; Leung, Anders; Corbett, Cindi; Jamieson, Denise J

    2015-12-01

    Limited data suggest Ebola virus disease during pregnancy is associated with high maternal and fetal mortality. A 34-year-old woman, gravida 4 para 3, at 36 weeks of gestation was admitted to an Ebola treatment unit in Sierra Leone with Ebola virus disease confirmed by laboratory testing of maternal blood for Ebola RNA. She complained of headache, cough, and arthralgia for 7 days but was afebrile. Eleven days later, intrauterine fetal death was diagnosed; the following day, maternal blood was negative for Ebola viral RNA. Labor was induced and resulted in the vaginal delivery of a stillborn fetus. The mother recovered. Her vaginal secretions (on the day of induction), a placenta fragment, umbilical cord, and neonatal buccal swabs were positive for Ebola RNA. No exposed health care workers were infected. This case illustrates that pregnant women can survive infection with Ebola virus disease and be cared for and delivered without infection of their health care workers.

  6. Vaccinia virus as an expression vector.

    Science.gov (United States)

    Talavera, A; Rodriguez, J M

    1992-01-01

    Vaccinia virus (Vv) is a member of the genus Orthopoxvirus, one of seven genera included in the family Poxviridae. Most of these viruses infect vertebrates (Orthopoxvirus, Avipoxvirus, Capripoxvirus, Leporipoxvirus, Suipoxvirus, and Parapoxvirus), but one genus, Entomopoxvirus, infects insects. It is interesting to note that the Fibroma and Mixoma viruses of the leporipoxvirus genus cause tumors in their hosts (rabbits), these being the only tumorigenic viruses in the family (1,2).

  7. Coinfecting viruses as determinants of HIV disease.

    Science.gov (United States)

    Lisco, Andrea; Vanpouille, Christophe; Margolis, Leonid

    2009-02-01

    The human body constitutes a balanced ecosystem of its own cells together with various microbes ("host-microbe ecosystem"). The transmission of HIV-1 and the progression of HIV disease in such an ecosystem are accompanied by de novo infection by other microbes or by activation of microbes that were present in the host in homeostatic equilibrium before HIV-1 infection. In recent years, data have accumulated on the interactions of these coinfecting microbes-viruses in particular-with HIV. Coinfecting viruses generate negative and positive signals that suppress or upregulate HIV-1. We suggest that the signals generated by these viruses may largely affect HIV transmission, pathogenesis, and evolution. The study of the mechanisms of HIV interaction with coinfecting viruses may indicate strategies to suppress positive signals, enhance negative signals, and lead to the development of new and original anti-HIV therapies.

  8. 9 CFR 113.205 - Newcastle Disease Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... Virus. 113.205 Section 113.205 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.205 Newcastle Disease Vaccine, Killed Virus. Newcastle Disease Vaccine...

  9. Foliar extracts from transgenic tomato plants expressing the structural polyprotein, P1-2A, and protease, 3C, from foot-and-mouth disease virus elicit a protective response in guinea pigs.

    Science.gov (United States)

    Pan, Li; Zhang, Yongguang; Wang, Yonglu; Wang, Baoqin; Wang, Wenxiu; Fang, Yuzhen; Jiang, Shoutian; Lv, Jianliang; Wang, Wei; Sun, Yuan; Xie, Qingge

    2008-01-15

    The expression of recombinant antigens in transgenic plants is increasingly used as an alternative method of producing experimental immunogens. In this report, we describe the production of transgenic tomato plants that express the structural polyprotein, P1-2A, and protease, 3C, from foot-and-mouth disease (FMDV). P1-2A3C was inserted into the plant binary vector, pBin438, and transformed into tomato plants using Agrobacterium tumefaciens strain, GV3101. The presence of P1-2A3C was confirmed by PCR, transcription was verified by RT-PCR, and recombinant protein expression was confirmed by sandwich-ELISA and Western blot analyses. Guinea pigs immunized intramuscularly with foliar extracts from P1-2A3C-transgenic tomato plants were found to develop a virus-specific antibody response against FMDV. Vaccinated guinea pigs were fully protected against a challenge infection, while guinea pigs injected with untransformed plant extracts failed to elicit an antibody response and were not protected against challenge. These results demonstrate that transgenic tomato plants expressing the FMDV structural polyprotein, P1-2A, and the protease, 3C, can be used as a source of recombinant antigen for vaccine production.

  10. Localization and dynamic expression of a 27.8 kDa receptor protein for lymphocystis disease virus infection in sea bass ( Lateolabrax japonicus) tissues

    Science.gov (United States)

    Wu, Ronghua; Sheng, Xiuzhen; Tang, Xiaoqian; Xing, Jing; Zhan, Wenbin

    2017-10-01

    Lymphocystis disease virus (LCDV) infects target cells by attaching to a 27.8 kDa receptor (27.8R) protein in flounder Paralichthys olivaceus, and anti-27.8R monoclonal antibodies (MAbs) have been developed. However, the 27.8R existence in tissues of sea bass ( Lateolabrax japonicus) and its role in LCDV infection have remained unclear. In this study, the results of western blotting demonstrated that the same 27.8R was shared by flounder and sea bass. LCDV-free sea bass individuals were intramuscularly injected with LCDV, and viral copies were detected in tissues from 3 h post infection and showed a time-dependent increase during 9 days infection. Distribution and synthesis of 27.8R in sea bass tissues were investigated by using anti-27.8R MAbs as probes. It was found that 27.8R was distributed in all the tested tissues. The levels of 27.8R protein were highest in gill and skin, then a bit lowly in stomach, head kidney and heart, followed by spleen, intestine, blood cells, gonad and liver, and least in kidney and brain in healthy sea bass. Upon LCDV infection, 27.8R synthesis was up-regulated in each tissue, and higher in the tissues with higher LCDV copies. The 27.8R and LCDV were detected in some peripheral blood leukocytes but not in red blood cells. These results suggested that 27.8R was widely distributed in sea bass tissues, and it served as a receptor and correlated with tissue tropism of LCDV infection. Furthermore, leukocytes had the potential of being a LCDV carrier and were responsible for a systemic infection of LCDV in sea bass.

  11. Potato virus Y induced changes in the gene expression of potato (Solanum tuberosum L.)

    NARCIS (Netherlands)

    Pompe-Novak, M.; Gruden, K.; Baebler, P.; Krecic-Stress, H.; Kovac, M.; Jongsma, M.A.; Ravnikar, M.

    2005-01-01

    The tuber necrotic strain of Potato virus Y (PVYNTN) causes potato tuber necrotic ringspot disease in sensitive potato cultivars. Gene expression in the disease response of the susceptible potato (Solanum tuberosum L.) cultivar Igor was investigated at different times after infection, using

  12. [Several features of Aujeszky disease virus].

    Science.gov (United States)

    Veselinova, A; Motovski, A

    1976-01-01

    Clinical, virological, and morphological investigations were carried out on a total of 36 rabbits experimentally infected with five strains of the Aujeszky's disease virus. Those of the test animals that were infected with strain K did not die or died showing no clinical manifestations; those infected with strains K1. B, and TB showed nervous disturbances and died strongly scratching the site of injection. The animals infected with strain KB exhibited respiratory disturbances showing no death cases. Histopathologically, nonpurulent meningoencephalitis of the central nervous system was established in all animals. The rabbits infected with strain K (resistant to trypsin and temperature changes) and those infected with strain KB these lesions were more slightly expressed. The lungs of the affected animals showed interstitial intralobular phenomonia of a lympho-histiocytic type as a reactive necroses in the liver and spleen. In the case of K1, B, and TB infections no changes in the lungs and spleen were noticed, however, the liver was analogously affected. Results showed that those of those of the strains that were with lower virulence did not cause the clinical picture of scratching; such strains proved neurotropic and even strongly pheumotropic. It is concluded that the clinical and morphologic aspects observed in experimentally infected rabbits can be referred to in diagnosing the causative agent, differentiating strains that are slightly pathogenic from strains that are pathogenic.

  13. Generation and evaluation of a LaSota strain-based recombinant Newcastle disease virus (NDV) expressing the glycoprotein (G) of avian metapneumovirus subgroup C (aMPV-C) as a bivalent vaccine

    Science.gov (United States)

    To develop a bivalent vaccine, a recombinant Newcastle disease virus was generated by using the NDV LaSota strain with insertion of the G gene of aMPV-C. The biological assessments of the recombinant virus, rLS/aMPV-CG, by conducting the mean death time, intracerebral pathogenicity index, and growth...

  14. Comparison of efficacy of the disease-specific LOX1- and constitutive cytomegalovirus-promoters in expressing interleukin 10 through adeno-associated virus 2/8 delivery in atherosclerotic mice.

    Directory of Open Access Journals (Sweden)

    Hongqing Zhu

    Full Text Available The development of gene therapy vectors for treating diseases of the cardiovascular system continues at a steady pace. Moreover, in the field of gene therapy the utility of "disease-specific promoters" has strong appeal. Many therapeutic genes, including transforming growth factor beta 1 or interleukin 10, are associated to adverse effects. The use of a disease-specific promoter might minimize toxicity. The lectin-like oxidized low density lipoprotein receptor 1 is a marker of cardiovascular disease and a potential therapeutic target. The lectin-like oxidized low density lipoprotein receptor 1 is known to be up-regulated early during disease onset in a number of cell types at the sites where the disease will be clinically evident. In this study an adeno-associated virus-2 DNA vector (AAV2 using the AAV8 capsid, and containing the full length The lectin-like oxidized low density lipoprotein receptor 1 promoter, was generated and assayed for its ability to express human interleukin 10 in low density lipoprotein receptor knockout mice on high cholesterol diet. The cytomegalovirus early promoter was used for comparison in a similarly structured vector. The two promoters were found to have equal efficacy in reducing atherogenesis as measured by aortic systolic blood velocity, aortic cross sectional area, and aortic wall thickness. This is the first head-to-head comparison of a constitutive with a disease-specific promoter in a therapeutic context. These data strongly suggest that the use of a disease-specific promoter is appropriate for therapeutic gene delivery.

  15. Expression of ICAM-1 on human bronchial epithelial cells after influenza virus infection

    Directory of Open Access Journals (Sweden)

    Satoshi Matsukura

    1996-01-01

    Full Text Available Damage of bronchial epithelium is a feature of airway viral infection and airway inflammatory disease, such as bronchial asthma. Adhesion molecules, which are expressed on bronchial epithelium, play an important role in the pathogenesis of epithelial damage and airway inflammation. We analysed ICAM-1 and VCAM-1 expression on human bronchial epithelial cell line, NCI-H292, after influenza virus A infection. ICAM-1 was expressed on control cells constitutively. Influenza virus A infection caused a three-fold increase in ICAM-1 expression on NCI-H292 cells. Supernatant of virus-infected cells was analysed for the concentration of IL-1β and TNF-α but these cytokines were not detected. VCAM-1 was not expressed on control cells and did not change after cytokine stimulation or virus infection. These findings suggest that influenza virus infection may induce ICAM-1 expression on bronchial epithelium without intervention of leukocytes, and ICAM-1 expressed on epithelium plays a major part in the pathophysiology of airway inflammatory disease caused by viral infection.

  16. Ebola Virus Disease in Children, Sierra Leone, 2014-2015.

    Science.gov (United States)

    Fitzgerald, Felicity; Naveed, Asad; Wing, Kevin; Gbessay, Musa; Ross, J C G; Checchi, Francesco; Youkee, Daniel; Jalloh, Mohammed Boie; Baion, David; Mustapha, Ayeshatu; Jah, Hawanatu; Lako, Sandra; Oza, Shefali; Boufkhed, Sabah; Feury, Reynold; Bielicki, Julia A; Gibb, Diana M; Klein, Nigel; Sahr, Foday; Yeung, Shunmay

    2016-10-01

    Little is known about potentially modifiable factors in Ebola virus disease in children. We undertook a retrospective cohort study of children Ebola virus disease epidemics, robust, rapid data collection is vital to determine effectiveness of interventions for children.

  17. Vectors expressing chimeric Japanese encephalitis dengue 2 viruses.

    Science.gov (United States)

    Wei, Y; Wang, S; Wang, X

    2014-01-01

    Vectors based on self-replicating RNAs (replicons) of flaviviruses are becoming powerful tool for expression of heterologous genes in mammalian cells and development of novel antiviral and anticancer vaccines. We constructed two vectors expressing chimeric viruses consisting of attenuated SA14-14-2 strain of Japanese encephalitis virus (JEV) in which the PrM/M-E genes were replaced fully or partially with those of dengue 2 virus (DENV-2). These vectors, named pJED2 and pJED2-1770 were transfected to BHK-21 cells and produced chimeric viruses JED2V and JED2-1770V, respectively. The chimeric viruses could be passaged in C6/36 but not BHK-21 cells. The chimeric viruses produced in C6/36 cells CPE 4-5 days after infection and RT-PCR, sequencing, immunofluorescence assay (IFA) and Western blot analysis confirmed the chimeric nature of produced viruses. The immunogenicity of chimeric viruses in mice was proved by detecting DENV-2 E protein-specific serum IgG antibodies with neutralization titer of 10. Successful preparation of infectious clones of chimeric JEV-DENV-2 viruses showed that JEV-based expression vectors are fully functional.

  18. Protection by recombinant Newcastle disease viruses (NDV) expressing the glycoprotein (G) of avian metapneumovirus (aMPV) subtype A or B against challenge with virulent NDV and aMPV

    Science.gov (United States)

    Avian metapneumovirus (aMPV) and Newcastle disease virus (NDV) are threatening avian pathogens that cause sporadic but serious respiratory diseases in poultry worldwide. Although, vaccination, combined with strict biosecurity practices, has been the recommendation for controlling these diseases in t...

  19. Generation and evaluation of a recombinant Newcastle disease virus (NDV) expressing the F and G proteins of avian metapneumovirus subtype C (aMPV-C) as a bivalent vaccine against NDV and aMPV-C challenges in turkeys

    Science.gov (United States)

    Virulent strains of Newcastle disease virus (NDV) and avian metapneumovirus (aMPV) can cause serious respiratory diseases in poultry. Vaccination combined with strict biosecurity practices has been the recommendation for controlling NDV and aMPV diseases in the field. Previously we generated a NDV r...

  20. Expression of varicella-zoster virus and herpes simplex virus in normal human trigeminal ganglia

    International Nuclear Information System (INIS)

    Vafai, A.; Wellish, M.; Devlin, M.; Gilden, D.H.; Murray, R.S.

    1988-01-01

    Lysates of radiolabeled explants from four human trigeminal ganglia were immunoprecipitated with antibodies to varicella-zoster virus (VZV) and to herpes simplex virus. Both herpes simplex virus- and VZV-specific proteins were detected in lysates of all four ganglia. Absence of reactivity in ganglion explants with monoclonal antibodies suggested that herpes simplex virus and VZV were not reactivated during the culture period. In situ hybridization studies demonstrated the presence of RNA transcripts from the VZV immediate early gene 63. This approach to the detection of herpes simplex virus and VZV expression in human ganglia should facilitate analysis of viral RNA and proteins in human sensory ganglia

  1. A recombinant canine distemper virus expressing a modified rabies virus glycoprotein induces immune responses in mice.

    Science.gov (United States)

    Li, Zhili; Wang, Jigui; Yuan, Daoli; Wang, Shuang; Sun, Jiazeng; Yi, Bao; Hou, Qiang; Mao, Yaping; Liu, Weiquan

    2015-06-01

    Canine distemper virus (CDV) and rabies virus (RV) are two important pathogens of the dog. CDV, a member of the morbillivirus genus, has shown promise as an expression vector. The glycoprotein from RV is a main contributor to protective immunity and capable of eliciting the production of virus-neutralizing antibodies. In this study, we recovered an attenuated strain of canine distemper virus and constructed a recombinant virus, rCDV-RV-G, expressing a modified (R333Q) rabies virus glycoprotein (RV-G) of RV Flury strain LEP. RV-G expression by the recombinant viruses was confirmed. Furthermore, G was proved to be incorporated into the surface of CDV particles. While replication of the recombinant virus was slightly reduced compared with the parental CDV, it stably expressed the RV-G over ten serial passages. Inoculation of mice induced specific neutralizing antibodies against both RV-G and CDV. Therefore, the rCDV-RV-G has the potential as a vaccine that may be used to control rabies virus infection in dogs and other animals.

  2. Use of Salmon Cardiac Primary Cultures (SCPCs) of different genotypes for comparative kinetics of mx expression, viral load and ultrastructure pathology, after infection with Salmon Pancreas Disease Virus (SPDV).

    Science.gov (United States)

    Noguera, Patricia; Collet, Bertrand; Klinger, Matthias; Örün, Hristo; Del Pozo, Jorge

    2018-01-01

    In vitro fish based models have been extensively applied in human biomedical research but, paradoxically, less frequently in the research of fish health issues. Farmed Atlantic salmon can suffer from several viral conditions affecting the heart. Therefore, species-specific, cardiac in vitro models may represent a useful tool to help further understanding and management of these diseases. The mechanisms underlying genotype based resistance are complex and usually rely on a combined effect of elements from both the innate and adaptive immune response, which are further complicated by external environmental factors. Here we propose that Salmon Cardiac Primary Cultures (SCPCs) are a useful tool to investigate these mechanisms as the basis for genotypic differences between Atlantic salmon families in susceptibility to cardiotropic viral disease. Using SCPCs produced from two different commercially available Atlantic salmon embryonated ova (Atlantic Ova IPN sensitive" (S) and "Atlantic QTL-innOva ® IPN/PD" (R)), the influence of host genotype on the viral load and mx expression following Salmon Pancreas Disease Virus infection was assessed over a 15 day period. Both R and S SCPCs groups were successfully infected. A measurable difference between groups of viral nsP1 and host antiviral mx gene expression was observed (i.e. a later, but larger onset of mx expression in the R group). Mx expression peaks were followed by a decrease in viral nsP1 in both groups. Additionally, ultrastructural examination of infected SCPCs allowed the description of degenerative changes at the individual cell level. The SCPC model presents some advantages, over current fish cell culture monolayers and in vivo material, such as the presence of different cell components normally present in the target organ, as well as the removal of a layer of functional complexity (acquired immunity), making it possible to focus on tissue specific, early innate immune mechanisms. These preliminary results

  3. Care of the child with Ebola virus disease.

    Science.gov (United States)

    Eriksson, Carl O; Uyeki, Timothy M; Christian, Michael D; King, Mary A; Braner, Dana A V; Kanter, Robert K; Kissoon, Niranjan

    2015-02-01

    To provide clinicians with practical considerations for care of children with Ebola virus disease in resource-rich settings. Review of the published medical literature, World Health Organization and government documents, and expert opinion. There are limited data regarding Ebola virus disease in children; however, reported case-fatality proportions in children are high. Ebola virus may affect immune regulation and endothelial function differently in children than adults. Considerations for care of children with Ebola virus disease are presented. Ebola virus disease is a severe multisystem disease with high mortality in children and adults. Hospitals and clinicians must prepare to provide care for patients with Ebola virus disease before such patients present for care, with particular attention to rigorous infection control to limit secondary cases. Although there is no proven specific treatment for Ebola virus disease, meticulous supportive care offers patients the best chance of survival.

  4. The evolution of Ebola virus disease outbreaks.

    Science.gov (United States)

    Gałas, Aleksander

    2014-01-01

    The paper presents general information regarding descriptive epidemiology of Ebola virus disease (EVD) outbreaks. Some observations have shown the decrease in case fatality ratio after several generations of patient-to-patient passage. An increase in the frequency of EVD outbreaks across decades was also noticed. The knowledge about the past outbreaks may provide crucial information about the evolution of EVD epidemic, which may be useful for future preventions.

  5. An overview of Ebola virus disease.

    Science.gov (United States)

    Kadanali, Ayten; Karagoz, Gul

    2015-01-01

    Ebola virus disease (EVD), formerly known as Ebola hemorrhagic fever, is a severe, often fatal illness in humans. Ebola virus (EBOV) is transmitted through contact with blood or body fluids of a person who contracted or died from EVD, contaminated objects like needles and infected animals or bush meat. EVD has an incubation period of 2 to 21 days, and the infection has an acute onset without any carrier status. Currently, there is no standard treatment for EVD, so it is important to avoid infection or further spreading of the virus. Although historically the mortality of this infection exceeded 80%, modern medicine and public health measures have been able to lower this figure and reduce the impact of EBOV on individuals and communities. Its treatment involves early, aggressive supportive care with rehydration. Clinicians should consider the possibility of EVD in persons with travel or exposure history with the incubation period presenting constitutional symptoms in order to promptly identify diseased patients, and prevent further spreading of the disease.

  6. Hepatitis C virus infection and risk of coronary artery disease

    DEFF Research Database (Denmark)

    Roed, Torsten; Lebech, Anne-Mette; Kjaer, Andreas

    2012-01-01

    Several chronic infections have been associated with cardiovascular diseases, including Chlamydia pneumoniae, human immunodeficiency virus and viral hepatitis. This review evaluates the literature on the association between chronic hepatitis C virus (HCV) infection and the risk of coronary artery...

  7. Ebola virus disease: Essential clinical knowledge

    Science.gov (United States)

    Khalafallah, Mahmoud Tawfik; Aboshady, Omar Ali; Moawed, Shaban Ahmed; Ramadan, Menna Said

    2017-01-01

    Since its initial outbreak in 1976, Ebola virus disease (EVD) has affected thousands of people, causing severe illness with high mortality rates. In the absence of a vaccine or effective specific treatment, as well as the lack of early diagnostic and detective methods, the EVD outbreak has generated a significant worldwide health concern. Insufficient health-care system resources, deficient infection control measures, and the shortage of appropriate personal protective equipment acted as amplifiers of the outbreak extension, especially in poorly resourced and unprepared communities. Operating on the frontlines, health-care workers must be familiar, not only with the identification of the disease, but also with the ability to protect themselves and initiate the appropriate response. This review seeks to provide essential information required to identify and manage the disease, with an emphasis on pathogenesis, transmission, diagnosis, treatment, and prevention. We conducted a literature search in MEDLINE/PubMed and Google Scholar using the following keywords: “Ebola, Ebola virus disease, Hemorrhagic Fever, Outbreak.” We included all types of publications. To augment our study, we searched the reference lists of identified reviews. PMID:28791241

  8. Infection and transmission of live recombinant Newcastle disease virus vaccines in Rock Pigeons, European House Sparrows, and Japanese Quail

    Science.gov (United States)

    In China and Mexico, engineered recombinant Newcastle disease virus (rNDV) strains are used as live vaccines for the control of Newcastle disease and as vectors to express the avian influenza virus hemagglutinin (HA) gene to control avian influenza in poultry. In this study, non-target species wer...

  9. Attenuated Human Parainfluenza Virus Type 1 Expressing Ebola Virus Glycoprotein GP Administered Intranasally Is Immunogenic in African Green Monkeys.

    Science.gov (United States)

    Lingemann, Matthias; Liu, Xueqiao; Surman, Sonja; Liang, Bo; Herbert, Richard; Hackenberg, Ashley D; Buchholz, Ursula J; Collins, Peter L; Munir, Shirin

    2017-05-15

    The recent 2014-2016 Ebola virus (EBOV) outbreak prompted increased efforts to develop vaccines against EBOV disease. We describe the development and preclinical evaluation of an attenuated recombinant human parainfluenza virus type 1 (rHPIV1) expressing the membrane-anchored form of EBOV glycoprotein GP, as an intranasal (i.n.) EBOV vaccine. GP was codon optimized and expressed either as a full-length protein or as an engineered chimeric form in which its transmembrane and cytoplasmic tail (TMCT) domains were replaced with those of the HPIV1 F protein in an effort to enhance packaging into the vector particle and immunogenicity. GP was inserted either preceding the N gene (pre-N) or between the N and P genes (N-P) of rHPIV1 bearing a stabilized attenuating mutation in the P/C gene (C Δ170 ). The constructs grew to high titers and efficiently and stably expressed GP. Viruses were attenuated, replicating at low titers over several days, in the respiratory tract of African green monkeys (AGMs). Two doses of candidates expressing GP from the pre-N position elicited higher GP neutralizing serum antibody titers than the N-P viruses, and unmodified GP induced higher levels than its TMCT counterpart. Unmodified EBOV GP was packaged into the HPIV1 particle, and the TMCT modification did not increase packaging or immunogenicity but rather reduced the stability of GP expression during in vivo replication. In conclusion, we identified an attenuated and immunogenic i.n. vaccine candidate expressing GP from the pre-N position. It is expected to be well tolerated in humans and is available for clinical evaluation. IMPORTANCE EBOV hemorrhagic fever is one of the most lethal viral infections and lacks a licensed vaccine. Contact of fluids from infected individuals, including droplets or aerosols, with mucosal surfaces is an important route of EBOV spread during a natural outbreak, and aerosols also might be exploited for intentional virus spread. Therefore, vaccines that protect

  10. Ebola virus disease outbreak: what's going on.

    Science.gov (United States)

    Giraldi, G; Marsella, L T

    2015-01-01

    The current West African Ebola Virus Disease (EVD) outbreak was confirmed in March, 2014, and after months of slow, fragmented responses, the EVD has been recognized as a public health emergency of international concern. The early diagnosis of the disease is difficult without laboratory testing, because its symptoms can be seen in many other infections. In the wake of international agencies advices, the Italian Ministry of Health, on October 1, 2014, released to the Healthcare Professional Workers (HPWs) the Protocol about the management of cases and contacts within the national territory. Due to the increasing number of humanitarian groups and HPWs involved in the field, the probability to have new cases of contamination is higher than ever. Proven specific treatments against EVD are not yet available, however, a variety of compounds have been under testing. The most effective are select monoclonal antibodies that have a high neutralizing potential against epitopes of Ebola Virus. For facing the matter, it is important a comprehensive approach according to the recommendations proposed by the international agencies because no single institution or country has all the capacities to respond to a new and emerging infectious disease.

  11. Global phylogenetic analysis of contemporary aleutian mink disease viruses (AMDVs)

    DEFF Research Database (Denmark)

    Ryt-Hansen, Pia; Hagberg, E. E.; Chriél, Mariann

    2017-01-01

    Aleutian mink disease has major economic consequences on the mink farming industry worldwide, as it causes a disease that affects both the fur quality and the health and welfare of the mink. The virus causing this disease is a single-stranded DNA virus of the genus Amdoparvovirus belonging to the...

  12. Evaluation of humoral, mucosal, and cellular immune responses following co-immunization of HIV-1 Gag and Env proteins expressed by Newcastle disease virus.

    Science.gov (United States)

    Khattar, Sunil K; Palaniyandi, Senthilkumar; Samal, Sweety; LaBranche, Celia C; Montefiori, David C; Zhu, Xiaoping; Samal, Siba K

    2015-01-01

    The combination of multiple HIV antigens in a vaccine can broaden antiviral immune responses. In this study, we used NDV vaccine strain LaSota to generate rNDV (rLaSota/optGag) expressing human codon optimized p55 Gag protein of HIV-1. We examined the effect of co-immunization of rLaSota/optGag with rNDVs expressing different forms of Env protein gp160, gp120, gp140L [a version of gp140 that lacked cytoplasmic tail and contained complete membrane-proximal external region (MPER)] and gp140S (a version of gp140 that lacked cytoplasmic tail and distal half of MPER) on magnitude and breadth of humoral, mucosal and cellular immune responses in guinea pigs and mice. Our results showed that inclusion of rLaSota/optGag with rNDVs expressing different forms of Env HIV Gag did not affect the Env-specific humoral and mucosal immune responses in guinea pigs and that the potent immune responses generated against Env persisted for at least 13 weeks post immunization. The highest Env-specific humoral and mucosal immune responses were observed with gp140S+optGag group. The neutralizing antibody responses against HIV strains BaL.26 and MN.3 induced by gp140S+optGag and gp160+optGag were higher than those elicited by other groups. Inclusion of Gag with gp160, gp140S and gp140L enhanced the level of Env-specific IFN-γ-producing CD8(+) T cells in mice. Inclusion of Gag with gp160 and gp140L also resulted in increased Env-specific CD4(+) T cells. The level of Gag-specific CD8(+) and CD4(+) T cells was also enhanced in mice immunized with Gag along with gp140S and gp120. These results indicate lack of antigen interference in a vaccine containing rNDVs expressing Env and Gag proteins.

  13. Reaction of sweetpotato clones to virus disease and their yield ...

    African Journals Online (AJOL)

    Sweetpotato virus disease (SPVD) caused by dual infection of sweetpotato chlorotic stunt virus (SPCSV) and sweetpotato featherly mottle virus (SPFMV) is a major constraint to sweetpotato production in Uganda, whose infestation often necessitates instituting control measures. Although among the available control ...

  14. genetics of resistance to groundnut rosette virus disease abstract ...

    African Journals Online (AJOL)

    ACSS

    2014-02-03

    Feb 3, 2014 ... Groundnut rosette virus disease is caused by synergyistic interaction of three viral agents, namely, groundnut rosette virus (GRV), its satelitte RNA (Sat RNA) and groundnut rosette assistor virus (GRAV). GRAV plays an important role in aiding aphid transmission, alongside the other two viral components.

  15. Virus diseases in lettuce in the Mediterranean basin.

    Science.gov (United States)

    Moreno, Aranzazu; Fereres, Alberto

    2012-01-01

    Lettuce is frequently attacked by several viruses causing disease epidemics and considerable yield losses along the Mediterranean basin. Aphids are key pests and the major vectors of plant viruses in lettuce fields. Lettuce mosaic virus (LMV) is probably the most important because it is seed-transmitted in addition to be transmissible by many aphid species that alight on the crop. Tomato spotted wilt virus (TSWV) is another virus that causes severe damage since the introduction of its major vector, the thrips Frankliniella occidentalis. In regions with heavy and humid soils, Lettuce Mirafiori big-vein virus (LMBVV) can also produce major yield losses. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Successful delivery of RRT in Ebola virus disease.

    Science.gov (United States)

    Connor, Michael J; Kraft, Colleen; Mehta, Aneesh K; Varkey, Jay B; Lyon, G Marshall; Crozier, Ian; Ströher, Ute; Ribner, Bruce S; Franch, Harold A

    2015-01-01

    AKI has been observed in cases of Ebola virus disease. We describe the protocol for the first known successful delivery of RRT with subsequent renal recovery in a patient with Ebola virus disease treated at Emory University Hospital, in Atlanta, Georgia. Providing RRT in Ebola virus disease is complex and requires meticulous attention to safety for the patient, healthcare workers, and the community. We specifically describe measures to decrease the risk of transmission of Ebola virus disease and report pilot data demonstrating no detectable Ebola virus genetic material in the spent RRT effluent waste. This article also proposes clinical practice guidelines for acute RRT in Ebola virus disease. Copyright © 2015 by the American Society of Nephrology.

  17. PLAQUE ASSAY OF NEWCASTLE DISEASE VIRUS

    Directory of Open Access Journals (Sweden)

    B. Sardjono

    2012-09-01

    Full Text Available The Newcastle disease virus (NDV was isolated from a 3 months-old indigenous chicken (buras or kampung chicken which showed clinical signs of Newcastle disease (ND. For viral isolation a small part of the spleen and lung were inoculated into 10 days-old embryonated chicken eggs. The physical characteristics of the isolate (A/120 were studied. The hemagglutination of chicken red blood cell showed slow elution, thermostability of hemagglutinin at 56°C was 120 minutes. The vims was able to agglutinate horse erythrocytes but not those of sheep. The biological characteristics on mean death time (MDT of embryonated chicken egg and plaque morphology on chicken embryo fibroblast (CEF primary cell cultures were studied. The MDT was 56 hours, the isolate was velogenic NDV. There were three different plaque morphologies on CEF : 2 mm clear plaques, 1 mm clear plaques, and minute clear plaques which were visible only with microscopic examination.

  18. Ebola Virus Disease – Global Scenario & Bangladesh

    Directory of Open Access Journals (Sweden)

    Md Rezwanur Rahman

    2015-03-01

    Full Text Available Ebola virus disease (EVD, caused by one of the Ebola virus strains is an acute, serious illness which is often fatal when untreated. EVD, previously known as Ebola hemorrhagic fever, is a rare and deadly disease. It first appeared in 1976 in two simultaneous outbreaks, one in Nzara, Sudan, and the other in Yambuku, Democratic Republic of Congo. The latter occurred in a village near the Ebola River, from which the disease takes its name.1,2 On March 23, 2014, the World Health Organization (WHO was notified of an outbreak of EVD in Guinea. On August 8, WHO declared the epidemic to be a ‘Public health emergency of international concern’.3 The current 2014 outbreak in West Africa is the largest and most complex Ebola outbreak.1 It is to be noticed that the most severely affected countries, Guinea, Sierra Leone and Liberia have very weak health systems, lacking human and infrastructural resources and these countries recently emerged from long periods of conflict and instability.1 The virus family Filoviridae includes three genera: Cuevavirus, Marburgvirus, and Ebolavirus. Till date five species have been identified: Zaire, Bundibugyo, Sudan, Reston and Taï Forest. The recent outbreak belongs to the Zaire species which is the most lethal one, with an average case fatality rate of 78%.1,4 Till 6 December 2014, total 17,834 suspected cases and 6,678 deaths had been reported; however, WHO has said that these numbers may be vastly underestimated.5 The natural reservoir for Ebola has yet to be confirmed; however, fruit bats of the Pteropodidae family are considered to be the most likely candidate species.1,2,6 Ebola can be transmitted to human through close contact with the blood, secretions, organs or other bodily fluids of infected animals such as fruit bats, chimpanzees, gorillas, monkeys, etc. Ebola then spreads through human-to-human transmission via direct contact (through broken skin or mucous membranes with the blood, secretions, organs or

  19. A Novel Virus Causes Scale Drop Disease in Lates calcarifer.

    Directory of Open Access Journals (Sweden)

    Ad de Groof

    2015-08-01

    Full Text Available From 1992 onwards, outbreaks of a previously unknown illness have been reported in Asian seabass (Lates calcarifer kept in maricultures in Southeast Asia. The most striking symptom of this emerging disease is the loss of scales. It was referred to as scale drop syndrome, but the etiology remained enigmatic. By using a next-generation virus discovery technique, VIDISCA-454, sequences of an unknown virus were detected in serum of diseased fish. The near complete genome sequence of the virus was determined, which shows a unique genome organization, and low levels of identity to known members of the Iridoviridae. Based on homology of a series of putatively encoded proteins, the virus is a novel member of the Megalocytivirus genus of the Iridoviridae family. The virus was isolated and propagated in cell culture, where it caused a cytopathogenic effect in infected Asian seabass kidney and brain cells. Electron microscopy revealed icosahedral virions of about 140 nm, characteristic for the Iridoviridae. In vitro cultured virus induced scale drop syndrome in Asian seabass in vivo and the virus could be reisolated from these infected fish. These findings show that the virus is the causative agent for the scale drop syndrome, as each of Koch's postulates is fulfilled. We have named the virus Scale Drop Disease Virus. Vaccines prepared from BEI- and formalin inactivated virus, as well as from E. coli produced major capsid protein provide efficacious protection against scale drop disease.

  20. Ebola Virus Disease Candidate Vaccines Under Evaluation in Clinical Trials

    Science.gov (United States)

    Martins, Karen A.; Jahrling, Peter B.; Bavari, Sina; Kuhn, Jens H.

    2016-01-01

    Summary Filoviruses are the etiological agents of two human illnesses: Ebola virus disease and Marburg virus disease. Until 2013, medical countermeasure development against these afflictions was limited to only a few research institutes worldwide as both infections were considered exotic due to very low case numbers. Together with the high case-fatality rate of both diseases, evaluation of any candidate countermeasure in properly controlled clinical trials seemed impossible. However, in 2013, Ebola virus was identified as the etiological agent of a large disease outbreak in Western Africa including almost 30,000 infections and more than 11,000 deaths, including case exportations to Europe and North America. These large case numbers resulted in medical countermeasure development against Ebola virus disease becoming a global public-health priority. This review summarizes the status quo of candidate vaccines against Ebola virus disease, with a focus on those that are currently under evaluation in clinical trials. PMID:27160784

  1. Virus-derived transgenes expressing hairpin RNA give immunity to Tobacco mosaic virus and Cucumber mosaic virus

    Directory of Open Access Journals (Sweden)

    Liu Yong

    2011-01-01

    Full Text Available Abstract Background An effective method for obtaining resistant transgenic plants is to induce RNA silencing by expressing virus-derived dsRNA in plants and this method has been successfully implemented for the generation of different plant lines resistant to many plant viruses. Results Inverted repeats of the partial Tobacco mosaic virus (TMV movement protein (MP gene and the partial Cucumber mosaic virus (CMV replication protein (Rep gene were introduced into the plant expression vector and the recombinant plasmids were transformed into Agrobacterium tumefaciens. Agrobacterium-mediated transformation was carried out and three transgenic tobacco lines (MP16-17-3, MP16-17-29 and MP16-17-58 immune to TMV infection and three transgenic tobacco lines (Rep15-1-1, Rep15-1-7 and Rep15-1-32 immune to CMV infection were obtained. Virus inoculation assays showed that the resistance of these transgenic plants could inherit and keep stable in T4 progeny. The low temperature (15℃ did not influence the resistance of transgenic plants. There was no significant correlation between the resistance and the copy number of the transgene. CMV infection could not break the resistance to TMV in the transgenic tobacco plants expressing TMV hairpin MP RNA. Conclusions We have demonstrated that transgenic tobacco plants expressed partial TMV movement gene and partial CMV replicase gene in the form of an intermolecular intron-hairpin RNA exhibited complete resistance to TMV or CMV infection.

  2. hand hygiene practices post ebola virus disease outbreak

    African Journals Online (AJOL)

    2014-10-20

    Oct 20, 2014 ... INTRODUCTION. Ebola virus disease (EVD) is an infectious viral disease characterized by a high case-fatality rate which may be as high as 90%.1,2 Ebola virus may be acquired during contact with blood or body fluids of an infected animal, commonly monkeys or fruit bats.2 Once human infection occurs ...

  3. Seroprevalence of Marek's Disease Virus antibody in some poultry ...

    African Journals Online (AJOL)

    This study reports a survey of Marek's disease virus (MDV) antibody done in 21 selected poultry flocks in Lagos, Ogun and Oyo states of southwestern Nigeria. A total of 315 serum samples were examined using the Enzyme Linked Immunosorbent Assay (ELISA) technique. Marek's disease virus antibody was present in ...

  4. traits and resistance to maize streak virus disease in kenya

    African Journals Online (AJOL)

    Maize Streak virus (MSV) disease is a major disease in many parts of Africa, and is the most important viral pathogen of maize in Kenya. A study was conducted in 2004 to evaluate the agronomic performance and maize streak virus (MSV) resistance of maize (Zea mays L.) three-way crosses developed in Kenya. Twenty ...

  5. Secretory Expression and Purification of Respiratory Syncytial Virus G and F Proteins in Human Cells.

    Science.gov (United States)

    Jadhao, Samadhan J; Anderson, Larry J

    2016-01-01

    Respiratory syncytial virus (RSV) is one of the leading causes of range of symptoms from mild upper to serious lower respiratory virus infections in infants, immunocompromised individuals, and the elderly. Despite many decades of research and development, a licensed RSV vaccine is not available for use in human. Since the RSV F and G proteins induce neutralizing antibodies and confer protection from infection, they are important for understanding disease and for developing vaccines and access to purified, expressed proteins is important to RSV research and diagnostics. We describe methods to produce recombinant RSV F and G proteins in human cells and purify these proteins using Ni Sepharose affinity chromatography.

  6. Research update: Avian Disease and Oncology Laboratory avian tumor viruses

    Science.gov (United States)

    Genomics and Immunogenetics Use of genomics to identify QTL, genes, and proteins associated with resistance to Marek’s disease. Marek’s disease (MD), a lymphoproliferative disease caused by the highly oncogenic herpesvirus Marek's disease virus (MDV), continues to be a major disease concern to the p...

  7. Construction of PVX virus-expression vector to express enterotoxin ...

    African Journals Online (AJOL)

    user

    2011-02-07

    Feb 7, 2011 ... systems for transient production of recombinant tallergens in. Nicotiana benthamiana. Methods, 32: 227-234. Xu CG. Wang WZ (1999). High level expression of fusion gene of. Heat-stable enterotoxin(ST1) and Heat-Labile enterotoxin B subunit(LTB). Acta Veterinaria et Zootechnica Sinic, 30: 249-253.

  8. Construction of PVX virus-expression vector to express enterotoxin ...

    African Journals Online (AJOL)

    Potato X potyvirus (PVX)-based vector has been comprehensively applied in transient expression system. In order to produce the heterologous proteins more quickly and stably, the ClaI and NotI enzyme sites were introduced into the Enterotoxin fusion gene LTB-ST by polymerase chain reaction (PCR) and the LTB-ST ...

  9. Transient Bluetongue virus serotype 8 capsid protein expression in Nicotiana benthamiana

    Directory of Open Access Journals (Sweden)

    Albertha R. van Zyl

    2016-03-01

    Full Text Available Bluetongue virus (BTV causes severe disease in domestic and wild ruminants, and has recently caused several outbreaks in Europe. Current vaccines include live-attenuated and inactivated viruses; while these are effective, there is risk of reversion to virulence by mutation or reassortment with wild type viruses. Subunit or virus-like particle (VLP vaccines are safer options: VLP vaccines produced in insect cells by expression of the four BTV capsid proteins are protective against challenge; however, this is a costly production method. We investigated production of BTV VLPs in plants via Agrobacterium-mediated transient expression, an inexpensive production system very well suited to developing country use. Leaves infiltrated with recombinant pEAQ-HT vectors separately encoding the four BTV-8 capsid proteins produced more proteins than recombinant pTRA vectors. Plant expression using the pEAQ-HT vector resulted in both BTV-8 core-like particles (CLPs and VLPs; differentially controlling the concentration of infiltrated bacteria significantly influenced yield of the VLPs. In situ localisation of assembled particles was investigated by using transmission electron microscopy (TEM and it was shown that a mixed population of core-like particles (CLPs, consisting of VP3 and VP7 and VLPs were present as paracrystalline arrays in the cytoplasm of plant cells co-expressing all four capsid proteins.

  10. Longitudinal peripheral blood transcriptional analysis of a patient with severe Ebola virus disease.

    Science.gov (United States)

    Kash, John C; Walters, Kathie-Anne; Kindrachuk, Jason; Baxter, David; Scherler, Kelsey; Janosko, Krisztina B; Adams, Rick D; Herbert, Andrew S; James, Rebekah M; Stonier, Spencer W; Memoli, Matthew J; Dye, John M; Davey, Richard T; Chertow, Daniel S; Taubenberger, Jeffery K

    2017-04-12

    The 2013-2015 outbreak of Ebola virus disease in Guinea, Liberia, and Sierra Leone was unprecedented in the number of documented cases, but there have been few published reports on immune responses in clinical cases and their relationships with the course of illness and severity of Ebola virus disease. Symptoms of Ebola virus disease can include severe headache, myalgia, asthenia, fever, fatigue, diarrhea, vomiting, abdominal pain, and hemorrhage. Although experimental treatments are in development, there are no current U.S. Food and Drug Administration-approved vaccines or therapies. We report a detailed study of host gene expression as measured by microarray in daily peripheral blood samples collected from a patient with severe Ebola virus disease. This individual was provided with supportive care without experimental therapies at the National Institutes of Health Clinical Center from before onset of critical illness to recovery. Pearson analysis of daily gene expression signatures revealed marked gene expression changes in peripheral blood leukocytes that correlated with changes in serum and peripheral blood leukocytes, viral load, antibody responses, coagulopathy, multiple organ dysfunction, and then recovery. This study revealed marked shifts in immune and antiviral responses that preceded changes in medical condition, indicating that clearance of replicating Ebola virus from peripheral blood leukocytes is likely important for systemic viral clearance. Copyright © 2017, American Association for the Advancement of Science.

  11. Comparative analysis of rabbit hemorrhagic disease virus (RHDV) and new RHDV2 virus antigenicity, using specific virus-like particles

    OpenAIRE

    Bárcena, Juan; Guerra, Beatriz; Angulo, Iván; González, Julia; Valcárcel, Félix; Mata, Carlos P.; Castón, José R.; Blanco, Esther; Alejo, Alí

    2015-01-01

    International audience; In 2010 a new Lagovirus related to rabbit haemorrhagic disease virus (RHDV) emerged in France and has since rapidly spread throughout domestic and wild rabbit populations of several European countries. The new virus, termed RHDV2, exhibits distinctive genetic, antigenic and pathogenic features. Notably, RHDV2 kills rabbits previously vaccinated with RHDV vaccines. Here we report for the first time the generation and characterization of RHDV2-specific virus-like particl...

  12. Topical herpes simplex virus 2 (HSV-2) vaccination with human papillomavirus vectors expressing gB/gD ectodomains induces genital-tissue-resident memory CD8+ T cells and reduces genital disease and viral shedding after HSV-2 challenge.

    Science.gov (United States)

    Çuburu, Nicolas; Wang, Kening; Goodman, Kyle N; Pang, Yuk Ying; Thompson, Cynthia D; Lowy, Douglas R; Cohen, Jeffrey I; Schiller, John T

    2015-01-01

    No herpes simplex virus 2 (HSV-2) vaccine has been licensed for use in humans. HSV-2 glycoproteins B (gB) and D (gD) are targets of neutralizing antibodies and T cells, but clinical trials involving intramuscular (i.m.) injection of HSV-2 gB and gD in adjuvants have not been effective. Here we evaluated intravaginal (ivag) genetic immunization of C57BL/6 mice with a replication-defective human papillomavirus pseudovirus (HPV PsV) expressing HSV-2 gB (HPV-gB) or gD (HPV-gD) constructs to target different subcellular compartments. HPV PsV expressing a secreted ectodomain of gB (gBsec) or gD (gDsec), but not PsV expressing a cytoplasmic or membrane-bound form, induced circulating and intravaginal-tissue-resident memory CD8(+) T cells that were able to secrete gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) as well as moderate levels of serum HSV neutralizing antibodies. Combined immunization with HPV-gBsec and HPV-gDsec (HPV-gBsec/gDsec) vaccines conferred longer survival after vaginal challenge with HSV-2 than immunization with HPV-gBsec or HPV-gDsec alone. HPV-gBsec/gDsec ivag vaccination was associated with a reduced severity of genital lesions and lower levels of viral shedding in the genital tract after HSV-2 challenge. In contrast, intramuscular vaccination with a soluble truncated gD protein (gD2t) in alum and monophosphoryl lipid A (MPL) elicited high neutralizing antibody titers and improved survival but did not reduce genital lesions and viral shedding. Vaccination combining ivag HPV-gBsec/gDsec and i.m. gD2t-alum-MPL improved survival and reduced genital lesions and viral shedding. Finally, high levels of circulating HSV-2-specific CD8(+) T cells, but not serum antibodies, correlated with reduced viral shedding. Taken together, our data underscore the potential of HPV PsV as a platform for a topical mucosal vaccine to control local manifestations of primary HSV-2 infection. Genital herpes is a highly prevalent chronic disease caused by

  13. Phenotype Variation in Human Immunodeficiency virus Type 1 Transmission and Disease Progression

    Directory of Open Access Journals (Sweden)

    Mariangela Cavarelli

    2009-01-01

    Full Text Available Human immunodeficiency virus type I (HIV-1 infects target cells through interaction with the CD4 molecule and chemokine receptors, mainly CCR5 and CXCR4. Viral isolates can be phenotypically classified based on the co-receptor they utilize to infect target cells. Thus, R5 and X4 virus use respectively CCR5 and CXCR4, whereas R5X4 virus can use either CCR5 or CXCR4. This review describes the central role played by co-receptor expression and usage for HIV-1 cell tropism, transmission and pathogenesis. We discuss various hypotheses proposed to explain the preferential transmission of R5 viruses and the mechanisms driving the change of HIV-1 co-receptor usage in the course of infection. Recent insights in the intrinsic variability of R5 viruses and their role in influencing disease progression in both adults and children are also discussed.

  14. Marek's disease virus induced transient paralysis--a closer look

    Science.gov (United States)

    Marek’s Disease (MD) is a lymphoproliferative disease of domestic chickens caused by a highly cell-associated alpha herpesvirus, Marek’s disease virus (MDV). Clinical signs of MD include depression, crippling, weight loss, and transient paralysis (TP). TP is a disease of the central nervous system...

  15. Heterologous Gene Expression from Transmissible Gastroenteritis Virus Replicon Particles

    OpenAIRE

    Curtis, Kristopher M.; Yount, Boyd; Baric, Ralph S.

    2002-01-01

    We have recently isolated a transmissible gastroenteritis virus (TGEV) infectious construct designated TGEV 1000 (B. Yount, K. M. Curtis, and R. S. Baric, J. Virol. 74:10600–10611, 2000). Using this construct, a recombinant TGEV was constructed that replaced open reading frame (ORF) 3A with a heterologous gene encoding green fluorescent protein (GFP). Following transfection of baby hamster kidney (BHK) cells, a recombinant TGEV (TGEV-GFP2) was isolated that replicated efficiently and expresse...

  16. Properties of satellite tobacco mosaic virus phenotypes expressed in the presence and absence of helper virus.

    Science.gov (United States)

    Sivanandam, Venkatesh; Mathews, Deborah; Rao, A L N

    2015-09-01

    In this study, we assembled an Agrobacterium-based transient expression system for the ectopic expression of Satellite tobacco mosaic virus (STMV) (+) or (-) transcripts and their biological activity was confirmed when Nicotiana benthamiana plants were co-expressed with helper Tobacco mosaic virus replicase. Characterization of STMV in the presence and absence of its HV revealed: (i) HV-dependent expression of STMV (+) in N. benthamiana, but not in N. tabacum, generated a replication-deficient but translation and encapsidation competent variant lacking the highly conserved 3' 150 nucleotides (nt) (STMVΔ150); (ii) mutational analysis demonstrated that a conserved 3' stem-loop structure in wild type and STMVΔ150 located between nt 874 and 897 is essential for translation of CP; (iii) helper virus-independent expression of CP from wt STMV was competent for the assembly of empty aberrant virion-like particles; whereas, CP translated from STMVΔ150 resulted in disorganized CP aggregates suggesting a role for the 3'tRNA-like structure in STMV assembly. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Occurrence of Six Honeybee Viruses in Diseased Austrian Apiaries

    Science.gov (United States)

    Berényi, Olga; Bakonyi, Tamás; Derakhshifar, Irmgard; Köglberger, Hemma; Nowotny, Norbert

    2006-01-01

    The occurrence, prevalence, and distribution patterns of acute bee paralysis virus (ABPV), black queen cell virus (BQCV), chronic bee paralysis virus (CBPV), deformed wing virus (DWV), Kashmir bee virus (KBV), and sacbrood virus (SBV) were investigated in 90 Austrian honeybee colonies suffering from symptoms of depopulation, sudden collapse, paralysis, or dark coloring by employing reverse transcription-PCR. Infestation with parasites was also recorded. The samples originated from all parts of Austria. The most prevalent virus was DWV, present in 91% of samples, followed by ABPV, SBV, and BQCV (68%, 49%, and 30%, respectively). CBPV was detected in 10% of colonies, while KBV was not present in any sample. In most samples, more than one virus was identified. The distribution pattern of ABPV, BQCV, CBPV, and SBV varied considerably in the different geographic regions investigated, while DWV was widespread in all Austrian federal states. In bees that showed dark coloring and disorientation, CBPV was always detected. Simultaneous infections of DWV and ABPV were most frequently observed in colonies suffering from weakness, depopulation, and sudden collapse. Bees obtained from apparently healthy colonies within the same apiaries showed a similar distribution pattern of viruses; however, the relative virus load was 10 to 126 times lower than in bees from diseased colonies. A limited number of bee samples from surrounding central European countries (Germany, Poland, Hungary, and Slovenia) were also tested for the presence of the above viruses. Variances were found in the distribution of BQCV and SBV. PMID:16597939

  18. Relationship of viruses and viroids with apricot “viruela” disease

    Directory of Open Access Journals (Sweden)

    Manuel RUBIO

    2013-05-01

    Full Text Available In this study, 34 apricot orchards in south-eastern Spain planted with the Spanish cultivar ‘Búlida’ and showing “viruela” symptoms were studied for 2 years. Leaf and fruit samples from four trees in each orchard, either with or without “viruela” symptoms, were collected and analysed by multiplex RT-PCR for the detection of American plum line pattern virus (APLPV, Apple chlorotic leaf spot virus (ACLSV, Apple mosaic virus (ApMV, Apricot latent virus (ApLV, Plum bark necrosis and stem pitting-associated virus (PBNSPaV, Plum pox virus (PPV, Prune dwarf virus (PDV, and Prunus necrotic ring spot virus (PNRSV. In addition, molecular hybridization assays were performed for the detection of Hop stunt viroid (HSVd and Peach latent mosaic viroid (PLMVd. All fruits showing “viruela” symptoms were infected with ACLSV and HSVd, suggesting that these pathogens may be responsible for “viruela” disease. Other viruses including PNRSV, PBNSPaV, ApLV, PDV, ApMV and PPV, were detected to a lesser degree. Detection of ACLSV and HSVd in samples without symptoms could be explained by the influence of environmental conditions and/or the physiological stage of fruits on the expression of symptoms.

  19. Antimicrobial and antiviral activities against Newcastle disease virus ...

    African Journals Online (AJOL)

    Antimicrobial and antiviral activities against Newcastle disease virus (NDV) from marine algae isolated from Qusier and Marsa-Alam Seashore (Red Sea), Egypt. ... and two filamentous fungi (Aspergillus flavus and Fusarium oxysporum) and against the Newcastle sense Virus (NDV)-(Paramyxoviridae) which is responsible ...

  20. genetic variability for tuber yield, quality, and virus disease complex

    African Journals Online (AJOL)

    Administrator

    improvement of yield and quality attributes. Cultivar Munyeera displayed the highest level of SPVD resistance followed by New Kawogo and Polyster as exhibited by relative area under disease progress curves following natural field infection and graft inoculation with SPVD causing viruses, Sweet potato chlorotic stunt virus ...

  1. The cellular receptors for infectious bursal disease virus | Zhu ...

    African Journals Online (AJOL)

    Virus receptors are simplistically defined as cell surface molecules that mediate binding (attachment, adsorption) and/or trigger membrane fusion or entry through other processes. Infectious bursal disease virus (IBDV) entry into host cells occurs by recognition of specific cellular receptor(s) with viral envelope glycoprotein, ...

  2. Interference of Infectious Bursal Diseases (IBD) Virus and Vaccine ...

    African Journals Online (AJOL)

    The interference of Infectious bursal disease (IBD) virus and vaccine with the immune response of the grey brested guinea fowl (Numida meleagridis galeata palas) to Newcastle desease (ND) “LaSota” vaccine was studied using hemagglutination inhibition (HI) test for detection of ND virus antibody and agar gel ...

  3. Vaccinia virus recombinants expressing chimeric proteins of human immunodeficiency virus and gamma interferon are attenuated for nude mice.

    OpenAIRE

    Giavedoni, L D; Jones, L; Gardner, M B; Gibson, H L; Ng, C T; Barr, P J; Yilma, T

    1992-01-01

    We have developed a method for attenuating vaccinia virus recombinants by expressing a fusion protein of a lymphokine and an immunogen. Chimeric genes were constructed that coded for gamma interferon (IFN-gamma) and structural proteins of the human immunodeficiency virus type 1 (HIV-1). In this study, we describe the biological and immunological properties of vaccinia virus recombinants expressing chimeric genes of murine or human IFN-gamma with glycoprotein gp120, gag, and a fragment of gp41...

  4. Comparative analysis of rabbit hemorrhagic disease virus (RHDV) and new RHDV2 virus antigenicity, using specific virus-like particles.

    Science.gov (United States)

    Bárcena, Juan; Guerra, Beatriz; Angulo, Iván; González, Julia; Valcárcel, Félix; Mata, Carlos P; Castón, José R; Blanco, Esther; Alejo, Alí

    2015-09-24

    In 2010 a new Lagovirus related to rabbit haemorrhagic disease virus (RHDV) emerged in France and has since rapidly spread throughout domestic and wild rabbit populations of several European countries. The new virus, termed RHDV2, exhibits distinctive genetic, antigenic and pathogenic features. Notably, RHDV2 kills rabbits previously vaccinated with RHDV vaccines. Here we report for the first time the generation and characterization of RHDV2-specific virus-like particles (VLPs). Our results further confirmed the differential antigenic properties exhibited by RHDV and RHDV2, highlighting the need of using RHDV2-specific diagnostic assays to monitor the spread of this new virus.

  5. Foot and mouth disease virus transmission among vaccinated pigs after exposure to virus shedding pigs

    NARCIS (Netherlands)

    Orsel, K.; Jong, de M.C.M.; Bouma, A.; Stegeman, J.A.; Dekker, A.

    2007-01-01

    The aim of this study was to design a transmission experiment that enabled quantification of the effectiveness of vaccination against foot and mouth disease (FMD) virus in groups of pigs. Previous experiments showed that intradermal injection of pigs with FMD virus 14 days after vaccination was not

  6. The affect of infectious bursal disease virus on avian influenza virus vaccine efficacy

    Science.gov (United States)

    Immunosuppressive viruses are known to affect vaccinal immunity, however the impact of virally induced immunosuppression on avian influenza vaccine efficacy has not been quantified. In order to determine the effect of exposure to infectious bursal disease virus (IBDV) on vaccinal immunity to highly ...

  7. Inactivation of Aujeszky's disease virus in slurry at various temperatures

    DEFF Research Database (Denmark)

    Bøtner, Anette

    1991-01-01

    Survival of Aujeszky's disease virus in pig slurry was investigated during anaerobic storage at 5, 20, 35, 40, 45, 50 and 55°C using 100-ml laboratory models simulating the conditions in slurry tanks during winter and summer seasons and during anaerobic digestion in batch reactors. The inactivation...... rate was found to increase with increasing temperature. Virus was inactivated at 5 and 20°C in 15 weeks and 2 weeks, respectively. At 35°C (mesophilic conditions) the virus was inactivated in 5 hours and at 55°C (thermophilic conditions) no virus could be detected after 10 minutes....

  8. Serological survey of infectious bursal diseases virus antibodies in ...

    African Journals Online (AJOL)

    Columba livia) and 30 from Nigerian laughing doves (Streptopelia senegalensis) were screened for antibodies to infectious bursal disease virus (IBDV) using the enzyme-linked immunosorbent assay (ELISA). Three (20%) samples from cattle ...

  9. NNDSS - Table II. Varicella to West Nile virus disease

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Varicella to West Nile virus disease - 2014.In this Table, all conditions with a 5-year average annual national total of more than or equals 1,000...

  10. Genetic Similarity between Cotton Leafroll Dwarf Virus and Chickpea Stunt Disease Associated Virus in India

    Directory of Open Access Journals (Sweden)

    Arup Kumar Mukherjee

    2016-12-01

    Full Text Available The cotton leafroll dwarf virus (CLRDV is one of the most devastating pathogens of cotton. This malady, known as cotton blue disease, is widespread in South America where it causes huge crop losses. Recently the disease has been reported from India. We noticed occurrence of cotton blue disease and chickpea stunt disease in adjoining cotton and chickpea fields and got interested in knowing if these two viral diseases have some association. By genetic studies, we have shown here that CLRDV is very close to chickpea stunt disease associated virus (CpSDaV. We were successful in transmitting the CLRDV from cotton to chickpea. Our studies indicate that CpSDaV and CLRDV in India are possibly two different strains of the same virus. These findings would be helpful in managing these serious diseases by altering the cropping patterns.

  11. A replication-deficient rabies virus vaccine expressing Ebola virus glycoprotein is highly attenuated for neurovirulence

    International Nuclear Information System (INIS)

    Papaneri, Amy B.; Wirblich, Christoph; Cann, Jennifer A.; Cooper, Kurt; Jahrling, Peter B.; Schnell, Matthias J.; Blaney, Joseph E.

    2012-01-01

    We are developing inactivated and live-attenuated rabies virus (RABV) vaccines expressing Ebola virus (EBOV) glycoprotein for use in humans and endangered wildlife, respectively. Here, we further characterize the pathogenesis of the live-attenuated RABV/EBOV vaccine candidates in mice in an effort to define their growth properties and potential for safety. RABV vaccines expressing GP (RV-GP) or a replication-deficient derivative with a deletion of the RABV G gene (RVΔG-GP) are both avirulent after intracerebral inoculation of adult mice. Furthermore, RVΔG-GP is completely avirulent upon intracerebral inoculation of suckling mice unlike parental RABV vaccine or RV-GP. Analysis of RVΔG-GP in the brain by quantitative PCR, determination of virus titer, and immunohistochemistry indicated greatly restricted virus replication. In summary, our findings indicate that RV-GP retains the attenuation phenotype of the live-attenuated RABV vaccine, and RVΔG-GP would appear to be an even safer alternative for use in wildlife or consideration for human use.

  12. A replication-deficient rabies virus vaccine expressing Ebola virus glycoprotein is highly attenuated for neurovirulence

    Energy Technology Data Exchange (ETDEWEB)

    Papaneri, Amy B. [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702 (United States); Wirblich, Christoph [Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Cann, Jennifer A.; Cooper, Kurt [Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick MD, 21702 (United States); Jahrling, Peter B. [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702 (United States); Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick MD, 21702 (United States); Schnell, Matthias J., E-mail: matthias.schnell@jefferson.edu [Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Jefferson Vaccine Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Blaney, Joseph E., E-mail: jblaney@niaid.nih.gov [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702 (United States)

    2012-12-05

    We are developing inactivated and live-attenuated rabies virus (RABV) vaccines expressing Ebola virus (EBOV) glycoprotein for use in humans and endangered wildlife, respectively. Here, we further characterize the pathogenesis of the live-attenuated RABV/EBOV vaccine candidates in mice in an effort to define their growth properties and potential for safety. RABV vaccines expressing GP (RV-GP) or a replication-deficient derivative with a deletion of the RABV G gene (RV{Delta}G-GP) are both avirulent after intracerebral inoculation of adult mice. Furthermore, RV{Delta}G-GP is completely avirulent upon intracerebral inoculation of suckling mice unlike parental RABV vaccine or RV-GP. Analysis of RV{Delta}G-GP in the brain by quantitative PCR, determination of virus titer, and immunohistochemistry indicated greatly restricted virus replication. In summary, our findings indicate that RV-GP retains the attenuation phenotype of the live-attenuated RABV vaccine, and RV{Delta}G-GP would appear to be an even safer alternative for use in wildlife or consideration for human use.

  13. Modified vaccinia virus Ankara expressing the hemagglutinin of pandemic (H1N1) 2009 virus induces cross-protective immunity against Eurasian 'avian-like' H1N1 swine viruses in mice.

    Science.gov (United States)

    Castrucci, Maria R; Facchini, Marzia; Di Mario, Giuseppina; Garulli, Bruno; Sciaraffia, Ester; Meola, Monica; Fabiani, Concetta; De Marco, Maria A; Cordioli, Paolo; Siccardi, Antonio; Kawaoka, Yoshihiro; Donatelli, Isabella

    2014-05-01

    To examine cross-reactivity between hemagglutinin (HA) derived from A/California/7/09 (CA/09) virus and that derived from representative Eurasian "avian-like" (EA) H1N1 swine viruses isolated in Italy between 1999 and 2008 during virological surveillance in pigs. Modified vaccinia virus Ankara (MVA) expressing the HA gene of CA/09 virus (MVA-HA-CA/09) was used as a vaccine to investigate cross-protective immunity against H1N1 swine viruses in mice. Two classical swine H1N1 (CS) viruses and four representative EA-like H1N1 swine viruses previously isolated during outbreaks of respiratory disease in pigs on farms in Northern Italy were used in this study. Female C57BL/6 mice were vaccinated with MVA/HA/CA/09 and then challenged intranasally with H1N1 swine viruses. Cross-reactive antibody responses were determined by hemagglutination- inhibition (HI) and virus microneutralizing (MN) assays of sera from MVA-vaccinated mice. The extent of protective immunity against infection with H1N1 swine viruses was determined by measuring lung viral load on days 2 and 4 post-challenge. Systemic immunization of mice with CA/09-derived HA, vectored by MVA, elicited cross-protective immunity against recent EA-like swine viruses. This immune protection was related to the levels of cross-reactive HI antibodies in the sera of the immunized mice and was dependent on the similarity of the antigenic site Sa of H1 HAs. Our findings suggest that the herd immunity elicited in humans by the pandemic (H1N1) 2009 virus could limit the transmission of recent EA-like swine HA genes into the influenza A virus gene pool in humans. © 2013 The Authors Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  14. Expression of Herpes Simplex Virus 1 Glycoprotein B by a Recombinant Vaccinia Virus and Protection of Mice against Lethal Herpes Simplex Virus 1 Infection

    Science.gov (United States)

    Cantin, Edouard M.; Eberle, Richard; Baldick, Joseph L.; Moss, Bernard; Willey, Dru E.; Notkins, Abner L.; Openshaw, Harry

    1987-08-01

    The herpes simplex virus 1 (HSV-1) strain F gene encoding glycoprotein gB was isolated and modified at the 5' end by in vitro oligonucleotide-directed mutagenesis. The modified gB gene was inserted into the vaccinia virus genome and expressed under the control of a vaccinia virus promoter. The mature gB glycoprotein produced by the vaccinia virus recombinant was glycosylated, was expressed at the cell surface, and was indistinguishable from authentic HSV-1 gB in terms of electrophoretic mobility. Mice immunized intradermally with the recombinant vaccinia virus produced gB-specific neutralizing antibodies and were resistant to a lethal HSV-1 challenge.

  15. Bovine parainfluenza virus type 3 (PIV3) expressing the respiratory syncytial virus (RSV) attachment and fusion proteins protects hamsters from challenge with human PIV3 and RSV.

    Science.gov (United States)

    Haller, Aurelia A; Mitiku, Misrach; MacPhail, Mia

    2003-08-01

    Parainfluenza virus type 3 (PIV3) and respiratory syncytial virus (RSV) are the main causes of ubiquitous acute respiratory diseases of infancy and early childhood, causing 20-25 % of pneumonia and 45-50 % of bronchiolitis in hospitalized children. The primary goal of this study was to create an effective and safe RSV vaccine based on utilizing attenuated bovine PIV3 (bPIV3) as a virus vector backbone. bPIV3 had been evaluated in human clinical trials and was shown to be attenuated and immunogenic in children as young as 2 months of age. The ability of bPIV3 to function as a virus vaccine vector was explored further by introducing the RSV attachment (G) and fusion (F) genes into the bPIV3 RNA genome. The resulting virus, bPIV3/RSV(I), contained an insert of 2900 nt, comprising two translationally competent transcription units. Despite this increase in genetic material, the virus replicated to high titres in Vero cells. This recombinant virus expressed the RSV G and F proteins sufficiently to evoke a protective immune response in hamsters upon challenge with RSV or human PIV3 and to elicit RSV neutralizing and PIV3 haemagglutinin inhibition serum antibodies. In effect, a bivalent vaccine was produced that could protect vaccinees from RSV as well as PIV3. Such a vaccine would vastly reduce the respiratory disease burden, the associated hospitalization costs and, most importantly, decrease morbidity and mortality of infants, immunocompromised individuals and the elderly.

  16. Validation of reference genes for quantifying changes in gene expression in virus-infected tobacco.

    Science.gov (United States)

    Baek, Eseul; Yoon, Ju-Yeon; Palukaitis, Peter

    2017-10-01

    To facilitate quantification of gene expression changes in virus-infected tobacco plants, eight housekeeping genes were evaluated for their stability of expression during infection by one of three systemically-infecting viruses (cucumber mosaic virus, potato virus X, potato virus Y) or a hypersensitive-response-inducing virus (tobacco mosaic virus; TMV) limited to the inoculated leaf. Five reference-gene validation programs were used to establish the order of the most stable genes for the systemically-infecting viruses as ribosomal protein L25 > β-Tubulin > Actin, and the least stable genes Ubiquitin-conjugating enzyme (UCE) genes were EF1α > Cysteine protease > Actin, and the least stable genes were GAPDH genes, three defense responsive genes were examined to compare their relative changes in gene expression caused by each virus. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Status of cocoa swollen shoot virus disease in Nigeria | Dongo ...

    African Journals Online (AJOL)

    Cocoa Swollen Shoot Virus Disease (CSSVD) is one of the major diseases affecting cocoa production in West Africa, especially Ghana. The lack of any published article on the continued presence or absence of this viral disease has necessitated this investigation. Cocoa leaf samples from plants showing symptoms of leaf ...

  18. Assay for Serum Antibodies to Infectious Bursal Disease Virus in ...

    African Journals Online (AJOL)

    Infectious bursal disease (IBD) is an acute, lymphocidal disease that has been a threat to poultry production in Nigeria and a major disease problem of poultry producing areas of the world. A serological detection of antibodies to the virus was conducted on 300 sera samples derived from local chickens slaughtered at Sheik ...

  19. Status of cocoa swollen shoot virus disease in Nigeria

    African Journals Online (AJOL)

    SERVER

    2007-09-05

    Sep 5, 2007 ... Cocoa Swollen Shoot Virus Disease (CSSVD) is one of the major diseases affecting cocoa production in. West Africa, especially Ghana. The lack of any published article on the continued presence or absence of this viral disease has necessitated this investigation. Cocoa leaf samples from plants showing.

  20. Cloning and expression of Aujeszky's disease virus glycoprotein E (gE in a baculovirus system Clonagem e expressão da glicoproteina E (gE do vírus da doença de Aujeszky em sistema de baculovirus

    Directory of Open Access Journals (Sweden)

    Régia Maria Feltrin Dambros

    2007-09-01

    Full Text Available Aujeszky' s disease (AD is an infectious disease causing important economic losses to the swine industry worldwide. The disease is caused by an alpha-herpesvirus, Aujeszky' s disease virus (ADV, an enveloped virus with a double stranded linear DNA genome. The ADV genome encodes 11 glycoproteins, which are major targets for the immune system of the host in response to the infection. The glycoprotein E (gE is a non-essential protein and deletion of the gE gene has been used for the production of marker vaccines. Aiming to develop molecular reagents for the production of a gE specific ELISA test, the gE gene was amplified by PCR, cloned and expressed into a baculovirus expression system. The recombinant DNA vector pFastBac-gE-ADV was used for site-specific transposition into the recombinant baculovirus (bacmid. Colonies with recombinant bacmid-pFastBac-gE-ADV were selected by antibiotic and color selection and the presence of the gE gene was confirmed by PCR. The recombinant bacmid-pFastBac-gE-ADV was cotransfected in insect Trichoplusia ni and the presence of the recombinant DNA and gE protein were detected by PCR, SDS-PAGE and Western blotting, respectively.A doença de Aujeszky (DA é uma enfermidade infecto-contagiosa que causa grandes perdas econômicas ao produtor e à agroindústria suinícola em todo o mundo. É causada pelo vírus da doença de Aujeszky (VDA, um alfaherpesvírus envelopado com genoma DNA de fita dupla e linear. O genoma do VDA codifica 11 glicoproteínas, as quais são os maiores alvos do sistema imune do hospedeiro em resposta a infecção. A glicoproteína E (gE é uma proteína não essencial e a deleção do gene da gE é muito utilizada para a produção de vacinas com marcadores. Com o objetivo de desenvolver insumos moleculares para a produção de um teste de ELISA específico para gE do VDA, a seqüência do gene da gE foi amplificada, clonada e expressa no sistema de expressão em baculovírus. O produto da

  1. Heterologous prime-boost immunization of Newcastle disease virus vectored vaccines protected broiler chickens against highly pathogenic avian influenza and Newcastle disease viruses.

    Science.gov (United States)

    Kim, Shin-Hee; Samal, Siba K

    2017-07-24

    Avian Influenza virus (AIV) is an important pathogen for both human and animal health. There is a great need to develop a safe and effective vaccine for AI infections in the field. Live-attenuated Newcastle disease virus (NDV) vectored AI vaccines have shown to be effective, but preexisting antibodies to the vaccine vector can affect the protective efficacy of the vaccine in the field. To improve the efficacy of AI vaccine, we generated a novel vectored vaccine by using a chimeric NDV vector that is serologically distant from NDV. In this study, the protective efficacy of our vaccines was evaluated by using H5N1 highly pathogenic avian influenza virus (HPAIV) strain A/Vietnam/1203/2004, a prototype strain for vaccine development. The vaccine viruses were three chimeric NDVs expressing the hemagglutinin (HA) protein in combination with the neuraminidase (NA) protein, matrix 1 protein, or nonstructural 1 protein. Comparison of their protective efficacy between a single and prime-boost immunizations indicated that prime immunization of 1-day-old SPF chicks with our vaccine viruses followed by boosting with the conventional NDV vector strain LaSota expressing the HA protein provided complete protection of chickens against mortality, clinical signs and virus shedding. Further verification of our heterologous prime-boost immunization using commercial broiler chickens suggested that a sequential immunization of chickens with chimeric NDV vector expressing the HA and NA proteins following the boost with NDV vector expressing the HA protein can be a promising strategy for the field vaccination against HPAIVs and against highly virulent NDVs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Immunization of pigs with an attenuated pseudorabies virus recombinant expressing the haemagglutinin of pandemic swine origin H1N1 influenza A virus.

    Science.gov (United States)

    Klingbeil, Katharina; Lange, Elke; Teifke, Jens P; Mettenleiter, Thomas C; Fuchs, Walter

    2014-04-01

    Pigs can be severely harmed by influenza, and represent important reservoir hosts, in which new human pathogens such as the recent pandemic swine-origin H1N1 influenza A virus can arise by mutation and reassortment of genome segments. To obtain novel, safe influenza vaccines for pigs, and to investigate the antigen-specific immune response, we modified an established live-virus vaccine against Aujeszky's disease of swine, pseudorabies virus (PrV) strain Bartha (PrV-Ba), to serve as vector for the expression of haemagglutinin (HA) of swine-origin H1N1 virus. To facilitate transgene insertion, the genome of PrV-Ba was cloned as a bacterial artificial chromosome. HA expression occurred under control of the human or murine cytomegalovirus immediate early promoters (P-HCMV, P-MCMV), but could be substantially enhanced by synthetic introns and adaptation of the codon usage to that of PrV. However, despite abundant expression, the heterologous glycoprotein was not detectably incorporated into mature PrV particles. Replication of HA-expressing PrV in cell culture was only slightly affected compared to that of the parental virus strain. A single immunization of pigs with the PrV vector expressing the codon-optimized HA gene under control of P-MCMV induced high levels of HA-specific antibodies. The vaccinated animals were protected from clinical signs after challenge with a related swine-origin H1N1 influenza A virus, and challenge virus shedding was significantly reduced.

  3. Travel to tropical areas: Zika virus disease

    CERN Multimedia

    CERN Medical Service

    2016-01-01

    Transmitted by the bite of a certain species of mosquitoes (Aedes), the Zika virus is spreading quickly in tropical areas of Central America, the Caribbean and South America.   Although no specific treatment nor vaccine is currently available, the most effective preventive measures are those focused on avoiding mosquito bites. There are no travel restrictions in place at present. However it is recommended that pregnant women defer travel plans to countries affected by the Zika virus. For further information on symptoms and prevention measures, please click on the Zika virus link or contact the Medical Service.

  4. Primary EBV infection induces an expression profile distinct from other viruses but similar to hemophagocytic syndromes.

    Directory of Open Access Journals (Sweden)

    Samantha K Dunmire

    Full Text Available Epstein-Barr Virus (EBV causes infectious mononucleosis and establishes lifelong infection associated with cancer and autoimmune disease. To better understand immunity to EBV, we performed a prospective study of natural infection in healthy humans. Transcriptome analysis defined a striking and reproducible expression profile during acute infection but no lasting gene changes were apparent during latent infection. Comparing the EBV response profile to multiple other acute viral infections, including influenza A (influenza, respiratory syncytial virus (RSV, human rhinovirus (HRV, attenuated yellow fever virus (YFV, and Dengue fever virus (DENV, revealed similarity only to DENV. The signature shared by EBV and DENV was also present in patients with hemophagocytic syndromes, suggesting these two viruses cause uncontrolled inflammatory responses. Interestingly, while EBV induced a strong type I interferon response, a subset of interferon induced genes, including MX1, HERC5, and OAS1, were not upregulated, suggesting a mechanism by which viral antagonism of immunity results in a profound inflammatory response. These data provide an important first description of the response to a natural herpesvirus infection in humans.

  5. DNA microarray global gene expression analysis of influenza virus-infected chicken and duck cells

    Directory of Open Access Journals (Sweden)

    Suresh V. Kuchipudi

    2015-06-01

    Full Text Available The data described in this article pertain to the article by Kuchipudi et al. (2014 titled “Highly Pathogenic Avian Influenza Virus Infection in Chickens But Not Ducks Is Associated with Elevated Host Immune and Pro-inflammatory Responses” [1]. While infection of chickens with highly pathogenic avian influenza (HPAI H5N1 virus subtypes often leads to 100% mortality within 1 to 2 days, infection of ducks in contrast causes mild or no clinical signs. The rapid onset of fatal disease in chickens, but with no evidence of severe clinical symptoms in ducks, suggests underlying differences in their innate immune mechanisms. We used Chicken Genechip microarrays (Affymetrix to analyse the gene expression profiles of primary chicken and duck lung cells infected with a low pathogenic avian influenza (LPAI H2N3 virus and two HPAI H5N1 virus subtypes to understand the molecular basis of host susceptibility and resistance in chickens and ducks. Here, we described the experimental design, quality control and analysis that were performed on the data set. The data are publicly available through the Gene Expression Omnibus (GEOdatabase with accession number GSE33389, and the analysis and interpretation of these data are included in Kuchipudi et al. (2014 [1].

  6. Acute viral hemorrhage disease: A summary on new viruses

    Directory of Open Access Journals (Sweden)

    Somsri Wiwanitkit

    2015-10-01

    Full Text Available Acute hemorrhagic disease is an important problem in medicine that can be seen in many countries, especially those in tropical world. There are many causes of acute hemorrhagic disease and the viral infection seems to be the common cause. The well-known infection is dengue, however, there are many new identified viruses that can cause acute hemorrhagic diseases. In this specific short review, the authors present and discuss on those new virus diseases that present as “acute hemorrhagic fever”.

  7. High-efficiency protein expression in plants from agroinfection-compatible Tobacco mosaic virus expression vectors

    Directory of Open Access Journals (Sweden)

    Lindbo John A

    2007-08-01

    Full Text Available Abstract Background Plants are increasingly being examined as alternative recombinant protein expression systems. Recombinant protein expression levels in plants from Tobacco mosaic virus (TMV-based vectors are much higher than those possible from plant promoters. However the common TMV expression vectors are costly, and at times technically challenging, to work with. Therefore it was a goal to develop TMV expression vectors that express high levels of recombinant protein and are easier, more reliable, and more cost-effective to use. Results We have constructed a Cauliflower mosaic virus (CaMV 35S promoter-driven TMV expression vector that can be delivered as a T-DNA to plant cells by Agrobacterium tumefaciens. Co-introduction (by agroinfiltration of this T-DNA along with a 35S promoter driven gene for the RNA silencing suppressor P19, from Tomato bushy stunt virus (TBSV resulted in essentially complete infection of the infiltrated plant tissue with the TMV vector by 4 days post infiltration (DPI. The TMV vector produced between 600 and 1200 micrograms of recombinant protein per gram of infiltrated tissue by 6 DPI. Similar levels of recombinant protein were detected in systemically infected plant tissue 10–14 DPI. These expression levels were 10 to 25 times higher than the most efficient 35S promoter driven transient expression systems described to date. Conclusion These modifications to the TMV-based expression vector system have made TMV vectors an easier, more reliable and more cost-effective way to produce recombinant proteins in plants. These improvements should facilitate the production of recombinant proteins in plants for both research and product development purposes. The vector should be especially useful in high-throughput experiments.

  8. Frequently Asked Questions on Ebola Virus Disease

    Science.gov (United States)

    ... equipment - posters 6. Can Ebola be transmitted sexually? Sexual transmission of the Ebola virus, from males to females, ... and research are needed on the risks of sexual transmission, and particularly on the prevalence of viable and ...

  9. Treatment of medulloblastoma with oncolytic measles viruses expressing the angiogenesis inhibitors endostatin and angiostatin

    International Nuclear Information System (INIS)

    Hutzen, Brian; Bid, Hemant Kumar; Houghton, Peter J; Pierson, Christopher R; Powell, Kimerly; Bratasz, Anna; Raffel, Corey; Studebaker, Adam W

    2014-01-01

    Medulloblastoma is the most common type of pediatric brain tumor. Although numerous factors influence patient survival rates, more than 30% of all cases will ultimately be refractory to conventional therapies. Current standards of care are also associated with significant morbidities, giving impetus for the development of new treatments. We have previously shown that oncolytic measles virotherapy is effective against medulloblastoma, leading to significant prolongation of survival and even cures in mouse xenograft models of localized and metastatic disease. Because medulloblastomas are known to be highly vascularized tumors, we reasoned that the addition of angiogenesis inhibitors could further enhance the efficacy of oncolytic measles virotherapy. Toward this end, we have engineered an oncolytic measles virus that express a fusion protein of endostatin and angiostatin, two endogenous and potent inhibitors of angiogenesis. Oncolytic measles viruses encoding human and mouse variants of a secretable endostatin/angiostatin fusion protein were designed and rescued according to established protocols. These viruses, known as MV-hE:A and MV-mE:A respectively, were then evaluated for their anti-angiogenic potential and efficacy against medulloblastoma cell lines and orthotopic mouse models of localized disease. Medulloblastoma cells infected by MV-E:A readily secrete endostatin and angiostatin prior to lysis. The inclusion of the endostatin/angiostatin gene did not negatively impact the measles virus’ cytotoxicity against medulloblastoma cells or alter its growth kinetics. Conditioned media obtained from these infected cells was capable of inhibiting multiple angiogenic factors in vitro, significantly reducing endothelial cell tube formation, viability and migration compared to conditioned media derived from cells infected by a control measles virus. Mice that were given a single intratumoral injection of MV-E:A likewise showed reduced numbers of tumor-associated blood

  10. Adeno-Associated Virus Vectors (AAV Expressing Phenylalanine Hydroxylase (PAH

    Directory of Open Access Journals (Sweden)

    Ayşegül Akbay Yarpuzlu

    2009-06-01

    Full Text Available Recent articles have appeared in the literature reporting use of adeno-associated virus vectors (AAV expressing phenylalanine hydroxylase in animal trials and suggesting its use in treatment of phenylketonuria (PKU as a form of gene therapy However, agents used in gene therapy to deliver genes are not site-specific and DNA is may be put in the wrong place, causing damage to the organism. The adverse immunogenicity of AAVs also needs to be reconsidered. This letter is written to discuss present unreadiness for Phase 1 clinical trials of gene therapy of PKU. Turk Jem 2009; 13: 18-9

  11. The Pathogenesis of Ebola Virus Disease.

    Science.gov (United States)

    Baseler, Laura; Chertow, Daniel S; Johnson, Karl M; Feldmann, Heinz; Morens, David M

    2017-01-24

    For almost 50 years, ebolaviruses and related filoviruses have been repeatedly reemerging across the vast equatorial belt of the African continent to cause epidemics of highly fatal hemorrhagic fever. The 2013-2015 West African epidemic, by far the most geographically extensive, most fatal, and longest lasting epidemic in Ebola's history, presented an enormous international public health challenge, but it also provided insights into Ebola's pathogenesis and natural history, clinical expression, treatment, prevention, and control. Growing understanding of ebolavirus pathogenetic mechanisms and important new clinical observations of the disease course provide fresh clues about prevention and treatment approaches. Although viral cytopathology and immune-mediated cell damage in ebolavirus disease often result in severe compromise of multiple organs, tissue repair and organ function recovery can be expected if patients receive supportive care with fluids and electrolytes; maintenance of oxygenation and tissue perfusion; and respiratory, renal, and cardiovascular support. Major challenges for managing future Ebola epidemics include establishment of early and aggressive epidemic control and earlier and better patient care and treatment in remote, resource-poor areas where Ebola typically reemerges. In addition, it will be important to further develop Ebola vaccines and to adopt policies for their use in epidemic and pre-epidemic situations.

  12. Protection of pigs against pandemic swine origin H1N1 influenza A virus infection by hemagglutinin- or neuraminidase-expressing attenuated pseudorabies virus recombinants.

    Science.gov (United States)

    Klingbeil, Katharina; Lange, Elke; Blohm, Ulrike; Teifke, Jens P; Mettenleiter, Thomas C; Fuchs, Walter

    2015-03-02

    Influenza is an important respiratory disease of pigs, and may lead to novel human pathogens like the 2009 pandemic H1N1 swine-origin influenza virus (SoIV). Therefore, improved influenza vaccines for pigs are required. Recently, we demonstrated that single intranasal immunization with a hemagglutinin (HA)-expressing pseudorabies virus recombinant of vaccine strain Bartha (PrV-Ba) protected pigs from H1N1 SoIV challenge (Klingbeil et al., 2014). Now we investigated enhancement of efficacy by prime-boost vaccination and/or intramuscular administration. Furthermore, a novel PrV-Ba recombinant expressing codon-optimized N1 neuraminidase (NA) was included. In vitro replication of this virus was only slightly affected compared to parental virus. Unlike HA, the abundantly expressed NA was efficiently incorporated into PrV particles. Immunization of pigs with the two PrV recombinants, either singly or in combination, induced B cell proliferation and the expected SoIV-specific antibodies, whose titers increased substantially after boost vaccination. After immunization of animals with either PrV recombinant H1N1 SoIV challenge virus replication was significantly reduced compared to PrV-Ba vaccinated or naïve controls. Protective efficacy of HA-expressing PrV was higher than of NA-expressing PrV, and not significantly enhanced by combination. Despite higher serum antibody titers obtained after intramuscular immunization, transmission of challenge virus to naïve contact animals was only prevented after intranasal prime-boost vaccination with HA-expressing PrV-Ba. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine

    OpenAIRE

    Chen, Yang; Guo, Wanzhu; Xu, Zhiwen; Yan, Qigui; Luo, Yan; Shi, Qian; Chen, Dishi; Zhu, Ling; Wang, Xiaoyu

    2011-01-01

    Abstract Background Porcine parvovirus (PPV) VP2 gene has been successfully expressed in many expression systems resulting in self-assembly of virus-like particles (VLPs) with similar morphology to the native capsid. Here, a pseudorabies virus (PRV) system was adopted to express the PPV VP2 gene. Methods A recombinant PRV SA215/VP2 was obtained by homologous recombination between the vector PRV viral DNA and a transfer plasmid. Then recombinant virus was purified with plaque purification, and...

  14. Comprehensive profiling of functional Epstein-Barr virus miRNA expression in human cell lines

    NARCIS (Netherlands)

    Hooykaas, Marjolein J G; Kruse, Elisabeth; Wiertz, Emmanuel J H J; Lebbink, Robert Jan

    2016-01-01

    BACKGROUND: Epstein-Barr virus (EBV) establishes lifelong infections in its human host. The virus is associated with a broad range of malignancies of lymphoid and epithelial origin, including Burkitt's lymphoma, post-transplant lymphoproliferative disease, nasopharyngeal carcinoma and gastric

  15. Hepadna viruses

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, W.; Koike, K.; Will, H.

    1987-01-01

    This book examines the molecular biology, disease pathogenesis, epidemiology, and clinical features of hepadna and other viruses with hepatic tropism and outlines future directions and approaches for their management. The volume's six sections provide a review of the various features, mechanisms, and functions of these viruses, ranging from hepadna virus replication and regulation of gene expression to the structure and function of hepadna-virus gene products.

  16. Dengue Virus Induces Novel Changes in Gene Expression of Human Umbilical Vein Endothelial Cells

    Science.gov (United States)

    Warke, Rajas V.; Xhaja, Kris; Martin, Katherine J.; Fournier, Marcia F.; Shaw, Sunil K.; Brizuela, Nathaly; de Bosch, Norma; Lapointe, David; Ennis, Francis A.; Rothman, Alan L.; Bosch, Irene

    2003-01-01

    Endothelial cells are permissive to dengue virus (DV) infection in vitro, although their importance as targets of DV infection in vivo remains a subject of debate. To analyze the virus-host interaction, we studied the effect of DV infection on gene expression in human umbilical vein endothelial cells (HUVECs) by using differential display reverse transcription-PCR (DD-RTPCR), quantitative RT-PCR, and Affymetrix oligonucleotide microarrays. DD identified eight differentially expressed cDNAs, including inhibitor of apoptosis-1, 2′-5′ oligoadenylate synthetase (OAS), a 2′-5′ OAS-like (OASL) gene, galectin-9, myxovirus protein A (MxA), regulator of G-protein signaling, endothelial and smooth muscle cell-derived neuropilin-like protein, and phospholipid scramblase 1. Microarray analysis of 22,000 human genes confirmed these findings and identified an additional 269 genes that were induced and 126 that were repressed more than fourfold after DV infection. Broad functional responses that were activated included the stress, defense, immune, cell adhesion, wounding, inflammatory, and antiviral pathways. These changes in gene expression were seen after infection of HUVECs with either laboratory-adapted virus or with virus isolated directly from plasma of DV-infected patients. Tumor necrosis factor alpha, OASL, and MxA and h-IAP1 genes were induced within the first 8 to 12 h after infection, suggesting a direct effect of DV infection. These global analyses of DV effects on cellular gene expression identify potentially novel mechanisms involved in dengue disease manifestations such as hemostatic disturbance. PMID:14557666

  17. Avian influenza A virus and Newcastle disease virus mono- and co-infections in birds

    Directory of Open Access Journals (Sweden)

    Iv. Zarkov

    2017-06-01

    Full Text Available The main features of avian influenza viruses (AIV and Newcastle disease virus (APMV-1, the possibilities for isolation and identification in laboratory conditions, methods of diagnostics, main hosts, clinical signs and virus shedding are reviewed in chronological order. The other part of the review explains the mechanisms and interactions in cases of co-infection of AIV and APMV-1, either between them or with other pathogens in various indicator systems – cell cultures, chick embryos or birds. The emphasis is placed on quantitative data on the virus present mainly in the first ten days following experimental infection of birds, the periods of virus carrier ship and shedding, clinical signs, pathological changes, diagnostic challenges

  18. Bovine Viral Diarrhea Virus-Associated Disease in Feedlot Cattle.

    Science.gov (United States)

    Larson, Robert L

    2015-11-01

    Bovine viral diarrhea virus (BVDv) is associated with bovine respiratory disease complex and other diseases of feedlot cattle. Although occasionally a primary pathogen, BVDv's impact on cattle health is through the immunosuppressive effects of the virus and its synergism with other pathogens. The simple presence or absence of BVDv does not result in consistent health outcomes because BVDv is only one of many risk factors that contribute to disease syndromes. Current interventions have limitations and the optimum strategy for their uses to limit the health, production, and economic costs associated with BVDv have to be carefully considered for optimum cost-effectiveness. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Marek’s disease virus evolution in specific MHC haplotypes.

    Science.gov (United States)

    The clinical nature of Marek’s disease has changed over the last five decades. The pathogenicity of the Marek’s disease virus (MDV) has evolved from the relatively mild strains (mMDV) observed in the 1960s to the more severe strains labeled very virulent plus (vv+MDV) currently observed in today’s o...

  20. Perception and prevention practices against Ebola Virus Disease by ...

    African Journals Online (AJOL)

    The expanding bushmeat market in Africa contributes to the transmission of zoonotic disease which may lead to global pandemic. Example is Nigeria where the first outbreak of Ebola Virus Disease (EVD), which originated from an imported case, was reported in July, 2014. Hence, the study tried to understand the ...

  1. genetics of resistance to groundnut rosette virus disease abstract

    African Journals Online (AJOL)

    ACSS

    Groundnut Rosette Virus disease (GRD) has long been regarded a major limiting biotic constraint to groundnut production in Sub-Saharan Africa (SSA). The disease is caused by a complex of three viral components that interact in a synergistic fashion resulting into severe crop losses. A study was conducted to better ...

  2. Genetics of resistance to groundnut rosette virus disease. | Kayondo ...

    African Journals Online (AJOL)

    Groundnut Rosette Virus disease (GRD) has long been regarded a major limiting biotic constraint to groundnut production in Sub-Saharan Africa (SSA). The disease is caused by a complex of three viral components that interact in a synergistic fashion resulting into severe crop losses. A study was conducted to better ...

  3. Haematology of infectious bursal disease virus infected chickens on ...

    African Journals Online (AJOL)

    Garlic (Allium sativum) is an herbal spice proven to posses antimicrobial and immunostimulating properties which could be useful in the control of endemic diseases of poultry such as infectious bursal disease (IBD). Its effect on IBD virus infection was therefore investigated via haematological assessment. One hundred and ...

  4. Quality and Toxicity Assessments of Foot and Mouth Disease Virus ...

    African Journals Online (AJOL)

    The quality and toxicity assessment of foot and mouth disease virus vaccine was carried out in inoculated guinea pigs. The vaccine was developed from local isolates for the control and prevention of foot and mouth disease in Nigerian cattle. All the vaccine inputs tested were sterile and the high mean titre levels of ...

  5. Prevalence of Newcastle disease virus antibodies in sera and eggs ...

    African Journals Online (AJOL)

    ADEYEYE

    2016-03-07

    Mar 7, 2016 ... The seroprevalence and maternal antibody profiles to Newcastle disease virus infection of guinea fowls were studied using ..... gallisepticum. Avian diseases, 28 (4): 877-883. Sa'idu L, Tekdek LB & Abdu PA (2004). Prevalence of ND antibodies in domestic and semi domestic birds in Zaria, Nigeria.

  6. Emerging tropical diseases in Australia. Part 5. Hendra virus

    DEFF Research Database (Denmark)

    Tulsiani, Suhella; Graham, G C; Moore, P R

    2011-01-01

    Hendra virus (HeV) was first isolated in 1994, from a disease outbreak involving at least 21 horses and two humans in the Brisbane suburb of Hendra, Australia. The affected horses and humans all developed a severe but unidentified respiratory disease that resulted in the deaths of one of the huma...

  7. Animal models of human respiratory syncytial virus disease

    NARCIS (Netherlands)

    Bem, Reinout A.; Domachowske, Joseph B.; Rosenberg, Helene F.

    2011-01-01

    Infection with the human pneumovirus pathogen, respiratory syncytial virus (hRSV), causes a wide spectrum of respiratory disease, notably among infants and the elderly. Laboratory animal studies permit detailed experimental modeling of hRSV disease and are therefore indispensable in the search for

  8. Epidemiology of Newcastle disease virus among local chickens of ...

    African Journals Online (AJOL)

    Newcastle disease (ND) is one of the major constraints to poultry in most developing countries. It is a highly contagious and fatal disease caused by a virus of the family Paramyxoviridae. In other to evaluate the evidence of ND among village chicken, an epidemiological survey was carried out between September and ...

  9. Variant Rabbit Hemorrhagic Disease Virus in Young Rabbits, Spain

    Science.gov (United States)

    Dalton, Kevin P.; Nicieza, Inés; Balseiro, Ana; Muguerza, María A.; Rosell, Joan M.; Casais, Rosa; Álvarez, Ángel L.

    2012-01-01

    Outbreaks of rabbit hemorrhagic disease have occurred recently in young rabbits on farms on the Iberian Peninsula where rabbits were previously vaccinated. Investigation identified a rabbit hemorrhagic disease virus variant genetically related to apathogenic rabbit caliciviruses. Improved antivirus strategies are needed to slow the spread of this pathogen. PMID:23171812

  10. Production of foot-and-mouth disease virus capsid proteins by the TEV protease.

    Science.gov (United States)

    Puckette, Michael; Smith, Justin D; Gabbert, Lindsay; Schutta, Christopher; Barrera, José; Clark, Benjamin A; Neilan, John G; Rasmussen, Max

    2018-03-23

    Protective immunity to viral pathogens often includes production of neutralizing antibodies to virus capsid proteins. Many viruses produce capsid proteins by expressing a precursor polyprotein and related protease from a single open reading frame. The foot-and-mouth disease virus (FMDV) expresses a 3C protease (3Cpro) that cleaves a P1 polyprotein intermediate into individual capsid proteins, but the FMDV 3Cpro also degrades many host cell proteins and reduces the viability of host cells, including subunit vaccine production cells. To overcome the limitations of using the a wild-type 3Cpro in FMDV subunit vaccine expression systems, we altered the protease restriction sequences within a FMDV P1 polyprotein to enable production of FMDV capsid proteins by the Tobacco Etch Virus NIa protease (TEVpro). Separate TEVpro and modified FMDV P1 proteins were produced from a single open reading frame by an intervening FMDV 2A sequence. The modified FMDV P1 polyprotein was successfully processed by the TEVpro in both mammalian and bacterial cells. More broadly, this method of polyprotein production and processing may be adapted to other recombinant expression systems, especially plant-based expression. Published by Elsevier B.V.

  11. Expression patterns of endogenous avian retrovirus ALVE1 and its response to infection with exogenous avian tumour viruses.

    Science.gov (United States)

    Hu, Xuming; Zhu, Wenqi; Chen, Shihao; Liu, Yangyang; Sun, Zhen; Geng, Tuoyu; Song, Chengyi; Gao, Bo; Wang, Xiaoyan; Qin, Aijian; Cui, Hengmi

    2017-01-01

    Endogenous retroviruses (ERVs) are genomic elements that are present in a wide range of vertebrates and have been implicated in a variety of human diseases, including cancer. However, the characteristic expression patterns of ERVs, particularly in virus-induced tumours, is not fully clear. DNA methylation was analysed by bisulfite pyrosequencing, and gene expression was analysed by RT-qPCR. In this study, we first found that the endogenous avian retrovirus ALVE1 was highly expressed in some chicken tissues (including the heart, bursa, thymus, and spleen) at 2 days of age, but its expression was markedly decreased at 35 days of age. In contrast, the CpG methylation level of ALVE1 was significantly lower in heart and bursa at 2 days than at 35 days of age. Moreover, we found that the expression of ALVE1 was significantly inhibited in chicken embryo fibroblast cells (CEFs) and MSB1 cells infected with avian leukosis virus subgroup J (ALVJ) and reticuloendotheliosis virus (REV) at the early stages of infection. In contrast, the expression of the ALVE1 env gene was significantly induced in CEFs and MSB1 cells infected with Marek's disease virus (MDV). However, the methylation and expression levels of the ALVE1 long terminal repeat (LTR) did not show obvious alterations in response to viral infection. The present study revealed the expression patterns of ALVE1 in a variety of chicken organs and tissues and in chicken cells in response to avian tumour virus infection. These findings may be of significance for understanding the role and function of ERVs that are present in the host genome.

  12. Evolutionary dynamics of Newcastle disease virus

    Science.gov (United States)

    Miller, P.J.; Kim, L.M.; Ip, Hon S.; Afonso, C.L.

    2009-01-01

    A comprehensive dataset of NDV genome sequences was evaluated using bioinformatics to characterize the evolutionary forces affecting NDV genomes. Despite evidence of recombination in most genes, only one event in the fusion gene of genotype V viruses produced evolutionarily viable progenies. The codon-associated rate of change for the six NDV proteins revealed that the highest rate of change occurred at the fusion protein. All proteins were under strong purifying (negative) selection; the fusion protein displayed the highest number of amino acids under positive selection. Regardless of the phylogenetic grouping or the level of virulence, the cleavage site motif was highly conserved implying that mutations at this site that result in changes of virulence may not be favored. The coding sequence of the fusion gene and the genomes of viruses from wild birds displayed higher yearly rates of change in virulent viruses than in viruses of low virulence, suggesting that an increase in virulence may accelerate the rate of NDV evolution. ?? 2009 Elsevier Inc.

  13. Identification of common biological pathways and drug targets across multiple respiratory viruses based on human host gene expression analysis.

    Directory of Open Access Journals (Sweden)

    Steven B Smith

    Full Text Available Pandemic and seasonal respiratory viruses are a major global health concern. Given the genetic diversity of respiratory viruses and the emergence of drug resistant strains, the targeted disruption of human host-virus interactions is a potential therapeutic strategy for treating multi-viral infections. The availability of large-scale genomic datasets focused on host-pathogen interactions can be used to discover novel drug targets as well as potential opportunities for drug repositioning.In this study, we performed a large-scale analysis of microarray datasets involving host response to infections by influenza A virus, respiratory syncytial virus, rhinovirus, SARS-coronavirus, metapneumonia virus, coxsackievirus and cytomegalovirus. Common genes and pathways were found through a rigorous, iterative analysis pipeline where relevant host mRNA expression datasets were identified, analyzed for quality and gene differential expression, then mapped to pathways for enrichment analysis. Possible repurposed drugs targets were found through database and literature searches. A total of 67 common biological pathways were identified among the seven different respiratory viruses analyzed, representing fifteen laboratories, nine different cell types, and seven different array platforms. A large overlap in the general immune response was observed among the top twenty of these 67 pathways, adding validation to our analysis strategy. Of the top five pathways, we found 53 differentially expressed genes affected by at least five of the seven viruses. We suggest five new therapeutic indications for existing small molecules or biological agents targeting proteins encoded by the genes F3, IL1B, TNF, CASP1 and MMP9. Pathway enrichment analysis also identified a potential novel host response, the Parkin-Ubiquitin Proteasomal System (Parkin-UPS pathway, which is known to be involved in the progression of neurodegenerative Parkinson's disease.Our study suggests that

  14. Adenovirus vectored vaccines against influenza a virus do not result in vaccine associated enhanced respiratory disease following heterologous challenge in contrast to whole inactivated virus vaccine

    Science.gov (United States)

    Heterologous influenza A virus (IAV) challenge following vaccination with an intramuscular (IM) whole inactivated vaccine (WIV) can result in vaccine-associated enhanced respiratory disease (VAERD). The objective of this study was to use an adenovirus (Ad5) vector vaccine platform that expressed IAV...

  15. Gene expression profiling in autoimmune diseases

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Brynskov, Jørn; Hegedüs, Laszlo

    2007-01-01

    ) patients and healthy individuals were specific for the arthritic process or likewise altered in other chronic inflammatory diseases such as chronic autoimmune thyroiditis (Hashimoto's thyroiditis, HT) and inflammatory bowel disease (IBD). Using qPCR for 18 RA-discriminative genes, there were no significant......A central issue in autoimmune disease is whether the underlying inflammation is a repeated stereotypical process or whether disease specific gene expression is involved. To shed light on this, we analysed whether genes previously found to be differentially regulated in rheumatoid arthritis (RA...... immunoinflammatory diseases, but only if accompanied by pronounced systemic manifestations. This suggests that at least some of the genes activated in RA are predominantly or solely related to general and disease-nonspecific autoimmune processes...

  16. Recombinant adeno-associated virus targets passenger gene expression to cones in primate retina

    Science.gov (United States)

    Mancuso, Katherine; Hendrickson, Anita E.; Connor, Thomas B., Jr.; Mauck, Matthew C.; Kinsella, James J.; Hauswirth, William W.; Neitz, Jay; Neitz, Maureen

    2007-05-01

    Recombinant adeno-associated virus (rAAV) is a promising vector for gene therapy of photoreceptor-based diseases. Previous studies have demonstrated that rAAV serotypes 2 and 5 can transduce both rod and cone photoreceptors in rodents and dogs, and it can target rods, but not cones in primates. Here we report that using a human cone-specific enhancer and promoter to regulate expression of a green fluorescent protein (GFP) reporter gene in an rAAV-5 vector successfully targeted expression of the reporter gene to primate cones, and the time course of GFP expression was able to be monitored in a living animal using the RetCam II digital imaging system.

  17. Real-Time Evolution of Zika Virus Disease Outbreak, Roatán, Honduras.

    Science.gov (United States)

    Brooks, Trevor; Roy-Burman, Arup; Tuholske, Cascade; Busch, Michael P; Bakkour, Sonia; Stone, Mars; Linnen, Jeffrey M; Gao, Kui; Coleman, Jayleen; Bloch, Evan M

    2017-08-01

    A Zika virus disease outbreak occurred in Roatán, Honduras, during September 2015-July 2016. Blood samples and clinical information were obtained from 183 patients given a clinical diagnosis of suspected dengue virus infection. A total of 79 patients were positive for Zika virus, 13 for chikungunya virus, and 6 for dengue virus.

  18. associated virus (AAV)-mediated expression of small interfering RNA

    African Journals Online (AJOL)

    user

    2011-04-11

    Apr 11, 2011 ... expressed from a DNA-based vector by the function of. *Corresponding .... cleotides were designed, which contained a sense strand of p53 or ..... Subthalamic GAD gene transfer in Parkinson disease patients who are candidates for deep brain stimulation. Hum. Gene Ther. 12(12): 1589-1591. Dufourny L ...

  19. Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus.

    Science.gov (United States)

    Flannery, J G; Zolotukhin, S; Vaquero, M I; LaVail, M M; Muzyczka, N; Hauswirth, W W

    1997-06-24

    We describe a general approach for achieving efficient and cell type-specific expression of exogenous genes in photoreceptor cells of the mammalian retina. Recombinant adeno-associated virus (rAAV) vectors were used to transfer the bacterial lacZ gene or a synthetic green fluorescent protein gene (gfp) to mouse or rat retinas after injection into the subretinal space. Using a proximal murine rod opsin promoter (+86 to -385) to drive expression, reporter gene product was found exclusively in photoreceptors, not in any other retinal cell type or in the adjacent retinal pigment epithelium. GFP-expressing photoreceptors typically encompassed 10-20% of the total retinal area after a single 2-microl injection. Photoreceptors were transduced with nearly 100% efficiency in the region directly surrounding the injection site. We estimate approximately 2.5 million photoreceptors were transduced as a result of the single subretinal inoculation. This level of gene transfer and expression suggests the feasibility of genetic therapy for retinal disease. The gfp-containing rAAV stock was substantially free of both adenovirus and wild-type AAV, as judged by plaque assay and infectious center assay, respectively. Thus, highly purified, helper virus-free rAAV vectors can achieve high-frequency tissue-specific transduction of terminally differentiated, postmitotic photoreceptor cells.

  20. Neurologic disease in feline immunodeficiency virus infection: disease mechanisms and therapeutic interventions for NeuroAIDS.

    Science.gov (United States)

    Power, Christopher

    2017-12-15

    Feline immunodeficiency virus (FIV) is a lentivirus that causes immunosuppression through virus-mediated CD4+ T cell depletion in feline species. FIV infection is complicated by virus-induced disease in the nervous system. FIV enters the brain soon after primary infection and is detected as FIV-encoded RNA, DNA, and proteins in microglia, macrophages, and astrocytes. FIV infection activates neuroinflammatory pathways including cytokines, chemokines, proteases, and ROS with accompanying neuronal injury and loss. Neurobehavioral deficits during FIV infection are manifested as impaired motor and cognitive functions. Several treatment strategies have emerged from studies of FIV neuropathogenesis including the therapeutic benefits of antiretroviral therapies, other protease inhibitors, anti-inflammatory, and neurotrophic compounds. Recently, insulin's antiviral, anti-inflammatory, and neuroprotective effects were investigated in models of lentivirus brain infection. Insulin suppressed HIV-1 replication in human microglia as well as FIV replication of lymphocytes. Insulin treatment diminished cytokine and chemokine activation in HIV-infected microglia while also protecting neurons from HIV-1 Vpr protein-mediated neurotoxicity. Intranasal (IN) insulin delivery for 6 weeks suppressed FIV expression in the brains of treated cats. IN insulin also reduced neuroinflammation and protected neurons in the hippocampus, striatum, and neocortex of FIV-infected animals. These morphological and molecular effects of IN insulin were confirmed by neurobehavioral studies that showed IN insulin-treated FIV-infected animals displayed improved motor and cognitive performance compared to sham-treated FIV-infected animals. Thus, FIV infection of the nervous system provides a valuable comparative in vivo model for discovering and evaluating disease mechanisms as well as developing therapeutic strategies for NeuroAIDS in humans.

  1. Immunogenic virus-like particles continuously expressed in mammalian cells as a veterinary rabies vaccine candidate.

    Science.gov (United States)

    Fontana, Diego; Kratje, Ricardo; Etcheverrigaray, Marina; Prieto, Claudio

    2015-08-20

    Rabies is one of the most lethal infectious diseases in the world, with a mortality approaching 100%. There are between 60,000 and 70,000 reported annual deaths, but this is probably an underestimation. Despite the fact that there are vaccines available for rabies, there is a real need of developing more efficacious and cheaper vaccines. This is particularly true for veterinary vaccines because dogs are still the main vector for rabies transmission to human beings. In a previous work, we described the development and characterization of rabies virus-like particles (RV-VLPs) expressed in HEK293 cells. We showed that RV-VLPs are able to induce a specific antibodies response. In this work, we show that VLPs are able to protect mice against virus challenge. Furthermore, we developed a VLPs expressing HEK-293 clone (sP2E5) that grows in serum free medium (SFM) reaching high cell densities. sP2E5 was cultured in perfusion mode in a 5 L bioreactor for 20 days, and the RV-VLPs produced were capable of triggering a protective immune response without the need of concentration or adjuvant addition. Further, these VLPs are able to induce the production of rabies virus neutralizing antibodies. These results demonstrate that RV-VLPs are a promising rabies vaccine candidate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Ebolavirus Vaccines: Progress in the Fight Against Ebola Virus Disease.

    Science.gov (United States)

    Wu, Xiao-Xin; Yao, Hang-Ping; Wu, Nan-Ping; Gao, Hai-Nv; Wu, Hai-Bo; Jin, Chang-Zhong; Lu, Xiang-Yun; Xie, Tian-Shen; Li, Lan-Juan

    2015-01-01

    Ebolaviruses are highly infectious pathogens that cause lethal Ebola virus disease (EVD) in humans and non-human primates (NHPs). Due to their high pathogenicity and transmissibility, as well as the potential to be misused as a bioterrorism agent, ebolaviruses would threaten the health of global populations if not controlled. In this review, we describe the origin and structure of ebolaviruses and the development of vaccines from the beginning of the 1980s, including conventional ebolavirus vaccines, DNA vaccines, Ebola virus-like particles (VLPs), vaccinia virus-based vaccines, Venezuelan equine encephalitis virus (VEEV)-like replicon particles, Kunjin virus-based vaccine, recombinant Zaire Ebolavirusx2206;VP30, recombinant cytomegalovirus (CMV)-based vaccines, recombinant rabies virus (RABV)-based vaccines, recombinant paramyxovirus-based vaccines, adenovirus-based vaccines and vesicular stomatitis virus (VSV)-based vaccines. No licensed vaccine or specific treatment is currently available to counteract ebolavirus infection, although DNA plasmids and several viral vector approaches have been evaluated as promising vaccine platforms. These vaccine candidates have been confirmed to be successful in protecting NHPs against lethal infection. Moreover, these vaccine candidates were successfully advanced to clinical trials. The present review provides an update of the current research on Ebola vaccines, with the aim of providing an overview on current prospects in the fight against EVD. © 2015 The Author(s) Published by S. Karger AG, Basel.

  3. Advances in vaccine research against economically important viral diseases of food animals: Infectious bursal disease virus.

    Science.gov (United States)

    Jackwood, Daral J

    2017-07-01

    Numerous reviews have been published on infectious bursal disease (IBD) and infectious bursal disease virus (IBDV). Many high quality vaccines are commercially available for the control of IBD that, when used correctly, provide solid protection against infection and disease caused by IBDV. Viruses are not static however; they continue to evolve and vaccines need to keep pace with them. The evolution of IBDV has resulted in very virulent strains and new antigenic types of the virus. This review will discuss some of the limitations associated with existing vaccines, potential solutions to these problems and advances in new vaccines for the control of IBD. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Lytic Promoters Express Protein during Herpes Simplex Virus Latency

    Science.gov (United States)

    Russell, Tiffany A.; Tscharke, David C.

    2016-01-01

    Herpes simplex virus (HSV) has provided the prototype for viral latency with previously well-defined acute or lytic and latent phases. More recently, the deep quiescence of HSV latency has been questioned with evidence that lytic genes can be transcribed in this state. However, to date the only evidence that these transcripts might be translated has come from immunological studies that show activated T cells persist in the nervous system during latency. Here we use a highly sensitive Cre-marking model to show that lytic and latent phases are less clearly defined in two significant ways. First, around half of the HSV spread leading to latently infected sites occurred beyond the initial acute infection and second, we show direct evidence that lytic promoters can drive protein expression during latency. PMID:27348812

  5. Genetic analysis of resistance to six virus diseases in a multiple virus-resistant maize inbred line.

    Science.gov (United States)

    Zambrano, Jose Luis; Jones, Mark W; Brenner, Eric; Francis, David M; Tomas, Adriana; Redinbaugh, Margaret G

    2014-04-01

    Novel and previously known resistance loci for six phylogenetically diverse viruses were tightly clustered on chromosomes 2, 3, 6 and 10 in the multiply virus-resistant maize inbred line, Oh1VI. Virus diseases in maize can cause severe yield reductions that threaten crop production and food supplies in some regions of the world. Genetic resistance to different viruses has been characterized in maize populations in diverse environments using different screening techniques, and resistance loci have been mapped to all maize chromosomes. The maize inbred line, Oh1VI, is resistant to at least ten viruses, including viruses in five different families. To determine the genes and inheritance mechanisms responsible for the multiple virus resistance in this line, F1 hybrids, F2 progeny and a recombinant inbred line (RIL) population derived from a cross of Oh1VI and the virus-susceptible inbred line Oh28 were evaluated. Progeny were screened for their responses to Maize dwarf mosaic virus, Sugarcane mosaic virus, Wheat streak mosaic virus, Maize chlorotic dwarf virus, Maize fine streak virus, and Maize mosaic virus. Depending on the virus, dominant, recessive, or additive gene effects were responsible for the resistance observed in F1 plants. One to three gene models explained the observed segregation of resistance in the F2 generation for all six viruses. Composite interval mapping in the RIL population identified 17 resistance QTLs associated with the six viruses. Of these, 15 were clustered in specific regions of chr. 2, 3, 6, and 10. It is unknown whether these QTL clusters contain single or multiple virus resistance genes, but the coupling phase linkage of genes conferring resistance to multiple virus diseases in this population could facilitate breeding efforts to develop multi-virus resistant crops.

  6. Virus mutations and their impact on vaccination against infectious bursal disease (Gumboro disease).

    Science.gov (United States)

    Boudaoud, A; Mamache, B; Tombari, W; Ghram, A

    2016-12-01

    Infectious bursal disease (also known as Gumboro disease) is an immunosuppressive viral disease specific to chickens. In spite of all the information amassed on the antigenic and immunological characteristics of the virus, the disease has not yet been brought fully under control. It is still prevalent in properly vaccinated flocks carrying specific antibodies at levels normally high enough to prevent the disease. Common causes apart, failure of vaccination against infectious bursal disease is associated mainly with early vaccination in flocks of unknown immune status and with the evolution of viruses circulating in the field, leading to antigenic drift and a sharp rise in pathogenicity. Various highly sensitive molecular techniques have clarified the viral determinants of antigenicity and pathogenicity of the infectious bursal disease virus. However, these markers are not universally recognised and tend to be considered as evolutionary markers. Antigenic variants of the infectious bursal disease virus possess modified neutralising epitopes that allow them to evade the action of maternally-derived or vaccine-induced antibodies. Autogenous or multivalent vaccines are required to control antigenic variants in areas where classical and variant virus strains coexist. Pathotypic variants (very virulent viruses) remain antigenically related to classical viruses. The difficulty in controlling pathotypic variants is linked to the difficulty of eliciting an early immune response, because of the risk of the vaccine virus being neutralised by maternal antibodies. Mathematical calculation of the optimal vaccination time and the use of vaccines resistant to maternally-derived antibodies have improved the control of very virulent viruses. © OIE (World Organisation for Animal Health), 2016.

  7. Transcriptomic Analyses Reveal Differential Gene Expression of Immune and Cell Death Pathways in the Brains of Mice Infected with West Nile Virus and Chikungunya Virus

    Directory of Open Access Journals (Sweden)

    Stephanie M. Lim

    2017-08-01

    Full Text Available West Nile virus (WNV and chikungunya virus (CHIKV are arboviruses that are constantly (re-emerging and expanding their territory. Both viruses often cause a mild form of disease, but severe forms of the disease can consist of neurological symptoms, most often observed in the elderly and young children, respectively, for which the mechanisms are poorly understood. To further elucidate the mechanisms responsible for end-stage WNV and CHIKV neuroinvasive disease, we used transcriptomics to compare the induction of effector pathways in the brain during the early and late stage of disease in young mice. In addition to the more commonly described cell death pathways such as apoptosis and autophagy, we also found evidence for the differential expression of pyroptosis and necroptosis cell death markers during both WNV and CHIKV neuroinvasive disease. In contrast, no evidence of cell dysfunction was observed, indicating that cell death may be the most important mechanism of disease. Interestingly, there was overlap when comparing immune markers involved in neuroinvasive disease to those seen in neurodegenerative diseases. Nonetheless, further validation studies are needed to determine the activation and involvement of these effector pathways at the end stage of disease. Furthermore, evidence for a strong inflammatory response was found in mice infected with WNV and CHIKV. The transcriptomics profile measured in mice with WNV and CHIKV neuroinvasive disease in our study showed strong overlap with the mRNA profile described in the literature for other viral neuroinvasive diseases. More studies are warranted to decipher the role of cell inflammation and cell death in viral neuroinvasive disease and whether common mechanisms are active in both neurodegenerative and brain infectious diseases.

  8. Emerging tropical diseases in Australia. Part 5. Hendra virus.

    Science.gov (United States)

    Tulsiani, S M; Graham, G C; Moore, P R; Jansen, C C; Van Den Hurk, A F; Moore, F A J; Simmons, R J; Craig, S B

    2011-01-01

    Hendra virus (HeV) was first isolated in 1994, from a disease outbreak involving at least 21 horses and two humans in the Brisbane suburb of Hendra, Australia. The affected horses and humans all developed a severe but unidentified respiratory disease that resulted in the deaths of one of the human cases and the deaths or putting down of 14 of the horses. The virus, isolated by culture from a horse and the kidney of the fatal human case, was initially characterised as a new member of the genus Morbillivirus in the family Paramyxoviridae. Comparative sequence analysis of part of the matrix protein gene of the virus and the discovery that the virus had an exceptionally large genome subsequently led to HeV being assigned to a new genus, Henipavirus, along with Nipah virus (a newly emergent virus in pigs). The regular outbreaks of HeV-related disease that have occurred in Australia since 1994 have all been characterised by acute respiratory and neurological manifestations, with high levels of morbidity and mortality in the affected horses and humans. The modes of transmission of HeV remain largely unknown. Although fruit bats have been identified as natural hosts of the virus, direct bat-horse, bat-human or human-human transmission has not been reported. Human infection can occur via exposure to infectious urine, saliva or nasopharyngeal fluid from horses. The treatment options and efficacy are very limited and no vaccine exists. Reports on the outbreaks of HeV in Australia are collated in this review and the available data on the biology, transmission and detection of the pathogen are summarized and discussed.

  9. Effect of human papilloma virus expression on clinical course of laryngeal papilloma.

    Science.gov (United States)

    Kim, Kwang Moon; Cho, Nam Hoon; Choi, Hong Shik; Kim, Young Ho; Byeon, Hyung Kwon; Min, Hyun Jin; Kim, Se-Heon

    2008-10-01

    Our observations suggest that human papilloma virus (HPV) 6/11 is the main causative agent of laryngeal papilloma and that detection of active HPV DNA expression may be helpful in identifying patients with aggressive recurrent laryngeal papilloma. HPV is assumed to be the main causative agent of this disease. We investigated the expression of the entire genotype of HPV in cases of laryngeal papilloma and correlated their expression with the clinical course of the disease. Seventy cases of laryngeal papilloma were evaluated for the presence of the HPV genome by in situ hybridization (ISH) using wide-spectrum HPV DNA probe. Specific types of HPV infection were determined by DNA ISH using type-specific HPV DNA probes (HPV 6, 11, 16, 18, 31, 33). Separate analyses were conducted comparing viral types, frequency of recurrences and duration of disease-free periods. We detected HPV DNA in 40 of the 70 laryngeal papilloma cases (57%). In particular, HPV DNA was detected in 75% of the juvenile types. There were significant associations between HPV and laryngeal papilloma (p<0.01). Among the HPV-positive cases, major specific types were HPV 6/11 (97%). Significant associations were also noted between viral expression and clinical course.

  10. Increased bovine Tim-3 and its ligand expressions during bovine leukemia virus infection

    Directory of Open Access Journals (Sweden)

    Okagawa Tomohiro

    2012-05-01

    Full Text Available Abstract The immunoinhibitory receptor T cell immunoglobulin domain and mucin domain-3 (Tim-3 and its ligand, galectin-9 (Gal-9, are involved in the immune evasion mechanisms for several pathogens causing chronic infections. However, there is no report concerning the role of Tim-3 in diseases of domestic animals. In this study, cDNA encoding for bovine Tim-3 and Gal-9 were cloned and sequenced, and their expression and role in immune reactivation were analyzed in bovine leukemia virus (BLV-infected cattle. Predicted amino acid sequences of Tim-3 and Gal-9 shared high homologies with human and mouse homologues. Functional domains, including tyrosine kinase phosphorylation motif in the intracellular domain of Tim-3 were highly conserved among cattle and other species. Quantitative real-time PCR analysis showed that bovine Tim-3 mRNA is mainly expressed in T cells such as CD4+ and CD8+ cells, while Gal-9 mRNA is mainly expressed in monocyte and T cells. Tim-3 mRNA expression in CD4+ and CD8+ cells was upregulated during disease progression of BLV infection. Interestingly, expression levels for Tim-3 and Gal-9 correlated positively with viral load in infected cattle. Furthermore, Tim-3 expression level closely correlated with up-regulation of IL-10 in infected cattle. The expression of IFN-γ and IL-2 mRNA was upregulated when PBMC from BLV-infected cattle were cultured with Cos-7 cells expressing Tim-3 to inhibit the Tim-3/Gal-9 pathway. Moreover, combined blockade of the Tim-3/Gal-9 and PD-1/PD-L1 pathways significantly promoted IFN-γ mRNA expression compared with blockade of the PD-1/PD-L1 pathway alone. These results suggest that Tim-3 is involved in the suppression of T cell function during BLV infection.

  11. Ebola virus disease. Short history, long impact

    OpenAIRE

    Mª Teófila Vicente-Herrero; Ángel Arturo López-González; Mª Victoria Ramírez-Iñiguez de la Torre; Luisa M. Capdevila-García; Jesús Terradillos-García; Encarna Aguilar-Jiménez

    2015-01-01

    Ebola Virus infection is at present times a growing worldwide concern, although its history goes back to 1967, with subsequent outbreaks in 1979, 1980 and 1987, all of them by contact in workers in affected areas. The concern of the scientific community about this issue is partially reflected in publications included in MEDLINE (PUBMED database) and in which, taking as a keyword in the search box “Ebola virus”, 2.151 publications are found, belonging 984 of them to the last 5 years (45.7%) an...

  12. Zika virus disease: a public health emergency of international concern.

    Science.gov (United States)

    Lupton, Kelly

    The emergence of Zika virus disease (ZIKV) in the Americas, mainly Brazil, has required the World Health Organization to take action to halt the spread of the virus by implementing preventive measures. This has resulted in increased surveillance of the virus and its potential complications. In the UK, cases of ZIKV have been reported in returning travellers. With the importance of this disease increasing, it is vital that nurses and other health professionals take the time to learn about ZIKV in order to pass on this knowledge to patients, enabling them to make informed choices about travel to affected areas. This article will discuss the ZIKV, its complications and what to advise travellers, including pregnant women, to prevent transmission and spread.

  13. Viruses in recreational water-borne disease outbreaks: a review.

    Science.gov (United States)

    Sinclair, R G; Jones, E L; Gerba, C P

    2009-12-01

    Viruses are believed to be a significant cause of recreationally associated water-borne disease. However, they have been difficult to document because of the wide variety of illnesses that they cause and the limitations in previous detection methods. Noroviruses are believed to be the single largest cause of outbreaks, which have been documented in the published literature 45% (n = 25), followed by adenovirus (24%), echovirus (18%), hepatitis A virus (7%) and coxsackieviruses (5%). Just under half of the outbreaks occurred in swimming pools (49%), while the second largest outbreak occurred in lakes or ponds (40%). The number of reported outbreaks associated with noroviruses has increased significantly in recent years probably because of better methods for virus detection. Inadequate disinfection was related to 69% (n = 18) of swimming pool outbreaks. A lack of required reporting and nonuniform water quality and chlorination/disinfection standards continues to contribute to water-borne recreational disease outbreaks.

  14. Ebola Virus Disease in Pregnancy: Clinical, Histopathologic, and Immunohistochemical Findings.

    Science.gov (United States)

    Muehlenbachs, Atis; de la Rosa Vázquez, Olimpia; Bausch, Daniel G; Schafer, Ilana J; Paddock, Christopher D; Nyakio, Jean Paul; Lame, Papys; Bergeron, Eric; McCollum, Andrea M; Goldsmith, Cynthia S; Bollweg, Brigid C; Prieto, Miriam Alía; Lushima, Robert Shongo; Ilunga, Benoit Kebela; Nichol, Stuart T; Shieh, Wun-Ju; Ströher, Ute; Rollin, Pierre E; Zaki, Sherif R

    2017-01-01

    Here we describe clinicopathologic features of Ebola virus disease in pregnancy. One woman infected with Sudan virus in Gulu, Uganda, in 2000 had a stillbirth and survived, and another woman infected with Bundibugyo virus had a live birth with maternal and infant death in Isiro, the Democratic Republic of the Congo in 2012. Ebolavirus antigen was seen in the syncytiotrophoblast and placental maternal mononuclear cells by immunohistochemical analysis, and no antigen was seen in fetal placental stromal cells or fetal organs. In the Gulu case, ebolavirus antigen localized to malarial parasite pigment-laden macrophages. These data suggest that trophoblast infection may be a mechanism of transplacental ebolavirus transmission. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  15. Comparison of the efficiency of different newcastle disease virus reverse genetics systems.

    Science.gov (United States)

    Liu, Haijin; de Almeida, Renata Servan; Gil, Patricia; Albina, Emmanuel

    2017-11-01

    Rescue of negative-sense single-stranded RNA viruses ((-)ssRNA virus), generally requires the handling of a large number of plasmids to provide the virus genome and essential components for gene expression and genome replication. This constraint probably renders reverse genetics of (-)ssRNA virus more complex and less efficient. Some authors have shown that the fewer the plasmids, the more efficient reverse genetics is for segmented RNA virus. However, it is not clear if the same applies for (-)ssRNA, such as Newcastle disease virus (NDV). To address this issue, six variants of NDV reverse genetic systems were established by cloning combinations of NP, P and L genes, mini-genome or full-genome in 4, 3, 2 and 1 plasmid. In terms of mini-genome and full-genome rescue, we showed that only the 2-plasmid system, assembling three support plasmids together, was able to improve the rescue efficiency over that of the conventional 4-plasmid system. These results may help establish and/or improve reverse genetics for other mononegaviruses. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Development of Dengue virus type 2 replicons capable of prolonged expression in host cells

    Directory of Open Access Journals (Sweden)

    Dayton Andrew I

    2001-08-01

    Full Text Available Abstract Background As part of a program to develop a Dengue virus vaccine which avoids the deleterious effects of antibody dependent enhancement (ADE of infection mediated by antibodies to Dengue virus structural proteins, we have begun to investigate the possibility of designing Dengue vaccines based on non-structural proteins. Results Dengue constructs which lack major structural proteins replicate intracellularly in tissue culture. These replicons are capable of prolonged expression of Dengue virus non-structural proteins for at least seven days in culture. Conclusions Dengue virus genomes lacking major structural proteins can, like other flaviviruses, replicate intracellularly and express virus non-structural proteins with minimal toxicity to host cells. These findings pave the way for the development of dengue virus replicons as a form of live, attenuated virus vaccine.

  17. Signaling through RIG-I and type I interferon receptor: Immune activation by Newcastle disease virus in man versus immune evasion by Ebola virus (Review).

    Science.gov (United States)

    Schirrmacher, Volker

    2015-07-01

    In this review, two types of RNA viruses are compared with regard to the type I interferon (IFN) response in order to obtain a better understanding of the molecular mechanisms of immune activation or evasion. Upon human infection, both viruses exert either beneficial or detrimental effects. The Newcastle disease virus (NDV), is a type strain for avian paramyxoviruses, while the Ebola virus (EBOV), is a virus affecting primates. During evolution, both viruses specifically adapted to their respective hosts, acquiring sophisticated viral escape mechanisms. Two types of receptors play an important role in the life cycle of these two viruses: cytoplasmic retinoic acid‑inducible gene I (RIG‑I) and membrane expressed type I IFN receptor (IFNAR). In mouse and human cells, NDV is a strong inducer of the type I IFN response. The early phase of this is initiated by signaling through RIG‑I and the late response by signaling through IFNAR. EBOV does not induce type I IFN responses in humans as it has viral proteins that specifically and strongly interfere with RIG‑I and IFNAR signaling, as well as immune activation. In this review, we discuss whether the beneficial effects of one virus can be exploited in the fight against the detrimental effects of the other.

  18. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine.

    Science.gov (United States)

    Chen, Yang; Guo, Wanzhu; Xu, Zhiwen; Yan, Qigui; Luo, Yan; Shi, Qian; Chen, Dishi; Zhu, Ling; Wang, Xiaoyu

    2011-06-16

    Porcine parvovirus (PPV) VP2 gene has been successfully expressed in many expression systems resulting in self-assembly of virus-like particles (VLPs) with similar morphology to the native capsid. Here, a pseudorabies virus (PRV) system was adopted to express the PPV VP2 gene. A recombinant PRV SA215/VP2 was obtained by homologous recombination between the vector PRV viral DNA and a transfer plasmid. Then recombinant virus was purified with plaque purification, and its identity confirmed by PCR amplification, Western blot and indirect immunofluorescence (IFA) analyses. Electronic microscopy of PRV SA215/VP2 confirmed self-assembly of both pseudorabies virus and VLPs from VP2 protein. Immunization of piglets with recombinant virus elicited PRV-specific and PPV-specific humoral immune responses and provided complete protection against a lethal dose of PRV challenges. Gilts immunized with recombinant viruses induced PPV-specific antibodies, and significantly reduced the mortality rate of (1 of 28) following virulent PPV challenge compared with the control (7 of 31). Furthermore, PPV virus DNA was not detected in the fetuses of recombinant virus immunized gilts. In this study, a recombinant PRV SA215/VP2 virus expressing PPV VP2 protein was constructed using PRV SA215 vector. The safety, immunogenicity, and protective efficacy of the recombinant virus were demonstrated in piglets and primiparous gilts. This recombinant PRV SA215/VP2 represents a suitable candidate for the development of a bivalent vaccine against both PRV and PPV infection.

  19. A Serological Survey for Newcastle Disease Virus Antibobies in ...

    African Journals Online (AJOL)

    A Serological Survey for Newcastle Disease Virus Antibobies in Village Poultry in Yobe State, Nigeria. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more information about how to print, save, ...

  20. Molecular screening and isolation of Newcastle disease virus from ...

    African Journals Online (AJOL)

    Molecular screening and isolation of Newcastle disease virus from live poultry markets and chickens from commercial poultry farms in Zaria, Kaduna state, Nigeria. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

  1. A Serological Survey for Newcastle Disease Virus Antibobies in ...

    African Journals Online (AJOL)

    Abstract. A serological survey to detect the presence of antibodies to Newcastle disease virus (NDV) in village poultry was conducted in 17 villages of Yobe State, Nigeria. The aim of the study was to investigate the prevalence of NDV using haemaggluttination inhibition test. Ten households were sampled from each village.

  2. Field investigation of Foot and Mouth Disease (FMD) virus infection ...

    African Journals Online (AJOL)

    The prevalence of FMD virus serotypes SAT 1 and SAT 2 among Nigerian cattle was determined using Complement Fixation (CF) and Serum Neutralization (SN) Tests in 2000 cattle sera obtained from nine northern states. The disease prevalence by CF and SN were 46.79% and 53.15% respectively. These figures were ...

  3. genetic variability for tuber yield, quality, and virus disease complex ...

    African Journals Online (AJOL)

    Administrator

    GENETIC VARIABILITY FOR TUBER YIELD, QUALITY, AND VIRUS DISEASE. COMPLEX TRAITS IN UGANDA SWEETPOTATO GERMPLASM. E. GASURA, A.B. MASHINGAIDZE1 and S.B. MUKASA. Department of Crop Science, Makerere University, P. O. Box 7062 Kampala, Uganda. 1Department of Crop Science, ...

  4. Progression of experimental chronic Aleutian mink disease virus infection

    DEFF Research Database (Denmark)

    Jensen, Trine Hammer; Chriél, Mariann; Hansen, Mette Sif

    2016-01-01

    Aleutian mink disease virus (AMDV) is found world-wide and has a major impact on mink health and welfare by decreasing reproduction and fur quality. In the majority of mink, the infection is subclinical and the diagnosis must be confirmed by serology or polymerase chain reaction (PCR). Increased ...

  5. Hand hygiene practices post ebola virus disease outbreak in a ...

    African Journals Online (AJOL)

    Introduction: Ebola virus disease (EVD) is a highly contagious viral infection that requires a high risk perception and practice of good hand hygiene by regular hand washing or use of hand sanitizers for infection control at all time. The declaration of Nigeria as an Ebola-free country by the World Health Organization on the ...

  6. West Africa Ebola Virus Disease Epidemic: The Africa Experience ...

    African Journals Online (AJOL)

    Ebola Virus Disease (EVD), formerly known as Ebola haemorrhagic fever, is a severe acute viral illness characterized by sudden onset of fever, myalgia, malaise, and severe headache, followed by vomiting and diarrhea and, in some instances, bleeding. The 2014 West Africa outbreak is the largest in history, affecting ...

  7. Reemerging Sudan Ebola Virus Disease in Uganda, 2011

    Science.gov (United States)

    Shoemaker, Trevor; Balinandi, Stephen; Campbell, Shelley; Wamala, Joseph Francis; McMullan, Laura K.; Downing, Robert; Lutwama, Julius; Mbidde, Edward; Ströher, Ute; Rollin, Pierre E.; Nichol, Stuart T.

    2012-01-01

    Two large outbreaks of Ebola hemorrhagic fever occurred in Uganda in 2000 and 2007. In May 2011, we identified a single case of Sudan Ebola virus disease in Luwero District. The establishment of a permanent in-country laboratory and cooperation between international public health entities facilitated rapid outbreak response and control activities. PMID:22931687

  8. Serological Detection of Infectious Bursa Disease Virus Antibodies ...

    African Journals Online (AJOL)

    The detection and distribution of infectious Bursa disease (IBD) virus antibody among local species of birds was investigated in 4,655 sera sample using Agar Gel precipitation test (AGPT). The results showed that local chickens had the highest distribution with 446 (9.58%) followed by ducks 218 (4.68%), guinea fowl 131 ...

  9. Strategies to manage hepatitis C virus (HCV) disease burden

    DEFF Research Database (Denmark)

    Wedemeyer, H; Duberg, A S; Buti, M

    2014-01-01

    The number of hepatitis C virus (HCV) infections is projected to decline while those with advanced liver disease will increase. A modeling approach was used to forecast two treatment scenarios: (i) the impact of increased treatment efficacy while keeping the number of treated patients constant...

  10. Serological Detection of Infectious Bursa Disease Virus Antibodies ...

    African Journals Online (AJOL)

    Nigeria, 3Department of Veterinary Pathology and Microbiology, Federal University of Agriculture,. Makurdi, Benue state, Nigeria. (Received: 02:03:2016; Accepted: 04:07:16). Abstract. The detection and distribution of infectious Bursa disease (IBD) virus antibody among local ... administration of the vaccines resulting to.

  11. Social vulnerability and Ebola virus disease in rural Liberia

    Science.gov (United States)

    John A. Stanturf; Scott L. Goodrick; Melvin L. Warren; Susan Charnley; Christie M. Stegall

    2015-01-01

    The Ebola virus disease (EVD) epidemic that has stricken thousands of people in the three West African countries of Liberia, Sierra Leone, and Guinea highlights the lack of adaptive capacity in post-conflict countries. The scarcity of health services in particular renders these populations vulnerable to multiple interacting stressors including food insecurity, climate...

  12. Detection of Infectious Bursal Disease Virus (IBDV) in naturally ...

    African Journals Online (AJOL)

    The Reverse Transcription - Polymerase Chain Reaction (RT-PCR) was used for the identification of Infectious bursal disease virus (IBDV). The technique was applied on bursa of Fabricius of infected chicken. Some of these bursae have been kept in the freezer for 16years under conditions of regular electric power ...

  13. The cellular receptors for infectious bursal disease virus

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... envelope glycoprotein, which comprises the initial and key step of infection. Infection can be inhibited by blockage of ... Infectious bursal disease virus (IBDV), a member of the genus Avibirnavirus of the family ..... Assessment of genetic, antigenic and pathotypic criteria for the characterization of IBDV strains.

  14. Impregnation and storage of Newcastle disease virus on to filter ...

    African Journals Online (AJOL)

    ... stored and subsequently detected by RT PCR. This method might be safely used for storage and transportation of NDV samples to the designated laboratories for molecular studies without the need for cooling. Keywords: Allantoic fluid, chicken embryo fibroblast, Newcastle diseases virus, polymerase chain reaction, RNA ...

  15. Field investigation of Foot and Mouth Disease (FMD) virus infection ...

    African Journals Online (AJOL)

    Prof. Ogunji

    determined using Complement Fixation (CF) and Serum Neutralization (SN) Tests in 2000 cattle sera .... Table 1: Overall results of Foot and Mouth Disease distribution in the northern zones. Zones Location No. of animal No. animal No. of calf No. of adult Virus. States involved affected dead dead. Type. Adamawa. 136. 70.

  16. A viable recombinant rhabdovirus lacking its glycoprotein gene and expressing influenza virus hemagglutinin and neuraminidase is a potent influenza vaccine.

    Science.gov (United States)

    Ryder, Alex B; Buonocore, Linda; Vogel, Leatrice; Nachbagauer, Raffael; Krammer, Florian; Rose, John K

    2015-03-01

    The emergence of novel influenza viruses that cause devastating human disease is an ongoing threat and serves as an impetus for the continued development of novel approaches to influenza vaccines. Influenza vaccine development has traditionally focused on producing humoral and/or cell-mediated immunity, often against the viral surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). Here, we describe a new vaccine candidate that utilizes a replication-defective vesicular stomatitis virus (VSV) vector backbone that lacks the native G surface glycoprotein gene (VSVΔG). The expression of the H5 HA of an H5N1 highly pathogenic avian influenza virus (HPAIV), A/Vietnam/1203/04 (VN1203), and the NA of the mouse-adapted H1N1 influenza virus A/Puerto Rico/8/34 (PR8) in the VSVΔG vector restored the ability of the recombinant virus to replicate in cell culture, without the requirement for the addition of trypsin. We show here that this recombinant virus vaccine candidate was nonpathogenic in mice when given by either the intramuscular or intranasal route of immunization and that the in vivo replication of VSVΔG-H5N1 is profoundly attenuated. This recombinant virus also provided protection against lethal H5N1 infection after a single dose. This novel approach to vaccination against HPAIVs may be widely applicable to other emerging strains of influenza virus. Preparation for a potentially catastrophic influenza pandemic requires novel influenza vaccines that are safe, can be produced and administered quickly, and are effective, both soon after administration and for a long duration. We have created a new influenza vaccine that utilizes an attenuated vesicular stomatitis virus (VSV) vector, to deliver and express influenza virus proteins against which vaccinated animals develop potent antibody responses. The influenza virus hemagglutinin and neuraminidase proteins, expressed on the surface of VSV particles, allowed this vaccine to grow in cell culture and induced a

  17. Milk thistle for alcoholic and/or hepatitis B or C virus liver diseases

    DEFF Research Database (Denmark)

    Rambaldi, A; Jacobs, B P; Iaquinto, G

    2005-01-01

    Alcohol and hepatotoxic viruses cause the majority of liver diseases. Randomised clinical trials have assessed whether extracts of milk thistle, Silybum marianum (L) Gaertneri, have any effect in patients with alcoholic and/or hepatitis B or C virus liver diseases.......Alcohol and hepatotoxic viruses cause the majority of liver diseases. Randomised clinical trials have assessed whether extracts of milk thistle, Silybum marianum (L) Gaertneri, have any effect in patients with alcoholic and/or hepatitis B or C virus liver diseases....

  18. EMERGING INFECTIOUS DISEASES. Actions Needed to Address the Challenges of Responding to Zika Virus Disease Outbreaks

    Science.gov (United States)

    2017-05-01

    EMERGING INFECTIOUS DISEASES Actions Needed to Address the Challenges of Responding to Zika Virus Disease Outbreaks Report to...Congressional Requesters May 2017 GAO-17-445 United States Government Accountability Office United States Government Accountability Office...Highlights of GAO-17-445, a report to congressional requesters. May 2017 EMERGING INFECTIOUS DISEASES Actions Needed to Address the Challenges of

  19. Human Treg responses allow sustained recombinant adeno-associated virus-mediated transgene expression.

    Science.gov (United States)

    Mueller, Christian; Chulay, Jeffrey D; Trapnell, Bruce C; Humphries, Margaret; Carey, Brenna; Sandhaus, Robert A; McElvaney, Noel G; Messina, Louis; Tang, Qiushi; Rouhani, Farshid N; Campbell-Thompson, Martha; Fu, Ann Dongtao; Yachnis, Anthony; Knop, David R; Ye, Guo-Jie; Brantly, Mark; Calcedo, Roberto; Somanathan, Suryanarayan; Richman, Lee P; Vonderheide, Robert H; Hulme, Maigan A; Brusko, Todd M; Wilson, James M; Flotte, Terence R

    2013-12-01

    Recombinant adeno-associated virus (rAAV) vectors have shown promise for the treatment of several diseases; however, immune-mediated elimination of transduced cells has been suggested to limit and account for a loss of efficacy. To determine whether rAAV vector expression can persist long term, we administered rAAV vectors expressing normal, M-type α-1 antitrypsin (M-AAT) to AAT-deficient subjects at various doses by multiple i.m. injections. M-specific AAT expression was observed in all subjects in a dose-dependent manner and was sustained for more than 1 year in the absence of immune suppression. Muscle biopsies at 1 year had sustained AAT expression and a reduction of inflammatory cells compared with 3 month biopsies. Deep sequencing of the TCR Vβ region from muscle biopsies demonstrated a limited number of T cell clones that emerged at 3 months after vector administration and persisted for 1 year. In situ immunophenotyping revealed a substantial Treg population in muscle biopsy samples containing AAT-expressing myofibers. Approximately 10% of all T cells in muscle were natural Tregs, which were activated in response to AAV capsid. These results suggest that i.m. delivery of rAAV type 1-AAT (rAAV1-AAT) induces a T regulatory response that allows ongoing transgene expression and indicates that immunomodulatory treatments may not be necessary for rAAV-mediated gene therapy.

  20. Expression of canine distemper virus receptor nectin-4 in the central nervous system of dogs.

    Science.gov (United States)

    Pratakpiriya, Watanyoo; Ping Teh, Angeline Ping; Radtanakatikanon, Araya; Pirarat, Nopadon; Thi Lan, Nguyen; Takeda, Makoto; Techangamsuwan, Somporn; Yamaguchi, Ryoji

    2017-03-23

    Canine distemper virus (CDV) exhibits lymphotropic, epitheliotropic, and neurotropic nature, and causes a severe systemic infection in susceptible animals. Initially, signaling lymphocyte activation molecule (SLAM) expressed on immune cells has been identified as a crucial cellular receptor for CDV. Currently, nectin-4 expressed in epithelia has been shown to be another receptor for CDV. Our previous study demonstrated that neurons express nectin-4 and are infected with CDV. In this study, we investigated the distribution pattern of nectin-4 in various cell types in the canine central nervous system and showed its relation to CDV infection to further clarify the pathology of disease. Histopathological, immunohistochemical and immunofluorescent analyses were done using formalin-fixed paraffin-embedded tissues of CDV-infected dogs. Dual staining of nectin-4 and CDV antigen or nectin-4 and brain cell markers was performed. Nectin-4 was detected in ependymal cells, epithelia of choroid plexus, meningeal cells, neurons, granular cells, and Purkinje's cells. CDV antigens were detected in these nectin-4-positive cells, further suggesting contribution of nectin-4 for the CDV neurovirulence. On the other hand, astrocytes did not express nectin-4, although they were frequently infected with CDV. Since astrocytes are negative for SLAM expression, they must express an unidentified CDV receptor, which also contributes to CDV neurovirulence.

  1. Expression and purification of coat protein of citrus tristeza virus ...

    African Journals Online (AJOL)

    Citrus tristeza virus (CTV) polyclonal antibodies produced either from the recombinant coat protein (CP) of CTV or extracted virus from midrib used for the detection of virus. Compared with intact virion procedure, the use of CP antigen resulted in highly specific polyclonal antibodies. CTV coat protein gene (CTV-cp) cloned ...

  2. Epithelial cells derived from swine bone marrow express stem cell markers and support influenza virus replication in vitro.

    Directory of Open Access Journals (Sweden)

    Mahesh Khatri

    Full Text Available The bone marrow contains heterogeneous population of cells that are involved in the regeneration and repair of diseased organs, including the lungs. In this study, we isolated and characterized progenitor epithelial cells from the bone marrow of 4- to 5-week old germ-free pigs. Microscopically, the cultured cells showed epithelial-like morphology. Phenotypically, these cells expressed the stem cell markers octamer-binding transcription factor (Oct4 and stage-specific embryonic antigen-1 (SSEA-1, the alveolar stem cell marker Clara cell secretory protein (Ccsp, and the epithelial cell markers pan-cytokeratin (Pan-K, cytokeratin-18 (K-18, and occludin. When cultured in epithelial cell growth medium, the progenitor epithelial cells expressed type I and type II pneumocyte markers. Next, we examined the susceptibility of these cells to influenza virus. Progenitor epithelial cells expressed sialic acid receptors utilized by avian and mammalian influenza viruses and were targets for influenza virus replication. Additionally, differentiated type II but not type I pneumocytes supported the replication of influenza virus. Our data indicate that we have identified a unique population of progenitor epithelial cells in the bone marrow that might have airway reconstitution potential and may be a useful model for cell-based therapies for infectious and non-infectious lung diseases.

  3. Ebola virus disease - pathogenesis, clinical presentation and management.

    Science.gov (United States)

    Bociaga-Jasik, Monika; Piatek, Anna; Garlicki, Aleksander

    2014-01-01

    On March 2014 the WHO notified the outbreak of Ebola virus disease (EVD) in Guinea, and infection quickly spread to another West African countries including Sierra Leone, Liberia and Nigeria. Current outbreak is the largest in the history, since discovery of the virus in 1976. Imported cases and infection among healthcare workers in Europe and United States have elucidated necessity of better education of medical staff. Clinicians must be familiar with clinical picture of EVD, differential diagnosis and therapeutic approach, as rapid diagnosis and prompt introduction of supportive therapy can have a significant impact on the survival.

  4. Hot topics in the prevention of respiratory syncytial virus disease.

    Science.gov (United States)

    Habibi, Maximillian S; Patel, Sanjay; Openshaw, Peter

    2011-03-01

    The 7th International Respiratory Syncytial Virus Symposium took place in Hotel Blijdorp, Rotterdam, The Netherlands. The series has been running since 1996; this meeting took place after a 3-year gap, and was attended by approximately 200 clinicians, scientists and industry representatives from all over the world. The conference covered all aspects of respiratory syncytial virus disease, including virology, cell biology, pathogenesis, clinical presentation, diagnosis, immunology, vaccines, antivirals and other therapeutic approaches. Reviews by invited keynote speakers were accompanied by oral and poster presentations, with ample opportunity for discussion of unpublished work. This article summarizes a small selection of hot topics from the meeting, focused on pathogenesis, therapeutics and vaccine development.

  5. Expression Dynamics of Innate Immunity in Influenza Virus-Infected Swine

    Directory of Open Access Journals (Sweden)

    Massimo Amadori

    2017-04-01

    Full Text Available The current circulating swine influenza virus (IV subtypes in Europe (H1N1, H1N2, and H3N2 are associated with clinical outbreaks of disease. However, we showed that pigs could be susceptible to other IV strains that are able to cross the species barrier. In this work, we extended our investigations into whether different IV strains able to cross the species barrier might give rise to different innate immune responses that could be associated with pathological lesions. For this purpose, we used the same samples collected in a previous study of ours, in which healthy pigs had been infected with a H3N2 Swine IV and four different H3N8 IV strains circulating in different animal species. Pigs had been clinically inspected and four subjects/group were sacrificed at 3, 6, and 21 days post infection. In the present study, all groups but mock exhibited antibody responses to IV nucleoprotein protein. Pulmonary lesions and high-titered viral replication were observed in pigs infected with the swine-adapted virus. Interestingly, pigs infected with avian and seal H3N8 strains also showed moderate lesions and viral replication, whereas equine and canine IVs did not cause overt pathological signs, and replication was barely detectable. Swine IV infection induced interferon (IFN-alpha and interleukin-6 responses in bronchoalveolar fluids (BALF at day 3 post infection, as opposed to the other non-swine-adapted virus strains. However, IFN-alpha responses to the swine-adapted virus were not associated with an increase of the local, constitutive expression of IFN-alpha genes. Remarkably, the Equine strain gave rise to a Serum Amyloid A response in BALF despite little if any replication. Each virus strain could be associated with expression of cytokine genes and/or proteins after infection. These responses were observed well beyond the period of virus replication, suggesting a prolonged homeostatic imbalance of the innate immune system.

  6. Construction and characterization of 3A-epitope-tagged foot-and-mouth disease virus.

    Science.gov (United States)

    Ma, Xueqing; Li, Pinghua; Sun, Pu; Bai, Xingwen; Bao, Huifang; Lu, Zengjun; Fu, Yuanfang; Cao, Yimei; Li, Dong; Chen, Yingli; Qiao, Zilin; Liu, Zaixin

    2015-04-01

    Nonstructural protein 3A of foot-and-mouth disease virus (FMDV) is a partially conserved protein of 153 amino acids (aa) in most FMDVs examined to date. Specific deletion in the FMDV 3A protein has been associated with the inability of FMDV to grow in primary bovine cells and cause disease in cattle. However, the aa residues playing key roles in these processes are poorly understood. In this study, we constructed epitope-tagged FMDVs containing an 8 aa FLAG epitope, a 9 aa haemagglutinin (HA) epitope, and a 10 aa c-Myc epitope to substitute residues 94-101, 93-101, and 93-102 of 3A protein, respectively, using a recently developed O/SEA/Mya-98 FMDV infectious cDNA clone. Immunofluorescence assay (IFA), Western blot and sequence analysis showed that the epitope-tagged viruses stably maintained and expressed the foreign epitopes even after 10 serial passages in BHK-21 cells. The epitope-tagged viruses displayed growth properties and plaque phenotypes similar to those of the parental virus in BHK-21 cells. However, the epitope-tagged viruses exhibited lower growth rates and smaller plaque size phenotypes than those of the parental virus in primary fetal bovine kidney (FBK) cells, but similar growth properties and plaque phenotypes to those of the recombinant viruses harboring 93-102 deletion in 3A. These results demonstrate that the decreased ability of FMDV to replicate in primary bovine cells was not associated with the length of 3A, and the genetic determinant thought to play key role in decreased ability to replicate in primary bovine cells could be reduced from 93-102 residues to 8 aa residues at positions 94-101 in 3A protein. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Influenza A (H10N7 Virus Causes Respiratory Tract Disease in Harbor Seals and Ferrets.

    Directory of Open Access Journals (Sweden)

    Judith M A van den Brand

    Full Text Available Avian influenza viruses sporadically cross the species barrier to mammals, including humans, in which they may cause epidemic disease. Recently such an epidemic occurred due to the emergence of avian influenza virus of the subtype H10N7 (Seal/H10N7 in harbor seals (Phoca vitulina. This epidemic caused high mortality in seals along the north-west coast of Europe and represented a potential risk for human health. To characterize the spectrum of lesions and to identify the target cells and viral distribution, findings in 16 harbor seals spontaneously infected with Seal/H10N7 are described. The seals had respiratory tract inflammation extending from the nasal cavity to bronchi associated with intralesional virus antigen in respiratory epithelial cells. Virus infection was restricted to the respiratory tract. The fatal outcome of the viral infection in seals was most likely caused by secondary bacterial infections. To investigate the pathogenic potential of H10N7 infection for humans, we inoculated the seal virus intratracheally into six ferrets and performed pathological and virological analyses at 3 and 7 days post inoculation. These experimentally inoculated ferrets displayed mild clinical signs, virus excretion from the pharynx and respiratory tract inflammation extending from bronchi to alveoli that was associated with virus antigen expression exclusively in the respiratory epithelium. Virus was isolated only from the respiratory tract. In conclusion, Seal/H10N7 infection in naturally infected harbor seals and experimentally infected ferrets shows that respiratory epithelial cells are the permissive cells for viral replication. Fatal outcome in seals was caused by secondary bacterial pneumonia similar to that in fatal human cases during influenza pandemics. Productive infection of ferrets indicates that seal/H10N7 may possess a zoonotic potential. This outbreak of LPAI from wild birds to seals demonstrates the risk of such occasions for mammals

  8. Maternally derived antibodies in commercial broiler chickens did not significantly interfere with protection of Newcastle disease virus vectored infectious laryngotracheitis vaccines

    Science.gov (United States)

    Newcastle disease virus (NDV) recombinants expressing the infectious laryngotracheitis virus (ILTV) glycoproteins B and D have previously been demonstrated to confer complete clinical protection against virulent ILTV and NDV challenges in naive chickens. However, there was a general concern that the...

  9. Characterization of Vesicular Stomatitis Virus Recombinants That Express and Incorporate High Levels of Hepatitis C Virus Glycoproteins

    OpenAIRE

    Buonocore, Linda; Blight, Keril J.; Rice, Charles M.; Rose, John K.

    2002-01-01

    We generated recombinant vesicular stomatitis viruses (VSV) expressing genes encoding hybrid proteins consisting of the extracellular domains of hepatitis C virus (HCV) glycoproteins fused at different positions to the transmembrane and cytoplasmic domains of the VSV G glycoprotein (E1G and E2G). We show that these chimeric proteins are transported to the cell surface and incorporated into VSV virions efficiently. We also generated VSV recombinants in which the gene encoding the VSV G protein...

  10. [Immune response of pigs to Aujeszky disease virus and swine influenza virus].

    Science.gov (United States)

    Tamarov, G; Khristov, S

    1978-01-01

    Explored was the possibility of simultaneous vaccination of pigs against the Aujeszky's disease virus and the swine influenza virus. Used were strain MK-25 against the former and strain 3sb against the latter. It was found that at the simultaneous subcutaneous or oral treatment with the two antigens equally effective immunity was built as in the case of vaccination with each one of them used alone. No antagonism was established between the two antigens during the time of immunity building in the body.

  11. Systemic and oral immunogenicity of hemagglutinin protein of rinderpest virus expressed by transgenic peanut plants in a mouse model

    International Nuclear Information System (INIS)

    Khandelwal, Abha; Renukaradhya, G.J.; Rajasekhar, M.; Sita, G. Lakshmi; Shaila, M.S.

    2004-01-01

    Rinderpest causes a devastating disease, often fatal, in wild and domestic ruminants. It has been eradicated successfully using a live, attenuated vaccine from most part of the world leaving a few foci of disease in parts of Africa, the Middle East, and South Asia. We have developed transgenic peanut (Arachis hypogaea L.) plants expressing hemagglutinin (H) protein of rinderpest virus (RPV), which is antigenically authentic. In this work, we have evaluated the immunogenicity of peanut-expressed H protein using mouse model, administered parenterally as well as orally. Intraperitoneal immunization of mice with the transgenic peanut extract elicited antibody response specific to H. These antibodies neutralized virus infectivity in vitro. Oral immunization of mice with transgenic peanut induced H-specific serum IgG and IgA antibodies. The systemic and oral immunogenicity of plant-derived H in absence of any adjuvant indicates the potential of edible vaccine for rinderpest

  12. Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression.

    Science.gov (United States)

    Dlugolenski, Daniel; Jones, Les; Howerth, Elizabeth; Wentworth, David; Tompkins, S Mark; Tripp, Ralph A

    2015-05-01

    Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment

  13. Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression

    Science.gov (United States)

    Dlugolenski, Daniel; Jones, Les; Howerth, Elizabeth; Wentworth, David; Tompkins, S. Mark

    2015-01-01

    ABSTRACT Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. IMPORTANCE Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza

  14. OUTBREAK OF ZIKA VIRUS DISEASE AND ITS COMPLICATIONS

    Directory of Open Access Journals (Sweden)

    Gabriela S. Tsankova

    2016-07-01

    Full Text Available Zika virus (ZIKV is an arbovirus from Flaviviridae family, genus Flavivirus. Like most of the viruses which belong to the Flavivirus genus, it replicates in and is transmitted by mosquitoes. Unlike other arbovirus infections including dengue and chikungunya, Zika virus causes a relatively mild disease. The most common symptoms of ZIKV are mild fever, arthralgia, myalgia, headache, asthenia, abdominal pain, oedema, lymphadenopathy, retro-orbital pain, conjunctivitis, and cutaneous maculopapular rash, which last for several days to a week. Although 80% of the cases with ZIKV are asymptomatic, severe complications such as microcephalia and GBS may be observed. This explains why ZIKV is more dangerous that it was thought to be and why it rapidly evolves in unexpected challenge for the international and national public health authorities.

  15. Ebola virus disease. Short history, long impact

    Directory of Open Access Journals (Sweden)

    Mª Teófila Vicente-Herrero

    2015-07-01

    Full Text Available Ebola Virus infection is at present times a growing worldwide concern, although its history goes back to 1967, with subsequent outbreaks in 1979, 1980 and 1987, all of them by contact in workers in affected areas. The concern of the scientific community about this issue is partially reflected in publications included in MEDLINE (PUBMED database and in which, taking as a keyword in the search box “Ebola virus”, 2.151 publications are found, belonging 984 of them to the last 5 years (45.7% and 527 of these publications (53.5% to the years 2014-2015. The earliest publication dates back to 1977, attaching no listed authors either reference abstract, and the most recent to January of current year 2015. This means Ebola infection is a global problem and that concern the international scientific community. A review of some of the studies published in this matter, considered of interest and discussed by the authors, is performed in this work.

  16. Health workers perceptions and attitude about Ghana's preparedness towards preventing, containing, and managing Ebola Virus Disease.

    Science.gov (United States)

    Adongo, Philip Baba; Tabong, Philip Teg-Nefaah; Asampong, Emmanuel; Ansong, Joana; Robalo, Magda; Adanu, Richard M

    2017-04-12

    Ebola virus is highly infectious and the disease can be very fatal. The World Health Organization has declared the 2014-2015 Ebola Virus Disease outbreak a Public Health Emergency of International Concern. In response to this, preparations were made in various health facilities and entry points across Ghana. This study explored health workers perceptions, and attitude about Ghana's preparedness towards preventing and containing Ebola Virus Disease. We conducted a qualitative study in five (5) of the ten (10) regions in Ghana. Five focus group discussions (N = 44) were conducted among nurses; one in each region. In addition, ten (10) health workers (2 in each region) who are members of regional Ebola Virus Disease task force were recruited and interviewed. In the Greater Accra, Volta and Western regions that have ports, six (6) port health officials: two in each of these regions were also interviewed. The interviews were recorded digitally and transcribed verbatim. Thematic content analysis was used to analyze the transcripts with the aid of NVivo 10 software. The results of this study showed that Ghanaian health workers perceived the screening at various ports as important and ongoing but felt that the screenings at in-land ports were being undermined by the use of unapproved routes. Training of health workers was also being carried out in all the regions, however, there was a general perception among 33 out of 44 nurses that majority of health workers have not received training on Ebola Virus Disease prevention and management. Logistical challenges were also reported as some health facilities did not have adequate Personal Protective Equipment. In facilities where equipment was available, they were stored in places which are not easily accessible to health workers at all times of the day. Human resource preparation was also perceived to be a challenge as health workers (38/44 of nurses) generally expressed fear and unwillingness to work in Ebola treatment

  17. Molecular characterisation of lumpy skin disease virus and sheeppox virus based on P32 gene

    Directory of Open Access Journals (Sweden)

    P.M.A.Rashid

    2017-06-01

    Full Text Available Lumpy skin disease virus (LSDV and sheeppox virus (SPV have a considerable economic impact on the cattle and small ruminant industry. They are listed in group A of contagious disease by the World Organization for Animal Health (OIE. This study addressed molecular characterisation of first LSDV outbreak and an endemic SPV in Kurdistan region of Iraq based on P32 gene. The results indicated that P32 gene can be successfully used for diagnosis of LSDV. The phylogenic and molecular analysis showed that there may be a new LSDV isolate circulating in Kurdistan which uniquely shared the same characteristic amino acid sequence with SPV and GPV, leucine at amino acid position 51 in P32 gene as well as few genetically distinct SPV causing pox disease in Kurdistan sheep. This study provided sequence information of P32 gene for several LSDV isolates, which positively affects the epidemiological study of Capripoxvirus

  18. Transgenic expression in citrus of single-chain antibody fragments specific to Citrus tristeza virus confers virus resistance.

    Science.gov (United States)

    Cervera, Magdalena; Esteban, Olga; Gil, Maite; Gorris, M Teresa; Martínez, M Carmen; Peña, Leandro; Cambra, Mariano

    2010-12-01

    Citrus tristeza virus (CTV) causes one of the most destructive viral diseases of citrus worldwide. Generation of resistant citrus genotypes through genetic engineering could be a good alternative to control CTV. To study whether production of single-chain variable fragment (scFv) antibodies in citrus could interfere and immunomodulate CTV infection, transgenic Mexican lime plants expressing two different scFv constructs, separately and simultaneously, were generated. These constructs derived from the well-referenced monoclonal antibodies 3DF1 and 3CA5, specific against CTV p25 major coat protein, whose mixture is able to detect all CTV isolates characterized so far. ScFv accumulation levels were low and could be readily detected just in four transgenic lines. Twelve homogeneous and vigorous lines were propagated and CTV-challenged by graft inoculation with an aggressive CTV strain. A clear protective effect was observed in most transgenic lines, which showed resistance in up to 40-60% of propagations. Besides, both a delay in symptom appearance and attenuation of symptom intensity were observed in infected transgenic plants compared with control plants. This effect was more evident in lines carrying the 3DF1scFv transgene, being probably related to the biological functions of the epitope recognized by this antibody. This is the first report describing successful protection against a pathogen in woody transgenic plants by ectopic expression of scFv recombinant antibodies.

  19. Bowen's Disease Associated With Two Human Papilloma Virus Types.

    Science.gov (United States)

    Eftekhari, Hojat; Gharaei Nejad, Kaveh; Azimi, Seyyede Zeinab; Rafiei, Rana; Mesbah, Alireza

    2017-09-01

    Bowen's disease (BD) is an epidermal in-situ squamous cell carcinoma (SCC). Most Human Papilloma Viruses (HPV)-positive lesions in Bowen's disease are localized to the genital region or distal extremities (periungual sites) in which HPV type-16 is frequently detected. Patient was a 64-year-old construction worker for whom we detected 2 erythematous psoriasiform reticular scaly plaques on peri-umbilical and medial knee. Biopsy established the diagnosis of Bowen's disease and polymerase chain reaction assay showed HPV-6, -18 co-infection. Patient was referred for surgical excision.

  20. Construction and characterization of recombinant fowlpox viruses expressing human papilloma virus E6 and E7 oncoproteins.

    Science.gov (United States)

    Pozzi, Eleana; Basavecchia, Valeria; Zanotto, Carlo; Pacchioni, Sole; Morghen, Carlo De Giuli; Radaelli, Antonia

    2009-06-01

    Human papilloma virus (HPV)-16 is the most prevalent high-risk mucosal genotype and the expression of the E6 and E7 proteins, which can bind to the p53 and p105Rb host cell-cycle regulatory proteins, is related to its tumorigenicity. Virus-like-particle (VLP)-based immunogens developed recently are successful as prophylactic HPV vaccines. However, given the high number of individuals infected already with HPV and the absence of expression of the L1 structural protein in HPV-infected or HPV-transformed cells, an efficient therapeutic vaccine targeting the non-structural E6 and E7 oncoproteins is required. In this study, two new fowlpox virus (FPV) recombinants encoding the HPV-16 E6 and E7 proteins were engineered and evaluated for their correct expression in vitro, with the final aim of developing a therapeutic vaccine against HPV-related cervical tumors. Although vaccinia viruses expressing the HPV-16 and HPV-18 E6 and E7 oncoproteins have already been studied, due to their natural host-range restriction to avian species and their ability to elicit a complete immune response, FPV recombinants may represent efficient and safer vectors also for immunocompromised hosts. The results indicate that FPV recombinants can express correctly the E6 and E7 oncoproteins, and they should represent appropriate vectors for the expression of these oncoproteins in human cells.

  1. [Zika virus infection or the future of infectious diseases].

    Science.gov (United States)

    Valerio Sallent, Lluís; Roure Díez, Sílvia; Fernández Rivas, Gema

    2016-10-07

    Zika virus belongs to the Flaviridae, an extended phylogenetic family containing dengue or yellow fever, viruses whose shared main vector are Aedes aegypti mosquitoes. The virus originally came from Central African simian reservoirs and, from there, expanded rapidly across the Pacific to South America. The disease is an example of exantematic fever usually mild. Mortality is very low and mainly limited to secondary Guillain-Barré or fetal microcephaly cases. Diagnostic confirmation requires a RT-PCR in blood up to the 5th day from the onset or in urine up to the 10-14th day. Specific IgM are identifiable from the 5th symptomatic day. Clinically, a suspected case should comply with: a) a journey to epidemic areas; b) a clinically compatible appearance with fever and skin rash, and c) a generally normal blood count/basic biochemistry. There is some evidence that causally relates Zika virus infection with fetal microcephaly. While waiting for definitive data, all pregnant women coming from Central or South America should be tested for Zika virus. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  2. Zika and Spondweni Viruses: Historic Evidence of Misidentification, Misdiagnosis and Serious Clinical Disease Manifestations

    Science.gov (United States)

    2016-10-01

    1 Zika and Spondweni viruses : Historic evidence of misidentification, misdiagnosis, and serious clinical disease manifestations Andrew D...serogroup (family Flaviviridae, genus Flavivirus) consists of two members: Zika 3 and Spondweni viruses . Both viruses have been historically misidentified...UNCLASSIFIED 3 Perspective 24 25 Viruses within the genus Flavivirus, family Flaviviridae, are notorious for their serological 26 cross-reactivity

  3. Effects of chlorine, iodine, and quaternary ammonium compound disinfectants on several exotic disease viruses.

    Science.gov (United States)

    Shirai, J; Kanno, T; Tsuchiya, Y; Mitsubayashi, S; Seki, R

    2000-01-01

    The effects of three representative disinfectants, chlorine (sodium hypochlorite), iodine (potassium tetraglicine triiodide), and quaternary ammonium compound (didecyldimethylammonium chloride), on several exotic disease viruses were examined. The viruses used were four enveloped viruses (vesicular stomatitis virus, African swine fever virus, equine viral arteritis virus, and porcine reproductive and respiratory syndrome virus) and two non-enveloped viruses (swine vesicular disease virus (SVDV) and African horse sickness virus (AHSV)). Chlorine was effective against all viruses except SVDV at concentrations of 0.03% to 0.0075%, and a dose response was observed. Iodine was very effective against all viruses at concentrations of 0.015% to 0.0075%, but a dose response was not observed. Quaternary ammonium compound was very effective in low concentration of 0.003% against four enveloped viruses and AHSV, but it was only effective against SVDV with 0.05% NaOH. Electron microscopic observation revealed the probable mechanism of each disinfectant. Chlorine caused complete degeneration of the viral particles and also destroyed the nucleic acid of the viruses. Iodine destroyed mainly the inner components including nucleic acid of the viruses. Quaternary ammonium compound induced detachment of the envelope of the enveloped viruses and formation of micelle in non-enveloped viruses. According to these results, chlorine and iodine disinfectants were quite effective against most of the viruses used at adequately high concentration. The effective concentration of quaternary ammonium compound was the lowest among the disinfectants examined.

  4. Newcastle disease virus outbreaks: vaccine mismatch or inadequate application?

    Science.gov (United States)

    Dortmans, Jos C F M; Peeters, Ben P H; Koch, Guus

    2012-11-09

    Newcastle disease (ND) is one of the most important diseases of poultry, and may cause devastating losses in the poultry industry worldwide. Its causative agent is Newcastle disease virus (NDV), also known as avian paramyxovirus type 1. Many countries maintain a stringent vaccination policy against ND, but there are indications that ND outbreaks can still occur despite intensive vaccination. It has been argued that this may be due to antigenic divergence between the vaccine strains and circulating field strains. Here we present the complete genome sequence of a highly virulent genotype VII virus (NL/93) obtained from vaccinated poultry during an outbreak of ND in the Netherlands in 1992-1993. Using this strain, we investigated whether the identified genetic evolution of NDV is accompanied by antigenic evolution. In this study we show that a live vaccine that is antigenically adapted to match the genotype VII NL/93 outbreak strain does not provide increased protection compared to a classic genotype II live vaccine. When challenged with the NL/93 strain, chickens vaccinated with a classic vaccine were completely protected against clinical disease and mortality and virus shedding was significantly reduced, even with a supposedly suboptimal vaccine dose. These results suggest that it is not antigenic variation but rather poor flock immunity due to inadequate vaccination practices that may be responsible for outbreaks and spreading of virulent NDV field strains. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Genetic variation of Border disease virus species strains

    Directory of Open Access Journals (Sweden)

    Massimo Giangaspero

    2011-12-01

    Full Text Available The 5´-untranslated region of Pestivirus strains isolated from domestic and wild animals were analysed to determine their taxonomic status according to nucleotide changes in the secondary genomic structure using the palindromic nucleotide substitutions (PNS method. A total of 131 isolates out of 536 Pestivirus strains evaluated, were clustered as Border disease virus (BDV species. The BDV strains were further divided into at least 8 genotypes or subspecies. Thirty-two isolates from small ruminants suffering from clinical symptoms of Border disease were clustered into bovine viral diarrhoea virus 1 (BVDV-1, BVDV-2 and classical swine fever (hog cholera virus species and also into the tentative BDV-2 species. Since the definition of an infectious disease is based primarily on a specific causative pathogen and taking into account the heterogeneity of the genus Pestivirus, clinical cases should be named according to the laboratory results. The PNS procedure could be useful for laboratory diagnosis of Border disease in domestic and wild ruminants.

  6. Virus survival in slurry: Analysis of the stability of foot-and-mouth disease, classical swine fever, bovine viral diarrhoea and swine influenza viruses

    DEFF Research Database (Denmark)

    Bøtner, Anette; Belsham, Graham

    2012-01-01

    of an outbreak of disease before it has been recognized. The survival of foot-and-mouth disease virus, classical swine fever virus, bovine viral diarrhoea virus and swine influenza virus, which belong to three different RNA virus families plus porcine parvovirus (a DNA virus) was examined under controlled...... conditions. For each RNA virus, the virus survival in farm slurry under anaerobic conditions was short (generally ≤1h) when heated (to 55°C) but each of these viruses could retain infectivity at cool temperatures (5°C) for many weeks. The porcine parvovirus survived considerably longer than each of the RNA...

  7. Gene expression profiling of microglia infected by a highly neurovirulent murine leukemia virus: implications for neuropathogenesis

    Directory of Open Access Journals (Sweden)

    DeLucia Angelo L

    2006-05-01

    Full Text Available Abstract Background Certain murine leukemia viruses (MLVs are capable of inducing progressive spongiform motor neuron disease in susceptible mice upon infection of the central nervous system (CNS. The major CNS parenchymal target of these neurovirulent retroviruses (NVs are the microglia, whose infection is largely coincident with neuropathological changes. Despite this close association, the role of microglial infection in disease induction is still unknown. In this paper, we investigate the interaction of the highly virulent MLV, FrCasE, with microglia ex vivo to evaluate whether infection induces specific changes that could account for neurodegeneration. Specifically, we compared microglia infected with FrCasE, a related non-neurovirulent virus (NN F43/Fr57E, or mock-infected, both at a basic virological level, and at the level of cellular gene expression using quantitative real time RT-PCR (qRT-PCR and Afffymetrix 430A mouse gene chips. Results Basic virological comparison of NN, NV, and mock-infected microglia in culture did not reveal differences in virus expression that provided insight into neuropathogenesis. Therefore, microglial analysis was extended to ER stress gene induction based on previous experiments demonstrating ER stress induction in NV-infected mouse brains and cultured fibroblasts. Analysis of message levels for the ER stress genes BiP (grp78, CHOP (Gadd153, calreticulin, and grp58 in cultured microglia, and BiP and CHOP in microglia enriched fractions from infected mouse brains, indicated that FrCasE infection did not induce these ER stress genes either in vitro or in vivo. To broadly identify physiological changes resulting from NV infection of microglia in vitro, we undertook a gene array screen of more than 14,000 well-characterized murine genes and expressed sequence tags (ESTs. This analysis revealed only a small set of gene expression changes between infected and uninfected cells ( Conclusion The results from this

  8. Transcriptomic analyses reveal differential gene expression of immune and cell death pathways in the brains of mice infected with West Nile virus and chikungunya virus

    NARCIS (Netherlands)

    S.M. Lim (Stephanie); H.J. van den Ham; M. Oduber (Minoushka); Martina, E. (Eurydice); F. Zaaraoui-Boutahar (Fatiha); J.M. Roose (Jeroen M.); W.F.J. van IJcken (Wilfred); A.D.M.E. Osterhaus (Albert); A.C. Andeweg (Arno); P. Koraka (P.); B.E.E. Martina (Byron)

    2017-01-01

    textabstractWest Nile virus (WNV) and chikungunya virus (CHIKV) are arboviruses that are constantly (re-)emerging and expanding their territory. Both viruses often cause a mild form of disease, but severe forms of the disease can consist of neurological symptoms, most often observed in the elderly

  9. Resistance to multiple viruses in transgenic tobacco expressing fused, tandem repeat, virus-derived double-stranded RNAs.

    Science.gov (United States)

    Chung, Bong Nam; Palukaitis, Peter

    2011-12-01

    Transgenic tobacco plants expressing fused, tandem, inverted-repeat, double-stranded RNAs derived either from the three viruses [potato virus Y (PVY), potato virus A (PVA), and potato leafroll virus (PLRV)] or the five viruses [PVY, PVA, PLRV as well as tobacco rattle virus (TRV), and potato mop-top virus (PMTV)] were generated in this study to examine whether resistance could be achieved against these three viruses or five viruses, respectively, in the same plant. The transgenic lines were engineered to produce 600- or 1000-bp inverted hairpin transcripts with an intron, in two orientations each, which were processed to silencing-inducing RNAs (siRNAs). Fewer lines were regenerated from the transformants with either 1000-bp inverted hairpin transcripts, or a sense-intron-antisense orientation versus antisense-intron-sense orientation. Resistances to PVA and two strains of PVY (-O and -N) were achieved in plants from most of lines examined, as well as resistance to co-infection by a mixture of PVY-O and PVA, applied to the plants by either rub inoculation or using aphids. This was regardless of the orientation of the inserted sequences for the 600-bp insert lines, but only for one orientation of the 1000-bp insert lines. The lines containing the 1000-bp inserts also showed resistance to infection by TRV inoculated by rub inoculation and PMTV inoculated by grafting. However, all the lines showed only low-to-moderate (15-43%) resistance to infection by PLRV transmitted by aphids. The resistances to the various viruses correlated with the levels of accumulation of siRNAs, indicating that the multiple resistances were achieved by RNA silencing.

  10. Impaired virus control and severe CD8+ T-cell-mediated immunopathology in chimeric mice deficient in gamma interferon receptor expression on both parenchymal and hematopoietic cells

    DEFF Research Database (Denmark)

    Henrichsen, Pernille; Bartholdy, Christina; Christensen, Jan Pravsgaard

    2005-01-01

    virus completely lack the ability to control the infection and develop severe wasting disease. Further, the study shows that IFN-gamma receptor expression on parenchymal cells in the viscera is more important for virus control than IFN-gamma receptor expression on bone marrow-derived cells.......Bone marrow chimeras were used to determine the cellular target(s) for the antiviral activity of gamma interferon (IFN-gamma). By transfusing such mice with high numbers of naive virus-specific CD8(+) T cells, a system was created in which the majority of virus-specific CD8(+) T cells would...... be capable of responding to IFN-gamma, but expression of the relevant receptor on non-T cells could be experimentally controlled. Only when the IFN-gamma receptor is absent on both radioresistant parenchymal and bone marrow-derived cells will chimeric mice challenged with a highly invasive, noncytolytic...

  11. Virus-induced gene silencing and Agrobacterium tumefaciens-mediated transient expression in Nicotiana tabacum

    NARCIS (Netherlands)

    Zhang, Z.; Thomma, B.P.H.J.

    2014-01-01

    Virus-induced gene silencing (VIGS) is a rapid method for transient silencing of plant genes. In this chapter, we describe the methodology for Tobacco rattle virus (TRV)-based VIGS in Nicotiana tabacum. In combination with subsequent co-expression of the tomato immune receptor Ve1 and the

  12. Expression of heterologous genes from an IRES translational cassette in replication competent murine leukemia virus vectors

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Duch, Mogens R.; Carrasco, M L

    1999-01-01

    We describe replication competent retroviruses capable of expressing heterologous genes during multiple rounds of infection. An internal ribosome entry site (IRES) from encephalomyocarditis virus was inserted in the U3 region of Akv- and SL3-3-murine leukemia viruses (MLV) to direct translation...

  13. Structure and expression of the tomato spotted wilt virus genome : a plant-infecting bunyavirus

    NARCIS (Netherlands)

    Kormelink, R.J.M.

    1994-01-01

    This thesis describes studies which are aimed at the elucidation of the genetic organisation and expression strategy of the tomato spotted wilt virus (TSWV) RNA genome.

    Using specific cDNA clones, corresponding to all three genomic RNA segments, the synthesis of virus specific RNA

  14. Ebola Virus Disease: Essential Public Health Principles for Clinicians

    Directory of Open Access Journals (Sweden)

    Kristi L. Koenig

    2014-11-01

    Full Text Available Ebola Virus Disease (EVD has become a public health emergency of international concern. The World Health Organization and Centers for Disease Control and Prevention have developed guidance to educate and inform healthcare workers and travelers worldwide. Symptoms of EVD include abrupt onset of fever, myalgias, and headache in the early phase, followed by vomiting, diarrhea and possible progression to hemorrhagic rash, life-threatening bleeding, and multi-organ failure in the later phase. The disease is not transmitted via airborne spread like influenza, but rather from person-to-person, or animal to person, via direct contact with bodily fluids or blood. It is crucial that emergency physicians be educated on disease presentation and how to generate a timely and accurate differential diagnosis that includes exotic diseases in the appropriate patient population. A patient should be evaluated for EVD when both suggestive symptoms, including unexplained hemorrhage, AND risk factors within 3 weeks prior, such as travel to an endemic area, direct handling of animals from outbreak areas, or ingestion of fruit or other uncooked foods contaminated with bat feces containing the virus are present. There are experimental therapies for treatment of EVD virus; however the mainstay of therapy is supportive care. Emergency department personnel on the frontlines must be prepared to rapidly identify and isolate febrile travelers if indicated. All healthcare workers involved in care of EVD patients should wear personal protective equipment. Despite the intense media focus on EVD rather than other threats, emergency physicians must master and follow essential public health principles for management of all infectious diseases. This includes not only identification and treatment of individuals, but also protection of healthcare workers and prevention of spread, keeping in mind the possibility of other more common disease processes. [West J Emerg Med. 2014;15(7:–0.

  15. Ebola Virus Disease in Children, Sierra Leone, 2014–2015

    Science.gov (United States)

    Naveed, Asad; Wing, Kevin; Gbessay, Musa; Ross, J.C.G.; Checchi, Francesco; Youkee, Daniel; Jalloh, Mohammed Boie; Baion, David; Mustapha, Ayeshatu; Jah, Hawanatu; Lako, Sandra; Oza, Shefali; Boufkhed, Sabah; Feury, Reynold; Bielicki, Julia A.; Gibb, Diana M.; Klein, Nigel; Sahr, Foday; Yeung, Shunmay

    2016-01-01

    Little is known about potentially modifiable factors in Ebola virus disease in children. We undertook a retrospective cohort study of children <13 years old admitted to 11 Ebola holding units in the Western Area, Sierra Leone, during 2014–2015 to identify factors affecting outcome. Primary outcome was death or discharge after transfer to Ebola treatment centers. All 309 Ebola virus–positive children 2 days–12 years old were included; outcomes were available for 282 (91%). Case-fatality was 57%, and 55% of deaths occurred in Ebola holding units. Blood test results showed hypoglycemia and hepatic/renal dysfunction. Death occurred swiftly (median 3 days after admission) and was associated with younger age and diarrhea. Despite triangulation of information from multiple sources, data availability was limited, and we identified no modifiable factors substantially affecting death. In future Ebola virus disease epidemics, robust, rapid data collection is vital to determine effectiveness of interventions for children. PMID:27649367

  16. Ebola Virus Disease, Democratic Republic of the Congo, 2014

    Science.gov (United States)

    Nanclares, Carolina; Kapetshi, Jimmy; Lionetto, Fanshen; de la Rosa, Olimpia; Tamfun, Jean-Jacques Muyembe; Alia, Miriam; Kobinger, Gary

    2016-01-01

    During July–November 2014, the Democratic Republic of the Congo underwent its seventh Ebola virus disease (EVD) outbreak. The etiologic agent was Zaire Ebola virus; 66 cases were reported (overall case-fatality rate 74.2%). Through a retrospective observational study of confirmed EVD in 25 patients admitted to either of 2 Ebola treatment centers, we described clinical features and investigated correlates associated with death. Clinical features were mainly generic. At admission, 76% of patients had >1 gastrointestinal symptom and 28% >1 hemorrhagic symptom. The case-fatality rate in this group was 48% and was higher for female patients (67%). Cox regression analysis correlated death with initial low cycle threshold, indicating high viral load. Cycle threshold was a robust predictor of death, as were fever, hiccups, diarrhea, dyspnea, dehydration, disorientation, hematemesis, bloody feces during hospitalization, and anorexia in recent medical history. Differences from other outbreaks could suggest guidance for optimizing clinical management and disease control. PMID:27533284

  17. Ebola Virus Disease, Democratic Republic of the Congo, 2014.

    Science.gov (United States)

    Nanclares, Carolina; Kapetshi, Jimmy; Lionetto, Fanshen; de la Rosa, Olimpia; Tamfun, Jean-Jacques Muyembe; Alia, Miriam; Kobinger, Gary; Bernasconi, Andrea

    2016-09-01

    During July-November 2014, the Democratic Republic of the Congo underwent its seventh Ebola virus disease (EVD) outbreak. The etiologic agent was Zaire Ebola virus; 66 cases were reported (overall case-fatality rate 74.2%). Through a retrospective observational study of confirmed EVD in 25 patients admitted to either of 2 Ebola treatment centers, we described clinical features and investigated correlates associated with death. Clinical features were mainly generic. At admission, 76% of patients had >1 gastrointestinal symptom and 28% >1 hemorrhagic symptom. The case-fatality rate in this group was 48% and was higher for female patients (67%). Cox regression analysis correlated death with initial low cycle threshold, indicating high viral load. Cycle threshold was a robust predictor of death, as were fever, hiccups, diarrhea, dyspnea, dehydration, disorientation, hematemesis, bloody feces during hospitalization, and anorexia in recent medical history. Differences from other outbreaks could suggest guidance for optimizing clinical management and disease control.

  18. Ectopic catalase expression in mitochondria by adeno-associated virus enhances exercise performance in mice.

    Directory of Open Access Journals (Sweden)

    Dejia Li

    2009-08-01

    Full Text Available Oxidative stress is thought to compromise muscle contractility. However, administration of generic antioxidants has failed to convincingly improve performance during exhaustive exercise. One possible explanation may relate to the inability of the supplemented antioxidants to effectively eliminate excessive free radicals at the site of generation. Here, we tested whether delivering catalase to the mitochondria, a site of free radical production in contracting muscle, could improve treadmill performance in C57Bl/6 mice. Recombinant adeno-associated virus serotype-9 (AV.RSV.MCAT was generated to express a mitochondria-targeted catalase gene. AV.RSV.MCAT was delivered to newborn C57Bl/6 mouse circulation at the dose of 10(12 vector genome particles per mouse. Three months later, we observed a approximately 2 to 10-fold increase of catalase protein and activity in skeletal muscle and the heart. Subcellular fractionation western blot and double immunofluorescence staining confirmed ectopic catalase expression in the mitochondria. Compared with untreated control mice, absolute running distance and body weight normalized running distance were significantly improved in AV.RSV.MCAT infected mice during exhaustive treadmill running. Interestingly, ex vivo contractility of the extensor digitorum longus muscle was not altered. Taken together, we have demonstrated that forced catalase expression in the mitochondria enhances exercise performance. Our result provides a framework for further elucidating the underlying mechanism. It also raises the hope of applying similar strategies to remove excessive, pathogenic free radicals in certain muscle diseases (such as Duchenne muscular dystrophy and ameliorate muscle disease.

  19. Telomeres and Telomerase: Role in Marek’s Disease Virus Pathogenesis, Integration and Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Ahmed Kheimar

    2017-07-01

    Full Text Available Telomeres protect the ends of vertebrate chromosomes from deterioration and consist of tandem nucleotide repeats (TTAGGGn that are associated with a number of proteins. Shortening of the telomeres occurs during genome replication, thereby limiting the replication potential of somatic cells. To counteract this shortening, vertebrates encode the telomerase complex that maintains telomere length in certain cell types via de novo addition of telomeric repeats. Several herpesviruses, including the highly oncogenic alphaherpesvirus Marek’s disease virus (MDV, harbor telomeric repeats (TMR identical to the host telomere sequences at the ends of their linear genomes. These TMR facilitate the integration of the MDV genome into host telomeres during latency, allowing the virus to persist in the host for life. Integration into host telomeres is critical for disease and tumor induction by MDV, but also enables efficient reactivation of the integrated virus genome. In addition to the TMR, MDV also encodes a telomerase RNA subunit (vTR that shares 88% sequence identity with the telomerase RNA in chicken (chTR. vTR is highly expressed during all stages of the virus lifecycle, enhances telomerase activity and plays an important role in MDV-induced tumor formation. This review will focus on the recent advances in understanding the role of viral TMR and vTR in MDV pathogenesis, integration and tumorigenesis.

  20. Overwintering Is Associated with Reduced Expression of Immune Genes and Higher Susceptibility to Virus Infection in Honey Bees.

    Science.gov (United States)

    Steinmann, Nadja; Corona, Miguel; Neumann, Peter; Dainat, Benjamin

    2015-01-01

    The eusocial honey bee, Apis mellifera, has evolved remarkable abilities to survive extreme seasonal differences in temperature and availability of resources by dividing the worker caste into two groups that differ in physiology and lifespan: summer and winter bees. Most of the recent major losses of managed honey bee colonies occur during the winter, suggesting that winter bees may have compromised immune function and higher susceptibility to diseases. We tested this hypothesis by comparing the expression of eight immune genes and naturally occurring infection levels of deformed wing virus (DWV), one of the most widespread viruses in A. mellifera populations, between summer and winter bees. Possible interactions between immune response and physiological activity were tested by measuring the expression of vitellogenin and methyl farnesoate epoxidase, a gene coding for the last enzyme involved in juvenile hormone biosynthesis. Our data show that high DWV loads in winter bees correlate with reduced expression of genes involved in the cellular immune response and physiological activity and high expression of humoral immune genes involved in antibacterial defense compared with summer bees. This expression pattern could reflect evolutionary adaptations to resist bacterial pathogens and economize energy during the winter under a pathogen landscape with reduced risk of pathogenic viral infections. The outbreak of Varroa destructor infestation could have overcome these adaptations by promoting the transmission of viruses. Our results suggest that reduced cellular immune function during the winter may have increased honey bee's susceptibility to DWV. These results contribute to our understanding of honey bee colony losses in temperate regions.

  1. Gene Technology for Papaya Ringspot Virus Disease Management

    OpenAIRE

    Azad, Md. Abul Kalam; Amin, Latifah; Sidik, Nik Marzuki

    2014-01-01

    Papaya (Carica papaya) is severely damaged by the papaya ringspot virus (PRSV). This review focuses on the development of PRSV resistant transgenic papaya through gene technology. The genetic diversity of PRSV depends upon geographical distribution and the influence of PRSV disease management on a sequence of PRSV isolates. The concept of pathogen-derived resistance has been employed for the development of transgenic papaya, using a coat protein-mediated, RNA-silencing mechanism and replicase...

  2. Microculture system for detection of Newcastle disease virus antibodies.

    Science.gov (United States)

    Wooley, R E; Brown, J; Gratzek, J B; Kleven, S H; Scott, T A

    1974-05-01

    A microculture system utilizing cytopathic effect (CPE) and hemadsorption (HAd) end points was effective in determining the level of Newcastle disease virus (NDV) antibodies. The microculture system was of comparable sensitivity to the plaque reduction test for the detection of NDV antibodies. The standards by which the CPE and HAd microculture tests would be considered reproducible were defined. The results indicate that the CPE and HAd microculture tests are reproducible within one twofold dilution.

  3. Clinical presentation and management of severe Ebola virus disease.

    Science.gov (United States)

    West, T Eoin; von Saint André-von Arnim, Amélie

    2014-11-01

    Clinicians caring for patients infected with Ebola virus must be familiar not only with screening and infection control measures but also with management of severe disease. By integrating experience from several Ebola epidemics with best practices for managing critical illness, this report focuses on the clinical presentation and management of severely ill infants, children, and adults with Ebola virus disease. Fever, fatigue, vomiting, diarrhea, and anorexia are the most common symptoms of the 2014 West African outbreak. Profound fluid losses from the gastrointestinal tract result in volume depletion, metabolic abnormalities (including hyponatremia, hypokalemia, and hypocalcemia), shock, and organ failure. Overt hemorrhage occurs infrequently. The case fatality rate in West Africa is at least 70%, and individuals with respiratory, neurological, or hemorrhagic symptoms have a higher risk of death. There is no proven antiviral agent to treat Ebola virus disease, although several experimental treatments may be considered. Even in the absence of antiviral therapies, intensive supportive care has the potential to markedly blunt the high case fatality rate reported to date. Optimal treatment requires conscientious correction of fluid and electrolyte losses. Additional management considerations include searching for coinfection or superinfection; treatment of shock (with intravenous fluids and vasoactive agents), acute kidney injury (with renal replacement therapy), and respiratory failure (with invasive mechanical ventilation); provision of nutrition support, pain and anxiety control, and psychosocial support; and the use of strategies to reduce complications of critical illness. Cardiopulmonary resuscitation may be appropriate in certain circumstances, but extracorporeal life support is not advised. Among other ethical issues, patients' medical needs must be carefully weighed against healthcare worker safety and infection control concerns. However, meticulous attention

  4. RNA Viruses that Cause Hemorrhagic, Encephalitic, and Febrile Disease

    Science.gov (United States)

    1990-01-01

    commercial priority. Further, fund- - The views of the authors do not purport to reflect ing for studying many of these viruses is the position of the...tion of headache, meningismus, vertigo , mated 200,000 cases occurred with 598 re- confusion, hallucinations, and recrudes- ported deaths. Most cases...latter. Patients surviving this disease require several weeks for conva- Clinical Features lescence, and paroxysmal and orthostatic hypotension

  5. Newcastle disease virus and antibody levels in matched sera ...

    African Journals Online (AJOL)

    Haemagglutination inhibition assay was performed for all sera and egg yolk samples. Protective serum antibody titres of ≥3 (log2) were recorded in 5.3% of the naturally exposed, indigenous village hens. Antibody titers to Newcastle disease virus in the yolks were higher than in their sera (230.08 ± 40.05; 1.56 ± 0.74 for ...

  6. Borna disease virus phosphoprotein modulates epigenetic signaling in neurons to control viral replication.

    Science.gov (United States)

    Bonnaud, Emilie M; Szelechowski, Marion; Bétourné, Alexandre; Foret, Charlotte; Thouard, Anne; Gonzalez-Dunia, Daniel; Malnou, Cécile E

    2015-06-01

    Understanding the modalities of interaction of neurotropic viruses with their target cells represents a major challenge that may improve our knowledge of many human neurological disorders for which viral origin is suspected. Borna disease virus (BDV) represents an ideal model to analyze the molecular mechanisms of viral persistence in neurons and its consequences for neuronal homeostasis. It is now established that BDV ensures its long-term maintenance in infected cells through a stable interaction of viral components with the host cell chromatin, in particular, with core histones. This has led to our hypothesis that such an interaction may trigger epigenetic changes in the host cell. Here, we focused on histone acetylation, which plays key roles in epigenetic regulation of gene expression, notably for neurons. We performed a comparative analysis of histone acetylation patterns of neurons infected or not infected by BDV, which revealed that infection decreases histone acetylation on selected lysine residues. We showed that the BDV phosphoprotein (P) is responsible for these perturbations, even when it is expressed alone independently of the viral context, and that this action depends on its phosphorylation by protein kinase C. We also demonstrated that BDV P inhibits cellular histone acetyltransferase activities. Finally, by pharmacologically manipulating cellular acetylation levels, we observed that inhibiting cellular acetyl transferases reduces viral replication in cell culture. Our findings reveal that manipulation of cellular epigenetics by BDV could be a means to modulate viral replication and thus illustrate a fascinating example of virus-host cell interaction. Persistent DNA viruses often subvert the mechanisms that regulate cellular chromatin dynamics, thereby benefitting from the resulting epigenetic changes to create a favorable milieu for their latent and persistent states. Here, we reasoned that Borna disease virus (BDV), the only RNA virus known to

  7. Herd immunity to Newcastle disease virus in poultry by vaccination.

    Science.gov (United States)

    van Boven, Michiel; Bouma, Annemarie; Fabri, Teun H F; Katsma, Elly; Hartog, Leo; Koch, Guus

    2008-02-01

    Newcastle disease is an economically important disease of poultry for which vaccination is applied as a preventive measure in many countries. Nevertheless, outbreaks have been reported in vaccinated populations. This suggests that either the vaccination coverage level is too low or that vaccination does not provide perfect immunity, allowing the virus to spread in partially vaccinated populations. Here we study the requirements of an epidemiologically effective vaccination program against Newcastle disease in poultry, based on data from experimental transmission studies. The transmission studies indicate that vaccinated birds with low or undetectable antibody titres may be protected against disease and mortality but that infection and transmission may still occur. In fact, our quantitative analyses show that Newcastle disease virus is highly transmissible in poultry with low antibody titres. As a consequence, herd immunity can only be achieved if a high proportion of birds (>85%) have a high antibody titre (log(2) haemagglutination inhibition titre > or =3) after vaccination. We discuss the implications for the control of Newcastle disease in poultry by vaccination.

  8. Expression and silencing of cowpea mosaic virus transgenes

    NARCIS (Netherlands)

    Sijen, T.

    1997-01-01

    Plant viruses are interesting pathogens because they can not exist without their hosts and exploit the plant machinery for their multiplication. Fundamental knowledge on viral processes is of great importance to understand, prevent and control virus infections which can cause drastic losses

  9. The expression of essential components for human influenza virus internalisation in Vero and MDCK cells.

    Science.gov (United States)

    Ugiyadi, Maharani; Tan, Marselina I; Giri-Rachman, Ernawati A; Zuhairi, Fawzi R; Sumarsono, Sony H

    2014-05-01

    MDCK and Vero cell lines have been used as substrates for influenza virus replication. However, Vero cells produced lower influenza virus titer yield compared to MDCK. Influenza virus needs molecules for internalisation of the virus into the host cell, such as influenza virus receptor and clathrin. Human influenza receptor is usually a membrane protein containing Sia(α2,6) Gal, which is added into the protein in the golgi apparatus by α2,6 sialyltransferase (SIAT1). Light clathrin A (LCA), light clathrin B (LCB) and heavy clathrin (HC) are the main components needed for virus endocytosis. Therefore, it is necessary to compare the expression of SIAT1 and clathrin in Vero and MDCK cells. This study is reporting the expression of SIAT1 and clathrin observed in both cells with respect to the levels of (1) RNA by using RT-PCR, (2) protein by using dot blot analysis and confocal microscope. The results showed that Vero and MDCK cells expressed both SIAT1 and clathrin proteins, and the expression of SIAT1 in MDCK was higher compared to Vero cells. On the other hand, the expressions of LCA, LCB and HC protein in MDCK cells were not significantly different to Vero cells. This result showed that the inability of Vero cells to internalize H1N1 influenza virus was possibly due to the lack of transmembrane protein receptor which contained Sia(α2,6) Gal.

  10. The Merits of Malaria Diagnostics during an Ebola Virus Disease Outbreak.

    Science.gov (United States)

    de Wit, Emmie; Falzarano, Darryl; Onyango, Clayton; Rosenke, Kyle; Marzi, Andrea; Ochieng, Melvin; Juma, Bonventure; Fischer, Robert J; Prescott, Joseph B; Safronetz, David; Omballa, Victor; Owuor, Collins; Hoenen, Thomas; Groseth, Allison; van Doremalen, Neeltje; Zemtsova, Galina; Self, Joshua; Bushmaker, Trenton; McNally, Kristin; Rowe, Thomas; Emery, Shannon L; Feldmann, Friederike; Williamson, Brandi; Nyenswah, Tolbert G; Grolla, Allen; Strong, James E; Kobinger, Gary; Stroeher, Ute; Rayfield, Mark; Bolay, Fatorma K; Zoon, Kathryn C; Stassijns, Jorgen; Tampellini, Livia; de Smet, Martin; Nichol, Stuart T; Fields, Barry; Sprecher, Armand; Feldmann, Heinz; Massaquoi, Moses; Munster, Vincent J

    2016-02-01

    Malaria is a major public health concern in the countries affected by the Ebola virus disease epidemic in West Africa. We determined the feasibility of using molecular malaria diagnostics during an Ebola virus disease outbreak and report the incidence of Plasmodium spp. parasitemia in persons with suspected Ebola virus infection.

  11. Uveitis and Systemic Inflammatory Markers in Convalescent Phase of Ebola Virus Disease.

    Science.gov (United States)

    Chancellor, John R; Padmanabhan, Sriranjani P; Greenough, Thomas C; Sacra, Richard; Ellison, Richard T; Madoff, Lawrence C; Droms, Rebecca J; Hinkle, David M; Asdourian, George K; Finberg, Robert W; Stroher, Ute; Uyeki, Timothy M; Cerón, Olga M

    2016-02-01

    We report a case of probable Zaire Ebola virus-related ophthalmologic complications in a physician from the United States who contracted Ebola virus disease in Liberia. Uveitis, immune activation, and nonspecific increase in antibody titers developed during convalescence. This case highlights immune phenomena that could complicate management of Ebola virus disease-related uveitis during convalescence.

  12. Classification of infectious bursal disease virus into genogroups.

    Science.gov (United States)

    Michel, Linda O; Jackwood, Daral J

    2017-12-01

    Infectious bursal disease virus (IBDV) causes infectious bursal disease (IBD), an immunosuppressive disease of poultry. The current classification scheme of IBDV is confusing because it is based on antigenic types (variant and classical) as well as pathotypes. Many of the amino acid changes differentiating these various classifications are found in a hypervariable region of the capsid protein VP2 (hvVP2), the major host protective antigen. Data from this study were used to propose a new classification scheme for IBDV based solely on genogroups identified from phylogenetic analysis of the hvVP2 of strains worldwide. Seven major genogroups were identified, some of which are geographically restricted and others that have global dispersion, such as genogroup 1. Genogroup 2 viruses are predominately distributed in North America, while genogroup 3 viruses are most often identified on other continents. Additionally, we have identified a population of genogroup 3 vvIBDV isolates that have an amino acid change from alanine to threonine at position 222 while maintaining other residues conserved in this genogroup (I242, I256 and I294). A222T is an important mutation because amino acid 222 is located in the first of four surface loops of hvVP2. A similar shift from proline to threonine at 222 is believed to play a role in the significant antigenic change of the genogroup 2 IBDV strains, suggesting that antigenic drift may be occurring in genogroup 3, possibly in response to antigenic pressure from vaccination.

  13. A baculovirus-mediated strategy for full-length plant virus coat protein expression and purification.

    Science.gov (United States)

    Ardisson-Araújo, Daniel Mendes Pereira; Rocha, Juliana Ribeiro; da Costa, Márcio Hedil Oliveira; Bocca, Anamélia Lorenzetti; Dusi, André Nepomuceno; de Oliveira Resende, Renato; Ribeiro, Bergmann Morais

    2013-08-15

    Garlic production is severely affected by virus infection, causing a decrease in productivity and quality. There are no virus-free cultivars and garlic-infecting viruses are difficult to purify, which make specific antibody production very laborious. Since high quality antisera against plant viruses are important tools for serological detection, we have developed a method to express and purify full-length plant virus coat proteins using baculovirus expression system and insects as bioreactors. In this work, we have fused the full-length coat protein (cp) gene from the Garlic Mite-borne Filamentous Virus (GarMbFV) to the 3'-end of the Polyhedrin (polh) gene of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). The recombinant baculovirus was amplified in insect cell culture and the virus was used to infect Spodoptera frugiperda larvae. Thus, the recombinant fused protein was easily purified from insect cadavers using sucrose gradient centrifugation and analyzed by Western Blotting. Interestingly, amorphous crystals were produced in the cytoplasm of cells infected with the recombinant virus containing the chimeric-protein gene but not in cells infected with the wild type and recombinant virus containing the hexa histidine tagged Polh. Moreover, the chimeric protein was used to immunize rats and generate antibodies against the target protein. The antiserum produced was able to detect plants infected with GarMbFV, which had been initially confirmed by RT-PCR. The expression of a plant virus full-length coat protein fused to the baculovirus Polyhedrin in recombinant baculovirus-infected insects was shown to produce high amounts of the recombinant protein which was easily purified and efficiently used to generate specific antibodies. Therefore, this strategy can potentially be used for the development of plant virus diagnostic kits for those viruses that are difficult to purify, are present in low titers or are present in mix infection in

  14. Infectious Bursal disease virus: ribonucleoprotein complexes of a double-stranded RNA virus.

    Science.gov (United States)

    Luque, Daniel; Saugar, Irene; Rejas, María Teresa; Carrascosa, José L; Rodríguez, José F; Castón, José R

    2009-02-27

    Genome-binding proteins with scaffolding and/or regulatory functions are common in living organisms and include histones in eukaryotic cells, histone-like proteins in some double-stranded DNA (dsDNA) viruses, and the nucleocapsid proteins of single-stranded RNA viruses. dsRNA viruses nevertheless lack these ribonucleoprotein (RNP) complexes and are characterized by sharing an icosahedral T=2 core involved in the metabolism and insulation of the dsRNA genome. The birnaviruses, with a bipartite dsRNA genome, constitute a well-established exception and have a single-shelled T=13 capsid only. Moreover, as in many negative single-stranded RNA viruses, the genomic dsRNA is bound to a nucleocapsid protein (VP3) and the RNA-dependent RNA polymerase (VPg). We used electron microscopy and functional analysis to characterize these RNP complexes of infectious bursal disease virus, the best characterized member of the Birnaviridae family. Mild disruption of viral particles revealed that VP3, the most abundant core protein, present at approximately 450 copies per virion, is found in filamentous material tightly associated with the dsRNA. We developed a method to purify RNP and VPg-dsRNA complexes. Analysis of these complexes showed that they are linear molecules containing a constant amount of protein. Sensitivity assays to nucleases indicated that VP3 renders the genomic dsRNA less accessible for RNase III without introducing genome compaction. Additionally, we found that these RNP complexes are functionally competent for RNA synthesis in a capsid-independent manner, in contrast to most dsRNA viruses.

  15. Development of a versatile oncolytic virus platform for local intra-tumoural expression of therapeutic transgenes.

    Science.gov (United States)

    Marino, Nalini; Illingworth, Sam; Kodialbail, Prithvi; Patel, Ashvin; Calderon, Hugo; Lear, Rochelle; Fisher, Kerry D; Champion, Brian R; Brown, Alice C N

    2017-01-01

    Oncolytic viruses which infect and kill tumour cells can also be genetically modified to express therapeutic genes that augment their anti-cancer activities. Modifying oncolytic viruses to produce effective cancer therapies is challenging as encoding transgenes often attenuates virus activity or prevents systemic delivery in patients due to the risk of off-target expression of transgenes in healthy tissues. To overcome these issues we aimed to generate a readily modifiable virus platform using the oncolytic adenovirus, enadenotucirev. Enadenotucirev replicates in human tumour cells but not cells from healthy tissues and can be delivered intravenously because it is stable in human blood. Here, the enadenotucirev genome was used to generate plasmids into which synthesised transgene cassettes could be directly cloned in a single step reaction. The platform enabled generation of panels of reporter viruses to identify cloning sites and transgene cassette designs where transgene expression could be linked to the virus life cycle. It was demonstrated using these viruses that encoded transgene proteins could be successfully expressed in tumour cells in vitro and tumours in vivo. The expression of transgenes did not impact either the oncolytic activity or selective properties of the virus. The effectiveness of this approach as a drug delivery platform for complex therapeutics was demonstrated by inserting multiple genes in the virus genome to encode full length anti-VEGF antibodies. Functional antibody could be synthesised and secreted from infected tumour cells without impacting the activity of the virus particle in terms of oncolytic potency, manufacturing yields or selectivity for tumour cells. In vivo, viral particles could be efficaciously delivered intravenously to disseminated orthotopic tumours.

  16. Development of a versatile oncolytic virus platform for local intra-tumoural expression of therapeutic transgenes.

    Directory of Open Access Journals (Sweden)

    Nalini Marino

    Full Text Available Oncolytic viruses which infect and kill tumour cells can also be genetically modified to express therapeutic genes that augment their anti-cancer activities. Modifying oncolytic viruses to produce effective cancer therapies is challenging as encoding transgenes often attenuates virus activity or prevents systemic delivery in patients due to the risk of off-target expression of transgenes in healthy tissues. To overcome these issues we aimed to generate a readily modifiable virus platform using the oncolytic adenovirus, enadenotucirev. Enadenotucirev replicates in human tumour cells but not cells from healthy tissues and can be delivered intravenously because it is stable in human blood. Here, the enadenotucirev genome was used to generate plasmids into which synthesised transgene cassettes could be directly cloned in a single step reaction. The platform enabled generation of panels of reporter viruses to identify cloning sites and transgene cassette designs where transgene expression could be linked to the virus life cycle. It was demonstrated using these viruses that encoded transgene proteins could be successfully expressed in tumour cells in vitro and tumours in vivo. The expression of transgenes did not impact either the oncolytic activity or selective properties of the virus. The effectiveness of this approach as a drug delivery platform for complex therapeutics was demonstrated by inserting multiple genes in the virus genome to encode full length anti-VEGF antibodies. Functional antibody could be synthesised and secreted from infected tumour cells without impacting the activity of the virus particle in terms of oncolytic potency, manufacturing yields or selectivity for tumour cells. In vivo, viral particles could be efficaciously delivered intravenously to disseminated orthotopic tumours.

  17. Improved immunogenicity of Newcastle disease virus inactivated vaccine following DNA vaccination using Newcastle disease virus hemagglutinin-neuraminidase and fusion protein genes.

    Science.gov (United States)

    Firouzamandi, Masoumeh; Moeini, Hassan; Hosseini, Davood; Bejo, Mohd Hair; Omar, Abdul Rahman; Mehrbod, Parvaneh; Ideris, Aini

    2016-03-01

    The present study describes the development of DNA vaccines using the hemagglutinin-neuraminidase (HN) and fusion (F) genes from AF2240 Newcastle disease virus strain, namely pIRES/HN, pIRES/F and pIRES-F/HN. Transient expression analysis of the constructs in Vero cells revealed the successful expression of gene inserts in vitro. Moreover, in vivo experiments showed that single vaccination with the constructed plasmid DNA (pDNA) followed by a boost with inactivated vaccine induced a significant difference in enzyme-linked immunosorbent assay antibody levels (p < 0.05) elicited by either pIRES/F, pIRES/F+ pIRES/HN or pIRES-F/HN at one week after the booster in specific pathogen free chickens when compared with the inactivated vaccine alone. Taken together, these results indicated that recombinant pDNA could be used to increase the efficacy of the inactivated vaccine immunization procedure.

  18. Tricistronic hepatitis C virus subgenomic replicon expressing double transgenes.

    Science.gov (United States)

    Cheng, Xin; Gao, Xiang-Cui; Wang, Jun-Ping; Yang, Xin-Ying; Wang, Yan; Li, Bao-Sheng; Kang, Fu-Biao; Li, Hai-Jun; Nan, Yue-Min; Sun, Dian-Xing

    2014-12-28

    To construct a tricistronic hepatitis C virus (HCV) replicon with double internal ribosome entry sites (IRESes) of only 22 nucleotides for each, substituting the encephalomyocarditis virus (EMCV) IRESes, which are most often used as the translation initiation element to form HCV replicons. The alternative 22-nucleotide IRES, RNA-binding motif protein 3 IRES (Rbm3 IRES), was used to form a tricistronic HCV replicon, to facilitate constructing HCV-harboring stable cell lines and successive antiviral screening using a luciferase marker. Briefly, two sequential Rbm3 IRESes were inserted into bicistronic pUC19-HCV plasmid, consequently forming a tricistronic HCV replicon (pHCV-rep-NeoR-hRluc), initiating the translation of humanized Renilla luciferase and HCV non-structural gene, along with HCV authentic IRES initiating the translation of neomycin resistance gene. The sH7 cell lines, in which the novel replicon RNA stably replicated, were constructed by neomycin and luciferase activity screening. The intracellular HCV replicon RNA, expression of inserted foreign genes and HCV non-structural gene, as well as response to anti-HCV agents, were measured in sH7 cells and cells transiently transfected with tricistronic replicon RNA. The intracellular HCV replicon RNA and expression of inserted foreign genes and HCV non-structural gene in sH7 cells and cells transiently transfected with tricistronic replicon RNA were comparable to those in cells stably or transiently transfected with traditional bicistronic HCV replicons. The average relative light unit in pHCV-rep-NeoR-hRluc group was approximately 2-fold of those in the pUC19-HCV-hRLuc and Tri-JFH1 groups (1.049 × 10(8) ± 2.747 × 10(7) vs 5.368 × 10(7) ± 1.016 × 10(7), P < 0.05; 1.049 × 10(8) ± 2.747 × 10(7) vs 5.243 × 10(7) ± 1.194 × 10(7), P < 0.05), suggesting that the translation initiation efficiency of the first Rbm3 IRES in the two sequential IRESes was stronger than the HCV authentic IRES and EMCV IRES

  19. Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System.

    Directory of Open Access Journals (Sweden)

    Javier López-Vidal

    Full Text Available Vaccines based on virus-like particles (VLPs have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60 were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health.

  20. Diagnosis of Ebola Virus Disease: Progress and Prospects

    Directory of Open Access Journals (Sweden)

    Mingjuan Yang

    2015-12-01

    Full Text Available Ebola virus disease (EVD represents one of the deadliest diseases in the world, with a fatality rate of over 70% and absence of effective vaccine and treatment. Rapid and specific diagnosis of EVD is essential for isolation, treatment of patients, and prevention of outbreak spread. Although many assays for EVD diagnosis have been reported, there is still an urgent requirement for practical assays for use in resource-limited areas, like Africa. Here we summarize the progresses of EVD diagnostic techniques.

  1. Construction and characterisation of a recombinant fowlpox virus that expresses the human papilloma virus L1 protein

    Directory of Open Access Journals (Sweden)

    Zanotto Carlo

    2011-11-01

    Full Text Available Abstract Background Human papilloma virus (HPV-16 is the most prevalent high-risk mucosal genotype. Virus-like-particle (VLP-based immunogens developed recently have proven to be successful as prophylactic HPV vaccines, but are still too expensive for developing countries. Although vaccinia viruses expressing the HPV-16 L1 protein (HPV-L1 have been studied, fowlpox-based recombinants represent efficient and safer vectors for immunocompromised hosts due to their ability to elicit a complete immune response and their natural host-range restriction to avian species. Methods A new fowlpox virus recombinant encoding HPV-L1 (FPL1 was engineered and evaluated for the correct expression of HPV-L1 in vitro, using RT-PCR, immunoprecipitation, Western blotting, electron microscopy, immunofluorescence, and real-time PCR assays. Results The FPL1 recombinant correctly expresses HPV-L1 in mammalian cells, which are non-permissive for the replication of this vector. Conclusion This FPL1 recombinant represents an appropriate immunogen for expression of HPV-L1 in human cells. The final aim is to develop a safe, immunogenic, and less expensive prophylactic vaccine against HPV.

  2. Sugarcane mosaic virus: The causal agent of mosaic disease on ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... necrosis are seen in sorghum plants that represent virus infection. Several distinct sorghum infecting viruses including Johnson grass mosaic virus (JGMV), Maize. Dwarf Mosaic Virus (MDMV), Sorghum Mosaic Virus. (SrMV) and Sugarcane Mosaic Virus (SCMV) causes mosaic symptoms and red necrotic ...

  3. Chimeric rabies glycoprotein with a transmembrane domain and cytoplasmic tail from Newcastle disease virus fusion protein incorporates into the Newcastle disease virion at reduced levels.

    Science.gov (United States)

    Yu, Gui Mei; Zu, Shu Long; Zhou, Wei Wei; Wang, Xi Jun; Shuai, Lei; Wang, Xue Lian; Ge, Jin Ying; Bu, Zhi Gao

    2017-08-31

    Rabies remains an important worldwide health problem. Newcastle disease virus (NDV) was developed as a vaccine vector in animals by using a reverse genetics approach. Previously, our group generated a recombinant NDV (LaSota strain) expressing the complete rabies virus G protein (RVG), named rL-RVG. In this study, we constructed the variant rL-RVGTM, which expresses a chimeric rabies virus G protein (RVGTM) containing the ectodomain of RVG and the transmembrane domain (TM) and a cytoplasmic tail (CT) from the NDV fusion glycoprotein to study the function of RVG's TM and CT. The RVGTM did not detectably incorporate into NDV virions, though it was abundantly expressed at the surface of infected BHK-21 cells. Both rL-RVG and rL-RVGTM induced similar levels of NDV virus-neutralizing antibody (VNA) after initial and secondary vaccination in mice, whereas rabies VNA induction by rL-RVGTM was markedly lower than that induced by rL-RVG. Though rL-RVG could spread from cell to cell like that in rabies virus, rL-RVGTM lost this ability and spread in a manner similar to the parental NDV. Our data suggest that the TM and CT of RVG are essential for its incorporation into NDV virions and for spreading of the recombinant virus from the initially infected cells to surrounding cells.

  4. Expression of Factor X in BHK-21 Cells Promotes Low Pathogenic Influenza Viruses Replication

    Directory of Open Access Journals (Sweden)

    Shahla Shahsavandi

    2015-01-01

    Full Text Available A cDNA clone for factor 10 (FX isolated from chicken embryo inserted into the mammalian cell expression vector pCDNA3.1 was transfected into the baby hamster kidney (BHK-21 cell line. The generated BHK-21 cells with inducible expression of FX were used to investigate the efficacy of the serine transmembrane protease to proteolytic activation of influenza virus hemagglutinin (HA with monobasic cleavage site. Data showed that the BHK-21/FX stably expressed FX after ten serial passages. The cells could proteolytically cleave the HA of low pathogenic avian influenza virus at multiplicity of infection 0.01. Growth kinetics of the virus on BHK-21/FX, BHK-21, and MDCK cells were evaluated by titrations of virus particles in each culture supernatant. Efficient multicycle viral replication was markedly detected in the cell at subsequent passages. Virus titration demonstrated that BHK-21/FX cell supported high-titer growth of the virus in which the viral titer is comparable to the virus grown in BHK-21 or MDCK cells with TPCK-trypsin. The results indicate potential application for the BHK-21/FX in influenza virus replication procedure and related studies.

  5. Expression of cytokines following vaccination of goats with a recombinant capripoxvirus vaccine expressing Rift Valley fever virus proteins.

    Science.gov (United States)

    Ayari-Fakhfakh, Emna; Ghram, Abdeljelil; Albina, Emmanuel; Cêtre-Sossah, Catherine

    2018-03-01

    The mosquito-borne Rift Valley fever virus (RVFV) causes severe diseases in domesticated animals including cattle, sheep, camels and goats. Capripoxviruses (CPV) are suitable vectors for multivalent vaccine development. A recombinant rKS1-based CPV expressing the gene encoding the viral glycoprotein Gn of RVFV has been shown to induce protection in mice and sheep. The aim of this study was to evaluate the immunogenicity induced by this candidate vaccine in goats, and the level of cytokines produced by RVFV-specific Th1 and Th2 lymphocytes. The results of this study suggest that Th2 mediates immunity mainly through the significant production of IL4, which, coupled with a decrease in IFN-γ, may be involved in the replication of the capripoxvirus expressing the G N of RVFV. CD4+ cells may play the role of helper cells in B cell responses and neutralizing antibody production in the anti-CPV humoral response, leading to strong immunity against RVFV. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Changes in cell adhesion molecule expression on T cells associated with systemic virus infection

    DEFF Research Database (Denmark)

    Andersson, E C; Christensen, Jan Pravsgaard; Marker, O

    1994-01-01

    analyses showed that T cells with a changed adhesion molecule profile tended to present other cell surface markers indicating a state of cellular activation, e.g., IL-2R, and included all virus-specific CTL effectors. Regarding the physiologic significance of these changes in adhesion molecule expression......Virus-induced changes in adhesion molecule expression on T cells were investigated to understand how antiviral effector cells migrate into infectious foci. FACS analysis revealed that after systemic infection with lymphocytic choriomeningitis virus a number of cell adhesion molecules, including VLA...

  7. Changes in cell adhesion molecule expression on T cells associated with systemic virus infection

    DEFF Research Database (Denmark)

    Andersson, E C; Christensen, Jan Pravsgaard; Marker, O

    1994-01-01

    Virus-induced changes in adhesion molecule expression on T cells were investigated to understand how antiviral effector cells migrate into infectious foci. FACS analysis revealed that after systemic infection with lymphocytic choriomeningitis virus a number of cell adhesion molecules, including VLA...... analyses showed that T cells with a changed adhesion molecule profile tended to present other cell surface markers indicating a state of cellular activation, e.g., IL-2R, and included all virus-specific CTL effectors. Regarding the physiologic significance of these changes in adhesion molecule expression...

  8. Use of recombinant capsid proteins in the development of a vaccine against foot-and-mouth disease virus (FMDV)

    DEFF Research Database (Denmark)

    Belsham, Graham; Bøtner, Anette

    2015-01-01

    -scale culling of infected, and potentially infected, animals there has been significant effort to develop new vaccines against this disease which avoid some, or all, of the deficiencies of current vaccines. A major focus has been on the use of systems that express the structural proteins of the virus that self....... The development and use of such improved vaccines should assist in the global efforts to control this important disease...

  9. Syngeneic lysis of reticuloendotheliosis virus-transformed cell lines transfected with Marek's disease virus genes by virus-specific cytotoxic T cells.

    Science.gov (United States)

    Uni, Z; Pratt, W D; Miller, M M; O'Connell, P H; Schat, K A

    1994-12-01

    Cell-mediated immune responses against Marek's disease virus (MDV) antigens were examined using reticuloendotheliosis virus (REV)-transformed cell lines of two haplotypes (B19B19 and B13B13). These cell lines were stably transfected with cloned fragments of MDV DNA resulting in the expression of the MDV-specific phosphoprotein pp38. Effector cells were obtained from P2a (B19B19) and S13 (B13B13) chickens at 7 days post inoculation with REV, oncogenic or attenuated serotype 1 MDV (JM-16/O and JM-16/A, respectively), serotype 2 MDV (SB-1), or herpesvirus of turkeys (HVT). Transfection of MDV genes did not influence the expression of Class I major histocompatibility complex antigens. The optimal effector to target cell ratio was determined to be 100:1. REV-sensitized effector cells lysed REV cell lines and REV cell lines transfected with MDV DNA in a syngeneic fashion. Effector cells from chickens inoculated with JM-16/O, JM-16/A, SB-1 or HVT lysed only the syngeneic, transfected cell lines, but not the parent REV cell lines. The percentage specific release caused by the MDV-sensitized effector cells was low, but statistically significant.

  10. Dengue-1 Virus Envelope Glycoprotein Gene Expressed in Recombinant Baculovirus Elicits Virus-Neutralizing Antibody in Mice and Protects them from Virus Challenge

    Science.gov (United States)

    1991-01-01

    8217 terminus of E. When the recombinant virus was grown in Spodoptera frugiperda cells. about I mg of E antigen was made per 10’ cells. Recombinant E antigen...assay with DEN-I virus coprotein gene and its expression in Spodoptera hyperimmune mouse ascitic fluid. This heat-in- frugiperda cells activated...part by gene expression and evolution . Science 229: DOD grants DAMD17-C-2237, DAMD17-C-6156, 726-733. and DAMDI 7-C-6612. I1. Rice CM. Strauss EG

  11. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine

    Science.gov (United States)

    2011-01-01

    Background Porcine parvovirus (PPV) VP2 gene has been successfully expressed in many expression systems resulting in self-assembly of virus-like particles (VLPs) with similar morphology to the native capsid. Here, a pseudorabies virus (PRV) system was adopted to express the PPV VP2 gene. Methods A recombinant PRV SA215/VP2 was obtained by homologous recombination between the vector PRV viral DNA and a transfer plasmid. Then recombinant virus was purified with plaque purification, and its identity confirmed by PCR amplification, Western blot and indirect immunofluorescence (IFA) analyses. Electronic microscopy of PRV SA215/VP2 confirmed self-assembly of both pseudorabies virus and VLPs from VP2 protein. Results Immunization of piglets with recombinant virus elicited PRV-specific and PPV-specific humoral immune responses and provided complete protection against a lethal dose of PRV challenges. Gilts immunized with recombinant viruses induced PPV-specific antibodies, and significantly reduced the mortality rate of (1 of 28) following virulent PPV challenge compared with the control (7 of 31). Furthermore, PPV virus DNA was not detected in the fetuses of recombinant virus immunized gilts. Conclusions In this study, a recombinant PRV SA215/VP2 virus expressing PPV VP2 protein was constructed using PRV SA215 vector. The safety, immunogenicity, and protective efficacy of the recombinant virus were demonstrated in piglets and primiparous gilts. This recombinant PRV SA215/VP2 represents a suitable candidate for the development of a bivalent vaccine against both PRV and PPV infection. PMID:21679423

  12. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine

    Directory of Open Access Journals (Sweden)

    Chen Dishi

    2011-06-01

    Full Text Available Abstract Background Porcine parvovirus (PPV VP2 gene has been successfully expressed in many expression systems resulting in self-assembly of virus-like particles (VLPs with similar morphology to the native capsid. Here, a pseudorabies virus (PRV system was adopted to express the PPV VP2 gene. Methods A recombinant PRV SA215/VP2 was obtained by homologous recombination between the vector PRV viral DNA and a transfer plasmid. Then recombinant virus was purified with plaque purification, and its identity confirmed by PCR amplification, Western blot and indirect immunofluorescence (IFA analyses. Electronic microscopy of PRV SA215/VP2 confirmed self-assembly of both pseudorabies virus and VLPs from VP2 protein. Results Immunization of piglets with recombinant virus elicited PRV-specific and PPV-specific humoral immune responses and provided complete protection against a lethal dose of PRV challenges. Gilts immunized with recombinant viruses induced PPV-specific antibodies, and significantly reduced the mortality rate of (1 of 28 following virulent PPV challenge compared with the control (7 of 31. Furthermore, PPV virus DNA was not detected in the fetuses of recombinant virus immunized gilts. Conclusions In this study, a recombinant PRV SA215/VP2 virus expressing PPV VP2 protein was constructed using PRV SA215 vector. The safety, immunogenicity, and protective efficacy of the recombinant virus were demonstrated in piglets and primiparous gilts. This recombinant PRV SA215/VP2 represents a suitable candidate for the development of a bivalent vaccine against both PRV and PPV infection.

  13. Diagnosis of Ebola Virus Disease: Past, Present, and Future

    Science.gov (United States)

    Brooks, Tim J. G.

    2016-01-01

    SUMMARY Laboratory diagnosis of Ebola virus disease plays a critical role in outbreak response efforts; however, establishing safe and expeditious testing strategies for this high-biosafety-level pathogen in resource-poor environments remains extremely challenging. Since the discovery of Ebola virus in 1976 via traditional viral culture techniques and electron microscopy, diagnostic methodologies have trended toward faster, more accurate molecular assays. Importantly, technological advances have been paired with increasing efforts to support decentralized diagnostic testing capacity that can be deployed at or near the point of patient care. The unprecedented scope of the 2014-2015 West Africa Ebola epidemic spurred tremendous innovation in this arena, and a variety of new diagnostic platforms that have the potential both to immediately improve ongoing surveillance efforts in West Africa and to transform future outbreak responses have reached the field. In this review, we describe the evolution of Ebola virus disease diagnostic testing and efforts to deploy field diagnostic laboratories in prior outbreaks. We then explore the diagnostic challenges pervading the 2014-2015 epidemic and provide a comprehensive examination of novel diagnostic tests that are likely to address some of these challenges moving forward. PMID:27413095

  14. Analysis of the dengue disease model with two virus strains

    Science.gov (United States)

    Adi-Kusumo, F.; Aini, A. N.; Ridwan, M.

    2014-02-01

    Dengue fever (DF) and dengue haemorrhagic fever (DHF) are the disease caused by the dengue virus which is transmitted to the human by infected female mosquitoes. The disease is endemic in more than 100 countries over the world. Dengue virus has four distinct serotypes which are closely related to each other antigenically. A person who infected by the dengue virus will never be infected again by the same serotype, but he looses immunity from the three other serotypes. Infection with one serotype does not provide cross-protective immunity against to others. Here we assume that there are two serotypes exist in the population. Someone who has recovered from one serotype become susceptible to the other serotype and can be reinfected. In this paper we analyze the model of dengue fever with two infections from the different serotype by linear analysis. Then we study the effect of vaccination to the model. In numerical simulation, we use Runge-Kutta order 4 to integrate the solution of the system.

  15. The association between serological titers in infectious bovine rhinotracheitis virus, bovine virus diarrhea virus, parainfluenza-3 virus, respiratory syncytial virus and treatment for respiratory disease in Ontario feedlot calves.

    OpenAIRE

    Martin, S W; Bohac, J G

    1986-01-01

    A seroepidemiological study of the association between antibody titers to infectious bovine rhinotracheitis, parainfluenza-3, bovine virus diarrhea and bovine respiratory syncytial viruses, and treatment for bovine respiratory disease was conducted. A total of 322 calves from five different groups were bled on arrival, then one month later all cases (cattle treated for bovine respiratory disease) were rebled together with an equal number of controls (cattle not treated for any disease). Titer...

  16. Gene Expression Analysis of Plum pox virus (Sharka Susceptibility/Resistance in Apricot (Prunus armeniaca L..

    Directory of Open Access Journals (Sweden)

    Manuel Rubio

    Full Text Available RNA-Seq has proven to be a very powerful tool in the analysis of the Plum pox virus (PPV, sharka disease/Prunus interaction. This technique is an important complementary tool to other means of studying genomics. In this work an analysis of gene expression of resistance/susceptibility to PPV in apricot is performed. RNA-Seq has been applied to analyse the gene expression changes induced by PPV infection in leaves from two full-sib apricot genotypes, "Rojo Pasión" and "Z506-7", resistant and susceptible to PPV, respectively. Transcriptomic analyses revealed the existence of more than 2,000 genes related to the pathogen response and resistance to PPV in apricot. These results showed that the response to infection by the virus in the susceptible genotype is associated with an induction of genes involved in pathogen resistance such as the allene oxide synthase, S-adenosylmethionine synthetase 2 and the major MLP-like protein 423. Over-expression of the Dicer protein 2a may indicate the suppression of a gene silencing mechanism of the plant by PPV HCPro and P1 PPV proteins. On the other hand, there were 164 genes involved in resistance mechanisms that have been identified in apricot, 49 of which are located in the PPVres region (scaffold 1 positions from 8,050,804 to 8,244,925, which is responsible for PPV resistance in apricot. Among these genes in apricot there are several MATH domain-containing genes, although other genes inside (Pleiotropic drug resistance 9 gene or outside (CAP, Cysteine-rich secretory proteins, Antigen 5 and Pathogenesis-related 1 protein; and LEA, Late embryogenesis abundant protein PPVres region could also be involved in the resistance.

  17. Expression of infectious bovine rhinotracheitis virus glycoprotein D ...

    African Journals Online (AJOL)

    USER

    2010-06-14

    Jun 14, 2010 ... Bovine Herpesvirus 1 (BHV-1) belongs to the genus of Varicellovirus and the family of Herpesviridae which contains three main gB, gC and gD genes. In order to cloning of the coding region of gD gene of. IBR virus , PCR product of the open reading frame of the gene from IBR virus isolated in Iran was.

  18. Expression of RNA virus proteins by RNA polymerase II dependent expression plasmids is hindered at multiple steps

    Directory of Open Access Journals (Sweden)

    Überla Klaus

    2007-06-01

    Full Text Available Abstract Background Proteins of human and animal viruses are frequently expressed from RNA polymerase II dependent expression cassettes to study protein function and to develop gene-based vaccines. Initial attempts to express the G protein of vesicular stomatitis virus (VSV and the F protein of respiratory syncytial virus (RSV by eukaryotic promoters revealed restrictions at several steps of gene expression. Results Insertion of an intron flanked by exonic sequences 5'-terminal to the open reading frames (ORF of VSV-G and RSV-F led to detectable cytoplasmic mRNA levels of both genes. While the exonic sequences were sufficient to stabilise the VSV-G mRNA, cytoplasmic mRNA levels of RSV-F were dependent on the presence of a functional intron. Cytoplasmic VSV-G mRNA levels led to readily detectable levels of VSV-G protein, whereas RSV-F protein expression remained undetectable. However, RSV-F expression was observed after mutating two of four consensus sites for polyadenylation present in the RSV-F ORF. Expression levels could be further enhanced by codon optimisation. Conclusion Insufficient cytoplasmic mRNA levels and premature polyadenylation prevent expression of RSV-F by RNA polymerase II dependent expression plasmids. Since RSV replicates in the cytoplasm, the presence of premature polyadenylation sites and elements leading to nuclear instability should not interfere with RSV-F expression during virus replication. The molecular mechanisms responsible for the destabilisation of the RSV-F and VSV-G mRNAs and the different requirements for their rescue by insertion of an intron remain to be defined.

  19. Kinetic analysis of human T-cell leukemia virus type 1 gene expression in cell culture and infected animals.

    Science.gov (United States)

    Li, Min; Kesic, Matthew; Yin, Han; Yu, Lianbo; Green, Patrick L

    2009-04-01

    Human T-cell leukemia virus type 1 (HTLV-1) infection causes adult T-cell leukemia and is associated with a variety of lymphocyte-mediated disorders. It has been hypothesized that a highly regulated pattern of HTLV-1 gene expression is critical for virus survival and disease pathogenesis. In this study, real-time reverse transcriptase PCR was used to determine the kinetics of viral gene expression in cells transiently transfected with an HTLV-1 proviral plasmid, in newly infected human peripheral blood mononuclear cells (PBMCs), and in PBMCs from newly infected rabbits. The HTLV-1 gene expression profiles in transiently transfected and infected cells were similar; over time, all transcripts increased and then maintained stable levels. gag/pol, tax/rex, and env mRNA were detected first and at the highest levels, whereas the expression levels of the accessory genes, including the antisense Hbz, were significantly lower than the tax/rex levels (ranging from 1 to 4 logs depending on the specific mRNA). In infected rabbits, tax/rex and gag/pol mRNA levels peaked early after inoculation and progressively decreased, which correlated inversely with the proviral load and host antibody response against viral proteins. Interestingly, Hbz mRNA was detectable at 1 week postinfection and increased and stabilized. The expression levels of all other HTLV-1 genes in infected rabbit PBMCs were at or below our limit of detection. This analysis provides insight into viral gene expression under various in vitro and in vivo experimental conditions. Our in vivo data indicate that in infected rabbits, Hbz mRNA expression over time directly correlates with the proviral load, which provides the first evidence linking Hbz expression to proviral load and the survival of the virus-infected cell in the host.

  20. Wild Birds in Romania Are More Exposed to West Nile Virus Than to Newcastle Disease Virus.

    Science.gov (United States)

    Paştiu, Anamaria Ioana; Pap, Péter László; Vágási, Csongor István; Niculae, Mihaela; Páll, Emőke; Domşa, Cristian; Brudaşcă, Florinel Ghe; Spînu, Marina

    2016-03-01

    The aim of this study was to evaluate the seroprevalence of West Nile virus (WNV) and Newcastle disease virus (NDV) in wild and domestic birds from Romania. During 2011-2014, 159 plasma samples from wild birds assigned to 11 orders, 27 families, and 61 species and from 21 domestic birds (Gallus gallus domesticus, Anas platyrhynchos domesticus) were collected. The sera were assayed by two commercial competitive enzyme-linked immunosorbent assay (cELISA) kits for antibodies against WNV and NDV. We found a high prevalence of WNV antibodies in both domestic (19.1%) and wild (32.1%) birds captured after the human epidemic in 2010. Moreover, the presence of anti-NDV antibodies among wild birds from Romania (5.4%) was confirmed serologically for the first time, as far as we are aware. Our findings provide evidence that wild birds, especially resident ones are involved in local West Nile and Newcastle disease enzootic and epizootic cycles. These may allow virus maintenance and spread and also enhance the chance of new outbreaks.

  1. Porites white patch syndrome: associated viruses and disease physiology

    Science.gov (United States)

    Lawrence, S. A.; Davy, J. E.; Wilson, W. H.; Hoegh-Guldberg, O.; Davy, S. K.

    2015-03-01

    In recent decades, coral reefs worldwide have undergone significant changes in response to various environmental and anthropogenic impacts. Among the numerous causes of reef degradation, coral disease is one factor that is to a large extent still poorly understood. Here, we characterize the physiology of white patch syndrome (WPS), a disease affecting poritid corals on the Great Barrier Reef. WPS manifests as small, generally discrete patches of tissue discolouration. Physiological analysis revealed that chlorophyll a content was significantly lower in lesions than in healthy tissues, while host protein content remained constant, suggesting that host tissue is not affected by WPS. This was confirmed by transmission electron microscope (TEM) examination, which showed intact host tissue within lesions. TEM also revealed that Symbiodinium cells are lost from the host gastrodermis with no apparent harm caused to the surrounding host tissue. Also present in the electron micrographs were numerous virus-like particles (VLPs), in both coral and Symbiodinium cells. Small (cells from diseased colonies. There was no apparent increase in prokaryotic or eukaryotic microbial abundance in diseased colonies. Taken together, these results suggest that viruses infecting the coral and/or its resident Symbiodinium cells may be the causative agents of WPS.

  2. Respiratory syncytial virus infection down-regulates antioxidant enzyme expression by triggering deacetylation-proteasomal degradation of Nrf2.

    Science.gov (United States)

    Komaravelli, Narayana; Tian, Bing; Ivanciuc, Teodora; Mautemps, Nicholas; Brasier, Allan R; Garofalo, Roberto P; Casola, Antonella

    2015-11-01

    Respiratory syncytial virus (RSV) is the most important cause of viral acute respiratory tract infections and hospitalizations in children, for which no vaccine or treatment is available. RSV infection in cells, mice, and children leads to rapid generation of reactive oxygen species, which are associated with oxidative stress and lung damage, due to a significant decrease in the expression of airway antioxidant enzymes (AOEs). Oxidative stress plays an important role in the pathogenesis of RSV-induced lung disease, as antioxidants ameliorate clinical disease and inflammation in vivo. The aim of this study is to investigate the unknown mechanism(s) of virus-induced inhibition of AOE expression. RSV infection is shown to induce a progressive reduction in nuclear and total cellular levels of the transcription factor NF-E2-related factor 2 (Nrf2), resulting in decreased binding to endogenous AOE gene promoters and decreased AOE expression. RSV induces Nrf2 deacetylation and degradation via the proteasome pathway in vitro and in vivo. Histone deacetylase and proteasome inhibitors block Nrf2 degradation and increase Nrf2 binding to AOE endogenous promoters, resulting in increased AOE expression. Known inducers of Nrf2 are able to increase Nrf2 activation and subsequent AOE expression during RSV infection in vitro and in vivo, with significant amelioration of oxidative stress. This is the first study to investigate the mechanism(s) of virus-induced inhibition of AOE expression. RSV-induced inhibition of Nrf2 activation, due to deacetylation and proteasomal degradation, could be targeted for therapeutic intervention aimed to increase airway antioxidant capacity during infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Study of Ebola Virus Disease Survivors in Guinea.

    Science.gov (United States)

    Qureshi, Adnan I; Chughtai, Morad; Loua, Tokpagnan Oscar; Pe Kolie, Jean; Camara, Hadja Fatou Sikhe; Ishfaq, Muhammad Fawad; N'Dour, Cheikh Tidane; Beavogui, Kezely

    2015-10-01

    There is a paucity of data regarding health consequences of Ebola virus disease among survivors. We surveyed 105 Ebola virus disease survivors postdischarge from an Ebola treatment unit in Guinea using a standard data collection form. Patients rated recovery as the percentage of improvement in functional status, where 0% represents "unable to perform" and 100% represents "able to perform at prior level." The mean ± standard deviation time interval between hospital discharge and administration of questionnaire was 103.5 ± 47.9 days in 105 survivors. Anorexia was reported by 103 patients, with varying severity levels: mild (n = 33), moderate (n = 65), or severe (n = 5). Reported pain according to site was chest (30.7%), joint (86.7%), muscle (26.7%), and back (45.7%), among others. Recovery in functional status was graded as mild (10%-30%) (n = 2 [1.9%]), moderate (40%-70%) (n = 52 [50.0%]), and excellent (80%-100%) (n = 50 [48.1%]). Severity of arthralgia (R(2) = 0.09; P = .008) was directly associated with lower recovery in functional status in multivariate analysis. Ebola virus disease survivors frequently reported anorexia and arthralgia. Severity of arthralgia was related to lower functional recovery. There may be a role for focused screening and intervention for symptoms identified in this study of survivors. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Bioinformatics and molecular analysis of the evolutionary relationship between bovine rhinitis A viruses and foot-and-mouth disease virus

    Science.gov (United States)

    Bovine rhinitis viruses (BRV) cause mild respiratory disease of cattle. In this study, a near full length genome sequence of a virus named RS3X, formerly classified as bovine rhinovirus type 1, isolated from infected cattle from the United Kingdom in the 1960s, was obtained and analyzed. Phylogeneti...

  5. Development of tobacco ringspot virus-based vectors for foreign gene expression and virus-induced gene silencing in a variety of plants.

    Science.gov (United States)

    Zhao, Fumei; Lim, Seungmo; Igori, Davaajargal; Yoo, Ran Hee; Kwon, Suk-Yoon; Moon, Jae Sun

    2016-05-01

    We report here the development of tobacco ringspot virus (TRSV)-based vectors for the transient expression of foreign genes and for the analysis of endogenous gene function in plants using virus-induced gene silencing. The jellyfish green fluorescent protein (GFP) gene was inserted between the TRSV movement protein (MP) and coat protein (CP) regions, resulting in high in-frame expression of the RNA2-encoded viral polyprotein. GFP was released from the polyprotein via an N-terminal homologous MP-CP cleavage site and a C-terminal foot-and-mouth disease virus (FMDV) 2 A catalytic peptide in Nicotiana benthamiana. The VIGS target gene was introduced in the sense and antisense orientations into a SnaBI site, which was created by mutating the sequence following the CP stop codon. VIGS of phytoene desaturase (PDS) in N. benthamiana, Arabidopsis ecotype Col-0, cucurbits and legumes led to obvious photo-bleaching phenotypes. A significant reduction in PDS mRNA levels in silenced plants was confirmed by semi-quantitative RT-PCR. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Airborne virus sampling: Efficiencies of samplers and their detection limits for infectious bursal disease virus (IBDV

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    2014-09-01

    Full Text Available [b]Introduction[/b]. The airborne transmission of infectious diseases in livestock production is increasingly receiving research attention. Reliable techniques of air sampling are crucial to underpin the findings of such studies. This study evaluated the physical and biological efficiencies and detection limits of four samplers (Andersen 6-stage impactor, all-glass impinger “AGI-30”, OMNI-3000 and MD8 with gelatin filter for collecting aerosols of infectious bursal disease virus (IBDV. [b]Materials and Method[/b]. IBDV aerosols mixed with a physical tracer (uranine were generated in an isolator, and then collected by the bioaerosol samplers. Samplers’ physical and biological efficiencies were derived based on the tracer concentration and the virus/tracer ratio, respectively. Detection limits for the samplers were estimated with the obtained efficiency data. [b]Results.[/b] Physical efficiencies of the AGI-30 (96% and the MD8 (100% were significantly higher than that of the OMNI-3000 (60%. Biological efficiency of the OMNI-3000 (23% was significantly lower than 100% (P < 0.01, indicating inactivation of airborne virus during sampling. The AGI-30, the Andersen impactor and the MD8 did not significantly inactivate virus during sampling. The 2-min detection limits of the samplers on airborne IBDV were 4.1 log[sub]10[/sub] 50% egg infective dose (EID[sub]50[/sub] m [sup]-3[/sup] for the Andersen impactor, 3.3 log[sub]10[/sub] EID50 m [sup]-3[/sup] for the AGI-30, 2.5 log[sub]10[/sub] EID50 m [sup]-3[/sup] for the OMNI-3000, and 2.9 log[sub]10[/sub] EID[sub]50[/sub] m [sup]-3[/sup] for the MD8. The mean half-life of IBDV aerosolized at 20 °C and 70% was 11.9 min. Conclusion. Efficiencies of different samplers vary. Despite its relatively low sampling efficiency, the OMNI-3000 is suitable for use in environments with low viral concentrations because its high flow rate gives a low detection limit. With the 4 samplers investigated, negative air

  7. [Rapid selection of recombinant orf virus expression vectors using green fluorescent protein].

    Science.gov (United States)

    Zhang, Jiachun; Guo, Xianfeng; Zhang, Min; Wu, Feifan; Peng, Yongzheng

    2016-01-01

    To construct a universal, highly attenuated orf virus expression vector for exogenous genes using green fluorescent protein (GFP) as the reporter gene. The flanking regions of the ORFV132 of orf virus DNA were amplified by PCR to construct the shuttle plasmid pSPV-132LF-EGFP-132RF. The shuttle plasmid was transfected into OFTu cells and GFP was incorporated into orf virus IA82Delta 121 by homologous recombination. The recombinant IA82Delta121-V was selected by green fluorescent signal. The deletion gene was identified by PCR and sequencing. The effects of ORFV132 knockout were evaluated by virus titration and by observing the proliferation of the infected vascular endothelial cells in vitro. The recombinant orf virus IA82Delta121-V was obtained successfully and quickly, and the deletion of ORFV132 did not affect the replication of the virus in vitro but reduced its virulence. Green fluorescent protein is a selectable marker for rapid, convenient and stable selection of the recombinant viruses. Highly attenuated recombinant orf virus IA82Delta121-V can serve as a new expression vector for exogenous genes.

  8. Maternal Zika Virus Disease Severity, Virus Load, Prior Dengue Antibodies, and Their Relationship to Birth Outcomes.

    Science.gov (United States)

    Halai, Umme-Aiman; Nielsen-Saines, Karin; Moreira, Maria Lopes; de Sequeira, Patricia Carvalho; Junior, Jose Paulo Pereira; de Araujo Zin, Andrea; Cherry, James; Gabaglia, Claudia Raja; Gaw, Stephanie L; Adachi, Kristina; Tsui, Irena; Pilotto, Jose Henrique; Nogueira, Rita Ribeiro; de Filippis, Ana Maria Bispo; Brasil, Patricia

    2017-09-15

    Congenital Zika virus (ZIKV) syndrome is a newly identified condition resulting from infection during pregnancy. We analyzed outcome data from a mother-infant cohort in Rio de Janeiro in order to assess whether clinical severity of maternal ZIKV infection was associated with maternal virus load, prior dengue antibodies, or abnormal pregnancy/infant outcomes. A clinical severity assessment tool was developed based on duration of fever, severity of rash, multisystem involvement, and duration of symptoms during ZIKV infection. ZIKV-RNA load was quantified by polymerase chain reaction (PCR) cycles in blood/ urine. Dengue immunoglobulin G (IgG) antibodies were measured at baseline. Adverse outcomes were defined as fetal loss or a live infant with grossly abnormal clinical or brain imaging findings. Regression models were used to study potential associations. 131 ZIKV-PCR positive pregnant women were scored for clinical disease severity, 6 (4.6%) had mild disease, 98 (74.8%) had moderate disease, and 27 (20.6%) severe manifestations of ZIKV infection. There were 58 (46.4%) abnormal outcomes with 9 fetal losses (7.2%) in 125 pregnancies. No associations were found between: disease severity and abnormal outcomes (P = .961; odds ratio [OR]: 1.00; 95% confidence interval [CI]: 0.796-1.270); disease severity and viral load (P = .994); viral load and adverse outcomes (P = .667; OR: 1.02; 95% CI: 0.922-1.135); or existence of prior dengue antibodies (88% subjects) with severity score, ZIKV-RNA load or adverse outcomes (P = .667; OR: 0.78; 95% CI: 0.255-2.397). Congenital ZIKV syndrome does not appear to be associated with maternal disease severity, ZIKV-RNA load at time of infection or existence of prior dengue antibodies. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  9. Expression of a synthetic rust fungal virus cDNA in yeast.

    Science.gov (United States)

    Cooper, Bret; Campbell, Kimberly B; Garrett, Wesley M

    2016-01-01

    Mycoviruses are viruses that infect fungi. Recently, mycovirus-like RNAs were sequenced from the fungus Phakopsora pachyrhizi, the causal agent of soybean rust. One of the RNAs appeared to represent a novel mycovirus and was designated Phakopsora pachyrhizi virus 2383 (PpV2383). The genome of PpV2383 resembles Saccharomyces cerevisiae virus L-A, a double-stranded (ds) RNA mycovirus of yeast. PpV2383 encodes two major, overlapping open reading frames with similarity to gag (capsid protein) and pol (RNA-dependent RNA polymerase), and a -1 ribosomal frameshift is necessary for the translation of a gag-pol fusion protein. Phylogenetic analysis of pol relates PpV2383 to members of the family Totiviridae, including L-A. Because the obligate biotrophic nature of P. pachyrhizi makes it genetically intractable for in vivo analysis and because PpV2383 is similar to L-A, we synthesized a DNA clone of PpV2383 and tested its infectivity in yeast cells. PpV2383 RNA was successfully expressed in yeast, and mass spectrometry confirmed the translation of gag and gag-pol fusion proteins. There was, however, no production of PpV2383 dsRNA, the evidence of viral replication. Neither the presence of endogenous L-A nor the substitution of the 5' and 3' untranslated regions with those from L-A was sufficient to rescue replication of PpV2383. Nevertheless, the proof of transcription and translation from the clone in vivo are steps toward confirming that PpV2383 is a mycovirus. Further development of a surrogate biological system for the study of rust mycoviruses is necessary, and such research may facilitate biological control of rust diseases.

  10. Effect of mosaic virus diseases on dry matter content and starch ...

    African Journals Online (AJOL)

    hp

    2013-06-28

    ISSAP) of 3.70, as well as, for diseased ... based testing at 12 months after planting revealed the presence of ACMV in all the accessions while ... Key words: Mosaic virus diseases, dry matter, starch yield, PCR, disease incidence.

  11. CDC Safety Training Course for Ebola Virus Disease Healthcare Workers.

    Science.gov (United States)

    Narra, Rupa; Sobel, Jeremy; Piper, Catherine; Gould, Deborah; Bhadelia, Nahid; Dott, Mary; Fiore, Anthony; Fischer, William A; Frawley, Mary Jo; Griffin, Patricia M; Hamilton, Douglas; Mahon, Barbara; Pillai, Satish K; Veltus, Emily F; Tauxe, Robert; Jhung, Michael

    2017-12-01

    Response to sudden epidemic infectious disease emergencies can demand intensive and specialized training, as demonstrated in 2014 when Ebola virus disease (EVD) rapidly spread throughout West Africa. The medical community quickly became overwhelmed because of limited staff, supplies, and Ebola treatment units (ETUs). Because a mechanism to rapidly increase trained healthcare workers was needed, the US Centers for Disease Control and Prevention developed and implemented an introductory EVD safety training course to prepare US healthcare workers to work in West Africa ETUs. The goal was to teach principles and practices of safely providing patient care and was delivered through lectures, small-group breakout sessions, and practical exercises. During September 2014-March 2015, a total of 570 participants were trained during 16 course sessions. This course quickly increased the number of clinicians who could provide care in West Africa ETUs, showing the feasibility of rapidly developing and implementing training in response to a public health emergency.

  12. Chikungunya virus: epidemiology, replication, disease mechanisms, and prospective intervention strategies

    Science.gov (United States)

    Silva, Laurie A.; Dermody, Terence S.

    2017-01-01

    Chikungunya virus (CHIKV), a reemerging arbovirus, causes a crippling musculoskeletal inflammatory disease in humans characterized by fever, polyarthralgia, myalgia, rash, and headache. CHIKV is transmitted by Aedes species of mosquitoes and is capable of an epidemic, urban transmission cycle with high rates of infection. Since 2004, CHIKV has spread to new areas, causing disease on a global scale, and the potential for CHIKV epidemics remains high. Although CHIKV has caused millions of cases of disease and significant economic burden in affected areas, no licensed vaccines or antiviral therapies are available. In this Review, we describe CHIKV epidemiology, replication cycle, pathogenesis and host immune responses, and prospects for effective vaccines and highlight important questions for future research. PMID:28248203

  13. Comparison of different prime-boost regimes with DNA and recombinant Orf virus based vaccines expressing glycoprotein D of pseudorabies virus in pigs

    NARCIS (Netherlands)

    Rooij, van E.M.A.; Rijsewijk, F.A.M.; Moonen-Leusen, H.W.; Bianchi, A.T.J.; Rziha, H.J.

    2010-01-01

    Both DNA and Orf virus (ORFV; Parapox virus) based vaccines have shown promise as alternatives for conventional vaccines in pigs against pseudorabies virus (PRV) infection causing Aujeszky's disease. In the present study we evaluated the efficacy of different prime-boost regimes in pigs in terms of

  14. Costimulation of Naive CD8+ Lymphocytes Induces CD4 Expression and Allows Human Immunodeficiency Virus Type 1 Infection

    Science.gov (United States)

    Kitchen, Scott G.; Korin, Yael D.; Roth, Michael D.; Landay, Alan; Zack, Jerome A.

    1998-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection requires cell surface expression of CD4. Costimulation of CD8+/CD4− T lymphocytes by anti-CD3 and anti-CD28 antibodies or by allogeneic dendritic cells induced expression of CD4 and rendered these CD8 cells susceptible to HIV-1 infection. Naive CD45RA+ cells responded with greater expression of CD4 than did CD45RO+ cells. CD8+ lymphocytes derived from fetal or newborn sources exhibited a greater tendency to express CD4, consistent with their naive states. This mechanism of infection suggests HIV-induced perturbation of the CD8 arm of the immune response and could explain the generally rapid disease progression seen in HIV-infected children. PMID:9765450

  15. Ebola virus disease and social media: A systematic review.

    Science.gov (United States)

    Fung, Isaac Chun-Hai; Duke, Carmen Hope; Finch, Kathryn Cameron; Snook, Kassandra Renee; Tseng, Pei-Ling; Hernandez, Ana Cristina; Gambhir, Manoj; Fu, King-Wa; Tse, Zion Tsz Ho

    2016-12-01

    We systematically reviewed existing research pertinent to Ebola virus disease and social media, especially to identify the research questions and the methods used to collect and analyze social media. We searched 6 databases for research articles pertinent to Ebola virus disease and social media. We extracted the data using a standardized form. We evaluated the quality of the included articles. Twelve articles were included in the main analysis: 7 from Twitter with 1 also including Weibo, 1 from Facebook, 3 from YouTube, and 1 from Instagram and Flickr. All the studies were cross-sectional. Eleven of the 12 articles studied ≥ 1of these 3 elements of social media and their relationships: themes or topics of social media contents, meta-data of social media posts (such as frequency of original posts and reposts, and impressions) and characteristics of the social media accounts that made these posts (such as whether they are individuals or institutions). One article studied how news videos influenced Twitter traffic. Twitter content analysis methods included text mining (n = 3) and manual coding (n = 1). Two studies involved mathematical modeling. All 3 YouTube studies and the Instagram/Flickr study used manual coding of videos and images, respectively. Published Ebola virus disease-related social media research focused on Twitter and YouTube. The utility of social media research to public health practitioners is warranted. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  16. Molecular epidemiology of foot-and-mouth disease virus.

    Science.gov (United States)

    Knowles, N J; Samuel, A R

    2003-01-01

    Foot-and-mouth disease (FMD) is the most economically important veterinary pathogen due to its highly infectious nature, ability to cause persistent infections and long term effects on the condition and productivity of the many animal species it affects. Countries which have the disease have many trade restrictions placed upon them. In the last 15 years there have been significant advances in the understanding of FMD epidemiology. These have largely been due to the application of the molecular biological techniques of polymerase chain-reaction amplification and nucleotide sequencing. In the World Reference Laboratory for FMD (Pirbright, UK), a large sequence database has been built up. This database has been used to aid in the global tracing of virus movements. It has been possible to genetically group many FMDV's based on their geographic origin and this has led to their being referred to as topotypes. The implications of this are that inter-regional spread of viruses can often be easily recognised and any evolutionary changes which subsequently occur can be monitored. Using these techniques, for the first time, we have been able to unequivocally show the recent pandemic spread of a FMDV type O strain through the whole of Asia and into Africa and Europe. This type of surveillance will become increasingly important as further globalisation of markets occurs. An increased understanding of how FMDV strains move between geographic regions will play a pivotal role in the development of future disease control strategies. Copyright 2002 Elsevier Science B.V.

  17. Interleukin-21 mRNA expression during virus infections

    DEFF Research Database (Denmark)

    Holm, Christian; Nyvold, Charlotte Guldborg; Paludan, Søren Riis

    2006-01-01

    and activational effects of IL-21 on different leukocytes come into play in vivo in an immune response has so far not been fully investigated. We show here for the first time in vivo, that IL-21 mRNA is produced in the spleen when mice are challenged with herpes simplex virus type 2 (HSV-2) or lymphocytic...... choriomeningitis virus (LCMV). We show in HSV-2 challenged mice that this production takes place in CD4+ T cell fractions and is absent in CD4+ T cell-depleted fractions. We also show that the peak of IL-21 mRNA production in both the HSV-2 and LCMV-challenged mice coincides with the onset of the adaptive immune...... response. Thus, our data suggest a role for IL-21 in the early stages of adaptive immune response against virus infections....

  18. Detection by enzyme-linked immunosorbent assay of Aujeszky's disease virus in tissues of infected pigs.

    OpenAIRE

    Qvist, P; Meyling, A; Hoff-Jørgensen, R

    1990-01-01

    An enzyme-linked immunosorbent assay was developed for the detection of Aujeszky's disease virus antigen in tissue extracts and in nasal swabs. The enzyme-linked immunosorbent assay is based on two different monoclonal antibodies with specificity for the gII glycoprotein of Aujeszky's disease virus. Viral antigen was detected in 81 of 93 tissue extracts prepared from virus-infected organs. Fifteen outbreaks of Aujeszky's disease were analyzed in this study, and they were all identified by the...

  19. Early myeloid dendritic cell dysregulation is predictive of disease progression in simian immunodeficiency virus infection.

    Directory of Open Access Journals (Sweden)

    Viskam Wijewardana

    2010-12-01

    Full Text Available Myeloid dendritic cells (mDC are lost from blood in individuals with human immunodeficiency virus (HIV infection but the mechanism for this loss and its relationship to disease progression are not known. We studied the mDC response in blood and lymph nodes of simian immunodeficiency virus (SIV-infected rhesus macaques with different disease outcomes. Early changes in blood mDC number were inversely correlated with virus load and reflective of eventual disease outcome, as animals with stable infection that remained disease-free for more than one year had average increases in blood mDC of 200% over preinfection levels at virus set-point, whereas animals that progressed rapidly to AIDS had significant loss of mDC at this time. Short term antiretroviral therapy (ART transiently reversed mDC loss in progressor animals, whereas discontinuation of ART resulted in a 3.5-fold increase in mDC over preinfection levels only in stable animals, approaching 10-fold in some cases. Progressive SIV infection was associated with increased CCR7 expression on blood mDC and an 8-fold increase in expression of CCL19 mRNA in lymph nodes, consistent with increased mDC recruitment. Paradoxically, lymph node mDC did not accumulate in progressive infection but rather died from caspase-8-dependent apoptosis that was reduced by ART, indicating that increased recruitment is offset by increased death. Lymph node mDC from both stable and progressor animals remained responsive to exogenous stimulation with a TLR7/8 agonist. These data suggest that mDC are mobilized in SIV infection but that an increase in the CCR7-CCL19 chemokine axis associated with high virus burden in progressive infection promotes exodus of activated mDC from blood into lymph nodes where they die from apoptosis. We suggest that inflamed lymph nodes serve as a sink for mDC through recruitment, activation and death that contributes to AIDS pathogenesis.

  20. Vaccinia Virus Recombinant Expressing Herpes Simplex Virus Type 1 Glycoprotein D Prevents Latent Herpes in Mice

    Science.gov (United States)

    Cremer, Kenneth J.; Mackett, Michael; Wohlenberg, Charles; Notkins, Abner Louis; Moss, Bernard

    1985-05-01

    In humans, herpes simplex virus causes a primary infection and then often a latent ganglionic infection that persists for life. Because these latent infections can recur periodically, vaccines are needed that can protect against both primary and latent herpes simplex infections. Infectious vaccinia virus recombinants that contain the herpes simplex virus type 1 (HSV-1) glycoprotein D gene under control of defined early or late vaccinia virus promoters were constructed. Tissue culture cells infected with these recombinant viruses synthesized a glycosylated protein that had the same mass (60,000 daltons) as the glycoprotein D produced by HSV-1. Immunization of mice with one of these recombinant viruses by intradermal, subcutaneous, or intraperitoneal routes resulted in the production of antibodies that neutralized HSV-1 and protected the mice against subsequent lethal challenge with HSV-1 or HSV-2. Immunization with the recombinant virus also protected the majority of the mice against the development of a latent HSV-1 infection of the trigeminal ganglia. This is the first demonstration that a genetically engineered vaccine can prevent the development of latency.

  1. Infection with Aleutian disease virus-like virus in a captive striped skunk.

    Science.gov (United States)

    Allender, Matthew C; Schumacher, Juergen; Thomas, Kathy V; McCain, Stephanie L; Ramsay, Edward C; James, Evan W; Wise, Annabel G; Maes, Roger K; Reel, Danielle

    2008-03-01

    A 5-month-old captive female striped skunk (Mephitis mephitis) was evaluated because of lethargy, signs of depression, azotemia, and erythema of the skin around the eyes. Antemortem diagnostic tests revealed renal disease but failed to identify an etiologic agent. A diagnosis of severe nonsuppurative interstitial nephritis was made on the basis of results of histologic examination of renal biopsy specimens. The skunk was administered isotonic fluids SC daily and later every other day because of the handling-related stress. Because of the skunk's deteriorating condition, it was euthanized after 24 days of supportive care. Aleutian disease was diagnosed on the basis of positive results of a PCR assay that targeted the DNA from Aleutian disease virus (ADV); positive results for ADV were also obtained by use of plasma counterimmunoelectrophoresis and an ELISA. Genetic sequencing of the 365-base pair PCR product revealed 90% sequence identity with mink ADV. In the skunk of this report, infection with a skunk-specific parvovirus resulted in clinical signs and pathologic changes similar to those associated with ADV infection in mink. For skunks with signs of renal failure, differential diagnoses should include parvovirus infection. In confirmed cases of infection with this ADV-like virus, appropriate quarantine and biosecurity measures should be in place to prevent spread to other susceptible animals within a zoological collection.

  2. Industry-Wide Surveillance of Marek's Disease Virus on Commercial Poultry Farms.

    Science.gov (United States)

    Kennedy, David A; Cairns, Christopher; Jones, Matthew J; Bell, Andrew S; Salathé, Rahel M; Baigent, Susan J; Nair, Venugopal K; Dunn, Patricia A; Read, Andrew F

    2017-06-01

    Marek's disease virus is a herpesvirus of chickens that costs the worldwide poultry industry more than US$1 billion annually. Two generations of Marek's disease vaccines have shown reduced efficacy over the last half century due to evolution of the virus. Understanding where the virus is present may give insight into whether continued reductions in efficacy are likely. We conducted a 3-yr surveillance study to assess the prevalence of Marek's disease virus on commercial poultry farms, determine the effect of various factors on virus prevalence, and document virus dynamics in broiler chicken houses over short (weeks) and long (years) timescales. We extracted DNA from dust samples collected from commercial chicken and egg production facilities in Pennsylvania, USA. Quantitative PCR was used to assess wild-type virus detectability and concentration. Using data from 1018 dust samples with Bayesian generalized linear mixed effects models, we determined the factors that correlated with virus prevalence across farms. Maximum likelihood and autocorrelation function estimation on 3727 additional dust samples were used to document and characterize virus concentrations within houses over time. Overall, wild-type virus was detectable at least once on 36 of 104 farms at rates that varied substantially between farms. Virus was detected in one of three broiler-breeder operations (companies), four of five broiler operations, and three of five egg layer operations. Marek's disease virus detectability differed by production type, bird age, day of the year, operation (company), farm, house, flock, and sample. Operation (company) was the most important factor, accounting for between 12% and 63.4% of the variation in virus detectability. Within individual houses, virus concentration often dropped below detectable levels and reemerged later. These data characterize Marek's disease virus dynamics, which are potentially important to the evolution of the virus.

  3. Optimization of Newcastle disease virus production in T-flask | Arifin ...

    African Journals Online (AJOL)

    In the present study, the production of lentogenic Asplin F strain of Newcastle disease virus by using cell culture method was studied. Experiments were carried out in T-flasks to investigate the effects of serum concentration in the culture medium during virus replication phase and multiplicity of infection (MOI) on ND virus ...

  4. Control of plant virus diseases in sub-Saharan Africa: the possibility ...

    African Journals Online (AJOL)

    Plant viruses and virus diseases have been studied for more than 100 years and much attention has been given to their control. However, this has been difficult to achieve because of the lack of any effective means of curing virus-infected plants. Chemotherapy, thermotherapy and meristem-tip culture can be successful, but ...

  5. Experimental infection with Brazilian Newcastle disease virus strain in pigeons and chickens

    Directory of Open Access Journals (Sweden)

    Adriano de Oliveira Torres Carrasco

    2016-03-01

    Full Text Available Abstract This study was designed with the goal of adding as much information as possible about the role of pigeons (Columba livia and chickens (Gallus gallus in Newcastle disease virus epidemiology. These species were submitted to direct experimental infection with Newcastle disease virus to evaluate interspecies transmission and virus-host relationships. The results obtained in four experimental models were analyzed by hemagglutination inhibition and reverse transcriptase polymerase chain reaction for detection of virus shedding. These techniques revealed that both avian species, when previously immunized with a low pathogenic Newcastle disease virus strain (LaSota, developed high antibody titers that significantly reduced virus shedding after infection with a highly pathogenic Newcastle disease virus strain (São Joao do Meriti and that, in chickens, prevent clinical signs. Infected pigeons shed the pathogenic strain, which was not detected in sentinel chickens or control birds. When the presence of Newcastle disease virus was analyzed in tissue samples by RT-PCR, in both species, the virus was most frequently found in the spleen. The vaccination regimen can prevent clinical disease in chickens and reduce viral shedding by chickens or pigeons. Biosecurity measures associated with vaccination programs are crucial to maintain a virulent Newcastle disease virus-free status in industrial poultry in Brazil.

  6. [Expression of recombinant rubella virus E1 protein and initial application for detecting of antibody].

    Science.gov (United States)

    Yi, Yao; Guo, Min-zhuo; Yu, Tao; Xu, Wen-bo; Yang, Jin-ye; Chen, Si-yong

    2008-10-01

    To apply recombinant rubella virus envelope protein-1 (E1) to detect human rubella virus IgG antibody. Rubella virus E1 protein was expressed in E. coli, purified E1 protein was used as the antigen for the detecting of anti rubella in human sera in the way of enzyme linked Immunosorbant assay (ELISA). The antigenicity of the recombinant protein was checked by WHO rubella sera panel. We detected 200 sera samples, which came from Guangxi Guilin. 93% of these samples were positive. The antigenicity of recombinant E1 is a satisfied candidate antigen for the detecting of human rubella virus antibody. The prevalence of anti rubella virus IgG in Guangxi is 93%. It is at the some level compared with other provinces in China.

  7. Expression Profiling in Granulomatous Lung Disease

    OpenAIRE

    Chen, Edward S.; Moller, David R.

    2007-01-01

    Granulomatous lung diseases, such as sarcoidosis, hypersensitivity pneumonitis, Wegener's granulomatosis, and chronic beryllium disease, along with granulomatous diseases of known infectious etiologies, such as tuberculosis, are major causes of morbidity and mortality throughout the world. Clinical manifestations of these diseases are highly heterogeneous, and the determinants of disease susceptibility and clinical course (e.g., resolution vs. chronic, progressive fibrosis) are largely unknow...

  8. Hepatitis C virus expressing reporter tagged NS5A protein

    DEFF Research Database (Denmark)

    2014-01-01

    Hepatitis C reporter viruses containing Core through NS2 of prototype isolates of all major HCV genotypes and the remaining genes of isolate JFH1, by insertion of reporter genes in domain III of HCV NS5A were developed. A deletion upstream of the inserted reporter gene sequence conferred favorable...

  9. Expression and Purification of Coat Protein of Citrus Tristeza Virus ...

    African Journals Online (AJOL)

    detection of virus. Compared with intact virion procedure, the use of CP antigen resulted in highly specific polyclonal antibodies. CTV coat protein gene (CTV-cp) cloned in pQE30 vector and transformed to DH5α containing 666bp long from. Thailand MK-50 isolate was amplified with a forward primer CTV-CP1 (5' CAC.

  10. Critical role of the virus-encoded microRNA-155 ortholog in the induction of Marek's disease lymphomas.

    Directory of Open Access Journals (Sweden)

    Yuguang Zhao

    2011-02-01

    Full Text Available Notwithstanding the well-characterised roles of a number of oncogenes in neoplastic transformation, microRNAs (miRNAs are increasingly implicated in several human cancers. Discovery of miRNAs in several oncogenic herpesviruses such as KSHV has further highlighted the potential of virus-encoded miRNAs to contribute to their oncogenic capabilities. Nevertheless, despite the identification of several possible cancer-related genes as their targets, the direct in vivo role of virus-encoded miRNAs in neoplastic diseases such as those induced by KSHV is difficult to demonstrate in the absence of suitable models. However, excellent natural disease models of rapid-onset Marek's disease (MD lymphomas in chickens allow examination of the oncogenic potential of virus-encoded miRNAs. Using viruses modified by reverse genetics of the infectious BAC clone of the oncogenic RB-1B strain of MDV, we show that the deletion of the six-miRNA cluster 1 from the viral genome abolished the oncogenicity of the virus. This loss of oncogenicity appeared to be primarily due to the single miRNA within the cluster, miR-M4, the ortholog of cellular miR-155, since its deletion or a 2-nucleotide mutation within its seed region was sufficient to inhibit the induction of lymphomas. The definitive role of this miR-155 ortholog in oncogenicity was further confirmed by the rescue of oncogenic phenotype by revertant viruses that expressed either the miR-M4 or the cellular homolog gga-miR-155. This is the first demonstration of the direct in vivo role of a virus-encoded miRNA in inducing tumors in a natural infection model. Furthermore, the use of viruses deleted in miRNAs as effective vaccines against virulent MDV challenge, enables the prospects of generating genetically defined attenuated vaccines.

  11. Two potential recombinant rabies vaccines expressing canine parvovirus virion protein 2 induce immunogenicity to canine parvovirus and rabies virus.

    Science.gov (United States)

    Luo, Jun; Shi, Hehe; Tan, Yeping; Niu, Xuefeng; Long, Teng; Zhao, Jing; Tian, Qin; Wang, Yifei; Chen, Hao; Guo, Xiaofeng

    2016-08-17

    Both rabies virus (RABV) and canine parvovirus (CPV) cause lethal diseases in dogs. In this study, both high egg passage Flury (HEP-Flury) strains of RABV and recombinant RABV carrying double RABV glycoprotein (G) gene were used to express the CPV virion protein 2 (VP2) gene, and were designated rHEP-VP2 and, rHEP-dG-VP2 respectively. The two recombinant RABVs maintained optimal virus titration according to their viral growth kinetics assay compared with the parental strain HEP-Flury. Western blotting indicated that G protein and VP2 were expressed in vitro. The expression of VP2 in Crandell feline kidney cells post-infection by rHEP-VP2 and rHEP-dG-VP2 was confirmed by indirect immunofluorescence assay with antibody against VP2. Immunogenicity of recombinant rabies viruses was tested in Kunming mice. Both rHEP-VP2 and rHEP-dG-VP2 induced high levels of rabies antibody compared with HEP-Flury. Mice immunized with rHEP-VP2 and rHEP-dG-VP2 both had a high level of antibodies against VP2, which can protect against CPV infection. A challenge experiment indicated that more than 80% mice immunized with recombinant RABVs survived after infection of challenge virus standard 24 (CVS-24). Together, this study showed that recombinant RABVs expressing VP2 induced protective immune responses to RABV and CPV. Therefore, rHEP-VP2 and rHEP-dG-VP2 might be potential combined vaccines for RABV and CPV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Virus-induced gene silencing and Agrobacterium tumefaciens-mediated transient expression in Nicotiana tabacum.

    Science.gov (United States)

    Zhang, Zhao; Thomma, Bart P H J

    2014-01-01

    Virus-induced gene silencing (VIGS) is a rapid method for transient silencing of plant genes. In this chapter, we describe the methodology for Tobacco rattle virus (TRV)-based VIGS in Nicotiana tabacum. In combination with subsequent co-expression of the tomato immune receptor Ve1 and the corresponding Verticillium effector Ave1 through Agrobacterium tumefaciens-mediated transient transformation (agroinfiltration), we established a rapid system for assessing the requirement of candidate plant genes for Ve1-mediated immune signaling.

  13. Replication-Competent Influenza A and B Viruses Expressing a Fluorescent Dynamic Timer Protein for In Vitro and In Vivo Studies.

    Directory of Open Access Journals (Sweden)

    Michael Breen

    Full Text Available Influenza A and B viruses (IAV and IBV, respectively cause annual seasonal human respiratory disease epidemics. In addition, IAVs have been implicated in occasional pandemics with inordinate health and economic consequences. Studying influenza viruses in vitro or in vivo requires the use of laborious secondary methodologies to identify infected cells. To circumvent this requirement, replication-competent infectious influenza viruses expressing an easily traceable fluorescent reporter protein can be used. Timer is a fluorescent protein that undergoes a time-dependent color emission conversion from green to red. The rate of spectral change is independent of Timer protein concentration and can be used to chronologically measure the duration of its expression. Here, we describe the generation of replication-competent IAV and IBV where the viral non-structural protein 1 (NS1 was fused to the fluorescent dynamic Timer protein. Timer-expressing IAV and IBV displayed similar plaque phenotypes and growth kinetics to wild-type viruses in tissue culture. Within infected cells, Timer's spectral shift can be used to measure the rate and cell-to-cell spread of infection using fluorescent microscopy, plate readers, or flow cytometry. The progression of Timer-expressing IAV infection was also evaluated in a mouse model, demonstrating the feasibility to characterize IAV cell-to-cell infections in vivo. By providing the ability to chronologically track viral spread, Timer-expressing influenza viruses are an excellent option to evaluate the in vitro and in vivo dynamics of viral infection.

  14. Experimental Treatment of Ebola Virus Disease with Brincidofovir.

    Directory of Open Access Journals (Sweden)

    Jake Dunning

    Full Text Available The nucleotide analogue brincidofovir was developed to prevent and treat infections caused by double-stranded DNA viruses. Based on in vitro data suggesting an antiviral effect against Ebola virus, brincidofovir was included in the World Health Organisation list of agents that should be prioritised for clinical evaluation in patients with Ebola virus disease (EVD during the West African epidemic.In this single-arm phase 2 trial conducted in Liberia, patients with laboratory-confirmed EVD (two months of age or older, enrolment bodyweight ≥50 kg received oral brincidofovir 200 mg as a loading dose on day 0, followed by 100 mg brincidofovir on days 3, 7, 10, and 14. Bodyweight-adjusted dosing was used for patients weighing <50 kg at enrolment. The primary outcome was survival at Day 14 after the first dose of brincidofovir. Four patients were enrolled between 01 January 2015 and 31 January 2015. The trial was stopped following the decision by the manufacturer to terminate their program of development of brincidofovir for EVD. No Serious Adverse Reactions or Suspected Unexpected Serious Adverse Reactions were identified. All enrolled subjects died of an illness consistent with EVD.Due to the small sample size it was not possible to determine the efficacy of brincidofovir for the treatment of EVD. The premature termination of the trial highlights the need to establish better practices for preclinical in-vitro and animal screening of therapeutics for potentially emerging epidemic infectious diseases prior to their use in patients.Pan African Clinical Trials Registry PACTR201411000939962.

  15. Macroscopic and Microscopic Changes in Turkey Embryos Infected with Infectious Bursal Disease (IBD; Gumboro Disease) Virus

    OpenAIRE

    BEYTUT, Enver

    2014-01-01

    The purpose of this study was to determine the susceptibility of turkey embryos to the chicken isolate of Infectious Bursal Disease Virus (IBDV) and to investigate the morphologic changes occured particularly in bursa of Fabricius (BF) and some visceral organs. In the study, 178 embryonated turkey eggs and 28th passage of the virus from chicken embryo were used. Doses of 0.1 ml from the viral suspension were inoculated into yolk sac (YS) and allantoic cavity (AC), respectively on 13th and 15...

  16. Increased expression of Gp96 by HBx-induced NF-κB activation feedback enhances hepatitis B virus production.

    Directory of Open Access Journals (Sweden)

    Hongxia Fan

    Full Text Available Elevated expression of heat shock protein gp96 in hepatitis B virus (HBV-infected patients is positively correlated with the progress of HBV-induced diseases, but little is known regarding the molecular mechanism of virus-induced gp96 expression and its impact on HBV infection. In this study, up-regulation of gp96 by HBV replication was confirmed both in vitro and in vivo. Among HBV components, HBV x protein (HBx was found to increase gp96 promoter activity and enhance gp96 expression by using a luciferase reporter system, and western blot analysis. Further, we found that HBx-mediated regulation of gp96 expression requires a NF-κB cis-regulatory element on the gp96 promoter, and chromatin immunoprecipitation results demonstrated that HBx promotes the binding of NF-κB to the gp96 promoter. Significantly, both gain- and loss-of-function studies showed that gp96 enhances HBV production in HBV-transfected cells and a mouse model based on hydrodynamic transfection. Moreover, up-regulated gp96 expression was observed in HBV-infected patients, and gp96 levels were correlated with serum viral loads. Thus, our work demonstrates a positive feedback regulatory pathway involving gp96 and HBV, which may contribute to persistent HBV infection. Our data also indicate that modulation of gp96 function may represent a novel strategy for the intervention of HBV infection.

  17. Biology, etiology, and control of virus diseases of banana and plantain.

    Science.gov (United States)

    Kumar, P Lava; Selvarajan, Ramasamy; Iskra-Caruana, Marie-Line; Chabannes, Matthieu; Hanna, Rachid

    2015-01-01

    Banana and plantain (Musa spp.), produced in 10.3 million ha in the tropics, are among the world's top 10 food crops. They are vegetatively propagated using suckers or tissue culture plants and grown almost as perennial plantations. These are prone to the accumulation of pests and pathogens, especially viruses which contribute to yield reduction and are also barriers to the international exchange of germplasm. The most economically important viruses of banana and plantain are Banana bunchy top virus (BBTV), a complex of banana streak viruses (BSVs) and Banana bract mosaic virus (BBrMV). BBTV is known to cause the most serious economic losses in the "Old World," contributing to a yield reduction of up to 100% and responsible for a dramatic reduction in cropping area. The BSVs exist as episomal and endogenous forms are known to be worldwide in distribution. In India and the Philippines, BBrMV is known to be economically important but recently the virus was discovered in Colombia and Costa Rica, thus signaling its spread into the "New World." Banana and plantain are also known to be susceptible to five other viruses of minor significance, such as Abaca mosaic virus, Abaca bunchy top virus, Banana mild mosaic virus, Banana virus X, and Cucumber mosaic virus. Studies over the past 100 years have contributed to important knowledge on disease biology, distribution, and spread. Research during the last 25 years have led to a better understanding of the virus-vector-host interactions, virus diversity, disease etiology, and epidemiology. In addition, new diagnostic tools were developed which were used for surveillance and the certification of planting material. Due to a lack of durable host resistance in the Musa spp., phytosanitary measures and the use of virus-free planting material are the major methods of virus control. The state of knowledge on BBTV, BBrMV, and BSVs, and other minor viruses, disease spread, and control are summarized in this review. © 2015 Elsevier Inc

  18. Herpesviruses and Newcastle disease viruses in white storks (Ciconia ciconia).

    Science.gov (United States)

    Kaleta, E F; Kummerfeld, N

    1983-01-01

    Three herpesviruses were isolated from white storks (Ciconia ciconia). All isolates reacted in cross-neutralisation tests with homologous antisera and with sera prepared against a herpesvirus from a black stork (Ciconia nigra). These data indicate serologic relatedness of the herpesviruses from both stork species. Antisera prepared against herpesviruses from the domestic chicken (viruses of Marek's disease and infectious laryngotracheitis), turkey, duck and pigeon as well as from the blue-fronted amazon (Amazona aestiva), prairie falcon (Falco mexicanus), eagle owl (Bubo bubo), Lake Victoria cormorant (Phalacrocorax melanoleucos), bobwhite quail (Colinus virginianus) and desmoiselle crane (Anthropoides virgo) did not react with the stork herpesviruses. Neutralising antibodies against stork herpesvirus were detected in the majority of 72 blood samples from white and black storks. In addition, three Newcastle disease viruses (NDV) could be isolated from white storks. One isolate was highly virulent the two others were avirulent for the chicken. Haemagglutination inhibition tests have shown that some storks have antibodies against Paramyxovirus- (PMV)-1 (NDV), PMV-2 and PMV-3. No antibodies could be detected in stork sera against PMV-4, -6 and -7.

  19. Gene Expression Profiling of Monkeypox Virus-Infected Cells Reveals Novel Interfaces for Host-Virus Interactions

    Science.gov (United States)

    2010-07-28

    all assessed genes by RT-PCR, a direct correlation was evident between the results obtained in both techni- ques , and 15 out of the 18 gene expression...virus 40 (SV40) DNA com- paction [82] Our analysis identified ephrin receptor pathway ( ERP ) as a major influenced pathway in infected cells. This...or to the presence of many pleiotropic genes that are found in ERP , and simultaneously have essential roles in cytoskeleton reor- ganization or actin

  20. Development of virus resistant transgenic papayas expressing the coat protein gene from a Brazilian isolate of Papaya ringspot virus

    OpenAIRE

    Souza Júnior, Manoel T.; Nickel, Osmar; Gonsalves, Dennis

    2005-01-01

    Translatable and nontranslatable versions of the coat protein (cp) gene of a Papaya ringspot virus (PRSV) isolate collected in the state of Bahia, Brazil, were engineered for expression in Sunrise and Sunset Solo varieties of papaya (Carica papaya). The biolistic system was used to transform secondary somatic embryo cultures derived from immature zygotic embryos. Fifty-four transgenic lines, 26 translatable and 28 nontranslatable gene versions, were regenerated, with a transformation efficien...

  1. Novel surveillance methods for the control of Ebola virus disease.

    Science.gov (United States)

    Houlihan, C F; Youkee, D; Brown, C S

    2017-05-01

    The unprecedented scale of the 2013-2016 West African Ebola virus disease (EVD) outbreak was in a large part due to failings in surveillance: contacts of confirmed cases were not systematically identified, monitored and diagnosed early, and new cases appearing in previously unaffected communities were similarly not rapidly identified, diagnosed and isolated. Over the course of this epidemic, traditional surveillance methods were strengthened and novel methods introduced. The wealth of experience gained, and the systems introduced in West Africa, should be used in future EVD outbreaks, as well as for other communicable diseases in the region and beyond. © The Author 2017. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. The Role of Exosomal VP40 in Ebola Virus Disease.

    Science.gov (United States)

    Pleet, Michelle L; DeMarino, Catherine; Lepene, Benjamin; Aman, M Javad; Kashanchi, Fatah

    2017-04-01

    Ebola virus (EBOV) can cause a devastating hemorrhagic disease, leading to death in a short period of time. After infection, the resulting EBOV disease results in high levels of circulating cytokines, endothelial dysfunction, coagulopathy, and bystander lymphocyte apoptosis in humans and nonhuman primates. The VP40 matrix protein of EBOV is essential for viral assembly and budding from the host cell. Recent data have shown that VP40 exists in the extracellular environment, including in exosomes, and exosomal VP40 can impact the viability of recipient immune cells, including myeloid and T cells, through the regulation of the RNAi and endosomal sorting complexes required for transport pathways. In this study, we discuss the latest findings of the impact of exosomal VP40 on immune cells in vitro and its potential implications for pathogenesis in vivo.

  3. Rana grylio virus as a vector for foreign gene expression in fish cells.

    Science.gov (United States)

    He, Li-Bo; Ke, Fei; Zhang, Qi-Ya

    2012-01-01

    In the present study, Rana grylio virus (RGV, an iridovirus) thymidine kinase (TK) gene and viral envelope protein 53R gene were chosen as targets for foreign gene insertion. ΔTK-RGV and Δ53R-RGV, two recombinant RGV, expressing enhanced green fluorescence protein (EGFP) were constructed and analyzed in Epithelioma papulosum cyprinid (EPC) cells. The EGFP gene which fused to the virus major capsid protein (MCP) promoter p50 was inserted into TK and 53R gene loci of RGV, respectively. Cells infected with these two recombinant viruses not only displayed plaques, but also emitted strong green fluorescence under fluorescence microscope, providing a simple method for selection and purification of recombinant viruses. ΔTK-RGV was purified by seven successive rounds of plaque isolation and could be stably propagated in EPC cells. All of the plaques produced by the purified recombinant virus emitted green fluorescence. However, Δ53R-RGV was hard to be purified even through twenty rounds of plaque isolation. The purified recombinant virus ΔTK-RGV was verified by PCR analysis and Western blotting. These results showed EGFP was expressed in ΔTK-RGV infected cells. Furthermore, one-step growth curves and electron microscopy revealed that infection with recombinant ΔTK-RGV and wild-type RGV are similar. Therefore, RGV was demonstrated could be as a viral vector for foreign gene expression in fish cells. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  4. Lassa fever, Marburg and Ebola virus diseases and other exotic diseases: is there a risk to Canada?

    OpenAIRE

    Clayton, A. J.

    1979-01-01

    There are seven exotic diseases of concern; three of these, the most unpredictable and least understood, are Lassa fever, Marburg virus disease and Ebola virus disease. In this article the epidemiologic aspects of these diseases are discussed, with particular emphasis on exportation from their indigenous areas in Africa and on the occurrence of secondary cases. Any of these conditions could be brought into Canada either by aeromedical evacuation or inadvertently. Between 1972 and 1978 there w...

  5. Development of a foot-and-mouth disease virus serotype A empty capsid subunit vaccine using silkworm (Bombyx mori pupae.

    Directory of Open Access Journals (Sweden)

    Zhiyong Li

    Full Text Available Foot-and-mouth disease (FMD is a highly contagious disease of cloven-hoofed animals that inflicts severe economic losses in the livestock industry. In 2009, FMDV serotype A caused outbreaks of FMD in cattle in China. Although an inactivated virus vaccine has proven effective to control FMD, its use may lead to new disease outbreaks due to a possible incomplete inactivation of the virus during the manufacturing process. Here, we expressed the P1-2A and the 3C coding regions of a serotype A FMDV field isolate in silkworm pupae (Bombyx mori and evaluated the immunogenicity of the expression products. Four of five cattle vaccinated with these proteins developed high titers of FMDV-specific antibody and were completely protected against virulent homologous virus challenge with 10,000 50% bovine infectious doses (BID(50. Furthermore, the 50% bovine protective dose (PD(50 test was performed to assess the bovine potency of the empty capsid subunit vaccine and was shown to achieve 4.33 PD(50 per dose. These data provide evidence that silkworm pupae can be used to express immunogenic FMDV proteins. This strategy might be used to develop a new generation of empty capsid subunit vaccines against a variety of diseases.

  6. Expressing gK gene of duck enteritis virus guided by bioinformatics and its applied prospect in diagnosis

    Directory of Open Access Journals (Sweden)

    Zhu Dekang

    2010-07-01

    Full Text Available Abstract Background Duck viral enteritis, which is caused by duck enteritis virus (DEV, causes significant economic losses in domestic and wild waterfowls because of the high mortality and low egg production rates. With the purpose of eliminating this disease and decreasing economic loss in the commercial duck industry, researching on glycoprotein K (gK of DEV may be a new kind of method for preventing and curing this disease. Because glycoproteins project from the virus envelope as spikes and are directly involved in the host immune system and elicitation of the host immune responses, and also play an important role in mediating infection of target cells, the entry into cell for free virus and the maturation or egress of virus. The gK is one of the major envelope glycoproteins of DEV. However, little information correlated with gK is known, such as antigenic and functional characterization. Results Bioinformatic predictions revealed that the expression of the full-length gK gene (fgK in a prokaryotic system is difficult because of the presence of suboptimal exon and transmembrane domains at the C-terminal. In this study, we found that the fgK gene might not be expressed in a prokaryotic system in accordance with the bioinformatic predictions. Further, we successfully used bioinformatics tools to guide the prokaryotic expression of the gK gene by designing a novel truncated gK gene (tgK. These findings indicated that bioinformatics provides theoretical data for target gene expression and saves time for our research. The recombinant tgK protein (tgK was expressed and purified by immobilized metal affinity chromatography (IMAC. Western blotting and indirect enzyme-linked immunosorbent assay (ELISA showed that the tgK possessed antigenic characteristics similar to native DEV-gK. Conclusions In this work, the DEV-tgK was expressed successfully in prokaryotic system for the first time, which will provide usefull information for prokaryotic expression

  7. Overview of respiratory syncytial virus disease in young children

    Directory of Open Access Journals (Sweden)

    Hoopes JM

    2012-07-01

    Full Text Available J Michael Hoopes1, Veena R Kumar21Medical Information, 2Medical and Scientific Affairs, MedImmune, LLC, Gaithersburg, MD, USAAbstract: Respiratory tract illnesses associated with respiratory syncytial virus (RSV were first reported more than 160 years ago and gained acceptance as a major respiratory pathogen in the late 1950s. Annual epidemics show a seasonal pattern typically beginning in the late fall and ending in early spring, averaging 5 months in length, and varying in time of onset, offset, and duration depending on geographic location. Manifestations of RSV illness primarily involve the upper respiratory tract but can spread to the lower airways and lead to bronchiolitis and/or pneumonia. Initial infection occurs in approximately two-thirds of children during the first year of life; nearly all children are infected at least once by 2 years of age. Reinfection is common throughout life, but initial illness during infancy generally presents with the most severe symptoms. Medical risk conditions that consistently predispose young children to serious lower respiratory tract infection (LRTI include congenital heart disease, chronic lung disease, and premature birth. Serious LRTI due to RSV is the leading cause of hospitalization in infants and young children worldwide and annual mean hospital expenses have been estimated to exceed 1 billion dollars in the United States. Young children incur more inpatient and outpatient visits for RSV LRTI than for influenza. RSV has a greater impact than influenza on hospitalization in infants with respect to length of stay, severity/course of disease, and resultant needs for ancillary treatments. Unlike many other childhood illnesses, a vaccine is not currently available for preventing RSV disease.Keywords: bronchopulmonary dysplasia, infants, hospitalization, prematurity, respiratory syncytial virus

  8. Orsay virus utilizes ribosomal frameshifting to express a novel protein that is incorporated into virions

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hongbing; Franz, Carl J.; Wu, Guang; Renshaw, Hilary; Zhao, Guoyan [Departments of Molecular Microbiology and Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 (United States); Firth, Andrew E. [Department of Pathology, University of Cambridge, Cambridge CB2 1QP (United Kingdom); Wang, David, E-mail: davewang@borcim.wustl.edu [Departments of Molecular Microbiology and Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 (United States)

    2014-02-15

    Orsay virus is the first identified virus that is capable of naturally infecting Caenorhabditis elegans. Although it is most closely related to nodaviruses, Orsay virus differs from nodaviruses in its genome organization. In particular, the Orsay virus RNA2 segment encodes a putative novel protein of unknown function, termed delta, which is absent from all known nodaviruses. Here we present evidence that Orsay virus utilizes a ribosomal frameshifting strategy to express a novel fusion protein from the viral capsid (alpha) and delta ORFs. Moreover, the fusion protein was detected in purified virus fractions, demonstrating that it is most likely incorporated into Orsay virions. Furthermore, N-terminal sequencing of both the fusion protein and the capsid protein demonstrated that these proteins must be translated from a non-canonical initiation site. While the function of the alpha–delta fusion remains cryptic, these studies provide novel insights into the fundamental properties of this new clade of viruses. - Highlights: • Orsay virus encodes a novel fusion protein by a ribosomal frameshifting mechanism. • Orsay capsid and fusion protein is translated from a non-canonical initiation site. • The fusion protein is likely incorporated into Orsay virions.

  9. Newcastle disease virus-based H5 influenza vaccine protects chickens from lethal challenge with a highly pathogenic H5N2 avian influenza virus.

    Science.gov (United States)

    Ma, Jingjiao; Lee, Jinhwa; Liu, Haixia; Mena, Ignacio; Davis, A Sally; Sunwoo, Sun Young; Lang, Yuekun; Duff, Michael; Morozov, Igor; Li, Yuhao; Yang, Jianmei; García-Sastre, Adolfo; Richt, Juergen A; Ma, Wenjun

    2017-01-01

    Since December 2014, Eurasian-origin, highly pathogenic avian influenza H5 viruses including H5N1, H5N2, and H5N8 subtypes (called H5N x viruses), which belong to the H5 clade 2.3.4.4, have been detected in U.S. wild birds. Subsequently, highly pathogenic H5N2 and H5N8 viruses have caused outbreaks in U.S. domestic poultry. Vaccination is one of the most effective ways to control influenza outbreaks and protect animal and public health. Newcastle disease virus (NDV)-based influenza vaccines have been demonstrated to be efficacious and safe in poultry. Herein, we developed an NDV-based H5 vaccine (NDV-H5) that expresses a codon-optimized ectodomain of the hemagglutinin from the A/chicken/Iowa/04-20/2015 (H5N2) virus and evaluated its efficacy in chickens. Results showed that both live and inactivated NDV-H5 vaccines induced hemagglutinin inhibition antibody titers against the H5N2 virus in immunized chickens after prime and booster, and both NDV-H5 vaccines completely protected chickens from lethal challenge with the highly pathogenic H5N2 A/turkey/Minnesota/9845-4/2015 virus. No clinical signs and only minimal virus shedding was observed in both vaccinated groups. In contrast, all mock-vaccinated, H5N2-infected chickens shed virus and died within 5 days post challenge. Furthermore, one dose of the live NDV-H5 vaccine also provided protection of 90% chickens immunized by coarse spraying; after exposure to H5N2 challenge, sera from vaccinated surviving chickens neutralized both highly pathogenic H5N1 and H5N8 viruses. Taken together, our results suggest that the NDV-based H5 vaccine is able to protect chickens against intercontinental highly pathogenic H5N x viruses and can be used by mass application to protect the poultry industry.

  10. Epstein-Barr Virus in Systemic Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Anette Holck Draborg

    2013-01-01

    Full Text Available Systemic autoimmune diseases (SADs are a group of connective tissue diseases with diverse, yet overlapping, symptoms and autoantibody development. The etiology behind SADs is not fully elucidated, but a number of genetic and environmental factors are known to influence the incidence of SADs. Recent findings link dysregulation of Epstein-Barr virus (EBV with SAD development. EBV causes a persistent infection with a tight latency programme in memory B-cells, which enables evasion of the immune defence. A number of immune escape mechanisms and immune-modulating proteins have been described for EBV. These immune modulating functions make EBV a good candidate for initiation of autoimmune diseases and exacerbation of disease progression. This review focuses on systemic lupus erythematosus (SLE, rheumatoid arthritis (RA, and Sjögren’s syndrome (SS and sum up the existing data linking EBV with these diseases including elevated titres of EBV antibodies, reduced T-cell defence against EBV, and elevated EBV viral load. Together, these data suggest that uncontrolled EBV infection can develop diverse autoreactivities in genetic susceptible individuals with different manifestations depending on the genetic background and the site of reactivation.

  11. High levels of virus replication and an intense inflammatory response contribute to the severe pathology in lymphoid tissues caused by Newcastle disease virus genotype VIId.

    Science.gov (United States)

    Hu, Zenglei; Hu, Jiao; Hu, Shunlin; Song, Qingqing; Ding, Pingyun; Zhu, Jie; Liu, Xiaowen; Wang, Xiaoquan; Liu, Xiufan

    2015-03-01

    Some strains of Newcastle disease virus (NDV) genotype VIId cause more-severe tissue damage in lymphoid organs compared to other virulent strains. In this study, we aim to define the mechanism of this distinct pathological manifestation of genotype VII viruses. Pathology, virus replication, and the innate immune response in lymphoid tissues of chickens infected with two genotype VIId NDV strains (JS5/05 and JS3/05), genotype IX NDV F48E8 and genotype IV NDV Herts/33, were compared. Histopathologic examination showed that JS5/05 and JS3/05 produced more-severe lesions in the spleen and thymus, but these four virulent strains caused comparable mild lesions in the bursa. In addition, JS3/05 and JS5/05 replicated at significantly higher levels in the lymphatic organs than F48E8 and Herts/33. A microarray assay performed on the spleens of chickens infected with JS5/05 or Herts/33 revealed that JS5/05 elicited a more potent inflammatory response by increasing the number and expression levels of activated genes. Moreover, cytokine gene expression profiling showed that JS5/05 and JS3/05 induced a stronger cytokine response in lymphoid tissues compared to F48E8 and Herts/33. Taken together, our results indicate that the severe pathology in immune organs caused by genotype VIId NDV strains is associated with high levels of virus replication and an intense inflammatory response.

  12. [Differential display of messenger RNA and identification of selenocysteine lyase gene in hepatocellular carcinoma cells transiently expressing hepatitis C virus core protein].

    Science.gov (United States)

    Yepes, Jesús Orlando; Luz Gunturiz, María; Henao, Luis Felipe; Navas, María Cristina; Balcázar, Norman; Gómez, Luis Alberto

    2006-06-01

    Hepatitis C virus is associated with diverse liver diseases including acute and chronic hepatitis, steatosis, cirrhosis and hepatocellular carcinoma. Several studies have explored viral mechanisms involved in the establishment of persistent infection and oncogenic Hepatitis C virus. Expression assays of Hepatitis C virus core protein suggest that this protein has transforming and carcinogenic properties with multifunctional activities in host cells. Characterization of expressed genes in cells expressing Core protein is important in order to identify candidate genes responsible for these pathogenic alterations. To compare and identify gene expression profiles in the human hepatocarcinoma derived cell line, HepG2, with transient expression of Hepatitis C virus Core protein. We have used comparative PCR-mediated differential display of mRNA from HepG2 hepatocarcinoma with and without transient expression of HCV Core protein or green fluorescent protein, previously obtained using the Semliki Forest Virus-based expression, through transduction of recombinant particles, rSFV-Core and rSFV-GFP, respectively. We observed differences in band intensities of mRNA in HepG2 cells transduced with rSFV-Core compared with those detected in cells without transduction, and transduced with rSFV-GFP. Cloning and sequencing of a gene fragment (258 bp) that was expressed differentially in HepG2 cells transduced with rSFV-Core, was identified as selenocystein lyase. The results confirm that HCV Core protein expressed in HepG2 is associated with specific changes in mRNA expression, including the gene for selenocystein lyase. This gene may be involved in the pathophysiology of hepatocellular carcinoma.

  13. Influence of temperature on symptom expression, detection of host factors in virus infected Piper nigrum L.

    Science.gov (United States)

    Umadevi, P; Bhat, A I; Krishnamurthy, K S; Anandaraj, M

    2016-05-01

    Expression of symptoms in black pepper plants (Piper nigrum) infected with Piper yellow mottle virus (PYMoV) vary depending on the season, being high during summer months. Here, we explored the influence of temperature on symptom expression in PYMoV infected P. nigrum. Our controlled environment study revealed increase in virus titer, total proteins, IAA and reducing sugars when exposed to temperature stress. There was change in the 2-D separated protein before and after exposure. The 2-D proteomics LC-MS identified host and viral proteins suggesting virus-host interaction during symptom expression. The analysis as well as detection of host biochemical compounds may help in understanding the detailed mechanisms underlying the viral replication and damage to the crop, and thereby plan management strategies.

  14. Plant virus expression vectors set the stage as production platforms for biopharmaceutical proteins.

    Science.gov (United States)

    Hefferon, Kathleen Laura

    2012-11-10

    Transgenic plants present enormous potential as a cost-effective and safe platform for large-scale production of vaccines and other therapeutic proteins. A number of different technologies are under development for the production of pharmaceutical proteins from plant tissues. One method used to express high levels of protein in plants involves the employment of plant virus expression vectors. Plant virus vectors have been designed to carry vaccine epitopes as well as full therapeutic proteins such as monoclonal antibodies in plant tissue both safely and effectively. Biopharmaceuticals such as these offer enormous potential on many levels, from providing relief to those who have little access to modern medicine, to playing an active role in the battle against cancer. This review describes the current design and status of plant virus expression vectors used as production platforms for biopharmaceutical proteins. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Interleukin-21 mRNA expression during virus infections

    DEFF Research Database (Denmark)

    Holm, Christian; Nyvold, C.G.; Paludan, Søren Riis

    2006-01-01

    and activational effects of IL-21 on different leukocytes come into play in vivo in an immune response has so far not been fully investigated. We show here for the first time in vivo, that IL-21 mRNA is produced in the spleen when mice are challenged with herpes simplex virus type 2 (HSV-2) or lymphocytic...... choriomeningitis virus (LCMV). We show in HSV-2 challenged mice that this production takes place in CD4+ T cell fractions and is absent in CD4+ T cell-depleted fractions. We also show that the peak of IL-21 mRNA production in both the HSV-2 and LCMV-challenged mice coincides with the onset of the adaptive immune...

  16. Viroporin Activity of the Foot-and-Mouth Disease Virus Non-Structural 2B Protein.

    Directory of Open Access Journals (Sweden)

    Da Ao

    Full Text Available Viroporins are a family of low-molecular-weight hydrophobic transmembrane proteins that are encoded by various animal viruses. Viroporins form transmembrane pores in host cells via oligomerization, thereby destroying cellular homeostasis and inducing cytopathy for virus replication and virion release. Among the Picornaviridae family of viruses, the 2B protein encoded by enteroviruses is well understood, whereas the viroporin activity of the 2B protein encoded by the foot-and-mouth disease virus (FMDV has not yet been described. An analysis of the FMDV 2B protein domains by computer-aided programs conducted in this study revealed that this protein may contain two transmembrane regions. Further biochemical, biophysical and functional studies revealed that the protein possesses a number of features typical of a viroporin when it is overexpressed in bacterial and mammalian cells as well as in FMDV-infected cells. The protein was found to be mainly localized in the endoplasmic reticulum (ER, with both the N- and C-terminal domains stretched into the cytosol. It exhibited cytotoxicity in Escherichia coli, which attenuated 2B protein expression. The release of virions from cells infected with FMDV was inhibited by amantadine, a viroporin inhibitor. The 2B protein monomers interacted with each other to form both intracellular and extracellular oligomers. The Ca(2+ concentration in the cells increased, and the integrity of the cytoplasmic membrane was disrupted in cells that expressed the 2B protein. Moreover, the 2B protein induced intense autophagy in host cells. All of the results of this study demonstrate that the FMDV 2B protein has properties that are also found in other viroporins and may be involved in the infection mechanism of FMDV.

  17. Borna disease virus nucleoprotein inhibits type I interferon induction through the interferon regulatory factor 7 pathway

    International Nuclear Information System (INIS)

    Song, Wuqi; Kao, Wenping; Zhai, Aixia; Qian, Jun; Li, Yujun; Zhang, Qingmeng; Zhao, Hong; Hu, Yunlong; Li, Hui; Zhang, Fengmin

    2013-01-01

    Highlights: •IRF7 nuclear localisation was inhibited by BDV persistently infected. •BDV N protein resistant to IFN induction both in BDV infected OL cell and N protein plasmid transfected OL cell. •BDV N protein is related to the inhibition of IRF7 nuclear localisation. -- Abstract: The expression of type I interferon (IFN) is one of the most potent innate defences against viral infection in higher vertebrates. Borna disease virus (BDV) establishes persistent, noncytolytic infections in animals and in cultured cells. Early studies have shown that the BDV phosphoprotein can inhibit the activation of type I IFN through the TBK1–IRF3 pathway. The function of the BDV nucleoprotein in the inhibition of IFN activity is not yet clear. In this study, we demonstrated IRF7 activation and increased IFN-α/β expression in a BDV-persistently infected human oligodendroglia cell line following RNA interference-mediated BDV nucleoprotein silencing. Furthermore, we showed that BDV nucleoprotein prevented the nuclear localisation of IRF7 and inhibited endogenous IFN induction by poly(I:C), coxsackie virus B3 and IFN-β. Our findings provide evidence for a previously undescribed mechanism by which the BDV nucleoprotein inhibits type I IFN expression by interfering with the IRF7 pathway

  18. Borna disease virus nucleoprotein inhibits type I interferon induction through the interferon regulatory factor 7 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Song, Wuqi [The Heilongjiang Key Laboratory of Immunity and Infection, Heilongjiang (China); Department of Microbiology, Harbin Medical University (China); Kao, Wenping [The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions (China); Department of Microbiology, Harbin Medical University (China); Zhai, Aixia [The Heilongjiang Key Laboratory of Immunity and Infection, Heilongjiang (China); Qian, Jun; Li, Yujun [The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions (China); Zhang, Qingmeng [The Heilongjiang Key Laboratory of Immunity and Infection, Heilongjiang (China); Zhao, Hong; Hu, Yunlong; Li, Hui [Department of Microbiology, Harbin Medical University (China); Zhang, Fengmin, E-mail: fengminzhang@ems.hrbmu.edu.cn [The Heilongjiang Key Laboratory of Immunity and Infection, Heilongjiang (China); The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions (China); Department of Microbiology, Harbin Medical University (China)

    2013-09-06

    Highlights: •IRF7 nuclear localisation was inhibited by BDV persistently infected. •BDV N protein resistant to IFN induction both in BDV infected OL cell and N protein plasmid transfected OL cell. •BDV N protein is related to the inhibition of IRF7 nuclear localisation. -- Abstract: The expression of type I interferon (IFN) is one of the most potent innate defences against viral infection in higher vertebrates. Borna disease virus (BDV) establishes persistent, noncytolytic infections in animals and in cultured cells. Early studies have shown that the BDV phosphoprotein can inhibit the activation of type I IFN through the TBK1–IRF3 pathway. The function of the BDV nucleoprotein in the inhibition of IFN activity is not yet clear. In this study, we demonstrated IRF7 activation and increased IFN-α/β expression in a BDV-persistently infected human oligodendroglia cell line following RNA interference-mediated BDV nucleoprotein silencing. Furthermore, we showed that BDV nucleoprotein prevented the nuclear localisation of IRF7 and inhibited endogenous IFN induction by poly(I:C), coxsackie virus B3 and IFN-β. Our findings provide evidence for a previously undescribed mechanism by which the BDV nucleoprotein inhibits type I IFN expression by interfering with the IRF7 pathway.

  19. Adenovirus vectors lacking virus-associated RNA expression enhance shRNA activity to suppress hepatitis C virus replication

    Science.gov (United States)

    Pei, Zheng; Shi, Guoli; Kondo, Saki; Ito, Masahiko; Maekawa, Aya; Suzuki, Mariko; Saito, Izumu; Suzuki, Tetsuro; Kanegae, Yumi

    2013-12-01

    First-generation adenovirus vectors (FG AdVs) expressing short-hairpin RNA (shRNA) effectively downregulate the expressions of target genes. However, this vector, in fact, expresses not only the transgene product, but also virus-associated RNAs (VA RNAs) that disturb cellular RNAi machinery. We have established a production method for VA-deleted AdVs lacking expression of VA RNAs. Here, we showed that the highest shRNA activity was obtained when the shRNA was inserted not at the popularly used E1 site, but at the E4 site. We then compared the activities of shRNAs against hepatitis C virus (HCV) expressed from VA-deleted AdVs or conventional AdVs. The VA-deleted AdVs inhibited HCV production much more efficiently. Therefore, VA-deleted AdVs were more effective than the currently used AdVs for shRNA downregulation, probably because of the lack of competition between VA RNAs and the shRNAs. These VA-deleted AdVs might enable more effective gene therapies for chronic hepatitis C.

  20. Lateral Flow Immunoassays for Ebola Virus Disease Detection in Liberia.

    Science.gov (United States)

    Phan, Jill C; Pettitt, James; George, Josiah S; Fakoli, Lawrence S; Taweh, Fahn M; Bateman, Stacey L; Bennett, Richard S; Norris, Sarah L; Spinnler, David A; Pimentel, Guillermo; Sahr, Phillip K; Bolay, Fatorma K; Schoepp, Randal J

    2016-10-15

     Lateral flow immunoassays (LFIs) are point-of-care diagnostic assays that are designed for single use outside a formal laboratory, with in-home pregnancy tests the best-known example of these tests. Although the LFI has some limitations over more-complex immunoassay procedures, such as reduced sensitivity and the potential for false-positive results when using complex sample matrices, the assay has the benefits of a rapid time to result and ease of use. These benefits make it an attractive option for obtaining rapid results in an austere environment. In an outbreak of any magnitude, a field-based rapid diagnostic assay would allow proper patient transport and for safe burials to be conducted without the delay caused by transport of samples between remote villages and testing facilities. Use of such point-of-care instruments in the ongoing Ebola virus disease (EVD) outbreak in West Africa would have distinct advantages in control and prevention of local outbreaks, but proper understanding of the technology and interpretation of results are important.  In this study, a LFI, originally developed by the Naval Medical Research Center for Ebola virus environmental testing, was evaluated for its ability to detect the virus in clinical samples in Liberia. Clinical blood and plasma samples and post mortem oral swabs submitted to the Liberian Institute for Biomedical Research, the National Public Health Reference Laboratory for EVD testing, were tested and compared to results of real-time reverse transcription-polymerase chain reaction (rRT-PCR), using assays targeting Ebola virus glycoprotein and nucleoprotein.  The LFI findings correlated well with those of the real-time RT-PCR assays used as benchmarks.  Rapid antigen-detection tests such as LFIs are attractive alternatives to traditional immunoassays but have reduced sensitivity and specificity, resulting in increases in false-positive and false-negative results. An understanding of the strengths, weaknesses

  1. Resurgence of Ebola Virus Disease in Guinea Linked to a Survivor With Virus Persistence in Seminal Fluid for More Than 500 Days

    Science.gov (United States)

    Diallo, Boubacar; Sissoko, Daouda; Loman, Nicholas J.; Bah, Hadja Aïssatou; Bah, Hawa; Worrell, Mary Claire; Conde, lya Saidou; Sacko, Ramata; Mesfin, Samuel; Loua, Angelo; Kalonda, Jacques Katomba; Erondu, Ngozi A.; Dahl, Benjamin A.; Handrick, Susann; Goodfellow, Ian; Meredith, Luke W.; Cotten, Matthew; Jah, Umaru; Guetiya Wadoum, Raoul Emeric; Rollin, Pierre; Magassouba, N'Faly; Malvy, Denis; Anglaret, Xavier; Carroll, Miles W.; Aylward, Raymond Bruce; Djingarey, Mamoudou Harouna; Diarra, Abdoulaye; Formenty, Pierre; Keïta, Sakoba; Günther, Stephan; Rambaut, Andrew; Duraffour, Sophie

    2016-01-01

    We report on an Ebola virus disease (EVD) survivor who showed Ebola virus in seminal fluid 531 days after onset of disease. The persisting virus was sexually transmitted in February 2016, about 470 days after onset of symptoms, and caused a new cluster of EVD in Guinea and Liberia. PMID:27585800

  2. Increased FOXP3 expression in tumour-associated tissues of horses affected with equine sarcoid disease.

    Science.gov (United States)

    Mählmann, K; Hamza, E; Marti, E; Dolf, G; Klukowska, J; Gerber, V; Koch, C

    2014-12-01

    Recent studies suggest that regulatory T cells (Tregs) are associated with disease severity and progression in papilloma virus induced neoplasia. Bovine papilloma virus (BPV) is recognised as the most important aetiological factor in equine sarcoid (ES) disease. The aim of this study was to compare expression levels of Treg markers and associated cytokines in tissue samples of ES-affected equids with skin samples of healthy control horses. Eleven ES-affected, and 12 healthy horses were included in the study. Expression levels of forkhead box protein 3 (FOXP3), interleukin 10 (IL10), interleukin 4 (IL4) and interferon gamma (IFNG) mRNA in lesional and tumour-distant samples from ES-affected horses, as well as in dermal samples of healthy control horses were measured using quantitative reverse transcription polymerase chain reaction (PCR). Expression levels were compared between lesional and tumour-distant as well as between tumour-distant and control samples. Furthermore, BPV-1 E5 DNA in samples of ES-affected horses was quantified using quantitative PCR, and possible associations of viral load, disease severity and gene expression levels were evaluated. Expression levels of FOXP3, IL10 and IFNG mRNA and BPV-1 E5 copy numbers were significantly increased in lesional compared to tumour-distant samples. There was no difference in FOXP3 and cytokine expression in tumour-distant samples from ES- compared with control horses. In tumour-distant samples viral load was positively correlated with IL10 expression and severity score. The increased expression of Treg markers in tumour-associated tissues of ES-affected equids indicates a local, Treg-induced immune suppression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Prognostic Analysis of Patients with Ebola Virus Disease.

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2015-09-01

    Full Text Available The Ebola virus causes an acute, serious illness which is often fatal if untreated. However, factors affecting the survival of the disease remain unclear. Here, we investigated the prognostic factors of Ebola virus disease (EVD through various statistical models.Sixty three laboratory-confirmed EVD patients with relatively complete clinical profiles were included in the study. All the patients were recruited at Jui Government Hospital, Sierra Leone between October 1st, 2014 and January 18th, 2015. We first investigated whether a single clinical presentation would be correlated with the survival of EVD. Log-rank test demonstrated that patients with viral load higher than 10(6 copies/ml presented significantly shorter survival time than those whose viral load were lower than 10(6 copies/ml (P = 0.005. Also, using Pearson chi-square test, we identified that chest pain, coma, and viral load (>10(6 copies/ml were significantly associated with poor survival of EVD patients. Furthermore, we evaluated the effect of multiple variables on the survival of EVD by Cox proportional hazards model. Interestingly, results revealed that patient's age, symptom of confusion, and viral load were the significantly associated with the survival of EVD cases (P = 0.017, P = 0.002, and P = 0.027, respectively.These results suggest that age, chest pain, coma, confusion and viral load are associated with the prognosis of EVD, in which viral load could be one of the most important factors for the survival of the disease.

  4. Renal disease in cats infected with feline immunodeficiency virus.

    Science.gov (United States)

    Baxter, K J; Levy, J K; Edinboro, C H; Vaden, S L; Tompkins, M B

    2012-01-01

    Feline immunodeficiency virus (FIV) and human immunodeficiency virus (HIV) infection cause similar clinical syndromes of immune dysregulation, opportunistic infections, inflammatory diseases, and neoplasia. Renal disease is the 4th most common cause of death associated with HIV infection. To investigate the association between FIV infection and renal disease in cats. Client-owned cats (153 FIV-infected, 306 FIV-noninfected) and specific-pathogen-free (SPF) research colony cats (95 FIV-infected, 98 FIV-noninfected). A mixed retrospective/prospective cross-sectional study. Blood urea nitrogen (BUN), serum creatinine, urine specific gravity (USG), and urine protein:creatinine ratio (UPC) data were compared between FIV-infected and FIV-noninfected cats. In FIV-infected cats, total CD4+ and CD8+ T lymphocytes were measured using flow cytometry, and CD4+:CD8+ T lymphocyte ratio was calculated. Renal azotemia was defined as a serum creatinine ≥ 1.9 mg/dL with USG ≤ 1.035. Proteinuria was defined as a UPC > 0.4 with an inactive urine sediment. Among the client-owned cats, no association was detected between FIV infection and renal azotemia (P = .24); however, a greater proportion of FIV-infected cats were proteinuric (25.0%, 16 of 64 cats) compared to FIV-noninfected cats (10.3%, 20 of 195 cats) (P FIV-infected cats, but UPC was positively correlated with the CD4+:CD8+ T lymphocyte ratio (Spearman's rho = 0.37, P = .01). Among the SPF research colony cats, no association was detected between FIV infection and renal azotemia (P = .21) or proteinuria (P = .25). Proteinuria but not azotemia was associated with natural FIV infection. Copyright © 2012 by the American College of Veterinary Internal Medicine.

  5. Gene Technology for Papaya Ringspot Virus Disease Management

    Science.gov (United States)

    Azad, Md. Abul Kalam; Sidik, Nik Marzuki

    2014-01-01

    Papaya (Carica papaya) is severely damaged by the papaya ringspot virus (PRSV). This review focuses on the development of PRSV resistant transgenic papaya through gene technology. The genetic diversity of PRSV depends upon geographical distribution and the influence of PRSV disease management on a sequence of PRSV isolates. The concept of pathogen-derived resistance has been employed for the development of transgenic papaya, using a coat protein-mediated, RNA-silencing mechanism and replicase gene-mediated transformation for effective PRSV disease management. The development of PRSV-resistant papaya via post-transcriptional gene silencing is a promising technology for PRSV disease management. PRSV-resistant transgenic papaya is environmentally safe and has no harmful effects on human health. Recent studies have revealed that the success of adoption of transgenic papaya depends upon the application, it being a commercially viable product, bio-safety regulatory issues, trade regulations, and the wider social acceptance of the technology. This review discusses the genome and the genetic diversity of PRSV, host range determinants, molecular diagnosis, disease management strategies, the development of transgenic papaya, environmental issues, issues in the adoption of transgenic papaya, and future directions for research. PMID:24757435

  6. Gene technology for papaya ringspot virus disease management.

    Science.gov (United States)

    Azad, Md Abul Kalam; Amin, Latifah; Sidik, Nik Marzuki

    2014-01-01

    Papaya (Carica papaya) is severely damaged by the papaya ringspot virus (PRSV). This review focuses on the development of PRSV resistant transgenic papaya through gene technology. The genetic diversity of PRSV depends upon geographical distribution and the influence of PRSV disease management on a sequence of PRSV isolates. The concept of pathogen-derived resistance has been employed for the development of transgenic papaya, using a coat protein-mediated, RNA-silencing mechanism and replicase gene-mediated transformation for effective PRSV disease management. The development of PRSV-resistant papaya via post-transcriptional gene silencing is a promising technology for PRSV disease management. PRSV-resistant transgenic papaya is environmentally safe and has no harmful effects on human health. Recent studies have revealed that the success of adoption of transgenic papaya depends upon the application, it being a commercially viable product, bio-safety regulatory issues, trade regulations, and the wider social acceptance of the technology. This review discusses the genome and the genetic diversity of PRSV, host range determinants, molecular diagnosis, disease management strategies, the development of transgenic papaya, environmental issues, issues in the adoption of transgenic papaya, and future directions for research.

  7. Gene Technology for Papaya Ringspot Virus Disease Management

    Directory of Open Access Journals (Sweden)

    Md. Abul Kalam Azad

    2014-01-01

    Full Text Available Papaya (Carica papaya is severely damaged by the papaya ringspot virus (PRSV. This review focuses on the development of PRSV resistant transgenic papaya through gene technology. The genetic diversity of PRSV depends upon geographical distribution and the influence of PRSV disease management on a sequence of PRSV isolates. The concept of pathogen-derived resistance has been employed for the development of transgenic papaya, using a coat protein-mediated, RNA-silencing mechanism and replicase gene-mediated transformation for effective PRSV disease management. The development of PRSV-resistant papaya via post-transcriptional gene silencing is a promising technology for PRSV disease management. PRSV-resistant transgenic papaya is environmentally safe and has no harmful effects on human health. Recent studies have revealed that the success of adoption of transgenic papaya depends upon the application, it being a commercially viable product, bio-safety regulatory issues, trade regulations, and the wider social acceptance of the technology. This review discusses the genome and the genetic diversity of PRSV, host range determinants, molecular diagnosis, disease management strategies, the development of transgenic papaya, environmental issues, issues in the adoption of transgenic papaya, and future directions for research.

  8. Structural characterization by transmission electron microscopy and immunoreactivity of recombinant Hendra virus nucleocapsid protein expressed and purified from Escherichia coli.

    Science.gov (United States)

    Pearce, Lesley A; Yu, Meng; Waddington, Lynne J; Barr, Jennifer A; Scoble, Judith A; Crameri, Gary S; McKinstry, William J

    2015-12-01

    Hendra virus (family Paramyxoviridae) is a negative sense single-stranded RNA virus (NSRV) which has been found to cause disease in humans, horses, and experimentally in other animals, e.g. pigs and cats. Pteropid bats commonly known as flying foxes have been identified as the natural host reservoir. The Hendra virus nucleocapsid protein (HeV N) represents the most abundant viral protein produced by the host cell, and is highly immunogenic with naturally infected humans and horses producing specific antibodies towards this protein. The purpose of this study was to express and purify soluble, functionally active recombinant HeV N, suitable for use as an immunodiagnostic reagent to detect antibodies against HeV. We expressed both full-length HeV N, (HeV NFL), and a C-terminal truncated form, (HeV NCORE), using a bacterial heterologous expression system. Both HeV N constructs were engineered with an N-terminal Hisx6 tag, and purified using a combination of immobilized metal affinity chromatography (IMAC) and size exclusion chromatography (SEC). Purified recombinant HeV N proteins self-assembled into soluble higher order oligomers as determined by SEC and negative-stain transmission electron microscopy. Both HeV N proteins were highly immuno-reactive with sera from animals and humans infected with either HeV or the closely related Nipah virus (NiV), but displayed no immuno-reactivity towards sera from animals infected with a non-pathogenic paramyxovirus (CedPV), or animals receiving Equivac® (HeV G glycoprotein subunit vaccine), using a Luminex-based multiplexed microsphere assay. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  9. Effect of biodiversity changes in disease risk: exploring disease emergence in a plant-virus system.

    Directory of Open Access Journals (Sweden)

    Israel Pagán

    Full Text Available The effect of biodiversity on the ability of parasites to infect their host and cause disease (i.e. disease risk is a major question in pathology, which is central to understand the emergence of infectious diseases, and to develop strategies for their management. Two hypotheses, which can be considered as extremes of a continuum, relate biodiversity to disease risk: One states that biodiversity is positively correlated with disease risk (Amplification Effect, and the second predicts a negative correlation between biodiversity and disease risk (Dilution Effect. Which of them applies better to different host-parasite systems is still a source of debate, due to limited experimental or empirical data. This is especially the case for viral diseases of plants. To address this subject, we have monitored for three years the prevalence of several viruses, and virus-associated symptoms, in populations of wild pepper (chiltepin under different levels of human management. For each population, we also measured the habitat species diversity, host plant genetic diversity and host plant density. Results indicate that disease and infection risk increased with the level of human management, which was associated with decreased species diversity and host genetic diversity, and with increased host plant density. Importantly, species diversity of the habitat was the primary predictor of disease risk for wild chiltepin populations. This changed in managed populations where host genetic diversity was the primary predictor. Host density was generally a poorer predictor of disease and infection risk. These results support the dilution effect hypothesis, and underline the relevance of different ecological factors in determining disease/infection risk in host plant populations under different levels of anthropic influence. These results are relevant for managing plant diseases and for establishing conservation policies for endangered plant species.

  10. Tolerance to a whitefly-transmitted virus causing muskmelon yellows disease in Spain.

    Science.gov (United States)

    Esteva, J; Nuez, F

    1992-08-01

    Muskmelon yellowing disease was one of the most serious problems affecting muskmelon crops along the south-east coast of Spain throughout the 1980s. The causal agent of this disease is a virus that we call muskmelon yellows virus (MYV); MYV is transmitted by the greenhouse whitefly Trialeurodes vaporariorum Westwood. It has proven impossible to find sources of resistance to MYV within a wide collection of Spanish muskmelon landraces and exotic varieties. However, 'Nagata Kin Makuwa' and PI 161375, lines of Asiatic origin, show tolerance to this disease. These two lines were studied together with two others ('Galia' and 'Piel de Sapo' type) that are very susceptible to MYV. The crosses between them (susceptible x tolerant) and the segregant generations derived from these crosses were also investigated. The studies were carried out in two different places and years. The expression of tolerance is influenced by the environment. A parabolic type relationship exists between the average value of percentage of tolerant plants and their variation. This allowed us to quantify the expected response in the segregant generations. The results observed in these generations agreed with a simple genetic control of tolerance. This tolerance, combined with protective measures which delay the infection, can contribute notably to mitigating the effects of MYV.

  11. Human T lymphotropic virus type-1 p30II alters cellular gene expression to selectively enhance signaling pathways that activate T lymphocytes

    Directory of Open Access Journals (Sweden)

    Feuer Gerold

    2004-11-01

    Full Text Available Abstract Background Human T-lymphotropic virus type-1 (HTLV-1 is a deltaretrovirus that causes adult T-cell leukemia/lymphoma and is implicated in a variety of lymphocyte-mediated disorders. HTLV-1 contains both regulatory and accessory genes in four pX open reading frames. pX ORF-II encodes two proteins, p13II and p30II, which are incompletely defined in the virus life cycle or HTLV-1 pathogenesis. Proviral clones of the virus with pX ORF-II mutations diminish the ability of the virus to maintain viral loads in vivo. Exogenous expression of p30II differentially modulates CREB and Tax-responsive element-mediated transcription through its interaction with CREB-binding protein/p300 and represses tax/rex RNA nuclear export. Results Herein, we further characterized the role of p30II in regulation of cellular gene expression, using stable p30II expression system employing lentiviral vectors to test cellular gene expression with Affymetrix U133A arrays, representing ~33,000 human genes. Reporter assays in Jurkat T cells and RT-PCR in Jurkat and primary CD4+ T-lymphocytes were used to confirm selected gene expression patterns. Our data reveals alterations of interrelated pathways of cell proliferation, T-cell signaling, apoptosis and cell cycle in p30II expressing Jurkat T cells. In all categories, p30II appeared to be an overall repressor of cellular gene expression, while selectively increasing the expression of certain key regulatory genes. Conclusions We are the first to demonstrate that p30II, while repressing the expression of many genes, selectively activates key gene pathways involved in T-cell signaling/activation. Collectively, our data suggests that this complex retrovirus, associated with lymphoproliferative diseases, relies upon accessory gene products to modify cellular environment to promote clonal expansion of the virus genome and thus maintain proviral loads in vivo.

  12. The AIDS dilemma: drug diseases blamed on a passenger virus.

    Science.gov (United States)

    Duesberg, P; Rasnick, D

    1998-01-01

    Almost two decades of unprecedented efforts in research costing US taxpayers over $50 billion have failed to defeat Acquired Immune Deficiency Syndrome (AIDS) and have failed to explain the chronology and epidemiology of AIDS in America and Europe. The failure to cure AIDS is so complete that the largest American AIDS foundation is even exploiting it for fundraising: 'Latest AIDS statistics-0,000,000 cured. Support a cure, support AMFAR.' The scientific basis of all these unsuccessful efforts has been the hypothesis that AIDS is caused by a sexually transmitted virus, termed Human immunodeficiency virus (HIV), and that this viral immunodeficiency manifests in 30 previously known microbial and non-microbial AIDS diseases. In order to develop a hypothesis that explains AIDS we have considered ten relevant facts that American and European AIDS patients have, and do not have, in common: (1) AIDS is not contagious. For example, not even one health care worker has contracted AIDS from over 800,000 AIDS patients in America and Europe. (2) AIDS is highly non-random with regard to sex (86% male); sexual persuasion (over 60% homosexual); and age (85% are 25-49 years old). (3) From its beginning in 1980, the AIDS epidemic progressed non-exponentially, just like lifestyle diseases. (4) The epidemic is fragmented into distinct subepidemics with exclusive AIDS-defining diseases. For example, only homosexual males have Kaposi's sarcoma. (5) Patients do not have any one of 30 AIDS-defining diseases, nor even immunodeficiency, in common. For example, Kaposi's sarcoma, dementia, and weight loss may occur without immunodeficiency. Thus, there is no AIDS-specific disease. (6) AIDS patients have antibody against HIV in common only by definition-not by natural coincidence. AIDS-defining diseases of HIV-free patients are called by their old names. (7) Recreational drug use is a common denominator for over 95% of all American and European AIDS patients, including male homosexuals. (8

  13. Clinical Features and Outcome of Ebola Virus Disease in Pediatric Patients: A Retrospective Case Series.

    Science.gov (United States)

    Damkjær, Mads; Rudolf, Frauke; Mishra, Sharmistha; Young, Alyssa; Storgaard, Merete

    2017-03-01

    Clinical and outcome data on pediatric Ebola virus disease are limited. We report a case-series of 33 pediatric patients with Ebola virus disease in a single Ebola Treatment Center in 2014-2015. The case-fatality rate was 42%, with the majority of deaths occurring within 10 days of admission. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Milk thistle for alcoholic and/or hepatitis B or C virus liver diseases

    DEFF Research Database (Denmark)

    Rambaldi, A; Jacobs, B P; Gluud, C

    2007-01-01

    Alcohol and hepatotoxic viruses cause the majority of liver diseases. Randomised clinical trials have assessed whether extracts of milk thistle, Silybum marianum (L) Gaertneri, have any effect in patients with alcoholic and/or hepatitis B or C virus liver diseases....

  15. Quantitative trait loci for resistance to maize streak virus disease in ...

    African Journals Online (AJOL)

    Maize streak virus disease is an important disease of maize in Kenya. In this study, we mapped and characterized quantitative trait loci affecting resistance to maize streak virus in maize populations of S4 families from the cross of one resistant MAL13 and one susceptible MAL9 recombinant inbred lines. Resistance was ...

  16. Antigenic structure of the capsid protein of rabbit haemorrhagic disease virus

    DEFF Research Database (Denmark)

    Martinez-Torrecuadrada, Jorge L.; Cortes, Elena; Vela, Carmen

    1998-01-01

    Rabbit haemorrhagic disease virus (RHDV) causes an important disease in rabbits. The virus capsid is composed of a single 60 kDa protein. The capsid protein gene was cloned in Escherichia coli using the pET3 system, and the antigenic structure of RHDV VP60 was dissected using 11 monoclonal...

  17. A systems view and lessons from the ongoing Ebola Virus disease ...

    African Journals Online (AJOL)

    This article analyses the on-going (2014) Ebola Virus Disease (EVD) outbreak in West Africa from a systems perspective; and draws out lessons for West Africa in general and Ghana in particular. Keywords: Ebola Virus Disease, West Africa , Ghana , Systems , Prevention and Control ...

  18. Clinical Features and Outcome of Ebola Virus Disease in Pediatric Patients

    DEFF Research Database (Denmark)

    Damkjær, Mads; Rudolf, Frauke; Mishra, Sharmistha

    2017-01-01

    Clinical and outcome data on pediatric Ebola virus disease are limited. We report a case-series of 33 pediatric patients with Ebola virus disease in a single Ebola Treatment Center in 2014-2015. The case-fatality rate was 42%, with the majority of deaths occurring within 10 days of admission....

  19. Molecular epidemiology of infectious bursal disease virus in Zambia

    Directory of Open Access Journals (Sweden)

    Christopher J. Kasanga

    2013-10-01

    Full Text Available Nucleotide sequences of the VP2 hypervariable region (VP2-HVR of 10 infectious bursal disease viruses detected in indigenous and exotic chickens in Zambia from 2004 to 2005 were determined. Phylogenetic analysis showed that the viruses diverged into two genotypes and belonged to the African very virulent types (VV1 and VV2. In the phylogenetic tree, strains in one genotype clustered in a distinct group and were closely related to some strains isolated in western Africa (VV1, with nucleotide similarities of 95.7%– 96.5%. Strains in the other genotype were clustered within the eastern African VV type (VV2, with nucleotide similarities of 97.3%– 98.5%. Both genotypes were distributed in the southern parts of Zambia and had a unique conserved amino acid substitution at 300 (E→A in addition to the putative virulence marker at positions 222(A, 242(I, 256(I, 294(I and 299(S. These findings represent the first documentation of the existence of the African VV-IBDV variants in both indigenous and exotic chickens in Zambia.

  20. Mapping the zoonotic niche of Ebola virus disease in Africa

    Science.gov (United States)

    Pigott, David M; Golding, Nick; Mylne, Adrian; Huang, Zhi; Henry, Andrew J; Weiss, Daniel J; Brady, Oliver J; Kraemer, Moritz UG; Smith, David L; Moyes, Catherine L; Bhatt, Samir; Gething, Peter W; Horby, Peter W; Bogoch, Isaac I; Brownstein, John S; Mekaru, Sumiko R; Tatem, Andrew J; Khan, Kamran; Hay, Simon I

    2014-01-01

    Ebola virus disease (EVD) is a complex zoonosis that is highly virulent in humans. The largest recorded outbreak of EVD is ongoing in West Africa, outside of its previously reported and predicted niche. We assembled location data on all recorded zoonotic transmission to humans and Ebola virus infection in bats and primates (1976–2014). Using species distribution models, these occurrence data were paired with environmental covariates to predict a zoonotic transmission niche covering 22 countries across Central and West Africa. Vegetation, elevation, temperature, evapotranspiration, and suspected reservoir bat distributions define this relationship. At-risk areas are inhabited by 22 million people; however, the rarity of human outbreaks emphasises the very low probability of transmission to humans. Increasing population sizes and international connectivity by air since the first detection of EVD in 1976 suggest that the dynamics of human-to-human secondary transmission in contemporary outbreaks will be very different to those of the past. DOI: http://dx.doi.org/10.7554/eLife.04395.001 PMID:25201877

  1. Renin-angiotensin system gene expression and neurodegenerative diseases.

    Science.gov (United States)

    Goldstein, Benjamin; Speth, Robert C; Trivedi, Malav

    2016-07-01

    Single nucleotide polymorphisms and altered gene expression of components of the renin-angiotensin system (RAS) are associated with neurodegenerative diseases. Drugs that interact with the RAS have been shown to affect the course of neurodegenerative disease, suggesting that abnormalities in the RAS may contribute to neurodegenerative disease. A meta-analysis of genome-wide association studies and gene expression data for 14 RAS-related proteins was carried out for five neurodegenerative diseases: Alzheimer's disease, Parkinson's disease, narcolepsy, amyotrophic lateral sclerosis and multiple sclerosis. No single nucleotide polymorphisms in any of the 14 RAS-related protein genes were significantly associated with the five neurodegenerative diseases investigated. There was an inverse association between expression of ATP6AP2, which encodes the (pro)renin receptor, and multiple sclerosis, Alzheimer's disease and Parkinson's disease. An association of AGTR, which encodes the AT1 angiotensin II receptor, and Parkinson's disease and Alzheimer's disease was also observed. To date, no single nucleotide polymorphisms in components of the RAS can be definitively linked to the neurodegenerative diseases evaluated in this study. However, altered gene expression of several components of the RAS is associated with several neurodegenerative diseases, which may indicate that the RAS contributes to the pathology of these diseases. © The Author(s) 2016.

  2. Mouse hepatitis virus neurovirulence: evidence of a linkage between S glycoprotein expression and immunopathology

    International Nuclear Information System (INIS)

    Rempel, Julia D.; Murray, Shannon J.; Meisner, Jeffrey; Buchmeier, Michael J.

    2004-01-01

    Differences in disease outcome between the highly neurovirulent MHV-JHM and mildly neurovirulent MHV-A59 have been attributed to variations within the spike (S) glycoprotein. Previously, we found that MHV-JHM neurovirulence was marked by diminished expression of interferon-γ (IFN-γ) mRNA and a reduced presence of CD8 T cells in the CNS concomitant with heightened macrophage inflammatory protein (MIP)-1 transcript levels and greater macrophage infiltration relative to MHV-A59 infection. Here, the ability of the S and non-spike genes to regulate these immune responses was evaluated using chimeric viruses. Chimeric viruses WTR13 and S4R22 were made on MHV-A59 variant backgrounds and, respectively, contained the S gene of MHV-A59 and MHV-JHM. Unexpectedly, genes other than S appeared to modulate events critical to viral replication and survival. Unlike unresolving MHV-JHM infections, the clearance of WTR13 and S4R22 infections coincided with strong IFN-γ transcription and an increase in the number of CD8 T cells infiltrating into the CNS. However, despite the absence of detectable viral titers, approximately 40% of S4R22-infected mice succumbed within 3 weeks, indicating that the enhanced mortality following S4R22 infection was not associated with high viral titers. Instead, similar to the MHV-JHM infection, reduced survival following S4R22 infection was observed in the presence of elevated MIP-1α and MIP-1β mRNA accumulation and enhanced macrophage numbers within infected brains. These observations suggest that the S protein of MHV-JHM influences neurovirulence through the induction of MIP-1α- and MIP-1β-driven macrophage immunopathology

  3. Nuevos virus asociados con gastroenteritis New viruses associated with acute diarrheal disease

    Directory of Open Access Journals (Sweden)

    Carlos Aguirre

    1992-02-01

    Full Text Available

    Se hace un resumen de las características comunes y específicas de los diversos virus asociados con enfermedad diarreica aguda, con énfasis en la importancia que tienen en la génesis de este síndrome y en el hecho de que la mayoría de los casos, aunque sean severos, pueden ser manejados adecuadamente mediante el reemplazo de líquidos y electrolitos.

    A synopsis of the common and specific features of the various viruses associated with acute diarrheal disease is presented; emphasis Is made on their importance as etiologic agents of this syndrome and on the fact that most cases, even If they are severe, can be appropriately treated by fluid and electrolyte replacement.

  4. Multiple Virus Infections and the Characteristics of Chronic Bee Paralysis Virus in Diseased Honey Bees (Apis Mellifera L. in China

    Directory of Open Access Journals (Sweden)

    Wu Yan Y.

    2015-12-01

    Full Text Available China has the largest number of managed honey bee colonies globally, but there is currently no data on viral infection in diseased A. mellifera L. colonies in China. In particular, there is a lack of data on chronic bee paralysis virus (CBPV in Chinese honey bee colonies. Consequently, the present study investigated the occurrence and frequency of several widespread honey bee viruses in diseased Chinese apiaries, and we used the reverse transcription-polymerase chain reaction (RT-PCR assay. Described was the relationship between the presence of CBPV and diseased colonies (with at least one of the following symptoms: depopulation, paralysis, dark body colorings and hairless, or a mass of dead bees on the ground surrounding the beehives. Phylogenetic analyses of CBPV were employed. The prevalence of multiple infections of honey bee viruses in diseased Chinese apiaries was 100%, and the prevalence of infections with even five and six viruses were higher than expected. The incidence of CBPV in diseased colonies was significantly higher than that in apparently healthy colonies in Chinese A. mellifera aparies, and CBPV isolates from China can be separated into Chinese-Japanese clade 1 and 2. The results indicate that beekeeping in China may be threatened by colony decline due to the high prevalence of multiple viruses with CBPV.

  5. Neurological Complications and Sequelae of Ebola Virus Disease.

    Science.gov (United States)

    Billioux, Bridgette Jeanne

    2017-05-01

    The recent 2014-2016 outbreak of Ebola virus disease (EVD) has led to many discoveries regarding Ebola. Although neurological symptoms during EVD had been previously described, many reports since this outbreak have made clear that EVD can lead to neurological issues. This article will review the various neurological manifestations of EVD. Recently, many neurological symptoms have been described during acute EVD, including altered mental status, seizures, and meningoencephalitis, among others; survivors of EVD also may develop neurological sequelae, such as persistent headache and memory loss and can exhibit abnormalities on neurological exam. Additionally, it is now evident that in rare cases, survivors may experience relapses of EVD months after recovery, including the central nervous system (CNS). EVD can result in many clinical neurological manifestations, both acutely and after recovery. Research is ongoing to further clarify the nature of Ebola in the CNS.

  6. Defective interfering particles in monolayer-propagated Newcastle disease virus

    International Nuclear Information System (INIS)

    Roman, J.M.; Simon, E.H.

    1976-01-01

    Newcastle disease virus (NDV) serially passaged in chick embryo fibroblasts (M-NDV) gives rise to defective interfering (NDV-DI) particles, while NDV passaged in embryonated eggs (E-NDV) does not. Co-infection with these particles and infectious virions results in a 99 percent reduction in yield. Interference is not due to interferon or to prevention of absorption of infectious virions and is specific for NDV. The particles mediating interference sediment at the same velocity as infectious virions. The accumulation of NDV-DI particles in monolayers but not in eggs may be a consequence of the fact that M-NDV virions are larger and probably contain more RNA, or it may reflect differences in NDV replicative processes in eggs and monolayers, or both

  7. Planning and response to Ebola virus disease: An integrated approach.

    Science.gov (United States)

    Smith, Philip W; Boulter, Kathleen C; Hewlett, Angela L; Kratochvil, Christopher J; Beam, Elizabeth J; Gibbs, Shawn G; Lowe, John-Martin J; Schwedhelm, Michelle M

    2015-05-01

    The care of patients with Ebola virus disease (EVD) requires the application of critical care medicine principles under conditions of stringent infection control precautions. The care of patients with EVD requires a number of elements in terms of physical layout, personal protective apparel, and other equipment. Provision of care is demanding in terms of depth of staff and training. The key to safely providing such care is a system that brings many valuable skills to the table, and allows communication between these individuals. We present our approach to leadership structure and function--a variation of incident command--in providing care to 3 patients with EVD. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  8. The ATP-Dependent RNA Helicase DDX3X Modulates Herpes Simplex Virus 1 Gene Expression.

    Science.gov (United States)

    Khadivjam, Bita; Stegen, Camille; Hogue-Racine, Marc-Aurèle; El Bilali, Nabil; Döhner, Katinka; Sodeik, Beate; Lippé, Roger

    2017-04-15

    The human protein DDX3X is a DEAD box ATP-dependent RNA helicase that regulates transcription, mRNA maturation, and mRNA export and translation. DDX3X concomitantly modulates the replication of several RNA viruses and promotes innate immunity. We previously showed that herpes simplex virus 1 (HSV-1), a human DNA virus, incorporates DDX3X into its mature particles and that DDX3X is required for optimal HSV-1 infectivity. Here, we show that viral gene expression, replication, and propagation depend on optimal DDX3X protein levels. Surprisingly, DDX3X from incoming viral particles was not required for the early stages of the HSV-1 infection, but, rather, the protein controlled the assembly of new viral particles. This was independent of the previously reported ability of DDX3X to stimulate interferon type I production. Instead, both the lack and overexpression of DDX3X disturbed viral gene transcription and thus subsequent genome replication. This suggests that in addition to its effect on RNA viruses, DDX3X impacts DNA viruses such as HSV-1 by an interferon-independent pathway. IMPORTANCE Viruses interact with a variety of cellular proteins to complete their life cycle. Among them is DDX3X, an RNA helicase that participates in most aspects of RNA biology, including transcription, splicing, nuclear export, and translation. Several RNA viruses and a limited number of DNA viruses are known to manipulate DDX3X for their own benefit. In contrast, DDX3X is also known to promote interferon production to limit viral propagation. Here, we show that DDX3X, which we previously identified in mature HSV-1 virions, stimulates HSV-1 gene expression and, consequently, virion assembly by a process that is independent of its ability to promote the interferon pathway. Copyright © 2017 American Society for Microbiology.

  9. Expression of a peroral infection factor determines pathogenicity and population structure in an insect virus.

    Directory of Open Access Journals (Sweden)

    Oihane Simón

    Full Text Available A Nicaraguan isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus is being studied as a possible biological insecticide. This virus exists as a mixture of complete and deletion genotypes; the latter depend on the former for the production of an essential per os transmission factor (pif1 in coinfected cells. We hypothesized that the virus population was structured to account for the prevalence of pif1 defector genotypes, so that increasing the abundance of pif1 produced by a cooperator genotype in infected cells would favor an increased prevalence of the defector genotype. We tested this hypothesis using recombinant viruses with pif1 expression reprogrammed at its native locus using two exogenous promoters (egt, p10 in the pif2/pif1 intergenic region. Reprogrammed viruses killed their hosts markedly faster than the wild-type and rescue viruses, possibly due to an earlier onset of systemic infection. Group success (transmission depended on expression of pif1, but overexpression was prejudicial to group-specific transmissibility, both in terms of reduced pathogenicity and reduced production of virus progeny from each infected insect. The presence of pif1-overproducing genotypes in the population was predicted to favor a shift in the prevalence of defector genotypes lacking pif1-expressing capabilities, to compensate for the modification in pif1 availability at the population level. As a result, defectors increased the overall pathogenicity of the virus population by diluting pif1 produced by overexpressing genotypes. These results offer a new and unexpected perspective on cooperative behavior between viral genomes in response to the abundance of an essential public good that is detrimental in excess.

  10. Implications of Ebola virus disease on wildlife conservation in Nigeria.

    Science.gov (United States)

    Egbetade, Adeniyi Olugbenga; Sonibare, Adekayode Olanrewaju; Meseko, Clement Adebajo; Jayeola, Omotola Abiola; Otesile, Ebenezer Babatunde

    2015-01-01

    The recent Ebola Virus Disease outbreak in some West African countries spanning from late 2013 and currently on as of 13th March, 2015 is the most widespread and fatal with human mortality that has surpassed all previous outbreaks. The outbreak has had its toll on conservation of endangered species. This portends danger for the wild fauna of the country if proactive measures are not taken to prepare grounds for evidence-based assertions concerning the involvement of wild species. To this end, there is an urgent need for sweeping census of reserves, national parks and wetlands. As well as the creation of a system involving reportage by sectors like the industries (extractive and construction) including persons and organisations involved with wildlife related activities. This documentation of die offs and unusual events to collaborating institutions, will help in monitoring trends which hitherto would have gone unnoticed. The importance of bats and primates in agriculture and public health via consumption of vermin insects and seed dispersal cannot be over-emphasized. There is the need for caution on the tendencies to destroy indicator species which could be silent pointers to emerging or re-emerging health and environmental issues. Wildlife resources are still reliably useful and caution is advised in the use of blanket destructive policies like fumigation of caves, indiscriminate culling and poisoned baits to destroy supposedly Ebola Disease Virus wildlife reservoirs. This paper highlights the immediate conservation problems and likely future implications of Ebola saga in Nigeria. It tries to identify the gaps in wildlife researches and makes recommendations for probable workable conservation strategies.

  11. Expression of infectious bovine rhinotracheitis virus glycoprotein D ...

    African Journals Online (AJOL)

    Digested insert cloned in to pET-32a and transfered in E.coli cells. For the expression of gD protein, the pET-32a recombinant vector was transformed and then induced in BL21 (DE3) strain of E.coli competent cells using IPTG. The presence of gD expressed protein was shown in immunoblotting and SDS-PAGE system.

  12. Epstein-Barr virus growth/latency III program alters cellular microRNA expression

    International Nuclear Information System (INIS)

    Cameron, Jennifer E.; Fewell, Claire; Yin, Qinyan; McBride, Jane; Wang Xia; Lin Zhen

    2008-01-01

    The Epstein-Barr virus (EBV) is associated with lymphoid and epithelial cancers. Initial EBV infection alters lymphocyte gene expression, inducing cellular proliferation and differentiation as the virus transitions through consecutive latency transcription programs. Cellular microRNAs (miRNAs) are important regulators of signaling pathways and are implicated in carcinogenesis. The extent to which EBV exploits cellular miRNAs is unknown. Using micro-array analysis and quantitative PCR, we demonstrate differential expression of cellular miRNAs in type III versus type I EBV latency including elevated expression of miR-21, miR-23a, miR-24, miR-27a, miR-34a, miR-146a and b, and miR-155. In contrast, miR-28 expression was found to be lower in type III latency. The EBV-mediated regulation of cellular miRNAs may contribute to EBV signaling and associated cancers

  13. Social Vulnerability and Ebola Virus Disease in Rural Liberia.

    Science.gov (United States)

    Stanturf, John A; Goodrick, Scott L; Warren, Melvin L; Charnley, Susan; Stegall, Christie M

    2015-01-01

    The Ebola virus disease (EVD) epidemic that has stricken thousands of people in the three West African countries of Liberia, Sierra Leone, and Guinea highlights the lack of adaptive capacity in post-conflict countries. The scarcity of health services in particular renders these populations vulnerable to multiple interacting stressors including food insecurity, climate change, and the cascading effects of disease epidemics such as EVD. However, the spatial distribution of vulnerable rural populations and the individual stressors contributing to their vulnerability are unknown. We developed a Social Vulnerability Classification using census indicators and mapped it at the district scale for Liberia. According to the Classification, we estimate that districts having the highest social vulnerability lie in the north and west of Liberia in Lofa, Bong, Grand Cape Mount, and Bomi Counties. Three of these counties together with the capital Monrovia and surrounding Montserrado and Margibi counties experienced the highest levels of EVD infections in Liberia. Vulnerability has multiple dimensions and a classification developed from multiple variables provides a more holistic view of vulnerability than single indicators such as food insecurity or scarcity of health care facilities. Few rural Liberians are food secure and many cannot reach a medical clinic in vulnerable households and populations. Our results can be used to identify vulnerability hotspots where development strategies and allocation of resources to address the underlying causes of vulnerability in Liberia may be warranted. We demonstrate how social vulnerability index approaches can be applied in the context of disease outbreaks, and our methods are relevant elsewhere.

  14. Glycoprotein is enough for sindbis virus-derived DNA vector to express heterogenous genes

    Directory of Open Access Journals (Sweden)

    Fu Juanjuan

    2011-07-01

    Full Text Available Abstract To investigate the necessity and potential application of structural genes for expressing heterogenous genes from Sindbis virus-derived vector, the DNA-based expression vector pVaXJ was constructed by placing the recombinant genome of sindbis-like virus XJ-160 under the control of the human cytomegalovirus (CMV promoter of the plasmid pVAX1, in which viral structural genes were replaced by a polylinker cassette to allow for insertion of heterologous genes. The defect helper plasmids pVaE or pVaC were developed by cloning the gene of glycoprotein E3E26KE1 or capsid protein of XJ-160 virus into pVAX1, respectively. The report gene cassette pVaXJ-EGFP or pV-Gluc expressing enhanced green fluorescence protein (EGFP or Gaussia luciferase (G.luc were constructed by cloning EGFP or G.luc gene into pVaXJ. EGFP or G.luc was expressed in the BHK-21 cells co-transfected with report gene cassettes and pVaE at levels that were comparable to those produced by report gene cassettes, pVaC and pVaE and were much higher than the levels produced by report gene cassette and pVaC, suggesting that glycoprotein is enough for Sindbis virus-derived DNA vector to express heterogenous genes in host cells. The method of gene expression from Sindbis virus-based DNA vector only co-transfected with envelop E gene increase the conveniency and the utility of alphavirus-based vector systems in general.

  15. Ebola virus disease surveillance and response preparedness in northern Ghana

    Directory of Open Access Journals (Sweden)

    Martin N. Adokiya

    2016-05-01

    Full Text Available Background: The recent Ebola virus disease (EVD outbreak has been described as unprecedented in terms of morbidity, mortality, and geographical extension. It also revealed many weaknesses and inadequacies for disease surveillance and response systems in Africa due to underqualified staff, cultural beliefs, and lack of trust for the formal health care sector. In 2014, Ghana had high risk of importation of EVD cases. Objective: The objective of this study was to assess the EVD surveillance and response system in northern Ghana. Design: This was an observational study conducted among 47 health workers (district directors, medical, disease control, and laboratory officers in all 13 districts of the Upper East Region representing public, mission, and private health services. A semi-structured questionnaire with focus on core and support functions (e.g. detection, confirmation was administered to the informants. Their responses were recorded according to specific themes. In addition, 34 weekly Integrated Disease Surveillance and Response reports (August 2014 to March 2015 were collated from each district. Results: In 2014 and 2015, a total of 10 suspected Ebola cases were clinically diagnosed from four districts. Out of the suspected cases, eight died and the cause of death was unexplained. All the 10 suspected cases were reported, none was confirmed. The informants had knowledge on EVD surveillance and data reporting. However, there were gaps such as delayed reporting, low quality protective equipment (e.g. gloves, aprons, inadequate staff, and lack of laboratory capacity. The majority (38/47 of the respondents were not satisfied with EVD surveillance system and response preparedness due to lack of infrared thermometers, ineffective screening, and lack of isolation centres. Conclusion: EVD surveillance and response preparedness is insufficient and the epidemic is a wake-up call for early detection and response preparedness. Ebola surveillance remains

  16. Properties of a virus causing mosaic and leaf curl disease of Celosia argentea L. in Nigeria.

    Science.gov (United States)

    Owolabi, T A; Taiwo, M A; Thottappilly, G A; Shoyinka, S A; Proll, E; Rabenstein, F

    1998-06-01

    A sap transmissible virus, causing mosaic and leaf curl disease of Celosia argentea, was isolated at vegetable farms in Amuwo Odofin, Tejuoso, and Abule Ado, Lagos, Nigeria. The virus had a restricted host range confined to a few species of the Amaranthaceae, Chenopodiaceae and Solanaceae families. It failed to infect several other species of the Aizoaceae, Brassicaceae, Cucurbitaceae, Fabaceae, Lamiaceae, Malvaceae, Poaceae and Tiliaceae families. The virus was transmitted in a non-persistent manner by Aphis spiraecola and Toxoptera citricidus but not by eight other aphid species tested. There was no evidence of transmission by seeds of C. argentae varieties. The viral coat protein had a relative molecular mass (M(r)) of about 30.2 K. Electron microscopy of purified virus preparations revealed flexuous rod shaped particles of about 750 nm in length. Serological studies were performed using the enzyme-linked immunosorbent assay (ELISA), immunosorbent electron microscopy (ISEM) and Western blot analysis. The virus reacted positively with an universal potyvirus group monoclonal antibody (MoAb) and MoAb P-3-3H8 raised against peanut stripe potyvirus. It also reacted with polyclonal antibodies raised against several potyviruses including asparagus virus-1 (AV-1), turnip mosaic virus (TuMV), maize dwarf mosaic virus (MDMV), watermelon mosaic virus (WMV-2), plum pox virus (PPV), soybean mosaic virus (SoyMV), lettuce mosaic virus (LMV), bean common mosaic virus (BCMV) and beet mosaic virus (BMV) in at least one of the serological assays used. On the basis of host range, mode of transmission, and available literature data, the celosia virus seems to be different from potyviruses previously reported to infect vegetables in Nigeria. The name celosia mosaic virus (CIMV) has been proposed for this virus.

  17. Enhanced virus resistance in transgenic maize expressing a dsRNA-specific endoribonuclease gene from E. coli.

    Science.gov (United States)

    Cao, Xiuling; Lu, Yingui; Di, Dianping; Zhang, Zhiyan; Liu, He; Tian, Lanzhi; Zhang, Aihong; Zhang, Yanjing; Shi, Lindan; Guo, Bihong; Xu, Jin; Duan, Xifei; Wang, Xianbing; Han, Chenggui; Miao, Hongqin; Yu, Jialin; Li, Dawei

    2013-01-01

    Maize rough dwarf disease (MRDD), caused by several Fijiviruses in the family Reoviridae, is a global disease that is responsible for substantial yield losses in maize. Although some maize germplasm have low levels of polygenic resistance to MRDD, highly resistant cultivated varieties are not available for agronomic field production in China. In this work, we have generated transgenic maize lines that constitutively express rnc70, a mutant E. coli dsRNA-specific endoribonuclease gene. Transgenic lines were propagated and screened under field conditions for 12 generations. During three years of evaluations, two transgenic lines and their progeny were challenged with Rice black-streaked dwarf virus (RBSDV), the causal agent of MRDD in China, and these plants exhibited reduced levels of disease severity. In two normal years of MRDD abundance, both lines were more resistant than non-transgenic plants. Even in the most serious MRDD year, six out of seven progeny from one line were resistant, whereas non-transgenic plants were highly susceptible. Molecular approaches in the T12 generation revealed that the rnc70 transgene was integrated and expressed stably in transgenic lines. Under artificial conditions permitting heavy virus inoculation, the T12 progeny of two highly resistant lines had a reduced incidence of MRDD and accumulation of RBSDV in infected plants. In addition, we confirmed that the RNC70 protein could bind directly to RBSDV dsRNA in vitro. Overall, our data show that RNC70-mediated resistance in transgenic maize can provide efficient protection against dsRNA virus infection.

  18. Enhanced virus resistance in transgenic maize expressing a dsRNA-specific endoribonuclease gene from E. coli.

    Directory of Open Access Journals (Sweden)

    Xiuling Cao

    Full Text Available Maize rough dwarf disease (MRDD, caused by several Fijiviruses in the family Reoviridae, is a global disease that is responsible for substantial yield losses in maize. Although some maize germplasm have low levels of polygenic resistance to MRDD, highly resistant cultivated varieties are not available for agronomic field production in China. In this work, we have generated transgenic maize lines that constitutively express rnc70, a mutant E. coli dsRNA-specific endoribonuclease gene. Transgenic lines were propagated and screened under field conditions for 12 generations. During three years of evaluations, two transgenic lines and their progeny were challenged with Rice black-streaked dwarf virus (RBSDV, the causal agent of MRDD in China, and these plants exhibited reduced levels of disease severity. In two normal years of MRDD abundance, both lines were more resistant than non-transgenic plants. Even in the most serious MRDD year, six out of seven progeny from one line were resistant, whereas non-transgenic plants were highly susceptible. Molecular approaches in the T12 generation revealed that the rnc70 transgene was integrated and expressed stably in transgenic lines. Under artificial conditions permitting heavy virus inoculation, the T12 progeny of two highly resistant lines had a reduced incidence of MRDD and accumulation of RBSDV in infected plants. In addition, we confirmed that the RNC70 protein could bind directly to RBSDV dsRNA in vitro. Overall, our data show that RNC70-mediated resistance in transgenic maize can provide efficient protection against dsRNA virus infection.

  19. Effects of chicken anemia virus and infectious bursal disease virus in commercial chickens.

    Science.gov (United States)

    Toro, H; van Santen, V L; Hoerr, F J; Breedlove, C

    2009-03-01

    The effects of chicken anemia virus (CAV) and infectious bursal disease virus (IBDV) coinfection in commercial layer-type and meat-type (broiler) chickens with specific maternal immunity were evaluated. In addition, the broiler progeny used had been vaccinated in ovo against IBDV. Layer chickens were inoculated intramuscularly on day 3 of age with CAV and orally on day 7 of age with an IBDV standard strain (APHIS). Broiler chickens were exposed to CAV and/or an IBDV variant strain (AL2) via the drinking water on days 3 and 14 of age. Following CAV and IBDV inoculation neither mortality nor overt clinical disease was observed in any layer or broiler group. In spite of maternal immunity against both IBDV and CAV, mean hematocrits of all layer groups inoculated with CAV (CAV, CAV + APHIS) were lower than uninfected chickens. IBDV APHIS alone or in combination with CAV did not affect the layer weight gain. However, on day 30 of age and concomitantly with maternal antibody decay, bursa lymphocyte depletion became evident in CAV + APHIS-infected layer chickens. These birds (CAV + APHIS) also seroconverted to IBDV on day 35 of age. CAV persisted at low levels in the layer chickens throughout the experimental period in CAV- and CAV+APHIS-infected chickens. Similarly, infected broiler chickens did not show changes in weight gain. Compared to CAV-infected or uninfected controls, CAV+AL2- and AL2-infected broiler chickens showed significant lymphocyte depletion in the bursa as assessed both by bursal indices and histomorphometry. Broilers also seroconverted to IBDV after day 30 of age confirming that bursal lymphocyte depletion was due to IBDV resuming replication. Thymus histomorphometry revealed significant lymphocyte depletion in all infected broiler groups at 30 days of age, but only in CAV+AL2-infected broiler chickens at 41 days of age, suggesting that IBDV infection delayed repopulation of the thymus.

  20. Transient expression of heterologous model gene in plants using Potato virusX-based vector

    Czech Academy of Sciences Publication Activity Database

    Čeřovská, Noemi; Pečenková, Tamara; Moravec, Tomáš; Velemínský, Jiří

    2004-01-01

    Roč. 79, č. 2 (2004), s. 147-152 ISSN 0167-6857 R&D Projects: GA ČR GA310/00/0381 Institutional research plan: CEZ:AV0Z5038910 Keywords : plant virus * based vector * transient expression Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.028, year: 2004

  1. Differential Gene Expression in Response to Papaya ringspot virus Infection in Cucumis metuliferus Using cDNA- Amplified Fragment Length Polymorphism Analysis

    Science.gov (United States)

    Lin, Chia-Wei; Chung, Chien-Hung; Chen, Jo-Chu; Yeh, Shy-Dong; Ku, Hsin-Mei

    2013-01-01

    A better understanding of virus resistance mechanisms can offer more effective strategies to control virus diseases. Papaya ringspot virus (PRSV), Potyviridae, causes severe economical losses in papaya and cucurbit production worldwide. However, no resistance gene against PRSV has been identified to date. This study aimed to identify candidate PRSV resistance genes using cDNA-AFLP analysis and offered an open architecture and transcriptomic method to study those transcripts differentially expressed after virus inoculation. The whole genome expression profile of Cucumis metuliferus inoculated with PRSV was generated using cDNA-amplified fragment length polymorphism (cDNA-AFLP) method. Transcript derived fragments (TDFs) identified from the resistant line PI 292190 may represent genes involved in the mechanism of PRSV resistance. C. metuliferus susceptible Acc. 2459 and resistant PI 292190 lines were inoculated with PRSV and subsequently total RNA was isolated for cDNA-AFLP analysis. More than 400 TDFs were expressed specifically in resistant line PI 292190. A total of 116 TDFs were cloned and their expression patterns and putative functions in the PRSV-resistance mechanism were further characterized. Subsequently, 28 out of 116 candidates which showed two-fold higher expression levels in resistant PI 292190 than those in susceptible Acc. 2459 after virus inoculation were selected from the reverse northern blot and bioinformatic analysis. Furthermore, the time point expression profiles of these candidates by northern blot analysis suggested that they might play roles in resistance against PRSV and could potentially provide valuable information for controlling PRSV disease in the future. PMID:23874746

  2. Reduced Protein Expression in a Virus Attenuated by Codon Deoptimization

    Directory of Open Access Journals (Sweden)

    Benjamin R. Jack

    2017-09-01

    Full Text Available A general means of viral attenuation involves the extensive recoding of synonymous codons in the viral genome. The mechanistic underpinnings of this approach remain unclear, however. Using quantitative proteomics and RNA sequencing, we explore the molecular basis of attenuation in a strain of bacteriophage T7 whose major capsid gene was engineered to carry 182 suboptimal codons. We do not detect transcriptional effects from recoding. Proteomic observations reveal that translation is halved for the recoded major capsid gene, and a more modest reduction applies to several coexpressed downstream genes. We observe no changes in protein abundances of other coexpressed genes that are encoded upstream. Viral burst size, like capsid protein abundance, is also decreased by half. Together, these observations suggest that, in this virus, reduced translation of an essential polycistronic transcript and diminished virion assembly form the molecular basis of attenuation.

  3. Protection of chickens against H5N1 highly pathogenic avian influenza virus infection by live vaccination with infectious laryngotracheitis virus recombinants expressing H5 hemagglutinin and N1 neuraminidase.

    Science.gov (United States)

    Pavlova, Sophia P; Veits, Jutta; Keil, Günther M; Mettenleiter, Thomas C; Fuchs, Walter

    2009-01-29

    without showing any clinical signs. Real-time RT-PCR indicated limited challenge virus replication after vaccination with H5-ILTV only, which was completely blocked after coimmunization with N1-ILTV. Thus, chickens can be protected from H5N1 HPAIV-induced disease by live vaccination with an attenuated hemagglutinin-expressing ILTV recombinant, and efficacy can be further increased by coadministration of an ILTV mutant expressing neuraminidase. Furthermore, chickens vaccinated with ILTV vectors can be easily differentiated from influenza virus-infected animals by the absence of serum antibodies against the AIV nucleoprotein.

  4. Phylogenetic analysis of Newcastle disease viruses isolated from commercial poultry in Mozambique, 2011 to 2016

    International Nuclear Information System (INIS)

    Mapaco, L.P.; Monjane, I.V.A.; Nhamusso, A.E.; Viljoen, G.J; Dundon, W.G.; Achá, S.J.

    2016-01-01

    Full text: The complete sequence of the fusion (F) protein gene from eleven Newcastle disease viruses (NDV) isolated from commercial poultry in Mozambique between 2011 and 2016 has been generated. The F gene cleavage site motif for all eleven isolates was 112RRRKRF117 indicating that the viruses are virulent. A phylogenetic analysis using the full F gene sequence revealed that the viruses clustered within genotype VIIh and showed a higher similarity to NDVs from South Africa, China and Southeast Asia than to viruses previously described in Mozambique in 1994 to 1995 and 2005. The characterization of these new NDVs has important implications for Newcastle disease management and control in Mozambique. (author)

  5. Diagnostic evaluation of a multiplexed RT-PCR microsphere array assay for the detection of foot-and-mouth disease virus and look-alike disease viruses

    Energy Technology Data Exchange (ETDEWEB)

    Hindson, B J; Reid, S M; Baker, B R; Ebert, K; Ferris, N P; Bentley Tammero, L F; Lenhoff, R J; Naraghi-Arani, P; Vitalis, E A; Slezak, T R; Hullinger, P J; King, D P

    2007-07-26

    A high-throughput multiplexed assay was developed for the differential laboratory diagnosis of foot-and-mouth disease virus (FMDV) from viruses which cause clinically similar diseases of livestock. This assay simultaneously screens for five RNA and two DNA viruses using multiplexed reverse transcription PCR (mRT-PCR) amplification coupled with a microsphere hybridization array and flow-cytometric detection. Two of the seventeen primer-probe sets included in this multiplex assay were adopted from previously characterized real-time RT-PCR (rRT-PCR) assays for FMDV. The diagnostic accuracy of the mRT-PCR was evaluated using 287 field samples, including 248 (true positive n= 213, true negative n=34) from suspect cases of foot-and-mouth disease collected from 65 countries between 1965 and 2006 and 39 true negative samples collected from healthy animals. The mRT-PCR assay results were compared with two singleplex rRT-PCR assays, using virus isolation with antigen-ELISA as the reference method. The diagnostic sensitivity of the mRT-PCR assay for FMDV was 93.9% [95% C.I. 89.8-96.4%], compared to 98.1% [95% C.I. 95.3-99.3%] for the two singleplex rRT-PCR assays used in combination. In addition, the assay could reliably differentiate between FMDV and other vesicular viruses such as swine vesicular disease virus and vesicular exanthema of swine virus. Interestingly, the mRT-PCR detected parapoxvirus (n=2) and bovine viral diarrhea virus (n=2) in clinical samples, demonstrating the screening potential of this mRT-PCR assay to identify viruses in FMDV-negative material not previously recognized using focused single-target rRT-PCR assays.

  6. Role of Virus-Encoded microRNAs in Avian Viral Diseases

    Directory of Open Access Journals (Sweden)

    Yongxiu Yao

    2014-03-01

    Full Text Available With total dependence on the host cell, several viruses have adopted strategies to modulate the host cellular environment, including the modulation of microRNA (miRNA pathway through virus-encoded miRNAs. Several avian viruses, mostly herpesviruses, have been shown to encode a number of novel miRNAs. These include the highly oncogenic Marek’s disease virus-1 (26 miRNAs, avirulent Marek’s disease virus-2 (36 miRNAs, herpesvirus of turkeys (28 miRNAs, infectious laryngotracheitis virus (10 miRNAs, duck enteritis virus (33 miRNAs and avian leukosis virus (2 miRNAs. Despite the closer antigenic and phylogenetic relationship among some of the herpesviruses, miRNAs encoded by different viruses showed no sequence conservation, although locations of some of the miRNAs were conserved within the repeat regions of the genomes. However, some of the virus-encoded miRNAs showed significant sequence homology with host miRNAs demonstrating their ability to serve as functional orthologs. For example, mdv1-miR-M4-5p, a functional ortholog of gga-miR-155, is critical for the oncogenicity of Marek’s disease virus. Additionally, we also describe the potential association of the recently described avian leukosis virus subgroup J encoded E (XSR miRNA in the induction of myeloid tumors in certain genetically-distinct chicken lines. In this review, we describe the advances in our understanding on the role of virus-encoded miRNAs in avian diseases.

  7. Respiratory Syncytial Virus (RSV RNA loads in peripheral blood correlates with disease severity in mice

    Directory of Open Access Journals (Sweden)

    Torres Juan

    2010-09-01

    Full Text Available Abstract Background Respiratory Syncytial Virus (RSV infection is usually restricted to the respiratory epithelium. Few studies have documented the presence of RSV in the systemic circulation, however there is no consistent information whether virus detection in the blood correlates with disease severity. Methods Balb/c mice were inoculated with live RSV, heat-inactivated RSV or medium. A subset of RSV-infected mice was treated with anti-RSV antibody 72 h post-inoculation. RSV RNA loads were measured by PCR in peripheral blood from day 1-21 post-inoculation and were correlated with upper and lower respiratory tract viral loads, the systemic cytokine response, lung inflammation and pulmonary function. Immunohistochemical staining was used to define the localization of RSV antigens in the respiratory tract and peripheral blood. Results RSV RNA loads were detected in peripheral blood from day 1 to 14 post-inoculation, peaked on day 5 and significantly correlated with nasal and lung RSV loads, airway obstruction, and blood CCL2 and CXCL1 expression. Treatment with anti-RSV antibody reduced blood RSV RNA loads and improved airway obstruction. Immunostaining identified RSV antigens in alveolar macrophages and peripheral blood monocytes. Conclusions RSV RNA was detected in peripheral blood upon infection with live RSV, followed a time-course parallel to viral loads assessed in the respiratory tract and was significantly correlated with RSV-induced airway disease.

  8. Enhancing dengue virus maturation using a stable furin over-expressing cell line.

    Science.gov (United States)

    Mukherjee, Swati; Sirohi, Devika; Dowd, Kimberly A; Chen, Zhenguo; Diamond, Michael S; Kuhn, Richard J; Pierson, Theodore C

    2016-10-01

    Flaviviruses are positive-stranded RNA viruses that incorporate envelope (E) and premembrane (prM) proteins into the virion. Furin-mediated cleavage of prM defines a required maturation step in the flavivirus lifecycle. Inefficient prM cleavage results in structurally heterogeneous virions with unique antigenic and functional characteristics. Recent studies with dengue virus suggest that viruses produced in tissue culture cells are less mature than those produced in primary cells. In this study, we describe a Vero cell line that ectopically expresses high levels of human furin (Vero-furin) for use in the production of more homogenous mature flavivirus populations. Laboratory-adapted and clinical dengue virus isolates grow efficiently in Vero-furin cells. Biochemical and structural techniques demonstrate efficient prM cleavage in Vero-furin derived virus preparations. These virions also were less sensitive to neutralization by antibodies that bind efficiently to immature virions. This furin-expressing cell line will be of considerable utility for flavivirus neutralization and structural studies. Published by Elsevier Inc.

  9. Expression and Purification of Coat Protein of Citrus Tristeza Virus ...

    African Journals Online (AJOL)

    transformed to BL21™ star (DE3) of E. coli expression competent cell were also compared using discontinues SDS-PAGE. Large scale recombinant protein production and purification. Large scale recombinant protein production was conducted using four one liter flask containing 250 ml 2xYT broth media consists of 100 ...

  10. Viraemia and Ebola virus secretion in survivors of Ebola virus disease in Sierra Leone: a cross-sectional cohort study.

    Science.gov (United States)

    Green, Edward; Hunt, Luke; Ross, J C Gareth; Nissen, Nina Marie; Curran, Tanya; Badhan, Anjna; Sutherland, Katherine A; Richards, Jade; Lee, James S; Allen, Samuel H; Laird, Steven; Blackman, Mandy; Collacott, Ian; Parker, Paul A; Walbridge, Andrew; Phillips, Rebecca; Sellu, Sia Jammie; Dama, Agnes; Sheriff, Alpha Karim; Zombo, Joseph; Ngegba, Doris; Wurie, Alieh H; Checchi, Francesco; Brooks, Timothy J

    2016-09-01

    In survivors of Ebola virus disease, clinical sequelae including uveitis, arthralgia, and fatigue are common and necessitate systematic follow-up. However, the infection risk to health-care providers is poorly defined. Here we report Ebola virus RT-PCR data for body site and fluid samples from a large cohort of Ebola virus survivors at clinic follow-up. In this cross-sectional cohort study, consecutive survivors of Ebola virus disease attending Kerry Town survivor clinic (Freetown, Sierra Leone), who had been discharged from the Kerry Town Ebola treatment unit, were invited to participate. We collected and tested axillary, blood, conjunctival, forehead, mouth, rectal, semen, urine, and vaginal specimens for presence of Ebola virus using RT-PCR. We regarded samples to be positive for Ebola virus disease if the cycle threshold was 40 or lower. We collected demographic data from survivors of their age, sex, time since discharge from the treatment unit, and length of acute admission in the Ebola treatment unit using anonymised standard forms. Between April 2, and June 16, 2015, of 151 survivors of Ebola virus disease invited to participate, 112 (74%) provided consent. The median age of participants was 21·5 years (IQR 14-31·5) with 34 (30%) participants younger than 16 years. 50 (45%) of 112 participants were male. We tested a total of 555 specimens: 103 from the axilla, 93 from blood, 92 from conjunctiva, 54 from forehead, 105 from mouth, 17 from the rectum, one from semen, 69 from urine, and 21 from the vagina. The median time from Ebola treatment unit discharge to specimen collection was 142 days (IQR 127-159). 15 participants had a total of 74 swabs taken less than 100 days from discharge. The semen sample from one participant tested positive for Ebola virus at 114 days after discharge from the treatment unit; specimens taken from the axilla, blood, conjunctiva, forehead, mouth, rectum, and urine of the same participant tested negative. All specimens from the

  11. Ebola virus encodes a miR-155 analog to regulate importin-α5 expression.

    Science.gov (United States)

    Liu, Yuanwu; Sun, Jing; Zhang, Hongwen; Wang, Mingming; Gao, George Fu; Li, Xiangdong

    2016-10-01

    The 2014 outbreak of Ebola virus caused more than 10,000 human deaths. Current knowledge of suitable drugs, clinical diagnostic biomarkers and molecular mechanisms of Ebola virus infection is either absent or insufficient. By screening stem-loop structures from the viral genomes of four virulence species, we identified a novel, putative viral microRNA precursor that is specifically expressed by the Ebola virus. The sequence of the microRNA precursor was further confirmed by mining the existing RNA-Seq database. Two putative mature microRNAs were predicted and subsequently validated in human cell lines. Combined with this prediction of the microRNA target, we identified importin-α5, which is a key regulator of interferon signaling following Ebola virus infection, as one putative target. We speculate that this microRNA could facilitate the evasion of the host immune system by the virus. Moreover, this microRNA might be a potential clinical therapeutic target or a diagnostic biomarker for Ebola virus.

  12. Alcoholic liver disease and hepatitis C virus infection.

    Science.gov (United States)

    Novo-Veleiro, Ignacio; Alvela-Suárez, Lucía; Chamorro, Antonio-Javier; González-Sarmiento, Rogelio; Laso, Francisco-Javier; Marcos, Miguel

    2016-01-28

    Alcohol consumption and hepatitis C virus (HCV) infection have a synergic hepatotoxic effect, and the coexistence of these factors increases the risk of advanced liver disease. The main mechanisms of this effect are increased viral replication and altered immune response, although genetic predisposition may also play an important role. Traditionally, HCV prevalence has been considered to be higher (up to 50%) in alcoholic patients than in the general population. However, the presence of advanced alcoholic liver disease (ALD) or intravenous drug use (IDU) may have confounded the results of previous studies, and the real prevalence of HCV infection in alcoholic patients without ALD or prior IDU has been shown to be lower. Due to the toxic combined effect of HCV and alcohol, patients with HCV infection should be screened for excessive ethanol intake. Patients starting treatment for HCV infection should be specifically advised to stop or reduce alcohol consumption because of its potential impact on treatment efficacy and adherence and may benefit from additional support during antiviral therapy. This recommendation might be extended to all currently recommended drugs for HCV treatment. Patients with alcohol dependence and HCV infection, can be treated with acamprosate, nalmefene, topiramate, and disulfiram, although baclofen is the only drug specifically tested for this purpose in patients with ALD and/or HCV infection.

  13. Progressive multifocal leukoencephalopathy and other forms of JC virus disease.

    Science.gov (United States)

    Brew, Bruce J; Davies, Nicholas W S; Cinque, Paola; Clifford, David B; Nath, Avindra

    2010-12-01

    Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the brain caused by the JC virus (JCV). PML usually occurs via reactivation of JCV when an immune system becomes compromised. A diagnosis of PML is normally made on the basis of distinguishing neurological features at presentation, characteristic brain MRI changes and the presence of JCV DNA in cerebrospinal fluid. PML has a 3 month mortality rate of 20-50%, so prompt intervention is essential. Currently, reconstitution of the immune system affords the best prognosis for this condition. When PML is first suspected, and where possible, immunosuppressant or immunomodulatory therapy should be suspended or reduced. If PML is associated with a protein therapy that has a long half-life the use of plasma exchange to accelerate the removal of the drug from the circulation may aid the restoration of immune system function. Rapid improvements in immune function, however, might lead to transient worsening of the disease. In this Review, we critically appraise the controversies surrounding JCV infection, and provide practical management guidelines for PML.

  14. Increased expression of the regulatory T cell-associated marker CTLA-4 in bovine leukemia virus infection.

    Science.gov (United States)

    Suzuki, Saori; Konnai, Satoru; Okagawa, Tomohiro; Ikebuchi, Ryoyo; Nishimori, Asami; Kohara, Junko; Mingala, Claro N; Murata, Shiro; Ohashi, Kazuhiko

    2015-02-15

    Regulatory T cells (Tregs) play a critical role in the maintenance of the host's immune system. Tregs, particularly CD4(+)CD25(+)Foxp3(+) T cells, have been reported to be involved in the immune evasion mechanism of tumors and several pathogens that cause chronic infections. Recent studies showed that a Treg-associated marker, cytotoxic T-lymphocyte antigen 4 (CTLA-4), is closely associated with the progression of several diseases. We recently reported that the proportion of Foxp3(+)CD4(+) cells was positively correlated with the number of lymphocytes, virus titer, and virus load but inversely correlated with IFN-γ expression in cattle infected with bovine leukemia virus (BLV), which causes chronic infection and lymphoma in its host. Here the kinetics of CTLA-4(+) cells were analyzed in BLV-infected cattle. CTLA-4 mRNA was predominantly expressed in CD4(+) T cells in BLV-infected cattle, and the expression was positively correlated with Foxp3 mRNA expression. To test for differences in the protein expression level of CTLA-4, we measured the proportion of CTLA-4-expressing cells by flow cytometry. In cattle with persistent lymphocytosis (PL), mean fluorescence intensities (MFIs) of CTLA-4 on CD4(+) and CD25(+) T cells were significantly increased compared with that in control and aleukemic (AL) cattle. The percentage of CTLA-4(+) cells in the CD4(+) T cell subpopulation was positively correlated with TGF-β mRNA expression, suggesting that CD4(+)CTLA-4(+) T cells have a potentially immunosuppressive function in BLV infection. In the limited number of cattle that were tested, the anti-CTLA-4 antibody enhanced the expression of CD69, IL-2, and IFN-γ mRNA in anti-programmed death ligand 1 (PD-L1) antibody-treated peripheral blood mononuclear cells from BLV-infected cattle. Together with previous findings, the present results indicate that Tregs may be involved in the inhibition of T cell function during BLV infection. Copyright © 2014 Elsevier B.V. All rights

  15. Ebola virus disease in the Democratic Republic of Congo.

    Science.gov (United States)

    Maganga, Gaël D; Kapetshi, Jimmy; Berthet, Nicolas; Kebela Ilunga, Benoît; Kabange, Felix; Mbala Kingebeni, Placide; Mondonge, Vital; Muyembe, Jean-Jacques T; Bertherat, Eric; Briand, Sylvie; Cabore, Joseph; Epelboin, Alain; Formenty, Pierre; Kobinger, Gary; González-Angulo, Licé; Labouba, Ingrid; Manuguerra, Jean-Claude; Okwo-Bele, Jean-Marie; Dye, Christopher; Leroy, Eric M

    2014-11-27

    The seventh reported outbreak of Ebola virus disease (EVD) in the equatorial African country of the Democratic Republic of Congo (DRC) began on July 26, 2014, as another large EVD epidemic continued to spread in West Africa. Simultaneous reports of EVD in equatorial and West Africa raised the question of whether the two outbreaks were linked. We obtained data from patients in the DRC, using the standard World Health Organization clinical-investigation form for viral hemorrhagic fevers. Patients were classified as having suspected, probable, or confirmed EVD or a non-EVD illness. Blood samples were obtained for polymerase-chain-reaction-based diagnosis, viral isolation, sequencing, and phylogenetic analysis. The outbreak began in Inkanamongo village in the vicinity of Boende town in Équateur province and has been confined to that province. A total of 69 suspected, probable, or confirmed cases were reported between July 26 and October 7, 2014, including 8 cases among health care workers, with 49 deaths. As of October 7, there have been approximately six generations of cases of EVD since the outbreak began. The reported weekly case incidence peaked in the weeks of August 17 and 24 and has since fallen sharply. Genome sequencing revealed Ebola virus (EBOV, Zaire species) as the cause of this outbreak. A coding-complete genome sequence of EBOV that was isolated during this outbreak showed 99.2% identity with the most closely related variant from the 1995 outbreak in Kikwit in the DRC and 96.8% identity to EBOV variants that are currently circulating in West Africa. The current EVD outbreak in the DRC has clinical and epidemiologic characteristics that are similar to those of previous EVD outbreaks in equatorial Africa. The causal agent is a local EBOV variant, and this outbreak has a zoonotic origin different from that in the 2014 epidemic in West Africa. (Funded by the Centre International de Recherches Médicales de Franceville and others.).

  16. Dynamic gene expression analysis in a H1N1 influenza virus mouse pneumonia model.

    Science.gov (United States)

    Bao, Yanyan; Gao, Yingjie; Shi, Yujing; Cui, Xiaolan

    2017-06-01

    H1N1, a major pathogenic subtype of influenza A virus, causes a respiratory infection in humans and livestock that can range from a mild infection to more severe pneumonia associated with acute respiratory distress syndrome. Understanding the dynamic changes in the genome and the related functional changes induced by H1N1 influenza virus infection is essential to elucidating the pathogenesis of this virus and thereby determining strategies to prevent future outbreaks. In this study, we filtered the significantly expressed genes in mouse pneumonia using mRNA microarray analysis. Using STC analysis, seven significant gene clusters were revealed, and using STC-GO analysis, we explored the significant functions of these seven gene clusters. The results revealed GOs related to H1N1 virus-induced inflammatory and immune functions, including innate immune response, inflammatory response, specific immune response, and cellular response to interferon-beta. Furthermore, the dynamic regulation relationships of the key genes in mouse pneumonia were revealed by dynamic gene network analysis, and the most important genes were filtered, including Dhx58, Cxcl10, Cxcl11, Zbp1, Ifit1, Ifih1, Trim25, Mx2, Oas2, Cd274, Irgm1, and Irf7. These results suggested that during mouse pneumonia, changes in the expression of gene clusters and the complex interactions among genes lead to significant changes in function. Dynamic gene expression analysis revealed key genes that performed important functions. These results are a prelude to advancements in mouse H1N1 influenza virus infection biology, as well as the use of mice as a model organism for human H1N1 influenza virus infection studies.

  17. Attenuated Recombinant Influenza A Virus Expressing HPV16 E6 and E7 as a Novel Therapeutic Vaccine Approach.

    Directory of Open Access Journals (Sweden)

    Christoph Jindra

    Full Text Available Persistent infection with high-risk human papillomavirus (HPV types, most often HPV16 and HPV18, causes all cervical and most anal cancers, and a subset of vulvar, vaginal, penile and oropharyngeal carcinomas. Two prophylactic virus-like particle (VLPs-based vaccines, are available that protect against vaccine type-associated persistent infection and associated disease, yet have no therapeutic effect on existing lesions or infections. We have generated recombinant live-attenuated influenza A viruses expressing the HPV16 oncogenes E6 and E7 as experimental immunotherapeutic vaccine candidates. The influenza A virus life cycle lacks DNA intermediates as important safety feature. Different serotypes were generated to ensure efficient prime and boost immunizations. The immune response to vaccination in C57BL/6 mice was characterized by peptide ELISA and IFN-γ ELISpot, demonstrating induction of cell-mediated immunity to HPV16 E6 and E7 oncoproteins. Prophylactic and therapeutic vaccine efficacy was analyzed in the murine HPV16-positive TC-1 tumor challenge model. Subcutaneous (s.c. prime and boost vaccinations of mice with recombinant influenza A serotypes H1N1 and H3N2, followed by challenge with TC-1 cells resulted in complete protection or significantly reduced tumor growth as compared to control animals. In a therapeutic setting, s.c. vaccination of mice with established TC-1 tumors decelerated tumor growth and significantly prolonged survival. Importantly, intralesional vaccine administration induced complete tumor regression in 25% of animals, and significantly reduced tumor growth in 50% of mice. These results suggest recombinant E6E7 influenza viruses as a promising new approach for the development of a therapeutic vaccine against HPV-induced disease.

  18. Virus interference between H7N2 low pathogenic avian influenza virus and lentogenic Newcastle disease virus in experimental co-infections in chickens and turkeys.

    Science.gov (United States)

    Costa-Hurtado, Mar; Afonso, Claudio L; Miller, Patti J; Spackman, Erica; Kapczynski, Darrell R; Swayne, David E; Shepherd, Eric; Smith, Diane; Zsak, Aniko; Pantin-Jackwood, Mary

    2014-01-06

    Low pathogenicity avian influenza virus (LPAIV) and lentogenic Newcastle disease virus (lNDV) are commonly reported causes of respiratory disease in poultry worldwide with similar clinical and pathobiological presentation. Co-infections do occur but are not easily detected, and the impact of co-infections on pathobiology is unknown. In this study chickens and turkeys were infected with a lNDV vaccine strain (LaSota) and a H7N2 LPAIV (A/turkey/VA/SEP-67/2002) simultaneously or sequentially three days apart. No clinical signs were observed in chickens co-infected with the lNDV and LPAIV or in chickens infected with the viruses individually. However, the pattern of virus shed was different with co-infected chickens, which excreted lower titers of lNDV and LPAIV at 2 and 3 days post inoculation (dpi) and higher titers at subsequent time points. All turkeys inoculated with the LPAIV, whether or not they were exposed to lNDV, presented mild clinical signs. Co-infection effects were more pronounced in turkeys than in chickens with reduction in the number of birds shedding virus and in virus titers, especially when LPAIV was followed by lNDV. In conclusion, co-infection of chickens or turkeys with lNDV and LPAIV affected the replication dynamics of these viruses but did not affect clinical signs. The effect on virus replication was different depending on the species and on the time of infection. These results suggest that infection with a heterologous virus may result in temporary competition for cell receptors or competent cells for replication, most likely interferon-mediated, which decreases with time.

  19. A novel rabies vaccine based on a recombinant parainfluenza virus 5 expressing rabies virus glycoprotein.

    Science.gov (United States)

    Chen, Zhenhai; Zhou, Ming; Gao, Xiudan; Zhang, Guoqing; Ren, Guiping; Gnanadurai, Clement W; Fu, Zhen F; He, Biao

    2013-03-01

    Untreated rabies virus (RABV) infection leads to death. Vaccine and postexposure treatment have been effective in preventing RABV infection. However, due to cost, rabies vaccination and treatment have not been widely used in developing countries. There are 55,000 human death caused by rabies annually. An efficacious and cost-effective rabies vaccine is needed. Parainfluenza virus 5 (PIV5) is thought to contribute to kennel cough, and kennel cough vaccines containing live PIV5 have been used in dogs for many years. In this work, a PIV5-vectored rabies vaccine was tested in mice. A recombinant PIV5 encoding RABV glycoprotein (G) (rPIV5-RV-G) was administered to mice via intranasal (i.n.), intramuscular (i.m.), and oral inoculation. The vaccinated mice were challenged with a 50% lethal challenge dose (LD(50)) of RABV challenge virus standard 24 (CVS-24) intracerebrally. A single dose of 10(6) PFU of rPIV5-RV-G was sufficient for 100% protection when administered via the i.n. route. The mice vaccinated with a single dose of 10(8) PFU of rPIV5-RV-G via the i.m. route showed very robust protection (90% to 100%). Intriguingly, the mice vaccinated orally with a single dose of 10(8) PFU of rPIV5-RV-G showed a 50% survival rate, which is comparable to the 60% survival rate among mice inoculated with an attenuated rabies vaccine strain, recombinant LBNSE. This is first report of an orally effective rabies vaccine candidate in animals based on PIV5 as a vector. These results indicate that rPIV5-RV-G is an excellent candidate for a new generation of recombinant rabies vaccine for humans and animals and PIV5 is a potential vector for oral vaccines.

  20. Efficient propagation of progressive multifocal leukoencephalopathy-type JC virus in COS-7-derived cell lines stably expressing Tat protein of human immunodeficiency virus type 1.

    Science.gov (United States)

    Nukuzuma, Souichi; Nakamichi, Kazuo; Kameoka, Masanori; Sugiura, Shigeki; Nukuzuma, Chiyoko; Miyoshi, Isao; Takegami, Tsutomu

    2010-12-01

    The high incidence of progressive multifocal leukoencephalopathy (PML) in AIDS patients compared with many other immunosuppressive diseases suggests that HIV-1 infection is strictly related to the activation of JC virus (JCV) propagation. In this report, propagation of PML-type JCV in COS-7-derived cell lines stably expressing HIV-1 Tat (COS-tat cells) has been examined. In COS-tat cells, production of viral particles and replication of genomic DNA were markedly increased compared to COS-7 cells, as judged by HA and real-time PCR analyses. These results demonstrate that COS-tat cells provide a useful model system for studying HIV-1 Tat-mediated propagation of PML-type JCV. © 2010 The Societies and Blackwell Publishing Asia Pty Ltd.

  1. A new reportable disease is born: Taiwan Centers for Disease Control's response to emerging Zika virus infection.

    Science.gov (United States)

    Huang, Angela Song-En; Shu, Pei-Yun; Yang, Chin-Hui

    2016-04-01

    Zika virus infection, usually a mild disease transmitted through the bite of Aedes mosquitos, has been reported to be possibly associated with microcephaly and neurologic complications. Taiwan's first imported case of Zika virus infection was found through fever screening at airport entry in January 2016. No virus was isolated from patient's blood taken during acute illness; however, PCR products showed that the virus was of Asian lineage closely related to virus from Cambodia. To prevent Zika virus from spreading in Taiwan, the Taiwan Centers for Disease Control has strengthened efforts in quarantine and surveillance, increased Zika virus infection diagnostic capacity, implemented healthcare system preparedness plans, and enhanced vector control program through community mobilization and education. Besides the first imported case, no additional cases of Zika virus infection have been identified. Furthermore, no significant increase in the number of microcephaly or Guillain- Barré Syndrome has been observed in Taiwan. To date, there have been no autochthonous transmissions of Zika virus infection. Copyright © 2016. Published by Elsevier B.V.

  2. Infection of frog neurons with vaccinia virus permits in vivo expression of foreign proteins.

    Science.gov (United States)

    Wu, G Y; Zou, D J; Koothan, T; Cline, H T

    1995-04-01

    Vaccinia virus can be used to infect cells in the CNS of frogs, Xenopus laevis, and Rana pipiens, both in vivo and in vitro. In vivo infections were accomplished by injection of viral solution into the tectal ventricle of stage 40-48 tadpoles or by local injections into distinct neural regions. Infections with high titer of virus injected into the ventricle resulted in the majority of cells in the brain expressing foreign protein, while cells in the retina and optic nerve showed no expression. Infection with lower viral titers resulted in fewer infected cells that were distributed throughout the otherwise normal tissue. Intense expression of foreign protein in the brain was observed 36 hr after injection and remained high for at least 4 days. Infected animals developed normally and had the same number of cells in the optic tectum as control animals. Infection with a recombinant virus carrying the gene for Green Fluorescent Protein labels neurons, so that infected cells can be observed in vivo. Vaccinia virus provides a versatile means to alter proteins in distinct populations of neurons in amphibia.

  3. Construction and identification of helper plasmids of newcastle disease virus Italien strain

    Directory of Open Access Journals (Sweden)

    Zhen REN

    2012-07-01

    Full Text Available Objective Newcastle disease virus (NDV is a naturally oncolytic virus that has been shown to be safe and effective for cancer therapy. NDV virions possess a non-segmented negative-sense single-stranded RNA genome which contains six genes encoding the nucleocapsid protein (NP, phosphoprotein (P, large polymerase protein (L, matrix protein, fusion protein, and hemagglutinin-neuraminidase. The ribonucleoprotein (RNP complex consisting of the genomic RNA and the three proteins NP, P, and L are the active template for transcription and replication of the viral genome. The purpose of this study was to construct the expression plasmids of NP, P and L genes of NDV Italien strain in which phage T7 promoter was a transcription promoter for the aim of generation of recombinant NDV. Methods NP, P and L genes were cloned from the genome RNA of NDV Italien followed by introduction into the downstream of T7 promoter and internal ribosome entry sites to construct the expression plasmids of NP, P and L, respectively. Expression of exogenous gene in BSR-T7/5 cells which constitutively express phage T7 RNA polymerase and transfected with plasmids of NP and P was detected by indirect immunofluorescence assay. The function of NP, P and L proteins expressed by constructed plasmids to facilitate the genomic RNA to form RNP complex was tested using minigenome of NDV Italien carrying firefly luciferase as a reporter gene. Results The expression plasmids of NP, P and L genes were confirmed by DNA sequencing. Using the indirect immunofluorescence assay, we detected the expression of viral NP and P proteins in BSR-T7/5 cells. When the helper plasmids were co-transfected with NDV minigenome plasmid, the expression of firefly luciferase was more significant compared with the control group (P < 0.001. Conclusion The helper plasmids of NDV Italien strain using T7 promoter as a transcription promoter has been constructed successfully, and it provides a basis for the

  4. Two-plasmid system to increase the rescue efficiency of paramyxoviruses by reverse genetics: The example of rescuing Newcastle Disease Virus.

    Science.gov (United States)

    Liu, Haijin; Albina, Emmanuel; Gil, Patricia; Minet, Cécile; de Almeida, Renata Servan

    2017-09-01

    Within paramyxoviruses, conventional reverse genetics require the transfection of a minimum of four plasmids: three to reconstruct the viral polymerase complex that replicates and expresses the virus genome delivered by a fourth plasmid. The successful transfection of four or more plasmids of different sizes into one cell and the subsequent generation of at least one viable and replicable viral particle is a rare event, which explains the low rescue efficiency, especially of low virulent viruses with reduced replication efficiency in cell lines. In this study, we report on an improved reverse genetics system developed for an avian paramyxovirus, Newcastle Disease Virus (NDV), in which the number of plasmids was reduced from four to two. Compared to the conventional method, the 2-plasmid system enables earlier and increased production of rescued viruses and, in addition, makes it possible to rescue viruses that it was not possible to rescue using the 4-plasmid system. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Isolation of lumpy skin disease virus from cattle in and around ...

    African Journals Online (AJOL)

    ... Lumpy Skin Disease was found to be a serious disease in the study area. So, further investigation is needed on identification of the causative agents and Molecular characterization of Lumpy Skin Disease Virus and risk factors of the disease in South Wollo Zone. Keywords: Cattle, Dessie and Kombolcha, LSD, LSDV, ...

  6. Replication-competent recombinant porcine reproductive and respiratory syndrome (PRRS) viruses expressing indicator proteins and antiviral cytokines.

    Science.gov (United States)

    Sang, Yongming; Shi, Jishu; Sang, Wenjing; Rowland, Raymond R R; Blecha, Frank

    2012-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) can subvert early innate immunity, which leads to ineffective antimicrobial responses. Overcoming immune subversion is critical for developing vaccines and other measures to control this devastating swine virus. The overall goal of this work was to enhance innate and adaptive immunity following vaccination through the expression of interferon (IFN) genes by the PRRSV genome. We have constructed a series of recombinant PRRS viruses using an infectious PRRSV cDNA clone (pCMV-P129). Coding regions of exogenous genes, which included Renilla luciferase (Rluc), green and red fluorescent proteins (GFP and DsRed, respectively) and several interferons (IFNs), were constructed and expressed through a unique subgenomic mRNA placed between ORF1b and ORF2 of the PRRSV infectious clone. The constructs, which expressed Rluc, GFP, DsRed, efficiently produced progeny viruses and mimicked the parental virus in both MARC-145 cells and porcine macrophages. In contrast, replication of IFN-expressing viruses was attenuated, similar to the level of replication observed after the addition of exogenous IFN. Furthermore, the IFN expressing viruses inhibited the replication of a second PRRS virus co-transfected or co-infected. Inhibition by the different IFN subtypes corresponded to their anti-PRRSV activity, i.e., IFNω5 ° IFNα1 > IFN-β > IFNδ3. In summary, the indicator-expressing viruses provided an efficient means for real-time monitoring of viral replication thus allowing high‑throughput elucidation of the role of host factors in PRRSV infection. This was shown when they were used to clearly demonstrate the involvement of tumor susceptibility gene 101 (TSG101) in the early stage of PRRSV infection. In addition, replication‑competent IFN-expressing viruses may be good candidates for development of modified live virus (MLV) vaccines, which are capable of reversing subverted innate immune responses and may induce more

  7. Pathotyping of a Newcastle disease virus isolated from peacock (Pavo cristatus).

    Science.gov (United States)

    Vijayarani, K; Muthusamy, S; Tirumurugaan, K G; Sakthivelan, S M; Kumanan, K

    2010-03-01

    This report describes Newcastle disease in peacock and the isolation and characterization of the virus. The virus had an intracerbral pathogenicity index of 1.71 and mean death time of 47 h. The isolate had multiple basic amino acids at the fusion protein cleavage site sequence ((110)GGRRQRRFIG(119)) with a phenylalanine at residue 117. Biological and molecular characterization revealed that the virus is velogenic. Phylogenetic analysis placed the isolate in genotype II.

  8. A Multiplex Real-time Reverse Transcription Polymerase Chain Reaction Assay for Detection and Differentiation of Bluetongue Virus and Epizootic Hemorrhagic Disease Virus Serogroups

    Science.gov (United States)

    Bluetongue virus (BTV) causes disease in domestic and wild ruminants resulting in significant economic loss. The closely related Epizootic hemorrhagic diseases virus (EHDV) has been associated with bluetongue-like disease in cattle. Although US EHDV strains have not been experimentally proven to cau...

  9. Rome consensus conference - statement; human papilloma virus diseases in males

    Science.gov (United States)

    2013-01-01

    Background Human Papillomavirus (HPV) is a very resistant, ubiquitous virus that can survive in the environment without a host. The decision to analyse HPV-related diseases in males was due to the broad dissemination of the virus, and, above all, by the need to stress the importance of primary and secondary prevention measures (currently available for women exclusively). The objective of the Consensus Conference was to make evidence-based recommendations that were designed to facilitate the adoption of a standard approach in clinical practice in Italy. Methods The Sponsoring Panel put a series of questions to the members of the Scientific Committee who prepared a summary of the currently available information, relevant for each question, after the review and grading of the existing scientific literature. The summaries were presented to a Jury, also called multidisciplinary Consensus Panel, who drafted a series of recommendations. Results The prevalence of HPV in males ranges between 1.3–72.9%;. The prevalence curve in males is much higher than that in females and does not tend to decline with age. Women appear to have a higher probability of acquiring HPV genotypes associated with a high oncogenic risk, whereas in males the probability of acquiring low- or high-risk genotypes is similar. The HPV-related diseases that affect males are anogenital warts and cancers of the penis, anus and oropharynx. The quadrivalent vaccine against HPV has proved to be effective in preventing external genital lesions in males aged 16–26 years in 90.4%; (95%; CI: 69.2–98.1) of cases. It has also proved to be effective in preventing precancerous anal lesions in 77.5%; (95%; CI: 39.6–93.3) of cases in a per-protocol analysis and in 91.7%; (95%; CI: 44.6–99.8) of cases in a post-hoc analysis. Early ecological studies demonstrate reduction of genital warts in vaccinated females and some herd immunity in males when vaccine coverage is high, although males who have sex with males

  10. [Several issues on the epidemiology of Zika virus disease].

    Science.gov (United States)

    Lu, Guiyang; Su, Yingying; Wang, Ning

    2016-04-01

    Zika virus belongs to Aedes mosquito-borne flavivirus. In response to the current cluster of congenital malformations (microcephaly) and other neurological complications (Guillain-Barré Syndrome) that could be linked to Zika virus infection, WHO declares that Zika virus is of global public health importance. Data sources were from peer review articles and WHO documents. The sources of Zika virus infection would include patients, people with asymptomatic infections and primates. The infectious period of Zika virus remains unclear. However, according to the period that RNA of Zika virus can be positively detected in blood, saliva, urine or semen, we can presume that the communicable period may last for 2 months or even longer. Zika virus is primarily transmitted to humans by infected Aedes spp. mosquitoes. Presumptive vertical, blood or sexual routes of transmission have been reported. More evidence indicated the existence of a cause-effect relationship between Zika virus infection and congenital microcephaly/Guillain-Barre syndrome. Strategies include successful control the amount of mosquitoes and minimize the contacts between mosquitoes and human beings could effectively prevent the Zika virus transmission. Other preventive measures as cutting off vertical, blood or sexual routes of transmission should also be adopted. The epidemiology of Zika virus remains uncertain which calls for further research.

  11. Whole genome analysis of epizootic hemorrhagic disease virus identified limited genome constellations and preferential reassortment.

    Science.gov (United States)

    Anbalagan, Srivishnupriya; Cooper, Elyse; Klumper, Pat; Simonson, Randy R; Hause, Ben M

    2014-02-01

    Epizootic hemorrhagic disease virus (EHDV) is a Culicoides transmitted orbivirus that causes haemorrhagic disease in wild and domestic ruminants. A collection of 44 EHDV isolated from 2008 to 2012 was fully sequenced and analysed phylogenetically. Serotype 2 viruses were the dominant serotype all years except 2012 when serotype 6 viruses represented 63 % of the isolates. High genetic similarity (>94 % identity) between serotype 1 and 2 virus VP1, VP3, VP4, VP6, NS1, NS2 and NS3 segments prevented identification of reassortment events for these segments. Additionally, there was little genetic diversity (>96 % identity) within serotypes for VP2, VP5 and VP7. Preferential reassortment within the homologous serotype was observed for VP2, VP5 and VP7 segments for type 1 and type 2 viruses. In contrast, type 6 viruses were all reassortants containing VP2 and VP5 derived from an exotic type 6 with the remaining segments most similar to type 2 viruses. These results suggest that reassortment between type 1 and type 2 viruses requires conservation of the VP2, VP5 and VP7 segment constellation while type 6 viruses only require VP2 and VP5 and are restricted to type 2-lineage VP7. As type 6 VP2 and VP5 segments were exclusively identified in viruses with type 2-derived VP7, these results suggest functional complementation between type 2 and type 6 VP7 proteins.

  12. ADAPTATION OF INDIGENOUS INFECTIOUS BURSAL DISEASE VIRUS (IBDV IN EMBRYONATED CHICKEN EGGS

    Directory of Open Access Journals (Sweden)

    A. N. Ahmad, I. Hussain, M. Siddique and M. S. Mahmood

    2005-04-01

    Full Text Available Infectious bursal disease virus was isolated from bursae of broilers suffering from Gumboro disease and was designated as field virus (FV. The virus was confirmed through agar gel precipitation test (AGPT and counter current immunoelectrophoresis (CCIE. The virus was titrated by using reverse passive haemagglutination (RPHA test and egg infective dose fifty (EID50. The FV was inoculated into 9-to 11-day-old embryonated chicken eggs through chorio-allantoic membrane (CAM. At each passage, the virus in the chorio-allantoic fluid (CAF and embryos was confirmed by AGPT and titrated by RPHA test. Geometric mean titer (GMT of the virus in CAF was 37 to 64 in 1-3rd passage, 111 to 239 in 4-7th passages. In 8 to 15th passages, virus titer remained from 294 to 588 and in 16-24th passages virus titer ranged from 675 to 2195. Similarly, virus titer in the embryos was 1024 to 512 in 1st -10th passages, while the virus titer in passages 11-24th ranged from 478 to 111. Embryos were monitored for lesions and mortality. Severe lesions were present on the CAM in 1st-7th passages, while moderate to mild haemorrhages were seen in 8th to 16th passages and in 17th _ 24th passages no lesions were observed.

  13. Detection of viruses and the spatial and temporal spread patterns of viral diseases of cucurbits (Cucurbitaceae spp.) in the coastal savannah zone of Ghana

    International Nuclear Information System (INIS)

    Gyamena, A. E

    2013-07-01

    Cucurbits are susceptible to over 35 plant viruses; each of these viruses is capable of causing total crop failure in a poorly managed virus pathosystem. The objectives of this study were to detect the viruses that infect six cucurbit species in the coastal savannah zone of Ghana and to describe the spatial and temporal spread patterns of virus epidemics in zucchini squash (Cucurbita pepo L.) by the use of mathematical and geostatistical models. Cucumber (Cucumis sativus L.), watermelon (Citrullus lanatus Thunb.), zucchini squash (Cucurbita pepo L.), butternut squash (Cucurbita moschata Duchesne), egushi (Citrullus colocynthis L. Schrad.) and melon (Cucumis melo L.) were grown on an experimental field in the coastal savannah zone of Ghana and were monitored for the expression of virus and virus-like symptoms. The observed symptoms were further confirmed by Double Antibody Sandwich Enzyme-Linked Immunosorbent Assay (DAS ELISA) and mechanical inoculation of indicator plants. The temporal spread patterns of virus disease in zucchini squash were analyzed by exponential logistic, monomolecular and gompertz mechanistic models. The spatial patterns of virus disease spread in zucchini squash field were analyzed by semivariograms and inverse distance weighing (IDW) methods. Cucumber, zucchini squash, melon and butternut squash were infected by both Cucumber mosaic virus (CMW) and Papaya ringspot virus (PRSV-W). Egushi was infected by CMW but not PRSV-W. None of the six cucurbit species were infected by Watermelon mosaic virus (WMV) or Zucchini yellow mosaic virus (ZYMV). The temporal pattern of disease incidence in the zucchini squash field followed the gompertz function with an average apparent infection rate of 0.026 per day. The temporal pattern of disease severity was best described by the exponential model with coefficient of determination of 94.38 % and rate of progress disease severity of 0.114 per day. As at 49 days after planting (DAP), disease incidence and

  14. Eliciting specific humoral immunity from a plasmid DNA encoding infectious bursal disease virus polyprotein gene fused with avian influenza virus hemagglutinin gene.

    Science.gov (United States)

    Mosley, Yung-Yi C; Hsieh, Ming Kun; Wu, Ching Ching; Lin, Tsang Long

    2015-01-01

    DNA vaccine coding for infectious bursal disease virus (IBDV) polyprotein gene and that for avian influenza virus (AIV) hemagglutinin (HA) gene have been shown to induce immunity and provide protection against the respective disease. The present study was carried out to determine whether an IBDV polyprotein gene-based DNA fused with AIV HA gene could trigger immune response to both IBDV and AIV. After transfection, VP2 and HA were detected in the cytoplasm and at cell membrane, respectively, by immunofluorescent antibody double staining method, suggesting the fusion strategy did not affect the location of protein expression. VP4 cleavage between VP2 and HA was confirmed by Western blot, indicating the fusion strategy did not affect VP4 function in transfected cells. After vaccination in chickens, the DNA construct VP24-HA/pcDNA induced ELISA and virus neutralizing antibodies against VP2 and hemagglutination inhibition antibody against the HA subtype. The results indicated that a single plasmid construct carrying IBDV VP243 gene-based DNA fused with AIV HA gene can elicit specific antibody responses to both IBDV and AIV by DNA vaccination. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. p22 of Tomato chlorosis virus, an RNA silencing suppressor, is naturally expressed in the infected plant

    Science.gov (United States)

    Tomato chlorosis virus (ToCV) in the genus Crinivirus of the family Closteroviridae, is an economically important emerging disease of tomato worldwide. This whitefly-transmitted virus is difficult to control. The best strategy in viral disease management is through the use of a resistant cultivar....

  16. Control of plant virus diseases in cool-season grain legume crops.

    Science.gov (United States)

    Makkouk, Khaled M; Kumari, Safaa G; van Leur, Joop A G; Jones, Roger A C

    2014-01-01

    Cool-season grain legume crops become infected with a wide range of viruses, many of which cause serious diseases and major yield losses. This review starts by discussing which viruses are important in the principal cool-season grain legume crops in different parts of the world, the losses they cause and their economic impacts in relation to control. It then describes the main types of control measures available: host resistance, phytosanitary measures, cultural measures, chemical control, and biological control. Examples are provided of successful deployment of the different types of measures to control virus epidemics in cool-season grain legume crops. Next it emphasizes the need for integrated approaches to control because single control measures used alone rarely suffice to adequately reduce virus-induced yield losses in these crops. Development of effective integrated disease management (IDM) strategies depends on an interdisciplinary team approach to (i) understand the ecological and climatic factors which lead to damaging virus epidemics and (ii) evaluate the effectiveness of individual control measures. In addition to using virus-resistant cultivars, other IDM components include sowing virus-tested seed stocks, selecting cultivars with low seed transmission rates, using diverse phytosanitary or cultural practices that minimize the virus source or reduce its spread, and using selective pesticides in an environmentally responsible way. The review finishes by briefly discussing the implications of climate change in increasing problems associated with control and the opportunities to control virus diseases more effectively through new technologies.

  17. Capsid proteins from field strains of foot-and-mouth disease virus confer a pathogenic phenotype in cattle on an attenuated, cell-culture-adapted virus

    DEFF Research Database (Denmark)

    Bøtner, Anette; Kakker, Naresh K.; Barbezange, Cyril

    2011-01-01

    Chimeric foot-and-mouth disease viruses (FMDVs) have been generated from plasmids containing full-length FMDV cDNAs and characterized. The parental virus cDNA was derived from the cell-culture-adapted O1Kaufbeuren B64 (O1K B64) strain. Chimeric viruses, containing capsid coding sequences derived ...

  18. Genetic susceptibility to and presence of endogenous avian leukosis viruses impose no significant impact on survival days of chickens challenged with very virulent plus Marek's disease virus

    Science.gov (United States)

    Chicks of distinct genotypes at the tumor virus B locus (TVB) in combination with presence or absence of endogenous avian leukosis virus ev21 gene in their genomes were examined for survival day patterns after challenge with very virulent plus Marek’s disease virus (vv+MDV) in three consecutive tria...

  19. Knowledge of Ebola virus disease among a university population: A cross-sectional study.

    Science.gov (United States)

    Salman, Muhammad; Shehzadi, Naureen; Hussain, Khalid; Saleem, Fahad; Khan, Muhammad Tanveer; Asif, Nauman; Yousaf, Maria; Rafique, Maham; Bedar, Rushda; Tariq, Sonia; AbuBakar, Usman; Syed Sulaiman, Syed Azhar

    2017-02-01

    This cross-sectional study aimed to evaluate the knowledge of a Pakistani university population (students and employees) regarding Ebola virus disease. A total of 2,200 individuals were approached and 1,647 were enrolled in the study. We observed that the vast majority of study participants (91.8%) had inadequate knowledge of Ebola virus disease (knowledge score ≤ 12). Our findings highlight the need to increase the knowledge of Ebola virus disease by using multidimensional approach involving awareness campaigns, print, electronic, and social media. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  20. Molecular epidemiology, evolution and phylogeny of foot-and-mouth disease virus

    DEFF Research Database (Denmark)

    Jamal, Syed Muhammad; Belsham, Graham J

    2018-01-01

    Foot-and-mouth disease virus (FMDV) is responsible for one of the most economically important infectious diseases of livestock. The virus spreads very easily and continues to affect many countries (mainly in Africa and Asia). The risks associated with the introduction of FMDV result in major...... frequently arise (e.g. with modified antigenicity). Using nucleotide sequencing technologies, this rapid evolution of the viral genome can be followed. This allows the tracing of virus transmission pathways within an outbreak of disease if (near) full-length genome sequences can be generated. Furthermore...