WorldWideScience

Sample records for disease modeling drug

  1. Macrophage models of Gaucher disease for evaluating disease pathogenesis and candidate drugs.

    Aflaki, Elma; Stubblefield, Barbara K; Maniwang, Emerson; Lopez, Grisel; Moaven, Nima; Goldin, Ehud; Marugan, Juan; Patnaik, Samarjit; Dutra, Amalia; Southall, Noel; Zheng, Wei; Tayebi, Nahid; Sidransky, Ellen

    2014-06-11

    Gaucher disease is caused by an inherited deficiency of glucocerebrosidase that manifests with storage of glycolipids in lysosomes, particularly in macrophages. Available cell lines modeling Gaucher disease do not demonstrate lysosomal storage of glycolipids; therefore, we set out to develop two macrophage models of Gaucher disease that exhibit appropriate substrate accumulation. We used these cellular models both to investigate altered macrophage biology in Gaucher disease and to evaluate candidate drugs for its treatment. We generated and characterized monocyte-derived macrophages from 20 patients carrying different Gaucher disease mutations. In addition, we created induced pluripotent stem cell (iPSC)-derived macrophages from five fibroblast lines taken from patients with type 1 or type 2 Gaucher disease. Macrophages derived from patient monocytes or iPSCs showed reduced glucocerebrosidase activity and increased storage of glucocerebroside and glucosylsphingosine in lysosomes. These macrophages showed efficient phagocytosis of bacteria but reduced production of intracellular reactive oxygen species and impaired chemotaxis. The disease phenotype was reversed with a noninhibitory small-molecule chaperone drug that enhanced glucocerebrosidase activity in the macrophages, reduced glycolipid storage, and normalized chemotaxis and production of reactive oxygen species. Macrophages differentiated from patient monocytes or patient-derived iPSCs provide cellular models that can be used to investigate disease pathogenesis and facilitate drug development. Copyright © 2014, American Association for the Advancement of Science.

  2. Disease-specific induced pluripotent stem cells: a platform for human disease modeling and drug discovery.

    Jang, Jiho; Yoo, Jeong-Eun; Lee, Jeong-Ah; Lee, Dongjin R; Kim, Ji Young; Huh, Yong Jun; Kim, Dae-Sung; Park, Chul-Yong; Hwang, Dong-Youn; Kim, Han-Soo; Kang, Hoon-Chul; Kim, Dong-Wook

    2012-03-31

    The generation of disease-specific induced pluripotent stem cell (iPSC) lines from patients with incurable diseases is a promising approach for studying disease mechanisms and drug screening. Such innovation enables to obtain autologous cell sources in regenerative medicine. Herein, we report the generation and characterization of iPSCs from fibroblasts of patients with sporadic or familial diseases, including Parkinson's disease (PD), Alzheimer's disease (AD), juvenile-onset, type I diabetes mellitus (JDM), and Duchenne type muscular dystrophy (DMD), as well as from normal human fibroblasts (WT). As an example to modeling disease using disease-specific iPSCs, we also discuss the previously established childhood cerebral adrenoleukodystrophy (CCALD)- and adrenomyeloneuropathy (AMN)-iPSCs by our group. Through DNA fingerprinting analysis, the origins of generated disease-specific iPSC lines were identified. Each iPSC line exhibited an intense alkaline phosphatase activity, expression of pluripotent markers, and the potential to differentiate into all three embryonic germ layers: the ectoderm, endoderm, and mesoderm. Expression of endogenous pluripotent markers and downregulation of retrovirus-delivered transgenes [OCT4 (POU5F1), SOX2, KLF4, and c-MYC] were observed in the generated iPSCs. Collectively, our results demonstrated that disease-specific iPSC lines characteristically resembled hESC lines. Furthermore, we were able to differentiate PD-iPSCs, one of the disease-specific-iPSC lines we generated, into dopaminergic (DA) neurons, the cell type mostly affected by PD. These PD-specific DA neurons along with other examples of cell models derived from disease-specific iPSCs would provide a powerful platform for examining the pathophysiology of relevant diseases at the cellular and molecular levels and for developing new drugs and therapeutic regimens.

  3. Drugs for Neglected Diseases initiative model of drug development for neglected diseases: current status and future challenges.

    Ioset, Jean-Robert; Chang, Shing

    2011-09-01

    The Drugs for Neglected Diseases initiative (DNDi) is a patients' needs-driven organization committed to the development of new treatments for neglected diseases. Created in 2003, DNDi has delivered four improved treatments for malaria, sleeping sickness and visceral leishmaniasis. A main DNDi challenge is to build a solid R&D portfolio for neglected diseases and to deliver preclinical candidates in a timely manner using an original model based on partnership. To address this challenge DNDi has remodeled its discovery activities from a project-based academic-bound network to a fully integrated process-oriented platform in close collaboration with pharmaceutical companies. This discovery platform relies on dedicated screening capacity and lead-optimization consortia supported by a pragmatic, structured and pharmaceutical-focused compound sourcing strategy.

  4. Non-alcoholic fatty liver disease (NAFLD) models in drug discovery.

    Cole, Banumathi K; Feaver, Ryan E; Wamhoff, Brian R; Dash, Ajit

    2018-02-01

    The progressive disease spectrum of non-alcoholic fatty liver disease (NAFLD), which includes non-alcoholic steatohepatitis (NASH), is a rapidly emerging public health crisis with no approved therapy. The diversity of various therapies under development highlights the lack of consensus around the most effective target, underscoring the need for better translatable preclinical models to study the complex progressive disease and effective therapies. Areas covered: This article reviews published literature of various mouse models of NASH used in preclinical studies, as well as complex organotypic in vitro and ex vivo liver models being developed. It discusses translational challenges associated with both kinds of models, and describes some of the studies that validate their application in NAFLD. Expert opinion: Animal models offer advantages of understanding drug distribution and effects in a whole body context, but are limited by important species differences. Human organotypic in vitro and ex vivo models with physiological relevance and translatability need to be used in a tiered manner with simpler screens. Leveraging newer technologies, like metabolomics, proteomics, and transcriptomics, and the future development of validated disease biomarkers will allow us to fully utilize the value of these models to understand disease and evaluate novel drugs in isolation or combination.

  5. Non-Clinical Models for Neurodegenerative Diseases: Therapeutic Approach and Drug Validation in Animal Models

    Caridad Ivette Fernandez

    2017-12-01

    Full Text Available In 2016, 19.8% of the Cuban population was aged 60 or over. As a result, age-associated degenerative diseases and other diseases have become priority targets from a prophylactic, diagnostic and therapeutic perspective. As a result, the Cuban biomedical scientific community has addressed its basic, preclinical and epidemiological research in order to rise up to the challenge. A firm step in this direction has been the international congress “State of the art in non-clinical models for neurodegenerative diseases” which has brought together preclinical and clinical researchers, technicians and regulatory staff members from different countries to review the state of the art in neurodegenerations, find unifying ideas, objectives and collaborations or partnership. The objective is to expose the perspectives of new biotechnological products from Cuba and other countries from the diagnostic, therapeutic and neuroprotective point of view. It is crucial, therefore, that the irreplaceable role of laboratory animals in achieving these objectives is understood but they must be used in rational, adequate and ethical manner. We expose the current development trends in this field, being of common interest to the work directed to the search for potential drugs, diagnostic tools and the promotion of changes in lifestyle as a preventive projection.

  6. Drug-disease modeling in the pharmaceutical industry - where mechanistic systems pharmacology and statistical pharmacometrics meet.

    Helmlinger, Gabriel; Al-Huniti, Nidal; Aksenov, Sergey; Peskov, Kirill; Hallow, Karen M; Chu, Lulu; Boulton, David; Eriksson, Ulf; Hamrén, Bengt; Lambert, Craig; Masson, Eric; Tomkinson, Helen; Stanski, Donald

    2017-11-15

    Modeling & simulation (M&S) methodologies are established quantitative tools, which have proven to be useful in supporting the research, development (R&D), regulatory approval, and marketing of novel therapeutics. Applications of M&S help design efficient studies and interpret their results in context of all available data and knowledge to enable effective decision-making during the R&D process. In this mini-review, we focus on two sets of modeling approaches: population-based models, which are well-established within the pharmaceutical industry today, and fall under the discipline of clinical pharmacometrics (PMX); and systems dynamics models, which encompass a range of models of (patho-)physiology amenable to pharmacological intervention, of signaling pathways in biology, and of substance distribution in the body (today known as physiologically-based pharmacokinetic models) - which today may be collectively referred to as quantitative systems pharmacology models (QSP). We next describe the convergence - or rather selected integration - of PMX and QSP approaches into 'middle-out' drug-disease models, which retain selected mechanistic aspects, while remaining parsimonious, fit-for-purpose, and able to address variability and the testing of covariates. We further propose development opportunities for drug-disease systems models, to increase their utility and applicability throughout the preclinical and clinical spectrum of pharmaceutical R&D. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Induced pluripotent stem cell-derived cardiomyocytes for cardiovascular disease modeling and drug screening.

    Sharma, Arun; Wu, Joseph C; Wu, Sean M

    2013-12-24

    Human induced pluripotent stem cells (hiPSCs) have emerged as a novel tool for drug discovery and therapy in cardiovascular medicine. hiPSCs are functionally similar to human embryonic stem cells (hESCs) and can be derived autologously without the ethical challenges associated with hESCs. Given the limited regenerative capacity of the human heart following myocardial injury, cardiomyocytes derived from hiPSCs (hiPSC-CMs) have garnered significant attention from basic and translational scientists as a promising cell source for replacement therapy. However, ongoing issues such as cell immaturity, scale of production, inter-line variability, and cell purity will need to be resolved before human clinical trials can begin. Meanwhile, the use of hiPSCs to explore cellular mechanisms of cardiovascular diseases in vitro has proven to be extremely valuable. For example, hiPSC-CMs have been shown to recapitulate disease phenotypes from patients with monogenic cardiovascular disorders. Furthermore, patient-derived hiPSC-CMs are now providing new insights regarding drug efficacy and toxicity. This review will highlight recent advances in utilizing hiPSC-CMs for cardiac disease modeling in vitro and as a platform for drug validation. The advantages and disadvantages of using hiPSC-CMs for drug screening purposes will be explored as well.

  8. Drug induced lung disease

    Schaefer-Prokop, Cornelia; Eisenhuber, Edith

    2010-01-01

    There is an ever increasing number of drugs that can cause lung disease. Imaging plays an important role in the diagnosis, since the clinical symptoms are mostly nonspecific. Various HRCT patterns can be correlated - though with overlaps - to lung changes caused by certain groups of drugs. Alternative diagnosis such as infection, edema or underlying lung disease has to be excluded by clinical-radiological means. Herefore is profound knowledge of the correlations of drug effects and imaging findings essential. History of drug exposure, suitable radiological findings and response to treatment (corticosteroids and stop of medication) mostly provide the base for the diagnosis. (orig.)

  9. Blinded prospective evaluation of computer-based mechanistic schizophrenia disease model for predicting drug response.

    Hugo Geerts

    Full Text Available The tremendous advances in understanding the neurobiological circuits involved in schizophrenia have not translated into more effective treatments. An alternative strategy is to use a recently published 'Quantitative Systems Pharmacology' computer-based mechanistic disease model of cortical/subcortical and striatal circuits based upon preclinical physiology, human pathology and pharmacology. The physiology of 27 relevant dopamine, serotonin, acetylcholine, norepinephrine, gamma-aminobutyric acid (GABA and glutamate-mediated targets is calibrated using retrospective clinical data on 24 different antipsychotics. The model was challenged to predict quantitatively the clinical outcome in a blinded fashion of two experimental antipsychotic drugs; JNJ37822681, a highly selective low-affinity dopamine D(2 antagonist and ocaperidone, a very high affinity dopamine D(2 antagonist, using only pharmacology and human positron emission tomography (PET imaging data. The model correctly predicted the lower performance of JNJ37822681 on the positive and negative syndrome scale (PANSS total score and the higher extra-pyramidal symptom (EPS liability compared to olanzapine and the relative performance of ocaperidone against olanzapine, but did not predict the absolute PANSS total score outcome and EPS liability for ocaperidone, possibly due to placebo responses and EPS assessment methods. Because of its virtual nature, this modeling approach can support central nervous system research and development by accounting for unique human drug properties, such as human metabolites, exposure, genotypes and off-target effects and can be a helpful tool for drug discovery and development.

  10. Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening.

    Smith, Alec S T; Macadangdang, Jesse; Leung, Winnie; Laflamme, Michael A; Kim, Deok-Ho

    Improved methodologies for modeling cardiac disease phenotypes and accurately screening the efficacy and toxicity of potential therapeutic compounds are actively being sought to advance drug development and improve disease modeling capabilities. To that end, much recent effort has been devoted to the development of novel engineered biomimetic cardiac tissue platforms that accurately recapitulate the structure and function of the human myocardium. Within the field of cardiac engineering, induced pluripotent stem cells (iPSCs) are an exciting tool that offer the potential to advance the current state of the art, as they are derived from somatic cells, enabling the development of personalized medical strategies and patient specific disease models. Here we review different aspects of iPSC-based cardiac engineering technologies. We highlight methods for producing iPSC-derived cardiomyocytes (iPSC-CMs) and discuss their application to compound efficacy/toxicity screening and in vitro modeling of prevalent cardiac diseases. Special attention is paid to the application of micro- and nano-engineering techniques for the development of novel iPSC-CM based platforms and their potential to advance current preclinical screening modalities. Published by Elsevier Inc.

  11. Matrix Metalloproteinases Contribute to Neuronal Dysfunction in Animal Models of Drug Dependence, Alzheimer's Disease, and Epilepsy

    Hiroyuki Mizoguchi

    2011-01-01

    Full Text Available Matrix metalloproteinases (MMPs and tissue inhibitors of metalloproteinases (TIMPs remodel the pericellular environment by regulating the cleavage of extracellular matrix proteins, cell surface components, neurotransmitter receptors, and growth factors that mediate cell adhesion, synaptogenesis, synaptic plasticity, and long-term potentiation. Interestingly, increased MMP activity and dysregulation of the balance between MMPs and TIMPs have also been implicated in various pathologic conditions. In this paper, we discuss various animal models that suggest that the activation of the gelatinases MMP-2 and MMP-9 is involved in pathogenesis of drug dependence, Alzheimer's disease, and epilepsy.

  12. Illegal Drugs and Heart Disease

    ... Venous Thromboembolism Aortic Aneurysm More Illegal Drugs and Heart Disease Updated:May 3,2018 Most illegal drugs can ... www.dea.gov/druginfo/factsheets.shtml Alcohol and Heart Disease Caffeine and Heart Disease Tobacco and Heart Disease ...

  13. SVM Based Descriptor Selection and Classification of Neurodegenerative Disease Drugs for Pharmacological Modeling.

    Shahid, Mohammad; Shahzad Cheema, Muhammad; Klenner, Alexander; Younesi, Erfan; Hofmann-Apitius, Martin

    2013-03-01

    Systems pharmacological modeling of drug mode of action for the next generation of multitarget drugs may open new routes for drug design and discovery. Computational methods are widely used in this context amongst which support vector machines (SVM) have proven successful in addressing the challenge of classifying drugs with similar features. We have applied a variety of such SVM-based approaches, namely SVM-based recursive feature elimination (SVM-RFE). We use the approach to predict the pharmacological properties of drugs widely used against complex neurodegenerative disorders (NDD) and to build an in-silico computational model for the binary classification of NDD drugs from other drugs. Application of an SVM-RFE model to a set of drugs successfully classified NDD drugs from non-NDD drugs and resulted in overall accuracy of ∼80 % with 10 fold cross validation using 40 top ranked molecular descriptors selected out of total 314 descriptors. Moreover, SVM-RFE method outperformed linear discriminant analysis (LDA) based feature selection and classification. The model reduced the multidimensional descriptors space of drugs dramatically and predicted NDD drugs with high accuracy, while avoiding over fitting. Based on these results, NDD-specific focused libraries of drug-like compounds can be designed and existing NDD-specific drugs can be characterized by a well-characterized set of molecular descriptors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Studying Host-Pathogen Interactions In 3-D: Organotypic Models For Infectious Disease And Drug Development

    Nickerson, Cheryl A.; Richter, Emily G.; Ott, C. Mark

    2006-01-01

    Representative, reproducible and high-throughput models of human cells and tissues are critical for a meaningful evaluation of host-pathogen interactions and are an essential component of the research developmental pipeline. The most informative infection models - animals, organ explants and human trials - are not suited for extensive evaluation of pathogenesis mechanisms and screening of candidate drugs. At the other extreme, more cost effective and accessible infection models such as conventional cell culture and static co-culture may not capture physiological and three-dimensional aspects of tissue biology that are important in assessing pathogenesis, and effectiveness and cytotoxicity of therapeutics. Our lab has used innovative bioengineering technology to establish biologically meaningful 3-D models of human tissues that recapitulate many aspects of the differentiated structure and function of the parental tissue in vivo, and we have applied these models to study infectious disease. We have established a variety of different 3-D models that are currently being used in infection studies - including small intestine, colon, lung, placenta, bladder, periodontal ligament, and neuronal models. Published work from our lab has shown that our 3-D models respond to infection with bacterial and viral pathogens in ways that reflect the infection process in vivo. By virtue of their physiological relevance, 3-D cell cultures may also hold significant potential as models to provide insight into the neuropathogenesis of HIV infection. Furthermore, the experimental flexibility, reproducibility, cost-efficiency, and high throughput platform afforded by these 3-D models may have important implications for the design and development of drugs with which to effectively treat neurological complications of HIV infection.

  15. Similarity-based search of model organism, disease and drug effect phenotypes

    Hoehndorf, Robert

    2015-02-19

    Background: Semantic similarity measures over phenotype ontologies have been demonstrated to provide a powerful approach for the analysis of model organism phenotypes, the discovery of animal models of human disease, novel pathways, gene functions, druggable therapeutic targets, and determination of pathogenicity. Results: We have developed PhenomeNET 2, a system that enables similarity-based searches over a large repository of phenotypes in real-time. It can be used to identify strains of model organisms that are phenotypically similar to human patients, diseases that are phenotypically similar to model organism phenotypes, or drug effect profiles that are similar to the phenotypes observed in a patient or model organism. PhenomeNET 2 is available at http://aber-owl.net/phenomenet. Conclusions: Phenotype-similarity searches can provide a powerful tool for the discovery and investigation of molecular mechanisms underlying an observed phenotypic manifestation. PhenomeNET 2 facilitates user-defined similarity searches and allows researchers to analyze their data within a large repository of human, mouse and rat phenotypes.

  16. Disease modeling and phenotypic drug screening for diabetic cardiomyopathy using human induced pluripotent stem cells.

    Drawnel, Faye M; Boccardo, Stefano; Prummer, Michael; Delobel, Frédéric; Graff, Alexandra; Weber, Michael; Gérard, Régine; Badi, Laura; Kam-Thong, Tony; Bu, Lei; Jiang, Xin; Hoflack, Jean-Christophe; Kiialainen, Anna; Jeworutzki, Elena; Aoyama, Natsuyo; Carlson, Coby; Burcin, Mark; Gromo, Gianni; Boehringer, Markus; Stahlberg, Henning; Hall, Benjamin J; Magnone, Maria Chiara; Kolaja, Kyle; Chien, Kenneth R; Bailly, Jacques; Iacone, Roberto

    2014-11-06

    Diabetic cardiomyopathy is a complication of type 2 diabetes, with known contributions of lifestyle and genetics. We develop environmentally and genetically driven in vitro models of the condition using human-induced-pluripotent-stem-cell-derived cardiomyocytes. First, we mimic diabetic clinical chemistry to induce a phenotypic surrogate of diabetic cardiomyopathy, observing structural and functional disarray. Next, we consider genetic effects by deriving cardiomyocytes from two diabetic patients with variable disease progression. The cardiomyopathic phenotype is recapitulated in the patient-specific cells basally, with a severity dependent on their original clinical status. These models are incorporated into successive levels of a screening platform, identifying drugs that preserve cardiomyocyte phenotype in vitro during diabetic stress. In this work, we present a patient-specific induced pluripotent stem cell (iPSC) model of a complex metabolic condition, showing the power of this technique for discovery and testing of therapeutic strategies for a disease with ever-increasing clinical significance. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Disease Modeling and Phenotypic Drug Screening for Diabetic Cardiomyopathy using Human Induced Pluripotent Stem Cells

    Faye M. Drawnel

    2014-11-01

    Full Text Available Diabetic cardiomyopathy is a complication of type 2 diabetes, with known contributions of lifestyle and genetics. We develop environmentally and genetically driven in vitro models of the condition using human-induced-pluripotent-stem-cell-derived cardiomyocytes. First, we mimic diabetic clinical chemistry to induce a phenotypic surrogate of diabetic cardiomyopathy, observing structural and functional disarray. Next, we consider genetic effects by deriving cardiomyocytes from two diabetic patients with variable disease progression. The cardiomyopathic phenotype is recapitulated in the patient-specific cells basally, with a severity dependent on their original clinical status. These models are incorporated into successive levels of a screening platform, identifying drugs that preserve cardiomyocyte phenotype in vitro during diabetic stress. In this work, we present a patient-specific induced pluripotent stem cell (iPSC model of a complex metabolic condition, showing the power of this technique for discovery and testing of therapeutic strategies for a disease with ever-increasing clinical significance.

  18. Regenerative Medicine, Disease Modelling, and Drug Discovery in Human Pluripotent Stem Cell-Derived Kidney Tissue

    Navin Gupta

    2017-08-01

    Full Text Available The multitude of research clarifying critical factors in embryonic organ development has been instrumental in human stem cell research. Mammalian organogenesis serves as the archetype for directed differentiation protocols, subdividing the process into a series of distinct intermediate stages that can be chemically induced and monitored for the expression of stage-specific markers. Significant advances over the past few years include established directed differentiation protocols of human embryonic stem cells and human induced pluripotent stem cells (hiPSC into human kidney organoids in vitro. Human kidney tissue in vitro simulates the in vivo response when subjected to nephrotoxins, providing a novel screening platform during drug discovery to facilitate identification of lead candidates, reduce developmental expenditures, and reduce future rates of drug-induced acute kidney injury. Patient-derived hiPSC, which bear naturally occurring DNA mutations, may allow for modelling of human genetic diseases to enable determination of pathological mechanisms and screening for novel therapeutics. In addition, recent advances in genome editing with clustered regularly interspaced short palindromic repeats (CRISPR/Cas9 enable the generation of specific mutations to study genetic disease, with non-mutated lines serving as an ideal isogenic control. The growing population of patients with end-stage kidney disease is a worldwide healthcare problem, with high morbidity and mortality rates, that warrants the discovery of novel forms of renal replacement therapy. Coupling the outlined advances in hiPSC research with innovative bioengineering techniques, such as decellularised kidney and three-dimensional printed scaffolds, may contribute to the development of bioengineered transplantable human kidney tissue as a means of renal replacement therapy.

  19. Similarity-based search of model organism, disease and drug effect phenotypes

    Hoehndorf, Robert; Gruenberger, Michael; Gkoutos, Georgios V; Schofield, Paul N

    2015-01-01

    Background: Semantic similarity measures over phenotype ontologies have been demonstrated to provide a powerful approach for the analysis of model organism phenotypes, the discovery of animal models of human disease, novel pathways, gene functions

  20. Applications of patient-specific induced pluripotent stem cells; focused on disease modeling, drug screening and therapeutic potentials for liver disease.

    Chun, Yong Soon; Chaudhari, Pooja; Jang, Yoon-Young

    2010-12-14

    The recent advances in the induced pluripotent stem cell (iPSC) research have significantly changed our perspectives on regenerative medicine by providing researchers with a unique tool to derive disease-specific stem cells for study. In this review, we describe the human iPSC generation from developmentally diverse origins (i.e. endoderm-, mesoderm-, and ectoderm- tissue derived human iPSCs) and multistage hepatic differentiation protocols, and discuss both basic and clinical applications of these cells including disease modeling, drug toxicity screening/drug discovery, gene therapy and cell replacement therapy.

  1. A network-based classification model for deriving novel drug-disease associations and assessing their molecular actions.

    Min Oh

    Full Text Available The growing number and variety of genetic network datasets increases the feasibility of understanding how drugs and diseases are associated at the molecular level. Properly selected features of the network representations of existing drug-disease associations can be used to infer novel indications of existing drugs. To find new drug-disease associations, we generated an integrative genetic network using combinations of interactions, including protein-protein interactions and gene regulatory network datasets. Within this network, network adjacencies of drug-drug and disease-disease were quantified using a scored path between target sets of them. Furthermore, the common topological module of drugs or diseases was extracted, and thereby the distance between topological drug-module and disease (or disease-module and drug was quantified. These quantified scores were used as features for the prediction of novel drug-disease associations. Our classifiers using Random Forest, Multilayer Perceptron and C4.5 showed a high specificity and sensitivity (AUC score of 0.855, 0.828 and 0.797 respectively in predicting novel drug indications, and displayed a better performance than other methods with limited drug and disease properties. Our predictions and current clinical trials overlap significantly across the different phases of drug development. We also identified and visualized the topological modules of predicted drug indications for certain types of cancers, and for Alzheimer's disease. Within the network, those modules show potential pathways that illustrate the mechanisms of new drug indications, including propranolol as a potential anticancer agent and telmisartan as treatment for Alzheimer's disease.

  2. Novel approaches to models of Alzheimer's disease pathology for drug screening and development.

    Shaughnessy, Laura; Chamblin, Beth; McMahon, Lori; Nair, Ayyappan; Thomas, Mary Beth; Wakefield, John; Koentgen, Frank; Ramabhadran, Ram

    2004-01-01

    Development of therapeutics for Alzheimer's disease (AD) requires appropriate cell culture models that reflect the errant biochemical pathways and animal models that reflect the pathological hallmarks of the disease as well as the clinical manifestations. In the past two decades AD research has benefited significantly from the use of genetically engineered cell lines expressing components of the amyloid-generating pathway, as well as from the study of transgenic mice that develop the pathological hallmarks of the disease, mainly neuritic plaques. The choice of certain cell types and the choice of mouse as the model organism have been mandated by the feasibility of introduction and expression of foreign genes into these model systems. We describe a universal and efficient gene-delivery system, using lentiviral vectors, that permits the development of relevant cell biological systems using neuronal cells, including primary neurons and animal models in mammalian species best suited for the study of AD. In addition, lentiviral gene delivery provides avenues for creation of novel models by direct and prolonged expression of genes in the brain in any vertebrate animal. TranzVector is a lentiviral vector optimized for efficiency and safety that delivers genes to cells in culture, in tissue explants, and in live animals regardless of the dividing or differentiated status of the cells. Genes can also be delivered efficiently to fertilized single-cell-stage embryos of a wide range of mammalian species, broadening the range of the model organism (from rats to nonhuman primates) for the study of disease mechanism as well as for development of therapeutics. Copyright 2004 Humana Press Inc.

  3. 3D Printing of Tissue Engineered Constructs for in vitro Modeling of Disease Progression and Drug Screening

    Vanderburgh, Joseph; Sterling, Julie A.

    2016-01-01

    2D cell culture and preclinical animal models have traditionally been implemented for investigating the underlying cellular mechanisms of human disease progression. However, the increasing significance of 3D versus 2D cell culture has initiated a new era in cell culture research in which 3D in vitro models are emerging as a bridge between traditional 2D cell culture and in vivo animal models. Additive manufacturing (AM, also known as 3D printing), defined as the layer-by-layer fabrication of parts directed by digital information from a 3D computer-aided design (CAD) file, offers the advantages of simultaneous rapid prototyping and biofunctionalization as well as the precise placement of cells and extracellular matrix with high resolution. In this review, we highlight recent advances in 3D printing of tissue engineered constructs (TECs) that recapitulate the physical and cellular properties of the tissue microenvironment for investigating mechanisms of disease progression and for screening drugs. PMID:27169894

  4. Three-Dimensional Cell Culture Models for Infectious Disease and Drug Development

    Nickerson, Cheryl A.; Honer zu Bentrup, Kerstin; Ott, C. Mark

    2005-01-01

    Three-dimensional (3-D) cell cultures hold enormous potential to advance our understanding of infectious disease and to effectively translate basic cellular research into clinical applications. Using novel NASA bioreactor technology, the rotating wall vessel (RWV), we have engineered physiologically relevant 3-D human tissue culture models for infectious disease studies. The design of the RWV is based on the understanding that organs and tissues function in a 3-D environment, and that this 3-D architecture is critical for the differentiated form and function of tissues in vivo. The RWV provides large numbers of cells which are amenable to a wide variety of experimental manipulations and provides an easy, reproducible, and cost-effective approach to enhance differentiated features of cell culture models.

  5. Solid lipid nanoparticles as anti-inflammatory drug delivery system in a human inflammatory bowel disease whole-blood model.

    Serpe, Loredana; Canaparo, Roberto; Daperno, Marco; Sostegni, Raffaello; Martinasso, Germana; Muntoni, Elisabetta; Ippolito, Laura; Vivenza, Nicoletta; Pera, Angelo; Eandi, Mario; Gasco, Maria Rosa; Zara, Gian Paolo

    2010-03-18

    Standard treatment for inflammatory bowel diseases (IBD) necessitates frequent intake of anti-inflammatory and/or immunosuppressive drugs, leading to significant adverse events. To evaluate the role solid lipid nanoparticles (SLN) play as drug delivery system in enhancing anti-inflammatory activity for drugs such as dexamethasone and butyrate in a human inflammatory bowel diseases whole-blood model. ELISA assay and the peripheral blood mononuclear cell (PBMC) cytokine mRNA expression levels were evaluated by quantitative SYBR Green real-time RT-PCR to determine the IL-1beta, TNF-alpha, IFN-gamma and IL-10 secretion in inflammatory bowel diseases patients' PBMC culture supernatants. There was a significant decrease in IL-1beta (p<0.01) and TNF-alpha (p<0.001) secretion, whilst IL-10 (p<0.05) secretion significantly increased after cholesteryl butyrate administration, compared to that of butyrate alone at the highest concentration tested (100 microM), at 24h exposure. There was a significant decrease in IL-1beta (p<0.01), TNF-alpha (p<0.001) and IL-10 (p<0.001) secretion after dexamethasone loaded SLN administration, compared to dexamethasone alone at the highest concentration tested (250 nM) at 24h exposure. No IFN-gamma was detected under any conditions and no cytotoxic effects observed even at the highest concentration tested. The incorporation of butyrate and dexamethasone into SLN has a significant positive anti-inflammatory effect in the human inflammatory bowel disease whole-blood model. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Disease-modifying drugs in Alzheimer's disease

    Ghezzi L

    2013-12-01

    Full Text Available Laura Ghezzi, Elio Scarpini, Daniela Galimberti Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy Abstract: Alzheimer's disease (AD is an age-dependent neurodegenerative disorder and the most common cause of dementia. The early stages of AD are characterized by short-term memory loss. Once the disease progresses, patients experience difficulties in sense of direction, oral communication, calculation, ability to learn, and cognitive thinking. The median duration of the disease is 10 years. The pathology is characterized by deposition of amyloid beta peptide (so-called senile plaques and tau protein in the form of neurofibrillary tangles. Currently, two classes of drugs are licensed by the European Medicines Agency for the treatment of AD, ie, acetylcholinesterase inhibitors for mild to moderate AD, and memantine, an N-methyl-D-aspartate receptor antagonist, for moderate and severe AD. Treatment with acetylcholinesterase inhibitors or memantine aims at slowing progression and controlling symptoms, whereas drugs under development are intended to modify the pathologic steps leading to AD. Herein, we review the clinical features, pharmacologic properties, and cost-effectiveness of the available acetylcholinesterase inhibitors and memantine, and focus on disease-modifying drugs aiming to interfere with the amyloid beta peptide, including vaccination, passive immunization, and tau deposition. Keywords: Alzheimer's disease, acetylcholinesterase inhibitors, memantine, disease-modifying drugs, diagnosis, treatment

  7. Lixisenatide, a drug developed to treat type 2 diabetes, shows neuroprotective effects in a mouse model of Alzheimer's disease.

    McClean, Paula L; Hölscher, Christian

    2014-11-01

    Type 2 diabetes is a risk factor for developing Alzheimer's disease (AD). In the brains of AD patients, insulin signalling is desensitised. The incretin hormone Glucagon-like peptide-1 (GLP-1) facilitates insulin signalling, and analogues such as liraglutide are on the market as treatments for type 2 diabetes. We have previously shown that liraglutide showed neuroprotective effects in the APPswe/PS1ΔE9 mouse model of AD. Here, we test the GLP-1 receptor agonist lixisenatide in the same mouse model and compare the effects to liraglutide. After ten weeks of daily i.p. injections with liraglutide (2.5 or 25 nmol/kg) or lixisenatide (1 or 10 nmol/kg) or saline of APP/PS1 mice at an age when amyloid plaques had already formed, performance in an object recognition task was improved in APP/PS1 mice by both drugs at all doses tested. When analysing synaptic plasticity in the hippocampus, LTP was strongly increased in APP/PS1 mice by either drug. Lixisenatide (1 nmol/kg) was most effective. The reduction of synapse numbers seen in APP/PS1 mice was prevented by the drugs. The amyloid plaque load and dense-core Congo red positive plaque load in the cortex was reduced by both drugs at all doses. The chronic inflammation response (microglial activation) was also reduced by all treatments. The results demonstrate that the GLP-1 receptor agonists liraglutide and lixisenatide which are on the market as treatments for type 2 diabetes show promise as potential drug treatments of AD. Lixisenatide was equally effective at a lower dose compared to liraglutide in some of the parameters measured. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Drugs Approved for Gestational Trophoblastic Disease

    This page lists cancer drugs approved by the Food and Drug Administration (FDA) for gestational trophoblastic disease. The list includes generic names and brand names. The drug names link to NCI's Cancer Drug Information summaries.

  9. Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models.

    Bunik, Victoria I; Tylicki, Adam; Lukashev, Nikolay V

    2013-12-01

    Bringing a knowledge of enzymology into research in vivo and in situ is of great importance in understanding systems biology and metabolic regulation. The central metabolic significance of thiamin (vitamin B1 ) and its diphosphorylated derivative (thiamin diphosphate; ThDP), and the fundamental differences in the ThDP-dependent enzymes of metabolic networks in mammals versus plants, fungi and bacteria, or in health versus disease, suggest that these enzymes are promising targets for biotechnological and medical applications. Here, the in vivo action of known regulators of ThDP-dependent enzymes, such as synthetic structural analogs of the enzyme substrates and thiamin, is analyzed in light of the enzymological data accumulated during half a century of research. Mimicking the enzyme-specific catalytic intermediates, the phosphonate analogs of 2-oxo acids selectively inhibit particular ThDP-dependent enzymes. Because of their selectivity, use of these compounds in cellular and animal models of ThDP-dependent enzyme malfunctions improves the validity of the model and its predictive power when compared with the nonselective and enzymatically less characterized oxythiamin and pyrithiamin. In vitro studies of the interaction of thiamin analogs and their biological derivatives with potential in vivo targets are necessary to identify and attenuate the analog selectivity. For both the substrate and thiamin synthetic analogs, in vitro reactivities with potential targets are highly relevant in vivo. However, effective concentrations in vivo are often higher than in vitro studies would suggest. The significance of specific inihibition of the ThDP-dependent enzymes for the development of herbicides, antibiotics, anticancer and neuroprotective strategies is discussed. © 2013 FEBS.

  10. A novel blood-brain barrier co-culture system for drug targeting of Alzheimer's disease: establishment by using acitretin as a model drug.

    Freese, Christian; Reinhardt, Sven; Hefner, Gudrun; Unger, Ronald E; Kirkpatrick, C James; Endres, Kristina

    2014-01-01

    In the pathogenesis of Alzheimer's disease (AD) the homeostasis of amyloid precursor protein (APP) processing in the brain is impaired. The expression of the competing proteases ADAM10 (a disintegrin and metalloproteinase 10) and BACE-1 (beta site APP cleaving enzyme 1) is shifted in favor of the A-beta generating enzyme BACE-1. Acitretin--a synthetic retinoid-e.g., has been shown to increase ADAM10 gene expression, resulting in a decreased level of A-beta peptides within the brain of AD model mice and thus is of possible value for AD therapy. A striking challenge in evaluating novel therapeutically applicable drugs is the analysis of their potential to overcome the blood-brain barrier (BBB) for central nervous system targeting. In this study, we established a novel cell-based bio-assay model to test ADAM10-inducing drugs for their ability to cross the BBB. We therefore used primary porcine brain endothelial cells (PBECs) and human neuroblastoma cells (SH-SY5Y) transfected with an ADAM10-promoter luciferase reporter vector in an indirect co-culture system. Acitretin served as a model substance that crosses the BBB and induces ADAM10 expression. We ensured that ADAM10-dependent constitutive APP metabolism in the neuronal cells was unaffected under co-cultivation conditions. Barrier properties established by PBECs were augmented by co-cultivation with SH-SY5Y cells and they remained stable during the treatment with acitretin as demonstrated by electrical resistance measurement and permeability-coefficient determination. As a consequence of transcellular acitretin transport measured by HPLC, the activity of the ADAM10-promoter reporter gene was significantly increased in co-cultured neuronal cells as compared to vehicle-treated controls. In the present study, we provide a new bio-assay system relevant for the study of drug targeting of AD. This bio-assay can easily be adapted to analyze other Alzheimer- or CNS disease-relevant targets in neuronal cells, as their

  11. Vaginal drug distribution modeling.

    Katz, David F; Yuan, Andrew; Gao, Yajing

    2015-09-15

    This review presents and applies fundamental mass transport theory describing the diffusion and convection driven mass transport of drugs to the vaginal environment. It considers sources of variability in the predictions of the models. It illustrates use of model predictions of microbicide drug concentration distribution (pharmacokinetics) to gain insights about drug effectiveness in preventing HIV infection (pharmacodynamics). The modeling compares vaginal drug distributions after different gel dosage regimens, and it evaluates consequences of changes in gel viscosity due to aging. It compares vaginal mucosal concentration distributions of drugs delivered by gels vs. intravaginal rings. Finally, the modeling approach is used to compare vaginal drug distributions across species with differing vaginal dimensions. Deterministic models of drug mass transport into and throughout the vaginal environment can provide critical insights about the mechanisms and determinants of such transport. This knowledge, and the methodology that obtains it, can be applied and translated to multiple applications, involving the scientific underpinnings of vaginal drug distribution and the performance evaluation and design of products, and their dosage regimens, that achieve it. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Induced pluripotent stem cell-derived cardiomyocytes for cardiovascular disease modeling and drug screening

    Sharma, Arun; Wu, Joseph C; Wu, Sean M

    2013-01-01

    Human induced pluripotent stem cells (hiPSCs) have emerged as a novel tool for drug discovery and therapy in cardiovascular medicine. hiPSCs are functionally similar to human embryonic stem cells (hESCs) and can be derived autologously without the ethical challenges associated with hESCs. Given the limited regenerative capacity of the human heart following myocardial injury, cardiomyocytes derived from hiPSCs (hiPSC-CMs) have garnered significant attention from basic and translational scienti...

  13. Non human primate models for Alzheimer's disease-related research and drug discovery

    Van Dam, Debby; De Deyn, Peter Paul

    2017-01-01

    Introduction: Pathophysiological mechanisms underlying Alzheimer's disease (AD) remain insufficiently documented for the identification of accurate diagnostic markers and purposeful target discovery and development. Nonhuman primates (NHPs) have important translational value given their close

  14. A cellular model to study drug-induced liver injury in nonalcoholic fatty liver disease: Application to acetaminophen

    Michaut, Anaïs; Le Guillou, Dounia [INSERM, U991, Université de Rennes 1, Rennes (France); Moreau, Caroline [INSERM, U991, Université de Rennes 1, Rennes (France); Service de Biochimie et Toxicologie, CHU Pontchaillou, Rennes (France); Bucher, Simon [INSERM, U991, Université de Rennes 1, Rennes (France); McGill, Mitchell R. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Martinais, Sophie [INSERM, U991, Université de Rennes 1, Rennes (France); Gicquel, Thomas; Morel, Isabelle [INSERM, U991, Université de Rennes 1, Rennes (France); Service de Biochimie et Toxicologie, CHU Pontchaillou, Rennes (France); Robin, Marie-Anne [INSERM, U991, Université de Rennes 1, Rennes (France); Jaeschke, Hartmut [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Fromenty, Bernard, E-mail: bernard.fromenty@inserm.fr [INSERM, U991, Université de Rennes 1, Rennes (France)

    2016-02-01

    Obesity and nonalcoholic fatty liver disease (NAFLD) can increase susceptibility to hepatotoxicity induced by some xenobiotics including drugs, but the involved mechanisms are poorly understood. For acetaminophen (APAP), a role of hepatic cytochrome P450 2E1 (CYP2E1) is suspected since the activity of this enzyme is consistently enhanced during NAFLD. The first aim of our study was to set up a cellular model of NAFLD characterized not only by triglyceride accumulation but also by higher CYP2E1 activity. To this end, human HepaRG cells were incubated for one week with stearic acid or oleic acid, in the presence of different concentrations of insulin. Although cellular triglycerides and the expression of lipid-responsive genes were similar with both fatty acids, CYP2E1 activity was significantly increased only by stearic acid. CYP2E1 activity was reduced by insulin and this effect was reproduced in cultured primary human hepatocytes. Next, APAP cytotoxicity was assessed in HepaRG cells with or without lipid accretion and CYP2E1 induction. Experiments with a large range of APAP concentrations showed that the loss of ATP and glutathione was almost always greater in the presence of stearic acid. In cells pretreated with the CYP2E1 inhibitor chlormethiazole, recovery of ATP was significantly higher in the presence of stearate with low (2.5 mM) or high (20 mM) concentrations of APAP. Levels of APAP-glucuronide were significantly enhanced by insulin. Hence, HepaRG cells can be used as a valuable model of NAFLD to unveil important metabolic and hormonal factors which can increase susceptibility to drug-induced hepatotoxicity. - Highlights: • Nonalcoholic fatty liver disease (NAFLD) is frequent in obese individuals. • NAFLD can favor hepatotoxicity induced by some drugs including acetaminophen (APAP). • A model of NAFLD was set up by using HepaRG cells incubated with stearate or oleate. • Stearate-loaded HepaRG cells presented higher cytochrome P450 2E1 (CYP2E1

  15. Two-stage Bayesian model to evaluate the effect of air pollution on chronic respiratory diseases using drug prescriptions.

    Blangiardo, Marta; Finazzi, Francesco; Cameletti, Michela

    2016-08-01

    Exposure to high levels of air pollutant concentration is known to be associated with respiratory problems which can translate into higher morbidity and mortality rates. The link between air pollution and population health has mainly been assessed considering air quality and hospitalisation or mortality data. However, this approach limits the analysis to individuals characterised by severe conditions. In this paper we evaluate the link between air pollution and respiratory diseases using general practice drug prescriptions for chronic respiratory diseases, which allow to draw conclusions based on the general population. We propose a two-stage statistical approach: in the first stage we specify a space-time model to estimate the monthly NO2 concentration integrating several data sources characterised by different spatio-temporal resolution; in the second stage we link the concentration to the β2-agonists prescribed monthly by general practices in England and we model the prescription rates through a small area approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Drug disposition model of radiolabeled etelcalcetide in patients with chronic kidney disease and secondary hyperparathyroidism on hemodialysis.

    Wu, Liviawati; Melhem, Murad; Subramanian, Raju; Wu, Benjamin

    2017-02-01

    Etelcalcetide (AMG 416) is an allosteric activator of the calcium-sensing receptor for treatment of secondary hyperparathyroidism in patients with chronic kidney disease (CKD) on hemodialysis. To characterize the time course of etelcalcetide in different matrices (plasma, dialysate, urine, and feces), a drug disposition model was developed. Nonlinear mixed-effect modeling was used to describe data from six adults with CKD on hemodialysis who received a single intravenous dose of [ 14 C]etelcalcetide (10 mg; 710 nCi) after hemodialysis (study NCT02054572). A three-compartment model with the following attributes adequately described the observed concentration-time profiles of etelcalcetide in the different matrices: biotransformation in the central compartment; elimination in dialysate, urine, and feces; and a nonspecific elimination process. The terminal half-life of total C-14 in plasma was approximately 56 days. The ratio of conjugation-deconjugation rate constants between etelcalcetide and biotransformed products was 11.3. Simulations showed that three hemodialysis sessions per week for 52 weeks would contribute to 60.1% of the total clearance of etelcalcetide following single-dose intravenous etelcalcetide administration. Minimal amounts were eliminated in urine (2.5%) and feces (5.7%), whereas nonspecific elimination accounted for 31.2% of total elimination. In addition to removal of etelcalcetide, ~10% of small-molecular weight biotransformed products was estimated to have been removed through hemodialysis and in urine. This model provided a quantitative approach to describe biotransformation, distribution, and elimination of etelcalcetide, a unique synthetic D-amino acid peptide, in the relevant patient population.

  17. Rare diseases and orphan drugs

    Domenica Taruscio

    2011-01-01

    Full Text Available According to the Regulation (EC N. 141/2000 of the European Parliament and of the Council, rare diseases are life-threatening or chronically debilitating conditions, affecting no more than 5 in 10 000 persons in the European Community. It is estimated that between 6000 to 8000 distinct rare diseases affect up to 6% of the total EU population. Therefore, these conditions can be considered rare if taken individually but they affect a significant proportion of the European population when considered as a single group. Several initiatives have been undertaken at international, European and national level to tackle public health as well as research issues related to the prevention, diagnosis, treatment and surveillance of these diseases. The development of innovative and effective medical products for their diagnosis and treatment is frequently hampered by several factors, including the limited knowledge of their natural history, the difficulties in setting up clinical studies due to the limited numbers of patients affected by a specific disease, the weak interest of sponsors due to the restricted market opportunities. Therefore, incentives and other facilitations have been adopted in many parts of the world, including in the EU, in order to facilitate the development and commercialization of diagnostic tools and treatments devoted to rare diseases. This paper illustrates mainly the European initiatives and will discuss the problematic and controversial aspects surrounding orphan drugs. Finally, activities and measures adopted in Italy are presented.

  18. Subtype-specific promoter-driven action potential imaging for precise disease modelling and drug testing in hiPSC-derived cardiomyocytes

    Chen, Zhifen; Xian, Wenying; Bellin, Milena; Dorn, Tatjana; Tian, Qinghai; Goedel, Alexander; Dreizehnter, Lisa; Schneider, Christine M.; Ward-van Oostwaard, Dorien; Ng, Judy King Man; Hinkel, Rabea; Pane, Luna Simona; Mummery, Christine L.; Lipp, Peter; Moretti, Alessandra; Laugwitz, Karl-Ludwig; Sinnecker, Daniel

    2016-01-01

    AIMS: Cardiomyocytes (CMs) generated from human induced pluripotent stem cells (hiPSCs) are increasingly used in disease modelling and drug evaluation. However, they are typically a heterogeneous mix of ventricular-, atrial-, and nodal-like cells based on action potentials (APs) and gene expression.

  19. Therapeutic Drug Monitoring in Rheumatic Diseases

    NG Hoi-Yan Alexandra

    2016-12-01

    Full Text Available The ultimate goal of treating rheumatic disease is to achieve rapid suppression of inflammation, while at the same time minimizing the toxicities from rheumatic drugs. Different patients have different individual pharmacokinetics that can affect the drug level. Moreover, different factors, such as renal function, age or even different underlying diseases, can affect the drug level. Therefore, giving the same dosage of drugs to different patients may result in different drug levels. This article will review the usefulness of therapeutic drug monitoring in maximizing drug efficacy, while reducing the risk of toxicities in Hydroxychloroquine, Mycophenolate Mofetil, Tacrolimus and Tumor Necrosis Factor inhibitors (TNF Inhibitors.

  20. Drug development for airway diseases: looking forward

    Holgate, Stephen; Agusti, Alvar; Strieter, Robert M.; Anderson, Gary P.; Fogel, Robert; Bel, Elisabeth; Martin, Thomas R.; Reiss, Theodore F.

    2015-01-01

    Advancing drug development for airway diseases beyond the established mechanisms and symptomatic therapies requires redefining the classifications of airway diseases, considering systemic manifestations, developing new tools and encouraging collaborations

  1. The Importance of Non-neuronal Cell Types in hiPSC-Based Disease Modeling and Drug Screening

    David M. Gonzalez

    2017-12-01

    Full Text Available Current applications of human induced pluripotent stem cell (hiPSC technologies in patient-specific models of neurodegenerative and neuropsychiatric disorders tend to focus on neuronal phenotypes. Here, we review recent efforts toward advancing hiPSCs toward non-neuronal cell types of the central nervous system (CNS and highlight their potential use for the development of more complex in vitro models of neurodevelopment and disease. We present evidence from previous works in both rodents and humans of the importance of these cell types (oligodendrocytes, microglia, astrocytes in neurological disease and highlight new hiPSC-based models that have sought to explore these relationships in vitro. Lastly, we summarize efforts toward conducting high-throughput screening experiments with hiPSCs and propose methods by which new screening platforms could be designed to better capture complex relationships between neural cell populations in health and disease.

  2. Computational modeling and in-vitro/in-silico correlation of phospholipid-based prodrugs for targeted drug delivery in inflammatory bowel disease

    Dahan, Arik; Markovic, Milica; Keinan, Shahar; Kurnikov, Igor; Aponick, Aaron; Zimmermann, Ellen M.; Ben-Shabat, Shimon

    2017-11-01

    Targeting drugs to the inflamed intestinal tissue(s) represents a major advancement in the treatment of inflammatory bowel disease (IBD). In this work we present a powerful in-silico modeling approach to guide the molecular design of novel prodrugs targeting the enzyme PLA2, which is overexpressed in the inflamed tissues of IBD patients. The prodrug consists of the drug moiety bound to the sn-2 position of phospholipid (PL) through a carbonic linker, aiming to allow PLA2 to release the free drug. The linker length dictates the affinity of the PL-drug conjugate to PLA2, and the optimal linker will enable maximal PLA2-mediated activation. Thermodynamic integration and Weighted Histogram Analysis Method (WHAM)/Umbrella Sampling method were used to compute the changes in PLA2 transition state binding free energy of the prodrug molecule (ΔΔGtr) associated with decreasing/increasing linker length. The simulations revealed that 6-carbons linker is the optimal one, whereas shorter or longer linkers resulted in decreased PLA2-mediated activation. These in-silico results were shown to be in excellent correlation with experimental in-vitro data. Overall, this modern computational approach enables optimization of the molecular design of novel prodrugs, which may allow targeting the free drug specifically to the diseased intestinal tissue of IBD patients.

  3. Drugs of abuse and Parkinson's disease.

    Mursaleen, Leah R; Stamford, Jonathan A

    2016-01-04

    The term "drug of abuse" is highly contextual. What constitutes a drug of abuse for one population of patients does not for another. It is therefore important to examine the needs of the patient population to properly assess the status of drugs of abuse. The focus of this article is on the bidirectional relationship between patients and drug abuse. In this paper we will introduce the dopaminergic systems of the brain in Parkinson's and the influence of antiparkinsonian drugs upon them before discussing this synergy of condition and medication as fertile ground for drug abuse. We will then examine the relationship between drugs of abuse and Parkinson's, both beneficial and deleterious. In summary we will draw the different strands together and speculate on the future merit of current drugs of abuse as treatments for Parkinson's disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. EDITORIAL Drugs for Neglected Diseases Initiative

    Dr.Kofi-Tsekpo

    disease, and malaria have a devastating impact on humanity, yet R&D for new drugs for these diseases has been progressively marginalised because they are not considered a lucrative investment. DNDi, a needs-driven initiative, keeps the needs of patients suffering from neglected diseases paramount in its search for.

  5. Financing drug discovery for orphan diseases

    Fagnan, David Erik; Gromatzky, Austin A.; Stein, Roger Mark; Fernandez, Jose-Maria; Lo, Andrew W.

    2014-01-01

    Recently proposed ‘megafund’ financing methods for funding translational medicine and drug development require billions of dollars in capital per megafund to de-risk the drug discovery process enough to issue long-term bonds. Here, we demonstrate that the same financing methods can be applied to orphan drug development but, because of the unique nature of orphan diseases and therapeutics (lower development costs, faster FDA approval times, lower failure rates and lower correlation of failures...

  6. Alterations in endo-lysosomal function induce similar hepatic lipid profiles in rodent models of drug-induced phospholipidosis and Sandhoff disease.

    Lecommandeur, Emmanuelle; Baker, David; Cox, Timothy M; Nicholls, Andrew W; Griffin, Julian L

    2017-07-01

    Drug-induced phospholipidosis (DIPL) is characterized by an increase in the phospholipid content of the cell and the accumulation of drugs and lipids inside the lysosomes of affected tissues, including in the liver. Although of uncertain pathological significance for patients, the condition remains a major impediment for the clinical development of new drugs. Human Sandhoff disease (SD) is caused by inherited defects of the β subunit of lysosomal β-hexosaminidases (Hex) A and B, leading to a large array of symptoms, including neurodegeneration and ultimately death by the age of 4 in its most common form. The substrates of Hex A and B, gangliosides GM2 and GA2, accumulate inside the lysosomes of the CNS and in peripheral organs. Given that both DIPL and SD are associated with lysosomes and lipid metabolism in general, we measured the hepatic lipid profiles in rodent models of these two conditions using untargeted LC/MS to examine potential commonalities. Both model systems shared a number of perturbed lipid pathways, notably those involving metabolism of cholesteryl esters, lysophosphatidylcholines, bis(monoacylglycero)phosphates, and ceramides. We report here profound alterations in lipid metabolism in the SD liver. In addition, DIPL induced a wide range of lipid changes not previously observed in the liver, highlighting similarities with those detected in the model of SD and raising concerns that these lipid changes may be associated with underlying pathology associated with lysosomal storage disorders. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  7. Emerging drugs for coeliac disease.

    Mooney, Peter D; Hadjivassiliou, Marios; Sanders, David S

    2014-12-01

    Coeliac disease is an autoimmune gluten sensitive enteropathy and is now known to affect 1% of the adult population. A gluten-free diet (GFD) should be curative; however, up to 30% of patients have persistent symptoms and many patients find the diet difficult to fully adhere to. Currently, there are no licensed therapeutic options for patients with coeliac disease outside of a GFD. This review will outline the case for alternative treatments and discuss the potential therapeutic targets. The products in the most advanced stage of development will be discussed in detail. There is clearly an unmet need for alternatives to a GFD for the treatment of coeliac disease. Oral glutenase supplements to improve the degradation of gluten into non-toxic peptides appear to be the most likely to provide a breakthrough in the treatment of coeliac disease; however, other modalities such as a therapeutic vaccine or zonulin inhibitors to reduce intestinal permeability have shown promising results.

  8. Structural modelling and comparative analysis of homologous, analogous and specific proteins from Trypanosoma cruzi versus Homo sapiens: putative drug targets for chagas' disease treatment.

    Capriles, Priscila V S Z; Guimarães, Ana C R; Otto, Thomas D; Miranda, Antonio B; Dardenne, Laurent E; Degrave, Wim M

    2010-10-29

    Trypanosoma cruzi is the etiological agent of Chagas' disease, an endemic infection that causes thousands of deaths every year in Latin America. Therapeutic options remain inefficient, demanding the search for new drugs and/or new molecular targets. Such efforts can focus on proteins that are specific to the parasite, but analogous enzymes and enzymes with a three-dimensional (3D) structure sufficiently different from the corresponding host proteins may represent equally interesting targets. In order to find these targets we used the workflows MHOLline and AnEnΠ obtaining 3D models from homologous, analogous and specific proteins of Trypanosoma cruzi versus Homo sapiens. We applied genome wide comparative modelling techniques to obtain 3D models for 3,286 predicted proteins of T. cruzi. In combination with comparative genome analysis to Homo sapiens, we were able to identify a subset of 397 enzyme sequences, of which 356 are homologous, 3 analogous and 38 specific to the parasite. In this work, we present a set of 397 enzyme models of T. cruzi that can constitute potential structure-based drug targets to be investigated for the development of new strategies to fight Chagas' disease. The strategies presented here support the concept of structural analysis in conjunction with protein functional analysis as an interesting computational methodology to detect potential targets for structure-based rational drug design. For example, 2,4-dienoyl-CoA reductase (EC 1.3.1.34) and triacylglycerol lipase (EC 3.1.1.3), classified as analogous proteins in relation to H. sapiens enzymes, were identified as new potential molecular targets.

  9. Mitochondrial Drugs for Alzheimer Disease

    Xiongwei Zhu

    2009-12-01

    Full Text Available Therapeutic strategies for Alzheimer disease (AD have yet to offer a diseasemodifying effect to stop the debilitating progression of neurodegeneration and cognitive decline. Rather, treatments thus far are limited to agents that slow disease progression without halting it, and although much work towards a cure is underway, a greater understanding of disease etiology is certainly necessary for any such achievement. Mitochondria, as the centers of cellular metabolic activity and the primary generators of reactive oxidative species in the cell, received particular attention especially given that mitochondrial defects are known to contribute to cellular damage. Furthermore, as oxidative stress has come to the forefront of AD as a causal theory, and as mitochondrial damage is known to precede much of the hallmark pathologies of AD, it seems increasingly apparent that this metabolic organelle is ultimately responsible for much, if not all of disease pathogenesis. In this review, we review the role of neuronal mitochondria in the pathogenesis of AD and critically assess treatment strategies that utilize this upstream access point as a method for disease prevention. We suspect that, with a revived focus on mitochondrial repair and protection, an effective and realistic therapeutic agent can be successfully developed.

  10. Therapeutic advantage of pro-electrophilic drugs to activate the Nrf2/ARE pathway in Alzheimer's disease models.

    Lipton, Stuart A; Rezaie, Tayebeh; Nutter, Anthony; Lopez, Kevin M; Parker, James; Kosaka, Kunio; Satoh, Takumi; McKercher, Scott R; Masliah, Eliezer; Nakanishi, Nobuki

    2016-12-01

    Alzheimer's disease (AD) is characterized by synaptic and neuronal loss, which occurs at least partially through oxidative stress induced by oligomeric amyloid-β (Aβ)-peptide. Carnosic acid (CA), a chemical found in rosemary and sage, is a pro-electrophilic compound that is converted to its active form by oxidative stress. The active form stimulates the Keap1/Nrf2 transcriptional pathway and thus production of phase 2 antioxidant enzymes. We used both in vitro and in vivo models. For in vitro studies, we evaluated protective effects of CA on primary neurons exposed to oligomeric Aβ. For in vivo studies, we used two transgenic mouse models of AD, human amyloid precursor protein (hAPP)-J20 mice and triple transgenic (3xTg AD) mice. We treated these mice trans-nasally with CA twice weekly for 3 months. Subsequently, we performed neurobehavioral tests and quantitative immunohistochemistry to assess effects on AD-related phenotypes, including learning and memory, and synaptic damage. In vitro, CA reduced dendritic spine loss in rat neurons exposed to oligomeric Aβ. In vivo, CA treatment of hAPP-J20 mice improved learning and memory in the Morris water maze test. Histologically, CA increased dendritic and synaptic markers, and decreased astrogliosis, Aβ plaque number, and phospho-tau staining in the hippocampus. We conclude that CA exhibits therapeutic benefits in rodent AD models and since the FDA has placed CA on the 'generally regarded as safe' (GRAS) list, thus obviating the need for safety studies, human clinical trials will be greatly expedited.

  11. Financing drug discovery for orphan diseases.

    Fagnan, David E; Gromatzky, Austin A; Stein, Roger M; Fernandez, Jose-Maria; Lo, Andrew W

    2014-05-01

    Recently proposed 'megafund' financing methods for funding translational medicine and drug development require billions of dollars in capital per megafund to de-risk the drug discovery process enough to issue long-term bonds. Here, we demonstrate that the same financing methods can be applied to orphan drug development but, because of the unique nature of orphan diseases and therapeutics (lower development costs, faster FDA approval times, lower failure rates and lower correlation of failures among disease targets) the amount of capital needed to de-risk such portfolios is much lower in this field. Numerical simulations suggest that an orphan disease megafund of only US$575 million can yield double-digit expected rates of return with only 10-20 projects in the portfolio. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Drug dosing in chronic kidney disease.

    Gabardi, Steven; Abramson, Stuart

    2005-05-01

    Patients with chronic kidney disease (CKD) are at high risk for adverse drug reactions and drug-drug interactions. Drug dosing in these patients often proves to be a difficult task. Renal dysfunction-induced changes in human pathophysiology regularly results may alter medication pharmacodynamics and handling. Several pharmacokinetic parameters are adversely affected by CKD, secondary to a reduced oral absorption and glomerular filtration; altered tubular secretion; and reabsorption and changes in intestinal, hepatic, and renal metabolism. In general, drug dosing can be accomplished by multiple methods; however, the most common recommendations are often to reduce the dose or expand the dosing interval, or use both methods simultaneously. Some medications need to be avoided all together in CKD either because of lack of efficacy or increased risk of toxicity. Nevertheless, specific recommendations are available for dosing of certain medications and are an important resource, because most are based on clinical or pharmacokinetic trials.

  13. Drug-model membrane interactions

    Deniz, Usha K.

    1994-01-01

    In the present day world, drugs play a very important role in medicine and it is necessary to understand their mode of action at the molecular level, in order to optimise their use. Studies of drug-biomembrane interactions are essential for gaining such as understanding. However, it would be prohibitively difficult to carry out such studies, since biomembranes are highly complex systems. Hence, model membranes (made up of these lipids which are important components of biomembranes) of varying degrees of complexity are used to investigate drug-membrane interactions. Bio- as well as model-membranes undergo a chain melting transition when heated, the chains being in a disordered state above the transition point, T CM . This transition is of physiological importance since biomembranes select their components such that T CM is less than the ambient temperature but not very much so, so that membrane flexibility is ensured and porosity, avoided. The influence of drugs on the transition gives valuable clues about various parameters such as the location of the drug in the membrane. Deep insights into drug-membrane interactions are obtained by observing the effect of drugs on membrane structure and the mobilities of the various groups in lipids, near T CM . Investigation of such changes have been carried out with several drugs, using techniques such as DSC, XRD and NMR. The results indicate that the drug-membrane interaction not only depends on the nature of drug and lipids but also on the form of the model membrane - stacked bilayer or vesicles. The light that these results shed on the nature of drug-membrane interactions is discussed. (author). 13 refs., 13 figs., 1 tab

  14. Emerging drugs for gastroesophageal reflux disease

    Boeckxstaens, G. E.

    2009-01-01

    Proton pump inhibitors (PPIs) are very effective and safe drugs for the treatment of erosive and non-erosive gastroesophageal reflux disease (GERD). Nevertheless, a significant proportion of GERD patients (30 - 40%) continue to suffer from symptoms during PPI treatment, which has stimulated the

  15. Meningococcal disease and future drug targets

    Gammelgaard, L K; Colding, H; Hartzen, S H

    2011-01-01

    recent data and current knowledge on molecular mechanisms of meningococcal disease and explains how host immune responses ultimately may aggravate neuropathology and the clinical prognosis. Within this context, particular importance is paid to the endotoxic components that provide potential drug targets...... for novel neuroprotective adjuvants, which are needed in order to improve the clinical management of meningoencephalitis and patient prognosis....

  16. Mathematical modeling of drug dissolution.

    Siepmann, J; Siepmann, F

    2013-08-30

    The dissolution of a drug administered in the solid state is a pre-requisite for efficient subsequent transport within the human body. This is because only dissolved drug molecules/ions/atoms are able to diffuse, e.g. through living tissue. Thus, generally major barriers, including the mucosa of the gastro intestinal tract, can only be crossed after dissolution. Consequently, the process of dissolution is of fundamental importance for the bioavailability and, hence, therapeutic efficacy of various pharmaco-treatments. Poor aqueous solubility and/or very low dissolution rates potentially lead to insufficient availability at the site of action and, hence, failure of the treatment in vivo, despite a potentially ideal chemical structure of the drug to interact with its target site. Different physical phenomena are involved in the process of drug dissolution in an aqueous body fluid, namely the wetting of the particle's surface, breakdown of solid state bonds, solvation, diffusion through the liquid unstirred boundary layer surrounding the particle as well as convection in the surrounding bulk fluid. Appropriate mathematical equations can be used to quantify these mass transport steps, and more or less complex theories can be developed to describe the resulting drug dissolution kinetics. This article gives an overview on the current state of the art of modeling drug dissolution and points out the assumptions the different theories are based on. Various practical examples are given in order to illustrate the benefits of such models. This review is not restricted to mathematical theories considering drugs exhibiting poor aqueous solubility and/or low dissolution rates, but also addresses models quantifying drug release from controlled release dosage forms, in which the process of drug dissolution plays a major role. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Animal models of drug addiction.

    García Pardo, María Pilar; Roger Sánchez, Concepción; De la Rubia Ortí, José Enrique; Aguilar Calpe, María Asunción

    2017-09-29

    The development of animal models of drug reward and addiction is an essential factor for progress in understanding the biological basis of this disorder and for the identification of new therapeutic targets. Depending on the component of reward to be studied, one type of animal model or another may be used. There are models of reinforcement based on the primary hedonic effect produced by the consumption of the addictive substance, such as the self-administration (SA) and intracranial self-stimulation (ICSS) paradigms, and there are models based on the component of reward related to associative learning and cognitive ability to make predictions about obtaining reward in the future, such as the conditioned place preference (CPP) paradigm. In recent years these models have incorporated methodological modifications to study extinction, reinstatement and reconsolidation processes, or to model specific aspects of addictive behavior such as motivation to consume drugs, compulsive consumption or drug seeking under punishment situations. There are also models that link different reinforcement components or model voluntary motivation to consume (two-bottle choice, or drinking in the dark tests). In short, innovations in these models allow progress in scientific knowledge regarding the different aspects that lead individuals to consume a drug and develop compulsive consumption, providing a target for future treatments of addiction.

  18. In silico studies in drug research against neurodegenerative diseases.

    Makhouri, Farahnaz Rezaei; Ghasemi, Jahan B

    2017-08-22

    Neurodegenerative diseases such as Alzheimer's disease (AD), progressive neurodegenerative forms of Huntington's disease, Parkinson's disease (PD), amyotrophic lateral sclerosis, spinal cerebellar ataxias, and spinal and bulbar muscular atrophy are described by slow and selective dysfunction and degeneration of neurons and axons in the central nervous system (CNS). Computer-aided or in silico design methods have matured into powerful tools for reducing the number of ligands that should be screened in experimental assays. In the present review, the authors provide a basic background about neurodegenerative diseases and in silico techniques in the drug research. Furthermore, they review the various in silico studies reported against various targets in neurodegenerative diseases, including homology modeling, molecular docking, virtual high-throughput screening, quantitative structure activity relationship (QSAR), hologram quantitative structure activity relationship (HQSAR), 3D pharmacophore mapping, proteochemometrics modeling (PCM), fingerprints, fragment-based drug discovery, Monte Carlo simulation, molecular dynamic (MD) simulation, quantum-mechanical methods for drug design, support vector machines, and machine learning approaches. Neurodegenerative diseases have a multifactorial pathoetiological origin, so scientists have become persuaded that a multi-target therapeutic strategy aimed at the simultaneous targeting of multiple proteins (and therefore etiologies) involved in the development of a disease is recommended in future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Dual activities of the anti-cancer drug candidate PBI-05204 provide neuroprotection in brain slice models for neurodegenerative diseases and stroke.

    Van Kanegan, Michael J; Dunn, Denise E; Kaltenbach, Linda S; Shah, Bijal; He, Dong Ning; McCoy, Daniel D; Yang, Peiying; Peng, Jiangnan; Shen, Li; Du, Lin; Cichewicz, Robert H; Newman, Robert A; Lo, Donald C

    2016-05-12

    We previously reported neuroprotective activity of the botanical anti-cancer drug candidate PBI-05204, a supercritical CO2 extract of Nerium oleander, in brain slice and in vivo models of ischemic stroke. We showed that one component of this neuroprotective activity is mediated through its principal cardiac glycoside constituent, oleandrin, via induction of the potent neurotrophic factor brain-derived neurotrophic factor (BDNF). However, we also noted that the concentration-relation for PBI-05204 in the brain slice oxygen-glucose deprivation (OGD) model is considerably broader than that for oleandrin as a single agent. We thus surmised that PBI-05204 contains an additional neuroprotective component(s), distinct from oleandrin. We report here that neuroprotective activity is also provided by the triterpenoid constituents of PBI-05204, notably oleanolic acid. We demonstrate that a sub-fraction of PBI-05204 (Fraction 0-4) containing oleanolic and other triterpenoids, but without cardiac glycosides, induces the expression of cellular antioxidant gene transcription programs regulated through antioxidant transcriptional response elements (AREs). Finally, we show that Fraction 0-4 provides broad neuroprotection in organotypic brain slice models for neurodegeneration driven by amyloid precursor protein (APP) and tau implicated in Alzheimer's disease and frontotemporal dementias, respectively, in addition to ischemic injury modeled by OGD.

  20. A novel neurotrophic drug for cognitive enhancement and Alzheimer's disease.

    Qi Chen

    Full Text Available Currently, the major drug discovery paradigm for neurodegenerative diseases is based upon high affinity ligands for single disease-specific targets. For Alzheimer's disease (AD, the focus is the amyloid beta peptide (Aß that mediates familial Alzheimer's disease pathology. However, given that age is the greatest risk factor for AD, we explored an alternative drug discovery scheme that is based upon efficacy in multiple cell culture models of age-associated pathologies rather than exclusively amyloid metabolism. Using this approach, we identified an exceptionally potent, orally active, neurotrophic molecule that facilitates memory in normal rodents, and prevents the loss of synaptic proteins and cognitive decline in a transgenic AD mouse model.

  1. In Silico Chemogenomics Drug Repositioning Strategies for Neglected Tropical Diseases.

    Andrade, Carolina Horta; Neves, Bruno Junior; Melo-Filho, Cleber Camilo; Rodrigues, Juliana; Silva, Diego Cabral; Braga, Rodolpho Campos; Cravo, Pedro Vitor Lemos

    2018-03-08

    Only ~1% of all drug candidates against Neglected Tropical Diseases (NTDs) have reached clinical trials in the last decades, underscoring the need for new, safe and effective treatments. In such context, drug repositioning, which allows finding novel indications for approved drugs whose pharmacokinetic and safety profiles are already known, is emerging as a promising strategy for tackling NTDs. Chemogenomics is a direct descendent of the typical drug discovery process that involves the systematic screening of chemical compounds against drug targets in high-throughput screening (HTS) efforts, for the identification of lead compounds. However, different to the one-drug-one-target paradigm, chemogenomics attempts to identify all potential ligands for all possible targets and diseases. In this review, we summarize current methodological development efforts in drug repositioning that use state-of-the-art computational ligand- and structure-based chemogenomics approaches. Furthermore, we highlighted the recent progress in computational drug repositioning for some NTDs, based on curation and modeling of genomic, biological, and chemical data. Additionally, we also present in-house and other successful examples and suggest possible solutions to existing pitfalls. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. P-glycoprotein mediated efflux limits the transport of the novel anti-Parkinson's disease candidate drug FLZ across the physiological and PD pathological in vitro BBB models.

    Qian Liu

    Full Text Available FLZ, a novel anti-Parkinson's disease (PD candidate drug, has shown poor blood-brain barrier (BBB penetration based on the pharmacokinetic study using rat brain. P-glycoprotein (P-gp and breast cancer resistance protein (BCRP are two important transporters obstructing substrates entry into the CNS as well as in relation to PD neuropathology. However, it is unclear whether P-gp and BCRP are involved in low BBB permeability of FLZ and what the differences of FLZ brain penetration are between normal and Parkinson's conditions. For this purpose, in vitro BBB models mimicking physiological and PD pathological-related BBB properties were constructed by C6 astroglial cells co-cultured with primary normal or PD rat cerebral microvessel endothelial cells (rCMECs and in vitro permeability experiments of FLZ were carried out. High transepithelial electrical resistance (TEER and low permeability for sodium fluorescein (NaF confirmed the BBB functionality of the two models. Significantly greater expressions of P-gp and BCRP were detected in PD rCMECs associated with the lower in vitro BBB permeability of FLZ in pathological BBB model compared with physiological model. In transport studies only P-gp blocker effectively inhibited the efflux of FLZ, which was consistent with the in vivo permeability data. This result was also confirmed by ATPase assays, suggesting FLZ is a substrate for P-gp but not BCRP. The present study first established in vitro BBB models reproducing PD-related changes of BBB functions in vivo and demonstrated that poor brain penetration of FLZ and low BBB permeability were due to the P-gp transport.

  3. Advanced and controlled drug delivery systems in clinical disease management

    Brouwers, JRBJ

    1996-01-01

    Advanced and controlled drug delivery systems are important for clinical disease management. In this review the most important new systems which have reached clinical application are highlighted. Microbiologically controlled drug delivery is important for gastrointestinal diseases like ulcerative

  4. Animal Migraine Models for Drug Development

    Jansen-Olesen, Inger; Tfelt-Hansen, Peer; Olesen, Jes

    2013-01-01

    Migraine is number seven in WHO's list of all diseases causing disability and the third most costly neurological disorder in Europe. Acute attacks are treatable by highly selective drugs such as the triptans but there is still a huge unmet therapeutic need. Unfortunately, drug development...... for headache has almost come to a standstill partly because of a lack of valid animal models. Here we review previous models with emphasis on optimal characteristics of a future model. In addition to selection of animal species, the method of induction of migraine-like changes and the method of recording...... responses elicited by such measures are crucial. The most naturalistic way of inducing attacks is by infusion of endogenous signaling molecules that are known to cause migraine in patients. The most valid response is recording of neural activity in the trigeminal system. The most useful headache related...

  5. Applications of Patient-Specific Induced Pluripotent Stem Cells; Focused on Disease Modeling, Drug Screening and Therapeutic Potentials for Liver Disease

    Chun, Yong Soon; Chaudhari, Pooja; Jang, Yoon-Young

    2010-01-01

    The recent advances in the induced pluripotent stem cell (iPSC) research have significantly changed our perspectives on regenerative medicine by providing researchers with a unique tool to derive disease-specific stem cells for study. In this review, we describe the human iPSC generation from developmentally diverse origins (i.e. endoderm-, mesoderm-, and ectoderm- tissue derived human iPSCs) and multistage hepatic differentiation protocols, and discuss both basic and clinical applications of...

  6. The nonsteroidal antiinflammatory drug piroxicam reverses the onset of depressive-like behavior in 6-OHDA animal model of Parkinson's disease.

    Santiago, R M; Tonin, F S; Barbiero, J; Zaminelli, T; Boschen, S L; Andreatini, R; Da Cunha, C; Lima, M M S; Vital, M A B F

    2015-08-06

    Depression is one of the most common psychiatric symptoms in patients with Parkinson's disease (PD). Some authors have reported that depression is characterized by activation of the inflammatory response. Animal models of PD also present with depressive-like behavior, such as increased immobility time in the modified forced swim test and anhedonia-like behavior in the sucrose preference test. Considering the potential neuroprotective effect of nonsteroidal antiinflammatory drugs in neurodegenerative diseases, the objective of the present study was to investigate the effects of piroxicam on depressive-like behavior in male Wistar rats lesioned with 6-hydroxydopamine (6-OHDA) in the substantia nigra (SN). Antidepressant-like effects were observed after prolonged administration of piroxicam for 21days. In the forced swim test, the 6-OHDA+saline group exhibited significant reductions in swimming time and increased immobility time compared with the sham+saline. In the sucrose preference test, the 6-OHDA+piroxicam group exhibited no reduction of sucrose preference compared with the sham+saline, with significant effects of treatment and time and a significant treatment×time interaction. 5-Hydroxytryptamine (5-HT) levels significantly decreased in the hippocampus in the 6-OHDA+saline group and not changed in the 6-OHDA+piroxicam group when compared with the sham+saline on day 21. In conclusion, 21-day treatment with piroxicam reversed the onset of depressive-like behavior and prevented the reduction of hippocampal 5-HT levels. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Addictive drugs and their relationship with infectious diseases.

    Friedman, Herman; Pross, Susan; Klein, Thomas W

    2006-08-01

    The use of drugs of abuse, both recreationally and medicinally, may be related to serious public health concerns. There is a relationship between addictive drugs of abuse such as alcohol and nicotine in cigarette smoke, as well as illegal drugs such as opiates, cocaine and marijuana, and increased susceptibility to infections. The nature and mechanisms of immunomodulation induced by such drugs of abuse are described in this review. The effects of opiates and marijuana, using animal models as well as in vitro studies with immune cells from experimental animals and humans, have shown that immunomodulation induced by these drugs is mainly receptor-mediated, either directly by interaction with specific receptors on immune cells or indirectly by reaction with similar receptors on cells of the nervous system. Similar studies also show that cocaine and nicotine have marked immunomodulatory effects, which are mainly receptor-mediated. Both cocaine, an illegal drug, and nicotine, a widely used legal addictive component of cigarettes, are markedly immunomodulatory and increase susceptibility to infection. The nature and mechanism of immunomodulation induced by alcohol, the most widely used addictive substance of abuse, are similar but immunomodulatory effects, although not receptor-mediated. The many research studies on the effects of these drugs on immunity and increased susceptibility to infectious diseases, including AIDS, are providing a better understanding of the complex interactions between immunity, infections and substance abuse.

  8. Surveillance of gastrointestinal disease in France using drug sales data.

    Pivette, Mathilde; Mueller, Judith E; Crépey, Pascal; Bar-Hen, Avner

    2014-09-01

    Drug sales data have increasingly been used for disease surveillance during recent years. Our objective was to assess the value of drug sales data as an operational early detection tool for gastroenteritis epidemics at national and regional level in France. For the period 2008-2013, we compared temporal trends of drug sales for the treatment of gastroenteritis with trends of cases reported by a Sentinel Network of general practitioners. We benchmarked detection models to select the one with the best sensitivity, false alert proportion and timeliness, and developed a prospective framework to assess the operational performance of the system. Drug sales data allowed the detection of seasonal gastrointestinal epidemics occurring in winter with a distinction between prescribed and non-prescribed drugs. Sales of non-prescribed drugs allowed epidemic detection on average 2.25 weeks earlier than Sentinel data. These results confirm the value of drug sales data for real-time monitoring of gastroenteritis epidemic activity. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Investigating drug repositioning opportunities in FDA drug labels through topic modeling.

    Bisgin, Halil; Liu, Zhichao; Kelly, Reagan; Fang, Hong; Xu, Xiaowei; Tong, Weida

    2012-01-01

    Drug repositioning offers an opportunity to revitalize the slowing drug discovery pipeline by finding new uses for currently existing drugs. Our hypothesis is that drugs sharing similar side effect profiles are likely to be effective for the same disease, and thus repositioning opportunities can be identified by finding drug pairs with similar side effects documented in U.S. Food and Drug Administration (FDA) approved drug labels. The safety information in the drug labels is usually obtained in the clinical trial and augmented with the observations in the post-market use of the drug. Therefore, our drug repositioning approach can take the advantage of more comprehensive safety information comparing with conventional de novo approach. A probabilistic topic model was constructed based on the terms in the Medical Dictionary for Regulatory Activities (MedDRA) that appeared in the Boxed Warning, Warnings and Precautions, and Adverse Reactions sections of the labels of 870 drugs. Fifty-two unique topics, each containing a set of terms, were identified by using topic modeling. The resulting probabilistic topic associations were used to measure the distance (similarity) between drugs. The success of the proposed model was evaluated by comparing a drug and its nearest neighbor (i.e., a drug pair) for common indications found in the Indications and Usage Section of the drug labels. Given a drug with more than three indications, the model yielded a 75% recall, meaning 75% of drug pairs shared one or more common indications. This is significantly higher than the 22% recall rate achieved by random selection. Additionally, the recall rate grows rapidly as the number of drug indications increases and reaches 84% for drugs with 11 indications. The analysis also demonstrated that 65 drugs with a Boxed Warning, which indicates significant risk of serious and possibly life-threatening adverse effects, might be replaced with safer alternatives that do not have a Boxed Warning. In

  10. Potential drug-drug and drug-disease interactions in well-functioning community-dwelling older adults.

    Hanlon, J T; Perera, S; Newman, A B; Thorpe, J M; Donohue, J M; Simonsick, E M; Shorr, R I; Bauer, D C; Marcum, Z A

    2017-04-01

    There are few studies examining both drug-drug and drug-disease interactions in older adults. Therefore, the objective of this study was to describe the prevalence of potential drug-drug and drug-disease interactions and associated factors in community-dwelling older adults. This cross-sectional study included 3055 adults aged 70-79 without mobility limitations at their baseline visit in the Health Aging and Body Composition Study conducted in the communities of Pittsburgh PA and Memphis TN, USA. The outcome factors were potential drug-drug and drug-disease interactions as per the application of explicit criteria drawn from a number of sources to self-reported prescription and non-prescription medication use. Over one-third of participants had at least one type of interaction. Approximately one quarter (25·1%) had evidence of had one or more drug-drug interactions. Nearly 10·7% of the participants had a drug-drug interaction that involved a non-prescription medication. % The most common drug-drug interaction was non-steroidal anti-inflammatory drugs (NSAIDs) affecting antihypertensives. Additionally, 16·0% had a potential drug-disease interaction with 3·7% participants having one involving non-prescription medications. The most common drug-disease interaction was aspirin/NSAID use in those with history of peptic ulcer disease without gastroprotection. Over one-third (34·0%) had at least one type of drug interaction. Each prescription medication increased the odds of having at least one type of drug interaction by 35-40% [drug-drug interaction adjusted odds ratio (AOR) = 1·35, 95% confidence interval (CI) = 1·27-1·42; drug-disease interaction AOR = 1·30; CI = 1·21-1·40; and both AOR = 1·45; CI = 1·34-1·57]. A prior hospitalization increased the odds of having at least one type of drug interaction by 49-84% compared with those not hospitalized (drug-drug interaction AOR = 1·49, 95% CI = 1·11-2·01; drug-disease interaction AOR = 1·69, CI = 1·15-2

  11. Mathematical model on Alzheimer's disease.

    Hao, Wenrui; Friedman, Avner

    2016-11-18

    Alzheimer disease (AD) is a progressive neurodegenerative disease that destroys memory and cognitive skills. AD is characterized by the presence of two types of neuropathological hallmarks: extracellular plaques consisting of amyloid β-peptides and intracellular neurofibrillary tangles of hyperphosphorylated tau proteins. The disease affects 5 million people in the United States and 44 million world-wide. Currently there is no drug that can cure, stop or even slow the progression of the disease. If no cure is found, by 2050 the number of alzheimer's patients in the U.S. will reach 15 million and the cost of caring for them will exceed $ 1 trillion annually. The present paper develops a mathematical model of AD that includes neurons, astrocytes, microglias and peripheral macrophages, as well as amyloid β aggregation and hyperphosphorylated tau proteins. The model is represented by a system of partial differential equations. The model is used to simulate the effect of drugs that either failed in clinical trials, or are currently in clinical trials. Based on these simulations it is suggested that combined therapy with TNF- α inhibitor and anti amyloid β could yield significant efficacy in slowing the progression of AD.

  12. Drugs and drug delivery systems targeting amyloid-β in Alzheimer's disease

    Morgan Robinson

    2015-07-01

    Full Text Available Alzheimer's disease (AD is a devastating neurodegenerative disorder with no cure and limited treatment solutions that are unable to target any of the suspected causes. Increasing evidence suggests that one of the causes of neurodegeneration is the overproduction of amyloid beta (Aβ and the inability of Aβ peptides to be cleared from the brain, resulting in self-aggregation to form toxic oligomers, fibrils and plaques. One of the potential treatment options is to target Aβ and prevent self-aggregation to allow for a natural clearing of the brain. In this paper, we review the drugs and drug delivery systems that target Aβ in relation to Alzheimer's disease. Many attempts have been made to use anti-Aβ targeting molecules capable of targeting Aβ (with much success in vitro and in vivo animal models, but the major obstacle to this technique is the challenge posed by the blood brain barrier (BBB. This highly selective barrier protects the brain from toxic molecules and pathogens and prevents the delivery of most drugs. Therefore novel Aβ aggregation inhibitor drugs will require well thought-out drug delivery systems to deliver sufficient concentrations to the brain.

  13. [Non steroidal anti-inflammatory drugs and rheumatic diseases].

    Cossermelli, W; Pastor, E H

    1995-01-01

    Nonsteroidal anti-inflammatory drugs (NSAID) comprise an important class of medicaments that reduced the symptoms of inflamation in rheumatic disease. This article emphasizes similarities and class characteristics of the NSAID, mechanisms of action, and drug-interactions.

  14. Modeling chemical reactions for drug design.

    Gasteiger, Johann

    2007-01-01

    Chemical reactions are involved at many stages of the drug design process. This starts with the analysis of biochemical pathways that are controlled by enzymes that might be downregulated in certain diseases. In the lead discovery and lead optimization process compounds have to be synthesized in order to test them for their biological activity. And finally, the metabolism of a drug has to be established. A better understanding of chemical reactions could strongly help in making the drug design process more efficient. We have developed methods for quantifying the concepts an organic chemist is using in rationalizing reaction mechanisms. These methods allow a comprehensive modeling of chemical reactivity and thus are applicable to a wide variety of chemical reactions, from gas phase reactions to biochemical pathways. They are empirical in nature and therefore allow the rapid processing of large sets of structures and reactions. We will show here how methods have been developed for the prediction of acidity values and of the regioselectivity in organic reactions, for designing the synthesis of organic molecules and of combinatorial libraries, and for furthering our understanding of enzyme-catalyzed reactions and of the metabolism of drugs.

  15. A kernel for open source drug discovery in tropical diseases.

    Ortí, Leticia; Carbajo, Rodrigo J; Pieper, Ursula; Eswar, Narayanan; Maurer, Stephen M; Rai, Arti K; Taylor, Ginger; Todd, Matthew H; Pineda-Lucena, Antonio; Sali, Andrej; Marti-Renom, Marc A

    2009-01-01

    Conventional patent-based drug development incentives work badly for the developing world, where commercial markets are usually small to non-existent. For this reason, the past decade has seen extensive experimentation with alternative R&D institutions ranging from private-public partnerships to development prizes. Despite extensive discussion, however, one of the most promising avenues-open source drug discovery-has remained elusive. We argue that the stumbling block has been the absence of a critical mass of preexisting work that volunteers can improve through a series of granular contributions. Historically, open source software collaborations have almost never succeeded without such "kernels". HERE, WE USE A COMPUTATIONAL PIPELINE FOR: (i) comparative structure modeling of target proteins, (ii) predicting the localization of ligand binding sites on their surfaces, and (iii) assessing the similarity of the predicted ligands to known drugs. Our kernel currently contains 143 and 297 protein targets from ten pathogen genomes that are predicted to bind a known drug or a molecule similar to a known drug, respectively. The kernel provides a source of potential drug targets and drug candidates around which an online open source community can nucleate. Using NMR spectroscopy, we have experimentally tested our predictions for two of these targets, confirming one and invalidating the other. The TDI kernel, which is being offered under the Creative Commons attribution share-alike license for free and unrestricted use, can be accessed on the World Wide Web at http://www.tropicaldisease.org. We hope that the kernel will facilitate collaborative efforts towards the discovery of new drugs against parasites that cause tropical diseases.

  16. Systematic evaluation of drug-disease relationships to identify leads for novel drug uses.

    Chiang, A P; Butte, A J

    2009-11-01

    Drug repositioning refers to the discovery of alternative uses for drugs--uses that are different from that for which the drugs were originally intended. One challenge in this effort lies in choosing the indication for which a drug of interest could be prospectively tested. We systematically evaluated a drug treatment-based view of diseases in order to address this challenge. Suggestions for novel drug uses were generated using a "guilt by association" approach. When compared with a control group of drug uses, the suggested novel drug uses generated by this approach were significantly enriched with respect to previous and ongoing clinical trials.

  17. Issues surrounding orphan disease and orphan drug policies in Europe.

    Denis, Alain; Mergaert, Lut; Fostier, Christel; Cleemput, Irina; Simoens, Steven

    2010-01-01

    An orphan disease is a disease with a very low prevalence. Although there are 5000-7000 orphan diseases, only 50 orphan drugs (i.e. drugs developed to treat orphan diseases) were marketed in the EU by the end of 2008. In 2000, the EU implemented policies specifically designed to stimulate the development of orphan drugs. While decisions on orphan designation and the marketing authorization of orphan drugs are made at the EU level, decisions on drug reimbursement are made at the member state level. The specific features of orphan diseases and orphan drugs make them a high-priority issue for policy makers. The aim of this article is to identify and discuss several issues surrounding orphan disease and drug policies in Europe. The present system of orphan designation allows for drugs for non-orphan diseases to be designated as orphan drugs. The economic factors underlying orphan designation can be questioned in some cases, as a low prevalence of a certain indication does not equal a low return on investment for the drug across its indications. High-quality evidence about the clinical added value of orphan drugs is rarely available at the time of marketing authorization, due to the low number of patients. A balance must be struck between ethical and economic concerns. To this effect, there is a need to initiate a societal dialogue on this issue, to clarify what society wants and accepts in terms of ethical and economic consequences. The growing budgetary impact of orphan drugs puts pressure on drug expenditure. Indications can be extended for an orphan drug and the total prevalence across indications is not considered. Finally, cooperation needs to be fostered in the EU, particularly through a standardized approach to the creation and use of registries. These issues require further attention from researchers, policy makers, health professionals, patients, pharmaceutical companies and other stakeholders with a view to optimizing orphan disease and drug policies in

  18. Orphan diseases: state of the drug discovery art.

    Volmar, Claude-Henry; Wahlestedt, Claes; Brothers, Shaun P

    2017-06-01

    Since 1983 more than 300 drugs have been developed and approved for orphan diseases. However, considering the development of novel diagnosis tools, the number of rare diseases vastly outpaces therapeutic discovery. Academic centers and nonprofit institutes are now at the forefront of rare disease R&D, partnering with pharmaceutical companies when academic researchers discover novel drugs or targets for specific diseases, thus reducing the failure risk and cost for pharmaceutical companies. Considerable progress has occurred in the art of orphan drug discovery, and a symbiotic relationship now exists between pharmaceutical industry, academia, and philanthropists that provides a useful framework for orphan disease therapeutic discovery. Here, the current state-of-the-art of drug discovery for orphan diseases is reviewed. Current technological approaches and challenges for drug discovery are considered, some of which can present somewhat unique challenges and opportunities in orphan diseases, including the potential for personalized medicine, gene therapy, and phenotypic screening.

  19. Animal Models of Allergic Diseases

    Domenico Santoro

    2014-12-01

    Full Text Available Allergic diseases have great impact on the quality of life of both people and domestic animals. They are increasing in prevalence in both animals and humans, possibly due to the changed lifestyle conditions and the decreased exposure to beneficial microorganisms. Dogs, in particular, suffer from environmental skin allergies and develop a clinical presentation which is very similar to the one of children with eczema. Thus, dogs are a very useful species to improve our understanding on the mechanisms involved in people’s allergies and a natural model to study eczema. Animal models are frequently used to elucidate mechanisms of disease and to control for confounding factors which are present in studies with patients with spontaneously occurring disease and to test new therapies that can be beneficial in both species. It has been found that drugs useful in one species can also have benefits in other species highlighting the importance of a comprehensive understanding of diseases across species and the value of comparative studies. The purpose of the current article is to review allergic diseases across species and to focus on how these diseases compare to the counterpart in people.

  20. QSAR Modeling and Prediction of Drug-Drug Interactions.

    Zakharov, Alexey V; Varlamova, Ekaterina V; Lagunin, Alexey A; Dmitriev, Alexander V; Muratov, Eugene N; Fourches, Denis; Kuz'min, Victor E; Poroikov, Vladimir V; Tropsha, Alexander; Nicklaus, Marc C

    2016-02-01

    Severe adverse drug reactions (ADRs) are the fourth leading cause of fatality in the U.S. with more than 100,000 deaths per year. As up to 30% of all ADRs are believed to be caused by drug-drug interactions (DDIs), typically mediated by cytochrome P450s, possibilities to predict DDIs from existing knowledge are important. We collected data from public sources on 1485, 2628, 4371, and 27,966 possible DDIs mediated by four cytochrome P450 isoforms 1A2, 2C9, 2D6, and 3A4 for 55, 73, 94, and 237 drugs, respectively. For each of these data sets, we developed and validated QSAR models for the prediction of DDIs. As a unique feature of our approach, the interacting drug pairs were represented as binary chemical mixtures in a 1:1 ratio. We used two types of chemical descriptors: quantitative neighborhoods of atoms (QNA) and simplex descriptors. Radial basis functions with self-consistent regression (RBF-SCR) and random forest (RF) were utilized to build QSAR models predicting the likelihood of DDIs for any pair of drug molecules. Our models showed balanced accuracy of 72-79% for the external test sets with a coverage of 81.36-100% when a conservative threshold for the model's applicability domain was applied. We generated virtually all possible binary combinations of marketed drugs and employed our models to identify drug pairs predicted to be instances of DDI. More than 4500 of these predicted DDIs that were not found in our training sets were confirmed by data from the DrugBank database.

  1. Large-scale computational drug repositioning to find treatments for rare diseases.

    Govindaraj, Rajiv Gandhi; Naderi, Misagh; Singha, Manali; Lemoine, Jeffrey; Brylinski, Michal

    2018-01-01

    Rare, or orphan, diseases are conditions afflicting a small subset of people in a population. Although these disorders collectively pose significant health care problems, drug companies require government incentives to develop drugs for rare diseases due to extremely limited individual markets. Computer-aided drug repositioning, i.e., finding new indications for existing drugs, is a cheaper and faster alternative to traditional drug discovery offering a promising venue for orphan drug research. Structure-based matching of drug-binding pockets is among the most promising computational techniques to inform drug repositioning. In order to find new targets for known drugs ultimately leading to drug repositioning, we recently developed e MatchSite, a new computer program to compare drug-binding sites. In this study, e MatchSite is combined with virtual screening to systematically explore opportunities to reposition known drugs to proteins associated with rare diseases. The effectiveness of this integrated approach is demonstrated for a kinase inhibitor, which is a confirmed candidate for repositioning to synapsin Ia. The resulting dataset comprises 31,142 putative drug-target complexes linked to 980 orphan diseases. The modeling accuracy is evaluated against the structural data recently released for tyrosine-protein kinase HCK. To illustrate how potential therapeutics for rare diseases can be identified, we discuss a possibility to repurpose a steroidal aromatase inhibitor to treat Niemann-Pick disease type C. Overall, the exhaustive exploration of the drug repositioning space exposes new opportunities to combat orphan diseases with existing drugs. DrugBank/Orphanet repositioning data are freely available to research community at https://osf.io/qdjup/.

  2. Modeling Human Nonalcoholic Steatohepatitis-Associated Changes in Drug Transporter Expression Using Experimental Rodent Models

    Canet, Mark J.; Hardwick, Rhiannon N.; Lake, April D.; Dzierlenga, Anika L.; Clarke, John D.; Cherrington, Nathan J.

    2014-01-01

    Nonalcoholic fatty liver disease is a prevalent form of chronic liver disease that can progress to the more advanced stage of nonalcoholic steatohepatitis (NASH). NASH has been shown to alter drug transporter regulation and may have implications in the development of adverse drug reactions. Several experimental rodent models have been proposed for the study of NASH, but no single model fully recapitulates all aspects of the human disease. The purpose of the current study was to determine whic...

  3. Applying genetics in inflammatory disease drug discovery

    Folkersen, Lasse; Biswas, Shameek; Frederiksen, Klaus Stensgaard

    2015-01-01

    , with several notable exceptions, the journey from a small-effect genetic variant to a functional drug has proven arduous, and few examples of actual contributions to drug discovery exist. Here, we discuss novel approaches of overcoming this hurdle by using instead public genetics resources as a pragmatic guide...... alongside existing drug discovery methods. Our aim is to evaluate human genetic confidence as a rationale for drug target selection....

  4. The basics of preclinical drug development for neurodegenerative disease indications.

    Steinmetz, Karen L; Spack, Edward G

    2009-06-12

    Preclinical development encompasses the activities that link drug discovery in the laboratory to initiation of human clinical trials. Preclinical studies can be designed to identify a lead candidate from several hits; develop the best procedure for new drug scale-up; select the best formulation; determine the route, frequency, and duration of exposure; and ultimately support the intended clinical trial design. The details of each preclinical development package can vary, but all have some common features. Rodent and nonrodent mammalian models are used to delineate the pharmacokinetic profile and general safety, as well as to identify toxicity patterns. One or more species may be used to determine the drug's mean residence time in the body, which depends on inherent absorption, distribution, metabolism, and excretion properties. For drugs intended to treat Alzheimer's disease or other brain-targeted diseases, the ability of a drug to cross the blood brain barrier may be a key issue. Toxicology and safety studies identify potential target organs for adverse effects and define the Therapeutic Index to set the initial starting doses in clinical trials. Pivotal preclinical safety studies generally require regulatory oversight as defined by US Food and Drug Administration (FDA) Good Laboratory Practices and international guidelines, including the International Conference on Harmonization. Concurrent preclinical development activities include developing the Clinical Plan and preparing the new drug product, including the associated documentation to meet stringent FDA Good Manufacturing Practices regulatory guidelines. A wide range of commercial and government contract options are available for investigators seeking to advance their candidate(s). Government programs such as the Small Business Innovative Research and Small Business Technology Transfer grants and the National Institutes of Health Rapid Access to Interventional Development Pilot Program provide funding and

  5. The basics of preclinical drug development for neurodegenerative disease indications

    Spack Edward G

    2009-06-01

    Full Text Available Abstract Preclinical development encompasses the activities that link drug discovery in the laboratory to initiation of human clinical trials. Preclinical studies can be designed to identify a lead candidate from several hits; develop the best procedure for new drug scale-up; select the best formulation; determine the route, frequency, and duration of exposure; and ultimately support the intended clinical trial design. The details of each preclinical development package can vary, but all have some common features. Rodent and nonrodent mammalian models are used to delineate the pharmacokinetic profile and general safety, as well as to identify toxicity patterns. One or more species may be used to determine the drug's mean residence time in the body, which depends on inherent absorption, distribution, metabolism, and excretion properties. For drugs intended to treat Alzheimer's disease or other brain-targeted diseases, the ability of a drug to cross the blood brain barrier may be a key issue. Toxicology and safety studies identify potential target organs for adverse effects and define the Therapeutic Index to set the initial starting doses in clinical trials. Pivotal preclinical safety studies generally require regulatory oversight as defined by US Food and Drug Administration (FDA Good Laboratory Practices and international guidelines, including the International Conference on Harmonisation. Concurrent preclinical development activities include developing the Clinical Plan and preparing the new drug product, including the associated documentation to meet stringent FDA Good Manufacturing Practices regulatory guidelines. A wide range of commercial and government contract options are available for investigators seeking to advance their candidate(s. Government programs such as the Small Business Innovative Research and Small Business Technology Transfer grants and the National Institutes of Health Rapid Access to Interventional Development Pilot

  6. Bioprinting technologies for disease modeling

    Memic, Adnan; Navaei, Ali; Mirani, Bahram

    2017-01-01

    the critical characteristics of human physiology. Alternatively, three-dimensional (3D) tissue models are often developed in a low-throughput manner and lack crucial native-like architecture. The recent emergence of bioprinting technologies has enabled creating 3D tissue models that address the critical...... challenges of conventional in vitro assays through the development of custom bioinks and patient derived cells coupled with well-defined arrangements of biomaterials. Here, we provide an overview on the technological aspects of 3D bioprinting technique and discuss how the development of bioprinted tissue...... models have propelled our understanding of diseases’ characteristics (i.e. initiation and progression). The future perspectives on the use of bioprinted 3D tissue models for drug discovery application are also highlighted....

  7. SEIIrR: Drug abuse model with rehabilitation

    Sutanto, Azizah, Afina; Widyaningsih, Purnami; Saputro, Dewi Retno Sari

    2017-05-01

    Drug abuse in the world quite astonish and tend to increase. The increase and decrease on the number of drug abusers showed a pattern of spread that had the same characteristics with patterns of spread of infectious disease. The susceptible infected removed (SIR) and susceptible exposed infected removed (SEIR) epidemic models for infectious disease was developed to study social epidemic. In this paper, SEIR model for disease epidemic was developed to study drug abuse epidemic with rehabilitation treatment. The aims of this paper were to analogize susceptible exposed infected isolated recovered (SEIIrR) model on the drug abusers, to determine solutions of the model, to determine equilibrium point, and to do simulation on β. The solutions of SEIIrR model was determined by using fourth order of Runge-Kutta algorithm, equilibrium point obtained was free-drug equilibrium point. Solutions of SEIIrR showed that the model was able to suppress the spread of drug abuse. The increasing value of contact rate was not affect the number of infected individuals due to rehabilitation treatment.

  8. Drug Policy: the "Dutch Model"

    van Ooijen-Houben, M.M.J.; Kleemans, E.R.

    2015-01-01

    Dutch drug policy, once considered pragmatic and lenient and rooted in a generally tolerant attitude toward drug use, has slowly but surely shifted from a primarily public health focus to an increasing focus on law enforcement. The "coffee shop" policy and the policy toward MDMA/ecstasy are

  9. Pharmacogenomics to Revive Drug Development in Cardiovascular Disease.

    Dubé, Marie-Pierre; de Denus, Simon; Tardif, Jean-Claude

    2016-02-01

    Investment in cardiovascular drug development is on the decline as large cardiovascular outcomes trials require considerable investments in time, efforts and financial resources. Pharmacogenomics has the potential to help revive the cardiovascular drug development pipeline by providing new and better drug targets at an earlier stage and by enabling more efficient outcomes trials. This article will review some of the recent developments highlighting the value of pharmacogenomics for drug development. We discuss how genetic biomarkers can enable the conduct of more efficient clinical outcomes trials by enriching patient populations for good responders to the medication. In addition, we assess past drug development programs which support the added value of selecting drug targets that have established genetic evidence supporting the targeted mechanism of disease. Finally, we discuss how pharmacogenomics can provide valuable evidence linking a drug target to clinically relevant outcomes, enabling novel drug discovery and drug repositioning opportunities.

  10. An invertebrate model for CNS drug discovery

    Al-Qadi, Sonia; Schiøtt, Morten; Hansen, Steen Honoré

    2015-01-01

    BACKGROUND: ABC efflux transporters at the blood brain barrier (BBB), namely the P-glycoprotein (P-gp), restrain the development of central nervous system (CNS) drugs. Consequently, early screening of CNS drug candidates is pivotal to identify those affected by efflux activity. Therefore, simple,...... barriers. CONCLUSION: Findings suggest a conserved mechanism of brain efflux activity between insects and vertebrates, confirming that this model holds promise for inexpensive and high-throughput screening relative to in vivo models, for CNS drug discovery....

  11. Bioprinting technologies for disease modeling.

    Memic, Adnan; Navaei, Ali; Mirani, Bahram; Cordova, Julio Alvin Vacacela; Aldhahri, Musab; Dolatshahi-Pirouz, Alireza; Akbari, Mohsen; Nikkhah, Mehdi

    2017-09-01

    There is a great need for the development of biomimetic human tissue models that allow elucidation of the pathophysiological conditions involved in disease initiation and progression. Conventional two-dimensional (2D) in vitro assays and animal models have been unable to fully recapitulate the critical characteristics of human physiology. Alternatively, three-dimensional (3D) tissue models are often developed in a low-throughput manner and lack crucial native-like architecture. The recent emergence of bioprinting technologies has enabled creating 3D tissue models that address the critical challenges of conventional in vitro assays through the development of custom bioinks and patient derived cells coupled with well-defined arrangements of biomaterials. Here, we provide an overview on the technological aspects of 3D bioprinting technique and discuss how the development of bioprinted tissue models have propelled our understanding of diseases' characteristics (i.e. initiation and progression). The future perspectives on the use of bioprinted 3D tissue models for drug discovery application are also highlighted.

  12. Phenylketonuria as a model for protein misfolding diseases and for the development of next generation orphan drugs for patients with inborn errors of metabolism.

    Muntau, Ania C; Gersting, Søren W

    2010-12-01

    The lecture dedicated to Professor Horst Bickel describes the advances, successes, and opportunities concerning the understanding of the biochemical and molecular basis of phenylketonuria and the innovative treatment strategies introduced for these patients during the last 60 years. These concepts were transferred to other inborn errors of metabolism and led to significant reduction in morbidity and to an improvement in quality of life. Important milestones were the successful development of a low-phenylalanine diet for phenylketonuria patients, the recognition of tetrahydrobiopterin as an option to treat these individuals pharmacologically, and finally market approval of this drug. The work related to the discovery of a pharmacological treatment led metabolic researchers and pediatricians to new insights into the molecular processes linked to mutations in the phenylalanine hydroxylase gene at the cellular and structural level. Again, phenylketonuria became a prototype disorder for a previously underestimated but now rapidly expanding group of diseases: protein misfolding disorders with loss of function. Due to potential general biological mechanisms underlying these disorders, the door may soon open to a systematic development of a new class of pharmaceutical products. These pharmacological chaperones are likely to correct misfolding of proteins involved in numerous genetic and nongenetic diseases.

  13. Public acceptance of drug use for non-disease conditions

    Møldrup, Claus; Hansen, Rikke Rie

    2006-01-01

    OBJECTIVE: This article deals with the issue of ordinary healthy people using drugs to improve or enhance non-disease conditions. The objective is to illuminate the extent of public acceptance of this practice. RESEARCH DESIGN AND METHODS: The results are based on two studies: a classically...... of drugs for non-disease conditions. Men in particular look favourably on the use of drugs by healthy individuals. People with less education find this type of drug use unacceptable to a greater extent than those with more education, who are more positive. If we look at political affiliation, a pattern...

  14. Mathematical modeling for novel cancer drug discovery and development.

    Zhang, Ping; Brusic, Vladimir

    2014-10-01

    Mathematical modeling enables: the in silico classification of cancers, the prediction of disease outcomes, optimization of therapy, identification of promising drug targets and prediction of resistance to anticancer drugs. In silico pre-screened drug targets can be validated by a small number of carefully selected experiments. This review discusses the basics of mathematical modeling in cancer drug discovery and development. The topics include in silico discovery of novel molecular drug targets, optimization of immunotherapies, personalized medicine and guiding preclinical and clinical trials. Breast cancer has been used to demonstrate the applications of mathematical modeling in cancer diagnostics, the identification of high-risk population, cancer screening strategies, prediction of tumor growth and guiding cancer treatment. Mathematical models are the key components of the toolkit used in the fight against cancer. The combinatorial complexity of new drugs discovery is enormous, making systematic drug discovery, by experimentation, alone difficult if not impossible. The biggest challenges include seamless integration of growing data, information and knowledge, and making them available for a multiplicity of analyses. Mathematical models are essential for bringing cancer drug discovery into the era of Omics, Big Data and personalized medicine.

  15. Evaluation and optimisation of current milrinone prescribing for the treatment and prevention of low cardiac output syndrome in paediatric patients after open heart surgery using a physiology-based pharmacokinetic drug-disease model.

    Vogt, Winnie

    2014-01-01

    Milrinone is the drug of choice for the treatment and prevention of low cardiac output syndrome (LCOS) in paediatric patients after open heart surgery across Europe. Discrepancies, however, among prescribing guidance, clinical studies and practice pattern require clarification to ensure safe and effective prescribing. However, the clearance prediction equations derived from classical pharmacokinetic modelling provide limited support as they have recently failed a clinical practice evaluation. Therefore, the objective of this study was to evaluate current milrinone dosing using physiology-based pharmacokinetic (PBPK) modelling and simulation to complement the existing pharmacokinetic knowledge and propose optimised dosing regimens as a basis for improving the standard of care for paediatric patients. A PBPK drug-disease model using a population approach was developed in three steps from healthy young adults to adult patients and paediatric patients with and without LCOS after open heart surgery. Pre- and postoperative organ function values from adult and paediatric patients were collected from literature and integrated into a disease model as factorial changes from the reference values in healthy adults aged 20-40 years. The disease model was combined with the PBPK drug model and evaluated against existing pharmacokinetic data. Model robustness was assessed by parametric sensitivity analysis. In the next step, virtual patient populations were created, each with 1,000 subjects reflecting the average adult and paediatric patient characteristics with regard to age, sex, bodyweight and height. They were integrated into the PBPK drug-disease model to evaluate the effectiveness of current milrinone dosing in achieving the therapeutic target range of 100-300 ng/mL milrinone in plasma. Optimised dosing regimens were subsequently developed. The pharmacokinetics of milrinone in healthy young adults as well as adult and paediatric patients were accurately described with an

  16. Drug therapy for gastrointestinal and liver diseases

    Ballinger, Anne; Farthing, M. J. G. (Michael J. G.)

    2001-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Peptic ulcer disease Erik AJ Rauws, Guido NJ Tytgat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Emesis Gareth J Sanger, Paul LR Andrews...

  17. Can Patients with Cardiovascular Disease Take Nonsteroidal Antiinflammatory Drugs?

    ... of the American Heart Association Cardiology Patient Page Can Patients With Cardiovascular Disease Take Nonsteroidal Antiinflammatory Drugs? ... It also does not upset the gastrointestinal tract. Can People With CVD Take an NSAID? If you ...

  18. Electrochemical studies of ropinirole, an anti-Parkinson's disease drug

    The oxidation behaviour of a potent anti-Parkinson's disease drug ropinirole hydrochloride was investigated over a wide pH range in aqueous solution at glassy carbon electrode using cyclic and square-wave voltammetry. The oxidation of drug is a pH dependent irreversible process and occurs in two steps.

  19. Animal models for testing anti-prion drugs.

    Fernández-Borges, Natalia; Elezgarai, Saioa R; Eraña, Hasier; Castilla, Joaquín

    2013-01-01

    Prion diseases belong to a group of fatal infectious diseases with no effective therapies available. Throughout the last 35 years, less than 50 different drugs have been tested in different experimental animal models without hopeful results. An important limitation when searching for new drugs is the existence of appropriate models of the disease. The three different possible origins of prion diseases require the existence of different animal models for testing anti-prion compounds. Wild type, over-expressing transgenic mice and other more sophisticated animal models have been used to evaluate a diversity of compounds which some of them were previously tested in different in vitro experimental models. The complexity of prion diseases will require more pre-screening studies, reliable sporadic (or spontaneous) animal models and accurate chemical modifications of the selected compounds before having an effective therapy against human prion diseases. This review is intended to put on display the more relevant animal models that have been used in the search of new antiprion therapies and describe some possible procedures when handling chemical compounds presumed to have anti-prion activity prior to testing them in animal models.

  20. Zebrafish models in neuropsychopharmacology and CNS drug discovery.

    Khan, Kanza M; Collier, Adam D; Meshalkina, Darya A; Kysil, Elana V; Khatsko, Sergey L; Kolesnikova, Tatyana; Morzherin, Yury Yu; Warnick, Jason E; Kalueff, Allan V; Echevarria, David J

    2017-07-01

    Despite the high prevalence of neuropsychiatric disorders, their aetiology and molecular mechanisms remain poorly understood. The zebrafish (Danio rerio) is increasingly utilized as a powerful animal model in neuropharmacology research and in vivo drug screening. Collectively, this makes zebrafish a useful tool for drug discovery and the identification of disordered molecular pathways. Here, we discuss zebrafish models of selected human neuropsychiatric disorders and drug-induced phenotypes. As well as covering a broad range of brain disorders (from anxiety and psychoses to neurodegeneration), we also summarize recent developments in zebrafish genetics and small molecule screening, which markedly enhance the disease modelling and the discovery of novel drug targets. © 2017 The British Pharmacological Society.

  1. MODELING OF TARGETED DRUG DELIVERY PART II. MULTIPLE DRUG ADMINISTRATION

    A. V. Zaborovskiy

    2017-01-01

    Full Text Available In oncology practice, despite significant advances in early cancer detection, surgery, radiotherapy, laser therapy, targeted therapy, etc., chemotherapy is unlikely to lose its relevance in the near future. In this context, the development of new antitumor agents is one of the most important problems of cancer research. In spite of the importance of searching for new compounds with antitumor activity, the possibilities of the “old” agents have not been fully exhausted. Targeted delivery of antitumor agents can give them a “second life”. When developing new targeted drugs and their further introduction into clinical practice, the change in their pharmacodynamics and pharmacokinetics plays a special role. The paper describes a pharmacokinetic model of the targeted drug delivery. The conditions under which it is meaningful to search for a delivery vehicle for the active substance were described. Primary screening of antitumor agents was undertaken to modify them for the targeted delivery based on underlying assumptions of the model.

  2. Evaluation of blood-brain barrier transport and CNS drug metabolism in diseased and control brain after intravenous L-DOPA in a unilateral rat model of Parkinson's disease

    Ravenstijn Paulien GM

    2012-02-01

    Full Text Available Abstract Background Changes in blood-brain barrier (BBB functionality have been implicated in Parkinson's disease. This study aimed to investigate BBB transport of L-DOPA transport in conjunction with its intra-brain conversion, in both control and diseased cerebral hemispheres in the unilateral rat rotenone model of Parkinson's disease. Methods In Lewis rats, at 14 days after unilateral infusion of rotenone into the medial forebrain bundle, L-DOPA was administered intravenously (10, 25 or 50 mg/kg. Serial blood samples and brain striatal microdialysates were analysed for L-DOPA, and the dopamine metabolites DOPAC and HVA. Ex-vivo brain tissue was analyzed for changes in tyrosine hydroxylase staining as a biomarker for Parkinson's disease severity. Data were analysed by population pharmacokinetic analysis (NONMEM to compare BBB transport of L-DOPA in conjunction with the conversion of L-DOPA into DOPAC and HVA, in control and diseased cerebral hemisphere. Results Plasma pharmacokinetics of L-DOPA could be described by a 3-compartmental model. In rotenone responders (71%, no difference in L-DOPA BBB transport was found between diseased and control cerebral hemisphere. However, in the diseased compared with the control side, basal microdialysate levels of DOPAC and HVA were substantially lower, whereas following L-DOPA administration their elimination rates were higher. Conclusions Parkinson's disease-like pathology, indicated by a huge reduction of tyrosine hydroxylase as well as by substantially reduced levels and higher elimination rates of DOPAC and HVA, does not result in changes in BBB transport of L-DOPA. Taking the results of this study and that of previous ones, it can be concluded that changes in BBB functionality are not a specific characteristic of Parkinson's disease, and cannot account for the decreased benefit of L-DOPA at later stages of Parkinson's disease.

  3. Pharmacological approaches for Alzheimer's disease: neurotransmitter as drug targets.

    Prakash, Atish; Kalra, Jaspreet; Mani, Vasudevan; Ramasamy, Kalavathy; Majeed, Abu Bakar Abdul

    2015-01-01

    Alzheimer's disease (AD) is the most common CNS disorder occurring worldwide. There is neither proven effective prevention for AD nor a cure for patients with this disorder. Hence, there is an urgent need to develop safer and more efficacious drugs to help combat the tremendous increase in disease progression. The present review is an attempt at discussing the treatment strategies and drugs under clinical trials governing the modulation of neurotransmitter. Therefore, looking at neurotransmitter abnormalities, there is an urge for developing the pharmacological approaches aimed at correcting those abnormalities and dysfunctioning. In addition, this review also discusses the drugs that are in Phase III trials for the treatment of AD. Despite advances in treatment strategies aimed at correcting neurotransmitter abnormalities, there exists a need for the development of drug therapies focusing on the attempts to remove the pathogenomic protein deposits, thus combating the disease progression.

  4. Drug Delivery Systems for Imaging and Therapy of Parkinson's Disease.

    Gunay, Mine Silindir; Ozer, A Yekta; Chalon, Sylvie

    2016-01-01

    Although a variety of therapeutic approaches are available for the treatment of Parkinson's disease, challenges limit effective therapy. Among these challenges are delivery of drugs through the blood brain barier to the target brain tissue and the side effects observed during long term administration of antiparkinsonian drugs. The use of drug delivery systems such as liposomes, niosomes, micelles, nanoparticles, nanocapsules, gold nanoparticles, microspheres, microcapsules, nanobubbles, microbubbles and dendrimers is being investigated for diagnosis and therapy. This review focuses on formulation, development and advantages of nanosized drug delivery systems which can penetrate the central nervous system for the therapy and/or diagnosis of PD, and highlights future nanotechnological approaches. It is esential to deliver a sufficient amount of either therapeutic or radiocontrast agents to the brain in order to provide the best possible efficacy or imaging without undesired degradation of the agent. Current treatments focus on motor symptoms, but these treatments generally do not deal with modifying the course of Parkinson's disease. Beyond pharmacological therapy, the identification of abnormal proteins such as α -synuclein, parkin or leucine-rich repeat serine/threonine protein kinase 2 could represent promising alternative targets for molecular imaging and therapy of Parkinson's disease. Nanotechnology and nanosized drug delivery systems are being investigated intensely and could have potential effect for Parkinson's disease. The improvement of drug delivery systems could dramatically enhance the effectiveness of Parkinson's Disease therapy and reduce its side effects.

  5. Drug sales data analysis for outbreak detection of infectious diseases: a systematic literature review.

    Pivette, Mathilde; Mueller, Judith E; Crépey, Pascal; Bar-Hen, Avner

    2014-11-18

    This systematic literature review aimed to summarize evidence for the added value of drug sales data analysis for the surveillance of infectious diseases. A search for relevant publications was conducted in Pubmed, Embase, Scopus, Cochrane Library, African Index Medicus and Lilacs databases. Retrieved studies were evaluated in terms of objectives, diseases studied, data sources, methodologies and performance for real-time surveillance. Most studies compared drug sales data to reference surveillance data using correlation measurements or indicators of outbreak detection performance (sensitivity, specificity, timeliness of the detection). We screened 3266 articles and included 27 in the review. Most studies focused on acute respiratory and gastroenteritis infections. Nineteen studies retrospectively compared drug sales data to reference clinical data, and significant correlations were observed in 17 of them. Four studies found that over-the-counter drug sales preceded clinical data in terms of incidence increase. Five studies developed and evaluated statistical algorithms for selecting drug groups to monitor specific diseases. Another three studies developed models to predict incidence increase from drug sales. Drug sales data analyses appear to be a useful tool for surveillance of gastrointestinal and respiratory disease, and OTC drugs have the potential for early outbreak detection. Their utility remains to be investigated for other diseases, in particular those poorly surveyed.

  6. [A model list of high risk drugs].

    Cotrina Luque, J; Guerrero Aznar, M D; Alvarez del Vayo Benito, C; Jimenez Mesa, E; Guzman Laura, K P; Fernández Fernández, L

    2013-12-01

    «High-risk drugs» are those that have a very high «risk» of causing death or serious injury if an error occurs during its use. The Institute for Safe Medication Practices (ISMP) has prepared a high-risk drugs list applicable to the general population (with no differences between the pediatric and adult population). Thus, there is a lack of information for the pediatric population. The main objective of this work is to develop a high-risk drug list adapted to the neonatal or pediatric population as a reference model for the pediatric hospital health workforce. We made a literature search in May 2012 to identify any published lists or references in relation to pediatric and/or neonatal high-risk drugs. A total of 15 studies were found, from which 9 were selected. A model list was developed mainly based on the ISMP one, adding strongly perceived pediatric risk drugs and removing those where the pediatric use was anecdotal. There is no published list that suits pediatric risk management. The list of pediatric and neonatal high-risk drugs presented here could be a «reference list of high-risk drugs » for pediatric hospitals. Using this list and training will help to prevent medication errors in each drug supply chain (prescribing, transcribing, dispensing and administration). Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  7. From research on rare diseases to new orphan drug development

    Heemstra, H.E.

    2010-01-01

    Rare diseases have a prevalence of lower than 5 in 10,000 inhabitants and are life-threatening or chronically debilitating. It is estimated that worldwide more than 5000 rare diseases exist, which account for over 55 million patients in the EU and the US together. However, the development of drugs

  8. Serotonergic Drugs and Valvular Heart Disease

    Rothman, Richard B.; Baumann, Michael H.

    2009-01-01

    Background The serotonin (5-HT) releasers (±)-fenfluramine and (+)-fenfluramine were withdrawn from clinical use due to increased risk of valvular heart disease. One prevailing hypothesis (i.e., the “5-HT hypothesis”) suggests that fenfluramine-induced increases in plasma 5-HT underlie the disease. Objective Here we critically evaluate the possible mechanisms responsible for fenfluramine-associated valve disease. Methods Findings from in vitro and in vivo experiments performed in our laboratory are reviewed. The data are integrated with existing literature to address the validity of the 5-HT hypothesis and suggest alternative explanations. Conclusions The overwhelming majority of evidence refutes the 5-HT hypothesis. A more likely cause of fenfluramine-induced valvulopathy is activation of 5-HT2B receptors on heart valves by the metabolite norfenfluramine. Future serotonergic medications should be designed to lack 5-HT2B agonist activity. PMID:19505264

  9. Multimodal drugs and their future for Alzheimer's and Parkinson's disease.

    Van der Schyf, Cornelis J; Geldenhuys, Werner J

    2011-01-01

    This chapter discusses the rationale for developing multimodal or multifunctional drugs (also called designed multiple ligands or DMLs) aimed at disease-modifying treatment strategies for the most common neurodegenerative diseases Alzheimer's and Parkinson's disease (AD and PD). Both the prevalence and incidence of AD and PD have seen consistent and dramatic increases, a disconcerting phenomenon which, ironically, has been attributed to extended life expectancy brought about by better health care globally. In spite of these statistics, the development and introduction to the clinic of new therapies proven to prevent or delay the onset of AD and PD have been disappointing. Evidence has accumulated to suggest that the etiopathology of these diseases is extremely complex, with an array of potential drug targets located within a number of deleterious biochemical pathways. Therefore, in these diseases, it is unlikely that the complex pathoetiological cascade leading to disease initiation or progression will be mitigated by any one drug acting on a single pathway or target. The pursuit of novel DMLs may offer far better outcomes. Although certainly not the only, and perhaps not even the best, approach but farthest along the drug development pipeline in the DML paradigm are drugs that combine inhibition of monoamine oxidase with associated etiological targets unique to either AD or PD. These compounds will constitute the major focus of this chapter, which will also explore radically new paradigms that seek to combine cognitive enhancers with proneurogenesis compounds. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Fragment-based drug discovery as alternative strategy to the drug development for neglected diseases.

    Mello, Juliana da Fonseca Rezende E; Gomes, Renan Augusto; Vital-Fujii, Drielli Gomes; Ferreira, Glaucio Monteiro; Trossini, Gustavo Henrique Goulart

    2017-12-01

    Neglected diseases (NDs) affect large populations and almost whole continents, representing 12% of the global health burden. In contrast, the treatment available today is limited and sometimes ineffective. Under this scenery, the Fragment-Based Drug Discovery emerged as one of the most promising alternatives to the traditional methods of drug development. This method allows achieving new lead compounds with smaller size of fragment libraries. Even with the wide Fragment-Based Drug Discovery success resulting in new effective therapeutic agents against different diseases, until this moment few studies have been applied this approach for NDs area. In this article, we discuss the basic Fragment-Based Drug Discovery process, brief successful ideas of general applications and show a landscape of its use in NDs, encouraging the implementation of this strategy as an interesting way to optimize the development of new drugs to NDs. © 2017 John Wiley & Sons A/S.

  11. Structural genomics of infectious disease drug targets: the SSGCID

    Stacy, Robin; Begley, Darren W.; Phan, Isabelle; Staker, Bart L.; Van Voorhis, Wesley C.; Varani, Gabriele; Buchko, Garry W.; Stewart, Lance J.; Myler, Peter J.

    2011-01-01

    An introduction and overview of the focus, goals and overall mission of the Seattle Structural Genomics Center for Infectious Disease (SSGCID) is given. The Seattle Structural Genomics Center for Infectious Disease (SSGCID) is a consortium of researchers at Seattle BioMed, Emerald BioStructures, the University of Washington and Pacific Northwest National Laboratory that was established to apply structural genomics approaches to drug targets from infectious disease organisms. The SSGCID is currently funded over a five-year period by the National Institute of Allergy and Infectious Diseases (NIAID) to determine the three-dimensional structures of 400 proteins from a variety of Category A, B and C pathogens. Target selection engages the infectious disease research and drug-therapy communities to identify drug targets, essential enzymes, virulence factors and vaccine candidates of biomedical relevance to combat infectious diseases. The protein-expression systems, purified proteins, ligand screens and three-dimensional structures produced by SSGCID constitute a valuable resource for drug-discovery research, all of which is made freely available to the greater scientific community. This issue of Acta Crystallographica Section F, entirely devoted to the work of the SSGCID, covers the details of the high-throughput pipeline and presents a series of structures from a broad array of pathogenic organisms. Here, a background is provided on the structural genomics of infectious disease, the essential components of the SSGCID pipeline are discussed and a survey of progress to date is presented

  12. Drug Induced Steatohepatitis: An Uncommon Culprit of a Common Disease

    Liane Rabinowich

    2015-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is a leading cause of liver disease in developed countries. Its frequency is increasing in the general population mostly due to the widespread occurrence of obesity and the metabolic syndrome. Although drugs and dietary supplements are viewed as a major cause of acute liver injury, drug induced steatosis and steatohepatitis are considered a rare form of drug induced liver injury (DILI. The complex mechanism leading to hepatic steatosis caused by commonly used drugs such as amiodarone, methotrexate, tamoxifen, valproic acid, glucocorticoids, and others is not fully understood. It relates not only to induction of the metabolic syndrome by some drugs but also to their impact on important molecular pathways including increased hepatocytes lipogenesis, decreased secretion of fatty acids, and interruption of mitochondrial β-oxidation as well as altered expression of genes responsible for drug metabolism. Better familiarity with this type of liver injury is important for early recognition of drug hepatotoxicity and crucial for preventing severe forms of liver injury and cirrhosis. Moreover, understanding the mechanisms leading to drug induced hepatic steatosis may provide much needed clues to the mechanism and potential prevention of the more common form of metabolic steatohepatitis.

  13. Old and new therapeutics for Rheumatoid Arthritis: in vivo models and drug development

    Sardar, Samra; Andersson, Åsa

    2016-01-01

    Development of novel drugs for treatment of chronic inflammatory diseases is to a large extent dependent on the availability of good experimental in vivo models in order to perform preclinical tests of new drugs and for the identification of novel drug targets. Here, we review a number of existing...... of in vivo models during development of anti-rheumatic drugs; from Methotrexate to various antibody treatments, to novel drugs that are, or have recently been, in clinical trials. For novel drugs, we have explored websites for clinical trials. Although one Rheumatoid Arthritis in vivo model cannot mirror...

  14. The Impact of Disease and Drugs on Hip Fracture Risk.

    Leavy, Breiffni; Michaëlsson, Karl; Åberg, Anna Cristina; Melhus, Håkan; Byberg, Liisa

    2017-01-01

    We report the risks of a comprehensive range of disease and drug categories on hip fracture occurrence using a strict population-based cohort design. Participants included the source population of a Swedish county, aged ≥50 years (n = 117,494) including all incident hip fractures during 1 year (n = 477). The outcome was hospitalization for hip fracture (ICD-10 codes S72.0-S72.2) during 1 year (2009-2010). Exposures included: prevalence of (1) inpatient diseases [International Classification of Diseases (ICD) codes A00-T98 in the National Patient Register 1987-2010] and (2) prescribed drugs dispensed in 2010 or the year prior to fracture. We present age- and sex-standardized risk ratios (RRs), risk differences (RDs) and population attributable risks (PARs) of disease and drug categories in relation to hip fracture risk. All disease categories were associated with increased risk of hip fracture. Largest risk ratios and differences were for mental and behavioral disorders, diseases of the blood and previous fracture (RRs between 2.44 and 3.00; RDs (per 1000 person-years) between 5.0 and 6.9). For specific drugs, strongest associations were seen for antiparkinson (RR 2.32 [95 % CI 1.48-1.65]; RD 5.2 [1.1-9.4]) and antidepressive drugs (RR 1.90 [1.55-2.32]; RD 3.1 [2.0-4.3]). Being prescribed ≥10 drugs during 1 year incurred an increased risk of hip fracture, whereas prescription of cardiovascular drugs or ≤5 drugs did not appear to increase risk. Diseases inferring the greatest PARs included: cardiovascular diseases PAR 22 % (95 % CI 14-29) and previous injuries (PAR 21 % [95 % CI 16-25]; for specific drugs, antidepressants posed the greatest risk (PAR 16 % [95 % CI 12.0-19.3]).

  15. Context Sensitive Modeling of Cancer Drug Sensitivity.

    Bo-Juen Chen

    Full Text Available Recent screening of drug sensitivity in large panels of cancer cell lines provides a valuable resource towards developing algorithms that predict drug response. Since more samples provide increased statistical power, most approaches to prediction of drug sensitivity pool multiple cancer types together without distinction. However, pan-cancer results can be misleading due to the confounding effects of tissues or cancer subtypes. On the other hand, independent analysis for each cancer-type is hampered by small sample size. To balance this trade-off, we present CHER (Contextual Heterogeneity Enabled Regression, an algorithm that builds predictive models for drug sensitivity by selecting predictive genomic features and deciding which ones should-and should not-be shared across different cancers, tissues and drugs. CHER provides significantly more accurate models of drug sensitivity than comparable elastic-net-based models. Moreover, CHER provides better insight into the underlying biological processes by finding a sparse set of shared and type-specific genomic features.

  16. Structural Genomics and Drug Discovery for Infectious Diseases

    Anderson, W.F.

    2009-01-01

    The application of structural genomics methods and approaches to proteins from organisms causing infectious diseases is making available the three dimensional structures of many proteins that are potential drug targets and laying the groundwork for structure aided drug discovery efforts. There are a number of structural genomics projects with a focus on pathogens that have been initiated worldwide. The Center for Structural Genomics of Infectious Diseases (CSGID) was recently established to apply state-of-the-art high throughput structural biology technologies to the characterization of proteins from the National Institute for Allergy and Infectious Diseases (NIAID) category A-C pathogens and organisms causing emerging, or re-emerging infectious diseases. The target selection process emphasizes potential biomedical benefits. Selected proteins include known drug targets and their homologs, essential enzymes, virulence factors and vaccine candidates. The Center also provides a structure determination service for the infectious disease scientific community. The ultimate goal is to generate a library of structures that are available to the scientific community and can serve as a starting point for further research and structure aided drug discovery for infectious diseases. To achieve this goal, the CSGID will determine protein crystal structures of 400 proteins and protein-ligand complexes using proven, rapid, highly integrated, and cost-effective methods for such determination, primarily by X-ray crystallography. High throughput crystallographic structure determination is greatly aided by frequent, convenient access to high-performance beamlines at third-generation synchrotron X-ray sources.

  17. Phenylbutyrate is a multifaceted drug that exerts neuroprotective effects and reverses the Alzheimer´s disease-like phenotype of a commonly used mouse model.

    Cuadrado-Tejedor, Mar; Ricobaraza, Ana L; Torrijo, Rosana; Franco, Rafael; Garcia-Osta, Ana

    2013-01-01

    4-Phenylbutyrate (PBA) is a histone deacetylase (HDAC) inhibitor whose efficacy in the Tg2576 mouse model of Alzheimer´s disease (AD) is correlated with decreased tau phosphorylation, clearance of intraneuronal Aβ and restoration of dendritic spine density in hippocampal CA1 pyramidal neurons. PBA is also a chemical chaperone that facilitates cell proteostasis. To determine the relative contributions of HDAC inhibition and chaperone-like activity in the anti-AD effects of PBA, we compared the effect of PBA with that of sodium butyrate (NaBu), an HDAC inhibitor with no chaperone activity. In neuronal cultures from Tg2576 mice, we observed a correlation between histone 3 acetylation and decreased p-tau levels. Moreover, we observed a decrease in the processing of the amyloid precursor protein (APP) in Tg2576 neurons treated with PBA, but not with NaBu. In Tg2576 mice administered PBA or NaBu for 3 weeks, only PBA normalized the pathological AD markers, implicating, at least in part, other mechanism as the chaperone-like activity in the reversal of the AD-like phenotype of Tg2576 mice. Furthermore, treatment with PBA but not NaBu prevented the neuronal loss in the hippocampus of hAPPWT-overexpressing mice, as was particularly evident in the CA1 layer. In addition to its activity as a HDAC inhibitor, the chaperone activity of PBA appears to at least partially, mediate its reversal of the AD phenotype in Tg2576 mice and its neuroprotective effect in a model of hippocampal neuronal loss.

  18. Humanized mouse models: Application to human diseases.

    Ito, Ryoji; Takahashi, Takeshi; Ito, Mamoru

    2018-05-01

    Humanized mice are superior to rodents for preclinical evaluation of the efficacy and safety of drug candidates using human cells or tissues. During the past decade, humanized mouse technology has been greatly advanced by the establishment of novel platforms of genetically modified immunodeficient mice. Several human diseases can be recapitulated using humanized mice due to the improved engraftment and differentiation capacity of human cells or tissues. In this review, we discuss current advanced humanized mouse models that recapitulate human diseases including cancer, allergy, and graft-versus-host disease. © 2017 Wiley Periodicals, Inc.

  19. Modelling drug flux through microporated skin.

    Rzhevskiy, Alexey S; Guy, Richard H; Anissimov, Yuri G

    2016-11-10

    A simple mathematical equation has been developed to predict drug flux through microporated skin. The theoretical model is based on an approach applied previously to water evaporation through leaf stomata. Pore density, pore radius and drug molecular weight are key model parameters. The predictions of the model were compared with results derived from a simple, intuitive method using porated area alone to estimate the flux enhancement. It is shown that the new approach predicts significantly higher fluxes than the intuitive analysis, with transport being proportional to the total pore perimeter rather than area as intuitively anticipated. Predicted fluxes were in good general agreement with experimental data on drug delivery from the literature, and were quantitatively closer to the measured values than those derived from the intuitive, area-based approach. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Cardiovascular disease among people with drug use disorders

    Thylstrup, Birgitte; Clausen, Thomas; Hesse, Morten

    2015-01-01

    Objectives To present the prevalence and incidence of cardiovascular disease (CVD) in a national cohort of patients seeking treatment for drug use disorders (DUD). Methods This is a longitudinal record linkage study of consecutive DUD treatment admissions between 2000 and 2006 from Denmark. Results...... treatment (SHR = 1.15, p = 0.022). The use of amphetamines was negatively associated with the risk of CVD within this cohort (SHR = 0.75, p = 0.001). Conclusions Patients injecting drugs using prescribed methadone were at elevated risk for cardiovascular disease and should be monitored for CVD. Opioid...... medications should be evaluated in terms of their cardiovascular sequelae....

  1. Respirable antisense oligonucleotides: a new drug class for respiratory disease

    Tanaka Makoto

    2000-12-01

    Full Text Available Abstract Respirable antisense oligonucleotides (RASONs, which attenuate specific disease-associated mRNAs, represent a new class of respiratory therapeutics with considerable potential. RASONs overcome previous obstacles that have impeded the development of antisense therapeutics targeting diseases in other organ systems. RASONs are delivered directly to the target tissue via inhalation; their uptake seems to be enhanced by cationic properties inherent in pulmonary surfactant, and, because of the markedly different target properties of mRNA and proteins, they can have very long durations of effect compared with traditional drugs targeting the protein of the same gene. RASONs contain chemical modifications that decrease their degradation by cellular nucleases. However, total insensitivity to nucleases is probably not an optimal design criterion for RASONs, because moderate nuclease sensitivity can prevent their systemic delivery, decreasing the potential for systemic toxicity. EPI-2010 is a 21-mer phosphorothioate RASON that attenuates bronchoconstriction, inflammation and surfactant depletion in preclinical models of human asthma, has a duration of effect of seven days, and seems to undergo minimal systemic delivery.

  2. Multiscale modeling of transdermal drug delivery

    Rim, Jee Eun

    2006-04-01

    This study addresses the modeling of transdermal diffusion of drugs, to better understand the permeation of molecules through the skin, and especially the stratum corneum, which forms the main permeation barrier of the skin. In transdermal delivery of systemic drugs, the drugs diffuse from a patch placed on the skin through the epidermis to the underlying blood vessels. The epidermis is the outermost layer of the skin and can be further divided into the stratum corneum (SC) and the viable epidermis layers. The SC consists of keratinous cells (corneocytes) embedded in the lipid multi-bilayers of the intercellular space. It is widely accepted that the barrier properties of the skin mostly arises from the ordered structure of the lipid bilayers. The diffusion path, at least for lipophilic molecules, seems to be mainly through the lipid bilayers. Despite the advantages of transdermal drug delivery compared to other drug delivery routes such as oral dosing and injections, the low percutaneous permeability of most compounds is a major difficulty in the wide application of transdermal drug delivery. In fact, many transdermal drug formulations include one or more permeation enhancers that increase the permeation of the drug significantly. During the last two decades, many researchers have studied percutaneous absorption of drugs both experimentally and theoretically. However, many are based on pharmacokinetic compartmental models, in which steady or pseudo-steady state conditions are assumed, with constant diffusivity and partitioning for single component systems. This study presents a framework for studying the multi-component diffusion of drugs coupled with enhancers through the skin by considering the microstructure of the stratum corneum (SC). A multiscale framework of modeling the transdermal diffusion of molecules is presented, by first calculating the microscopic diffusion coefficient in the lipid bilayers of the SC using molecular dynamics (MD). Then a

  3. Stem Cells as In Vitro Model of Parkinson's Disease

    Patricia L. Martínez-Morales

    2012-01-01

    Full Text Available Progress in understanding neurodegenerative cell biology in Parkinson's disease (PD has been hampered by a lack of predictive and relevant cellular models. In addition, the lack of an adequate in vitro human neuron cell-based model has been an obstacle for the uncover of new drugs for treating PD. The ability to generate induced pluripotent stem cells (iPSCs from PD patients and a refined capacity to differentiate these iPSCs into DA neurons, the relevant disease cell type, promises a new paradigm in drug development that positions human disease pathophysiology at the core of preclinical drug discovery. Disease models derived from iPSC that manifest cellular disease phenotypes have been established for several monogenic diseases, but iPSC can likewise be used for phenotype-based drug screens in complex diseases for which the underlying genetic mechanism is unknown. Here, we highlight recent advances as well as limitations in the use of iPSC technology for modelling PD “in a dish” and for testing compounds against human disease phenotypes in vitro. We discuss how iPSCs are being exploited to illuminate disease pathophysiology, identify novel drug targets, and enhance the probability of clinical success of new drugs.

  4. Emerging analgesic drugs for Parkinson's disease.

    Perez-Lloret, Santiago; Rey, María Verónica; Dellapina, Estelle; Pellaprat, Jean; Brefel-Courbon, Christine; Rascol, Olivier

    2012-06-01

    Pain affects between 40 and 85% of Parkinson's disease (PD) patients. It is a frequently disabling and overlooked feature, which can significantly reduce health-related quality of life. Unfortunately, there are no universally recommended treatments for this condition. Evidence about the efficacy and safety of available analgesic treatments is summarized in this review. Potential targets for upcoming therapies are then discussed in light of what is currently known about the physiopathology of pain in PD. Protocols for efficacy and safety assessment of novel analgesic therapies are discussed. Finally, critical aspects of study protocol design such as patient selection or outcomes to be evaluated are discussed. Preliminary results indicate that duloxetine, cranial electrotherapy stimulation, rotigotine, subthalamic or pallidum nuclei stimulation or lesion or levodopa could be effective for treating pain in PD. Similarly, some case reports indicate that repetitive transcranial magnetic stimulation (rTMS) or apomorphine could be effective for relieving painful off-period dystonia. Clinical trials with rTMS or oxycodone/naloxone prolonged-release tablets for neuropathic pain or botulinum toxin for off-period dystonia are underway. Success of clinical trials about analgesic strategies in PD will depend on the selection of the right PD population to be treated, according to the type of pain, and the proper selection of study outcomes and follow-up of international recommendations.

  5. Ceramic/polymer nanocomposites with tunable drug delivery capability at specific disease sites.

    Liu, Huinan; Webster, Thomas J

    2010-06-01

    Pharmaceutical agents are often used to stimulate new bone formation for the treatment of bone injuries or diseases (such as osteoporosis). However, there are several problems associated with current orthopedic drug delivery methods. First, conventional systemic administration of pharmaceutical agents may not effectively reach targeted sites and, thus, they can cause nonspecific bone formation in areas not affected by injury or disease. Second, even if intentionally delivered or implanted locally to the damaged bone tissue, these agents tend to rapidly diffuse into adjacent tissues due to weak physical bonding to their drug carriers, which limits their potential to promote prolonged bone formation in targeted areas of bone disease. Therefore, in this study, biodegradable ceramic/polymer nanocomposites were explored as novel drug carriers for orthopedic applications to prolong local drug release and, thus, improve drug effectiveness at bone disease sites. Specifically, a bone morphogenetic protein (BMP-7) derived peptide (DIF-7c) was used as a model drug in this study and was first loaded onto nanocrystalline hydroxyapatite (nano-HA) by either covalent chemical attachment or physical adsorption. These drug-carrying nano-HA particles were then dispersed into a degradable polymer (poly-lactide-co-glycolide or PLGA) matrix to create an implantable system capable of long-term drug release. The aminophase silane covalent chemical immobilization process was utilized in this study. These nanocomposite-based drug delivery systems were then characterized for drug loading efficiency and in vitro drug release. Results demonstrated that DIF-7c was successfully immobilized onto nano-HA placed in PLGA. Moreover, a greater prolonged two-phase release profile (of more than 3 months) was achieved when using aminophase silane chemical immobilization to nano-HA particles. Since previous studies have demonstrated greater in vivo bone growth on nano- compared with micron-HA particles

  6. Chronotherapeutic drug delivery systems: an approach to circadian rhythms diseases.

    Sunil, S A; Srikanth, M V; Rao, N Sreenivasa; Uhumwangho, M U; Latha, K; Murthy, K V Ramana

    2011-11-01

    The purpose of writing this review on chronotherapeutic drug delivery systems (ChrDDs) is to review the literatures with special focus on ChrDDs and the various dosage forms, techniques that are used to target the circadian rhythms (CR) of various diseases. Many functions of the human body vary considerably in a day. ChrDDs refers to a treatment method in which in vivo drug availability is timed to match circadian rhythms of disease in order to optimize therapeutic outcomes and minimize side effects. Several techniques have been developed but not many dosage forms for all the diseases are available in the market. ChrDDs are gaining importance in the field of pharmaceutical technology as these systems reduce dosing frequency, toxicity and deliver the drug that matches the CR of that particular disease when the symptoms are maximum to worse. Finally, the ultimate benefit goes to the patient due the compliance and convenience of the dosage form. Some diseases that follow circadian rhythms include cardiovascular diseases, asthma, arthritis, ulcers, diabetes etc. ChrDDs in the market were also discussed and the current technologies used to formulate were also stated. These technologies include Contin® , Chronotopic®, Pulsincaps®, Ceform®, Timerx®, Oros®, Codas®, Diffucaps®, Egalet®, Tablet in capsule device, Core-in-cup tablet technology. A coated drug-core tablet matrix, A bi-layered tablet, Multiparticulate-based chronotherapeutic drug delivery systems, Chronoset and Controlled release microchips.

  7. Gender and images of heart disease in Scandinavian drug advertising.

    Riska, Elianne; Heikell, Thomas

    2007-01-01

    This study examines the construction of the "heart disease candidate" in advertisements for cardiovascular drugs in Scandinavian medical journals. All advertisements for cardiovascular drugs (n = 603) in Scandinavian medical journals (Denmark, Finland, Norway, and Sweden) in 2005 were collected. Only advertisements that portray users (n = 289, 48% of the advertisements) were analyzed. The results show that coronary candidacy is constructed as a male condition in half of the advertisements for cardiovascular drugs. The advertisements suggest a gendering of heart disease: men are the major victims of heart failure and cardiac insufficiency, and women are in need of cholesterol-lowering drugs. The cardiovascular drug advertisements portray a restoration of men's hyperactive agency, valorized by means of sporty images, by drawing on masculinity as a fixed trait and behavior. Hypercholesterolemia as a woman's disease reproduces the tyranny of slimness for women: Only women's stoutness is medicalized, and there are no pictures of heavy men. The findings point to the public health implications of gendered images of coronary candidacy in medical advertising.

  8. Drug repurposing by integrated literature mining and drug–gene–disease triangulation

    Sun, Peng; Guo, Jiong; Winnenburg, Rainer

    2017-01-01

    recent developments in computational drug repositioning and introduce the utilized data sources. Afterwards, we introduce a new data fusion model based on n-cluster editing as a novel multi-source triangulation strategy, which was further combined with semantic literature mining. Our evaluation suggests...... that utilizing drug–gene–disease triangulation coupled to sophisticated text analysis is a robust approach for identifying new drug candidates for repurposing....

  9. The availability and affordability of orphan drugs for rare diseases in China.

    Gong, Shiwei; Wang, Yingxiao; Pan, Xiaoyun; Zhang, Liang; Huang, Rui; Chen, Xin; Hu, Juanjuan; Xu, Yi; Jin, Si

    2016-02-27

    Orphan drugs are intended to treat, prevent or diagnose rare diseases. In recent years, China healthcare policy makers and patients have become increasingly concerned about orphan drug issues. However, very few studies have assessed the availability and affordability of orphan drugs for rare diseases in China. The aim of this study was to provide an overview of the availability and affordability of orphan drugs in China and to make suggestions to improve patient access to orphan drugs. Two components of the availability of orphan drugs were examined. Market availability was assessed by the extent to which orphan drugs were marketed in China with a comparison to orphan drugs in international markets, such as the U.S., EU and Japan. We conducted surveys and collected data from 24 tertiary public hospitals in China to measure hospital-level availability of orphan drugs. The affordability of orphan drugs was calculated using hospital dispensary prices and was expressed as days of average daily income required for the cost of a course of treatment. Affordability was also analyzed under the Chinese basic medical insurance system. Orphan drugs approved in the U.S., EU and Japan had 37.8%, 24.6% and 52.4% market availability in China, respectively. Median availability of 31 orphan drugs surveyed at the 24 tertiary public hospitals was 20.8% (very low). Within a periodic treatment course, the average treatment cost of 23 orphan drugs is approximately 4, 843. 5 USD, which equates to 505.6 days of per capita net income for an urban resident with a middle income (187.4 days for a high-income urban resident) or 1,582.8 days's income for a rural resident with a middle income (657.2 days for a high-income rural resident). Except for homoharringtonine, 22 orphan drugs for 14 rare diseases were unaffordable for the most of residents in China. With 5% out-of-pocket expenses, only three generics could be afforded by middle-income residents, whereas seven drugs for high-income urban

  10. Targeting cysteine proteases in trypanosomatid disease drug discovery.

    Ferreira, Leonardo G; Andricopulo, Adriano D

    2017-12-01

    Chagas disease and human African trypanosomiasis are endemic conditions in Latin America and Africa, respectively, for which no effective and safe therapy is available. Efforts in drug discovery have focused on several enzymes from these protozoans, among which cysteine proteases have been validated as molecular targets for pharmacological intervention. These enzymes are expressed during the entire life cycle of trypanosomatid parasites and are essential to many biological processes, including infectivity to the human host. As a result of advances in the knowledge of the structural aspects of cysteine proteases and their role in disease physiopathology, inhibition of these enzymes by small molecules has been demonstrated to be a worthwhile approach to trypanosomatid drug research. This review provides an update on drug discovery strategies targeting the cysteine peptidases cruzain from Trypanosoma cruzi and rhodesain and cathepsin B from Trypanosoma brucei. Given that current chemotherapy for Chagas disease and human African trypanosomiasis has several drawbacks, cysteine proteases will continue to be actively pursued as valuable molecular targets in trypanosomatid disease drug discovery efforts. Copyright © 2017. Published by Elsevier Inc.

  11. [Guideline for the treatment of Graves' disease with antithyroid drug].

    Nakamura, Hirotoshi

    2006-12-01

    We have published "Guideline for the Treatment of Graves' Disease with Antithyroid Drug in Japan 2006" in the middle of May from the Japan Thyroid Association. The background, working process, composition, aim and significance of this guideline are described. The most remarkable feature of this guideline is "evidence based".

  12. Addressing drug adherence using an operations management model.

    Nunlee, Martin; Bones, Michelle

    2014-01-01

    OBJECTIVE To provide a model that enables health systems and pharmacy benefit managers to provide medications reliably and test for reliability and validity in the analysis of adherence to drug therapy of chronic disease. SUMMARY The quantifiable model described here can be used in conjunction with behavioral designs of drug adherence assessments. The model identifies variables that can be reproduced and expanded across the management of chronic diseases with drug therapy. By creating a reorder point system for reordering medications, the model uses a methodology commonly seen in operations research. The design includes a safety stock of medication and current supply of medication, which increases the likelihood that patients will have a continuous supply of medications, thereby positively affecting adherence by removing barriers. CONCLUSION This method identifies an adherence model that quantifies variables related to recommendations from health care providers; it can assist health care and service delivery systems in making decisions that influence adherence based on the expected order cycle days and the expected daily quantity of medication administered. This model addresses the possession of medication as a barrier to adherence.

  13. Systematic synergy modeling: understanding drug synergy from a systems biology perspective.

    Chen, Di; Liu, Xi; Yang, Yiping; Yang, Hongjun; Lu, Peng

    2015-09-16

    Owing to drug synergy effects, drug combinations have become a new trend in combating complex diseases like cancer, HIV and cardiovascular diseases. However, conventional synergy quantification methods often depend on experimental dose-response data which are quite resource-demanding. In addition, these methods are unable to interpret the explicit synergy mechanism. In this review, we give representative examples of how systems biology modeling offers strategies toward better understanding of drug synergy, including the protein-protein interaction (PPI) network-based methods, pathway dynamic simulations, synergy network motif recognitions, integrative drug feature calculations, and "omic"-supported analyses. Although partially successful in drug synergy exploration and interpretation, more efforts should be put on a holistic understanding of drug-disease interactions, considering integrative pharmacology and toxicology factors. With a comprehensive and deep insight into the mechanism of drug synergy, systems biology opens a novel avenue for rational design of effective drug combinations.

  14. Viral capsid assembly as a model for protein aggregation diseases: Active processes catalyzed by cellular assembly machines comprising novel drug targets.

    Marreiros, Rita; Müller-Schiffmann, Andreas; Bader, Verian; Selvarajah, Suganya; Dey, Debendranath; Lingappa, Vishwanath R; Korth, Carsten

    2015-09-02

    Viruses can be conceptualized as self-replicating multiprotein assemblies, containing coding nucleic acids. Viruses have evolved to exploit host cellular components including enzymes to ensure their replicative life cycle. New findings indicate that also viral capsid proteins recruit host factors to accelerate their assembly. These assembly machines are RNA-containing multiprotein complexes whose composition is governed by allosteric sites. In the event of viral infection, the assembly machines are recruited to support the virus over the host and are modified to achieve that goal. Stress granules and processing bodies may represent collections of such assembly machines, readily visible by microscopy but biochemically labile and difficult to isolate by fractionation. We hypothesize that the assembly of protein multimers such as encountered in neurodegenerative or other protein conformational diseases, is also catalyzed by assembly machines. In the case of viral infection, the assembly machines have been modified by the virus to meet the virus' need for rapid capsid assembly rather than host homeostasis. In the case of the neurodegenerative diseases, it is the monomers and/or low n oligomers of the so-called aggregated proteins that are substrates of assembly machines. Examples for substrates are amyloid β peptide (Aβ) and tau in Alzheimer's disease, α-synuclein in Parkinson's disease, prions in the prion diseases, Disrupted-in-schizophrenia 1 (DISC1) in subsets of chronic mental illnesses, and others. A likely continuum between virus capsid assembly and cell-to-cell transmissibility of aggregated proteins is remarkable. Protein aggregation diseases may represent dysfunction and dysregulation of these assembly machines analogous to the aberrations induced by viral infection in which cellular homeostasis is pathologically reprogrammed. In this view, as for viral infection, reset of assembly machines to normal homeostasis should be the goal of protein aggregation

  15. Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls

    Hossain, Shaolie S.

    2011-08-20

    The majority of heart attacks occur when there is a sudden rupture of atherosclerotic plaque, exposing prothrombotic emboli to coronary blood flow, forming clots that can cause blockages of the arterial lumen. Diseased arteries can be treated with drugs delivered locally to vulnerable plaques. The objective of this work was to develop a computational tool-set to support the design and analysis of a catheter-based nanoparticulate drug delivery system to treat vulnerable plaques and diffuse atherosclerosis. A threedimensional mathematical model of coupled mass transport of drug and drug-encapsulated nanoparticles was developed and solved numerically utilizing isogeometric finite element analysis. Simulations were run on a patient-specific multilayered coronary artery wall segment with a vulnerable plaque and the effect of artery and plaque inhomogeneity was analyzed. The method captured trends observed in local drug delivery and demonstrated potential for optimizing drug design parameters, including delivery location, nanoparticle surface properties, and drug release rate. © Springer-Verlag 2011.

  16. Drug development in Parkinson's disease: from emerging molecules to innovative drug delivery systems.

    Garbayo, E; Ansorena, E; Blanco-Prieto, M J

    2013-11-01

    Current treatments for Parkinson's disease (PD) are aimed at addressing motor symptoms but there is no therapy focused on modifying the course of the disease. Successful treatment strategies have been so far limited and brain drug delivery remains a major challenge that restricts its treatment. This review provides an overview of the most promising emerging agents in the field of PD drug discovery, discussing improvements that have been made in brain drug delivery for PD. It will be shown that new approaches able to extend the length of the treatment, to release the drug in a continuous manner or to cross the blood-brain barrier and target a specific region are still needed. Overall, the results reviewed here show that there is an urgent need to develop both symptomatic and disease-modifying treatments, giving priority to neuroprotective treatments. Promising perspectives are being provided in this field by rasagiline and by neurotrophic factors like glial cell line-derived neurotrophic factor. The identification of disease-relevant genes has also encouraged the search for disease-modifying therapies that function by identifying molecularly targeted drugs. The advent of new molecular and cellular targets like α-synuclein, leucine-rich repeat serine/threonine protein kinase 2 or parkin, among others, will require innovative delivery therapies. In this regard, drug delivery systems (DDS) have shown great potential for improving the efficacy of conventional and new PD therapy and reducing its side effects. The new DDS discussed here, which include microparticles, nanoparticles and hydrogels among others, will probably open up possibilities that extend beyond symptomatic relief. However, further work needs to be done before DDS become a therapeutic option for PD patients. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. [Categories and characteristics of BPH drug evaluation models: a comparative study].

    Huang, Dong-Yan; Wu, Jian-Hui; Sun, Zu-Yue

    2014-02-01

    Benign prostatic hyperplasia (BPH) is a worldwide common disease in men over 50 years old, and the exact cause of BPH remains largely unknown. In order to elucidate its pathogenesis and screen effective drugs for the treatment of BPH, many BPH models have been developed at home and abroad. This article presents a comprehensive analysis of the categories and characteristics of BPH drug evaluation models, highlighting the application value of each model, to provide a theoretical basis for the development of BPH drugs.

  18. Monitoring the efficacy of drugs for neglected tropical diseases controlled by preventive chemotherapy.

    Albonico, M; Levecke, B; LoVerde, P T; Montresor, A; Prichard, R; Vercruysse, J; Webster, J P

    2015-12-01

    In the last decade, pharmaceutical companies, governments and global health organisations under the leadership of the World Health Organization (WHO) have pledged large-scale donations of anthelmintic drugs, including ivermectin (IVM), praziquantel (PZQ), albendazole (ALB) and mebendazole (MEB). This worldwide scale-up in drug donations calls for strong monitoring systems to detect any changes in anthelmintic drug efficacy. This review reports on the outcome of the WHO Global Working Group on Monitoring of Neglected Tropical Diseases Drug Efficacy, which consists of three subgroups: (i) soil-transmitted helminthiases (ALB and MEB); (ii) onchocerciasis and lymphatic filariasis (IVM); and (iii) schistosomiasis (PZQ). Progress of ongoing work, challenges and research needs for each of the four main drugs used in helminthic preventive chemotherapy (PC) are reported, laying the ground for appropriate implementation of drug efficacy monitoring programmes under the co-ordination and guidelines of the WHO. Best practices for monitoring drug efficacy should be made available and capacity built as an integral part of neglected tropical disease (NTD) programme monitoring. Development of a disease-specific model to predict the impact of PC programmes, to detect outliers and to solicit responses is essential. Research studies on genetic polymorphisms in relation to low-efficacy phenotypes should be carried out to identify markers of putative resistance against all NTD drugs and ultimately to develop diagnostic assays. Development of combination and co-administration of NTD drugs as well as of new drug entities to boost the armamentarium of the few drugs available for NTD control and elimination should be pursued in parallel. Copyright © 2015 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  19. Animal Models of Cardiovascular Diseases

    Carlos Zaragoza

    2011-01-01

    Full Text Available Cardiovascular diseases are the first leading cause of death and morbidity in developed countries. The use of animal models have contributed to increase our knowledge, providing new approaches focused to improve the diagnostic and the treatment of these pathologies. Several models have been developed to address cardiovascular complications, including atherothrombotic and cardiac diseases, and the same pathology have been successfully recreated in different species, including small and big animal models of disease. However, genetic and environmental factors play a significant role in cardiovascular pathophysiology, making difficult to match a particular disease, with a single experimental model. Therefore, no exclusive method perfectly recreates the human complication, and depending on the model, additional considerations of cost, infrastructure, and the requirement for specialized personnel, should also have in mind. Considering all these facts, and depending on the budgets available, models should be selected that best reproduce the disease being investigated. Here we will describe models of atherothrombotic diseases, including expanding and occlusive animal models, as well as models of heart failure. Given the wide range of models available, today it is possible to devise the best strategy, which may help us to find more efficient and reliable solutions against human cardiovascular diseases.

  20. Animal models of cardiovascular diseases.

    Zaragoza, Carlos; Gomez-Guerrero, Carmen; Martin-Ventura, Jose Luis; Blanco-Colio, Luis; Lavin, Begoña; Mallavia, Beñat; Tarin, Carlos; Mas, Sebastian; Ortiz, Alberto; Egido, Jesus

    2011-01-01

    Cardiovascular diseases are the first leading cause of death and morbidity in developed countries. The use of animal models have contributed to increase our knowledge, providing new approaches focused to improve the diagnostic and the treatment of these pathologies. Several models have been developed to address cardiovascular complications, including atherothrombotic and cardiac diseases, and the same pathology have been successfully recreated in different species, including small and big animal models of disease. However, genetic and environmental factors play a significant role in cardiovascular pathophysiology, making difficult to match a particular disease, with a single experimental model. Therefore, no exclusive method perfectly recreates the human complication, and depending on the model, additional considerations of cost, infrastructure, and the requirement for specialized personnel, should also have in mind. Considering all these facts, and depending on the budgets available, models should be selected that best reproduce the disease being investigated. Here we will describe models of atherothrombotic diseases, including expanding and occlusive animal models, as well as models of heart failure. Given the wide range of models available, today it is possible to devise the best strategy, which may help us to find more efficient and reliable solutions against human cardiovascular diseases.

  1. Drug therapy in patients with Parkinson’s disease

    Müller Thomas

    2012-05-01

    Full Text Available Abstract Parkinson`s disease (PD is a progressive, disabling neurodegenerative disorder with onset of motor and non-motor features. Both reduce quality of life of PD patients and cause caregiver burden. This review aims to provide a survey of possible therapeutic options for treatment of motor and non motor symptoms of PD and to discuss their relation to each other. MAO-B-Inhibitors, NMDA antagonists, dopamine agonists and levodopa with its various application modes mainly improve the dopamine associated motor symptoms in PD. This armentarium of PD drugs only partially influences the onset and occurrence of non motor symptoms. These PD features predominantly result from non dopaminergic neurodegeneration. Autonomic features, such as seborrhea, hyperhidrosis, orthostatic syndrome, salivation, bladder dysfunction, gastrointestinal disturbances, and neuropsychiatric symptoms, such as depression, sleep disorders, psychosis, cognitive dysfunction with impaired execution and impulse control may appear. Drug therapy of these non motor symptoms complicates long-term PD drug therapy due to possible occurrence of drug interactions, - side effects, and altered pharmacokinetic behaviour of applied compounds. Dopamine substituting compounds themselves may contribute to onset of these non motor symptoms. This complicates the differentiation from the disease process itself and influences therapeutic options, which are often limited because of additional morbidity with necessary concomitant drug therapy.

  2. Improving drug delivery technology for treating neurodegenerative diseases.

    Choonara, Yahya E; Kumar, Pradeep; Modi, Girish; Pillay, Viness

    2016-07-01

    Neurodegenerative diseases (NDs) represent intricate challenges for efficient uptake and transport of drugs to the brain mainly due to the restrictive blood-brain barrier (BBB). NDs are characterized by the loss of neuronal subtypes as sporadic and/or familial and several mechanisms of neurodegeneration have been identified. This review attempts to recap, organize and concisely evaluate the advanced drug delivery systems designed for treating common NDs. It highlights key research gaps and opinionates on new neurotherapies to overcome the BBB as an addition to the current treatments of countering oxidative stress, inflammation and apoptotic mechanisms. Current treatments do not fully address the biological, drug and therapeutic factors faced. This has led to the development of vogue treatments such as nose-to-brain technologies, bio-engineered systems, fusion protein chaperones, stem cells, gene therapy, use of natural compounds, neuroprotectants and even vaccines. However, failure of these treatments is mainly due to the BBB and non-specific delivery in the brain. In order to increase neuroavailability various advanced drug delivery systems provide promising alternatives that are able to augment the treatment of Alzheimer's disease and Parkinson's disease. However, much work is still required in this field beyond the preclinical testing phase.

  3. Improving Predictive Modeling in Pediatric Drug Development: Pharmacokinetics, Pharmacodynamics, and Mechanistic Modeling

    Slikker, William; Young, John F.; Corley, Rick A.; Dorman, David C.; Conolly, Rory B.; Knudsen, Thomas; Erstad, Brian L.; Luecke, Richard H.; Faustman, Elaine M.; Timchalk, Chuck; Mattison, Donald R.

    2005-07-26

    A workshop was conducted on November 18?19, 2004, to address the issue of improving predictive models for drug delivery to developing humans. Although considerable progress has been made for adult humans, large gaps remain for predicting pharmacokinetic/pharmacodynamic (PK/PD) outcome in children because most adult models have not been tested during development. The goals of the meeting included a description of when, during development, infants/children become adultlike in handling drugs. The issue of incorporating the most recent advances into the predictive models was also addressed: both the use of imaging approaches and genomic information were considered. Disease state, as exemplified by obesity, was addressed as a modifier of drug pharmacokinetics and pharmacodynamics during development. Issues addressed in this workshop should be considered in the development of new predictive and mechanistic models of drug kinetics and dynamics in the developing human.

  4. New drugs for the treatment of dry eye disease

    Ridder, III, William; Karsolia,Apoorva

    2015-01-01

    William H Ridder III, Apoorva Karsolia Southern California College of Optometry, Marshall B Ketchum University, Fullerton, CA, USA Abstract: Dry eye disease (DED) is one of the most commonly encountered conditions for eye care practitioners. The prevalence of DED can be as high as 30% of the population. In the past decade, only one drug has been approved for the treatment of DED by the US Food and Drug Administration (FDA) in the USA (ie, Restasis® by Allergan, Inc.). The total annua...

  5. Current therapeutic molecules and targets in neurodegenerative diseases based on in silico drug design.

    Sehgal, Sheikh Arslan; Hammad, Mirza A; Tahir, Rana Adnan; Akram, Hafiza Nisha; Ahmad, Faheem

    2018-03-15

    As the number of elderly persons increases, neurodegenerative diseases are becoming ubiquitous. There is currently a great need for knowledge concerning management of old-age neurodegenerative diseases; the most important of which are: Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis, and Huntington's disease. To summarize the potential of computationally predicted molecules and targets against neurodegenerative diseases. Review of literature published since 1997 against neurodegenerative diseases, utilizing as keywords: in silico, Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis ALS, and Huntington's disease. Due to the costs associated with experimentation and current ethical law, performing experiments directly on living organisms has become much more difficult. In this scenario, in silico techniques have been successful and have become powerful tools in the search to cure disease. Researchers use the Computer Aided Drug Design pipeline which: 1) generates 3-dimensional structures of target proteins through homology modeling 2) achieves stabilization through molecular dynamics simulation, and 3) exploits molecular docking through large compound libraries. Next generation sequencing is continually producing enormous amounts of raw sequence data while neuroimaging is producing a multitude of raw image data. To solve such pressing problems, these new tools and algorithms are required. This review elaborates precise in silico tools and techniques for drug targets, active molecules, and molecular docking studies, together with future prospects and challenges concerning possible breakthroughs in Alzheimer's, Parkinson's, Amyotrophic Lateral Sclerosis, and Huntington's disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. [The trend of developing new disease-modifying drugs in Alzheimer's disease].

    Arai, Hiroyuki; Furukawa, Katsutoshi; Tomita, Naoki; Ishiki, Aiko; Okamura, Nobuyuki; Kudo, Yukitsuka

    2016-03-01

    Development of symptomatic treatment of Alzheimer s disease by cholinesterase inhibitors like donepezil was successful. However, it is a disappointment that development of disease-modifying drugs such as anti-amyloid drug based on amyloid-cascade theory has been interrupted or unsuccessful. Therefore, we have to be more cautious regarding inclusion criteria for clinical trials of new drugs. We agree that potentially curative drugs should be started before symptoms begin as a preemptive therapy or prevention trial. The concept of personalized medicine also is important when ApoE4-related amyloid reducing therapy is considered. Unfortunately, Japanese-ADNI has suffered a setback since 2014. However, Ministry of Health, Labour and Welfare gave a final remark that there was nothing wrong in the data managing process in the J-ADNI data center. We should pay more attention to worldwide challenges of speeding up new drug development.

  7. The Impact of Disease and Drugs on Hip Fracture Risk

    Leavy, Breiffni; Michaëlsson, Karl; Åberg, Anna Cristina; Melhus, Håkan; Byberg, Liisa

    2017-01-01

    We report the risks of a comprehensive range of disease and drug categories on hip fracture occurrence using a strict population-based cohort design. Participants included the source population of a Swedish county, aged ?50?years (n?=?117,494) including all incident hip fractures during 1?year (n?=?477). The outcome was hospitalization for hip fracture (ICD-10 codes S72.0?S72.2) during 1?year (2009?2010). Exposures included: prevalence of (1) inpatient diseases [International Classification o...

  8. Drug-induced Liver Disease in Patients with Diabetes Mellitus

    Iryna, Klyarytskaya; Helen, Maksymova; Elena, Stilidi

    2016-01-01

    The study presented here was accomplished to assess the course of drug-induced liver diseases in patient’s rheumatoid arthritis receiving long-term methotrexate therapy. Diabetes mellitus was revealed as the most significant risk factor. The combination of diabetes mellitus with other risk factors (female sex) resulted in increased hepatic fibrosis, degree of hepatic encephalopathy and reduction of hepatic functions. The effectiveness and safety of ursodeoxycholic acid and cytolytic type-with...

  9. Current advances in transdermal delivery of drugs for alzheimer's disease

    Thuy Trang Nguyen; Vo Van Giau; Tuong Kha Vo

    2017-01-01

    Alzheimer's disease (AD) is a common, progressive, fatal neurodegenerative disorder, which will play an increasingly important role both socially and financially in the aging populations. Treatments for AD show modest improvements in cognition and global functioning among patients. Furthermore, the oral administration of treating AD has had some drawbacks that decrease the medication adherence and efficacy of the therapy. Transdermal drugs are proposed as an alternative remedy to overcome the...

  10. Large Mammalian Animal Models of Heart Disease

    Paula Camacho

    2016-10-01

    Full Text Available Due to the biological complexity of the cardiovascular system, the animal model is an urgent pre-clinical need to advance our knowledge of cardiovascular disease and to explore new drugs to repair the damaged heart. Ideally, a model system should be inexpensive, easily manipulated, reproducible, a biological representative of human disease, and ethically sound. Although a larger animal model is more expensive and difficult to manipulate, its genetic, structural, functional, and even disease similarities to humans make it an ideal model to first consider. This review presents the commonly-used large animals—dog, sheep, pig, and non-human primates—while the less-used other large animals—cows, horses—are excluded. The review attempts to introduce unique points for each species regarding its biological property, degrees of susceptibility to develop certain types of heart diseases, and methodology of induced conditions. For example, dogs barely develop myocardial infarction, while dilated cardiomyopathy is developed quite often. Based on the similarities of each species to the human, the model selection may first consider non-human primates—pig, sheep, then dog—but it also depends on other factors, for example, purposes, funding, ethics, and policy. We hope this review can serve as a basic outline of large animal models for cardiovascular researchers and clinicians.

  11. Benznidazole, the trypanocidal drug used for Chagas disease, induces hepatic NRF2 activation and attenuates the inflammatory response in a murine model of sepsis

    Lambertucci, Flavia; Motiño, Omar; Villar, Silvina; Rigalli, Juan Pablo; Luján Alvarez, María de; Catania, Viviana A; Martín-Sanz, Paloma; Carnovale, Cristina Ester; Quiroga, Ariel Darío; Francés, Daniel Eleazar; Ronco, María Teresa

    2017-01-01

    Molecular mechanisms on sepsis progression are linked to the imbalance between reactive oxygen species (ROS) production and cellular antioxidant capacity. Previous studies demonstrated that benznidazole (BZL), known for its antiparasitic action on Trypanosoma cruzi, has immunomodulatory effects, increasing survival in C57BL/6 mice in a model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). The mechanism by which BZL inhibits inflammatory response in sepsis is poorly understood. Also, our group recently reported that BZL is able to activate the nuclear factor erytroide-derived 2-Like 2 (NRF2) in vitro. The aim of the present work was to delineate the beneficial role of BZL during sepsis, analyzing its effects on the cellular redox status and the possible link to the innate immunity receptor TLR4. Specifically, we analyzed the effect of BZL on Nrf2 regulation and TLR4 expression in liver of mice 24 hours post-CLP. BZL was able to induce NRF2 nuclear protein localization in CLP mice. Also, we found that protein kinase C (PKC) is involved in the NRF2 nuclear accumulation and induction of its target genes. In addition, BZL prompted a reduction in hepatic CLP-induced TLR4 protein membrane localization, evidencing its immunomodulatory effects. Together, our results demonstrate that BZL induces hepatic NRF2 activation with the concomitant increase in the antioxidant defenses, and the attenuation of inflammatory response, in part, by inhibiting TLR4 expression in a murine model of sepsis. - Highlights: • BZL improves survival rate after polymicrobial sepsis • BZL enhances hepatic NRF2 nuclear accumulation in a model of sepsis, in part, by a mechanism dependent on PKC activation • BZL-enhanced NRF2 induction regulates antioxidant enzymes and increases antioxidant cellular defenses in sepsis • BZL blocks liver ROS production and ROS-induced TLR4 plasma membrane expression in septic mice

  12. Benznidazole, the trypanocidal drug used for Chagas disease, induces hepatic NRF2 activation and attenuates the inflammatory response in a murine model of sepsis

    Lambertucci, Flavia [Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000 Rosario (Argentina); Motiño, Omar [Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029 Madrid (Spain); Villar, Silvina [Instituto de Inmunología, Facultad de Ciencias Médicas, UNR, Suipacha 531, 2000 Rosario (Argentina); Rigalli, Juan Pablo; Luján Alvarez, María de; Catania, Viviana A [Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000 Rosario (Argentina); Martín-Sanz, Paloma [Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029 Madrid (Spain); Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid (Spain); Carnovale, Cristina Ester; Quiroga, Ariel Darío; Francés, Daniel Eleazar [Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000 Rosario (Argentina); Ronco, María Teresa, E-mail: ronco@ifise-conicet.gov.ar [Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000 Rosario (Argentina)

    2017-01-15

    Molecular mechanisms on sepsis progression are linked to the imbalance between reactive oxygen species (ROS) production and cellular antioxidant capacity. Previous studies demonstrated that benznidazole (BZL), known for its antiparasitic action on Trypanosoma cruzi, has immunomodulatory effects, increasing survival in C57BL/6 mice in a model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). The mechanism by which BZL inhibits inflammatory response in sepsis is poorly understood. Also, our group recently reported that BZL is able to activate the nuclear factor erytroide-derived 2-Like 2 (NRF2) in vitro. The aim of the present work was to delineate the beneficial role of BZL during sepsis, analyzing its effects on the cellular redox status and the possible link to the innate immunity receptor TLR4. Specifically, we analyzed the effect of BZL on Nrf2 regulation and TLR4 expression in liver of mice 24 hours post-CLP. BZL was able to induce NRF2 nuclear protein localization in CLP mice. Also, we found that protein kinase C (PKC) is involved in the NRF2 nuclear accumulation and induction of its target genes. In addition, BZL prompted a reduction in hepatic CLP-induced TLR4 protein membrane localization, evidencing its immunomodulatory effects. Together, our results demonstrate that BZL induces hepatic NRF2 activation with the concomitant increase in the antioxidant defenses, and the attenuation of inflammatory response, in part, by inhibiting TLR4 expression in a murine model of sepsis. - Highlights: • BZL improves survival rate after polymicrobial sepsis • BZL enhances hepatic NRF2 nuclear accumulation in a model of sepsis, in part, by a mechanism dependent on PKC activation • BZL-enhanced NRF2 induction regulates antioxidant enzymes and increases antioxidant cellular defenses in sepsis • BZL blocks liver ROS production and ROS-induced TLR4 plasma membrane expression in septic mice.

  13. Remission of Grave's disease after oral anti-thyroid drug treatment.

    Ishtiaq, Osama; Waseem, Sabiha; Haque, M Naeemul; Islam, Najmul; Jabbar, Abdul

    2009-11-01

    To evaluate remission rate of anti-thyroid drug treatment in patients with Grave's disease, and to study the factors associated with remission. A cross sectional study. The Endocrine Department of the Aga Khan University Hospital, Karachi from 1999 to 2000. Seventy four patients of Grave's disease were recruited who were prescribed medical treatment. Grave's disease was diagnosed in the presence of clinical and biochemical hyperthyroidism along with anti-microsomal (AMA) and anti-thyroglobulin antibodies (ATA) and thyroid scan. These patients were prescribed oral anti-thyroid drugs using titration regime and followed at 3, 6, 12 and 18 months. Patients were categorized into two groups: "remission group" and "treatment failure group" and results were compared using a chi-square test, t-test and logistic regression model with significance at p disease on initial presentation.

  14. Drug repurposing for aging research using model organisms.

    Ziehm, Matthias; Kaur, Satwant; Ivanov, Dobril K; Ballester, Pedro J; Marcus, David; Partridge, Linda; Thornton, Janet M

    2017-10-01

    Many increasingly prevalent diseases share a common risk factor: age. However, little is known about pharmaceutical interventions against aging, despite many genes and pathways shown to be important in the aging process and numerous studies demonstrating that genetic interventions can lead to a healthier aging phenotype. An important challenge is to assess the potential to repurpose existing drugs for initial testing on model organisms, where such experiments are possible. To this end, we present a new approach to rank drug-like compounds with known mammalian targets according to their likelihood to modulate aging in the invertebrates Caenorhabditis elegans and Drosophila. Our approach combines information on genetic effects on aging, orthology relationships and sequence conservation, 3D protein structures, drug binding and bioavailability. Overall, we rank 743 different drug-like compounds for their likelihood to modulate aging. We provide various lines of evidence for the successful enrichment of our ranking for compounds modulating aging, despite sparse public data suitable for validation. The top ranked compounds are thus prime candidates for in vivo testing of their effects on lifespan in C. elegans or Drosophila. As such, these compounds are promising as research tools and ultimately a step towards identifying drugs for a healthier human aging. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  15. Non-steroidal anti-inflammatory drug use and the risk of Parkinson's disease

    Manthripragada, Angelika D; Schernhammer, Eva S; Qiu, Jiaheng

    2011-01-01

    Experimental evidence supports a preventative role for non-steroidal anti-inflammatory drugs (NSAIDs) in Parkinson's disease (PD).......Experimental evidence supports a preventative role for non-steroidal anti-inflammatory drugs (NSAIDs) in Parkinson's disease (PD)....

  16. Disease modeling in genetic kidney diseases: zebrafish.

    Schenk, Heiko; Müller-Deile, Janina; Kinast, Mark; Schiffer, Mario

    2017-07-01

    Growing numbers of translational genomics studies are based on the highly efficient and versatile zebrafish (Danio rerio) vertebrate model. The increasing types of zebrafish models have improved our understanding of inherited kidney diseases, since they not only display pathophysiological changes but also give us the opportunity to develop and test novel treatment options in a high-throughput manner. New paradigms in inherited kidney diseases have been developed on the basis of the distinct genome conservation of approximately 70 % between zebrafish and humans in terms of existing gene orthologs. Several options are available to determine the functional role of a specific gene or gene sets. Permanent genome editing can be induced via complete gene knockout by using the CRISPR/Cas-system, among others, or via transient modification by using various morpholino techniques. Cross-species rescues succeeding knockdown techniques are employed to determine the functional significance of a target gene or a specific mutation. This article summarizes the current techniques and discusses their perspectives.

  17. Secreted phospholipase A(2) as a new enzymatic trigger mechanism for localised liposomal drug release and absorption in diseased tissue

    Davidsen, Jesper; Jørgensen, K.; Andresen, Thomas Lars

    2003-01-01

    Polymer-coated liposomes can act as versatile drug-delivery systems due to long vascular circulation time and passive targeting by leaky blood vessels in diseased tissue. We present an experimental model system illustrating a new principle for improved and programmable drug-delivery, which takes ...

  18. Drug targets in the cytokine universe for autoimmune disease.

    Liu, Xuebin; Fang, Lei; Guo, Taylor B; Mei, Hongkang; Zhang, Jingwu Z

    2013-03-01

    In autoimmune disease, a network of diverse cytokines is produced in association with disease susceptibility to constitute the 'cytokine milieu' that drives chronic inflammation. It remains elusive how cytokines interact in such a complex network to sustain inflammation in autoimmune disease. This has presented huge challenges for successful drug discovery because it has been difficult to predict how individual cytokine-targeted therapy would work. Here, we combine the principles of Chinese Taoism philosophy and modern bioinformatics tools to dissect multiple layers of arbitrary cytokine interactions into discernible interfaces and connectivity maps to predict movements in the cytokine network. The key principles presented here have important implications in our understanding of cytokine interactions and development of effective cytokine-targeted therapies for autoimmune disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Bioengineered Liver Models for Drug Testing and Cell Differentiation Studies

    Gregory H. Underhill

    2018-01-01

    Full Text Available In vitro models of the human liver are important for the following: (1 mitigating the risk of drug-induced liver injury to human beings, (2 modeling human liver diseases, (3 elucidating the role of single and combinatorial microenvironmental cues on liver cell function, and (4 enabling cell-based therapies in the clinic. Methods to isolate and culture primary human hepatocytes (PHHs, the gold standard for building human liver models, were developed several decades ago; however, PHHs show a precipitous decline in phenotypic functions in 2-dimensional extracellular matrix–coated conventional culture formats, which does not allow chronic treatment with drugs and other stimuli. The development of several engineering tools, such as cellular microarrays, protein micropatterning, microfluidics, biomaterial scaffolds, and bioprinting, now allow precise control over the cellular microenvironment for enhancing the function of both PHHs and induced pluripotent stem cell–derived human hepatocyte-like cells; long-term (4+ weeks stabilization of hepatocellular function typically requires co-cultivation with liver-derived or non–liver-derived nonparenchymal cell types. In addition, the recent development of liver organoid culture systems can provide a strategy for the enhanced expansion of therapeutically relevant cell types. Here, we discuss advances in engineering approaches for constructing in vitro human liver models that have utility in drug screening and for determining microenvironmental determinants of liver cell differentiation/function. Design features and validation data of representative models are presented to highlight major trends followed by the discussion of pending issues that need to be addressed. Overall, bioengineered liver models have significantly advanced our understanding of liver function and injury, which will prove useful for drug development and ultimately cell-based therapies.

  20. 78 FR 21613 - Prescription Drug User Fee Act Patient-Focused Drug Development; Announcement of Disease Areas...

    2013-04-11

    ... Availability. SUMMARY: The Food and Drug Administration (FDA) is announcing the selection of disease areas to... selection criteria, which were published in the September 24, 2012, Federal Register notice: Disease areas... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0967...

  1. Current advances in transdermal delivery of drugs for Alzheimer's disease

    Nguyen, Thuy Trang; Giau, Vo Van; Vo, Tuong Kha

    2017-01-01

    Alzheimer's disease (AD) is a common, progressive, fatal neurodegenerative disorder, which will play an increasingly important role both socially and financially in the aging populations. Treatments for AD show modest improvements in cognition and global functioning among patients. Furthermore, the oral administration of treating AD has had some drawbacks that decrease the medication adherence and efficacy of the therapy. Transdermal drugs are proposed as an alternative remedy to overcome the disadvantages of current pharmaceutical dosage options for this chronic disorder. They could have different strengths, such as offering a stable diffusion of active substance, avoiding the first pass metabolism, and reducing system adverse reactions. This article reviews the technical principles, novel techniques of transdermal delivery drug, and prospects for future development for the management of cognitive and behavioral dysfunctions in AD patients. PMID:28706327

  2. Print advertisements for Alzheimer's disease drugs: informational and transformational features.

    Gooblar, Jonathan; Carpenter, Brian D

    2013-06-01

    We examined print advertisements for Alzheimer's disease drugs published in journals and magazines between January 2008 and February 2012, using an informational versus transformational theoretical framework to identify objective and persuasive features. In 29 unique advertisements, we used qualitative methods to code and interpret identifying information, charts, benefit and side effect language, and persuasive appeals embedded in graphics and narratives. Most elements contained a mixture of informational and transformational features. Charts were used infrequently, but when they did appear the accompanying text often exaggerated the data. Benefit statements covered an array of symptoms, drug properties, and caregiver issues. Side effect statements often used positive persuasive appeals. Graphics and narrative features emphasized positive emotions and outcomes. We found subtle and sophisticated attempts both to educate and to persuade readers. It is important for consumers and prescribing physicians to read print advertisements critically so that they can make informed treatment choices.

  3. Current advances in transdermal delivery of drugs for Alzheimer's disease.

    Nguyen, Thuy Trang; Giau, Vo Van; Vo, Tuong Kha

    2017-01-01

    Alzheimer's disease (AD) is a common, progressive, fatal neurodegenerative disorder, which will play an increasingly important role both socially and financially in the aging populations. Treatments for AD show modest improvements in cognition and global functioning among patients. Furthermore, the oral administration of treating AD has had some drawbacks that decrease the medication adherence and efficacy of the therapy. Transdermal drugs are proposed as an alternative remedy to overcome the disadvantages of current pharmaceutical dosage options for this chronic disorder. They could have different strengths, such as offering a stable diffusion of active substance, avoiding the first pass metabolism, and reducing system adverse reactions. This article reviews the technical principles, novel techniques of transdermal delivery drug, and prospects for future development for the management of cognitive and behavioral dysfunctions in AD patients.

  4. Anti-thyroid drugs in pediatric Graves′ disease

    Mathew John

    2015-01-01

    Full Text Available Graves′ disease is the most common cause of hyperthyroidism in children. Most children and adolescents are treated with anti-thyroid drugs as the initial modality. Studies have used Methimazole, Carbimazole and Propylthiouracil (PTU either as titration regimes or as block and replacement regimes. The various studies of anti-thyroid drug (ATD treatment of Graves′ disease in pediatric patients differ in terms of the regimes, remission rate, duration of therapy for adequate remission, follow up and adverse effects of ATD. Various studies show that lower thyroid hormone levels, prolonged duration of treatment, lower levels of TSH receptor antibodies, smaller goiter and increased age of child predicted higher chance of remission after ATD. A variable number of patients experience minor and major adverse effects limiting initial and long term treatment with ATD. The adverse effects of various ATD seem to more in children compared to that of adults. In view of liver injury including hepatocellular failure need of liver transplantation associated with PTU, the use has been restricted in children. The rate of persistent remission with ATD following discontinuation is about 30%. Radioactive iodine therapy is gaining more acceptance in older children with Graves′s disease in view of the limitations of ATD. For individual patients, risk-benefit ratio of ATD should be weighed against benefits of radioactive iodine therapy and patient preferences.

  5. Biomembrane models and drug-biomembrane interaction studies: Involvement in drug design and development

    R Pignatello

    2011-01-01

    Full Text Available Contact with many different biological membranes goes along the destiny of a drug after its systemic administration. From the circulating macrophage cells to the vessel endothelium, to more complex absorption barriers, the interaction of a biomolecule with these membranes largely affects its rate and time of biodistribution in the body and at the target sites. Therefore, investigating the phenomena occurring on the cell membranes, as well as their different interaction with drugs in the physiological or pathological conditions, is important to exploit the molecular basis of many diseases and to identify new potential therapeutic strategies. Of course, the complexity of the structure and functions of biological and cell membranes, has pushed researchers toward the proposition and validation of simpler two- and three-dimensional membrane models, whose utility and drawbacks will be discussed. This review also describes the analytical methods used to look at the interactions among bioactive compounds with biological membrane models, with a particular accent on the calorimetric techniques. These studies can be considered as a powerful tool for medicinal chemistry and pharmaceutical technology, in the steps of designing new drugs and optimizing the activity and safety profile of compounds already used in the therapy.

  6. Computer-Aided Drug Design Applied to Marine Drug Discovery: Meridianins as Alzheimer's Disease Therapeutic Agents.

    Llorach-Pares, Laura; Nonell-Canals, Alfons; Sanchez-Martinez, Melchor; Avila, Conxita

    2017-11-27

    Computer-aided drug discovery/design (CADD) techniques allow the identification of natural products that are capable of modulating protein functions in pathogenesis-related pathways, constituting one of the most promising lines followed in drug discovery. In this paper, we computationally evaluated and reported the inhibitory activity found in meridianins A-G, a group of marine indole alkaloids isolated from the marine tunicate Aplidium , against various protein kinases involved in Alzheimer's disease (AD), a neurodegenerative pathology characterized by the presence of neurofibrillary tangles (NFT). Balance splitting between tau kinase and phosphate activities caused tau hyperphosphorylation and, thereby, its aggregation and NTF formation. Inhibition of specific kinases involved in its phosphorylation pathway could be one of the key strategies to reverse tau hyperphosphorylation and would represent an approach to develop drugs to palliate AD symptoms. Meridianins bind to the adenosine triphosphate (ATP) binding site of certain protein kinases, acting as ATP competitive inhibitors. These compounds show very promising scaffolds to design new drugs against AD, which could act over tau protein kinases Glycogen synthetase kinase-3 Beta (GSK3β) and Casein kinase 1 delta (CK1δ, CK1D or KC1D), and dual specificity kinases as dual specificity tyrosine phosphorylation regulated kinase 1 (DYRK1A) and cdc2-like kinases (CLK1). This work is aimed to highlight the role of CADD techniques in marine drug discovery and to provide precise information regarding the binding mode and strength of meridianins against several protein kinases that could help in the future development of anti-AD drugs.

  7. Challenges in modelling nanoparticles for drug delivery

    Barnard, Amanda S

    2016-01-01

    Although there have been significant advances in the fields of theoretical condensed matter and computational physics, when confronted with the complexity and diversity of nanoparticles available in conventional laboratories a number of modeling challenges remain. These challenges are generally shared among application domains, but the impacts of the limitations and approximations we make to overcome them (or circumvent them) can be more significant one area than another. In the case of nanoparticles for drug delivery applications some immediate challenges include the incompatibility of length-scales, our ability to model weak interactions and solvation, the complexity of the thermochemical environment surrounding the nanoparticles, and the role of polydispersivity in determining properties and performance. Some of these challenges can be met with existing technologies, others with emerging technologies including the data-driven sciences; some others require new methods to be developed. In this article we will briefly review some simple methods and techniques that can be applied to these (and other) challenges, and demonstrate some results using nanodiamond-based drug delivery platforms as an exemplar. (topical review)

  8. Mechanistic systems modeling to guide drug discovery and development.

    Schmidt, Brian J; Papin, Jason A; Musante, Cynthia J

    2013-02-01

    A crucial question that must be addressed in the drug development process is whether the proposed therapeutic target will yield the desired effect in the clinical population. Pharmaceutical and biotechnology companies place a large investment on research and development, long before confirmatory data are available from human trials. Basic science has greatly expanded the computable knowledge of disease processes, both through the generation of large omics data sets and a compendium of studies assessing cellular and systemic responses to physiologic and pathophysiologic stimuli. Given inherent uncertainties in drug development, mechanistic systems models can better inform target selection and the decision process for advancing compounds through preclinical and clinical research. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Radioiodine therapy versus antithyroid drugs in Graves' disease: a meta-analysis of randomized controlled trials

    Qin, Lan

    2016-01-01

    Objective: This meta-analysis was performed to compare radioiodine therapy with antithyroid drugs in terms of clinical outcomes, including development or worsening of ophthalmopathy, hyperthyroid cure rate, hypothyroidism, relapse rate and adverse events. Methods: Randomized controlled trials (RCTs) published in PubMed, Embase, Web of Science, SinoMed and National Knowledge Infrastructure, China, were systematically reviewed to compare the effects of radioiodine therapy with antithyroid drugs in patients with Graves' disease. Results were expressed as risk ratio with 95% confidence intervals (CIs) and weighted mean differences with 95% CIs. Pooled estimates were performed using a fixed-effects model or random-effects model, depending on the heterogeneity among studies. Results: 17 RCTs involving 4024 patients met the inclusion criteria and were included. Results showed that radioiodine treatment has increased risk in new ophthalmopathy, development or worsening of ophthalmopathy and hypothyroidism. Whereas, compared with antithyroid drugs, radioiodine treatment seems to have a higher hyperthyroid cure rate, lower recurrence rate and lower incidence of adverse events. Conclusion: Radioiodine therapy is associated with a higher hyperthyroid cure rate and lower relapse rate compared with antithyroid drugs. However, it also increases the risk of ophthalmopathy and hypothyroidism. Advances in knowledge: Considering that antithyroid drug treatment can be associated with unsatisfactory control of hyperthyroidism, we would recommend radioiodine therapy as the treatment of choice for patients with Graves' disease. PMID:27266544

  10. Genetic engineering in nonhuman primates for human disease modeling.

    Sato, Kenya; Sasaki, Erika

    2018-02-01

    Nonhuman primate (NHP) experimental models have contributed greatly to human health research by assessing the safety and efficacy of newly developed drugs, due to their physiological and anatomical similarities to humans. To generate NHP disease models, drug-inducible methods, and surgical treatment methods have been employed. Recent developments in genetic and developmental engineering in NHPs offer new options for producing genetically modified disease models. Moreover, in recent years, genome-editing technology has emerged to further promote this trend and the generation of disease model NHPs has entered a new era. In this review, we summarize the generation of conventional disease model NHPs and discuss new solutions to the problem of mosaicism in genome-editing technology.

  11. Cognitive enhancers (Nootropics). Part 3: drugs interacting with targets other than receptors or enzymes. Disease-modifying drugs. Update 2014.

    Froestl, Wolfgang; Pfeifer, Andrea; Muhs, Andreas

    2014-01-01

    Scientists working in the field of Alzheimer's disease and, in particular, cognitive enhancers, are very productive. The review "Drugs interacting with Targets other than Receptors or Enzymes. Disease-modifying Drugs" was accepted in October 2012. In the last 20 months, new targets for the potential treatment of Alzheimer's disease were identified. Enormous progress was realized in the pharmacological characterization of natural products with cognitive enhancing properties. This review covers the evolution of research in this field through May 2014.

  12. Patient-derived stem cells: pathways to drug discovery for brain diseases

    Alan eMackay-Sim

    2013-03-01

    Full Text Available The concept of drug discovery through stem cell biology is based on technological developments whose genesis is now coincident. The first is automated cell microscopy with concurrent advances in image acquisition and analysis, known as high content screening (HCS. The second is patient-derived stem cells for modelling the cell biology of brain diseases. HCS has developed from the requirements of the pharmaceutical industry for high throughput assays to screen thousands of chemical compounds in the search for new drugs. HCS combines new fluorescent probes with automated microscopy and computational power to quantify the effects of compounds on cell functions. Stem cell biology has advanced greatly since the discovery of genetic reprogramming of somatic cells into induced pluripotent stem cells (iPSCs. There is now a rush of papers describing their generation from patients with various diseases of the nervous system. Although the majority of these have been genetic diseases, iPSCs have been generated from patients with complex diseases (schizophrenia and sporadic Parkinson’s disease. Some genetic diseases are also modelled in embryonic stem cells generated from blastocysts rejected during in vitro fertilisation. Neural stem cells have been isolated from post-mortem brain of Alzheimer’s patients and neural stem cells generated from biopsies of the olfactory organ of patients is another approach. These olfactory neurosphere-derived cells demonstrate robust disease-specific phenotypes in patients with schizophrenia and Parkinson’s disease. High content screening is already in use to find small molecules for the generation and differentiation of embryonic stem cells and induced pluripotent stem cells. The challenges for using stem cells for drug discovery are to develop robust stem cell culture methods that meet the rigorous requirements for repeatable, consistent quantities of defined cell types at the industrial scale necessary for high

  13. Drugs in development for Parkinson's disease: an update.

    Johnston, Tom H; Brotchie, Jonathan M

    2006-01-01

    The current development of emerging pharmacological treatments for Parkinson's disease (PD), front preclinical to launch, is summarized. Advances over the past year are highlighted, including the significant progress of several drugs through various stages of development. Several agents have been discontinued from development, either because of adverse effects or lack of clinical efficacy. The methyl-esterified form of L-DOPA (melevodopa) and the monoamine oxidase type B inhibitor rasagiline have both been launched. With regard to the monoamine re-uptake inhibitors, many changes have been witnessed, with new agents reaching preclinical development and pre-existing ones being discontinued or having no development reported. Of the dopamine agonists, many continue to progress successfully through clinical trials. Others have struggled to demonstrate a significant advantage over currently available treatments and have been discontinued. The field of non-dopaminergic treatments remains dynamic. The alpha2 adrenergic receptor antagonists and the adenosine A2A receptor antagonists remain in clinical trials. Trials of the neuronal' synchronization modulator levetiracetam are at an advanced stage, and there has also been a new addition to the class (ie, seletracetam). There has been a change in the landscape of neuroprotective agents that modulate disease progression. Candidates from the classes of growth factors and glyceraldehyde-3-phosphate dehydrogenase inhibitors have been discontinued, or no development has been reported, and the mixed lineage kinase inhibitor CEP-1347 has been discontinued for PD treatment. Other drugs in this field, such as neuroimmunophilins, estrogens and alpha-synuclein oligomerization inhibitors, remain in development.

  14. Bile Acid Signaling in Metabolic Disease and Drug Therapy

    Li, Tiangang

    2014-01-01

    Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates hepatobiliary secretion of lipids, lipophilic metabolites, and xenobiotics. In the intestine, bile acids are essential for the absorption, transport, and metabolism of dietary fats and lipid-soluble vitamins. Extensive research in the last 2 decades has unveiled new functions of bile acids as signaling molecules and metabolic integrators. The bile acid–activated nuclear receptors farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, and G protein–coupled bile acid receptor play critical roles in the regulation of lipid, glucose, and energy metabolism, inflammation, and drug metabolism and detoxification. Bile acid synthesis exhibits a strong diurnal rhythm, which is entrained by fasting and refeeding as well as nutrient status and plays an important role for maintaining metabolic homeostasis. Recent research revealed an interaction of liver bile acids and gut microbiota in the regulation of liver metabolism. Circadian disturbance and altered gut microbiota contribute to the pathogenesis of liver diseases, inflammatory bowel diseases, nonalcoholic fatty liver disease, diabetes, and obesity. Bile acids and their derivatives are potential therapeutic agents for treating metabolic diseases of the liver. PMID:25073467

  15. DR2DI: a powerful computational tool for predicting novel drug-disease associations

    Lu, Lu; Yu, Hua

    2018-05-01

    Finding the new related candidate diseases for known drugs provides an effective method for fast-speed and low-risk drug development. However, experimental identification of drug-disease associations is expensive and time-consuming. This motivates the need for developing in silico computational methods that can infer true drug-disease pairs with high confidence. In this study, we presented a novel and powerful computational tool, DR2DI, for accurately uncovering the potential associations between drugs and diseases using high-dimensional and heterogeneous omics data as information sources. Based on a unified and extended similarity kernel framework, DR2DI inferred the unknown relationships between drugs and diseases using Regularized Kernel Classifier. Importantly, DR2DI employed a semi-supervised and global learning algorithm which can be applied to uncover the diseases (drugs) associated with known and novel drugs (diseases). In silico global validation experiments showed that DR2DI significantly outperforms recent two approaches for predicting drug-disease associations. Detailed case studies further demonstrated that the therapeutic indications and side effects of drugs predicted by DR2DI could be validated by existing database records and literature, suggesting that DR2DI can be served as a useful bioinformatic tool for identifying the potential drug-disease associations and guiding drug repositioning. Our software and comparison codes are freely available at https://github.com/huayu1111/DR2DI.

  16. DR2DI: a powerful computational tool for predicting novel drug-disease associations

    Lu, Lu; Yu, Hua

    2018-04-01

    Finding the new related candidate diseases for known drugs provides an effective method for fast-speed and low-risk drug development. However, experimental identification of drug-disease associations is expensive and time-consuming. This motivates the need for developing in silico computational methods that can infer true drug-disease pairs with high confidence. In this study, we presented a novel and powerful computational tool, DR2DI, for accurately uncovering the potential associations between drugs and diseases using high-dimensional and heterogeneous omics data as information sources. Based on a unified and extended similarity kernel framework, DR2DI inferred the unknown relationships between drugs and diseases using Regularized Kernel Classifier. Importantly, DR2DI employed a semi-supervised and global learning algorithm which can be applied to uncover the diseases (drugs) associated with known and novel drugs (diseases). In silico global validation experiments showed that DR2DI significantly outperforms recent two approaches for predicting drug-disease associations. Detailed case studies further demonstrated that the therapeutic indications and side effects of drugs predicted by DR2DI could be validated by existing database records and literature, suggesting that DR2DI can be served as a useful bioinformatic tool for identifying the potential drug-disease associations and guiding drug repositioning. Our software and comparison codes are freely available at https://github.com/huayu1111/DR2DI.

  17. Neurophysiology of Drosophila models of Parkinson's disease.

    West, Ryan J H; Furmston, Rebecca; Williams, Charles A C; Elliott, Christopher J H

    2015-01-01

    We provide an insight into the role Drosophila has played in elucidating neurophysiological perturbations associated with Parkinson's disease- (PD-) related genes. Synaptic signalling deficits are observed in motor, central, and sensory systems. Given the neurological impact of disease causing mutations within these same genes in humans the phenotypes observed in fly are of significant interest. As such we observe four unique opportunities provided by fly nervous system models of Parkinson's disease. Firstly, Drosophila models are instrumental in exploring the mechanisms of neurodegeneration, with several PD-related mutations eliciting related phenotypes including sensitivity to energy supply and vesicular deformities. These are leading to the identification of plausible cellular mechanisms, which may be specific to (dopaminergic) neurons and synapses rather than general cellular phenotypes. Secondly, models show noncell autonomous signalling within the nervous system, offering the opportunity to develop our understanding of the way pathogenic signalling propagates, resembling Braak's scheme of spreading pathology in PD. Thirdly, the models link physiological deficits to changes in synaptic structure. While the structure-function relationship is complex, the genetic tractability of Drosophila offers the chance to separate fundamental changes from downstream consequences. Finally, the strong neuronal phenotypes permit relevant first in vivo drug testing.

  18. The Therapeutic Effect of the Antitumor Drug 11 Beta and Related Molecules on Polycystic Kidney Disease

    2017-10-01

    models (Somlo, Yale). Preparation work to assemble a collection of probes specific for oxidative stress genes and other PKD specific genes (as part... Worked : 6 Contribution to Project: Performance of experiments including those related to mitochondrial biology in vivo and unfolded protein...1 AWARD NUMBER: W81XWH-15-1-0364 TITLE: THE THERAPEUTIC EFFECT OF THE ANTITUMOR DRUG 11 BETA AND RELATED MOLECULES ON POLYYSTIC KIDNEY DISEASE

  19. Stem cells as a novel tool for drug screening and treatment of degenerative diseases.

    Zuba-Surma, Ewa K; Wojakowski, Wojciech; Madeja, Zbigniew; Ratajczak, Mariusz Z

    2012-01-01

    Degenerative diseases similarly as acute tissue injuries lead to massive cell loss and may cause organ failure of vital organs (e.g., heart, central nervous system). Therefore, they belong to a group of disorders that may significantly benefit from stem cells (SCs)-based therapies. Several stem and progenitor cell populations have already been described as valuable tools for developing therapeutic strategies in regenerative medicine. In particular, pluripotent stem cells (PSCs), including adult-tissue-derived PSCs, neonatal-tissue-derived SCs, embryonic stem cells (ESCs), and recently described induced pluripotent stem cells (iPSCs), are the focus of particular attention because of their capacity to differentiate into all the cell lineages. Although PSCs are predominantly envisioned to be applied for organ regeneration, they may be also successfully employed in drug screening and disease modeling. In particular, adult PSCs and iPSCs derived from patient tissues may not only be a source of cells for autologous therapies but also for individual customized in vitro drug testing and studies on the molecular mechanisms of disease. In this review, we will focus on the potential applications of SCs, especially PSCs i) in regenerative medicine therapies, ii) in studying mechanisms of disease, as well as iii) in drug screening and toxicology tests that are crucial in new drug development. In particular, we will discuss the application of SCs in developing new therapeutic approaches to treat degenerative diseases of the neural system and heart. The advantage of adult PSCs in all the above-mentioned settings is that they can be directly harvested from patient tissues and used not only as a safe non-immunogenic source of cells for therapy but also as tools for personalized drug screening and pharmacological therapies.

  20. Pharmacokinetic properties and in silico ADME modeling in drug discovery.

    Honório, Kathia M; Moda, Tiago L; Andricopulo, Adriano D

    2013-03-01

    The discovery and development of a new drug are time-consuming, difficult and expensive. This complex process has evolved from classical methods into an integration of modern technologies and innovative strategies addressed to the design of new chemical entities to treat a variety of diseases. The development of new drug candidates is often limited by initial compounds lacking reasonable chemical and biological properties for further lead optimization. Huge libraries of compounds are frequently selected for biological screening using a variety of techniques and standard models to assess potency, affinity and selectivity. In this context, it is very important to study the pharmacokinetic profile of the compounds under investigation. Recent advances have been made in the collection of data and the development of models to assess and predict pharmacokinetic properties (ADME--absorption, distribution, metabolism and excretion) of bioactive compounds in the early stages of drug discovery projects. This paper provides a brief perspective on the evolution of in silico ADME tools, addressing challenges, limitations, and opportunities in medicinal chemistry.

  1. Preclinical experimental models of drug metabolism and disposition in drug discovery and development

    Donglu Zhang

    2012-12-01

    Full Text Available Drug discovery and development involve the utilization of in vitro and in vivo experimental models. Different models, ranging from test tube experiments to cell cultures, animals, healthy human subjects, and even small numbers of patients that are involved in clinical trials, are used at different stages of drug discovery and development for determination of efficacy and safety. The proper selection and applications of correct models, as well as appropriate data interpretation, are critically important in decision making and successful advancement of drug candidates. In this review, we discuss strategies in the applications of both in vitro and in vivo experimental models of drug metabolism and disposition.

  2. A Model for Random Student Drug Testing

    Nelson, Judith A.; Rose, Nancy L.; Lutz, Danielle

    2011-01-01

    The purpose of this case study was to examine random student drug testing in one school district relevant to: (a) the perceptions of students participating in competitive extracurricular activities regarding drug use and abuse; (b) the attitudes and perceptions of parents, school staff, and community members regarding student drug involvement; (c)…

  3. Computational Identification of Potential Multi-drug Combinations for Reduction of Microglial Inflammation in Alzheimer Disease

    Thomas J. Anastasio

    2015-06-01

    Full Text Available Like other neurodegenerative diseases, Alzheimer Disease (AD has a prominent inflammatory component mediated by brain microglia. Reducing microglial inflammation could potentially halt or at least slow the neurodegenerative process. A major challenge in the development of treatments targeting brain inflammation is the sheer complexity of the molecular mechanisms that determine whether microglia become inflammatory or take on a more neuroprotective phenotype. The process is highly multifactorial, raising the possibility that a multi-target/multi-drug strategy could be more effective than conventional monotherapy. This study takes a computational approach in finding combinations of approved drugs that are potentially more effective than single drugs in reducing microglial inflammation in AD. This novel approach exploits the distinct advantages of two different computer programming languages, one imperative and the other declarative. Existing programs written in both languages implement the same model of microglial behavior, and the input/output relationships of both programs agree with each other and with data on microglia over an extensive test battery. Here the imperative program is used efficiently to screen the model for the most efficacious combinations of 10 drugs, while the declarative program is used to analyze in detail the mechanisms of action of the most efficacious combinations. Of the 1024 possible drug combinations, the simulated screen identifies only 7 that are able to move simulated microglia at least 50% of the way from a neurotoxic to a neuroprotective phenotype. Subsequent analysis shows that of the 7 most efficacious combinations, 2 stand out as superior both in strength and reliability. The model offers many experimentally testable and therapeutically relevant predictions concerning effective drug combinations and their mechanisms of action.

  4. Computational identification of potential multi-drug combinations for reduction of microglial inflammation in Alzheimer disease.

    Anastasio, Thomas J

    2015-01-01

    Like other neurodegenerative diseases, Alzheimer Disease (AD) has a prominent inflammatory component mediated by brain microglia. Reducing microglial inflammation could potentially halt or at least slow the neurodegenerative process. A major challenge in the development of treatments targeting brain inflammation is the sheer complexity of the molecular mechanisms that determine whether microglia become inflammatory or take on a more neuroprotective phenotype. The process is highly multifactorial, raising the possibility that a multi-target/multi-drug strategy could be more effective than conventional monotherapy. This study takes a computational approach in finding combinations of approved drugs that are potentially more effective than single drugs in reducing microglial inflammation in AD. This novel approach exploits the distinct advantages of two different computer programming languages, one imperative and the other declarative. Existing programs written in both languages implement the same model of microglial behavior, and the input/output relationships of both programs agree with each other and with data on microglia over an extensive test battery. Here the imperative program is used efficiently to screen the model for the most efficacious combinations of 10 drugs, while the declarative program is used to analyze in detail the mechanisms of action of the most efficacious combinations. Of the 1024 possible drug combinations, the simulated screen identifies only 7 that are able to move simulated microglia at least 50% of the way from a neurotoxic to a neuroprotective phenotype. Subsequent analysis shows that of the 7 most efficacious combinations, 2 stand out as superior both in strength and reliability. The model offers many experimentally testable and therapeutically relevant predictions concerning effective drug combinations and their mechanisms of action.

  5. Health Technology Assessment Of Orphan Drugs : The example of Pompe disease

    T.A. Kanters (Tim A.)

    2016-01-01

    markdownabstractIn recent decades, the development of orphan drugs, i.e. drugs for rare diseases, is stimulated by regulations in various countries. However, the generally high prices of orphan drugs confront policy makers with difficult reimbursement decisions. The orphan disease investigated in

  6. A searchable cross-platform gene expression database reveals connections between drug treatments and disease

    Williams Gareth

    2012-01-01

    Full Text Available Abstract Background Transcriptional data covering multiple platforms and species is collected and processed into a searchable platform independent expression database (SPIED. SPIED consists of over 100,000 expression fold profiles defined independently of control/treatment assignment and mapped to non-redundant gene lists. The database is thus searchable with query profiles defined over genes alone. The motivation behind SPIED is that transcriptional profiles can be quantitatively compared and ranked and thus serve as effective surrogates for comparing the underlying biological states across multiple experiments. Results Drug perturbation, cancer and neurodegenerative disease derived transcriptional profiles are shown to be effective descriptors of the underlying biology as they return related drugs and pathologies from SPIED. In the case of Alzheimer's disease there is high transcriptional overlap with other neurodegenerative conditions and rodent models of neurodegeneration and nerve injury. Combining the query signature with correlating profiles allows for the definition of a tight neurodegeneration signature that successfully highlights many neuroprotective drugs in the Broad connectivity map. Conclusions Quantitative querying of expression data from across the totality of deposited experiments is an effective way of discovering connections between different biological systems and in particular that between drug action and biological disease state. Examples in cancer and neurodegenerative conditions validate the utility of SPIED.

  7. Animal Models for Periodontal Disease

    Helieh S. Oz

    2011-01-01

    Full Text Available Animal models and cell cultures have contributed new knowledge in biological sciences, including periodontology. Although cultured cells can be used to study physiological processes that occur during the pathogenesis of periodontitis, the complex host response fundamentally responsible for this disease cannot be reproduced in vitro. Among the animal kingdom, rodents, rabbits, pigs, dogs, and nonhuman primates have been used to model human periodontitis, each with advantages and disadvantages. Periodontitis commonly has been induced by placing a bacterial plaque retentive ligature in the gingival sulcus around the molar teeth. In addition, alveolar bone loss has been induced by inoculation or injection of human oral bacteria (e.g., Porphyromonas gingivalis in different animal models. While animal models have provided a wide range of important data, it is sometimes difficult to determine whether the findings are applicable to humans. In addition, variability in host responses to bacterial infection among individuals contributes significantly to the expression of periodontal diseases. A practical and highly reproducible model that truly mimics the natural pathogenesis of human periodontal disease has yet to be developed.

  8. Animal Models for Periodontal Disease

    Oz, Helieh S.; Puleo, David A.

    2011-01-01

    Animal models and cell cultures have contributed new knowledge in biological sciences, including periodontology. Although cultured cells can be used to study physiological processes that occur during the pathogenesis of periodontitis, the complex host response fundamentally responsible for this disease cannot be reproduced in vitro. Among the animal kingdom, rodents, rabbits, pigs, dogs, and nonhuman primates have been used to model human periodontitis, each with advantages and disadvantages. Periodontitis commonly has been induced by placing a bacterial plaque retentive ligature in the gingival sulcus around the molar teeth. In addition, alveolar bone loss has been induced by inoculation or injection of human oral bacteria (e.g., Porphyromonas gingivalis) in different animal models. While animal models have provided a wide range of important data, it is sometimes difficult to determine whether the findings are applicable to humans. In addition, variability in host responses to bacterial infection among individuals contributes significantly to the expression of periodontal diseases. A practical and highly reproducible model that truly mimics the natural pathogenesis of human periodontal disease has yet to be developed. PMID:21331345

  9. Micro RNA, A Review: Pharmacogenomic drug targets for complex diseases

    Sandhya Bawa

    2010-01-01

    Full Text Available

    Micro RNAs (miRNAs are non-coding RNAs that can regulate gene expression to target several mRNAs in a gene regulatory network. MiRNA related Single Nucleotide Polymorphisms (S.N.P.s represent a newly identified type of genetic variability that can be of influence to the risk of certain human diseases and also affect how drugs can be activated and metabolized by patients. This will help in personalized medicines which are used for administrating the correct dosage of drug and drug efficacy. miRNA deregulated expression has been extensively described in a variety of diseases such as Cancer, Obesity , Diabetes, Schizophrenia and control and self renewal of stem cells. MiRNA can function as oncogenes and/or tumor suppressors. MiRNAs may act as key regulators of processes as diverse as early development, cell proliferation and cell death, apoptosis and fat metabolism and cell differentiation .miRNA expression have shown their role in brain development chronic lymphocytic leukemia, colonic adeno carcinoma, Burkiff’s lymphoma and viral infection. These show their links with viral disease, neurodevelopment and cancer. It has been shown that they play a key role in melanoma metastasis. These may be

  10. PML and rheumatology: the contribution of disease and drugs.

    Molloy, Eamonn S

    2011-11-01

    Progressive multifocal leukoencephalopathy (PML), a rare, typically fatal, opportunistic infection caused by the JC virus, is becoming relevant to physicians in multiple specialties, including those who prescribe biologic agents for the treatment of autoimmune disorders. Reports of PML have led to US Food and Drug Administration alerts and warning letters regarding four immunosuppressive agents in recent years (natalizumab, rituximab, efalizumab, and mycophenolate mofetil). Consequently, informed clinical decision-making requires understanding the risk of PML associated with these therapies. An estimate of the relative frequency of PML associated with specific rheumatic conditions has been generated. Systemic lupus erythematosus appears to be associated with susceptibility to PML that cannot be fully explained by the intensity of immunosuppressive therapy. Further, the use of rituximab in patients with rheumatic disease has raised concerns. However, definitive attribution of cause is precluded by the limitations of the currently available data. All patients with rheumatic disease, regardless of the intensity of their current immunosuppressive therapy, should be considered potentially at risk of PML. With an evolving understanding of a greater clinical heterogeneity of PML, advances in diagnostic methods, and significant implications for therapy, PML should be considered in the differential diagnosis of neurologic manifestations of rheumatic diseases.

  11. Electrochemical studies of ropinirole, an anti-Parkinson's disease drug

    trochemical techniques have application to drug-protein. ∗. For correspondence ... drug bioavailability and toxicity tests. ... analysis ranging from the assay of drugs in bulk form, ... stability-indicating assays.13,14 Separation and quantifi-.

  12. Sirtuins: Novel targets for metabolic disease in drug development

    Jiang Weijian

    2008-01-01

    Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases such as type 2 diabetes. SIRT1, an NAD + -dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produces beneficial effects on glucose homeostasis and insulin sensitivity. Activation of SIRT1 leads to enhanced activity of multiple proteins, including peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) and FOXO which helps to mediate some of the in vitro and in vivo effects of sirtuins. Resveratrol, a polyphenolic SIRT1 activator, mimics the effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance. In this review, we summarize recent research advances in unveiling the molecular mechanisms that underpin sirtuin as therapeutic candidates and discuss the possibility of using resveratrol as potential drug for treatment of diabetes

  13. Antithyroid Drug Therapy for Graves' Disease and Implications for Recurrence

    Fu, Jing; Xu, Yuan

    2017-01-01

    Graves' disease (GD) is the most common cause of hyperthyroidism worldwide. Current therapeutic options for GD include antithyroid drugs (ATD), radioactive iodine, and thyroidectomy. ATD treatment is generally well accepted by patients and clinicians due to some advantages including normalizing thyroid function in a short time, hardly causing hypothyroidism, and ameliorating immune disorder while avoiding radiation exposure and invasive procedures. However, the relatively high recurrence rate is a major concern for ATD treatment, which is associated with multiple influencing factors like clinical characteristics, treatment strategies, and genetic and environmental factors. Of these influencing factors, some are modifiable but some are nonmodifiable. The recurrence risk can be reduced by adjusting the modifiable factors as much as possible. The titration regimen for 12–18 months is the optimal strategy of ATD. Levothyroxine administration after successful ATD treatment was not recommended. The addition of immunosuppressive drugs might be helpful to decrease the recurrence rate of GD patients after ATD withdrawal, whereas further studies are needed to address the safety and efficacy. This paper reviewed the current knowledge of ATD treatment and mainly focused on influencing factors for recurrence in GD patients with ATD treatment. PMID:28529524

  14. Application of Model Animals in the Study of Drug Toxicology

    Song, Yagang; Miao, Mingsan

    2018-01-01

    Drug safety is a key factor in drug research and development, Drug toxicology test is the main method to evaluate the safety of drugs, The body condition of an animal has important implications for the results of the study, Previous toxicological studies of drugs were carried out in normal animals in the past, There is a great deviation from the clinical practice.The purpose of this study is to investigate the necessity of model animals as a substitute for normal animals for toxicological studies, It is expected to provide exact guidance for future drug safety evaluation.

  15. Prevalence of infectious diseases and drug abuse among Bangladeshi workers.

    Rumi, M A; Siddiqui, M A; Salam, M A; Iqbal, M R; Azam, M G; Chowdhury, A K; Khan AYM; Hasan, K N; Hassan, M S

    2000-09-01

    Individuals seeking jobs abroad need health fitness certificates before entering into those countries. Medical screening of 43,213 Bangladeshi job seekers (M/F: 42,290/923) was carried out in our reference center during the period August, 1994 to May, 1996. Albeit male predominance, they represented middle and lower middle socio-economic class of the population from all over the country. All were young adults (age: 27.05+/-3.56 years; mean+/-SD) applying for job visas to different Asian countries. Physical examination and laboratory investigations including markers for several infectious diseases and drugs of abuse were carried out as required by countries recruiting the workers. Serological tests revealed that 1,884 (4.4%) of individuals were positive for hepatitis B surface antigen (HBsAg), 737 (1.7%) for Treponema pallidum hemagglutination (TPHA) and only 83 (0.2%) for antibody to human immunodeficiency virus (anti-HIV). However, we could not confirm any case of infection with HIV. Chest X-ray suggestive of pulmonary tuberculosis was found in 162 (0.4%) and on blood film, malarial parasites could be observed only in 4 cases. Their urine analysis revealed the presence of opiates or cannabinoids in 471 (1.1%) individuals. HBsAg-positive cases (p = 0.003) and abuse of opiates (p = 0.024) or cannabinoids (p = 0.002) were significantly higher among males. TPHA reactivity and chest X-ray suggestive of tuberculosis were found to be higher among opiates (p = 0.002 and 0.027) and cannabinoids (p = 0.000 for both) abused as well as with increasing age (p = 0.000). These results may represent a cross-sectional view of the prevalence of different infectious diseases and abuse of drugs among the young adult population of Bangladesh.

  16. Multiscale Modeling in the Clinic: Drug Design and Development

    Clancy, Colleen E.; An, Gary; Cannon, William R.; Liu, Yaling; May, Elebeoba E.; Ortoleva, Peter; Popel, Aleksander S.; Sluka, James P.; Su, Jing; Vicini, Paolo; Zhou, Xiaobo; Eckmann, David M.

    2016-02-17

    A wide range of length and time scales are relevant to pharmacology, especially in drug development, drug design and drug delivery. Therefore, multi-scale computational modeling and simulation methods and paradigms that advance the linkage of phenomena occurring at these multiple scales have become increasingly important. Multi-scale approaches present in silico opportunities to advance laboratory research to bedside clinical applications in pharmaceuticals research. This is achievable through the capability of modeling to reveal phenomena occurring across multiple spatial and temporal scales, which are not otherwise readily accessible to experimentation. The resultant models, when validated, are capable of making testable predictions to guide drug design and delivery. In this review we describe the goals, methods, and opportunities of multi-scale modeling in drug design and development. We demonstrate the impact of multiple scales of modeling in this field. We indicate the common mathematical techniques employed for multi-scale modeling approaches used in pharmacology and present several examples illustrating the current state-of-the-art regarding drug development for: Excitable Systems (Heart); Cancer (Metastasis and Differentiation); Cancer (Angiogenesis and Drug Targeting); Metabolic Disorders; and Inflammation and Sepsis. We conclude with a focus on barriers to successful clinical translation of drug development, drug design and drug delivery multi-scale models.

  17. Mouse Models of Graves' Disease

    Nagayama, Yuji

    2005-01-01

    Graves' disease is characterized by overstimulation of the thyroid gland with agonistic autoantibodies against the thyrotropin (TSH) receptor, leading to hyperthyroidism and diffuse hyperplasia of the thyroid gland. Our and other laboratories have recently established several animal models of Graves' hyperthyroidism with novel immunization approaches, i.e., in vivo expression of the TSH receptor by injection of syngeneic living cells co-expressing the TSH receptor and major histocompatibility...

  18. Predicting relapse of Graves' disease following treatment with antithyroid drugs

    LIU, LIN; LU, HONGWEN; LIU, YANG; LIU, CHANGSHAN; XUN, CHU

    2016-01-01

    The aim of the present study was to monitor long term antithyroid drug treatments and to identify prognostic factors for Graves' disease (GD). A total of 306 patients with GD who were referred to the Endocrinology Clinic at Weifang People's Hospital (Weifang, China) between August 2005 and June 2009 and treated with methimazole were included in the present study. Following treatment, patients were divided into non-remission, including recurrence and constant treatment subgroups, and remission groups. Various prognosis factors were analyzed and compared, including: Patient age, gender, size of thyroid prior to and following treatment, thyroid hormone levels, disease relapse, hypothyroidism and drug side-effects, and states of thyrotropin suppression were observed at 3, 6 and 12 months post-treatment. Sixty-five patients (21.2%) were male, and 241 patients (78.8%) were female. The mean age was 42±11 years, and the follow-up was 31.5±6.8 months. Following long-term treatment, 141 patients (46%) demonstrated remission of hyperthyroidism with a mean duration of 18.7±1.9 months. The average age at diagnosis was 45.6±10.3 years in the remission group, as compared with 36.4±8.8 years in the non-remission group (t=3.152; P=0.002). Free thyroxine (FT)3 levels were demonstrated to be 25.2±8.9 and 18.7±9.4 pmol/l in the non-remission and remission groups, respectively (t=3.326, P=0.001). The FT3/FT4 ratio and thyrotrophin receptor antibody (TRAb) levels were both significantly higher in the non-remission group (t=3.331, 3.389, P=0.001), as compared with the remission group. Logistic regression analysis demonstrated that elevated thyroid size, FT3/FT4 ratio and TRAb at diagnosis were associated with poor outcomes. The ratio of continued thyrotropin suppression in the recurrent subgroup was significantly increased, as compared with the remission group (P=0.001), as thyroid function reached euthyroid state at 3, 6 and 12 months post-treatment. Patients with GD exhibiting

  19. Drug-induced interstitial lung diseases. Often forgotten

    Poschenrieder, F.; Stroszczynski, C.; Hamer, O.W.

    2014-01-01

    Drug-induced interstitial lung diseases (DILD) are probably more common than diagnosed. Due to their potential reversibility, increased vigilance towards DILD is appropriate also from the radiologist's point of view, particularly as these diseases regularly exhibit radiological correlates in high-resolution computed tomography (HRCT) of the lungs. Based on personal experience typical relatively common manifestations of DILD are diffuse alveolar damage (DAD), eosinophilic pneumonia (EP), hypersensitivity pneumonitis (HP), organizing pneumonia (OP), non-specific interstitial pneumonia (NSIP) and usual interstitial pneumonia (UIP). These patterns are presented based on case studies, whereby emphasis is placed on the clinical context. This is to highlight the relevance of interdisciplinary communication and discussion in the diagnostic field of DILD as it is a diagnosis of exclusion or of probability in most cases. Helpful differential diagnostic indications for the presence of DILD, such as an accompanying eosinophilia or increased attenuation of pulmonary consolidations in amiodarone-induced pneumopathy are mentioned and the freely available online database http://www.pneumotox.com is presented. (orig.) [de

  20. Research advances in animal models of nonalcoholic fatty liver disease

    HUANG Haiyan

    2014-09-01

    Full Text Available In recent years, the incidence of nonalcoholic fatty liver disease (NAFLD has increased gradually along with the rising prevalence of obesity, type 2 diabetes, and hyperlipidemia, and NAFLD has become one of the most common chronic liver diseases in the world and the second major liver disease after chronic viral hepatitis in China. However, its pathogenesis has not yet been clarified. Animal models are playing an important role in researches on NAFLD due to the facts that the development and progression of NAFLD require a long period of time, and ethical limitations exist in conducting drug trials in patients or collecting liver tissues from patients. The animal models with histopathology similar to that of NAFLD patients are reviewed, and their modeling principle, as well as the advantages and disadvantages, are compared. Animal models provide a powerful tool for further studies of NAFLD pathogenesis and drug screening for prevention and treatment of NAFLD.

    1. Orphan drugs, orphan diseases. The first decade of orphan drug legislation in the EU.

      Joppi, Roberta; Bertele', Vittorio; Garattini, Silvio

      2013-04-01

      To assess the methodological quality of Orphan Medicinal Product (OMP) dossiers and discuss possible reasons for the small number of products licensed. Information about orphan drug designation, approval, refusal or withdrawal was obtained from the website of the European Medicines Agency and from the European Public Assessment Reports. From 2000 up to 2010, 80.9 % of the 845 candidate orphan drug designations received a positive opinion from the European Medicines Agency (EMA)'s Committee on Orphan Medicinal Products. Of the 108 OMP marketing authorizations applied for, 63 were granted. Randomised clinical trials were done for 38 OMPs and placebo was used as comparator for nearly half the licensed drugs. One third of the OMPs were tested in trials involving fewer than 100 patients and more than half in trials with 100-200 cases. The clinical trials lasted less than one year for 42.9 % of the approved OMPs. Although there may have been some small improvements over time in the methods for developing OMPs, in our opinion, the number of patients studied, the use of placebo as control, the type of outcome measure and the follow-up have often been inadequate. The present system should be changed to find better ways of fostering the development of effective and sustainable treatments for patients with orphan diseases. Public funds supporting independent clinical research on OMPs could bridge the gap between designation and approval. More stringent criteria to assess OMPs' efficacy and cost/effectiveness would improve the clinical value and the affordability of products allowed onto the market.

    2. From chemical graphs in computer-aided drug design to general Markov-Galvez indices of drug-target, proteome, drug-parasitic disease, technological, and social-legal networks.

      Riera-Fernández, Pablo; Munteanu, Cristian R; Dorado, Julian; Martin-Romalde, Raquel; Duardo-Sanchez, Aliuska; González-Diaz, Humberto

      2011-12-01

      Complex Networks are useful in solving problems in drug research and industry, developing mathematical representations of different systems. These systems move in a wide range from relatively simple graph representations of drug molecular structures to large systems. We can cite for instance, drug-target protein interaction networks, drug policy legislation networks, or drug treatment in large geographical disease spreading networks. In any case, all these networks have essentially the same components: nodes (atoms, drugs, proteins, microorganisms and/or parasites, geographical areas, drug policy legislations, etc.) and edges (chemical bonds, drug-target interactions, drug-parasite treatment, drug use, etc.). Consequently, we can use the same type of numeric parameters called Topological Indices (TIs) to describe the connectivity patterns in all these kinds of Complex Networks despite the nature of the object they represent. The main reason for this success of TIs is the high flexibility of this theory to solve in a fast but rigorous way many apparently unrelated problems in all these disciplines. Another important reason for the success of TIs is that using these parameters as inputs we can find Quantitative Structure-Property Relationships (QSPR) models for different kind of problems in Computer-Aided Drug Design (CADD). Taking into account all the above-mentioned aspects, the present work is aimed at offering a common background to all the manuscripts presented in this special issue. In so doing, we make a review of the most common types of complex networks involving drugs or their targets. In addition, we review both classic TIs that have been used to describe the molecular structure of drugs and/or larger complex networks. Next, we use for the first time a Markov chain model to generalize Galvez TIs to higher order analogues coined here as the Markov-Galvez TIs of order k (MGk). Lastly, we illustrate the calculation of MGk values for different classes of

    3. Neuroprotective Effects of Psychotropic Drugs in Huntington’s Disease

      Edward C. Lauterbach

      2013-11-01

      Full Text Available Psychotropics (antipsychotics, mood stabilizers, antidepressants, anxiolytics, etc. are commonly prescribed to treat Huntington’s disease (HD. In HD preclinical models, while no psychotropic has convincingly affected huntingtin gene, HD modifying gene, or huntingtin protein expression, psychotropic neuroprotective effects include upregulated huntingtin autophagy (lithium, histone acetylation (lithium, valproate, lamotrigine, miR-222 (lithium-plus-valproate, mitochondrial protection (haloperidol, trifluoperazine, imipramine, desipramine, nortriptyline, maprotiline, trazodone, sertraline, venlafaxine, melatonin, neurogenesis (lithium, valproate, fluoxetine, sertraline, and BDNF (lithium, valproate, sertraline and downregulated AP-1 DNA binding (lithium, p53 (lithium, huntingtin aggregation (antipsychotics, lithium, and apoptosis (trifluoperazine, loxapine, lithium, desipramine, nortriptyline, maprotiline, cyproheptadine, melatonin. In HD live mouse models, delayed disease onset (nortriptyline, melatonin, striatal preservation (haloperidol, tetrabenazine, lithium, sertraline, memory preservation (imipramine, trazodone, fluoxetine, sertraline, venlafaxine, motor improvement (tetrabenazine, lithium, valproate, imipramine, nortriptyline, trazodone, sertraline, venlafaxine, and extended survival (lithium, valproate, sertraline, melatonin have been documented. Upregulated CREB binding protein (CBP; valproate, dextromethorphan and downregulated histone deacetylase (HDAC; valproate await demonstration in HD models. Most preclinical findings await replication and their limitations are reviewed. The most promising findings involve replicated striatal neuroprotection and phenotypic disease modification in transgenic mice for tetrabenazine and for sertraline. Clinical data consist of an uncontrolled lithium case series (n = 3 suggesting non-progression and a primarily negative double-blind, placebo-controlled clinical trial of lamotrigine.

    4. Modeling the modified drug release from curved shape drug delivery systems - Dome Matrix®.

      Caccavo, D; Barba, A A; d'Amore, M; De Piano, R; Lamberti, G; Rossi, A; Colombo, P

      2017-12-01

      The controlled drug release from hydrogel-based drug delivery systems is a topic of large interest for research in pharmacology. The mathematical modeling of the behavior of these systems is a tool of emerging relevance, since the simulations can be of use in the design of novel systems, in particular for complex shaped tablets. In this work a model, previously developed, was applied to complex-shaped oral drug delivery systems based on hydrogels (Dome Matrix®). Furthermore, the model was successfully adopted in the description of drug release from partially accessible Dome Matrix® systems (systems with some surfaces coated). In these simulations, the erosion rate was used asa fitting parameter, and its dependence upon the surface area/volume ratio and upon the local fluid dynamics was discussed. The model parameters were determined by comparison with the drug release profile from a cylindrical tablet, then the model was successfully used for the prediction of the drug release from a Dome Matrix® system, for simple module configuration and for module assembled (void and piled) configurations. It was also demonstrated that, given the same initial S/V ratio, the drug release is independent upon the shape of the tablets but it is only influenced by the S/V evolution. The model reveals itself able to describe the observed phenomena, and thus it can be of use for the design of oral drug delivery systems, even if complex shaped. Copyright © 2017 Elsevier B.V. All rights reserved.

    5. Neutrophil targeted nano-drug delivery system for chronic obstructive lung diseases.

      Vij, Neeraj; Min, Taehong; Bodas, Manish; Gorde, Aakruti; Roy, Indrajit

      2016-11-01

      The success of drug delivery to target airway cell(s) remains a significant challenge due to the limited ability of nanoparticle (NP) systems to circumvent protective airway-defense mechanisms. The size, density, surface and physical-chemical properties of nanoparticles are the key features that determine their ability to navigate across the airway-barrier. We evaluated here the efficacy of a PEGylated immuno-conjugated PLGA-nanoparticle (PINP) to overcome this challenge and selectively deliver drug to specific inflammatory cells (neutrophils). We first characterized the size, shape, surface-properties and neutrophil targeting using dynamic laser scattering, transmission electron microscopy and flow cytometry. Next, we assessed the efficacy of neutrophil-targeted PINPs in transporting through the airway followed by specific binding and release of drug to neutrophils. Finally, our results demonstrate the efficacy of PINP mediated non-steroidal anti-inflammatory drug-(ibuprofen) delivery to neutrophils in murine models of obstructive lung diseases, based on its ability to control neutrophilic-inflammation and resulting lung disease. Copyright © 2016 Elsevier Inc. All rights reserved.

    6. Cell physiology based pharmacodynamic modeling of antimicrobial drug combinations

      Hethey, Christoph Philipp

      2017-01-01

      Mathematical models of bacterial growth have been successfully applied to study the relationship between antibiotic drug exposure and the antibacterial effect. Since these models typically lack a representation of cellular processes and cell physiology, the mechanistic integration of drug action is not possible on the cellular level. The cellular mechanisms of drug action, however, are particularly relevant for the prediction, analysis and understanding of interactions between antibiotics. In...

    7. Effect of quality chronic disease management for alcohol and drug dependence on addiction outcomes.

      Kim, Theresa W; Saitz, Richard; Cheng, Debbie M; Winter, Michael R; Witas, Julie; Samet, Jeffrey H

      2012-12-01

      We examined the effect of the quality of primary care-based chronic disease management (CDM) for alcohol and/or other drug (AOD) dependence on addiction outcomes. We assessed quality using (1) a visit frequency based measure and (2) a self-reported assessment measuring alignment with the chronic care model. The visit frequency based measure had no significant association with addiction outcomes. The self-reported measure of care-when care was at a CDM clinic-was associated with lower drug addiction severity. The self-reported assessment of care from any healthcare source (CDM clinic or elsewhere) was associated with lower alcohol addiction severity and abstinence. These findings suggest that high quality CDM for AOD dependence may improve addiction outcomes. Quality measures based upon alignment with the chronic care model may better capture features of effective CDM care than a visit frequency measure. Copyright © 2012 Elsevier Inc. All rights reserved.

    8. Cardiovascular risk prediction in HIV-infected patients: comparing the Framingham, atherosclerotic cardiovascular disease risk score (ASCVD), Systematic Coronary Risk Evaluation for the Netherlands (SCORE-NL) and Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) risk prediction models.

      Krikke, M; Hoogeveen, R C; Hoepelman, A I M; Visseren, F L J; Arends, J E

      2016-04-01

      The aim of the study was to compare the predictions of five popular cardiovascular disease (CVD) risk prediction models, namely the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) model, the Framingham Heart Study (FHS) coronary heart disease (FHS-CHD) and general CVD (FHS-CVD) models, the American Heart Association (AHA) atherosclerotic cardiovascular disease risk score (ASCVD) model and the Systematic Coronary Risk Evaluation for the Netherlands (SCORE-NL) model. A cross-sectional design was used to compare the cumulative CVD risk predictions of the models. Furthermore, the predictions of the general CVD models were compared with those of the HIV-specific D:A:D model using three categories ( 20%) to categorize the risk and to determine the degree to which patients were categorized similarly or in a higher/lower category. A total of 997 HIV-infected patients were included in the study: 81% were male and they had a median age of 46 [interquartile range (IQR) 40-52] years, a known duration of HIV infection of 6.8 (IQR 3.7-10.9) years, and a median time on ART of 6.4 (IQR 3.0-11.5) years. The D:A:D, ASCVD and SCORE-NL models gave a lower cumulative CVD risk, compared with that of the FHS-CVD and FHS-CHD models. Comparing the general CVD models with the D:A:D model, the FHS-CVD and FHS-CHD models only classified 65% and 79% of patients, respectively, in the same category as did the D:A:D model. However, for the ASCVD and SCORE-NL models, this percentage was 89% and 87%, respectively. Furthermore, FHS-CVD and FHS-CHD attributed a higher CVD risk to 33% and 16% of patients, respectively, while this percentage was D:A:D, ASCVD and SCORE-NL models. This could have consequences regarding overtreatment, drug-related adverse events and drug-drug interactions. © 2015 British HIV Association.

    9. A Structural Model of the Retail Market for Illicit Drugs.

      Galenianos, Manolis; Gavazza, Alessandro

      2017-03-01

      We estimate a model of illicit drugs markets using data on purchases of crack cocaine. Buyers are searching for high-quality drugs, but they determine drugs' quality (i.e., their purity) only after consuming them. Hence, sellers can rip off first-time buyers or can offer higher-quality drugs to induce buyers to purchase from them again. In equilibrium, a distribution of qualities persists. The estimated model implies that if drugs were legalized, in which case purity could be regulated and hence observable, the average purity of drugs would increase by approximately 20 percent and the dispersion would decrease by approximately 80 percent. Moreover, increasing penalties may raise the purity and affordability of the drugs traded by increasing sellers’ relative profitability of targeting loyal buyers versus first-time buyers.

    10. Analyzing research trends on drug safety using topic modeling.

      Zou, Chen

      2018-04-06

      Published drug safety data has evolved in the past decade due to scientific and technological advances in the relevant research fields. Considering that a vast amount of scientific literature has been published in this area, it is not easy to identify the key information. Topic modeling has emerged as a powerful tool to extract meaningful information from a large volume of unstructured texts. Areas covered: We analyzed the titles and abstracts of 4347 articles in four journals dedicated to drug safety from 2007 to 2016. We applied Latent Dirichlet allocation (LDA) model to extract 50 main topics, and conducted trend analysis to explore the temporal popularity of these topics over years. Expert Opinion/Commentary: We found that 'benefit-risk assessment and communication', 'diabetes' and 'biologic therapy for autoimmune diseases' are the top 3 most published topics. The topics relevant to the use of electronic health records/observational data for safety surveillance are becoming increasingly popular over time. Meanwhile, there is a slight decrease in research on signal detection based on spontaneous reporting, although spontaneous reporting still plays an important role in benefit-risk assessment. The topics related to medical conditions and treatment showed highly dynamic patterns over time.

    11. The Food and Drug Administration and Drug Legalization: A Brief Model of Regulation

      Kalam, Murad

      2002-01-01

      This paper offers a brief model of FDA regulation of currently illegal narcotics in the United States. Given that nearly three out of four Americans believe that the drug war has failed, recent calls from prominent liberal and conservative thinkers to legalize drugs, and state “compassionate use†ballot initiatives, future drug legalization is at least conceivable in the United States. Yet, how would the FDA regulate NLD’s under its current st...

    12. METHODOLOGY OF THE DRUGS MARKET VOLUME MODELING ON THE EXAMPLE OF HEMOPHILIA A

      N. B. Molchanova

      2015-01-01

      Hemophilia A is a serious genetic disease, which may lead to disability of a patient even in early ages without a required therapy. The only one therapeutic approach is a replacement therapy with drugs of bloodcoagulation factor VIII (FVIII). The modeling of coagulation drugs market volume will allow evaluation of the level of patients’ provision with a necessary therapy. Modeling of a “perfect” market of drugs and its comparison with the real one was the purpose of the study. During the mode...

    13. A Multilayer Network Approach for Guiding Drug Repositioning in Neglected Diseases.

      Ariel José Berenstein

      2016-01-01

      Full Text Available Drug development for neglected diseases has been historically hampered due to lack of market incentives. The advent of public domain resources containing chemical information from high throughput screenings is changing the landscape of drug discovery for these diseases. In this work we took advantage of data from extensively studied organisms like human, mouse, E. coli and yeast, among others, to develop a novel integrative network model to prioritize and identify candidate drug targets in neglected pathogen proteomes, and bioactive drug-like molecules. We modeled genomic (proteins and chemical (bioactive compounds data as a multilayer weighted network graph that takes advantage of bioactivity data across 221 species, chemical similarities between 1.7 105 compounds and several functional relations among 1.67 105 proteins. These relations comprised orthology, sharing of protein domains, and shared participation in defined biochemical pathways. We showcase the application of this network graph to the problem of prioritization of new candidate targets, based on the information available in the graph for known compound-target associations. We validated this strategy by performing a cross validation procedure for known mouse and Trypanosoma cruzi targets and showed that our approach outperforms classic alignment-based approaches. Moreover, our model provides additional flexibility as two different network definitions could be considered, finding in both cases qualitatively different but sensible candidate targets. We also showcase the application of the network to suggest targets for orphan compounds that are active against Plasmodium falciparum in high-throughput screens. In this case our approach provided a reduced prioritization list of target proteins for the query molecules and showed the ability to propose new testable hypotheses for each compound. Moreover, we found that some predictions highlighted by our network model were supported by

    14. A Multilayer Network Approach for Guiding Drug Repositioning in Neglected Diseases.

      Berenstein, Ariel José; Magariños, María Paula; Chernomoretz, Ariel; Agüero, Fernán

      2016-01-01

      Drug development for neglected diseases has been historically hampered due to lack of market incentives. The advent of public domain resources containing chemical information from high throughput screenings is changing the landscape of drug discovery for these diseases. In this work we took advantage of data from extensively studied organisms like human, mouse, E. coli and yeast, among others, to develop a novel integrative network model to prioritize and identify candidate drug targets in neglected pathogen proteomes, and bioactive drug-like molecules. We modeled genomic (proteins) and chemical (bioactive compounds) data as a multilayer weighted network graph that takes advantage of bioactivity data across 221 species, chemical similarities between 1.7 105 compounds and several functional relations among 1.67 105 proteins. These relations comprised orthology, sharing of protein domains, and shared participation in defined biochemical pathways. We showcase the application of this network graph to the problem of prioritization of new candidate targets, based on the information available in the graph for known compound-target associations. We validated this strategy by performing a cross validation procedure for known mouse and Trypanosoma cruzi targets and showed that our approach outperforms classic alignment-based approaches. Moreover, our model provides additional flexibility as two different network definitions could be considered, finding in both cases qualitatively different but sensible candidate targets. We also showcase the application of the network to suggest targets for orphan compounds that are active against Plasmodium falciparum in high-throughput screens. In this case our approach provided a reduced prioritization list of target proteins for the query molecules and showed the ability to propose new testable hypotheses for each compound. Moreover, we found that some predictions highlighted by our network model were supported by independent

    15. Regulation of drug-metabolizing enzymes in infectious and inflammatory disease: implications for biologics-small molecule drug interactions.

      Mallick, Pankajini; Taneja, Guncha; Moorthy, Bhagavatula; Ghose, Romi

      2017-06-01

      Drug-metabolizing enzymes (DMEs) are primarily down-regulated during infectious and inflammatory diseases, leading to disruption in the metabolism of small molecule drugs (smds), which are increasingly being prescribed therapeutically in combination with biologics for a number of chronic diseases. The biologics may exert pro- or anti-inflammatory effect, which may in turn affect the expression/activity of DMEs. Thus, patients with infectious/inflammatory diseases undergoing biologic/smd treatment can have complex changes in DMEs due to combined effects of the disease and treatment. Areas covered: We will discuss clinical biologics-SMD interaction and regulation of DMEs during infection and inflammatory diseases. Mechanistic studies will be discussed and consequences on biologic-small molecule combination therapy on disease outcome due to changes in drug metabolism will be highlighted. Expert opinion: The involvement of immunomodulatory mediators in biologic-SMDs is well known. Regulatory guidelines recommend appropriate in vitro or in vivo assessments for possible interactions. The role of cytokines in biologic-SMDs has been documented. However, the mechanisms of drug-drug interactions is much more complex, and is probably multi-factorial. Studies aimed at understanding the mechanism by which biologics effect the DMEs during inflammation/infection are clinically important.

    16. Orphan drugs for rare diseases: is it time to revisit their special market access status?

      Simoens, Steven; Cassiman, David; Dooms, Marc; Picavet, Eline

      2012-07-30

      Orphan drugs are intended for diseases with a very low prevalence, and many countries have implemented legislation to support market access of orphan drugs. We argue that it is time to revisit the special market access status of orphan drugs. Indeed, evidence suggests that there is no societal preference for treating rare diseases. Although society appears to assign a greater value to severity of disease, this criterion is equally relevant to many common diseases. Furthermore, the criterion of equity in access to treatment, which underpins orphan drug legislation, puts more value on health improvement in rare diseases than in common diseases and implies that population health is not maximized. Finally, incentives for the development, pricing and reimbursement of orphan drugs have created market failures, including monopolistic prices and the artificial creation of rare diseases. We argue that, instead of awarding special market access status to orphan drugs, there is scope to optimize research and development (R&D) of orphan drugs and to control prices of orphan drugs by means of, for example, patent auctions, advance purchase commitments, pay-as-you-go schemes and dose-modification studies. Governments should consider carefully the right incentive strategy for R&D of orphan drugs in rare diseases.

    17. Spread of anti-malarial drug resistance: Mathematical model with implications for ACT drug policies

      Dondorp Arjen M

      2008-11-01

      Full Text Available Abstract Background Most malaria-endemic countries are implementing a change in anti-malarial drug policy to artemisinin-based combination therapy (ACT. The impact of different drug choices and implementation strategies is uncertain. Data from many epidemiological studies in different levels of malaria endemicity and in areas with the highest prevalence of drug resistance like borders of Thailand are certainly valuable. Formulating an appropriate dynamic data-driven model is a powerful predictive tool for exploring the impact of these strategies quantitatively. Methods A comprehensive model was constructed incorporating important epidemiological and biological factors of human, mosquito, parasite and treatment. The iterative process of developing the model, identifying data needed, and parameterization has been taken to strongly link the model to the empirical evidence. The model provides quantitative measures of outcomes, such as malaria prevalence/incidence and treatment failure, and illustrates the spread of resistance in low and high transmission settings. The model was used to evaluate different anti-malarial policy options focusing on ACT deployment. Results The model predicts robustly that in low transmission settings drug resistance spreads faster than in high transmission settings, and treatment failure is the main force driving the spread of drug resistance. In low transmission settings, ACT slows the spread of drug resistance to a partner drug, especially at high coverage rates. This effect decreases exponentially with increasing delay in deploying the ACT and decreasing rates of coverage. In the high transmission settings, however, drug resistance is driven by the proportion of the human population with a residual drug level, which gives resistant parasites some survival advantage. The spread of drug resistance could be slowed down by controlling presumptive drug use and avoiding the use of combination therapies containing drugs with

    18. Parathyroid diseases and animal models.

      Imanishi, Yasuo; Nagata, Yuki; Inaba, Masaaki

      2012-01-01

      CIRCULATING CALCIUM AND PHOSPHATE ARE TIGHTLY REGULATED BY THREE HORMONES: the active form of vitamin D (1,25-dihydroxyvitamin D), fibroblast growth factor (FGF)-23, and parathyroid hormone (PTH). PTH acts to stimulate a rapid increment in serum calcium and has a crucial role in calcium homeostasis. Major target organs of PTH are kidney and bone. The oversecretion of the hormone results in hypercalcemia, caused by increased intestinal calcium absorption, reduced renal calcium clearance, and mobilization of calcium from bone in primary hyperparathyroidism. In chronic kidney disease, secondary hyperparathyroidism of uremia is observed in its early stages, and this finally develops into the autonomous secretion of PTH during maintenance hemodialysis. Receptors in parathyroid cells, such as the calcium-sensing receptor, vitamin D receptor, and FGF receptor (FGFR)-Klotho complex have crucial roles in the regulation of PTH secretion. Genes such as Cyclin D1, RET, MEN1, HRPT2, and CDKN1B have been identified in parathyroid diseases. Genetically engineered animals with these receptors and the associated genes have provided us with valuable information on the patho-physiology of parathyroid diseases. The application of these animal models is significant for the development of new therapies.

    19. Drug induced exocytosis of glycogen in Pompe disease.

      Turner, Christopher T; Fuller, Maria; Hopwood, John J; Meikle, Peter J; Brooks, Doug A

      2016-10-28

      Pompe disease is caused by a deficiency in the lysosomal enzyme α-glucosidase, and this leads to glycogen accumulation in the autolysosomes of patient cells. Glycogen storage material is exocytosed at a basal rate in cultured Pompe cells, with one study showing up to 80% is released under specific culture conditions. Critically, exocytosis induction may reduce glycogen storage in Pompe patients, providing the basis for a therapeutic strategy whereby stored glycogen is redirected to an extracellular location and subsequently degraded by circulating amylases. The focus of the current study was to identify compounds capable of inducing rapid glycogen exocytosis in cultured Pompe cells. Here, calcimycin, lysophosphatidylcholine and α-l-iduronidase each significantly increased glycogen exocytosis compared to vehicle-treated controls. The most effective compound, calcimycin, induced exocytosis through a Ca 2+ -dependent mechanism, although was unable to release a pool of vesicular glycogen larger than the calcimycin-induced exocytic pore. There was reduced glycogen release from Pompe compared to unaffected cells, primarily due to increased granule size in Pompe cells. Drug induced exocytosis therefore shows promise as a therapeutic approach for Pompe patients but strategies are required to enhance the release of large molecular weight glycogen granules. Copyright © 2016. Published by Elsevier Inc.

    20. Modeling Drug-Carrier Interaction in the Drug Release from Nanocarriers

      Like Zeng

      2011-01-01

      Full Text Available Numerous nanocarriers of various compositions and geometries have been developed for the delivery and release of therapeutic and imaging agents. Due to the high specific surface areas of nanocarriers, different mechanisms such as ion pairing and hydrophobic interaction need to be explored for achieving sustained release. Recently, we developed a three-parameter model that considers reversible drug-carrier interaction and first-order drug release from liposomes. A closed-form analytical solution was obtained. Here, we further explore the ability of the model to capture the release of bioactive molecules such as drugs and growth factors from various nanocarriers. A parameter study demonstrates that the model is capable of resembling major categories of drug release kinetics. We further fit the model to 60 sets of experimental data from various drug release systems, including nanoparticles, hollow particles, fibers, and hollow fibers. Additionally, bootstrapping is used to evaluate the accuracy of parameter determination and validate the model in selected cases. The simplicity and universality of the model and the clear physical meanings of each model parameter render the model useful for the design and development of new drug delivery systems.

    1. [Development of anti-Alzheimer's disease drug based on beta-amyloid hypothesis].

      Sugimoto, Hachiro

      2010-04-01

      Currently, there are five anti-Alzheimer's disease drugs approved. These are tacrine, donepezil, rivastigmine, galantamine, and memantine. The mechanism of the first four drugs is acetylcholinesterase inhibition, while memantine is an NMDA-receptor antagonist. However, these drugs do not cure Alzheimer's, but are only symptomatic treatments. Therefore, a cure for Alzheimer's disease is truly needed. Alzheimer's disease is a progressive neurodegenerative disease characterized by cognitive deficits. The cause of the disease is not well understood, but research indicates that the aggregation of beta-amyloid is the fundamental cause. This theory suggests that beta-amyloid aggregation causes neurotoxicity. Therefore, development of the next anti-Alzheimer's disease drug is based on the beta-amyloid theory. We are now studying natural products, such as mulberry leaf extracts and curcumin derivatives, as potential cure for Alzheimer's disease. In this report, we describe some data about these natural products and derivatives.

    2. Disease-modifying antirheumatic drugs in pregnancy - Current status and implications for the future

      Vroom, Fokaline; de Walle, Hermien E. K.; van de Laar, Mart A. J. F.; Brouwers, Jacobus R. B. J.; de Jong-van den Berg, Lolkje T. W.

      2006-01-01

      Drug use during pregnancy is sometimes unavoidable, especially in chronic inflammatory diseases such as rheumatoid arthritis (RA). The use of disease-modifying antirheumatic drugs (DMARDs) often starts in the early stage of RA; therefore, women of reproductive age are at risk for exposure to a DMARD

    3. Modeling of drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls to treat vulnerable plaques

      Hossain, Shaolie S.; Hossainy, Syed F A; Bazilevs, Yuri; Calo, Victor M.; Hughes, Thomas Jr R

      2010-01-01

      The main objective of this work is to develop computational tools to support the design of a catheter-based local drug delivery system that uses nanoparticles as drug carriers in order to treat vulnerable plaques and diffuse atherosclerotic disease.

    4. Muscarinic Acetylcholine Receptor Subtypes as Potential Drug Targets for the Treatment of Schizophrenia, Drug Abuse and Parkinson's Disease

      Dencker, Ditte; Thomsen, Morgane; Wörtwein, Gitta

      2011-01-01

      's disease and drug abuse. Dopaminergic systems are regulated by cholinergic, especially muscarinic, input. Not surprisingly, increasing evidence implicates muscarinic acetylcholine receptor-mediated pathways as potential targets for the treatment of these disorders classically viewed as "dopamine based...... site. Such agents may lead to the development of novel classes of drugs useful for the treatment of psychosis, drug abuse and Parkinson's disease. The present review highlights recent studies carried out using muscarinic receptor knock-out mice and new subtype-selective allosteric ligands to assess...... the roles of M(1), M(4), and M(5) receptors in various central processes that are under strong dopaminergic control. The outcome of these studies opens new perspectives for the use of novel muscarinic drugs for several severe disorders of the CNS....

    5. Sugarcane bagasse lignin, and silica gel and magneto-silica as drug vehicles for development of innocuous methotrexate drug against rheumatoid arthritis disease in albino rats

      Wahba, Sanaa M.R. [Zoology department, Women College, Ain-Shams University,11566 Cairo (Egypt); Darwish, Atef S., E-mail: atef_mouharam@sci.asu.edu.eg [Chemistry department, Faculty of Science, Ain Shams University, Cairo (Egypt); Shehata, Iman H. [Microbiology and Immunology Department, Faculty of Medicine, Ain-Shams University, Cairo (Egypt); Abd Elhalem, Sahar S. [Zoology department, Women College, Ain-Shams University,11566 Cairo (Egypt)

      2015-03-01

      The present study clarifies co-therapy action of deliveries from their textural changes point of view. Methotrexate (MTX) was immobilized onto biodegradable lignin, silica gel and iron/silica nanocomposite. Loaded-MTX was i.p. injected into albino rats at doses of 0.25 and 0.5 mg/kg/week for 2.5 months, after which spleen, liver, testes and knee joint tissues were collected for tests. IFN-γ and IL-17A mRNA gene expressions in spleen in all biological samples were determined by RT-PCR. Physicochemical features of drug carriers were monitored by XRD, BET-PSD, SEM and TEM. Drug inflammatory-site targeting was found to be closely related to the physico-features of deliverers. The interlayered lignin of micro- and meso-pore channels directed MTX toward concealed infected cells in liver and testes tissues, while meso-structured silica flacks satisfied by gathering MTX around knee joints. The magneto-silica nanocomposite targeted MTX toward spleen tissue, which is considered as a lively factory for the production of electron rich compounds. - Highlights: • Opening the door to synthesize smart targeted drug deliveries against RA disease • Therapy action of MTX-laden lignin and Fe{sub 3}O{sub 4}/SiO{sub 2} composite toward RA disease • Procure selective targeted drug deliveries of near 100% curing against RA disease • Revolutionary clinical therapies for RA disease by inventive MTX-delivery models.

    6. Sugarcane bagasse lignin, and silica gel and magneto-silica as drug vehicles for development of innocuous methotrexate drug against rheumatoid arthritis disease in albino rats

      Wahba, Sanaa M.R.; Darwish, Atef S.; Shehata, Iman H.; Abd Elhalem, Sahar S.

      2015-01-01

      The present study clarifies co-therapy action of deliveries from their textural changes point of view. Methotrexate (MTX) was immobilized onto biodegradable lignin, silica gel and iron/silica nanocomposite. Loaded-MTX was i.p. injected into albino rats at doses of 0.25 and 0.5 mg/kg/week for 2.5 months, after which spleen, liver, testes and knee joint tissues were collected for tests. IFN-γ and IL-17A mRNA gene expressions in spleen in all biological samples were determined by RT-PCR. Physicochemical features of drug carriers were monitored by XRD, BET-PSD, SEM and TEM. Drug inflammatory-site targeting was found to be closely related to the physico-features of deliverers. The interlayered lignin of micro- and meso-pore channels directed MTX toward concealed infected cells in liver and testes tissues, while meso-structured silica flacks satisfied by gathering MTX around knee joints. The magneto-silica nanocomposite targeted MTX toward spleen tissue, which is considered as a lively factory for the production of electron rich compounds. - Highlights: • Opening the door to synthesize smart targeted drug deliveries against RA disease • Therapy action of MTX-laden lignin and Fe 3 O 4 /SiO 2 composite toward RA disease • Procure selective targeted drug deliveries of near 100% curing against RA disease • Revolutionary clinical therapies for RA disease by inventive MTX-delivery models

    7. Nuclear track microfilters in controlled drug delivery against chronic skin disease

      Gopalani, D.; Jodha, A.S.; Saravanan, S.; Kumar, S.

      2003-01-01

      Nuclear track microfilters have been developed for transdermal therapeutic system. The transdermal therapeutic method reduces the toxicity of the drug as compared to other conventional methods. For this purpose a slow drug release system containing the nuclear track microfilter was developed. This device was applied to the patients suffering from psoriasis and cellulites diseases. The delivery of the drug to the patient was confirmed through high performance liquid chromatography. The preliminary results have shown that patients are responding to drugs with minimum toxicity

    8. Nuclear track microfilters in controlled drug delivery against chronic skin disease

      Gopalani, D. E-mail: deflab@sancharnet.in; Jodha, A.S.; Saravanan, S.; Kumar, S

      2003-06-01

      Nuclear track microfilters have been developed for transdermal therapeutic system. The transdermal therapeutic method reduces the toxicity of the drug as compared to other conventional methods. For this purpose a slow drug release system containing the nuclear track microfilter was developed. This device was applied to the patients suffering from psoriasis and cellulites diseases. The delivery of the drug to the patient was confirmed through high performance liquid chromatography. The preliminary results have shown that patients are responding to drugs with minimum toxicity.

    9. In silico modeling to predict drug-induced phospholipidosis

      Choi, Sydney S.; Kim, Jae S.; Valerio, Luis G.; Sadrieh, Nakissa

      2013-01-01

      Drug-induced phospholipidosis (DIPL) is a preclinical finding during pharmaceutical drug development that has implications on the course of drug development and regulatory safety review. A principal characteristic of drugs inducing DIPL is known to be a cationic amphiphilic structure. This provides evidence for a structure-based explanation and opportunity to analyze properties and structures of drugs with the histopathologic findings for DIPL. In previous work from the FDA, in silico quantitative structure–activity relationship (QSAR) modeling using machine learning approaches has shown promise with a large dataset of drugs but included unconfirmed data as well. In this study, we report the construction and validation of a battery of complementary in silico QSAR models using the FDA's updated database on phospholipidosis, new algorithms and predictive technologies, and in particular, we address high performance with a high-confidence dataset. The results of our modeling for DIPL include rigorous external validation tests showing 80–81% concordance. Furthermore, the predictive performance characteristics include models with high sensitivity and specificity, in most cases above ≥ 80% leading to desired high negative and positive predictivity. These models are intended to be utilized for regulatory toxicology applied science needs in screening new drugs for DIPL. - Highlights: • New in silico models for predicting drug-induced phospholipidosis (DIPL) are described. • The training set data in the models is derived from the FDA's phospholipidosis database. • We find excellent predictivity values of the models based on external validation. • The models can support drug screening and regulatory decision-making on DIPL

    10. Sustainable rare diseases business and drug access: no time for misconceptions.

      Rollet, Pierrick; Lemoine, Adrien; Dunoyer, Marc

      2013-07-23

      Legislative incentives enacted in Europe through the Regulation (EC) No. 141/2000 to incentivize orphan drug development have over the last 12 years constituted a powerful impetus toward R&D directed at the rare diseases population. However, despite therapeutic promises contained in these projects and significant economic impact linked to burgeoning R&D expenditures, the affordability and value of OMPs has become a topic of health policy debate in Europe fueled by the perception that OMPs have high acquisition costs, and by misconceptions around pricing dynamics and rare-diseases business models. In order to maintain sustainable patient access to new and innovative therapies, it is essential to address these misconceptions, and to ensure the successful continuation of a dynamic OMPs R&D within rare-diseases public health policy. Misconceptions abound regarding the pricing of rare diseases drugs and reflect a poor appreciation of the R&D model and the affordability and value of OMPs. Simulation of potential financial returns of small medium sized rare diseases companies focusing on high priced drugs show that their economic returns are likely to be close to their cost of capital. Research in rare diseases is a challenging endeavour characterised by high fixed costs in which companies accrue substantial costs for several years before potentially generating returns from the fruits of their investments. Although heavily dependent upon R&D capabilities of each individual company or R&D organization, continuous flow of R&D financial investment should allow industry to increasingly include efficiencies in research and development in cost considerations to its customers. Industry should also pro-actively work on facilitating development of a specific value based pricing approach to help understanding what constitute value in rare diseases. Policy makers must reward innovation based upon unmet need and patient outcome. Broader understanding by clinicians, the public, and

    11. A two-dimensional mathematical model of percutaneous drug absorption

      Kubota K

      2004-06-01

      Full Text Available Abstract Background When a drug is applied on the skin surface, the concentration of the drug accumulated in the skin and the amount of the drug eliminated into the blood vessel depend on the value of a parameter, r. The values of r depend on the amount of diffusion and the normalized skin-capillary clearence. It is defined as the ratio of the steady-state drug concentration at the skin-capillary boundary to that at the skin-surface in one-dimensional models. The present paper studies the effect of the parameter values, when the region of contact of the skin with the drug, is a line segment on the skin surface. Methods Though a simple one-dimensional model is often useful to describe percutaneous drug absorption, it may be better represented by multi-dimensional models. A two-dimensional mathematical model is developed for percutaneous absorption of a drug, which may be used when the diffusion of the drug in the direction parallel to the skin surface must be examined, as well as in the direction into the skin, examined in one-dimensional models. This model consists of a linear second-order parabolic equation with appropriate initial conditions and boundary conditions. These boundary conditions are of Dirichlet type, Neumann type or Robin type. A finite-difference method which maintains second-order accuracy in space along the boundary, is developed to solve the parabolic equation. Extrapolation in time is applied to improve the accuracy in time. Solution of the parabolic equation gives the concentration of the drug in the skin at a given time. Results Simulation of the numerical methods described is carried out with various values of the parameter r. The illustrations are given in the form of figures. Conclusion Based on the values of r, conclusions are drawn about (1 the flow rate of the drug, (2 the flux and the cumulative amount of drug eliminated into the receptor cell, (3 the steady-state value of the flux, (4 the time to reach the steady

    12. Huperzine A: Is it an Effective Disease-Modifying Drug for Alzheimer's Disease?

      Qian, Zhong Ming; Ke, Ya

      2014-01-01

      Alzheimer's disease (AD) is a progressive neurodegenerative disorder for which there is no cure. Huperzine A (HupA) is a natural inhibitor of acetylcholinesterase (AChE) derived from the Chinese folk medicine Huperzia serrata (Qian Ceng Ta). It is a licensed anti-AD drug in China and is available as a nutraceutical in the US. A growing body of evidence has demonstrated that HupA has multifaceted pharmacological effects. In addition to the symptomatic, cognitive-enhancing effect via inhibition of AChE, a number of recent studies have reported that this drug has "non-cholinergic" effects on AD. Most important among these is the protective effect of HupA on neurons against amyloid beta-induced oxidative injury and mitochondrial dysfunction as well as via the up-regulation of nerve growth factor and antagonizing N-methyl-d-aspartate receptors. The most recent discovery that HupA may reduce brain iron accumulation lends further support to the argument that HupA could serve as a potential disease-modifying agent for AD and also other neurodegenerative disorders by significantly slowing down the course of neuronal death.

    13. Huperzine A: Is it an Effective Disease-Modifying Drug for Alzheimer’s Disease?

      Qian, Zhong Ming; Ke, Ya

      2014-01-01

      Alzheimer’s disease (AD) is a progressive neurodegenerative disorder for which there is no cure. Huperzine A (HupA) is a natural inhibitor of acetylcholinesterase (AChE) derived from the Chinese folk medicine Huperzia serrata (Qian Ceng Ta). It is a licensed anti-AD drug in China and is available as a nutraceutical in the US. A growing body of evidence has demonstrated that HupA has multifaceted pharmacological effects. In addition to the symptomatic, cognitive-enhancing effect via inhibition of AChE, a number of recent studies have reported that this drug has “non-cholinergic” effects on AD. Most important among these is the protective effect of HupA on neurons against amyloid beta-induced oxidative injury and mitochondrial dysfunction as well as via the up-regulation of nerve growth factor and antagonizing N-methyl-d-aspartate receptors. The most recent discovery that HupA may reduce brain iron accumulation lends further support to the argument that HupA could serve as a potential disease-modifying agent for AD and also other neurodegenerative disorders by significantly slowing down the course of neuronal death. PMID:25191267

    14. Huperzine A: is it an effective disease-modifying drug for Alzheimer’s disease?

      Zhong Ming eQian

      2014-08-01

      Full Text Available Alzheimer's disease (AD is a progressive neurodegenerative disorder for which there is no cure. Huperzine A (HupA is a natural inhibitor of acetylcholinesterase (AChE derived from the Chinese folk medicine Huperzia serrata (Qian Ceng Ta. It is a licensed anti-AD drug in China and is available as a nutraceutical in the US. A growing body of evidence has demonstrated that HupA has multifaceted pharmacological effects. In addition to the symptomatic, cognitive-enhancing effect via inhibition of AChE, a number of recent studies have reported that this drug has non-cholinergic effects on AD. Most important among these is the protective effect of HupA on neurons against amyloid beta-induced oxidative injury and mitochondrial dysfunction as well as via the up-regulation of nerve growth factor and antagonizing N-methyl-D-aspartate receptors. The most recent discovery that HupA may reduce brain iron accumulation lends further support to the argument that HupA could serve as a potential disease-modifying agent for AD and also other neurodegenerative disorders by significantly slowing down the course of neuronal death.

    15. Stability Analysis of an HIV/AIDS Dynamics Model with Drug Resistance

      Qianqian Li

      2012-01-01

      Full Text Available A mathematical model of HIV/AIDS transmission incorporating treatment and drug resistance was built in this study. We firstly calculated the threshold value of the basic reproductive number (R0 by the next generation matrix and then analyzed stability of two equilibriums by constructing Lyapunov function. When R0<1, the system was globally asymptotically stable and converged to the disease-free equilibrium. Otherwise, the system had a unique endemic equilibrium which was also globally asymptotically stable. While an antiretroviral drug tried to reduce the infection rate and prolong the patients’ survival, drug resistance was neutralizing the effects of treatment in fact.

    16. Advanced Therapeutic Strategies for Chronic Lung Disease Using Nanoparticle-Based Drug Delivery

      Ji Young Yhee

      2016-09-01

      Full Text Available Chronic lung diseases include a variety of obstinate and fatal diseases, including asthma, chronic obstructive pulmonary disease (COPD, cystic fibrosis (CF, idiopathic pulmonary fibrosis (IPF, and lung cancers. Pharmacotherapy is important for the treatment of chronic lung diseases, and current progress in nanoparticles offers great potential as an advanced strategy for drug delivery. Based on their biophysical properties, nanoparticles have shown improved pharmacokinetics of therapeutics and controlled drug delivery, gaining great attention. Herein, we will review the nanoparticle-based drug delivery system for the treatment of chronic lung diseases. Various types of nanoparticles will be introduced, and recent innovative efforts to utilize the nanoparticles as novel drug carriers for the effective treatment of chronic lung diseases will also be discussed.

    17. Mechanistic modeling of ophthalmic drug delivery to the anterior chamber by eye drops and contact lenses.

      Gause, Samuel; Hsu, Kuan-Hui; Shafor, Chancellor; Dixon, Phillip; Powell, Kristin Conrad; Chauhan, Anuj

      2016-07-01

      Ophthalmic drug for the anterior chamber diseases are delivered into tears by either eye drops or by extended release devices placed in the eyes. The instilled drug exits the eye through various routes including tear drainage into the nose through the canaliculi and transport across various ocular membranes. Understanding the mechanisms relevant to each route can be useful in predicting the dependency of ocular bioavailability on various formulation parameters, such as drug concentration, salinity, viscosity, etc. Mathematical modeling has been developed for each of the routes and validated by comparison with experiments. The individual models can be combined into a system model to predict the fraction of the instilled drug that reaches the target. This review summarizes the individual models for the transport of drugs across the cornea and conjunctiva and the canaliculi tear drainage. It also summarizes the combined tear dynamics model that can predict the ocular bioavailability of drugs instilled as eye drops. The predictions from the individual models and the combined model are in good agreement with experimental data. Both experiments and models predict that the corneal bioavailability for drugs delivered through eye drops is less than 5% due to the small area of the cornea in comparison to the conjunctiva, and the rapid clearance of the instilled solution by tear drainage. A contact lens is a natural choice for delivering drugs to the cornea due to the placement of the contact in the immediate vicinity of the cornea. The drug released by the contact towards the cornea surface is trapped in the post lens tear film for extended duration of at least 30min allowing transport of a large portion into the cornea. The model predictions backed by in vivo animal and clinical data show that the bioavailability increases to about 50% with contact lenses. This realization has encouraged considerable research towards delivering ocular drugs by contact lenses. Commercial

    18. Neurodegeneration and Epilepsy in a Zebrafish Model of CLN3 Disease (Batten Disease.

      Kim Wager

      Full Text Available The neuronal ceroid lipofuscinoses are a group of lysosomal storage disorders that comprise the most common, genetically heterogeneous, fatal neurodegenerative disorders of children. They are characterised by childhood onset, visual failure, epileptic seizures, psychomotor retardation and dementia. CLN3 disease, also known as Batten disease, is caused by autosomal recessive mutations in the CLN3 gene, 80-85% of which are a ~1 kb deletion. Currently no treatments exist, and after much suffering, the disease inevitably results in premature death. The aim of this study was to generate a zebrafish model of CLN3 disease using antisense morpholino injection, and characterise the pathological and functional consequences of Cln3 deficiency, thereby providing a tool for future drug discovery. The model was shown to faithfully recapitulate the pathological signs of CLN3 disease, including reduced survival, neuronal loss, retinopathy, axonopathy, loss of motor function, lysosomal storage of subunit c of mitochondrial ATP synthase, and epileptic seizures, albeit with an earlier onset and faster progression than the human disease. Our study provides proof of principle that the advantages of the zebrafish over other model systems can be utilised to further our understanding of the pathogenesis of CLN3 disease and accelerate drug discovery.

    19. Methodologies Related to Computational models in View of Developing Anti-Alzheimer Drugs: An Overview.

      Baheti, Kirtee; Kale, Mayura Ajay

      2018-04-17

      Since last two decades, there has been more focus on the development strategies related to Anti-Alzheimer's drug research. This may be attributed to the fact that most of the Alzheimer's cases are still mostly unknown except for a few cases, where genetic differences have been identified. With the progress of the disease, the symptoms involve intellectual deterioration, memory impairment, abnormal personality and behavioural patterns, confusion, aggression, mood swings, irritability Current therapies available for this disease give only symptomatic relief and do not focus on manipulations of biololecular processes. Nearly all the therapies to treat Alzheimer's disease, target to change the amyloid cascade which is considered to be an important in AD pathogenesis. New drug regimens are not able to keep pace with the ever-increasing understanding about dementia at molecular level. Looking into these aggravated problems, we though to put forth molecular modeling as a drug discovery approach for developing novel drugs to treat Alzheimer disease. The disease is incurable and it gets worst as it advances and finally causes death. Due to this, the design of drugs to treat this disease has become an utmost priority for research. One of the most important emerging technologies applied for this has been Computer-assisted drug design (CADD). It is a research tool that employs large scale computing strategies in an attempt to develop a model receptor site which can be used for designing of an anti-Alzheimer drug. The various models of amyloid-based calcium channels have been computationally optimized. Docking and De novo evolution are used to design the compounds. These are further subjected to absorption, distribution, metabolism, excretion and toxicity (ADMET) studies to finally bring about active compounds that are able to cross BBB. Many novel compounds have been designed which might be promising ones for the treatment of AD. The present review describes the research

    20. Metformin - a Future Therapy for Neurodegenerative Diseases : Theme: Drug Discovery, Development and Delivery in Alzheimer's Disease Guest Editor: Davide Brambilla.

      Markowicz-Piasecka, Magdalena; Sikora, Joanna; Szydłowska, Aleksandra; Skupień, Agata; Mikiciuk-Olasik, Elżbieta; Huttunen, Kristiina M

      2017-12-01

      Type 2 diabetes mellitus (T2DM) is a complex, chronic and progressive metabolic disease, which is characterized by relative insulin deficiency, insulin resistance, and high glucose levels in blood. Esteemed published articles and epidemiological data exhibit an increased risk of developing Alzheimer's disease (AD) in diabetic pateints. Metformin is the most frequently used oral anti-diabetic drug, which apart from hypoglycaemic activity, improves serum lipid profiles, positively influences the process of haemostasis, and possesses anti-inflammatory properties. Recently, scientists have put their efforts in establishing metformin's role in the treatment of neurodegenerative diseases, such as AD, amnestic mild cognitive impairment and Parkinson's disease. Results of several clinical studies confirm that long term use of metformin in diabetic patients contributes to better cognitive function, compared to participants using other anti-diabetic drugs. The exact mechanism of metformin's advantageous activity in AD is not fully understood, but scientists claim that activation of AMPK-dependent pathways in human neural stem cells might be responsible for the neuroprotective activity of metformin. Metformin was also found to markedly decease Beta-secretase 1 (BACE1) protein expression and activity in cell culture models and in vivo, thereby reducing BACE1 cleavage products and the production of Aβ (β-amyloid). Furthermore, there is also some evidence that metformin decreases the activity of acetylcholinesterase (AChE), which is responsible for the degradation of acetylcholine (Ach), a neurotransmitter involved in the process of learning and memory. In regard to the beneficial effects of metformin, its anti-inflammatory and anti-oxidative properties cannot be omitted. Numerous in vitro and in vivo studies have confirmed that metformin ameliorates oxidative damage.

    1. Prediction of adverse drug reactions using decision tree modeling.

      Hammann, F; Gutmann, H; Vogt, N; Helma, C; Drewe, J

      2010-07-01

      Drug safety is of great importance to public health. The detrimental effects of drugs not only limit their application but also cause suffering in individual patients and evoke distrust of pharmacotherapy. For the purpose of identifying drugs that could be suspected of causing adverse reactions, we present a structure-activity relationship analysis of adverse drug reactions (ADRs) in the central nervous system (CNS), liver, and kidney, and also of allergic reactions, for a broad variety of drugs (n = 507) from the Swiss drug registry. Using decision tree induction, a machine learning method, we determined the chemical, physical, and structural properties of compounds that predispose them to causing ADRs. The models had high predictive accuracies (78.9-90.2%) for allergic, renal, CNS, and hepatic ADRs. We show the feasibility of predicting complex end-organ effects using simple models that involve no expensive computations and that can be used (i) in the selection of the compound during the drug discovery stage, (ii) to understand how drugs interact with the target organ systems, and (iii) for generating alerts in postmarketing drug surveillance and pharmacovigilance.

    2. Drug-induced cholestasis: mechanisms, models, and markers.

      Chatterjee, Sagnik; Annaert, Pieter

      2018-04-27

      Drug-induced cholestasis is a risk factor in progression of drug candidates, and poses serious health hazard if not detected before going into human. Intrahepatic accumulation of bile acids (BAs) represents a characteristic phenomenon associated with drug-induced cholestasis. The major challenges in obtaining a complete understanding of drug-induced cholestasis lies in the complexity of BA-mediated toxicity mechanisms and the impact of bile acids at different 'targets' such as transporters, enzymes and nuclear receptors. At the same time, it is not trivial to have a relevant in vitro system that recapitulates these features. In addition, lack of sensitive and early preclinical biomarkers, relevant to the clinical situation, complicates proper detection of drug-induced cholestasis. Significant overlap in biomarker signatures between different mechanisms of drug-induced liver injury (DILI) precludes identification of specific mechanisms. Over the last decade the knowledge gaps in drug-induced cholestasis are closing due to growing mechanistic understanding of BA-mediated toxicity at (patho)physiologically relevant BA concentrations. Significant progress has been made in the mechanistic understanding of drug-induced cholestasis and associated toxicity, biomarkers and susceptibility factors. In addition, novel in vitro models are evolving which provide a holistic understanding of processes underlying drug-induced cholestasis. This review summarizes the challenges and recent understandings about drug-induced cholestasis with a potential path forward. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

    3. Considerations for a business model for the effective integration of novel biomarkers into drug development.

      Frueh, Felix W

      2008-11-01

      It is 10 years since the introduction of trastuzumab into the US market, and we are still waiting for a validation of the business case for biomarker-driven drug development. While many reasons for the lack of duplication of this model may exist, the need for accelerated innovation in drug development paired with the opportunity of integrating biomarker-driven research into drug development programs may lead to new and creative ways of fostering the cooperation between drug developers and test manufacturers. The rapid increase in knowledge about biomarkers and our understanding of disease and disease mechanisms open unprecedented prospects to make not only better, more informed decisions regarding patient care, but also strategic decisions during drug development. This requires that a biomarker strategy becomes an integral part of (early) drug development and that new, innovative paths are tried towards a model that combines the scientific approach with an economically feasible implementation strategy. Collaborative research, the use of new communication tools, the exploration of alternative ways to position a product in the market, and other considerations are part of such a strategy. This perspective article illustrates the current landscape and takes a look at some of these new ways for more effectively integrating biomarkers into drug development.

    4. Mathematical modeling and computational prediction of cancer drug resistance.

      Sun, Xiaoqiang; Hu, Bin

      2017-06-23

      Diverse forms of resistance to anticancer drugs can lead to the failure of chemotherapy. Drug resistance is one of the most intractable issues for successfully treating cancer in current clinical practice. Effective clinical approaches that could counter drug resistance by restoring the sensitivity of tumors to the targeted agents are urgently needed. As numerous experimental results on resistance mechanisms have been obtained and a mass of high-throughput data has been accumulated, mathematical modeling and computational predictions using systematic and quantitative approaches have become increasingly important, as they can potentially provide deeper insights into resistance mechanisms, generate novel hypotheses or suggest promising treatment strategies for future testing. In this review, we first briefly summarize the current progress of experimentally revealed resistance mechanisms of targeted therapy, including genetic mechanisms, epigenetic mechanisms, posttranslational mechanisms, cellular mechanisms, microenvironmental mechanisms and pharmacokinetic mechanisms. Subsequently, we list several currently available databases and Web-based tools related to drug sensitivity and resistance. Then, we focus primarily on introducing some state-of-the-art computational methods used in drug resistance studies, including mechanism-based mathematical modeling approaches (e.g. molecular dynamics simulation, kinetic model of molecular networks, ordinary differential equation model of cellular dynamics, stochastic model, partial differential equation model, agent-based model, pharmacokinetic-pharmacodynamic model, etc.) and data-driven prediction methods (e.g. omics data-based conventional screening approach for node biomarkers, static network approach for edge biomarkers and module biomarkers, dynamic network approach for dynamic network biomarkers and dynamic module network biomarkers, etc.). Finally, we discuss several further questions and future directions for the use of

    5. eRepo-ORP: Exploring the Opportunity Space to Combat Orphan Diseases with Existing Drugs.

      Brylinski, Michal; Naderi, Misagh; Govindaraj, Rajiv Gandhi; Lemoine, Jeffrey

      2017-12-10

      About 7000 rare, or orphan, diseases affect more than 350 million people worldwide. Although these conditions collectively pose significant health care problems, drug companies seldom develop drugs for orphan diseases due to extremely limited individual markets. Consequently, developing new treatments for often life-threatening orphan diseases is primarily contingent on financial incentives from governments, special research grants, and private philanthropy. Computer-aided drug repositioning is a cheaper and faster alternative to traditional drug discovery offering a promising venue for orphan drug research. Here, we present eRepo-ORP, a comprehensive resource constructed by a large-scale repositioning of existing drugs to orphan diseases with a collection of structural bioinformatics tools, including eThread, eFindSite, and eMatchSite. Specifically, a systematic exploration of 320,856 possible links between known drugs in DrugBank and orphan proteins obtained from Orphanet reveals as many as 18,145 candidates for repurposing. In order to illustrate how potential therapeutics for rare diseases can be identified with eRepo-ORP, we discuss the repositioning of a kinase inhibitor for Ras-associated autoimmune leukoproliferative disease. The eRepo-ORP data set is available through the Open Science Framework at https://osf.io/qdjup/. Copyright © 2017. Published by Elsevier Ltd.

    6. Organoids: Modelling polycystic kidney disease

      Romagnani, Paola

      2017-11-01

      Cysts were generated from organoids in vitro and the removal of adherent cues was shown to play a key role in polycystic kidney disease progression. These cysts resembled those of diseased tissue phenotypically and were capable of remodelling their microenvironment.

    7. Mathematical models for drug diffusion through the compartments of ...

      M.A. Khanday

      2016-07-26

      Jul 26, 2016 ... partments have both favourable and adverse effects on human body. The researchers ... absorption, distribution and elimination process of the drug within the body ... models can be used to understand the transport processes.

    8. Statistical Agent Based Modelization of the Phenomenon of Drug Abuse

      di Clemente, Riccardo; Pietronero, Luciano

      2012-07-01

      We introduce a statistical agent based model to describe the phenomenon of drug abuse and its dynamical evolution at the individual and global level. The agents are heterogeneous with respect to their intrinsic inclination to drugs, to their budget attitude and social environment. The various levels of drug use were inspired by the professional description of the phenomenon and this permits a direct comparison with all available data. We show that certain elements have a great importance to start the use of drugs, for example the rare events in the personal experiences which permit to overcame the barrier of drug use occasionally. The analysis of how the system reacts to perturbations is very important to understand its key elements and it provides strategies for effective policy making. The present model represents the first step of a realistic description of this phenomenon and can be easily generalized in various directions.

    9. The effects of drugs on human models of emotional processing: an account of antidepressant drug treatment.

      Pringle, Abbie; Harmer, Catherine J

      2015-12-01

      Human models of emotional processing suggest that the direct effect of successful antidepressant drug treatment may be to modify biases in the processing of emotional information. Negative biases in emotional processing are documented in depression, and single or short-term dosing with conventional antidepressant drugs reverses these biases in depressed patients prior to any subjective change in mood. Antidepressant drug treatments also modulate emotional processing in healthy volunteers, which allows the consideration of the psychological effects of these drugs without the confound of changes in mood. As such, human models of emotional processing may prove to be useful for testing the efficacy of novel treatments and for matching treatments to individual patients or subgroups of patients.

    10. Cognitive enhancers (nootropics). Part 3: drugs interacting with targets other than receptors or enzymes. disease-modifying drugs.

      Froestl, Wolfgang; Pfeifer, Andrea; Muhs, Andreas

      2013-01-01

      Cognitive enhancers (nootropics) are drugs to treat cognition deficits in patients suffering from Alzheimer's disease, schizophrenia, stroke, attention deficit hyperactivity disorder, or aging. Cognition refers to a capacity for information processing, applying knowledge, and changing preferences. It involves memory, attention, executive functions, perception, language, and psychomotor functions. The term nootropics was coined in 1972 when memory enhancing properties of piracetam were observed in clinical trials. In the meantime, hundreds of drugs have been evaluated in clinical trials or in preclinical experiments. To classify the compounds, a concept is proposed assigning drugs to 19 categories according to their mechanism(s) of action, in particular drugs interacting with receptors, enzymes, ion channels, nerve growth factors, re-uptake transporters, antioxidants, metal chelators, and disease modifying drugs, meaning small molecules, vaccines, and monoclonal antibodies interacting with amyloid-β and tau. For drugs, whose mechanism of action is not known, they are either classified according to structure, e.g., peptides, or their origin, e.g., natural products. The review covers the evolution of research in this field over the last 25 years.

    11. Drug discovery for Chagas disease should consider Trypanosoma cruzi strain diversity

      Bianca Zingales

      2014-09-01

      Full Text Available This opinion piece presents an approach to standardisation of an important aspect of Chagas disease drug discovery and development: selecting Trypanosoma cruzi strains for in vitro screening. We discuss the rationale for strain selection representing T. cruzi diversity and provide recommendations on the preferred parasite stage for drug discovery, T. cruzi discrete typing units to include in the panel of strains and the number of strains/clones for primary screens and lead compounds. We also consider experimental approaches for in vitro drug assays. The Figure illustrates the current Chagas disease drug-discovery and development landscape.

    12. Drug Hypersensitivity and Anaphylaxis in Cancer and Chronic Inflammatory Diseases: The Role of Desensitizations

      Mariana Castells

      2017-11-01

      Full Text Available Drug allergy is a rising problem in the twenty-first century which affects all populations and races, children, and adults, and for which the recognition, diagnosis, management, and treatment is still not well standardized. Classical and new chemotherapy drugs, monoclonal antibodies (MoAbs, and small molecules to treat cancer and chronic inflammatory diseases are aimed at improving quality of life and life expectancy of patients, but an increasing number of reactions including anaphylaxis precludes their use in targeted populations. Women are more affected by drug allergy and up to 27% of women with ovarian and breast cancer develop carboplatin allergy after multiple cycles of treatment. Carriers of BRCA genes develop drug allergy after fewer exposures and can present with severe reactions, including anaphylaxis. Atopic patients are at increased risk for chemotherapy and MoAbs drug allergy and the current patterns of treatment with recurrent and intermittent drug exposures may favor the development of drug allergies. To overcome drug allergy, desensitization has been developed, a novel approach which provides a unique opportunity to protect against anaphylaxis and to improve clinical outcomes. There is evidence that inhibitory mechanisms blocking IgE/antigen mast cell activation are active during desensitization, enhancing safety. Whether desensitization modulates drug allergic and anaphylactic responses facilitating tolerance is currently being investigated. This review provides insight into the current knowledge of drug allergy and anaphylaxis to cancer and chronic inflammatory diseases drugs, the mechanisms of drug desensitization and its applications to personalized medicine.

    13. Open-source approaches for the repurposing of existing or failed candidate drugs: learning from and applying the lessons across diseases.

      Allarakhia, Minna

      2013-01-01

      Repurposing has the objective of targeting existing drugs and failed, abandoned, or yet-to-be-pursued clinical candidates to new disease areas. The open-source model permits for the sharing of data, resources, compounds, clinical molecules, small libraries, and screening platforms to cost-effectively advance old drugs and/or candidates into clinical re-development. Clearly, at the core of drug-repurposing activities is collaboration, in many cases progressing beyond the open sharing of resources, technology, and intellectual property, to the sharing of facilities and joint program development to foster drug-repurposing human-capacity development. A variety of initiatives under way for drug repurposing, including those targeting rare and neglected diseases, are discussed in this review and provide insight into the stakeholders engaged in drug-repurposing discovery, the models of collaboration used, the intellectual property-management policies crafted, and human capacity developed. In the case of neglected tropical diseases, it is suggested that the development of human capital be a central aspect of drug-repurposing programs. Open-source models can support human-capital development through collaborative data generation, open compound access, open and collaborative screening, preclinical and possibly clinical studies. Given the urgency of drug development for neglected tropical diseases, the review suggests elements from current repurposing programs be extended to the neglected tropical diseases arena.

    14. Definition of drug resistance of Mycobacterium tuberculosis to antituberculosis drugs in patients with multidrugresistant tuberculosis and TB with extremely drug resistant depending on the case of the disease

      Kryzhanovsky D.G.

      2014-11-01

      Full Text Available There was studied the profile of drug resistance to the main (I line and reserve (II line antituberculosis drugs in patients with MDR and XDR tuberculosis, depending of the case of the disease. According to the randomized retrospective research 200 patients with MDR and XDR tuberculosis, who received treatment in the clinic of hospital Municipal institution «Dnipropetrovsk rigional clinical association «Phthisiology» Dnipropetrovsk regional Council» during the period 2010 – 2012 were involved. Data about patients contained the data on a case of the disease and the results of the test of drug sensitivity to MBT. XDR – TB was revealed in 7.5% of patients with MDR tuberculosis. In patients with MDR tuberculosis as compared with patients with XDR tuberculosis «new cases» were diagnosed in 19.5% against 18.5% (p <0.05. In patients with MDR tuberculosis and with XDR tuberculosis resistance to the antituberculosis drug more commonly developed to S - 88.5%, E - 55% and Z - 24%. The presence of MDR-TB and XDR-TB prevails in patients, who underwent previous courses of treatment with anti-TB drugs in case history as compared with patients with «new cases» of treatment. The development of resistance to anti-TB drugs depends on the availability of these drugs in the previous treatment regimens.

    15. Albumin-based drug delivery: harnessing nature to cure disease.

      Larsen, Maja Thim; Kuhlmann, Matthias; Hvam, Michael Lykke; Howard, Kenneth A

      2016-01-01

      The effectiveness of a drug is dependent on accumulation at the site of action at therapeutic levels, however, challenges such as rapid renal clearance, degradation or non-specific accumulation requires drug delivery enabling technologies. Albumin is a natural transport protein with multiple ligand binding sites, cellular receptor engagement, and a long circulatory half-life due to interaction with the recycling neonatal Fc receptor. Exploitation of these properties promotes albumin as an attractive candidate for half-life extension and targeted intracellular delivery of drugs attached by covalent conjugation, genetic fusions, association or ligand-mediated association. This review will give an overview of albumin-based products with focus on the natural biological properties and molecular interactions that can be harnessed for the design of a next-generation drug delivery platform.

    16. Ocular Drug Delivery Barriers—Role of Nanocarriers in the Treatment of Anterior Segment Ocular Diseases

      Bachu, Rinda Devi; Chowdhury, Pallabitha; Al-Saedi, Zahraa H. F.; Karla, Pradeep K.; Boddu, Sai H. S.

      2018-01-01

      Ocular drug delivery is challenging due to the presence of anatomical and physiological barriers. These barriers can affect drug entry into the eye following multiple routes of administration (e.g., topical, systemic, and injectable). Topical administration in the form of eye drops is preferred for treating anterior segment diseases, as it is convenient and provides local delivery of drugs. Major concerns with topical delivery include poor drug absorption and low bioavailability. To improve the bioavailability of topically administered drugs, novel drug delivery systems are being investigated. Nanocarrier delivery systems demonstrate enhanced drug permeation and prolonged drug release. This review provides an overview of ocular barriers to anterior segment delivery, along with ways to overcome these barriers using nanocarrier systems. The disposition of nanocarriers following topical administration, their safety, toxicity and clinical trials involving nanocarrier systems are also discussed. PMID:29495528

    17. Studying Disease Occurrence and Drug Effects in Children: A global approach

      O.U. Osokogu (Osemeke)

      2017-01-01

      markdownabstractChildhood diseases result from different causes and exhibit different characteristics. The occurrence of such diseases can be estimated from electronic healthcare records but the characteristics of both the diseases and the databases should be considered. Licensed drugs have limited

    18. Chronic disease and recent addiction treatment utilization among alcohol and drug dependent adults

      Samet Jeffrey

      2011-10-01

      Full Text Available Abstract Background Chronic medical diseases require regular and longitudinal care and self-management for effective treatment. When chronic diseases include substance use disorders, care and treatment of both the medical and addiction disorders may affect access to care and the ability to focus on both conditions. The objective of this paper is to evaluate the association between the presence of chronic medical disease and recent addiction treatment utilization among adults with substance dependence. Methods Cross-sectional secondary data analysis of self-reported baseline data from alcohol and/or drug-dependent adults enrolled in a randomized clinical trial of a disease management program for substance dependence in primary care. The main independent variable was chronic medical disease status, categorized using the Katz Comorbidity Score as none, single condition of lower severity, or higher severity (multiple conditions or single higher severity condition, based on comorbidity scores determined from self-report. Asthma was also examined in secondary analyses. The primary outcome was any self-reported addiction treatment utilization (excluding detoxification in the 3 months prior to study entry, including receipt of any addiction-focused counseling or addiction medication from any healthcare provider. Logistic regression models were adjusted for sociodemographics, type of substance dependence, recruitment site, current smoking, and recent anxiety severity. Results Of 563 subjects, 184 (33% reported any chronic disease (20% low severity; 13% higher severity and 111 (20% reported asthma; 157 (28% reported any addiction treatment utilization in the past 3 months. In multivariate regression analyses, no significant effect was detected for chronic disease on addiction treatment utilization (adjusted odds ratio [AOR] 0.88 lower severity vs. none, 95% confidence interval (CI: 0.60, 1.28; AOR 1.29 higher severity vs. none, 95% CI: 0.89, 1.88 nor for

    19. NSAIDs and cardiovascular drugs in neurodegenerative and cerebrovascular diseases

      M.D.M. Haag (Mendel)

      2009-01-01

      textabstractNeurodegenerative and cerebrovascular diseases are frequent in elderly populations and comprise primarily of dementia (mainly Alzheimer disease (AD)), Parkinson disease (PD) and stroke. The prevalence of these neurological disorders rises with older age. From 55 years to 90 years and

    20. A disease looking for innovative drugs: The case of pulmonary arterial hypertension.

      Joppi, Roberta; Gerardi, Chiara; Bertele', Vittorio; Garattini, Silvio

      2018-05-25

      Pulmonary arterial hypertension (PAH) is a life-threatening rare disease. Between 2001 and 2016 the European Medicines Agency (EMA) approved nine drugs to treat PAH. Considering the poor prognosis of patients with PAH it would be useful to understand whether the approved therapies can change the natural history of the disease. We assessed the therapeutic value and the quality of the evidence on medicines that have been authorized by the EMA in the 2000s. Information about drug approval was obtained from the EMA website and the European Public Assessment Reports. MedLine, Embase, and Cochrane databases were systematically searched for published randomized clinical trials and meta-analyses of the selected drugs and their combinations. At the time of approval no medicine had been proved to reduce mortality or slow the progression of the disease or to improve patients' quality of life. Recent meta-analyses concluded that, compared to placebo, active treatments reduced mortality but there was no conclusion on any preferred therapeutic option. Approvals of monotherapies in the absence of best evidence of their efficacy, have prompted the search for better efficacy of their combinations. Three meta-analyses found no advantage in survival from combinations as opposed to monotherapies. This model case confirms previous analyses that marketing authorizations granted in spite of low evidence of therapeutic efficacy not only expose patients to treatments with unknown benefit-risk profiles but also hamper post-marketing research aimed at filling the information gap. Copyright © 2018. Published by Elsevier B.V.

    1. Skin Diseases Modeling using Combined Tissue Engineering and Microfluidic Technologies.

      Mohammadi, Mohammad Hossein; Heidary Araghi, Behnaz; Beydaghi, Vahid; Geraili, Armin; Moradi, Farshid; Jafari, Parya; Janmaleki, Mohsen; Valente, Karolina Papera; Akbari, Mohsen; Sanati-Nezhad, Amir

      2016-10-01

      In recent years, both tissue engineering and microfluidics have significantly contributed in engineering of in vitro skin substitutes to test the penetration of chemicals or to replace damaged skins. Organ-on-chip platforms have been recently inspired by the integration of microfluidics and biomaterials in order to develop physiologically relevant disease models. However, the application of organ-on-chip on the development of skin disease models is still limited and needs to be further developed. The impact of tissue engineering, biomaterials and microfluidic platforms on the development of skin grafts and biomimetic in vitro skin models is reviewed. The integration of tissue engineering and microfluidics for the development of biomimetic skin-on-chip platforms is further discussed, not only to improve the performance of present skin models, but also for the development of novel skin disease platforms for drug screening processes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

    2. Molecular property diagnostic suite (MPDS): Development of disease-specific open source web portals for drug discovery.

      Nagamani, S; Gaur, A S; Tanneeru, K; Muneeswaran, G; Madugula, S S; Consortium, Mpds; Druzhilovskiy, D; Poroikov, V V; Sastry, G N

      2017-11-01

      Molecular property diagnostic suite (MPDS) is a Galaxy-based open source drug discovery and development platform. MPDS web portals are designed for several diseases, such as tuberculosis, diabetes mellitus, and other metabolic disorders, specifically aimed to evaluate and estimate the drug-likeness of a given molecule. MPDS consists of three modules, namely data libraries, data processing, and data analysis tools which are configured and interconnected to assist drug discovery for specific diseases. The data library module encompasses vast information on chemical space, wherein the MPDS compound library comprises 110.31 million unique molecules generated from public domain databases. Every molecule is assigned with a unique ID and card, which provides complete information for the molecule. Some of the modules in the MPDS are specific to the diseases, while others are non-specific. Importantly, a suitably altered protocol can be effectively generated for another disease-specific MPDS web portal by modifying some of the modules. Thus, the MPDS suite of web portals shows great promise to emerge as disease-specific portals of great value, integrating chemoinformatics, bioinformatics, molecular modelling, and structure- and analogue-based drug discovery approaches.

    3. Drug-loaded electrospun mats of poly(vinyl alcohol) fibres and their release characteristics of four model drugs

      Taepaiboon, Pattama; Rungsardthong, Uracha; Supaphol, Pitt

      2006-05-01

      Mats of PVA nanofibres were successfully prepared by the electrospinning process and were developed as carriers of drugs for a transdermal drug delivery system. Four types of non-steroidal anti-inflammatory drug with varying water solubility property, i.e. sodium salicylate (freely soluble in water), diclofenac sodium (sparingly soluble in water), naproxen (NAP), and indomethacin (IND) (both insoluble in water), were selected as model drugs. The morphological appearance of the drug-loaded electrospun PVA mats depended on the nature of the model drugs. The 1H-nuclear magnetic resonance results confirmed that the electrospinning process did not affect the chemical integrity of the drugs. Thermal properties of the drug-loaded electrospun PVA mats were analysed by differential scanning calorimetry and thermogravimetric analysis. The molecular weight of the model drugs played a major role on both the rate and the total amount of drugs released from the as-prepared drug-loaded electrospun PVA mats, with the rate and the total amount of the drugs released decreasing with increasing molecular weight of the drugs. Lastly, the drug-loaded electrospun PVA mats exhibited much better release characteristics of the model drugs than drug-loaded as-cast films.

    4. An adaptive drug delivery design using neural networks for effective treatment of infectious diseases: a simulation study.

      Padhi, Radhakant; Bhardhwaj, Jayender R

      2009-06-01

      An adaptive drug delivery design is presented in this paper using neural networks for effective treatment of infectious diseases. The generic mathematical model used describes the coupled evolution of concentration of pathogens, plasma cells, antibodies and a numerical value that indicates the relative characteristic of a damaged organ due to the disease under the influence of external drugs. From a system theoretic point of view, the external drugs can be interpreted as control inputs, which can be designed based on control theoretic concepts. In this study, assuming a set of nominal parameters in the mathematical model, first a nonlinear controller (drug administration) is designed based on the principle of dynamic inversion. This nominal drug administration plan was found to be effective in curing "nominal model patients" (patients whose immunological dynamics conform to the mathematical model used for the control design exactly. However, it was found to be ineffective in curing "realistic model patients" (patients whose immunological dynamics may have off-nominal parameter values and possibly unwanted inputs) in general. Hence, to make the drug delivery dosage design more effective for realistic model patients, a model-following adaptive control design is carried out next by taking the help of neural networks, that are trained online. Simulation studies indicate that the adaptive controller proposed in this paper holds promise in killing the invading pathogens and healing the damaged organ even in the presence of parameter uncertainties and continued pathogen attack. Note that the computational requirements for computing the control are very minimal and all associated computations (including the training of neural networks) can be carried out online. However it assumes that the required diagnosis process can be carried out at a sufficient faster rate so that all the states are available for control computation.

    5. Modeling human disease using organotypic cultures

      Schweiger, Pawel J; Jensen, Kim B

      2016-01-01

      animal models and in vitro cell culture systems. However, it has been exceedingly difficult to model disease at the tissue level. Since recently, the gap between cell line studies and in vivo modeling has been narrowing thanks to progress in biomaterials and stem cell research. Development of reliable 3D...... culture systems has enabled a rapid expansion of sophisticated in vitro models. Here we focus on some of the latest advances and future perspectives in 3D organoids for human disease modeling....

    6. Novel films for drug delivery via the buccal mucosa using model soluble and insoluble drugs.

      Kianfar, Farnoosh; Chowdhry, Babur Z; Antonijevic, Milan D; Boateng, Joshua S

      2012-10-01

      Bioadhesive buccal films are innovative dosage forms with the ability to adhere to the mucosal surface and subsequently hydrate to release and deliver drugs across the buccal membrane. This study aims to formulate and characterize stable carrageenan (CAR) based buccal films with desirable drug loading capacity. The films were prepared using CAR, poloxamer (POL) 407, various grades of PEG (plasticizer) and loaded with paracetamol (PM) and indomethacin (IND) as model soluble and insoluble drugs, respectively. The films were characterized by texture analysis, thermogravimetric analysis (TGA), DSC, scanning electron microscopy, X-ray powder diffraction (XRPD), and in vitro drug release studies. Optimized films were obtained from aqueous gels comprising 2.5% w/w κ-CAR 911, 4% w/w POL 407 and 6% w/w (PM) and 6.5% w/w (IND) of PEG 600 with maximum drug loading of 1.6% w/w and 0.8 % w/w for PM and IND, respectively. TGA showed residual water content of approximately 5% of films dry weight. DSC revealed a T(g) at 22.25 and 30.77°C for PM and IND, respectively, implying the presence of amorphous forms of both drugs which was confirmed by XRPD. Drug dissolution profiles in simulated saliva showed cumulative percent release of up to 45 and 57% of PM and IND, respectively, within 40 min of contact with dissolution medium simulating saliva.

    7. Genotype and Phenotype Predictors of Relapse of Graves’ Disease after Antithyroid Drug Withdrawal

      Wang, Pei-Wen; Chen, I-Ya; Juo, Suh-Hang Hank; Hsi, Edward; Liu, Rue-Tsuan; Hsieh, Ching-Jung

      2013-01-01

      Background For patients with Graves’ disease (GD), the primary goal of antithyroid drug therapy is to temporarily restore the patient to the euthyroid state and wait for a subsequent remission of the disease. This study sought to identify the predictive markers for the relapse of disease. Methods To do this, we studied 262 GD patients with long enough follow-up after drug withdrawal to determine treatment outcome. The patients were divided into three groups by time of relapse: early relapse group (n = 91) had an early relapse within 9 months, late relapse group (n = 65) had a relapse between 10 and 36 months, and long-term remission group (n = 106) were either still in remission after at least 3 years or relapsed after 3 years of drug withdrawal. We assessed the treatment outcome of 23 SNPs of costimulatory genes, phenotype and smoking habits. We used permutation to obtain p values for each SNP as an adjustment for multiple testing. Cox proportional hazards models was performed to assess the strength of association between the treatment outcome and clinical and laboratory variables. Results Four SNPs were significantly associated with disease relapse: rs231775 (OR 1.96, 95% CI 1.18–3.26) at CTLA-4 and rs745307 (OR 7.97, 95% CI 1.01–62.7), rs11569309 (OR 8.09, 95% CI 1.03–63.7), and rs3765457 (OR 2.60, 95% CI 1.08–6.28) at CD40. Combining risk alleles at CTLA-4 and CD40 improved the predictability of relapse. Using 3 years as the cutoff point for multivariate analysis, we found several independent predictors of disease relapse: number of risk alleles (HR 1.30, 95% CI 1.09–1.56), a large goiter size at the end of the treatment (HR 1.30, 95% CI 1.05–1.61), persistent TSH-binding inhibitory Ig (HR 1.64, 95% CI 1.15–2.35), and smoking habit (HR 1.60, 95% CI 1.05–2.42). Conclusion Genetic polymorphism of costimulatory genes, smoking status, persistent goiter, and TSH-binding inhibitory Ig predict disease relapse. PMID:24783027

    8. A mathematical model of insulin resistance in Parkinson's disease.

      Braatz, Elise M; Coleman, Randolph A

      2015-06-01

      This paper introduces a mathematical model representing the biochemical interactions between insulin signaling and Parkinson's disease. The model can be used to examine the changes that occur over the course of the disease as well as identify which processes would be the most effective targets for treatment. The model is mathematized using biochemical systems theory (BST). It incorporates a treatment strategy that includes several experimental drugs along with current treatments. In the past, BST models of neurodegeneration have used power law analysis and simulation (PLAS) to model the system. This paper recommends the use of MATLAB instead. MATLAB allows for more flexibility in both the model itself and in data analysis. Previous BST analyses of neurodegeneration began treatment at disease onset. As shown in this model, the outcomes of delayed, realistic treatment and full treatment at disease onset are significantly different. The delayed treatment strategy is an important development in BST modeling of neurodegeneration. It emphasizes the importance of early diagnosis, and allows for a more accurate representation of disease and treatment interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

    9. Atopic Dermatitis: Drug Delivery Approaches in Disease Management.

      Lalan, Manisha; Baweja, Jitendra; Misra, Ambikanandan

      2015-01-01

      In this review, we describe the very basic of atopic dermatitis (AD), the established management strategies, and the advances in drug delivery approaches for successful therapeutic outcomes. The multifactorial pathophysiology of AD has given rise to the clinician's paradigm of topical and systemic therapy and potential combinations. However, incomplete remission of skin disorders like AD is a major challenge to be overcome. Recurrence is thought to be due to genetic and immunological etiologies and shortcomings in drug delivery. This difficulty has sparked research in nanocarrier-based delivery approaches as well as molecular biology-inspired stratagems to deal with the immunological imbalance and to address insufficiencies of delivery propositions. In this review, we assess various novel drug delivery strategies in terms of their success and utility. We present a brief compilation and assessment of management modalities to sensitize the readers to therapeutic scenario in AD.

    10. Exosomes as Drug Delivery Vehicles for Parkinson’s Disease Therapy

      Haney, Matthew J.; Klyachko, Natalia L.; Zhao, Yuling; Gupta, Richa; Plotnikova, Evgeniya G.; He, Zhijian; Patel, Tejash; Piroyan, Aleksandr; Sokolsky, Marina; Kabanov, Alexander V.; Batrakova, Elena V.

      2015-01-01

      Exosomes are naturally occurring nanosized vesicles that have attracted considerable attention as drug delivery vehicles in the past few years. Exosomes are comprised of natural lipid bilayers with the abundance of adhesive proteins that readily interact with cellular membranes. We posit that exosomes secreted by monocytes and macrophages can provide an unprecedented opportunity to avoid entrapment in mononuclear phagocytes (as a part of the host immune system), and at the same time enhance delivery of incorporated drugs to target cells ultimately increasing drug therapeutic efficacy. In light of this, we developed a new exosomal-based delivery system for a potent antioxidant, catalase, to treat Parkinson’s disease (PD). Catalase was loaded into exosomes ex vivo using different methods: the incubation at room temperature, permeabilization with saponin, freeze-thaw cycles, sonication, or extrusion. The size of the obtained catalase-loaded exosomes (exoCAT) was in the range of 100 - 200 nm. A reformation of exosomes upon sonication and extrusion, or permeabilization with saponin resulted in high loading efficiency, sustained release, and catalase preservation against proteases degradation. Exosomes were readily taken up by neuronal cells in vitro. A considerable amount of exosomes was detected in PD mouse brain following intranasal administration. ExoCAT provided significant neuroprotective effects in in vitro and in vivo models of PD. Overall, exosome-based catalase formulations have a potential to be a versatile strategy to treat inflammatory and neurodegenerative disorders. PMID:25836593

    11. Sacro-iliac joint disease in drug abusers: The role of bone scintigraphy

      Lopez-Majano, V.; Miskew, D.B.W.; Cook County Hospital, Chicago, IL

      1980-01-01

      Bone scintigrams demonstrated increased uptake in the sacroiliac joint in twenty drug addicts with low back pain and signs of localized sepsis. The localization of the disease was decisive for the orthopedist in the aspiration of the affected joint. (orig.)

    12. 76 FR 78931 - Food and Drug Administration Rare Disease Patient Advocacy Day; Notice of Meeting

      2011-12-20

      ... Administration, HHS. ACTION: Notice. The Food and Drug Administration's (FDA) Office of Orphan Products... educate the rare disease community on the FDA regulatory processes. This educational meeting will consist...

    13. Antiepileptic drugs in pregnancy and hemorrhagic disease of the newborn: An update

      Kazmin, Aleksey; Wong, Renee C.; Sermer, Mathew; Koren, Gideon

      2010-01-01

      QUESTION What is the current evidence regarding the association between hemorrhagic disease of the newborn and maternal use of hepatic enzyme-inducing antiepileptic drugs (eg, carbamazepine, phenobarbitone, topiramate)?

    14. Tailored approaches in drug development and diagnostics : from molecular design to biological model systems

      Sahlgren, C.M.; Meinander, A.; Zhang, H.; Cheng, F.; Preis, Maren; Xu, C.; Salminen, T.A.; Toivola, D.M.; Abankwa, D.; Rosling, A.; Karaman, D.Ş.; Salo-Ahen, O.M.H.; Österbacka, R.; Eriksson, J.E.; Willför, S.; Petre, I.; Peltonen, J.; Leino, R.; Johnson, M.; Rosenholm, J.; Sandler, N.

      2017-01-01

      Approaches to increase the efficiency in developing drugs and diagnostics tools, including new drug delivery and diagnostic technologies, are needed for improved diagnosis and treatment of major diseases and health problems such as cancer, inflammatory diseases, chronic wounds, and antibiotic

    15. One For All? Hitting multiple Alzheimer’s Disease targets with one drug

      Rebecca Ellen Hughes

      2016-04-01

      Full Text Available Alzheimer’s disease is a complex and multifactorial disease for which the mechanism is still not fully understood. As new insights into disease progression are discovered, new drugs must be designed to target those aspects of the disease that cause neuronal damage rather than just the symptoms currently addressed by single target drugs. It is becoming possible to target several aspects of the disease pathology at once using multi-target drugs. Intended as a introduction for non-experts, this review describes the key multi-target drug design approaches, namely structure-based, in silico, and data-mining, to evaluate what is preventing compounds progressing through the clinic to the market. Repurposing current drugs using their off-target effects reduces the cost of development, time to launch and also the uncertainty associated with safety and pharmacokinetics. The most promising drugs currently being investigated for repurposing to Alzheimer’s Disease are rasagiline, originally developed for the treatment of Parkinson’s Disease, and liraglutide, an antidiabetic. Rational drug design can combine pharmacophores of multiple drugs, systematically change functional groups, and rank them by virtual screening. Hits confirmed experimentally are rationally modified to generate an effective multi-potent lead compound. Examples from this approach are ASS234 with properties similar to rasagiline, and donecopride, a hybrid of an acetylcholinesterase inhibitor and a 5-HT4 receptor agonist with pro-cognitive effects. Exploiting these interdisciplinary approaches, public-private collaborative lead factories promise faster delivery of new drugs to the clinic.

    16. Target-mediated drug disposition model and its approximations for antibody-drug conjugates.

      Gibiansky, Leonid; Gibiansky, Ekaterina

      2014-02-01

      Antibody-drug conjugate (ADC) is a complex structure composed of an antibody linked to several molecules of a biologically active cytotoxic drug. The number of ADC compounds in clinical development now exceeds 30, with two of them already on the market. However, there is no rigorous mechanistic model that describes pharmacokinetic (PK) properties of these compounds. PK modeling of ADCs is even more complicated than that of other biologics as the model should describe distribution, binding, and elimination of antibodies with different toxin load, and also the deconjugation process and PK of the released toxin. This work extends the target-mediated drug disposition (TMDD) model to describe ADCs, derives the rapid binding (quasi-equilibrium), quasi-steady-state, and Michaelis-Menten approximations of the TMDD model as applied to ADCs, derives the TMDD model and its approximations for ADCs with load-independent properties, and discusses further simplifications of the system under various assumptions. The developed models are shown to describe data simulated from the available clinical population PK models of trastuzumab emtansine (T-DM1), one of the two currently approved ADCs. Identifiability of model parameters is also discussed and illustrated on the simulated T-DM1 examples.

    17. Non-steroidal anti-inflammatory drugs and cyclooxygenase in Alzheimer's disease

      Hoozemans, Jeroen J. M.; Veerhuis, Robert; Rozemuller, Annemieke J. M.; Eikelenboom, Piet

      2003-01-01

      Epidemiological studies indicate that anti-inflammatory drugs, especially the non-steroidal anti-inflammatory drugs (NSAIDs), decrease the risk of developing Alzheimer's disease (AD). Their beneficial effects may be due to interference in the chronic inflammatory reaction, that takes place in AD.

    18. [Experience of rapid drug desensitization therapy in the treatment of mycobacterial disease].

      Sasaki, Yuka; Kurashima, Atsuyuki; Morimoto, Kozo; Okumura, Masao; Watanabe, Masato; Yoshiyama, Takashi; Ogata, Hideo; Gotoh, Hajime; Kudoh, Shoji; Suzuki, Hiroaki

      2014-11-01

      Drugs for tuberculosis and non-tuberculosis mycobacterial diseases are limited. In particular, no new drugs for non-tuberculosis mycobacterial disease have been developed in recent years. Antimycobacterial drugs have many adverse reactions, for which drug desensitization therapy has been used. Rapid drug desensitization (RDD) therapy, including antituberculosis drugs and clarithromycin, has been implemented in many regions in Europe and the United States. We investigated the validity of RDD therapy in Japan. We report our experience with RDD therapy in 13 patients who developed severe drug allergy to antimycobacterial treatment. The desensitization protocol reported by Holland and Cernandas was adapted. The underlying diseases were 7 cases of pulmonary Mycobacterium avium complex disease and 6 cases of pulmonary tuberculosis. Isoniazid was readministered in 2 (100%) of 2 patients; rifampicin, in 8 (67.7%) of 12 patients; ethambutol, in 4 (67.7%) of 6 patients; and clarithromycin, in 2 (100%) of 2 patients. In Japan, the desensitization therapy recommended by the Treatment Committee of the Japanese Society for Tuberculosis have been implemented generally. We think RDD therapy is effective and safe as the other desensitization therapy. We will continue to investigate the efficiency of RDD therapy in patients who had discontinued antimycobacterial treatment because of the drug allergic reaction.

    19. Novel NSAID-Derived Drugs for the Potential Treatment of Alzheimer’s Disease

      Ivana Cacciatore

      2016-06-01

      Full Text Available Nonsteroidal anti-inflammatory drugs (NSAIDs have been suggested for the potential treatment of neurodegenerative diseases, such as Alzheimer’s disease (AD. Prolonged use of NSAIDs, however, produces gastrointestinal (GI toxicity. To overcome this serious limitation, the aim of this study was to develop novel NSAID-derived drug conjugates (Anti-inflammatory-Lipoyl derivatives, AL4–9 that preserve the beneficial effects of NSAIDS without causing GI problems. As such, we conjugated selected well-known NSAIDs, such as (S-naproxen and (R-flurbiprofen, with (R-α-lipoic acid (LA through alkylene diamine linkers. The selection of the antioxidant LA was based on the proposed role of oxidative stress in the development and/or progression of AD. Our exploratory studies revealed that AL7 containing the diaminoethylene linker between (R-flurbiprofen and LA had the most favorable chemical and in vitro enzymatic stability profiles among the synthesized compounds. Upon pretreatment, this compound exhibited excellent antioxidant activity in phorbol 12-miristate 13-acetate (PMA-stimulated U937 cells (lymphoblast lung from human and Aβ(25–35-treated THP-1 cells (leukemic monocytes. Furthermore, AL7 also modulated the expression of COX-2, IL-1β and TNF-α in these cell lines, suggesting anti-inflammatory activity. Taken together, AL7 has emerged as a potential lead worthy of further characterization and testing in suitable in vivo models of AD.

    20. Needle-free and microneedle drug delivery in children: a case for disease-modifying antirheumatic drugs (DMARDs).

      Shah, Utpal U; Roberts, Matthew; Orlu Gul, Mine; Tuleu, Catherine; Beresford, Michael W

      2011-09-15

      Parenteral routes of drug administration have poor acceptability and tolerability in children. Advances in transdermal drug delivery provide a potential alternative for improving drug administration in this patient group. Issues with parenteral delivery in children are highlighted and thus illustrate the scope for the application of needle-free and microneedle technologies. This mini-review discusses the opportunities and challenges for providing disease-modifying antirheumatic drugs (DMARDs) currently prescribed to paediatric rheumatology patients using such technologies. The aim is to raise further awareness of the need for age-appropriate formulations and drug delivery systems and stimulate exploration of these options for DMARDs, and in particular, rapidly emerging biologics on the market. The ability of needle-free and microneedle technologies to deliver monoclonal antibodies and fusion proteins still remains largely untested. Such an understanding is crucial for future drug design opportunities. The bioavailability, safety and tolerance of delivering biologics into the viable epidermis also need to be studied. Copyright © 2011 Elsevier B.V. All rights reserved.

    1. Rethinking the Food and Drug Administration's 2013 guidance on developing drugs for early-stage Alzheimer's disease.

      Schneider, Lon S

      2014-03-01

      The February 2013 Food and Drug Administration (FDA) draft guidance for developing drugs for early-stage Alzheimer's disease (AD) creates certain challenges as they guide toward the use of one cognitive outcome to gain accelerated marketing approval for preclinical AD drugs, and a composite clinical scale - the Clinical Dementia Rating Scale in particular - for the primary outcome for prodromal AD clinical trials. In light of the developing knowledge regarding early stage diagnoses and clinical trials outcomes, we recommend that FDA describe its requirements for validating preclinical AD diagnoses for drug development purposes, maintain the principle for requiring coprimary outcomes, and encourage the advancement of outcomes for early stage AD trials. The principles for drug development for early stage AD should not differ from those for clinical AD, especially as the diagnoses of prodromal and early AD impinge on each other. The FDA should not recommend that a composite scale be used as a sole primary efficacy outcome to support a marketing claim unless it requires that the cognitive and functional components of such a scale are demonstrated to be individually meaningful. The current draft guidelines may inadvertently constrain efforts to better assess the clinical effects of new drugs and inhibit innovation in an area where evidence-based clinical research practices are still evolving. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

    2. Low hanging fruit in infectious disease drug development.

      Kraus, Carl N

      2008-10-01

      Cost estimates for developing new molecular entities (NME) are reaching non-sustainable levels and coupled with increasing regulatory requirements and oversight have led many pharmaceutical sponsors to divest their anti-microbial development portfolios [Projan SJ: Why is big Pharma getting out of anti-bacterial drug discovery?Curr Opin Microbiol 2003, 6:427-430] [Spellberg B, Powers JH, Brass EP, Miller LG, Edwards JE, Jr: Trends in antimicrobial drug development: implications for the future.Clin Infect Dis 2004, 38:1279-1286]. Operational issues such as study planning and execution are significant contributors to the overall cost of drug development that can benefit from the leveraging of pre-randomization data in an evidence-based approach to protocol development, site selection and patient recruitment. For non-NME products there is even greater benefit from available data resources since these data may permit smaller and shorter study programs. There are now many available open source intelligence (OSINT) resources that are being integrated into drug development programs, permitting an evidence-based or 'operational epidemiology' approach to study planning and execution.

    3. Treatment preferences of originator versus biosimilar drugs in Crohn's disease; discrete choice experiment among gastroenterologists.

      Baji, Petra; Gulácsi, László; Lovász, Barbara D; Golovics, Petra A; Brodszky, Valentin; Péntek, Márta; Rencz, Fanni; Lakatos, Péter L

      2016-01-01

      To explore preferences of gastroenterologists for biosimilar drugs in Crohn's disease. Discrete choice experiment was carried out involving 51 Hungarian gastroenterologists in May 2014. The following attributes were used to describe hypothetical choice sets: 1) type of the treatment (biosimilar/originator), 2) severity of disease, 3) availability of continuous medicine supply, 4) frequency of the efficacy check-ups. Multinomial logit model was used to differentiate between three attitude types: 1) always opting for the originator, 2) willing to consider biosimilar for biological-naïve patients only, 3) willing to consider biosimilar treatment for both types of patients. Conditional logit model was used to estimate the probabilities of choosing a given profile. Men, senior consultants, working in inflammatory bowel disease center and treating more patients were more likely willing to consider biosimilar for biological-naïve patients only. Treatment type (originator/biosimilar) was the most important determinant of choice for patients already treated with biologicals, and the availability of continuous medicine supply in case of biological-naïve patients. The probabilities of choosing the biosimilar with all the benefits offered over the originator under current reimbursement conditions are 89% versus 11% for new patients, and 44% versus 56% for patients already treated with biological. For gastroenterologist, the continuous medical supply would be one of the major benefits of biosimilars. However, benefits offered in the scenarios do not compensate for the change from the originator to the biosimilar treatment of patients already treated with biologicals.

    4. Modelling of drug release from ensembles of aspirin microcapsules ...

      Purpose: In order to determine the drug release profile of an ensemble of aspirin crystals or microcapsules from its particle distribution a mathematical model that considered the individual release characteristics of the component single particles was developed. The model assumed that under sink conditions the release ...

    5. Computational modeling of drug transport across the in vitro cornea.

      Pak, Joseph; Chen, Z J; Sun, Kay; Przekwas, Andrzej; Walenga, Ross; Fan, Jianghong

      2018-01-01

      A novel quasi-3D (Q3D) modeling approach was developed to model networks of one dimensional structures like tubes and vessels common in human anatomy such as vascular and lymphatic systems, neural networks, and respiratory airways. Instead of a branching network of the same tissue type, this approach was extended to model an interconnected stack of different corneal tissue layers with membrane junction conditions assigned between the tissues. The multi-laminate structure of the cornea presents a unique barrier design and opportunity for investigation using Q3D modeling. A Q3D model of an in vitro rabbit cornea was created to simulate the drug transport across the cornea, accounting for transcellular and paracellular pathways of passive and convective drug transport as well as physicochemistry of lipophilic partitioning and protein binding. Lipophilic Rhodamine B and hydrophilic fluorescein were used as drug analogs. The model predictions for both hydrophilic and lipophilic tracers were able to match the experimental measurements along with the sharp discontinuities at the epithelium-stroma and stroma-endothelium interfaces. This new modeling approach was successfully applied towards pharmacokinetic modeling for use in topical ophthalmic drug design. Copyright © 2017 Elsevier Ltd. All rights reserved.

    6. Animal models of pain and migraine in drug discovery

      Munro, Gordon; Jansen-Olesen, Inger; Olesen, Jes

      2017-01-01

      of the most commonly used models and methods employed within 'pain and migraine' drug development will be presented. Recent advances within these disciplines suggest that, with the addition of a few extra carefully chosen ancillary models and/or endpoints, the relative value in terms of resources used...

    7. Host-guest chemistry of dendrimer-drug complexes. 6. Fully acetylated dendrimers as biocompatible drug vehicles using dexamethasone 21-phosphate as a model drug.

      Yang, Kun; Weng, Liang; Cheng, Yiyun; Zhang, Hongfeng; Zhang, Jiahai; Wu, Qinglin; Xu, Tongwen

      2011-03-17

      Fully acetylated poly(amidoamine) (PAMAM) dendrimer was proposed as a biocompatible drug vehicle using dexamethasone 21-phosphate (Dp21) as a model drug. NMR techniques including (1)H NMR and 2D NOE NMR were used to characterize the host-guest chemistry of acetylated dendrimer/Dp21 and cationic dendrimer/Dp21 complexes. The pH-dependent micellization, complexation, and inclusion behaviors of Dp21 were observed in the presence of acetylated and cationic PAMAM dendrimers. Acetylated dendrimer only encapsulates Dp21 at acidic conditions, while cationic dendrimer can host Dp21 at both acidic and neutral conditions. The orientation of Dp21 molecules in the dendrimer cavities depends on the quaternization degree of tertiary amine groups of dendrimer and the protonation ratio of phosphate group of Dp21. A distinctive pH-dependent release behavior of Dp21 from the acetylated and nonacetylated dendritic matrix was observed: Dp21 exhibits a much slower release rate from acetylated dendrimer at lower pH conditions and a much faster release rate from nonacetylated dendrimer with decreasing pH values. Cytotoxicity studies further confirmed the biocompatibility of acetylated dendrimers, which are much safer in the delivery of therapeutics for the treatment of various diseases than nonacetylated dendrimers. The dendrimer-drug binding and release mechanisms provide a new insight for the design and optimization of biocompatible dendrimer-based drug delivery systems. © 2011 American Chemical Society

    8. Toward a normalized clinical drug knowledge base in China-applying the RxNorm model to Chinese clinical drugs.

      Wang, Li; Zhang, Yaoyun; Jiang, Min; Wang, Jingqi; Dong, Jiancheng; Liu, Yun; Tao, Cui; Jiang, Guoqian; Zhou, Yi; Xu, Hua

      2018-04-04

      In recent years, electronic health record systems have been widely implemented in China, making clinical data available electronically. However, little effort has been devoted to making drug information exchangeable among these systems. This study aimed to build a Normalized Chinese Clinical Drug (NCCD) knowledge base, by applying and extending the information model of RxNorm to Chinese clinical drugs. Chinese drugs were collected from 4 major resources-China Food and Drug Administration, China Health Insurance Systems, Hospital Pharmacy Systems, and China Pharmacopoeia-for integration and normalization in NCCD. Chemical drugs were normalized using the information model in RxNorm without much change. Chinese patent drugs (i.e., Chinese herbal extracts), however, were represented using an expanded RxNorm model to incorporate the unique characteristics of these drugs. A hybrid approach combining automated natural language processing technologies and manual review by domain experts was then applied to drug attribute extraction, normalization, and further generation of drug names at different specification levels. Lastly, we reported the statistics of NCCD, as well as the evaluation results using several sets of randomly selected Chinese drugs. The current version of NCCD contains 16 976 chemical drugs and 2663 Chinese patent medicines, resulting in 19 639 clinical drugs, 250 267 unique concepts, and 2 602 760 relations. By manual review of 1700 chemical drugs and 250 Chinese patent drugs randomly selected from NCCD (about 10%), we showed that the hybrid approach could achieve an accuracy of 98.60% for drug name extraction and normalization. Using a collection of 500 chemical drugs and 500 Chinese patent drugs from other resources, we showed that NCCD achieved coverages of 97.0% and 90.0% for chemical drugs and Chinese patent drugs, respectively. Evaluation results demonstrated the potential to improve interoperability across various electronic drug systems

    9. Mathematical modeling of drug release from lipid dosage forms.

      Siepmann, J; Siepmann, F

      2011-10-10

      Lipid dosage forms provide an interesting potential for controlled drug delivery. In contrast to frequently used poly(ester) based devices for parenteral administration, they do not lead to acidification upon degradation and potential drug inactivation, especially in the case of protein drugs and other acid-labile active agents. The aim of this article is to give an overview on the current state of the art of mathematical modeling of drug release from this type of advanced drug delivery systems. Empirical and semi-empirical models are described as well as mechanistic theories, considering diffusional mass transport, potentially limited drug solubility and the leaching of other, water-soluble excipients into the surrounding bulk fluid. Various practical examples are given, including lipid microparticles, beads and implants, which can successfully be used to control the release of an incorporated drug during periods ranging from a few hours up to several years. The great benefit of mechanistic mathematical theories is the possibility to quantitatively predict the effects of different formulation parameters and device dimensions on the resulting drug release kinetics. Thus, in silico simulations can significantly speed up product optimization. This is particularly useful if long release periods (e.g., several months) are targeted, since experimental trial-and-error studies are highly time-consuming in these cases. In the future it would be highly desirable to combine mechanistic theories with the quantitative description of the drug fate in vivo, ideally including the pharmacodynamic efficacy of the treatments. Copyright © 2011 Elsevier B.V. All rights reserved.

    10. Pharmacometrics Markup Language (PharmML): Opening New Perspectives for Model Exchange in Drug Development

      Swat, MJ; Moodie, S; Wimalaratne, SM; Kristensen, NR; Lavielle, M; Mari, A; Magni, P; Smith, MK; Bizzotto, R; Pasotti, L; Mezzalana, E; Comets, E; Sarr, C; Terranova, N; Blaudez, E; Chan, P; Chard, J; Chatel, K; Chenel, M; Edwards, D; Franklin, C; Giorgino, T; Glont, M; Girard, P; Grenon, P; Harling, K; Hooker, AC; Kaye, R; Keizer, R; Kloft, C; Kok, JN; Kokash, N; Laibe, C; Laveille, C; Lestini, G; Mentré, F; Munafo, A; Nordgren, R; Nyberg, HB; Parra-Guillen, ZP; Plan, E; Ribba, B; Smith, G; Trocóniz, IF; Yvon, F; Milligan, PA; Harnisch, L; Karlsson, M; Hermjakob, H; Le Novère, N

      2015-01-01

      The lack of a common exchange format for mathematical models in pharmacometrics has been a long-standing problem. Such a format has the potential to increase productivity and analysis quality, simplify the handling of complex workflows, ensure reproducibility of research, and facilitate the reuse of existing model resources. Pharmacometrics Markup Language (PharmML), currently under development by the Drug Disease Model Resources (DDMoRe) consortium, is intended to become an exchange standard in pharmacometrics by providing means to encode models, trial designs, and modeling steps. PMID:26225259

    11. Pharmacometrics Markup Language (PharmML): Opening New Perspectives for Model Exchange in Drug Development.

      Swat, M J; Moodie, S; Wimalaratne, S M; Kristensen, N R; Lavielle, M; Mari, A; Magni, P; Smith, M K; Bizzotto, R; Pasotti, L; Mezzalana, E; Comets, E; Sarr, C; Terranova, N; Blaudez, E; Chan, P; Chard, J; Chatel, K; Chenel, M; Edwards, D; Franklin, C; Giorgino, T; Glont, M; Girard, P; Grenon, P; Harling, K; Hooker, A C; Kaye, R; Keizer, R; Kloft, C; Kok, J N; Kokash, N; Laibe, C; Laveille, C; Lestini, G; Mentré, F; Munafo, A; Nordgren, R; Nyberg, H B; Parra-Guillen, Z P; Plan, E; Ribba, B; Smith, G; Trocóniz, I F; Yvon, F; Milligan, P A; Harnisch, L; Karlsson, M; Hermjakob, H; Le Novère, N

      2015-06-01

      The lack of a common exchange format for mathematical models in pharmacometrics has been a long-standing problem. Such a format has the potential to increase productivity and analysis quality, simplify the handling of complex workflows, ensure reproducibility of research, and facilitate the reuse of existing model resources. Pharmacometrics Markup Language (PharmML), currently under development by the Drug Disease Model Resources (DDMoRe) consortium, is intended to become an exchange standard in pharmacometrics by providing means to encode models, trial designs, and modeling steps.

    12. Generic versus brand-name drugs used in cardiovascular diseases.

      Manzoli, Lamberto; Flacco, Maria Elena; Boccia, Stefania; D'Andrea, Elvira; Panic, Nikola; Marzuillo, Carolina; Siliquini, Roberta; Ricciardi, Walter; Villari, Paolo; Ioannidis, John P A

      2016-04-01

      This meta-analysis aimed to compare the efficacy and adverse events, either serious or mild/moderate, of all generic versus brand-name cardiovascular medicines. We searched randomized trials in MEDLINE, Scopus, EMBASE, Cochrane Controlled Clinical Trial Register, and ClinicalTrials.gov (last update December 1, 2014). Attempts were made to contact the investigators of all potentially eligible trials. Two investigators independently extracted and analyzed soft (including systolic blood pressure, LDL cholesterol, and others) and hard efficacy outcomes (including major cardiovascular adverse events and death), minor/moderate and serious adverse events. We included 74 randomized trials; 53 reported ≥1 efficacy outcome (overall sample 3051), 32 measured mild/moderate adverse events (n = 2407), and 51 evaluated serious adverse events (n = 2892). We included trials assessing ACE inhibitors (n = 12), anticoagulants (n = 5), antiplatelet agents (n = 17), beta-blockers (n = 11), calcium channel blockers (n = 7); diuretics (n = 13); statins (n = 6); and others (n = 3). For both soft and hard efficacy outcomes, 100 % of the trials showed non-significant differences between generic and brand-name drugs. The aggregate effect size was 0.01 (95 % CI -0.05; 0.08) for soft outcomes; -0.06 (-0.71; 0.59) for hard outcomes. All but two trials showed non-significant differences in mild/moderate adverse events, and aggregate effect size was 0.07 (-0.06; 0.20). Comparable results were observed for each drug class and in each stratified meta-analysis. Overall, 8 serious possibly drug-related adverse events were reported: 5/2074 subjects on generics; 3/2076 subjects on brand-name drugs (OR 1.69; 95 % CI 0.40-7.20). This meta-analysis strengthens the evidence for clinical equivalence between brand-name and generic cardiovascular drugs. Physicians could be reassured about prescribing generic cardiovascular drugs, and health care organization about endorsing their wider

    13. Protein Drug Targets of Lavandula angustifolia on treatment of Rat Alzheimer's Disease

      Zali, Hakimeh; Zamanian-Azodi, Mona; Rezaei Tavirani, Mostafa; Akbar-zadeh Baghban, Alireza

      2015-01-01

      Different treatment strategies of Alzheimer's disease (AD) are being studied for treating or slowing the progression of AD. Many pharmaceutically important regulation systems operate through proteins as drug targets. Here, we investigate the drug target proteins in beta-amyloid (Aβ) injected rat hippocampus treated with Lavandula angustifolia (LA) by proteomics techniques. The reported study showed that lavender extract (LE) improves the spatial performance in AD animal model by diminishing Aβ production in histopathology of hippocampus, so in this study neuroprotective proteins expressed in Aβ injected rats treated with LE were scrutinized. Rats were divided into three groups including normal, Aβ injected, and Aβ injected that was treated with LE. Protein expression profiles of hippocampus tissue were determined by two-dimensional electrophoresis (2DE) method and dysregulated proteins such as Snca, NF-L, Hspa5, Prdx2, Apoa1, and Atp5a1were identified by MALDI-TOF/TOF. KEGG pathway and gene ontology (GO) categories were used by searching DAVID Bioinformatics Resources. All detected protein spots were used to determine predictedinteractions with other proteins in STRING online database. Different isoforms of important protein, Snca that exhibited neuroprotective effects by anti-apoptotic properties were expressed. NF-L involved in the maintenance of neuronal caliber. Hspa5 likewise Prdx2 displays as anti-apoptotic protein that Prdx2 also involved in the neurotrophic effects. Apoa1 has anti-inflammatory activity and Atp5a1, produces ATP from ADP. To sum up, these proteins as potential drug targets were expressed in hippocampus in response to effective components in LA may have therapeutic properties for the treatment of AD and other neurodegenerative diseases. PMID:25561935

    14. Tree shrew (Tupaia belangeri as a novel laboratory disease animal model

      Ji Xiao

      2017-05-01

      Full Text Available The tree shrew (Tupaia belangeri is a promising laboratory animal that possesses a closer genetic relationship to primates than to rodents. In addition, advantages such as small size, easy breeding, and rapid reproduction make the tree shrew an ideal subject for the study of human disease. Numerous tree shrew disease models have been generated in biological and medical studies in recent years. Here we summarize current tree shrew disease models, including models of infectious diseases, cancers, depressive disorders, drug addiction, myopia, metabolic diseases, and immune-related diseases. With the success of tree shrew transgenic technology, this species will be increasingly used in biological and medical studies in the future.

    15. Caenorhabditis elegans as a Model System for Studying Drug Induced Mitochondrial Toxicity.

      Richard de Boer

      Full Text Available Today HIV-1 infection is recognized as a chronic disease with obligatory lifelong treatment to keep viral titers below detectable levels. The continuous intake of antiretroviral drugs however, leads to severe and even life-threatening side effects, supposedly by the deleterious impact of nucleoside-analogue type compounds on the functioning of the mitochondrial DNA polymerase. For detailed investigation of the yet partially understood underlying mechanisms, the availability of a versatile model system is crucial. We therefore set out to develop the use of Caenorhabditis elegans to study drug induced mitochondrial toxicity. Using a combination of molecular-biological and functional assays, combined with a quantitative analysis of mitochondrial network morphology, we conclude that anti-retroviral drugs with similar working mechanisms can be classified into distinct groups based on their effects on mitochondrial morphology and biochemistry. Additionally we show that mitochondrial toxicity of antiretroviral drugs cannot be exclusively attributed to interference with the mitochondrial DNA polymerase.

    16. Computational and experimental model of transdermal iontophorethic drug delivery system.

      Filipovic, Nenad; Saveljic, Igor; Rac, Vladislav; Graells, Beatriz Olalde; Bijelic, Goran

      2017-11-30

      The concept of iontophoresis is often applied to increase the transdermal transport of drugs and other bioactive agents into the skin or other tissues. It is a non-invasive drug delivery method which involves electromigration and electroosmosis in addition to diffusion and is shown to be a viable alternative to conventional administration routs such as oral, hypodermic and intravenous injection. In this study we investigated, experimentally and numerically, in vitro drug delivery of dexamethasone sodium phosphate to porcine skin. Different current densities, delivery durations and drug loads were investigated experimentally and introduced as boundary conditions for numerical simulations. Nernst-Planck equation was used for calculation of active substance flux through equivalent model of homogeneous hydrogel and skin layers. The obtained numerical results were in good agreement with experimental observations. A comprehensive in-silico platform, which includes appropriate numerical tools for fitting, could contribute to iontophoretic drug-delivery devices design and correct dosage and drug clearance profiles as well as to perform much faster in-silico experiments to better determine parameters and performance criteria of iontophoretic drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

    17. Animal models of chronic obstructive pulmonary disease.

      Pérez-Rial, Sandra; Girón-Martínez, Álvaro; Peces-Barba, Germán

      2015-03-01

      Animal models of disease have always been welcomed by the scientific community because they provide an approach to the investigation of certain aspects of the disease in question. Animal models of COPD cannot reproduce the heterogeneity of the disease and usually only manage to represent the disease in its milder stages. Moreover, airflow obstruction, the variable that determines patient diagnosis, not always taken into account in the models. For this reason, models have focused on the development of emphysema, easily detectable by lung morphometry, and have disregarded other components of the disease, such as airway injury or associated vascular changes. Continuous, long-term exposure to cigarette smoke is considered the main risk factor for this disease, justifying the fact that the cigarette smoke exposure model is the most widely used. Some variations on this basic model, related to exposure time, the association of other inducers or inhibitors, exacerbations or the use of transgenic animals to facilitate the identification of pathogenic pathways have been developed. Some variations or heterogeneity of this disease, then, can be reproduced and models can be designed for resolving researchers' questions on disease identification or treatment responses. Copyright © 2014 SEPAR. Published by Elsevier Espana. All rights reserved.

    18. Orphan drugs in development for Huntington's disease: challenges and progress

      Burgunder JM

      2015-02-01

      Full Text Available Jean-Marc Burgunder1–4 1Swiss Huntington’s Disease Centre, Department of Neurology, University of Bern, Bern, Switzerland; 2Department of Neurology, West China Hospital, Sichuan University, Chengdu, 3Department of Neurology, Xiangya Hospital, Central South University, Changsha, 4Department of Neurology, Sun Yat-sen University, Guangzhou, People’s Republic of China Abstract: Huntington’s disease is a monogenic disorder encompassing a variable phenotype with progressive cognitive, psychiatric, and movement disorders. Knowledge of the mechanisms involved in this disorder has made substantial advances since the discovery of the gene mutation. The dynamic mutation is the expansion of a CAG (cytosine-adenine-guanine repeat in the huntingtin (HTT gene, which is transcribed into an abnormal protein with an elongated polyglutamine tract. Polyglutamine HTT accumulates and is changed in its function in multifaceted ways related to the numerous roles of the normal protein. The protein is expressed in numerous areas of the brain and also in other organs. The major brain region involved in the disease process is the striatum, but it is clear that other systems are involved as well. This accumulated knowledge has now led to the development of treatment strategies based on specific molecular pathways for symptomatic and disease course-modifying treatment. The most proximal way to handle the disturbed protein is to hinder the gene transcription, translation, and/or to increase protein clearance. Other mechanisms now being approached include modulation of energy and intracellular signaling, induction of factors potentially leading to neuroprotection, as well as modulation of glial function. Several clinical trials based on these approaches are now under way, and it is becoming clear that a future disease-modifying therapy will be a combination of several approaches harmonized with symptomatic treatments. In this review, some of the most promising and

    19. The TREAT-NMD advisory committee for therapeutics (TACT): an innovative de-risking model to foster orphan drug development

      Heslop, Emma; Csimma, Cristina; Straub, Volker; McCall, John; Nagaraju, Kanneboyina; Wagner, Kathryn R.; Caizergues, Didier; Korinthenberg, Rudolf; Flanigan, Kevin M.; Kaufmann, Petra; McNeil, Elizabeth; Mendell, Jerry; Hesterlee, Sharon; Wells, Dominic J.; Bushby, Kate; McNeil, Dawn Elizabeth; Allen, Hugh; Bourke, John; Burghes, Arthur; Buyse, Gunnar; Catlin, Nick; Clemens, Paula; Cnaan, Avital; Comi, Giacomo; Connor, Edward; de Luca, Annamaria; de Montleau, Béatrice; de Visser, Marianne; Day, Simon; Dittrich, Sven; Dubrosky, Alberto; Eagle, Michelle; Finkel, Richard; Fishbeck, Kenneth; Furlong, Patricia; Grounds, Miranda; Hauschke, Dieter; Hoffman, Eric; Irwin, Joseph; Jarecki, Jill; Kelly, Michael; Laforêt, Pascal; Lovering, Richard; Larkindale, Jane; Mayer, Henry; McDonald, Robert; McNally, Elizabeth; Miller, Debra; North, Kathryn; Ouillade, Marie-Christine

      2015-01-01

      Despite multiple publications on potential therapies for neuromuscular diseases (NMD) in cell and animal models only a handful reach clinical trials. The ability to prioritise drug development according to objective criteria is particularly critical in rare diseases with large unmet needs and a

    20. How modeling and simulation have enhanced decision making in new drug development.

      Miller, Raymond; Ewy, Wayne; Corrigan, Brian W; Ouellet, Daniele; Hermann, David; Kowalski, Kenneth G; Lockwood, Peter; Koup, Jeffrey R; Donevan, Sean; El-Kattan, Ayman; Li, Cheryl S W; Werth, John L; Feltner, Douglas E; Lalonde, Richard L

      2005-04-01

      The idea of model-based drug development championed by Lewis Sheiner, in which pharmacostatistical models of drug efficacy and safety are developed from preclinical and available clinical data, offers a quantitative approach to improving drug development and development decision-making. Examples are presented that support this paradigm. The first example describes a preclinical model of behavioral activity to predict potency and time-course of response in humans and assess the potential for differentiation between compounds. This example illustrates how modeling procedures expounded by Lewis Sheiner provided the means to differentiate potency and the lag time between drug exposure and response and allow for rapid decision making and dose selection. The second example involves planning a Phase 2a dose-ranging and proof of concept trial in Alzheimer's disease (AD). The issue was how to proceed with the study and what criteria to use for a go/no go decision. The combined knowledge of AD disease progression, and preclinical and clinical information about the drug were used to simulate various clinical trial scenarios to identify an efficient and effective Phase 2 study. A design was selected and carried out resulting in a number of important learning experiences as well as extensive financial savings. The motivation for this case in point was the "Learn-Confirm" paradigm described by Lewis Sheiner. The final example describes the use of Pharmacokinetic and Pharmacodynamic (PK/PD) modeling and simulation to confirm efficacy across doses. In the New Drug Application for gabapentin, data from two adequate and well-controlled clinical trials was submitted to the Food and Drug Administration (FDA) in support of the approval of the indication for the treatment of post-herpetic neuralgia. The clinical trial data was not replicated for each of the sought dose levels in the drug application presenting a regulatory dilemma. Exposure response analysis submitted in the New Drug

    1. Drug Repositioning: An Opportunity to Develop Novel Treatments for Alzheimer’s Disease

      Clive Ballard

      2013-10-01

      Full Text Available Alzheimer’s Disease (AD is the most common cause of dementia, affecting approximately two thirds of the 35 million people worldwide with the condition. Despite this, effective treatments are lacking, and there are no drugs that elicit disease modifying effects to improve outcome. There is an urgent need to develop and evaluate more effective pharmacological treatments. Drug repositioning offers an exciting opportunity to repurpose existing licensed treatments for use in AD, with the benefit of providing a far more rapid route to the clinic than through novel drug discovery approaches. This review outlines the current most promising candidates for repositioning in AD, their supporting evidence and their progress through trials to date. Furthermore, it begins to explore the potential of new transcriptomic and microarray techniques to consider the future of drug repositioning as a viable approach to drug discovery.

    2. Eight challenges in modelling infectious livestock diseases

      E. Brooks-Pollock

      2015-03-01

      Full Text Available The transmission of infectious diseases of livestock does not differ in principle from disease transmission in any other animals, apart from that the aim of control is ultimately economic, with the influence of social, political and welfare constraints often poorly defined. Modelling of livestock diseases suffers simultaneously from a wealth and a lack of data. On the one hand, the ability to conduct transmission experiments, detailed within-host studies and track individual animals between geocoded locations make livestock diseases a particularly rich potential source of realistic data for illuminating biological mechanisms of transmission and conducting explicit analyses of contact networks. On the other hand, scarcity of funding, as compared to human diseases, often results in incomplete and partial data for many livestock diseases and regions of the world. In this overview of challenges in livestock disease modelling, we highlight eight areas unique to livestock that, if addressed, would mark major progress in the area.

    3. Structural Model of Drug Use among Students: The Role of Spirituality, Social Modeling and Attitude to Drugs

      samira yavari

      2015-06-01

      Full Text Available Objective: This study was an attempt to explore the structural relationship between religious activity, religious struggle, attitude to drugs, social modeling, spiritual well-being, and cigarette and tobacco smoking among students. Method: For this purpose, 504 male and female students from Kharazmi University, Agricultural Paradise, and Azad University of Karaj were selected by cluster sampling and they were asked to complete spiritual well-being scale, religious activity scale, religious struggle scale, social modeling scale, negative beliefs about drugs, and the tobacco section of the high-risk behavior questionnaire. Results: The results showed that the effect of religious activity on cigarette and tobacco smoking was mediated by negative beliefs about drugs, social modeling, spiritual well-being, and incentives for drug use. Similarly, the effect of religious struggle on cigarette and tobacco smoking was mediated by spiritual well-being. Conclusion: It seems that religion prevents people joining the unhealthy peer groups by the establishment of moral discipline, internal and external rules, and healthy coping styles therefore, people get less attracted to cigarette and tobacco smoking. Accordingly, these factors should be paid more attention in prevention programs for drug use, particularly cigarette and tobacco that are considered as the gateway to other drugs.

    4. 78 FR 9396 - Draft Guidance for Industry on Alzheimer's Disease: Developing Drugs for the Treatment of Early...

      2013-02-08

      ...] Draft Guidance for Industry on Alzheimer's Disease: Developing Drugs for the Treatment of Early Stage... ``Alzheimer's Disease: Developing Drugs for the Treatment of Early Stage Disease.'' This guidance outlines FDA... trials that are specifically focused on the treatment of patients with established Alzheimer's disease...

    5. Bioresorbable polymer coated drug eluting stent: a model study.

      Rossi, Filippo; Casalini, Tommaso; Raffa, Edoardo; Masi, Maurizio; Perale, Giuseppe

      2012-07-02

      In drug eluting stent technologies, an increased demand for better control, higher reliability, and enhanced performances of drug delivery systems emerged in the last years and thus offered the opportunity to introduce model-based approaches aimed to overcome the remarkable limits of trial-and-error methods. In this context a mathematical model was studied, based on detailed conservation equations and taking into account the main physical-chemical mechanisms involved in polymeric coating degradation, drug release, and restenosis inhibition. It allowed highlighting the interdependence between factors affecting each of these phenomena and, in particular, the influence of stent design parameters on drug antirestenotic efficacy. Therefore, the here-proposed model is aimed to simulate the diffusional release, for both in vitro and the in vivo conditions: results were verified against various literature data, confirming the reliability of the parameter estimation procedure. The hierarchical structure of this model also allows easily modifying the set of equations describing restenosis evolution to enhance model reliability and taking advantage of the deep understanding of physiological mechanisms governing the different stages of smooth muscle cell growth and proliferation. In addition, thanks to its simplicity and to the very low system requirements and central processing unit (CPU) time, our model allows obtaining immediate views of system behavior.

    6. Transporter-mediated natural product–drug interactions for the treatment of cardiovascular diseases

      Weibin Zha

      2018-04-01

      Full Text Available The growing use of natural products in cardiovascular (CV patients has been greatly raising the concerns about potential natural product–CV drug interactions. Some of these may lead to unexpected cardiovascular adverse effects and it is, therefore, essential to identify or predict potential natural product–CV drug interactions, and to understand the underlying mechanisms. Drug transporters are important determinants for the pharmacokinetics of drugs and alterations of drug transport has been recognized as one of the major causes of natural product–drug interactions. In last two decades, many CV drugs (e.g., angiotensin II receptor blockers, beta-blockers and statins have been identified to be substrates and inhibitors of the solute carrier (SLC transporters and the ATP-binding cassette (ABC transporters, which are two major transporter superfamilies. Meanwhile, in vitro and in vivo studies indicate that a growing number of natural products showed cardioprotective effects (e.g., gingko biloba, danshen and their active ingredients are also substrates and inhibitors of drug transporters. Thus, to understand transporter-mediated natural product–CV drug interactions is important and some transporter-mediated interactions have already shown to have clinical relevance. In this review, we review the current knowledge on the role of ABC and SLC transporters in CV therapy, as well as transporter modulation by natural products used in CV diseases and their induced natural product–CV drug interactions through alterations of drug transport. We hope our review will aid in a comprehensive summary of transporter-mediated natural product–CV drug interactions and help public and physicians understand these type of interactions. Keywords: Cardiovascular drugs, Natural products, Drug transporters, Natural product–drug interaction, Pharmacokinetics

    7. Modeling of transdermal drug delivery with a microneedle array

      Lv, Y.-G.; Liu, J.; Gao, Y.-H.; Xu, B.

      2006-11-01

      Transdermal drug delivery is generally limited by the extraordinary barrier properties of the stratum corneum, the outer 10-15 µm layer of skin. A conventional needle inserted across this barrier and into deeper tissues could effectively deliver drugs. However, it would lead to infection and cause pain, thereby reducing patient compliance. In order to administer a frequent injection of insulin and other therapeutic agents more efficiently, integrated arrays with very short microneedles were recently proposed as very good candidates for painless injection or extraction. A variety of microneedle designs have thus been made available by employing the fabrication tools of the microelectronics industry and using materials such as silicon, metals, polymers and glass with feature sizes ranging from sub-micron to nanometers. At the same time, experiments were also made to test the capability of the microneedles to inject drugs into tissues. However, due to the difficulty encountered in measurement, a detailed understanding of the spatial and transient drug delivery process still remains unclear up to now. To better grasp the mechanisms involved, quantitative theoretical models were developed in this paper to simultaneously characterize the flow and drug transport, and numerical solutions were performed to predict the kinetics of dispersed drugs injected into the skin from a microneedle array. Calculations indicated that increasing the initial injection velocity and accelerating the blood circulation in skin tissue with high porosity are helpful to enhance the transdermal drug delivery. This study provides the first quantitative simulation of fluid injection through a microneedle array and drug species transport inside the skin. The modeling strategy can also possibly be extended to deal with a wider range of clinical issues such as targeted nanoparticle delivery for therapeutics or molecular imaging.

    8. Repurposing of Copper(II)-chelating Drugs for the Treatment of Neurodegenerative Diseases.

      Lanza, Valeria; Milardi, Danilo; Di Natale, Giuseppe; Pappalardo, Giuseppe

      2018-02-12

      There is mounting urgency to find new drugs for the treatment of neurodegenerative disorders. A large number of reviews have exhaustively described either the molecular or clinical aspects of neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's (PD). Conversely, reports outlining how known drugs in use for other diseases can also be effective as therapeutic agents in neurodegenerative diseases are less reported. This review focuses on the current uses of some copper(II) chelating molecules as potential drug candidates in neurodegeneration. Starting from the well-known harmful relationships existing between the dyshomeostasis and mis-management of metals and AD onset, we surveyed the experimental work reported in the literature, which deals with the repositioning of metal-chelating drugs in the field of neurodegenerative diseases. The reviewed papers were retrieved from common literature and their selection was limited to those describing the biomolecular aspects associated with neuroprotection. In particular, we emphasized the copper(II) coordination abilities of the selected drugs. Copper, together with zinc and iron, are known to play a key role in regulating neuronal functions. Changes in copper homeostasis are crucial for several neurodegenerative disorders. The studies included in this review may provide an overview on the current strategies aimed at repurposing copper (II) chelating drugs for the treatment of neurodegenerative disorders. Starting from the exemplary case of clioquinol repurposing, we discuss the challenge and the opportunities that repurposing of other metal-chelating drugs may provide (e.g. PBT-2, metformin and cyclodipeptides) in the treatment of neurodegenerative disease. In order to improve the success rate of drug repositioning, comprehensive studies on the molecular mechanism and therapeutic efficacy are still required. The present review upholds that drug repurposing makes significant advantages over drug discovery since

    9. Neural stem cells for disease modeling of Wolman disease and evaluation of therapeutics.

      Aguisanda, Francis; Yeh, Charles D; Chen, Catherine Z; Li, Rong; Beers, Jeanette; Zou, Jizhong; Thorne, Natasha; Zheng, Wei

      2017-06-28

      Wolman disease (WD) is a rare lysosomal storage disorder that is caused by mutations in the LIPA gene encoding lysosomal acid lipase (LAL). Deficiency in LAL function causes accumulation of cholesteryl esters and triglycerides in lysosomes. Fatality usually occurs within the first year of life. While an enzyme replacement therapy has recently become available, there is currently no small-molecule drug treatment for WD. We have generated induced pluripotent stem cells (iPSCs) from two WD patient dermal fibroblast lines and subsequently differentiated them into neural stem cells (NSCs). The WD NSCs exhibited the hallmark disease phenotypes of neutral lipid accumulation, severely deficient LAL activity, and increased LysoTracker dye staining. Enzyme replacement treatment dramatically reduced the WD phenotype in these cells. In addition, δ-tocopherol (DT) and hydroxypropyl-beta-cyclodextrin (HPBCD) significantly reduced lysosomal size in WD NSCs, and an enhanced effect was observed in DT/HPBCD combination therapy. The results demonstrate that these WD NSCs are valid cell-based disease models with characteristic disease phenotypes that can be used to evaluate drug efficacy and screen compounds. DT and HPBCD both reduce LysoTracker dye staining in WD cells. The cells may be used to further dissect the pathology of WD, evaluate compound efficacy, and serve as a platform for high-throughput drug screening to identify new compounds for therapeutic development.

    10. Use of antidementia drugs and risk of pneumonia in older persons with Alzheimer's disease.

      Lampela, Pasi; Tolppanen, Anna-Maija; Tanskanen, Antti; Tiihonen, Jari; Lavikainen, Piia; Hartikainen, Sirpa; Taipale, Heidi

      2017-05-01

      Persons with Alzheimer's disease are at an increased risk of pneumonia, but the comparative risks during specific antidementia treatments are not known. We compared the risk of pneumonia in the use of donepezil, rivastigmine (oral, transdermal), galantamine and memantine. We used data from a nationwide cohort of community-dwelling individuals diagnosed with Alzheimer's disease during 2005-2011 in Finland, who initiated monotherapy with acetylcholinesterase inhibitor or memantine (n = 65,481). The risk of hospitalization or death due to pneumonia was investigated with Cox proportional hazard models. The risk of pneumonia was higher in persons using rivastigmine patch (n = 9709) (adjusted hazard ratio (HR) 1.15, 95% confidence interval (CI) 1.04-1.27) and memantine (n = 11,024) (HR 1.59, 95% CI 1.48-1.71) compared with donepezil users (n = 26,416) whereas oral rivastigmine (n = 7384) (HR 1.08, 95% CI 0.98-1.19) and galantamine (n = 10,948) (HR 0.91, 95% CI 0.83-1.00) were not associated with an increased risk. These results did not change when adjusting for comorbid conditions, use of psychotropic drugs or with inverse probability of treatment weighting. The increased risk of pneumonia in this fragile group of aged persons should be taken into account. Memantine is associated with the highest risk in the comparison of antidementia drugs. KEY Message Pneumonia risk is increased in persons with Alzheimer's disease who use memantine or rivastigmine patches.

    11. Drug Release from ß-Cyclodextrin Complexes and Drug Transfer into Model Membranes Studied by Affinity Capillary Electrophoresis.

      Darwish, Kinda A; Mrestani, Yahya; Rüttinger, Hans-Hermann; Neubert, Reinhard H H

      2016-05-01

      Is to characterize the drug release from the ß-cyclodextrin (ß-CD) cavity and the drug transfer into model membranes by affinity capillary electrophoresis. Phospholipid liposomes with and without cholesterol were used to mimic the natural biological membrane. The interaction of cationic and anionic drugs with ß-CD and the interaction of the drugs with liposomes were detected separately by measuring the drug mobility in ß-CD containing buffer and liposome containing buffer; respectively. Moreover, the kinetics of drug release from ß-CD and its transfer into liposomes with or without cholesterol was studied by investigation of changes in the migration behaviours of the drugs in samples, contained drug, ß-CD and liposome, at 1:1:1 molar ratio at different time intervals; zero time, 30 min, 1, 2, 4, 6, 8, 10 and 24 h. Lipophilic drugs such as propranolol and ibuprofen were chosen for this study, because they form complexes with ß-CD. The mobility of the both drug liposome mixtures changed with time to a final state. For samples of liposomal membranes with cholesterol the final state was faster reached than without cholesterol. The study confirmed that the drug release from the CD cavity and its transfer into the model membrane was more enhanced by the competitive displacement of the drug from the ß-CD cavity by cholesterol, the membrane component. The ACE method here developed can be used to optimize the drug release from CD complexes and the drug transfer into model membranes.

    12. Is aspirin still the drug of choice for management of patients with peripheral arterial disease?

      Poredos, Pavel; Jezovnik, Mateja K

      2013-03-01

      Antiplatelet drugs represent one of the basic options for management of patients with different atherosclerotic diseases. Aspirin is the oldest and most often prescribed antiplatelet drug. The efficacy of aspirin depends on the clinical characteristics of the treated population and probably also on the type or location of atherosclerotic disease. It seems that it is most effective in coronary patients with clinically unstable disease, less effective in prevention of cerebrovascular incidents, and its efficacy is uncertain in peripheral artery disease (PAD) patients. One of the first meta-analyses (Antithrombotic Trialists' Collaboration - ATC) indicated that antiplatelet drugs also significantly reduce cardiovascular events in patients with PAD. However, only one third of the PAD patients included were treated with aspirin, while the rest received other anti-platelet drugs. The latest ATC meta-analysis of randomized control trials of aspirin therapy involving patients with diabetes and PAD demonstrated no benefit of aspirin in reducing cardiovascular events. Also in patients with preclinical PAD (pathological ankle brachial index) aspirin did not result in a significant reduction of vascular events. The new anti-platelet drugs prasugrel, ticagrelor and picotamide seem to be more effective than aspirin in PAD patients, particularly in diabetic patients with PAD. In conclusion, antiplatelet drugs are effective in prevention of cardiovascular events in different atherosclerotic diseases, including PAD. However, recent studies indicated that in PAD patients aspirin is less effective than in coronary artery disease. New anti-platelet drugs showed marginal superiority over aspirin without definite advantages. Aspirin thus remains the first line of antiplatelet drug for secondary prevention of cardiovascular events in PAD patients and clopidogrel as its effective alternative. Further, new studies on PAD patients are necessary to better define the role of anti

    13. Control of drug treatment of chronic coronary artery disease: possibilities of a regional registry

      Rachkova S.A.

      2016-03-01

      Full Text Available The article describes the results of the Register of hypertension, coronary artery disease, chronic heart failure (Register of AH, CAD, HF in the Ivanovo region in 2015. The frequency of prescribing of the main groups of drugs in patients with coronary artery disease was estimated.

    14. Do nonsteroidal anti-inflammatory drugs decrease the risk for Alzheimer's disease?

      Andersen, K; Launer, L J; Ott, A

      1995-01-01

      Based on reports that the use of nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the risk for Alzheimer's disease (AD), we studied the cross-sectional relation between NSAID use and the risk for AD in a population-based study of disease and disability in older people. After controlling...

    15. Animal models of pancreatic cancer for drug research.

      Kapischke, Matthias; Pries, Alexandra

      2008-10-01

      The operative and conservative results of therapy in pancreatic ductal adenocarcinoma remain appallingly poor. This underlines the demand for further research for effective anticancer drugs. The various animal models remain the essential method for the determination of efficacy of substances during preclinical phase. Unfortunately, most of these tested substances showed a good efficacy in pancreatic carcinoma in the animal model but were not confirmed during the clinical phase. The available literature in PubMed, Medline, Ovid and secondary literature was searched regarding the available animal models for drug testing against pancreatic cancer. The models were analyzed regarding their pros and cons in anticancer drug testing. The different modifications of the orthotopic model (especially in mice) seem at present to be the best model for anticancer testing in pancreatic carcinoma. The value of genetically engineered animal model (GEM) and syngeneic models is on debate. A good selection of the model concerning the questions supposed to be clarified may improve the comparability of the results of animal experiments compared to clinical trials.

    16. Individualized drug dosing using RBF-Galerkin method: Case of anemia management in chronic kidney disease.

      Mirinejad, Hossein; Gaweda, Adam E; Brier, Michael E; Zurada, Jacek M; Inanc, Tamer

      2017-09-01

      Anemia is a common comorbidity in patients with chronic kidney disease (CKD) and is frequently associated with decreased physical component of quality of life, as well as adverse cardiovascular events. Current treatment methods for renal anemia are mostly population-based approaches treating individual patients with a one-size-fits-all model. However, FDA recommendations stipulate individualized anemia treatment with precise control of the hemoglobin concentration and minimal drug utilization. In accordance with these recommendations, this work presents an individualized drug dosing approach to anemia management by leveraging the theory of optimal control. A Multiple Receding Horizon Control (MRHC) approach based on the RBF-Galerkin optimization method is proposed for individualized anemia management in CKD patients. Recently developed by the authors, the RBF-Galerkin method uses the radial basis function approximation along with the Galerkin error projection to solve constrained optimal control problems numerically. The proposed approach is applied to generate optimal dosing recommendations for individual patients. Performance of the proposed approach (MRHC) is compared in silico to that of a population-based anemia management protocol and an individualized multiple model predictive control method for two case scenarios: hemoglobin measurement with and without observational errors. In silico comparison indicates that hemoglobin concentration with MRHC method has less variation among the methods, especially in presence of measurement errors. In addition, the average achieved hemoglobin level from the MRHC is significantly closer to the target hemoglobin than that of the other two methods, according to the analysis of variance (ANOVA) statistical test. Furthermore, drug dosages recommended by the MRHC are more stable and accurate and reach the steady-state value notably faster than those generated by the other two methods. The proposed method is highly efficient for

    17. Modeling human diseases: an education in interactions and interdisciplinary approaches

      Leonard Zon

      2016-06-01

      Full Text Available Traditionally, most investigators in the biomedical arena exploit one model system in the course of their careers. Occasionally, an investigator will switch models. The selection of a suitable model system is a crucial step in research design. Factors to consider include the accuracy of the model as a reflection of the human disease under investigation, the numbers of animals needed and ease of husbandry, its physiology and developmental biology, and the ability to apply genetics and harness the model for drug discovery. In my lab, we have primarily used the zebrafish but combined it with other animal models and provided a framework for others to consider the application of developmental biology for therapeutic discovery. Our interdisciplinary approach has led to many insights into human diseases and to the advancement of candidate drugs to clinical trials. Here, I draw on my experiences to highlight the importance of combining multiple models, establishing infrastructure and genetic tools, forming collaborations, and interfacing with the medical community for successful translation of basic findings to the clinic.

    18. Mathematical models for therapeutic approaches to control HIV disease transmission

      Roy, Priti Kumar

      2015-01-01

      The book discusses different therapeutic approaches based on different mathematical models to control the HIV/AIDS disease transmission. It uses clinical data, collected from different cited sources, to formulate the deterministic as well as stochastic mathematical models of HIV/AIDS. It provides complementary approaches, from deterministic and stochastic points of view, to optimal control strategy with perfect drug adherence and also tries to seek viewpoints of the same issue from different angles with various mathematical models to computer simulations. The book presents essential methods and techniques for students who are interested in designing epidemiological models on HIV/AIDS. It also guides research scientists, working in the periphery of mathematical modeling, and helps them to explore a hypothetical method by examining its consequences in the form of a mathematical modelling and making some scientific predictions. The model equations, mathematical analysis and several numerical simulations that are...

    19. Modelling Alzheimer’s disease: from past to future

      Claudia eSaraceno

      2013-06-01

      Full Text Available Alzheimer’s disease (AD is emerging as the most prevalent and socially disruptive illness of aging populations, as more people live long enough to become affected. Although AD is placing a considerable and increasing burden on society, it represents the largest unmet medical need in neurology, because current drugs improve symptoms, but do not have profound disease-modifying effects.Although AD pathogenesis is multifaceted and difficult to pinpoint, genetic and cell biological studies led to the amyloid hypothesis, which posits that Aβ plays a pivotal role in AD pathogenesis. Amyloid precursor protein (APP, as well as β- and γ-secretases are the principal players involved in Aβ production, while α-secretase cleavage on APP prevents Aβ deposition. The association of early onset familial AD with mutations in the APP and γ-secretase components provided a potential tool of generating animal models of the disease. However, a model that recapitulates all the aspects of AD has not yet been produced.Here, we face the problem of modelling AD pathology describing several models, which have played a major role in defining critical disease-related mechanisms and in exploring novel potential therapeutic approaches. In particular, we will provide an extensive overview on the distinct features and pros and contras of different AD models, ranging from invertebrate to rodent models and finally dealing with computational models and induced pluripotent stem cells.

    20. α6β2* and α4β2* Nicotinic Acetylcholine Receptors As Drug Targets for Parkinson's Disease

      Wonnacott, Susan

      2011-01-01

      Parkinson's disease is a debilitating movement disorder characterized by a generalized dysfunction of the nervous system, with a particularly prominent decline in the nigrostriatal dopaminergic pathway. Although there is currently no cure, drugs targeting the dopaminergic system provide major symptomatic relief. As well, agents directed to other neurotransmitter systems are of therapeutic benefit. Such drugs may act by directly improving functional deficits in these other systems, or they may restore aberrant motor activity that arises as a result of a dopaminergic imbalance. Recent research attention has focused on a role for drugs targeting the nicotinic cholinergic systems. The rationale for such work stems from basic research findings that there is an extensive overlap in the organization and function of the nicotinic cholinergic and dopaminergic systems in the basal ganglia. In addition, nicotinic acetylcholine receptor (nAChR) drugs could have clinical potential for Parkinson's disease. Evidence for this proposition stems from studies with experimental animal models showing that nicotine protects against neurotoxin-induced nigrostriatal damage and improves motor complications associated with l-DOPA, the “gold standard” for Parkinson's disease treatment. Nicotine interacts with multiple central nervous system receptors to generate therapeutic responses but also produces side effects. It is important therefore to identify the nAChR subtypes most beneficial for treating Parkinson's disease. Here we review nAChRs with particular emphasis on the subtypes that contribute to basal ganglia function. Accumulating evidence suggests that drugs targeting α6β2* and α4β2* nAChR may prove useful in the management of Parkinson's disease. PMID:21969327

    1. Huntington disease: Experimental models and therapeutic perspectives

      Serrano Sanchez, Teresa; Blanco Lezcano, Lisette; Garcia Minet, Rocio; Alberti Amador, Esteban; Diaz Armesto, Ivan and others

      2011-01-01

      Huntington's disease (HD) is a degenerative dysfunction of hereditary origin. Up to date there is not, an effective treatment to the disease which having lapsed 15 or 20 years advances inexorably, in a slow form, toward the total inability or death. This paper reviews the clinical and morphological characteristics of Huntington's disease as well as the experimental models more commonly used to study this disease, having as source the articles indexed in Medline data base, published in the last 20 years. Advantages and disadvantages of all experimental models to reproduce the disease as well as the perspectives to therapeutic assay have been also considered. the consent of outline reported about the toxic models, those induced by neurotoxins such as quinolinic acid, appears to be the most appropriate to reproduce the neuropathologic characteristic of the disease, an genetic models contributing with more evidence to the knowledge of the disease etiology. Numerous treatments ameliorate clinical manifestations, but none of them has been able to stop or diminish the affectations derived from neuronal loss. At present time it is possible to reproduce, at least partially, the characteristics of the disease in experimentation animals that allow therapy evaluation in HD. from the treatment view point, the more promissory seems to be transplantation of no neuronal cells, taking into account ethical issues and factibility. On the other hand the new technology of interference RNA emerges as a potential therapeutic tool for treatment in HD, and to respond basic questions on the development of the disease.

    2. The clinical implication of drug dependency in children and adults with inflammatory bowel disease: a review

      Duricova, Dana; Pedersen, Natalia; Lenicek, Martin

      2011-01-01

      Drug dependency in adult and paediatric patients with inflammatory bowel disease (IBD) is described and the significance of this response pattern in clinical practice discussed in this review. Dependent patients maintain remission while on the treatment, but they relapse shortly after drug...... corticosteroid dependency. Infliximab dependency was described in 42-66% of children and 29% of adults with Crohn's disease. The risk of surgery 50 and 40 months after treatment start was 10% and 23% in infliximab dependent children and adults, respectively. Maintenance of infliximab in dependent patients...... was suggested to postpone if not avoid the need of surgery. Lastly, mesalazine dependency was identified in 23% of adults with Crohn's disease. These patients were characterized by mild disease course and lower surgical risk compared to non-responders to mesalazine (32 vs. 61%). Identification of drug...

    3. Review on potential phytocompounds in drug development for Parkinson disease: A pharmacoinformatic approach

      S. Vijayakumar

      Full Text Available Parkinson's disease (PD is caused by human physiological function and is ranked as the second most common neurodegenerative disorder. One of the prominent therapies currently available for PD is the use of dopamine agonists which mimic the natural action of dopamine in the brain and stimulate dopamine receptors directly. Currently, available pharmaceutical drugs provide only temporary relief of the disease. Phytocompounds have been identified as promising target of research in the quest for new pharmaceutical compounds as they can produce secondary metabolites with novel chemical structure. In this review the drug development of Parkinson disease has been analyzed using computational tools. Keywords: Parkinson disease, Phytocompounds, Computational methods, Drug development and design

    4. [Alternatives to the drug research and development model].

      Velásquez, Germán

      2015-03-01

      One-third of the global population lacks access to medications; the situation is worse in poor countries, where up to 50% of the population lacks access. The failure of current incentive systems based in intellectual property to offer the necessary pharmaceutical products, especially in the global south, is a call to action. Problems related to drug access cannot be solved solely through improvements or modifications in the existing incentive models. The intellectual property system model does not offer sufficient innovation for developing countries; new mechanisms that effectively promote innovation and drug access simultaneously are needed. A binding international agreement on research and development, negotiated under the auspices of the World Health Organization, could provide an adequate framework for guaranteeing priority-setting, coordination, and sustainable financing of drugs at reasonable prices for developing countries.

    5. Multimodality imaging and mathematical modelling of drug delivery to glioblastomas.

      Boujelben, Ahmed; Watson, Michael; McDougall, Steven; Yen, Yi-Fen; Gerstner, Elizabeth R; Catana, Ciprian; Deisboeck, Thomas; Batchelor, Tracy T; Boas, David; Rosen, Bruce; Kalpathy-Cramer, Jayashree; Chaplain, Mark A J

      2016-10-06

      Patients diagnosed with glioblastoma, an aggressive brain tumour, have a poor prognosis, with a median overall survival of less than 15 months. Vasculature within these tumours is typically abnormal, with increased tortuosity, dilation and disorganization, and they typically exhibit a disrupted blood-brain barrier (BBB). Although it has been hypothesized that the 'normalization' of the vasculature resulting from anti-angiogenic therapies could improve drug delivery through improved blood flow, there is also evidence that suggests that the restoration of BBB integrity might limit the delivery of therapeutic agents and hence their effectiveness. In this paper, we apply mathematical models of blood flow, vascular permeability and diffusion within the tumour microenvironment to investigate the effect of these competing factors on drug delivery. Preliminary results from the modelling indicate that all three physiological parameters investigated-flow rate, vessel permeability and tissue diffusion coefficient-interact nonlinearly to produce the observed average drug concentration in the microenvironment.

    6. Drug-induced impulse control disorders in Parkinson's disease.

      Reiff, J; Jost, W H

      2011-05-01

      Dopamine replacement treatment with excessive or aberrant dopamine receptor stimulation can cause behavioral disturbances in Parkinson's disease, comprising dopamine dysregulation syndrome, punding, and impulse control disorders. Common impulse control disorders are compulsive buying, pathological gambling, binge eating, hypersexuality, and compulsive reckless driving.

    7. Indigenous drugs in ischemic heart disease in patients with diabetes.

      Dwivedi, Shridhar; Aggarwal, Amitesh

      2009-11-01

      India is currently facing the silent epidemic of ischemic heart disease, type 2 diabetes mellitus (T2DM), hypertension, and stroke. Both diabetes and ischemic heart disease appear in Indian people a decade earlier compared to whites. The recent evidence that certain medicinal plants possess hypoglycemic, lipid-lowering, and immunomodulating properties on account of their rich flavonoid and/or other glucose-lowering active constituents merits scientific scrutiny in this regard. The present communication aims to give a brief review of those plants that could be useful in T2DM associated with hypertension, ischemic heart disease, and/or dyslipidemia. Aegle marmelos (bael), Allium sativum (garlic), Curcuma domestica (turmeric), Eugenia jambolana (jamun), Murraya koenigii (curry leaves), Trigonella foenum graecum (fenugreek), and Terminalia arjuna (arjun) have been found to be useful in diabetes associated with ischemic heart disease. Their active biomolecules have been identified. They have also been demonstrated to be safe in long-term use. Further clinical research regarding their potency and efficacy vis-à-vis oral hypoglycemics needs to done.

    8. [Drug treatment of erection disorders in patients with cardiovascular disease

      Meuleman, E.J.H.; Kingma, J.H.

      2001-01-01

      Erectile dysfunction is a frequent condition in cardiovascular patients. Since the arrival of oral erection-supporting medication, patients want to know how safe sexual activity is in cardiovascular disease in general and during use of erection-supporting medication in particular. Sexual intercourse

    9. Drug Repositioning in Inflammatory Bowel Disease Based on Genetic Information

      Collij, Valerie; Festen, Eleonora A. M.; Alberts, Rudi; Weersma, Rinse K.

      2016-01-01

      Background:Currently, 200 genetic risk loci have been identified for inflammatory bowel disease (IBD). Although these findings have significantly advanced our insight into IBD biology, there has been little progress in translating this knowledge toward clinical practice, like more cost-efficient

    10. Experimental methods and transport models for drug delivery across the blood-brain barrier.

      Fu, Bingmei M

      2012-06-01

      The blood-brain barrier (BBB) is a dynamic barrier essential for maintaining the micro-environment of the brain. Although the special anatomical features of the BBB determine its protective role for the central nervous system (CNS) from blood-born neurotoxins, however, the BBB extremely limits the therapeutic efficacy of drugs into the CNS, which greatly hinders the treatment of major brain diseases. This review summarized the unique structures of the BBB, described a variety of in vivo and in vitro experimental methods for determining the transport properties of the BBB, e.g., the permeability of the BBB to water, ions, and solutes including nutrients, therapeutic agents and drug carriers, and presented newly developed mathematical models which quantitatively correlate the anatomical structures of the BBB with its barrier functions. Finally, on the basis of the experimental observations and the quantitative models, several strategies for drug delivery through the BBB were proposed.

    11. Osteosarcoma models : understanding complex disease

      Mohseny, Alexander Behzad

      2012-01-01

      A mesenchymal stem cell (MSC) based osteosarcoma model was established. The model provided evidence for a MSC origin of osteosarcoma. Normal MSCs transformed spontaneously to osteosarcoma-like cells which was always accompanied by genomic instability and loss of the Cdkn2a locus. Accordingly loss of

    12. The effect of anticholinergic drugs on 123I-IMP SPECT in Parkinson's disease

      Mizuno, Tomoyuki; Nishiyama, Kazutoshi; Hitoshi, Seiji; Takeda, Koichi; Sakuta, Manabu

      1992-01-01

      Anticholinergic drugs may be responsible for mental deterioration in Parkinson's disease (PD). This study was thus performed to examine effects of anticholinergic drugs on the brain by using N-isopropyl-p-[I-123] iodoamphetamine SPECT. The purpose of the study was twofold: (I) to compare regional cerebral uptake of tracer during treatment with anticholinergic drugs and one month after the discontinuation of the drugs in 7 PD patients given them for 6 months or more; and (II) to compare tracer uptake in 11 PD patients administered anticholinergic drugs and 25 PD patients not administered them. Each 16 regions in the bilateral cerebral cortexes and each one region in the bilateral basal ganglia, thalamus, and cerebellum were assigned as regions of interest (ROI). The count ratio of each ROI in the cerebrum to ROI in the cerebellum was designated as regional cerebral uptake ratio (rCUR). A mean rCUR was lower during administration of anticholinergic drugs in all ROIs, except for two in Group I and one in Group II, than during the period not administered the drugs. The administration of anticholinergic drugs was sigificantly associated with decreased rCUR in 10 ROIs in Group I, and in 15 ROIs in Group II. The rCUR in the occipital, basal ganglia, and thalamus was independent of the administration of anticholinergic drugs. These results suggest that anticholinergic drugs may inhibit the cortical cholinergic system in PD patients. (N.K.)

    13. The effect of anticholinergic drugs on [sup 123]I-IMP SPECT in Parkinson's disease

      Mizuno, Tomoyuki; Nishiyama, Kazutoshi; Hitoshi, Seiji; Takeda, Koichi; Sakuta, Manabu [Japan Red Cross Central Hospital, Tokyo (Japan)

      1992-04-01

      Anticholinergic drugs may be responsible for mental deterioration in Parkinson's disease (PD). This study was thus performed to examine effects of anticholinergic drugs on the brain by using N-isopropyl-p-[I-123] iodoamphetamine SPECT. The purpose of the study was twofold: (I) to compare regional cerebral uptake of tracer during treatment with anticholinergic drugs and one month after the discontinuation of the drugs in 7 PD patients given them for 6 months or more; and (II) to compare tracer uptake in 11 PD patients administered anticholinergic drugs and 25 PD patients not administered them. Each 16 regions in the bilateral cerebral cortexes and each one region in the bilateral basal ganglia, thalamus, and cerebellum were assigned as regions of interest (ROI). The count ratio of each ROI in the cerebrum to ROI in the cerebellum was designated as regional cerebral uptake ratio (rCUR). A mean rCUR was lower during administration of anticholinergic drugs in all ROIs, except for two in Group I and one in Group II, than during the period not administered the drugs. The administration of anticholinergic drugs was sigificantly associated with decreased rCUR in 10 ROIs in Group I, and in 15 ROIs in Group II. The rCUR in the occipital, basal ganglia, and thalamus was independent of the administration of anticholinergic drugs. These results suggest that anticholinergic drugs may inhibit the cortical cholinergic system in PD patients. (N.K.).

    14. Identifying co-targets to fight drug resistance based on a random walk model

      Chen Liang-Chun

      2012-01-01

      Full Text Available Abstract Background Drug resistance has now posed more severe and emergent threats to human health and infectious disease treatment. However, wet-lab approaches alone to counter drug resistance have so far still achieved limited success due to less knowledge about the underlying mechanisms of drug resistance. Our approach apply a heuristic search algorithm in order to extract active network under drug treatment and use a random walk model to identify potential co-targets for effective antibacterial drugs. Results We use interactome network of Mycobacterium tuberculosis and gene expression data which are treated with two kinds of antibiotic, Isoniazid and Ethionamide as our test data. Our analysis shows that the active drug-treated networks are associated with the trigger of fatty acid metabolism and synthesis and nicotinamide adenine dinucleotide (NADH-related processes and those results are consistent with the recent experimental findings. Efflux pumps processes appear to be the major mechanisms of resistance but SOS response is significantly up-regulation under Isoniazid treatment. We also successfully identify the potential co-targets with literature confirmed evidences which are related to the glycine-rich membrane, adenosine triphosphate energy and cell wall processes. Conclusions With gene expression and interactome data supported, our study points out possible pathways leading to the emergence of drug resistance under drug treatment. We develop a computational workflow for giving new insights to bacterial drug resistance which can be gained by a systematic and global analysis of the bacterial regulation network. Our study also discovers the potential co-targets with good properties in biological and graph theory aspects to overcome the problem of drug resistance.

    15. [Caffeine as a preventive drug for Parkinson's disease: epidemiologic evidence and experimental support].

      Góngora-Alfaro, José Luis

      Prospective epidemiologic studies performed in large cohorts of men (total: 374,003 subjects) agree in which the risk of suffering Parkinson's disease diminishes progressively as the consumption of coffee and other caffeinated beverages increases. In the case of women (total: 345,184 subjects) the protective effect of caffeine is only observed in menopausal women which do not receive estrogen replacement therapy. Studies with models of acute parkinsonism in rodents have shown that caffeine reduces the loss of nigrostriatal dopaminergic neurons induced with the neurotoxins 6-hidroxidopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, effect that seems to be mediated through blockade of A(2A) adenosine receptors. Recently, it was shown that male rats treated with moderate doses of caffeine (5 mg/kg/day) during six months, followed by a withdrawal period of at least two weeks, developed a greater resistance to the catalepsy induced with the dopaminergic antagonist haloperidol, which was possibly mediated by an increase of dopaminergic transmission in the corpus striatum. More studies are needed to demonstrate unequivocally that caffeine prevents the degeneration of dopaminergic neurons in animal models of moderate, chronic, and progressive parkinsonism, since it could lead to the discovery of more effective drugs for the prevention of aging-related degenerative diseases of the central nervous system.

    16. Nanomedicine and drug delivery strategies for treatment of inflammatory bowel disease.

      Takedatsu, Hidetoshi; Mitsuyama, Keiichi; Torimura, Takuji

      2015-10-28

      Crohn's disease and ulcerative colitis are two important categories of human inflammatory bowel disease (IBD). Because the precise mechanisms of the inflammation and immune responses in IBD have not been fully elucidated, the treatment of IBD primarily aims to inhibit the pathogenic factors of the inflammatory cascade. Inconsistencies exist regarding the response and side effects of the drugs that are currently used to treat IBD. Recent studies have suggested that the use of nanomedicine might be advantageous for the treatment of intestinal inflammation because nano-sized molecules can effectively penetrate epithelial and inflammatory cells. We reviewed nanomedicine treatments, such as the use of small interfering RNAs, antisense oligonucleotides, and anti-inflammatory molecules with delivery systems in experimental colitis models and clinical trials for IBD based on a systematic search. The efficacy and usefulness of the treatments reviewed in this manuscript have been demonstrated in experimental colitis models and clinical trials using various types of nanomedicine. Nanomedicine is expected to become a new therapeutic approach to the treatment of IBD.

    17. Role of nonalcoholic fatty liver disease as risk factor for drug-induced hepatotoxicity

      Massart, Julie; Begriche, Karima; Moreau, Caroline; Fromenty, Bernard

      2017-01-01

      Background Obesity is often associated with nonalcoholic fatty liver disease (NAFLD), which refers to a large spectrum of hepatic lesions including fatty liver, nonalcoholic steatohepatitis (NASH) and cirrhosis. Different investigations showed or suggested that obesity and NAFLD are able to increase the risk of hepatotoxicity of different drugs. Some of these drugs could induce more frequently an acute hepatitis in obese individuals whereas others could worsen pre-existing NAFLD. Aim The main objective of the present review was to collect the available information regarding the role of NAFLD as risk factor for drug-induced hepatotoxicity. For this purpose, we performed a data-mining analysis using different queries including drug-induced liver injury (or DILI), drug-induced hepatotoxicity, fatty liver, nonalcoholic fatty liver disease (or NAFLD), steatosis and obesity. The main data from the collected articles are reported in this review and when available, some pathophysiological hypotheses are put forward. Relevance for patients Drugs that could pose a potential risk in obese patients include compounds belonging to different pharmacological classes such as acetaminophen, halothane, methotrexate, rosiglitazone, stavudine and tamoxifen. For some of these drugs, experimental investigations in obese rodents confirmed the clinical observations and unveiled different pathophysiological mechanisms which could explain why these pharmaceuticals are particularly hepatotoxic in obesity and NAFLD. Other drugs such as pentoxifylline, phenobarbital and omeprazole might also pose a risk but more investigations are required to determine whether this risk is significant or not. Because obese people often take several drugs for the treatment of different obesity-related diseases such as type 2 diabetes, hyperlipidemia and coronary heart disease, it is urgent to identify the main pharmaceuticals that can cause acute hepatitis on a fatty liver background or induce NAFLD worsening

    18. Quantitative Systems Pharmacology: A Case for Disease Models.

      Musante, C J; Ramanujan, S; Schmidt, B J; Ghobrial, O G; Lu, J; Heatherington, A C

      2017-01-01

      Quantitative systems pharmacology (QSP) has emerged as an innovative approach in model-informed drug discovery and development, supporting program decisions from exploratory research through late-stage clinical trials. In this commentary, we discuss the unique value of disease-scale "platform" QSP models that are amenable to reuse and repurposing to support diverse clinical decisions in ways distinct from other pharmacometrics strategies. © 2016 The Authors Clinical Pharmacology & Therapeutics published by Wiley Periodicals, Inc. on behalf of The American Society for Clinical Pharmacology and Therapeutics.

    19. Cell and small animal models for phenotypic drug discovery

      Szabo M

      2017-06-01

      Full Text Available Mihaly Szabo,1 Sara Svensson Akusjärvi,1 Ankur Saxena,1 Jianping Liu,2 Gayathri Chandrasekar,1 Satish S Kitambi1 1Department of Microbiology Tumor, and Cell Biology, 2Department of Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden Abstract: The phenotype-based drug discovery (PDD approach is re-emerging as an alternative platform for drug discovery. This review provides an overview of the various model systems and technical advances in imaging and image analyses that strengthen the PDD platform. In PDD screens, compounds of therapeutic value are identified based on the phenotypic perturbations produced irrespective of target(s or mechanism of action. In this article, examples of phenotypic changes that can be detected and quantified with relative ease in a cell-based setup are discussed. In addition, a higher order of PDD screening setup using small animal models is also explored. As PDD screens integrate physiology and multiple signaling mechanisms during the screening process, the identified hits have higher biomedical applicability. Taken together, this review highlights the advantages gained by adopting a PDD approach in drug discovery. Such a PDD platform can complement target-based systems that are currently in practice to accelerate drug discovery. Keywords: phenotype, screening, PDD, discovery, zebrafish, drug

    20. Budget impact analysis of drugs for ultra-orphan non-oncological diseases in Europe.

      Schlander, Michael; Adarkwah, Charles Christian; Gandjour, Afschin

      2015-02-01

      Ultra-orphan diseases (UODs) have been defined by a prevalence of less than 1 per 50,000 persons. However, little is known about budget impact of ultra-orphan drugs. For analysis, the budget impact analysis (BIA) had a time horizon of 10 years (2012-2021) and a pan-European payer's perspective, based on prevalence data for UODs for which patented drugs are available and/or for which drugs are in clinical development. A total of 18 drugs under patent protection or orphan drug designation for non-oncological UODs were identified. Furthermore, 29 ultra-orphan drugs for non-oncological diseases under development that have the potential of reaching the market by 2021 were found. Total budget impact over 10 years was estimated to be €15,660 and €4965 million for approved and pipeline ultra-orphan drugs, respectively (total: €20,625 million). The analysis does not support concerns regarding an uncontrolled growth in expenditures for drugs for UODs.

    1. Global issues in drug development for Alzheimer's disease.

      Doody, Rachelle S; Cole, Patricia E; Miller, David S; Siemers, Eric; Black, Ronald; Feldman, Howard; Schindler, Rachel; Graham, Stephen; Heath, Theresa; Khachaturian, Ara S; Evans, Rebecca; Carrillo, Maria C

      2011-03-01

      The number of clinical trials for Alzheimer's disease conducted outside the United States in a broad array of countries is increasing. As the number of compounds ready for clinical testing increases, and as trials become longer and more complex, this trend is expected to grow. The cultural and ethical context of global clinical trials, potential benefits for those involved, and practical approaches to obstacles generated by these global trials were discussed at a meeting of the Alzheimer's Association Research Roundtable. Regulatory issues, including regional differences in study registration procedures, rules for collecting and reporting serious adverse events, requirements for national identity of study populations, and regulatory audits were also discussed by individuals who are knowledgeable about global clinical trials for Alzheimer's disease. Copyright © 2011 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

    2. Experimental psychiatric illness and drug abuse models: from human to animal, an overview.

      Edwards, Scott; Koob, George F

      2012-01-01

      Preclinical animal models have supported much of the recent rapid expansion of neuroscience research and have facilitated critical discoveries that undoubtedly benefit patients suffering from psychiatric disorders. This overview serves as an introduction for the following chapters describing both in vivo and in vitro preclinical models of psychiatric disease components and briefly describes models related to drug dependence and affective disorders. Although there are no perfect animal models of any psychiatric disorder, models do exist for many elements of each disease state or stage. In many cases, the development of certain models is essentially restricted to the human clinical laboratory domain for the purpose of maximizing validity, whereas the use of in vitro models may best represent an adjunctive, well-controlled means to model specific signaling mechanisms associated with psychiatric disease states. The data generated by preclinical models are only as valid as the model itself, and the development and refinement of animal models for human psychiatric disorders continues to be an important challenge. Collaborative relationships between basic neuroscience and clinical modeling could greatly benefit the development of new and better models, in addition to facilitating medications development.

    3. Animal models for human genetic diseases

      Sharif Sons

      The study of human genetic diseases can be greatly aided by animal models because of their similarity .... and gene targeting in embryonic stem cells) has been a powerful tool in .... endonucleases that are designed to make a doublestrand.

    4. [Affordability and availability of drugs for treatment of chronic diseases in the public health care system].

      Helfer, Ana Paula; Camargo, Aline Lins; Tavares, Noemia Urruth Leão; Kanavos, Panos; Bertoldi, Andréa Dâmaso

      2012-03-01

      To assess the affordability by workers of drugs used for treatment of chronic diseases, as well as the availability of the reference, similar, or generic forms of these drugs in the public health care system. We employed the methodology recommended by the World Health Organization (WHO) and Health Action International (HAI) for the standardized collection of information on selling prices in the private sector and availability in the public health care system of drugs in six cities in the state of Rio Grande do Sul, Brazil. Data were collected from November 2008 to January 2009. Affordability was estimated as the number of salary days required for a worker receiving the national minimum wage to buy, in a private pharmacy, the amount of medication required for one month of treatment. Availability was assessed by the presence of these drugs in public health care system facilities. Twenty-two public facilities and 30 private pharmacies were studied. Of 21 drugs used for the treatment of seven chronic disorders, only nine were available free of charge in the six cities. Mean availability ranged from 83.3% (São Leopoldo) to 97.6% (Caxias do Sul). Affordability ranged from 0.4 to 10.5 salary days for reference drugs, 0.2 to 8.4 salary days for similar drugs, and 0.3 to 3.8 salary days for generic drugs. The overall availability of the drugs surveyed was higher than the 80% recommended by WHO. However, some treatments were not available, or had limited availability in the public system. Concerning affordability, the number of salary days required to buy these drugs may affect the continuation of drug treatments for chronic diseases.

    5. Modeling drug- and chemical- induced hepatotoxicity with systems biology approaches

      Sudin eBhattacharya

      2012-12-01

      Full Text Available We provide an overview of computational systems biology approaches as applied to the study of chemical- and drug-induced toxicity. The concept of ‘toxicity pathways’ is described in the context of the 2007 US National Academies of Science report, Toxicity testing in the 21st Century: A Vision and A Strategy. Pathway mapping and modeling based on network biology concepts are a key component of the vision laid out in this report for a more biologically-based analysis of dose-response behavior and the safety of chemicals and drugs. We focus on toxicity of the liver (hepatotoxicity – a complex phenotypic response with contributions from a number of different cell types and biological processes. We describe three case studies of complementary multi-scale computational modeling approaches to understand perturbation of toxicity pathways in the human liver as a result of exposure to environmental contaminants and specific drugs. One approach involves development of a spatial, multicellular virtual tissue model of the liver lobule that combines molecular circuits in individual hepatocytes with cell-cell interactions and blood-mediated transport of toxicants through hepatic sinusoids, to enable quantitative, mechanistic prediction of hepatic dose-response for activation of the AhR toxicity pathway. Simultaneously, methods are being developing to extract quantitative maps of intracellular signaling and transcriptional regulatory networks perturbed by environmental contaminants, using a combination of gene expression and genome-wide protein-DNA interaction data. A predictive physiological model (DILIsymTM to understand drug-induced liver injury (DILI, the most common adverse event leading to termination of clinical development programs and regulatory actions on drugs, is also described. The model initially focuses on reactive metabolite-induced DILI in response to administration of acetaminophen, and spans multiple biological scales.

    6. Quantitative modeling of selective lysosomal targeting for drug design

      Trapp, Stefan; Rosania, G.; Horobin, R.W.

      2008-01-01

      log K ow. These findings were validated with experimental results and by a comparison to the properties of antimalarial drugs in clinical use. For ten active compounds, nine were predicted to accumulate to a greater extent in lysosomes than in other organelles, six of these were in the optimum range...... predicted by the model and three were close. Five of the antimalarial drugs were lipophilic weak dibasic compounds. The predicted optimum properties for a selective accumulation of weak bivalent bases in lysosomes are consistent with experimental values and are more accurate than any prior calculation...

    7. Reward Prediction Errors in Drug Addiction and Parkinson's Disease: from Neurophysiology to Neuroimaging.

      García-García, Isabel; Zeighami, Yashar; Dagher, Alain

      2017-06-01

      Surprises are important sources of learning. Cognitive scientists often refer to surprises as "reward prediction errors," a parameter that captures discrepancies between expectations and actual outcomes. Here, we integrate neurophysiological and functional magnetic resonance imaging (fMRI) results addressing the processing of reward prediction errors and how they might be altered in drug addiction and Parkinson's disease. By increasing phasic dopamine responses, drugs might accentuate prediction error signals, causing increases in fMRI activity in mesolimbic areas in response to drugs. Chronic substance dependence, by contrast, has been linked with compromised dopaminergic function, which might be associated with blunted fMRI responses to pleasant non-drug stimuli in mesocorticolimbic areas. In Parkinson's disease, dopamine replacement therapies seem to induce impairments in learning from negative outcomes. The present review provides a holistic overview of reward prediction errors across different pathologies and might inform future clinical strategies targeting impulsive/compulsive disorders.

    8. Creating New Economic Incentives for Repurposing Generic Drugs for Unsolved Diseases Using Social Finance.

      Bloom, Bruce E

      2015-12-01

      Repurposing research improves patient lives by taking drugs approved for one disease and clinically testing them to create a treatment for a different disease. Repurposing drugs that are generic, inexpensive, and widely available and that can be taken in their current dosage and formulation in the new indication provide a quick, affordable, and effective way to create "new" treatments. However, generic drug repurposing often provides no profit potential, and so there is no economic incentive for industry to pursue this, and philanthropy and government funds are often insufficient. One way to create new economic incentive for the repurposing of generic drugs is through social finance. This perspective describes how social finance can create a new economic incentive by using a social impact bond, or similar financial structure, to repay for-profit investors who fund the repurposing research from the proceeds of healthcare cost reductions generated when these affordable, effective, and widely available repurposed therapies improve healthcare outcomes.

    9. METHODOLOGY OF THE DRUGS MARKET VOLUME MODELING ON THE EXAMPLE OF HEMOPHILIA A

      N. B. Molchanova

      2015-01-01

      Full Text Available Hemophilia A is a serious genetic disease, which may lead to disability of a patient even in early ages without a required therapy. The only one therapeutic approach is a replacement therapy with drugs of bloodcoagulation factor VIII (FVIII. The modeling of coagulation drugs market volume will allow evaluation of the level of patients’ provision with a necessary therapy. Modeling of a “perfect” market of drugs and its comparison with the real one was the purpose of the study. During the modeling of market volume we have used the data about the number of hamophilia A patients on the basis of the federal registry, Russian and international morbidity indices, and the data of a real practice about average consumption of drugs of bloodcoagulation factors and data about the drugs prescription according to the standards and protocols of assistance rendering. According to the standards of care delivery, average annual volume of FVIII drugs consumption amounted to 406 325 244 IU for children and 964 578 678 IU for adults, i.e. an average volume of a “perfect” market is equal to 1 370 903 922 IU for all patients. The market volume is 1.8 times bigger than a real volume of FVIII drugs which, according to the data of IMS marketing agency, amounted to 765 000 000 IU in 2013. The modeling conducted has shown that despite a relatively high patients’ coverage there is a potential for almost double growth.

    10. Stem cells: a model for screening, discovery and development of drugs

      Kitambi SS

      2011-09-01

      Full Text Available Satish Srinivas Kitambi1, Gayathri Chandrasekar21Department of Medical Biochemistry and Biophysics; 2Department of Biosciences, Karolinska Institutet, Stockholm, SwedenAbstract: The identification of normal and cancerous stem cells and the recent advances made in isolation and culture of stem cells have rapidly gained attention in the field of drug discovery and regenerative medicine. The prospect of performing screens aimed at proliferation, directed differentiation, and toxicity and efficacy studies using stem cells offers a reliable platform for the drug discovery process. Advances made in the generation of induced pluripotent stem cells from normal or diseased tissue serves as a platform to perform drug screens aimed at developing cell-based therapies against conditions like Parkinson's disease and diabetes. This review discusses the application of stem cells and cancer stem cells in drug screening and their role in complementing, reducing, and replacing animal testing. In addition to this, target identification and major advances in the field of personalized medicine using induced pluripotent cells are also discussed.Keywords: therapeutics, stem cells, cancer stem cells, screening models, drug development, high throughput screening

    11. Optimal Control of Drug Therapy in a Hepatitis B Model

      Jonathan E. Forde

      2016-08-01

      Full Text Available Combination antiviral drug therapy improves the survival rates of patients chronically infected with hepatitis B virus by controlling viral replication and enhancing immune responses. Some of these drugs have side effects that make them unsuitable for long-term administration. To address the trade-off between the positive and negative effects of the combination therapy, we investigated an optimal control problem for a delay differential equation model of immune responses to hepatitis virus B infection. Our optimal control problem investigates the interplay between virological and immunomodulatory effects of therapy, the control of viremia and the administration of the minimal dosage over a short period of time. Our numerical results show that the high drug levels that induce immune modulation rather than suppression of virological factors are essential for the clearance of hepatitis B virus.

    12. The current state of GPCR-based drug discovery to treat metabolic disease.

      Sloop, Kyle W; Emmerson, Paul J; Statnick, Michael A; Willard, Francis S

      2018-02-02

      One approach of modern drug discovery is to identify agents that enhance or diminish signal transduction cascades in various cell types and tissues by modulating the activity of GPCRs. This strategy has resulted in the development of new medicines to treat many conditions, including cardiovascular disease, psychiatric disorders, HIV/AIDS, certain forms of cancer and Type 2 diabetes mellitus (T2DM). These successes justify further pursuit of GPCRs as disease targets and provide key learning that should help guide identifying future therapeutic agents. This report reviews the current landscape of GPCR drug discovery with emphasis on efforts aimed at developing new molecules for treating T2DM and obesity. We analyse historical efforts to generate GPCR-based drugs to treat metabolic disease in terms of causal factors leading to success and failure in this endeavour. © 2018 The British Pharmacological Society.

    13. Deterministic SLIR model for tuberculosis disease mapping

      Aziz, Nazrina; Diah, Ijlal Mohd; Ahmad, Nazihah; Kasim, Maznah Mat

      2017-11-01

      Tuberculosis (TB) occurs worldwide. It can be transmitted to others directly through air when active TB persons sneeze, cough or spit. In Malaysia, it was reported that TB cases had been recognized as one of the most infectious disease that lead to death. Disease mapping is one of the methods that can be used as the prevention strategies since it can displays clear picture for the high-low risk areas. Important thing that need to be considered when studying the disease occurrence is relative risk estimation. The transmission of TB disease is studied through mathematical model. Therefore, in this study, deterministic SLIR models are used to estimate relative risk for TB disease transmission.

    14. Neuroinflammation in the pathophysiology of Parkinson’s disease and therapeutic evidence of anti-inflammatory drugs

      Taysa Bervian Bassani

      2015-07-01

      Full Text Available Parkinson’s disease (PD is the second most common neurodegenerative disease affecting approximately 1.6% of the population over 60 years old. The cardinal motor symptoms are the result of progressive degeneration of substantia nigra pars compacta dopaminergic neurons which are involved in the fine motor control. Currently, there is no cure for this pathology and the cause of the neurodegeneration remains unknown. Several studies suggest the involvement of neuroinflammation in the pathophysiology of PD as well as a protective effect of anti-inflammatory drugs both in animal models and epidemiological studies, although there are controversial reports. In this review, we address evidences of involvement of inflammatory process and possible therapeutic usefulness of anti-inflammatory drugs in PD.

    15. PDON: Parkinson's disease ontology for representation and modeling of the Parkinson's disease knowledge domain.

      Younesi, Erfan; Malhotra, Ashutosh; Gündel, Michaela; Scordis, Phil; Kodamullil, Alpha Tom; Page, Matt; Müller, Bernd; Springstubbe, Stephan; Wüllner, Ullrich; Scheller, Dieter; Hofmann-Apitius, Martin

      2015-09-22

      Despite the unprecedented and increasing amount of data, relatively little progress has been made in molecular characterization of mechanisms underlying Parkinson's disease. In the area of Parkinson's research, there is a pressing need to integrate various pieces of information into a meaningful context of presumed disease mechanism(s). Disease ontologies provide a novel means for organizing, integrating, and standardizing the knowledge domains specific to disease in a compact, formalized and computer-readable form and serve as a reference for knowledge exchange or systems modeling of disease mechanism. The Parkinson's disease ontology was built according to the life cycle of ontology building. Structural, functional, and expert evaluation of the ontology was performed to ensure the quality and usability of the ontology. A novelty metric has been introduced to measure the gain of new knowledge using the ontology. Finally, a cause-and-effect model was built around PINK1 and two gene expression studies from the Gene Expression Omnibus database were re-annotated to demonstrate the usability of the ontology. The Parkinson's disease ontology with a subclass-based taxonomic hierarchy covers the broad spectrum of major biomedical concepts from molecular to clinical features of the disease, and also reflects different views on disease features held by molecular biologists, clinicians and drug developers. The current version of the ontology contains 632 concepts, which are organized under nine views. The structural evaluation showed the balanced dispersion of concept classes throughout the ontology. The functional evaluation demonstrated that the ontology-driven literature search could gain novel knowledge not present in the reference Parkinson's knowledge map. The ontology was able to answer specific questions related to Parkinson's when evaluated by experts. Finally, the added value of the Parkinson's disease ontology is demonstrated by ontology-driven modeling of PINK1

    16. Polycystic ovarian disease: animal models.

      Mahajan, D K

      1988-12-01

      The reproductive systems of human beings and other vertebrates are grossly similar. In the ovary particularly, the biochemical and physiologic processes are identical not only in the formation of germ cells, the development of primordial follicles and their subsequent growth to Graafian follicles, and eventual ovulation but also in anatomic structure. In a noncarcinogenic human ovary, hypersecretion of androgen causes PCOD. Such hypersecretion may result from a nonpulsatile, constant elevated level of circulating LH or a disturbance in the action of neurotransmitters in the hypothalamus. In studying the pathophysiology of PCOD in humans, one must be aware of the limitations for manipulating the hypothalamic-pituitary axis. Although the rat is a polytocous rodent, the female has a regular ovarian cyclicity of 4 or 5 days, with distinct proestrus, estrus, and diestrus phases. Inasmuch as PCOD can be experimentally produced in the rat, that species is a good model for studying the pathophysiology of human PCOD. These PCOD models and their validity have been described: (1) estradiol-valerate, (2) DHA, (3) constant-light (LL), and (4) neonatally androgenized. Among these, the LL model is noninvasive and seems superior to the others for study of the pathophysiology of PCOD. The production of the polycystic ovarian condition in the rat by the injection of estrogens or androgens in neonate animals, or estradiol or DHA in adult rats, or the administration of antigonadotropins to these animals all cause a sudden appearance of the persistent estrus state by disturbing the metabolic and physiologic processes, whereas exposure of the adult rat to LL causes polycystic ovaries gradually, similar to what is seen in human idiopathic PCOD. After about 50 days of LL, the rat becomes anovulatory and the ovaries contain thickened tunica albuginea and many atretic follicles, and the tertiary follicles are considerably distended and cystic. The granulosa and theca cells appear normal

    17. Transporter-mediated natural product-drug interactions for the treatment of cardiovascular diseases.

      Zha, Weibin

      2018-04-01

      The growing use of natural products in cardiovascular (CV) patients has been greatly raising the concerns about potential natural product-CV drug interactions. Some of these may lead to unexpected cardiovascular adverse effects and it is, therefore, essential to identify or predict potential natural product-CV drug interactions, and to understand the underlying mechanisms. Drug transporters are important determinants for the pharmacokinetics of drugs and alterations of drug transport has been recognized as one of the major causes of natural product-drug interactions. In last two decades, many CV drugs (e.g., angiotensin II receptor blockers, beta-blockers and statins) have been identified to be substrates and inhibitors of the solute carrier (SLC) transporters and the ATP-binding cassette (ABC) transporters, which are two major transporter superfamilies. Meanwhile, in vitro and in vivo studies indicate that a growing number of natural products showed cardioprotective effects (e.g., gingko biloba, danshen and their active ingredients) are also substrates and inhibitors of drug transporters. Thus, to understand transporter-mediated natural product-CV drug interactions is important and some transporter-mediated interactions have already shown to have clinical relevance. In this review, we review the current knowledge on the role of ABC and SLC transporters in CV therapy, as well as transporter modulation by natural products used in CV diseases and their induced natural product-CV drug interactions through alterations of drug transport. We hope our review will aid in a comprehensive summary of transporter-mediated natural product-CV drug interactions and help public and physicians understand these type of interactions. Copyright © 2017. Published by Elsevier B.V.

    18. Spectrophotometric determination of dopaminergic drugs used for Parkinson's disease, cabergoline and ropinirole, in pharmaceutical preparations.

      Onal, Armağan; Cağlar, Sena

      2007-04-01

      Simple and reproducible spectrophotometric methods have been developed for determination of dopaminergic drugs used for Parkinson's disease, cabergoline (CAB) and ropinirole hydrochloride (ROP), in pharmaceutical preparations. The methods are based on the reactions between the studied drug substances and ion-pair agents [methyl orange (MO), bromocresol green (BCG) and bromophenol blue (BPB)] producing yellow colored ion-pair complexes in acidic buffers, after extracting in dichloromethane, which are spectrophotometrically determined at the appropriate wavelength of ion-pair complexes. Beer's law was obeyed within the concentration range from 1.0 to 35 microg ml(-1). The developed methods were applied successfully for the determination of these drugs in tablets.

    19. Tobacco, illicit drugs use and risk of cardiovascular disease in patients living with HIV.

      Raposeiras-Roubín, Sergio; Abu-Assi, Emad; Iñiguez-Romo, Andrés

      2017-11-01

      There is a strong link between HIV, smoking and illicit drugs. This association could be clinically relevant as it may potentiate the risk of cardiovascular diseases (CVD). The purpose of this review is to bring readers up to date on issues concerning the cardiovascular risk associated with tobacco and illicit drugs in patients living with HIV (PLHIV), examining the studies related to this topic published in the last year. There is a strong association between smoking and atherosclerotic disease in PLHIV, reducing life expectancy secondary to CVD by up to 6 years. Illicit drugs were associated with increased risk of atherosclerotic problems but to a lesser extent than smoking. A significant association of drugs such as cocaine with subclinical coronary atherosclerosis been demonstrated. The relation of marijuana, heroin and amphetamines with atherosclerosis generates more controversy. However, those drugs are associated with cardiovascular morbidity, independently of smoking and other traditional risk factors. Tobacco and illicit drugs are linked to CVD in HIV patients. This leads to the need to create special programs to address the addiction to smoking and illicit drugs, in order to mitigate their consequences and reduce cardiovascular risk.

    20. ANALYSIS OF DISEASE MODIFYING DRUGS ADMINISTRATION FREGUENCY AND CAUSES OF THEIR WITHDRAWAL IN RHEUMATOID ARTHRITIS

      E V Pavlova

      2000-01-01

      Full Text Available Aim of studdy: To assess the frequency of practical application of different basic drugs in rheumatoid arthritis (RA. Material and methods: Tlxe study was conducted basing of questionner of pts and analysis of ycases by randomized sampling among 103 consequent pts (M:F= 13:90 with reliable RA (ARA, 1987 in rheumatologic department of Clinical Hospital Nol in Ekaterinburg. 74% of pts under study demonstrated systemic manifestations: anemia (in 47 pts, lymphadenopathy (in 34, rheumatoid nodules (in 15, Sjogren s syndrome (in 4, nephropathy (in 4, vascular disturbances including Raynaud s phenomenon, capillarites (by 1 pt. Results: In the course of disease basic therapy was prescribed to 88 out of103 (85.4% pts and one and the same patient could take different basic drugs. Aminochinoline drugs prevailed, after them more frequent were immunodepressants and gold preparations. More rarely pts had sulfasalazin, cuprenil and wobenzym. In general, in 133 out of 184 cases of prescribing basic drugs they were canceled. The reason for cancellation were: prevalently absence of the drug in the pharmaceutical stores (in 48 cases averagely in 8 months of taking the drug; then they insufficient efficacy (44 cases averagely in 1.3 year. In 18 cases pts themselves stopped treatment averagely in 3.5 months of drug taking. Conclusion: In the majority of cases of basic drugs cancellation in RA the cause is their absence in sail especially on free of charge prescription. Cases ofself-cancellation of the drug demonstrate the need of explaining to pts the necessity> of long-term taking disease-modifying drugs.

    1. A nonlocal spatial model for Lyme disease

      Yu, Xiao; Zhao, Xiao-Qiang

      2016-07-01

      This paper is devoted to the study of a nonlocal and time-delayed reaction-diffusion model for Lyme disease with a spatially heterogeneous structure. In the case of a bounded domain, we first prove the existence of the positive steady state and a threshold type result for the disease-free system, and then establish the global dynamics for the model system in terms of the basic reproduction number. In the case of an unbound domain, we obtain the existence of the disease spreading speed and its coincidence with the minimal wave speed. At last, we use numerical simulations to verify our analytic results and investigate the influence of model parameters and spatial heterogeneity on the disease infection risk.

    2. A new drug design targeting the adenosinergic system for Huntington's disease.

      Nai-Kuei Huang

      Full Text Available BACKGROUND: Huntington's disease (HD is a neurodegenerative disease caused by a CAG trinucleotide expansion in the Huntingtin (Htt gene. The expanded CAG repeats are translated into polyglutamine (polyQ, causing aberrant functions as well as aggregate formation of mutant Htt. Effective treatments for HD are yet to be developed. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report a novel dual-function compound, N(6-(4-hydroxybenzyladenine riboside (designated T1-11 which activates the A(2AR and a major adenosine transporter (ENT1. T1-11 was originally isolated from a Chinese medicinal herb. Molecular modeling analyses showed that T1-11 binds to the adenosine pockets of the A(2AR and ENT1. Introduction of T1-11 into the striatum significantly enhanced the level of striatal adenosine as determined by a microdialysis technique, demonstrating that T1-11 inhibited adenosine uptake in vivo. A single intraperitoneal injection of T1-11 in wildtype mice, but not in A(2AR knockout mice, increased cAMP level in the brain. Thus, T1-11 enters the brain and elevates cAMP via activation of the A(2AR in vivo. Most importantly, addition of T1-11 (0.05 mg/ml to the drinking water of a transgenic mouse model of HD (R6/2 ameliorated the progressive deterioration in motor coordination, reduced the formation of striatal Htt aggregates, elevated proteasome activity, and increased the level of an important neurotrophic factor (brain derived neurotrophic factor in the brain. These results demonstrate the therapeutic potential of T1-11 for treating HD. CONCLUSIONS/SIGNIFICANCE: The dual functions of T1-11 enable T1-11 to effectively activate the adenosinergic system and subsequently delay the progression of HD. This is a novel therapeutic strategy for HD. Similar dual-function drugs aimed at a particular neurotransmitter system as proposed herein may be applicable to other neurotransmitter systems (e.g., the dopamine receptor/dopamine transporter and the serotonin receptor

    3. Brain Aggregates: An Effective In Vitro Cell Culture System Modeling Neurodegenerative Diseases.

      Ahn, Misol; Kalume, Franck; Pitstick, Rose; Oehler, Abby; Carlson, George; DeArmond, Stephen J

      2016-03-01

      Drug discovery for neurodegenerative diseases is particularly challenging because of the discrepancies in drug effects between in vitro and in vivo studies. These discrepancies occur in part because current cell culture systems used for drug screening have many limitations. First, few cell culture systems accurately model human aging or neurodegenerative diseases. Second, drug efficacy may differ between dividing and stationary cells, the latter resembling nondividing neurons in the CNS. Brain aggregates (BrnAggs) derived from embryonic day 15 gestation mouse embryos may represent neuropathogenic processes in prion disease and reflect in vivo drug efficacy. Here, we report a new method for the production of BrnAggs suitable for drug screening and suggest that BrnAggs can model additional neurological diseases such as tauopathies. We also report a functional assay with BrnAggs by measuring electrophysiological activities. Our data suggest that BrnAggs could serve as an effective in vitro cell culture system for drug discovery for neurodegenerative diseases. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

    4. Modeling HIV-1 drug resistance as episodic directional selection.

      Murrell, Ben; de Oliveira, Tulio; Seebregts, Chris; Kosakovsky Pond, Sergei L; Scheffler, Konrad

      2012-01-01

      The evolution of substitutions conferring drug resistance to HIV-1 is both episodic, occurring when patients are on antiretroviral therapy, and strongly directional, with site-specific resistant residues increasing in frequency over time. While methods exist to detect episodic diversifying selection and continuous directional selection, no evolutionary model combining these two properties has been proposed. We present two models of episodic directional selection (MEDS and EDEPS) which allow the a priori specification of lineages expected to have undergone directional selection. The models infer the sites and target residues that were likely subject to directional selection, using either codon or protein sequences. Compared to its null model of episodic diversifying selection, MEDS provides a superior fit to most sites known to be involved in drug resistance, and neither one test for episodic diversifying selection nor another for constant directional selection are able to detect as many true positives as MEDS and EDEPS while maintaining acceptable levels of false positives. This suggests that episodic directional selection is a better description of the process driving the evolution of drug resistance.

    5. Modeling HIV-1 drug resistance as episodic directional selection.

      Ben Murrell

      Full Text Available The evolution of substitutions conferring drug resistance to HIV-1 is both episodic, occurring when patients are on antiretroviral therapy, and strongly directional, with site-specific resistant residues increasing in frequency over time. While methods exist to detect episodic diversifying selection and continuous directional selection, no evolutionary model combining these two properties has been proposed. We present two models of episodic directional selection (MEDS and EDEPS which allow the a priori specification of lineages expected to have undergone directional selection. The models infer the sites and target residues that were likely subject to directional selection, using either codon or protein sequences. Compared to its null model of episodic diversifying selection, MEDS provides a superior fit to most sites known to be involved in drug resistance, and neither one test for episodic diversifying selection nor another for constant directional selection are able to detect as many true positives as MEDS and EDEPS while maintaining acceptable levels of false positives. This suggests that episodic directional selection is a better description of the process driving the evolution of drug resistance.

    6. PBPK Modeling - A Predictive, Eco-Friendly, Bio-Waiver Tool for Drug Research.

      De, Baishakhi; Bhandari, Koushik; Mukherjee, Ranjan; Katakam, Prakash; Adiki, Shanta K; Gundamaraju, Rohit; Mitra, Analava

      2017-01-01

      The world has witnessed growing complexities in disease scenario influenced by the drastic changes in host-pathogen- environment triadic relation. Pharmaceutical R&Ds are in constant search of novel therapeutic entities to hasten transition of drug molecules from lab bench to patient bedside. Extensive animal studies and human pharmacokinetics are still the "gold standard" in investigational new drug research and bio-equivalency studies. Apart from cost, time and ethical issues on animal experimentation, burning questions arise relating to ecological disturbances, environmental hazards and biodiversity issues. Grave concerns arises when the adverse outcomes of continued studies on one particular disease on environment gives rise to several other pathogenic agents finally complicating the total scenario. Thus Pharma R&Ds face a challenge to develop bio-waiver protocols. Lead optimization, drug candidate selection with favorable pharmacokinetics and pharmacodynamics, toxicity assessment are vital steps in drug development. Simulation tools like Gastro Plus™, PK Sim®, SimCyp find applications for the purpose. Advanced technologies like organ-on-a chip or human-on-a chip where a 3D representation of human organs and systems can mimic the related processes and activities, thereby linking them to major features of human biology can be successfully incorporated in the drug development tool box. PBPK provides the State of Art to serve as an optional of animal experimentation. PBPK models can successfully bypass bio-equivalency studies, predict bioavailability, drug interactions and on hyphenation with in vitro-in vivo correlation can be extrapolated to humans thus serving as bio-waiver. PBPK can serve as an eco-friendly bio-waiver predictive tool in drug development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

    7. Secondary Prevention Services for Clients Who Are Low Risk in Drug Court: A Conceptual Model

      DeMatteo, David S.; Marlowe, Douglas B.; Festinger, David S.

      2006-01-01

      The drug court model assumes that most drug offenders are addicts, and that drug use fuels other criminal activity. As a result, drug court clients must satisfy an intensive regimen of treatment and supervisory obligations. However, research suggests that roughly one third of drug court clients do not have a clinically significant substance use…

    8. World health dilemmas: Orphan and rare diseases, orphan drugs and orphan patients.

      Kontoghiorghe, Christina N; Andreou, Nicholas; Constantinou, Katerina; Kontoghiorghes, George J

      2014-09-26

      According to global annual estimates hunger/malnutrition is the major cause of death (36 of 62 million). Cardiovascular diseases and cancer (5.44 of 13.43 million) are the major causes of death in developed countries, while lower respiratory tract infections, human immunodeficiency virus infection/acquired immunodeficiency syndrome, diarrhoeal disease, malaria and tuberculosis (10.88 of 27.12 million) are the major causes of death in developing countries with more than 70% of deaths occurring in children. The majority of approximately 800 million people with other rare diseases, including 100000 children born with thalassaemia annually receive no treatment. There are major ethical dilemmas in dealing with global health issues such as poverty and the treatment of orphan and rare diseases. Of approximately 50000 drugs about 10% are orphan drugs, with annual sales of the latter approaching 100 billion USD. In comparison, the annual revenue in 2009 from the top 12 pharmaceutical companies in Western countries was 445 billion USD and the top drug, atorvastatin, reached 100 billion USD. In the same year, the total government expenditure for health in the developing countries was 410 billion USD with only 6%-7% having been received as aid from developed countries. Drugs cost the National Health Service in the United Kingdom more than 20 billion USD or 10% of the annual health budget. Uncontrollable drug prices and marketing policies affect global health budgets, clinical practice, patient safety and survival. Fines of 5.3 billion USD were imposed on two pharmaceutical companies in the United States, the regulatory authority in France was replaced and clinicians were charged with bribery in order to overcome recent illegal practises affecting patient care. High expenditure for drug development is mainly related to marketing costs. However, only 2 million USD was spent developing the drug deferiprone (L1) for thalassaemia up to the stage of multicentre clinical trials. The

    9. World health dilemmas: Orphan and rare diseases, orphan drugs and orphan patients

      Kontoghiorghe, Christina N; Andreou, Nicholas; Constantinou, Katerina; Kontoghiorghes, George J

      2014-01-01

      According to global annual estimates hunger/malnutrition is the major cause of death (36 of 62 million). Cardiovascular diseases and cancer (5.44 of 13.43 million) are the major causes of death in developed countries, while lower respiratory tract infections, human immunodeficiency virus infection/acquired immunodeficiency syndrome, diarrhoeal disease, malaria and tuberculosis (10.88 of 27.12 million) are the major causes of death in developing countries with more than 70% of deaths occurring in children. The majority of approximately 800 million people with other rare diseases, including 100000 children born with thalassaemia annually receive no treatment. There are major ethical dilemmas in dealing with global health issues such as poverty and the treatment of orphan and rare diseases. Of approximately 50000 drugs about 10% are orphan drugs, with annual sales of the latter approaching 100 billion USD. In comparison, the annual revenue in 2009 from the top 12 pharmaceutical companies in Western countries was 445 billion USD and the top drug, atorvastatin, reached 100 billion USD. In the same year, the total government expenditure for health in the developing countries was 410 billion USD with only 6%-7% having been received as aid from developed countries. Drugs cost the National Health Service in the United Kingdom more than 20 billion USD or 10% of the annual health budget. Uncontrollable drug prices and marketing policies affect global health budgets, clinical practice, patient safety and survival. Fines of 5.3 billion USD were imposed on two pharmaceutical companies in the United States, the regulatory authority in France was replaced and clinicians were charged with bribery in order to overcome recent illegal practises affecting patient care. High expenditure for drug development is mainly related to marketing costs. However, only 2 million USD was spent developing the drug deferiprone (L1) for thalassaemia up to the stage of multicentre clinical trials. The

    10. Drug-induced and genetic alterations in stress-responsive systems: Implications for specific addictive diseases.

      Zhou, Yan; Proudnikov, Dmitri; Yuferov, Vadim; Kreek, Mary Jeanne

      2010-02-16

      From the earliest work in our laboratory, we hypothesized, and with studies conducted in both clinical research and animal models, we have shown that drugs of abuse, administered or self-administered, on a chronic basis, profoundly alter stress-responsive systems. Alterations of expression of specific genes involved in stress responsivity, with increases or decreases in mRNA levels, receptor, and neuropeptide levels, and resultant changes in hormone levels, have been documented to occur after chronic intermittent exposure to heroin, morphine, other opiates, cocaine, other stimulants, and alcohol in animal models and in human molecular genetics. The best studied of the stress-responsive systems in humans and mammalian species in general is undoubtedly the HPA axis. In addition, there are stress-responsive systems in other parts in the brain itself, and some of these include components of the HPA axis, such as CRF and CRF receptors, along with POMC gene and gene products. Several other stress-responsive systems are known to influence the HPA axis, such as the vasopressin-vasopressin receptor system. Orexin-hypocretin, acting at its receptors, may effect changes which suggest that it should be properly categorized as a stress-responsive system. However, less is known about the interactions and connectivity of some of these different neuropeptide and receptor systems, and in particular, about the possible connectivity of fast-acting (e.g., glutamate and GABA) and slow-acting (including dopamine, serotonin, and norepinephrine) neurotransmitters with each of these stress-responsive components and the resultant impact, especially in the setting of chronic exposure to drugs of abuse. Several of these stress-responsive systems and components, primarily based on our laboratory-based and human molecular genetics research of addictive diseases, will be briefly discussed in this review. Copyright 2009 Elsevier B.V. All rights reserved.

    11. Emerging drug targets for Aβ and tau in Alzheimer’s disease: a systematic review

      West, Sophie; Bhugra, Praveen

      2015-01-01

      Aims Currently, treatment for Alzheimer’s disease (AD) focuses on the cholinergic hypothesis and provides limited symptomatic effects. Research currently focuses on other factors that are thought to contribute to AD development such as tau proteins and Aβ deposits, and how modification of the associated pathology affects outcomes in patients. This systematic review summarizes and appraises the evidence for the emerging drugs affecting Aβ and tau pathology in AD. Methods A comprehensive, systematic online database search was conducted using the databases ScienceDirect and PubMed to include original research articles. A systematic review was conducted following a minimum set of standards, as outlined by The PRISMA Group 1. Specific inclusion and exclusion criteria were followed and studies fitting the criteria were selected. No human trials were included in this review. In vitro and in vivo AD models were used to assess efficacy to ensure studied agents were emerging targets without large bodies of evidence. Results The majority of studies showed statistically significant improvement (P < 0.05) of Aβ and/or tau pathology, or cognitive effects. Many studies conducted in AD animal models have shown a reduction in Aβ peptide burden and a reduction in tau phosphorylation post-intervention. This has the potential to reduce plaque formation and neuronal degeneration. Conclusions There are many emerging targets showing promising results in the effort to modify the pathological effects associated with AD. Many of the trials also provided evidence of the clinical effects of such drugs reducing pathological outcomes, which was often demonstrated as an improvement of cognition. PMID:25753046

    12. An attention-based effective neural model for drug-drug interactions extraction.

      Zheng, Wei; Lin, Hongfei; Luo, Ling; Zhao, Zhehuan; Li, Zhengguang; Zhang, Yijia; Yang, Zhihao; Wang, Jian

      2017-10-10

      Drug-drug interactions (DDIs) often bring unexpected side effects. The clinical recognition of DDIs is a crucial issue for both patient safety and healthcare cost control. However, although text-mining-based systems explore various methods to classify DDIs, the classification performance with regard to DDIs in long and complex sentences is still unsatisfactory. In this study, we propose an effective model that classifies DDIs from the literature by combining an attention mechanism and a recurrent neural network with long short-term memory (LSTM) units. In our approach, first, a candidate-drug-oriented input attention acting on word-embedding vectors automatically learns which words are more influential for a given drug pair. Next, the inputs merging the position- and POS-embedding vectors are passed to a bidirectional LSTM layer whose outputs at the last time step represent the high-level semantic information of the whole sentence. Finally, a softmax layer performs DDI classification. Experimental results from the DDIExtraction 2013 corpus show that our system performs the best with respect to detection and classification (84.0% and 77.3%, respectively) compared with other state-of-the-art methods. In particular, for the Medline-2013 dataset with long and complex sentences, our F-score far exceeds those of top-ranking systems by 12.6%. Our approach effectively improves the performance of DDI classification tasks. Experimental analysis demonstrates that our model performs better with respect to recognizing not only close-range but also long-range patterns among words, especially for long, complex and compound sentences.

    13. Reproduction numbers of infectious disease models

      Pauline van den Driessche

      2017-08-01

      Full Text Available This primer article focuses on the basic reproduction number, ℛ0, for infectious diseases, and other reproduction numbers related to ℛ0 that are useful in guiding control strategies. Beginning with a simple population model, the concept is developed for a threshold value of ℛ0 determining whether or not the disease dies out. The next generation matrix method of calculating ℛ0 in a compartmental model is described and illustrated. To address control strategies, type and target reproduction numbers are defined, as well as sensitivity and elasticity indices. These theoretical ideas are then applied to models that are formulated for West Nile virus in birds (a vector-borne disease, cholera in humans (a disease with two transmission pathways, anthrax in animals (a disease that can be spread by dead carcasses and spores, and Zika in humans (spread by mosquitoes and sexual contacts. Some parameter values from literature data are used to illustrate the results. Finally, references for other ways to calculate ℛ0 are given. These are useful for more complicated models that, for example, take account of variations in environmental fluctuation or stochasticity. Keywords: Basic reproduction number, Disease control, West Nile virus, Cholera, Anthrax, Zika virus

    14. Application of PK/PD Modeling in Veterinary Field: Dose Optimization and Drug Resistance Prediction

      Ijaz Ahmad

      2016-01-01

      Full Text Available Among veterinary drugs, antibiotics are frequently used. The true mean of antibiotic treatment is to administer dose of drug that will have enough high possibility of attaining the preferred curative effect, with adequately low chance of concentration associated toxicity. Rising of antibacterial resistance and lack of novel antibiotic is a global crisis; therefore there is an urgent need to overcome this problem. Inappropriate antibiotic selection, group treatment, and suboptimal dosing are mostly responsible for the mentioned problem. One approach to minimizing the antibacterial resistance is to optimize the dosage regimen. PK/PD model is important realm to be used for that purpose from several years. PK/PD model describes the relationship between drug potency, microorganism exposed to drug, and the effect observed. Proper use of the most modern PK/PD modeling approaches in veterinary medicine can optimize the dosage for patient, which in turn reduce toxicity and reduce the emergence of resistance. The aim of this review is to look at the existing state and application of PK/PD in veterinary medicine based on in vitro, in vivo, healthy, and disease model.

    15. Using Stem Cells to Model Diseases of the Outer Retina

      Camille Yvon

      2015-01-01

      Full Text Available Retinal degeneration arises from the loss of photoreceptors or retinal pigment epithelium (RPE. It is one of the leading causes of irreversible blindness worldwide with limited effective treatment options. Generation of induced pluripotent stem cell (IPSC-derived retinal cells and tissues from individuals with retinal degeneration is a rapidly evolving technology that holds a great potential for its use in disease modelling. IPSCs provide an ideal platform to investigate normal and pathological retinogenesis, but also deliver a valuable source of retinal cell types for drug screening and cell therapy. In this review, we will provide some examples of the ways in which IPSCs have been used to model diseases of the outer retina including retinitis pigmentosa (RP, Usher syndrome (USH, Leber congenital amaurosis (LCA, gyrate atrophy (GA, juvenile neuronal ceroid lipofuscinosis (NCL, Best vitelliform macular dystrophy (BVMD and age related macular degeneration (AMD.

    16. Using Stem Cells to Model Diseases of the Outer Retina.

      Yvon, Camille; Ramsden, Conor M; Lane, Amelia; Powner, Michael B; da Cruz, Lyndon; Coffey, Peter J; Carr, Amanda-Jayne F

      2015-01-01

      Retinal degeneration arises from the loss of photoreceptors or retinal pigment epithelium (RPE). It is one of the leading causes of irreversible blindness worldwide with limited effective treatment options. Generation of induced pluripotent stem cell (IPSC)-derived retinal cells and tissues from individuals with retinal degeneration is a rapidly evolving technology that holds a great potential for its use in disease modelling. IPSCs provide an ideal platform to investigate normal and pathological retinogenesis, but also deliver a valuable source of retinal cell types for drug screening and cell therapy. In this review, we will provide some examples of the ways in which IPSCs have been used to model diseases of the outer retina including retinitis pigmentosa (RP), Usher syndrome (USH), Leber congenital amaurosis (LCA), gyrate atrophy (GA), juvenile neuronal ceroid lipofuscinosis (NCL), Best vitelliform macular dystrophy (BVMD) and age related macular degeneration (AMD).

    17. Hit and lead criteria in drug discovery for infectious diseases of the developing world.

      Katsuno, Kei; Burrows, Jeremy N; Duncan, Ken; Hooft van Huijsduijnen, Rob; Kaneko, Takushi; Kita, Kiyoshi; Mowbray, Charles E; Schmatz, Dennis; Warner, Peter; Slingsby, B T

      2015-11-01

      Reducing the burden of infectious diseases that affect people in the developing world requires sustained collaborative drug discovery efforts. The quality of the chemical starting points for such projects is a key factor in improving the likelihood of clinical success, and so it is important to set clear go/no-go criteria for the progression of hit and lead compounds. With this in mind, the Japanese Global Health Innovative Technology (GHIT) Fund convened with experts from the Medicines for Malaria Venture, the Drugs for Neglected Diseases initiative and the TB Alliance, together with representatives from the Bill &Melinda Gates Foundation, to set disease-specific criteria for hits and leads for malaria, tuberculosis, visceral leishmaniasis and Chagas disease. Here, we present the agreed criteria and discuss the underlying rationale.

    18. Drugs meeting the molecular basis of diabetic kidney disease: bridging from molecular mechanism to personalized medicine.

      Lambers Heerspink, Hiddo J; Oberbauer, Rainer; Perco, Paul; Heinzel, Andreas; Heinze, Georg; Mayer, Gert; Mayer, Bernd

      2015-08-01

      Diabetic kidney disease (DKD) is a complex, multifactorial disease and is associated with a high risk of renal and cardiovascular morbidity and mortality. Clinical practice guidelines for diabetes recommend essentially identical treatments for all patients without taking into account how the individual responds to the instituted therapy. Yet, individuals vary widely in how they respond to medications and therefore optimal therapy differs between individuals. Understanding the underlying molecular mechanisms of variability in drug response will help tailor optimal therapy. Polymorphisms in genes related to drug pharmacokinetics have been used to explore mechanisms of response variability in DKD, but with limited success. The complex interaction between genetic make-up and environmental factors on the abundance of proteins and metabolites renders pharmacogenomics alone insufficient to fully capture response variability. A complementary approach is to attribute drug response variability to individual variability in underlying molecular mechanisms involved in the progression of disease. The interplay of different processes (e.g. inflammation, fibrosis, angiogenesis, oxidative stress) appears to drive disease progression, but the individual contribution of each process varies. Drugs at the other hand address specific targets and thereby interfere in certain disease-associated processes. At this level, biomarkers may help to gain insight into which specific pathophysiological processes are involved in an individual followed by a rational assessment whether a specific drug's mode of action indeed targets the relevant process at hand. This article describes the conceptual background and data-driven workflow developed by the SysKid consortium aimed at improving characterization of the molecular mechanisms underlying DKD at the interference of the molecular impact of individual drugs in order to tailor optimal therapy to individual patients. © The Author 2015. Published by

    19. Disease and drug-induced arrhythmias : the example of obstructive pulmonary disease

      Warnier, M.J.

      2014-01-01

      Notwithstanding the clinical importance of cardiac arrhythmias, relevant information about the background risk and the exact underlying mechanisms of cardiac arrhythmias in patients with obstructive pulmonary disease (asthma and chronic obstructive pulmonary disease [COPD]) is still lacking. The

    20. Animal Models of Calcific Aortic Valve Disease

      Krista L. Sider

      2011-01-01

      Full Text Available Calcific aortic valve disease (CAVD, once thought to be a degenerative disease, is now recognized to be an active pathobiological process, with chronic inflammation emerging as a predominant, and possibly driving, factor. However, many details of the pathobiological mechanisms of CAVD remain to be described, and new approaches to treat CAVD need to be identified. Animal models are emerging as vital tools to this end, facilitated by the advent of new models and improved understanding of the utility of existing models. In this paper, we summarize and critically appraise current small and large animal models of CAVD, discuss the utility of animal models for priority CAVD research areas, and provide recommendations for future animal model studies of CAVD.

    1. Association between falls in elderly women and chronic diseases and drug use: cross sectional study

      Lawlor, Debbie A; Patel, Rita; Ebrahim, Shah

      2003-01-01

      OBJECTIVE: To assess the associations between having had a fall and chronic diseases and drug use in elderly women. DESIGN: Cross sectional survey, using data from the British women's heart and health study. SETTING: General practices in 23 towns in Great Britain. PARTICIPANTS: 4050 women aged 60-79 years. MAIN OUTCOME MEASURE: Whether women had had falls in the previous 12 months. RESULTS: The prevalence of falling increased with increasing numbers of simultaneously occurring chronic disease...

    2. Colchicine in Pericardial Disease: from the Underlying Biology and Clinical Benefits to the Drug-Drug Interactions in Cardiovascular Medicine.

      Schenone, Aldo L; Menon, Venu

      2018-06-14

      This is an in-depth review on the mechanism of action, clinical utility, and drug-drug interactions of colchicine in the management of pericardial disease. Recent evidence about therapeutic targets on pericarditis has demonstrated that NALP3 inflammasome blockade is the cornerstone in the clinical benefits of colchicine. Such benefits extend from acute and recurrent pericarditis to transient constriction and post-pericardiotomy syndrome. Despite the increased utilization of colchicine in cardiovascular medicine, safety concerns remains unsolved regarding the long-term use of colchicine in the cardiac patient. Moreover, recent evidence has demonstrated that numerous cardiovascular medications, ranging from antihypertensive medication to antiarrhythmics, are known to interact with the CYP3A4 and/or P-gp system increasing the toxicity potential of colchicine. The use of adjunctive colchicine in the management of inflammatory pericardial diseases is standard of care in current practice. It is advised that a careful medication reconciliation with emphasis on pharmacokinetic is completed before prescribing colchicine in order to avoid harmful interaction by finding an alternative regimen or adjusting colchicine dosing.

    3. Mast Cell Stabilizers as Host Modulatory Drugs to Prevent and Control Periodontal Disease

      Dhoom Singh Mehta

      2011-01-01

      Full Text Available Introduction: Mast cells are among the first cells to get in-volved in periodontal inflammation. Their numbers have been shown to be in-creased in cases of gingivitis and periodontal disease. The hypothesis: Since mast cell stabilizers like sodium cromogly-cate (SCG and nedocromil sodium (NS have been used in the prophylaxis of bronchial asthma without any significant adverse effects and also the fact that drugs like SCG show significant anti-inflammatory activities, it would be logical to use mast cell stabilizers as host modulating drugs for the treatment and prevention of peri-odontal disease. Evaluation of the hypothesis: Safety and efficacy of both SCG and NS are well documented. So, it will be systemically safe to use in humans. However, oral administration SCG or delivery of the drug by means local irrigation will not be very useful because SCG may not be secreted in the gingival crevicular fluid (GCF(as in the case of oral administraion or the drug may get washed out from periodontal pocket due to the constant flow of GCF(as in the case of irrigation. A local or targeted drug delivery of mast cell stabilizers can be used in patients with periodontal disease. Role of mast cells in periodontal disease has been dealt in-depth in many studies and articles. However, limited amount of research has been done on using mast cell stabilizers in the prevention and control of periodontal diseases. More studies are needed to study the efficacy and effective-ness of mast cell stabilizers as an adjunct to phase I therapy in the control of periodontal disease.

    4. Nanotechnology-based drug delivery systems for Alzheimer's disease management: Technical, industrial, and clinical challenges.

      Wen, Ming Ming; El-Salamouni, Noha S; El-Refaie, Wessam M; Hazzah, Heba A; Ali, Mai M; Tosi, Giovanni; Farid, Ragwa M; Blanco-Prieto, Maria J; Billa, Nashiru; Hanafy, Amira S

      2017-01-10

      Alzheimer's disease (AD) is a neurodegenerative disease with high prevalence in the rapidly growing elderly population in the developing world. The currently FDA approved drugs for the management of symptomatology of AD are marketed mainly as conventional oral medications. Due to their gastrointestinal side effects and lack of brain targeting, these drugs and dosage regiments hinder patient compliance and lead to treatment discontinuation. Nanotechnology-based drug delivery systems (NTDDS) administered by different routes can be considered as promising tools to improve patient compliance and achieve better therapeutic outcomes. Despite extensive research, literature screening revealed that clinical activities involving NTDDS application in research for AD are lagging compared to NTDDS for other diseases such as cancers. The industrial perspectives, processability, and cost/benefit ratio of using NTDDS for AD treatment are usually overlooked. Moreover, active and passive immunization against AD are by far the mostly studied alternative AD therapies because conventional oral drug therapy is not yielding satisfactorily results. NTDDS of approved drugs appear promising to transform this research from 'paper to clinic' and raise hope for AD sufferers and their caretakers. This review summarizes the recent studies conducted on NTDDS for AD treatment, with a primary focus on the industrial perspectives and processability. Additionally, it highlights the ongoing clinical trials for AD management. Copyright © 2016 Elsevier B.V. All rights reserved.

    5. Seven challenges in modeling vaccine preventable diseases

      C.J.E. Metcalf

      2015-03-01

      Full Text Available Vaccination has been one of the most successful public health measures since the introduction of basic sanitation. Substantial mortality and morbidity reductions have been achieved via vaccination against many infections, and the list of diseases that are potentially controllable by vaccines is growing steadily. We introduce key challenges for modeling in shaping our understanding and guiding policy decisions related to vaccine preventable diseases.

    6. Neurophysiology of Drosophila Models of Parkinson's Disease

      West, Ryan J. H.; Furmston, Rebecca; Williams, Charles A. C.; Elliott, Christopher J. H.

      2015-01-01

      We provide an insight into the role Drosophila has played in elucidating neurophysiological perturbations associated with Parkinson's disease- (PD-) related genes. Synaptic signalling deficits are observed in motor, central, and sensory systems. Given the neurological impact of disease causing mutations within these same genes in humans the phenotypes observed in fly are of significant interest. As such we observe four unique opportunities provided by fly nervous system models of Parkinson's ...

    7. Drug-induced diseases (DIDs: An experience of a tertiary care teaching hospital from India

      Vishal R Tandon

      2015-01-01

      Full Text Available Background & objectives: Drug-induced diseases (DIDs are well known but least studied. Data on DIDs from India are not available. Hence, this retrospective cross-sectional study was undertaken using suspected adverse drug reaction (ADR data collected form Pharmacovigilance Programme of India (PvPI to evaluate profile of DIDs over two years, in a tertiary care teaching hospital from north India. Methods: The suspected ADRs in the form of DID were evaluated for drug and disease related variables and were classified in terms of causality. Results: DID rate was 38.80 per cent. Mean duration of developing DIDs was 26.05 ± 9.6 days; 25.16 per cent had more than one co-morbid condition. Geriatric population (53.99% accounted for maximum DIDs followed by adult (37.79% and paediatric (8.21%. Maximum events were probable (93.98% followed by possible (6.04%. All DIDs required intervention. Gastritis (7.43%, diarrhoea (5.92%, anaemia (4.79%, hypotension (2.77%, hepatic dysfunction (2.69%, hypertension (1.51%, myalgia (1.05%, and renal dysfunction (1.01% were some of the DIDs. Anti-tubercular treatment (ATT, anti- retroviral treatment (ART, ceftriaxone injection, steroids, non-steroidal anti-inflammatory drugs, antimicrobials and anticancer drugs were found as commonly offending drugs. Interpretation & conclusions: Our findings show that DIDs are a significant health problem in our country, which need more attention.

    8. Multi-Drug-Loaded Microcapsules with Controlled Release for Management of Parkinson's Disease.

      Baek, Jong-Suep; Choo, Chee Chong; Qian, Cheng; Tan, Nguan Soon; Shen, Zexiang; Loo, Say Chye Joachim

      2016-07-01

      Parkinson's disease (PD) is a progressive disease of the nervous system, and is currently managed through commercial tablets that do not sufficiently enable controlled, sustained release capabilities. It is hypothesized that a drug delivery system that provides controlled and sustained release of PD drugs would afford better management of PD. Hollow microcapsules composed of poly-l-lactide (PLLA) and poly (caprolactone) (PCL) are prepared through a modified double-emulsion technique. They are loaded with three PD drugs, i.e., levodopa (LD), carbidopa (CD), and entacapone (ENT), at a ratio of 4:1:8, similar to commercial PD tablets. LD and CD are localized in both the hollow cavity and PLLA/PCL shell, while ENT is localized in the PLLA/PCL shell. Release kinetics of hydrophobic ENT is observed to be relatively slow as compared to the other hydrophilic drugs. It is further hypothesized that encapsulating ENT into PCL as a surface coating onto these microcapsules can aid in accelerating its release. Now, these spray-coated hollow microcapsules exhibit similar release kinetics, according to Higuchi's rate, for all three drugs. The results suggest that multiple drug encapsulation of LD, CD, and ENT in gastric floating microcapsules could be further developed for in vivo evaluation for the management of PD. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

    9. Nanotechnology in dentistry: drug delivery systems for the control of biofilm-dependent oral diseases.

      de Sousa, Francisco Fabio Oliveira; Ferraz, Camila; Rodrigues, Lidiany K Arla de Azevedo; Nojosa, Jacqueline de Santiago; Yamauti, Monica

      2014-01-01

      Dental disorders, such as caries, periodontal and endodontic diseases are major public health issues worldwide. In common, they are biofilm-dependent oral diseases, and the specific conditions of oral cavity may develop infectious foci that could affect other physiological systems. Efforts have been made to develop new treatment routes for the treatment of oral diseases, and therefore, for the prevention of some systemic illnesses. New drugs and materials have been challenged to prevent and treat these conditions, especially by means of bacteria elimination. "Recent progresses in understanding the etiology, epidemiology and microbiology of the microbial flora in those circumstances have given insight and motivated the innovation on new therapeutic approaches for the management of the oral diseases progression". Some of the greatest advances in the medical field have been based in nanosized systems, ranging from the drug release with designed nanoparticles to tissue scaffolds based on nanotechnology. These systems offer new possibilities for specific and efficient therapies, been assayed successfully in preventive/curative therapies to the oral cavity, opening new challenges and opportunities to overcome common diseases based on bacterial biofilm development. The aim of this review is to summarize the recent nanotechnological developments in the drug delivery field related to the prevention and treatment of the major biofilm-dependent oral diseases and to identify those systems, which may have higher potential for clinical use.

    10. Acid-suppressive drugs and risk of kidney disease: A systematic review and meta-analysis.

      Qiu, Tingting; Zhou, Junwen; Zhang, Chao

      2018-04-12

      More concerns had been raised about the risk of kidney disease (KD) associated with acid-suppressive drugs (ASDs). But whether they could directly increase such risk remained unclear. Meta-analysis was conducted to comprehensively investigate this relationship. PubMed, EMBASE, Cochrane Central Register of Controlled Trials, and three Chinese databases were searched until April 2017 for observational studies investigating the associations between ASDs and KD. Pooled log (odds ratios, ORs) or log (hazard ratios, HRs) with standard errors for KD risk were calculated using the generic inverse variance method and random-effect model. Ten studies involving 128,020 KD patients were included. Proton pump inhibitor (PPI) therapy was associated with higher risks of acute interstitial nephritis (AIN) (OR, 2.78; 95% confidence interval (CI), 1.25-6.17), acute kidney injury (AKI) (HR, 1.85; 95% CI, 1.33-2.59), chronic kidney disease (CKD) (HR, 1.47; 95% CI, 1.03-2.09), and end-stage renal disease (ESRD) (HR, 1.61; 95% CI, 1.26-2.04) than non-PPI therapy. Additionally, PPI significantly increased the risks of AKI (HR, 1.32; 95% CI, 1.16-1.51), CKD (HR, 1.28; 95% CI, 1.24-1.33) and ESRD (HR, 1.96; 95% CI, 1.21-3.17) compared to histamine 2 receptor antagonist (H 2 RA). Relationship between H 2 RA therapy and AKI (OR, 0.98; 95% CI, 0.90-1.07) or CKD (OR, 1.00; 95% CI, 0.89-1.11) was not found. PPI therapy significantly increased the risks of AIN, AKI, CKD and ESRD. Similar risks were not identified for H 2 RA therapy. More clinical trials are needed to confirm our findings. This article is protected by copyright. All rights reserved.

    11. Strategies, models and biomarkers in experimental non-alcoholic fatty liver disease research

      Willebrords, Joost; Pereira, Isabel Veloso Alves; Maes, Michaël; Yanguas, Sara Crespo; Colle, Isabelle; Van Den Bossche, Bert; Da silva, Tereza Cristina; Oliveira, Cláudia P; Andraus, Wellington; Alves, Venâncio Avancini Ferreira; Cogliati, Bruno; Vinken, Mathieu

      2015-01-01

      Non-alcoholic fatty liver disease encompasses a spectrum of liver diseases, including simple steatosis, steatohepatitis, liver fibrosis and cirrhosis and hepatocellular carcinoma. Non-alcoholic fatty liver disease is currently the most dominant chronic liver disease in Western countries due to the fact that hepatic steatosis is associated with insulin resistance, type 2 diabetes mellitus, obesity, metabolic syndrome and drug-induced injury. A variety of chemicals, mainly drugs, and diets is known to cause hepatic steatosis in humans and rodents. Experimental non-alcoholic fatty liver disease models rely on the application of a diet or the administration of drugs to laboratory animals or the exposure of hepatic cell lines to these drugs. More recently, genetically modified rodents or zebrafish have been introduced as non-alcoholic fatty liver disease models. Considerable interest now lies in the discovery and development of novel non-invasive biomarkers of non-alcoholic fatty liver disease, with specific focus on hepatic steatosis. Experimental diagnostic biomarkers of non-alcoholic fatty liver disease, such as (epi)genetic parameters and ‘-omics’-based read-outs are still in their infancy, but show great promise. . In this paper, the array of tools and models for the study of liver steatosis is discussed. Furthermore, the current state-of-art regarding experimental biomarkers such as epigenetic, genetic, transcriptomic, proteomic and metabonomic biomarkers will be reviewed. PMID:26073454

    12. A mathematical model of Chagas disease transmission

      Hidayat, Dayat; Nugraha, Edwin Setiawan; Nuraini, Nuning

      2018-03-01

      Chagas disease is a parasitic infection caused by protozoan Trypanosoma cruzi which is transmitted to human by insects of the subfamily Triatominae, including Rhodnius prolixus. This disease is a major problem in several countries of Latin America. A mathematical model of Chagas disease with separate vector reservoir and a neighboring human resident is constructed. The basic reproductive ratio is obtained and stability analysis of the equilibria is shown. We also performed sensitivity populations dynamics of infected humans and infected insects based on migration rate, carrying capacity, and infection rate parameters. Our findings showed that the dynamics of the infected human and insect is mostly affected by carrying capacity insect in the settlement.

    13. Five-Factor Model personality profiles of drug users

      Crum Rosa M

      2008-04-01

      Full Text Available Abstract Background Personality traits are considered risk factors for drug use, and, in turn, the psychoactive substances impact individuals' traits. Furthermore, there is increasing interest in developing treatment approaches that match an individual's personality profile. To advance our knowledge of the role of individual differences in drug use, the present study compares the personality profile of tobacco, marijuana, cocaine, and heroin users and non-users using the wide spectrum Five-Factor Model (FFM of personality in a diverse community sample. Method Participants (N = 1,102; mean age = 57 were part of the Epidemiologic Catchment Area (ECA program in Baltimore, MD, USA. The sample was drawn from a community with a wide range of socio-economic conditions. Personality traits were assessed with the Revised NEO Personality Inventory (NEO-PI-R, and psychoactive substance use was assessed with systematic interview. Results Compared to never smokers, current cigarette smokers score lower on Conscientiousness and higher on Neuroticism. Similar, but more extreme, is the profile of cocaine/heroin users, which score very high on Neuroticism, especially Vulnerability, and very low on Conscientiousness, particularly Competence, Achievement-Striving, and Deliberation. By contrast, marijuana users score high on Openness to Experience, average on Neuroticism, but low on Agreeableness and Conscientiousness. Conclusion In addition to confirming high levels of negative affect and impulsive traits, this study highlights the links between drug use and low Conscientiousness. These links provide insight into the etiology of drug use and have implications for public health interventions.

    14. Patterns of Innovation in Alzheimer's Disease Drug Development: A Strategic Assessment Based on Technological Maturity.

      Beierlein, Jennifer M; McNamee, Laura M; Walsh, Michael J; Ledley, Fred D

      2015-08-01

      This article examines the current status of translational science for Alzheimer's disease (AD) drug discovery by using an analytical model of technology maturation. Previous studies using this model have demonstrated that nascent scientific insights and inventions generate few successful leads or new products until achieving a requisite level of maturity. This article assessed whether recent failures and successes in AD research follow patterns of innovation observed in other sectors. The bibliometric-based Technology Innovation Maturation Evaluation model was used to quantify the characteristic S-curve of growth for AD-related technologies, including acetylcholinesterase, N-methyl-d-aspartate (NMDA) receptors, B-amyloid, amyloid precursor protein, presenilin, amyloid precursor protein secretases, apolipoprotein E4, and transactive response DNA binding protein 43 kDa (TDP-43). This model quantifies the accumulation of knowledge as a metric for technological maturity, and it identifies the point of initiation of an exponential growth stage and the point at which growth slows as the technology is established. In contrast to the long-established acetylcholinesterase and NMDA receptor technologies, we found that amyloid-related technologies reached the established point only after 2000, and that the more recent technologies (eg, TDP-43) have not yet approached this point. The first approvals for new molecular entities targeting acetylcholinesterase and the NMDA receptor occurred an average of 22 years after the respective technologies were established, with only memantine (which was phenotypically discovered) entering clinical trials before this point. In contrast, the 6 lead compounds targeting the formation of amyloid plaques that failed in Phase III trials between 2009 and 2014 all entered clinical trials before the respective target technologies were established. This analysis suggests that AD drug discovery has followed a predictable pattern of innovation in which

    15. Animal models for Gaucher disease research.

      Farfel-Becker, Tamar; Vitner, Einat B; Futerman, Anthony H

      2011-11-01

      Gaucher disease (GD), the most common lysosomal storage disorder (LSD), is caused by the defective activity of the lysosomal hydrolase glucocerebrosidase, which is encoded by the GBA gene. Generation of animal models that faithfully recapitulate the three clinical subtypes of GD has proved to be more of a challenge than first anticipated. The first mouse to be produced died within hours after birth owing to skin permeability problems, and mice with point mutations in Gba did not display symptoms correlating with human disease and also died soon after birth. Recently, conditional knockout mice that mimic some features of the human disease have become available. Here, we review the contribution of all currently available animal models to examining pathological pathways underlying GD and to testing the efficacy of new treatment modalities, and propose a number of criteria for the generation of more appropriate animal models of GD.

    16. Animal models for Gaucher disease research

      Tamar Farfel-Becker

      2011-11-01

      Full Text Available Gaucher disease (GD, the most common lysosomal storage disorder (LSD, is caused by the defective activity of the lysosomal hydrolase glucocerebrosidase, which is encoded by the GBA gene. Generation of animal models that faithfully recapitulate the three clinical subtypes of GD has proved to be more of a challenge than first anticipated. The first mouse to be produced died within hours after birth owing to skin permeability problems, and mice with point mutations in Gba did not display symptoms correlating with human disease and also died soon after birth. Recently, conditional knockout mice that mimic some features of the human disease have become available. Here, we review the contribution of all currently available animal models to examining pathological pathways underlying GD and to testing the efficacy of new treatment modalities, and propose a number of criteria for the generation of more appropriate animal models of GD.

    17. Hemolytic Disease of the Fetus and Newborn due to Intravenous Drug Use.

      Markham, Kara B; Scrape, Scott R; Prasad, Mona; Rossi, Karen Q; O'Shaughnessy, Richard W

      2016-03-01

      Objectives The objective is to present a pregnancy complication associated with intravenous drug use, namely, that of red blood cell alloimmunization and hemolytic disease of the fetus and newborn. Methods An observational case series is presented including women with red blood cell alloimmunization most likely secondary to intravenous drug abuse Results Five pregnancies were identified that were complicated by red blood cell alloimmunization and significant hemolytic disease of the fetus and newborn, necessitating intrauterine transfusion, an indicated preterm birth, or neonatal therapy. Conclusions As opioid abuse continues to increase in the United States, clinicians should be aware of the potential for alloimmunization to red blood cell antibodies as yet another negative outcome from intravenous drug abuse.

    18. Application of Several Multimedia Approaches to the Teaching of CNS Pharmacology: Parkinson's Disease and Antiparkinsonism Drugs.

      Faulkner, Thomas P.; Sprague, Jon E.

      1996-01-01

      A multimedia approach to drug therapy for Parkinson's Disease, part of a pharmacy school central nervous system course, integrated use of lecture, textbook, video/graphic technology, the movie "Awakenings," Internet and World Wide Web, and an interactive animated movie. A followup questionnaire found generally positive student attitudes…

    19. Proposal for a new nomenclature of disease-modifying antirheumatic drugs

      Smolen, Josef S.; van der Heijde, Desiree; Machold, Klaus P.; Aletaha, Daniel; Landewe, Robert

      2014-01-01

      In light of the recent emergence of new therapeutics for rheumatoid arthritis, such as kinase inhibitors and biosimilars, a new nomenclature for disease-modifying antirheumatic drugs (DMARDs), which are currently often classified as synthetic (or chemical) DMARDs (sDMARDS) and biological DMARDs

    20. Prospects for the control of neglected tropical diseases by mass drug administration

      Smits, Henk L.

      2009-01-01

      The prospects for the control of neglected tropical diseases, including soil-transmitted helminthiasis, shistosomiasis, lymphatic filariasis, onchocerciasis and trachoma, through mass drug administration, are exemplified by the elimination of the trachoma as a public-health problem in Morocco. In

    1. Drug targeting systems for inflammatory disease: one for all, all for one

      Crielaard, B.J.; Lammers, Twan Gerardus Gertudis Maria; Schiffelers, R.M.; Storm, Gerrit

      2012-01-01

      Abstract In various systemic disorders, structural changes in the microenvironment of diseased tissues enable both passive and active targeting of therapeutic agents to these tissues. This has led to a number of targeting approaches that enhance the accumulation of drugs in the target tissues,

    2. Estimated glomerular filtration rate, chronic kidney disease and antiretroviral drug use in HIV-positive patients

      Mocroft, Amanda; Kirk, Ole; Reiss, Peter; de Wit, Stephane; Sedlacek, Dalibor; Beniowski, Marek; Gatell, Jose; Phillips, Andrew N.; Ledergerber, Bruno; Lundgren, Jens D.; Losso, M.; Elias, C.; Vetter, N.; Zangerle, R.; Karpov, I.; Vassilenko, A.; Mitsura, V. M.; Suetnov, O.; Clumeck, N.; Poll, B.; Colebunders, R.; Vandekerckhove, L.; Hadziosmanovic, V.; Kostov, K.; Begovac, J.; Machala, L.; Rozsypal, H.; Sedlacek, D.; Nielsen, J.; Kronborg, G.; Benfield, T.; Larsen, M.; Gerstoft, J.; Katzenstein, T.; Hansen, A.-B. E.; Skinhøj, P.; Pedersen, C.; Oestergaard, L.; Zilmer, K.; Smidt, Jelena; Ristola, M.; Katlama, C.; Viard, J.-P.; Girard, P.-M.; Livrozet, J. M.; Vanhems, P.; Pradier, C.; Dabis, F.; Neau, D.; Rockstroh, J.

      2010-01-01

      Objectives: Chronic kidney disease (CKD) in HIV-positive persons might be caused by both HIV and traditional or non-HIV-related factors. Our objective was to investigate long-term exposure to specific antiretroviral drugs and CKD. Design: A cohort study including 6843 HIV-positive persons with at

    3. Sex-dimorphic adverse drug reactions to immune suppressive agents in inflammatory bowel disease

      Z. Zelinkova (Zuzana); E. Bultman (Evelien); L. Vogelaar (Lauran); C. Bouziane (Cheima); E.J. Kuipers (Ernst); C.J. van der Woude (Janneke)

      2012-01-01

      textabstractAIM: To analyze sex differences in adverse drug reactions (ADR) to the immune suppressive medication in inflammatory bowel disease (IBD) patients. METHODS: All IBD patients attending the IBD outpatient clinic of a referral hospital were identifed through the electronic diagnosis

    4. Patients’ satisfaction with and views about treatment with disease-modifying drugs in multiple sclerosis

      Caroline Vieira Spessotto

      2016-08-01

      Full Text Available ABSTRACT Objective The treatment of multiple sclerosis (MS with disease-modifying-drugs (DMDs is evolving and new drugs are reaching the market. Efficacy and safety aspects of the drugs are crucial, but the patients’ satisfaction with the treatment must be taken into consideration. Methods Individual interview with patients with MS regarding their satisfaction and points of view on the treatment with DMDs. Results One hundred and twenty eight patients attending specialized MS Units in five different cities were interviewed. Over 80% of patients were very satisfied with the drugs in use regarding convenience and perceived benefits. The only aspect scoring lesser values was tolerability. Conclusion Parameters for improving treatment in MS must include efficacy, safety, and patient satisfaction with the given DMD.

    5. Bioethics of intervention and the case of drugs Bevacizumab and Ranibizumab for retinal diseases

      Flávio R. L. Paranhos

      2016-10-01

      Full Text Available From the year 2000, on a class of biological drugs, the anti-VEGF proved to be quite effective in the treatment of retinal diseases, which have in its pathophysiological mechanism an important vascular proliferation component that can lead to blindness. Two of these drugs, bevacizumab and ranibizumab, are quite similar and have the same efficacy and safety. They were developed by the same laboratory and are commercialized by two major pharmaceutical companies through an agreement made between them. However, there is a big difference in the price of the drugs. The aim of this article is to present the Bioethics of intervention as grounds for choosing the cheaper drug, even if forced to do so by regulatory entities.

    6. MANAGEMENT OF ENDOCRINE DISEASE: Arguments for the prolonged use of antithyroid drugs in children with Graves' disease.

      Léger, Juliane; Carel, Jean-Claude

      2017-08-01

      Graves' disease is an autoimmune disorder. It is the leading cause of hyperthyroidism, but is rare in children. Patients are initially managed with antithyroid drugs (ATDs), such as methimazole/carbimazole. A major disadvantage of treatment with ATD is the high risk of relapse, exceeding 70% of children treated for duration of 2 years, and the potential major side effects of the drug reported in exceptional cases. The major advantage of ATD treatment is that normal homeostasis of the hypothalamus-pituitary-thyroid axis may be restored, with periods of drug treatment followed by freedom from medical intervention achieved in approximately 40-50% of cases after prolonged treatment with ATD, for several years, in recent studies. Alternative ablative treatments such as radioactive iodine and, less frequently and mostly in cases of very high volume goiters or in children under the age of 5 years, thyroidectomy, performed by pediatric surgeons with extensive experience should be proposed in cases of non-compliance, intolerance to medical treatment or relapse after prolonged medical treatment. Ablative treatments are effective against hyperthyroidism, but they require the subsequent administration of levothyroxine throughout the patient's life. This review considers data relating to the prognosis for Graves' disease remission in children and explores the limitations of study designs and results; and the emerging proposal for management through the prolonged use of ATD drugs. © 2017 European Society of Endocrinology.

    7. Towards a pragmatic human migraine model for drug testing

      Hansen, Emma Katrine; Olesen, Jes

      2017-01-01

      Background A model for the testing of novel anti-migraine drugs should preferably use healthy volunteers for ease of recruiting. Isosorbide-5-mononitrate (5-ISMN) provokes headache in healthy volunteers with some migraine features such as pulsating pain quality and aggravation by physical activity.......003). Difference in area under the headache score curve (AUC) 0-4 hours between sumatriptan and placebo was not significant ( p = 0.30). Conclusion 5-ISMN is a very powerful inducer of migraine-like headache in healthy individuals but the headache does not respond to sumatriptan. The model is not useful for future...

    8. Modeling of corneal and retinal pharmacokinetics after periocular drug administration.

      Amrite, Aniruddha C; Edelhauser, Henry F; Kompella, Uday B

      2008-01-01

      the SD rat corneas. Similar pharmacokinetics models explain drug delivery to the cornea in rat and rabbit animal models. Retinal pharmacokinetics after periocular drug administration can be explained with a four-compartment (periocular space, choroid-containing transfer compartment, retina, and distribution compartment) model with elimination from the periocular space, retina, and choroid compartment. Inclusion of a dissolution-release step before the drug is available for absorption or elimination better explains retinal t(max). Good fits were obtained in both the BN (r = 0.99) and SD (r = 0.99) rats for retinal celecoxib using the same model; however, the parameter estimates differed. Corneal and retinal pharmacokinetics of small lipophilic molecules after periocular administration can be described by compartment models. The modeling analysis shows that (1) leak-back from the site of administration most likely contributes to the apparent lack of an increase phase in corneal concentrations; (2) elimination via the conjunctival or periocular blood and lymphatic systems contributes significantly to drug clearance after periocular injection; (3) corneal pharmacokinetics of small lipophilic molecules can be explained by using similar models in rats and rabbits; and (4) although there are differences in some retinal pharmacokinetics parameters between the pigmented and nonpigmented rats, the physiological basis of these differences has yet to be ascertained.

    9. Prescriptive Oriented Drug Analysis of Multiple Sclerosis Disease by LC-UV in Whole Human Blood.

      Suneetha, A; Rajeswari, Raja K

      2016-02-01

      As a polytherapy treatment, multiple sclerosis disease demands prescriptions with more than one drug. Polytherapy is sometimes rational for drug combinations chosen to minimize adverse effects. Estimation of drugs that are concomitantly administered in polytherapy is acceptable as it shortens the analytical timepoints and also the usage of biological matrices. In clinical phase trials, the withdrawal of biofluids is a critical issue for each analysis. Estimating all the coadminsitered drugs in a single shot will be more effective and economical for pharmaceuticals. A single, simple, rapid and sensitive high-performance liquid chromatography assay method has been developed with UV detection and fully validated for the quantification of 14 drugs (at random combinations) used in the treatment of multiple sclerosis disease. The set of combinations was based on prescriptions to patients. Separations were achieved on an X-Terra MS C18 (100 × 3.9 mm, 5 µm) column. The analytes were extracted from 50 µL aliquots of whole human blood with protein precipitation using acetonitrile. All the drugs were sufficiently stable during storage for 24 h at room temperature and for 23 days at 2-8°C. The percentage recoveries of all drugs were between 90 and 115%, with RSD values <10.6%. This method has been shown to be reproducible and sensitive and can be applied to clinical samples from pharmacokinetic studies and also a useful tool in studying the drug interaction studies. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

    10. COPD - control drugs

      Chronic obstructive pulmonary disease - control drugs; Bronchodilators - COPD - control drugs; Beta agonist inhaler - COPD - control drugs; Anticholinergic inhaler - COPD - control drugs; Long-acting inhaler - COPD - control drugs; ...

    11. A hepatitis C virus infection model with time-varying drug effectiveness: solution and analysis.

      Jessica M Conway

      2014-08-01

      Full Text Available Simple models of therapy for viral diseases such as hepatitis C virus (HCV or human immunodeficiency virus assume that, once therapy is started, the drug has a constant effectiveness. More realistic models have assumed either that the drug effectiveness depends on the drug concentration or that the effectiveness varies over time. Here a previously introduced varying-effectiveness (VE model is studied mathematically in the context of HCV infection. We show that while the model is linear, it has no closed-form solution due to the time-varying nature of the effectiveness. We then show that the model can be transformed into a Bessel equation and derive an analytic solution in terms of modified Bessel functions, which are defined as infinite series, with time-varying arguments. Fitting the solution to data from HCV infected patients under therapy has yielded values for the parameters in the model. We show that for biologically realistic parameters, the predicted viral decay on therapy is generally biphasic and resembles that predicted by constant-effectiveness (CE models. We introduce a general method for determining the time at which the transition between decay phases occurs based on calculating the point of maximum curvature of the viral decay curve. For the parameter regimes of interest, we also find approximate solutions for the VE model and establish the asymptotic behavior of the system. We show that the rate of second phase decay is determined by the death rate of infected cells multiplied by the maximum effectiveness of therapy, whereas the rate of first phase decline depends on multiple parameters including the rate of increase of drug effectiveness with time.

    12. Economic Modeling Considerations for Rare Diseases.

      Pearson, Isobel; Rothwell, Ben; Olaye, Andrew; Knight, Christopher

      2018-05-01

      To identify challenges that affect the feasibility and rigor of economic models in rare diseases and strategies that manufacturers have employed in health technology assessment submissions to demonstrate the value of new orphan products that have limited study data. Targeted reviews of PubMed, the National Institute for Health and Care Excellence's (NICE's) Highly Specialised Technologies (HST), and the Scottish Medicines Consortium's (SMC's) ultra-orphan submissions were performed. A total of 19 PubMed studies, 3 published NICE HSTs, and 11 ultra-orphan SMC submissions were eligible for inclusion. In rare diseases, a number of different factors may affect the model's ability to comply with good practice recommendations. Many products for the treatment of rare diseases have an incomplete efficacy and safety profile at product launch. In addition, there is often limited available natural history and epidemiology data. Information on the direct and indirect cost burden of an orphan disease also may be limited, making it difficult to estimate the potential economic benefit of treatment. These challenges can prevent accurate estimation of a new product's benefits in relation to costs. Approaches that can address such challenges include using patient and/or clinician feedback to inform model assumptions; data from disease analogues; epidemiological techniques, such as matching-adjusted indirect comparison; and long-term data collection. Modeling in rare diseases is often challenging; however, a number of approaches are available to support the development of model structures and the collation of input parameters and to manage uncertainty. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

    13. Do payers value rarity? : An analysis of the relationship between disease rarity and orphan drug prices in Europe

      Medic, Goran; Korchagina, Daria; Young, Katherine Eve; Toumi, Mondher; Postma, Maarten Jacobus; Wille, Micheline; Hemels, Michiel

      2017-01-01

      Background and Objective: Orphan drugs have been a highlight of discussions due to their higher prices than non-orphan drugs. There is currently no European consensus on the method of value assessment for orphan drugs. This study assessed the relationship between the prevalence of rare diseases and

    14. Infectious disease modeling a hybrid system approach

      Liu, Xinzhi

      2017-01-01

      This volume presents infectious diseases modeled mathematically, taking seasonality and changes in population behavior into account, using a switched and hybrid systems framework. The scope of coverage includes background on mathematical epidemiology, including classical formulations and results; a motivation for seasonal effects and changes in population behavior, an investigation into term-time forced epidemic models with switching parameters, and a detailed account of several different control strategies. The main goal is to study these models theoretically and to establish conditions under which eradication or persistence of the disease is guaranteed. In doing so, the long-term behavior of the models is determined through mathematical techniques from switched systems theory. Numerical simulations are also given to augment and illustrate the theoretical results and to help study the efficacy of the control schemes.

    15. Neurophysiology of Drosophila Models of Parkinson’s Disease

      Ryan J. H. West

      2015-01-01

      Full Text Available We provide an insight into the role Drosophila has played in elucidating neurophysiological perturbations associated with Parkinson’s disease- (PD- related genes. Synaptic signalling deficits are observed in motor, central, and sensory systems. Given the neurological impact of disease causing mutations within these same genes in humans the phenotypes observed in fly are of significant interest. As such we observe four unique opportunities provided by fly nervous system models of Parkinson’s disease. Firstly, Drosophila models are instrumental in exploring the mechanisms of neurodegeneration, with several PD-related mutations eliciting related phenotypes including sensitivity to energy supply and vesicular deformities. These are leading to the identification of plausible cellular mechanisms, which may be specific to (dopaminergic neurons and synapses rather than general cellular phenotypes. Secondly, models show noncell autonomous signalling within the nervous system, offering the opportunity to develop our understanding of the way pathogenic signalling propagates, resembling Braak’s scheme of spreading pathology in PD. Thirdly, the models link physiological deficits to changes in synaptic structure. While the structure-function relationship is complex, the genetic tractability of Drosophila offers the chance to separate fundamental changes from downstream consequences. Finally, the strong neuronal phenotypes permit relevant first in vivo drug testing.

    16. Nanocarrier mediated retinal drug delivery: overcoming ocular barriers to treat posterior eye diseases.

      Bisht, Rohit; Mandal, Abhirup; Jaiswal, Jagdish K; Rupenthal, Ilva D

      2018-03-01

      Effective drug delivery to the retina still remains a challenge due to ocular elimination mechanisms and complex barriers that selectively limit the entry of drugs into the eye. To overcome these barriers, frequent intravitreal injections are currently used to achieve high drug concentrations in vitreous and retina. However, these repetitive injections may result in several side effects. Recent advancements in the field of nanoparticle-based drug delivery could overcome some of these unmet needs and various preclinical studies conducted to date have demonstrated promising results of nanotherapies in the treatment of retinal diseases. Compared to the majority of commercially available ocular implants, the biodegradable nature of most nanoparticles (NPs) avoids the need for surgical implantation and removal after the release of the payload. In addition, the sustained drug release from NPs over an extended period of time reduces the need for frequent intravitreal injections and the risk of associated side effects. The nanometer size and highly modifiable surface properties make NPs excellent candidates for targeted ocular drug delivery. Studies have shown that nanocarriers enhance the intravitreal half-life and thus bioavailability of a number of drugs including proteins and peptides. In addition, they have shown promising results in delivering genetic material to the retinal tissues by protecting it from possible intravitreal degradation. This review covers the various challenges associated with drug delivery to the posterior segment of the eye, particularly the retina, and highlights the application of nanocarriers to overcome these challenges in context with recent advances in preclinical studies. WIREs Nanomed Nanobiotechnol 2018, 10:e1473. doi: 10.1002/wnan.1473 This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Implantable Materials and Surgical Technologies > Nanomaterials and Implants. © 2017 Wiley Periodicals

    17. Ideal Experimental Rat Models for Liver Diseases

      Lee, Sang Woo; Kim, Sung Hoon; Min, Seon Ok; Kim, Kyung Sik

      2011-01-01

      There are many limitations for conducting liver disease research in human beings due to the high cost and potential ethical issues. For this reason, conducting a study that is difficult to perform in humans using appropriate animal models, can be beneficial in ascertaining the pathological physiology, and in developing new treatment modalities. However, it is difficult to determine the appropriate animal model which is suitable for research purposes, since every patient has different and dive...

    18. Latest animal models for anti-HIV drug discovery.

      Sliva, Katja

      2015-02-01

      HIV research is limited by the fact that lentiviruses are highly species specific. The need for appropriate models to promote research has led to the development of many elaborate surrogate animal models. This review looks at the history of animal models for HIV research. Although natural animal lentivirus infections and chimeric viruses such as chimera between HIV and simian immunodeficiency virus and simian-tropic HIV are briefly discussed, the main focus is on small animal models, including the complex design of the 'humanized' mouse. The review also traces the historic evolution and milestones as well as depicting current models and future prospects for HIV research. HIV research is a complex and challenging task that is highly manpower-, money- and time-consuming. Besides factors such as hypervariability and latency, the lack of appropriate animal models that exhibit and recapitulate the entire infectious process of HIV, is one of the reasons behind the failure to eliminate the lentivirus from the human population. This obstacle has led to the exploitation and further development of many sophisticated surrogate animal models for HIV research. While there is no animal model that perfectly mirrors and mimics HIV infections in humans, there are a variety of host species and viruses that complement each other. Combining the insights from each model, and critically comparing the results obtained with data from human clinical trials should help expand our understanding of HIV pathogenesis and drive future drug development.

    19. A Methodological Review of US Budget-Impact Models for New Drugs.

      Mauskopf, Josephine; Earnshaw, Stephanie

      2016-11-01

      A budget-impact analysis is required by many jurisdictions when adding a new drug to the formulary. However, previous reviews have indicated that adherence to methodological guidelines is variable. In this methodological review, we assess the extent to which US budget-impact analyses for new drugs use recommended practices. We describe recommended practice for seven key elements in the design of a budget-impact analysis. Targeted literature searches for US studies reporting estimates of the budget impact of a new drug were performed and we prepared a summary of how each study addressed the seven key elements. The primary finding from this review is that recommended practice is not followed in many budget-impact analyses. For example, we found that growth in the treated population size and/or changes in disease-related costs expected during the model time horizon for more effective treatments was not included in several analyses for chronic conditions. In addition, all drug-related costs were not captured in the majority of the models. Finally, for most studies, one-way sensitivity and scenario analyses were very limited, and the ranges used in one-way sensitivity analyses were frequently arbitrary percentages rather than being data driven. The conclusions from our review are that changes in population size, disease severity mix, and/or disease-related costs should be properly accounted for to avoid over- or underestimating the budget impact. Since each budget holder might have different perspectives and different values for many of the input parameters, it is also critical for published budget-impact analyses to include extensive sensitivity and scenario analyses based on realistic input values.

    20. [Drug treatment of early-stage (de novo and "honeymoon") Parkinson disease].

      Cesaro, P; Defebvre, L

      2014-04-01

      In this article, we discuss the management of motor symptoms during the early phases of Parkinson's disease, excluding that of any other clinical manifestation. We relied primarily upon recently published data and do not describe older publications relating to anticholinergic drugs or amantadine. The initial pharmacological treatment of idiopathic Parkinson's disease (IPD) is symptomatic and remains based upon dopaminergic drugs. However, the development of new drugs has broadened the range of strategic options and improved overall patient management. Announcing the diagnosis is a critical moment, as pointed out by patients' associations. Patients should be advised to maintain personal, professional, social and physical activities as long as possible. The potential benefit of early pharmacological treatment should be explained, focusing on the possible disease-modifying effect of drugs such as rasagiline. According to current guidelines, L-Dopa is preferred in patients above 65years of age, while those below 65 should be treated with dopamine agonists. Like monoamine oxidase inhibitors B (MAOI-B), synthetic dopamine agonists exhibit several advantages: easy-to-use treatment with a once-daily administration, delayed L-Dopa initiation, significant efficacy on motor symptoms (although lower than that of L-Dopa). MOAI can be prescribed in association with L-Dopa or dopamine agonists. Rasagiline also delays L-Dopa initiation, and consequently motor complications. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

    1. Pharmacological Evaluation of the SCID T Cell Transfer Model of Colitis: As a Model of Crohn's Disease

      Thomas Lindebo Holm

      2012-01-01

      Full Text Available Animal models are important tools in the development of new drug candidates against the inflammatory bowel diseases (IBDs Crohn's disease and ulcerative colitis. In order to increase the translational value of these models, it is important to increase knowledge relating to standard drugs. Using the SCID adoptive transfer colitis model, we have evaluated the effect of currently used IBD drugs and IBD drug candidates, that is, anti-TNF-α, TNFR-Fc, anti-IL-12p40, anti-IL-6, CTLA4-Ig, anti-α4β7 integrin, enrofloxacin/metronidazole, and cyclosporine. We found that anti-TNF-α, antibiotics, anti-IL-12p40, anti-α4β7 integrin, CTLA4-Ig, and anti-IL-6 effectively prevented onset of colitis, whereas TNFR-Fc and cyclosporine did not. In intervention studies, antibiotics, anti-IL-12p40, and CTLA4-Ig induced remission, whereas the other compounds did not. The data suggest that the adoptive transfer model and the inflammatory bowel diseases have some main inflammatory pathways in common. The finding that some well-established IBD therapeutics do not have any effect in the model highlights important differences between the experimental model and the human disease.

    2. Attenuated neural response to gamble outcomes in drug-naive patients with Parkinson’s disease

      van der Vegt, Joyce P M; Hulme, Oliver J; Zittel, Simone

      2013-01-01

      healthy age-matched control subjects underwent whole-brain functional magnetic resonance imaging while they performed a simple two-choice gambling task resulting in stochastic and parametrically variable monetary gains and losses. In patients with Parkinson's disease, the neural response to reward outcome......Parkinson's disease results from the degeneration of dopaminergic neurons in the substantia nigra, manifesting as a spectrum of motor, cognitive and affective deficits. Parkinson's disease also affects reward processing, but disease-related deficits in reinforcement learning are thought to emerge...... at a slower pace than motor symptoms as the degeneration progresses from dorsal to ventral striatum. Dysfunctions in reward processing are difficult to study in Parkinson's disease as most patients have been treated with dopaminergic drugs, which sensitize reward responses in the ventral striatum, commonly...

    3. Comparison of curative effect of 131I and antithyroid drugs in Graves' disease: a meta analysis.

      Yuan, Ju; Lu, Xiuqing; Yue, Yan

      2017-03-01

      Radioactive 131I is currently reported to be a potential effective intervention for Graves' Disease treatment in China. Whether 131I treatment was associated with effective outcome or reduced risk of side effects, reccurence rate remained unknown. Eligible studies were selected from Chinese VIP, Wangfang, CNKI databases using the keywords "Iodine" and "Graves Disease". Finally, 13 clinical trials met the inclusion criterion and were included this meta-analysis. Our meta-analysis included 1355 patients diagnosed of Graves' Disease with regular anti-thyroid drugs oral administration and 1320 patients with 131I therapy. The results showed that there was significant symptom improvement with radioactive iodine intervention (Odd Ratio (OR)=4.50, 95% CI [3.55, 5.71], PGraves' Disease. Treatment with 131I was associated with better clinical outcome; it reduced side effects and reccurence rate but increased hypothyroidism in Graves' Disease.

    4. [Non-Helicobacter pylori, Non-nonsteroidal Anti-inflammatory Drug Peptic Ulcer Disease].

      Chang, Young Woon

      2016-06-25

      Non-Helicobacter pylori, non-NSAID peptic ulcer disease (PUD), termed idiopathic PUD, is increasing in Korea. Diagnosis is based on exclusion of common causes such as H. pylori infection, infection with other pathogens, surreptitious ulcerogenic drugs, malignancy, and uncommon systemic diseases with upper gastrointestinal manifestations. The clinical course of idiopathic PUD is delayed ulcer healing, higher recurrence, higher re-bleeding after initial ulcer healing, and higher mortality than the other types of PUD. Genetic predisposition, older age, chronic mesenteric ischemia, cigarette smoking, concomitant systemic diseases, and psychological stress are considered risk factors for idiopathic PUD. Diagnosis of idiopathic PUD should systematically explore all possible causes. Management of this disease is to treat underlying disease followed by regular endoscopic surveillance to confirm ulcer healing. Continuous proton pump inhibitor therapy is an option for patients who respond poorly to the standard ulcer regimen.

    5. Scaling predictive modeling in drug development with cloud computing.

      Moghadam, Behrooz Torabi; Alvarsson, Jonathan; Holm, Marcus; Eklund, Martin; Carlsson, Lars; Spjuth, Ola

      2015-01-26

      Growing data sets with increased time for analysis is hampering predictive modeling in drug discovery. Model building can be carried out on high-performance computer clusters, but these can be expensive to purchase and maintain. We have evaluated ligand-based modeling on cloud computing resources where computations are parallelized and run on the Amazon Elastic Cloud. We trained models on open data sets of varying sizes for the end points logP and Ames mutagenicity and compare with model building parallelized on a traditional high-performance computing cluster. We show that while high-performance computing results in faster model building, the use of cloud computing resources is feasible for large data sets and scales well within cloud instances. An additional advantage of cloud computing is that the costs of predictive models can be easily quantified, and a choice can be made between speed and economy. The easy access to computational resources with no up-front investments makes cloud computing an attractive alternative for scientists, especially for those without access to a supercomputer, and our study shows that it enables cost-efficient modeling of large data sets on demand within reasonable time.

    6. Effect of ingested lipids on drug dissolution and release with concurrent digestion: a modeling approach

      Buyukozturk, Fulden; Di Maio, Selena; Budil, David E.; Carrier, Rebecca L.

      2014-01-01

      Purpose To mechanistically study and model the effect of lipids, either from food or self-emulsifying drug delivery systems (SEDDS), on drug transport in the intestinal lumen. Methods Simultaneous lipid digestion, dissolution/release, and drug partitioning were experimentally studied and modeled for two dosing scenarios: solid drug with a food-associated lipid (soybean oil) and drug solubilized in a model SEDDS (soybean oil and Tween 80 at 1:1 ratio). Rate constants for digestion, permeability of emulsion droplets, and partition coefficients in micellar and oil phases were measured, and used to numerically solve the developed model. Results Strong influence of lipid digestion on drug release from SEDDS and solid drug dissolution into food-associated lipid emulsion were observed and predicted by the developed model. 90 minutes after introduction of SEDDS, there was 9% and 70% drug release in the absence and presence of digestion, respectively. However, overall drug dissolution in the presence of food-associated lipids occurred over a longer period than without digestion. Conclusion A systems-based mechanistic model incorporating simultaneous dynamic processes occurring upon dosing of drug with lipids enabled prediction of aqueous drug concentration profile. This model, once incorporated with a pharmacokinetic model considering processes of drug absorption and drug lymphatic transport in the presence of lipids, could be highly useful for quantitative prediction of impact of lipids on bioavailability of drugs. PMID:24234918

    7. A multi-scale modeling framework for individualized, spatiotemporal prediction of drug effects and toxicological risk

      Juan Guillermo eDiaz Ochoa

      2013-01-01

      Full Text Available In this study, we focus on a novel multi-scale modeling approach for spatiotemporal prediction of the distribution of substances and resulting hepatotoxicity by combining cellular models, a 2D liver model, and whole-body model. As a case study, we focused on predicting human hepatotoxicity upon treatment with acetaminophen based on in vitro toxicity data and potential inter-individual variability in gene expression and enzyme activities. By aggregating mechanistic, genome-based in silico cells to a novel 2D liver model and eventually to a whole body model, we predicted pharmacokinetic properties, metabolism, and the onset of hepatotoxicity in an in silico patient. Depending on the concentration of acetaminophen in the liver and the accumulation of toxic metabolites, cell integrity in the liver as a function of space and time as well as changes in the elimination rate of substances were estimated. We show that the variations in elimination rates also influence the distribution of acetaminophen and its metabolites in the whole body. Our results are in agreement with experimental results. What is more, the integrated model also predicted variations in drug toxicity depending on alterations of metabolic enzyme activities. Variations in enzyme activity, in turn, reflect genetic characteristics or diseases of individuals. In conclusion, this framework presents an important basis for efficiently integrating inter-individual variability data into models, paving the way for personalized or stratified predictions of drug toxicity and efficacy.

    8. Have there been improvements in Alzheimer's disease drug discovery over the past 5 years?

      Cacabelos, Ramón

      2018-06-01

      Alzheimer's disease (AD) is the most important neurodegenerative disorder with a global cost worldwide of over $700 billion. Pharmacological treatment accounts for 10-20% of direct costs; no new drugs have been approved during the past 15 years; and the available medications are not cost-effective. Areas covered: A massive scrutiny of AD-related PubMed publications (ps)(2013-2017) identified 42,053ps of which 8,380 (19.60%) were associated with AD treatments. The most prevalent pharmacological categories included neurotransmitter enhancers (11.38%), multi-target drugs (2.45%), anti-Amyloid agents (13.30%), anti-Tau agents (2.03%), natural products and derivatives (25.58%), novel drugs (8.13%), novel targets (5.66%), other (old) drugs (11.77%), anti-inflammatory drugs (1.20%), neuroprotective peptides (1.25%), stem cell therapy (1.85%), nanocarriers/nanotherapeutics (1.52%), and others (discovery programs, (vi) the updating of regulatory requirements, (vii) the introduction of pharmacogenomics in drug development and personalized treatments, and (viii) the implementation of preventive programs.

    9. Rhodamine/Nanodiamond as a System Model for Drug Carrier.

      Reina, G; Orlanducci, S; Cairone, C; Tamburri, E; Lenti, S; Cianchetta, I; Rossi, M; Terranova, M L

      2015-02-01

      In this paper we present some strategies that are being developed in our labs towards enabling nanodiamond-based applications for drug delivery. Rhodamine B (RhB) has been choosen as model molecule to study the loading of nanodiamonds with active moieties and the conditions for their controlled release. In order to test the chemical/physical interactions between functionalized detonation nanodiamond (DND) and complex molecules, we prepared and tested different RhB@DND systems, with RhB adsorbed or linked by ionic bonding to the DND surface. The chemical state of the DND surfaces before conjugation with the RhB molecules, and the chemical features of the DND-RhB interactions have been deeply analysed by coupling DND with Au nanoparticles and taking advantage of surface enhanced Raman spectroscopy SERS. The effects due to temperature and pH variations on the process of RhB release from the DND carrier have been also investigated. The amounts of released molecules are consistent with those required for effective drug action in conventional therapeutic applications, and this makes the DND promising nanostructured cargos for drug delivery applications.

    10. Advances in allergic skin disease, anaphylaxis, and hypersensitivity reactions to foods, drugs, and insects in 2009.

      Sicherer, Scott H; Leung, Donald Y M

      2010-01-01

      This review highlights some of the research advances in anaphylaxis and hypersensitivity reactions to foods, drugs, and insects, as well as advances in allergic skin disease that were reported in the Journal in 2009. Among key epidemiologic observations, several westernized countries report that more than 1% of children have peanut allergy, and there is some evidence that environmental exposure to peanut is a risk factor. The role of regulatory T cells, complement, platelet-activating factor, and effector cells in the development and expression of food allergy were explored in several murine models and human studies. Delayed anaphylaxis to mammalian meats appears to be related to IgE binding to the carbohydrate moiety galactose-alpha-1,3-galactose, which also has implications for hypersensitivity to murine mAb therapeutics containing this oligosaccharide. Oral immunotherapy studies continue to show promise for the treatment of food allergy, but determining whether the treatment causes tolerance (cure) or temporary desensitization remains to be explored. Increased baseline serum tryptase levels might inform the risk of venom anaphylaxis and might indicate a risk for mast cell disorders in persons who have experienced such episodes. Reduced structural and immune barrier function contribute to local and systemic allergen sensitization in patients with atopic dermatitis, as well as increased propensity of skin infections in these patients. The use of increased doses of nonsedating antihistamines and potential usefulness of omalizumab for chronic urticaria was highlighted. These exciting advances reported in the Journal can improve patient care today and provide insights on how we can improve the diagnosis and treatment of these allergic diseases in the future. Copyright 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

    11. The impact of pharmacophore modeling in drug design.

      Guner, Osman F

      2005-07-01

      With the reliable use of computer simulations in scientific research, it is possible to achieve significant increases in productivity as well as a reduction in research costs compared with experimental approaches. For example, computer-simulation can substantially enchance productivity by focusing the scientist to better, more informed choices, while also driving the 'fail-early' concept to result in a significant reduction in cost. Pharmacophore modeling is a reliable computer-aided design tool used in the discovery of new classes of compounds for a given therapeutic category. This commentary will briefly review the benefits and applications of this technology in drug discovery and design, and will also highlight its historical evolution. The two most commonly used approaches for pharmacophore model development will be discussed, and several examples of how this technology was successfully applied to identify new potent leads will be provided. The article concludes with a brief outline of the controversial issue of patentability of pharmacophore models.

    12. Quantum Mechanics/Molecular Mechanics Modeling of Drug Metabolism

      Lonsdale, Richard; Fort, Rachel M; Rydberg, Patrik

      2016-01-01

      )-mexiletine in CYP1A2 with hybrid quantum mechanics/molecular mechanics (QM/MM) methods, providing a more detailed and realistic model. Multiple reaction barriers have been calculated at the QM(B3LYP-D)/MM(CHARMM27) level for the direct N-oxidation and H-abstraction/rebound mechanisms. Our calculated barriers......The mechanism of cytochrome P450(CYP)-catalyzed hydroxylation of primary amines is currently unclear and is relevant to drug metabolism; previous small model calculations have suggested two possible mechanisms: direct N-oxidation and H-abstraction/rebound. We have modeled the N-hydroxylation of (R...... indicate that the direct N-oxidation mechanism is preferred and proceeds via the doublet spin state of Compound I. Molecular dynamics simulations indicate that the presence of an ordered water molecule in the active site assists in the binding of mexiletine in the active site...

    13. Mouse Models for Drug Discovery. Can New Tools and Technology Improve Translational Power?

      Zuberi, Aamir; Lutz, Cathleen

      2016-01-01

      Abstract The use of mouse models in biomedical research and preclinical drug evaluation is on the rise. The advent of new molecular genome-altering technologies such as CRISPR/Cas9 allows for genetic mutations to be introduced into the germ line of a mouse faster and less expensively than previous methods. In addition, the rapid progress in the development and use of somatic transgenesis using viral vectors, as well as manipulations of gene expression with siRNAs and antisense oligonucleotides, allow for even greater exploration into genomics and systems biology. These technological advances come at a time when cost reductions in genome sequencing have led to the identification of pathogenic mutations in patient populations, providing unprecedented opportunities in the use of mice to model human disease. The ease of genetic engineering in mice also offers a potential paradigm shift in resource sharing and the speed by which models are made available in the public domain. Predictively, the knowledge alone that a model can be quickly remade will provide relief to resources encumbered by licensing and Material Transfer Agreements. For decades, mouse strains have provided an exquisite experimental tool to study the pathophysiology of the disease and assess therapeutic options in a genetically defined system. However, a major limitation of the mouse has been the limited genetic diversity associated with common laboratory mice. This has been overcome with the recent development of the Collaborative Cross and Diversity Outbred mice. These strains provide new tools capable of replicating genetic diversity to that approaching the diversity found in human populations. The Collaborative Cross and Diversity Outbred strains thus provide a means to observe and characterize toxicity or efficacy of new therapeutic drugs for a given population. The combination of traditional and contemporary mouse genome editing tools, along with the addition of genetic diversity in new modeling

    14. Induced Pluripotent Stem Cells for Disease Modeling and Evaluation of Therapeutics for Niemann-Pick Disease Type A.

      Long, Yan; Xu, Miao; Li, Rong; Dai, Sheng; Beers, Jeanette; Chen, Guokai; Soheilian, Ferri; Baxa, Ulrich; Wang, Mengqiao; Marugan, Juan J; Muro, Silvia; Li, Zhiyuan; Brady, Roscoe; Zheng, Wei

      2016-12-01

      : Niemann-Pick disease type A (NPA) is a lysosomal storage disease caused by mutations in the SMPD1 gene that encodes acid sphingomyelinase (ASM). Deficiency in ASM function results in lysosomal accumulation of sphingomyelin and neurodegeneration. Currently, there is no effective treatment for NPA. To accelerate drug discovery for treatment of NPA, we generated induced pluripotent stem cells from two patient dermal fibroblast lines and differentiated them into neural stem cells. The NPA neural stem cells exhibit a disease phenotype of lysosomal sphingomyelin accumulation and enlarged lysosomes. By using this disease model, we also evaluated three compounds that reportedly reduced lysosomal lipid accumulation in Niemann-Pick disease type C as well as enzyme replacement therapy with ASM. We found that α-tocopherol, δ-tocopherol, hydroxypropyl-β-cyclodextrin, and ASM reduced sphingomyelin accumulation and enlarged lysosomes in NPA neural stem cells. Therefore, the NPA neural stem cells possess the characteristic NPA disease phenotype that can be ameliorated by tocopherols, cyclodextrin, and ASM. Our results demonstrate the efficacies of cyclodextrin and tocopherols in the NPA cell-based model. Our data also indicate that the NPA neural stem cells can be used as a new cell-based disease model for further study of disease pathophysiology and for high-throughput screening to identify new lead compounds for drug development. Currently, there is no effective treatment for Niemann-Pick disease type A (NPA). To accelerate drug discovery for treatment of NPA, NPA-induced pluripotent stem cells were generated from patient dermal fibroblasts and differentiated into neural stem cells. By using the differentiated NPA neuronal cells as a cell-based disease model system, α-tocopherol, δ-tocopherol, and hydroxypropyl-β-cyclodextrin significantly reduced sphingomyelin accumulation in these NPA neuronal cells. Therefore, this cell-based NPA model can be used for further study of

    15. Neuroproteases in peptide neurotransmission and neurodegenerative diseases: applications to drug discovery research.

      Hook, Vivian Y H

      2006-01-01

      The nervous system represents a key area for development of novel therapeutic agents for the treatment of neurological and neurodegenerative diseases. Recent research has demonstrated the critical importance of neuroproteases for the production of specific peptide neurotransmitters and for the production of toxic peptides in major neurodegenerative diseases that include Alzheimer, Huntington, and Parkinson diseases. This review illustrates the successful criteria that have allowed identification of proteases responsible for converting protein precursors into active peptide neurotransmitters, consisting of dual cysteine protease and subtilisin-like protease pathways in neuroendocrine cells. These peptide neurotransmitters are critical regulators of neurologic conditions, including analgesia and cognition, and numerous behaviors. Importantly, protease pathways also represent prominent mechanisms in neurodegenerative diseases, especially Alzheimer, Huntington, and Parkinson diseases. Recent studies have identified secretory vesicle cathepsin B as a novel beta-secretase for production of the neurotoxic beta-amyloid (Abeta) peptide of Alzheimer disease. Moreover, inhibition of cathepsin B reduces Abeta peptide levels in brain. These neuroproteases potentially represent new drug targets that should be explored in future pharmaceutical research endeavors for drug discovery.

    16. Computational disease modeling – fact or fiction?

      Stephan Klaas

      2009-06-01

      Full Text Available Abstract Background Biomedical research is changing due to the rapid accumulation of experimental data at an unprecedented scale, revealing increasing degrees of complexity of biological processes. Life Sciences are facing a transition from a descriptive to a mechanistic approach that reveals principles of cells, cellular networks, organs, and their interactions across several spatial and temporal scales. There are two conceptual traditions in biological computational-modeling. The bottom-up approach emphasizes complex intracellular molecular models and is well represented within the systems biology community. On the other hand, the physics-inspired top-down modeling strategy identifies and selects features of (presumably essential relevance to the phenomena of interest and combines available data in models of modest complexity. Results The workshop, "ESF Exploratory Workshop on Computational disease Modeling", examined the challenges that computational modeling faces in contributing to the understanding and treatment of complex multi-factorial diseases. Participants at the meeting agreed on two general conclusions. First, we identified the critical importance of developing analytical tools for dealing with model and parameter uncertainty. Second, the development of predictive hierarchical models spanning several scales beyond intracellular molecular networks was identified as a major objective. This contrasts with the current focus within the systems biology community on complex molecular modeling. Conclusion During the workshop it became obvious that diverse scientific modeling cultures (from computational neuroscience, theory, data-driven machine-learning approaches, agent-based modeling, network modeling and stochastic-molecular simulations would benefit from intense cross-talk on shared theoretical issues in order to make progress on clinically relevant problems.

    17. Experimental models of autoimmune inflammatory ocular diseases

      Fabio Gasparin

      2012-04-01

      Full Text Available Ocular inflammation is one of the leading causes of blindness and loss of vision. Human uveitis is a complex and heterogeneous group of diseases characterized by inflammation of intraocular tissues. The eye may be the only organ involved, or uveitis may be part of a systemic disease. A significant number of cases are of unknown etiology and are labeled idiopathic. Animal models have been developed to the study of the physiopathogenesis of autoimmune uveitis due to the difficulty in obtaining human eye inflamed tissues for experiments. Most of those models are induced by injection of specific photoreceptors proteins (e.g., S-antigen, interphotoreceptor retinoid-binding protein, rhodopsin, recoverin, phosducin. Non-retinal antigens, including melanin-associated proteins and myelin basic protein, are also good inducers of uveitis in animals. Understanding the basic mechanisms and pathogenesis of autoimmune ocular diseases are essential for the development of new treatment approaches and therapeutic agents. The present review describes the main experimental models of autoimmune ocular inflammatory diseases.

    18. Improving pharmacokinetic-pharmacodynamic modeling to investigate anti-infective chemotherapy with application to the current generation of antimalarial drugs.

      Katherine Kay

      Full Text Available Mechanism-based pharmacokinetic-pharmacodynamic (PK/PD modelling is the standard computational technique for simulating drug treatment of infectious diseases with the potential to enhance our understanding of drug treatment outcomes, drug deployment strategies, and dosing regimens. Standard methodologies assume only a single drug is used, it acts only in its unconverted form, and that oral drugs are instantaneously absorbed across the gut wall to their site of action. For drugs with short half-lives, this absorption period accounts for a significant period of their time in the body. Treatment of infectious diseases often uses combination therapies, so we refined and substantially extended the PK/PD methodologies to incorporate (i time lags and drug concentration profiles resulting from absorption across the gut wall and, if required, conversion to another active form; (ii multiple drugs within a treatment combination; (iii differing modes of action of drugs in the combination: additive, synergistic, antagonistic; (iv drugs converted to an active metabolite with a similar mode of action. This methodology was applied to a case study of two first-line malaria treatments based on artemisinin combination therapies (ACTs, artemether-lumefantrine and artesunate-mefloquine where the likelihood of increased artemisinin tolerance/resistance has led to speculation on their continued long-term effectiveness. We note previous estimates of artemisinin kill rate were underestimated by a factor of seven, both the unconverted and converted form of the artemisinins kill parasites and the extended PK/PD methodology produced results consistent with field observations. The simulations predict that a potentially rapid decline in ACT effectiveness is likely to occur as artemisinin resistance spreads, emphasising the importance of containing the spread of artemisinin resistance before it results in widespread drug failure. We found that PK/PD data is generally very

    19. Dynamics of epidemic spreading model with drug-resistant variation on scale-free networks

      Wan, Chen; Li, Tao; Zhang, Wu; Dong, Jing

      2018-03-01

      Considering the influence of the virus' drug-resistant variation, a novel SIVRS (susceptible-infected-variant-recovered-susceptible) epidemic spreading model with variation characteristic on scale-free networks is proposed in this paper. By using the mean-field theory, the spreading dynamics of the model is analyzed in detail. Then, the basic reproductive number R0 and equilibriums are derived. Studies show that the existence of disease-free equilibrium is determined by the basic reproductive number R0. The relationships between the basic reproductive number R0, the variation characteristic and the topology of the underlying networks are studied in detail. Furthermore, our studies prove the global stability of the disease-free equilibrium, the permanence of epidemic and the global attractivity of endemic equilibrium. Numerical simulations are performed to confirm the analytical results.

    20. In silico modeling predicts drug sensitivity of patient-derived cancer cells.

      Pingle, Sandeep C; Sultana, Zeba; Pastorino, Sandra; Jiang, Pengfei; Mukthavaram, Rajesh; Chao, Ying; Bharati, Ila Sri; Nomura, Natsuko; Makale, Milan; Abbasi, Taher; Kapoor, Shweta; Kumar, Ansu; Usmani, Shahabuddin; Agrawal, Ashish; Vali, Shireen; Kesari, Santosh

      2014-05-21

      Glioblastoma (GBM) is an aggressive disease associated with poor survival. It is essential to account for the complexity of GBM biology to improve diagnostic and therapeutic strategies. This complexity is best represented by the increasing amounts of profiling ("omics") data available due to advances in biotechnology. The challenge of integrating these vast genomic and proteomic data can be addressed by a comprehensive systems modeling approach. Here, we present an in silico model, where we simulate GBM tumor cells using genomic profiling data. We use this in silico tumor model to predict responses of cancer cells to targeted drugs. Initially, we probed the results from a recent hypothesis-independent, empirical study by Garnett and co-workers that analyzed the sensitivity of hundreds of profiled cancer cell lines to 130 different anticancer agents. We then used the tumor model to predict sensitivity of patient-derived GBM cell lines to different targeted therapeutic agents. Among the drug-mutation associations reported in the Garnett study, our in silico model accurately predicted ~85% of the associations. While testing the model in a prospective manner using simulations of patient-derived GBM cell lines, we compared our simulation predictions with experimental data using the same cells in vitro. This analysis yielded a ~75% agreement of in silico drug sensitivity with in vitro experimental findings. These results demonstrate a strong predictability of our simulation approach using the in silico tumor model presented here. Our ultimate goal is to use this model to stratify patients for clinical trials. By accurately predicting responses of cancer cells to targeted agents a priori, this in silico tumor model provides an innovative approach to personalizing therapy and promises to improve clinical management of cancer.

    1. The Rabbit as a Model for Studying Lung Disease and Stem Cell Therapy

      Nurfatin Asyikhin Kamaruzaman

      2013-01-01

      Full Text Available No single animal model can reproduce all of the human features of both acute and chronic lung diseases. However, the rabbit is a reliable model and clinically relevant facsimile of human disease. The similarities between rabbits and humans in terms of airway anatomy and responses to inflammatory mediators highlight the value of this species in the investigation of lung disease pathophysiology and in the development of therapeutic agents. The inflammatory responses shown by the rabbit model, especially in the case of asthma, are comparable with those that occur in humans. The allergic rabbit model has been used extensively in drug screening tests, and this model and humans appear to be sensitive to similar drugs. In addition, recent studies have shown that the rabbit serves as a good platform for cell delivery for the purpose of stem-cell-based therapy.

    2. A Systems Dynamic Model for Drug Abuse and Drug-Related Crime in the Western Cape Province of South Africa

      Farai Nyabadza

      2017-01-01

      Full Text Available The complex problem of drug abuse and drug-related crimes in communities in the Western Cape province cannot be studied in isolation but through the system they are embedded in. In this paper, a theoretical model to evaluate the syndemic of substance abuse and drug-related crimes within the Western Cape province of South Africa is constructed and explored. The dynamics of drug abuse and drug-related crimes within the Western Cape are simulated using STELLA software. The simulation results are consistent with the data from SACENDU and CrimeStats SA, highlighting the usefulness of such a model in designing and planning interventions to combat substance abuse and its related problems.

    3. A theory of drug tolerance and dependence II: the mathematical model.

      Peper, Abraham

      2004-08-21

      The preceding paper presented a model of drug tolerance and dependence. The model assumes the development of tolerance to a repeatedly administered drug to be the result of a regulated adaptive process. The oral detection and analysis of exogenous substances is proposed to be the primary stimulus for the mechanism of drug tolerance. Anticipation and environmental cues are in the model considered secondary stimuli, becoming primary in dependence and addiction or when the drug administration bypasses the natural-oral-route, as is the case when drugs are administered intravenously. The model considers adaptation to the effect of a drug and adaptation to the interval between drug taking autonomous tolerance processes. Simulations with the mathematical model demonstrate the model's behaviour to be consistent with important characteristics of the development of tolerance to repeatedly administered drugs: the gradual decrease in drug effect when tolerance develops, the high sensitivity to small changes in drug dose, the rebound phenomenon and the large reactions following withdrawal in dependence. The present paper discusses the mathematical model in terms of its design. The model is a nonlinear, learning feedback system, fully satisfying control theoretical principles. It accepts any form of the stimulus-the drug intake-and describes how the physiological processes involved affect the distribution of the drug through the body and the stability of the regulation loop. The mathematical model verifies the proposed theory and provides a basis for the implementation of mathematical models of specific physiological processes.

    4. The treatment of Alzheimer's disease using Chinese medicinal plants: from disease models to potential clinical applications.

      Su, Yang; Wang, Qiuhong; Wang, Changfu; Chan, Kelvin; Sun, Yanping; Kuang, Haixue

      2014-03-28

      Alzheimer's disease (AD) is characterized by the sustained higher nervous disorders of the activities and functions of the brain. Due to its heavy burden on society and the patients' families, it is urgent to review the treatments for AD to provide basic data for further research and new drug development. Among these treatments, Chinese Material Medica (CMM) has been traditionally clinical used in China to treat AD for a long time with obvious efficacy. With the further research reports of CMM, new therapeutic materials may be recovered from troves of CMM. However, So far, little or no review work has been reported to conclude anti-AD drugs from CMM in literature. Therefore, a systematic introduction of CMM anti-AD research progress is of great importance and necessity. This paper strives to systematically describe the progress of CMM in the treatment of AD, and lays a basis data for anti-AD drug development from CMM, and provides the essential theoretical support for the further development and utilization of CMM resources through a more comprehensive research of the variety of databases regarding CMM anti-AD effects reports. Literature survey was performed via electronic search (SciFinder®, Pubmed®, Google Scholar and Web of Science) on papers and patents and by systematic research in ethnopharmacological literature at various university libraries. This review mainly introduces the current research on the Chinese Material Medica (CMM) theoretical research on Alzheimer's disease (AD), anti-AD active constituent of CMM, anti-AD effects on AD models, anti-AD mechanism of CMM, and anti-AD effect of CMM formula. Scholars around the world have made studies on the anti-AD molecular mechanism of CMM from different pathways, and have made substantial progress. The progress not only enriched the anti-AD theory of CMM, but also provided clinical practical significance and development prospects in using CMM to treat AD. Western pure drugs cannot replace the advantages of

    5. Breathing new life into an old target: pulmonary disease drugs for Parkinson’s disease therapy

      Hisham Abdelmotilib

      2017-10-01

      Full Text Available Abstract Increases in α-synuclein protein expression are suspected to increase the risk of the development of Parkinson’s disease (PD. A recent study has demonstrated that β2-adrenergic receptor (β2AR agonists decrease histone acetylation in the α-synuclein gene and suppress transcription. Coupled with the anti-inflammatory effects that are associated with β2AR activation, this two-pronged attack holds promise for PD treatment and the development of new therapeutic approaches for this disease.

    6. Exosomes: A Paradigm in Drug Development against Cancer and Infectious Diseases

      Mohammad Oves

      2018-01-01

      Full Text Available Extracellular vesicles are small single lipid membrane entity secreted by eukaryotic and prokaryotic cells and play an important role in intercellular signaling and nutrient transport. The last few decades have witnessed a plethora of research on these vesicles owing to their ability to answer many hidden facts at the supramolecular level. These extracellular vesicles have attracted the researchers because they act as shuttle agents to transfer biomolecules/drugs between cells. Recently, studies have shown the application of exosomes in tumor therapy and infectious disease control. The present review article shows the importance of exosomes in cancer biology and infectious disease diagnoses and therapy and provides comprehensive account of exosomes biogenesis, extraction, molecular profiling, and application in drug delivery.

    7. Crowdfunding drug development: the state of play in oncology and rare diseases.

      Dragojlovic, Nick; Lynd, Larry D

      2014-11-01

      In this article, we present descriptive data on 125 crowdfunding campaigns aimed at financing research in oncology (including basic research, drug discovery, and clinical trials). We also describe five campaigns that have succeeded in raising substantial funds to support the development of treatments for ultrarare diseases. The data suggest that crowdfunding is a viable approach to supporting early proof-of-concept research that could allow researchers in oncology and rare diseases to succeed in traditional grant competitions or to attract private investment. The data also suggest that such an approach could become a valuable additional source of funding for early-stage innovators in the drug development arena. Copyright © 2014 Elsevier Ltd. All rights reserved.

    8. DFT application for chlorin derivatives photosensitizer drugs modeling

      Machado, Neila; Carvalho, B. G.; Téllez Soto, C. A.; Martin, A. A.; Favero, P. P.

      2018-04-01

      Photodynamic therapy is an alternative form of cancer treatment that meets the desire for a less aggressive approach to the body. It is based on the interaction between a photosensitizer, activating light, and molecular oxygen. This interaction results in a cascade of reactions that leads to localized cell death. Many studies have been conducted to discover an ideal photosensitizer, which aggregates all the desirable characteristics of a potent cell killer and generates minimal side effects. Using Density Functional Theory (DFT) implemented in the program Vienna Ab-initio Simulation Package, new chlorin derivatives with different functional groups were simulated to evaluate the different absorption wavelengths to permit resonant absorption with the incident laser. Gaussian 09 program was used to determine vibrational wave numbers and Natural Bond Orbitals. The chosen drug with the best characteristics for the photosensitizer was a modified model of the original chlorin, which was called as Thiol chlorin. According to our calculations it is stable and is 19.6% more efficient at optical absorption in 708 nm in comparison to the conventional chlorin e6. Vibrational modes, optical and electronic properties were predicted. In conclusion, this study is an attempt to improve the development of new photosensitizer drugs through computational methods that save time and contribute to decrease the numbers of animals for model application.

    9. Cardiometabolic effects of antidiabetic drugs in non-alcoholic fatty liver disease

      Rix, Iben; Steen Pedersen, Julie; Storgaard, Heidi

      2018-01-01

      PURPOSE: Non-alcoholic fatty liver disease (NAFLD) affects about 25% of the population worldwide. NAFLD may be viewed as the hepatological manifestation of metabolic syndrome. Patients with metabolic syndrome due to diabetes or obesity have an increased risk of cardiovascular disease....... This narrative review describes cardiometabolic effects of antidiabetic drugs in NAFLD. METHODS: We conducted a systematic search in PubMed and manually scanned bibliographies in trial databases and reference lists in relevant articles. RESULTS: Heart disease is the leading cause of death in NAFLD. Conversely......, NAFLD is an independent cardiovascular risk factor in patients suffering from metabolic syndrome. NAFLD is associated with markers of atherosclerosis, and patients have increased risk of ischaemic heart disease. Additionally, patients with NAFLD have increased risk of cardiac dysfunction and heart...

    10. New developments in the clinical use of drug-coated balloon catheters in peripheral arterial disease

      Naghi J

      2016-06-01

      Full Text Available Jesse Naghi, Ethan A Yalvac, Ali Pourdjabbar, Lawrence Ang, John Bahadorani, Ryan R Reeves, Ehtisham Mahmud, Mitul Patel Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California, San Diego, CA, USA Abstract: Peripheral arterial disease (PAD involving the lower extremity is a major source of morbidity and mortality. Clinical manifestations of PAD span the spectrum from lifestyle limiting claudication to ulceration and gangrene leading to amputation. Advancements including balloon angioplasty, self-expanding stents, drug-eluting stents, and atherectomy have resulted in high technical success rates for endovascular therapy in patients with PAD. However, these advances have been limited by somewhat high rates of clinical restenosis and clinically driven target lesion revascularization. The recent introduction of drug-coated balloon technology shows promise in limiting neointimal hyperplasia induced by vascular injury after endovascular therapies. This review summarizes the contemporary clinical data in the emerging area of drug-coated balloons. Keywords: drug-coated balloons, endovascular, percutaneous transluminal angioplasty, paclitaxel, peripheral arterial disease

    11. Fertility, pregnancy and childbirth in patients with multiple sclerosis: impact of disease-modifying drugs.

      Amato, Maria Pia; Portaccio, Emilio

      2015-03-01

      In recent decades, pregnancy-related issues in multiple sclerosis (MS) have received growing interest. MS is more frequent in women than in men and typically starts during child-bearing age. An increasing number of disease-modifying drugs (DMDs) for the treatment of MS are becoming available. Gathering information on their influences on pregnancy-related issues is of crucial importance for the counselling of MS patients. As for the immunomodulatory drugs (interferons and glatiramer acetate), accumulating evidence points to the relative safety of pregnancy exposure in terms of maternal and foetal outcomes. In case of higher clinical disease activity before pregnancy, these drugs could be continued until conception. As for the 'newer' drugs (fingolimod, natalizumab, teriflunomide, dimethyl fumarate and alemtuzumab), the information is more limited. Whereas fingolimod and teriflunomide are likely associated with an increased risk of foetal malformations, the effects of natalizumab, dimethyl fumarate and alemtuzumab still need to be ascertained. This article provides a review of the available information on the use of DMDs during pregnancy, with a specific focus on fertility, foetal development, delivery and breast-feeding.

    12. Drug-induced lung disease: High-resolution CT and histological findings

      Cleverley, Joanne R.; Screaton, Nicholas J.; Hiorns, Melanie P.; Flint, Julia D.A.; Mueller, Nestor L.

      2002-01-01

      AIM: To compare the parenchymal high-resolution computed tomography (HRCT) appearances with histological findings in patients with drug-induced lung disease and to determine the prognostic value of HRCT. MATERIALS AND METHODS: Drug history, HRCT features, histological findings and outcome at 3 months in 20 patients with drug induced-lung disease were reviewed retrospectively. The HRCT images were assessed for the pattern and distribution of abnormalities and classified as most suggestive of interstitial pneumonitis/fibrosis, diffuse alveolar damage (DAD), organizing pneumonia (OP) reaction, or a hypersensitivity reaction. RESULTS: On histopathological examination there were eight cases of interstitial pneumonitis/fibrosis, five of DAD, five of OP reactions, one of hypersensitivity reaction and one of pulmonary eosinophilia. The most common abnormalities on HRCT were ground-glass opacities (n = 17), consolidation (n = 14), interlobular septal thickening (n = 15) and centrilobular nodules (n 8). HRCT interpretation and histological diagnosis were concordant in only nine (45%) of 20 patients. The pattern, distribution, and extent of HRCT abnormalities were of limited prognostic value: all eight patients with histological findings of OP, hypersensitivity reaction, or eosinophilic infiltrate improved on follow-up compared to only five of 13 patients with interstitial pneumonitis/fibrosis or DAD. CONCLUSION: In many cases of drug-induced lung injury HRCT is of limited value in determining the histological pattern and prognosis. Cleverly, J.R. et al

    13. The Role of Natural Products in Drug Discovery and Development against Neglected Tropical Diseases

      Peter Mubanga Cheuka

      2016-12-01

      Full Text Available Endemic in 149 tropical and subtropical countries, neglected tropical diseases (NTDs affect more than 1 billion people annually, including 875 million children in developing economies. These diseases are also responsible for over 500,000 deaths per year and are characterized by long-term disability and severe pain. The impact of the combined NTDs closely rivals that of malaria and tuberculosis. Current treatment options are associated with various limitations including widespread drug resistance, severe adverse effects, lengthy treatment duration, unfavorable toxicity profiles, and complicated drug administration procedures. Natural products have been a valuable source of drug regimens that form the cornerstone of modern pharmaceutical care. In this review, we highlight the potential that remains untapped in natural products as drug leads for NTDs. We cover natural products from plant, marine, and microbial sources including natural-product-inspired semi-synthetic derivatives which have been evaluated against the various causative agents of NTDs. Our coverage is limited to four major NTDs which include human African trypanosomiasis (sleeping sickness, leishmaniasis, schistosomiasis and lymphatic filariasis.

    14. Mycobacterium abscessus subsp. abscessus Lung Disease: Drug Susceptibility Testing in Sputum Culture Negative Conversion

      Takehiko Kobayashi

      2018-01-01

      Full Text Available Background: Among Mycobacterium abscessus complex infections, patients with M. abscessus subsp. abscessus (MAA lung disease are difficult to treat and no standard therapy has been established. Few reports have investigated the drug susceptibility of these strains. We retrospectively investigated how in vitro drug susceptibility testing (DST of MAA affects the induction of sputum conversion using pharmacotherapy. Methods: Patients with MAA lung disease diagnosed and treated between 2010 and 2014 at our hospital were enrolled and divided into Group A (sputum conversion without relapse within 1 year and Group B (persistent positive cultured or negative conversion with relapse. MAA was identified in M. abscessus using sequence with genotyping, and DST of MAA was performed. Results: We assessed 23 patients (9 males and 14 females. There were 8 patients in Group A and 15 in Group B. Higher prevalence of susceptible isolates for clarithromycin (CAM susceptibility on day 14 was noted in Group A than in Group B (P = 0.03 and no significant difference observed in the two groups for other drugs. Conclusions: In vitro DST of MAA, especially CAM susceptibility on day 14, affected the results of negative conversion. No other drugs were found to affect sputum culture negative conversion.

    15. [Treatment of hyperthyroidism due to Graves' disease: what is the recommended antithyroid drug during pregnancy?].

      Caron, P

      2013-05-01

      Clinical hyperthyroidism during the first trimester of pregnancy due to Graves' disease can be associated with maternal, obstetrical and fetal complications, indicating an active treatment to restore normal thyroid function. Antithyroid drugs are the first line treatment in pregnant women with hyperthyroidism. Due to the increased congenital malformations reported in neonates after first-trimester carbimazole/methimazole treatment and propylthiouracil associated hepatotoxicity, the recommended treatment for pregnant women with hyperthyroid Graves' disease is propylthiouracil during the first trimester of pregnancy and following the first trimester, consideration should be given switching to carbimazole/methimazole during the second part of gestation. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

    16. Indefinite antithyroid drug therapy in toxic Graves′ disease: What are the cons

      Rajesh Rajput

      2013-01-01

      Full Text Available Existing treatment modalities for Graves′ disease includes antithyroid drugs (ATDs, radioactive iodine, and surgery. There has been a lack of general agreement as to which therapy is the best as none is ideal since all effectively restore euthyroidism, but with some limitations. Previously, therapies were selected with the goal of achieving euthyroidism. Instead, hypothyroidism is now the goal of treatment, to ensure that hyperthyroidism does not recur. Current evidences suggest that high relapse rate and not so rare fatal side effects seen with ATD therapy compel one to consider other definite modes of treatment like radiotherapy and surgery for toxic Graves′ disease after discussing this with the patient.

    17. Indefinite antithyroid drug therapy in toxic Graves’ disease: What are the cons

      Rajput, Rajesh; Goel, Vasudha

      2013-01-01

      Existing treatment modalities for Graves’ disease includes antithyroid drugs (ATDs), radioactive iodine, and surgery. There has been a lack of general agreement as to which therapy is the best as none is ideal since all effectively restore euthyroidism, but with some limitations. Previously, therapies were selected with the goal of achieving euthyroidism. Instead, hypothyroidism is now the goal of treatment, to ensure that hyperthyroidism does not recur. Current evidences suggest that high relapse rate and not so rare fatal side effects seen with ATD therapy compel one to consider other definite modes of treatment like radiotherapy and surgery for toxic Graves’ disease after discussing this with the patient. PMID:24251229

    18. Nonsteroidal anti-inflammatory drug use in patients with chronic kidney disease

      Heleniak, Zbigniew; Cieplińska, Magdalena; Szychliński, Tomasz; Rychter, Dymitr; Jagodzińska, Kalina; Kłos, Alicja; Kuźmiuk, Izabela; Tylicka, Marzena Jakimowicz; Tylicki, Leszek; Rutkowski, Bolesław; Dębska-Ślizień, Alicja

      2016-01-01

      Aims Nonsteroidal anti-inflammatory drugs (NSAIDs) are the cornerstone of pain management. There are no detailed data on NSAIDs use in Poland, especially in patients with chronic kidney disease (CKD). The aim of this study was to evaluate the frequency, circumstances, and causes of NSAIDs use as well as knowledge of their side-effects in patients with CKD. Method This cross-sectional study was conducted in 972 individuals with CKD, enrolled in a written survey originally developed by the auth...

    19. Adverse event management in mass drug administration for neglected tropical diseases.

      Caplan, Arthur; Zink, Amanda

      2014-03-01

      The ethical challenges of reporting and managing adverse events (AEs) and serious AEs (SAEs) in the context of mass drug administration (MDA) for the treatment of neglected tropical diseases (NTDs) require reassessment of domestic and international policies on a global scale. Although the World Health Organization has set forth AE/SAE guidelines specifically for NTD MDA that incorporate suspected causality, and recommends that only SAEs get reported in this setting, most regulatory agencies continue to require the reporting of all SAEs exhibiting even a merely temporal relationship to activities associated with an MDA program. This greatly increases the potential for excess "noise" and undue risk aversion and is not only impractical but arguably unethical where huge proportions of populations are being treated for devastating diseases, and no good baseline exists against which to compare possible AE/SAE reports. Other population-specific variables that might change the way drug safety ought to be assessed include differing efficacy rates of a drug, background morbidity/mortality rates of the target disease in question, the growth rate of the incidence of disease, the availability of rescue or salvage therapies, and the willingness of local populations to take risks that other populations might not. The fact that NTDs are controllable and potentially eradicable with well-tolerated, effective, existing drugs might further alter our assessment of MDA safety and AE/SAE tolerability. At the same time, diffuseness of population, communication barriers, lack of resources, and other difficult surveillance challenges may present in NTD-affected settings. These limitations could impair the ability to monitor an MDA program's success, as well as hinder efforts to obtain informed consent or provide rescue therapy. Denying beneficial research interventions and MDA programs intended to benefit millions requires sound ethical justification based on more than the identification of

    20. The thyroid function of Graves' disease patients is aggravated by depressive personality during antithyroid drug treatment

      Miyauchi Akira; Kubota Sumihisa; Takamatsu Junta; Fukao Atsushi; Hanafusa Toshiaki

      2011-01-01

      Abstract Background We previously reported that depressive personality (the scores of hypochondriasis, depression and psychasthenia determined by the Minnesota Multiphasic Personality Inventory (MMPI)) and daily hassles of Graves' disease (GD) patients treated long trem with antithyroid drug (ATD) were significantly higher in a relapsed group than in a remitted group, even in the euthyroid state. The present study aims to examine the relationship among depressive personality, emotional stress...

    1. Mathematical Model of Cytomegalovirus (CMV) Disease

      Sriningsih, R.; Subhan, M.; Nasution, M. L.

      2018-04-01

      The article formed the mathematical model of cytomegalovirus (CMV) disease. Cytomegalovirus (CMV) is a type of herpes virus. This virus is actually not dangerous, but if the body's immune weakens the virus can cause serious problems for health and even can cause death. This virus is also susceptible to infect pregnant women. In addition, the baby may also be infected through the placenta. If this is experienced early in pregnancy, it will increase the risk of miscarriage. If the baby is born, it can cause disability in the baby. The model is formed by determining its variables and parameters based on assumptions. The goal is to analyze the dynamics of cytomegalovirus (CMV) disease spread.

    2. A developmental etiological model for drug abuse in men.

      Kendler, Kenneth S; Ohlsson, Henrik; Edwards, Alexis C; Sundquist, Jan; Sundquist, Kristina

      2017-10-01

      We attempt to develop a relatively comprehensive structural model of risk factors for drug abuse (DA) in Swedish men that illustrates developmental and mediational processes. We examined 20 risk factors for DA in 48,369 men undergoing conscription examinations in 1969-70 followed until 2011 when 2.34% (n=1134) of them had DA ascertained in medical, criminal and pharmacy registries. Risk factors were organized into four developmental tiers reflecting i) birth, ii) childhood/early adolescence, iii) late adolescence, and iv) young adulthood. Structural equational model fitting was performed using Mplus. The best fitting model explained 47.8% of the variance in DA. The most prominent predictors, in order, were: early adolescent externalizing behavior, early adult criminal behavior, early adolescent internalizing behavior, early adult unemployment, early adult alcohol use disorder, and late adolescent drug use. Two major inter-connecting pathways emerged reflecting i) genetic/familial risk and ii) family dysfunction and psychosocial adversity. Generated on a first and tested on a second random half of the sample, a model from these variables predicted DA with an ROC area under the curve of 83.6%. Fifty-nine percent of DA cases arose from subjects in the top decile of risk. DA in men is a highly multifactorial syndrome with risk arising from familial-genetic, psychosocial, behavioral and psychological factors acting and interacting over development. Among the multiple predisposing factors for DA, a range of psychosocial adversities, externalizing psychopathology and lack of social constraints in early adulthood are predominant. Copyright © 2017 Elsevier B.V. All rights reserved.

    3. Animal models for Gaucher disease research

      Farfel-Becker, Tamar; Vitner, Einat B.; Futerman, Anthony H.

      2011-01-01

      Gaucher disease (GD), the most common lysosomal storage disorder (LSD), is caused by the defective activity of the lysosomal hydrolase glucocerebrosidase, which is encoded by the GBA gene. Generation of animal models that faithfully recapitulate the three clinical subtypes of GD has proved to be more of a challenge than first anticipated. The first mouse to be produced died within hours after birth owing to skin permeability problems, and mice with point mutations in Gba did not display sympt...

    4. The new disease model of alcoholism.

      Wallace, J

      1990-01-01

      The new biopsychosocial disease model of alcoholism is examined from the perspective of recent biologic research. Studies of animal and human genetic predispositions suggest the presence of genetic influences over drinking behavior as well as biologic risk factors related to deficiencies in various neurochemicals. Ethanol affects the fluidity of cell membrane lipids, eventually causing membrane dysfunction. It also adversely affects the activity of two enzymes, monoamine oxidase and adenylate...

    5. Mouse Chromosome Engineering for Modeling Human Disease

      van der Weyden, Louise; Bradley, Allan

      2006-01-01

      Chromosomal rearrangements occur frequently in humans and can be disease-associated or phenotypically neutral. Recent technological advances have led to the discovery of copy-number changes previously undetected by cytogenetic techniques. To understand the genetic consequences of such genomic changes, these mutations need to be modeled in experimentally tractable systems. The mouse is an excellent organism for this analysis because of its biological and genetic similarity to humans, and the e...

    6. Novel in Vitro Model for Keratoconus Disease

      James D. Zieske

      2012-11-01

      Full Text Available Keratoconus is a disease where the cornea becomes cone-like due to structural thinning and ultimately leads to compromised corneal integrity and loss of vision. Currently, the therapeutic options are corrective lenses for early stages and surgery for advanced cases with no in vitro model available. In this study, we used human corneal fibroblasts (HCFs and compared them to human Keratoconus fibroblasts (HKCs cultured in a 3-dimensional (3D model, in order to compare the expression and secretion of specific extracellular matrix (ECM components. For four weeks, the cells were stimulated with a stable Vitamin C (VitC derivative ± TGF-β1 or TGF-β3 (T1 and T3, respectively. After four weeks, HKCs stimulated with T1 and T3 were significantly thicker compared with Control (VitC only; however, HCF constructs were significantly thicker than HKCs under all conditions. Both cell types secreted copious amounts of type I and V collagens in their assembled, aligned collagen fibrils, which increased in the degree of alignment upon T3 stimulation. In contrast, only HKCs expressed high levels of corneal scarring markers, such as type III collagen, which was dramatically reduced with T3. HKCs expressed α-smooth muscle actin (SMA under all conditions in contrast to HCFs, where T3 minimized SMA expression. Fast Fourier transform (FFT data indicated that HKCs were more aligned when compared to HCFs, independent of treatments; however, HKC’s ECM showed the least degree of rotation. HKCs also secreted the most aligned type I collagen under T3 treatment, when compared to any condition and cell type. Overall, our model for Keratoconus disease studies is the first 3D in vitro tissue engineered model that can mimic the Keratoconus disease in vivo and may be a breakthrough in efforts to understand the progression of this disease.

    7. Clinical benefits of drug-eluting stent implantation in septuagenarians with coronary artery disease

      Fang Yuehua; Shen Weifeng; Zhang Ruiyan; Zhang Jiansheng; Hu Jian; Zhang Xian; Zheng Aifang

      2005-01-01

      Objective: This study evaluated the safety and long-term outcomes of drug-eluting stents in septuagenarians with coronary artery disease. Methods: Two hundred and thirty-nine consecutive patients with coronary artery disease underwent drug-eluting stenting, including 88 patients aged ≥70 years (group A) and 151 aged <70 years (group B). Baseline clinical characteristics, procedural success rate, occurrence of cardiac events during follow-up were recorded and compared between the two groups. Results: Procedural success rate and complications were similar for the two groups. During follow-up, group A had higher recurrence rate of chest pain than group B (23.9% vs. 7.3%, P<0.001), and occurrence of cardiac events was higher in group A than in group B (5.7% vs. 2.7%, P<0.296). There was no significant difference in the frequency of restenosis between the two groups. Conclusions: Drug-eluting stent implantation for septuagenarians with coronary artery disease is safe but may have more recurrence of angina than younger ones during long-term follow-up. (authors)

    8. Disease-responsive drug delivery: the next generation of smart delivery devices.

      Wanakule, Prinda; Roy, Krishnendu

      2012-01-01

      With the advent of highly potent and cytotoxic drugs, it is increasingly critical that they be targeted and released only in cells of diseased tissues, while sparing physiologically normal neighbors. Simple ligand-based targeting of drug carriers, although promising, cannot always provide the required specificity to achieve this since often normal cells also express significant levels of the targeted receptors. Therefore, stimuli-responsive delivery systems are being explored to allow drug release from nano- and microcarriers and implantable devices, primarily in the presence of physiological or disease-specific pathophysiological signals. Designing smart biomaterials that respond to temperature or pH changes, protein and ligand binding, disease-specific degradation, e.g. enzymatic cleavage, has become an integral part of this approach. These strategies are used in combination with nano- and microparticle systems to improve delivery efficiency through several routes of administration, and with injectable or implantable systems for long term controlled release. This review focuses on recent developments in stimuli-responsive systems, their physicochemical properties, release profiles, efficacy, safety and biocompatibility, as well as future perspectives.

    9. Outcome of graves' disease after anti-thyroid drug treatment in South West of Iran

      Shahbazian, H.; Saiedinia, S.; Aleali, A.M.

      2012-01-01

      Objective: This study was conducted to observe the optimal results of long term treatment with antithyroid drugs in patients with graves' disease. Methodology: Total of 268 patients with graves' disease who were referred to endocrinology clinic during 2005 - 2008 and treated with anti-thyroid drugs for a long term were studied. Data about the age, gender, estimated weight of thyroid before and after the treatment, level of thyroid hormones, disease relapse, hypothyroidism and the drug side-effects were collected and analyzed. Results: Eighty two (31%) patients were males, 186 (69%) females, mean age of 35 +- 27 years and follow-up course of 31+- 16 months], were studied. After the discontinuation of long term treatment, 53% were affected with relapse of hyperthyroidism. The mean duration of hyperthyroidism relapse after the treatment was 8.3 +- 7.3 months. The relapse rate was and patients with large thyroid and lower TSH level at the end of treatment, the rate of relapse treatment was about 6%. More decrease of thyroid size during the treatment course, higher level of serum TSH after discontinuation of the treatment, and lower thyroid hormone levels before the treatment were some of the effective factors in hypothyroidism incidence (P=0.005, patients (39%) remained euthyroid in the follow-up course. Conclusion: patients with graves' especially in middle-aged women with smaller goiters. (author)

    10. Overcoming the challenges of drug discovery for neglected tropical diseases: the A·WOL experience.

      Johnston, Kelly L; Ford, Louise; Taylor, Mark J

      2014-03-01

      Neglected tropical diseases (NTDs) are a group of 17 diseases that typically affect poor people in tropical countries. Each has been neglected for decades in terms of funding, research, and policy, but the recent grouping of them into one unit, which can be targeted using integrated control measures, together with increased advocacy has helped to place them on the global health agenda. The World Health Organization has set ambitious goals to control or eliminate 10 NTDs by 2020 and launched a roadmap in January 2012 to guide this global plan. The result of the launch meeting, which brought together representatives from the pharmaceutical industry, donors, and politicians, was the London Declaration: a series of commitments to provide more drugs, research, and funds to achieve the 2020 goals. Drug discovery and development for these diseases are extremely challenging, and this article highlights these challenges in the context of the London Declaration, before focusing on an example of a drug discovery and development program for the NTDs onchocerciasis and lymphatic filariasis (the anti-Wolbachia consortium, A·WOL).

    11. Injection and Non-Injection Drug Use and Infectious Disease in Baltimore City: Differences by Race

      Keen, Larry; Khan, Maria; Clifford, Lisa; Harrell, Paul T.; Latimer, William W.

      2014-01-01

      Purpose The current study examines differences in the prevalence of biologically-confirmed hepatitis C virus (HCV), HIV, and coinfection between Black and White adult cocaine/heroin users across three drug use subgroups identified in previous research (Harrell et al, 2012): non-injection smoking crack/nasal heroin users, heroin injectors, and polydrug injectors. Results 59% of the 482 participants in the study were male. Significant race differences emerged between drug use subgroup memberships. Non-injection smoking crack/nasal heroin users were predominantly Black (75%), while heroin injectors and polydrug injectors were predominantly White (69% and 72%, respectively). Polydrug injectors accounted for nearly three quarters of the HCV positive diagnoses in Whites. Though HIV disease status, stratified by race, did not differ significantly between drug use subgroups, the non-injection smoking crack/nasal heroin subgroup contained over half of the HIV positive diagnoses in the sample and was predominantly Black. Despite much lower rates of injection, Blacks (8%) had a higher prevalence of coinfection than Whites (3%; X2 (2) = 6.18, p = .015). Conclusions The current findings are consistent with trends in recent HIV transmission statistics where sexual activity has overtaken injection drug use as a HIV risk factor. The current findings also provide further support to the notion of injection drug use as an exceedingly high-risk behavior for HCV and coinfection, specifically those who are polysubstance injectors. PMID:24837755

    12. Efficacy of Eosin B as a New Antimalarial Drug in a Murine Model

      Zahra Zamani

      2012-01-01

      Full Text Available The initial success of any adopted anti-infective strategy to malaria is followed by a descent due to the emergence of resistance to it. The search for new drugs and drug targets is a consistent demand in this disease. Eosin B, a common laboratory dye, is reported to have good antiparasitic properties in vitro. It was studied for its antiparasitic effect in vivo on chloroquine-sensitive Plasmodium berghei murine malaria. Eosin B was administered in 2 different doses by either the oral or parenteral route, once or twice daily to mice infected with Plasmodium berghei. Both the doses of eosin B 400 mg/kg and 800 mg/kg gave better results than the controls which were 40 mg/kg chloroquine and 100 mg/kg of arteether with P<0.005 significance. Percentage suppressive activity by Peter’s test of eosin B was better, though at a higher dose than both the controls. Survival rate of mice receiving the higher dose of eosin B was longer than that of the controls. When administered twice daily, the mice were fully cured after 4 days. Eosin B seems to be a promising drug exhibiting good antimalarial effects in the murine model of the disease.

    13. Ideal Experimental Rat Models for Liver Diseases.

      Lee, Sang Woo; Kim, Sung Hoon; Min, Seon Ok; Kim, Kyung Sik

      2011-05-01

      There are many limitations for conducting liver disease research in human beings due to the high cost and potential ethical issues. For this reason, conducting a study that is difficult to perform in humans using appropriate animal models, can be beneficial in ascertaining the pathological physiology, and in developing new treatment modalities. However, it is difficult to determine the appropriate animal model which is suitable for research purposes, since every patient has different and diverse clinical symptoms, adverse reactions, and complications due to the pathological physiology. Also, it is not easy to reproduce identically various clinical situations in animal models. Recently, the Guide for the Care and Use of Laboratory Animals has tightened up the regulations, and therefore it is advisable to select the appropriate animals and decide upon the appropriate quantities through scientific and systemic considerations before conducting animal testing. Therefore, in this review article the authors examined various white rat animal testing models and determined the appropriate usable rat model, and the pros and cons of its application in liver disease research. The authors believe that this review will be beneficial in selecting proper laboratory animals for research purposes.

    14. SC lipid model membranes designed for studying impact of ceramide species on drug diffusion and permeation--part II: diffusion and permeation of model drugs.

      Ochalek, M; Podhaisky, H; Ruettinger, H-H; Wohlrab, J; Neubert, R H H

      2012-10-01

      The barrier function of two quaternary stratum corneum (SC) lipid model membranes, which were previously characterized with regard to the lipid organization, was investigated based on diffusion studies of model drugs with varying lipophilicities. Diffusion experiments of a hydrophilic drug, urea, and more lipophilic drugs than urea (i.e. caffeine, diclofenac sodium) were conducted using Franz-type diffusion cells. The amount of permeated drug was analyzed using either HPLC or CE technique. The subjects of interest in the present study were the investigation of the influence of physicochemical properties of model drugs on their diffusion and permeation through SC lipid model membranes, as well as the study of the impact of the constituents of these artificial systems (particularly ceramide species) on their barrier properties. The diffusion through both SC lipid model membranes and the human SC of the most hydrophilic model drug, urea, was faster than the permeation of the more lipophilic drugs. The slowest rate of permeation through SC lipid systems occurred in the case of caffeine. The composition of SC lipid model membranes has a significant impact on their barrier function. Model drugs diffused and permeated faster through Membrane II (presence of Cer [EOS]). In terms of the barrier properties, Membrane II is much more similar to the human SC than Membrane I. Copyright © 2012 Elsevier B.V. All rights reserved.

    15. Drug persistence and need for dose intensification to adalimumab therapy; the importance of therapeutic drug monitoring in inflammatory bowel diseases.

      Gonczi, Lorant; Kurti, Zsuzsanna; Rutka, Mariann; Vegh, Zsuzsanna; Farkas, Klaudia; Lovasz, Barbara D; Golovics, Petra A; Gecse, Krisztina B; Szalay, Balazs; Molnar, Tamas; Lakatos, Peter L

      2017-08-08

      Therapeutic drug monitoring (TDM) aid therapeutic decision making in patients with inflammatory bowel disease (IBD) who lose response to anti-TNF therapy. Our aim was to evaluate the frequency and predictive factors of loss of response (LOR) to adalimumab using TDM in IBD patients. One hundred twelve IBD patients (with 214 TDM measurements, CD/UC 84/28, male/female 50/62, mean age CD/UC: 36/35 years) were enrolled in this consecutive cohort from two referral centres in Hungary. Demographic data were comprehensively collected and harmonized monitoring strategy was applied. Previous and current therapy, laboratory data and clinical activity were recorded at the time of TDM. Patients were evaluated either at the time of suspected LOR or during follow-up. TDM measurements were determined by commercial ELISA (LISA TRACKER, Theradiag, France). Among 112 IBD patients, LOR/drug persistence was 25.9%/74.1%. The cumulative ADA positivity (>10 ng/mL) and low TL (<5.0 μg/mL) was 12.1% and 17.8% after 1 year and 17.3% and 29.5% after 2 years of adalimumab therapy. Dose intensification was needed in 29.5% of the patients. Female gender and ADA positivity were associated with LOR (female gender: p < 0.001, OR:7.8 CI 95%: 2.5-24.3, ADA positivity: p = 0.007 OR:3.6 CI 95%: 1.4-9.5). ADA development, low TL and need for dose intensification were frequent during adalimumab therapy and support the selective use of TDM in IBD patients treated with adalimumab. ADA positivity and gender were predictors of LOR.

    16. Measuring and modelling the effects of systematic non-adherence to mass drug administration

      Louise Dyson

      2017-03-01

      Full Text Available It is well understood that the success or failure of a mass drug administration campaign critically depends on the level of coverage achieved. To that end coverage levels are often closely scrutinised during campaigns and the response to underperforming campaigns is to attempt to improve coverage. Modelling work has indicated, however, that the quality of the coverage achieved may also have a significant impact on the outcome. If the coverage achieved is likely to miss similar people every round then this can have a serious detrimental effect on the campaign outcome. We begin by reviewing the current modelling descriptions of this effect and introduce a new modelling framework that can be used to simulate a given level of systematic non-adherence. We formalise the likelihood that people may miss several rounds of treatment using the correlation in the attendance of different rounds. Using two very simplified models of the infection of helminths and non-helminths, respectively, we demonstrate that the modelling description used and the correlation included between treatment rounds can have a profound effect on the time to elimination of disease in a population. It is therefore clear that more detailed coverage data is required to accurately predict the time to disease elimination. We review published coverage data in which individuals are asked how many previous rounds they have attended, and show how this information may be used to assess the level of systematic non-adherence. We note that while the coverages in the data found range from 40.5% to 95.5%, still the correlations found lie in a fairly narrow range (between 0.2806 and 0.5351. This indicates that the level of systematic non-adherence may be similar even in data from different years, countries, diseases and administered drugs.

    17. Design and Characterization of a Silk-Fibroin-Based Drug Delivery Platform Using Naproxen as a Model Drug

      Tatyana Dyakonov

      2012-01-01

      Full Text Available The objective of this proof-of-concept study was to develop a platform for controlled drug delivery based on silk fibroin (SF and to explore the feasibility of using SF in oral drug delivery. The SF-containing matrixes were prepared via spray-drying and film casting, and the release profile of the model drug naproxen sodium was evaluated. Attenuated total reflectance Fourier transform infrared spectroscopy (FTIR has been used to observe conformational changes in SF- and drug-containing compositions. SF-based films, spray-dried microparticles, and matrixes loaded with naproxen were prepared. Both FTIR spectra and in vitro dissolution data demonstrated that SF β-sheet conformation regulates the release profile of naproxen. The controlled release characteristics of the SF-containing compositions were evaluated as a function of SF concentration, temperature, and exposure to dehydrating solvents. The results suggest that SF may be an attractive polymer for use in controlled drug delivery systems.

    18. Utilizing Chemical Genomics to Identify Cytochrome b as a Novel Drug Target for Chagas Disease.

      Shilpi Khare

      2015-07-01

      Full Text Available Unbiased phenotypic screens enable identification of small molecules that inhibit pathogen growth by unanticipated mechanisms. These small molecules can be used as starting points for drug discovery programs that target such mechanisms. A major challenge of the approach is the identification of the cellular targets. Here we report GNF7686, a small molecule inhibitor of Trypanosoma cruzi, the causative agent of Chagas disease, and identification of cytochrome b as its target. Following discovery of GNF7686 in a parasite growth inhibition high throughput screen, we were able to evolve a GNF7686-resistant culture of T. cruzi epimastigotes. Clones from this culture bore a mutation coding for a substitution of leucine by phenylalanine at amino acid position 197 in cytochrome b. Cytochrome b is a component of complex III (cytochrome bc1 in the mitochondrial electron transport chain and catalyzes the transfer of electrons from ubiquinol to cytochrome c by a mechanism that utilizes two distinct catalytic sites, QN and QP. The L197F mutation is located in the QN site and confers resistance to GNF7686 in both parasite cell growth and biochemical cytochrome b assays. Additionally, the mutant cytochrome b confers resistance to antimycin A, another QN site inhibitor, but not to strobilurin or myxothiazol, which target the QP site. GNF7686 represents a promising starting point for Chagas disease drug discovery as it potently inhibits growth of intracellular T. cruzi amastigotes with a half maximal effective concentration (EC50 of 0.15 µM, and is highly specific for T. cruzi cytochrome b. No effect on the mammalian respiratory chain or mammalian cell proliferation was observed with up to 25 µM of GNF7686. Our approach, which combines T. cruzi chemical genetics with biochemical target validation, can be broadly applied to the discovery of additional novel drug targets and drug leads for Chagas disease.

    19. An update on dry eye disease molecular treatment: advances in drug pipelines.

      Colligris, Basilio; Crooke, Almudena; Huete-Toral, Fernando; Pintor, Jesus

      2014-07-01

      Dry eye disease is a common disorder provoking changes in tear film and ocular surface. Untreated dry eye could cause ocular infections, corneal ulcer and blindness. Only a few drugs are authorized so far for the treatment of dry eye disease and the possibilities of evolution in this sector are immense. Consequently, a significant number of new potential solutions are under development or placed in the pharmaceutical pipeline, promising better results and lesser side effects. In this article, the corresponding literature and recent Phase III clinical trial data and the corresponding literature, for dry eye disease treatment are reviewed, revealing the new strategic movements in drug pipelines. From the clinical trial results, the advancement in tear substitutes and secretagogues in addressing specific deficiencies of tear components even though not resolving the underlying conditions of the disease is evident. The vast majority of new compounds under development are anti-inflammatories, steroids, non-steroids and antibiotics; however, there are also some novel lubricating drops and mucin-tear secretagogues. A future aggressive therapy for dry eye, depending on the severity of the symptoms, would include combinations of soft steroids, anti-inflammatories, such as cyclosporine A, with the addition of the new polyvalent mucin and tear secretagogues.

    20. Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration

      Gu W

      2013-06-01

      Full Text Available Wenyi Gu,1,2 Chengtie Wu,3 Jiezhong Chen,1 Yin Xiao1 1Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia; 2Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia; 3State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China Abstract: Nanotechnology is a vigorous research area and one of its important applications is in biomedical sciences. Among biomedical applications, targeted drug delivery is one of the most extensively studied subjects. Nanostructured particles and scaffolds have been widely studied for increasing treatment efficacy and specificity of present treatment approaches. Similarly, this technique has been used for treating bone diseases including bone regeneration. In this review, we have summarized and highlighted the recent advancement of nanostructured particles and scaffolds for the treatment of cancer bone metastasis, osteosarcoma, bone infections and inflammatory diseases, osteoarthritis, as well as for bone regeneration. Nanoparticles used to deliver deoxyribonucleic acid and ribonucleic acid molecules to specific bone sites for gene therapies are also included. The investigation of the implications of nanoparticles in bone diseases have just begun, and has already shown some promising potential. Further studies have to be conducted, aimed specifically at assessing targeted delivery and bioactive scaffolds to further improve their efficacy before they can be used clinically. Keywords: nanoparticles, nanostructured scaffold, cancer bone metastasis, bone diseases, target drug delivery, bone regeneration

    1. MARKETING STUDIES OF LOCAL MARKET OF DRUGS WHICH ARE APPLIED FOR PREVENTION AND TREATMENT OF ORAL CAVITY DISEASES

      O. A. Tsarakhov

      2015-01-01

      Full Text Available Stomatological market has actively developed recent years. Domestic experts received an access to contemporary technologies of dental diseases treatment in the world. This conditioned the appearance of new drugs and parapharmaceutical products applied in dental practice on the pharmaceutical market. In this connection, study of these drugs market, their price policy, demand and supply. Assortment of parapharmaceutical products applied in dental practice for oral cavity hygiene is represented mainly by liquid forms, such as mouth rinse, balms, elixirs, and a special place is occupied by toothpastes. Their assortment amounts to more than 700 types. Drugs, applied in dental practice are represented by the following groups: anti-inflammatory, antimicrobial, antiallergenic, anesthetics, drugs which stimulate tissues regeneration, fluoric drugs. The purpose of this study was the analysis of regional pharmaceutical market assortment, which offers parapharmaceutical goods and drugs for prevention and treatment of oral cavity diseases to the stomatological establishments. Pharmaceutical market of the Republic of North Ossetia – Alania is represented by a wide range of drugs for dental diseases treatment. This group is represented in the assortment of practically all distributors. The drugs for dental diseases treatment is not only supplied by domestic producers but also go from pharmaceutical companies of 29 foreign countries, which influences positively on the state of drug therapy of paradontum in the region.

    2. Clinical drug development using dynamic biomarkers to enable personalized health care in Chronic Obstructive Pulmonary Disease

      Bihlet, Asger R; Karsdal, Morten A; Bay-Jensen, Anne-Christine

      2015-01-01

      Despite massive investments in development of novel treatments for heterogeneous diseases such as Chronic Obstructive Pulmonary Disease (COPD), the resources spent have only benefitted a fraction of the population treated. Personalized Health Care to guide selection of a suitable patient population...... at higher risk of progression. We review the role of extra-cellular matrix proteins found to be upregulated in COPD. Novel biomarkers of connective tissue remodeling which may provide added value for a personalized approach by detecting subgroups of patients with active disease suitable for pharmacological...... already in the clinical development of new compounds could offer a solution. In this review, we discuss past successes and failures in drug development and biomarker research in COPD. We describe research in COPD phenotypes, and the required characteristics of a suitable biomarker for identifying patients...

    3. Precision medicine and drug development in Alzheimer's disease: The importance of sexual dimorphism and patient stratification.

      Hampel, Harald; Vergallo, Andrea; Giorgi, Filippo Sean; Kim, Seung Hyun; Depypere, Herman; Graziani, Manuela; Saidi, Amira; Nisticò, Robert; Lista, Simone

      2018-06-12

      Neurodegenerative diseases (ND) are among the leading causes of disability and mortality. Considerable sex differences exist in the occurrence of the various manifestations leading to cognitive decline. Alzheimer's disease (AD) exhibits substantial sexual dimorphisms and disproportionately affects women. Women have a higher life expectancy compared to men and, consequently, have more lifespan to develop AD. The emerging precision medicine and pharmacology concepts - taking into account the individual genetic and biological variability relevant for disease risk, prevention, detection, diagnosis, and treatment - are expected to substantially enhance our knowledge and management of AD. Stratifying the affected individuals by sex and gender is an important basic step towards personalization of scientific research, drug development, and care. We hypothesize that sex and gender differences, extending from genetic to psychosocial domains, are highly relevant for the understanding of AD pathophysiology, and for the conceptualization of basic/translational research and for clinical therapy trial design. Copyright © 2018 Elsevier Inc. All rights reserved.

    4. Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration.

      Gu, Wenyi; Wu, Chengtie; Chen, Jiezhong; Xiao, Yin

      2013-01-01

      Nanotechnology is a vigorous research area and one of its important applications is in biomedical sciences. Among biomedical applications, targeted drug delivery is one of the most extensively studied subjects. Nanostructured particles and scaffolds have been widely studied for increasing treatment efficacy and specificity of present treatment approaches. Similarly, this technique has been used for treating bone diseases including bone regeneration. In this review, we have summarized and highlighted the recent advancement of nanostructured particles and scaffolds for the treatment of cancer bone metastasis, osteosarcoma, bone infections and inflammatory diseases, osteoarthritis, as well as for bone regeneration. Nanoparticles used to deliver deoxyribonucleic acid and ribonucleic acid molecules to specific bone sites for gene therapies are also included. The investigation of the implications of nanoparticles in bone diseases have just begun, and has already shown some promising potential. Further studies have to be conducted, aimed specifically at assessing targeted delivery and bioactive scaffolds to further improve their efficacy before they can be used clinically.

    5. MRI study of hydrophilic xanthan tablets with incorporated model drug

      Mikac, Urša; Baumgartner, Saša; Sepe, Ana; Kristl, Julijana

      2015-01-01

      Magnetic resonance imaging was used to study swelling dynamics and hydrogel formation of xanthan tablets with or without Pentoxifylline drug in water and HCl pH 1.2 media at two different ionic strengths. Significant changes were observed only in the erosion front positions leading to different hydrogel thicknesses. The impact of the drug on the hydrogel thickness was found to be dependent on the medium conditions at high enough drug amount. The drug does not change the hydrogel thickness ...

    6. Disease modeling using human induced pluripotent stem cells: lessons from the liver.

      Gieseck, Richard L; Colquhoun, Jennifer; Hannan, Nicholas R F

      2015-01-01

      Human pluripotent stem cells (hPSCs) have the capacity to differentiate into any of the hundreds of distinct cell types that comprise the human body. This unique characteristic has resulted in considerable interest in the field of regenerative medicine, given the potential for these cells to be used to protect, repair, or replace diseased, injured, and aged cells within the human body. In addition to their potential in therapeutics, hPSCs can be used to study the earliest stages of human development and to provide a platform for both drug screening and disease modeling using human cells. Recently, the description of human induced pluripotent stem cells (hIPSCs) has allowed the field of disease modeling to become far more accessible and physiologically relevant, as pluripotent cells can be generated from patients of any genetic background. Disease models derived from hIPSCs that manifest cellular disease phenotypes have been established to study several monogenic diseases; furthermore, hIPSCs can be used for phenotype-based drug screens to investigate complex diseases for which the underlying genetic mechanism is unknown. As a result, the use of stem cells as research tools has seen an unprecedented growth within the last decade as researchers look for in vitro disease models which closely mimic in vivo responses in humans. Here, we discuss the beginnings of hPSCs, starting with isolation of human embryonic stem cells, moving into the development and optimization of hIPSC technology, and ending with the application of hIPSCs towards disease modeling and drug screening applications, with specific examples highlighting the modeling of inherited metabolic disorders of the liver. This article is part of a Special Issue entitled Linking transcription to physiology in lipodomics. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

    7. Use of genome editing tools in human stem cell-based disease modeling and precision medicine.

      Wei, Yu-da; Li, Shuang; Liu, Gai-gai; Zhang, Yong-xian; Ding, Qiu-rong

      2015-10-01

      Precision medicine emerges as a new approach that takes into account individual variability. The successful conduct of precision medicine requires the use of precise disease models. Human pluripotent stem cells (hPSCs), as well as adult stem cells, can be differentiated into a variety of human somatic cell types that can be used for research and drug screening. The development of genome editing technology over the past few years, especially the CRISPR/Cas system, has made it feasible to precisely and efficiently edit the genetic background. Therefore, disease modeling by using a combination of human stem cells and genome editing technology has offered a new platform to generate " personalized " disease models, which allow the study of the contribution of individual genetic variabilities to disease progression and the development of precise treatments. In this review, recent advances in the use of genome editing in human stem cells and the generation of stem cell models for rare diseases and cancers are discussed.

    8. Reversible Lansoprazole-Induced Interstitial Lung Disease Showing Improvement after Drug Cessation

      Hwang, Kyu Won; Woo, Ok Hee; Yong, Hwan Seok; Shin, Bong Kyung; Shim, Jae Jeong; Kang, Eun Young

      2008-01-01

      Lansoprazole is an acid proton-pump inhibitor that is similar to omeprazole. It is used to treat duodenal or gastric ulcers, H. pylori infection, gastroesophageal reflux disease (GERD) or Zollinger-Ellison syndrome. Common adverse effects of lansoprazole are diarrhea, abdominal pain, skin rash and/or itching. Information from U.S. National Library of Medicine warns that this drug can on rare occasion cause cough or cold-like symptoms. The pathophysiological mechanisms of lansoprazole-related pulmonary symptoms are not yet understood. In particular, there are no known reports regarding lansoprazole-induced interstitial lung diseases. We report here a case of interstitial lung disease (ILD) induced by oral administration of lansoprazole, which showed a pattern of nonspecific interstitial pneumonia (NSIP) as detected from a video-assisted thoracoscopic lung biopsy. We believe that this is the first report of a case of pathologically proven lansoprazole-induced ILD for which a surgical lung biopsy was performed. To the best of our knowledge, this is the first description of DI-ILD caused by lansoprazole. The diagnosis was made by considering the radiological, histopathological and clinical findings, including the close temporal relationship between lansoprazole exposure and symptom severity. Other possible causes were excluded due to a lack of a temporal relationship between the symptoms and work history or prednisolone therapy, and no other history of specific allergen exposure. When there is diffuse interstitial lung disease with an unknown etiology, it is important to remember that drugs can be the cause of pulmonary symptoms and it is crucial to take a careful patient history. If there is a recent history of