WorldWideScience

Sample records for disease metabolic disorders

  1. Metabolic disorders in menopause

    Directory of Open Access Journals (Sweden)

    Grzegorz Stachowiak

    2015-04-01

    Full Text Available Metabolic disorders occurring in menopause, including dyslipidemia, disorders of carbohydrate metabolism (impaired glucose tolerance – IGT, type 2 diabetes mellitus – T2DM or components of metabolic syndrome, constitute risk factors for cardiovascular disease in women. A key role could be played here by hyperinsulinemia, insulin resistance and visceral obesity, all contributing to dyslipidemia, oxidative stress, inflammation, alter coagulation and atherosclerosis observed during the menopausal period. Undiagnosed and untreated, metabolic disorders may adversely affect the length and quality of women’s life. Prevention and treatment preceded by early diagnosis should be the main goal for the physicians involved in menopausal care. This article represents a short review of the current knowledge concerning metabolic disorders (e.g. obesity, polycystic ovary syndrome or thyroid diseases in menopause, including the role of a tailored menopausal hormone therapy (HT. According to current data, HT is not recommend as a preventive strategy for metabolic disorders in menopause. Nevertheless, as part of a comprehensive strategy to prevent chronic diseases after menopause, menopausal hormone therapy, particularly estrogen therapy may be considered (after balancing benefits/risks and excluding women with absolute contraindications to this therapy. Life-style modifications, with moderate physical activity and healthy diet at the forefront, should be still the first choice recommendation for all patients with menopausal metabolic abnormalities.

  2. Vertigo and metabolic disorders.

    Science.gov (United States)

    Santos, Maruska D' Aparecida; Bittar, Roseli Saraiva Moreira

    2012-01-01

    Metabolic disorders are accepted by many authors as being responsible for balance disorders. Because of the importance of metabolic disorders in the field of labyrinthine dysfunction, we decided to assess the prevalence of carbohydrates, lipids and thyroid hormones disorders in our patients with vestibular diseases. The study evaluates the metabolic profile of 325 patients with vertigo who sought the Otolaryngology Department of the University of São Paulo in the Hospital das Clínicas da Universidade de São Paulo. The laboratory tests ordered according to the classical research protocol were: low-density lipoprotein cholesterol fraction, TSH, T3, T4 and fasting blood sugar level. The metabolic disorders found and the ones that were observed in the general population were compared. The high level of low-density lipoprotein cholesterol, the altered levels of thyroid hormones, the higher prevalence of diabetes mellitus were the most significant changes found in the group of study. The higher amount of metabolic disorders in patients with vertigo disease reinforces the hypothesis of its influence on the etiopathogenesis of cochleovestibular symptoms.

  3. Metabolic disorders and nutritional status in autoimmune thyroid diseases

    Directory of Open Access Journals (Sweden)

    Anna Kawicka

    2015-01-01

    Full Text Available In recent years, the authors of epidemiological studies have documented that autoimmune diseases are a major problem of modern society and are classified as diseases of civilization. Autoimmune thyroid diseases (ATDs are caused by an abnormal immune response to autoantigens present in the thyroid gland – they often coexist with other autoimmune diseases. The most common dysfunctions of the thyroid gland are hypothyroidism, Graves-Basedow disease and Hashimoto’s disease. Hashimoto’s thyroiditis can be the main cause of primary hypothyroidism of the thyroid gland. Anthropometric, biochemical and physicochemical parameters are used to assess the nutritional status during the diagnosis and treatment of thyroid diseases. Patients with hypothyroidism are often obese, whereas patients with hyperthyroidism are often afflicted with rapid weight loss. The consequence of obesity is a change of the thyroid hormones’ activity; however, weight reduction leads to their normalization. The activity and metabolic rate of thyroid hormones are modifiable. ATDs are associated with abnormalities of glucose metabolism and thus increased risk of developing diabetes mellitus type 1 and type 2. Celiac disease (CD also increases the risk of developing other autoimmune diseases. Malnutrition or the presence of numerous nutritional deficiencies in a patient’s body can be the cause of thyroid disorders. Coexisting deficiencies of such elements as iodine, iron, selenium and zinc may impair the function of the thyroid gland. Other nutrient deficiencies usually observed in patients suffering from ATD are: protein deficiencies, vitamin deficiencies (A, C, B6, B5, B1 and mineral deficiencies (phosphorus, magnesium, potassium, sodium, chromium. Proper diet helps to reduce the symptoms of the disease, maintains a healthy weight and prevents the occurrence of malnutrition. This article presents an overview of selected documented studies and scientific reports on the

  4. [Metabolic disorders and nutritional status in autoimmune thyroid diseases].

    Science.gov (United States)

    Kawicka, Anna; Regulska-Ilow, Bożena; Regulska-Ilow, Bożena

    2015-01-02

    In recent years, the authors of epidemiological studies have documented that autoimmune diseases are a major problem of modern society and are classified as diseases of civilization. Autoimmune thyroid diseases (ATDs) are caused by an abnormal immune response to autoantigens present in the thyroid gland - they often coexist with other autoimmune diseases. The most common dysfunctions of the thyroid gland are hypothyroidism, Graves-Basedow disease and Hashimoto's disease. Hashimoto's thyroiditis can be the main cause of primary hypothyroidism of the thyroid gland. Anthropometric, biochemical and physicochemical parameters are used to assess the nutritional status during the diagnosis and treatment of thyroid diseases. Patients with hypothyroidism are often obese, whereas patients with hyperthyroidism are often afflicted with rapid weight loss. The consequence of obesity is a change of the thyroid hormones' activity; however, weight reduction leads to their normalization. The activity and metabolic rate of thyroid hormones are modifiable. ATDs are associated with abnormalities of glucose metabolism and thus increased risk of developing diabetes mellitus type 1 and type 2. Celiac disease (CD) also increases the risk of developing other autoimmune diseases. Malnutrition or the presence of numerous nutritional deficiencies in a patient's body can be the cause of thyroid disorders. Coexisting deficiencies of such elements as iodine, iron, selenium and zinc may impair the function of the thyroid gland. Other nutrient deficiencies usually observed in patients suffering from ATD are: protein deficiencies, vitamin deficiencies (A, C, B6, B5, B1) and mineral deficiencies (phosphorus, magnesium, potassium, sodium, chromium). Proper diet helps to reduce the symptoms of the disease, maintains a healthy weight and prevents the occurrence of malnutrition. This article presents an overview of selected documented studies and scientific reports on the relationship of metabolic

  5. NMR as a probe metabolic disorders in disease and treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yushmanov, Victor E [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Chemical Physics

    1994-12-31

    The effects of malignant tumors, chemical and physical factors (toxic agents, ionizing radiation) as well as of their treatment on tissue metabolism were studied by NMR imaging. The importance of NMR is highlighted since it enables to a better understanding of molecular mechanisms of diseases and therapeutic interventions, in addition to the analysis of metabolic disorders in human beings. Combined with the studies of experimental animal pathologies, may constitute a base for new types of NMR-diagnosis in vivo 10 refs.

  6. Amino Acid Metabolism Disorders

    Science.gov (United States)

    ... this process. One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple syrup urine disease. Amino acids are "building blocks" that join together to form ...

  7. Gut Microbiota and Metabolic Disorders

    Directory of Open Access Journals (Sweden)

    Kyu Yeon Hur

    2015-06-01

    Full Text Available Gut microbiota plays critical physiological roles in the energy extraction and in the control of local or systemic immunity. Gut microbiota and its disturbance also appear to be involved in the pathogenesis of diverse diseases including metabolic disorders, gastrointestinal diseases, cancer, etc. In the metabolic point of view, gut microbiota can modulate lipid accumulation, lipopolysaccharide content and the production of short-chain fatty acids that affect food intake, inflammatory tone, or insulin signaling. Several strategies have been developed to change gut microbiota such as prebiotics, probiotics, certain antidiabetic drugs or fecal microbiota transplantation, which have diverse effects on body metabolism and on the development of metabolic disorders.

  8. Multiple-trait estimates of genetic parameters for metabolic disease traits, fertility disorders, and their predictors in Canadian Holsteins.

    Science.gov (United States)

    Jamrozik, J; Koeck, A; Kistemaker, G J; Miglior, F

    2016-03-01

    Producer-recorded health data for metabolic disease traits and fertility disorders on 35,575 Canadian Holstein cows were jointly analyzed with selected indicator traits. Metabolic diseases included clinical ketosis (KET) and displaced abomasum (DA); fertility disorders were metritis (MET) and retained placenta (RP); and disease indicators were fat-to-protein ratio, milk β-hydroxybutyrate, and body condition score (BCS) in the first lactation. Traits in first and later (up to fifth) lactations were treated as correlated in the multiple-trait (13 traits in total) animal linear model. Bayesian methods with Gibbs sampling were implemented for the analysis. Estimates of heritability for disease incidence were low, up to 0.06 for DA in first lactation. Among disease traits, the environmental herd-year variance constituted 4% of the total variance for KET and less for other traits. First- and later-lactation disease traits were genetically correlated (from 0.66 to 0.72) across all traits, indicating different genetic backgrounds for first and later lactations. Genetic correlations between KET and DA were relatively strong and positive (up to 0.79) in both first- and later-lactation cows. Genetic correlations between fertility disorders were slightly lower. Metritis was strongly genetically correlated with both metabolic disease traits in the first lactation only. All other genetic correlations between metabolic and fertility diseases were statistically nonsignificant. First-lactation KET and MET were strongly positively correlated with later-lactation performance for these traits due to the environmental herd-year effect. Indicator traits were moderately genetically correlated (from 0.30 to 0.63 in absolute values) with both metabolic disease traits in the first lactation. Smaller and mostly nonsignificant genetic correlations were among indicators and metabolic diseases in later lactations. The only significant genetic correlations between indicators and fertility

  9. Metabolic disorders with typical alterations in MRI

    International Nuclear Information System (INIS)

    Warmuth-Metz, M.

    2010-01-01

    The classification of metabolic disorders according to the etiology is not practical for neuroradiological purposes because the underlying defect does not uniformly transform into morphological characteristics. Therefore typical MR and clinical features of some easily identifiable metabolic disorders are presented. Canavan disease, Pelizaeus-Merzbacher disease, Alexander disease, X-chromosomal adrenoleukodystrophy and adrenomyeloneuropathy, mitochondrial disorders, such as MELAS (mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes) and Leigh syndrome as well as L-2-hydroxyglutaric aciduria are presented. (orig.) [de

  10. Inherited metabolic disorders in Thailand.

    Science.gov (United States)

    Wasant, Pornswan; Svasti, Jisnuson; Srisomsap, Chantragan; Liammongkolkul, Somporn

    2002-08-01

    The study of inborn errors of metabolism (IEM) in Thailand is in its infancy. The majority are clinically diagnosed since there are only a handful of clinicians and scientists with expertise in inherited metabolic disorders, shortage of well-equipped laboratory facilities and lack of governmental financial support. Genetic metabolic disorders are usually not considered a priority due to prevalence of infectious diseases and congenital infections. From a retrospective study at the Medical Genetics Unit, Department of Pediatrics, Siriraj Hospital; estimated pediatrics patients with suspected IEM were approximately 2-3 per cent of the total pediatric admissions of over 5,000 annually. After more than 10 years of research and accumulated clinical experiences, a genetic metabolic center is being established in collaboration with expert laboratories both in Bangkok (Chulabhorn Research Institute) and abroad (Japan and the United States). Numerous inherited metabolic disorders were identified--carbohydrate, amino acids, organic acids, mitochondrial fatty acid oxidation, peroxisomal, mucopolysaccharidoses etc. This report includes the establishment of genetic metabolic center in Thailand, research and pilot studies in newborn screening in Thailand and a multicenter study from 5 institutions (Children's National Center, King Chulalongkorn Memorial Hospital, Pramongkutklao Hospital, Ramathibodi and Siriraj Hospitals). Inherited metabolic disorders reported are fructose-1,6-bisphosphatase deficiency, phenylketonuria, homocystinuria, nonketotic hyperglycinemia, urea cycle defect (arginino succinate lyase deficiency, argininosuccinate synthetase deficiency), Menkes disease, propionic acidemia and mucopolysaccharidoses (Hurler, Hurler-Scheie).

  11. Physical activity and metabolic disease among people with affective disorders: Prevention, management and implementation.

    Science.gov (United States)

    Vancampfort, Davy; Stubbs, Brendon

    2017-12-15

    One in ten and one in three of people with affective disorders experience diabetes and metabolic syndrome respectively. Physical activity (PA) and sedentary behaviour (SB) are key risk factors that can ameliorate the risk of metabolic disease among this population. However, PA is often seen as luxury and/or a secondary component within the management of people with affective disorders. The current article provides a non-systematic best-evidence synthesis of the available literature, detailing a number of suggestions for the implementation of PA into clinical practice. Whilst the evidence is unequivocal for the efficacy of PA to prevent and manage metabolic disease in the general population, it is in its infancy in this patient group. Nonetheless, action must be taken now to ensure that PA and reducing SB are given a priority to prevent and manage metabolic diseases and improve wider health outcomes. PA should be treated as a vital sign and all people with affective disorders asked about their activity levels and if appropriate advised to increase this. There is a need for investment in qualified exercise specialists in clinical practice such as physiotherapists to undertake and oversee PA in practice. Behavioural strategies such as the self-determined theory should be employed to encourage adherence. Funding is required to develop the evidence base and elucidate the optimal intervention characteristics. PA interventions should form an integral part of the multidisciplinary management of people with affective disorders and our article outlines the evidence and strategies to implement this in practice. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. DNA methylation in metabolic disorders

    DEFF Research Database (Denmark)

    Barres, Romain; Zierath, Juleen R

    2011-01-01

    DNA methylation is a major epigenetic modification that controls gene expression in physiologic and pathologic states. Metabolic diseases such as diabetes and obesity are associated with profound alterations in gene expression that are caused by genetic and environmental factors. Recent reports...... have provided evidence that environmental factors at all ages could modify DNA methylation in somatic tissues, which suggests that DNA methylation is a more dynamic process than previously appreciated. Because of the importance of lifestyle factors in metabolic disorders, DNA methylation provides...... a mechanism by which environmental factors, including diet and exercise, can modify genetic predisposition to disease. This article considers the current evidence that defines a role for DNA methylation in metabolic disorders....

  13. Genetic disorders of thyroid metabolism and brain development

    Science.gov (United States)

    Kurian, Manju A; Jungbluth, Heinz

    2014-01-01

    Normal thyroid metabolism is essential for human development, including the formation and functioning of the central and peripheral nervous system. Disorders of thyroid metabolism are increasingly recognized within the spectrum of paediatric neurological disorders. Both hypothyroid and hyperthyroid disease states (resulting from genetic and acquired aetiologies) can lead to characteristic neurological syndromes, with cognitive delay, extrapyramidal movement disorders, neuropsychiatric symptoms, and neuromuscular manifestations. In this review, the neurological manifestations of genetic disorders of thyroid metabolism are outlined, with particular focus on Allan-Herndon-Dudley syndrome and benign hereditary chorea. We report in detail the clinical features, major neurological and neuropsychiatric manifestations, molecular genetic findings, disease mechanisms, and therapeutic strategies for these emerging genetic ‘brain-thyroid’ disorders. PMID:24665922

  14. GGDonto ontology as a knowledge-base for genetic diseases and disorders of glycan metabolism and their causative genes.

    Science.gov (United States)

    Solovieva, Elena; Shikanai, Toshihide; Fujita, Noriaki; Narimatsu, Hisashi

    2018-04-18

    Inherited mutations in glyco-related genes can affect the biosynthesis and degradation of glycans and result in severe genetic diseases and disorders. The Glyco-Disease Genes Database (GDGDB), which provides information about these diseases and disorders as well as their causative genes, has been developed by the Research Center for Medical Glycoscience (RCMG) and released in April 2010. GDGDB currently provides information on about 80 genetic diseases and disorders caused by single-gene mutations in glyco-related genes. Many biomedical resources provide information about genetic disorders and genes involved in their pathogenesis, but resources focused on genetic disorders known to be related to glycan metabolism are lacking. With the aim of providing more comprehensive knowledge on genetic diseases and disorders of glycan biosynthesis and degradation, we enriched the content of the GDGDB database and improved the methods for data representation. We developed the Genetic Glyco-Diseases Ontology (GGDonto) and a RDF/SPARQL-based user interface using Semantic Web technologies. In particular, we represented the GGDonto content using Semantic Web languages, such as RDF, RDFS, SKOS, and OWL, and created an interactive user interface based on SPARQL queries. This user interface provides features to browse the hierarchy of the ontology, view detailed information on diseases and related genes, and find relevant background information. Moreover, it provides the ability to filter and search information by faceted and keyword searches. Focused on the molecular etiology, pathogenesis, and clinical manifestations of genetic diseases and disorders of glycan metabolism and developed as a knowledge-base for this scientific field, GGDonto provides comprehensive information on various topics, including links to aid the integration with other scientific resources. The availability and accessibility of this knowledge will help users better understand how genetic defects impact the

  15. Genetics of homocysteine metabolism and associated disorders

    Directory of Open Access Journals (Sweden)

    S. Brustolin

    2010-01-01

    Full Text Available Homocysteine is a sulfur-containing amino acid derived from the metabolism of methionine, an essential amino acid, and is metabolized by one of two pathways: remethylation or transsulfuration. Abnormalities of these pathways lead to hyperhomocysteinemia. Hyperhomocysteinemia is observed in approximately 5% of the general population and is associated with an increased risk for many disorders, including vascular and neurodegenerative diseases, autoimmune disorders, birth defects, diabetes, renal disease, osteoporosis, neuropsychiatric disorders, and cancer. We review here the correlation between homocysteine metabolism and the disorders described above with genetic variants on genes coding for enzymes of homocysteine metabolism relevant to clinical practice, especially common variants of the MTHFR gene, 677C>T and 1298A>C. We also discuss the management of hyperhomocysteinemia with folic acid supplementation and fortification of folic acid and the impact of a decrease in the prevalence of congenital anomalies and a decline in the incidence of stroke mortality.

  16. Invited review: Opportunities for genetic improvement of metabolic diseases.

    Science.gov (United States)

    Pryce, J E; Parker Gaddis, K L; Koeck, A; Bastin, C; Abdelsayed, M; Gengler, N; Miglior, F; Heringstad, B; Egger-Danner, C; Stock, K F; Bradley, A J; Cole, J B

    2016-09-01

    Metabolic disorders are disturbances to one or more of the metabolic processes in dairy cattle. Dysfunction of any of these processes is associated with the manifestation of metabolic diseases or disorders. In this review, data recording, incidences, genetic parameters, predictors, and status of genetic evaluations were examined for (1) ketosis, (2) displaced abomasum, (3) milk fever, and (4) tetany, as these are the most prevalent metabolic diseases where published genetic parameters are available. The reported incidences of clinical cases of metabolic disorders are generally low (less than 10% of cows are recorded as having a metabolic disease per herd per year or parity/lactation). Heritability estimates are also low and are typically less than 5%. Genetic correlations between metabolic traits are mainly positive, indicating that selection to improve one of these diseases is likely to have a positive effect on the others. Furthermore, there may also be opportunities to select for general disease resistance in terms of metabolic stability. Although there is inconsistency in published genetic correlation estimates between milk yield and metabolic traits, selection for milk yield may be expected to lead to a deterioration in metabolic disorders. Under-recording and difficulty in diagnosing subclinical cases are among the reasons why interest is growing in using easily measurable predictors of metabolic diseases, either recorded on-farm by using sensors and milk tests or off-farm using data collected from routine milk recording. Some countries have already initiated genetic evaluations of metabolic disease traits and currently most of these use clinical observations of disease. However, there are opportunities to use clinical diseases in addition to predictor traits and genomic information to strengthen genetic evaluations for metabolic health in the future. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Carbohydrate Metabolism Disorders

    Science.gov (United States)

    ... metabolic disorder, something goes wrong with this process. Carbohydrate metabolism disorders are a group of metabolic disorders. Normally your enzymes break carbohydrates down into glucose (a type of sugar). If ...

  18. Metabolic syndrome as a risk factor for neurological disorders.

    Science.gov (United States)

    Farooqui, Akhlaq A; Farooqui, Tahira; Panza, Francesco; Frisardi, Vincenza

    2012-03-01

    The metabolic syndrome is a cluster of common pathologies: abdominal obesity linked to an excess of visceral fat, insulin resistance, dyslipidemia and hypertension. At the molecular level, metabolic syndrome is accompanied not only by dysregulation in the expression of adipokines (cytokines and chemokines), but also by alterations in levels of leptin, a peptide hormone released by white adipose tissue. These changes modulate immune response and inflammation that lead to alterations in the hypothalamic 'bodyweight/appetite/satiety set point,' resulting in the initiation and development of metabolic syndrome. Metabolic syndrome is a risk factor for neurological disorders such as stroke, depression and Alzheimer's disease. The molecular mechanism underlying the mirror relationship between metabolic syndrome and neurological disorders is not fully understood. However, it is becoming increasingly evident that all cellular and biochemical alterations observed in metabolic syndrome like impairment of endothelial cell function, abnormality in essential fatty acid metabolism and alterations in lipid mediators along with abnormal insulin/leptin signaling may represent a pathological bridge between metabolic syndrome and neurological disorders such as stroke, Alzheimer's disease and depression. The purpose of this review is not only to describe the involvement of brain in the pathogenesis of metabolic syndrome, but also to link the pathogenesis of metabolic syndrome with neurochemical changes in stroke, Alzheimer's disease and depression to a wider audience of neuroscientists with the hope that this discussion will initiate more studies on the relationship between metabolic syndrome and neurological disorders. © Springer Basel AG 2011

  19. Inflammation and metabolic disorders.

    Science.gov (United States)

    Navab, Mohamad; Gharavi, Nima; Watson, Andrew D

    2008-07-01

    Poor nutrition, overweight and obesity have increasingly become a public health concern as they affect many metabolic disorders, including heart disease, diabetes, digestive system disorders, and renal failure. Study of the effects of life style including healthy nutrition will help further elucidate the mechanisms involved in the adverse effects of poor nutrition. Unhealthy life style including poor nutrition can result in imbalance in our oxidation/redox systems. Lipids can undergo oxidative modification by lipoxygenases, cyclooxygenases, myeloperoxidase, and other enzymes. Oxidized phospholipids can induce inflammatory molecules in the liver and other organs. This can contribute to inflammation, leading to coronary heart disease, stroke, renal failure, inflammatory bowl disease, metabolic syndrome, bone and joint disorders, and even certain types of cancer. Our antioxidant and antiinflammatory defense mechanisms contribute to a balance between the stimulators and the inhibitors of inflammation. Beyond a point, however, these systems might be overwhelmed and eventually fail. High-density lipoprotein is a potent inhibitor of the formation of toxic oxidized lipids. High-density lipoprotein is also an effective system for stimulating the genes whose products are active in the removal, inactivation, and elimination of toxic lipids. Supporting the high-density lipoprotein function should help maintain the balance in these systems. It is hoped that the present report would elucidate some of the ongoing work toward this goal.

  20. The Metabolic Role of Gut Microbiota in the Development of Nonalcoholic Fatty Liver Disease and Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Marco Sanduzzi Zamparelli

    2016-07-01

    Full Text Available The prevalence of metabolic disorders, such as type 2 diabetes (T2D, obesity, and non-alcoholic fatty liver disease (NAFLD, which are common risk factors for cardiovascular disease (CVD, has dramatically increased worldwide over the last decades. Although dietary habit is the main etiologic factor, there is an imperfect correlation between dietary habits and the development of metabolic disease. Recently, research has focused on the role of the microbiome in the development of these disorders. Indeed, gut microbiota is implicated in many metabolic functions and an altered gut microbiota is reported in metabolic disorders. Here we provide evidence linking gut microbiota and metabolic diseases, focusing on the pathogenetic mechanisms underlying this association.

  1. Ghrelin: a link between ageing, metabolism and neurodegenerative disorders

    NARCIS (Netherlands)

    Stoyanova, Irina

    2014-01-01

    Along with the increase in life expectancy over the last century comes the increased risk for development of age-related disorders, including metabolic and neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's diseases. These chronic disorders share two main characteristics:

  2. Endothelial dysfunction in metabolic and vascular disorders.

    Science.gov (United States)

    Polovina, Marija M; Potpara, Tatjana S

    2014-03-01

    Vascular endothelium has important regulatory functions in the cardiovascular system and a pivotal role in the maintenance of vascular health and metabolic homeostasis. It has long been recognized that endothelial dysfunction participates in the pathogenesis of atherosclerosis from early, preclinical lesions to advanced, thrombotic complications. In addition, endothelial dysfunction has been recently implicated in the development of insulin resistance and type 2 diabetes mellitus (T2DM). Considering that states of insulin resistance (eg, metabolic syndrome, impaired fasting glucose, impaired glucose tolerance, and T2DM) represent the most prevalent metabolic disorders and risk factors for atherosclerosis, it is of considerable scientific and clinical interest that both metabolic and vascular disorders have endothelial dysfunction as a common background. Importantly, endothelial dysfunction has been associated with adverse outcomes in patients with established cardiovascular disease, and a growing body of evidence indicates that endothelial dysfunction also imparts adverse prognosis in states of insulin resistance. In this review, we discuss the association of insulin resistance and T2DM with endothelial dysfunction and vascular disease, with a focus on the underlying mechanisms and prognostic implications of the endothelial dysfunction in metabolic and vascular disorders. We also address current therapeutic strategies for the improvement of endothelial dysfunction.

  3. Metabolic Disorder in Chronic Obstructive Pulmonary Disease (COPD) Patients: Towards a Personalized Approach Using Marine Drug Derivatives.

    Science.gov (United States)

    Lamonaca, Palma; Prinzi, Giulia; Kisialiou, Aliaksei; Cardaci, Vittorio; Fini, Massimo; Russo, Patrizia

    2017-03-20

    Metabolic disorder has been frequently observed in chronic obstructive pulmonary disease (COPD) patients. However, the exact correlation between obesity, which is a complex metabolic disorder, and COPD remains controversial. The current study summarizes a variety of drugs from marine sources that have anti-obesity effects and proposed potential mechanisms by which lung function can be modulated with the anti-obesity activity. Considering the similar mechanism, such as inflammation, shared between obesity and COPD, the study suggests that marine derivatives that act on the adipose tissues to reduce inflammation may provide beneficial therapeutic effects in COPD subjects with high body mass index (BMI).

  4. Lingual dyskinesia and tics: a novel presentation of copper-metabolism disorder.

    Science.gov (United States)

    Goez, Helly R; Jacob, Francois D; Yager, Jerome Y

    2011-02-01

    Copper is a trace element that is required for cellular respiration, neurotransmitter biosynthesis, pigment formation, antioxidant defense, peptide amidation, and formation of connective tissue. Abnormalities of copper metabolism have been linked with neurologic disorders that affect movement, such as Wilson disease and Menkes disease; however, the diagnosis of non-Wilson, non-Menkes-type copper-metabolism disorders has been more elusive, especially in cases with atypical characteristics. We present here the case of an adolescent with a novel presentation of copper-metabolism disorder who exhibited acute severe hemilingual dyskinesia and prominent tics, with ballismus of the upper limbs, but had normal brain and spinal MRI results and did not show any signs of dysarthria or dysphagia. His serum copper and ceruloplasmin levels were low, but his urinary copper level was elevated after penicillamine challenge. We conclude that copper-metabolism disorders should be included in the differential diagnosis for movement disorders, even in cases with highly unusual presentations, because many of them are treatable. Moreover, a connection between copper-metabolism disorders and tics is presented, to our knowledge, for the first time in humans; further investigation is needed to better establish this connection and understand its underlying pathophysiology.

  5. Sphingolipids and Lipoproteins in Health and Metabolic Disorders.

    Science.gov (United States)

    Iqbal, Jahangir; Walsh, Meghan T; Hammad, Samar M; Hussain, M Mahmood

    2017-07-01

    Sphingolipids are structurally and functionally diverse molecules with significant physiologic functions and are found associated with cellular membranes and plasma lipoproteins. The cellular and plasma concentrations of sphingolipids are altered in several metabolic disorders and may serve as prognostic and diagnostic markers. Here we discuss various sphingolipid transport mechanisms and highlight how changes in cellular and plasma sphingolipid levels contribute to cardiovascular disease, obesity, diabetes, insulin resistance, and nonalcoholic fatty liver disease (NAFLD). Understanding of the mechanisms involved in intracellular transport, secretion, and extracellular transport may provide novel information that might be amenable to therapeutic targeting for the treatment of various metabolic disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Metabolic, endocrine, and related bone diseases

    International Nuclear Information System (INIS)

    Rogers, L.F.

    1987-01-01

    Bone is living tissue, and old bone is constantly removed and replaced with new bone. Normally this exchange is in balance, and the mineral content remains relatively constant. This balance may be disturbed as a result of certain metabolic and endocrinologic disorders. The term dystrophy, referring to a disturbance of nutrition, is applied to metabolic and endocrine bone diseases and should be distinguished from the term dysplasia, referring to a disturbance of bone growth. The two terms are easily confused but are not interchangeable. Metabolic bone disease is caused by endocrine imbalance, vitamin deficiency or excess, and other disturbances in bone metabolism leading to osteoporosis and osteomalacia

  7. Abdominal ultrasonography in inheredited diseases of carbohydrate metabolism

    International Nuclear Information System (INIS)

    Pozzato, Carlo; Curti, Alessandra; Cornalba, Gianpaolo; Radaelli, Giovanni; Fiori, Laura; Rossi, Samantha; Riva, Enrica

    2005-01-01

    Purpose: To determine the usefulness of abdominal sonography in inherited diseases of carbohydrate metabolism. Materials and methods: Thirty patients (age range, 4 months to 27 years) with glycogen storage diseases, galactosemia, disorders of fructose metabolism were studied with sonography. Echogenicity of the liver, sonographic dimensions of liver, kidneys and spleen were evaluated. Plasma blood parameters (ALT, AST, total cholesterol, triglycerides) were determined. Results: Liver was enlarged in 21/22 patients (95.4%) with glycogen storage diseases, in both subjects with disorders of fructose metabolism, and in 2/6 patients (33.3%) with galactosemia. Hepatic echogenicity was increased in 20/22 patients (90.9%) with glycogen storage diseases, and in the subject with hereditary fructose intolerance. Patients with galactosemia did not show increased liver echogenicity. Both kidney were enlarged in 8/17 patients (47.0%) with glycogen storage disease type I. Subjects with increased hepatic echogenicity exhibited higher plasma concentrations of any blood parameter than the others with normal echogenicity (p [it

  8. Spectrum Of Inherited Metabolic Disorders In Pakistani Children Presenting At A Tertiary Care Centre

    International Nuclear Information System (INIS)

    Cheema, H. A.; Malik, H. S.; Parkash, A.; Fayyaz, Z.

    2016-01-01

    Objective: To determine the frequency, presentation and outcome of various inherited metabolic diseases in children presenting in a tertiary care hospital, Lahore, Pakistan. Study Design: An observational study. Place and Duration of Study: Gastroenterology, Hepatology and Nutrition Department of The Children Hospital and Institute of Child Health, Lahore, from January 2011 to October 2014. Methodology: All children aged < 14 years with high suspicion of a metabolic disorder were inducted. Routine and radiological investigation were carried out at the study place. Comprehensive diagnostic testing of particular metabolic disorder was sent abroad. Those with a specific metabolic disorder were included in the study while those with normal metabolic work-up were excluded. All data was collected on preformed proforma. Result: A total of 239 patients were enrolled. Nineteen different types of inherited metabolic disorders were diagnosed in 180 patients; age ranged from 8 days to 14 years. Consanguinity was positive in 175 (97 percentage) among the parents of the affected children, with previously affected siblings in 64 (35.5 percentage). The most frequent disorders were inherited disorders of carbohydrate metabolism (92, 51 percentage), lipid storage disease (59, 32.7 percentage), organic acidemia and energy defects (18, 10 percentage), amino acid disorder (6, 3.3 percentage), and miscellaneous (4, 2.2 percentage). Fifty-eight (32.2 percentage) presented with acute metabolic crisis, 28 (15.5 percentage) patients presented with early onset liver failure, and 24 (13.3 percentage) with mental retardation. Out of these, 16 (8.8 percentage) expired. Conclusion: Glycogen storage disorders being the commonest followed by Gaucher disease and Galactosemia. The associated complications resulted in high morbidity and mortality. (author)

  9. MR spectroscopy in metabolic disorders of the brain

    International Nuclear Information System (INIS)

    Yilmaz, U.

    2017-01-01

    Metabolic disorders of the brain often present a particular challenge for the neuroradiologist, since the disorders are rare, changes on conventional MR are often non-specific and there are numerous differential diagnoses for the white substance lesions. As a complementary method to conventional brain MRI, MR spectroscopy may help to reduce the scope of the differential diagnosis. Entities with specific MR spectroscopy patterns are Canavan disease, maple syrup urine disease, nonketotic hyperglycinemia and creatine deficiency. (orig.) [de

  10. New peptides players in metabolic disorders

    Directory of Open Access Journals (Sweden)

    Agata Mierzwicka

    2016-08-01

    Full Text Available Among new peptides responsible for the pathogenesis of metabolic disorders and carbohydrate metabolism, adipokines are of great importance. Adipokines are substances of hormonal character, secreted by adipose tissue. Apart from the well-known adipokines, adropin and preptin are relatively newly discovered, hence their function is not fully understood. They are peptides not secreted by adipose tissue but their role in the metabolic regulations seems to be significant. Preptin is a 34-amino acid peptide, a derivative of proinsulin growth factor II (pro-IGF-II, secreted by pancreatic β cells, considered to be a physiological enhancer of insulin secretion. Additionally, preptin has a stimulating effect on osteoblasts, inducing their proliferation, differentiation and survival. Adropin is a 76-amino acid peptide, encoded by the energy homeostasis associated gene (Enho, mainly in liver and brain, and its expression is dependent on a diet. Adropin is believed to play an important role in metabolic homeostasis, fatty acids metabolism control, insulin resistance prevention, dyslipidemia, and impaired glucose tolerance. The results of studies conducted so far show that the diseases resulting from metabolic syndrome, such as obesity, type 2 diabetes mellitus, polycystic ovary syndrome, non-alcoholic fatty liver disease, or cardiovascular disease are accompanied by significant changes in the concentration of these peptides. It is also important to note that preptin has an anabolic effect on bone tissue, which might be preventive in osteoporosis.

  11. Probiotics and Prebiotics: Present Status and Future Perspectives on Metabolic Disorders.

    Science.gov (United States)

    Yoo, Ji Youn; Kim, Sung Soo

    2016-03-18

    Metabolic disorders, including type 2 diabetes (T2DM) and cardiovascular disease (CVD), present an increasing public health concern and can significantly undermine an individual's quality of life. The relative risk of CVD, the primary cause of death in T2DM patients, is two to four times higher in people with T2DM compared with those who are non-diabetic. The prevalence of metabolic disorders has been associated with dynamic changes in dietary macronutrient intake and lifestyle changes over recent decades. Recently, the scientific community has considered alteration in gut microbiota composition to constitute one of the most probable factors in the development of metabolic disorders. The altered gut microbiota composition is strongly conducive to increased adiposity, β-cell dysfunction, metabolic endotoxemia, systemic inflammation, and oxidative stress. Probiotics and prebiotics can ameliorate T2DM and CVD through improvement of gut microbiota, which in turn leads to insulin-signaling stimulation and cholesterol-lowering effects. We analyze the currently available data to ascertain further potential benefits and limitations of probiotics and prebiotics in the treatment of metabolic disorders, including T2DM, CVD, and other disease (obesity). The current paper explores the relevant contemporary scientific literature to assist in the derivation of a general perspective of this broad area.

  12. Probiotics and Prebiotics: Present Status and Future Perspectives on Metabolic Disorders

    Directory of Open Access Journals (Sweden)

    Ji Youn Yoo

    2016-03-01

    Full Text Available Metabolic disorders, including type 2 diabetes (T2DM and cardiovascular disease (CVD, present an increasing public health concern and can significantly undermine an individual’s quality of life. The relative risk of CVD, the primary cause of death in T2DM patients, is two to four times higher in people with T2DM compared with those who are non-diabetic. The prevalence of metabolic disorders has been associated with dynamic changes in dietary macronutrient intake and lifestyle changes over recent decades. Recently, the scientific community has considered alteration in gut microbiota composition to constitute one of the most probable factors in the development of metabolic disorders. The altered gut microbiota composition is strongly conducive to increased adiposity, β-cell dysfunction, metabolic endotoxemia, systemic inflammation, and oxidative stress. Probiotics and prebiotics can ameliorate T2DM and CVD through improvement of gut microbiota, which in turn leads to insulin-signaling stimulation and cholesterol-lowering effects. We analyze the currently available data to ascertain further potential benefits and limitations of probiotics and prebiotics in the treatment of metabolic disorders, including T2DM, CVD, and other disease (obesity. The current paper explores the relevant contemporary scientific literature to assist in the derivation of a general perspective of this broad area.

  13. Probiotics and Prebiotics: Present Status and Future Perspectives on Metabolic Disorders

    Science.gov (United States)

    Yoo, Ji Youn; Kim, Sung Soo

    2016-01-01

    Metabolic disorders, including type 2 diabetes (T2DM) and cardiovascular disease (CVD), present an increasing public health concern and can significantly undermine an individual’s quality of life. The relative risk of CVD, the primary cause of death in T2DM patients, is two to four times higher in people with T2DM compared with those who are non-diabetic. The prevalence of metabolic disorders has been associated with dynamic changes in dietary macronutrient intake and lifestyle changes over recent decades. Recently, the scientific community has considered alteration in gut microbiota composition to constitute one of the most probable factors in the development of metabolic disorders. The altered gut microbiota composition is strongly conducive to increased adiposity, β-cell dysfunction, metabolic endotoxemia, systemic inflammation, and oxidative stress. Probiotics and prebiotics can ameliorate T2DM and CVD through improvement of gut microbiota, which in turn leads to insulin-signaling stimulation and cholesterol-lowering effects. We analyze the currently available data to ascertain further potential benefits and limitations of probiotics and prebiotics in the treatment of metabolic disorders, including T2DM, CVD, and other disease (obesity). The current paper explores the relevant contemporary scientific literature to assist in the derivation of a general perspective of this broad area. PMID:26999199

  14. Diseases and disorders of muscle.

    Science.gov (United States)

    Pearson, A M; Young, R B

    1993-01-01

    Muscle may suffer from a number of diseases or disorders, some being fatal to humans and animals. Their management or treatment depends on correct diagnosis. Although no single method may be used to identify all diseases, recognition depends on the following diagnostic procedures: (1) history and clinical examination, (2) blood biochemistry, (3) electromyography, (4) muscle biopsy, (5) nuclear magnetic resonance, (6) measurement of muscle cross-sectional area, (7) tests of muscle function, (8) provocation tests, and (9) studies on protein turnover. One or all of these procedures may prove helpful in diagnosis, but even then identification of the disorder may not be possible. Nevertheless, each of these procedures can provide useful information. Among the most common diseases in muscle are the muscular dystrophies, in which the newly identified muscle protein dystrophin is either absent or present at less than normal amounts in both Duchenne and Becker's muscular dystrophy. Although the identification of dystrophin represents a major breakthrough, treatment has not progressed to the experimental stage. Other major diseases of muscle include the inflammatory myopathies and neuropathies. Atrophy and hypertrophy of muscle and the relationship of aging, exercise, and fatigue all add to our understanding of the behavior of normal and abnormal muscle. Some other interesting related diseases and disorders of muscle include myasthenia gravis, muscular dysgenesis, and myclonus. Disorders of energy metabolism include those caused by abnormal glycolysis (Von Gierke's, Pompe's, Cori-Forbes, Andersen's, McArdle's, Hers', and Tauri's diseases) and by the acquired diseases of glycolysis (disorders of mitochondrial oxidation). Still other diseases associated with abnormal energy metabolism include lipid-related disorders (carnitine and carnitine palmitoyl-transferase deficiencies) and myotonic syndromes (myotonia congenita, paramyotonia congenita, hypokalemic and hyperkalemic

  15. New-onset Intermittent Explosive Disorder (IED; metabolic and clinical correlates: Case report

    Directory of Open Access Journals (Sweden)

    Giuseppina Selene Spina

    2017-08-01

    Full Text Available This paper presents the correlation between Intermittent Explosive Disorder (IED, listed in the domain of Disruptive, Impulse-Control and Conduct Disorders in the Diagnostic and Statistical Manual of Mental Disorders Fifth Edition (DSM 5, and metabolic alterations. A 64-years-old man with no previous history of major psychiatric disorders, presenting an onset of IED almost concomitant with the diagnosis of diabetes mellitus and dyslipidemia, is assessed upon a clinical and neuropsychological evaluation. Authors emphasize the influence of metabolic alterations and liver disease in the manifestation of impulsive aggression and violent behaviour, suggesting a multidisciplinary approach of those patients who present IED and concomitant metabolic alterations.

  16. Targeting Adipose Tissue Lipid Metabolism to Improve Glucose Metabolism in Cardiometabolic Disease

    Directory of Open Access Journals (Sweden)

    Johan W.E. Jocken

    2014-10-01

    Full Text Available With Type 2 diabetes mellitus and cardiovascular disease prevalence on the rise, there is a growing need for improved strategies to prevent or treat obesity and insulin resistance, both of which are major risk factors for these chronic diseases. Impairments in adipose tissue lipid metabolism seem to play a critical role in these disorders. In the classical picture of intracellular lipid breakdown, cytosolic lipolysis was proposed as the sole mechanism for triacylglycerol hydrolysis in adipocytes. Recent evidence suggests involvement of several hormones, membrane receptors, and intracellular signalling cascades, which has added complexity to the regulation of cytosolic lipolysis. Interestingly, a specific form of autophagy, called lipophagy, has been implicated as alternative lipolytic pathway. Defective regulation of cytosolic lipolysis and lipophagy might have substantial effects on lipid metabolism, thereby contributing to adipose tissue dysfunction, insulin resistance, and related cardiometabolic (cMet diseases. This review will discuss recent advances in our understanding of classical lipolysis and lipophagy in adipocyte lipid metabolism under normal and pathological conditions. Furthermore, the question of whether modulation of adipocyte lipolysis and lipophagy might be a potential therapeutic target to combat cMet disorders will be addressed.

  17. Systems Nutrigenomics Reveals Brain Gene Networks Linking Metabolic and Brain Disorders.

    Science.gov (United States)

    Meng, Qingying; Ying, Zhe; Noble, Emily; Zhao, Yuqi; Agrawal, Rahul; Mikhail, Andrew; Zhuang, Yumei; Tyagi, Ethika; Zhang, Qing; Lee, Jae-Hyung; Morselli, Marco; Orozco, Luz; Guo, Weilong; Kilts, Tina M; Zhu, Jun; Zhang, Bin; Pellegrini, Matteo; Xiao, Xinshu; Young, Marian F; Gomez-Pinilla, Fernando; Yang, Xia

    2016-05-01

    Nutrition plays a significant role in the increasing prevalence of metabolic and brain disorders. Here we employ systems nutrigenomics to scrutinize the genomic bases of nutrient-host interaction underlying disease predisposition or therapeutic potential. We conducted transcriptome and epigenome sequencing of hypothalamus (metabolic control) and hippocampus (cognitive processing) from a rodent model of fructose consumption, and identified significant reprogramming of DNA methylation, transcript abundance, alternative splicing, and gene networks governing cell metabolism, cell communication, inflammation, and neuronal signaling. These signals converged with genetic causal risks of metabolic, neurological, and psychiatric disorders revealed in humans. Gene network modeling uncovered the extracellular matrix genes Bgn and Fmod as main orchestrators of the effects of fructose, as validated using two knockout mouse models. We further demonstrate that an omega-3 fatty acid, DHA, reverses the genomic and network perturbations elicited by fructose, providing molecular support for nutritional interventions to counteract diet-induced metabolic and brain disorders. Our integrative approach complementing rodent and human studies supports the applicability of nutrigenomics principles to predict disease susceptibility and to guide personalized medicine. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Gender Differences in Metabolic Disorders and Related Diseases in Spontaneously Diabetic Torii-Leprfa Rats

    Directory of Open Access Journals (Sweden)

    Takeshi Ohta

    2014-01-01

    Full Text Available The Spontaneously Diabetic Torii Leprfa (SDT fatty rat is a novel type 2 diabetic model wherein both male and female rats develop glucose and lipid abnormalities from a young age. In this study, we investigated gender differences in abnormalities and related complications in SDT fatty rats. Food intake was higher in males compared to female rats; however, body weight was not different between genders. Progression of diabetes, including increases in blood glucose and declines in blood insulin, was observed earlier in male rats than in females, and diabetic grade was more critical in male rats. Blood lipids tended to increase in female rats. Gonadal dysfunction was observed in both male and female rats with aging. Microangiopathies, such as nephropathy, retinopathy, neuropathy, and osteoporosis, were seen in both genders, and pathological grade and progression were more significant in males. Qualitative and quantitative changes were observed for metabolic disease gender differences in SDT fatty rats. The SDT fatty rat is a useful model for researching gender differences in metabolic disorders and related diseases in diabetes with obesity.

  19. Should metabolic diseases be systematically screened in nonsyndromic autism spectrum disorders?

    Directory of Open Access Journals (Sweden)

    Manuel Schiff

    Full Text Available BACKGROUND: In the investigation of autism spectrum disorders (ASD, a genetic cause is found in approximately 10-20%. Among these cases, the prevalence of the rare inherited metabolic disorders (IMD is unknown and poorly evaluated. An IMD responsible for ASD is usually identified by the associated clinical phenotype such as dysmorphic features, ataxia, microcephaly, epilepsy, and severe intellectual disability (ID. In rare cases, however, ASD may be considered as nonsyndromic at the onset of a related IMD. OBJECTIVES: To evaluate the utility of routine metabolic investigations in nonsyndromic ASD. PATIENTS AND METHODS: We retrospectively analyzed the results of a metabolic workup (urinary mucopolysaccharides, urinary purines and pyrimidines, urinary creatine and guanidinoacetate, urinary organic acids, plasma and urinary amino acids routinely performed in 274 nonsyndromic ASD children. RESULTS: The metabolic parameters were in the normal range for all but 2 patients: one with unspecific creatine urinary excretion and the other with persistent 3-methylglutaconic aciduria. CONCLUSIONS: These data provide the largest ever reported cohort of ASD patients for whom a systematic metabolic workup has been performed; they suggest that such a routine metabolic screening does not contribute to the causative diagnosis of nonsyndromic ASD. They also emphasize that the prevalence of screened IMD in nonsyndromic ASD is probably not higher than in the general population (<0.5%. A careful clinical evaluation is probably more reasonable and of better medical practice than a costly systematic workup.

  20. Circadian rhythms and metabolic syndrome: from experimental genetics to human disease.

    Science.gov (United States)

    Maury, Eleonore; Ramsey, Kathryn Moynihan; Bass, Joseph

    2010-02-19

    The incidence of the metabolic syndrome represents a spectrum of disorders that continue to increase across the industrialized world. Both genetic and environmental factors contribute to metabolic syndrome and recent evidence has emerged to suggest that alterations in circadian systems and sleep participate in the pathogenesis of the disease. In this review, we highlight studies at the intersection of clinical medicine and experimental genetics that pinpoint how perturbations of the internal clock system, and sleep, constitute risk factors for disorders including obesity, diabetes mellitus, cardiovascular disease, thrombosis and even inflammation. An exciting aspect of the field has been the integration of behavioral and physiological approaches, and the emerging insight into both neural and peripheral tissues in disease pathogenesis. Consideration of the cell and molecular links between disorders of circadian rhythms and sleep with metabolic syndrome has begun to open new opportunities for mechanism-based therapeutics.

  1. Inborn Errors of Metabolism with Hypoglycemia Glycogen Storage Diseases and Inherited Disorders of Gluconeogenesis : Glycogen Storage Diseases and Inherited Disorders of Gluconeogenesis

    NARCIS (Netherlands)

    Weinstein, David A.; Steuerwald, Ulrike; De Souza, Carolina F. M.; Derks, Terry G. J.

    Although hyperinsulinism is the predominant inherited cause of hypoglycemia in the newborn period, inborn errors of metabolism are the primary etiologies after 1 month of age. Disorders of carbohydrate metabolism often present with hypoglycemia when fasting occurs. The presentation, diagnosis, and

  2. The Menkes and Wilson disease genes counteract in copper toxicosis in Labrador retrievers : a new canine model for copper-metabolism disorders

    NARCIS (Netherlands)

    Fieten, Hille; Gill, Yadvinder; Martin, Alan J.; Concilli, Mafalda; Dirksen, Karen; van Steenbeek, Frank G.; Spee, Bart; van den Ingh, Ted S. G. A. M.; Martens, Ellen C. C. P.; Festa, Paola; Chesi, Giancarlo; Sluis, van de Bart; Houwen, Roderick H. J. H.; Watson, Adrian L.; Aulchenko, Yurii S.; Hodgkinson, Victoria L.; Zhu, Sha; Petris, Michael J.; Polishchuk, Roman S.; Leegwater, Peter A. J.; Rothuizen, Jan

    2016-01-01

    The deleterious effects of a disrupted copper metabolism are illustrated by hereditary diseases caused by mutations in the genes coding for the copper transporters ATP7A and ATP7B. Menkes disease, involving ATP7A, is a fatal neurodegenerative disorder of copper deficiency. Mutations in ATP7B lead to

  3. The Menkes and Wilson disease genes counteract in copper toxicosis in Labrador retrievers: a new canine model for copper-metabolism disorders

    NARCIS (Netherlands)

    Fieten, Hille; Gill, Yadvinder; Martin, Alan J.; Concilli, Mafalda; Dirksen, Karen; van Steenbeek, Frank G.; Spee, Bart; van den Ingh, Ted S. G. A. M.; Martens, Ellen C. C. P.; Festa, Paola; Chesi, Giancarlo; van de Sluis, Bart; Houwen, Roderick H. J. H.; Watson, Adrian L.; Aulchenko, Yurii S.; Hodgkinson, Victoria L.; Zhu, Sha; Petris, Michael J.; Polishchuk, Roman S.; Leegwater, Peter A. J.; Rothuizen, Jan

    2016-01-01

    The deleterious effects of a disrupted copper metabolism are illustrated by hereditary diseases caused by mutations in the genes coding for the copper transporters ATP7A and ATP7B. Menkes disease, involving ATP7A, is a fatal neurodegenerative disorder of copper deficiency. Mutations in ATP7B lead to

  4. Semi-quantitative interpretation of the bone scan in metabolic bone disease

    Energy Technology Data Exchange (ETDEWEB)

    Fogelman, I; Turner, J G; Hay, I D; Boyle, I T [Royal Infirmary, Glasgow (UK). Dept. of Nuclear Medicine; Citrin, D L [Wisconsin Univ., Madison (USA). Dept. of Human Oncology; Bessent, G R

    1979-01-01

    Certain easily recognisable features are commonly seen in the bone scans of patients with metabolic bone disorders. Seven such features have been numerically graded by three independent observers in the scans of 100 patients with metabolic bone disease and of 50 control subjects. The total score for each patient is defined as the metabolic index. The mean metabolic index for each group of patients with metabolic bone disease is significantly greater than that for the control group (P < 0.001). (orig.).

  5. The measurement of the nigrostriatal dopaminergic function and glucose metabolism in patients with movement disorders

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Makoto; Ichiya, Yuichi; Kuwabara, Yasuo; Sasaki, Masayuki; Fukumura, Toshimitsu; Masuda, Kouji; Shima, Fumio; Kato, Motohiro (Kyushu Univ., Fukuoka (Japan). Faculty of Medicine)

    1992-12-01

    The nigrostriatal dopaminergic function and glucose metabolism were evaluated in 34 patients with various movement disorders by using positron emission tomography with [sup 18]F-Dopa and [sup 18]F-FDG respectively. The [sup 18]F-Dopa uptake in the striatum (the caudate head and the putamen) decreased in patients with Parkinson's disease but was relatively unaffected in the caudate. The cerebral glucose metabolism was normal in patients with Parkinson's disease. The [sup 18]F-Dopa uptake in the striatum also decreased in cases of atypical parkinsonism and in cases of progressive supranuclear palsy, but there was no difference in the uptake between the caudate and the putamen. The glucose metabolism decreased in the cerebral hemisphere including the striatum; this finding was also different from those of Parkinson's disease. A normal [sup 18]F-Dopa uptake in the striatum with a markedly decreased striatal glucose metabolism and a mildly decreased cortical glucose metabolism was observed in cases of Huntington's disease and Wilson's disease. The [sup 18]F-Dopa uptake in the striatum increased and the glucose metabolism was normal in cases of idiopathic dystonia. Various patterns of [sup 18]F-Dopa uptake and glucose metabolism were thus observed in the various movement disorders. These results suggest that the measurements of the [sup 18]F-Dopa uptake and the cerebral glucose metabolism would be useful for the evaluation of the striatal function in various movement disorders. (author).

  6. The measurement of the nigrostriatal dopaminergic function and glucose metabolism in patients with movement disorders

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Makoto; Ichiya, Yuichi; Kuwabara, Yasuo; Sasaki, Masayuki; Fukumura, Toshimitsu; Masuda, Kouji; Shima, Fumio; Kato, Motohiro [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine

    1992-12-01

    The nigrostriatal dopaminergic function and glucose metabolism were evaluated in 34 patients with various movement disorders by using positron emission tomography with [sup 18]F-Dopa and [sup 18]F-FDG respectively. The [sup 18]F-Dopa uptake in the striatum (the caudate head and the putamen) decreased in patients with Parkinson's disease but was relatively unaffected in the caudate. The cerebral glucose metabolism was normal in patients with Parkinson's disease. The [sup 18]F-Dopa uptake in the striatum also decreased in cases of atypical parkinsonism and in cases of progressive supranuclear palsy, but there was no difference in the uptake between the caudate and the putamen. The glucose metabolism decreased in the cerebral hemisphere including the striatum; this finding was also different from those of Parkinson's disease. A normal [sup 18]F-Dopa uptake in the striatum with a markedly decreased striatal glucose metabolism and a mildly decreased cortical glucose metabolism was observed in cases of Huntington's disease and Wilson's disease. The [sup 18]F-Dopa uptake in the striatum increased and the glucose metabolism was normal in cases of idiopathic dystonia. Various patterns of [sup 18]F-Dopa uptake and glucose metabolism were thus observed in the various movement disorders. These results suggest that the measurements of the [sup 18]F-Dopa uptake and the cerebral glucose metabolism would be useful for the evaluation of the striatal function in various movement disorders. (author).

  7. Cyclic vomiting syndrome masking a fatal metabolic disease.

    LENUS (Irish Health Repository)

    Fitzgerald, Marianne

    2013-05-01

    Disorders of fatty acid oxidation are rare but can be fatal. Hypoglycaemia with acidosis is a cardinal feature. Cases may present during early childhood or can be delayed into adolescence or beyond. We present a case of multiple acyl-coenzyme A dehydrogenase deficiency (MADD), an extremely rare disorder of fatty acid oxidation. Our 20-year-old patient presented with cardiovascular collapse, raised anion gap metabolic acidosis and non-ketotic hypoglycaemia. She subsequently developed multi-organ failure and sadly died. She had a previous diagnosis of cyclic vomiting syndrome (CVS) for more than 10 years, warranting frequent hospital admissions. The association between CVS and MADD has been made before though the exact relationship is unclear. All patients with persistent severe CVS should have metabolic investigations to exclude disorders of fatty acid oxidation. In case of non-ketotic hypoglycaemia with acidosis, the patient should be urgently referred to a specialist in metabolic diseases. All practitioners should be aware of these rare disorders as a cause of unexplained acidosis.

  8. Neurologic disorders of mineral metabolism and parathyroid disease.

    Science.gov (United States)

    Agrawal, Lily; Habib, Zeina; Emanuele, Nicholas V

    2014-01-01

    Disorders of mineral metabolism may cause neurologic manifestations of the central and peripheral nervous systems. This is because plasma calcium stabilizes excitable membranes in the nerve and muscle tissue, magnesium is predominantly intracellular and is required for activation of many intracellular enzymes, and extracellular magnesium affects synaptic transmission. This chapter reviews abnormalities in electrolytes and minerals which can be associated with several neuromuscular symptoms including neuromuscular irritability, mental status changes, cardiac and smooth muscle changes, etc. © 2014 Elsevier B.V. All rights reserved.

  9. Dynapenic obesity as an associated factor to lipid and glucose metabolism disorders and metabolic syndrome in older adults - Findings from SABE Study.

    Science.gov (United States)

    Alexandre, Tiago da Silva; Aubertin-Leheudre, Mylène; Carvalho, Lívia Pinheiro; Máximo, Roberta de Oliveira; Corona, Ligiana Pires; Brito, Tábatta Renata Pereira de; Nunes, Daniella Pires; Santos, Jair Licio Ferreira; Duarte, Yeda Aparecida de Oliveira; Lebrão, Maria Lúcia

    2018-08-01

    There is little evidence showing that dynapenic obesity is associated with lipid and glucose metabolism disorders, high blood pressure, chronic disease and metabolic syndrome. Our aim was to analyze whether dynapenic abdominal obesity can be associated with lipid and glucose metabolism disorders, high blood pressure, metabolic syndrome and cardiovascular diseases in older adults living in São Paulo. This cross-sectional study included 833 older adults who took part of the third wave of the Health, Well-being and Aging Study in 2010. Based on waist circumference (>88 cm women and >102 cm men) and handgrip strength (metabolic syndrome and cardiovascular diseases. Logistic regression was used to analyze the associations between dynapenia and abdominal obesity status and lipid and glucose metabolic profiles, blood pressure, cardiovascular diseases and metabolic syndrome. The fully adjusted models showed that D/AO individuals had higher prevalence of low HDL plasma concentrations (OR = 2.51, 95%CI: 1.40-4.48), hypertriglyceridemia (OR = 2.53, 95%CI: 1.43-4.47), hyperglycemia (OR = 2.05, 95%CI: 1.14-3.69), high glycated-haemoglobin concentrations (OR = 1.84, 95%CI: 1.03-3.30) and metabolic syndrome (OR = 12.39, 95%CI: 7.38-20.79) than ND/NAO. Dynapenic and D/AO individuals had higher prevalence of heart disease (OR = 2.05, 95%CI: 1.17-3.59 and OR = 1.92, 95%CI: 1.06-3.48, respectively) than ND/NAO. D/AO was associated with high prevalence of lipid and glucose metabolism disorders and metabolic syndrome while dynapenia and D/AO were associated with high prevalence of heart disease. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  10. B-12 vitamin metabolism disorders

    International Nuclear Information System (INIS)

    Fabriciova, K.; Bzduch, V.; Behulova, D.; Skodova, J.; Holesova, D.; Ostrozlikova, M.; Schmidtova, K.; Kozich, V.

    2012-01-01

    Vitamin B-12 – cobalamin (Cbl) is a water soluble vitamin, which is synthesized by lower organisms. It cannot be synthesized by plants and higher organisms. Problem in the metabolic pathway of Cbl can be caused by its deficiency or by the deficiency of its last metabolites – adenosylcobalamin and methylcobalamin. Both reasons are presented by errors in the homocysteine and methylmalonyl-coenzyme A metabolism. Clinical symptoms of the Cbl metabolism disorders are: different neurological disorders, changes in haematological status (megaloblastic anemia, pancytopenia), symptoms of gastrointestinal tract (glossitis, loss of appetite, diarrhea) and changes in the immune system. In the article the authors describe the causes of Cbl metabolism disorders, its different diagnosis and treatment. They introduce the group of patients with these disorders, who were taken care of in the I st Paediatric Department of University Children Hospital for the last 5 years. (author)

  11. Inflammation meets metabolic disease: Gut feeling mediated by GLP-1

    Directory of Open Access Journals (Sweden)

    Tamara eZietek

    2016-04-01

    Full Text Available Chronic diseases such as obesity and diabetes, cardiovascular and inflammatory bowel diseases (IBD share common features in their pathology. Metabolic disorders exhibit strong inflammatory underpinnings and vice versa, inflammation is associated with metabolic alterations. Next to cytokines and cellular stress pathways like the unfolded protein response (UPR, alterations in the enteroendocrine system are intersections of various pathologies. Enteroendocrine cells (EEC have been studied extensively for their ability to regulate gastrointestinal motility, secretion, and insulin release by release of peptide hormones. In particular the L cell-derived incretin hormone glucagon-like peptide 1 (GLP-1 has gained enormous attention due to its insulinotropic action and relevance in the treatment of type 2 diabetes (T2D. Yet, accumulating data indicates a critical role for EEC and in particular for GLP-1 in metabolic adaptation and in orchestrating immune responses beyond blood glucose control. EEC sense the lamina propria and luminal environment including the microbiota via receptors and transporters. Subsequently mediating signals by secreting hormones and cytokines, EEC can be considered as integrators of metabolic and inflammatory signaling.This review focuses on L cell and GLP-1 functions in the context of metabolic and inflammatory diseases. The effects of incretin-based therapies on metabolism and immune system are discussed and the interrelation and common features of metabolic and immune-mediated disorders are highlighted. Moreover, it presents data on the impact of inflammation, in particular of IBD on EEC and discusses the potential role of the microbiota as link between nutrients, metabolism, immunity and disease.

  12. Metabolic Disorders in Dairy Calves in Postpartum Period

    Directory of Open Access Journals (Sweden)

    A. Podhorský

    2007-01-01

    Full Text Available The aim of this study was, in terms of analysis of causes of disorders in calves on dairy farms, to evaluate occurrence of metabolic disorders in their postnatal period. In 23 agricultural farms (14 farms with the incidence of clinical forms of disease in calves during milk nutrition period - group D; 9 farms with no clinical disease - group H clinical examination was performed, blood samples were collected and data concerning the provision of permanent day and night care for calves (PDC during delivery and in early postpartum period were collected. The samples were taken from 3 - 5 calves in every farm (totally 97, H - 38, D - 59. Biochemical indicators that have some relations to the quality of colostral nutrition were determined (the concentrations of immunoglobulins - Ig, total protein - TP, albumin - A, globulins - G, vitamin E and A, the activity of gammaglutamyl transferase - GMT and to the microelement metabolism (the activities of glutathione peroxidase - GSH-Px for evaluation of selenium (Se status, the concentrations of copper (Cu and zinc (Zn. While evaluating the entire group of examined calves, we found a high occurrence of metabolic disorders in calves connected with colostral nutrition and also high occurrence of microelement deficiencies. The decrease in TP was diagnosed in 80%, the decrease in G in 78%, the decrease in concentration of Ig in 78% and 74% of calves had higher A/G ratio. Insufficient intake of colostrum showed also lower activities of GMT in 76% of calves. Hypovitaminosis E was diagnosed in 67% of calves and hypovitaminosis A in 19% of calves. Microelement deficiencies were found in 77% (Cu, 39% (Se, and 10% (Zn of calves. While comparing the results for calves in groups H and D, in the group of calves from farms with no clinical disease (H a significantly higher (p p p p < 0.01 A/G ratio, which proves a higher-quality colostral nutrition. The results thus prove that the incidence of metabolic disorders in dairy

  13. Genetic aspects of hypertension and metabolic disease in the obstructive sleep apnoea-hypopnoea syndrome

    DEFF Research Database (Denmark)

    Riha, R.L.; Diefenbach, K.; Jennum, P.

    2008-01-01

    Though it has long been recognised that there is a hereditary component to the obstructive steep apnoea/hypopnoea syndrome (OSAHS), identifying its genetic basis remains elusive. Hypertension and metabolic syndrome, Like OSAHS, are polygenic disorders, physiologically complex and the product...... phenotyping, which has hampered genetic dissection of these diseases; in addition, sleep-disordered breathing has not been factored into most studies dealing with essential hypertension or metabolic syndrome. Genome-wide scans have yielded inconsistent results in all three disorders under discussion...... for the expression of cardiovascular disease and metabolic syndrome in the context of OSAHS. (C) 2007 Elsevier Ltd. All rights reserved Udgivelsesdato: 2008/2...

  14. Sphingolipid metabolism diseases.

    Science.gov (United States)

    Kolter, Thomas; Sandhoff, Konrad

    2006-12-01

    Human diseases caused by alterations in the metabolism of sphingolipids or glycosphingolipids are mainly disorders of the degradation of these compounds. The sphingolipidoses are a group of monogenic inherited diseases caused by defects in the system of lysosomal sphingolipid degradation, with subsequent accumulation of non-degradable storage material in one or more organs. Most sphingolipidoses are associated with high mortality. Both, the ratio of substrate influx into the lysosomes and the reduced degradative capacity can be addressed by therapeutic approaches. In addition to symptomatic treatments, the current strategies for restoration of the reduced substrate degradation within the lysosome are enzyme replacement therapy (ERT), cell-mediated therapy (CMT) including bone marrow transplantation (BMT) and cell-mediated "cross correction", gene therapy, and enzyme-enhancement therapy with chemical chaperones. The reduction of substrate influx into the lysosomes can be achieved by substrate reduction therapy. Patients suffering from the attenuated form (type 1) of Gaucher disease and from Fabry disease have been successfully treated with ERT.

  15. Mechanistic modeling of aberrant energy metabolism in human disease

    Directory of Open Access Journals (Sweden)

    Vineet eSangar

    2012-10-01

    Full Text Available Dysfunction in energy metabolism—including in pathways localized to the mitochondria—has been implicated in the pathogenesis of a wide array of disorders, ranging from cancer to neurodegenerative diseases to type II diabetes. The inherent complexities of energy and mitochondrial metabolism present a significant obstacle in the effort to understand the role that these molecular processes play in the development of disease. To help unravel these complexities, systems biology methods have been applied to develop an array of computational metabolic models, ranging from mitochondria-specific processes to genome-scale cellular networks. These constraint-based models can efficiently simulate aspects of normal and aberrant metabolism in various genetic and environmental conditions. Development of these models leverages—and also provides a powerful means to integrate and interpret—information from a wide range of sources including genomics, proteomics, metabolomics, and enzyme kinetics. Here, we review a variety of mechanistic modeling studies that explore metabolic functions, deficiency disorders, and aberrant biochemical pathways in mitochondria and related regions in the cell.

  16. Is the Gut Microbiota a New Factor Contributing to Obesity and Its Metabolic Disorders?

    Directory of Open Access Journals (Sweden)

    Kristina Harris

    2012-01-01

    Full Text Available The gut microbiota refers to the trillions of microorganisms residing in the intestine and is integral in multiple physiological processes of the host. Recent research has shown that gut bacteria play a role in metabolic disorders such as obesity, diabetes, and cardiovascular diseases. The mechanisms by which the gut microbiota affects metabolic diseases are by two major routes: (1 the innate immune response to the structural components of bacteria (e.g., lipopolysaccharide resulting in inflammation and (2 bacterial metabolites of dietary compounds (e.g., SCFA from fiber, which have biological activities that regulate host functions. Gut microbiota has evolved with humans as a mutualistic partner, but dysbiosis in a form of altered gut metagenome and collected microbial activities, in combination with classic genetic and environmental factors, may promote the development of metabolic disorders. This paper reviews the available literature about the gut microbiota and aforementioned metabolic disorders and reveals the gaps in knowledge for future study.

  17. Exercise-induced myokines in health and metabolic diseases

    Directory of Open Access Journals (Sweden)

    Byunghun So

    2014-12-01

    Full Text Available Skeletal muscle has been emerging as a research field since the past 2 decades. Contraction of a muscle, which acts as a secretory organ, stimulates production, secretion, and expression of cytokines or other muscle fiber-derived peptides, i.e., myokines. Exercise-induced myokines influence crosstalk between different organs in an autocrine, endocrine, or paracrine fashion. Myokines are recently recognized as potential candidates for treating metabolic diseases through their ability to stimulate AMP-activated protein kinase signaling, increase glucose uptake, and improve lipolysis. Myokines may have positive effects on metabolic disorders, type 2 diabetes, or obesity. Numerous studies on myokines suggested that myokines offer a potential treatment option for preventing metabolic diseases. This review summarizes the current understanding of the positive effects of exercise-induced myokines, such as interleukin-15, brain-derived neurotrophic factor, leukemia inhibitory factor, irisin, fibroblast growth factor 21, and secreted protein acidic and rich in cysteine, on metabolic diseases.

  18. Migraine, cerebrovascular disease and the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Alexandra J Sinclair

    2012-01-01

    Full Text Available Evidence is emerging that migraine is not solely a headache disorder. Observations that ischemic stroke could occur in the setting of a migraine attack, and that migraine headaches could be precipitated by cerebral ischemia, initially highlighted a possibly association between migraine and cerebrovascular disease. More recently, large population-based studies that have demonstrated that migraineurs are at increased risk of stroke outside the setting of a migraine attack have prompted the concept that migraine and cerebrovascular disease are comorbid conditions. Explanations for this association are numerous and widely debated, particularly as the comorbid association does not appear to be confined to the cerebral circulation as cardiovascular and peripheral vascular disease also appear to be comorbid with migraine. A growing body of evidence has also suggested that migraineurs are more likely to be obese, hypertensive, hyperlipidemic and have impaired insulin sensitivity, all features of the metabolic syndrome. The comorbid association between migraine and cerebrovascular disease may consequently be explained by migraineurs having the metabolic syndrome and consequently being at increased risk of cerebrovascular disease. This review will summarise the salient evidence suggesting a comorbid association between migraine, cerebrovascular disease and the metabolic syndrome.

  19. Screening newborns for metabolic disorders based on targeted metabolomics using tandem mass spectrometry

    OpenAIRE

    Yoon, Hye-Ran

    2015-01-01

    The main purpose of newborn screening is to diagnose genetic, metabolic, and other inherited disorders, at their earliest to start treatment before the clinical manifestations become evident. Understanding and tracing the biochemical data obtained from tandem mass spectrometry is vital for early diagnosis of metabolic diseases associated with such disorders. Accordingly, it is important to focus on the entire diagnostic process, including differential and confirmatory diagnostic options, and ...

  20. Mitochondrial metabolism in early neural fate and its relevance for neuronal disease modeling.

    Science.gov (United States)

    Lorenz, Carmen; Prigione, Alessandro

    2017-12-01

    Modulation of energy metabolism is emerging as a key aspect associated with cell fate transition. The establishment of a correct metabolic program is particularly relevant for neural cells given their high bioenergetic requirements. Accordingly, diseases of the nervous system commonly involve mitochondrial impairment. Recent studies in animals and in neural derivatives of human pluripotent stem cells (PSCs) highlighted the importance of mitochondrial metabolism for neural fate decisions in health and disease. The mitochondria-based metabolic program of early neurogenesis suggests that PSC-derived neural stem cells (NSCs) may be used for modeling neurological disorders. Understanding how metabolic programming is orchestrated during neural commitment may provide important information for the development of therapies against conditions affecting neural functions, including aging and mitochondrial disorders. Copyright © 2017. Published by Elsevier Ltd.

  1. Clinical neurogenetics: neurologic presentations of metabolic disorders.

    Science.gov (United States)

    Kwon, Jennifer M; D'Aco, Kristin E

    2013-11-01

    This article reviews aspects of the neurologic presentations of selected treatable inborn errors of metabolism within the category of small molecule disorders caused by defects in pathways of intermediary metabolism. Disorders that are particularly likely to be seen by neurologists include those associated with defects in amino acid metabolism (organic acidemias, aminoacidopathies, urea cycle defects). Other disorders of small molecule metabolism are discussed as additional examples in which early treatments have the potential for better outcomes. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. [Metabolic bone disease osteomalacia].

    Science.gov (United States)

    Reuss-Borst, M A

    2014-05-01

    Osteomalacia is a rare disorder of bone metabolism leading to reduced bone mineralization. Underlying vitamin D deficiency and a disturbed phosphate metabolism (so-called hypophosphatemic osteomalacia) can cause the disease. Leading symptoms are dull localized or generalized bone pain, muscle weakness and cramps as well as increased incidence of falls. Rheumatic diseases, such as polymyalgia rheumatica, rheumatoid arthritis, myositis and fibromyalgia must be considered in the differential diagnosis. Alkaline phosphatase (AP) is typically elevated in osteomalacia while serum phosphate and/or 25-OH vitamin D3 levels are reduced. The diagnosis of osteomalacia can be confirmed by an iliac crest bone biopsy. Histological correlate is reduced or deficient mineralization of the newly synthesized extracellular matrix. Treatment strategies comprise supplementation of vitamin D and calcium and for patients with intestinal malabsorption syndromes vitamin D and calcium are also given parenterally. In renal phosphate wasting syndromes substitution of phosphate is the treatment of choice, except for tumor-induced osteomalacia when removal of the tumor leads to a cure in most cases.

  3. Substrate kinetics in patients with disorders of skeletal muscle metabolism.

    Science.gov (United States)

    Ørngreen, Mette Cathrine

    2016-07-01

    The main purpose of the following studies was to investigate pathophysiological mechanisms in fat and carbohydrate metabolism and effect of nutritional interventions in patients with metabolic myopathies and in patients with severe muscle wasting. Yet there is no cure for patients with skeletal muscle disorders. The group of patients is heterozygous and this thesis is focused on patients with metabolic myopathies and low muscle mass due to severe muscle wasting. Disorders of fatty acid oxidation (FAO) are, along with myophosphorylase deficiency (McArdle disease), the most common inborn errors of metabolism leading to recurrent episodes of rhabdomyolysis in adults. Prolonged exercise, fasting, and fever are the main triggering factors for rhabdomyolysis in these conditions, and can be complicated by acute renal failure. Patients with low muscle mass are in risk of loosing their functional skills and depend on a wheel chair and respiratory support. We used nutritional interventions and metabolic studies with stable isotope technique and indirect calorimetry in patients with metabolic myopathies and patients with low muscle mass to get information of the metabolism of the investigated diseases, and to gain knowledge of the biochemical pathways of intermediary metabolism in human skeletal muscle. We have shown that patients with fat metabolism disorders in skeletal muscle affecting the transporting enzyme of fat into the mitochondria (carnitine palmitoyltransferase II deficiency) and affecting the enzyme responsible for breakdown of the long-chain fatty acids (very long chain acyl-CoA dehydrogenase deficiency) have a normal fatty acid oxidation at rest, but enzyme activity is too low to increase fatty acid oxidation during exercise. Furthermore, these patients benefit from a carbohydrate rich diet. Oppositely is exercise capacity worsened by a fat-rich diet in these patients. The patients also benefit from IV glucose, however, when glucose is given orally just before

  4. [Features of metabolic syndrome in patients with depressive disorder].

    Science.gov (United States)

    Zeman, M; Jirák, R; Zák, A; Jáchymová, M; Vecka, M; Tvrzická, E; Vávrová, L; Kodydková, J; Stanková, B

    2009-01-01

    Depressive disorder is a serious illness with a high incidence, proxime accessit after anxiety disorders among the psychiatric diseases. It is accompanied by an increased risk of development of type 2 diabetes mellitus, cardiovascular disease, and by increased all-cause mortality. Recently published data have suggested that factors connected with the insulin resistance are at the background of this association. In this pilot study we have investigated parameters of lipid metabolism and glucose homeostasis in consecutively admitted patients suffering from depressive disorder (DD) (group of 42 people), in 57 patients with the metabolic syndrome (MetS) and in a control group of 49 apparently healthy persons (CON). Depressive patients did not differ from the control group by age or body mass index (BMI) value, but they had statistically significantly higher concentrations of serum insulin, C-peptide, glucose, triglycerides (TG), conjugated dienes in LDL particles (CD-LDL), higher value of microalbuminuria and of insulin resistance (HOMA-IR) index. They simultaneously had significantly lower value of the insulin sensitivity (QUICKI) index. In comparison with the MetS group the depressive patients were characterized by significantly lower both systolic and diastolic blood pressure, BMI , serum TG, apolipoprotein B, uric acid, C-peptide and by higher concentrations of apolipoprotein A-I and HDL-cholesterol. On the contrary, we have not found statistically significant differences between the DD and MetS groups in the concentrations of serum insulin, glucose, HOMA and QUICKI indices, in CD-LDL and MAU. In this pilot study, we have found in patients with depressive disorder certain features of metabolic syndrome, especially insulin resistance and oxidative stress.

  5. Mismanagement of Wilson's disease as psychotic disorder.

    Science.gov (United States)

    Bidaki, Reza; Zarei, Mina; Mirhosseini, S M Mahdy; Moghadami, Samar; Hejrati, Maral; Kohnavard, Marjan; Shariati, Behnam

    2012-01-01

    Wilson's disease (WD) or hepatolenticular degeneration is an inherited neurodegenerative disorder of copper metabolism (autosomal recessive, chromosome13). Psychiatric disorders in WD include dementia, characterized by mental slowness, poor concentration, and memory impairment. Symptoms may progress rapidly, especially in younger patients, but are more often gradual in development with periods of remission and exacerbation. Delusional disorder and schizophrenia-like psychosis are rare forms of psychiatric presentation. In this report, the patient with WD presented by psychosis symptoms and treated mistaken as schizophrenia for almost ten years. Although he has treated with antipsychotics, he had periods of remissions and relapses and never was symptoms free. Since psychosis can be the manifestation of medical diseases such as WD, overall view of these patients is necessary and medical diseases should be considered as a differential diagnosis.

  6. Practice Patterns in Screening for Metabolic Disease in Women with PCOS of Diverse Race-Ethnic Backgrounds.

    Science.gov (United States)

    Mott, Melanie M; Kitos, Nicole R; Coviello, Andrea D

    2014-09-01

    Women with polycystic ovary syndrome (PCOS) are at high risk for metabolic disorders, which prompted the American Association of Clinical Endocrinologists (AACE) to publish a 2005 position statement recommending screening for metabolic disease.The purposes of the present study were to 1) to examine changes in screening rates for obesity, type 2 diabetes (T2D), metabolic syndrome (MetS), hyperlipidemia (HL), nonalcoholic fatty liver disease (NAFLD), and hypertension (HTN) in women with PCOS after publication of the 2005 AACE position statement and 2) to determine if screening rates and metabolic disorders vary by race-ethnicity. PCOS cases in 2006 (n = 547) and 2011 (n = 1,159) and metabolic disorders were identified by International Classification of Diseases, 9th revision (ICD9) code. Screening rates for metabolic disorders were determined by the presence of blood tests (hemoglobin A1c [HbA1c], lipid profile, alanine aminotransferase/aspartate aminotransferase [ALT/AST]). In 2006, ≤25% of PCOS patients underwent recommended screening tests: HbA1c 18%; lipid profile 11, only HbA1c testing had increased (18% to 21%). Obesity increased from 35% to 40%, while other metabolic disorders remained stable. Black women had the highest rates of obesity and HTN in 2011 (Obesity: Black 48%, Hispanic 44%, White 33%, Other 31%, P1; HTN: Black 18%, Hispanic 9%, White 10%, Other 7%, P1). Blacks and Hispanics were screened more often with ALT/AST testing (Black 27/27%, Hispanic 28/27%, White 23/22%, Other 17/18%, P = .02/.03). Screening rates were higher in the endocrine clinic for all metabolic disorders than in other clinics (P11.

  7. Cardiovascular diseases, depression disorders and potential effects of omega-3 fatty acids.

    Science.gov (United States)

    Trebatická, J; Dukát, A; Ďuračková, Z; Muchová, J

    2017-07-18

    Cardiovascular disease (CVD) and depressive disorders (DD) are two of the most prevalent health problems in the world. Although CVD and depression have different origin, they share some common pathophysiological characteristics and risk factors, such as the increased production of proinflammatory cytokines, endothelial dysfunction, blood flow abnormalities, decreased glucose metabolism, elevated plasma homocysteine levels, oxidative stress and disorder in vitamin D metabolism. Current findings confirm the common underlying factors for both pathologies, which are related to dramatic dietary changes in the mid-19th century. By changing dietary ratio of omega-6 to omega-3 fatty acids from 1:1 to 15-20:1 some changes in metabolism were induced, such as increased pro-inflammatory mediators and modulations of different signaling pathways following pathophysiological response related to both, cardiovascular diseases and depressive disorders.

  8. Screening newborns for metabolic disorders based on targeted metabolomics using tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    Hye-Ran Yoon

    2015-09-01

    Full Text Available The main purpose of newborn screening is to diagnose genetic, metabolic, and other inherited disorders, at their earliest to start treatment before the clinical manifestations become evident. Understanding and tracing the biochemical data obtained from tandem mass spectrometry is vital for early diagnosis of metabolic diseases associated with such disorders. Accordingly, it is important to focus on the entire diagnostic process, including differential and confirmatory diagnostic options, and the major factors that influence the results of biochemical analysis. Compared to regular biochemical testing, this is a complex process carried out by a medical physician specialist. It is comprised of an integrated program requiring multidisciplinary approach such as, pediatric specialist, expert scientist, clinical laboratory technician, and nutritionist. Tandem mass spectrometry is a powerful tool to improve screening of newborns for diverse metabolic diseases. It is likely to be used to analyze other treatable disorders or significantly improve existing newborn tests to allow broad scale and precise testing. This new era of various screening programs, new treatments, and the availability of detection technology will prove to be beneficial for the future generations.

  9. Diffusion Magnetic Resonance Imaging Patterns in Metabolic and Toxic Brain Disorders

    Energy Technology Data Exchange (ETDEWEB)

    Sener, R.N. [Ege Univ. Hospital, Bornova, Izmir (Turkey). Dept. of Radiology

    2004-08-01

    Purpose: To evaluate metabolic and toxic brain disorders that manifest with restricted, elevated, or both restricted and elevated diffusion patterns on diffusion magnetic resonance imaging (MRI). Material and Methods: Echo-planar diffusion MRI examinations were obtained in 34 pediatric patients with metabolic and toxic brain disorders proved by appropriate laboratory studies. The MRI unit operated at 1.5T with a gradient strength of 30 mT/meter, and a rise time of 600 s. b=1000 s/mm{sup 2} images and apparent diffusion coefficient (ADC) maps with ADC values were studied. Results: Three patterns were observed: 1. A restricted diffusion pattern (high signal on b=1000 s/mm{sup 2} images and low ADC values); 2. an elevated diffusion pattern (normal signal on b=1000 s/mm2 images and high ADC values); and 3. a mixed pattern (coexistent restricted and increased diffusion patterns in the same patient). Disorders manifesting with a restricted diffusion pattern included metachromatic leukodystrophy (n=2), phenylketonuria (n=3), maple syrup urine disease (intermediate form) (n=1), infantile neuroaxonal dystrophy (n=1), Leigh (n=2), Wilson (n=3), and Canavan disease (n=1). Disorders with an elevated diffusion pattern included phenylketonuria (n=1), adrenoleukodystrophy (n=1), merosin-deficient congenital muscular dystrophy (n=2), mucopolysaccharidosis (n=2), Lowe syndrome (n=1), Leigh (n=2), Alexander (n=1), Pelizaeus-Merzbacher (n=1), and Wilson (n=3) disease. Disorders with a mixed pattern included L-2 hydroxyglutaric aciduria (n=2), non-ketotic hyperglycinemia (n=1), infantile neuroaxonal dystrophy (n=2), maple syrup urine disease (n=1), and Leigh (n=1) disease. Conclusion: The findings suggested that the three different diffusion patterns reflect the histopathological changes associated with the disorders and different stages of a particular disorder. It is likely that the restricted diffusion pattern corresponds to abnormalities related to myelin, and the elevated

  10. Diffusion Magnetic Resonance Imaging Patterns in Metabolic and Toxic Brain Disorders

    International Nuclear Information System (INIS)

    Sener, R.N.

    2004-01-01

    Purpose: To evaluate metabolic and toxic brain disorders that manifest with restricted, elevated, or both restricted and elevated diffusion patterns on diffusion magnetic resonance imaging (MRI). Material and Methods: Echo-planar diffusion MRI examinations were obtained in 34 pediatric patients with metabolic and toxic brain disorders proved by appropriate laboratory studies. The MRI unit operated at 1.5T with a gradient strength of 30 mT/meter, and a rise time of 600 s. b=1000 s/mm 2 images and apparent diffusion coefficient (ADC) maps with ADC values were studied. Results: Three patterns were observed: 1. A restricted diffusion pattern (high signal on b=1000 s/mm 2 images and low ADC values); 2. an elevated diffusion pattern (normal signal on b=1000 s/mm2 images and high ADC values); and 3. a mixed pattern (coexistent restricted and increased diffusion patterns in the same patient). Disorders manifesting with a restricted diffusion pattern included metachromatic leukodystrophy (n=2), phenylketonuria (n=3), maple syrup urine disease (intermediate form) (n=1), infantile neuroaxonal dystrophy (n=1), Leigh (n=2), Wilson (n=3), and Canavan disease (n=1). Disorders with an elevated diffusion pattern included phenylketonuria (n=1), adrenoleukodystrophy (n=1), merosin-deficient congenital muscular dystrophy (n=2), mucopolysaccharidosis (n=2), Lowe syndrome (n=1), Leigh (n=2), Alexander (n=1), Pelizaeus-Merzbacher (n=1), and Wilson (n=3) disease. Disorders with a mixed pattern included L-2 hydroxyglutaric aciduria (n=2), non-ketotic hyperglycinemia (n=1), infantile neuroaxonal dystrophy (n=2), maple syrup urine disease (n=1), and Leigh (n=1) disease. Conclusion: The findings suggested that the three different diffusion patterns reflect the histopathological changes associated with the disorders and different stages of a particular disorder. It is likely that the restricted diffusion pattern corresponds to abnormalities related to myelin, and the elevated diffusion pattern

  11. Creatine metabolism and psychiatric disorders: Does creatine supplementation have therapeutic value?

    Science.gov (United States)

    Allen, Patricia J.

    2012-01-01

    Athletes, body builders, and military personnel use dietary creatine as an ergogenic aid to boost physical performance in sports involving short bursts of high-intensity muscle activity. Lesser known is the essential role creatine, a natural regulator of energy homeostasis, plays in brain function and development. Creatine supplementation has shown promise as a safe, effective, and tolerable adjunct to medication for the treatment of brain-related disorders linked with dysfunctional energy metabolism, such as Huntington’s Disease and Parkinson’s Disease. Impairments in creatine metabolism have also been implicated in the pathogenesis of psychiatric disorders, leaving clinicians, researchers and patients alike wondering if dietary creatine has therapeutic value for treating mental illness. The present review summarizes the neurobiology of the creatine-phosphocreatine circuit and its relation to psychological stress, schizophrenia, mood and anxiety disorders. While present knowledge of the role of creatine in cognitive and emotional processing is in its infancy, further research on this endogenous metabolite has the potential to advance our understanding of the biological bases of psychopathology and improve current therapeutic strategies. PMID:22465051

  12. [FETAL PROGRAMMING OF METABOLIC DISORDERS].

    Science.gov (United States)

    Varadinova, M R; Metodieva, R; Boyadzhieva, N

    2015-01-01

    Our knowledge of fetal programming has developed notably over the years and recent data suggest that an unbalanced diet prior and during pregnancy can have early-onset and long-lasting consequences on the health of the offspring. Specific negative influences of high dietary glucose and lipid consumption, as well as undernutrition, are associated with development of metabolic syndrome, insulin resistance and diabetes in the offspring. The mechanisms underlying the effects of maternal hyperglycemia on the fetus may involve structural, metabolic and epigenetic changes. The aim of this review is to illustrate how adverse intrauterine environment may influence molecular modifications in the fetus and cause epigenetic alterations in particular. It has been demonstrated that prenatal epigenetic modifications may be linked to the pathogenesis and progression of the adult chronic disorders. Studies on epigenetic alterations will contribute to a better understanding of the long-term effects of in utero exposure and may open new perspectives for disease prevention and treatment.

  13. Manipulating the Circadian and Sleep Cycles to Protect Against Metabolic Disease

    OpenAIRE

    Nohara, Kazunari; Yoo, Seung-Hee; Chen, Zheng (Jake)

    2015-01-01

    Modernization of human society parallels an epidemic of metabolic disorders including obesity. Apart from excess caloric intake, a 24/7 lifestyle poses another important challenge to our metabolic health. Recent research under both laboratory and epidemiological settings has indicated that abnormal temporal organization of sleep and wakeful activities including food intake is a significant risk factor for metabolic disease. The circadian clock system is our intrinsic biological timer that reg...

  14. Strategies for reversing the effects of metabolic disorders induced as a consequence of developmental programming

    Directory of Open Access Journals (Sweden)

    Mark H Vickers

    2012-07-01

    Full Text Available Obesity and the metabolic syndrome have reached epidemic proportions worldwide with far-reaching health care and economic implications. The rapid increase in the prevalence of these disorders suggests that environmental and behavioural influences, rather than genetic causes, are fuelling the epidemic. The developmental origins of health and disease hypothesis has highlighted the link between the periconceptual, fetal and early infant phases of life and the subsequent development of metabolic disorders in later life. In particular, the impact of poor maternal nutrition on susceptibility to later life metabolic disease in offspring is now well documented. Several studies have now shown, at least in experimental animal models, that some components of the metabolic syndrome, induced as a consequence of developmental programming, are potentially reversible by nutritional or targeted therapeutic interventions during windows of developmental plasticity. This review will focus on critical windows of development and possible therapeutic avenues that may reduce metabolic and obesogenic risk following an adverse early life environment.

  15. Influence of diseases and metabolic disorders on cow weight changes

    Directory of Open Access Journals (Sweden)

    Šárka Podlahová

    2012-10-01

    Full Text Available Requirements on increasing economic efficiency of cattle breeding force farmers to use the latest up-to-datetechnology for monitoring and management of farming quality. Regular weighing and data processing can forinstance discover mistakes that can indicate defects, e.g. nutrition deficiencies, incorrect embryonic development,health problems, demanding nursing intervention. The aim of the research was to monitor manifestations of diseasesand metabolic disorders in the course of weight curve based on data from an automated system for weighing the liveweight of dairy cows. There was used in the weighing unit for milking robots Astronaut A3 (Lely company to obtainweight data of individual cows. There were selected dairy cows with the longest period of lactation or already dryingoff, and especially dairy cows with various health problems for study. Limiting values of weight changes wereestablished after assembling a general equation of mass curve. In the sphere of the diseases there was manifestedonly ketosis in the weight curves with a loss of 10.2 kg / day (38% weight loss. The results of the study will beapplied for compiling algorithm that will be implemented in the complete management system of cattle breeding,monitoring the dairy cows every day and highlight possible deviations exceeding of physiological changes in weight.

  16. Devastating metabolic brain disorders of newborns and young infants.

    Science.gov (United States)

    Yoon, Hyun Jung; Kim, Ji Hye; Jeon, Tae Yeon; Yoo, So-Young; Eo, Hong

    2014-01-01

    Metabolic disorders of the brain that manifest in the neonatal or early infantile period are usually associated with acute and severe illness and are thus referred to as devastating metabolic disorders. Most of these disorders may be classified as organic acid disorders, amino acid metabolism disorders, primary lactic acidosis, or fatty acid oxidation disorders. Each disorder has distinctive clinical, biochemical, and radiologic features. Early diagnosis is important both for prompt treatment to prevent death or serious sequelae and for genetic counseling. However, diagnosis is often challenging because many findings overlap and may mimic those of more common neonatal conditions, such as hypoxic-ischemic encephalopathy and infection. Ultrasonography (US) may be an initial screening method for the neonatal brain, and magnetic resonance (MR) imaging is the modality of choice for evaluating metabolic brain disorders. Although nonspecific imaging findings are common in early-onset metabolic disorders, characteristic patterns of brain involvement have been described for several disorders. In addition, diffusion-weighted images may be used to characterize edema during an acute episode of encephalopathy, and MR spectroscopy depicts changes in metabolites that may help diagnose metabolic disorders and assess response to treatment. Imaging findings, including those of advanced MR imaging techniques, must be closely reviewed. If one of these rare disorders is suspected, the appropriate biochemical test or analysis of the specific gene should be performed to confirm the diagnosis. ©RSNA, 2014.

  17. Diminished neuronal metabolic activity in Alzheimer's disease. Review article

    NARCIS (Netherlands)

    Salehi, A.; Swaab, D. F.

    1999-01-01

    An increasing number of studies have appeared in the literature suggesting that Alzheimer's disease (AD) is a hypometabolic brain disorder. Decreased metabolism in AD has been revealed by a variety of in vivo and postmortem methods and techniques including positron emission tomography and glucose

  18. Metabolic disorders with typical alterations in MRI; Stoffwechselstoerungen mit typischen Veraenderungen im MRT

    Energy Technology Data Exchange (ETDEWEB)

    Warmuth-Metz, M. [Klinikum der Universitaet Wuerzburg, Abteilung fuer Neuroradiologie, Wuerzburg (Germany)

    2010-09-15

    The classification of metabolic disorders according to the etiology is not practical for neuroradiological purposes because the underlying defect does not uniformly transform into morphological characteristics. Therefore typical MR and clinical features of some easily identifiable metabolic disorders are presented. Canavan disease, Pelizaeus-Merzbacher disease, Alexander disease, X-chromosomal adrenoleukodystrophy and adrenomyeloneuropathy, mitochondrial disorders, such as MELAS (mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes) and Leigh syndrome as well as L-2-hydroxyglutaric aciduria are presented. (orig.) [German] Die Einteilung von Stoffwechselstoerungen nach ihrer Aetiologie ist fuer den diagnostischen Neuroradiologen nicht sinnvoll, da sich aus der zugrunde liegenden Stoerung keine Rueckschluesse auf die zu erwartende MR-Morphologie ziehen lassen. Deshalb sollen anhand typischer bildmorphologischer Veraenderungen in Zusammenschau mit den jeweiligen klinischen Charakteristika einige leicht einzuordnende Stoffwechselstoerungen dargestellt werden. Es handelt sich um den Morbus Canavan, Morbus Pelizaeus-Merzbacher, Morbus Alexander, die X-chromosomal vererbte Adrenoleukodystrophie und Adrenomyeloneuropathie, die mitochondrialen Stoerungen MELAS (mitochondriale Enzephalomyopathie, Laktazidose und Stroke-like-Episoden) und Leigh-Syndrom sowie die L-2-Hydroxyglutarazidurie. (orig.)

  19. Effect of metabolic alkalosis on respiratory function in patients with chronic obstructive lung disease.

    Science.gov (United States)

    Bear, R.; Goldstein, M.; Phillipson, E.; Ho, M.; Hammeke, M.; Feldman, R.; Handelsman, S.; Halperin, M.

    1977-01-01

    Eleven instances of a mixed acid-base disorder consisting of chronic respiratory acidosis and metabolic alkalosis were recognized in eight patients with chronic obstructive lung disease and carbon dioxide retention. Correction of the metabolic alkalosis led to substantial improvement in blood gas values and clinical symptoms. Patients with mixed chronic respiratory acidosis and metabolic alkalosis constitute a common subgroup of patients with chronic obstructive lung disease and carbon dioxide retention; these patients benefit from correction of the metabolic alkalosis. PMID:21028

  20. Metabolic Disorders in the Transition Period Indicate that the Dairy Cows' Ability to Adapt is Overstressed.

    Science.gov (United States)

    Sundrum, Albert

    2015-10-09

    Metabolic disorders are a key problem in the transition period of dairy cows and often appear before the onset of further health problems. They mainly derive from difficulties the animals have in adapting to changes and disturbances occurring both outside and inside the organisms and due to varying gaps between nutrient supply and demand. Adaptation is a functional and target-oriented process involving the whole organism and thus cannot be narrowed down to single factors. Most problems which challenge the organisms can be solved in a number of different ways. To understand the mechanisms of adaptation, the interconnectedness of variables and the nutrient flow within a metabolic network need to be considered. Metabolic disorders indicate an overstressed ability to balance input, partitioning and output variables. Dairy cows will more easily succeed in adapting and in avoiding dysfunctional processes in the transition period when the gap between nutrient and energy demands and their supply is restricted. Dairy farms vary widely in relation to the living conditions of the animals. The complexity of nutritional and metabolic processes Animals 2015, 5 979 and their large variations on various scales contradict any attempts to predict the outcome of animals' adaptation in a farm specific situation. Any attempts to reduce the prevalence of metabolic disorders and associated production diseases should rely on continuous and comprehensive monitoring with appropriate indicators on the farm level. Furthermore, low levels of disorders and diseases should be seen as a further significant goal which carries weight in addition to productivity goals. In the long run, low disease levels can only be expected when farmers realize that they can gain a competitive advantage over competitors with higher levels of disease.

  1. Peroxisome Proliferators-Activated Receptor (PPAR Modulators and Metabolic Disorders

    Directory of Open Access Journals (Sweden)

    Min-Chul Cho

    2008-01-01

    Full Text Available Overweight and obesity lead to an increased risk for metabolic disorders such as impaired glucose regulation/insulin resistance, dyslipidemia, and hypertension. Several molecular drug targets with potential to prevent or treat metabolic disorders have been revealed. Interestingly, the activation of peroxisome proliferator-activated receptor (PPAR, which belongs to the nuclear receptor superfamily, has many beneficial clinical effects. PPAR directly modulates gene expression by binding to a specific ligand. All PPAR subtypes (α,γ, and σ are involved in glucose metabolism, lipid metabolism, and energy balance. PPAR agonists play an important role in therapeutic aspects of metabolic disorders. However, undesired effects of the existing PPAR agonists have been reported. A great deal of recent research has focused on the discovery of new PPAR modulators with more beneficial effects and more safety without producing undesired side effects. Herein, we briefly review the roles of PPAR in metabolic disorders, the effects of PPAR modulators in metabolic disorders, and the technologies with which to discover new PPAR modulators.

  2. Mitochondrial dysfunction and cellular metabolic deficiency in Alzheimer's disease.

    Science.gov (United States)

    Gu, Xue-Mei; Huang, Han-Chang; Jiang, Zhao-Feng

    2012-10-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder. The pathology of AD includes amyloid-β (Aβ) deposits in neuritic plaques and neurofibrillary tangles composed of hyperphosphorylated tau, as well as neuronal loss in specific brain regions. Increasing epidemiological and functional neuroimaging evidence indicates that global and regional disruptions in brain metabolism are involved in the pathogenesis of this disease. Aβ precursor protein is cleaved to produce both extracellular and intracellular Aβ, accumulation of which might interfere with the homeostasis of cellular metabolism. Mitochondria are highly dynamic organelles that not only supply the main energy to the cell but also regulate apoptosis. Mitochondrial dysfunction might contribute to Aβ neurotoxicity. In this review, we summarize the pathways of Aβ generation and its potential neurotoxic effects on cellular metabolism and mitochondrial dysfunction.

  3. BIPOLAR DISORDER AND METABOLIC SYNDROME: COMORBIDITY OR SIDE EFFECTS OF TREATMENT OF BIPOLAR DISORDER

    OpenAIRE

    Babić, Dragan; Maslov, Boris; Nikolić, Katica; Martinac, Marko; Uzun, Suzana; Kozumplik, Oliver

    2010-01-01

    Objective: There is evidence that people with mental disorders are more likely to suffer from metabolic syndrome. In the last decades there has been an increase in interest for researching metabolic syndrome in psychiatric patients and plenty of evidence about their association. However, investigations on the prevalence of metabolic syndrome in patients with bipolar disorder are still surprisingly rare. The aim of this paper is to analyze comorbidity of bipolar disorder and metabolic syndrome...

  4. Metabolic Effects of Obesity and Its Interaction with Endocrine Diseases.

    Science.gov (United States)

    Clark, Melissa; Hoenig, Margarethe

    2016-09-01

    Obesity in pet dogs and cats is a significant problem in developed countries, and seems to be increasing in prevalence. Excess body fat has adverse metabolic consequences, including insulin resistance, altered adipokine secretion, changes in metabolic rate, abnormal lipid metabolism, and fat accumulation in visceral organs. Obese cats are predisposed to endocrine and metabolic disorders such as diabetes and hepatic lipidosis. A connection likely also exists between obesity and diabetes mellitus in dogs. No system has been developed to identify obese pets at greatest risk for development of obesity-associated metabolic diseases, and further study in this area is needed. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Metabolic disorders of the vestibular system.

    Science.gov (United States)

    Rybak, L P

    1995-01-01

    This article reviews the impact of metabolic disorders on vestibular function. Diabetes mellitus is a disorder of glucose metabolism that can be associated with vestibular dysfunction. Vertigo can be alleviated by diet management in many cases. Elevated levels of blood lipids have been implicated in cochleovestibular disorders. Treatment with a lipid-lowering drug has resulted in improved auditory and vestibular function in a placebo-controlled trial. Hypothyroidism may affect different parts of the vestibular system depending on the severity and duration of thyroid deficiency. Severe congenital hypothyroidism can cause central vestibular disorders affecting the cerebellum, whereas mild hypothyroidism may result in peripheral vestibulopathy. Endogenous alterations in concentrations of estrogen and progesterone in the premenstrual syndrome or with the use of exogenous hormones such as oral contraceptives may trigger vertigo. Metabolic evaluations for unexplained vertigo should include a lipoprotein profile, with cholesterol and triglyceride levels, glucose tolerance test, and thyroid hormone measurements. Nutritional and drug therapy may be useful to reverse the vestibular dysfunction.

  6. MECHANISMS IN ENDOCRINOLOGY: The sexually dimorphic role of androgens in human metabolic disease.

    Science.gov (United States)

    Schiffer, Lina; Kempegowda, Punith; Arlt, Wiebke; O'Reilly, Michael W

    2017-09-01

    Female androgen excess and male androgen deficiency manifest with an overlapping adverse metabolic phenotype, including abdominal obesity, insulin resistance, type 2 diabetes mellitus, non-alcoholic fatty liver disease and an increased risk of cardiovascular disease. Here, we review the impact of androgens on metabolic target tissues in an attempt to unravel the complex mechanistic links with metabolic dysfunction; we also evaluate clinical studies examining the associations between metabolic disease and disorders of androgen metabolism in men and women. We conceptualise that an equilibrium between androgen effects on adipose tissue and skeletal muscle underpins the metabolic phenotype observed in female androgen excess and male androgen deficiency. Androgens induce adipose tissue dysfunction, with effects on lipid metabolism, insulin resistance and fat mass expansion, while anabolic effects on skeletal muscle may confer metabolic benefits. We hypothesise that serum androgen concentrations observed in female androgen excess and male hypogonadism are metabolically disadvantageous, promoting adipose and liver lipid accumulation, central fat mass expansion and insulin resistance. © 2017 The authors.

  7. Metabolic Disorders in the Transition Period Indicate that the Dairy Cows’ Ability to Adapt is Overstressed

    Science.gov (United States)

    Sundrum, Albert

    2015-01-01

    contradict any attempts to predict the outcome of animals’ adaptation in a farm specific situation. Any attempts to reduce the prevalence of metabolic disorders and associated production diseases should rely on continuous and comprehensive monitoring with appropriate indicators on the farm level. Furthermore, low levels of disorders and diseases should be seen as a further significant goal which carries weight in addition to productivity goals. In the long run, low disease levels can only be expected when farmers realize that they can gain a competitive advantage over competitors with higher levels of disease. PMID:26479480

  8. Brain PET substrate of impulse control disorders in Parkinson's disease: A metabolic connectivity study.

    Science.gov (United States)

    Verger, Antoine; Klesse, Elsa; Chawki, Mohammad B; Witjas, Tatiana; Azulay, Jean-Philippe; Eusebio, Alexandre; Guedj, Eric

    2018-04-10

    Impulse control disorders (ICDs) have received increased attention in Parkinson's disease (PD) because of potentially dramatic consequences. Their physiopathology, however, remains incompletely understood. An overstimulation of the mesocorticolimbic system has been reported, while a larger network has recently been suggested. The aim of this study is to specifically describe the metabolic PET substrate and related connectivity changes in PD patients with ICDs. Eighteen PD patients with ICDs and 18 PD patients without ICDs were evaluated using cerebral 18F-fluorodeoxyglucose positron emission tomography. SPM-T maps comparisons were performed between groups and metabolic connectivity was evaluated by interregional correlation analysis (IRCA; p  130) and by graph theory (p < .05). PD patients with ICDs had relative increased metabolism in the right middle and inferior temporal gyri compared to those without ICDs. The connectivity of this area was increased mostly with the mesocorticolimbic system, positively with the orbitofrontal region, and negatively with both the right parahippocampus and the left caudate (IRCA). Moreover, the betweenness centrality of this area with the mesocorticolimbic system was lost in patients with ICDs (graph analysis). ICDs are associated in PD with the dysfunction of a network exceeding the mesocorticolimbic system, and especially the caudate, the parahippocampus, and the orbitofrontal cortex, remotely including the right middle and inferior temporal gyri. This latest area loses its central place with the mesocorticolimbic system through a connectivity dysregulation. © 2018 Wiley Periodicals, Inc.

  9. Metabolic disorders and cardiovascular risk in people living with HIV/AIDS without the use of antiretroviral therapy

    Directory of Open Access Journals (Sweden)

    Mariana Amaral Raposo

    Full Text Available Abstract INTRODUCTION: Metabolic disorders in people living with HIV/AIDS (PLH have been described even before the introduction of antiretroviral (ARV drugs in the treatment of HIV infection and are risk factors for cardiovascular diseases. Based on this, the purpose of this study was to assess metabolic disorders and cardiovascular risk in PLH before the initiation of antiretroviral treatment (ART. METHODS: This was a cross-sectional descriptive study of 87 PLH without the use of ART, which was carried out between January and September 2012 at a specialized infectious diseases center in Minas Gerais, Brazil. RESULTS: The main metabolic disorders in the population were low serum levels of HDL-cholesterol, hypertriglyceridemia and abdominal obesity. Dyslipidemia was prevalent in 62.6% of the study population, whereas metabolic syndrome (MS was prevalent in 11.5% of patients assessed by the International Diabetes Federation (IDF criteria and 10.8% assessed by the National Cholesterol Education Program-Adult Treatment Panel (NCEP-ATPIII criteria. Regarding cardiovascular risk, 89.7% of the population presented a low coronary risk according to the Framingham Risk Score. A greater proportion of patients diagnosed with MS presented low cardiovascular risk (80% assessed by IDF criteria and 77.8% assessed by NCEP-ATPIII criteria. CONCLUSIONS: Metabolic disorders in this population may be due to HIV infection or lifestyle (smoking, sedentary lifestyle and inadequate diet. The introduction of ART can enhance dyslipidemia, increasing cardiovascular risk, especially among those who have classic risks of cardiovascular disease.

  10. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats.

    Science.gov (United States)

    Li, Songtao; Liao, Xilu; Meng, Fanyu; Wang, Yemei; Sun, Zongxiang; Guo, Fuchuan; Li, Xiaoxia; Meng, Man; Li, Ying; Sun, Changhao

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases around the world, and is closely associated with obesity, diabetes, and insulin resistance. Ursolic acid (UA), an ubiquitous triterpenoid with multifold biological roles, is distributed in various plants. This study was conducted to investigate the therapeutic effect and potential mechanisms of UA against hepatic steatosis in a high-fat diet (HFD)-induced obese non-alcoholic fatty liver disease (NAFLD) rat model. Obese NAFLD model was established in Sprague-Dawley rats by 8-week HFD feeding. Therapeutic role of UA was evaluated using 0.125%, 0.25%, 0.5% UA-supplemented diet for another 6 weeks. The results from both morphologic and histological detections indicated that UA significantly reversed HFD-induced hepatic steatosis and liver injury. Besides, hepatic peroxisome proliferator-activated receptor (PPAR)-α was markedly up-regulated at both mRNA and protein levels by UA. Knocking down PPAR-α significantly inhibited the anti-steatosis role of UA in vitro. HFD-induced adverse changes in the key genes, which participated in hepatic lipid metabolism, were also alleviated by UA treatment. Furthermore, UA significantly ameliorated HFD-induced metabolic disorders, including insulin resistance, inflammation and oxidative stress. These results demonstrated that UA effectively ameliorated HFD-induced hepatic steatosis through a PPAR-α involved pathway, via improving key enzymes in the controlling of lipids metabolism. The metabolic disorders were accordingly improved with the decrease of hepatic steatosis. Thereby, UA could be a promising candidate for the treatment of NAFLD.

  11. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats.

    Directory of Open Access Journals (Sweden)

    Songtao Li

    Full Text Available BACKGROUND: Non-alcoholic fatty liver disease (NAFLD is one of the most prevalent liver diseases around the world, and is closely associated with obesity, diabetes, and insulin resistance. Ursolic acid (UA, an ubiquitous triterpenoid with multifold biological roles, is distributed in various plants. This study was conducted to investigate the therapeutic effect and potential mechanisms of UA against hepatic steatosis in a high-fat diet (HFD-induced obese non-alcoholic fatty liver disease (NAFLD rat model. METHODOLOGY/PRINCIPAL FINDINGS: Obese NAFLD model was established in Sprague-Dawley rats by 8-week HFD feeding. Therapeutic role of UA was evaluated using 0.125%, 0.25%, 0.5% UA-supplemented diet for another 6 weeks. The results from both morphologic and histological detections indicated that UA significantly reversed HFD-induced hepatic steatosis and liver injury. Besides, hepatic peroxisome proliferator-activated receptor (PPAR-α was markedly up-regulated at both mRNA and protein levels by UA. Knocking down PPAR-α significantly inhibited the anti-steatosis role of UA in vitro. HFD-induced adverse changes in the key genes, which participated in hepatic lipid metabolism, were also alleviated by UA treatment. Furthermore, UA significantly ameliorated HFD-induced metabolic disorders, including insulin resistance, inflammation and oxidative stress. CONCLUSIONS/SIGNIFICANCE: These results demonstrated that UA effectively ameliorated HFD-induced hepatic steatosis through a PPAR-α involved pathway, via improving key enzymes in the controlling of lipids metabolism. The metabolic disorders were accordingly improved with the decrease of hepatic steatosis. Thereby, UA could be a promising candidate for the treatment of NAFLD.

  12. Ophthalmologic Findings in Patients with Neuro-metabolic Disorders.

    Science.gov (United States)

    Jafari, Narjes; Golnik, Karl; Shahriari, Mansoor; Karimzadeh, Parvaneh; Jabbehdari, Sayena

    2018-01-01

    We aimed to present the ophthalmic manifestations of neuro-metabolic disorders. Patients who were diagnosed with neuro-metabolic disorders in the Neurology Department of Mofid Pediatric Hospital in Tehran, Iran, between 2004 and 2014 were included in this study. Disorders were confirmed using clinical findings, neuroimaging, laboratory data, and genomic analyses. All enrolled patients were assessed for ophthalmological abnormalities. A total of 213 patients with 34 different neuro-metabolic disorders were included. Ophthalmological abnormalities were observed in 33.5% of patients. Abnormal findings in the anterior segment included Kayser-Fleischer rings, congenital or secondary cataracts, and lens dislocation into the anterior chamber. Posterior segment (i.e., retina, vitreous body, and optic nerve) evaluation revealed retinitis pigmentosa, cherry-red spots, and optic atrophy. In addition, strabismus, nystagmus, and lack of fixation were noted during external examination. Ophthalmological examination and assessment is essential in patients that may exhibit neuro-metabolic disorders.

  13. Metabolic Disorders in the Transition Period Indicate that the Dairy Cows’ Ability to Adapt is Overstressed

    Directory of Open Access Journals (Sweden)

    Albert Sundrum

    2015-10-01

    Full Text Available Metabolic disorders are a key problem in the transition period of dairy cows and often appear before the onset of further health problems. They mainly derive from difficulties the animals have in adapting to changes and disturbances occurring both outside and inside the organisms and due to varying gaps between nutrient supply and demand. Adaptation is a functional and target-oriented process involving the whole organism and thus cannot be narrowed down to single factors. Most problems which challenge the organisms can be solved in a number of different ways. To understand the mechanisms of adaptation, the interconnectedness of variables and the nutrient flow within a metabolic network need to be considered. Metabolic disorders indicate an overstressed ability to balance input, partitioning and output variables. Dairy cows will more easily succeed in adapting and in avoiding dysfunctional processes in the transition period when the gap between nutrient and energy demands and their supply is restricted. Dairy farms vary widely in relation to the living conditions of the animals. The complexity of nutritional and metabolic processes Animals 2015, 5 979 and their large variations on various scales contradict any attempts to predict the outcome of animals’ adaptation in a farm specific situation. Any attempts to reduce the prevalence of metabolic disorders and associated production diseases should rely on continuous and comprehensive monitoring with appropriate indicators on the farm level. Furthermore, low levels of disorders and diseases should be seen as a further significant goal which carries weight in addition to productivity goals. In the long run, low disease levels can only be expected when farmers realize that they can gain a competitive advantage over competitors with higher levels of disease.

  14. Energy metabolism disorders in rare and common diseases. Toward bioenergetic modulation therapy and the training of a new generation of European scientists.

    Science.gov (United States)

    Rossignol, Rodrigue

    2015-06-01

    Energy metabolism alterations are found in a large number of rare and common diseases of genetic or environmental origin. The number of patients that could benefit from bioenergetic modulation therapy (BIOMET) is therefore very important and includes individuals with pathologies as diverse as mitochondrial diseases, acute coronary syndrome, chronic kidney disease, asthma or even cancer. Although, the alteration of energy metabolism is disease specific and sometimes patient specific, the strategies for BIOMET could be common and target a series of bioenergetic regulatory mechanisms discussed in this article. An excellent training of scientists in the field of energy metabolism, related human diseases and drug discovery is also crucial to form a young generation of MDs, PHDs and Pharma or CRO-group leaders who will discover novel personalized bioenergetic medicines, through pharmacology, genetics, nutrition or adapted exercise training. The Mitochondrial European Educational Training (MEET) consortium was created to pursue this goal, and we dedicated here a special issue of Organelle in Focus (OiF) to highlight their objectives. A total of 10 OiFs articles constitute this Directed Issue on Mitochondrial Medicine. As part of this editorial article, we asked timely questions to the PR. Jan W. Smeitink, professor of Mitochondrial Medicine and CEO of Khondrion, a mitochondrial medicine company. He shared with us his objectives and strategies for the study of mitochondrial diseases and the identification of future treatments. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Modulation of Gut Microbiota in the Management of Metabolic Disorders: The Prospects and Challenges

    Directory of Open Access Journals (Sweden)

    Omotayo O. Erejuwa

    2014-03-01

    Full Text Available The gut microbiota plays a number of important roles including digestion, metabolism, extraction of nutrients, synthesis of vitamins, prevention against pathogen colonization, and modulation of the immune system. Alterations or changes in composition and biodiversity of the gut microbiota have been associated with many gastrointestinal tract (GIT disorders such as inflammatory bowel disease and colon cancer. Recent evidence suggests that altered composition and diversity of gut microbiota may play a role in the increased prevalence of metabolic diseases. This review article has two main objectives. First, it underscores approaches (such as probiotics, prebiotics, antimicrobial agents, bariatric surgery, and weight loss strategies and their prospects in modulating the gut microbiota in the management of metabolic diseases. Second, it highlights some of the current challenges and discusses areas of future research as it relates to the gut microbiota and metabolic diseases. The prospect of modulating the gut microbiota seems promising. However, considering that research investigating the role of gut microbiota in metabolic diseases is still in its infancy, more rigorous and well-designed in vitro, animal and clinical studies are needed.

  16. Disorders of lipid metabolism in 3 patients with diabetes mellitus type 2

    NARCIS (Netherlands)

    Wolffenbuttel, B.H.R.; Huijberts, M.S.P.

    2001-01-01

    Disorders of lipid metabolism in 3 patients with diabetes mellitus type 2] [Article in Dutch] Wolffenbuttel BH, Huijberts MS. Academisch Ziekenhuis, afd. Endocrinologie, Postbus 5800, 6202 AZ Maastrict. bwo@sint.azm.nl Three patients with diabetes mellitus (type 2) and cardiovascular disease had

  17. Endocrine manifestations related to inherited metabolic diseases in adults

    Directory of Open Access Journals (Sweden)

    Vantyghem Marie-Christine

    2012-01-01

    Full Text Available Abstract Most inborn errors of metabolism (IEM are recessive, genetically transmitted diseases and are classified into 3 main groups according to their mechanisms: cellular intoxication, energy deficiency, and defects of complex molecules. They can be associated with endocrine manifestations, which may be complications from a previously diagnosed IEM of childhood onset. More rarely, endocrinopathies can signal an IEM in adulthood, which should be suspected when an endocrine disorder is associated with multisystemic involvement (neurological, muscular, hepatic features, etc.. IEM can affect all glands, but diabetes mellitus, thyroid dysfunction and hypogonadism are the most frequent disorders. A single IEM can present with multiple endocrine dysfunctions, especially those involving energy deficiency (respiratory chain defects, and metal (hemochromatosis and storage disorders (cystinosis. Non-autoimmune diabetes mellitus, thyroid dysfunction and/or goiter and sometimes hypoparathyroidism should steer the diagnosis towards a respiratory chain defect. Hypogonadotropic hypogonadism is frequent in haemochromatosis (often associated with diabetes, whereas primary hypogonadism is reported in Alström disease and cystinosis (both associated with diabetes, the latter also with thyroid dysfunction and galactosemia. Hypogonadism is also frequent in X-linked adrenoleukodystrophy (with adrenal failure, congenital disorders of glycosylation, and Fabry and glycogen storage diseases (along with thyroid dysfunction in the first 3 and diabetes in the last. This is a new and growing field and is not yet very well recognized in adulthood despite its consequences on growth, bone metabolism and fertility. For this reason, physicians managing adult patients should be aware of these diagnoses.

  18. Nrg4 promotes fuel oxidation and a healthy adipokine profile to ameliorate diet-induced metabolic disorders

    Directory of Open Access Journals (Sweden)

    Zhimin Chen

    2017-08-01

    Conclusions: Nrg4 exerts pleiotropic beneficial effects on energy balance and glucose and lipid metabolism to ameliorate obesity-associated metabolic disorders. Biologic therapeutics based on Nrg4 may improve both type 2 diabetes and non-alcoholic fatty liver disease (NAFLD in patients.

  19. Metabolic and toxic causes of canine seizure disorders: A retrospective study of 96 cases.

    Science.gov (United States)

    Brauer, Christina; Jambroszyk, Melanie; Tipold, Andrea

    2011-02-01

    A wide variety of intoxications and abnormal metabolic conditions can lead to reactive seizures in dogs. Patient records of dogs suffering from seizure disorders (n=877) were reviewed, and 96 cases were associated with an underlying metabolic or toxic aetiology. These included intoxications by various agents, hypoglycaemia, electrolyte disorders, hepatic encephalopathy, hypothyroidism, uraemic encephalopathy, hypoxia and hyperglycaemia. The incidence of the underlying diseases was determined. The most common causes of reactive seizures were intoxications (39%, 37 dogs) and hypoglycaemia (32%, 31 dogs). Hypocalcaemia was the most frequent electrolyte disorder causing reactive seizures (5%) and all five of these dogs had ionised calcium concentrations ≤0.69 mmol/L. Eleven per cent of dogs with seizures had metabolic or toxic disorders and this relatively high frequency emphasises the importance of a careful clinical work-up of cases presented with seizures in order to reach a correct diagnosis and select appropriate treatment options. Copyright © 2009 Elsevier Ltd. All rights reserved.

  20. Hampered Vitamin B12 Metabolism in Gaucher Disease?

    Directory of Open Access Journals (Sweden)

    Luciana Hannibal PhD

    2017-02-01

    Full Text Available Untreated vitamin B 12 deficiency manifests clinically with hematological abnormalities and combined degeneration of the spinal cord and polyneuropathy and biochemically with elevated homocysteine (Hcy and methylmalonic acid (MMA. Vitamin B 12 metabolism involves various cellular compartments including the lysosome, and a disruption in the lysosomal and endocytic pathways induces functional deficiency of this micronutrient. Gaucher disease (GD is characterized by dysfunctional lysosomal metabolism brought about by mutations in the enzyme beta-glucocerebrosidase (Online Mendelian Inheritance in Man (OMIM: 606463; Enzyme Commission (EC 3.2.1.45, gene: GBA1 . In this study, we collected and examined available literature on the associations between GD, the second most prevalent lysosomal storage disorder in humans, and hampered vitamin B 12 metabolism. Results from independent cohorts of patients show elevated circulating holotranscobalamin without changes in vitamin B 12 levels in serum. Gaucher disease patients under enzyme replacement therapy present normal levels of Hcy and MMA. Although within the normal range, a significant increase in Hcy and MMA with normal serum vitamin B 12 was documented in treated GD patients with polyneuropathy versus treated GD patients without polyneuropathy. Thus, a functional deficiency of vitamin B 12 caused by disrupted lysosomal metabolism in GD is a plausible mechanism, contributing to the neurological form of the disorder but this awaits confirmation. Observational studies suggest that an assessment of vitamin B 12 status prior to the initiation of enzyme replacement therapy may shed light on the role of vitamin B 12 in the pathogenesis and progression of GD.

  1. Should children with inherited metabolic disorders receive varicella vaccination?

    LENUS (Irish Health Repository)

    Varghese, M

    2011-01-01

    The aim was to determine the rate of varicella infection and complications in children with disorders of intermediary metabolism (IEM) between the ages of 1 and 16 years attending our national metabolic referral centre. Of 126 children identified, a response was received from 122. A history of previous varicella infection was identified in 64 cases (53%) and of varicella vaccination in 5 (4%). Fifty-three (43%) patients apparently did not have a history of clinical varicella infection. Of the 64 children with a history of varicella infection, five required hospitalisation for complications, including life-threatening lactic acidosis in one patient with mitochondrial disease and metabolic decompensation in four patients. In conclusion, varicella infection may cause an increased risk of metabolic decompensation in patients with IEMs. We propose that a trial of varicella vaccination be considered for this cohort of patients with monitoring of its safety and efficacy.

  2. Molecular mechanisms of disorders of lipid metabolism in chronic kidney disease.

    Science.gov (United States)

    Moradi, Hamid; Vaziri, Nosratola D

    2018-01-01

    Chronic kidney disease (CKD) is a progressive condition marked by protracted kidney damage which over time can lead to end stage renal disease (ESRD). CKD can be categorized into different stages based on the extent of renal damage and degree of renal dysfunction with ESRD requiring renal replacement therapy considered the final stage. It is important to note that CKD in all of its forms is associated with accelerated atherosclerosis, cardiovascular (CV) disease and poor CV outcomes. While a number of factors contribute to the high risk of CV mortality in this patient population, dyslipidemia is considered to be a key player in the pathogenesis of CV disease in CKD. Molecular mechanisms responsible for CKD-associated lipid disorders are unique and greatly influenced by the stage of renal disease, presence and degree of proteinuria and in patients with ESRD, modality of renal replacement therapy. This article provides a detailed overview of the molecular mechanisms which cause dyslipidemia and the nature of lipid disorders associated with CKD and ESRD.

  3. Cerebellar involvement in metabolic disorders: a pattern-recognition approach

    International Nuclear Information System (INIS)

    Steinlin, M.; Boltshauser, E.; Blaser, S.

    1998-01-01

    Inborn errors of metabolism can affect the cerebellum during development, maturation and later during life. We have established criteria for pattern recognition of cerebellar abnormalities in metabolic disorders. The abnormalities can be divided into four major groups: cerebellar hypoplasia (CH), hyperplasia, cerebellar atrophy (CA), cerebellar white matter abnormalities (WMA) or swelling, and involvement of the dentate nuclei (DN) or cerebellar cortex. CH can be an isolated typical finding, as in adenylsuccinase deficiency, but is also occasionally seen in many other disorders. Differentiation from CH and CA is often difficult, as in carbohydrate deficient glycoprotein syndrome or 2-l-hydroxyglutaric acidaemia. In cases of atrophy the relationship of cerebellar to cerebral atrophy is important. WMA may be diffuse or patchy, frequently predominantly around the DN. Severe swelling of white matter is present during metabolic crisis in maple syrup urine disease. The DN can be affected by metabolite deposition, necrosis, calcification or demyelination. Involvement of cerebellar cortex is seen in infantile neuroaxonal dystrophy. Changes in DN and cerebellar cortex are rather typical and therefore most helpful; additional features should be sought as they are useful in narrowing down the differential diagnosis. (orig.)

  4. Metabolic syndrome, activity of the hypothalamic-pituitary-adrenal axis and inflammatory mediators in depressive disorder.

    Science.gov (United States)

    Martinac, Marko; Pehar, Davor; Karlović, Dalibor; Babić, Dragan; Marcinko, Darko; Jakovljević, Miro

    2014-03-01

    Depression has been associated with various cardiovascular risk factors such as hypertension, obesity, atherogenic dyslipidemia and hyperglycemia. In depressive disorder, hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis and changes in the immune system have been observed. On the other hand, somatic diseases such as obesity, hyperlipidemia, hypertension and diabetes mellitus type 2 are now perceived as important comorbid conditions in patients with depression. The pathogenesis of the metabolic syndrome and depression is complex and poorly researched; however, it is considered that the interaction of chronic stress, psychotrauma, hypercotisolism and disturbed immune functions contribute to the development of these disorders. The aim of the study was to investigate the relationship between depression and metabolic syndrome regarding the HPA axis dysfunction and altered inflammatory processes. Literature search in Medline and other databases included articles written in English published between 1985 and 2012. Analysis of the literature was conducted using a systematic approach with the search terms such as depression, metabolic syndrome, inflammation, cytokines, glucocorticoids, cortisol, and HPA axis. In conclusion, the relationship between depression and metabolic syndrome is still a subject of controversy. Further prospective studies are required to clarify the possible causal relationship between depression and metabolic syndrome and its components. Furthermore, it is important to explore the possibility of a common biologic mechanism in the pathogenesis of these two disorders, in which special attention should be paid to the immune system function, especially the possible specific mechanisms by which cytokines can induce and maintain depressive symptoms and metabolic disorders. The data presented here emphasize the importance of recognition and treatment of depressive disorders with consequent reduction in the incidence of metabolic syndrome, but

  5. [METABOLIC SYNDROME AND CARDIOVASCULAR RISK IN PATIENTS WITH SCHIZOPHRENIA, BIPOLAR DISORDER AND SCHIZOAFFECTIVE DISORDER].

    Science.gov (United States)

    Muñoz-Calero Franco, Paloma; Sánchez Sánchez, Blanca; Rodríguez Criado, Natalia; Pinilla Santos, Berta; Bravo Herrero, Sandra; Cruz Fourcade, José Fernando; Martín Aragón, Rubén

    2015-12-01

    patients with severe mental ilness such as schizophrenia, schizoaffective disorder and bipolar disorder die at least 20 years earlier than general population. Despite preventive strategies, cardiovascular disease is the first cause of death. analyse the percentage of patients with a high body mass index, metabolic syndrome and their cardiovascular risk at 10 years in patients with a diagnosis, based in DSM-IV criteria for schizophrenia, schizoaffective disorder or bipolar disorder. These patients were hospitalized because and acute condition of their mental ilness in the Brief Hospitalization Unit of Hospital Universitario de Móstoles between November of 2014 and June of 2015. in 53 patients, 34 with a diagnosis of schizophrenia, 16 with a diagnosis of bipolar disorder and 3 with a schizoaffective disorder, weight, size abdominal perimeter measures and blood pressure were collected. The body mass index was assesed. Blood tests were taken and we use sugar, triglycerides, total cholesterol and HDL cholesterol levels as paramethers for the ATP III and Framingham criteria. We also review the clinical history of the patients and lifestyle and use of toxic substances were registered. 51% of the patients were men and 49% were women. The average age was 40. 38% of the patients were overweighed, 22% obese and 4% had morbid obesity. 26% of the patients had metabolic syndrome, the clinical evolution of the majority of these patients was of more tan 10 years and they also have been treated with different antypsychotics and antidepressants. Using the Framingham criteria, 11% of the patients had a cardiovascular risk higher than 10 % in the next 10 years. overweight and its consequences in patients with a severe mental ilness are intimately related with their lifestyle, disparities in the access to health resources, the clinical evolution of the disease and pharmacotherapy. Strategies to promote physical health in these patients in the spanish health sistme are insufficient

  6. Circadian rhythms and metabolic syndrome: from experimental genetics to human disease

    OpenAIRE

    Maury, Eleonore; Ramsey, Kathryn Moynihan; Bass, Joseph

    2010-01-01

    The incidence of the metabolic syndrome represents a spectrum of disorders that continue to increase across the industrialized world. Both genetic and environmental factors contribute to metabolic syndrome and recent evidence has emerged to suggest that alterations in circadian systems and sleep participate in the pathogenesis of the disease. In this review, we highlight studies at the intersection of clinical medicine and experimental genetics that pinpoint how perturbations of the internal ...

  7. Carbohydrate metabolism disorders in patients with rheumatoid arthritis and ankylosing spondylitis – impact of the severity of the inflammatory process and disease activity

    Directory of Open Access Journals (Sweden)

    Piotr Dąbrowski

    2014-03-01

    Full Text Available Carbohydrate metabolism disorders are much more common among rheumatoid arthritis (RA and ankylosing spondylitis (AS patients than in the general population. Chronic inflammation related to insulin resistance underlies the pathogenic mechanism of both rheumatoid disorders and diabetes. Interleukin-6 (IL-6 and tumour necrosis factor α (TNF-α as well as substances produced by adipose tissue, including free fatty acids, leptin, resistin, visfatin and adiponectin, play a crucial role in the development of insulin resistance. The data show that there is a strong relationship between high level of inflammatory markers and insulin resistance and higher risk of diabetes in patients with inflammatory rheumatic diseases. However, still other markers of disease activity are being sought, which could help to identify the patients with highest risk of impaired glucose tolerance. In the paper a literature overview has been presented concerning the assessment of risk of carbohydrate disorders among RA and AS patients and the disorders’ relationship with the intensity of non-specific inflammation and the disease activity.

  8. On the Creation, Utility and Sustaining of Rare Diseases Research Networks: Lessons learned from the Urea Cycle Disorders Consortium, the Japanese Urea Cycle Disorders Consortium and the European Registry and Network for Intoxication Type Metabolic Diseases.

    Science.gov (United States)

    Summar, Marshall L; Endo, Fumio; Kölker, Stefan

    2014-01-01

    The past two decades has seen a rapid expansion in the scientific and public interest in rare diseases and their treatment. One consequence of this has been the formation of registries/longitudinal natural history studies for these disorders. Given the expense and effort needed to develop and maintain such programs, we describe our experience with three linked registries on the same disease group, urea cycle disorders. The Urea Cycle Disorders Consortium (UCDC) was formed in the U.S. in 2003 in response to a request for application from the National Institutes of Health (NIH); the European Registry and Network for Intoxication Type Metabolic Diseases (E-IMD) was formed in 2011 in response to a request for applications from the Directorate-General for Health and Consumers (DG SANCO) of the EU; and the Japanese Urea Cycle Disorders Consortium (JUCDC) was founded in 2012 as a sister organization to the UCDC and E-IMD. The functions of these groups are to collect natural history data, educate the professional and lay population, develop and test new treatments, and establish networks of excellence for the care for these disorders. The UCDC and JUCDC focus exclusively on urea cycle disorders while the E-IMD includes patients with urea cycle disorders and organic acidurias. More than 1400 patients have been enrolled in the three consortia, and numerous projects have been developed and joint meetings held including an international UCDC/E-IMD/JUCDC Urea Cycle meeting in Barcelona in 2013. This article summarizes some of the experiences from the three groups regarding formation, funding, and models for sustainability. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Disorders of muscle lipid metabolism: diagnostic and therapeutic challenges.

    Science.gov (United States)

    Laforêt, Pascal; Vianey-Saban, Christine

    2010-11-01

    Disorders of muscle lipid metabolism may involve intramyocellular triglyceride degradation, carnitine uptake, long-chain fatty acids mitochondrial transport, or fatty acid β-oxidation. Three main diseases leading to permanent muscle weakness are associated with severe increased muscle lipid content (lipid storage myopathies): primary carnitine deficiency, neutral lipid storage disease and multiple acyl-CoA dehydrogenase deficiency. A moderate lipidosis may be observed in fatty acid oxidation disorders revealed by rhabdomyolysis episodes such as carnitine palmitoyl transferase II, very-long-chain acyl-CoA dehydrogenase, mitochondrial trifunctional protein deficiencies, and in recently described phosphatidic acid phosphatase deficiency. Respiratory chain disorders and congenital myasthenic syndromes may also be misdiagnosed as fatty acid oxidation disorders due to the presence of secondary muscle lipidosis. The main biochemical tests giving clues for the diagnosis of these various disorders are measurements of blood carnitine and acylcarnitines, urinary organic acid profile, and search for intracytoplasmic lipid on peripheral blood smear (Jordan's anomaly). Genetic analysis orientated by the results of biochemical investigation allows establishing a firm diagnosis. Primary carnitine deficiency and multiple acyl-CoA dehydrogenase deficiency may be treated after supplementation with carnitine, riboflavine and coenzyme Q10. New therapeutic approaches for fatty acid oxidation disorders are currently developed, based on pharmacological treatment with bezafibrate, and specific diets enriched in medium-chain triglycerides or triheptanoin. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. The Menkes and Wilson disease genes counteract in copper toxicosis in Labrador retrievers: a new canine model for copper-metabolism disorders

    Directory of Open Access Journals (Sweden)

    Hille Fieten

    2016-01-01

    Full Text Available The deleterious effects of a disrupted copper metabolism are illustrated by hereditary diseases caused by mutations in the genes coding for the copper transporters ATP7A and ATP7B. Menkes disease, involving ATP7A, is a fatal neurodegenerative disorder of copper deficiency. Mutations in ATP7B lead to Wilson disease, which is characterized by a predominantly hepatic copper accumulation. The low incidence and the phenotypic variability of human copper toxicosis hamper identification of causal genes or modifier genes involved in the disease pathogenesis. The Labrador retriever was recently characterized as a new canine model for copper toxicosis. Purebred dogs have reduced genetic variability, which facilitates identification of genes involved in complex heritable traits that might influence phenotype in both humans and dogs. We performed a genome-wide association study in 235 Labrador retrievers and identified two chromosome regions containing ATP7A and ATP7B that were associated with variation in hepatic copper levels. DNA sequence analysis identified missense mutations in each gene. The amino acid substitution ATP7B:p.Arg1453Gln was associated with copper accumulation, whereas the amino acid substitution ATP7A:p.Thr327Ile partly protected against copper accumulation. Confocal microscopy indicated that aberrant copper metabolism upon expression of the ATP7B variant occurred because of mis-localization of the protein in the endoplasmic reticulum. Dermal fibroblasts derived from ATP7A:p.Thr327Ile dogs showed copper accumulation and delayed excretion. We identified the Labrador retriever as the first natural, non-rodent model for ATP7B-associated copper toxicosis. Attenuation of copper accumulation by the ATP7A mutation sheds an interesting light on the interplay of copper transporters in body copper homeostasis and warrants a thorough investigation of ATP7A as a modifier gene in copper-metabolism disorders. The identification of two new functional

  11. Hematopoietic Gene Therapies for Metabolic and Neurologic Diseases.

    Science.gov (United States)

    Biffi, Alessandra

    2017-10-01

    Increasingly, patients affected by metabolic diseases affecting the central nervous system and neuroinflammatory disorders receive hematopoietic cell transplantation (HCT) in the attempt to slow the course of their disease, delay or attenuate symptoms, and improve pathologic findings. The possible replacement of brain-resident myeloid cells by the transplanted cell progeny contributes to clinical benefit. Genetic engineering of the cells to be transplanted (hematopoietic stem cell) may endow the brain myeloid progeny of these cells with enhanced or novel functions, contributing to therapeutic effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Newborn screening of inherited metabolic disorders by tandem mass spectrometry: past, present and future

    Directory of Open Access Journals (Sweden)

    G. Scaturro

    2013-04-01

    Full Text Available Inborn errors of metabolism are inherited biochemical disorders caused by lack of a functional enzyme, transmembrane transporter, or similar protein, which then results in blockage of the corresponding metabolic pathway. Taken individually, inborn errors of metabolism are rare. However, as a group these diseases are relatively frequent and they may account for most of neonatal mortality and need of health resources. The detection of genetic metabolic disorders should occur in a pre-symptomatic phase. Recently, the introduction of the tandem mass spectrometric methods for metabolite analysis has changed our ability to detect intermediates of metabolism in smaller samples and provides the means to detect a large number of metabolic disorders in a single analytical run. Screening panels now include a large number of disorders that may not meet all the criteria that have been used as a reference for years. The rationale behind inclusion or exclusion of a respective disorder is difficult to understand in most cases and it may impose an ethical dilemma. The current organization is an important tool of secondary preventive medicine, essential for children’s healthcare, but the strong inhomogeneity of the regional models of screening applied today create in the Italian neonatal population macroscopic differences with regards to healthcare, which is in effect mainly diversified by the newborn’s place of birth, in possible violation of the universal criterion of the equality of all citizens. Carefully weighed arguments are urgently needed since patient organizations, opinion leaders and politicians are pressing to proceed with expansion of neonatal population screening.

  13. Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response.

    Science.gov (United States)

    Zhong, Hong; Ma, Minjuan; Liang, Tingming; Guo, Li

    2018-01-01

    In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs) have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction.

  14. Impact of the gut microbiota on inflammation, obesity, and metabolic disease.

    Science.gov (United States)

    Boulangé, Claire L; Neves, Ana Luisa; Chilloux, Julien; Nicholson, Jeremy K; Dumas, Marc-Emmanuel

    2016-04-20

    The human gut harbors more than 100 trillion microbial cells, which have an essential role in human metabolic regulation via their symbiotic interactions with the host. Altered gut microbial ecosystems have been associated with increased metabolic and immune disorders in animals and humans. Molecular interactions linking the gut microbiota with host energy metabolism, lipid accumulation, and immunity have also been identified. However, the exact mechanisms that link specific variations in the composition of the gut microbiota with the development of obesity and metabolic diseases in humans remain obscure owing to the complex etiology of these pathologies. In this review, we discuss current knowledge about the mechanistic interactions between the gut microbiota, host energy metabolism, and the host immune system in the context of obesity and metabolic disease, with a focus on the importance of the axis that links gut microbes and host metabolic inflammation. Finally, we discuss therapeutic approaches aimed at reshaping the gut microbial ecosystem to regulate obesity and related pathologies, as well as the challenges that remain in this area.

  15. Skeletal scintigraphy and quantitative tracer studies in metabolic bone disease

    Science.gov (United States)

    Fogelman, Ignac

    Bone scan imaging with the current bone seeking radiopharmaceuticals, the technetium-99m labelled diphosphonates, has dramatically improved our ability to evaluate skeletal pathology. In this thesis, chapter 1 presents a review of the history of bone scanning, summarises present concepts as to the mechanism of uptake of bone seeking agents and briefly illustrates the role of bone scanning in clinical practice. In chapter 2 the applications of bone scan imaging and quantitative tracer techniques derived from the bone scan in the detection of metabolic bone disease are discussed. Since skeletal uptake of Tc-99m diphosphonate depends upon skeletal metabolism one might expect that the bone scan would be of considerable value in the assessment of metabolic bone disease. However in these disorders the whole skeleton is often diffusely involved by the metabolic process and simple visual inspection of the scan image may not reveal the uniformly increased uptake of tracer. Certain patterns of bone scan abnormality have, however, been reported in patients with primary hyperparathyroidism and renal osteo-dystrophy; the present studies extend these observations and introduce the concept of "metabolic features" which are often recognisable in conditions with generalised increased bone turnover. As an aid to systematic recognition of these features on a given bone scan image a semi-quantitative scoring system, the metabolic index, was introduced. The metabolic index allowed differentiation between various groups of patients with metabolic disorders and a control population. In addition, in a bone scan study of patients with acromegaly, it was found that the metabolic index correlated well with disease activity as measured by serum growth hormone levels. The metabolic index was, however, found to be a relatively insensitive means of identifying disease in individual patients. Patients with increased bone turnover will have an absolute increase in skeletal uptake of tracer. As a

  16. Features of Mineral Metabolism and Parathyroid Glands Functioning in Chronic Renal Disease

    Directory of Open Access Journals (Sweden)

    L.P. Martynyuk

    2012-04-01

    Full Text Available The calcium phosphoric metabolism was analyzed depending on the severity of renal functioning disorders. Chronic renal disease is known to be associated with impaired mineral metabolism in terms of hypocalcaemia, hyperphosphatemia and enhanced level of Ca × P product that aggravates in chronic renal failure progression. The majority of patients with nephropathy have parathyroid hormone concentration to be different from target one recommended by NKF-K/DOQI (2003, at that secondary hyperparathyroidism prevails on pre-dialysis stage of chronic renal disease, the relative hypoparathyroidism is common among the patients received dialysis.

  17. Shift work and its association with metabolic disorders

    OpenAIRE

    Brum, Maria Carlota Borba; Dantas Filho, Fábio Fernandes; Schnorr, Claudia Carolina; Bottega, Gustavo Borchardt; Rodrigues, Ticiana da Costa

    2015-01-01

    Although the health burden of shift work has not been extensively studied, evidence suggests that it may affect the metabolic balance and cause obesity and other metabolic disorders. Sleep deprivation, circadian desynchronization and behavioral changes in diet and physical activity are among the most commonly mentioned factors in studies of the association between night work and metabolic disorders. Individual adaptation to night work depends greatly on personal factors such as family and soc...

  18. Manipulating the circadian and sleep cycles to protect against metabolic disease

    Directory of Open Access Journals (Sweden)

    Kazunari eNohara

    2015-03-01

    Full Text Available Modernization of human society parallels an epidemic of metabolic disorders including obesity. Apart from excess caloric intake, a 24/7 lifestyle poses another important challenge to our metabolic health. Recent research under both laboratory and epidemiological settings has indicated that abnormal temporal organization of sleep and wakeful activities including food intake is a significant risk factor for metabolic disease. The circadian clock system is our intrinsic biological timer that regulates internal rhythms such as the sleep/wake cycle and also responses to external stimuli including light and food. Initially thought to be mainly involved in the timing of sleep, the clock and/or clock genes may also play a role in sleep architecture and homeostasis. Importantly, an extensive body of evidence has firmly established a master regulatory role of the clock in energy balance. Together, a close relationship between well-timed circadian/sleep cycles and metabolic health is emerging. Exploiting this functional connection, an important holistic strategy toward curbing the epidemic of metabolic disorders (e.g. obesity involves corrective measures on the circadian clock and sleep. In addition to behavioral and environmental interventions including meal timing and light control, pharmacological agents targeting sleep and circadian clocks promise convenient and effective applications. Recent studies, for example, have reported small molecules targeting specific clock components and displaying robust beneficial effects on sleep and metabolism. Furthermore, a group of clock-amplitude enhancing small molecules (CEMs identified via high-throughput chemical screens are of particular interest for future in vivo studies of their metabolic and sleep efficacies. Elucidating the functional relationship between clock, sleep and metabolism will also have far-reaching implications for various chronic human diseases and aging.

  19. Manipulating the circadian and sleep cycles to protect against metabolic disease.

    Science.gov (United States)

    Nohara, Kazunari; Yoo, Seung-Hee; Chen, Zheng Jake

    2015-01-01

    Modernization of human society parallels an epidemic of metabolic disorders including obesity. Apart from excess caloric intake, a 24/7 lifestyle poses another important challenge to our metabolic health. Recent research under both laboratory and epidemiological settings has indicated that abnormal temporal organization of sleep and wakeful activities including food intake is a significant risk factor for metabolic disease. The circadian clock system is our intrinsic biological timer that regulates internal rhythms such as the sleep/wake cycle and also responses to external stimuli including light and food. Initially thought to be mainly involved in the timing of sleep, the clock, and/or clock genes may also play a role in sleep architecture and homeostasis. Importantly, an extensive body of evidence has firmly established a master regulatory role of the clock in energy balance. Together, a close relationship between well-timed circadian/sleep cycles and metabolic health is emerging. Exploiting this functional connection, an important holistic strategy toward curbing the epidemic of metabolic disorders (e.g., obesity) involves corrective measures on the circadian clock and sleep. In addition to behavioral and environmental interventions including meal timing and light control, pharmacological agents targeting sleep and circadian clocks promise convenient and effective applications. Recent studies, for example, have reported small molecules targeting specific clock components and displaying robust beneficial effects on sleep and metabolism. Furthermore, a group of clock-amplitude-enhancing small molecules (CEMs) identified via high-throughput chemical screens are of particular interest for future in vivo studies of their metabolic and sleep efficacies. Elucidating the functional relationship between clock, sleep, and metabolism will also have far-reaching implications for various chronic human diseases and aging.

  20. Metabolic Dysfunction in Parkinson's Disease: Bioenergetics, Redox Homeostasis and Central Carbon Metabolism.

    Science.gov (United States)

    Anandhan, Annadurai; Jacome, Maria S; Lei, Shulei; Hernandez-Franco, Pablo; Pappa, Aglaia; Panayiotidis, Mihalis I; Powers, Robert; Franco, Rodrigo

    2017-07-01

    The loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the accumulation of protein inclusions (Lewy bodies) are the pathological hallmarks of Parkinson's disease (PD). PD is triggered by genetic alterations, environmental/occupational exposures and aging. However, the exact molecular mechanisms linking these PD risk factors to neuronal dysfunction are still unclear. Alterations in redox homeostasis and bioenergetics (energy failure) are thought to be central components of neurodegeneration that contribute to the impairment of important homeostatic processes in dopaminergic cells such as protein quality control mechanisms, neurotransmitter release/metabolism, axonal transport of vesicles and cell survival. Importantly, both bioenergetics and redox homeostasis are coupled to neuro-glial central carbon metabolism. We and others have recently established a link between the alterations in central carbon metabolism induced by PD risk factors, redox homeostasis and bioenergetics and their contribution to the survival/death of dopaminergic cells. In this review, we focus on the link between metabolic dysfunction, energy failure and redox imbalance in PD, making an emphasis in the contribution of central carbon (glucose) metabolism. The evidence summarized here strongly supports the consideration of PD as a disorder of cell metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Metabolism and disease

    National Research Council Canada - National Science Library

    Grodzicker, Terri; Stewart, David J; Stillman, Bruce

    2011-01-01

    ...), cellular, organ system (cardiovascular, bone), and organismal (timing and life span) scales. Diseases impacted by metabolic imbalance or dysregulation that were covered in detail included diabetes, obesity, metabolic syndrome, and cancer...

  2. Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response

    Directory of Open Access Journals (Sweden)

    Hong Zhong

    2018-01-01

    Full Text Available In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction.

  3. Assessment of Metabolic Parameters For Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Ananth N Rao

    2009-05-01

    Full Text Available Autism is a brain development disorder that first appears during infancy or childhood, and generally follows a steady course without remission. Impairments result from maturation-related changes in various systems of the brain. Autism is one of the five pervasive developmental disorders (PDD, which are characterized by widespread abnormalities of social interactions and communication, and severely restricted interests and highly repetitive behavior. The reported incidence of autism spectrum disorders (ASDs has increased markedly over the past decade. The Centre for Disease Control and Prevention has recently estimated the prevalence of ASDs in the United States at approximately 5.6 per 1000 (1 of 155 to 1 of 160 children. Several metabolic defects, such as phenylketonuria, are associated with autistic symptoms. In deciding upon the appropriate evaluation scheme a clinician must consider a host of different factors. The guidelines in this article have been developed to assist the clinician in the consideration of these factors.

  4. The association of serum leptin levels with metabolic diseases

    Directory of Open Access Journals (Sweden)

    Jen-Pi Tsai

    2017-01-01

    Full Text Available Leptin is a 167-amino-acid protein released by white adipose tissue and encoded by the obese gene. It has a role as a negative regulator of appetite control through sending a satiety signal to act on receptors within the hypothalamus. At normal levels, leptin can exert its effects on weight regulation according to white fat mass, induce sodium excretion, maintain vascular tone, and repair the myocardium. Beyond these effects, elevated serum leptin levels have been implicated in the pathogenesis of metabolic syndrome, diabetes mellitus, hypertension, and multiple cardiovascular diseases. In addition, hyperleptinemia had been reported to contribute to renal diseases through multiple mechanisms resulting in glomerulopathy presenting with a decreased glomerular filtration rate, increased albuminuria, and related clinical symptoms, which are pathophysiological features of chronic kidney disease. Because these cardiovascular and metabolic disorders are great challenges for physicians, understanding the related pathophysiological association with leptin might become a valuable aid in handling patients in daily clinical practice. This review will discuss the roles of leptin in the regulation of biological functions of multiple organs beyond the maintenance of feeding and metabolism.

  5. A new coding system for metabolic disorders demonstrates gaps in the international disease classifications ICD-10 and SNOMED-CT, which can be barriers to genotype-phenotype data sharing.

    Science.gov (United States)

    Sollie, Annet; Sijmons, Rolf H; Lindhout, Dick; van der Ploeg, Ans T; Rubio Gozalbo, M Estela; Smit, G Peter A; Verheijen, Frans; Waterham, Hans R; van Weely, Sonja; Wijburg, Frits A; Wijburg, Rudolph; Visser, Gepke

    2013-07-01

    Data sharing is essential for a better understanding of genetic disorders. Good phenotype coding plays a key role in this process. Unfortunately, the two most widely used coding systems in medicine, ICD-10 and SNOMED-CT, lack information necessary for the detailed classification and annotation of rare and genetic disorders. This prevents the optimal registration of such patients in databases and thus data-sharing efforts. To improve care and to facilitate research for patients with metabolic disorders, we developed a new coding system for metabolic diseases with a dedicated group of clinical specialists. Next, we compared the resulting codes with those in ICD and SNOMED-CT. No matches were found in 76% of cases in ICD-10 and in 54% in SNOMED-CT. We conclude that there are sizable gaps in the SNOMED-CT and ICD coding systems for metabolic disorders. There may be similar gaps for other classes of rare and genetic disorders. We have demonstrated that expert groups can help in addressing such coding issues. Our coding system has been made available to the ICD and SNOMED-CT organizations as well as to the Orphanet and HPO organizations for further public application and updates will be published online (www.ddrmd.nl and www.cineas.org). © 2013 WILEY PERIODICALS, INC.

  6. Disorders of carbohydrate metabolism in clinical practice

    Directory of Open Access Journals (Sweden)

    V.I. Pankiv

    2017-02-01

    Full Text Available Considering the prevalence of diabetes mellitus (DM, the possibility of early and rapid progress of complications, a large number of undiagnosed cases and disappointing forecasts of the World Health Organization on the prospects of DM spreading in the world, timely and accurate diagnosis of carbohydrate metabolism disorders is important. The criteria for the diagnosis of carbohydrate metabolism and DM are shown in the article. The article includes a new consensus on the staging of type 1 DM and a discussion of a proposed unifying diabetes classification scheme that focuses on β-cell dysfunction and disease stage as indicated by glucose status. Modern recommendations 2017 of the American Diabetes Association are shown in relation to the criteria of diagnostics of impaired fasting glucose, impaired glucose tolerance and diabetes mellitus. The value of insulin resistance and functional state of pancreatic β-cells is underlined in determination of type 2 DM duration. A plan of type 2 DM management is brought.

  7. Pulmonary complications of endocrine and metabolic disorders.

    Science.gov (United States)

    Milla, Carlos E; Zirbes, Jacquelyn

    2012-03-01

    There are many important respiratory manifestations of endocrine and metabolic diseases in children. Acute and chronic pulmonary infections are the most common respiratory abnormalities in patients with diabetes mellitus, although cardiogenic and non-cardiogenic pulmonary oedema are also possible. Pseudohypoaldosteronism type 1 may be indistinguishable from cystic fibrosis (CF) unless serum aldosterone, plasma renin activity, and urinary electrolytes are measured and mutation analysis rules out CF. Hypo- and hyperthyroidism may alter lung function and affect the central respiratory drive. The thyroid hormone plays an essential role in lung development, surfactant synthesis, and lung defence. Complications of hypoparathyroidism are largely due to hypocalcaemia. Laryngospasm can lead to stridor and airway obstruction. Ovarian tumours, benign or malignant, may present with unilateral or bilateral pleural effusions. Metabolic storage disorders, primarily as a consequence of lysosomal dysfunction from enzymatic deficiencies, constitute a diverse group of rare conditions that can have profound effects on the respiratory system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Specifics of mental disorders of patients with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    K. I. Kleban

    2017-09-01

    Full Text Available In the general-somatic network there is a steady increase in the number of patients with psychosomatic disorders. Problems of providing adequate psychiatric and psychotherapeutic assistance to this category of patients are related to the motivation of patients to participate in psychological measures and the readiness of the medical system to provide comprehensive care on the basis of the biopsychosocial approach. Mental factors are involved both in the occurrence and course of a metabolic syndrome in the form of a patient's lifestyle and behavior patterns of healthy functioning, and is a consequence of somatic pathology. Mental factors are involved both in the occurrence and course of a metabolic syndrome in the form of a patient's lifestyle and behavior patterns of healthy functioning, and is a consequence of somatic pathology. So mental disorders of metabolic syndrome are manifested in the form of psychosocial maladaptation, neurotic, affective, personality, and organic disorders. Desynchronosis which is a factor of the development of a metabolic syndrome and characterizes the complex chronobiological component of the regulation of psychophysiological functions in norm and under the influence of stress, deserves special attention. Addressing the diagnosis of mental disorders associated with metabolic syndrome is precisely aimed at determining chronobiological disorders of psychosomatic integrated areas and is supposed to improve diagnostic and treatment process and to shorten the treatment of these disorders.

  9. Shift work and its association with metabolic disorders.

    Science.gov (United States)

    Brum, Maria Carlota Borba; Filho, Fábio Fernandes Dantas; Schnorr, Claudia Carolina; Bottega, Gustavo Borchardt; Rodrigues, Ticiana C

    2015-01-01

    Although the health burden of shift work has not been extensively studied, evidence suggests that it may affect the metabolic balance and cause obesity and other metabolic disorders. Sleep deprivation, circadian desynchronization and behavioral changes in diet and physical activity are among the most commonly mentioned factors in studies of the association between night work and metabolic disorders. Individual adaptation to night work depends greatly on personal factors such as family and social life, but occupational interventions may also make a positive contribution to the transition to shift work, such as exposure to bright lights during the night shift, melatonin use, shift regularity and clockwise rotation, and dietary adaptations for the metabolic needs of night workers. The evaluation of the impact of night work on health and of the mechanisms underlying this relationship can serve as a basis for intervention strategies to minimize the health burden of shift work. This review aimed to identify highlights regarding therapeutic implications following the association between night and shift work and metabolic disorders, as well as the mechanisms and pathways responsible for these relationships.

  10. Cerebral glucose metabolic differences in patients with panic disorder

    Energy Technology Data Exchange (ETDEWEB)

    Nordahl, T.E.; Semple, W.E.; Gross, M.; Mellman, T.A.; Stein, M.B.; Goyer, P.; King, A.C.; Uhde, T.W.; Cohen, R.M. (NIMH, Bethesda, MD (USA))

    1990-08-01

    Regional glucose metabolic rates were measured in patients with panic disorder during the performance of auditory discrimination. Those regions examined by Reiman and colleagues in their blood flow study of panic disorder were examined with a higher resolution positron emission tomography (PET) scanner and with the tracer (F-18)-2-fluoro-2-deoxyglucose (FDG). In contrast to the blood flow findings of Reiman et al., we did not find global gray metabolic differences between patients with panic disorder and normal controls. Consistent with the findings of Reiman et al., we found hippocampal region asymmetry. We also found metabolic decreases in the left inferior parietal lobule and in the anterior cingulate (trend), as well as an increase in the metabolic rate of the medial orbital frontal cortex (trend) of panic disorder patients. It is unclear whether the continuous performance task (CPT) enhanced or diminished findings that would have been noted in a study performed without task.

  11. Cerebral glucose metabolic differences in patients with panic disorder

    International Nuclear Information System (INIS)

    Nordahl, T.E.; Semple, W.E.; Gross, M.; Mellman, T.A.; Stein, M.B.; Goyer, P.; King, A.C.; Uhde, T.W.; Cohen, R.M.

    1990-01-01

    Regional glucose metabolic rates were measured in patients with panic disorder during the performance of auditory discrimination. Those regions examined by Reiman and colleagues in their blood flow study of panic disorder were examined with a higher resolution positron emission tomography (PET) scanner and with the tracer [F-18]-2-fluoro-2-deoxyglucose (FDG). In contrast to the blood flow findings of Reiman et al., we did not find global gray metabolic differences between patients with panic disorder and normal controls. Consistent with the findings of Reiman et al., we found hippocampal region asymmetry. We also found metabolic decreases in the left inferior parietal lobule and in the anterior cingulate (trend), as well as an increase in the metabolic rate of the medial orbital frontal cortex (trend) of panic disorder patients. It is unclear whether the continuous performance task (CPT) enhanced or diminished findings that would have been noted in a study performed without task

  12. Thyroid Disorders and Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Mohamed Mohamedali

    2014-01-01

    Full Text Available Thyroid hormones play a very important role regulating metabolism, development, protein synthesis, and influencing other hormone functions. The two main hormones produced by the thyroid are triiodothyronine (T3 and thyroxine (T4. These hormones can also have significant impact on kidney disease so it is important to consider the physiological association of thyroid dysfunction in relation to chronic kidney disease (CKD. CKD has been known to affect the pituitary-thyroid axis and the peripheral metabolism of thyroid hormones. Low T3 levels are the most common laboratory finding followed by subclinical hypothyroidism in CKD patients. Hyperthyroidism is usually not associated with CKD but has been known to accelerate it. One of the most important links between thyroid disorders and CKD is uremia. Patients who are appropriately treated for thyroid disease have a less chance of developing renal dysfunction. Clinicians need to be very careful in treating patients with low T3 levels who also have an elevation in TSH, as this can lead to a negative nitrogen balance. Thus, clinicians should be well educated on the role of thyroid hormones in relation to CKD so that proper treatment can be delivered to the patient.

  13. Automated Screening for Three Inborn Metabolic Disorders: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Kavitha S

    2006-12-01

    Full Text Available Background: Inborn metabolic disorders (IMDs form a large group of rare, but often serious, metabolic disorders. Aims: Our objective was to construct a decision tree, based on classification algorithm for the data on three metabolic disorders, enabling us to take decisions on the screening and clinical diagnosis of a patient. Settings and Design: A non-incremental concept learning classification algorithm was applied to a set of patient data and the procedure followed to obtain a decision on a patient’s disorder. Materials and Methods: Initially a training set containing 13 cases was investigated for three inborn errors of metabolism. Results: A total of thirty test cases were investigated for the three inborn errors of metabolism. The program identified 10 cases with galactosemia, another 10 cases with fructosemia and the remaining 10 with propionic acidemia. The program successfully identified all the 30 cases. Conclusions: This kind of decision support systems can help the healthcare delivery personnel immensely for early screening of IMDs.

  14. Translational Aspects of Sphingolipid Metabolism in Renal Disorders

    Directory of Open Access Journals (Sweden)

    Alaa Abou Daher

    2017-11-01

    Full Text Available Sphingolipids, long thought to be passive components of biological membranes with merely a structural role, have proved throughout the past decade to be major players in the pathogenesis of many human diseases. The study and characterization of several genetic disorders like Fabry’s and Tay Sachs, where sphingolipid metabolism is disrupted, leading to a systemic array of clinical symptoms, have indeed helped elucidate and appreciate the importance of sphingolipids and their metabolites as active signaling molecules. In addition to being involved in dynamic cellular processes like apoptosis, senescence and differentiation, sphingolipids are implicated in critical physiological functions such as immune responses and pathophysiological conditions like inflammation and insulin resistance. Interestingly, the kidneys are among the most sensitive organ systems to sphingolipid alterations, rendering these molecules and the enzymes involved in their metabolism, promising therapeutic targets for numerous nephropathic complications that stand behind podocyte injury and renal failure.

  15. Pathogenesis of the Metabolic Syndrome: Insights from Monogenic Disorders

    Directory of Open Access Journals (Sweden)

    Rinki Murphy

    2013-01-01

    Full Text Available Identifying rare human metabolic disorders that result from a single-gene defect has not only enabled improved diagnostic and clinical management of such patients, but also has resulted in key biological insights into the pathophysiology of the increasingly prevalent metabolic syndrome. Insulin resistance and type 2 diabetes are linked to obesity and driven by excess caloric intake and reduced physical activity. However, key events in the causation of the metabolic syndrome are difficult to disentangle from compensatory effects and epiphenomena. This review provides an overview of three types of human monogenic disorders that result in (1 severe, non-syndromic obesity, (2 pancreatic beta cell forms of early-onset diabetes, and (3 severe insulin resistance. In these patients with single-gene defects causing their exaggerated metabolic disorder, the primary defect is known. The lessons they provide for current understanding of the molecular pathogenesis of the common metabolic syndrome are highlighted.

  16. The effectiveness of metformin in patients with metabolic syndrome and nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    S A Butrova

    2008-06-01

    Full Text Available The mechanism of action of metformin is realized through activation of cAMP-dependent protein kinase, leading to a decrease hepatic glucose production as well as to decrease the synthesis of triglycerides and an increase in fat oxidation. Several studies have demonstrated the positive effect of the drug in non-alcoholic fatty liver disease, manifested in reducing the activity of enzymes, reducing the size of the liver and insulin resistance. The aim of our study was to evaluate the effectiveness of metformin in patients with metabolic syndrome and nonalcoholic fatty liver disease. The study found that the use Siofor 850 mg 2 times a day in conjunction with a reduced-calorie nutrition in patients with metabolic syndrome and nonalcoholic fatty liver disease leads to a significant reduction in insulin resistance associated with decreased activity of transaminases, improvement of metabolic parameters. The therapy Siofor majority of patients (60% with metabolic syndrome and nonalcoholic fatty liver disease achieved a clinically significant weight loss and improved body composition. Application Siofor improves lifestyle changes in obese patients with non-alcoholic liver disease dirovoy and metabolic disorders.

  17. Polycystic ovary syndrome and metabolic syndrome.

    Science.gov (United States)

    Ali, Aus Tariq

    2015-08-01

    Polycystic ovary syndrome (PCOS) is a heterogeneous disorder, where the main clinical features include menstrual irregularities, sub-fertility, hyperandrogenism, and hirsutism. The prevalence of PCOS depends on ethnicity, environmental and genetic factors, as well as the criteria used to define it. On the other hand, metabolic syndrome is a constellation of metabolic disorders which include mainly abdominal obesity, insulin resistance, impaired glucose metabolism, hypertension and dyslipidaemia. These associated disorders directly increase the risk of Type 2 diabetes mellitus (DMT2), coronary heart disease (CHD), cardiovascular diseases (CVD) and endometrial cancer. Many patients with PCOS have features of metabolic syndrome such as visceral obesity, hyperinsulinaemia and insulin resistance. These place patients with PCOS under high risk of developing cardiovascular disease (CVD), Type 2 diabetes (DMT2) and gynecological cancer, in particular, endometrial cancer. Metabolic syndrome is also increased in infertile women with PCOS. The aim of this review is to provide clear and up to date information about PCOS and its relationship with metabolic syndrome, and the possible interaction between different metabolic disorders.

  18. The Frequencies of Different Inborn Errors of Metabolism in Adult Metabolic Centres: Report from the SSIEM Adult Metabolic Physicians Group.

    Science.gov (United States)

    Sirrs, S; Hollak, C; Merkel, M; Sechi, A; Glamuzina, E; Janssen, M C; Lachmann, R; Langendonk, J; Scarpelli, M; Ben Omran, T; Mochel, F; Tchan, M C

    2016-01-01

    There are few centres which specialise in the care of adults with inborn errors of metabolism (IEM). To anticipate facilities and staffing needed at these centres, it is of interest to know the distribution of the different disorders. A survey was distributed through the list-serve of the SSIEM Adult Metabolic Physicians group asking clinicians for number of patients with confirmed diagnoses, types of diagnoses and age at diagnosis. Twenty-four adult centres responded to our survey with information on 6,692 patients. Of those 6,692 patients, 510 were excluded for diagnoses not within the IEM spectrum (e.g. bone dysplasias, hemochromatosis) or for age less than 16 years, leaving 6,182 patients for final analysis. The most common diseases followed by the adult centres were phenylketonuria (20.6%), mitochondrial disorders (14%) and lysosomal storage disorders (Fabry disease (8.8%), Gaucher disease (4.2%)). Amongst the disorders that can present with acute metabolic decompensation, the urea cycle disorders, specifically ornithine transcarbamylase deficiency, were most common (2.2%), followed by glycogen storage disease type I (1.5%) and maple syrup urine disease (1.1%). Patients were frequently diagnosed as adults, particularly those with mitochondrial disease and lysosomal storage disorders. A wide spectrum of IEM are followed at adult centres. Specific knowledge of these disorders is needed to provide optimal care including up-to-date knowledge of treatments and ability to manage acute decompensation.

  19. Metabolic flexibility of mitochondrial respiratory chain disorders predicted by computer modelling.

    Science.gov (United States)

    Zieliński, Łukasz P; Smith, Anthony C; Smith, Alexander G; Robinson, Alan J

    2016-11-01

    Mitochondrial respiratory chain dysfunction causes a variety of life-threatening diseases affecting about 1 in 4300 adults. These diseases are genetically heterogeneous, but have the same outcome; reduced activity of mitochondrial respiratory chain complexes causing decreased ATP production and potentially toxic accumulation of metabolites. Severity and tissue specificity of these effects varies between patients by unknown mechanisms and treatment options are limited. So far most research has focused on the complexes themselves, and the impact on overall cellular metabolism is largely unclear. To illustrate how computer modelling can be used to better understand the potential impact of these disorders and inspire new research directions and treatments, we simulated them using a computer model of human cardiomyocyte mitochondrial metabolism containing over 300 characterised reactions and transport steps with experimental parameters taken from the literature. Overall, simulations were consistent with patient symptoms, supporting their biological and medical significance. These simulations predicted: complex I deficiencies could be compensated using multiple pathways; complex II deficiencies had less metabolic flexibility due to impacting both the TCA cycle and the respiratory chain; and complex III and IV deficiencies caused greatest decreases in ATP production with metabolic consequences that parallel hypoxia. Our study demonstrates how results from computer models can be compared to a clinical phenotype and used as a tool for hypothesis generation for subsequent experimental testing. These simulations can enhance understanding of dysfunctional mitochondrial metabolism and suggest new avenues for research into treatment of mitochondrial disease and other areas of mitochondrial dysfunction. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Thyroid disorders and bone mineral metabolism

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar Dhanwal

    2011-01-01

    Full Text Available Thyroid diseases have widespread systemic manifestations including their effect on bone metabolism. On one hand, the effects of thyrotoxicosis including subclinical disease have received wide attention from researchers over the last century as it an important cause of secondary osteoporosis. On the other hand, hypothyroidism has received lesser attention as its effect on bone mineral metabolism is minimal. Therefore, this review will primarily focus on thyrotoxicosis and its impact on bone mineral metabolism.

  1. Acid-Base and Electrolyte Disorders in Patients with and without Chronic Kidney Disease: An Update.

    Science.gov (United States)

    Dhondup, Tsering; Qian, Qi

    2017-12-01

    Kidneys play a pivotal role in the maintenance and regulation of acid-base and electrolyte homeostasis, which is the prerequisite for numerous metabolic processes and organ functions in the human body. Chronic kidney diseases compromise the regulatory functions, resulting in alterations in electrolyte and acid-base balance that can be life-threatening. In this review, we discuss the renal regulations of electrolyte and acid-base balance and several common disorders including metabolic acidosis, alkalosis, dysnatremia, dyskalemia, and dysmagnesemia. Common disorders in chronic kidney disease are also discussed. The most recent and relevant advances on pathophysiology, clinical characteristics, diagnosis, and management of these conditions have been incorporated.

  2. Inherited disorders of HDL metabolism and atherosclerosis

    NARCIS (Netherlands)

    Hovingh, G Kees; de Groot, E.P.; van der Steeg, Wim; Boekholdt, S Matthijs; Hutten, Barbara A; Kuivenhoven, J.A.; Kastelein, John J P

    PURPOSE OF REVIEW: Genetic disorders of HDL metabolism are rare and, as a result, the assessment of atherosclerosis risk in individuals suffering from these disorders has been difficult. Ultrasound imaging of carotid arteries has provided a tool to assess the risk in hereditary hypo and

  3. Inherited disorders of HDL metabolism and atherosclerosis

    NARCIS (Netherlands)

    Hovingh, G. Kees; de Groot, Eric; van der Steeg, Wim; Boekholdt, S. Matthijs; Hutten, Barbara A.; Kuivenhoven, Jan Albert; Kastelein, John J. P.

    2005-01-01

    Purpose of review Genetic disorders of HDL metabolism are rare and, as a result, the assessment of atherosclerosis risk in individuals suffering from these disorders has been difficult. Ultrasound imaging of carotid arteries has provided a tool to assess the risk in hereditary hypo and

  4. Associations between metabolic disorders and risk of cancer in Danish men and women

    DEFF Research Database (Denmark)

    Berger, Siv Mari; Gislason, Gunnar; Moore, Lynn L.

    2016-01-01

    BACKGROUND: The prevalence of metabolic disorders is increasing and has been suggested to increase cancer risk, but the relation between metabolic disorders and risk of cancer is unclear, especially in young adults. We investigated the associations between diabetes, hypertension, and hypercholest......BACKGROUND: The prevalence of metabolic disorders is increasing and has been suggested to increase cancer risk, but the relation between metabolic disorders and risk of cancer is unclear, especially in young adults. We investigated the associations between diabetes, hypertension......, and hypercholesterolemia on risk of all-site as well as site-specific cancers. METHODS: We consecutively included men and women from nationwide Danish registries 1996-2011, if age 20-89 and without cancer prior to date of entry. We followed them throughout 2012. Metabolic disorders were defined using discharge diagnosis...... codes and claimed prescriptions. We used time-dependent sex-stratified Poisson regression models adjusted for age and calendar year to assess associations between metabolic disorders, and risk of all-site and site-specific cancer (no metabolic disorders as reference). RESULTS: Over a mean follow...

  5. Therapeutic Approaches Using Riboflavin in Mitochondrial Energy Metabolism Disorders.

    Science.gov (United States)

    Henriques, Bárbara J; Lucas, Tânia G; Gomes, Cláudio M

    2016-01-01

    Riboflavin, or vitamin B2, plays an important role in the cell as biological precursor of FAD and FMN, two important flavin cofactors which are essential for the structure and function of flavoproteins. Riboflavin has been used in therapeutic approaches of various inborn errors of metabolism, notably in metabolic disorders resulting either from defects in proteins involved in riboflavin metabolism and transport or from defects in flavoenzymes. The scope of this review is to provide an updated perspective of clinical cases in which riboflavin was used as a potential therapeutic agent in disorders affecting mitochondrial energy metabolism. In particular, we discuss available mechanistic insights on the role of riboflavin as a pharmacological chaperone for the recovery of misfolded metabolic flavoenzymes.

  6. Disordered glycometabolism involved in pathogenesis of Kashin–Beck disease, an endemic osteoarthritis in China

    International Nuclear Information System (INIS)

    Wu, Cuiyan; Lei, Ronghui; Tiainen, Mika; Wu, Shixun; Zhang, Qiang; Pei, Fuxing; Guo, Xiong

    2014-01-01

    Kashin–Beck disease (KBD) is a chronic endemic osteoarthritis in China. Previous studies have suggested a role of metabolic dysfunction in causation of this disease. In this investigation, the metabolomics approach and cell experiments were used to discover the metabolic changes and their effects on KBD chondrocytes. Nuclear magnetic resonance ( 1 H NMR) spectroscopy was used to examine serum samples from both the KBD patients and normal controls. The pattern recognition multivariate analysis (OSC–PLS) and quantitative analysis (QMTLS iterator) revealed altered glycometabolism in KBD, with increased glucose and decreased lactate and citrate levels. IPA biological analysis showed the centric location of glucose in the metabolic network. Massive glycogen deposits in chondrocytes and increased uptake of glucose by chondrocytes further confirmed disordered glycometabolism in KBD. An in vitro study showed the effects of disordered glycometabolism in chondrocytes. When chondrocytes were treated with high glucose, expression of type II collagen and aggrecan were decreased, while TNF-α expression, the level of cellular reactive oxygen species and cell apoptosis rates all were increased. Therefore, our results demonstrated that disordered glycometabolism in patients with KBD was linked to the damage of chondrocytes. This may provide a new basis for understanding the pathogenesis of KBD. - Highlights: • Disordered glycometabolism in KBD was demonstrated by combining serum metabolomics and chondrocyte studies. • Glucose and TNF-α were key molecules linked to altered metabolism and inflammation in the pathophysiology of KBD. • The glycometabolism disorder was linked to expression of type II collagen and aggrecan, ROS and apoptosis of KBD chondrocytes

  7. Disordered glycometabolism involved in pathogenesis of Kashin–Beck disease, an endemic osteoarthritis in China

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cuiyan, E-mail: xj.cy.69@stu.xjtu.edu.cn [School of Public Health, Health Science Centre of Xi' an Jiaotong University, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education (China); Key Laboratory of Trace elements and Endemic Diseases, Ministry of Health, Xi' an, Shaanxi 710061 (China); Lei, Ronghui, E-mail: leirh@mail.xjtu.edu.cn [School of Public Health, Health Science Centre of Xi' an Jiaotong University, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education (China); Key Laboratory of Trace elements and Endemic Diseases, Ministry of Health, Xi' an, Shaanxi 710061 (China); Tiainen, Mika, E-mail: mika.tiainen@uef.fi [School of Pharmacy, University of Eastern Finland, Kuopio (Finland); Wu, Shixun, E-mail: wushixun313@stu.xjtu.edu.cn [School of Public Health, Health Science Centre of Xi' an Jiaotong University, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education (China); Key Laboratory of Trace elements and Endemic Diseases, Ministry of Health, Xi' an, Shaanxi 710061 (China); Zhang, Qiang, E-mail: wdrr@163.com [Department of Kashin–Beck Disease, Qinghai Institute for Endemic Disease Control and Prevention, Xining, Qinghai 811602 (China); Pei, Fuxing, E-mail: peifuxing@vip.163.com [Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Guo, Xiong, E-mail: guox@mail.xjtu.edu.cn [School of Public Health, Health Science Centre of Xi' an Jiaotong University, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education (China); Key Laboratory of Trace elements and Endemic Diseases, Ministry of Health, Xi' an, Shaanxi 710061 (China)

    2014-08-15

    Kashin–Beck disease (KBD) is a chronic endemic osteoarthritis in China. Previous studies have suggested a role of metabolic dysfunction in causation of this disease. In this investigation, the metabolomics approach and cell experiments were used to discover the metabolic changes and their effects on KBD chondrocytes. Nuclear magnetic resonance ({sup 1}H NMR) spectroscopy was used to examine serum samples from both the KBD patients and normal controls. The pattern recognition multivariate analysis (OSC–PLS) and quantitative analysis (QMTLS iterator) revealed altered glycometabolism in KBD, with increased glucose and decreased lactate and citrate levels. IPA biological analysis showed the centric location of glucose in the metabolic network. Massive glycogen deposits in chondrocytes and increased uptake of glucose by chondrocytes further confirmed disordered glycometabolism in KBD. An in vitro study showed the effects of disordered glycometabolism in chondrocytes. When chondrocytes were treated with high glucose, expression of type II collagen and aggrecan were decreased, while TNF-α expression, the level of cellular reactive oxygen species and cell apoptosis rates all were increased. Therefore, our results demonstrated that disordered glycometabolism in patients with KBD was linked to the damage of chondrocytes. This may provide a new basis for understanding the pathogenesis of KBD. - Highlights: • Disordered glycometabolism in KBD was demonstrated by combining serum metabolomics and chondrocyte studies. • Glucose and TNF-α were key molecules linked to altered metabolism and inflammation in the pathophysiology of KBD. • The glycometabolism disorder was linked to expression of type II collagen and aggrecan, ROS and apoptosis of KBD chondrocytes.

  8. Genetic variants of ghrelin in metabolic disorders.

    Science.gov (United States)

    Ukkola, Olavi

    2011-11-01

    An increasing understanding of the role of genes in the development of obesity may reveal genetic variants that, in combination with conventional risk factors, may help to predict an individual's risk for developing metabolic disorders. Accumulating evidence indicates that ghrelin plays a role in regulating food intake and energy homeostasis and it is a reasonable candidate gene for obesity-related co-morbidities. In cross-sectional studies low total ghrelin concentrations and some genetic polymorphisms of ghrelin have been associated with obesity-associated diseases. The present review highlights many of the important problems in association studies of genetic variants and complex diseases. It is known that population-specific differences in reported associations exist. We therefore conclude that more studies on variants of ghrelin gene are needed to perform in different populations to get deeper understanding on the relationship of ghrelin gene and its variants to obesity. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Extensive metabolic disorders are present in APC(min) tumorigenesis mice.

    Science.gov (United States)

    Liu, Zhenzhen; Xiao, Yi; Zhou, Zhengxiang; Mao, Xiaoxiao; Cai, Jinxing; Xiong, Lu; Liao, Chaonan; Huang, Fulian; Liu, Zehao; Ali Sheikh, Md Sayed; Plutzky, Jorge; Huang, He; Yang, Tianlun; Duan, Qiong

    2016-05-15

    Wnt signaling plays essential role in mesenchymal stem cell (MSC) differentiation. Activation of Wnt signaling suppresses adipogenesis, but promotes osteogenesis in MSC. Adenomatous polyposis coli (APC) is a negative regulator of β-catenin and Wnt signaling activity. The mutation of APC gene leads to the activation of Wnt signaling and is responsible for tumorigenesis in APC(min) mouse; however, very few studies focused on its metabolic abnormalities. The present study reports a widespread metabolic disorder phenotype in APC(min) mice. The old APC(min) mice have decreased body weight and impaired adipogenesis, but severe hyperlipidemia, which mimic the phenotypes of Familial Adenomatous Polyposis (FAP), an inherited disease also caused by APC gene mutation in human. We found that the expression of lipid metabolism and free fat acids (FA) use genes in the white adipose tissue (WAT) of the APC(min) mice is much lower than those of control. The changed gene expression pattern may lead to the disability of circulatory lipid transportation and storage at WAT. Moreover, the APC(min) mice could not maintain the core body temperature in cold condition. PET-CT determination revealed that the BAT of APC(min) mice has significantly impaired ability to take up (18)FDG from the blood. Morphological studies identified that the brown adipocytes of APC(min) mice were filled with lipid droplets but fewer mitochondria. These results matched with the findings of impaired BAT function in APC(min) mice. Collectively, our study explores a new mechanism that explains abnormal metabolism in APC(min) mice and provides insights into studying the metabolic disorders of FAP patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. The CD36-PPARγ Pathway in Metabolic Disorders

    Directory of Open Access Journals (Sweden)

    Loïze Maréchal

    2018-05-01

    Full Text Available Uncovering the biological role of nuclear receptor peroxisome proliferator-activated receptors (PPARs has greatly advanced our knowledge of the transcriptional control of glucose and energy metabolism. As such, pharmacological activation of PPARγ has emerged as an efficient approach for treating metabolic disorders with the current use of thiazolidinediones to improve insulin resistance in diabetic patients. The recent identification of growth hormone releasing peptides (GHRP as potent inducers of PPARγ through activation of the scavenger receptor CD36 has defined a novel alternative to regulate essential aspects of lipid and energy metabolism. Recent advances on the emerging role of CD36 and GHRP hexarelin in regulating PPARγ downstream actions with benefits on atherosclerosis, hepatic cholesterol biosynthesis and fat mitochondrial biogenesis are summarized here. The response of PPARγ coactivator PGC-1 is also discussed in these effects. The identification of the GHRP-CD36-PPARγ pathway in controlling various tissue metabolic functions provides an interesting option for metabolic disorders.

  11. Calcium Regulation and Bone Mineral Metabolism in Elderly Patients with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Vickram Tejwani

    2013-05-01

    Full Text Available The elderly chronic kidney disease (CKD population is growing. Both aging and CKD can disrupt calcium (Ca2+ homeostasis and cause alterations of multiple Ca2+-regulatory mechanisms, including parathyroid hormone, vitamin D, fibroblast growth factor-23/Klotho, calcium-sensing receptor and Ca2+-phosphate product. These alterations can be deleterious to bone mineral metabolism and soft tissue health, leading to metabolic bone disease and vascular calcification and aging, termed CKD-mineral and bone disorder (MBD. CKD-MBD is associated with morbid clinical outcomes, including fracture, cardiovascular events and all-cause mortality. In this paper, we comprehensively review Ca2+ regulation and bone mineral metabolism, with a special emphasis on elderly CKD patients. We also present the current treatment-guidelines and management options for CKD-MBD.

  12. Spectrum analysis of common inherited metabolic diseases in Chinese patients screened and diagnosed by tandem mass spectrometry.

    Science.gov (United States)

    Han, Lianshu; Han, Feng; Ye, Jun; Qiu, Wenjuan; Zhang, Huiwen; Gao, Xiaolan; Wang, Yu; Ji, Wenjun; Gu, Xuefan

    2015-03-01

    Information concerning inherited metabolic diseases in China is scarce. We investigated the prevalence and age distributions of amino acid, organic acid, and fatty acid oxidation disorders in Chinese patients. Blood levels of amino acids and acylcarnitines (tandem mass spectrometry) were measured in 18,303 patients with suspected inherited metabolic diseases. Diagnosis was based on clinical features, blood levels of amino acids or acylcarnitines, urinary organic acid levels (gas chromatography-mass spectrometry), and (in some) gene mutation tests. Inherited metabolic diseases were confirmed in 1,135 patients (739 males, 396 females). Median age was 12 months (1 day to 59 years). There were 28 diseases: 12 amino acid disorders (580 patients, 51.1%), with hyperphenylalaninemia (HPA) being the most common; nine organic acidemias (408 patients, 35.9%), with methylmalonic acidemia (MMA) as the most common; and seven fatty acid oxidation defects (147 patients, 13.0%), with multiple acyl-coenzyme A dehydrogenase deficiency (MADD) being the most common. Onset was mainly at 1-6 months for citrin deficiency, 0-6 months for MMA, and in newborns for ornithine transcarbamylase deficiency (OTCD). HPA was common in patients aged 1-3 years, and MADD was common in patients >18 years. In China, HPA, citrin deficiency, MMA, and MADD are the most common inherited disorders, particularly in newborns/infants. © 2014 Wiley Periodicals, Inc.

  13. Gastroesophageal Reflux Disease and Metabolic Syndrome

    OpenAIRE

    Olinichenko, A. V.

    2014-01-01

    Purpose of the research is to study the features of gastroesophageal reflux disease, combined with the metabolic syndrome. Materials and methods. The study involved 490 patients (250 have got gastroesophageal reflux disease, combined with the metabolic syndrome and 240 have got gastroesophageal reflux disease without the metabolic syndrome). The patients besides general clinical examination were carried out video-fibro-gastro-duodeno-skopy, pH-monitoring in the esophagus, anthropometry, deter...

  14. Relation of periodontitis and metabolic syndrome with gestational glucose metabolism disorder.

    Science.gov (United States)

    Bullon, Pedro; Jaramillo, Reyes; Santos-Garcia, Rocio; Rios-Santos, Vicente; Ramirez, Maria; Fernandez-Palacin, Ana; Fernandez-Riejos, Patricia

    2014-02-01

    Gestational diabetes mellitus (GDM) and metabolic syndrome have been related to periodontitis. This study's objective is to establish the relationship between them in pregnant women affected by gestational glucose metabolism disorder. In 188 pregnant women with positive O'Sullivan test (POT) results, an oral glucose tolerance test (OGTT) was performed to diagnose GDM. The mother's periodontal parameters, age, prepregnancy weight and height and body mass index (BMI), blood pressure, gestational age, and birth weight were recorded at 24 to 28 weeks of pregnancy, as well as levels of glucose, C-reactive protein, triglycerides, glycated hemoglobin (HbA1c), and total, low-density lipoprotein, high-density lipoprotein (HDL), and very-low-density lipoprotein (VLDL) cholesterol levels. Prepregnancy weight, prepregnancy BMI, systolic and diastolic blood pressure, VLDL cholesterol, and glucose parameters were higher in GDM compared with POT (P periodontitis than in patients without periodontitis (P c, triglycerides, and 1- and 2-hour OGTT were positively related with probing depth and clinical attachment level; blood glucose was related only to bleeding on probing (P c, basal OGTT, and 1- and 2-hour OGTT were positively related to prepregnancy BMI and blood pressure; HDL cholesterol was negatively related to prepregnancy BMI; C-reactive protein was positively related to prepregnancy BMI and diastolic blood pressure (P periodontal disease and some biochemical parameters such as lipid and glucose data in pregnancy, and also among metabolic syndrome and biochemical parameters.

  15. Managing Fluid and Electrolyte Disorders in Kidney Disease.

    Science.gov (United States)

    Langston, Cathy

    2017-03-01

    Because of the role of the kidneys in maintaining homeostasis in the body, kidney disease leads to derangements of fluid, electrolyte, and acid-base balance. The most effective therapy of a uremic crisis is careful management of fluid balance, which involves thoughtful assessment of hydration, a fluid treatment plan personalized for the specific patient, and repeated and frequent reassessment of fluid and electrolyte balance. Disorders of sodium, chloride, potassium, calcium, and phosphorus are commonly encountered in kidney disease and some may be life-threatening. Treatment of metabolic acidosis and nutritional support is frequently needed. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Bone scintigraphy and metabolic disorders

    International Nuclear Information System (INIS)

    Mari', C.; Catafau, A.; Carrio', I.

    1999-01-01

    The paper discusses the main clinical value of bone scan in metabolic bone disease: its detection of focal conditions or focal complications of such generalized disease, its most common use of being the detection of fractures in osteoporosis, pseudofractures in osteomalacia and the evaluation of Paget's disease

  17. Association between the abdominal obesity anthropometric indicators and metabolic disorders in a Chinese population.

    Science.gov (United States)

    Dong, J; Ni, Y-Q; Chu, X; Liu, Y-Q; Liu, G-X; Zhao, J; Yang, Y-B; Yan, Y-X

    2016-02-01

    Obesity has become a major health problem in contemporary society and it is closely related to many chronic diseases, so it is an important issue for measuring adiposity accurately and predicting its future. Prevention and treatment of overweight and obesity has become one of the key prevention and treatment of metabolic disorders. In this study, we compared the ability of the four anthropometric indicators (body mass index, waist circumstance, waist-height ratio, waist-to-hip ratio) to identify metabolic disorders (hypertension, hyperlipidaemia, hyperglycemia and hyperuricemia) by receiver operating characteristic (ROC) curve analyses and to provide evidence for clinical practice. In this large scale cross-sectional study, 13,275 Han adults (including 7595 males and 5680 females) received physical examination between January, 2009 and January, 2010 in Xuanwu Hospital of Capital Medical University were investigated by the means of questionnaire, Meanwhile, the physical examination and serological results were recorded. A package known as Statistical Package for Social Scientist (SPSS) was employed to analyse the responses while t-test, one-way analysis of variance (ANOVA), ROC analysis and chi-square statistical methods were used to test the hypotheses. WC, WHtR, WHR and BMI were all significantly (P risk factors regardless of gender. And the area under the curve (AUC) of WHtR was significantly greater than that of WC, BMI or WHR in the prediction of hypertension, hyperlipidaemia, hyperglycemia and hyperuricemia. Our data show that WHtR was the best predictor of various metabolic disorders. The diagnostic value in descending order was WHtR > WHR > WC > BMI. Therefore we recommend WHtR in assessment of obese patients, in order to better assess the risks of their metabolic diseases. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  18. An update on the use of benzoate, phenylacetate and phenylbutyrate ammonia scavengers for interrogating and modifying liver nitrogen metabolism and its implications in urea cycle disorders and liver disease.

    Science.gov (United States)

    De Las Heras, Javier; Aldámiz-Echevarría, Luis; Martínez-Chantar, María-Luz; Delgado, Teresa C

    2017-04-01

    Ammonia-scavenging drugs, benzoate and phenylacetate (PA)/phenylbutyrate (PB), modulate hepatic nitrogen metabolism mainly by providing alternative pathways for nitrogen disposal. Areas covered: We review the major findings and potential novel applications of ammonia-scavenging drugs, focusing on urea cycle disorders and liver disease. Expert opinion: For over 40 years, ammonia-scavenging drugs have been used in the treatment of urea cycle disorders. Recently, the use of these compounds has been advocated in acute liver failure and cirrhosis for reducing hyperammonemic-induced hepatic encephalopathy. The efficacy and mechanisms underlying the antitumor effects of these ammonia-scavenging drugs in liver cancer are more controversial and are discussed in the review. Overall, as ammonia-scavenging drugs are usually safe and well tolerated among cancer patients, further studies should be instigated to explore the role of these drugs in liver cancer. Considering the relevance of glutamine metabolism to the progression and resolution of liver disease, we propose that ammonia-scavenging drugs might also be used to non-invasively probe liver glutamine metabolism in vivo. Finally, novel derivatives of classical ammonia-scavenging drugs with fewer and less severe adverse effects are currently being developed and used in clinical trials for the treatment of acute liver failure and cirrhosis.

  19. Progress in studies of the reciprocal interaction between sleep disorders and Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    LIU Zhen-yu

    2013-06-01

    Full Text Available Alzheimer's disease (AD is a common neurodegenerative disease in the elderly, and is the most common cause of dementia. Epidemiological studies have discovered that, 44% of patients with AD are associated with sleep disorders and (or circadian rhythm disorders. Now there are growing evidences indicating that interstitial fluid amyloid-β protein (A β levels exhibit circadian rhythm fluctuation, and sleep disorders will accelerate the process of Aβ deposition, which may act as a risk factor of AD, suggesting the possible reciprocal interaction between sleep disorders and AD. The mechanism is not yet completely clear. Sleep disorders may be related with the impairments of both sleep-wake regulating system, circadian rhythm regulating system and the change of zeitgeber in AD. Sleep disorders would affect neuronal activity, neurotransmitter secretion, and as a stressor affecting A β processing and metabolism, thus accelerate the pathological process of AD. This paper reviewed the progress in the studies of reciprocal interaction between sleep disorders and Alzheimer's disease and the possible mechanisms.

  20. Glucose metabolism disorders and vestibular manifestations: evaluation through computerized dynamic posturography

    Directory of Open Access Journals (Sweden)

    Roseli Saraiva Moreira Bittar

    Full Text Available ABSTRACT INTRODUCTION: Global sugar consumption has increased in the past 50 years; its abusive intake is responsible for peripheral insulin resistance, which causes the metabolic syndrome - obesity, diabetes mellitus, hypertension, and coronary heart disease. OBJECTIVE: To evaluate the effect of a fractionated diet without glucose as treatment for labyrinthine disorders associated with glucose-insulin index. METHODS: The study design was a prospective randomized controlled trial. Fifty-one patients were divided into two groups: the diet group (DG, which comprised subjects treated with a fractionated diet with glucose restriction, and the control group (CG, in which individuals were not counseled regarding diet. Patients underwent computerized dynamic posturography (CDP and visual analog scale (VAS on the first and 30th days of the study. RESULTS: There was improvement in the assessed posturographic conditions and VAS self-assessment in the DG group after 30 days when compared to the control group. CONCLUSION: The fractionated diet with glucose restriction was effective for the treatment of vestibular dysfunction associated with glucose metabolism disorders.

  1. Bone scintigraphy and metabolic disorders

    Energy Technology Data Exchange (ETDEWEB)

    Mari' , C.; Catafau, A.; Carrio' , I. [Hospital de Sant Pau, Barcelone (Spain). Serv. of Nuclear Medicine

    1999-09-01

    The paper discusses the main clinical value of bone scan in metabolic bone disease: its detection of focal conditions or focal complications of such generalized disease, its most common use of being the detection of fractures in osteoporosis, pseudo fractures in osteomalacia and the evaluation of Paget's disease.

  2. TOR, the Gateway to Cellular Metabolism, Cell Growth, and Disease.

    Science.gov (United States)

    Blenis, John

    2017-09-21

    Michael N. Hall is this year's recipient of the Lasker Basic Medical Research Award for the identification of the target of rapamycin, TOR. TOR is a master regulator of the cell's growth and metabolic state, and its dysregulation contributes to a variety of diseases, including diabetes, obesity, neurodegenerative disorders, aging, and cancer, making the TOR pathway an attractive therapeutic target. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Bipolar disorder and metabolic syndrome: a systematic review

    Directory of Open Access Journals (Sweden)

    Letícia Czepielewski

    2013-03-01

    Full Text Available OBJECTIVE: Summarize data on metabolic syndrome (MS in bipolar disorder (BD. METHODS: A systematic review of the literature was conducted using the Medline, Embase and PsycInfo databases, using the keywords "metabolic syndrome", "insulin resistance" and "metabolic X syndrome" and cross-referencing them with "bipolar disorder" or "mania". The following types of publications were candidates for review: (i clinical trials, (ii studies involving patients diagnosed with bipolar disorder or (iii data about metabolic syndrome. A 5-point quality scale was used to assess the methodological weight of the studies. RESULTS: Thirty-nine articles were selected. None of studies reached the maximum quality score of 5 points. The prevalence of MS was significantly higher in BD individuals when compared to a control group. The analysis of MS subcomponents showed that abdominal obesity was heterogeneous. Individuals with BD had significantly higher rates of hypertriglyceridemia than healthy controls. When compared to the general population, there were no significant differences in the prevalence of low HDL-c in individuals with BD. Data on hypertension were also inconclusive. Rates of hyperglycemia were significantly greater in patients with BD compared to the general population. CONCLUSIONS: The overall results point to the presence of an association between BD and MS, as well as between their subcomponents.

  4. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease.

    Science.gov (United States)

    van der Veen, Jelske N; Kennelly, John P; Wan, Sereana; Vance, Jean E; Vance, Dennis E; Jacobs, René L

    2017-09-01

    Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are the most abundant phospholipids in all mammalian cell membranes. In the 1950s, Eugene Kennedy and co-workers performed groundbreaking research that established the general outline of many of the pathways of phospholipid biosynthesis. In recent years, the importance of phospholipid metabolism in regulating lipid, lipoprotein and whole-body energy metabolism has been demonstrated in numerous dietary studies and knockout animal models. The purpose of this review is to highlight the unappreciated impact of phospholipid metabolism on health and disease. Abnormally high, and abnormally low, cellular PC/PE molar ratios in various tissues can influence energy metabolism and have been linked to disease progression. For example, inhibition of hepatic PC synthesis impairs very low density lipoprotein secretion and changes in hepatic phospholipid composition have been linked to fatty liver disease and impaired liver regeneration after surgery. The relative abundance of PC and PE regulates the size and dynamics of lipid droplets. In mitochondria, changes in the PC/PE molar ratio affect energy production. We highlight data showing that changes in the PC and/or PE content of various tissues are implicated in metabolic disorders such as atherosclerosis, insulin resistance and obesity. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. [Obesity-related metabolic disorders in childhood and adolescence].

    Science.gov (United States)

    Yeste, D; Carrascosa, A

    2011-08-01

    Obesity is the most frequent nutritional disorder in childhood and adolescence. The rise in its prevalence and severity has underlined the numerous and significant obesity-related metabolic disorders. Altered glucose metabolism, manifested as impaired glucose tolerance, appears early in severely obese children and adolescents. Obese young people with glucose intolerance are characterized by marked peripheral insulin resistance and relative beta-cell failure. Lipid deposition in muscle and the visceral compartment, and not only obesity per se, is related to increased peripheral insulin resistance, the triggering factor of the metabolic syndrome. Other elements of the metabolic syndrome, such as dyslipidaemia, and hypertension, are already present in obese youngsters and worsen with the degree of obesity. The long-term impact of obesity-related insulin resistance on cardiovascular morbidity in these patients is expected to emerge as these youngsters become young adults. Copyright © 2011 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  6. Probiotics as Complementary Treatment for Metabolic Disorders

    Directory of Open Access Journals (Sweden)

    Mélanie Le Barz

    2015-08-01

    Full Text Available Over the past decade, growing evidence has established the gut microbiota as one of the most important determinants of metabolic disorders such as obesity and type 2 diabetes. Indeed, obesogenic diet can drastically alter bacterial populations (i.e., dysbiosis leading to activation of pro-inflammatory mechanisms and metabolic endotoxemia, therefore promoting insulin resistance and cardiometabolic disorders. To counteract these deleterious effects, probiotic strains have been developed with the aim of reshaping the microbiome to improve gut health. In this review, we focus on benefits of widely used probiotics describing their potential mechanisms of action, especially their ability to decrease metabolic endotoxemia by restoring the disrupted intestinal mucosal barrier. We also discuss the perspective of using new bacterial strains such as butyrate-producing bacteria and the mucolytic Akkermansia muciniphila, as well as the use of prebiotics to enhance the functionality of probiotics. Finally, this review introduces the notion of genetically engineered bacterial strains specifically developed to deliver anti-inflammatory molecules to the gut.

  7. Alkaptonuria: a very rare metabolic disorder.

    Science.gov (United States)

    Aquaron, Robert

    2013-10-01

    Alkaptonuria (AKU) is a very rare autosomal recessive disorder of tyrosine metabolism in the liver due to deficiency of homogentisate 1,2 dioxygenase (HGD) activity, resulting in the accumulation of homogentisic acid (HGA). Circulating HGA pass into various tissues through-out the body, mainly in cartilage and connective tissues, where its oxidation products polymerize and deposit as a melanin-like pigment. Gram quantities of HGA are excreted in the urine. AKU is a progressive disease and the three main features, according the chronology of appearance, are: darkening of the urine at birth, then ochronosis (blue-dark pigmentation of the connective tissue) clinically visible at around 30 yrs in the ear and eye, and finally a severe ochronotic arthropathy at around 50 yrs with spine and large joints involvements. Cardiovascular and renal complications have been described in numerous case report studies. A treatment now is available in the form of a drug nitisinone, which decreases the production of HGA. The enzymatic defect in AKU is caused by the homozygous or compound heterozygous mutations within the HGD gene. This disease has a very low prevalence (1:100,000-250,000) in most of the ethnic groups, except Slovakia and Dominican Republic, where the incidence has shown increase up to 1:19,000. This review highlights classical and recent findings on this very rare disease.

  8. Heart Diseases and Disorders

    Science.gov (United States)

    ... Resources Heart Diseases & Disorders Back to Patient Resources Heart Diseases & Disorders Millions of people experience irregular or abnormal ... harmless and happen in healthy people free of heart disease. However, some abnormal heart rhythms can be serious ...

  9. Emerging Role of Corticosteroid Binding Globulin in Glucocorticoid-driven Metabolic Disorders

    Directory of Open Access Journals (Sweden)

    Marie-Pierre Moisan

    2016-12-01

    Full Text Available Glucocorticoid hormones (GCs are critical for survival since they ensure energy supply necessary to the body in an ever challenging environment. GCs are known to act on appetite, glucose metabolism, fatty acid metabolism and storage. However, in order to be beneficial to the body, GC levels should be maintained in an optimal window of concentrations. Not surprisingly, conditions of GC excess or deficiency, e.g. Cushing’s syndrome or Addison’s disease are associated with severe alterations of energy metabolism. Corticosteroid Binding Globulin (CBG, through its high specific affinity for GCs, plays a critical role in regulating plasma GC levels. Genetic studies in various species including humans have revealed that CBG is the major factor influencing inter-individual genetic variability of plasma GC levels, both in basal and stress conditions. Some, but not all of these genetic studies have also provided data linking CBG levels to body composition. The examination of CBG-deficient mice submitted to hyperlipidic diets unveiled specific roles for CBG in lipid storage and metabolism. The importance of CBG is even more striking when animals are submitted to high-fat diet combined to chronic stress, mimicking our occidental lifestyle. An influence of CBG on appetite has not been reported but remains to be more finely analyzed. Overall, a role of CBG in GC-driven metabolic disorders is emerging in recent studies. Although subtle, the influence of CBG in these diseases could open the way to new therapeutic interventions since CBG is easily accessible in the blood.

  10. Population newborn screening for inherited metabolic disease: current UK perspectives.

    Science.gov (United States)

    Green, A; Pollitt, R J

    1999-06-01

    Some of the generally accepted criteria for screening programmes are inappropriate for newborn metabolic screening as they ignore the family dimension and the importance of timely genetic information. Uncritical application of such criteria creates special difficulties for screening by tandem mass spectrometry, which can detect a range diseases with widely different natural histories and responsiveness to treatment. Further difficulties arise from increasing demands for direct proof of the effects of screening on long-term morbidity and mortality. The randomized controlled trial is held to be the gold standard, but for ethical and practical reasons it will be impossible to achieve for such relatively rare diseases. This approach also oversimplifies the complex matrix of costs and benefits of newborn metabolic screening. A more workable approach could involve Bayesian synthesis, combining quantitative performance data from carefully designed prospective pilot studies of screening with existing experience of the natural history, diagnosis, and management of the individual disorders concerned.

  11. Lower urinary tract symptoms and metabolic disorders: ICI-RS 2014.

    Science.gov (United States)

    Denys, Marie-Astrid; Anding, Ralf; Tubaro, Andrea; Abrams, Paul; Everaert, Karel

    2016-02-01

    To investigate the link between lower urinary tract symptoms (LUTS) and metabolic disorders. This report results from presentations and subsequent discussions about LUTS and metabolic disorders at the International Consultation on Incontinence Research Society (ICI-RS) in Bristol, 2014. There are common pathophysiological determinants for the onset of LUTS and the metabolic syndrome (MetS). Both conditions are multifactorial, related to disorders in circadian rhythms and share common risk factors. As in men with erectile dysfunction, these potentially modifiable lifestyle factors may be novel targets to prevent and treat LUTS. The link between LUTS and metabolic disorders is discussed by using sleep, urine production and bladder function as underlying mechanisms that need to be further explored during future research. Recent findings indicate a bidirectional relationship between LUTS and the MetS. Future research has to explore underlying mechanisms to explain this relationship, in order to develop new preventive and therapeutic recommendations, such as weight loss and increasing physical activity. The second stage is to determine the effect of these new treatment approaches on the severity of LUTS and each of the components of the MetS. © 2016 Wiley Periodicals, Inc.

  12. Metabolic patterns in prion diseases: an FDG PET voxel-based analysis

    Energy Technology Data Exchange (ETDEWEB)

    Prieto, Elena; Dominguez-Prado, Ines; Jesus Ribelles, Maria; Arbizu, Javier [Clinica Universidad de Navarra, Nuclear Medicine Department, Pamplona (Spain); Riverol, Mario; Ortega-Cubero, Sara; Rosario Luquin, Maria; Castro, Purificacion de [Clinica Universidad de Navarra, Neurology Department, Pamplona (Spain)

    2015-09-15

    Clinical diagnosis of human prion diseases can be challenging since symptoms are common to other disorders associated with rapidly progressive dementia. In this context, {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) might be a useful complementary tool. The aim of this study was to determine the metabolic pattern in human prion diseases, particularly sporadic Creutzfeldt-Jakob disease (sCJD), the new variant of Creutzfeldt-Jakob disease (vCJD) and fatal familial insomnia (FFI). We retrospectively studied 17 patients with a definitive, probable or possible prion disease who underwent FDG PET in our institution. Of these patients, 12 were diagnosed as sCJD (9 definitive, 2 probable and 1 possible), 1 was diagnosed as definitive vCJD and 4 were diagnosed as definitive FFI. The hypometabolic pattern of each individual and comparisons across the groups of subjects (control subjects, sCJD and FFI) were evaluated using a voxel-based analysis. The sCJD group exhibited a pattern of hypometabolism that affected both subcortical (bilateral caudate, thalamus) and cortical (frontal cortex) structures, while the FFI group only presented a slight hypometabolism in the thalamus. Individual analysis demonstrated a considerable variability of metabolic patterns among patients, with the thalamus and basal ganglia the most frequently affected areas, combined in some cases with frontal and temporal hypometabolism. Patients with a prion disease exhibit a characteristic pattern of brain metabolism presentation in FDG PET imaging. Consequently, in patients with rapidly progressive cognitive impairment, the detection of these patterns in the FDG PET study could orient the diagnosis to a prion disease. (orig.)

  13. Metabolic patterns in prion diseases: an FDG PET voxel-based analysis

    International Nuclear Information System (INIS)

    Prieto, Elena; Dominguez-Prado, Ines; Jesus Ribelles, Maria; Arbizu, Javier; Riverol, Mario; Ortega-Cubero, Sara; Rosario Luquin, Maria; Castro, Purificacion de

    2015-01-01

    Clinical diagnosis of human prion diseases can be challenging since symptoms are common to other disorders associated with rapidly progressive dementia. In this context, 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) might be a useful complementary tool. The aim of this study was to determine the metabolic pattern in human prion diseases, particularly sporadic Creutzfeldt-Jakob disease (sCJD), the new variant of Creutzfeldt-Jakob disease (vCJD) and fatal familial insomnia (FFI). We retrospectively studied 17 patients with a definitive, probable or possible prion disease who underwent FDG PET in our institution. Of these patients, 12 were diagnosed as sCJD (9 definitive, 2 probable and 1 possible), 1 was diagnosed as definitive vCJD and 4 were diagnosed as definitive FFI. The hypometabolic pattern of each individual and comparisons across the groups of subjects (control subjects, sCJD and FFI) were evaluated using a voxel-based analysis. The sCJD group exhibited a pattern of hypometabolism that affected both subcortical (bilateral caudate, thalamus) and cortical (frontal cortex) structures, while the FFI group only presented a slight hypometabolism in the thalamus. Individual analysis demonstrated a considerable variability of metabolic patterns among patients, with the thalamus and basal ganglia the most frequently affected areas, combined in some cases with frontal and temporal hypometabolism. Patients with a prion disease exhibit a characteristic pattern of brain metabolism presentation in FDG PET imaging. Consequently, in patients with rapidly progressive cognitive impairment, the detection of these patterns in the FDG PET study could orient the diagnosis to a prion disease. (orig.)

  14. Metabolic Disturbances in Children with Chronic Liver Disease

    Directory of Open Access Journals (Sweden)

    A Rezaeian

    2014-04-01

    Full Text Available Introduction: Liver disease results in complex pathophysiologic disturbances affecting nutrient digestion, absorption, distribution, storage, and use. This article aimed to present a classification of metabolic disturbances in chronic liver disease in children?   Materials and Methods: In this review study databases including proquest, pubmedcentral, scincedirect, ovid, medlineplus were been searched with keyword words such as” chronic liver disease"  ” metabolic disorder””children” between 1999 to 2014. Finally, 8 related articles have been found.   Results: Metabolic disorder in this population could be categorized in four set: 1carbohydrates, 2proteins,3 fats and 4vitamins. 1 Carbohydrates: Children with CLD are at increased risk for fasting hypoglycemia, because the capacity for glycogen storage and gluconeogenesis is reduced as a result of abnormal hepatocyte function and loss of hepatocyte mass. 2 Proteins: The liver’s capacity for plasma protein synthesis is impaired by reduced substrate availability, impaired hepatocyte function, and increased catabolism. This results in hypoalbuminemia, leading to peripheral edema and contributing to ascites. Reduced synthesis of insulin-like growth factor (IGF-1 and its binding protein IGF-BP3 by the chronically diseased liver results in growth hormone resistance and may contribute to the poor growth observed in these children. 3 Fats: There is increased fat oxidation in children with end-stage liver disease in the fed and fasting states compared with controls, which is probably related to reduced carbohydrate availability. The increased lipolysis results in a decrease in fat stores, which may not be easily replenished in the setting of the fat malabsorption that accompanies cholestasis. Reduced bile delivery to the gut results in impaired fat emulsification, and hence digestion. The products of fat digestion are also poorly absorbed, because bile is also required for micelle formation

  15. Metabolic syndrome and dementia associated with Parkinson's disease: impact of age and hypertension

    Directory of Open Access Journals (Sweden)

    Arthur Oscar Schelp

    2012-02-01

    Full Text Available OBJECTIVE: To determine correlations between age and metabolic disorders in Parkinson's disease (PD patients. METHODS: This observational cross-sectional study included brief tests for dementia and the Mattis test. Signals of metabolic syndrome were evaluated. RESULTS: There was no significant effect from the presence of hypertension (OR=2.36 for patients under 65 years old and OR=0.64 for patients over 65, diabetes or hypercholesterolemia regarding occurrences of dementia associated with PD (24% of the patients. The study demonstrated that each year of age increased the estimated risk of dementia in PD patients by 9% (OR=1.09; 95%CI: 1.01-1.17. CONCLUSION: There was no evidence to correlate the presence of metabolic syndrome with the risk of dementia that was associated with PD. The study confirmed that dementia in PD is age dependent and not related to disease duration.

  16. Association of metabolic syndrome and change in Unified Parkinson's Disease Rating Scale scores.

    Science.gov (United States)

    Leehey, Maureen; Luo, Sheng; Sharma, Saloni; Wills, Anne-Marie A; Bainbridge, Jacquelyn L; Wong, Pei Shieen; Simon, David K; Schneider, Jay; Zhang, Yunxi; Pérez, Adriana; Dhall, Rohit; Christine, Chadwick W; Singer, Carlos; Cambi, Franca; Boyd, James T

    2017-10-24

    To explore the association between metabolic syndrome and the Unified Parkinson's Disease Rating Scale (UPDRS) scores and, secondarily, the Symbol Digit Modalities Test (SDMT). This is a secondary analysis of data from 1,022 of 1,741 participants of the National Institute of Neurological Disorders and Stroke Exploratory Clinical Trials in Parkinson Disease Long-Term Study 1, a randomized, placebo-controlled trial of creatine. Participants were categorized as having or not having metabolic syndrome on the basis of modified criteria from the National Cholesterol Education Program Adult Treatment Panel III. Those who had the same metabolic syndrome status at consecutive annual visits were included. The change in UPDRS and SDMT scores from randomization to 3 years was compared in participants with and without metabolic syndrome. Participants with metabolic syndrome (n = 396) compared to those without (n = 626) were older (mean [SD] 63.9 [8.1] vs 59.9 [9.4] years; p metabolic syndrome experienced an additional 0.6- (0.2) unit annual increase in total UPDRS ( p = 0.02) and 0.5- (0.2) unit increase in motor UPDRS ( p = 0.01) scores compared with participants without metabolic syndrome. There was no difference in the change in SDMT scores. Persons with Parkinson disease meeting modified criteria for metabolic syndrome experienced a greater increase in total UPDRS scores over time, mainly as a result of increases in motor scores, compared to those who did not. Further studies are needed to confirm this finding. NCT00449865. © 2017 American Academy of Neurology.

  17. Hepatic diseases related to triglyceride metabolism.

    Science.gov (United States)

    Aguilera-Méndez, Asdrubal; Álvarez-Delgado, Carolina; Hernández-Godinez, Daniel; Fernandez-Mejia, Cristina

    2013-10-01

    Triglycerides participate in key metabolic functions such as energy storage, thermal insulation and as deposit for essential and non-essential fatty acids that can be used as precursors for the synthesis of structural and functional phospholipids. The liver is a central organ in the regulation of triglyceride metabolism, and it participates in triglyceride synthesis, export, uptake and oxidation. The metabolic syndrome and associated diseases are among the main concerns of public health worldwide. One of the metabolic syndrome components is impaired triglyceride metabolism. Diseases associated with the metabolic syndrome promote the appearance of hepatic alterations e.g., non-alcoholic steatosis, steatohepatitis, fibrosis, cirrhosis and cancer. In this article, we review the molecular actions involved in impaired triglyceride metabolism and its association with hepatic diseases. We discuss mechanisms that reconcile the chronic inflammation and insulin resistance, and new concepts on the role of intestinal micro-flora permeability and proliferation in fatty liver etiology. We also describe the participation of oxidative stress in the progression of events leading from steatosis to steatohepatitis and fibrosis. Finally, we provide information regarding the mechanisms that link fatty acid accumulation during steatosis with changes in growth factors and cytokines that lead to the development of neoplastic cells. One of the main medical concerns vis-a-vis hepatic diseases is the lack of symptoms at the onset of the illness and, as result, its late diagnosis. The understandings of the molecular mechanisms that underlie hepatic diseases could help design strategies towards establishing markers for their accurate and timely diagnosis.

  18. Presumptive binge eating disorder in type 2 diabetes mellitus patients and its effect in metabolic control

    Directory of Open Access Journals (Sweden)

    Sandra Soares Melo

    2009-09-01

    Full Text Available Objective: This study sought to determine the presence of diagnosis suggestive of binge eating disorder in individuals with type 2 diabetes mellitus, and to evaluate the influence of such disorder on the metabolic control. Methods: sixty-three patients with type 2 diabetes mellitus and registered  at the Diabetes and Hypertension Program of a Health Unit in the town of Balneário Camboriú, Santa Catarina, Brazil, were evaluated. The diagnosis of binge eating disorder was made by analysis of the Questionnaire on Eating and Weight Patterms – Revised. For the evaluation of metabolic control, 10 ml of blood was collected, and the serum glucose, glycated hemoglobin, tryglicerides, cholestrol and fractions were determined. Weight and height were determined for evaluation of national nutritional state, according to the body mass index. Rresults: Among the evaluated individuals, 29% presented a diagnosis suggestive of binge eating disorder, with higher prevalence among females. The individuals with diagnosis suggestive of binge eating disorder presented a higher average body mass index value than the group without diagnosis. The serum concentrations of glycated hemoglobin (p = 0.02 and triglicerides (p = 0.03 were statistically higher in the group with diagnosis suggestive of binge eating disorder. Cconclusions: Based on the results of this study, it is possible to conclude that the presence of binge eating disorder in individuals with type 2 diabetes mellitus favors an increase in body weight and has a negative influence on metabolic control, contributing to the early emergence of complications related to the disease.

  19. Hypoglycaemia related to inherited metabolic diseases in adults

    Directory of Open Access Journals (Sweden)

    Douillard Claire

    2012-05-01

    Full Text Available Abstract In non-diabetic adult patients, hypoglycaemia may be related to drugs, critical illness, cortisol or glucagon insufficiency, non-islet cell tumour, insulinoma, or it may be surreptitious. Nevertheless, some hypoglycaemic episodes remain unexplained, and inborn errors of metabolism (IEM should be considered, particularly in cases of multisystemic involvement. In children, IEM are considered a differential diagnosis in cases of hypoglycaemia. In adulthood, IEM-related hypoglycaemia can persist in a previously diagnosed childhood disease. Hypoglycaemia may sometimes be a presenting sign of the IEM. Short stature, hepatomegaly, hypogonadism, dysmorphia or muscular symptoms are signs suggestive of IEM-related hypoglycaemia. In both adults and children, hypoglycaemia can be clinically classified according to its timing. Postprandial hypoglycaemia can be an indicator of either endogenous hyperinsulinism linked to non-insulinoma pancreatogenic hypoglycaemia syndrome (NIPHS, unknown incidence in adults or very rarely, inherited fructose intolerance. Glucokinase-activating mutations (one family are the only genetic disorder responsible for NIPH in adults that has been clearly identified so far. Exercise-induced hyperinsulinism is linked to an activating mutation of the monocarboxylate transporter 1 (one family. Fasting hypoglycaemia may be caused by IEM that were already diagnosed in childhood and persist into adulthood: glycogen storage disease (GSD type I, III, 0, VI and IX; glucose transporter 2 deficiency; fatty acid oxidation; ketogenesis disorders; and gluconeogenesis disorders. Fasting hypoglycaemia in adulthood can also be a rare presenting sign of an IEM, especially in GSD type III, fatty acid oxidation [medium-chain acyl-CoA dehydrogenase (MCAD, ketogenesis disorders (3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA lyase deficiency, and gluconeogenesis disorders (fructose-1,6-biphosphatase deficiency].

  20. Metabolic control of feed intake: implications for metabolic disease of fresh cows.

    Science.gov (United States)

    Allen, Michael S; Piantoni, Paola

    2013-07-01

    The objective of this article is to discuss metabolic control of feed intake in the peripartum period and its implications for metabolic disease of fresh cows. Understanding how feed intake is controlled during the transition from gestation to lactation is critical to both reduce risk and successfully treat many metabolic diseases. Copyright © 2013. Published by Elsevier Inc.

  1. Commentary: Potential Neurobiologic Mechanisms through Which Metabolic Disorders Could Relate to Autism.

    Science.gov (United States)

    Johnston, Michael V.

    2000-01-01

    To illustrate the possible relationships between metabolic disorders and autism, this commentary reviews findings from studies on the characteristics of individuals with Rett syndrome that indicate the genetic mechanism of transcriptional dysregulation can produce pathologic phenotypes which resemble metabolic disorders that stunt axonodendritic…

  2. Carbohydrate metabolism disorders in patients with rheumatoid arthritis and ankylosing spondylitis – impact of treatment

    Directory of Open Access Journals (Sweden)

    Piotr Dąbrowski

    2014-06-01

    Full Text Available Chronic inflammation – the crucial pathogenic mechanism of rheumatoid arthritis and ankylosing spondylitis – is the main cause of accelerated atherosclerosis, insulin resistance and well-known consequences related to it. The conservative treatment of rheumatoid arthritis and ankylosing spondylitis may provide a significant influence on glucose metabolism. The paper is a literature overview concerning insulin resistance and impaired glucose metabolism during treatment with disease-modifying drugs including biologic DMARDs (disease-modifying antirheumatic drugs, corticosteroids and commonly used non-steroidal anti-inflammatory drugs (NSAID. It has been found that the risk of carbohydrate disorders among those patients is much lower after therapy with hydroxychloroquine, methotrexate and TNF blockers – particularly with infliximab. The NSAID may play an important protective role in reducing risk of diabetes. The recent data show, contrary to general opinion, the advantageous outcome for glucose metabolism after treatment with corticosteroids, especially in the early active stage of rheumatoid arthritis.

  3. Pathophysiology and therapeutics of cardiovascular disease in metabolic syndrome.

    Science.gov (United States)

    Wang, Yabin; Yu, Qiujun; Chen, Yundai; Cao, Feng

    2013-01-01

    The metabolic syndrome (MetS) is characterized by a cluster of cardiovascular risk factors, including central obesity, hyperglycemia, dyslipidemia and hypertension, which are highly associated with increased morbidity and mortality of cardiovascular diseases (CVD). The association between these metabolic disorders and the development of CVD is believed to be multifactorial, where insulin resistance, oxidative stress, low-grade inflammation and vascular maladaptation act as the major contributors. Therefore, multipronged therapeutic strategies should be taken for the management of patients with MetS. Lifestyle changes including weight control, healthy heart diet and regular exercises have been proposed as first line treatment to decrease CVD risks in MetS individuals. In addition, improving insulin resistance and glucose metabolism, controlling blood pressure as well as modulating dyslipidemia can also delay or reverse the progression of CVD in MetS. This review will first address the complicated interactions between MetS and CVD¸ followed by discussion about the optimal strategy in the prevention and treatment of CVD in MetS patients and the updated results from newly released clinical trials.

  4. Inherited metabolic liver diseases in infants and children: an overview

    Directory of Open Access Journals (Sweden)

    Ivo Barić

    2013-10-01

    Full Text Available Inborn errors of metabolism, which affect the liver are a large, continuously increasing group of diseases. Their clinical onset can occur at any age, from intrauterine period presenting as liver failure already at birth to late adulthood. Inherited metabolic disorders must be considered in differential diagnosis of every unexplained liver disease. Specific diagnostic work-up for either their confirmation or exclusion should start immediately since any postponing can result in delayed diagnosis and death or irreversible disability. This can be particularly painful while many inherited metabolic liver diseases are relatively easily treatable if diagnosed on time, for instance galactosemia or hereditary fructose intolerance by simple dietary means. Any unexplained liver disease, even one looking initially benign, should be considered as a potential liver failure and therefore should deserve proper attention. Diagnosis in neonates is additionally complicated because of the factors which can mask liver disease, such as physiological neonatal jaundice, normally relatively enlarged liver and increased transaminases at that age. In everyday practice, in order to reveal the etiology, it is useful to classify and distinguish some clinical patterns which, together with a few routine, widely available laboratory tests (aminotransferases, prothrombine time, albumin, gammaGT, total and conjugated bilirubin, ammonia, alkaline phosphatase and glucose make the search for the cause much easier. These patterns are isolated hyperbilirubinemia, syndrome of cholestasis in early infancy, hepatocellular jaundice, Reye syndrome, portal cirrhosis and isolated hepatomegaly. Despite the fact that some diseases can present with more than one pattern (for instance, alpha-1-antitrypsin deficiency as infantile cholestasis, but also as hepatocellular jaundice, and that in some disesases one pattern can evolve into another (for instance, Wilson disease from hepatocellular

  5. Nor-Ursodeoxycholic Acid as a Novel Therapeutic Approach for Cholestatic and Metabolic Liver Diseases.

    Science.gov (United States)

    Halilbasic, Emina; Steinacher, Daniel; Trauner, Michael

    2017-01-01

    Norursodeoxycholic acid (norUDCA) is a side-chain-shortened derivative of ursodeoxycholic acid with relative resistance to amidation, which enables its cholehepatic shunting. Based on its specific pharmacologic properties, norUDCA is a promising drug for a range of cholestatic liver and bile duct disorders. Recently, norUDCA has been successfully tested clinically in patients with primary sclerosing cholangitis (PSC) as first application in patients. Moreover, hepatic enrichment of norUDCA facilitates direct therapeutic effects on both parenchymal and non-parenchymal liver cells, thereby counteracting cholestasis, steatosis, hepatic inflammation and fibrosis, inhibiting hepatocellular proliferation, and promoting autophagy. This may open its therapeutic use to other non-cholestatic and metabolic liver diseases. This review article is a summary of a lecture given at the XXIV International Bile Acid Meeting (Falk Symposium 203) on "Bile Acids in Health and Disease" held in Düsseldorf, on June 17-18, 2016 and summarizes the recent progress of norUDCA as novel therapeutic approach in cholestatic and metabolic liver disorders with a specific focus on PSC. © 2017 S. Karger AG, Basel.

  6. Endocrine and metabolic disorders associated with human immune deficiency virus infection.

    Science.gov (United States)

    Unachukwu, C N; Uchenna, D I; Young, E E

    2009-01-01

    Many reports have described endocrine and metabolic disorders in the human immunodeficiency virus (HIV) infection. This article reviewed various reports in the literature in order to increase the awareness and thus the need for early intervention when necessary. Data were obtained from MEDLINE, Google search and otherjournals on 'HIV, Endocrinopathies/Metabolic Disorders' from 1985 till 2007. Studies related to HIV associated endocrinopathies and metabolic disorders in the last two decades were reviewed. Information on epidemiology, pathogenesis, diagnosis and treatment of the target organ endocrinopathies and metabolic disorders in HIV/AIDS were extracted from relevant literature. Endocrine and metabolic disturbances occur in the course of HIV infection. Pathogenesis includes direct infection of endocrine glands by HIV or opportunistic organisms, infiltration by neoplasms and side effects of drugs. Adrenal insufficiency is the commonest HIV endocrinopathy with cytomegalovirus adrenalitis occurring in 40-88% of cases. Thyroid dysfunction may occur as euthyroid sick syndrome or sub-clinical hypothyroidism. Hypogonadotrophic dysfunction accounts for 75% of HIV-associated hypogonadism, with prolonged amenorrhoea being three times more likely in the women. Pancreatic dysfunction may result in hypoglycaemia or diabetes mellitus (DM). Highly active antiretroviral therapy (HAART) especially protease inhibitors has been noted to result in insulin resistance and lipodystrophy. Virtually every endocrine organ is involved in the course of HIV infection. Detailed endocrinological and metabolic evaluation and appropriate treatment is necessary in the optimal management of patients with HIV infection in our environment.

  7. Improvement of metabolic disorders by an EP2 receptor agonist via restoration of the subcutaneous adipose tissue in pulmonary emphysema.

    Science.gov (United States)

    Tsuji, Takao; Yamaguchi, Kazuhiro; Kikuchi, Ryota; Nakamura, Hiroyuki; Misaka, Ryoichi; Nagai, Atsushi; Aoshiba, Kazutetsu

    2017-05-01

    Chronic obstructive pulmonary disease (COPD) is often associated with co-morbidities. Metabolic disorders like hyperlipidemia and diabetes occur also in underweight COPD patients, although the mechanism is uncertain. Subcutaneous adipose tissue (SAT) plays an important role in energy homeostasis, since restricted capacity to increase fat cell number with increase in fat cell size occurring instead, is associated with lipotoxicity and metabolic disorders. The aim of this study is to show the protective role of SAT for the metabolic disorders in pulmonary emphysema of a murine model. We found ectopic fat accumulation and impaired glucose homeostasis with wasting of SAT in a murine model of elastase-induced pulmonary emphysema (EIE mice) reared on a high-fat diet. ONO-AE1-259, a selective E-prostanoid (EP) 2 receptor agonist, improved angiogenesis and subsequently adipogenesis, and finally improved ectopic fat accumulation and glucose homeostasis with restoration of the capacity for storage of surplus energy in SAT. These results suggest that metabolic disorders like hyperlipidemia and diabetes occured in underweight COPD is partially due to the less capacity for storage of surplus energy in SAT, though the precise mechanism is uncertained. Our data pave the way for the development of therapeutic interventions for metabolic disorders in emphysema patients, e.g., use of pro-angiogenic agents targeting the capacity for storage of surplus energy in the subcutaneous adipose tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Impact of high cholesterol and endoplasmic reticulum stress on metabolic diseases: An updated mini-review

    Directory of Open Access Journals (Sweden)

    Erdi Sozen

    2017-08-01

    Full Text Available Endoplasmic reticulum (ER is the major site of protein folding and calcium storage. Beside the role of ER in protein homeostasis, it controls the cholesterol production and lipid-membrane biosynthesis as well as surviving and cell death signaling mechanisms in the cell. It is well-documented that elevated plasma cholesterol induces adverse effects in cardiovascular diseases (CVDs, liver disorders, such as non-alcoholic fatty liver disease (NAFLD, non-alcoholic steatosis hepatitis (NASH, and metabolic diseases which are associated with oxidative and ER stress. Recent animal model and human studies have showed high cholesterol and ER stress as an emerging factors involved in the development of many metabolic diseases. In this review, we will summarize the crucial effects of hypercholesterolemia and ER stress response in the pathogenesis of CVDs, NAFLD/NASH, diabetes and obesity which are major health problems in western countries. Keywords: Endoplasmic reticulum stress, High cholesterol, Cardiovascular diseases, Non-alcoholic fatty liver disease, Non-alcoholic steatosis hepatitis

  9. The consequences of chronic kidney disease on bone metabolism and growth in children.

    Science.gov (United States)

    Bacchetta, Justine; Harambat, Jérôme; Cochat, Pierre; Salusky, Isidro B; Wesseling-Perry, Katherine

    2012-08-01

    Growth retardation, decreased final height and renal osteodystrophy (ROD) are common complications of childhood chronic kidney disease (CKD), resulting from a combination of abnormalities in the growth hormone (GH) axis, vitamin D deficiency, hyperparathyroidism, hypogonadism, inadequate nutrition, cachexia and drug toxicity. The impact of CKD-associated bone and mineral disorders (CKD-MBD) may be immediate (serum phosphate/calcium disequilibrium) or delayed (poor growth, ROD, fractures, vascular calcifications, increased morbidity and mortality). In 2012, the clinical management of CKD-MBD in children needs to focus on three main objectives: (i) to provide an optimal growth in order to maximize the final height with an early management with recombinant GH therapy when required, (ii) to equilibrate calcium/phosphate metabolism so as to obtain acceptable bone quality and cardiovascular status and (iii) to correct all metabolic and clinical abnormalities that can worsen bone disease, growth and cardiovascular disease, i.e. metabolic acidosis, anaemia, malnutrition and 25(OH)vitamin D deficiency. The aim of this review is to provide an overview of the mineral, bone and vascular abnormalities associated with CKD in children in terms of pathophysiology, diagnosis and clinical management.

  10. Dysregulation of glucose metabolism since young adulthood increases the risk of cardiovascular diseases in patients with bipolar disorder

    Directory of Open Access Journals (Sweden)

    Pao-Huan Chen

    2017-12-01

    Full Text Available Aging patients with bipolar disorder (BD are at a high risk of cardiovascular diseases (CVDs. However, few studies have directly examined the association between metabolic risks and CVDs in patients with BD across the lifespan. Therefore, the aim of this study was to determine lifetime metabolic risk factors for CVDs in patients with BD. We recruited BD-I patients who were more than 50 years old and had had at least one psychiatric hospitalization. Patients who had a cardiologist-confirmed CVD diagnosis (ICD-9 code 401–414 were assigned to the case group. Fifty-five cases were matched with 55 control patient without CVDs based on age and sex. Clinical data were obtained by retrospectively reviewing 30 years of hospital records. Compared to control subjects, a significantly higher proportion of cases had impaired fasting glucose between ages 31 and 40 (44.0% versus 17.4%, p = 0.046, diabetes mellitus between ages 41 and 50 (25.6% versus 8.6%, p = 0.054, and diabetes mellitus after age 51 (36.3% versus 12.7%, p = 0.005. No significant difference was found in overweight, obesity, or dyslipidemia. After adjusting for years of education, first episode as mania, and second generation antipsychotic use, lifetime diabetes mellitus remained a risk factor for CVDs (OR = 4.45, 95% CI = 1.89–10.66, p = 0.001. The findings suggest that glucose dysregulation across the adult age span is probably the major metabolic risk contributing to CVDs in patients with BD. Clinicians therefore have to notice the serum fasting glucose levels of BD patients since young adulthood.

  11. Secondary psychosis induced by metabolic disorders

    Directory of Open Access Journals (Sweden)

    Olivier eBonnot

    2015-05-01

    Full Text Available Metabolic disorders are not well recognized by psychiatrists as a possible source of secondary psychoses. Inborn errors of metabolism (IEMs are not frequent. Although, their prompt diagnosis may lead to suitable treatments. IEMs are well known to paediatricians, in particular for their most serious forms, having an early expression most of the time. Recent years discoveries have unveiled later expression forms, and sometimes, very discreet first physical signs. There is a growing body of evidence that supports the hypothesis that IEMs can manifest as atypical psychiatric symptoms, even in the absence of clear neurological symptoms. In the present review, we propose a detailed overview at schizophrenia-like and autism-like symptoms that can lead practitioners to bear in mind an IEM. Other psychiatric manifestations are also found, as behavioral., cognitive, learning and mood disorders. However, they are less frequent. Ensuring an accurate IEM diagnosis, in front of these psychiatric symptoms should be a priority, in order to grant suitable and valuable treatment for these pathologies.

  12. Fibroblast Growth Factor 23 (FGF23 and Disorders of Phosphate Metabolism

    Directory of Open Access Journals (Sweden)

    Tasuku Saito

    2009-01-01

    Full Text Available Derangements in serum phosphate level result in rickets/osteomalacia or ectopic calcification indicating that healthy people without these abnormalities maintain serum phosphate within certain ranges. These results indicate that there must be a regulatory mechanism of serum phosphate level. Fibroblast growth factor 23 (FGF23 was identified as the last member of FGF family. FGF23 is produced by bone and reduces serum phosphate level by suppressing phosphate reabsorption in proximal tubules and intestinal phosphate absorption through lowering 1,25-dihydroxyvitamin D level. It has been shown that excess and deficient actions of FGF23 result in hypophosphatemic rickets/osteomalacia and hyperphosphatemic tumoral calcinosis, respectively. These results indicate that FGF23 works as a hormone, and several disorders of phosphate metabolism can be viewed as endocrine diseases. It may become possible to treat patients with abnormal phosphate metabolism by pharmacologically modifying the activity of FGF23.

  13. Affective disorders in neurological diseases

    DEFF Research Database (Denmark)

    Nilsson, F M; Kessing, L V; Sørensen, T M

    2003-01-01

    OBJECTIVE: To investigate the temporal relationships between a range of neurological diseases and affective disorders. METHOD: Data derived from linkage of the Danish Psychiatric Central Register and the Danish National Hospital Register. Seven cohorts with neurological index diagnoses and two...... of affective disorder was lower than the incidence in the control groups. CONCLUSION: In neurological diseases there seems to be an increased incidence of affective disorders. The elevated incidence was found to be particularly high for dementia and Parkinson's disease (neurodegenerative diseases)....

  14. HPLC-MS-Based Metabonomics Reveals Disordered Lipid Metabolism in Patients with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Xinjie Zhao

    2011-12-01

    Full Text Available Ultra-high performance liquid chromatography/ quadrupole time of flight mass spectrometry-based metabonomics platform was employed to profile the plasma metabolites of patients with metabolic syndrome and the healthy controls. Data analysis revealed lots of differential metabolites between the two groups, and most of them were identified as lipids. Several fatty acids and lysophosphatidylcholines were of higher plasma levels in the patient group, indicating the occurrence of insulin resistance and inflammation. The identified ether phospholipids were decreased in the patient group, reflecting the oxidative stress and some metabolic disorders. These identified metabolites can also be used to aid diagnosis of patients with metabolic syndrome. These results showed that metabonomics was a promising and powerful method to study metabolic syndrome.

  15. Cerebral blood flow and oxygen metabolism in patients with Parkinson's disease

    International Nuclear Information System (INIS)

    Kitamura, Shin; Ujike, Takashi; Kuroki, Soemu; Sakamoto, Shizuki; Soeda, Toshiyuki; Terashi, Akiro; Iio, Masaaki.

    1988-01-01

    The purpose of this study was to determine functional changes in the cerebral cortex and basal ganglia in Parkinson's disease (PD). Cerebral blood flow (CBF), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO 2 ) were determined using 0-15 positron emission tomography in 10 PD patients and five age-matched healthy volunteers. There was a tendency among PD patients towards a decreased CBF and CMRO 2 in the cerebral cortex and basal ganglia. These values were significantly lower in the frontal cortex in the PD group than the control group. There was no difference in OEF between the groups. A more decreased cerebral oxygen metabolism was observed in patients staged as severer on the scale of Hoehn and Yahr. There was no correlation between cerebral oxygen metabolism and tremor, rigidity, or bradykinesis. A decreased cerebral oxygen metabolism was associated with mental disorders, such as depression, hallucination, and dementia. These results may provide an important clue for the understanding of mesocortical dopaminergic pathway and the relationship between PD and dementia. (N.K.)

  16. Cerebral blood flow and oxygen metabolism in patients with Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Shin; Ujike, Takashi; Kuroki, Soemu; Sakamoto, Shizuki; Soeda, Toshiyuki; Terashi, Akiro; Iio, Masaaki

    1988-10-01

    The purpose of this study was to determine functional changes in the cerebral cortex and basal ganglia in Parkinson's disease (PD). Cerebral blood flow (CBF), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO/sub 2/) were determined using 0-15 positron emission tomography in 10 PD patients and five age-matched healthy volunteers. There was a tendency among PD patients towards a decreased CBF and CMRO/sub 2/ in the cerebral cortex and basal ganglia. These values were significantly lower in the frontal cortex in the PD group than the control group. There was no difference in OEF between the groups. A more decreased cerebral oxygen metabolism was observed in patients staged as severer on the scale of Hoehn and Yahr. There was no correlation between cerebral oxygen metabolism and tremor, rigidity, or bradykinesis. A decreased cerebral oxygen metabolism was associated with mental disorders, such as depression, hallucination, and dementia. These results may provide an important clue for the understanding of mesocortical dopaminergic pathway and the relationship between PD and dementia. (N.K.).

  17. Use of radiation and radioisotopes for investigating metabolic diseases of animals in India

    Energy Technology Data Exchange (ETDEWEB)

    Arora, S P [National Dairy Research Inst., Karnal (India). Div. of Dairy Cattle Nutrition and Physiology

    1980-03-01

    In the last decade, radioisotopes have been used to investigate certain metabolic diseases of animals and radiation is being utilized to produce parasitic vaccines to vaccinate animals. Some studies in which radioisotopes have been used to investigate certain metabolic disorders are reviewed. In experiments where radioimmunoassay technique for the estimation of hormones, has been utilized, the results reveal that the animals on low level of nutrition show greater oestrous cycle lengths or even long anoestrous periods. On the other hand, irradiation has been used as a tool to produce vaccines as well as degradation of certain dietary molecules for increased utilization. A number of studies wherein /sup 35/S and /sup 15/N isotopes have been used, reveal that sulphur supplementation is essential for optimum utilization of nitrogen in the ratio of 1:10. There are certain antimetabolites in feed ingredients which affect endocrine function. Evidence indicates that high nitrate forages disturb thyroid function when sup(131)I is used to elucidate its secretion rate. Similarly certain toxic substances such as tannins have been shown to affect protein metabolism and phosphorus utilization when sup(32)P isotope is used in such studies. The use of radioisotopes has also been helpful to investigate the cause of ''Degnala'' disease prevalent in village cattle in certain states of India. With the help of sup(75)Se it has been possible to trace the metabolic disturbances which lead to the onset of this disease. Another deficiency disease, hyperkeratosis, has been shown to be caused not only because of vitamin A deficiency, but also because of zinc deficiency. The latter helps in the mobilization of a normal quantity of vitamin A from the liver into the blood vitamin A pool. There is wide scope for use of radioisotopes to investigate other metabolic diseases prevalent in livestock in this country.

  18. Use of radiation and radioisotopes for investigating metabolic diseases of animals in India

    International Nuclear Information System (INIS)

    Arora, S.P.

    1980-01-01

    In the last one decade, radioisotopes are being used to investigate certain metabolic diseases of animals and radiations are being utilized to produce parasitic vaccines to vaccinate animals. Some studies in which radioisotopes have been used to investigate certain metabolic disorders are reviewed. In experiments, where radioimmunoassay technique for the estimation of hormones, has been utilized, the results reveal that the animals on low plane of nutrition show greater oestrous cycle lengths or even long anoestrous periods. On the other hand, irradiation has been used as a tool to produce vaccines as well as degradation of certain dietary molecules for increased utilization. A number of studies wherein 35 S and 15 N isotopes have been used, reveal that sulphur supplementation is essential for optimum utilization of nitrogen in the ratio of 1:10. There are certain antimetabolites in feed ingredients which affect endocrine function. Evidence indicates that high nitrate forages disturb thyroid function when sup(131)I is used to elucidate its secretion rate. Similarly certain toxic substances such as tannins have been shown to affect protein metabolism and phosphorus utilization when sup(32)P isotope is used in such studies. The use of radioisotopes have also been helpful to investigate the cause of ''Degnala'' disease prevalent in village cattle in certain states of India. With the help of sup(75)Se it has been possible to trace out the metabolic disturbances which lead to the onset of this disease. Another deficiency disease, hyperkeratosis, has been shown to be caused not only because of Vitamin A deficiency, but also because of zinc deficiency. The latter helps in the mobilization of normal quantity of vitamin A from the liver into the blood vitamin A pool. There is wide scope to use radioisotopes to investigate other metabolic diseases prevalent in livestock in this country. (auth.)

  19. Energy metabolism and inflammation in brain aging and Alzheimer's disease.

    Science.gov (United States)

    Yin, Fei; Sancheti, Harsh; Patil, Ishan; Cadenas, Enrique

    2016-11-01

    The high energy demand of the brain renders it sensitive to changes in energy fuel supply and mitochondrial function. Deficits in glucose availability and mitochondrial function are well-known hallmarks of brain aging and are particularly accentuated in neurodegenerative disorders such as Alzheimer's disease. As important cellular sources of H 2 O 2 , mitochondrial dysfunction is usually associated with altered redox status. Bioenergetic deficits and chronic oxidative stress are both major contributors to cognitive decline associated with brain aging and Alzheimer's disease. Neuroinflammatory changes, including microglial activation and production of inflammatory cytokines, are observed in neurodegenerative diseases and normal aging. The bioenergetic hypothesis advocates for sequential events from metabolic deficits to propagation of neuronal dysfunction, to aging, and to neurodegeneration, while the inflammatory hypothesis supports microglia activation as the driving force for neuroinflammation. Nevertheless, growing evidence suggests that these diverse mechanisms have redox dysregulation as a common denominator and connector. An independent view of the mechanisms underlying brain aging and neurodegeneration is being replaced by one that entails multiple mechanisms coordinating and interacting with each other. This review focuses on the alterations in energy metabolism and inflammatory responses and their connection via redox regulation in normal brain aging and Alzheimer's disease. Interaction of these systems is reviewed based on basic research and clinical studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Psychosocial determinants of metabolic disorders in individuals with psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Urszula Łopuszańska

    2017-03-01

    Full Text Available Aim of the study: The analysis of metabolic disorders in people with mental disorders due to psychological factors, healthy and unhealthy behaviour as well as the material situation and employment status. Material and methods: Ninety-one adults diagnosed with a mental disorder who use community support centres, whose metabolic rates were examined with the use of the waist-to-hip ratio (WHR indicator, total cholesterol, LDL cholesterol, triglycerides, HDL cholesterol and glucose concentration. Cognitive function examinations were performed by using various testing methods to assess general cognitive function, direct and delayed memory, verbal fluency (letter and semantic. Additionally, a test to determine the severity of depression, and also a sociodemographic survey were performed. Results: Cigarette smoking was associated with a decrease of cognitive functions (p < 0.01 and letter fluency (p < 0.04. Physically active people have lower WHR indicators (p < 0.008, decreased severity of depressive symptoms (p < 0.002 and a lower rate of hospitalisations (p < 0.001. They achieved better results in terms of short-term memory (p < 0.02 than physically inactive people. People employed in sheltered work conditions had lower rates of abdominal obesity WHR (p < 0.01, and achieved better results in the tests measuring their general cognitive functions – Short Test of Mental Status (p < 0.02. Conclusions: Cigarette smoking, low physical activity, and a lack of employment are associated with metabolic rate disorders, especially in relation to the indicators of overweight and obesity, as well as the general decrease in cognitive functions and the ability of learning and memorisation.

  1. A comparison of bone scanning and radiology in the evaluation of patients with metabolic bone disease

    International Nuclear Information System (INIS)

    Fogelman, I.; Carr, D.

    1980-01-01

    Bone scan and radiographs were evaluated in 80 patients with metabolic bone disease (27 with osteoporosis, 14 with primary hyperparathyroidism, 24 with renal osteodystrophy and 15 with osteomalacia). The bone scan did not suggest a metabolic bone disorder in any of 27 patients with histologically proven osteoporosis. In 22 (81%) patients radiographs were reported as showing osteoporosis. In 19 (70%) vertebral fractures were seen on X-ray while these were noted in 11 (41%) patients on the bone scan. Vertebral fractures were usually visualised on the bone scan when these had occurred less than one year previously. In primary hyperparathyroidism the bone scan was suggestive of a metabolic bone disorder in 7 of 14 (50%) patients, while radiographs were reported as showing evidence of hyperparathyrodism in three (21%) cases. The bone scan suggested the presence of a metabolic bone disorder in all 24 patients with renal osteodystrophy and 15 patients with osteomalacia while the correct diagnosis was obtained in 14 (58%) and nine (60%) of these patients on X-ray. It is concluded that the bone scan is the more sensitive investigation in patients with osteomalacia, primary hyperparathyroidism and renal osteodystrophy. For osteoporosis radiology is the investigation of choice but the bone scan may be of value in assessing the duration of vertebral collapse. (author)

  2. Comparison of metabolic syndrome prevalence in patients with schizophrenia and bipolar I disorder.

    Science.gov (United States)

    Nayerifard, Razieh; Bureng, Majid Akbari; Zahiroddin, Alireza; Namjoo, Massood; Rajezi, Sepideh

    2017-11-01

    Research has shown that the metabolic syndrome is more prevalent among patients with schizophrenia or bipolar I disorder. Given the scarcity of research on the disorders, this paper aims to compare the prevalence of the syndrome among the two groups of patients. A total of 120 individuals participated in this cross sectional study: 60 patients with schizophrenia (26 males and 34 females) and 60 patients with bipolar I disorder (32 males and 28 females). The psychological disorders were diagnosed by some experienced psychiatrists according to the DSM-V. Furthermore, metabolic syndrome was diagnosed according to ATP III guidelines. Metabolic syndrome prevalence among schizophrenic and bipolar I patients was 28 and 36 percent, respectively; the disparity in prevalence is not significant. According to the results, compared to their male counterparts, females were more prone significant to metabolic syndrome. Moreover, diastolic blood pressure was significantly higher among bipolar I patients. On the other hand, schizophrenic males were observed to have higher fasting blood sugar levels in comparison to bipolar I males patients. Age, consumption of second generation antipsychotics or antidepressants, and the duration of the disorder were found to be related to metabolic syndrome. This study showed that metabolic syndrome is not more prevalent among bipolar I patients, compared to those with schizophrenia. Also, women are more likely to be affected by the syndrome. A number of factors such as age, consumption of medication, and duration of the disorder are associated with the likelihood of the syndrome. Copyright © 2017. Published by Elsevier Ltd.

  3. Outline of metabolic diseases in adult neurology.

    Science.gov (United States)

    Mochel, F

    2015-01-01

    Inborn errors of metabolism (IEM) are traditionally defined by enzymatic deficiencies or defects in proteins involved in cellular metabolism. Historically discovered and characterized in children, a growing number of IEM are described in adults, and especially in the field of neurology. In daily practice, it is important to recognize emergency situations as well as neurodegenerative diseases for which a metabolic disease is likely, especially when therapeutic interventions are available. Here, the goal is to provide simple clinical, imaging and biochemical tools that can first orientate towards and then confirm the diagnosis of IEM. General guidelines are presented to treat the most common IEM during metabolic crises - acute encephalopathies with increased plasma ammonia, lactate or homocystein, as well as rhabdomyolysis. Examples of therapeutic strategies currently applied to chronic neurometabolic diseases are also provided - GLUT1 deficiency, adrenoleukodystrophy, cerebrotendinous xanthomatosis, Niemann-Pick type C and Wilson disease. Genetic counseling is mandatory in some X-linked diseases - ornithine transcarbamylase deficiency and adrenoleukodystrophy - and recommended in maternally inherited mitochondrial diseases - mutations of mitochondrial DNA. Besides these practical considerations, the contribution of metabolism to the field of adult neurology and neurosciences is much greater: first, with the identification of blood biomarkers that are progressively changing our diagnostic strategies thanks to lipidomic approaches, as illustrated in the field of spastic paraplegia and atypical psychiatric presentations; and second, through the understanding of pathophysiological mechanisms involved in common neurological diseases thanks to the study of these rare diseases. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. Interconnectivity of human cellular metabolism and disease prevalence

    Science.gov (United States)

    Lee, Deok-Sun

    2010-12-01

    Fluctuations of metabolic reaction fluxes may cause abnormal concentrations of toxic or essential metabolites, possibly leading to metabolic diseases. The mutual binding of enzymatic proteins and ones involving common metabolites enforces distinct coupled reactions, by which local perturbations may spread through the cellular network. Such network effects at the molecular interaction level in human cellular metabolism can reappear in the patterns of disease occurrence. Here we construct the enzyme-reaction network and the metabolite-reaction network, capturing the flux coupling of metabolic reactions caused by the interacting enzymes and the shared metabolites, respectively. Diseases potentially caused by the failure of individual metabolic reactions can be identified by using the known disease-gene association, which allows us to derive the probability of an inactivated reaction causing diseases from the disease records at the population level. We find that the greater the number of proteins that catalyze a reaction, the higher the mean prevalence of its associated diseases. Moreover, the number of connected reactions and the mean size of the avalanches in the networks constructed are also shown to be positively correlated with the disease prevalence. These findings illuminate the impact of the cellular network topology on disease development, suggesting that the global organization of the molecular interaction network should be understood to assist in disease diagnosis, treatment, and drug discovery.

  5. Determining pathogenetic connection between disorders of lipid and carbohydrate metabolism and non-malignant pathology of thyroid gland in children , born from parents, Chernobyl accident survivors

    International Nuclear Information System (INIS)

    Kopilova, O.V.; Stepanenko, O.A.; Belyingyio, T.O.

    2014-01-01

    The 92 children aged 12-17 years were examined with the purpose to study the links between carbohydrate and lipid metabolic abnormalities and non-malignant thyroid disorders in descendants of the Chernobyl accident survivors. Clinical, anthropometrical studies and hormonal assays were applied. Carbohydrate and lipid metabolic abnormalities were revealed in every third case of thyroid disease. It confirms our supposition of such a possibility being due to the fact that radiation impact even in low doses can result in pronounced metabolic disorders lading to entire endocrine disregulation. It is relevant in children of the puberty age

  6. MR spectroscopy in metabolic disorders of the brain; MR-Spektroskopie bei Stoffwechselerkrankungen des Gehirns

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, U. [Universitaetsklinikum des Saarlandes, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Homburg/Saar (Germany)

    2017-06-15

    Metabolic disorders of the brain often present a particular challenge for the neuroradiologist, since the disorders are rare, changes on conventional MR are often non-specific and there are numerous differential diagnoses for the white substance lesions. As a complementary method to conventional brain MRI, MR spectroscopy may help to reduce the scope of the differential diagnosis. Entities with specific MR spectroscopy patterns are Canavan disease, maple syrup urine disease, nonketotic hyperglycinemia and creatine deficiency. (orig.) [German] Die Diagnostik metabolischer Erkrankungen des Gehirns stellt eine besondere Herausforderung in der Neuroradiologie dar, da die Erkrankungen insgesamt selten, die bildmorphologischen Befunde haeufig unspezifisch sind und es eine Vielzahl von Differenzialdiagnosen fuer die Veraenderungen der weissen Substanz gibt. Als zusaetzliche Technik kann die MR-Spektroskopie bei Stoffwechselerkrankungen helfen, die Diagnose einzugrenzen. Krankheitsentitaeten, die spezifische Veraenderungen in der Spektroskopie aufweisen, sind der Morbus Canavan, die Ahornsirupkrankheit, die nichtketotische Hyperglyzinaemie und Kreatinmangelsyndrome. (orig.)

  7. Genotype-phenotype correlations in neurogenetics: Lesch-Nyhan disease as a model disorder.

    Science.gov (United States)

    Fu, Rong; Ceballos-Picot, Irene; Torres, Rosa J; Larovere, Laura E; Yamada, Yasukazu; Nguyen, Khue V; Hegde, Madhuri; Visser, Jasper E; Schretlen, David J; Nyhan, William L; Puig, Juan G; O'Neill, Patrick J; Jinnah, H A

    2014-05-01

    Establishing meaningful relationships between genetic variations and clinical disease is a fundamental goal for all human genetic disorders. However, these genotype-phenotype correlations remain incompletely characterized and sometimes conflicting for many diseases. Lesch-Nyhan disease is an X-linked recessive disorder that is caused by a wide variety of mutations in the HPRT1 gene. The gene encodes hypoxanthine-guanine phosphoribosyl transferase, an enzyme involved in purine metabolism. The fine structure of enzyme has been established by crystallography studies, and its function can be measured with very precise biochemical assays. This rich knowledge of genetic alterations in the gene and their functional effect on its protein product provides a powerful model for exploring factors that influence genotype-phenotype correlations. The present study summarizes 615 known genetic mutations, their influence on the gene product, and their relationship to the clinical phenotype. In general, the results are compatible with the concept that the overall severity of the disease depends on how mutations ultimately influence enzyme activity. However, careful evaluation of exceptions to this concept point to several additional genetic and non-genetic factors that influence genotype-phenotype correlations. These factors are not unique to Lesch-Nyhan disease, and are relevant to most other genetic diseases. The disease therefore serves as a valuable model for understanding the challenges associated with establishing genotype-phenotype correlations for other disorders.

  8. Gaucher Disease

    Science.gov (United States)

    Gaucher disease is a rare, inherited disorder. It is a type of lipid metabolism disorder. If you ... affected. It usually starts in childhood or adolescence. Gaucher disease has no cure. Treatment options for types ...

  9. A Metabolic Study of Huntington's Disease.

    Directory of Open Access Journals (Sweden)

    Rajasree Nambron

    Full Text Available Huntington's disease patients have a number of peripheral manifestations suggestive of metabolic and endocrine abnormalities. We, therefore, investigated a number of metabolic factors in a 24-hour study of Huntington's disease gene carriers (premanifest and moderate stage II/III and controls.Control (n = 15, premanifest (n = 14 and stage II/III (n = 13 participants were studied with blood sampling over a 24-hour period. A battery of clinical tests including neurological rating and function scales were performed. Visceral and subcutaneous adipose distribution was measured using magnetic resonance imaging. We quantified fasting baseline concentrations of glucose, insulin, cholesterol, triglycerides, lipoprotein (a, fatty acids, amino acids, lactate and osteokines. Leptin and ghrelin were quantified in fasting samples and after a standardised meal. We assessed glucose, insulin, growth hormone and cortisol concentrations during a prolonged oral glucose tolerance test.We found no highly significant differences in carbohydrate, protein or lipid metabolism markers between healthy controls, premanifest and stage II/III Huntington's disease subjects. For some markers (osteoprotegerin, tyrosine, lysine, phenylalanine and arginine there is a suggestion (p values between 0.02 and 0.05 that levels are higher in patients with premanifest HD, but not moderate HD. However, given the large number of statistical tests performed interpretation of these findings must be cautious.Contrary to previous studies that showed altered levels of metabolic markers in patients with Huntington's disease, our study did not demonstrate convincing evidence of abnormalities in any of the markers examined. Our analyses were restricted to Huntington's disease patients not taking neuroleptics, anti-depressants or other medication affecting metabolic pathways. Even with the modest sample sizes studied, the lack of highly significant results, despite many being tested, suggests that

  10. Ferrokinetic Parameters and Regulation of Iron Metabolism in Patients with Chronic Inflammatory Bowel Diseases

    Directory of Open Access Journals (Sweden)

    T.Y. Boiko

    2014-11-01

    Full Text Available Article presents parameters of iron metabolism and cytokines (IL-6 and TNF-α in patients with chronic inflammatory bowel diseases (CIBD. The material for the study was the blood of 69 patients with CIBD and anemia and 26 — without anemia. We have studied the features of main ferrokinetic parameters — iron, total iron-binding capacity of serum, transferrin saturation, ferritin, transferrin receptor, erythropoietin, hepcidin depending on hemoglobin level and the type of anemia. The relationship of iron metabolism disorders with the level of proinflammatory cytokines (IL-6 and TNF-α is shown.

  11. Microbial pathways in colonic sulfur metabolism and links with health and disease

    Directory of Open Access Journals (Sweden)

    Franck eCarbonero

    2012-11-01

    Full Text Available Sulfur is both crucial to life and a potential threat to health. While colonic sulfur metabolism mediated by eukaryotic cells is relatively well studied, much less is known about sulfur metabolism within gastrointestinal microbes. Sulfated compounds in the colon are either of inorganic (e.g., sulfates, sulfites or organic (e.g., dietary amino acids and host mucins origin. The most extensively studied of the microbes involved in colonic sulfur metabolism are the sulfate-reducing bacteria, which are common colonic inhabitants. Many other microbial pathways are likely to shape colonic sulfur metabolism as well as the composition and availability of sulfated compounds, and these interactions need to be examined in more detail. Hydrogen sulfide is the sulfur derivative that has attracted the most attention in the context of colonic health, and the extent to which it is detrimental or beneficial remains in debate. Several lines of evidence point to sulfate-reducing bacteria or exogenous hydrogen sulfide as potential players in the etiology of intestinal disorders, inflammatory bowel diseases and colorectal cancer in particular. Generation of hydrogen sulfide via pathways other than dissimilatory sulfate reduction may be as, or more, important than those involving the sulfate-reducing bacteria. We suggest here that a novel axis of research is to assess the effects of hydrogen sulfide in shaping colonic microbiome structure. Clearly, in-depth characterization of the microbial pathways involved in colonic sulfur metabolism is necessary for a better understanding of its contribution to colonic disorders and development of therapeutic strategies.

  12. Reversal of metabolic disorders by pharmacological activation of bile acid receptors TGR5 and FXR

    Directory of Open Access Journals (Sweden)

    Kavita Jadhav

    2018-03-01

    Full Text Available Objectives: Activation of the bile acid (BA receptors farnesoid X receptor (FXR or G protein-coupled bile acid receptor (GPBAR1; TGR5 improves metabolic homeostasis. In this study, we aim to determine the impact of pharmacological activation of bile acid receptors by INT-767 on reversal of diet-induced metabolic disorders, and the relative contribution of FXR vs. TGR5 to INT-767's effects on metabolic parameters. Methods: Wild-type (WT, Tgr5−/−, Fxr−/−, Apoe−/− and Shp−/− mice were used to investigate whether and how BA receptor activation by INT-767, a semisynthetic agonist for both FXR and TGR5, could reverse diet-induced metabolic disorders. Results: INT-767 reversed HFD-induced obesity dependent on activation of both TGR5 and FXR and also reversed the development of atherosclerosis and non-alcoholic fatty liver disease (NAFLD. Mechanistically, INT-767 improved hypercholesterolemia by activation of FXR and induced thermogenic genes via activation of TGR5 and/or FXR. Furthermore, INT-767 inhibited several lipogenic genes and de novo lipogenesis in the liver via activation of FXR. We identified peroxisome proliferation-activated receptor γ (PPARγ and CCAAT/enhancer-binding protein α (CEBPα as novel FXR-regulated genes. FXR inhibited PPARγ expression by inducing small heterodimer partner (SHP whereas the inhibition of CEBPα by FXR was SHP-independent. Conclusions: BA receptor activation can reverse obesity, NAFLD, and atherosclerosis by specific activation of FXR or TGR5. Our data suggest that, compared to activation of FXR or TGR5 only, dual activation of both FXR and TGR5 is a more attractive strategy for treatment of common metabolic disorders. Keywords: Farnesoid X receptor, TGR5, Atherosclerosis, Obesity, NAFLD

  13. Metabolic disorders in adipocytokine imbalance and gestational complications

    Directory of Open Access Journals (Sweden)

    Natalya B. Chabanova

    2017-06-01

    Full Text Available Adipose tissue as an endocrine organ synthesizes a large number of biologically active substances, adipocytokines, which have both local and systemic effects influencing the vascular wall, tissue sensitivity to insulin, glucose metabolism, and systemic inflammation. The data obtained from clinical and experimental studies demonstrate the close relationship between the imbalance of adipocytokines and pregnancy complications such as insulin resistance, gestational diabetes, and preeclampsia. In this connection, close attention of obstetrician-gynecologists and endocrinologists is focused on etiopathogenic aspects of the formation of gestational complications with metabolic disorders caused by an imbalance of adipocytokines with maternal obesity and to the search for markers of these disorders. The review presents the current literature data on adipose tissue hormones and their influence on the course of a gestational process.

  14. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance.

    Science.gov (United States)

    Højlund, Kurt

    2014-07-01

    Type 2 diabetes, obesity and polycystic ovary syndrome (PCOS) are common metabolic disorders which are observed with increasing prevalences, and which are caused by a complex interplay between genetic and environmental factors, including increased calorie intake and physical inactivity. These metabolic disorders are all characterized by reduced plasma adiponectin and insulin resistance in peripheral tissues. Quantitatively skeletal muscle is the major site of insulin resistance. Both low plasma adiponectin and insulin resistance contribute to an increased risk of type 2 diabetes and cardiovascular disease. In several studies, we have investigated insulin action on glucose and lipid metabolism, and at the molecular level, insulin signaling to glucose transport and glycogen synthesis in skeletal muscle from healthy individuals and in obesity, PCOS and type 2 diabetes. Moreover, we have described a novel syndrome characterized by postprandial hyperinsulinemic hypoglycemia and insulin resistance. This syndrome is caused by a mutation in the tyrosine kinase domain of the insulin receptor gene (INSR). We have studied individuals with this mutation as a model of inherited insulin resistance. Type 2 diabetes, obesity and PCOS are characterized by pronounced defects in the insulin-stimulated glucose uptake, in particular glycogen synthesis and to a lesser extent glucose oxidation, and the ability of insulin to suppress lipid oxidation. In inherited insulin resistance, however, only insulin action on glucose uptake and glycogen synthesis is impaired. This suggests that the defects in glucose and lipid oxidation in the common metabolic disorders are secondary to other factors. In young women with PCOS, the degree of insulin resistance was similar to that seen in middle-aged patients with type 2 diabetes. This supports the hypothesis of an unique pathogenesis of insulin resistance in PCOS. Insulin in physiological concentrations stimulates glucose uptake in human skeletal

  15. Interconnectivity of human cellular metabolism and disease prevalence

    International Nuclear Information System (INIS)

    Lee, Deok-Sun

    2010-01-01

    Fluctuations of metabolic reaction fluxes may cause abnormal concentrations of toxic or essential metabolites, possibly leading to metabolic diseases. The mutual binding of enzymatic proteins and ones involving common metabolites enforces distinct coupled reactions, by which local perturbations may spread through the cellular network. Such network effects at the molecular interaction level in human cellular metabolism can reappear in the patterns of disease occurrence. Here we construct the enzyme-reaction network and the metabolite-reaction network, capturing the flux coupling of metabolic reactions caused by the interacting enzymes and the shared metabolites, respectively. Diseases potentially caused by the failure of individual metabolic reactions can be identified by using the known disease–gene association, which allows us to derive the probability of an inactivated reaction causing diseases from the disease records at the population level. We find that the greater the number of proteins that catalyze a reaction, the higher the mean prevalence of its associated diseases. Moreover, the number of connected reactions and the mean size of the avalanches in the networks constructed are also shown to be positively correlated with the disease prevalence. These findings illuminate the impact of the cellular network topology on disease development, suggesting that the global organization of the molecular interaction network should be understood to assist in disease diagnosis, treatment, and drug discovery

  16. Metabolic correction for attention deficit/hyperactivity disorder: A biochemical-physiological therapeutic approach

    Directory of Open Access Journals (Sweden)

    Mikirova NA

    2013-01-01

    Full Text Available ABSTRACTObjective: This investigation was undertaken to determine the reference values of specific biochemical markers that have been have been associated with behavior typical of ADHD in a group of patients before and after metabolic correction.Background: Attention deficit hyperactivity disorder (ADHD affects approximately two million American children, and this condition has grown to become the most commonly diagnosed behavioral disorder of childhood. According to the National Institute of Mental Health (NIMH, the cause of the condition, once called hyperkinesis, is not known.The cause of ADHD is generally acknowledged to be multifactorial, involving both biological and environmental influence. Molecular, genetic, and pharmacological studies suggest the involvement of the neurotransmitter systems in the pathogenesis of ADHD. Polymorphic variants in several genes involved in regulation of dopamine have been identified, and related neurotransmitter pathways alterations are reported to be associated with the disease.Nutritional deficiencies, including deficiencies in fatty acids (EPA, DHA, the amino acid methionine, and the trace minerals zinc and selenium, have been shown to influence neuronal function and produce defects in neuronal plasticity, as well as impact behavior in children with attention deficit hyperactivity disorder.Materials/Methods: This study was based on data extracted from our patient history database covering a period of over ten years. We performed laboratory tests in 116 patients 2.7-25 years old with a diagnosis of ADHD. Sixty-six percent (66% of patients were males. Patients were followed from 3 month to 3 years. We compared the distributions of fatty acids, essential metals, and the levels of metabolic stress factors with established reference ranges before and after interventions. In addition, we analyzed the association between toxic metal concentrations and the levels of essential metals.Results: This study was based

  17. [Gut microbiota and immune crosstalk in metabolic disease].

    Science.gov (United States)

    Burcelin, Rémy

    2017-01-01

    The aim of the review is to discuss about the role played by the defence crosstalk between the gut microbiota and the intestinal immune system, in the development of metabolic disease focusing on obesity and diabetes. Starting from physiological and pathological stand points and based on the latest published data, this review is addressing how the concept of the hologenome theory of evolution can drive the fate of metabolic disease. The notion of "metabolic infection" to explain the "metabolic inflammation" is discussed. This imply comments about the process of bacterial translocation and impaired intestinal immune defense against commensals. Eventually this review sets the soil for personalized medicine. The monthly increase in the number of publications on the gut microbiota to intestinal immune defense and the control of metabolism demonstrate the importance of this field of investigation. The notion of commensal as "self or non-self" has to be reevaluated in the light of the current data. Furthermore, data demonstrate the major role played by short chain fatty acids, secondary bile acids, LPS, peptidoglycans, indole derivatives, and other bacteria-related molecules on the shaping of cells involved in the intestinal protection against commensals is now becoming a central player in the incidence of metabolic diseases. The literature demonstrates that the onset of metabolic diseases and some specific co-morbidities can be explained by a gut microbiota to intestinal immune system crosstalk. Therefore, one should now consider this avenue of investigation as a putative source of biomarkers and therapeutic targets to personalize the treatment of metabolic disease and its co-morbidities. Gut microbiota is considered as a major regulator of metabolic disease. This reconciles the notion of metabolic inflammation and the epidemic development of the disease. In addition to evidence showing that a specific gut microbiota characterizes patients with obesity, type 2 diabetes

  18. Investigation of metabolic encephalopathy

    African Journals Online (AJOL)

    cycle defects is the X-linked recessive disorder, ornithine ... life, or if the child is fed the compounds that they are unable .... as learning difficulties, drowsiness and avoidance of ... Table 2. Laboratory investigation of suspected metabolic encephalopathy. Laboratory .... Clinical approach to treatable inborn metabolic diseases:.

  19. Genetic disorders of vitamin B12 metabolism: eight complementation groups – eight genes

    Science.gov (United States)

    Froese, D. Sean; Gravel, Roy A.

    2010-01-01

    Vitamin B12 (cobalamin, Cbl) is an essential nutrient in human metabolism. Genetic diseases of vitamin B12 utilisation constitute an important fraction of inherited newborn disease. Functionally, B12 is the cofactor for methionine synthase and methylmalonyl CoA mutase. To function as a cofactor, B12 must be metabolised through a complex pathway that modifies its structure and takes it through subcellular compartments of the cell. Through the study of inherited disorders of vitamin B12 utilisation, the genes for eight complementation groups have been identified, leading to the determination of the general structure of vitamin B12 processing and providing methods for carrier testing, prenatal diagnosis and approaches to treatment. PMID:21114891

  20. Peculiarities of Ischemic Heart Disease Course and Treatment in Patients with Glucose Metabolism Impairment and Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    O.M. Radchenko

    2015-09-01

    Full Text Available Combination of ischemic heart disease and diabetes mellitus is characterized by certain features of clinical picture and insufficient effectiveness of treatment of ischemic heart disease. With the aim of investigation of pathogenic mechanisms and features of the clinical course of ischemic heart disease associated with glucose homeostasis violation we examined 116 patients (51 women, 65 men, median of age 63 years old with normal regulation of glucose metabolism (NRG, n = 24, changes in fasting glucose (n = 23, violated glucose tolerance (n = 21, combined violation (n = 24 and diabetes mellitus (n = 24. We also conducted their prospective observation for 40 months with the following endpoints — hospitalization because of cardiovascular complications, death from them and the emergence of diabetes. It was established that ischemic heart disease associated with prediabetic disorders and diabetes mellitus has the following peculiarities: earlier clinical manifestation in women; more frequent and severe heart failure; lower tolerance to physical load in patients with angina pectoris; atypical manifestation of ischemic pain: longer attacks, atypical localization or absent pain; frequent combination with arrhythmias and conduction disorders; frequent affection of multiple coronary arteries, which leads to myocardial infarction with complicated course; eccentric type of left ventricle remodeling; significant calcification of mitral and aortic valves of heart. The main principles of treatment of ischemic heart disease: weight loss; active correction of glucose metabolism violations using medications (metformin even at the stage of prediabetes, because in chronic stable forms of ischemic heart disease metformin significantly improves glucose metabolism, decreases insulin resistance and does not increase the incidence of cardiovascular complications and decompensations of heart failure; the basic drugs for treatment of ischemic heart disease should be

  1. Female alcoholics: electrocardiographic changes and associated metabolic and electrolytic disorders

    Directory of Open Access Journals (Sweden)

    Borini Paulo

    2003-01-01

    Full Text Available OBJECTIVE: To identify the electrocardiographic changes and their associations with metabolic and electrolytic changes in female alcoholics. METHODS: The study comprised 44 female alcoholics with no apparent physical disorder. They underwent the following examinations: conventional electrocardiography; serologic tests for syphilis, Chagas' disease, and hepatitis B and C viruses; urinary pregnancy testing; hematimetric analysis; biochemical measurements of albumin, fibrinogen, fasting and postprandial glycemias, lipids, hepatic enzymes, and markers for tissue necrosis and inflammation. RESULTS: Some type of electrocardiographic change was identified in 33 (75% patients. In 17 (38.6% patients, more than one of the following changes were present: prolonged QTc interval in 24 (54.5%, change in ventricular repolarization in 11(25%, left ventricular hypertrophy in 6 (13.6%, sinus bradycardia in 4 (9.1%, sinus tachycardia in 3 (6.8%, and conduction disorder in 3 (6.8%. The patients had elevated mean serum levels of creatine phosphokinase, aspartate aminotransferases, and gamma glutamyl transferase, as well as hypocalcemia and low levels of total cholesterol and LDL-cholesterol. The patients with altered electrocardiograms had a more elevated age, a lower alcohol consumption, hypopotassemia, and significantly elevated levels of triglycerides, postprandial glucose, sodium and gamma glutamyl transferase than those with normal electrocardiograms. The opposite occurred with fasting glycemia, magnesium, and alanine aminotransferase. CONCLUSION: The electrocardiographic changes found were prolonged QTc interval, change in ventricular repolarization, and left ventricular hypertrophy. Patients with normal and abnormal electrocardiograms had different metabolic and electrolytic changes.

  2. Associations Between Body Mass Index and Development of Metabolic Disorders in Fertile Women—A Nationwide Cohort Study

    DEFF Research Database (Denmark)

    Schmiegelow, Michelle Dalgas; Andersson, Charlotte; Køber, Lars

    2014-01-01

    BACKGROUND: Metabolic disorders are relatively uncommon in young women, but may increase with obesity. The associations between body mass index (BMI) and risks of diabetes, hypertension, and dyslipidemia in apparently healthy, young women have been insufficiently investigated, and are the aims...... of this study. METHODS AND RESULTS: Women giving birth during the years 2004-2009, with no history of cardiovascular disease, renal insufficiency, pregnancy-associated metabolic disorders, diabetes, hypertension, or dyslipidemia were identified in nationwide registers. Women were categorized as underweight (BMI......). The cohort comprised 252 472 women with a median age of 30.4 years (IQR=27.2;33.7) and a median follow-up of 5.5 years (IQR=3.9;6.8). In total, 2029 women developed diabetes, 3133 women developed hypertension, and 1549 women developed dyslipidemia. Rate ratios (RRs) of diabetes were: 0.84 (95% confidence...

  3. Can bipolar disorder be viewed as a multi-system inflammatory disease?

    Science.gov (United States)

    Leboyer, Marion; Soreca, Isabella; Scott, Jan; Frye, Mark; Henry, Chantal; Tamouza, Ryad; Kupfer, David J.

    2012-01-01

    Background Patients with bipolar disorder are known to be at high risk of premature death. Comorbid cardio-vascular diseases are a leading cause of excess mortality, well above the risk associated with suicide. In this review, we explore comorbid medical disorders, highlighting evidence that bipolar disorder can be effectively conceptualized as a multi-systemic inflammatory disease. Methods We conducted a systematic PubMed search of all English-language articles recently published with bipolar disorder cross-referenced with the following terms: mortality and morbidity, cardio-vascular, diabetes, obesity, metabolic syndrome, inflammation, auto-antibody, retro-virus, stress, sleep and circadian rhythm. Results Evidence gathered so far suggests that the multi-system involvement is present from the early stages, and therefore requires proactive screening and diagnostic procedures, as well as comprehensive treatment to reduce progression and premature mortality. Exploring the biological pathways that could account for the observed link show that dysregulated inflammatory background could be a common factor underlying cardio-vascular and bipolar disorders. Viewing bipolar disorder as a multi-system disorder should help us to re-conceptualize disorders of the mind as “disorders of the brain and the body”. Limitations The current literature substantially lacks longitudinal and mechanistic studies, as well as comparison studies to explore the magnitude of the medical burden in bipolar disorder compared to major mood disorders as well as psychotic disorders. It is also necessary to look for subgroups of bipolar disorder based on their rates of comorbid disorders. Conclusions Comorbid medical illnesses in bipolar disorder might be viewed not only as the consequence of health behaviors and of psychotropic medications, but rather as an early manifestation of a multi-systemic disorder. Medical monitoring is thus a critical component of case assessment. Exploring common

  4. X-ray diagnoses of metabolic bone diseases in infants

    International Nuclear Information System (INIS)

    Oestreich, A.E.; Missouri Univ., Columbia

    1979-01-01

    In X-ray pictures of patients with metabolic bone diseases, there are some important differences between adults and children due to the fact that childrens' skeletons are still graving. Metabolically induced changes to be observed by the radiologist in osteoporosis, rickets, and other metabolic diseases are described. In many cases, specific treatment of these diseases is necessary and also possible. (orig./MG) [de

  5. [Cardiac and metabolic risk factors in severe mental disorders. Task of a prevention manager].

    Science.gov (United States)

    Lederbogen, F; Schwarz, P; Häfner, S; Schweiger, U; Bohus, M; Deuschle, M

    2015-07-01

    People with severe mental disorders have a reduction in life expectancy of 13-30 % compared with the general population. This severe disadvantage is primarily due to an increased prevalence of cardiac and metabolic disorders, especially coronary heart disease (CHD) and type 2 diabetes mellitus and are the result of untoward health behavior characterized by smoking, low levels of physical activity and unhealthy dietary habits. Obesity, arterial hypertension and lipid disorders are also associated with this behavior and further increase the risk of CHD and type 2 diabetes. Thus, people with mental disorders constitute a population with a high risk of cardiovascular events. Appropriate measures for prevention and therapy are urgently indicated but rarely applied. This article presents new organizational structures to overcome this deficit with a prevention manager playing a central role in organizing and applying preventive and therapeutic care. Results from cardiology and diabetic medicine have shown the effectiveness of pooling this responsibility. The measure has the potential to reduce the increased mortality of people with severe mental disorders.

  6. [Metabolic Syndrome and Bipolar Affective Disorder: A Review of the Literature].

    Science.gov (United States)

    Jaramillo, Carlos López; Mejía, Adelaida Castaño; Velásquez, Alicia Henao; Restrepo Palacio, Tomás Felipe; Zuluaga, Julieta Osorio

    2013-09-01

    Bipolar disorder (BD) is a chronic psychiatric disorder that is found within the first ten causes of disability and premature mortality. The metabolic syndrome (MS) is a group of risk factors (RF) that predispose to cardiovascular disease (CV), diabetes and early mortality. Both diseases generate high costs to the health system. Major studies have shown that MS has a higher prevalence in patients with mental disorders compared to the general population. The incidence of MS in BD is multifactorial, and due to iatrogenic, genetic, economic, psychological, and behavioral causes related to the health system. The most common RF found is these patients was an increased abdominal circumference, and it was found that the risk of suffering this disease was greater in women and Hispanic patients. As regards the increase in RF to develop a CV in patients with BD, there have been several explanations based on the risky behavior of patients with mental illness, included tobacco abuse, physical inactivity and high calorie diets. An additional explanation described in literature is the view of BD as a multisystemic inflammatory illness, supported by the explanation that inflammation is a crucial element in atherosclerosis, endothelial dysfunction, platelet rupture, and thrombosis. The pathophysiology of MS and BD include factors such as adrenal, thyroid and sympathetic nervous system dysfunction, as well as poor lifestyle and medication common in these patients. This article attempts to give the reader an overall view of the information published in literature to date, as regards the association between BD and MS. Copyright © 2013 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  7. The interplay between intestinal bacteria and host metabolism in health and disease: lessons from Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Adam C. N. Wong

    2016-03-01

    Full Text Available All higher organisms negotiate a truce with their commensal microbes and battle pathogenic microbes on a daily basis. Much attention has been given to the role of the innate immune system in controlling intestinal microbes and to the strategies used by intestinal microbes to overcome the host immune response. However, it is becoming increasingly clear that the metabolisms of intestinal microbes and their hosts are linked and that this interaction is equally important for host health and well-being. For instance, an individual's array of commensal microbes can influence their predisposition to chronic metabolic diseases such as diabetes and obesity. A better understanding of host–microbe metabolic interactions is important in defining the molecular bases of these disorders and could potentially lead to new therapeutic avenues. Key advances in this area have been made using Drosophila melanogaster. Here, we review studies that have explored the impact of both commensal and pathogenic intestinal microbes on Drosophila carbohydrate and lipid metabolism. These studies have helped to elucidate the metabolites produced by intestinal microbes, the intestinal receptors that sense these metabolites, and the signaling pathways through which these metabolites manipulate host metabolism. Furthermore, they suggest that targeting microbial metabolism could represent an effective therapeutic strategy for human metabolic diseases and intestinal infection.

  8. A diagnostic algorithm for metabolic myopathies.

    Science.gov (United States)

    Berardo, Andres; DiMauro, Salvatore; Hirano, Michio

    2010-03-01

    Metabolic myopathies comprise a clinically and etiologically diverse group of disorders caused by defects in cellular energy metabolism, including the breakdown of carbohydrates and fatty acids to generate adenosine triphosphate, predominantly through mitochondrial oxidative phosphorylation. Accordingly, the three main categories of metabolic myopathies are glycogen storage diseases, fatty acid oxidation defects, and mitochondrial disorders due to respiratory chain impairment. The wide clinical spectrum of metabolic myopathies ranges from severe infantile-onset multisystemic diseases to adult-onset isolated myopathies with exertional cramps. Diagnosing these diverse disorders often is challenging because clinical features such as recurrent myoglobinuria and exercise intolerance are common to all three types of metabolic myopathy. Nevertheless, distinct clinical manifestations are important to recognize as they can guide diagnostic testing and lead to the correct diagnosis. This article briefly reviews general clinical aspects of metabolic myopathies and highlights approaches to diagnosing the relatively more frequent subtypes (Fig. 1). Fig. 1 Clinical algorithm for patients with exercise intolerance in whom a metabolic myopathy is suspected. CK-creatine kinase; COX-cytochrome c oxidase; CPT-carnitine palmitoyl transferase; cyt b-cytochrome b; mtDNA-mitochondrial DNA; nDNA-nuclear DNA; PFK-phosphofructokinase; PGAM-phosphoglycerate mutase; PGK-phosphoglycerate kinase; PPL-myophosphorylase; RRF-ragged red fibers; TFP-trifunctional protein deficiency; VLCAD-very long-chain acyl-coenzyme A dehydrogenase.

  9. Energy Metabolism and Inflammation in Brain Aging and Alzheimer’s Disease

    Science.gov (United States)

    Yin, Fei; Sancheti, Harsh; Patil, Ishan; Cadenas, Enrique

    2016-01-01

    The high energy demand of the brain renders it sensitive to changes in energy fuel supply and mitochondrial function. Deficits in glucose availability and mitochondrial function are well-known hallmarks of brain aging and are particularly accentuated in neurodegenerative disorders such as Alzheimer’s disease. As important cellular sources of H2O2, mitochondrial dysfunction is usually associated with altered redox status. Bioenergetic deficits and chronic oxidative stress are both major contributors to cognitive decline associated with brain aging and Alzheimer’s disease. Neuroinflammatory changes, including microglial activation and production of inflammatory cytokines, are observed in neurodegenerative diseases and normal aging. The bioenergetic hypothesis advocates for sequential events from metabolic deficits to propagation of neuronal dysfunction, to aging, and to neurodegeneration, while the inflammatory hypothesis supports microglia activation as the driving force for neuroinflammation. Nevertheless, growing evidence suggests that these diverse mechanisms have redox dysregulation as a common denominator and connector. An independent view of the mechanisms underlying brain aging and neurodegeneration is being replaced by one that entails multiple mechanisms coordinating and interacting with each other. This review focuses on the alterations in energy metabolism and inflammatory responses and their connection via redox regulation in normal brain aging and Alzheimer’s disease. Interactions of these systems is reviewed based on basic research and clinical studies. PMID:27154981

  10. Autonomic nervous system and lipid metabolism: findings in anxious-depressive spectrum and eating disorders.

    Science.gov (United States)

    Pistorio, Elisabetta; Luca, Maria; Luca, Antonina; Messina, Vincenzo; Calandra, Carmela

    2011-10-28

    To correlate lipid metabolism and autonomic dysfunction with anxious-depressive spectrum and eating disorders. To propose the lipid index (LI) as a new possible biomarker. 95 patients and 60 controls were enrolled from the University Psychiatry Unit of Catania and from general practitioners (GPs). The patients were divided into four pathological groups: Anxiety, Depression, Anxious-Depressive Disorder and Eating Disorders [Diagnostic and Statistical Manual of Mental Disorders Fourth Edition Text Revision (DSM-IV-TR) official/appendix criteria]. The levels of the cholesterol, triglycerides and apolipoproteins A and B were determined. The LI, for each subject, was obtained through a mathematical operation on the values of the cholesterol and triglycerides levels compared with the maximum cut-off of the general population. The autonomic functioning was tested with Ewing battery tests. Particularly, the correlation between heart rate variability (HRV) and lipid metabolism has been investigated. Pathological and control groups, compared among each other, presented some peculiarities in the lipid metabolism and the autonomic dysfunction scores. In addition, a statistically significant correlation has been found between HRV and lipid metabolism. Lipid metabolism and autonomic functioning seem to be related to the discussed psychiatric disorders. LI, in addition, could represent a new possible biomarker to be considered.

  11. Autonomic nervous system and lipid metabolism: findings in anxious-depressive spectrum and eating disorders

    Directory of Open Access Journals (Sweden)

    Messina Vincenzo

    2011-10-01

    Full Text Available Abstract Objective To correlate lipid metabolism and autonomic dysfunction with anxious-depressive spectrum and eating disorders. To propose the lipid index (LI as a new possible biomarker. Methods 95 patients and 60 controls were enrolled from the University Psychiatry Unit of Catania and from general practitioners (GPs. The patients were divided into four pathological groups: Anxiety, Depression, Anxious-Depressive Disorder and Eating Disorders [Diagnostic and Statistical Manual of Mental Disorders Fourth Edition Text Revision (DSM-IV-TR official/appendix criteria]. The levels of the cholesterol, triglycerides and apolipoproteins A and B were determined. The LI, for each subject, was obtained through a mathematical operation on the values of the cholesterol and triglycerides levels compared with the maximum cut-off of the general population. The autonomic functioning was tested with Ewing battery tests. Particularly, the correlation between heart rate variability (HRV and lipid metabolism has been investigated. Results Pathological and control groups, compared among each other, presented some peculiarities in the lipid metabolism and the autonomic dysfunction scores. In addition, a statistically significant correlation has been found between HRV and lipid metabolism. Conclusions Lipid metabolism and autonomic functioning seem to be related to the discussed psychiatric disorders. LI, in addition, could represent a new possible biomarker to be considered.

  12. The Role of the Immune System in Metabolic Health and Disease.

    Science.gov (United States)

    Zmora, Niv; Bashiardes, Stavros; Levy, Maayan; Elinav, Eran

    2017-03-07

    In addition to the immune system's traditional roles of conferring anti-infectious and anti-neoplastic protection, it has been recently implicated in the regulation of systemic metabolic homeostasis. This cross-talk between the immune and the metabolic systems is pivotal in promoting "metabolic health" throughout the life of an organism and plays fundamental roles in its adaptation to ever-changing environmental makeups and nutritional availability. Perturbations in this intricate immune-metabolic cross-talk contribute to the tendency to develop altered metabolic states that may culminate in metabolic disorders such as malnutrition, obesity, type 2 diabetes mellitus (T2DM), and other features of the metabolic syndrome. Regulators of immune-metabolic interactions include host genetics, nutritional status, and the intestinal microbiome. In this Perspective, we highlight current understanding of immune-metabolism interactions, illustrate differences among individuals and between populations in this respect, and point toward future avenues of research possibly enabling immune harnessing as means of personalized treatment for common metabolic disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Application of research findings and summary of research needs: Bud Britton Memorial Symposium on Metabolic Disorders of Feedlot Cattle.

    Science.gov (United States)

    Galyean, M L; Eng, K S

    1998-01-01

    Updated research findings with acidosis, feedlot bloat, liver abscesses, and sudden death syndromes were presented at the Bud Britton Memorial Symposium on Metabolic Disorders of Feedlot Cattle. Possible industry applications include the need to establish guidelines for use of clostridial vaccines in feedlot cattle, further assessment of the relationship between acidosis and polioencephalomalacia, examination of the effects of various ionophores on the incidence of metabolic disorders, and evaluation of the effects of feed bunk management and limit- and restricted-feeding programs on the incidence of metabolic disorders. A multidisciplinary approach among researchers, consulting nutritionists and veterinarians, and feedlot managers will be required for effective progress in research and in the application of research findings. Areas suggested for further research include 1) assessment of feed consumption patterns and social behavior of cattle in large-pen, feedlot settings; 2) evaluation of the relationship between feed intake management systems (feed bunk management programs, limit- and programmed-feeding) and the incidence of metabolic disorders, including delineation of the role of variability in feed intake in the etiology of such disorders; 3) efforts to improve antemortem and postmortem diagnosis, and to establish standardized regional or national epidemiological databases for various metabolic disorders; 4) ascertaining the accuracy of diagnosis of metabolic disorders and determining the relationship of previous health history of animals to the incidence of metabolic disorders; 5) further defining ruminal and intestinal microbiology as it relates to metabolic disorders and deeper evaluation of metabolic changes that occur with such disorders; 6) continued appraisal of the effects of grain processing and specific feed ingredients and nutrients on metabolic disorders, and development of new feed additives to control or prevent these disorders; and 7

  14. Endothelial dysfunction in cardiovascular and endocrine-metabolic diseases: an update

    Directory of Open Access Journals (Sweden)

    A.P. Davel

    2011-09-01

    Full Text Available The endothelium plays a vital role in maintaining circulatory homeostasis by the release of relaxing and contracting factors. Any change in this balance may result in a process known as endothelial dysfunction that leads to impaired control of vascular tone and contributes to the pathogenesis of some cardiovascular and endocrine/metabolic diseases. Reduced endothelium-derived nitric oxide (NO bioavailability and increased production of thromboxane A2, prostaglandin H2 and superoxide anion in conductance and resistance arteries are commonly associated with endothelial dysfunction in hypertensive, diabetic and obese animals, resulting in reduced endothelium-dependent vasodilatation and in increased vasoconstrictor responses. In addition, recent studies have demonstrated the role of enhanced overactivation ofβ-adrenergic receptors inducing vascular cytokine production and endothelial NO synthase (eNOS uncoupling that seem to be the mechanisms underlying endothelial dysfunction in hypertension, heart failure and in endocrine-metabolic disorders. However, some adaptive mechanisms can occur in the initial stages of hypertension, such as increased NO production by eNOS. The present review focuses on the role of NO bioavailability, eNOS uncoupling, cyclooxygenase-derived products and pro-inflammatory factors on the endothelial dysfunction that occurs in hypertension, sympathetic hyperactivity, diabetes mellitus, and obesity. These are cardiovascular and endocrine-metabolic diseases of high incidence and mortality around the world, especially in developing countries and endothelial dysfunction contributes to triggering, maintenance and worsening of these pathological situations.

  15. Caenorhabditis elegans: A Useful Model for Studying Metabolic Disorders in Which Oxidative Stress Is a Contributing Factor

    Directory of Open Access Journals (Sweden)

    Elizabeth Moreno-Arriola

    2014-01-01

    Full Text Available Caenorhabditis elegans is a powerful model organism that is invaluable for experimental research because it can be used to recapitulate most human diseases at either the metabolic or genomic level in vivo. This organism contains many key components related to metabolic and oxidative stress networks that could conceivably allow us to increase and integrate information to understand the causes and mechanisms of complex diseases. Oxidative stress is an etiological factor that influences numerous human diseases, including diabetes. C. elegans displays remarkably similar molecular bases and cellular pathways to those of mammals. Defects in the insulin/insulin-like growth factor-1 signaling pathway or increased ROS levels induce the conserved phase II detoxification response via the SKN-1 pathway to fight against oxidative stress. However, it is noteworthy that, aside from the detrimental effects of ROS, they have been proposed as second messengers that trigger the mitohormetic response to attenuate the adverse effects of oxidative stress. Herein, we briefly describe the importance of C. elegans as an experimental model system for studying metabolic disorders related to oxidative stress and the molecular mechanisms that underlie their pathophysiology.

  16. Spectrum of metabolic myopathies.

    Science.gov (United States)

    Angelini, Corrado

    2015-04-01

    Metabolic myopathies are disorders of utilization of carbohydrates or fat in muscles. The acute nature of energy failure is manifested either by a metabolic crisis with weakness, sometimes associated with respiratory failure, or by myoglobinuria. A typical disorder where permanent weakness occurs is glycogenosis type II (GSDII or Pompe disease) both in infantile and late-onset forms, where respiratory insufficiency is manifested by a large number of cases. In GSDII the pathogenetic mechanism is still poorly understood, and has to be attributed more to structural muscle alterations, possibly in correlation to macro-autophagy, rather than to energetic failure. This review is focused on recent advances about GSDII and its treatment, and the most recent notions about the management and treatment of other metabolic myopathies will be briefly reviewed, including glycogenosis type V (McArdle disease), glycogenosis type III (debrancher enzyme deficiency or Cori disease), CPT-II deficiency, and ETF-dehydrogenase deficiency (also known as riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency or RR-MADD). The discovery of the genetic defect in ETF dehydrogenase confirms the etiology of this syndrome. Other metabolic myopathies with massive lipid storage and weakness are carnitine deficiency, neutral lipid storage-myopathy (NLSD-M), besides RR-MADD. Enzyme replacement therapy is presented with critical consideration and for each of the lipid storage disorders, representative cases and their response to therapy is included. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis. Copyright © 2014. Published by Elsevier B.V.

  17. The Role of Vaspin in the Development of Metabolic and Glucose Tolerance Disorders and Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Rumyana Dimova

    2015-01-01

    Full Text Available In recent years, most research efforts have been focused on studying insulin-sensitizing adipokines. One of the most recently discovered adipokines is vaspin, a visceral adipose tissue-derived serine protease inhibitor. Vaspin levels have been found significantly increased in mice with obesity and insulin resistance. It has been assumed that vaspin serves as an insulin sensitizer with anti-inflammatory effects and might act as a compensatory mechanism in response to decreased insulin sensitivity. Most studies in humans have shown a positive correlation between vaspin gene expression and serum levels, and metabolic syndrome parameters. Vaspin gene expression is influenced by age and gender, and the administration of insulin sensitizers enhances it in mice, whereas the use of metformin decreases serum vaspin levels in humans, probably due to different regulatory mechanisms. Presumably vaspin plays local and endocrine role in the development of initial and advanced atherosclerosis in obese subjects and might be used as a predictor of coronary and cerebrovascular disease. It is believed that vaspin could be regarded as a new link between obesity and related metabolic disorders, including glucose intolerance. The entire understanding of vaspin intimate mechanism of action might enable the development of novel etiology-based treatment strategies, targeting metabolic and glucose tolerance disorders.

  18. Metabolic Modulators in Heart Disease: Past, Present, and Future.

    Science.gov (United States)

    Lopaschuk, Gary D

    2017-07-01

    Ischemic heart disease and heart failure are leading causes of mortality and morbidity worldwide. They continue to be major burden on health care systems throughout the world, despite major advances made over the past 40 years in developing new therapeutic approaches to treat these debilitating diseases. A potential therapeutic approach that has been underutilized in treating ischemic heart disease and heart failure is "metabolic modulation." Major alterations in myocardial energy substrate metabolism occur in ischemic heart disease and heart failure, and are associated with an energy deficit in the heart. A metabolic shift from mitochondrial oxidative metabolism to glycolysis, as well as an uncoupling between glycolysis and glucose oxidation, plays a crucial role in the development of cardiac inefficiency (oxygen consumed per work performed) and functional impairment in ischemic heart disease as well as in heart failure. This has led to the concept that optimizing energy substrate use with metabolic modulators can be a potentially promising approach to decrease the severity of ischemic heart disease and heart failure, primarily by improving cardiac efficiency. Two approaches for metabolic modulator therapy are to stimulate myocardial glucose oxidation and/or inhibit fatty acid oxidation. In this review, the past, present, and future of metabolic modulators as an approach to optimizing myocardial energy substrate metabolism and treating ischemic heart disease and heart failure are discussed. This includes a discussion of pharmacological interventions that target enzymes involved in fatty acid uptake, fatty acid oxidation, and glucose oxidation in the heart, as well as enzymes involved in ketone and branched chain amino acid catabolism in the heart. Copyright © 2017 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  19. The importance of vitamin D in the pathology of bone metabolism in inflammatory bowel diseases.

    Science.gov (United States)

    Krela-Kaźmierczak, Iwona; Szymczak, Aleksandra; Łykowska-Szuber, Liliana; Eder, Piotr; Stawczyk-Eder, Kamila; Klimczak, Katarzyna; Linke, Krzysztof; Horst-Sikorska, Wanda

    2015-10-12

    Etiological factors of bone metabolism disorders in inflammatory bowel diseases have been the subject of interest of many researchers. One of the questions often raised is vitamin D deficiency. Calcitriol acts on cells, tissues and organs through a vitamin D receptor. The result of this action is the multi-directional effect of vitamin D. The reasons for vitamin D deficiency are: decreased exposure to sunlight, inadequate diet, inflammatory lesions of the intestinal mucosa and post-gastrointestinal resection states. This leads not only to osteomalacia but also to osteoporosis. Of significance may be the effect of vitamin D on the course of the disease itself, through modulation of the inflammatory mechanisms. It is also necessary to pay attention to the role of vitamin D in skeletal pathology in patients with inflammatory bowel diseases and thus take measures aimed at preventing and treating these disorders through the supplementation of vitamin D.

  20. Good laboratory practices for biochemical genetic testing and newborn screening for inherited metabolic disorders.

    Science.gov (United States)

    2012-04-06

    Biochemical genetic testing and newborn screening are essential laboratory services for the screening, detection, diagnosis, and monitoring of inborn errors of metabolism or inherited metabolic disorders. Under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) regulations, laboratory testing is categorized on the basis of the level of testing complexity as either waived (i.e., from routine regulatory oversight) or nonwaived testing (which includes tests of moderate and high complexity). Laboratories that perform biochemical genetic testing are required by CLIA regulations to meet the general quality systems requirements for nonwaived testing and the personnel requirements for high-complexity testing. Laboratories that perform public health newborn screening are subject to the same CLIA regulations and applicable state requirements. As the number of inherited metabolic diseases that are included in state-based newborn screening programs continues to increase, ensuring the quality of performance and delivery of testing services remains a continuous challenge not only for public health laboratories and other newborn screening facilities but also for biochemical genetic testing laboratories. To help ensure the quality of laboratory testing, CDC collaborated with the Centers for Medicare & Medicaid Services, the Food and Drug Administration, the Health Resources and Services Administration, and the National Institutes of Health to develop guidelines for laboratories to meet CLIA requirements and apply additional quality assurance measures for these areas of genetic testing. This report provides recommendations for good laboratory practices that were developed based on recommendations from the Clinical Laboratory Improvement Advisory Committee, with additional input from the Secretary's Advisory Committee on Genetics, Health, and Society; the Secretary's Advisory Committee on Heritable Disorders in Newborns and Children; and representatives of newborn

  1. Nonalcoholic Fatty Liver Disease/Non-Alcoholic Steatohepatitis in Childhood: Endocrine-Metabolic “Mal-Programming”

    Science.gov (United States)

    Manti, Sara; Romano, Claudio; Chirico, Valeria; Filippelli, Martina; Cuppari, Caterina; Loddo, Italia; Salpietro, Carmelo; Arrigo, Teresa

    2014-01-01

    Context: Nonalcoholic Fatty Liver Disease (NAFLD) is the major chronic liver disease in the pediatric population. NAFLD includes a broad spectrum of abnormalities (inflammation, fibrosis and cirrhosis), ranging from accumulation of fat (also known as steatosis) towards non-alcoholic steatohepatitis (NASH). The development of NAFLD in children is significantly increased. Evidence Acquisition: A literature search of electronic databases was undertaken for the major studies published from 1998 to today. The databases searched were: PubMed, EMBASE, Orphanet, Midline and Cochrane Library. We used the key words: "non-alcoholic fatty liver disease, children, non-alcoholic steatohepatitis and fatty liver". Results: NAFLD/NASH is probably promoted by “multiple parallel hits”: environmental and genetic factors, systemic immunological disorders (oxidative stress, persistent-low grade of inflammation) as well as obesity and metabolic alterations (insulin resistance and metabolic syndrome). However its exact cause still underdiagnosed and unknown. Conclusions: Pediatric NAFLD/NASH is emerging problem. Longitudinal follow-up studies, unfortunately still insufficient, are needed to better understand the natural history and outcome of NAFLD in children. This review focuses on the current knowledge regarding the epidemiology, pathogenesis, environmental, genetic and metabolic factors of disease. The review also highlights the importance of studying the underlying mechanisms of pediatric NAFLD and the need for complete and personalized approach in the management of NAFLD/NASH. PMID:24829591

  2. Somatoform disorders in the family doctor's practice

    Directory of Open Access Journals (Sweden)

    Prykhodko V.

    2013-10-01

    Full Text Available Somatoform disorders – psychogenic diseases are characterized by pathological physical symptoms that resemble somatic illness. Thus, any organic manifestations, which can be attributed to known diseases are not detected, but there are non-specific functional impairments. Somatoform disorders include somatization disorder, undifferentiated somatoform disorder, hypocho¬n¬driacal disorder, somatoform dysfunction of the autonomic nervous system and stable somatoform pain disorder. The first part of the article reviewes features of the clinical manifestations of somatization disorder and undifferentiated somatoform disorder. Role of non-benzodiazepine tranquilizers (ADAPTOL and metabolic drugs (VASONAT in the treatment of patients with somatoform disorders is discussed. In review article data of neurologists and cardiologists on the effectiveness of anxiolytic drug ADAPTOL and metabolic drug VASONAT in different clinical groups of patients (coronary artery disease, chronic ischemia of the brain, which can significantly improve quality of life, increase exercise tolerance, improve cognitive function and correct mental and emotional disorders are presented.

  3. Bile Acid Metabolism in Liver Pathobiology

    Science.gov (United States)

    Chiang, John Y. L.; Ferrell, Jessica M.

    2018-01-01

    Bile acids facilitate intestinal nutrient absorption and biliary cholesterol secretion to maintain bile acid homeostasis, which is essential for protecting liver and other tissues and cells from cholesterol and bile acid toxicity. Bile acid metabolism is tightly regulated by bile acid synthesis in the liver and bile acid biotransformation in the intestine. Bile acids are endogenous ligands that activate a complex network of nuclear receptor farnesoid X receptor and membrane G protein-coupled bile acid receptor-1 to regulate hepatic lipid and glucose metabolic homeostasis and energy metabolism. The gut-to-liver axis plays a critical role in the regulation of enterohepatic circulation of bile acids, bile acid pool size, and bile acid composition. Bile acids control gut bacteria overgrowth, and gut bacteria metabolize bile acids to regulate host metabolism. Alteration of bile acid metabolism by high-fat diets, sleep disruption, alcohol, and drugs reshapes gut microbiome and causes dysbiosis, obesity, and metabolic disorders. Gender differences in bile acid metabolism, FXR signaling, and gut microbiota have been linked to higher prevalence of fatty liver disease and hepatocellular carcinoma in males. Alteration of bile acid homeostasis contributes to cholestatic liver diseases, inflammatory diseases in the digestive system, obesity, and diabetes. Bile acid-activated receptors are potential therapeutic targets for developing drugs to treat metabolic disorders. PMID:29325602

  4. Lafora disease offers a unique window into neuronal glycogen metabolism.

    Science.gov (United States)

    Gentry, Matthew S; Guinovart, Joan J; Minassian, Berge A; Roach, Peter J; Serratosa, Jose M

    2018-05-11

    Lafora disease (LD) is a fatal, autosomal recessive, glycogen-storage disorder that manifests as severe epilepsy. LD results from mutations in the gene encoding either the glycogen phosphatase laforin or the E3 ubiquitin ligase malin. Individuals with LD develop cytoplasmic, aberrant glycogen inclusions in nearly all tissues that more closely resemble plant starch than human glycogen. This Minireview discusses the unique window into glycogen metabolism that LD research offers. It also highlights recent discoveries, including that glycogen contains covalently bound phosphate and that neurons synthesize glycogen and express both glycogen synthase and glycogen phosphorylase. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Eating Disorders, Autoimmune, and Autoinflammatory Disease.

    Science.gov (United States)

    Zerwas, Stephanie; Larsen, Janne Tidselbak; Petersen, Liselotte; Thornton, Laura M; Quaranta, Michela; Koch, Susanne Vinkel; Pisetsky, David; Mortensen, Preben Bo; Bulik, Cynthia M

    2017-12-01

    Identifying factors associated with risk for eating disorders is important for clarifying etiology and for enhancing early detection of eating disorders in primary care. We hypothesized that autoimmune and autoinflammatory diseases would be associated with eating disorders in children and adolescents and that family history of these illnesses would be associated with eating disorders in probands. In this large, nationwide, population-based cohort study of all children and adolescents born in Denmark between 1989 and 2006 and managed until 2012, Danish medical registers captured all inpatient and outpatient diagnoses of eating disorders and autoimmune and autoinflammatory diseases. The study population included 930 977 individuals (48.7% girls). Cox proportional hazards regression models and logistic regression were applied to evaluate associations. We found significantly higher hazards of eating disorders for children and adolescents with autoimmune or autoinflammatory diseases: 36% higher hazard for anorexia nervosa, 73% for bulimia nervosa, and 72% for an eating disorder not otherwise specified. The association was particularly strong in boys. Parental autoimmune or autoinflammatory disease history was associated with significantly increased odds for anorexia nervosa (odds ratio [OR] = 1.13, confidence interval [CI] = 1.01-1.25), bulimia nervosa (OR = 1.29; CI = 1.08-1.55) and for an eating disorder not otherwise specified (OR = 1.27; CI = 1.13-1.44). Autoimmune and autoinflammatory diseases are associated with increased risk for eating disorders. Ultimately, understanding the role of immune system disturbance for the etiology and pathogenesis of eating disorders could point toward novel treatment targets. Copyright © 2017 by the American Academy of Pediatrics.

  6. Correlations between abnormal iron metabolism and non-motor symptoms in Parkinson's disease.

    Science.gov (United States)

    Xu, Wu; Zhi, Yan; Yuan, Yongsheng; Zhang, Bingfeng; Shen, Yuting; Zhang, Hui; Zhang, Kezhong; Xu, Yun

    2018-07-01

    Despite a growing body of evidence suggests that abnormal iron metabolism plays an important role in the pathogenesis of Parkinson's disease (PD), few studies explored its role in non-motor symptoms (NMS) of PD. The present study aimed to investigate the relationship between abnormal iron metabolism and NMS of PD. Seventy PD patients and 64 healthy controls were consecutively recruited to compare serum iron, ceruloplasmin, ferritin, and transferrin levels. We evaluated five classic NMS, including depression, anxiety, pain, sleep disorder, and autonomic dysfunction in PD patients using the Hamilton Depression Scale (HAMD), the Hamilton Anxiety Scale (HAMA), the short form of the McGill Pain Questionnaire, the Pittsburgh Sleep Quality Index and the Scale for Outcomes in Parkinson's disease for Autonomic Symptoms, respectively. Hierarchical multiple regression analysis was used to investigate the correlations between abnormal iron metabolism and NMS. No differences in serum ceruloplasmin and ferritin levels were examined between PD patients and healthy controls, but we observed significantly decreased serum iron levels and increased serum transferrin levels in PD patients in comparison with healthy controls. After eliminating confounding factors, HAMD scores and HAMA scores were both negatively correlated with serum iron levels and positively correlated with serum transferrin levels. In summary, abnormal iron metabolism might play a crucial role in the pathogenesis of depression and anxiety in PD. Serums levels of iron and transferrin could be peripheral markers for depression and anxiety in PD.

  7. Rett syndrome: a neurological disorder with metabolic components

    Science.gov (United States)

    Kyle, Stephanie M.

    2018-01-01

    Rett syndrome (RTT) is a neurological disorder caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2), a ubiquitously expressed transcriptional regulator. Despite remarkable scientific progress since its discovery, the mechanism by which MECP2 mutations cause RTT symptoms is largely unknown. Consequently, treatment options for patients are currently limited and centred on symptom relief. Thought to be an entirely neurological disorder, RTT research has focused on the role of MECP2 in the central nervous system. However, the variety of phenotypes identified in Mecp2 mutant mouse models and RTT patients implicate important roles for MeCP2 in peripheral systems. Here, we review the history of RTT, highlighting breakthroughs in the field that have led us to present day. We explore the current evidence supporting metabolic dysfunction as a component of RTT, presenting recent studies that have revealed perturbed lipid metabolism in the brain and peripheral tissues of mouse models and patients. Such findings may have an impact on the quality of life of RTT patients as both dietary and drug intervention can alter lipid metabolism. Ultimately, we conclude that a thorough knowledge of MeCP2's varied functional targets in the brain and body will be required to treat this complex syndrome. PMID:29445033

  8. Swallowing disorders in Parkinson's disease.

    Science.gov (United States)

    Mamolar Andrés, Sandra; Santamarina Rabanal, María Liliana; Granda Membiela, Carla María; Fernández Gutiérrez, María José; Sirgo Rodríguez, Paloma; Álvarez Marcos, César

    Parkinson's disease is a type of chronic neurodegenerative pathology with a typical movement pattern, as well as different, less studied symptoms such as dysphagia. Disease-related disorders in efficacy or safety in the process of swallowing usually lead to malnutrition, dehydration or pneumonias. The aim of this study was identifying and analyzing swallowing disorders in Parkinson's disease. The initial sample consisted of 52 subjects with Parkinson's disease to whom the specific test for dysphagia SDQ was applied. Nineteen participants (36.5%) with some degree of dysphagia in the SDQ test were selected to be evaluated by volume-viscosity clinical exploration method and fiberoptic endoscopic evaluation of swallowing. Disorders in swallowing efficiency and safety were detected in 94.7% of the selected sample. With regards to efficiency, disorders were found in food transport (89.5%), insufficient labial closing (68.4%) and oral residues (47.4%), relating to duration of ingestion. Alterations in security were also observed: pharynx residues (52.7%), coughing (47.4%), penetration (31.64%), aspiration and decrease of SaO 2 (5.3%), relating to the diagnosis of respiratory pathology in the previous year. The SDQ test detected swallowing disorders in 36.5% of the subjects with Parkinson's disease. Disorders in swallowing efficiency and safety were demonstrated in 94.7% of this subset. Disorders of efficiency were more frequent than those of safety, establishing a relationship with greater time in ingestion and the appearance of respiratory pathology and pneumonias. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.

  9. The significance of adiponectin as a biomarker in metabolic syndrome and/or coronary artery disease.

    Science.gov (United States)

    Stojanović, Sanja; Ilić, Marina Deijanin; Ilić, Stevan; Petrović, Dejan; Djukić, Svetlana

    2015-09-01

    BACKGROUND/AIM. Adiponectin exerts profound protective actions during insulin resistence or prediabetes progression towards more severe clinical entities such as metabolic syndrome and/or cardiovascular disease. Since hypoadiponectinaemia contributes to the pathophysiology of the metabolic syndrome and coronary artery disease the level of circulating adiponectin may be an early marker of cardiovascular events. The aim of this study was to determine the relationships between serum adiponectin levels and parameters of both insulin sensitivity and obesity in patients with the metabolic syndrome and/or coronary artery disease, as well as to assess predictive value of adiponectin serum levels as a biomarker of these entitetis. The study included 100 patients with metabolic syndrome and/or coronary artery disease with different degree of insulin resistance and healthy, normoglycemic individuals. The control group comprising healthy, normoglycemic individuals was used for comparison. Serum level of adiponectin, fasting glucose, fasting insulinemia Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) index and anthropometric parameters were determined in all the subjects. Adiponectin was measured by using the ultrasensitive ELISA method. Insulinemia was measured by the radioimmunoassay (RIA) method. The presence of glycemic disorders was assessed on the basis of oral glucose tolerance test (OGTT). Results. Adiponectin level was inversely correlated with age (ρ = -0.015), parameters of both obesity (R = 0.437;p insulin resistance (R = 0.374; p insulin resistance. Most importantly, a statistically significant rapid decrease ih adiponectin was in the prediabetic stages (p < 0.01). The predictor value of adiponectin was 1,356.32 ± 402.65 pg/mL. The obtained resultats suggest that adiponectin may be a useful marker in identification of individuals with risk of developing metabolic syndrome and coronary artery disease, as well as a predictor of prediabetes.

  10. The significance of adiponectin as a biomarker in metabolic syndrome and/or coronary artery disease

    Directory of Open Access Journals (Sweden)

    Stojanović Sanja

    2015-01-01

    Full Text Available Introduction/Aim. Adiponectin exerts profound protective actions during insulin resistence or prediabetes progression towards more severe clinical entities such as metabolic syndrome and/or cardiovascular disease. Since hypoadiponectinaemia contributes to the pathophysiology of the metabolic syndrome and coronary artery disease the level of circulating adiponectin may be an early marker of cardiovascular events. The aim of this study was to determine the relationships between serum adiponectin levels and parameters of both insulin sensitivity and obesity in patients with the metabolic syndrome and/or coronary artery disease, as well as to assess predictive value of adiponectin serum levels as a biomarker of these entitetis. Methods. The study included 100 patients with metabolic syndrome and/or coronary artery disease with different degree of insulin resistance and healthy, normoglycemic individuals. The control group comprising healthy, normoglycemic individuals was used for comparison. Serum level of adiponectin, fasting glucose, fasting insulinemia Homeostasis Model Assessment of Insulin Resistance (HOMAIR index and anthropometric parameters were determined in all the subjects. Adiponectin was measured by using the ultrasensitive ELISA method. Insulinemia was measured by the radioimmunoassay (RIA method. The presence of glycemic disorders was assessed on the basis of oral glucose tolerance test (OGTT. Results. Adiponectin level was inversely correlated with age (ρ = - 0.015, parameters of both obesity (R = 0.437; p < 0.001 and insulin resistance (R = 0.374; p < 0.01. Decreasing in the level of adiponectin was strongly implicated in the development of insulin resistance. Most importantly, a statistically significant rapid decrease in adiponectin was in the prediabetic stages (p < 0.01. The predictor value of adiponectin was 1,356.32 ± 402.65 рg/mL. Conclusions. The obtained resultats suggest that adiponectin may be a useful marker in

  11. N-Acetyl-Cysteine Alleviates Gut Dysbiosis and Glucose Metabolic Disorder in High-Fat Diet-Induced Mice.

    Science.gov (United States)

    Zheng, Junping; Yuan, Xubing; Zhang, Chen; Jia, Peiyuan; Jiao, Siming; Zhao, Xiaoming; Yin, Heng; Du, Yuguang; Liu, Hongtao

    2018-05-30

    N-acetyl cysteine (NAC), an anti-oxidative reagent for clinical diseases, shows potential application to diabetes and other metabolic diseases. However, it is unknown how NAC modulates the gut microbiota of mice with metabolic syndrome. In present study, we aim to demonstrate the preventive effect of NAC on intestinal dysbiosis and glucose metabolic disorder. C57BL/6J mice were fed with normal chow diet (NCD), NCD plus NAC, high-fat diet (HFD) or HFD plus NAC for five months. After the treatment, the glucose level, circulating endotoxin and metabolism-related key proteins were determined. The fecal samples were analyzed by 16S rRNA sequencing. A novel analysis was carried out to predict the functional changes of gut microbiota. In addition, Spearman's correlation between metabolic biomarkers and bacterial abundance was also assayed. The results show that NAC treatment significantly reversed the glucose intolerance, fasting glucose level, body weight and plasma endotoxin in HFD-fed mice. Further, NAC upregulated the levels of Occludin protein and mucin glycoproteins in proximal colons of HFD-treated mice. Noticeably, NAC promoted the growth of beneficial bacteria such as Akkermansia, Bifidobacterium, Lactobacillus and Allobaculum, and hampered the population of diabetes-related genera including Desulfovibrio and Blautia. Also, NAC may influence the metabolic pathways of intestinal bacteria including lipopolysaccharide biosynthesis, oxidative stress and bacterial motility. Finally, the modified gut microbiota showed close association with the metabolic changes of the NAC treated HFD-fed mice. In summary, NAC may be a potential drug to prevent glucose metabolic disturbance by reshaping the structure of gut microbiota. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Metabolic features of the cell danger response.

    Science.gov (United States)

    Naviaux, Robert K

    2014-05-01

    The cell danger response (CDR) is the evolutionarily conserved metabolic response that protects cells and hosts from harm. It is triggered by encounters with chemical, physical, or biological threats that exceed the cellular capacity for homeostasis. The resulting metabolic mismatch between available resources and functional capacity produces a cascade of changes in cellular electron flow, oxygen consumption, redox, membrane fluidity, lipid dynamics, bioenergetics, carbon and sulfur resource allocation, protein folding and aggregation, vitamin availability, metal homeostasis, indole, pterin, 1-carbon and polyamine metabolism, and polymer formation. The first wave of danger signals consists of the release of metabolic intermediates like ATP and ADP, Krebs cycle intermediates, oxygen, and reactive oxygen species (ROS), and is sustained by purinergic signaling. After the danger has been eliminated or neutralized, a choreographed sequence of anti-inflammatory and regenerative pathways is activated to reverse the CDR and to heal. When the CDR persists abnormally, whole body metabolism and the gut microbiome are disturbed, the collective performance of multiple organ systems is impaired, behavior is changed, and chronic disease results. Metabolic memory of past stress encounters is stored in the form of altered mitochondrial and cellular macromolecule content, resulting in an increase in functional reserve capacity through a process known as mitocellular hormesis. The systemic form of the CDR, and its magnified form, the purinergic life-threat response (PLTR), are under direct control by ancient pathways in the brain that are ultimately coordinated by centers in the brainstem. Chemosensory integration of whole body metabolism occurs in the brainstem and is a prerequisite for normal brain, motor, vestibular, sensory, social, and speech development. An understanding of the CDR permits us to reframe old concepts of pathogenesis for a broad array of chronic, developmental

  13. The crosstalk between gut microbiota and obesity and related metabolic disorders.

    Science.gov (United States)

    Xu, Wen-Ting; Nie, Yong-Zhan; Yang, Zhen; Lu, Nong-Hua

    2016-06-01

    Obesity and related metabolic diseases are currently a threat to global public health. The occurrence and development of these conditions result from the combined effects of multiple factors. The human gut is a diverse and vibrant microecosystem, and its composition and function are a focus of research in the fields of life science and medicine. An increasing amount of evidence indicates that interactions between the gut microbiota and their genetic predispositions or dietary changes may be key factors that contribute to obesity and other metabolic diseases. Defining the mechanisms by which the gut microbiota influence obesity and related chronic metabolic diseases will bring about revolutionary changes that will enable practitioners to prevent and control metabolic diseases by targeting the gut microbiota.

  14. The nature, consequences, and management of neurological disorders in chronic kidney disease.

    Science.gov (United States)

    Jabbari, Bahman; Vaziri, Nosratola D

    2018-04-01

    Perhaps no other organ in the body is affected as often and in as many ways as the brain is in patients with chronic kidney disease (CKD). Several factors contribute to the neurological disorders in CKD including accumulation of uremic toxins, metabolic and hemodynamic disorders, oxidative stress, inflammation, and impaired blood brain barrier among others. The neurological disorders in CKD involve both peripheral and central nervous system. The peripheral neurological symptoms of CKD are due to somatic and cranial peripheral neuropathies as well as a myopathy. The central neurological symptoms of CKD are due to the cortical predominantly cortical, or subcortical lesions. Cognitive decline, encephalopathy, cortical myoclonus, asterixis and epileptic seizures are distinct features of the cortical disorders of CKD. Diffuse white matter disease due to ischemia and hypoxia may be an important cause of subcortical encephalopathy. A special and more benign form of subcortical disorder caused by brain edema in CKD is termed posterior reversible encephalopathy. Subcortical pathology especially when it affects the basal ganglia causes a number of movement disorders including Parkinsonism, chorea and dystonia. A stimulus-sensitive reflex myoclonus is believed to originate from the medullary structures. Sleep disorder and restless leg syndrome are common in CKD and have both central and peripheral origin. This article provides an overview of the available data on the nature, prevalence, pathophysiology, consequences and treatment of neurological complications of CKD. © 2017 International Society for Hemodialysis.

  15. Police trauma and cardiovascular disease: association between PTSD symptoms and metabolic syndrome.

    Science.gov (United States)

    Violanti, John M; Fekedulegn, Desta; Hartley, Tara A; Andrew, Michael E; Charles, Luenda E; Mnatsakanova, Anna; Burchfiel, Cecil M

    2006-01-01

    Although prior evidence exists concerning the association between posttraumatic stress disorder (PTSD) and cardiovascular disease, few studies have examined associations of PTSD symptomatology and the metabolic syndrome in the high stress occupation of police work. The metabolic syndrome is a clustering of cardiovascular disease risk factors that have also been independently associated with psychological conditions. The aim of this study was to examine associations between the PTSD symptoms and metabolic syndrome in police officers. A stratified sample of 115 police officers was randomly selected from the Buffalo, NY Police Department. PTSD symptoms were measured with the Impact of Event scale (IES), divided into categories of subclinical, mild, moderate and severe symptom levels. The metabolic syndrome was considered present if three or more of its component parameters (obesity, elevated blood pressure, reduced high density lipoprotein (HDL) cholesterol, elevated triglycerides, and abnormal glucose levels) were present in each officer. Results indicated a significantly increased prevalence of the metabolic syndrome among those officers in the severe PTSD symptom category compared with the lowest PTSD severity category (prevalence ratio (PR) = 3.31, 95% C.I. = 1.19 - 9.22). Adjustment for age did not alter the association appreciably (PR = 3.12, 95% C.I. = 1.15 - 8.50). Adjustment for several demographic and lifestyle factors (age, education, smoking, alcohol intake) reduced the magnitude of the prevalence ratio slightly for the severe versus subclinical PTSD category (PR = 2.69, 95% C.I. = 0. 79 - 9.13), with adjustment for age and education accounting for most of the attenuation (PR = 2.71, 95% C.I. = 0.99 - 7.37). Thus, officers with severe PTSD symptoms were approximately three times more likely to have the metabolic syndrome and education may account for some of this association.

  16. Stress-activated miR-21/miR-21* in hepatocytes promotes lipid and glucose metabolic disorders associated with high-fat diet consumption.

    Science.gov (United States)

    Calo, Nicolas; Ramadori, Pierluigi; Sobolewski, Cyril; Romero, Yannick; Maeder, Christine; Fournier, Margot; Rantakari, Pia; Zhang, Fu-Ping; Poutanen, Matti; Dufour, Jean-François; Humar, Bostjan; Nef, Serge; Foti, Michelangelo

    2016-11-01

    miR-21 is an oncomir highly upregulated in hepatocellular carcinoma and in early stages of liver diseases characterised by the presence of steatosis. Whether upregulation of miR-21 contributes to hepatic metabolic disorders and their progression towards cancer is unknown. This study aims at investigating the role of miR-21/miR-21* in early stages of metabolic liver disorders associated with diet-induced obesity (DIO). Constitutive miR-21/miR-21* knockout (miR21KO) and liver-specific miR-21/miR-21* knockout (LImiR21KO) mice were generated. Mice were then fed with high-fat diet (HFD) and alterations of the lipid and glucose metabolism were investigated. Serum and ex vivo explanted liver tissue were analysed. Under normal breeding conditions and standard diet, miR-21/miR-21* deletion in mice was not associated with any detectable phenotypic alterations. However, when mice were challenged with an obesogenic diet, glucose intolerance, steatosis and adiposity were improved in mice lacking miR-21/miR-21* . Deletion of miR-21/miR-21* specifically in hepatocytes led to similar improvements in mice fed an HFD, indicating a crucial role for hepatic miR-21/miR-21* in metabolic disorders associated with DIO. Further molecular analyses demonstrated that miR-21/miR-21* deletion in hepatocytes increases insulin sensitivity and modulates the expression of multiple key metabolic transcription factors involved in fatty acid uptake, de novo lipogenesis, gluconeogenesis and glucose output. Hepatic miR-21/miR-21* deficiency prevents glucose intolerance and steatosis in mice fed an obesogenic diet by altering the expression of several master metabolic regulators. This study points out miR-21/miR-21 * as a potential therapeutic target for non-alcoholic fatty liver disease and the metabolic syndrome. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. Tissue Renin-Angiotensin Systems: A Unifying Hypothesis of Metabolic Disease

    Directory of Open Access Journals (Sweden)

    Jeppe eSkov

    2014-02-01

    Full Text Available The actions of angiotensin peptides are diverse and locally acting tissue renin-angiotensin systems (RAS are present in almost all tissues of the body. An activated RAS strongly correlates to metabolic disease (e.g. diabetes and its complications and blockers of RAS have been demonstrated to prevent diabetes in humans.Hyperglycemia, obesity, hypertension, and cortisol are well-known risk factors of metabolic disease and all stimulate tissue RAS whereas glucagon-like peptide-1, vitamin D, and aerobic exercise are inhibitors of tissue RAS and to some extent can prevent metabolic disease. Furthermore, an activated tissue RAS deteriorates the same risk factors creating a system with several positive feedback pathways. The primary effector hormone of the RAS, angiotensin II, stimulates reactive oxygen species, induces tissue damage, and can be associated to most diabetic complications. Based on these observations we hypothesize that an activated tissue RAS is the principle cause of metabolic syndrome and type 2 diabetes, and additionally is mediating the majority of the metabolic complications. The involvement of positive feedback pathways may create a self-reinforcing state and explain why metabolic disease initiate and progress. The hypothesis plausibly unify the major predictors of metabolic disease and places tissue RAS regulation in the center of metabolic control.

  18. The Evolving World of Chronic Kidney Disease Mineral Bone Disorder

    Directory of Open Access Journals (Sweden)

    Antonio Bellasi

    2013-07-01

    Full Text Available Chronic kidney disease – mineral and bone disorder (CKD-MBD is associated with a significant morbidity and mortality. In vitro and animal models suggest that phosphorous, calcium, parathyroid hormone, and vitamin D abnormalities, mediate the cardiovascular and bone diseases that characterise CKD-MBD and increase the risk of death. Currently, mineral abnormalities are corrected through phosphorous restriction, phosphate binders, calcimimetics and vitamin D administration. Nonetheless, data in humans that support the use of these compounds are still scarce, mainly based on observational studies. Thus, a considerable number of doubts and questions still challenge clinicians dealing with CKD patients and mineral metabolism imbalances. We herein critically review clinical evidence that support the use of different drugs in CKD-MBD.

  19. Bile Acid Signaling in Metabolic Disease and Drug Therapy

    Science.gov (United States)

    Li, Tiangang

    2014-01-01

    Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates hepatobiliary secretion of lipids, lipophilic metabolites, and xenobiotics. In the intestine, bile acids are essential for the absorption, transport, and metabolism of dietary fats and lipid-soluble vitamins. Extensive research in the last 2 decades has unveiled new functions of bile acids as signaling molecules and metabolic integrators. The bile acid–activated nuclear receptors farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, and G protein–coupled bile acid receptor play critical roles in the regulation of lipid, glucose, and energy metabolism, inflammation, and drug metabolism and detoxification. Bile acid synthesis exhibits a strong diurnal rhythm, which is entrained by fasting and refeeding as well as nutrient status and plays an important role for maintaining metabolic homeostasis. Recent research revealed an interaction of liver bile acids and gut microbiota in the regulation of liver metabolism. Circadian disturbance and altered gut microbiota contribute to the pathogenesis of liver diseases, inflammatory bowel diseases, nonalcoholic fatty liver disease, diabetes, and obesity. Bile acids and their derivatives are potential therapeutic agents for treating metabolic diseases of the liver. PMID:25073467

  20. Exome sequencing and the management of neurometabolic disorders

    OpenAIRE

    Tarailo-Graovac, Maja; Shyr, Casper; Ross, Colin J; Horvath, Gabriella A; Salvarinova, Ramona; Ye, Xin C; Zhang, Lin-Hua; Bhavsar, Amit P; Lee, Jessica J Y; Drögemöller, Britt I; Abdelsayed, Mena; Alfadhel, Majid; Armstrong, Linlea; Baumgartner, Matthias R; Burda, Patricie

    2016-01-01

    BACKGROUND: Whole-exome sequencing has transformed gene discovery and diagnosis in rare diseases. Translation into disease-modifying treatments is challenging, particularly for intellectual developmental disorder. However, the exception is inborn errors of metabolism, since many of these disorders are responsive to therapy that targets pathophysiological features at the molecular or cellular level. METHODS: To uncover the genetic basis of potentially treatable inborn errors of metabolism, ...

  1. Exome Sequencing and the Management of Neurometabolic Disorders

    OpenAIRE

    Tarailo-Graovac, Maja; Shyr, Casper; Ross, Colin J; Horvath, Gabriella A; Salvarinova, Ramona; Ye, Xin C; Zhang, Lin-Hua; Bhavsar, Amit P; Lee, Jessica J Y; Drögemöller, Britt I; Abdelsayed, Mena; Alfadhel, Majid; Armstrong, Linlea; Baumgartner, Matthias R; Burda, Patricie

    2016-01-01

    BACKGROUND: Whole-exome sequencing has transformed gene discovery and diagnosis in rare diseases. Translation into disease-modifying treatments is challenging, particularly for intellectual developmental disorder. However, the exception is inborn errors of metabolism, since many of these disorders are responsive to therapy that targets pathophysiological features at the molecular or cellular level.METHODS: To uncover the genetic basis of potentially treatable inborn errors of metabolism, we c...

  2. Carotid body, insulin and metabolic diseases: unravelling the links

    Directory of Open Access Journals (Sweden)

    Silvia V Conde

    2014-10-01

    Full Text Available The carotid bodies (CB are peripheral chemoreceptors that sense changes in arterial blood O2, CO2 and pH levels. Hypoxia, hypercapnia and acidosis activate the CB, which respond by increasing the action potential frequency in their sensory nerve, the carotid sinus nerve (CSN. CSN activity is integrated in the brain stem to induce a panoply of cardiorespiratory reflexes aimed, primarily, to normalize the altered blood gases, via hyperventilation, and to regulate blood pressure and cardiac performance, via sympathetic nervous system (SNS activation. Besides its role in the cardiorespiratory control the CB has been proposed as a metabolic sensor implicated in the control of energy homeostasis and, more recently, in the regulation of whole body insulin sensitivity. Hypercaloric diets cause CB overactivation in rats, which seems to be at the origin of the development of insulin resistance and hypertension, core features of metabolic syndrome and type 2 diabetes. Consistent with this notion, CB sensory denervation prevents metabolic and hemodynamic alterations in hypercaloric feed animal. Obstructive sleep apnoea (OSA is another chronic disorder characterized by increased CB activity and intimately related with several metabolic and cardiovascular abnormalities. In this manuscript we review in a concise manner the putative pathways linking CB chemoreceptors deregulation with the pathogenesis of insulin resistance and arterial hypertension. Also, the link between chronic intermittent hypoxia (CIH and insulin resistance is discussed. Then, a final section is devoted to debate strategies to reduce CB activity and its use for prevention and therapeutics of metabolic diseases with an emphasis on new exciting research in the modulation of bioelectronic signals, likely to be central in the future.

  3. Efficacy and outcome of expanded newborn screening for metabolic diseases - Report of 10 years from South-West Germany *

    Directory of Open Access Journals (Sweden)

    Mengel Eugen

    2011-06-01

    Full Text Available Abstract Background National newborn screening programmes based on tandem-mass spectrometry (MS/MS and other newborn screening (NBS technologies show a substantial variation in number and types of disorders included in the screening panel. Once established, these methods offer the opportunity to extend newborn screening panels without significant investment and cost. However, systematic evaluations of newborn screening programmes are rare, most often only describing parts of the whole process from taking blood samples to long-term evaluation of outcome. Methods In a prospective single screening centre observational study 373 cases with confirmed diagnosis of a metabolic disorder from a total cohort of 1,084,195 neonates screened in one newborn screening laboratory between January 1, 1999, and June 30, 2009 and subsequently treated and monitored in five specialised centres for inborn errors of metabolism were examined. Process times for taking screening samples, obtaining results, initiating diagnostic confirmation and starting treatment as well as the outcome variables metabolic decompensations, clinical status, and intellectual development at a mean age of 3.3 years were evaluated. Results Optimal outcome is achieved especially for the large subgroup of patients with medium-chain acyl-CoA dehydrogenase deficiency. Kaplan-Meier-analysis revealed disorder related patterns of decompensation. Urea cycle disorders, organic acid disorders, and amino acid disorders show an early high and continuous risk, medium-chain acyl-CoA dehydrogenase deficiency a continuous but much lower risk for decompensation, other fatty acid oxidation disorders an intermediate risk increasing towards the end of the first year. Clinical symptoms seem inevitable in a small subgroup of patients with very early disease onset. Later decompensation can not be completely prevented despite pre-symptomatic start of treatment. Metabolic decompensation does not necessarily result in

  4. Metabolic Disorders: From Principles to Practice | Aruoma | Archives ...

    African Journals Online (AJOL)

    Archives of Medical and Biomedical Research. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 1, No 2 (2014) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Metabolic Disorders: From Principles to ...

  5. The current state of GPCR-based drug discovery to treat metabolic disease.

    Science.gov (United States)

    Sloop, Kyle W; Emmerson, Paul J; Statnick, Michael A; Willard, Francis S

    2018-02-02

    One approach of modern drug discovery is to identify agents that enhance or diminish signal transduction cascades in various cell types and tissues by modulating the activity of GPCRs. This strategy has resulted in the development of new medicines to treat many conditions, including cardiovascular disease, psychiatric disorders, HIV/AIDS, certain forms of cancer and Type 2 diabetes mellitus (T2DM). These successes justify further pursuit of GPCRs as disease targets and provide key learning that should help guide identifying future therapeutic agents. This report reviews the current landscape of GPCR drug discovery with emphasis on efforts aimed at developing new molecules for treating T2DM and obesity. We analyse historical efforts to generate GPCR-based drugs to treat metabolic disease in terms of causal factors leading to success and failure in this endeavour. © 2018 The British Pharmacological Society.

  6. Genetic disorder in carbohydrates metabolism: hereditary fructose intolerance associated with celiac disease.

    Science.gov (United States)

    Păcurar, Daniela; Leşanu, Gabriela; Dijmărescu, Irina; Ţincu, Iulia Florentina; Gherghiceanu, Mihaela; Orăşeanu, Dumitru

    2017-01-01

    Celiac disease (CD) has been associated with several genetic and immune disorders, but association between CD and hereditary fructose intolerance (HFI) is extremely rare. HFI is an autosomal recessive disease caused by catalytic deficiency of aldolase B (fructose-1,6-bisphosphate aldolase). We report the case of a 5-year-old boy suffering from CD, admitted with an initial diagnosis of Reye's-like syndrome. He presented with episodic unconsciousness, seizures, hypoglycemia, hepatomegaly and abnormal liver function. The patient has been on an exclusion diet for three years, but he still had symptoms: stunting, hepatomegaly, high transaminases, but tissue transglutaminase antibodies were negative. Liver biopsy showed hepatic steatosis and mitochondrial damage. The dietary history showed an aversion to fruits, vegetables and sweet-tasting foods. The fructose tolerance test was positive, revealing the diagnostic of hereditary fructose intolerance. Appropriate dietary management and precautions were recommended. The patient has been symptom-free and exhibited normal growth and development until 10 years of age.

  7. An Official American Thoracic Society Workshop Report: Obesity and Metabolism. An Emerging Frontier in Lung Health and Disease.

    Science.gov (United States)

    Suratt, Benjamin T; Ubags, Niki D J; Rastogi, Deepa; Tantisira, Kelan G; Marsland, Benjamin J; Petrache, Irina; Allen, Janice B; Bates, Jason H T; Holguin, Fernando; McCormack, Meredith C; Michelakis, Evangelos D; Black, Stephen M; Jain, Manu; Mora, Ana L; Natarajan, Viswanathan; Miller, Yury I; Fessler, Michael B; Birukov, Konstantin G; Summer, Ross S; Shore, Stephanie A; Dixon, Anne E

    2017-06-01

    The world is in the midst of an unprecedented epidemic of obesity. This epidemic has changed the presentation and etiology of common diseases. For example, steatohepatitis, directly attributable to obesity, is now the most common cause of cirrhosis in the United States. Type 2 diabetes is increasingly being diagnosed in children. Pulmonary researchers and clinicians are just beginning to appreciate the impact of obesity and altered metabolism on common pulmonary diseases. Obesity has recently been identified as a major risk factor for the development of asthma and for acute respiratory distress syndrome. Obesity is associated with profound changes in pulmonary physiology, the development of pulmonary hypertension, sleep-disordered breathing, and altered susceptibility to pulmonary infection. In short, obesity is leading to dramatic changes in lung health and disease. Simultaneously, the rapidly developing field of metabolism, including mitochondrial function, is shifting the paradigms by which the pathophysiology of many pulmonary diseases is understood. Altered metabolism can lead to profound changes in both innate and adaptive immunity, as well as the function of structural cells. To address this emerging field, a 3-day meeting on obesity, metabolism, and lung disease was convened in October 2015 to discuss recent findings, foster research initiatives, and ultimately guide clinical care. The major findings arising from this meeting are reported in this document.

  8. Role of NAD, Oxidative Stress, and Tryptophan Metabolism in Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Musthafa Mohamed Essa

    2013-01-01

    Full Text Available Autism spectrum disorder (ASD is a pervasive neuro-developmental disorder characterized by impaired social interaction, reduced/absent verbal and non-verbal communication, and repetitive behavior during early childhood. The etiology of this developmental disorder is poorly understood, and no biomarkers have been identified. Identification of novel biochemical markers related to autism would be advantageous for earlier clinical diagnosis and intervention. Studies suggest that oxidative stress-induced mechanisms and reduced antioxidant defense, mitochondrial dysfunction, and impaired energy metabolism (NAD + , NADH, ATP, pyruvate, and lactate, are major causes of ASD. This review provides renewed insight regarding current autism research related to oxidative stress, mitochondrial dysfunction, and altered tryptophan metabolism in ASD.

  9. [Age-related aspects of the extent of lipid metabolism and post-traumatic stress disorders among veterans of modern warfare].

    Science.gov (United States)

    Torgashov, M N; Miakotnykh, V S; Pal'tsev, A I

    2013-01-01

    The peculiarities of violations of lipid metabolism and symptoms of post-traumatic stress disorder (PTSD) in 161 patients of 25-69 years, veterans of the military actions on the territory of Afghanistan and the Northern Caucasus were investigated. The dependence of the formation of dyslipidemia and related changes of atherosclerosis in the young age on neuroendocrine effects, accompanying the effects of combat stress and promoting accelerated aging was determined. On the other hand, with the time, after 15-25 years after participating in hostilities, the intensity of PTSD and its influence on the development of violations of lipid spectrum may decline. The leading role in the pathogenesis of dyslipidemia goes to age-related changes, accompanying a process of accelerated aging of veterans of combat operations, and to pathological disorders of metabolism in liver associated with alcohol abuse and the consequences of infectious diseases.

  10. Metabolic Syndrome and Outcomes after Renal Intervention

    Directory of Open Access Journals (Sweden)

    Daynene Vykoukal

    2011-01-01

    Full Text Available Metabolic syndrome significantly increases the risk for cardiovascular disease and chronic kidney disease. The increased risk for cardiovascular diseases can partly be caused by a prothrombotic state that exists because of abdominal obesity. Multiple observational studies have consistently shown that increased body mass index as well as insulin resistance and increased fasting insulin levels is associated with chronic kidney disease, even after adjustment for related disorders. Metabolic syndrome appears to be a risk factor for chronic kidney disease, likely due to the combination of dysglycemia and high blood pressure. Metabolic syndrome is associated with markedly reduced renal clinical benefit and increased progression to hemodialysis following endovascular intervention for atherosclerotic renal artery stenosis. Metabolic syndrome is associated with inferior early outcomes for dialysis access procedures.

  11. Pathophysiological aspect of metabolic acid-base disorders

    Directory of Open Access Journals (Sweden)

    Nešović-Ostojić Jelena

    2016-01-01

    Full Text Available Maintaing the arterial pH values (in normal range of 7,35-7,45 is one of the main principles of homeostasis. Regulatory responses, including chemical buffering (extracellular, intracellular, sceletal, the regulation of pCO2 by the respiratory system, and the regulation of [HCO3-] by the kidneys, act in concert to maintain normal arterial pH value. The main extracellular chemical buffer is bicarbonate-carbonic acid buffer system. The kidneys contribute to the regulation of hydrogen (and bicarbonate in body fluids in two ways. Proximal tubules are important in bicarbonate reabsorption and distal tubules excrete hydrogen ion (as ammonium ion or titratable acid. There are four simple acid-base disorders: metabolic acidosis and metabolic alkalosis; respiratory acidosis and respiratory alkalosis. Metabolic acidosis can occur because of an increase in endogenous acid production (such as lactate and ketoacids, loss of bicarbonate (as in diarrhea, or accumulation of endogenous acids (as in renal failure. Metabolic acidosis can also be with high and normal (hyperchloremic metabolic acidosis anion gap. Renal tubular acidosis (RTA is a form of hyperchloremic metabolic acidosis which occurs when the renal damage primarily affects tubular function. The main problem in distal RTA is reduced H+ excretion in distal tubule. Type 2 RTA is also called proximal RTA because the main problem is greatly impaired reabsorption of bicarbonate in proximal tubule. Impaired cation exchange in distal tubule is the main problem in RTA type 4. Metabolic alkalosis occurs as a result of net gain of [HCO3-] or loss of nonvolatile acid from extracellular fluids. Metabolic alkalosis can be associated with reduced or increased extracellular volume.

  12. Diagnosis and management of non-alcoholic fatty liver disease and related metabolic disorders: Consensus statement from the Study Group of Liver and Metabolism, Chinese Society of Endocrinology

    Science.gov (United States)

    Gao, Xin; Fan, Jian-Gao

    2013-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in Western countries, affecting 20%–33% of the general population. Large population-based surveys in China indicate a prevalence of approximately 15%–30%. Worldwide, including in China, the prevalence of NAFLD has increased rapidly in parallel with regional trends of obesity, type2 diabetes and metabolic syndrome. In addition, NAFLD has contributed significantly to increased overall, as well as cardiovascular and liver-related, mortality in the general population. In view of rapid advances in research into NAFLD in recent years, this consensus statement provides a brief update on the progress in the field and suggests preferred approaches for the comprehensive management of NAFLD and its related metabolic diseases. PMID:23560695

  13. Metaflammation, NLRP3 Inflammasome Obesity and Metabolic Disease

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2011-12-01

    Full Text Available BACKGROUND: Increasing prevalence of obesity gives rise to many problems associated with multiple morbidities, such as diabetes, hypertension, heart disease, sleep apnea and cancer. The mechanism of obesity is very complex, thus its link to various disease is poorly understood. This review highlights important concepts in our understanding of the pathogenesis of obesity and related complications. CONTENT: Many studies have tried to explore the exciting and puzzling links between metabolic homeostasis and inflammatory responses. A form of subclinical, low-grade systemic inflammation is known to be associated with both obesity and chronic disease. This, later called as "metaflammation", refers to metabolically triggered inflammation. The nutrient-sensing pathway and the immune response coordination are facilitated by these molecular sites in order to maintain homeostasis under diverse metabolic and immune conditions. Recent studies have found that the NLRP3 inflammasome during metabolic stress forms a tie linking TXNIP, oxidative stress, and IL-1β production. This provides new opportunities for research and therapy for the disease often described as the next global pandemic: type 2 diabetes mellitus (T2DM. SUMMARY: The crucial role of metaflammation in many complications of obesity shown by the unexpected overlap between inflammatory and metabolic sensors and their downstream tissue responses. Then great interest arose to explore the pathways that integrate nutrient and pathogen sensing, give more understanding in the mechanisms of insulin resistance type 2 diabetes, and other chronic metabolic pathologies. A family of intracellular sensors called NLR family is a critical component of the innate immune system. They can form multiprotein complexes, called inflammasome which is capable of responding to a wide range of stimuli including both microbial and self molecules by activating the cysteine protease caspase-1, leading to processing and

  14. Regional cerebral glucose metabolism in systemic lupus erythematosus patients with major depressive disorder.

    Science.gov (United States)

    Saito, Tomoyuki; Tamura, Maasa; Chiba, Yuhei; Katsuse, Omi; Suda, Akira; Kamada, Ayuko; Ikura, Takahiro; Abe, Kie; Ogawa, Matsuyoshi; Minegishi, Kaoru; Yoshimi, Ryusuke; Kirino, Yohei; Ihata, Atsushi; Hirayasu, Yoshio

    2017-08-15

    Depression is frequently observed in patients with systemic lupus erythematosus (SLE). Neuropsychiatric SLE (NPSLE) patients often exhibit cerebral hypometabolism, but the association between cerebral metabolism and depression remains unclear. To elucidate the features of cerebral metabolism in SLE patients with depression, we performed brain 18F-fluoro-d-glucose positron emission tomography (FDG-PET) on SLE patients with and without major depressive disorder. We performed brain FDG-PET on 20 SLE subjects (5 male, 15 female). The subjects were divided into two groups: subjects with major depressive disorder (DSLE) and subjects without major depressive disorder (non-DSLE). Cerebral glucose metabolism was analyzed using the three-dimensional stereotactic surface projection (3D-SSP) program. Regional metabolism was evaluated by stereotactic extraction estimation (SEE), in which the whole brain was divided into segments. Every SLE subject exhibited cerebral hypometabolism, in contrast to the normal healthy subjects. Regional analysis revealed a significantly lower ER in the left medial frontal gyrus (p=0.0055) and the right medial frontal gyrus (p=0.0022) in the DSLE group than in the non-DSLE group. Hypometabolism in the medial frontal gyrus may be related to major depressive disorder in SLE. Larger studies are needed to clarify this relationship. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. [Menopause and metabolic syndrome].

    Science.gov (United States)

    Meirelles, Ricardo M R

    2014-03-01

    The incidence of cardiovascular disease increases considerably after the menopause. One reason for the increased cardiovascular risk seems to be determined by metabolic syndrome, in which all components (visceral obesity, dyslipidemia, hypertension, and glucose metabolism disorder) are associated with higher incidence of coronary artery disease. After menopause, metabolic syndrome is more prevalent than in premenopausal women, and may plays an important role in the occurrence of myocardial infarction and other atherosclerotic and cardiovascular morbidities. Obesity, an essential component of the metabolic syndrome, is also associated with increased incidence of breast, endometrial, bowel, esophagus, and kidney cancer. The treatment of metabolic syndrome is based on the change in lifestyle and, when necessary, the use of medication directed to its components. In the presence of symptoms of the climacteric syndrome, hormonal therapy, when indicated, will also contribute to the improvement of the metabolic syndrome.

  16. Lysosomal storage disease 2 - Pompe's disease

    NARCIS (Netherlands)

    van der Ploeg, Ans T.; Reuser, Arnold J. J.

    2008-01-01

    Pompe's disease, glycogen-storage disease type II, and acid maltase deficiency are alternative names for the same metabolic disorder. It is a pan-ethnic autosomal recessive trait characterised by acid alpha-glucosidase deficiency leading to lysosomal glycogen storage. Pompe's disease is also

  17. Adherence issues in inherited metabolic disorders treated by low natural protein diets

    DEFF Research Database (Denmark)

    MaCdonald, A; van Rijn, M; Feillet, F

    2012-01-01

    Common inborn errors of metabolism treated by low natural protein diets [amino acid (AA) disorders, organic acidemias and urea cycle disorders] are responsible for a collection of diverse clinical symptoms, each condition presenting at different ages with variable severity. Precursor......-free or essential L-AAs are important in all these conditions. Optimal long-term outcome depends on early diagnosis and good metabolic control, but because of the rarity and severity of conditions, randomized controlled trials are scarce. In all of these disorders, it is commonly described that dietary adherence...... on their neuropsychological profile. There are little data about their ability to self-manage their own diet or the success of any formal educational programs that may have been implemented. Trials conducted in non-phenylketonuria (PKU) patients are rare, and the development of specialist L-AAs for non-PKU AA disorders has...

  18. Acute fatal metabolic complications in alkaptonuria.

    Science.gov (United States)

    Davison, A S; Milan, A M; Gallagher, J A; Ranganath, L R

    2016-03-01

    Alkaptonuria (AKU) is a rare inherited metabolic disorder of tyrosine metabolism that results from a defect in an enzyme called homogentisate 1,2-dioxygenase. The result of this is that homogentisic acid (HGA) accumulates in the body. HGA is central to the pathophysiology of this disease and the consequences observed; these include spondyloarthropathy, rupture of ligaments/muscle/tendons, valvular heart disease including aortic stenosis and renal stones. While AKU is considered to be a chronic progressive disorder, it is clear from published case reports that fatal acute metabolic complications can also occur. These include oxidative haemolysis and methaemoglobinaemia. The exact mechanisms underlying the latter are not clear, but it is proposed that disordered metabolism within the red blood cell is responsible for favouring a pro-oxidant environment that leads to the life threatening complications observed. Herein the role of red blood cell in maintaining the redox state of the body is reviewed in the context of AKU. In addition previously reported therapeutic strategies are discussed, specifically with respect to why reported treatments had little therapeutic effect. The potential use of nitisinone for the management of patients suffering from the acute metabolic decompensation in AKU is proposed as an alternative strategy.

  19. Urinary Metabolic Phenotyping Reveals Differences in the Metabolic Status of Healthy and Inflammatory Bowel Disease (IBD Children in Relation to Growth and Disease Activity

    Directory of Open Access Journals (Sweden)

    Francois-Pierre Martin

    2016-08-01

    Full Text Available Background: Growth failure and delayed puberty are well known features of children and adolescents with inflammatory bowel disease (IBD, in addition to the chronic course of the disease. Urinary metabonomics was applied in order to better understand metabolic changes between healthy and IBD children. Methods: 21 Pediatric patients with IBD (mean age 14.8 years, 8 males were enrolled from the Pediatric Gastroenterology Outpatient Clinic over two years. Clinical and biological data were collected at baseline, 6, and 12 months. 27 healthy children (mean age 12.9 years, 16 males were assessed at baseline. Urine samples were collected at each visit and subjected to 1H Nuclear Magnetic Resonance (NMR spectroscopy. Results: Using 1H NMR metabonomics, we determined that urine metabolic profiles of IBD children differ significantly from healthy controls. Metabolic differences include central energy metabolism, amino acid, and gut microbial metabolic pathways. The analysis described that combined urinary urea and phenylacetylglutamine—two readouts of nitrogen metabolism—may be relevant to monitor metabolic status in the course of disease. Conclusion: Non-invasive sampling of urine followed by metabonomic profiling can elucidate and monitor the metabolic status of children in relation to disease status. Further developments of omic-approaches in pediatric research might deliver novel nutritional and metabolic hypotheses.

  20. Metabolic Diseases of Muscle

    Science.gov (United States)

    ... here and still get the great care and treatment I received in Michigan.” MDA Is Here to Help You T he Muscular Dystrophy Association offers a vast array of services to help you and your family deal with metabolic diseases of muscle. The staff at your local MDA office is ...

  1. Nutrigenetics of the lipoprotein metabolism.

    Science.gov (United States)

    Garcia-Rios, Antonio; Perez-Martinez, Pablo; Delgado-Lista, Javier; Lopez-Miranda, Jose; Perez-Jimenez, Francisco

    2012-01-01

    It is well known that lipid metabolism is a cornerstone in the development of the commonest important chronic diseases worldwide, such as obesity, cardiovascular disease, or metabolic syndrome. In this regard, the area of lipid and lipoprotein metabolism is one of the areas in which the understanding of the development and progression of those metabolic disorders has been studied in greater depth. Thus, growing evidence has demonstrated that while universal recommendations might be appropriate for the general population, in this area there is great variability among individuals, related to a combination of environmental and genetic factors. Moreover, the interaction between genetic and dietary components has helped in understanding this variability. Therefore, with further study into the interaction between the most important genetic markers or single-nucleotide polymorphisms (SNPs) and diet, it may be possible to understand the variability in lipid metabolism, which could lead to an increase in the use of personalized nutrition as the best support to combat metabolic disorders. This review discusses some of the evidence in which candidate SNPs can affect the key players of lipid metabolism and how their phenotypic manifestations can be modified by dietary intake. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Biochemical markers of psoriasis as a metabolic disease

    Directory of Open Access Journals (Sweden)

    Agnieszka Gerkowicz

    2012-07-01

    Full Text Available Psoriasis is a chronic immune mediated inflammatory skin disease with a population prevalence of 2–3%. In recent years, psoriasis has been recognized as a systemic disease associated with metabolic syndrome or its components such as: obesity, insulin resistance, hypertension and atherogenic dyslipidemia. Many bioactive substances have appeared to be related to metabolic syndrome. Based on current literature, we here discuss the possible role of adiponectin, leptin, ghrelin, resistin, inflammatory cytokines, plasminogen activator inhibitor 1, uric acid, C-reactive protein and lipid abnormalities in psoriasis and in metabolic syndrome.

  3. Androgen excess and metabolic disorders in women with PCOS: beyond the body mass index.

    Science.gov (United States)

    Condorelli, R A; Calogero, A E; Di Mauro, M; Mongioi', L M; Cannarella, R; Rosta, G; La Vignera, S

    2018-04-01

    Insulin resistance is a common feature among women with polycystic ovary syndrome (PCOS), especially in those patients with hyperandrogenism and chronic anovulation. PCOS women are at risk for developing metabolic syndrome, impaired glucose tolerance and type II diabetes mellitus (DM II). The aim of this review is to explore the existing knowledge of the interplay between androgen excess, pancreatic β-cell function, non-alcoholic fatty liver disease (NAFLD), intra-abdominal and subcutaneous (SC) abdominal adipocytes in PCOS, providing a better comprehension of the molecular mechanisms of diabetologic interest. A comprehensive MEDLINE ® search was performed using relevant key terms for PCOS and DM II. Insulin-induced hyperandrogenism could impair pancreatic β-cell function, the SC abdominal adipocytes' lipid storage capacity, leading to intra-abdominal adipocyte hypertrophy and lipotoxicity, which in turn promotes insulin resistance, and could enhance NAFLD. Fetal hyperandrogenism exposure prompts to metabolic disorders. Treatment with flutamide showed to partially reverse insulin resistance. Metabolic impairment seems not to be dependent only on the total fat mass content and body weight in women with PCOS and might be ascribed to the androgen excess.

  4. Niemann-Pick disease

    Science.gov (United States)

    NPD; Sphingomyelinase deficiency; Lipid storage disorder - Niemann-Pick disease; Lysosomal storage disease - Niemann-Pick ... lipofuscinoses or Batten disease (Wolman disease, cholesteryl ... metabolism of lipids. In: Kliegman RM, Stanton BF, St. Geme JW, ...

  5. Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder

    International Nuclear Information System (INIS)

    Swedo, S.E.; Schapiro, M.B.; Grady, C.L.; Cheslow, D.L.; Leonard, H.L.; Kumar, A.; Friedland, R.; Rapoport, S.I.; Rapoport, J.L.

    1989-01-01

    The cerebral metabolic rate for glucose was studied in 18 adults with childhood-onset obsessive-compulsive disorder (OCD) and in age- and sex-matched controls using positron emission tomography and fludeoxyglucose F 18. Both groups were scanned during rest, with reduced auditory and visual stimulation. The group with OCD showed an increased glucose metabolism in the left orbital frontal, right sensorimotor, and bilateral prefrontal and anterior cingulate regions as compared with controls. Ratios of regional activity to mean cortical gray matter metabolism were increased for the right prefrontal and left anterior cingulate regions in the group with OCD as a whole. Correlations between glucose metabolism and clinical assessment measures showed a significant relationship between metabolic activity and both state and trait measurements of OCD and anxiety as well as the response to clomipramine hydrochloride therapy. These results are consistent with the suggestion that OCD may result from a functional disturbance in the frontal-limbic-basal ganglia system

  6. The metabolic role of the gut microbiota in health and rheumatic disease: mechanisms and interventions.

    Science.gov (United States)

    Abdollahi-Roodsaz, Shahla; Abramson, Steven B; Scher, Jose U

    2016-08-01

    The role of the gut microbiome in animal models of inflammatory and autoimmune disease is now well established. The human gut microbiome is currently being studied as a potential modulator of the immune response in rheumatic disorders. However, the vastness and complexity of this host-microorganism interaction is likely to go well beyond taxonomic, correlative observations. In fact, most advances in the field relate to the functional and metabolic capabilities of these microorganisms and their influence on mucosal immunity and systemic inflammation. An intricate relationship between the microbiome and the diet of the host is now fully recognized, with the microbiota having an important role in the degradation of polysaccharides into active metabolites. This Review summarizes the current knowledge on the metabolic role of the microbiota in health and rheumatic disease, including the advances in pharmacomicrobiomics and its potential use in diagnostics, therapeutics and personalized medicine.

  7. Disability and functional burden of disease because of mental in comparison to somatic disorders in general practice patients.

    Science.gov (United States)

    Linden, M; Linden, U; Schwantes, U

    2015-09-01

    Severity of illness is not only depending on the symptom load, but also on the burden in life. Mental disorders are among those illnesses, which in particular cause suffering to the individual and society. To study burden of disease for mental in comparison to somatic disorders, 2099 patients from 40 general practitioners filled in (a) the Burvill scale which measures acute and chronic illnesses in ten different body systems and (b) the IMET scale which measures impairment in ten different areas of life. Patients were suffering on average from acute and/or chronic illness in 3.5 (SD: 2.0) body systems and 56.6% of patients complained about acute and/or chronic mental disorders. The most significant negative impact on the IMET total score have acute and chronic mental disorders, followed by chronic neurological and musculoskeletal and acute respiratory and gastrointestinal disorders, while cardiovascular, metabolic, urogenital, haematological and ear/eye disorders have no greater impact. Acute as well as chronic mental disorders cause impairment across all areas of life and most burden of disease (functional burden of disease 1.69), followed by musculoskeletal disorders (1.62). Mental disorders are among the most frequent health problems with high negative impact across all areas of life. When combining frequency and impairment mental disorders cause most burden of disease in comparison to other illnesses. This should be reflected in the organization of medical care including family medicine. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. [Nineteen cases of school-aged children with degenerative or metabolic neurological disorders initially presenting with learning difficulty and/or behavior disturbance].

    Science.gov (United States)

    Honzawa, Shiho; Sugai, Kenji; Akaike, Hiroto; Nakayama, Tojo; Fujikawa, Yoshinao; Komaki, Hirofumi; Nakagawa, Eiji; Sasaki, Masayuki

    2012-07-01

    We reported 19 cases of school-aged children. They were initially judged to have learning difficulty or school maladaptation because of attention deficits, hyperactive behaviors or poor school performance, followed by the diagnosis such as degenerative or metabolic neurological diseases. The patients consisted of 4 cases of adrenoleukodystrophy, 5 cases of dentatorubral-pallidoluysian atrophy, 3 cases of Sanfilippo syndrome, 3 cases of subacute sclerosing panencephalitis, and each one case of juvenile Gaucher disease, juvenile Huntington disease, juvenile metachromatic leukodystrophy and Leigh disease. They had markedly poor school performance, and/or abnormal behaviors, followed by seizures, character disorders or psychomotor regression. The diagnostic clues included brain CT scan and/or MRI, peculiar facial appearance and notable family histories. When the children were indicated to have learning difficulty or maladjustment to school life, we should make deliberate differential diagnoses before concluding that they have a learning disorder and/or attention-deficit/hyperactivity disorder. Instead they should be recommended to visit child neurologists, when they present with any problems as aforesaid.

  9. Carboxylesterases in lipid metabolism: from mouse to human

    Directory of Open Access Journals (Sweden)

    Jihong Lian

    2017-07-01

    Full Text Available ABSTRACT Mammalian carboxylesterases hydrolyze a wide range of xenobiotic and endogenous compounds, including lipid esters. Physiological functions of carboxylesterases in lipid metabolism and energy homeostasis in vivo have been demonstrated by genetic manipulations and chemical inhibition in mice, and in vitro through (overexpression, knockdown of expression, and chemical inhibition in a variety of cells. Recent research advances have revealed the relevance of carboxylesterases to metabolic diseases such as obesity and fatty liver disease, suggesting these enzymes might be potential targets for treatment of metabolic disorders. In order to translate pre-clinical studies in cellular and mouse models to humans, differences and similarities of carboxylesterases between mice and human need to be elucidated. This review presents and discusses the research progress in structure and function of mouse and human carboxylesterases, and the role of these enzymes in lipid metabolism and metabolic disorders.

  10. PRIMARY PREVENTION OF DIABETES MELLITUS: CORRECTION OF EARLY DISORDERS OF GLUCOSE METABOLISM IN CARDIOLOGY PRACTICE

    Directory of Open Access Journals (Sweden)

    M. N. Mamedov

    2015-12-01

    Full Text Available Early glucose metabolism disorders (GMD are of interest in development of effective approaches to prevention of type 2 diabetes mellitus (DM. Data of international clinical trials shows that early GMD are an independent risk factor for cardiovascular disease. The possibilities of GMD prevention and early treatment are discussed. Antihyperglycemic medications classification, their mode of action and efficacy are presented from evidence-based medicine point of view. This data confirms that successful DM primary prevention at early stage of GMD reduces the risk of cardiovascular complications.

  11. Fatty Acids Consumption: The Role Metabolic Aspects Involved in Obesity and Its Associated Disorders

    Directory of Open Access Journals (Sweden)

    Priscila Silva Figueiredo

    2017-10-01

    Full Text Available Obesity and its associated disorders, such as insulin resistance, dyslipidemia, metabolic inflammation, dysbiosis, and non-alcoholic hepatic steatosis, are involved in several molecular and inflammatory mechanisms that alter the metabolism. Food habit changes, such as the quality of fatty acids in the diet, are proposed to treat and prevent these disorders. Some studies demonstrated that saturated fatty acids (SFA are considered detrimental for treating these disorders. A high fat diet rich in palmitic acid, a SFA, is associated with lower insulin sensitivity and it may also increase atherosclerosis parameters. On the other hand, a high intake of eicosapentaenoic (EPA and docosahexaenoic (DHA fatty acids may promote positive effects, especially on triglyceride levels and increased high-density lipoprotein (HDL levels. Moreover, polyunsaturated fatty acids (PUFAs and monounsaturated fatty acids (MUFAs are effective at limiting the hepatic steatosis process through a series of biochemical events, such as reducing the markers of non-alcoholic hepatic steatosis, increasing the gene expression of lipid metabolism, decreasing lipogenic activity, and releasing adiponectin. This current review shows that the consumption of unsaturated fatty acids, MUFA, and PUFA, and especially EPA and DHA, which can be applied as food supplements, may promote effects on glucose and lipid metabolism, as well as on metabolic inflammation, gut microbiota, and hepatic metabolism.

  12. Bile Acid Signaling in Liver Metabolism and Diseases

    Directory of Open Access Journals (Sweden)

    Tiangang Li

    2012-01-01

    Full Text Available Obesity, diabetes, and metabolic syndromes are increasingly recognized as health concerns worldwide. Overnutrition and insulin resistance are the major causes of diabetic hyperglycemia and hyperlipidemia in humans. Studies in the past decade provide evidence that bile acids are not just biological detergents facilitating gut nutrient absorption, but also important metabolic regulators of glucose and lipid homeostasis. Pharmacological alteration of bile acid metabolism or bile acid signaling pathways such as using bile acid receptor agonists or bile acid binding resins may be a promising therapeutic strategy for the treatment of obesity and diabetes. On the other hand, bile acid signaling is complex, and the molecular mechanisms mediating the bile acid effects are still not completely understood. This paper will summarize recent advances in our understanding of bile acid signaling in regulation of glucose and lipid metabolism, and the potentials of developing novel therapeutic strategies that target bile acid metabolism for the treatment of metabolic disorders.

  13. Endocrine Disrupting Chemical Induced "Pollution of Metabolic Pathways": A Case of Shifting Paradigms With Implications for Vascular Diseases.

    Science.gov (United States)

    Janardhanan, Rajiv

    2018-05-14

    The latter half of the twentieth century has witnessed a humongous spurt in the use of synthetic chemicals in a wide variety of industrial and agricultural applications are leading to niche specific perturbations affecting every trophic level of the ecosystems due to unmitigated environmental contamination. Despite the incremental usefulness of endocrine disrupting chemicals (EDCs) such as pesticides and plasticizers, their statutory impact on environmental health is assuming worrisome proportions. The EDCs can disrupt physiological homeostasis resulting in developmental and reproductive abnormalities. Both preclinical animal experiments, as well as epidemiological studies, have correlated EDC exposure with metabolic disorders such as metabolic syndrome, type 2 diabetes as well as cardiovascular health. Here we briefly review the statutory impact of EDCs on metabolic disruption as well as their impact on environmental health. Finally, difficulties pertaining to the categorization of EDC induced metabolic diseases as risk factors for global disease burden have been addressed taking into account the complexity of such interactions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Uric Acid Nephrolithiasis: A Systemic Metabolic Disorder

    Science.gov (United States)

    Moe, Orson W.

    2014-01-01

    Uric acid nephrolithiasis is characteristically a manifestation of a systemic metabolic disorder. It has a prevalence of about 10% among all stone formers, the third most common type of kidney stone in the industrialized world. Uric acid stones form primarily due to an unduly acid urine; less deciding factors are hyperuricosuria and a low urine volume. The vast majority of uric acid stone formers have the metabolic syndrome, and not infrequently, clinical gout is present as well. A universal finding is a low baseline urine pH plus insufficient production of urinary ammonium buffer. Persons with gastrointestinal disorders, in particular chronic diarrhea or ostomies, and patients with malignancies with a large tumor mass and high cell turnover comprise a less common but nevertheless important subset. Pure uric acid stones are radiolucent but well visualized on renal ultrasound. A 24 h urine collection for stone risk analysis provides essential insight into the pathophysiology of stone formation and may guide therapy. Management includes a liberal fluid intake and dietary modification. Potassium citrate to alkalinize the urine to a goal pH between 6 and 6.5 is essential, as undissociated uric acid deprotonates into its much more soluble urate form. PMID:25045326

  15. Functional esophageal disorders

    OpenAIRE

    Clouse, R; Richter, J; Heading, R; Janssens, J; Wilson, J

    1999-01-01

    The functional esophageal disorders include globus, rumination syndrome, and symptoms that typify esophageal diseases (chest pain, heartburn, and dysphagia). Factors responsible for symptom production are poorly understood. The criteria for diagnosis rest not only on compatible symptoms but also on exclusion of structural and metabolic disorders that might mimic the functional disorders. Additionally, a functional diagnosis is precluded by the presence of a pathology-based motor disorder or p...

  16. Unexpected metabolic disorders induced by endocrine disruptors in Xenopus tropicalis provide new lead for understanding amphibian decline.

    Science.gov (United States)

    Regnault, Christophe; Usal, Marie; Veyrenc, Sylvie; Couturier, Karine; Batandier, Cécile; Bulteau, Anne-Laure; Lejon, David; Sapin, Alexandre; Combourieu, Bruno; Chetiveaux, Maud; Le May, Cédric; Lafond, Thomas; Raveton, Muriel; Reynaud, Stéphane

    2018-05-08

    Despite numerous studies suggesting that amphibians are highly sensitive to endocrine disruptors (EDs), both their role in the decline of populations and the underlying mechanisms remain unclear. This study showed that frogs exposed throughout their life cycle to ED concentrations low enough to be considered safe for drinking water, developed a prediabetes phenotype and, more commonly, a metabolic syndrome. Female Xenopus tropicalis exposed from tadpole stage to benzo( a )pyrene or triclosan at concentrations of 50 ng⋅L -1 displayed glucose intolerance syndrome, liver steatosis, liver mitochondrial dysfunction, liver transcriptomic signature, and pancreatic insulin hypersecretion, all typical of a prediabetes state. This metabolic syndrome led to progeny whose metamorphosis was delayed and occurred while the individuals were both smaller and lighter, all factors that have been linked to reduced adult recruitment and likelihood of reproduction. We found that F 1 animals did indeed have reduced reproductive success, demonstrating a lower fitness in ED-exposed Xenopus Moreover, after 1 year of depuration, Xenopus that had been exposed to benzo( a )pyrene still displayed hepatic disorders and a marked insulin secretory defect resulting in glucose intolerance. Our results demonstrate that amphibians are highly sensitive to EDs at concentrations well below the thresholds reported to induce stress in other vertebrates. This study introduces EDs as a possible key contributing factor to amphibian population decline through metabolism disruption. Overall, our results show that EDs cause metabolic disorders, which is in agreement with epidemiological studies suggesting that environmental EDs might be one of the principal causes of metabolic disease in humans.

  17. Neurological Disorders in Adult Celiac Disease

    Directory of Open Access Journals (Sweden)

    Hugh J Freeman

    2008-01-01

    Full Text Available Celiac disease may initially present as a neurological disorder. Alternatively, celiac disease may be complicated by neurological changes. With impaired nutrient absorption, different deficiency syndromes may occur and these may be manifested clinically with neurological changes. However, in patients with deficiency syndromes, extensive involvement of the small intestine with celiac disease is often evident. There are a number of reports of celiac disease associated with neuropathy, ataxia, dementia and seizure disorder. In these reports, there is no clear relationship with nutrient deficiency and a precise mechanism for the neurological changes has not been defined. A small number of patients have been reported to have responded to vitamin E administration, but most do not. In some, gluten antibodies have also been described, especially in those with ataxia, but a consistent response to a gluten-free diet has not been defined. Screening for celiac disease should be considered in patients with unexplained neurological disorders, including ataxia and dementia. Further studies are needed, however, to determine if a gluten-free diet will lead to improvement in the associated neurological disorder.

  18. Post-traumatic stress disorder and cardiovascular disease.

    Science.gov (United States)

    Edmondson, Donald; von Känel, Roland

    2017-04-01

    In this paper, a first in a Series of two, we look at the evidence for an association of post-traumatic stress disorder with incident cardiovascular disease risk and the mechanisms that might cause this association, as well as the prevalence of post-traumatic stress disorder due to cardiovascular disease events and its associated prognostic risk. We discuss research done after the publication of previous relevant systematic reviews, and survey currently funded research from the two most active funders in the field: the National Institutes of Health and the US Veterans Administration. We conclude that post-traumatic stress disorder is a risk factor for incident cardiovascular disease, and a common psychiatric consequence of cardiovascular disease events that might worsen the prognosis of the cardiovascular disease. There are many candidate mechanisms for the link between post-traumatic stress disorder and cardiovascular disease, and several ongoing studies could soon point to the most important behavioural and physiological mechanisms to target in early phase intervention development. Similarly, targets are emerging for individual and environmental interventions that might offset the risk of post-traumatic stress disorder after cardiovascular disease events. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Evaluation of plasma cholestane-3β,5α,6β-triol and 7-ketocholesterol in inherited disorders related to cholesterol metabolism[S

    Science.gov (United States)

    Boenzi, Sara; Deodato, Federica; Taurisano, Roberta; Goffredo, Bianca Maria; Rizzo, Cristiano; Dionisi-Vici, Carlo

    2016-01-01

    Oxysterols are intermediates of cholesterol metabolism and are generated from cholesterol via either enzymatic or nonenzymatic pathways under oxidative stress conditions. Cholestan-3β,5α,6β-triol (C-triol) and 7-ketocholesterol (7-KC) have been proposed as new biomarkers for the diagnosis of Niemann-Pick type C (NP-C) disease, representing an alternative tool to the invasive and time-consuming method of fibroblast filipin test. To test the efficacy of plasma oxysterol determination for the diagnosis of NP-C, we systematically screened oxysterol levels in patients affected by different inherited disorders related with cholesterol metabolism, which included Niemann-Pick type B (NP-B) disease, lysosomal acid lipase (LAL) deficiency, Smith-Lemli-Opitz syndrome (SLOS), congenital familial hypercholesterolemia (FH), and sitosterolemia (SITO). As expected, NP-C patients showed significant increase of both C-triol and 7-KC. Strong increase of both oxysterols was observed in NP-B and less pronounced in LAL deficiency. In SLOS, only 7-KC was markedly increased, whereas in both FH and in SITO, oxysterol concentrations were normal. Interestingly, in NP-C alone, we observed that plasma oxysterols correlate negatively with patient’s age and positively with serum total bilirubin, suggesting the potential relationship between oxysterol levels and hepatic disease status. Our results indicate that oxysterols are reliable and sensitive biomarkers of NP-C. PMID:26733147

  20. Experimental Models of Maternal Obesity and Neuroendocrine Programming of Metabolic Disorders in Offspring.

    Science.gov (United States)

    Reynolds, Clare M; Segovia, Stephanie A; Vickers, Mark H

    2017-01-01

    Evidence from epidemiological, clinical, and experimental studies have clearly shown that disease risk in later life is increased following a poor early life environment, a process preferentially termed developmental programming. In particular, this work clearly highlights the importance of the nutritional environment during early development with alterations in maternal nutrition, including both under- and overnutrition, increasing the risk for a range of cardiometabolic and neurobehavioral disorders in adult offspring characterized by both adipokine resistance and obesity. Although the mechanistic basis for such developmental programming is not yet fully defined, a common feature derived from experimental animal models is that of alterations in the wiring of the neuroendocrine pathways that control energy balance and appetite regulation during early stages of developmental plasticity. The adipokine leptin has also received significant attention with clear experimental evidence that normal regulation of leptin levels during the early life period is critical for the normal development of tissues and related signaling pathways that are involved in metabolic and cardiovascular homeostasis. There is also increasing evidence that alterations in the epigenome and other underlying mechanisms including an altered gut-brain axis may contribute to lasting cardiometabolic dysfunction in offspring. Ongoing studies that further define the mechanisms between these associations will allow for identification of early risk markers and implementation of strategies around interventions that will have obvious beneficial implications in breaking a programmed transgenerational cycle of metabolic disorders.

  1. [Clinical analysis of metabolic syndrome in vertiginous diseases].

    Science.gov (United States)

    Yamanaka, Toshiaki; Fukuda, Takehiko; Sawai, Yachiyo; Shirota, Shiho; Shimizu, Naoki; Murai, Takayuki; Okamoto, Hideyuki; Fujita, Nobuya; Hosoi, Hiroshi

    2011-01-01

    To explore the relationship between metabolic syndrome and vertigo, we measured waist circumference, plasma glucose, triglycerides and blood pressure in 333 subjects aged 20-79 years with vertigo. We found overall metabolic syndrome prevalence defined by Japanese diagnostic criteria to be 13.2%, similar to that in other national surveys by the Japanese Ministry of Health, Labour and Welfare. The 6-fold higher prevalence in men over women exceeded that of other reports, however. The highest frequency was in vertebrobasilar insufficiency (VBI) disorders, suggesting that conditions such as VBI in men with vertigo could involve metabolic syndrome as a risk factor for vertigo incidence.

  2. PHENYLKETONURIA, AN INHERITED METABOLIC DISORDER ASSOCIATED WITH MENTAL RETARDATION.

    Science.gov (United States)

    CENTERWALL, WILLARD R.; CENTERWALL, SIEGRIED A.

    ADDRESSED TO PUBLIC HEALTH WORKERS AND PHYSICIANS IN GENERAL PRACTICE, THE PAMPHLET INTRODUCES METHODS OF DETECTING AND MANAGING PHENYLKETONURIA, AN INHERITED METABOLIC DISORDER ASSOCIATED WITH MENTAL RETARDATION. INFORMATION, UPDATED FROM THE 1961 EDITION, IS INCLUDED ON THE INCIDENCE AND GENETICS, BIOCHEMISTRY, AND CLINICAL COURSE OF THE…

  3. [Sleep disorder and lifestyle-related disease].

    Science.gov (United States)

    Shibata, Rei; Murohara, Toyoaki

    2015-06-01

    Sleep disorder is associated with the lifestyle-related diseases including obesity, insulin resistance and atherosclerosis. Adipose tissue functions as an endocrine organ by producing bioactive secretory proteins, also known as adipokines, that can directly act on nearby or remote organs. Recently, the associations between these adipokines and sleep disorders such as obstructive sleep apnea have been reported. In this review, we focus on the relationship between sleep disorder and lifestyle-related diseases.

  4. The metabolic syndrome in thyroid disease: A report from Nigeria

    Directory of Open Access Journals (Sweden)

    Anthonia O Ogbera

    2012-01-01

    Full Text Available Background: The objective of this study was to determine the prevalence of the metabolic syndrome and its components in people with thyroid disorders. Materials and Methods: 112 subjects with a history of thyroid disorders were consecutively enrolled for the study. Clinical data were obtained by interviewing the patients and referring to their case folders and prescriptions. The subjects were categorized into three: thyrotoxic, those with hypothyroidism and those with nontoxic goiters, based on clinical parameters and or thyroid function tests. The study subjects were weighed and their anthropometric indices were documented. The laboratory parameters that were analyzed included total cholesterol, high-density and low-density cholesterol and triglyceride. Statistical analysis was performed using Student′s t test, one-way analysis of variance (ANOVA test and chi-square test. Results: The study subjects were aged between 14 and 76 years, with a mean age of 44.5 years, and the female:male ratio was 97:15. The mean age and anthropometric indices were comparable in subjects with thyrotoxicosis, hypothyroidism and euthyroidism. The overall prevalence of the metabolic syndrome was 28% and the frequency of occurrence of the metabolic syndrome in subjects with thyrotoxicosis, hypothyroidism and nontoxic goiter was 24%, 40% and 42%, respectively. The commonest occurring metabolic syndrome defining criterion was dysglycemia, while hypertension and elevated triglyceride were the least documented of the criteria. Conclusion: Metabolic syndrome occurs in 1 in every 4 persons with thyroid disorders, and as such, routine screening for this cardiovascular risk factor may be of benefit in this group of people, especially in those with hypothyroidism.

  5. From "Kidneys Govern Bones" to Chronic Kidney Disease, Diabetes Mellitus, and Metabolic Bone Disorder: A Crosstalk between Traditional Chinese Medicine and Modern Science.

    Science.gov (United States)

    Wang, Xiao-Qin; Zou, Xin-Rong; Zhang, Yuan Clare

    2016-01-01

    Although traditional Chinese medicine (TCM) and Western medicine have evolved on distinct philosophical foundations and reasoning methods, an increasing body of scientific data has begun to reveal commonalities. Emerging scientific evidence has confirmed the validity and identified the molecular mechanisms of many ancient TCM theories. One example is the concept of "Kidneys Govern Bones." Here we discuss the molecular mechanisms supporting this theory and its potential significance in treating complications of chronic kidney disease (CKD) and diabetes mellitus. Two signaling pathways essential for calcium-phosphate metabolism can mediate the effect of kidneys in bone homeostasis, one requiring renal production of bioactive vitamin D and the other involving an endocrine axis based on kidney-expressed Klotho and bone-secreted fibroblast growth factor 23. Disruption of either pathway can lead to calcium-phosphate imbalance and vascular calcification, accelerating metabolic bone disorder. Chinese herbal medicine is an adjunct therapy widely used for treating CKD and diabetes. Our results demonstrate the therapeutic effects and underlying mechanisms of a Chinese herbal formulation, Shen-An extracts, in diabetic nephropathy and renal osteodystrophy. We believe that the smart combination of Eastern and Western concepts holds great promise for inspiring new ideas and therapies for preventing and treating complications of CKD and diabetes.

  6. Sortilin and Its Multiple Roles in Cardiovascular and Metabolic Diseases

    DEFF Research Database (Denmark)

    Goettsch, Claudia; Kjølby, Mads Fuglsang; Aikawa, Elena

    2018-01-01

    Cardiovascular disease is a leading cause of morbidity and mortality in the Western world. Studies of sortilin's influence on cardiovascular and metabolic diseases goes far beyond the genome-wide association studies that have revealed an association between cardiovascular diseases and the 1p13...... locus that encodes sortilin. Emerging evidence suggests a significant role of sortilin in the pathogenesis of vascular and metabolic diseases; this includes type II diabetes mellitus via regulation of insulin resistance, atherosclerosis through arterial wall inflammation and calcification...... of sortilin's contributions to cardiovascular and metabolic diseases but focuses particularly on atherosclerosis. We summarize recent clinical findings that suggest that sortilin may be a cardiovascular risk biomarker and also discuss sortilin as a potential drug target....

  7. Association of Sleep Disorders with Nonalcoholic Fatty Liver Disease (NAFLD): A Population-based Study.

    Science.gov (United States)

    Mir, Heshaam M; Stepanova, Maria; Afendy, Hena; Cable, Rebecca; Younossi, Zobair M

    2013-09-01

    Nonalcoholic fatty liver disease (NAFLD) is a major cause of chronic liver disease. In smaller studies, sleep apnea has been previously associated with NAFLD. The aim of this study was to assess the prevalence and independent associations of sleep disorders in patients with NAFLD using recent population-based data. Three cycles of the National Health and Nutrition Examination Survey (NHANES) conducted between 2005 and 2010 were used. The diagnosis of NAFLD was established as elevated liver enzymes in the absence of all other causes of chronic liver disease. Sleep disorders were diagnosed using sleep disorder questionnaires completed by NHANES participants, and included self-reported history of sleep apnea, insomnia, and restless leg syndrome. The prevalence of sleep disorders was compared between those with and without NAFLD. A total of 10,541 adult NHANES participants with complete demographic, clinical, and laboratory data were included. Of those, 15.0% had NAFLD and 7.2% reported having sleep disorders. Of those with sleep disorders, 64.7% reported history of sleep apnea, 16.0% had history of insomnia, and 4.0% had restless leg syndrome. Individuals with NAFLD were more likely to be male (53.8% vs. 45.7%, P < 0.0001), obese (50.1% vs. 33.4%, P < 0.0001) and had higher prevalence of sleep disorders (9.1% vs. 6.9%, P = 0.0118). In multivariate analysis, having any sleep disorder, sleep apnea and insomnia were all independently associated with NAFLD [OR (95% CI) = 1.40 (1.11-1.76), OR = 1.39 (0.98-1.97), and OR = 2.17 (1.19-3.95); respectively)]. This large population-based data suggests that NAFLD is associated with sleep disorders. Although the exact mechanism is unknown, this association is most likely through metabolic conditions associated with NAFLD.

  8. Olfactory Disorder Pattern In Patients With Neurological Diseases Excluding Psychiatric And Traumatic Aetiologies.

    Science.gov (United States)

    de Haro-Licer, Josep; González-Fernández, Adela; Planas-Comes, Albert; González-Ares, Josep Antón

    2018-03-23

    The most common cause of olfactory ENT disorders are colds and flu, chronic sinusitis, allergies and traumatic brain injury. Rarer aetiologies include certain neurological, psychiatric and metabolic injuries. The aim of this paper was to check the sort of olfactory disorders found in people who have suffered a brain injury, excluding: cranial traumas, psychiatric diseases, epilepsy, Parkinson's and Alzheimer's disease, and synaesthesia. A descriptive study based on 61 patients with diagnoses of various neurological injuries, which were tested by BAST-24 olfactometer. The results were compared with those of a control group (n= 120). The results show major impairment in these patients' olfactory sense. The neurological injury patients were able to detect from 60-77% of the odours, while the control group were able to detect between 98-100%. The neurological patients were able, at best, to identify, 11-32% of the odours correctly, while the control group were able to correctly detect between 59 -75%. The differences between odour detection and correct identification were statistically significant (p<.05). We concluded: a) Neurological injury, not caused by traumatic brain injury, psychiatric disorders or ENT diseases, ranged from 68-89% of the olfactory failures. b) We must bear in mind that these sorts of injuries can cause olfactory disorders. c) ENT and Neurologists should collaborate in the treatment of these disorders. Copyright © 2018 Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Relation between Hormonal Disorders and Components of Metabolic Syndrome in Patients with Primary Hypothyroidism

    Directory of Open Access Journals (Sweden)

    Т.Yu. Yuzvenko

    2016-09-01

    Full Text Available During the last decade plenty of the researches dedicated to the problem of hypothyroidism were published, that radically changed views to the value of thyroid pathology on the whole. Neurohumoral changes are considered as a nosotropic factor of hypothyroidism development in persons with metabolic syndrome (MS. Aim of the research is to study the features of hormonal disorders and their correlation with the components of metabolic syndrome in patients with primary hypothyroidism. Materials and methods. The study involved 80 patients with primary hypothyroidism: 61 had metabolic syndrome and 19 did not have metabolic syndrome. Results. Statistically significant increased levels of leptin, insulin, cortisol, C-peptide were revealed in patients with hypothyroidism and metabolic syndrome while the most marked changes were found in patients with multiple metabolic abnormalities. Conclusions. The interrelations between hyperleptinemia and fasting glucose, glycated hemoglobin, insulin levels, thyroid-stimulating hormone, index HOMA were determined indicating the modulating role of chronic hyperglycemia, hormonal disorders and insulin resistance in the expression and realization of the biological action of leptin in patients with hypothyroidism and metabolic syndrome.

  10. Metabolic and hormonal signatures in pre-manifest and manifest Huntington’s disease patients

    Directory of Open Access Journals (Sweden)

    Rui eWang

    2014-06-01

    Full Text Available Huntington's disease (HD is an inherited neurodegenerative disorder typified by involuntary body movements, and psychiatric and cognitive abnormalities. Many HD patients also exhibit metabolic changes including progressive weight loss and appetite dysfunction. Here we have investigated metabolic function in pre-manifest and manifest HD subjects to establish an HD subject metabolic hormonal plasma signature. Individuals at risk for HD who have had predictive genetic testing showing the cytosine-adenine-guanine (CAG expansion causative of HD, but who do not yet present signs and symptoms sufficient for the diagnosis of manifest HD are said to be pre-manifest. Pre-manifest and manifest HD patients, as well as both familial and non-familial controls, were evaluated for multiple peripheral metabolism signals including circulating levels of hormones, growth factors, lipids and cytokines. Both pre-manifest and manifest HD subjects exhibited significantly reduced levels of circulating growth factors, including growth hormone and prolactin. HD-related changes in the levels of metabolic hormones such as ghrelin, glucagon and amylin were also observed. Total cholesterol, HDL-C and LDL-C were significantly decreased in HD subjects. C-reactive protein was significantly elevated in pre-manifest HD subjects. The observation of metabolic alterations, even in subjects considered to be in the pre-manifest stage of HD, suggests that in addition, and prior, to overt neuronal damage, HD affects metabolic hormone secretion and energy regulation, which may shed light on pathogenesis, and provide opportunities for biomarker development.

  11. BioM2MetDisease: a manually curated database for associations between microRNAs, metabolites, small molecules and metabolic diseases.

    Science.gov (United States)

    Xu, Yanjun; Yang, Haixiu; Wu, Tan; Dong, Qun; Sun, Zeguo; Shang, Desi; Li, Feng; Xu, Yingqi; Su, Fei; Liu, Siyao; Zhang, Yunpeng; Li, Xia

    2017-01-01

    BioM2MetDisease is a manually curated database that aims to provide a comprehensive and experimentally supported resource of associations between metabolic diseases and various biomolecules. Recently, metabolic diseases such as diabetes have become one of the leading threats to people’s health. Metabolic disease associated with alterations of multiple types of biomolecules such as miRNAs and metabolites. An integrated and high-quality data source that collection of metabolic disease associated biomolecules is essential for exploring the underlying molecular mechanisms and discovering novel therapeutics. Here, we developed the BioM2MetDisease database, which currently documents 2681 entries of relationships between 1147 biomolecules (miRNAs, metabolites and small molecules/drugs) and 78 metabolic diseases across 14 species. Each entry includes biomolecule category, species, biomolecule name, disease name, dysregulation pattern, experimental technique, a brief description of metabolic disease-biomolecule relationships, the reference, additional annotation information etc. BioM2MetDisease provides a user-friendly interface to explore and retrieve all data conveniently. A submission page was also offered for researchers to submit new associations between biomolecules and metabolic diseases. BioM2MetDisease provides a comprehensive resource for studying biology molecules act in metabolic diseases, and it is helpful for understanding the molecular mechanisms and developing novel therapeutics for metabolic diseases. http://www.bio-bigdata.com/BioM2MetDisease/. © The Author(s) 2017. Published by Oxford University Press.

  12. Sleep disorders and chronic kidney disease.

    Science.gov (United States)

    Maung, Stephanie C; El Sara, Ammar; Chapman, Cherylle; Cohen, Danielle; Cukor, Daniel

    2016-05-06

    Sleep disorders have a profound and well-documented impact on overall health and quality of life in the general population. In patients with chronic disease, sleep disorders are more prevalent, with an additional morbidity and mortality burden. The complex and dynamic relationship between sleep disorders and chronic kidney disease (CKD) remain relatively little investigated. This article presents an overview of sleep disorders in patients with CKD, with emphasis on relevant pathophysiologic underpinnings and clinical presentations. Evidence-based interventions will be discussed, in the context of individual sleep disorders, namely sleep apnea, insomnia, restless leg syndrome and excessive daytime sleepiness. Limitations of the current knowledge as well as future research directions will be highlighted, with a final discussion of different conceptual frameworks of the relationship between sleep disorders and CKD.

  13. Complications of acromegaly: cardiovascular, respiratory and metabolic comorbidities.

    Science.gov (United States)

    Pivonello, Rosario; Auriemma, Renata S; Grasso, Ludovica F S; Pivonello, Claudia; Simeoli, Chiara; Patalano, Roberta; Galdiero, Mariano; Colao, Annamaria

    2017-02-01

    Acromegaly is associated with an enhanced mortality, with cardiovascular and respiratory complications representing not only the most frequent comorbidities but also two of the main causes of deaths, whereas a minor role is played by metabolic complications, and particularly diabetes mellitus. The most prevalent cardiovascular complications of acromegaly include a cardiomyopathy, characterized by cardiac hypertrophy and diastolic and systolic dysfunction together with arterial hypertension, cardiac rhythm disorders and valve diseases, as well as vascular endothelial dysfunction. Biochemical control of acromegaly significantly improves cardiovascular disease, albeit completely recovering to normal mainly in young patients with short disease duration. Respiratory complications, represented mainly by sleep-breathing disorders, particularly sleep apnea, and respiratory insufficiency, frequently occur at the early stage of the disease and, although their severity decreases with disease control, this improvement does not often change the indication for a specific therapy directed to improve respiratory function. Metabolic complications, including glucose and lipid disorders, are variably reported in acromegaly. Treatments of acromegaly may influence glucose metabolism, and the presence of diabetes mellitus in acromegaly may affect the choice of treatments, so that glucose homeostasis is worth being monitored during the entire course of the disease. Early diagnosis and prompt treatment of acromegaly, aimed at obtaining a strict control of hormone excess, are the best strategy to limit the development or reverse the complications and prevent the premature mortality.

  14. Psychosocial and metabolic function by smoking status in individuals with binge eating disorder and obesity.

    Science.gov (United States)

    Udo, Tomoko; White, Marney A; Barnes, Rachel D; Ivezaj, Valentina; Morgan, Peter; Masheb, Robin M; Grilo, Carlos M

    2016-02-01

    Individuals with binge eating disorder (BED) report smoking to control appetite and weight. Smoking in BED is associated with increased risk for comorbid psychiatric disorders, but its impact on psychosocial functioning and metabolic function has not been evaluated. Participants were 429 treatment-seeking adults (72.4% women; mean age 46.2±11.0years old) with BED comorbid with obesity. Participants were categorized into current smokers (n=66), former smokers (n=145), and never smokers (n=218). Smoking status was unrelated to most historical eating/weight variables and to current eating disorder psychopathology. Smoking status was associated with psychiatric, psychosocial, and metabolic functioning. Compared with never smokers, current smokers were more likely to meet lifetime diagnostic criteria for alcohol (OR=5.51 [95% CI=2.46-12.33]) and substance use disorders (OR=7.05 [95% CI=3.37-14.72]), poorer current physical quality of life, and increased risk for metabolic syndrome (OR=1.80 [95% CI=0.97-3.35]) and related metabolic risks (reduced HDL, elevated total cholesterol). On the other hand, the odds of meeting criteria for lifetime psychiatric comorbidity or metabolic abnormalities were not significantly greater in former smokers, relative to never smokers. Our findings suggest the importance of promoting smoking cessation in treatment-seeking patients with BED and obesity for its potential long-term implications for psychiatric and metabolic functioning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Lipid metabolism in myelinating glial cells: lessons from human inherited disorders and mouse models.

    Science.gov (United States)

    Chrast, Roman; Saher, Gesine; Nave, Klaus-Armin; Verheijen, Mark H G

    2011-03-01

    The integrity of central and peripheral nervous system myelin is affected in numerous lipid metabolism disorders. This vulnerability was so far mostly attributed to the extraordinarily high level of lipid synthesis that is required for the formation of myelin, and to the relative autonomy in lipid synthesis of myelinating glial cells because of blood barriers shielding the nervous system from circulating lipids. Recent insights from analysis of inherited lipid disorders, especially those with prevailing lipid depletion and from mouse models with glia-specific disruption of lipid metabolism, shed new light on this issue. The particular lipid composition of myelin, the transport of lipid-associated myelin proteins, and the necessity for timely assembly of the myelin sheath all contribute to the observed vulnerability of myelin to perturbed lipid metabolism. Furthermore, the uptake of external lipids may also play a role in the formation of myelin membranes. In addition to an improved understanding of basic myelin biology, these data provide a foundation for future therapeutic interventions aiming at preserving glial cell integrity in metabolic disorders.

  16. Sleep disorders and Parkinson disease; lessons from genetics.

    Science.gov (United States)

    Gan-Or, Ziv; Alcalay, Roy N; Rouleau, Guy A; Postuma, Ronald B

    2018-01-31

    Parkinson disease is a common, age-related neurodegenerative disorder, projected to afflict millions of individuals in the near future. Understanding its etiology and identifying clinical, genetic or biological markers for Parkinson disease onset and progression is therefore of major importance. Various sleep-related disorders are the most common group of non-motor symptoms in advanced Parkinson disease, but they can also occur during its prodromal phase. However, with the exception of REM sleep behavior disorder, it is unclear whether they are part of the early pathological process of Parkinson disease, or if they develop as Parkinson disease advances because of treatments and neurodegeneration progression. The advancements in genetic studies in the past two decades have generated a wealth of information, and recent genetic studies offer new insight on the association of sleep-related disorders with Parkinson disease. More specifically, comparing genetic data between Parkinson disease and sleep-related disorders can clarify their association, which may assist in determining whether they can serve as clinical markers for Parkinson disease risk or progression. In this review, we discuss the current knowledge on the genetics of sleep-related disorders in Parkinson disease context, and the potential implications on research, diagnosis, counseling and treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Bipolar disorder, a precursor of Parkinson's disease?

    Directory of Open Access Journals (Sweden)

    Tânia M.S. Novaretti

    Full Text Available ABSTRACT Parkinson's disease is a neurodegenerative disorder predominantly resulting from dopamine depletion in the substantia nigra pars compacta. Some psychiatric disorders may have dopaminergic dysfunction as their substrate. We describe a well-documented case of Parkinson's disease associated with Bipolar Disorder. Although there is some knowledge about the association between these diseases, little is known about its pathophysiology and correlation. We believe that among various hypotheses, many neurotransmitters are linked to this pathophysiology.

  18. Disorders of fatty acid oxidation and autosomal recessive polycystic kidney disease-different clinical entities and comparable perinatal renal abnormalities.

    Science.gov (United States)

    Hackl, Agnes; Mehler, Katrin; Gottschalk, Ingo; Vierzig, Anne; Eydam, Marcus; Hauke, Jan; Beck, Bodo B; Liebau, Max C; Ensenauer, Regina; Weber, Lutz T; Habbig, Sandra

    2017-05-01

    Differential diagnosis of prenatally detected hyperechogenic and enlarged kidneys can be challenging as there is a broad phenotypic overlap between several rare genetic and non-genetic disorders. Metabolic diseases are among the rarest underlying disorders, but they demand particular attention as their prognosis and postnatal management differ from those of other diseases. We report two cases of cystic, hyperechogenic and enlarged kidneys detected on prenatal ultrasound images, resulting in the suspected diagnosis of autosomal recessive polycystic kidney disease (ARPKD). Postnatal clinical course and work-up, however, revealed early, neonatal forms of disorders of fatty acid oxidation (DFAO) in both cases, namely, glutaric acidemia type II, based on identification of the novel, homozygous splice-site mutation c.1117-2A > G in the ETFDH gene, in one case and carnitine palmitoyltransferase II deficiency in the other case. Review of pre- and postnatal sonographic findings resulted in the identification of some important differences that might help to differentiate DFAO from ARPKD. In DFAO, kidneys are enlarged to a milder degree than in ARPKD, and the cysts are located ubiquitously, including also in the cortex and the subcapsular area. Interestingly, recent studies have pointed to a switch in metabolic homeostasis, referred to as the Warburg effect (aerobic glycolysis), as one of the underlying mechanisms of cell proliferation and cyst formation in cystic kidney disease. DFAO are characterized by the inhibition of oxidative phosphorylation, resulting in aerobic glycolysis, and thus they do resemble the Warburg effect. We therefore speculate that this inhibition might be one of the pathomechanisms of renal hyperproliferation and cyst formation in DFAO analogous to the reported findings in ARPKD. Neonatal forms of DFAO can be differentially diagnosed in neonates with cystic or hyperechogenic kidneys and necessitate immediate biochemical work-up to provide early

  19. Disease network of mental disorders in Korea.

    Science.gov (United States)

    Choi, Myoungje; Lee, Dong-Woo; Cho, Maeng Je; Park, Jee Eun; Gim, Minsook

    2015-12-01

    Network medicine considers networks among genes, diseases, and individuals. Networks of mental disorders remain poorly understood, despite their high comorbidity. In this study, a network of mental disorders in Korea was constructed to offer a complementary approach to treatment. Data on the prevalence and morbidity of mental disorders were obtained from the 2006 and 2011 Korean Epidemiologic Catchment Area Study, including 22 psychiatric disorders. Nodes in the network were disease phenotypes identified by Diagnostic and Statistical Manual of Mental Disorders-IV, and the links connected phenotypes showing significant comorbidity. Odds ratios were used to quantify the distance between disease pairs. Network centrality was analyzed with and without weighting of the links between disorders. Degree centrality was correlated with suicidal behaviors and use of mental health services. In 2011 and 2006, degree centrality was highest for major depressive disorder, followed by nicotine dependence and generalized anxiety disorder (2011) or alcohol dependence (2006). Weighted degree centrality was highest in conversion disorder in both years. Therefore, major depressive disorder and nicotine dependence are highly connected to other mental disorders in Korea, indicating their comorbidity and possibility of shared biological mechanisms. The use of networks could enhance the understanding of mental disorders to provide effective mental health services.

  20. Obsessive compulsive personality disorder and Parkinson's disease.

    Science.gov (United States)

    Nicoletti, Alessandra; Luca, Antonina; Raciti, Loredana; Contrafatto, Donatella; Bruno, Elisa; Dibilio, Valeria; Sciacca, Giorgia; Mostile, Giovanni; Petralia, Antonio; Zappia, Mario

    2013-01-01

    To evaluate the frequency of personality disorders in Parkinson's disease (PD) patients and in a group of healthy controls. Patients affected by PD diagnosed according to the United Kingdom Parkinson's disease Society Brain Bank diagnostic criteria and a group of healthy controls were enrolled in the study. PD patients with cognitive impairment were excluded from the study. Structured Clinical Interview for Personality Disorders-II (SCID-II) has been performed to evaluate the presence of personality disorders. Presence of personality disorders, diagnosed according to the DSM-IV, was confirmed by a psychiatric interview. Clinical and pharmacological data were also recorded using a standardized questionnaire. 100 PD patients (57 men; mean age 59.0 ± 10.2 years) and 100 healthy subjects (52 men; mean age 58.1 ± 11.4 years) were enrolled in the study. The most common personality disorder was the obsessive-compulsive personality disorder diagnosed in 40 PD patients and in 10 controls subjects (p-valuepersonality disorder recorded in 14 PD patients and 4 control subjects (p-value 0.02). Obsessive-compulsive personality disorder was also found in 8 out of 16 de novo PD patients with a short disease duration. PD patients presented a high frequency of obsessive-compulsive personality disorder that does not seem to be related with both disease duration and dopaminergic therapy.

  1. MR imaging of the brain: metabolic and toxic white matter diseases

    International Nuclear Information System (INIS)

    Forsting, M.

    1999-01-01

    Metabolic disorders of the brain are rare, complex and confusing. The diagnostic modality of choice nowadays is MRI. The high diagnostic sensitivity, however, is coupled with a lack of specificity and usually results in the depiction of similar appearing but clinically diverse white matter processes. For this reason it is essential to perform the MRI as early as possible during the course of the disease and to keep in close contact to the referring clinician to optimize image interpretation. Another precondition is to know the natural course of brain myelination and to know how this appears on the individual MR machine with different parameters. In some diseases like phenylketonuria MRI seems to be an excellent tool to monitor dietary treatment and patient compliance. In patients after radio- and / or chemotherapy MRI reveals the radiation induced leucencephalopathy and can usually differentiate between a recurrent malignancy. (orig.)

  2. Metabolic Syndrome in Obese Men and Women with Binge Eating Disorder: Developmental Trajectories of Eating and Weight-Related Behaviors

    OpenAIRE

    Blomquist, Kerstin K.; Milsom, Vanessa A.; Barnes, Rachel D.; Boeka, Abbe G.; White, Marney A.; Masheb, Robin M.; Grilo, Carlos M.

    2012-01-01

    The metabolic syndrome (MetSyn), characterized by vascular symptoms, is strongly correlated with obesity, weight-related medical diseases and mortality, and has increased commensurately with secular increases in obesity in the U.S. Little is known about the distribution of MetSynin obese patients with binge eating disorder (BED) or its associations with different developmental trajectories of dieting, binge eating, and obesity problems. Further, inconsistencies in the limited data necessitate...

  3. Use of isotopically radiolabelled GM3 ganglioside to study metabolic alterations in Salla disease

    International Nuclear Information System (INIS)

    Chigorno, Vanna; Valsecchi, Manuela; Nicolini, Marco; Sonnino, Sandro

    1997-01-01

    We report the preparation of radioactive GM3 ganglioside and its use in the study of sialic acid storage disorders. For the first time GM3 was isotopically radiolabelled in three positions of the molecule: at the sialic acid acetyl group, [ 3 H-Neu5Ac]GM3, at the Cl of the fatty acid moiety, [ 1 4C-Stearoyl]GM3, and at C3 of sphingosine, [ 3 H-Sph]GM3. The radioactive GM3 administered to cultured human fibroblasts from a patient suffering from Salla disease was taken up by the cells and metabolized. An analysis of the distribution of radioactivity within the ganglioside metabolic derivatives showed an accumulation of free sialic acid and ceramide in the pathological cells. (author). 25 refs., 2 figs., 1 tab

  4. Rasagiline for sleep disorders in patients with Parkinson’s disease: a prospective observational study

    Directory of Open Access Journals (Sweden)

    Schettino C

    2016-09-01

    Full Text Available Carla Schettino,1,2,* Clemente Dato,1,2,* Guglielmo Capaldo,1,2 Simone Sampaolo,1,2 Giuseppe Di Iorio,1,2 Mariarosa AB Melone1,2 1Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2Division of Neurology and InterUniversity Center for Research in Neurosciences, Second University of Naples, Naples, Italy *These authors contributed equally to this work Introduction: Rasagiline is a selective, irreversible monoamine oxidase B inhibitor that ameliorates the symptoms of Parkinson’s disease (PD by inhibiting striatal dopamine metabolism. There is also evidence that monoamine oxidase B inhibitors increase melatonin levels in the pineal gland and may have a beneficial effect on sleep disorders, which are a common feature in patients with PD.Methods: This single-center, prospective, observational, 12-week study compared the effect of combination therapy with levodopa 200–300 mg/d + rasagiline 1 mg/d (n=19 with levodopa 200–300 mg/d alone (n=19 in the treatment of sleep disorders in patients with idiopathic PD.Results: After 12 weeks’ treatment, mean sleep latency was significantly (P<0.001 lower and the improvement in sleep latency from baseline was significantly (P=0.001 greater in patients receiving levodopa + rasagiline than in patients receiving levodopa alone. Similarly, at the end of the study, the mean total sleep time was significantly (P=0.002 longer and the improvement from baseline in mean total sleep time was significantly (P=0.026 greater in patients receiving levodopa + rasagiline than levodopa alone. There were no significant differences between treatment groups for the mean number of awakenings reported at week 12 nor the change from baseline to week 12 in mean number of awakenings.Conclusion: Adding rasagiline to levodopa improved sleep outcomes and may be an appropriate option for patients with PD experiencing sleep disorders. Keywords: Parkinson’s disease, rasagiline, sleep disorders, Parkinson

  5. Association Between Vitamin D Insufficiency and Metabolic Syndrome in Patients With Psychotic Disorders.

    Science.gov (United States)

    Yoo, Taeyoung; Choi, Wonsuk; Hong, Jin-Hee; Lee, Ju-Yeon; Kim, Jae-Min; Shin, Il-Seon; Yang, Soo Jin; Amminger, Paul; Berk, Michael; Yoon, Jin-Sang; Kim, Sung-Wan

    2018-04-01

    This study examined the association between vitamin D and metabolic syndrome in patients with psychotic disorders. The study enrolled 302 community-dwelling patients with psychotic disorders. Sociodemographic and clinical characteristics, including blood pressure, physical activity, and dietary habit were gathered. Laboratory examinations included vitamin D, lipid profile, fasting plasma glucose, HbA1c, liver function, and renal function. Vitamin D insufficiency was defined as vitamin D insufficiency were identified. Among the 302 participants, 236 patients (78.1%) had a vitamin D insufficiency and 97 (32.1%) had metabolic syndrome. Vitamin D insufficiency was significantly associated with the presence of metabolic syndrome (p=0.006) and hypertension (p=0.017). Significant increases in triglycerides and alanine transaminase were observed in the group with a vitamin D insufficiency (p=0.002 and 0.011, respectively). After adjusting for physical activity and dietary habit scores, vitamin D insufficiency remained significantly associated with metabolic syndrome and hypertension. Vitamin D insufficiency was associated with metabolic syndrome and was particularly associated with high blood pressure, although the nature, direction and implications of this association are unclear.

  6. [Metabolic functions and sport].

    Science.gov (United States)

    Riviere, Daniel

    2004-01-01

    Current epidemiological studies emphasize the increased of metabolic diseases of the adults, such as obesity, type-2 diabetes and metabolic syndromes. Even more worrying is the rising prevalence of obesity in children. It is due more to sedentariness, caused more by inactivity (television, video, games, etc.) than by overeating. Many studies have shown that regular physical activities benefit various bodily functions including metabolism. After dealing with the major benefits of physical exercise on some adult metabolic disorders, we focus on the prime role played by physical activity in combating the public health problem of childhood obesity.

  7. Cardiorenal metabolic syndrome in the African diaspora: rationale for including chronic kidney disease in the metabolic syndrome definition.

    Science.gov (United States)

    Lea, Janice P; Greene, Eddie L; Nicholas, Susanne B; Agodoa, Lawrence; Norris, Keith C

    2009-01-01

    Chronic kidney disease (CKD) is more likely to progress to end-stage renal disease (ESRD) in African Americans while the reasons for this are unclear. The metabolic syndrome is a risk factor for the development of diabetes, cardiovascular disease, and has been recently linked to incident CKD. Historically, fewer African Americans meet criteria for the definition of metabolic syndrome, despite having higher rates of cardiovascular mortality than Caucasians. The presence of microalbuminuria portends increased cardiovascular risks and has been shown to cluster with the metabolic syndrome. We recently reported that proteinuria is a predictor of CKD progression in African American hypertensives with metabolic syndrome. In this review we explore the potential value of including CKD markers--microalbuminuria/proteinuria or low glomerular filtration rate (GFR)-in refining the cluster of factors defined as metabolic syndrome, ie, "cardiorenal metabolic syndrome."

  8. Endocrine disorders in mitochondrial disease.

    Science.gov (United States)

    Schaefer, Andrew M; Walker, Mark; Turnbull, Douglass M; Taylor, Robert W

    2013-10-15

    Endocrine dysfunction in mitochondrial disease is commonplace, but predominantly restricted to disease of the endocrine pancreas resulting in diabetes mellitus. Other endocrine manifestations occur, but are relatively rare by comparison. In mitochondrial disease, neuromuscular symptoms often dominate the clinical phenotype, but it is of paramount importance to appreciate the multi-system nature of the disease, of which endocrine dysfunction may be a part. The numerous phenotypes attributable to pathogenic mutations in both the mitochondrial (mtDNA) and nuclear DNA creates a complex and heterogeneous catalogue of disease which can be difficult to navigate for novices and experts alike. In this article we provide an overview of the endocrine disorders associated with mitochondrial disease, the way in which the underlying mitochondrial disorder influences the clinical presentation, and how these factors influence subsequent management. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  9. [Aging and homeostasis. Management of disorders in bone and calcium metabolism associated with ageing.

    Science.gov (United States)

    Takeuchi, Yasuhiro

    Disorders in bone and calcium metabolism associated with aging are based on secondary hyperparathyroidism due to impaired intestinal calcium absorption caused by insufficient vitamin D actions and augmented bone resorption due to sex hormone deficiency. Both of them are involved in the development of osteoporosis that increases risk of fractures. Therefore, the most important thing for management of disorders in bone and calcium metabolism associated with aging is to prevent fractures with appropriate drugs for osteoporosis.

  10. Inherent lipid metabolic dysfunction in glycogen storage disease IIIa.

    Science.gov (United States)

    Li, Xin-Hua; Gong, Qi-Ming; Ling, Yun; Huang, Chong; Yu, De-Min; Gu, Lei-Lei; Liao, Xiang-Wei; Zhang, Dong-Hua; Hu, Xi-Qi; Han, Yue; Kong, Xiao-Fei; Zhang, Xin-Xin

    2014-12-05

    We studied two patients from a nonconsanguineous family with life-long abnormal liver function, hepatomegaly and abnormal fatty acid profiles. Abnormal liver function, hypoglycemia and muscle weakness are observed in various genetic diseases, including medium-chain acyl-CoA dehydrogenase (MCAD) deficiency and glycogen storage diseases. The proband showed increased free fatty acids, mainly C8 and C10, resembling fatty acid oxidation disorder. However, no mutation was found in ACADM and ACADL gene. Sequencing of theamylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase (AGL) gene showed that both patients were compound heterozygotes for c.118C > T (p.Gln40X) and c.753_756 del CAGA (p.Asp251Glufsx29), whereas their parents were each heterozygous for one of these mutations. The AGL protein was undetectable in EBV-B cells from the two patients. Transcriptome analysis demonstrated a significant different pattern of gene expression in both of patients’ cells, including genes involving in the PPAR signaling pathway, fatty acid biosynthesis, lipid synthesis and visceral fat deposition and metabolic syndrome. This unique gene expression pattern is probably due to the absence of AGL, which potentially accounts for the observed clinical phenotypes of hyperlipidemia and hepatocyte steatosis in glycogen storage disease type IIIa.

  11. Cerebral blood flow and metabolism analysis in parkinsonian disorders; Pathologie extrapyramidale. Apport de l'imagerie de perfusion et du metabolisme (TEP, TEM)

    Energy Technology Data Exchange (ETDEWEB)

    Defebvre, L. [Hopital Roger Salengro, Service de Neurologie, 59 - Lille (France)

    1999-12-01

    Main metabolic and hemodynamic abnormalities detected by single photon emission computerized tomography and positron emission tomography in extra-pyramidal disorders are reported. In the first stage of Parkinson's disease, cortical metabolism and perfusion can be in normal range or moderately and uniformly reduced. A significant decrease may appear with the disease evolution. Marked abnormalities are observed in parkinsonian patients with dementia (subcortical dementia), involving especially the frontal cortex. A marked diffuse cortical hypo-metabolism (temporal, parietal, occipital and frontal cortex) may suggest the diagnosis of dementia with Lewy bodies, especially in case of fluctuating cognitive decline with recurrent visual hallucinations. In progressive supra-nuclear palsy, a frontal cortex hypo-metabolism is reported precociously, preceding sometimes the cognitive impairment. Metabolic pattern find in multiple system atrophy reflects dysfunction of both nigrostriatal pathways and striatum, with a decrease glucose uptake in putamen and caudate nucleus which also involves cerebellum for the patients with cerebellar syndrome. In cortico-basal degeneration, asymmetric fronto-parietal and striatal hypo-metabolism observed in the controlateral hemisphere to the clinically most affected side, constitute the main characteristic well correlated with apraxia. (author)

  12. metabolicMine: an integrated genomics, genetics and proteomics data warehouse for common metabolic disease research.

    Science.gov (United States)

    Lyne, Mike; Smith, Richard N; Lyne, Rachel; Aleksic, Jelena; Hu, Fengyuan; Kalderimis, Alex; Stepan, Radek; Micklem, Gos

    2013-01-01

    Common metabolic and endocrine diseases such as diabetes affect millions of people worldwide and have a major health impact, frequently leading to complications and mortality. In a search for better prevention and treatment, there is ongoing research into the underlying molecular and genetic bases of these complex human diseases, as well as into the links with risk factors such as obesity. Although an increasing number of relevant genomic and proteomic data sets have become available, the quantity and diversity of the data make their efficient exploitation challenging. Here, we present metabolicMine, a data warehouse with a specific focus on the genomics, genetics and proteomics of common metabolic diseases. Developed in collaboration with leading UK metabolic disease groups, metabolicMine integrates data sets from a range of experiments and model organisms alongside tools for exploring them. The current version brings together information covering genes, proteins, orthologues, interactions, gene expression, pathways, ontologies, diseases, genome-wide association studies and single nucleotide polymorphisms. Although the emphasis is on human data, key data sets from mouse and rat are included. These are complemented by interoperation with the RatMine rat genomics database, with a corresponding mouse version under development by the Mouse Genome Informatics (MGI) group. The web interface contains a number of features including keyword search, a library of Search Forms, the QueryBuilder and list analysis tools. This provides researchers with many different ways to analyse, view and flexibly export data. Programming interfaces and automatic code generation in several languages are supported, and many of the features of the web interface are available through web services. The combination of diverse data sets integrated with analysis tools and a powerful query system makes metabolicMine a valuable research resource. The web interface makes it accessible to first

  13. Congenital genetic inborn errors of metabolism presenting as an adult or persisting into adulthood: neuroimaging in the more common or recognizable disorders.

    Science.gov (United States)

    Krishna, Shri H; McKinney, Alexander M; Lucato, Leandro T

    2014-04-01

    Numerous congenital-genetic inborn errors of metabolism (CIEMs) have been identified and characterized in detail within recent decades, with promising therapeutic options. Neuroimaging is becoming increasingly utilized in earlier stages of CIEMs, and even in asymptomatic relatives of patients with a CIEM, so as to monitor disease progress and treatment response. This review attempts to summarize in a concise fashion the neuroimaging findings of various CIEMs that may present in adulthood, as well as those that may persist into adulthood, whether because of beneficial therapy or a delay in diagnosis. Notably, some of these disorders have neuroimaging findings that differ from their classic infantile or early childhood forms, whereas others are identical to their early pediatric forms. The focus of this review is their appearance on routine magnetic resonance imaging sequences, with some basic attention to the findings of such CIEMs on specialized neuroimaging, based on recent or preliminary research. The general classes of disorders covered in this complex review are: peroxisomal disorders (adrenoleukodystrophy), lysosomal storage disorders (including metachromatic leukodystrophy, Krabbe or globoid cell leukodystrophy, Fabry, Niemann-Pick, GM1, GM2, Gaucher, mucopolysaccharidoses, and Salla diseases), mitochondrial disorders (including mitochondrial encephalomyopathy with lactic acidosis and strokelike episodes, myoclonic epilepsy with ragged red fibers, Leigh disease, and Kearns-Sayre syndrome), urea cycle disorders, several organic acidemias (including phenylketonuria, maple syrup urine disease, 3-hydroxy-3-methylglutaryl colyase deficiency, glutaric acidurias, methylmalonic academia, proprionic academia, 3-methylglucatonic aciduria, and 2-hydroxyglutaric acidurias), cytoskeletal or transporter molecule defects (including Alexander or fibrinoid leukodystrophy, proteolipid protein-1 defect or Pelizaeus Merzbacher, Wilson, and Huntington diseases), and several

  14. Deconstructing Black Swans: An Introductory Approach to Inherited Metabolic Disorders in the Neonate.

    Science.gov (United States)

    Mew, Nicholas Ah; Viall, Sarah; Kirmse, Brian; Chapman, Kimberly A

    2015-08-01

    Inherited metabolic disorders (IMDs) are individually rare but collectively common disorders that frequently require rapid or urgent therapy. This article provides a generalized approach to IMDs, as well as some investigations and safe therapies that may be initiated pending the metabolic consult. An overview of the research supporting management strategies is provided. In addition, the newborn metabolic screen is reviewed. Caring for infants with IMDs can seem difficult because each of the types is rarely seen; however, collectively the management can be seen as similar. When an IMD is suspected, a metabolic specialist should be consulted for expert advice regarding appropriate laboratory investigations and management. Because rapid intervention of IMDs before the onset of symptoms may prevent future irreversible sequelae, each abnormal newborn screen must be addressed promptly. Management can be difficult. Research in this area is limited and can be difficult without multisite coordination since sample sizes of any significance are difficult to achieve.

  15. Interrelationship of canonical and non-canonical Wnt signalling pathways in chronic metabolic diseases.

    Science.gov (United States)

    Ackers, Ian; Malgor, Ramiro

    2018-01-01

    Chronic diseases account for approximately 45% of all deaths in developed countries and are particularly prevalent in countries with the most sophisticated and robust public health systems. Chronic metabolic diseases, specifically lifestyle-related diseases pertaining to diet and exercise, continue to be difficult to treat clinically. The most prevalent of these chronic metabolic diseases include obesity, diabetes, non-alcoholic fatty liver disease, chronic kidney disease and cardiovascular disease and will be the focus of this review. Wnt proteins are highly conserved glycoproteins best known for their role in development and homeostasis of tissues. Given the importance of Wnt signalling in homeostasis, aberrant Wnt signalling likely regulates metabolic processes and may contribute to the development of chronic metabolic diseases. Expression of Wnt proteins and dysfunctional Wnt signalling has been reported in multiple chronic diseases. It is interesting to speculate about an interrelationship between the Wnt signalling pathways as a potential pathological mechanism in chronic metabolic diseases. The aim of this review is to summarize reported findings on the contrasting roles of Wnt signalling in lifestyle-related chronic metabolic diseases; specifically, the contribution of Wnt signalling to lipid accumulation, fibrosis and chronic low-grade inflammation.

  16. Eating Disorders, Autoimmune, and Autoinflammatory Disease

    DEFF Research Database (Denmark)

    Zerwas, Stephanie; Larsen, Janne Tidselbak; Petersen, Liselotte

    2017-01-01

    higher hazards of eating disorders for children and adolescents with autoimmune or autoinflammatory diseases: 36% higher hazard for anorexia nervosa, 73% for bulimia nervosa, and 72% for an eating disorder not otherwise specified. The association was particularly strong in boys. Parental autoimmune...... or autoinflammatory disease history was associated with significantly increased odds for anorexia nervosa (odds ratio [OR] = 1.13, confidence interval [CI] = 1.01-1.25), bulimia nervosa (OR = 1.29; CI = 1.08-1.55) and for an eating disorder not otherwise specified (OR = 1.27; CI = 1.13-1.44). CONCLUSIONS: Autoimmune...

  17. Biotin deprivation impairs mitochondrial structure and function and has implications for inherited metabolic disorders.

    Science.gov (United States)

    Ochoa-Ruiz, Estefanía; Díaz-Ruiz, Rodrigo; Hernández-Vázquez, Alaín de J; Ibarra-González, Isabel; Ortiz-Plata, Alma; Rembao, Daniel; Ortega-Cuéllar, Daniel; Viollet, Benoit; Uribe-Carvajal, Salvador; Corella, José Ahmed; Velázquez-Arellano, Antonio

    2015-11-01

    Certain inborn errors of metabolism result from deficiencies in biotin containing enzymes. These disorders are mimicked by dietary absence or insufficiency of biotin, ATP deficit being a major effect,whose responsible mechanisms have not been thoroughly studied. Here we show that in rats and cultured cells it is the result of reduced TCA cycle flow, partly due to deficient anaplerotic biotin-dependent pyruvate carboxylase. This is accompanied by diminished flow through the electron transport chain, augmented by deficient cytochrome c oxidase (complex IV) activity with decreased cytochromes and reduced oxidative phosphorylation. There was also severe mitochondrial damage accompanied by decrease of mitochondria, associated with toxic levels of propionyl CoA as shown by carnitine supplementation studies, which explains the apparently paradoxical mitochondrial diminution in the face of the energy sensor AMPK activation, known to induce mitochondria biogenesis. This idea was supported by experiments on AMPK knockout mouse embryonic fibroblasts (MEFs). The multifactorial ATP deficit also provides a plausible basis for the cardiomyopathy in patients with propionic acidemia, and other diseases.Additionally, systemic inflammation concomitant to the toxic state might explain our findings of enhanced IL-6, STAT3 and HIF-1α, associated with an increase of mitophagic BNIP3 and PINK proteins, which may further increase mitophagy. Together our results imply core mechanisms of energy deficit in several inherited metabolic disorders.

  18. Experimental Models of Maternal Obesity and Neuroendocrine Programming of Metabolic Disorders in Offspring

    Directory of Open Access Journals (Sweden)

    Clare M. Reynolds

    2017-09-01

    Full Text Available Evidence from epidemiological, clinical, and experimental studies have clearly shown that disease risk in later life is increased following a poor early life environment, a process preferentially termed developmental programming. In particular, this work clearly highlights the importance of the nutritional environment during early development with alterations in maternal nutrition, including both under- and overnutrition, increasing the risk for a range of cardiometabolic and neurobehavioral disorders in adult offspring characterized by both adipokine resistance and obesity. Although the mechanistic basis for such developmental programming is not yet fully defined, a common feature derived from experimental animal models is that of alterations in the wiring of the neuroendocrine pathways that control energy balance and appetite regulation during early stages of developmental plasticity. The adipokine leptin has also received significant attention with clear experimental evidence that normal regulation of leptin levels during the early life period is critical for the normal development of tissues and related signaling pathways that are involved in metabolic and cardiovascular homeostasis. There is also increasing evidence that alterations in the epigenome and other underlying mechanisms including an altered gut–brain axis may contribute to lasting cardiometabolic dysfunction in offspring. Ongoing studies that further define the mechanisms between these associations will allow for identification of early risk markers and implementation of strategies around interventions that will have obvious beneficial implications in breaking a programmed transgenerational cycle of metabolic disorders.

  19. Tay-Sachs Disease

    Science.gov (United States)

    Tay-Sachs disease is a rare, inherited disease. It is a type of lipid metabolism disorder. It causes too ... cells, causing mental and physical problems. . Infants with Tay-Sachs disease appear to develop normally for the first few ...

  20. Development of the Clinic of Endocrinology, diabetes and metabolic disorders.

    Science.gov (United States)

    Shubeska Stratrova, S

    2013-01-01

    The Clinic of Endocrinology, diabetes and metabolic disorders was founded in 1975 by Prof d-r Alexandar Plashevski. Healthcare, educational and scientific activities in the Clinic of Endocrinology are performed in its departments. The Department for hospitalized diabetic and endocrine patients consists of the metabolic and endocrine intensive care unit, the department for diagnosis and treatment of diabetics and endocrine patients, day hospital, the department for education of diabetic patients, and the national center for insulin pump therapy. The Center for Diabetes was established in 1972 by Prof d-r Dimitar Arsov. In 1975, Prof d-r Alexandar Plasheski broadened the activities of the Center for Diabetes. It was dislocated in 1980, with new accommodation outside the clinic. Since then the Center has consisted of several organized units: two specialist outpatient clinics for diabetic patients, biochemical and endocrine laboratory, sub-departments for: diabetic foot, cardiovascular diagnosis, ophthalmology, and urgent interventions. The Department of Endocrinology and Metabolic Disorders for outclinic endocrine patients was established in 1980, and it integrates the following sub-departments: thyrology, andrology, reproductive endocrinology, obesity and lipid disorders and sub-department for osteoporosis. The educational staff of the Clinic of Endocrinology organizes theoretical and practical education about Clinical Investigation and Internal Medicine with credit transfer system course of study of the Medical Faculty, Faculty of Stomatology, postgraduate studies, specializations and sub-specializations. Symposiums, 3 congresses, schools for diabetes and osteoporosis and continuous medical education were also organized. The Clinic of Endocrinology was initiator, organizer, founder and the seat of several medical associations.

  1. INFORMATION SYSTEM FOR REGISTRY OF PATIENTS WITH METABOLIC DISEASES

    Directory of Open Access Journals (Sweden)

    N. H. Horovenko

    2015-05-01

    Full Text Available This article describes the problems encountered in the management of medical records of patients with metabolic diseases, and also provides a general solution to these problems through the introduction of a software product. Objective was to reduce the burden on the healthcare registrars and medical genetics center, improving the speed and quality of patient care. In the software implementation the main features of the complex design problems are described: the programming language Java, IDE NetBeans, MySQL database server and web application to work with database server phpMyAdmin and put forward requirements. Also, medical receptionist is able to keep track of patients to form an extract, view statistics. During development were numerous consultations with experienced doctors, medical registrars. With the convenient architecture in the future will be easy to add custom modules in the program. Development of the program management of electronic medical records of patients the center of metabolic diseases is essential, because today in Ukraine all the software that can keep track of patients who did not drawn enough attention to patients with metabolic diseases. Currently the software is installed in the center of metabolic diseases NCSH “OKHMATDYT.”

  2. From “Kidneys Govern Bones” to Chronic Kidney Disease, Diabetes Mellitus, and Metabolic Bone Disorder: A Crosstalk between Traditional Chinese Medicine and Modern Science

    Directory of Open Access Journals (Sweden)

    Xiao-Qin Wang

    2016-01-01

    Full Text Available Although traditional Chinese medicine (TCM and Western medicine have evolved on distinct philosophical foundations and reasoning methods, an increasing body of scientific data has begun to reveal commonalities. Emerging scientific evidence has confirmed the validity and identified the molecular mechanisms of many ancient TCM theories. One example is the concept of “Kidneys Govern Bones.” Here we discuss the molecular mechanisms supporting this theory and its potential significance in treating complications of chronic kidney disease (CKD and diabetes mellitus. Two signaling pathways essential for calcium-phosphate metabolism can mediate the effect of kidneys in bone homeostasis, one requiring renal production of bioactive vitamin D and the other involving an endocrine axis based on kidney-expressed Klotho and bone-secreted fibroblast growth factor 23. Disruption of either pathway can lead to calcium-phosphate imbalance and vascular calcification, accelerating metabolic bone disorder. Chinese herbal medicine is an adjunct therapy widely used for treating CKD and diabetes. Our results demonstrate the therapeutic effects and underlying mechanisms of a Chinese herbal formulation, Shen-An extracts, in diabetic nephropathy and renal osteodystrophy. We believe that the smart combination of Eastern and Western concepts holds great promise for inspiring new ideas and therapies for preventing and treating complications of CKD and diabetes.

  3. Risk Factors for the Development of Metabolic Disorders: A Review ...

    African Journals Online (AJOL)

    External factors impact on the hormones and enzymes which trigger development of metabolic disorders. The aim of this review was to highlight major hormonal and enzymatic factors that differentially predispose males and females to obesity, diabetes mellitus and hypertension. The research was a literaturebased ...

  4. Inborn errors of metabolism for the diagnostic radiologist

    Energy Technology Data Exchange (ETDEWEB)

    Hendriksz, Chris J. [Birmingham Children' s Hospital NHS Foundation Trust, Department of Clinical Inherited Metabolic Disorders, Birmingham (United Kingdom)

    2009-03-15

    Inherited metabolic disorders are becoming more important with the increasing availability of diagnostic methods and therapies for these conditions. The radiologist has become an important link in making the diagnosis or collaborating with the specialist centre to diagnose these disorders and monitor effects of therapy. The modes of presentation, disease-specific groups, classic radiological features and investigations are explored in this article to try and give the general radiologist some crucial background knowledge. The following presentations are covered: acute intoxication, hypoglycaemia, developmental delay and storage features. Specific groups of disorders covered are the abnormalities of intermediary metabolism, disorders of fatty acid oxidation and ketogenesis, mitochondrial disorders, lysosomal storage disorders, and, briefly, other groups such as peroxisomal disorders, disorders of glycosylation, and creatine synthesis disorders. New advances and the demands for monitoring are also briefly explored. (orig.)

  5. Inborn errors of metabolism for the diagnostic radiologist

    International Nuclear Information System (INIS)

    Hendriksz, Chris J.

    2009-01-01

    Inherited metabolic disorders are becoming more important with the increasing availability of diagnostic methods and therapies for these conditions. The radiologist has become an important link in making the diagnosis or collaborating with the specialist centre to diagnose these disorders and monitor effects of therapy. The modes of presentation, disease-specific groups, classic radiological features and investigations are explored in this article to try and give the general radiologist some crucial background knowledge. The following presentations are covered: acute intoxication, hypoglycaemia, developmental delay and storage features. Specific groups of disorders covered are the abnormalities of intermediary metabolism, disorders of fatty acid oxidation and ketogenesis, mitochondrial disorders, lysosomal storage disorders, and, briefly, other groups such as peroxisomal disorders, disorders of glycosylation, and creatine synthesis disorders. New advances and the demands for monitoring are also briefly explored. (orig.)

  6. Urea cycle disorders: a life-threatening yet treatable cause of metabolic encephalopathy in adults.

    Science.gov (United States)

    Blair, Nicholas F; Cremer, Philip D; Tchan, Michel C

    2015-02-01

    Urea cycle disorders are inborn errors of metabolism that, in rare cases, can present for the first time in adulthood. We report a perplexing presentation in a woman 4 days postpartum of bizarre and out-of-character behaviour interspersed with periods of complete normality. Without any focal neurological signs or abnormality on initial investigations, the diagnosis became clear with the finding of a significantly elevated plasma ammonia level, just as she began to deteriorate rapidly. She improved following intravenous dextrose and lipid emulsion, together with sodium benzoate, arginine and a protein-restricted diet. She remains well 12 months later with no permanent sequelae. Whilst this is a rare presentation of an uncommon disease, it is a treatable disorder and its early diagnosis can prevent a fatal outcome. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Vitamin D, Phosphate and Fibroblast Growth Factor 23: A role in the pathogenesis and management of Chronic Kidney Disease and Chronic Kidney Disease Mineral and Bone Disorder

    OpenAIRE

    Damasiewicz, Matthew John

    2017-01-01

    Chronic kidney disease (CKD) is defined by the presence of proteinuria or decreased kidney function, with a prevalence of 10-15% in the adult population. CKD can progress to end-stage kidney disease (ESKD) and is associated with progressive abnormalities of bone and mineral metabolism, defined as CKD mineral and bone disorder (CKD-MBD). The use of vitamin D in CKD, the optimal level for initiating treatment and the use of current and novel biomarkers in the management of ...

  8. MR imaging of the brain: metabolic and toxic white matter diseases

    Energy Technology Data Exchange (ETDEWEB)

    Forsting, M. [Univ. of Essen (Germany). Dept. of Neuroradiology

    1999-08-01

    Metabolic disorders of the brain are rare, complex and confusing. The diagnostic modality of choice nowadays is MRI. The high diagnostic sensitivity, however, is coupled with a lack of specificity and usually results in the depiction of similar appearing but clinically diverse white matter processes. For this reason it is essential to perform the MRI as early as possible during the course of the disease and to keep in close contact to the referring clinician to optimize image interpretation. Another precondition is to know the natural course of brain myelination and to know how this appears on the individual MR machine with different parameters. In some diseases like phenylketonuria MRI seems to be an excellent tool to monitor dietary treatment and patient compliance. In patients after radio- and / or chemotherapy MRI reveals the radiation induced leucencephalopathy and can usually differentiate between a recurrent malignancy. (orig.) With 3 figs., 1 tab., 23 refs.

  9. A clinical perspective of obesity, metabolic syndrome and cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Thang S Han

    2016-02-01

    Full Text Available The metabolic syndrome is a condition characterized by a special constellation of reversible major risk factors for cardiovascular disease and type 2 diabetes. The main, diagnostic, components are reduced HDL-cholesterol, raised triglycerides, blood pressure and fasting plasma glucose, all of which are related to weight gain, specifically intra-abdominal/ectopic fat accumulation and a large waist circumference. Using internationally adopted arbitrary cut-off values for waist circumference, having metabolic syndrome doubles the risk of cardiovascular disease, but offers an effective treatment approach through weight management. Metabolic syndrome now affects 30–40% of people by age 65, driven mainly by adult weight gain, and by a genetic or epigenetic predisposition to intra-abdominal/ectopic fat accumulation related to poor intra-uterine growth. Metabolic syndrome is also promoted by a lack of subcutaneous adipose tissue, low skeletal muscle mass and anti-retroviral drugs. Reducing weight by 5–10%, by diet and exercise, with or without, anti-obesity drugs, substantially lowers all metabolic syndrome components, and risk of type 2 diabetes and cardiovascular disease. Other cardiovascular disease risk factors such as smoking should be corrected as a priority. Anti-diabetic agents which improve insulin resistance and reduce blood pressure, lipids and weight should be preferred for diabetic patients with metabolic syndrome. Bariatric surgery offers an alternative treatment for those with BMI ≥ 40 or 35–40 kg/m 2 with other significant co-morbidity. The prevalence of the metabolic syndrome and cardiovascular disease is expected to rise along with the global obesity epidemic: greater emphasis should be given to effective early weight-management to reduce risk in pre-symptomatic individuals with large waists.

  10. Visual and Verbal Learning in a Genetic Metabolic Disorder

    Science.gov (United States)

    Spilkin, Amy M.; Ballantyne, Angela O.; Trauner, Doris A.

    2009-01-01

    Visual and verbal learning in a genetic metabolic disorder (cystinosis) were examined in the following three studies. The goal of Study I was to provide a normative database and establish the reliability and validity of a new test of visual learning and memory (Visual Learning and Memory Test; VLMT) that was modeled after a widely used test of…

  11. The risk of metabolic syndrome and nutrition

    Directory of Open Access Journals (Sweden)

    Aleksandr Konstantinovich Kuntsevich

    2015-02-01

    Full Text Available In the present literature review modern epidemiological studies the role of nutrition in the prevalence of the metabolic syndrome. Were analyzed mainly work on the association of certain types of dietary intake of the population to the risk of metabolic syndrome in several Western and Asian countries. The purpose of these studies was to determine deemed "good" type and the "bad" type of food, risk assessment and exchange of metabolic disorders to determine the optimal dietary recommendations.  Application of factor and cluster analysis allowed in a number of studies to identify groups of products associated with a decrease in the prevalence of metabolic syndrome and to estimate the odds ratios of metabolic syndrome when compared with the "bad" diet.  A number of papers were obtained confirm the effectiveness of the Mediterranean diet in the prevention of metabolic disorders. Commitment to the traditional Western diet is associated with deterioration in health, compared with the recommended "healthy" diet.  Data from epidemiological studies nutrition and metabolic disorders associated with a number of diseases, may be useful in determining how the recommendations on the best type of feeding the population, so to identify ways to further research.

  12. Magnesium isoglycyrrhizinate blocks fructose-induced hepatic NF-κB/NLRP3 inflammasome activation and lipid metabolism disorder.

    Science.gov (United States)

    Zhao, Xiao-Juan; Yang, Yan-Zi; Zheng, Yan-Jing; Wang, Shan-Chun; Gu, Hong-Mei; Pan, Ying; Wang, Shui-Juan; Xu, Hong-Jiang; Kong, Ling-Dong

    2017-08-15

    Magnesium isoglycyrrhizinate as a hepatoprotective agent possesses immune modulation and anti-inflammation, and treats liver diseases. But its effects on immunological-inflammatory and metabolic profiles for metabolic syndrome with liver injury and underlying potential mechanisms are not fully understood. In this study, magnesium isoglycyrrhizinate alleviated liver inflammation and lipid accumulation in fructose-fed rats with metabolic syndrome. It also suppressed hepatic inflammatory signaling activation by reducing protein levels of phosphorylation of nuclear factor-kappa B p65 (p-NF-κB p65), inhibitor of nuclear factor kappa-B kinase α/β (p-IKKα/β) and inhibitor of NF-κB α (p-IκBα) as well as nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC) and Caspase-1 in rats, being consistent with its reduction of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and IL-6 levels. Furthermore, magnesium isoglycyrrhizinate modulated lipid metabolism-related genes characterized by up-regulating peroxisome proliferator-activated receptor-α (PPAR-α) and carnitine palmitoyl transferase-1 (CPT-1), and down-regulating sensor for fatty acids to control-1 (SREBP-1) and stearoyl-CoA desaturase 1 (SCD-1) in the liver of fructose-fed rats, resulting in the reduction of triglyceride and total cholesterol levels. These effective actions were further confirmed in fructose-exposed BRL-3A and HepG2 cells. The molecular mechanisms underpinning these observations suggest that magnesium isoglycyrrhizinate may inhibit NF-κB/NLRP3 inflammasome activation to reduce immunological-inflammatory response, which in turn may prevent liver lipid metabolic disorder and accumulation under high fructose condition. Thus, blockade of NF-κB/NLRP3 inflammasome activation and lipid metabolism disorder by magnesium isoglycyrrhizinate may be the potential therapeutic approach for improving fructose-induced liver injury with

  13. Social jetlag, obesity and metabolic disorder: investigation in a cohort study.

    Science.gov (United States)

    Parsons, M J; Moffitt, T E; Gregory, A M; Goldman-Mellor, S; Nolan, P M; Poulton, R; Caspi, A

    2015-05-01

    Obesity is one of the leading causes of preventable death worldwide. Circadian rhythms are known to control both sleep timing and energy homeostasis, and disruptions in circadian rhythms have been linked with metabolic dysfunction and obesity-associated disease. In previous research, social jetlag, a measure of chronic circadian disruption caused by the discrepancy between our internal versus social clocks, was associated with elevated self-reported body mass index, possibly indicative of a more generalized association with obesity and metabolic dysfunction. We studied participants from the population-representative Dunedin Longitudinal Study (N=1037) to determine whether social jetlag was associated with clinically assessed measurements of metabolic phenotypes and disease indicators for obesity-related disease, specifically, indicators of inflammation and diabetes. Our analysis was restricted to N=815 non-shift workers in our cohort. Among these participants, we found that social jetlag was associated with numerous clinically assessed measures of metabolic dysfunction and obesity. We distinguished between obese individuals who were metabolically healthy versus unhealthy, and found higher social jetlag levels in metabolically unhealthy obese individuals. Among metabolically unhealthy obese individuals, social jetlag was additionally associated with elevated glycated hemoglobin and an indicator of inflammation. The findings are consistent with the possibility that 'living against our internal clock' may contribute to metabolic dysfunction and its consequences. Further research aimed at understanding that the physiology and social features of social jetlag may inform obesity prevention and have ramifications for policies and practices that contribute to increased social jetlag, such as work schedules and daylight savings time.

  14. Metabolic Myopathies.

    Science.gov (United States)

    Tarnopolsky, Mark A

    2016-12-01

    Metabolic myopathies are genetic disorders that impair intermediary metabolism in skeletal muscle. Impairments in glycolysis/glycogenolysis (glycogen-storage disease), fatty acid transport and oxidation (fatty acid oxidation defects), and the mitochondrial respiratory chain (mitochondrial myopathies) represent the majority of known defects. The purpose of this review is to develop a diagnostic and treatment algorithm for the metabolic myopathies. The metabolic myopathies can present in the neonatal and infant period as part of more systemic involvement with hypotonia, hypoglycemia, and encephalopathy; however, most cases present in childhood or in adulthood with exercise intolerance (often with rhabdomyolysis) and weakness. The glycogen-storage diseases present during brief bouts of high-intensity exercise, whereas fatty acid oxidation defects and mitochondrial myopathies present during a long-duration/low-intensity endurance-type activity or during fasting or another metabolically stressful event (eg, surgery, fever). The clinical examination is often normal between acute events, and evaluation involves exercise testing, blood testing (creatine kinase, acylcarnitine profile, lactate, amino acids), urine organic acids (ketones, dicarboxylic acids, 3-methylglutaconic acid), muscle biopsy (histology, ultrastructure, enzyme testing), MRI/spectroscopy, and targeted or untargeted genetic testing. Accurate and early identification of metabolic myopathies can lead to therapeutic interventions with lifestyle and nutritional modification, cofactor treatment, and rapid treatment of rhabdomyolysis.

  15. Apolipoprotein M in lipid metabolism and cardiometabolic diseases

    DEFF Research Database (Denmark)

    Borup, Anna; Christensen, Pernille Meyer; Nielsen, Lars B.

    2015-01-01

    : The apoM/S1P axis and its implications in atherosclerosis and lipid metabolism have been thoroughly studied. Owing to the discovery of the apoM/S1P axis, the scope of apoM research has broadened. ApoM and S1P have been implicated in lipid metabolism, that is by modulating HDL particles. Also......PURPOSE: This review will address recent findings on apolipoprotein M (apoM) and its ligand sphingosine-1-phosphate (S1P) in lipid metabolism and inflammatory diseases. RECENT FINDINGS: ApoM's likely role(s) in health and disease has become more diverse after the discovery that apoM functions...... as a chaperone for S1P. Hence, apoM has recently been implicated in lipid metabolism, diabetes and rheumatoid arthritis through in-vivo, in-vitro and genetic association studies. It remains to be established to which degree such associations with apoM can be attributed to its ability to bind S1P. SUMMARY...

  16. An Overview of Novel Dietary Supplements and Food Ingredients in Patients with Metabolic Syndrome and Non-Alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Priscila Silva Figueiredo

    2018-04-01

    Full Text Available Metabolic syndrome (MetS is characterized by interconnected factors related to metabolic disturbances, and is directly related to the occurrence of some diseases such as cardiovascular diseases and type 2 diabetes. MetS is described as one or both of insulin resistance and visceral adiposity, considered the initial causes of abnormalities that include hyperglycemia, elevated blood pressure, dyslipidemia, elevated inflammatory markers, and prothrombotic state, as well as polycystic ovarian syndrome in women. Other than in MetS, visceral adiposity and the pro-inflammatory state are also key in the development of non-alcoholic fatty liver disease (NAFLD, which is the most prevalent chronic liver disease in modern society. Both MetS and NAFLD are related to diet and lifestyle, and their treatment may be influenced by dietary pattern changes and the use of certain dietary supplements. This study aimed to review the role of food ingredients and supplements in the management of MetS and NAFLD specifically in human clinical trials. Moreover, bioactive compounds and polyunsaturated fatty acids (PUFAs may be used as strategies for preventing the onset of and treatment of metabolic disorders, such as MetS and NAFLD, improving the inflammatory state and other comorbidities, such as obesity, dyslipidemias, and cardiovascular diseases (CVD.

  17. Nature and Nurture in the Early-Life Origins of Metabolic Syndrome.

    Science.gov (United States)

    Gonzalez-Bulnes, Antonio; Astiz, Susana; Ovilo, Cristina; Garcia-Contreras, Consolacion; Vazquez-Gomez, Marta

    The combination of genetic background together with food excess and lack of exercise has become the cornerstone of metabolic disorders associated to lifestyle. The scenario is furthermore reinforced by their interaction with other environmental factors (stress, sleeping patterns, education, culture, rural versus urban locations, and xenobiotics, among others) inducing epigenetic changes in the exposed individuals. The immediate consequence is the development of further alterations like obesity and metabolic syndrome, and other adverse health conditions (type-2 diabetes, cardiovascular diseases, cancer, reproductive, immune and neurological disorders). Thus, having in mind the impact of the metabolic syndrome on the worldwide public health, the present review affords the relative roles and the interrelationships of nature (genetic predisposition to metabolic syndrome) and nurture (lifestyle and environmental effects causing epigenetic changes), on the establishment of the metabolic disorders in women; disorders that may evolve to metabolic syndrome prior or during pregnancy and may be transmitted to their descendants.

  18. Genetics Home Reference: Fabry disease

    Science.gov (United States)

    ... Stroke: Fabry's Disease Information Page National Institute of Neurological Disorders and Stroke: Lipid Storage Diseases Fact Sheet Educational Resources (8 links) Children Living With Inherited Metabolic Diseases (CLIMB) (UK): Fabry ...

  19. MINERALIZATION DISORDER OF OSSEOUS TISSUE AMONG THE CHILDREN, SUFFERING FROM INFLAMMATORY BOWEL DISEASES

    Directory of Open Access Journals (Sweden)

    E.A. Yablokova

    2006-01-01

    Full Text Available The growth rate of inflammatory bowel diseases among children actualizes early detection of this pathology form and its aftera effects, including secondary osteoporosis. The research purpose is to study the characteristics of osseous tissue mineralization, disorder of physical growth and sexual maturity of children, suffering from inflammatory bowel diseases. The researchers have examined 116 children, including 33 children, suffering from inflammatory bowel diseases; 26 children, suffering from persistent colitis; 29 children, suffering from gasatroduodenitis; and 28 children with no GI tract pathologies. The study deals with estimate of level of mineral osseous tissue density, biochemical rates of osseous metabolism, as well as physical growth and sexual maturity. reduction of mineral osseous tissue density was found among 48,5% of children, suffering from inflammatory bowel diseases, 23% of children, suffering from persistent colitis, 31% of children, suffering from chronic gastritis and 18% of almost healthy children, at the same time, it was more apparent among children, suffering from inflammatory bowel diseases. The lowest rates of mineral osseous tissue density were among girls. Calcium phosphoric metabolism did not change apart from calcium creatinine coefficient, if osteopenia was observed. Thus, reduction of mineral osseous tissue density is often observed among children, suffering from inflammatory bowel diseases, especially among adolescent girls. Therefore, it conditions the necessity to include densimetry into the conventional examination plan for children, suffering from inflammatory bowel diseases. Authors also find it advisable to monitor physical growth and sexual maturity of children.Key words: children, inflammatory bowel diseases, osteoporosis.

  20. The Molecular and Cellular Effect of Homocysteine Metabolism Imbalance on Human Health

    Directory of Open Access Journals (Sweden)

    Henrieta Škovierová

    2016-10-01

    Full Text Available Homocysteine (Hcy is a sulfur-containing non-proteinogenic amino acid derived in methionine metabolism. The increased level of Hcy in plasma, hyperhomocysteinemia, is considered to be an independent risk factor for cardio and cerebrovascular diseases. However, it is still not clear if Hcy is a marker or a causative agent of diseases. More and more research data suggest that Hcy is an important indicator for overall health status. This review represents the current understanding of molecular mechanism of Hcy metabolism and its link to hyperhomocysteinemia-related pathologies in humans. The aberrant Hcy metabolism could lead to the redox imbalance and oxidative stress resulting in elevated protein, nucleic acid and carbohydrate oxidation and lipoperoxidation, products known to be involved in cytotoxicity. Additionally, we examine the role of Hcy in thiolation of proteins, which results in their molecular and functional modifications. We also highlight the relationship between the imbalance in Hcy metabolism and pathogenesis of diseases, such as cardiovascular diseases, neurological and psychiatric disorders, chronic kidney disease, bone tissue damages, gastrointestinal disorders, cancer, and congenital defects.

  1. METABOLIC SYNDROME IN PATIENTS WITH PSYCHOTIC DISORDERS: diagnostic issues, comorbidity and side effects of antipsychotics

    OpenAIRE

    Kozumplik, Oliver; Uzun, Suzana; Jakovljević, Miro

    2010-01-01

    Background: Metabolic syndrome and other cardiovascular risk factors are highly prevalent in people with schizophrenia. Metabolic syndrome can contribute to significant morbidity and premature mortality and should be accounted for in the treatment of mental disorders. Along with results of numerous investigations regarding metabolic syndrome, different issues have occurred. The aim of this article is to review literature regarding diagnostic and treatment of metabolic syndrome and po...

  2. [An old "new" disease: body dysmorphic disorder (dysmorphophobia)].

    Science.gov (United States)

    Szabó, Pál

    2010-10-31

    Body dysmorphic disorder causes significant suffering and serious impairment in psychosocial functions. However, this disease with dangerous risks is scarcely mentioned in the Hungarian medical literature. The objective of the author is to give a detailed review about this almost unknown, but relatively common disorder. The serious disorder of body perception is in the centre of symptoms, leading to social isolation, anxiety, depression and obsessive-compulsive phenomena. The disorder often remains unrecognized because of the lack of insight of disease. Comorbidity with affective disorders, anxiety disorders, personality disorders, eating disorders, alcoholism and substance use disorders is common. The life quality of affected patients is bad, the risk of suicide or violence is high. Biological, psychological and sociocultural factors play an important role in the etiopathogenesis of the disorder. Imaging techniques and neuropsychological measures revealed changes characteristic for the disease. Childhood abuse and neglect, appearance-related critical remarks, stressors and the impact of media are also supposed to have role in the development of the disorder. The point prevalence is 0.7-2.5% in the general population, however, in special groups such as in tertiary students, psychiatric, dermatological and cosmetic surgery patients the prevalence rates may be much higher. Typically, the disease begins in early adolescence, and it persists and deteriorates without treatment, showing a chronic course. By means of pharmacotherapy and/or psychotherapy long-during improvement or full recovery can be achieved within a relatively short period of time.

  3. Nitric oxide and mitochondria in metabolic syndrome

    Science.gov (United States)

    Litvinova, Larisa; Atochin, Dmitriy N.; Fattakhov, Nikolai; Vasilenko, Mariia; Zatolokin, Pavel; Kirienkova, Elena

    2015-01-01

    Metabolic syndrome (MS) is a cluster of metabolic disorders that collectively increase the risk of cardiovascular disease. Nitric oxide (NO) plays a crucial role in the pathogeneses of MS components and is involved in different mitochondrial signaling pathways that control respiration and apoptosis. The present review summarizes the recent information regarding the interrelations of mitochondria and NO in MS. Changes in the activities of different NO synthase isoforms lead to the formation of metabolic disorders and therefore are highlighted here. Reduced endothelial NOS activity and NO bioavailability, as the main factors underlying the endothelial dysfunction that occurs in MS, are discussed in this review in relation to mitochondrial dysfunction. We also focus on potential therapeutic strategies involving NO signaling pathways that can be used to treat patients with metabolic disorders associated with mitochondrial dysfunction. The article may help researchers develop new approaches for the diagnosis, prevention and treatment of MS. PMID:25741283

  4. Metabolic syndrome in patients with ischemic heart disease

    International Nuclear Information System (INIS)

    Yasmin, S.; Naveed, T.; Shakoor, T.

    2008-01-01

    To determine the frequency of metabolic syndrome in patients with Ischemic Heart Disease (IHD). Cross-sectional, descriptive study. A total of 100 subjects with ischemic heart disease, fulfilling the inclusion criteria, were enrolled in the study. Demographic data (age and gender) and the 5 component conditions of the metabolic syndrome were noted. Subjects were physically assessed for the abdominal obesity, based on waist circumference. Fasting blood samples for glucose and lipid profile in first 24 hours after acute coronary insult were drawn and tested in central laboratory. Variables were processed for descriptive statistics. In this study population, 68% were male and 32% were female with mean age of 52 +-13.6 years in men and 56 +- 12.5 years in women. Frequency of metabolic syndrome was 32% in men and 28% in women. It increased with age. The highest rate of metabolic syndrome was in men diagnosed as STEMI (odds ratio: 3.39, 95% CI=1.36-8.41). Frequency of metabolic syndrome was high among the patients with IHD. It supports the potential for preventive efforts in persons with high-risk of IHD. (author)

  5. Metabolic topography of Parkinsonism

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Seung [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Parkinson's disease is one of the most frequent neurodegenerative diseases, which mainly affects the elderly. Parkinson's disease is often difficult to differentiate from atypical parkinson disorder such as progressive supranuclear palsy, multiple system atrophy, dementia with Lewy body, and corticobasal ganglionic degeneration, based on the clinical findings because of the similarity of phenotypes and lack of diagnostic markers. The accurate diagnosis of Parkinson's disease and atypical Parkinson disorders is not only important for deciding on treatment regimens and providing prognosis, but also it is critical for studies designed to investigate etiology and pathogenesis of parkinsonism and to develop new therapeutic strategies. Although degeneration of the nigrostriatal dopamine system results in marked loss of striatal dopamine content in most of the diseases causing parkinsonism, pathologic studies revealed different topographies of the neuronal cell loss in Parkinsonism. Since the regional cerebral glucose metabolism is a marker of integrated local synaptic activity and as such is sensitive to both direct neuronal/synaptic damage and secondary functional disruption at synapses distant from the primary site of pathology, and assessment of the regional cerebral glucose metabolism with F-18 FDG PET is useful in the differential diagnosis of parkinsonism and evaluating the pathophysiology of Parkinsonism.

  6. Metabolic topography of Parkinsonism

    International Nuclear Information System (INIS)

    Kim, Jae Seung

    2007-01-01

    Parkinson's disease is one of the most frequent neurodegenerative diseases, which mainly affects the elderly. Parkinson's disease is often difficult to differentiate from atypical parkinson disorder such as progressive supranuclear palsy, multiple system atrophy, dementia with Lewy body, and corticobasal ganglionic degeneration, based on the clinical findings because of the similarity of phenotypes and lack of diagnostic markers. The accurate diagnosis of Parkinson's disease and atypical Parkinson disorders is not only important for deciding on treatment regimens and providing prognosis, but also it is critical for studies designed to investigate etiology and pathogenesis of parkinsonism and to develop new therapeutic strategies. Although degeneration of the nigrostriatal dopamine system results in marked loss of striatal dopamine content in most of the diseases causing parkinsonism, pathologic studies revealed different topographies of the neuronal cell loss in Parkinsonism. Since the regional cerebral glucose metabolism is a marker of integrated local synaptic activity and as such is sensitive to both direct neuronal/synaptic damage and secondary functional disruption at synapses distant from the primary site of pathology, and assessment of the regional cerebral glucose metabolism with F-18 FDG PET is useful in the differential diagnosis of parkinsonism and evaluating the pathophysiology of Parkinsonism

  7. Sleep Disorders Associated With Alzheimer's Disease: A Perspective

    Directory of Open Access Journals (Sweden)

    Anna Brzecka

    2018-05-01

    Full Text Available Sleep disturbances, as well as sleep-wake rhythm disturbances, are typical symptoms of Alzheimer's disease (AD that may precede the other clinical signs of this neurodegenerative disease. Here, we describe clinical features of sleep disorders in AD and the relation between sleep disorders and both cognitive impairment and poor prognosis of the disease. There are difficulties of the diagnosis of sleep disorders based on sleep questionnaires, polysomnography or actigraphy in the AD patients. Typical disturbances of the neurophysiological sleep architecture in the course of the AD include deep sleep and paradoxical sleep deprivation. Among sleep disorders occurring in patients with AD, the most frequent disorders are sleep breathing disorders and restless legs syndrome. Sleep disorders may influence circadian fluctuations of the concentrations of amyloid-β in the interstitial brain fluid and in the cerebrovascular fluid related to the glymphatic brain system and production of the amyloid-β. There is accumulating evidence suggesting that disordered sleep contributes to cognitive decline and the development of AD pathology. In this mini-review, we highlight and discuss the association between sleep disorders and AD.

  8. Endocrine disrupting chemicals in mixture and obesity, diabetes and related metabolic disorders

    Science.gov (United States)

    Le Magueresse-Battistoni, Brigitte; Labaronne, Emmanuel; Vidal, Hubert; Naville, Danielle

    2017-01-01

    Obesity and associated metabolic disorders represent a major societal challenge in health and quality of life with large psychological consequences in addition to physical disabilities. They are also one of the leading causes of morbidity and mortality. Although, different etiologic factors including excessive food intake and reduced physical activity have been well identified, they cannot explain the kinetics of epidemic evolution of obesity and diabetes with prevalence rates reaching pandemic proportions. Interestingly, convincing data have shown that environmental pollutants, specifically those endowed with endocrine disrupting activities, could contribute to the etiology of these multifactorial metabolic disorders. Within this review, we will recapitulate characteristics of endocrine disruption. We will demonstrate that metabolic disorders could originate from endocrine disruption with a particular focus on convincing data from the literature. Eventually, we will present how handling an original mouse model of chronic exposition to a mixture of pollutants allowed demonstrating that a mixture of pollutants each at doses beyond their active dose could induce substantial deleterious effects on several metabolic end-points. This proof-of-concept study, as well as other studies on mixtures of pollutants, stresses the needs for revisiting the current threshold model used in risk assessment which does not take into account potential effects of mixtures containing pollutants at environmental doses, e.g., the real life exposure. Certainly, more studies are necessary to better determine the nature of the chemicals to which humans are exposed and at which level, and their health impact. As well, research studies on substitute products are essential to identify harmless molecules. PMID:28588754

  9. Celiac Disease Is Associated with Childhood Psychiatric Disorders: A Population-Based Study.

    Science.gov (United States)

    Butwicka, Agnieszka; Lichtenstein, Paul; Frisén, Louise; Almqvist, Catarina; Larsson, Henrik; Ludvigsson, Jonas F

    2017-05-01

    To determine the risk of future childhood psychiatric disorders in celiac disease, assess the association between previous psychiatric disorders and celiac disease in children, and investigate the risk of childhood psychiatric disorders in siblings of celiac disease probands. This was a nationwide registry-based matched cohort study in Sweden with 10 903 children (aged celiac disease and 12 710 of their siblings. We assessed the risk of childhood psychiatric disorders (any psychiatric disorder, psychotic disorder, mood disorder, anxiety disorder, eating disorder, psychoactive substance misuse, behavioral disorder, attention-deficit hyperactivity disorder [ADHD], autism spectrum disorder [ASD], and intellectual disability). HRs of future psychiatric disorders in children with celiac disease and their siblings was estimated by Cox regression. The association between previous diagnosis of a psychiatric disorder and current celiac disease was assessed using logistic regression. Compared with the general population, children with celiac disease had a 1.4-fold greater risk of future psychiatric disorders. Childhood celiac disease was identified as a risk factor for mood disorders, anxiety disorders, eating disorders, behavioral disorders, ADHD, ASD, and intellectual disability. In addition, a previous diagnosis of a mood, eating, or behavioral disorder was more common before the diagnosis of celiac disease. In contrast, siblings of celiac disease probands were at no increased risk of any of the investigated psychiatric disorders. Children with celiac disease are at increased risk for most psychiatric disorders, apparently owing to the biological and/or psychological effects of celiac disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Celiac disease: A missed cause of metabolic bone disease

    Directory of Open Access Journals (Sweden)

    Ashu Rastogi

    2012-01-01

    Full Text Available Introduction: Celiac disease (CD is a highly prevalent autoimmune disease. The symptoms of CD are varied and atypical, with many patients having no gastrointestinal symptoms. Metabolic bone disease (MBD is a less recognized manifestation of CD associated with spectrum of musculoskeletal signs and symptoms, viz. bone pains, proximal muscle weakness, osteopenia, osteoporosis, and fracture. We here report five patients who presented with severe MBD as the only manifestation of CD. Materials and Methods: Records of 825 patients of CD diagnosed during 2002-2010 were retrospectively analyzed for clinical features, risk factors, signs, biochemical, and radiological parameters. Results: We were able to identify five patients (0.6% of CD who had monosymptomatic presentation with musculoskeletal symptoms and signs in the form of bone pains, proximal myopathy, and fragility fractures without any gastrointestinal manifestation. All the five patients had severe MBD in the form of osteopenia, osteoporosis, and fragility fractures. Four of the five patients had additional risk factors such as antiepileptic drugs, chronic alcohol consumption, malnutrition, and associated vitamin D deficiency which might have contributed to the severity of MBD. Conclusion: Severe metabolic disease as the only presentation of CD is rare. Patients show significant improvement in clinical, biochemical, and radiological parameters with gluten-free diet, calcium, and vitamin D supplementation. CD should be looked for routinely in patients presenting with unexplained MBD.

  11. Ammonia-induced energy disorders interfere with bilirubin metabolism in hepatocytes.

    Science.gov (United States)

    Wang, Qiongye; Wang, Yanfang; Yu, Zujiang; Li, Duolu; Jia, Bin; Li, Jingjing; Guan, Kelei; Zhou, Yubing; Chen, Yanling; Kan, Quancheng

    2014-08-01

    Hyperammonemia and jaundice are the most common clinical symptoms of hepatic failure. Decreasing the level of ammonia in the blood is often accompanied by a reduction in bilirubin in patients with hepatic failure. Previous studies have shown that hyperammonemia can cause bilirubin metabolism disorders, however it is unclear exactly how hyperammonemia interferes with bilirubin metabolism in hepatocytes. The purpose of the current study was to determine the mechanism or mechanisms by which hyperammonemia interferes with bilirubin metabolism in hepatocytes. Cell viability and apoptosis were analyzed in primary hepatocytes that had been exposed to ammonium chloride. Mitochondrial morphology and permeability were observed and analyzed, intermediates of the tricarboxylic acid (TCA) cycle were determined and changes in the expression of enzymes related to bilirubin metabolism were analyzed after ammonia exposure. Hyperammonemia inhibited cell growth, induced apoptosis, damaged the mitochondria and hindered the TCA cycle in hepatocytes. This led to a reduction in energy synthesis, eventually affecting the expression of enzymes related to bilirubin metabolism, which then caused further problems with bilirubin metabolism. These effects were significant, but could be reversed with the addition of adenosine triphosphate (ATP). This study demonstrates that ammonia can cause problems with bilirubin metabolism by interfering with energy synthesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Heterogeneity of elderly depression: increased risk of Alzheimer's disease and Aβ protein metabolism.

    Science.gov (United States)

    Namekawa, Yuki; Baba, Hajime; Maeshima, Hitoshi; Nakano, Yoshiyuki; Satomura, Emi; Takebayashi, Naoko; Nomoto, Hiroshi; Suzuki, Toshihito; Arai, Heii

    2013-06-03

    Epidemiological studies have proposed that depression may increase the risk for Alzheimer's disease (AD), even in patients with early-onset depression. Although metabolism of amyloid β protein (Aβ) in elderly depression received attention in terms of their correlation, there is a serious heterogeneity in elderly depression in terms of age at onset of depression. Moreover, it is unknown whether early-onset major depressive disorder (MDD) has a long-term effect on the involvement of Aβ metabolism and later development of AD. Thus, we evaluated serum Aβ40 and Aβ42 levels, the Aβ40/Aβ42 ratio in 89 elderly (≥60 years of age) inpatients with MDD and 81 age-matched healthy controls, and compared them among patients with early-onset (great interest that the serum Aβ40/Aβ42 ratio was negatively correlated with the age at MDD onset (R=-0.201, p=0.032). These results suggest that an earlier onset of MDD may have a more serious abnormality in Aβ metabolism, possibly explaining a biological mechanism underlying the link between depression and AD. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Management of adynamic bone disease in chronic kidney disease: A brief review

    Directory of Open Access Journals (Sweden)

    Swathi K. Sista

    2016-09-01

    Full Text Available The Kidney Disease: Improving Global Outcomes (KDIGO work group released recommendations in 2006 to define the bone-related pathology associated with chronic kidney disease as renal osteodystrophy. In 2009, KDIGO released revised clinical practice guidelines which redefined systemic disorders of bone and mineral metabolism due to chronic kidney disease as chronic kidney disease-mineral and bone disorders. Conditions under this overarching term include osteitis fibrosa cystica, osteomalacia, and adynamic bone disease. We aim to provide a brief review of the histopathology, pathophysiology, epidemiology, and diagnostic features of adynamic bone disease, focusing on current trends in the management of this complex bone disorder.

  14. Genome-scale metabolic models applied to human health and disease.

    Science.gov (United States)

    Cook, Daniel J; Nielsen, Jens

    2017-11-01

    Advances in genome sequencing, high throughput measurement of gene and protein expression levels, data accessibility, and computational power have allowed genome-scale metabolic models (GEMs) to become a useful tool for understanding metabolic alterations associated with many different diseases. Despite the proven utility of GEMs, researchers confront multiple challenges in the use of GEMs, their application to human health and disease, and their construction and simulation in an organ-specific and disease-specific manner. Several approaches that researchers are taking to address these challenges include using proteomic and transcriptomic-informed methods to build GEMs for individual organs, diseases, and patients and using constraints on model behavior during simulation to match observed metabolic fluxes. We review the challenges facing researchers in the use of GEMs, review the approaches used to address these challenges, and describe advances that are on the horizon and could lead to a better understanding of human metabolism. WIREs Syst Biol Med 2017, 9:e1393. doi: 10.1002/wsbm.1393 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  15. Clinical evaluation of 99Tcm-MIBI myocardial perfusion imaging for the detection of coronary artery disease in patients with metabolic syndrome

    International Nuclear Information System (INIS)

    Tian Yueqin; Wei Hongxing; Guo Xinhua; Guo Feng; He Zuoxiang

    2008-01-01

    Objective: Metabolic syndrome is a combination of medical disorders that consist of a collection of independent factors at risk of developing coronary artery disease. The purpose of this study was to evaluate the value of 99 Tc m -methoxyisobutylisonitrile (MIBI) myocardial perfusion imaging for the diagnosis of coronary artery disease in patients with metabolic syndrome. Methods: A total of 251 patients [mean age (59 ± 10) years, 179 men, 72 women] were included in this study. All patients underwent exercise and rest 99 Tc m -MIBI myocardial perfusion imaging and coronary angiography. Results: Of the 163 patients with significant coronary artery stenosis, 116 showed abnormal 99 Tc m -MIBI myocardial perfusion imaging; and among the 88 patients with normal coronary angiography, 82 showed normal myocardial perfusion imaging. The sensitivity, specificity and accuracy of 99 Tc m -MIBI myocardial perfusion imaging for coronary artery disease detection were 71% (116/163), 93% (82/88) and 79% (198/251), respectively. The positive and negative predictive values were 95% (116/122) and 64% (82/129), respectively. Conclusion: 99 Tc m -MIBI myocardial perfusion imaging has important clinical value for detecting coronary artery disease in patients with metabolic syndrome. (authors)

  16. Risk of metabolic syndrome and its components in people with schizophrenia and related psychotic disorders, bipolar disorder and major depressive disorder: a systematic review and meta-analysis.

    Science.gov (United States)

    Vancampfort, Davy; Stubbs, Brendon; Mitchell, Alex J; De Hert, Marc; Wampers, Martien; Ward, Philip B; Rosenbaum, Simon; Correll, Christoph U

    2015-10-01

    Metabolic syndrome (MetS) and its components are highly predictive of cardiovascular diseases. The primary aim of this systematic review and meta-analysis was to assess the prevalence of MetS and its components in people with schizophrenia and related psychotic disorders, bipolar disorder and major depressive disorder, comparing subjects with different disorders and taking into account demographic variables and psychotropic medication use. The secondary aim was to compare the MetS prevalence in persons with any of the selected disorders versus matched general population controls. The pooled MetS prevalence in people with severe mental illness was 32.6% (95% CI: 30.8%-34.4%; N = 198; n = 52,678). Relative risk meta-analyses established that there was no significant difference in MetS prevalence in studies directly comparing schizophrenia versus bipolar disorder, and in those directly comparing bipolar disorder versus major depressive disorder. Only two studies directly compared people with schizophrenia and major depressive disorder, precluding meta-analytic calculations. Older age and a higher body mass index were significant moderators in the final demographic regression model (z = -3.6, p = 0.0003, r(2)  = 0.19). People treated with all individual antipsychotic medications had a significantly (ppeople with severe mental illness had a significantly increased risk for MetS (RR = 1.58; 95% CI: 1.35-1.86; p<0.001) and all its components, except for hypertension (p = 0.07). These data suggest that the risk for MetS is similarly elevated in the diagnostic subgroups of severe mental illness. Routine screening and multidisciplinary management of medical and behavioral conditions is needed in these patients. Risks of individual antipsychotics should be considered when making treatment choices. © 2015 World Psychiatric Association.

  17. Pituitary diseases and sleep disorders

    NARCIS (Netherlands)

    Romijn, Johannes A.

    2016-01-01

    Patients with pituitary diseases have decreased quality of life. Sleep disorders are prevalent among patients with pituitary diseases and contribute to decreased quality of life. Patients previously treated for compression of the optic chiasm by surgery, and in some cases postoperative radiotherapy,

  18. Screening for Inborn Errors of Metabolism

    Directory of Open Access Journals (Sweden)

    F.A. Elshaari

    2013-09-01

    Full Text Available Inborn errors of metabolism (IEM are a heterogeneous group of monogenic diseases that affect the metabolic pathways. The detection of IEM relies on a high index of clinical suspicion and co-ordinated access to specialized laboratory services. Biochemical analysis forms the basis of the final confirmed diagnosis in several of these disorders. The investigations fall into four main categories1.General metabolic screening tests2.Specific metabolite assays3.Enzyme studies4.DNA analysis The first approach to the diagnosis is by a multi-component analysis of body fluids in clinically selected patients, referred to as metabolic screening tests. These include simple chemical tests in the urine, blood glucose, acid-base profile, lactate, ammonia and liver function tests. The results of these tests can help to suggest known groups of metabolic disorders so that specific metabolites such as amino acids, organic acids, etc. can be estimated. However, not all IEM needs the approach of general screening. Lysosomal, peroxisomal, thyroid and adrenal disorders are suspected mainly on clinical grounds and pertinent diagnostic tests can be performed. The final diagnosis relies on the demonstration of the specific enzyme defect, which can be further confirmed by DNA studies.

  19. Impact of Gut Microbiota on Obesity, Diabetes, and Cardiovascular Disease Risk.

    Science.gov (United States)

    Miele, Luca; Giorgio, Valentina; Alberelli, Maria Adele; De Candia, Erica; Gasbarrini, Antonio; Grieco, Antonio

    2015-12-01

    Gut microbiota has been recently established to have a contributory role in the development of cardiometabolic disorders, such as atherosclerosis, obesity, and type 2 diabetes. Growing interest has focused on the modulation of gut microbiota as a therapeutic strategy in cardiovascular diseases and metabolic disorders. In this paper, we have reviewed the impact of gut microbiota on metabolic disorders and cardiovascular disease risk, focusing on the newest findings in this field.

  20. Fenugreek with reduced bitterness prevents diet-induced metabolic disorders in rats

    Directory of Open Access Journals (Sweden)

    Muraki Etsuko

    2012-05-01

    Full Text Available Abstract Background Various therapeutic effects of fenugreek (Trigonella foenum-graecum L. on metabolic disorders have been reported. However, the bitterness of fenugreek makes it hard for humans to eat sufficient doses of it for achieving therapeutic effects. Fenugreek contains bitter saponins such as protodioscin. Fenugreek with reduced bitterness (FRB is prepared by treating fenugreek with beta-glucosidase. This study has been undertaken to evaluate the effects of FRB on metabolic disorders in rats. Methods Forty Sprague–Dawley rats were fed with high-fat high-sucrose (HFS diet for 12 week to induce mild glucose and lipid disorders. Afterwards, the rats were divided into 5 groups. In the experiment 1, each group (n = 8 was fed with HFS, or HFS containing 2.4% fenugreek, or HFS containing 1.2%, 2.4% and 4.8% FRB, respectively, for 12 week. In the experiment 2, we examined the effects of lower doses of FRB (0.12%, 0.24% and 1.2% under the same protocol (n = 7 in each groups. Results In the experiment 1, FRB dose-dependently reduced food intake, body weight gain, epididymal white adipose tissue (EWAT and soleus muscle weight. FRB also lowered plasma and hepatic lipid levels and increased fecal lipid levels, both dose-dependently. The Plasma total cholesterol levels (mmol/L in the three FRB and Ctrl groups were 1.58 ± 0.09, 1.45 ± 0.05*, 1.29 ± 0.07* and 2.00 ± 0.18, respectively (*; P P P  Conclusions Thus we have demonstrated that FRB (1.2 ~ 4.8% prevents diet-induced metabolic disorders such as insulin resistance, dyslipidemia and fatty liver.

  1. Hepcidin: an important iron metabolism regulator in chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Sandra Azevedo Antunes

    Full Text Available Abstract Anemia is a common complication and its impact on morbimortality in patients with chronic kidney disease (CKD is well known. The discovery of hepcidin and its functions has contributed to a better understanding of iron metabolism disorders in CKD anemia. Hepcidin is a peptide mainly produced by hepatocytes and, through a connection with ferroportin, it regulates iron absorption in the duodenum and its release of stock cells. High hepcidin concentrations described in patients with CKD, especially in more advanced stages are attributed to decreased renal excretion and increased production. The elevation of hepcidin has been associated with infection, inflammation, atherosclerosis, insulin resistance and oxidative stress. Some strategies were tested to reduce the effects of hepcidin in patients with CKD, however more studies are necessary to assess the impact of its modulation in the management of anemia in this population.

  2. Danqi Pill regulates lipid metabolism disorder induced by myocardial ischemia through FATP-CPTI pathway.

    Science.gov (United States)

    Wang, Yong; Li, Chun; Wang, Qiyan; Shi, Tianjiao; Wang, Jing; Chen, Hui; Wu, Yan; Han, Jing; Guo, Shuzhen; Wang, Yuanyuan; Wang, Wei

    2015-02-21

    Danqi Pill (DQP), which contains Chinese herbs Salvia miltiorrhiza Bunge and Panax notoginseng, is widely used in the treatment of myocardial ischemia (MI) in China. Its regulatory effects on MI-associated lipid metabolism disorders haven't been comprehensively studied so far. We aimed to systematically investigate the regulatory mechanism of DQP on myocardial ischemia-induced lipid metabolism disorders. Myocardial ischemia rat model was induced by left anterior descending coronary artery ligation. The rat models were divided into three groups: model group with administration of normal saline, study group with administration of DanQi aqueous solution (1.5 mg/kg) and positive-control group with administration of pravastatin aqueous solution (1.2 mg/kg). In addition, another sham-operated group was set as negative control. At 28 days after treatment, cardiac function and degree of lipid metabolism disorders in rats of different groups were measured. Plasma lipid disorders were induced by myocardial ischemia, with manifestation of up-regulation of triglyceride (TG), low density lipoprotein (LDL), Apolipoprotein B (Apo-B) and 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGCR). DQP could down-regulate the levels of TG, LDL, Apo-B and HMGCR. The Lipid transport pathway, fatty acids transport protein (FATP) and Carnitine palmitoyltransferase I (CPTI) were down-regulated in model group. DQP could improve plasma lipid metabolism by up-regulating this lipid transport pathway. The transcription factors peroxisome proliferator-activated receptor α (PPARα) and retinoid X receptors (RXRs), which regulate lipid metabolism, were also up-regulated by DQP. Furthermore, DQP was able to improve heart function and up-regulate ejection fraction (EF) by increasing the cardiac diastolic volume. Our study reveals that DQP would be an ideal alternative drug for the treatment of dyslipidemia which is induced by myocardial ischemia.

  3. Immunologic Endocrine Disorders

    Science.gov (United States)

    Michels, Aaron W.; Eisenbarth, George S.

    2010-01-01

    Autoimmunity affects multiple glands in the endocrine system. Animal models and human studies highlight the importance of alleles in HLA (human leukocyte antigen)-like molecules determining tissue specific targeting that with the loss of tolerance leads to organ specific autoimmunity. Disorders such as type 1A diabetes, Grave's disease, Hashimoto's thyroiditis, Addison's disease, and many others result from autoimmune mediated tissue destruction. Each of these disorders can be divided into stages beginning with genetic susceptibility, environmental triggers, active autoimmunity, and finally metabolic derangements with overt symptoms of disease. With an increased understanding of the immunogenetics and immunopathogenesis of endocrine autoimmune disorders, immunotherapies are becoming prevalent, especially in type 1A diabetes. Immunotherapies are being used more in multiple subspecialty fields to halt disease progression. While therapies for autoimmune disorders stop the progress of an immune response, immunomodulatory therapies for cancer and chronic infections can also provoke an unwanted immune response. As a result, there are now iatrogenic autoimmune disorders arising from the treatment of chronic viral infections and malignancies. PMID:20176260

  4. Occult Metabolic Bone Disease in Chronic Pancreatitis

    African Journals Online (AJOL)

    2017-10-26

    Oct 26, 2017 ... KEYWORDS: Chronic pancreatitis, metabolic bone disease, osteomalacia, osteopenia ... with malabsorption, and endocrine dysfunction results in diabetes .... of insufficiency and deficiency were not assessed separately due ...

  5. Are oxidative stress markers useful to distinguish schizoaffective disorder from schizophrenia and bipolar disorder?

    Science.gov (United States)

    Bulbul, Feridun; Virit, Osman; Alpak, Gokay; Unal, Ahmet; Bulut, Mahmut; Kaya, Mehmet Cemal; Altindag, Abdurrahman; Celik, Hakim; Savas, Haluk A

    2014-04-01

    Schizoaffective disorder is a disease with both affective and psychotic symptoms. In this study, we aimed to compare oxidative metabolism markers of schizoaffective disorder, bipolar disorder and schizophrenic patients. Furthermore, we also aimed to investigate whether schizoaffective disorder could be differentiated from schizophrenia and bipolar disorder in terms of oxidative metabolism. Total oxidant status (TOS) and total antioxidant status (TAS) were measured in the blood samples that were collected from schizoaffective patients (n = 30), bipolar disorder patients (n = 30) and schizophrenic patients (n = 30). Oxidative stress index (OSI) was calculated by dividing TOS by TAS. TOS and OSI were found to be higher in patients with schizoaffective disorder compared with those in schizophrenia and bipolar disorder patients. TAS was not significantly different between the groups. Schizoaffective disorder was found to be different from bipolar disorder and schizophrenia in terms of oxidative parameters. This result may indicate that schizoaffective disorder could differ from bipolar disorder and schizophrenia in terms of biochemical parameters. Increased TOS levels observed in schizoaffective disorder may suggest poor clinical course and may be an indicator of poor prognosis.

  6. Metabolic profiles of cow's blood; a review.

    Science.gov (United States)

    Puppel, Kamila; Kuczyńska, Beata

    2016-10-01

    The term 'metabolic profile' refers to the analysis of blood biochemical parameters that are useful to assess and prevent metabolic and nutritional disorders in dairy herds. In the higher standards of milk production, the priority in modern breeding is keeping dairy cows in high lactation and healthy. The proper analysis, as well as control. of their feeding and metabolic status is immensely important for the health condition of the herd. The disproportion between the genetically determined ability for milk production and the limitations in improving the energy value of the ration may be the cause of metabolic disorders. Negative energy balance has a major impact on the body's hormonal balance and organ functions and mostly appears during transition periods: from 3 to 2 weeks prepartum until 2-3 weeks postpartum. The term 'transition' is used to underscore the important physiological, metabolic and nutritional changes occurring in this time. The manner in which these changes occur and how they are diagnosed and detected are extremely important, as they are closely related to clinical and subclinical postpartum diseases, lactation and reproductive performance - factors that significantly shape the profitability of production. Therefore the priority for intensive milk production is prevention of metabolic diseases and other disorders. It is the intent of this review to synthesize and summarize the information currently available on metabolic status and physiological changes in the cow's body that occur during lactation, as well as to discuss the interpretation of the results, which will be a useful diagnostic tool in nutritional evaluations of the dairy herd. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Here, there and everywhere: Resistin-like molecules in infection, inflammation, and metabolic disorders.

    Science.gov (United States)

    Pine, Gabrielle M; Batugedara, Hashini M; Nair, Meera G

    2018-06-01

    The Resistin-Like Molecules (RELM) α, β, and γ and their namesake, resistin, share structural and sequence homology but exhibit significant diversity in expression and function within their mammalian host. RELM proteins are expressed in a wide range of diseases, such as: microbial infections (eg. bacterial and helminth), inflammatory diseases (eg. asthma, fibrosis) and metabolic disorders (eg. diabetes). While the expression pattern and molecular regulation of RELM proteins are well characterized, much controversy remains over their proposed functions, with evidence of host-protective and pathogenic roles. Moreover, the receptors for RELM proteins are unclear, although three receptors for resistin, decorin, adenylyl cyclase-associated protein 1 (CAP1), and Toll-like Receptor 4 (TLR4) have recently been proposed. In this review, we will first summarize the molecular regulation of the RELM gene family, including transcription regulation and tissue expression in humans and mouse disease models. Second, we will outline the function and receptor-mediated signaling associated with RELM proteins. Finally, we will discuss recent studies suggesting that, despite early misconceptions that these proteins are pathogenic, RELM proteins have a more nuanced and potentially beneficial role for the host in certain disease settings. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Towards the development of an enzyme replacement therapy for the metabolic disorder propionic acidemia

    Directory of Open Access Journals (Sweden)

    Mahnaz Darvish-Damavandi

    2016-09-01

    Full Text Available Propionic acidemia (PA is a life-threatening disease caused by the deficiency of a mitochondrial biotin-dependent enzyme known as propionyl coenzyme-A carboxylase (PCC. This enzyme is responsible for degrading the metabolic intermediate, propionyl coenzyme-A (PP-CoA, derived from multiple metabolic pathways. Currently, except for drastic surgical and dietary intervention that can only provide partial symptomatic relief, no other form of therapeutic option is available for this genetic disorder. Here, we examine a novel approach in protein delivery by specifically targeting and localizing our protein candidate of interest into the mitochondrial matrix of the cells. In order to test this concept of delivery, we have utilized cell penetrating peptides (CPPs and mitochondria targeting sequences (MTS to form specific fusion PCC protein, capable of translocating and localizing across cell membranes. In vitro delivery of our candidate fusion proteins, evaluated by confocal images and enzymatic activity assay, indicated effectiveness of this strategy. Therefore, it holds immense potential in creating a new paradigm in site-specific protein delivery and enzyme replacement therapeutic for PA.

  9. The NLRP3 Inflammasome as a Novel Player of the Intercellular Crosstalk in Metabolic Disorders

    Directory of Open Access Journals (Sweden)

    Elisa Benetti

    2013-01-01

    Full Text Available The combination of obesity and type 2 diabetes is a serious health problem, which is projected to afflict 300 million people worldwide by 2020. Both clinical and translational laboratory studies have demonstrated that chronic inflammation is associated with obesity and obesity-related conditions such as insulin resistance. However, the precise etiopathogenetic mechanisms linking obesity to diabetes remain to be elucidated, and the pathways that mediate this phenomenon are not fully characterized. One of the most recently identified signaling pathways, whose activation seems to affect many metabolic disorders, is the “inflammasome,” a multiprotein complex composed of NLRP3 (nucleotide-binding domain and leucine-rich repeat protein 3, ASC (apoptosis-associated speck-like protein containing a CARD, and procaspase-1. NLRP3 inflammasome activation leads to the processing and secretion of the proinflammatory cytokines interleukin- (IL- 1β and IL-18. The goal of this paper is to review new insights on the effects of the NLRP3 inflammasome activation in the complex mechanisms of crosstalk between different organs, for a better understanding of the role of chronic inflammation in metabolic disease pathogenesis. We will provide here a perspective on the current research on NLRP3 inflammasome, which may represent an innovative therapeutic target to reverse the detrimental metabolic consequences of the metabolic inflammation.

  10. Adipose tissue remodeling: its role in energy metabolism and metabolic disorders

    Directory of Open Access Journals (Sweden)

    Sung Sik eChoe

    2016-04-01

    Full Text Available The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue (WAT functions as a key energy reservoir for other organs, whereas the brown adipose tissue (BAT accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secret various hormones, cytokines, and metabolites (termed as adipokines that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic over-nutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response.

  11. Insulin Signaling, Resistance, and the Metabolic Syndrome: Insights from Mouse Models to Disease Mechanisms

    Science.gov (United States)

    Guo, Shaodong

    2014-01-01

    Insulin resistance is a major underlying mechanism for the “metabolic syndrome”, which is also known as insulin resistance syndrome. Metabolic syndrome is increasing at an alarming rate, becoming a major public and clinical problem worldwide. Metabolic syndrome is represented by a group of interrelated disorders, including obesity, hyperglycemia, hyperlipidemia, and hypertension. It is also a significant risk factor for cardiovascular disease and increased morbidity and mortality. Animal studies demonstrate that insulin and its signaling cascade normally control cell growth, metabolism and survival through activation of mitogen-activated protein kinases (MAPKs) and phosphotidylinositide-3-kinase (PI3K), of which activation of PI-3K-associated with insulin receptor substrate-1 and -2 (IRS1, 2) and subsequent Akt→Foxo1 phosphorylation cascade has a central role in control of nutrient homeostasis and organ survival. Inactivation of Akt and activation of Foxo1, through suppression IRS1 and IRS2 in different organs following hyperinsulinemia, metabolic inflammation, and over nutrition may provide the underlying mechanisms for metabolic syndrome in humans. Targeting the IRS→Akt→Foxo1 signaling cascade will likely provide a strategy for therapeutic intervention in the treatment of type 2 diabetes and its complications. This review discusses the basis of insulin signaling, insulin resistance in different mouse models, and how a deficiency of insulin signaling components in different organs contributes to the feature of the metabolic syndrome. Emphasis will be placed on the role of IRS1, IRS2, and associated signaling pathways that couple to Akt and the forkhead/winged helix transcription factor Foxo1. PMID:24281010

  12. Metabolic Imaging in Parkinson Disease.

    Science.gov (United States)

    Meles, Sanne K; Teune, Laura K; de Jong, Bauke M; Dierckx, Rudi A; Leenders, Klaus L

    2017-01-01

    This review focuses on recent human 18 F-FDG PET studies in Parkinson disease. First, an overview is given of the current analytic approaches to metabolic brain imaging data. Next, we discuss how 18 F-FDG PET studies have advanced understanding of the relation between distinct brain regions and associated symptoms in Parkinson disease, including cognitive decline. In addition, the value of 18 F-FDG PET studies in differential diagnosis, identifying prodromal patients, and the evaluation of treatment effects are reviewed. Finally, anticipated developments in the field are addressed. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  13. Autism Spectrum Disorder and Mitochondrial Disease

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Autism Spectrum Disorder (ASD) Note: Javascript is disabled or is not ... with a mitochondrial disease: may also have an autism spectrum disorder, may have some of the symptoms/signs of ...

  14. MRI and CT appearances in metabolic encephalopathies due to systemic diseases in adults

    International Nuclear Information System (INIS)

    Bathla, G.; Hegde, A.N.

    2013-01-01

    The term encephalopathy refers to a clinical scenario of diffuse brain dysfunction, commonly due to a systemic, metabolic, or toxic derangement. Often the clinical evaluation is unsatisfactory in this scenario and imaging plays an important role in the diagnosis, assessment of treatment response, and prognostication of the disorder. Hence, it is important for radiologists to be familiar with the imaging features of some relatively frequently acquired metabolic encephalopathies encountered in the hospital setting. This study reviews the computed tomography (CT) and magnetic resonance imaging (MRI) features of a number of metabolic encephalopathies that occur as part of systemic diseases in adults. The following conditions are covered in this review: hypoglycaemic encephalopathy, hypoxic ischaemic encephalopathy, non-ketotic hyperglycaemia, hepatic encephalopathy, uraemic encephalopathy, hyperammonaemic encephalopathy, and posterior reversible encephalopathy syndrome. MRI is the imaging method of choice in evaluating these conditions. Due to their high metabolic activity, bilateral basal ganglia changes are evident in the majority of cases. Concurrent imaging abnormalities in other parts of the central nervous system often provide useful diagnostic information about the likely underlying cause of the encephalopathy. Besides this, abnormal signal intensity and diffusion restriction patterns on MRI and MR spectroscopy features may provide important clues as to the diagnosis and guide further management. Frequently, the diagnosis is not straightforward and typical imaging features require correlation with clinical and laboratory data for accurate assessment

  15. Hypothyroidism in metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Kota

    2012-01-01

    Full Text Available Aim: Metabolic syndrome (MetS and hypothyroidism are well established forerunners of atherogenic cardiovascular disease. Considerable overlap occurs in the pathogenic mechanisms of atherosclerotic cardiovascular disease by metabolic syndrome and hypothyroidism. Insulin resistance has been studied as the basic pathogenic mechanism in metabolic syndrome. [1] This cross sectional study intended to assess thyroid function in patients with metabolic syndrome and to investigate the association between hypothyroidism and metabolic syndrome. Materials and Methods: One hundred patients with metabolic syndrome who fulfilled the National Cholesterol Education Program- Adult Treatment Panel (NCEP-ATP III criteria [ 3 out of 5 criteria positive namely blood pressure ≥ 130/85 mm hg or on antihypertensive medications, fasting plasma glucose > 100 mg/dl or on anti-diabetic medications, fasting triglycerides > 150 mg/dl, high density lipoprotein cholesterol (HDL-C 102 cms in men and 88 cms in women] were included in the study group. [2] Fifty patients who had no features of metabolic syndrome (0 out of 5 criteria for metabolic syndrome were included in the control group. Patients with liver disorders, renal disorders, congestive cardiac failure, pregnant women, patients on oral contraceptive pills, statins and other medications that alter thyroid functions and lipid levels and those who are under treatment for any thyroid related disorder were excluded from the study. Acutely ill patients were excluded taking into account sick euthyroid syndrome. Patients were subjected to anthropometry, evaluation of vital parameters, lipid and thyroid profile along with other routine laboratory parameters. Students t-test, Chi square test and linear regression, multiple logistic regression models were used for statistical analysis. P value < 0.05 was considered significant. Results: Of the 100 patients in study group, 55 were females (55% and 45 were males (45%. Of the 50

  16. Cardiovascular disease in persons with depressive and anxiety disorders.

    Science.gov (United States)

    Vogelzangs, Nicole; Seldenrijk, Adrie; Beekman, Aartjan T F; van Hout, Hein P J; de Jonge, Peter; Penninx, Brenda W J H

    2010-09-01

    Associations between depression, and possibly anxiety, with cardiovascular disease have been established in the general population and among heart patients. This study examined whether cardiovascular disease was more prevalent among a large cohort of depressed and/or anxious persons. In addition, the role of specific clinical characteristics of depressive and anxiety disorders in the association with cardiovascular disease was explored. Baseline data from the Netherlands Study of Depression and Anxiety were used, including persons with a current (i.e. past year) or remitted DSM-IV depressive or anxiety disorder (N=2315) and healthy controls (N=492). Additional clinical characteristics (subtype, duration, severity, and psychoactive medication) were assessed. Cardiovascular disease (stroke and coronary heart disease) was assessed using algorithms based on self-report and medication use. Persons with current anxiety disorders showed an about three-fold increased prevalence of coronary heart disease (OR anxiety only=2.70, 95%CI=1.31-5.56; OR comorbid anxiety/depression=3.54, 95%CI=1.79-6.98). No associations were found for persons with depressive disorders only or remitted disorders, nor for stroke. Severity of depressive and anxiety symptoms--but no other clinical characteristics--most strongly indicated increased prevalence of coronary heart disease. Cross-sectional design. Within this large psychopathology-based cohort study, prevalence of coronary heart disease was especially increased among persons with anxiety disorders. Increased prevalence of coronary heart disease among depressed persons was largely owing to comorbid anxiety. Anxiety-alone as well as comorbid to depressive disorders-as risk indicator of coronary heart disease deserves more attention in both research and clinical practice. 2010 Elsevier B.V. All rights reserved.

  17. Phenylketonuria as a model for protein misfolding diseases and for the development of next generation orphan drugs for patients with inborn errors of metabolism.

    Science.gov (United States)

    Muntau, Ania C; Gersting, Søren W

    2010-12-01

    The lecture dedicated to Professor Horst Bickel describes the advances, successes, and opportunities concerning the understanding of the biochemical and molecular basis of phenylketonuria and the innovative treatment strategies introduced for these patients during the last 60 years. These concepts were transferred to other inborn errors of metabolism and led to significant reduction in morbidity and to an improvement in quality of life. Important milestones were the successful development of a low-phenylalanine diet for phenylketonuria patients, the recognition of tetrahydrobiopterin as an option to treat these individuals pharmacologically, and finally market approval of this drug. The work related to the discovery of a pharmacological treatment led metabolic researchers and pediatricians to new insights into the molecular processes linked to mutations in the phenylalanine hydroxylase gene at the cellular and structural level. Again, phenylketonuria became a prototype disorder for a previously underestimated but now rapidly expanding group of diseases: protein misfolding disorders with loss of function. Due to potential general biological mechanisms underlying these disorders, the door may soon open to a systematic development of a new class of pharmaceutical products. These pharmacological chaperones are likely to correct misfolding of proteins involved in numerous genetic and nongenetic diseases.

  18. Relative Handgrip Strength Is Inversely Associated with Metabolic Profile and Metabolic Disease in the General Population in China.

    Science.gov (United States)

    Li, Dongxue; Guo, Guanghong; Xia, Lili; Yang, Xinghua; Zhang, Biao; Liu, Feng; Ma, Jingang; Hu, Zhiping; Li, Yajun; Li, Wei; Jiang, Jiajia; Gaisano, Herbert; Shan, Guangliang; He, Yan

    2018-01-01

    Background: Absolute handgrip strength has been correlated with metabolic profile and metabolic disease. Whether relative handgrip strength is also associated with metabolic disease has not been assessed. This study aimed at assessing the association of relative handgrip strength with metabolic profile and metabolic disease in the general population in China. Methods: Data were derived from an ongoing cross-sectional survey of the 2013 National Physical and Health in Shanxi Province, which involved 5520 participants. Multiple linear regression or multiple logistic regression analysis were used to assess the association of absolute/relative handgrip strength with the metabolic profile, preclinical, and established stages of metabolic diseases. Results: This study revealed that relative handgrip strength, that is when normalized to BMI, was associated with: (1) in both genders for more favorable blood lipid levels of high-density lipoprotein cholesterol [males: b = 0.19 (0.15, 0.23); females: b = 0.22 (0.17, 0.28)], low-density lipoprotein cholesterol [males: b = -0.14 (-0.23, -0.05); females: b = -0.19 (-0.31, -0.18)], triglycerides [males: b = -0.58 (-0.74, -0.43); females: b = -0.55 (-0.74, -0.36)] and total cholesterol [males: b = -0.20 (-0.31, -0.10); females: b = -0.19 (-0.32, -0.06)]; and better serum glucose levels in males [ b = -0.30 (-0.46, -0.15)]. (2) lower risk of impaired fasting glucose in males {third quartile [OR = 0.66 (0.45-0.95)] and fourth quartile [OR = 0.46 (0.30-0.71)] vs. first quartile} and dyslipidemia in both genders {third quartile [males: OR = 0.65 (0.48-0.87); females: OR = 0.68 (0.53-0.86)] and fourth quartile [males: OR = 0.47 (0.35-0.64); females: OR = 0.47(0.36-0.61)] vs. first quartile}. (3) lower risk of hyperlipidemia in both genders third quartile [males: OR = 0.66 (0.50-0.87); females: OR = 0.57 (0.43-0.75)] and fourth quartile [males: OR = 0.35 (0.26-0.47); females: OR = 0.51 (0.38-0.70)] vs. first quartile. However, contrary

  19. A simple method of screening for metabolic bone disease

    International Nuclear Information System (INIS)

    Broughton, R.B.K.; Evans, W.D.

    1982-01-01

    The purpose of this investigation was to find a simple method -to be used as an adjunct to the conventional bone scintigram- that could differentiate between decreased bone metabolism or mass, i.e., osteoporosis -normal bone- and the group of conditions of increased bone metabolism or mass namely, osteomalacia, renal osteodystrophy, hyperparathyroidism and Paget's disease. The Fogelman's method using the bone to soft tissue ratios from region of interest analysis at 4 hours post injection, was adopted. An initial experience in measuring a value for the count rate density in lumbar vertebrae at 1 hr post injection during conventional bone scintigraphy appears to give a clear indication of the overall rate of bone metabolism. The advantage over whole body retention methods is that the scan performed at the end of the metabolic study will reveal localized bone disease that may otherwise not be anticipated

  20. Cerebral glucose metabolism in Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Martin, W R.W.; Beckman, J H; Calne, D B; Adam, M J; Harrop, R; Rogers, J G; Ruth, T J; Sayre, C I; Pate, B D [British Columbia Univ., Vancouver (Canada). TRIUMF Facility

    1984-02-01

    Local cerebral glucose utilization was measured in patients with predominantly unilateral Parkinson's disease using sup(18)F-2-fluoro-deoxyglucose and positron emission tomography. Preliminary results indicate the presence of asymmetric metabolic rates in the inferior basal ganglia. The structure comprising the largest portion of basal ganglia at this level is globus pallidus. These findings are consistent with metabolic studies on animals with unilateral nigrostriatal lesions in which pallidal hypermetabolism on the lesioned side has been demonstrated. Increased pallidal activity is likely secondary to a loss of inhibitory dopaminergic input to the striatum from substantia nigra.

  1. Cerebral glucose metabolism in Parkinson's disease

    International Nuclear Information System (INIS)

    Martin, W.R.W.; Beckman, J.H.; Calne, D.B.; Adam, M.J.; Harrop, R.; Rogers, J.G.; Ruth, T.J.; Sayre, C.I.; Pate, B.D.

    1984-01-01

    Local cerebral glucose utilization was measured in patients with predominantly unilateral Parkinson's disease using sup(18)F-2-fluoro-deoxyglucose and positron emission tomography. Preliminary results indicate the presence of asymmetric metabolic rates in the inferior basal ganglia. The structure comprising the largest portion of basal ganglia at this level is globus pallidus. These findings are consistent with metabolic studies on animals with unilateral nigrostriatal lesions in which pallidal hypermetabolism on the lesioned side has been demonstrated. Increased pallidal activity is likely secondary to a loss of inhibitory dopaminergic input to the striatum from substantia nigra

  2. Prevention of metabolic diseases: fruits (including fruit sugars) vs. vegetables.

    Science.gov (United States)

    Kuzma, Jessica N; Schmidt, Kelsey A; Kratz, Mario

    2017-07-01

    To discuss recent evidence from observational and intervention studies on the relationship between fruit and vegetable (F&V) consumption and metabolic disease. Observational studies have consistently demonstrated a modest inverse association between the intake of fruit and leafy green vegetables, but not total vegetables, and biomarkers of metabolic disease as well as incident type 2 diabetes mellitus. This is in contrast to limited evidence from recently published randomized controlled dietary intervention trials, which - in sum - suggests little to no impact of increased F&V consumption on biomarkers of metabolic disease. Evidence from observational studies that fruit and leafy green vegetable intake is associated with lower type 2 diabetes risk and better metabolic health could not be confirmed by dietary intervention trials. It is unclear whether this discrepancy is because of limitations inherent in observational studies (e.g., subjective dietary assessment methods, residual confounding) or due to limitations in the few available intervention studies (e.g., short duration of follow-up, interventions combining whole fruit and fruit juice, or lack of compliance). Future studies that attempt to address these limitations are needed to provide more conclusive insight into the impact of F&V consumption on metabolic health.

  3. Can a voice disorder be an occupational disease?

    Directory of Open Access Journals (Sweden)

    Daša Gluvajić

    2012-11-01

    Full Text Available Voice disorders are all changes in the voice quality that can be detected by hearing. Some etiological factors that contribute to the development of voice disorders are related to occupation, working environment and working conditions. In modern societies one third of the labour force works in professions with vocal loading. In such professions, voice disorders influence work ability and quality of life. For an occupational disease, the exposure to harmful factors in the workplace is essential and causes the development of a disorder in a previously healthy individual. In some European countries, voice disorders in teachers, which do not improve after proper treatment are recognized as occupational diseases. In Slovenia, no organic or functional voice disorder is listed on the current list of occupational diseases. Prevention and cure of occupational voice disorders can contribute to better safety at the workplace and improve the workers’ health. Voice professionals must also know that they are responsible for their own health and that they must actively take care of it.

  4. Metabolic bone disease as a presenting manifestation of primary Sjögren′s syndrome: Three cases and review of literature

    Directory of Open Access Journals (Sweden)

    Deepak Khandelwal

    2011-01-01

    Full Text Available Primary Sjögren′s syndrome (pSS is a chronic autoimmune disease characterized by a progressive lymphocytic infiltration of the exocrine glands with varying degrees of systemic involvement. Chronic inflammation compromises the glands′ function that leads to dry symptoms in the mouth/eyes. Renal involvement is a well recognized extraglandular manifestation of pSS. Metabolic bone disease (MBD, however, rarely occurs as the primary manifestation of a renal tubule disorder due to pSS. To the best of our knowledge there are only 6 reported cases of metabolic bone disease as the primary manifestation of pSS to date. Four of these had distal renal tubular acidosis (RTA, and 2 had a combined picture of distal and proximal tubular dysfunction. We herein present our experience of 3 cases who presented to us with a clinical picture suggestive of MBD. While investigating these patients, we found evidence of RTA, which was found to be secondary to pSS.

  5. High-Fat Diet Induces Dysbiosis of Gastric Microbiota Prior to Gut Microbiota in Association With Metabolic Disorders in Mice.

    Science.gov (United States)

    He, Cong; Cheng, Dandan; Peng, Chao; Li, Yanshu; Zhu, Yin; Lu, Nonghua

    2018-01-01

    Accumulating evidence suggests that high-fat diet (HFD) induced metabolic disorders are associated with dysbiosis of gut microbiota. However, no study has explored the effect of HFD on the gastric microbiota. This study established the HFD animal model to determine the impact of HFD on the gastric microbiota and its relationship with the alterations of gut microbiota. A total of 40 male C57BL/6 mice were randomly allocated to receive a standard chow diet (CD) or HFD for 12 weeks (12CD group and 12HFD group) and 24 weeks (24CD group and 24HFD group) ( n = 10 mice per group). Body weight and length were measured and Lee's index was calculated at different time points. The insulin sensitivity and serum levels of metabolic parameters including blood glucose, insulin and lipid were also evaluated. The gastric mucosa and fecal microbiota of mice were characterized by 16S rRNA gene sequencing. The body weight was much heavier and the Lee's index was higher in 24HFD group than 12HFD. The insulin resistance and serum level of lipid were increased in 24HFD group compared to 12HFD, indicating the aggravation of metabolic disorders as HFD went on. 16S rRNA gene sequencing showed dysbiosis of gastric microbiota with decreased community diversity while no significant alteration in gut microbiota after 12 weeks of HFD. The phyla Firmicutes and Proteobacteria tended to increase whereas Bacteroidetes and Verrucomicrobia decrease in the gastric microbiota of 12HFD mice compared to 12CD. Moreover, a remarkable reduction of bacteria especially Akkermansia muciniphila , which has beneficial effects on host metabolism, was observed firstly in the stomach of 12HFD group and then in the gut of 24HFD group, indicating the earlier alterations of microbiota in stomach than gut after HFD. We also found structural segregation of microbiota in the stomach as well as gut between 12HFD and 24HFD group, which is accompanied by the aggregation of metabolic disorders. These data suggest that HFD

  6. Microbiome Remodeling via the Montmorillonite Adsorption-Excretion Axis Prevents Obesity-related Metabolic Disorders

    Directory of Open Access Journals (Sweden)

    Pengfei Xu

    2017-02-01

    Full Text Available Obesity and its related metabolic disorders are closely correlated with gut dysbiosis. Montmorillonite is a common medicine used to treat diarrhea. We have previously found that dietary lipid adsorbent-montmorillonite (DLA-M has an unexpected role in preventing obesity. The aim of this study was to further investigate whether DLA-M regulates intestinal absorption and gut microbiota to prevent obesity-related metabolic disorders. Here, we show that DLA-M absorbs free fatty acids (FFA and endotoxins in vitro and in vivo. Moreover, the combination of fluorescent tracer technique and polarized light microscopy showed that DLA-M crystals immobilized BODIPY® FL C16 and FITC-LPS, respectively, in the digestive tract in situ. HFD-fed mice treated with DLA-M showed mild changes in the composition of the gut microbiota, particularly increases in short-chain fatty acids (SCFA-producing Blautia bacteria and decreases in endotoxin-producing Desulfovibrio bacteria, these changes were positively correlated with obesity and inflammation. Our results indicated that DLA-M immobilizes FFA and endotoxins in the digestive tract via the adsorption-excretion axis and DLA-M may potentially be used as a prebiotic to prevent intestinal dysbiosis and obesity-associated metabolic disorders in obese individuals.

  7. [Renal diseases related to MYH9 disorders].

    Science.gov (United States)

    Galeano, Dario; Zanoli, Luca; L'Imperio, Vincenzo; Fatuzzo, Pasquale; Granata, Antonio

    2017-04-01

    Mutations in MYH9 gene encoding the nonmuscle myosin heavy chain IIA (NMMHC-IIA) are related to a number of rare autosomal-dominant disorders which has been known as May-Hegglin disease, Sebastian syndrome, Fechtner syndrome and Epstein syndrome. Their common clinical features are congenital macrothrombocytopaenia and polymorphonuclear inclusion bodies, in addition to a variable risk of developing proteinuria, chronic kidney disease progressing toward end stage, sensorineural deafness and presenile cataracts. The term MYH9 related disease (MYH9-RD) describes the variable expression of a single illness encompassing all previously mentioned hereditary disorders. Renal involvement in MYH9- RD has been observed in 30% of patients. Mutant MYH9 protein, expressed in podocytes, mesangial and tubular cells, plays a main role in foot process effacement and in development of nephropathy. Interestingly, the MYH9 gene is currently under investigation also for his possible contribution to many other non-hereditary glomerulopathies such as focal global glomerulosclerosis (hypertensive nephrosclerosis), idiopathic focal segmental glomerulosclerosis, C1q nephropathy and HIV-associated nephropathy. In this review we are aimed to describe renal diseases related to MYH9 disorders, from the hereditary disease to the acquired disorders, in which MYH9-gene acts as a "renal failure susceptibility gene". Copyright by Società Italiana di Nefrologia SIN, Rome, Italy.

  8. Abnormal metabolic network activity in REM sleep behavior disorder.

    Science.gov (United States)

    Holtbernd, Florian; Gagnon, Jean-François; Postuma, Ron B; Ma, Yilong; Tang, Chris C; Feigin, Andrew; Dhawan, Vijay; Vendette, Mélanie; Soucy, Jean-Paul; Eidelberg, David; Montplaisir, Jacques

    2014-02-18

    To determine whether the Parkinson disease-related covariance pattern (PDRP) expression is abnormally increased in idiopathic REM sleep behavior disorder (RBD) and whether increased baseline activity is associated with greater individual risk of subsequent phenoconversion. For this cohort study, we recruited 2 groups of RBD and control subjects. Cohort 1 comprised 10 subjects with RBD (63.5 ± 9.4 years old) and 10 healthy volunteers (62.7 ± 8.6 years old) who underwent resting-state metabolic brain imaging with (18)F-fluorodeoxyglucose PET. Cohort 2 comprised 17 subjects with RBD (68.9 ± 4.8 years old) and 17 healthy volunteers (66.6 ± 6.0 years old) who underwent resting brain perfusion imaging with ethylcysteinate dimer SPECT. The latter group was followed clinically for 4.6 ± 2.5 years by investigators blinded to the imaging results. PDRP expression was measured in both RBD groups and compared with corresponding control values. PDRP expression was elevated in both groups of subjects with RBD (cohort 1: p abnormalities in subjects with idiopathic RBD are associated with a greater likelihood of subsequent phenoconversion to a progressive neurodegenerative syndrome.

  9. Pharyngoesophageal swallowing disorders in Parkinson disease

    International Nuclear Information System (INIS)

    Laurent, F.; Dumas, F.; Miremont, F.; Ferrer, X.; Amouretti, M.; Drouillard, J.

    1990-01-01

    This paper evaluates pharyngeal and esophageal swallowing disorders in Parkinson disease. Clinical, videofluorographic and manometric investigations were performed prospectively in 12 control subjects (eight men and four women; mean age, 60 years) and 21 patients with Parkinson disease (10 men and 11 women; mean age, 64 years) to study oral, pharyngeal, and esophageal motoricity. Seventeen patients (81%) complained of swallowing disorders: buccal bolus retention (48%), split swallowing (48%), and saliva buccal outflow (57%). Videofluorography was normal in control subjects and in eight patients (40%). Abnormal findings included vallecular and piriform recesses retention (60%) and split swallowing (35%). Manometry showed a nonperistaltic pharyngeal motoricity with simultaneous contraction in 14 patients (67%) and incomplete upper esophageal sphincter relaxation in three patients (14%). Body esophageal motoricity disorders indicated achalasia in five patients (24%), diffuse esophageal spasm in six (29%), and nonspecific esophageal motility disorder in five (24%)

  10. Metabolic syndrome in subjects with bipolar disorder and major depressive disorder in a current depressive episode: Population-based study: Metabolic syndrome in current depressive episode.

    Science.gov (United States)

    Moreira, Fernanda Pedrotti; Jansen, Karen; Cardoso, Taiane de Azevedo; Mondin, Thaíse Campos; Magalhães, Pedro Vieira da Silva; Kapczinski, Flávio; Souza, Luciano Dias de Mattos; da Silva, Ricardo Azevedo; Oses, Jean Pierre; Wiener, Carolina David

    2017-09-01

    To assess the differences in the prevalence of the metabolic syndrome (MetS) and their components in young adults with bipolar disorder (BD) and major depressive disorder (MDD) in a current depressive episode. This was a cross-sectional study with young adults aged 24-30 years old. Depressive episode (bipolar or unipolar) was assessed using the Mini International Neuropsychiatric Interview - Plus version (MINI Plus). The MetS was assessed using the National Cholesterol Education Program Adult Treatment Panel III (NCEP/ATP III). The sample included 972 subjects with a mean age of 25.81 (±2.17) years. Both BD and MDD patients showed higher prevalence of MetS compared to the population sample (BD = 46.9%, MDD = 35.1%, population = 22.1%, p depressive episode compared to the general population. Moreover, there was a significant difference on BMI values in the case of BD and MDD subjects (p = 0.016). Metabolic components were significantly associated with the presence of depressive symptoms, independently of the diagnosis. Copyright © 2017. Published by Elsevier Ltd.

  11. Exploring metabolic dysfunction in chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Slee Adrian D

    2012-04-01

    Full Text Available Abstract Impaired kidney function and chronic kidney disease (CKD leading to kidney failure and end-stage renal disease (ESRD is a serious medical condition associated with increased morbidity, mortality, and in particular cardiovascular disease (CVD risk. CKD is associated with multiple physiological and metabolic disturbances, including hypertension, dyslipidemia and the anorexia-cachexia syndrome which are linked to poor outcomes. Specific hormonal, inflammatory, and nutritional-metabolic factors may play key roles in CKD development and pathogenesis. These include raised proinflammatory cytokines, such as interleukin-1 and −6, tumor necrosis factor, altered hepatic acute phase proteins, including reduced albumin, increased C-reactive protein, and perturbations in normal anabolic hormone responses with reduced growth hormone-insulin-like growth factor-1 axis activity. Others include hyperactivation of the renin-angiotensin aldosterone system (RAAS, with angiotensin II and aldosterone implicated in hypertension and the promotion of insulin resistance, and subsequent pharmacological blockade shown to improve blood pressure, metabolic control and offer reno-protective effects. Abnormal adipocytokine levels including leptin and adiponectin may further promote the insulin resistant, and proinflammatory state in CKD. Ghrelin may be also implicated and controversial studies suggest activities may be reduced in human CKD, and may provide a rationale for administration of acyl-ghrelin. Poor vitamin D status has also been associated with patient outcome and CVD risk and may indicate a role for supplementation. Glucocorticoid activities traditionally known for their involvement in the pathogenesis of a number of disease states are increased and may be implicated in CKD-associated hypertension, insulin resistance, diabetes risk and cachexia, both directly and indirectly through effects on other systems including activation of the mineralcorticoid

  12. Metabolic Syndrome in Children with and without Developmental Coordination Disorder

    Science.gov (United States)

    Wahi, Gita; LeBlanc, Paul J.; Hay, John A.; Faught, Brent E.; O'Leary, Debra; Cairney, John

    2011-01-01

    Children with developmental coordination disorder (DCD) have higher rates of obesity compared to children with typical motor development, and, as a result may be at increased risk for developing metabolic syndrome (MetS). The purpose of this study was to determine the presence of MetS and its components among children with and without DCD. This…

  13. An association between diet, metabolic syndrome and lower urinary ...

    African Journals Online (AJOL)

    Diet is a key factor in the aetiology of many diseases, including metabolic syndrome and lower urinary tract disorders. Metabolic syndrome is a growing and increasingly expensive health problem in both the developed and the developing world, with an associated rise in morbidity and mortality. On the other hand, lower ...

  14. A comparative study on genetic and environmental influences on metabolic phenotypes in Eastern (Chinese) and Western (Danish) populations

    DEFF Research Database (Denmark)

    Li, Shuxia

    2015-01-01

    the risk of clinic diseases e.g. diabetes, atherosclerosis, stroke and cardiovascular disease. Metabolic phenotypes, similar to most complex traits, can be influenced by both genetic and environmental factors as well as their interplay. Many family and twin studies have demonstrated both genetic...... and environmental factors play important role in the variation of metabolic phenotypes and intra-individual change over time. Although both genetic and environmental factors are involved the development of metabolic disorders, the role of environment should be emphasized as the expression or function of gene can...... be regulated to adapt to existing environmental circumstance. In other words, adaptive evolution in populations under distinct environmental and cultural circumstances could have resulted in varying genetic basis of metabolic factors and development of metabolic disorders or diseases. Thus, it can...

  15. Bile Acid Metabolism and Signaling

    Science.gov (United States)

    Chiang, John Y. L.

    2015-01-01

    Bile acids are important physiological agents for intestinal nutrient absorption and biliary secretion of lipids, toxic metabolites, and xenobiotics. Bile acids also are signaling molecules and metabolic regulators that activate nuclear receptors and G protein-coupled receptor (GPCR) signaling to regulate hepatic lipid, glucose, and energy homeostasis and maintain metabolic homeostasis. Conversion of cholesterol to bile acids is critical for maintaining cholesterol homeostasis and preventing accumulation of cholesterol, triglycerides, and toxic metabolites, and injury in the liver and other organs. Enterohepatic circulation of bile acids from the liver to intestine and back to the liver plays a central role in nutrient absorption and distribution, and metabolic regulation and homeostasis. This physiological process is regulated by a complex membrane transport system in the liver and intestine regulated by nuclear receptors. Toxic bile acids may cause inflammation, apoptosis, and cell death. On the other hand, bile acid-activated nuclear and GPCR signaling protects against inflammation in liver, intestine, and macrophages. Disorders in bile acid metabolism cause cholestatic liver diseases, dyslipidemia, fatty liver diseases, cardiovascular diseases, and diabetes. Bile acids, bile acid derivatives, and bile acid sequestrants are therapeutic agents for treating chronic liver diseases, obesity, and diabetes in humans. PMID:23897684

  16. Practice guidelines for the diagnosis and management of microcytic anemias due to genetic disorders of iron metabolism or heme synthesis.

    Science.gov (United States)

    Donker, Albertine E; Raymakers, Reinier A P; Vlasveld, L Thom; van Barneveld, Teus; Terink, Rieneke; Dors, Natasja; Brons, Paul P T; Knoers, Nine V A M; Swinkels, Dorine W

    2014-06-19

    During recent years, our understanding of the pathogenesis of inherited microcytic anemias has gained from the identification of several genes and proteins involved in systemic and cellular iron metabolism and heme syntheses. Numerous case reports illustrate that the implementation of these novel molecular discoveries in clinical practice has increased our understanding of the presentation, diagnosis, and management of these diseases. Integration of these insights into daily clinical practice will reduce delays in establishing a proper diagnosis, invasive and/or costly diagnostic tests, and unnecessary or even detrimental treatments. To assist the clinician, we developed evidence-based multidisciplinary guidelines on the management of rare microcytic anemias due to genetic disorders of iron metabolism and heme synthesis. These genetic disorders may present at all ages, and therefore these guidelines are relevant for pediatricians as well as clinicians who treat adults. This article summarizes these clinical practice guidelines and includes background on pathogenesis, conclusions, and recommendations and a diagnostic flowchart to facilitate using these guidelines in the clinical setting. © 2014 by The American Society of Hematology.

  17. Overlap between functional abdominal pain disorders and organic diseases in children.

    Science.gov (United States)

    Langshaw, A H; Rosen, J M; Pensabene, L; Borrelli, O; Salvatore, S; Thapar, N; Concolino, D; Saps, M

    2018-04-02

    Functional abdominal pain disorders are highly prevalent in children. These disorders can be present in isolation or combined with organic diseases, such as celiac disease and inflammatory bowel diseases. Intestinal inflammation (infectious and non-infectious) predisposes children to the development of visceral hypersensitivity that can manifest as functional abdominal pain disorders, including irritable bowel syndrome. The new onset of irritable bowel syndrome symptoms in a patient with an underlying organic disease, such as inflammatory bowel disease, is clinically challenging, given that the same symptomatology may represent a flare-up of the inflammatory bowel disease or an overlapping functional abdominal pain disorder. Similarly, irritable bowel syndrome symptoms in a child previously diagnosed with celiac disease may occur due to poorly controlled celiac disease or the overlap with a functional abdominal pain disorder. There is little research on the overlap of functional abdominal disorders with organic diseases in children. Studies suggest that the overlap between functional abdominal pain disorders and inflammatory bowel disease is more common in adults than in children. The causes for these differences in prevalence are unknown. Only a handful of studies have been published on the overlap between celiac disease and functional abdominal pain disorders in children. The present article provides a review of the literature on the overlap between celiac disease, inflammatory bowel disease, and functional abdominal pain disorders in children and establish comparisons with studies conducted on adults. Copyright © 2018 Asociación Mexicana de Gastroenterología. Publicado por Masson Doyma México S.A. All rights reserved.

  18. Inborn errors of metabolism: a clinical overview

    Directory of Open Access Journals (Sweden)

    Ana Maria Martins

    1999-11-01

    Full Text Available CONTEXT: Inborn errors of metabolism cause hereditary metabolic diseases (HMD and classically they result from the lack of activity of one or more specific enzymes or defects in the transportation of proteins. OBJECTIVES: A clinical review of inborn errors of metabolism (IEM to give a practical approach to the physician with figures and tables to help in understanding the more common groups of these disorders. DATA SOURCE: A systematic review of the clinical and biochemical basis of IEM in the literature, especially considering the last ten years and a classic textbook (Scriver CR et al, 1995. SELECTION OF STUDIES: A selection of 108 references about IEM by experts in the subject was made. Clinical cases are presented with the peculiar symptoms of various diseases. DATA SYNTHESIS: IEM are frequently misdiagnosed because the general practitioner, or pediatrician in the neonatal or intensive care units, does not think about this diagnosis until the more common cause have been ruled out. This review includes inheritance patterns and clinical and laboratory findings of the more common IEM diseases within a clinical classification that give a general idea about these disorders. A summary of treatment types for metabolic inherited diseases is given. CONCLUSIONS: IEM are not rare diseases, unlike previous thinking about them, and IEM patients form part of the clientele in emergency rooms at general hospitals and in intensive care units. They are also to be found in neurological, pediatric, obstetrics, surgical and psychiatric clinics seeking diagnoses, prognoses and therapeutic or supportive treatment.

  19. Chylomicrons metabolism in patients with coronary artery disease

    International Nuclear Information System (INIS)

    Brandizzi, Laura Ines Ventura

    2002-01-01

    Chylomicrons are the triglyceride-rich lipoproteins that carry dietary lipids absorbed in the intestine. In the bloodstream , chylomicron triglycerides are broken-down by lipoprotein lipase using apoliprotein (apo) CII as co factor. Fatty acids and glycerol resulting from the enzymatic action are absorbed and stored in the body tissues mainly adipose and muscle for subsequent utilizations energy source. The resulting triglycerides depleted remnants are taken-up by liver receptor such as the LDL receptor using mainly apo E as ligand. For methodological reasons, chylomicron metabolism has been unfrequently studied in subjects despite its pathophysiological importance, and this metabolism was not evaluated in the great clinical trials that established the link between atherosclerosis and lipids. In studies using oral fat load tests, it has been shown that in patients with coronary artery disease there is a trend to accumulation of post-prandial triglycerides, vitamin A or apo B-48 , suggesting that in those patients chylomicrons and their remnants are slowly removed from the circulation. A triglyceride-rich emulsion marked radioisotopic which mimics chylomicron metabolism when injected into the bloodstream has been described that can offer a more straight forward approach to evaluate chylomicrons. In coronary artery disease patients both lipolysis and remnant removal from the plasma of the chylomicron-like emulsions were found slowed-down compared with control subjects without the disease. The introduction of more practical techniques to assess chylomicron metabolism may be new mechanisms underlying atherogenesis. (author)

  20. Associations between Body Composition Indices and Metabolic Disorders in Chinese Adults: A Cross-Sectional Observational Study

    Directory of Open Access Journals (Sweden)

    Rong Zhang

    2018-01-01

    Conclusions: This study identified positive associations between all evaluated body composition indices and metabolic parameters in Chinese adults. Among the body composition indices, BMI predicted four of the five evaluated metabolic disorders in both gender groups.

  1. Disease: H01582 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available nal deficiencies, like alcoholism. Metabolic disorders; Nervous system disease; Skin disease ... Nicotinami...no acid precursor tryptophan. ... It is currently seen in association with other conditions of chronic nutritio

  2. SLEEP AND CIRCADIAN RHYTHM DISORDERS IN PARKINSON'S DISEASE.

    Science.gov (United States)

    Gros, Priti; Videnovic, Aleksandar

    2017-09-01

    Sleep disorders are among the most challenging non-motor features of Parkinson's disease (PD) and significantly affect quality of life. Research in this field has gained recent interest among clinicians and scientists and is rapidly evolving. This review is dedicated to sleep and circadian dysfunction associated with PD. Most primary sleep disorders may co-exist with PD; majority of these disorders have unique features when expressed in the PD population. We discuss the specific considerations related to the common sleep problems in Parkinson's disease including insomnia, rapid eye movement sleep behavior disorder, restless legs syndrome, sleep disordered breathing, excessive daytime sleepiness and circadian rhythm disorders. Within each of these sleep disorders, we present updated definitions, epidemiology, etiology, diagnosis, clinical implications and management. Furthermore, areas of potential interest for further research are outlined.

  3. Relative Handgrip Strength Is Inversely Associated with Metabolic Profile and Metabolic Disease in the General Population in China

    Directory of Open Access Journals (Sweden)

    Dongxue Li

    2018-02-01

    Full Text Available Background: Absolute handgrip strength has been correlated with metabolic profile and metabolic disease. Whether relative handgrip strength is also associated with metabolic disease has not been assessed. This study aimed at assessing the association of relative handgrip strength with metabolic profile and metabolic disease in the general population in China.Methods: Data were derived from an ongoing cross-sectional survey of the 2013 National Physical and Health in Shanxi Province, which involved 5520 participants. Multiple linear regression or multiple logistic regression analysis were used to assess the association of absolute/relative handgrip strength with the metabolic profile, preclinical, and established stages of metabolic diseases.Results: This study revealed that relative handgrip strength, that is when normalized to BMI, was associated with: (1 in both genders for more favorable blood lipid levels of high-density lipoprotein cholesterol [males: b = 0.19 (0.15, 0.23; females: b = 0.22 (0.17, 0.28], low-density lipoprotein cholesterol [males: b = −0.14 (−0.23, −0.05; females: b = −0.19 (−0.31, −0.18], triglycerides [males: b = −0.58 (−0.74, −0.43; females: b = −0.55 (−0.74, −0.36] and total cholesterol [males: b = −0.20 (−0.31, −0.10; females: b = −0.19 (−0.32, −0.06]; and better serum glucose levels in males [b = −0.30 (−0.46, −0.15]. (2 lower risk of impaired fasting glucose in males {third quartile [OR = 0.66 (0.45–0.95] and fourth quartile [OR = 0.46 (0.30–0.71] vs. first quartile} and dyslipidemia in both genders {third quartile [males: OR = 0.65 (0.48–0.87; females: OR = 0.68 (0.53–0.86] and fourth quartile [males: OR = 0.47 (0.35–0.64; females: OR = 0.47(0.36–0.61] vs. first quartile}. (3 lower risk of hyperlipidemia in both genders third quartile [males: OR = 0.66 (0.50–0.87; females: OR = 0.57 (0.43–0.75] and fourth quartile [males: OR = 0.35 (0.26–0.47; females: OR

  4. Metabolism

    Science.gov (United States)

    ... Are More Common in People With Type 1 Diabetes Metabolic Syndrome Your Child's Weight Healthy Eating Endocrine System Blood Test: Basic Metabolic Panel (BMP) Activity: Endocrine System Growth Disorders Diabetes Center Thyroid Disorders Your Endocrine System Movie: Endocrine ...

  5. [Review: plant polyphenols modulate lipid metabolism and related molecular mechanism].

    Science.gov (United States)

    Dai, Yan-li; Zou, Yu-xiao; Liu, Fan; Li, Hong-zhi

    2015-11-01

    Lipid metabolism disorder is an important risk factor to obesity, hyperlipidemia and type 2 diabetes as well as other chronic metabolic disease. It is also a key target in preventing metabolic syndrome, chronic disease prevention. Plant polyphenol plays an important role in maintaining or improving lipid profile in a variety of ways. including regulating cholesterol absorption, inhibiting synthesis and secretion of triglyceride, and lowering plasma low density lipoprotein oxidation, etc. The purpose of this article is to review the lipid regulation effects of plant polyphenols and its related mechanisms.

  6. Biomarker discovery in neurological diseases: a metabolomic approach

    Directory of Open Access Journals (Sweden)

    Afaf El-Ansary

    2009-12-01

    Full Text Available Afaf El-Ansary, Nouf Al-Afaleg, Yousra Al-YafaeeBiochemistry Department, Science College, King Saud University, Riyadh, Saudi ArabiaAbstract: Biomarkers are pharmacological and physiological measurements or specific biochemicals in the body that have a particular molecular feature that makes them useful for measuring the progress of disease or the effects of treatment. Due to the complexity of neurological disorders, it is very difficult to have perfect markers. Brain diseases require plenty of markers to reflect the metabolic impairment of different brain cells. The recent introduction of the metabolomic approach helps the study of neurological diseases based on profiling a multitude of biochemical components related to brain metabolism. This review is a trial to elucidate the possibility to use this approach to identify plasma metabolic markers related to neurological disorders. Previous trials using different metabolomic analyses including nuclear magnetic resonance spectroscopy, gas chromatography combined with mass spectrometry, liquid chromatography combined with mass spectrometry, and capillary electrophoresis will be traced.Keywords: metabolic biomarkers, neurological disorders. metabolome, nuclear magnetic resonance, mass spectrometry, chromatography

  7. Metabolism features in the active rheumatoid disease

    Energy Technology Data Exchange (ETDEWEB)

    Cossermelli, W; Carvalho, N; Papaleo Netto, M [Sao Paulo Univ. (Brazil). Centro de Medicina Nuclear

    1974-02-01

    The /sup 131/I-labelled albumin metabolism was studied in fourteen female patients with rheumatoid arthritis. The half-life of distribution was increased while the turnover half-life and turnover rate was within normal limits. These results led to assume that synthesis and catabolism may not change this disease, not being the responsible mechanism of hypoalbuminemia. Hypoalbuminemia would appear as compensatory mechanism in view of other protein alterations, as hypergammaglobulinemia, without changes of stabilizing and metabolic properties of albumin, perhaps due to albumin molecular alterations.

  8. Reappraisal of GIP Pharmacology for Metabolic Diseases

    DEFF Research Database (Denmark)

    Finan, Brian; Müller, Timo D; Clemmensen, Christoffer

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) analogs are considered the best current medicines for type 2 diabetes (T2D) and obesity due to their actions in lowering blood glucose and body weight. Despite similarities to GLP-1, glucose-dependent insulinotropic polypeptide (GIP) has not been extensively pursue...... be beneficial for metabolic diseases. However, a growing body of new evidence - including data based on refined genetically modified models and improved pharmacological agents - suggests a paradigm shift on how the GIP system should be manipulated for metabolic benefits....

  9. Metabolism features in the active rheumatoid disease

    International Nuclear Information System (INIS)

    Cossermelli, W.; Carvalho, N.; Papaleo Netto, M.

    1974-01-01

    It was studied the 131 I-labelled albumin metabolism in fourteen female patients with rheumatoid arthritis. The half-life of distribution was increased while the turnover half-life and turnover rate was within normal limits. These results led to assume that synthesis and catabolism may not change this disease, not being the responsible mechanism of hypoalbuminemia. Hypoalbuminemia would appear as compensatory mechanism in view of other protein alterations, as hypergammaglobulinemia, without changes of stabilizing and metabolic properties of albumin, perhaps due to albumin molecular alterations [pt

  10. Measurement of 24-hr whole-body retention of Tc-99mMDP with a thyroid uptake probe: quantitative assessment of metabolic and metastatic bone diseases

    International Nuclear Information System (INIS)

    Seto, H.; Futatsuya, R.; Kamei, T.; Furumoto, N.; Ishizaki, Y.; Hada, M.; Kakishita, M.

    1983-01-01

    A new method for measurement of 24-hr whole body retention (WBR) of Tc-99mMDP, using a thyroid uptake probe was established and its clinical significance was evaluated in 102 patients with various bone disorders, including metabolic and metastatic bone diseases, aged above 20 years old. Reproducibility of 24-hr WBR in 10 patients was very good (r=0.996). The 24-hr WBR of Tc-99mMDP in the normal subjects was 30.4 +- 4.6%. The WBR values of chronic renal failure, metastatic bone disease and hyperthyroidism groups were 98.4 +- 3.0, 44.0 +- 8.0, 40,6 +- 6.3% respectively, which were significantly higher (p < 0.001). However the WBR of steroid-induced osteoporotic group was significantly lower (17.3 +- 5.4%) as compared with the normal group (p < 0.001). Based on these results the method is simple, reproducible and accurate to measure 24-hr WBR of Tc-99mMDP. Quantification of WBR is of great clinical value to diagnose metabolic bone disease and to follow-up metabolic and metastatic bone disease after treatment

  11. Ghrelin-derived peptides: a link between appetite/reward, GH axis and psychiatric disorders ?

    Directory of Open Access Journals (Sweden)

    Alexandra eLabarthe

    2014-10-01

    Full Text Available Psychiatric disorders are often associated with metabolic and hormonal alterations, including obesity, diabetes, metabolic syndrome as well as modifications in several biological rhythms including appetite, stress, sleep-wake cycles and secretion of their corresponding endocrine regulators.Among the gastrointestinal hormones that regulate appetite and adapt the metabolism in response to nutritional, hedonic and emotional dysfunctions, at the interface between endocrine, metabolic and psychiatric disorders, ghrelin plays a unique role as the only one increasing appetite. The secretion of ghrelin is altered in several psychiatric disorders (anorexia, schizophrenia as well as in metabolic disorders (obesity and in animal models in response to emotional triggers (psychological stress, …. but the relationship between these modifications and the physiopathology of psychiatric disorders remains unclear. Recently, a large literature showed that this key metabolic/endocrine regulator is involved in stress and reward-oriented behaviors and regulates anxiety and mood. In addition, preproghrelin is a complex prohormone but the roles of the other ghrelin-derived peptides, thought to act as functional ghrelin antagonists, are largely unknown. Altered ghrelin secretion and/or signaling in psychiatric diseases are thought to participate in altered appetite, hedonic response and reward. Whether this can contribute to the mechanism responsible for the development of the disease or can help to minimize some symptoms associated with these psychiatric disorders is discussed in the present review. We will thus describe 1 the biological actions of ghrelin and ghrelin-derived peptides on food and drugs reward, anxiety and depression, and the physiological consequences of ghrelin invalidation on these parameters, 2 how ghrelin and ghrelin-derived peptides are regulated in animal models of psychiatric diseases and in human psychiatric disorders in relation with the GH

  12. Offspring neuroimmune consequences of maternal malnutrition: Potential mechanism for behavioral impairments that underlie metabolic and neurodevelopmental disorders.

    Science.gov (United States)

    Smith, B L; Reyes, T M

    2017-10-01

    Maternal malnutrition significantly increases offspring risk for both metabolic and neurodevelopmental disorders. Animal models of maternal malnutrition have identified behavioral changes in the adult offspring related to executive function and reward processing. Together, these changes in executive and reward-based behaviors likely contribute to the etiology of both metabolic and neurodevelopmental disorders associated with maternal malnutrition. Concomitant with the behavioral effects, maternal malnutrition alters offspring expression of reward-related molecules and inflammatory signals in brain pathways that control executive function and reward. Neuroimmune pathways and microglial interactions in these specific brain circuits, either in early development or later in adulthood, could directly contribute to the maternal malnutrition-induced behavioral phenotypes. Understanding these mechanisms will help advance treatment strategies for metabolic and neurodevelopmental disorders, especially noninvasive dietary supplementation interventions. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Exploring sleep disorders in patients with chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Nigam G

    2018-01-01

    Full Text Available Gaurav Nigam,1 Macario Camacho,2 Edward T Chang,2 Muhammad Riaz3 1Division of Sleep Medicine, Clay County Hospital, Flora, IL, 2Division of Otolaryngology, Sleep Surgery and Sleep Medicine, Tripler Army Medical Center, Honolulu, HI, 3Division of Sleep Medicine, Astria Health Center, Grandview, WA, USA Abstract: Kidney disorders have been associated with a variety of sleep-related disorders. Therefore, researchers are placing greater emphasis on finding the role of chronic kidney disease (CKD in the development of obstructive sleep apnea and restless legs syndrome. Unfortunately, the presence of other sleep-related disorders with CKDs and non-CKDs has not been investigated with the same clinical rigor. Recent studies have revealed that myriad of sleep disorders are associated with CKDs. Furthermore, there are a few non-CKD-related disorders that are associated with sleep disorders. In this narrative review, we provide a balanced view of the spectrum of sleep disorders (as identified in International Classification of Sleep disorders-3 related to different types of renal disorders prominently including but not exclusively limited to CKD. Keywords: kidney disease, sleep disorders, obstructive sleep apnea, parasomnias, restless legs syndrome, chronic kidney disease, insomnia

  14. Multifunctional roles of enolase in Alzheimer's disease brain: beyond altered glucose metabolism.

    Science.gov (United States)

    Butterfield, D Allan; Lange, Miranda L Bader

    2009-11-01

    Enolase enzymes are abundantly expressed, cytosolic carbon-oxygen lyases known for their role in glucose metabolism. Recently, enolase has been shown to possess a variety of different regulatory functions, beyond glycolysis and gluconeogenesis, associated with hypoxia, ischemia, and Alzheimer's disease (AD). AD is an age-associated neurodegenerative disorder characterized pathologically by elevated oxidative stress and subsequent damage to proteins, lipids, and nucleic acids, appearance of neurofibrillary tangles and senile plaques, and loss of synapse and neuronal cells. It is unclear if development of a hypometabolic environment is a consequence of or contributes to AD pathology, as there is not only a significant decline in brain glucose levels in AD, but also there is an increase in proteomics identified oxidatively modified glycolytic enzymes that are rendered inactive, including enolase. Previously, our laboratory identified alpha-enolase as one the most frequently up-regulated and oxidatively modified proteins in amnestic mild cognitive impairment (MCI), early-onset AD, and AD. However, the glycolytic conversion of 2-phosphoglycerate to phosphoenolpyruvate catalyzed by enolase does not directly produce ATP or NADH; therefore it is surprising that, among all glycolytic enzymes, alpha-enolase was one of only two glycolytic enzymes consistently up-regulated from MCI to AD. These findings suggest enolase is involved with more than glucose metabolism in AD brain, but may possess other functions, normally necessary to preserve brain function. This review examines potential altered function(s) of brain enolase in MCI, early-onset AD, and AD, alterations that may contribute to the biochemical, pathological, clinical characteristics, and progression of this dementing disorder.

  15. The metabolic syndrome and risk of coronary artery disease in patients with chronic schizophrenia or schizoaffective disorder in a chronic mental institute

    Directory of Open Access Journals (Sweden)

    Ping-Tao Tseng

    2014-11-01

    Full Text Available The prevalence rate of metabolic syndrome (MS and coronary artery disease (CAD has been found to be high in patients with chronic schizophrenia. Current evidence shows that CAD is underdiagnosed in this group. Our study evaluated the prevalence of MS and the risk of CAD in patients with chronic schizophrenia in a chronic care mental hospital in southern Taiwan. We included all patients with the diagnosis of schizophrenia or schizoaffective disorder. We collected all laboratory, physical examination, psychiatric interview, and chart review data. We also evaluated the risk of CAD in these patients using the Framingham point system. There was no significant age difference in the MS prevalence rate in these patients. The young patients with schizophrenia in our study tended to have a higher prevalence of MS than the general population. In addition, female patients had a higher prevalence rate of MS than males. Based on the Framingham point system, we found the 10-year risk of CAD to be higher among the patients with schizophrenia than in the general population. Our study highlights the importance of the high risk of MS in both younger and older patients with schizophrenia, without a significant relationship to the use of antipsychotics. More complete cohort studies are needed to confirm these findings. Psychiatrists may want to establish more specific and detailed clinical guidelines for patients with chronic schizophrenia with comorbid physical diseases, especially MS and CAD.

  16. Exome Sequencing and the Management of Neurometabolic Disorders.

    Science.gov (United States)

    Tarailo-Graovac, Maja; Shyr, Casper; Ross, Colin J; Horvath, Gabriella A; Salvarinova, Ramona; Ye, Xin C; Zhang, Lin-Hua; Bhavsar, Amit P; Lee, Jessica J Y; Drögemöller, Britt I; Abdelsayed, Mena; Alfadhel, Majid; Armstrong, Linlea; Baumgartner, Matthias R; Burda, Patricie; Connolly, Mary B; Cameron, Jessie; Demos, Michelle; Dewan, Tammie; Dionne, Janis; Evans, A Mark; Friedman, Jan M; Garber, Ian; Lewis, Suzanne; Ling, Jiqiang; Mandal, Rupasri; Mattman, Andre; McKinnon, Margaret; Michoulas, Aspasia; Metzger, Daniel; Ogunbayo, Oluseye A; Rakic, Bojana; Rozmus, Jacob; Ruben, Peter; Sayson, Bryan; Santra, Saikat; Schultz, Kirk R; Selby, Kathryn; Shekel, Paul; Sirrs, Sandra; Skrypnyk, Cristina; Superti-Furga, Andrea; Turvey, Stuart E; Van Allen, Margot I; Wishart, David; Wu, Jiang; Wu, John; Zafeiriou, Dimitrios; Kluijtmans, Leo; Wevers, Ron A; Eydoux, Patrice; Lehman, Anna M; Vallance, Hilary; Stockler-Ipsiroglu, Sylvia; Sinclair, Graham; Wasserman, Wyeth W; van Karnebeek, Clara D

    2016-06-09

    Whole-exome sequencing has transformed gene discovery and diagnosis in rare diseases. Translation into disease-modifying treatments is challenging, particularly for intellectual developmental disorder. However, the exception is inborn errors of metabolism, since many of these disorders are responsive to therapy that targets pathophysiological features at the molecular or cellular level. To uncover the genetic basis of potentially treatable inborn errors of metabolism, we combined deep clinical phenotyping (the comprehensive characterization of the discrete components of a patient's clinical and biochemical phenotype) with whole-exome sequencing analysis through a semiautomated bioinformatics pipeline in consecutively enrolled patients with intellectual developmental disorder and unexplained metabolic phenotypes. We performed whole-exome sequencing on samples obtained from 47 probands. Of these patients, 6 were excluded, including 1 who withdrew from the study. The remaining 41 probands had been born to predominantly nonconsanguineous parents of European descent. In 37 probands, we identified variants in 2 genes newly implicated in disease, 9 candidate genes, 22 known genes with newly identified phenotypes, and 9 genes with expected phenotypes; in most of the genes, the variants were classified as either pathogenic or probably pathogenic. Complex phenotypes of patients in five families were explained by coexisting monogenic conditions. We obtained a diagnosis in 28 of 41 probands (68%) who were evaluated. A test of a targeted intervention was performed in 18 patients (44%). Deep phenotyping and whole-exome sequencing in 41 probands with intellectual developmental disorder and unexplained metabolic abnormalities led to a diagnosis in 68%, the identification of 11 candidate genes newly implicated in neurometabolic disease, and a change in treatment beyond genetic counseling in 44%. (Funded by BC Children's Hospital Foundation and others.).

  17. [Consensus statement on metabolic disorders and cardiovascular risks in patients with human immunodeficiency virus].

    Science.gov (United States)

    Polo Rodríguez, Rosa; Galindo Puerto, María José; Dueñas, Carlos; Gómez Candela, Carmen; Estrada, Vicente; Villar, Noemí G P; Locutura, Jaime; Mariño, Ana; Pascua, Javier; Palacios, Rosario; von Wichmman, Miguel Ángel; Álvarez, Julia; Asensi, Victor; Lopez Aldeguer, José; Lozano, Fernando; Negredo, Eugenia; Ortega, Enrique; Pedrol, Enric; Gutiérrez, Félix; Sanz Sanz, Jesús; Martínez Chamorro, Esteban

    2015-01-01

    This consensus document is an update of metabolic disorders and cardiovascular risk (CVR) guidelines for HIV-infected patients. This document has been approved by an expert panel of GEAM, SPNS and GESIDA after reviewing the results of efficacy and safety of clinical trials, cohort and pharmacokinetic studies published in biomedical journals (PubMed and Embase) or presented in medical scientific meetings. Recommendation strength and the evidence in which they are supported are based on the GRADE system. A healthy lifestyle is recommended, no smoking and at least 30min of aerobic exercise daily. In diabetic patients the same treatment as non-HIV infected patients is recommended. HIV patients with dyslipidemia should be considered as high CVR, thus its therapeutic objective is an LDL less than 100mg/dL. The antihypertensive of ACE inhibitors and ARAII families are better tolerated and have a lower risk of interactions. In HIV-patients with diabetes or metabolic syndrome and elevated transaminases with no defined etiology, the recommended is to rule out a hepatic steatosis Recommendations for action in hormone alterations are also updated. These new guidelines update previous recommendations regarding all those metabolic disorders involved in CVR. Hormone changes and their management and the impact of metabolic disorders on the liver are also included. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  18. Founders lecture 2007. Metabolic bone disease: what has changed in 30 years?

    Energy Technology Data Exchange (ETDEWEB)

    Sundaram, Murali [Cleveland Clinic, Diagnostic Radiology, MSK, Cleveland, OH (United States)

    2009-09-15

    To provide an update on imaging of metabolic bone disease based on new developments, findings, and changing practices over the past 30 years. Literature review of osteoporosis, osteomalacia, renal osteodystrophy, Paget's disease, bisphosphonates, with an emphasis on imaging. Cited references and pertinent findings. Significant developments have occurred in the imaging of metabolic bone disease over the past 30 years. (orig.)

  19. Modulating NAD+ metabolism, from bench to bedside.

    Science.gov (United States)

    Katsyuba, Elena; Auwerx, Johan

    2017-09-15

    Discovered in the beginning of the 20 th century, nicotinamide adenine dinucleotide (NAD + ) has evolved from a simple oxidoreductase cofactor to being an essential cosubstrate for a wide range of regulatory proteins that include the sirtuin family of NAD + -dependent protein deacylases, widely recognized regulators of metabolic function and longevity. Altered NAD + metabolism is associated with aging and many pathological conditions, such as metabolic diseases and disorders of the muscular and neuronal systems. Conversely, increased NAD + levels have shown to be beneficial in a broad spectrum of diseases. Here, we review the fundamental aspects of NAD + biochemistry and metabolism and discuss how boosting NAD + content can help ameliorate mitochondrial homeostasis and as such improve healthspan and lifespan. © 2017 The Authors.

  20. Associations between Zinc Deficiency and Metabolic Abnormalities in Patients with Chronic Liver Disease

    Directory of Open Access Journals (Sweden)

    Takashi Himoto

    2018-01-01

    Full Text Available Zinc (Zn is an essential trace element which has favorable antioxidant, anti-inflammatory, and apoptotic effects. The liver mainly plays a crucial role in maintaining systemic Zn homeostasis. Therefore, the occurrence of chronic liver diseases, such as chronic hepatitis, liver cirrhosis, or fatty liver, results in the impairment of Zn metabolism, and subsequently Zn deficiency. Zn deficiency causes plenty of metabolic abnormalities, including insulin resistance, hepatic steatosis and hepatic encephalopathy. Inversely, metabolic abnormalities like hypoalbuminemia in patients with liver cirrhosis often result in Zn deficiency. Recent studies have revealed the putative mechanisms by which Zn deficiency evokes a variety of metabolic abnormalities in chronic liver disease. Zn supplementation has shown beneficial effects on such metabolic abnormalities in experimental models and actual patients with chronic liver disease. This review summarizes the pathogenesis of metabolic abnormalities deriving from Zn deficiency and the favorable effects of Zn administration in patients with chronic liver disease. In addition, we also highlight the interactions between Zn and other trace elements, vitamins, amino acids, or hormones in such patients.

  1. Neuroinflammatory basis of metabolic syndrome.

    Science.gov (United States)

    Purkayastha, Sudarshana; Cai, Dongsheng

    2013-10-05

    Inflammatory reaction is a fundamental defense mechanism against threat towards normal integrity and physiology. On the other hand, chronic diseases such as obesity, type 2 diabetes, hypertension and atherosclerosis, have been causally linked to chronic, low-grade inflammation in various metabolic tissues. Recent cross-disciplinary research has led to identification of hypothalamic inflammatory changes that are triggered by overnutrition, orchestrated by hypothalamic immune system, and sustained through metabolic syndrome-associated pathophysiology. While continuing research is actively trying to underpin the identity and mechanisms of these inflammatory stimuli and actions involved in metabolic syndrome disorders and related diseases, proinflammatory IκB kinase-β (IKKβ), the downstream nuclear transcription factor NF-κB and some related molecules in the hypothalamus were discovered to be pathogenically significant. This article is to summarize recent progresses in the field of neuroendocrine research addressing the central integrative role of neuroinflammation in metabolic syndrome components ranging from obesity, glucose intolerance to cardiovascular dysfunctions.

  2. Anion-exchange analysis of isotopically labelled nucleotides, nucleosides, and bases in metabolic disorders

    International Nuclear Information System (INIS)

    Nissinen, E.A.O.

    1987-01-01

    This paper on the importance of cellular purines and pyrimidines is evidenced by the multitude of diseases, such as hyperuricemia, orotic aciduria, gout, Lesch-Nyhan syndrome, immunodeficiencies with B- and T-cell dysfunctions, etc. which result from aberrant metabolism. In addition, the use of purine and pyrimidine analogs in chemotherapy is of growing interest. Purine metabolism consists of a complex network of biochemical pathway. These pathways are under complicated feedback regulation and there also exists a close relationship between purine and pyrimidine metabolism. In addition, these pathways interact with those of the carbohydrate, amino acid, and energy metabolism. Since metabolic pathways are closely interrelated, a change in the concentration of a particular metabolite may lead to many changes in the overall metabolic profiles. For instance, in the area of nucleotide metabolism, the inhibition of IMP dehydrogenase by mycophenolic acid leads to various changes in both purine and pyrimidine nucleotide pools. Inhibition of de nova purine biosynthesis by methotrexate leads to many changes in purine and pyrimidine ribonucleotides and deoxyribonucleotides. Thus, the simultaneous measurement of all cellular purine and pyrimidine metabolites from individuals whose metabolism is altered, either by a metabolic disease or by the action of drugs, may further our understanding of cellular metabolism

  3. MR imaging of metabolic white matter diseases: Therapeutic response

    International Nuclear Information System (INIS)

    Gebarski, S.S.; Allen, R.

    1987-01-01

    In metabolic diseases affecting the brain, MR imaging abnormalities include white-matter signal aberrations suggesting myelination delay, dysmyelination and demyelination, pathologic iron storage, and finally, loss of substance usually in a nonspecific pattern. The authors suggest that MR imaging may have therapeutic implications: (1) classic galactosemia - white-matter signal aberration became normal after dietary therapy; (2) phenylketonuria - age- and sex-matched treated and nontreated adolescents showed marked differences in brain volume, with the treated patient's volume nearly normal; (3) maple syrup urine disease - gross white-matter signal aberration became nearly normal after dietary therapy; and (4) hyperglycinemia - relentless progression of white-matter signal aberration and loss of brain substance despite therapy. These data suggest that brain MR imaging may provide a therapeutic index in certain metabolic diseases

  4. Impulse control disorder and rapid eye movement sleep behavior disorder in Parkinson's disease.

    Science.gov (United States)

    Bayard, Sophie; Dauvilliers, Yves; Yu, Huan; Croisier-Langenier, Muriel; Rossignol, Alexia; Charif, Mahmoud; Geny, Christian; Carlander, Bertrand; Cochen De Cock, Valérie

    2014-12-01

    The relationship between ICD and RBD is still not yet understood and the results from the current literature are contradictory in PD. We aimed to explore the association between rapid eye movement (REM) sleep behavior disorder (RBD) and impulse control disorder in Parkinson's disease. Ninety-eight non-demented patients with Parkinson's disease underwent one night of video-polysomnography recording. The diagnosis of RBD was established according to clinical and polysomnographic criteria. Impulse control disorders were determined by a gold standard, semi-structured diagnostic interview. Half of the patients (n = 49) reported clinical history of RBD while polysomnographic diagnosis of RBD was confirmed in 31.6% of the patients (n = 31). At least one impulse control disorder was identified in 21.4% of patients, 22.6% with RBD and 20.9% without. Logistic regression controlling for potential confounders indicated that both clinical RBD (OR = 0.34, 95% CI = 0.07-1.48, P = 0.15) and polysomnographic confirmed RBD diagnoses (OR = 0.1.28, 95% CI = 0.31-5.33, P = 0.34) were not associated with impulse control disorder. In Parkinson's disease, REM Sleep Behavior Disorder is not associated with impulse control disorder. The results of our study do not support the notion that PSG-confirmed RBD and ICD share a common pathophysiology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Metabolic effects of obesity causing disease in childhood.

    Science.gov (United States)

    Abrams, Pamela; Levitt Katz, Lorraine E

    2011-02-01

    Childhood obesity is rising to epidemic proportions throughout the world, and much emphasis has been placed on the long-term consequences that can result later, in adulthood. This article reviews the metabolic consequences of obesity that can manifest as disease during the childhood years. Obese children suffer from many disease processes once thought to affect only adults. They can have type 2 diabetes mellitus, and potentially early β cell failure with rapid progression to an insulin requirement. There is a high prevalence of fatty liver disease in obese children, and complications such as steatohepatitis and even cirrhosis can develop during childhood. Visceral fat has been shown to have many different properties than subcutaneous fat, and children with central adiposity can develop the metabolic syndrome with insulin resistance, hypertension, and dyslipidemia. Hyperandrogenism, sleep disturbances, and many types of orthopedic complications can also develop in young children. Physicians should not only warn obese children and their families about the long-term consequences of obesity for which they are at risk in adulthood, they should also screen for the many diseases that may already be present.

  6. Dietary Treatment of Metabolic Acidosis in Chronic Kidney Disease.

    Science.gov (United States)

    Siener, Roswitha

    2018-04-20

    Chronic kidney disease and reduced glomerular filtration rate are risk factors for the development of chronic metabolic acidosis. The prevention or correction of chronic metabolic acidosis has been found to slow progression of chronic kidney disease. Dietary composition can strongly affect acid⁻base balance. Major determinants of net endogenous acid production are the generation of large amounts of hydrogen ions, mostly by animal-derived protein, which is counterbalanced by the metabolism of base-producing foods like fruits and vegetables. Alkali therapy of chronic metabolic acidosis can be achieved by providing an alkali-rich diet or oral administration of alkali salts. The primary goal of dietary treatment should be to increase the proportion of fruits and vegetables and to reduce the daily protein intake to 0.8⁻1.0 g per kg body weight. Diet modifications should begin early, i.e., even in patients with moderate kidney impairment, because usual dietary habits of many developed societies contribute an increased proportion of acid equivalents due to the high intake of protein from animal sources.

  7. Dietary Treatment of Metabolic Acidosis in Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Roswitha Siener

    2018-04-01

    Full Text Available Chronic kidney disease and reduced glomerular filtration rate are risk factors for the development of chronic metabolic acidosis. The prevention or correction of chronic metabolic acidosis has been found to slow progression of chronic kidney disease. Dietary composition can strongly affect acid–base balance. Major determinants of net endogenous acid production are the generation of large amounts of hydrogen ions, mostly by animal-derived protein, which is counterbalanced by the metabolism of base-producing foods like fruits and vegetables. Alkali therapy of chronic metabolic acidosis can be achieved by providing an alkali-rich diet or oral administration of alkali salts. The primary goal of dietary treatment should be to increase the proportion of fruits and vegetables and to reduce the daily protein intake to 0.8–1.0 g per kg body weight. Diet modifications should begin early, i.e., even in patients with moderate kidney impairment, because usual dietary habits of many developed societies contribute an increased proportion of acid equivalents due to the high intake of protein from animal sources.

  8. Chronic exposure to low concentrations of lead induces metabolic disorder and dysbiosis of the gut microbiota in mice.

    Science.gov (United States)

    Xia, Jizhou; Jin, Cuiyuan; Pan, Zihong; Sun, Liwei; Fu, Zhengwei; Jin, Yuanxiang

    2018-08-01

    Lead (Pb) is one of the most prevalent toxic, nonessential heavy metals that can contaminate food and water. In this study, effects of chronic exposure to low concentrations of Pb on metabolism and gut microbiota were evaluated in mice. It was observed that exposure of mice to 0.1mg/L Pb, supplied via drinking water, for 15weeks increased hepatic TG and TCH levels. The levels of some key genes related to lipid metabolism in the liver increased significantly in Pb-treated mice. For the gut microbiota, at the phylum level, the relative abundance of Firmicutes and Bacteroidetes changed obviously in the feces and the cecal contents of mice exposed to 0.1mg/L Pb for 15weeks. In addition, 16s rRNA gene sequencing further discovered that Pb exposure affected the structure and richness of the gut microbiota. Moreover, a 1 H NMR metabolic analysis unambiguously identified 31 metabolites, and 15 metabolites were noticeably altered in 0.1mg/L Pb-treated mice. Taken together, the data indicate that chronic Pb exposure induces dysbiosis of the gut microbiota and metabolic disorder in mice. Chronic Pb exposure induces metabolic disorder, dysbiosis of the gut microbiota and hepatic lipid metabolism disorder in mice. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Optimal management of bone mineral disorders in chronic kidney disease and end stage renal disease.

    Science.gov (United States)

    Lundquist, Andrew L; Nigwekar, Sagar U

    2016-03-01

    The review summarizes recent studies on chronic kidney disease-mineral bone disorders, with a focus on new developments in disease management. The term chronic kidney disease-mineral bone disorder has come to describe an increasingly complex network of alterations in minerals and skeletal disorders that contribute to the significant cardiovascular morbidity and mortality seen in patients with chronic kidney disease and end stage renal disease. Clinical studies continue to suggest associations with clinical outcomes, yet current clinical trials have failed to support causality. Variability in practice exists as current guidelines for management of mineral bone disorders are often based on weak evidence. Recent studies implicate novel pathways for therapeutic intervention in clinical trials. Mineral bone disorders in chronic kidney disease arise from alterations in a number of molecules in an increasingly complex physiological network interconnecting bone and the cardiovascular system. Despite extensive associations with improved outcomes in a number of molecules, clinical trials have yet to prove causality and there is an absence of new therapies available to improve patient outcomes. Additional clinical trials that can incorporate the complexity of mineral bone disorders, and with the ability to intervene on more than one pathway, are needed to advance patient care.

  10. [The role of psychological factors and psychiatric disorders in skin diseases].

    Science.gov (United States)

    Kieć-Swierczyńska, Marta; Dudek, Bohdan; Krecisz, Beata; Swierczyńska-Machura, Dominika; Dudek, Wojciech; Garnczarek, Adrianna; Turczyn, Katarzyna

    2006-01-01

    In this paper, the relation between psychological factors and psychiatric disorders in patients with skin diseases is discussed. On the one hand psychological factors (stress, negative emotions) can influence the generation and aggravation of skin disorders (urticaria, atopic dermatitis, vitiligo), on the other hand psychological disorders can result in some skin diseases (psoriasis, atopic dermatitis). In the majority of cases the quality of life is poorly estimated by patients with skin problems. Psychodermatology is divided into three categories according to the relationship between skin diseases and mental disorders: 1) psychophysiologic disorders caused by skin diseases triggering different emotional states (stress), but not directly combined with mental disorders (psoriasis, eczema); 2) primary psychiatric disorders responsible for self-induced skin disorders (trichotillomania); and 3) secondary psychiatric disorders caused by disfiguring skin (ichthyosis, acne conglobata, vitiligo), which can lead to states of fear, depression or suicidal thoughts.

  11. Nutritional and metabolic diseases involving the nervous system.

    Science.gov (United States)

    Kopcha, M

    1987-03-01

    This article will discuss eight diseases that alter normal nervous system function: hypovitaminosis A, water deprivation/salt toxicity, ammonia toxicosis, hypomagnesemia, hypocalcemia, nervous ketosis, hepatoencephalopathy, and rumen metabolic acidosis.

  12. Impulse control disorders and depression in Finnish patients with Parkinson's disease.

    Science.gov (United States)

    Joutsa, Juho; Martikainen, Kirsti; Vahlberg, Tero; Voon, Valerie; Kaasinen, Valtteri

    2012-02-01

    Impulse control disorders occur frequently in patients with Parkinson's disease. However, the frequencies have been investigated mainly in patients from secondary or tertiary care centers, and thus, the prevalence rates in general community are not known. Our objective was to study the prevalence rates of impulse control disorders and related factors in a large, non-selected sample of Parkinson's disease patients. We conducted a cross-sectional survey among Parkinson's disease patients from Finnish Parkinson Association [n = 575; 365 men, 240 women, median age 64 (range 43-90) years]. Problem and pathological gambling were estimated with the South Oaks Gambling Screen, risk for impulse control disorders with the validated Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease, and depression with the Beck Depression Inventory. The frequency of pathological gambling was 7.0%. The overall frequency of a positive screen for an impulse control disorder was 34.8%, and 12.5% of the patients screened positive for multiple disorders. Depressive symptoms were statistically the most important factor in explaining variance in impulse control disorder risk, even more than sex, age, age of disease onset, alcohol use, or medication. The high proportion of patients screened positive for impulse control disorders in a non-selected sample emphasize the importance of routine screening of these disorders in Parkinson's disease. Pathological gambling prevalence in Parkinson's disease is seven times higher than in the general population in Finland. The results underline the importance of depression in impulse control disorders associated with Parkinson's disease. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Metabolic Disorders and Diabetic Complications in Spontaneously Diabetic Torii Leprfa Rat: A New Obese Type 2 Diabetic Model

    Directory of Open Access Journals (Sweden)

    Yusuke Kemmochi

    2013-01-01

    Full Text Available Spontaneously Diabetic Torii Leprfa (SDT fatty rat, established by introducing the fa allele of the Zucker fatty rat into SDT rat genome, is a new model of obese type 2 diabetes. Both male and female SDT fatty rats show overt obesity, and hyperglycemia and hyperlipidemia are observed at a young age as compared with SDT rats. With early incidence of diabetes mellitus, diabetic complications, such as nephropathy, retinopathy, and neuropathy, in SDT fatty rats were seen at younger ages compared to those in the SDT rats. In this paper, we overview pathophysiological features in SDT fatty rats and also describe new insights regarding the hematology, blood pressure, renal complications, and sexual dysfunction. The SDT fatty rats showed an increase of leukocytes, especially the monocyte count, prominent hypertension associated with salt drinking, end-stage renal disease with aging, and hypogonadism. Unlike other diabetic models, the characteristic of SDT fatty rat is to present an incidence of diabetes in females, hypertension, and retinopathy. SDT fatty rat is a useful model for analysis of various metabolic disorders and the evaluation of drugs related to metabolic disease.

  14. Metabolic Syndrome: Systems Thinking in Heart Disease.

    Science.gov (United States)

    Dommermuth, Ron; Ewing, Kristine

    2018-03-01

    Metabolic syndrome (MetS) is a cluster of cardiometabolic risk factors. MetS is associated with approximately 4-fold increase in the likelihood of developing type 2 diabetes mellitus (T2DM) and a 2-fold increase in the incidence of cardiovascular disease complications. MetS is a progressive, proinflammatory, prothrombotic condition that manifests itself along a broad spectrum of disease. It is associated with hypertension, obstructive sleep apnea, fatty liver disease, gout, and polycystic ovarian syndrome. Intervening in and reversing the pathologic process become more difficult as the disease progresses, highlighting the needs for increased individual and community surveillance and primary prevention. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Abdominal ultrasonography in inheredited diseases of carbohydrate metabolism; Ecografia dell'addome nelle malattie ereditarie del metabolismo dei carboidrati

    Energy Technology Data Exchange (ETDEWEB)

    Pozzato, Carlo; Curti, Alessandra; Cornalba, Gianpaolo [Milano Univ., Ospedale San Paolo, Milano (Italy). Unita' Operativa di Radiologia Diagnostica ed Interventistica, Istituto di Scienze Radiologiche; Radaelli, Giovanni [Milano Univ., Ospedale San Paolo, Milano (Italy). Unita' Operativa di Statistica Medica; Fiori, Laura; Rossi, Samantha; Riva, Enrica [Milano Univ., Ospedale San Paolo, Mialno (Italy). Dipartimento di Pediatria

    2005-02-01

    Purpose: To determine the usefulness of abdominal sonography in inherited diseases of carbohydrate metabolism. Materials and methods: Thirty patients (age range, 4 months to 27 years) with glycogen storage diseases, galactosemia, disorders of fructose metabolism were studied with sonography. Echogenicity of the liver, sonographic dimensions of liver, kidneys and spleen were evaluated. Plasma blood parameters (ALT, AST, total cholesterol, triglycerides) were determined. Results: Liver was enlarged in 21/22 patients (95.4%) with glycogen storage diseases, in both subjects with disorders of fructose metabolism, and in 2/6 patients (33.3%) with galactosemia. Hepatic echogenicity was increased in 20/22 patients (90.9%) with glycogen storage diseases, and in the subject with hereditary fructose intolerance. Patients with galactosemia did not show increased liver echogenicity. Both kidney were enlarged in 8/17 patients (47.0%) with glycogen storage disease type I. Subjects with increased hepatic echogenicity exhibited higher plasma concentrations of any blood parameter than the others with normal echogenicity (p<0.05). Conclusions: Sonography can be useful in identification of inherited diseases of carbohydrate metabolism even if further examinations are necessary for an ultimate diagnosis. [Italian] Scopo: Determinare l'utilita' dell'ecografia addominale nelle malattie ereditarie del metabolismo dei carboidrati. Materiale e metodi: Di 30 pazienti (eta' compresa tra 4 mesi e 27 anni), affetti da malattie di accumulo di glicogeno (glicogenosi), galattosemia, disordini del metabolismo del fruttosio, sono stati valutati tramite ecografia l'ecogenicita' epatica e le dimensioni ecografiche di fegato, reni e milza. Sono stati determinati alcuni parametri ematici (ALT, AST, colesterolo totale, trigliceridi). Risultati: Il fegato e' risultato ingrandito in 21/22 pazienti (95,4%) con malattie da accumolo di glicogeno, in entrambi i soggetti con

  16. Disease mongering in psychiatry: fact or fiction?

    Directory of Open Access Journals (Sweden)

    S Saddichha

    2010-12-01

    Full Text Available Disease mongering starts at the top of recent accusations being hurled at psychiatry. It is used to refer to the attempts by pharmaceutical companies or others who have similar interests, to enlarge the market for a treatment by convincing people that they are sick and need medical intervention. This paper critically analyses the 'for' and 'against' arguments of disease mongering in psychiatric disorders, both new and old, such as Bipolar disorders, attention deficit hyperactivity disorder, Restless legs syndrome, Premenstrual dysphoric disorder, female sexual dysfunction, social phobia, metabolic syndrome and road rage disorder. Keywords: disease mongeringpharmaceutical companies, psychiatry.

  17. Metabolomic profiling reveals distinct patterns of tricarboxylic acid disorders in blood stasis syndrome associated with coronary heart disease.

    Science.gov (United States)

    Wang, Yong; Li, Chun; Chang, Hong; Lu, Ling-Hui; Qiu, Qi; Ouyang, Yu-Lin; Yu, Jun-da; Guo, Shu-Zhen; Han, Jing; Wang, Wei

    2016-08-01

    To investigate the underlying metabolomic profifiling of coronary heart disease (CHD) with blood stasis syndrome (BSS). CHD model was induced by a nameroid constrictor in Chinese miniature swine. Fifteen miniature swine were randomly divided into a model group (n=9) and a control group (n=6), respectively according to arandom number table. After 4 weeks, plasma hemorheology was detected by automatic hemorheological analyzer, indices including hematocrit, plasma viscosity, blood viscosity, rigidity index and erythrocyte sedimentation rate; cardiac function was assessed by echocardiograph to detect left ventricular end-systolic diameter (LVED), left ventricular end-diastolic diameter (LVEDd), ejection fraction (EF), fractional shortening (FS) and other indicators. Gas chromatography coupled with mass spectrometry (GC-MS) and bioinformatics were applied to analyze spectra of CHD plasma with BSS. The results of hemorheology analysis showed signifificant changes in viscosity, with low shear whole blood viscosity being lower and plasma viscosity higher in the model group compared with the control group. Moreover, whole blood reduction viscosity at high shear rate and whole blood reduction viscosity at low shear rate increased signifificantly (P patterns involved were associated with dysfunction of energy metabolism including glucose and lipid disorders, especially in glycolysis/gluconeogenesis, galactose metabolism and adenosine-triphosphate-binding cassette transporters. Glucose metabolism and lipid metabolism disorders were the major contributors to the syndrome classifification of CHD with BSS.

  18. Maternal educational level and the risk of persistent post-partum glucose metabolism disorders in women with gestational diabetes mellitus.

    Science.gov (United States)

    Gante, Inês; Ferreira, Ana Carina; Pestana, Gonçalo; Pires, Daniela; Amaral, Njila; Dores, Jorge; do Céu Almeida, Maria; Sandoval, José Luis

    2018-03-01

    Gestational diabetes mellitus (GDM) occurs in 5-15% of pregnancies, and lower maternal educational attainment has been associated with higher risk of GDM. We aimed to determine if maternal education level is associated with persistent post-partum glucose metabolism disorders in women with GDM. Retrospective cohort study of women with GDM followed in 25 Portuguese health institutions between 2008 and 2012. Educational attainment was categorised into four levels. Prevalence of post-partum glucose metabolism disorders (type 2 diabetes mellitus, increased fasting plasma glucose or impaired glucose tolerance) was compared and adjusted odds ratios calculated controlling for confounders using logistic regression. We included 4490 women diagnosed with GDM. Educational level ranged as follows: 6.8% (n = 307) were at level 1 (≤ 6th grade), 34.6% (n = 1554) at level 2 (6-9th grade), 30.4% (n = 1364) at level 3 (10-12th grade) and 28.2% (n = 1265) at level 4 (≥ university degree). At 6 weeks post-partum re-evaluation, 10.9% (n = 491) had persistent glucose metabolism disorders. Educational levels 1 and 2 had a higher probability of persistent post-partum glucose metabolism disorders when compared to level 4 (OR = 2.37 [1.69;3.32], p women with GDM and associated with lower maternal educational level. Interventions aimed at this risk group may contribute towards a decrease in prevalence of post-partum glucose metabolism disorders.

  19. The relation of vitamin D, metabolic risk and negative symptom severity in people with psychotic disorders

    NARCIS (Netherlands)

    Bruins, J.; Jörg, F.; van den Heuvel, E.R.; Bartels-Velthuis, A.A.; Corpeleijn, E.; Muskiet, F.A.J.; Pijnenborg, G.H.M.; Bruggeman, R.

    2018-01-01

    People with psychotic disorders have an increased metabolic risk and their mean life expectancy is reduced with circa 28 years (Olfson et al., 2015).Predictors of this increased metabolic risk are genetic predisposition (Liu et al., 2013), lifestyle factors such as unhealthy diet, physical

  20. A Case of Sporadic Creutzfeldt-Jakob Disease Presenting as Conversion Disorder.

    Science.gov (United States)

    Yegya-Raman, Nikhil; Aziz, Rehan; Schneider, Daniel; Tobia, Anthony; Leitch, Megan; Nwobi, Onyi

    2017-01-01

    Background . Creutzfeldt-Jakob disease is a rare disorder of the central nervous system. Its initial diagnosis may be obscured by its variable presentation. This case report illustrates the complexity of diagnosing this disease early in the clinical course, especially when the initial symptoms may be psychiatric. It offers a brief review of the literature and reinforces a role for consultation psychiatry services. Methods . PUBMED/MEDLINE was searched using the terms "Creutzfeldt-Jakob disease", "psychiatric symptoms", "conversion disorder", "somatic symptom disorder", "functional movement disorder", and "functional neurologic disorder". Case . The patient was a 64-year-old woman with no prior psychiatric history who was initially diagnosed with conversion disorder and unspecified anxiety disorder but soon thereafter was discovered to have Creutzfeldt-Jakob disease. Discussion . This case highlights the central role of psychiatric symptoms in early presentations of Creutzfeldt-Jakob disease. Still, few other cases in the literature report functional neurological symptoms as an initial sign. The consultation psychiatrist must remain alert to changing clinical symptoms, especially with uncharacteristic disease presentations.

  1. Skeletal muscle metabolism during prolonged exercise in Pompe disease

    DEFF Research Database (Denmark)

    Preisler, Nicolai; Laforêt, Pascal; Madsen, Karen Lindhardt

    2017-01-01

    OBJECTIVE: Pompe disease (glycogenosis type II) is caused by lysosomal alpha-glucosidase deficiency, which leads to a block in intra-lysosomal glycogen breakdown. In spite of enzyme replacement therapy, Pompe disease continues to be a progressive metabolic myopathy. Considering the health benefits...... of exercise, it is important in Pompe disease to acquire more information about muscle substrate use during exercise. METHODS: Seven adults with Pompe disease were matched to a healthy control group (1:1). We determined (1) peak oxidative capacity (VO2peak) and (2) carbohydrate and fatty acid metabolism...... during submaximal exercise (33 W) for 1 h, using cycle-ergometer exercise, indirect calorimetry and stable isotopes. RESULTS: In the patients, VO2peak was less than half of average control values; mean difference -1659 mL/min (CI: -2450 to -867, P = 0.001). However, the respiratory exchange ratio...